id
stringlengths
3
8
content
stringlengths
100
981k
458325
from vedo import Latex, show from vedo.pyplot import histogram import numpy as np N = 2000 x = np.random.randn(N) * 1.0 y = np.random.randn(N) * 1.5 # hexagonal binned histogram: histo = histogram(x, y, bins=10, mode='hexbin', xtitle="\sigma_x =1.0", ytitle="\sigma_y =1.5", ztitle="counts", fill=True, cmap='terrain', ) # add a formula: f = r'f(x, y)=A \exp \left(-\left(\frac{\left(x-x_{o}\right)^{2}}' f+= r'{2 \sigma_{x}^{2}}+\frac{\left(y-y_{o}\right)^{2}}' f+= r'{2 \sigma_{y}^{2}}\right)\right)' formula = Latex(f, c='k', s=1.5).rotateX(90).rotateZ(90).pos(1.5,-2,1) show(histo, formula, axes=1, viewup='z')
458333
from conda_forge_tick.path_lengths import get_levels, nx def test_get_levels(): g = nx.DiGraph( [ ("a", "d"), ("b", "d"), ("b", "e"), ("c", "e"), ("c", "h"), ("d", "f"), ("d", "g"), ("d", "h"), ("e", "g"), ], ) levels = {0: {"a"}, 1: {"d"}, 2: {"f", "g", "h"}} assert get_levels(g, "a") == levels g.add_edges_from([("a", "b"), ("e", "a")]) levels = {0: {"a"}, 1: {"b"}, 2: {"d", "e"}, 3: {"f", "g", "h"}} assert get_levels(g, "a") == levels g.add_edge("d", "c") levels = {0: {"a"}, 1: {"b"}, 2: {"d"}, 3: {"c", "f"}, 4: {"e", "h"}, 5: {"g"}} assert get_levels(g, "a") == levels
458337
from numpy import ones #$ header class Point(public) #$ header method __init__(Point, [double]) #$ header method __del__(Point) #$ header method translate(Point, [double]) #$ header class Points(public) #$ header method __init__(Points, Point) #$ header method __del__(Points) class Point(object): def __init__(self, x): self.x = x def __del__(self): pass def translate(self, a): self.x = self.x + a class Points(object): def __init__(self, x): self.x = x def __del__(self): pass x = [1., 1., 1.] P1 = Point(x) P2 = Points(P1) P3 = P2.x P4 = P2 P5 = P2.x.x print x,P5
458338
from django.db.models.utils import create_namedtuple_class from django.test import SimpleTestCase class NamedTupleClassTests(SimpleTestCase): def test_immutability(self): row_class = create_namedtuple_class('field1', 'field2') row = row_class('value1', 'value2') with self.assertRaises(AttributeError): row.field3 = 'value3'
458341
import argparse import json import logging import os from os import listdir from os.path import isfile, join from collections import Counter from nlp.data import load_text_file from nlp.preprocessing import prepareText, frequencies from echr.utils.folders import make_build_folder from echr.utils.logger import getlogger from echr.utils.cli import TAB from echr.utils.config import config from rich.markdown import Markdown from rich.console import Console from rich.progress import ( Progress, BarColumn, TimeRemainingColumn, ) log = getlogger() __console = Console(record=True) def normalized_step(tokens, path='./', force=False, lemmatization=True): """ Normalize the tokens :param tokens: list of strings :type tokens: [str] :param path: path to write the output in :type path: str :return: normalized tokens :rtype: [str] """ normalized_tokens = prepareText(tokens, lemmatization) normalized_tokens = [t[0] for t in normalized_tokens] # print('normalized_tokens', normalized_tokens) return normalized_tokens def ngram_step(original_tokens, freq=None, path='./', force=False): """ Calculate the ngrams :param original_tokens: list of tokens :type original_tokens: [[str]] :param freq: rules to extract and filter ngrams :type freq: dict :param path: path to write the output in :type path: str :return: dictionary of ngrams indexed by n :rtype: dict """ if freq is None: logging.info('No configuration specified, uses the default one') freq = {1: 1, 2: 1, 3: 1, 4: 1} for k in freq: output_file = 'tokens_{}grams.txt'.format(k) p = os.path.join(path, output_file) if not force: if os.path.isfile(p): raise Exception("The file {} already exists!".format(p)) allgrams = frequencies(original_tokens, n=len(freq), minlimits=freq) return allgrams def run(console, build, title, force=False, update=False): __console = console global print print = __console.print print(Markdown("- **Step configuration**")) input_folder = os.path.join(build, 'raw', 'preprocessed_documents') output_folder = os.path.join(build, 'raw', 'normalized_documents') ngrams_config = {} try: ngrams_config = config()['steps']['normalize']['ngrams'] except Exception as e: print('Cannot retrieve n-grams configuration. Details: {}'.format(e)) exit(5) print(TAB + '> Step folder: {}'.format(output_folder)) make_build_folder(console, output_folder, force, strict=False) files = sorted([os.path.join(input_folder, f) for f in listdir(input_folder) if isfile(join(input_folder, f)) if '_text_without_conclusion.txt' in f]) raw_corpus = [] corpus_id = [] print(Markdown('- **Load documents**')) with Progress( TAB + "> Loading in memory... [IN PROGRESS]", BarColumn(30), TimeRemainingColumn(), "| Document [blue]{task.fields[doc]} [white]({task.completed}/{task.total})" "{task.fields[error]}", transient=True, console=console ) as progress: task = progress.add_task("Loading...", total=len(files), error="", doc=files[0].split('/')[-1].split('_text_without_conclusion.txt')[0]) for i, p in enumerate(files): error = "" doc_id = p.split('/')[-1].split('_text_without_conclusion.txt')[0] try: raw_corpus.append(load_text_file(p)) corpus_id.append(doc_id) except Exception as e: error = '\n| {}'.format('Could not load the document') log.debug(p, e) progress.update(task, advance=1, error=error, doc=doc_id) print(TAB + "> Loading in memory... [green][DONE]") normalized_tokens = [] print(Markdown('- **Generate language model**')) try: with Progress( TAB + "> Normalize... [IN PROGRESS]\n", BarColumn(30), TimeRemainingColumn(), "| Document [blue]{task.fields[doc]} [white]({task.completed}/{task.total})" "{task.fields[error]}", transient=True, console=console ) as progress: task = progress.add_task("Compute tokens...", total=len(raw_corpus), error="", doc=corpus_id[0]) for i, doc in enumerate(raw_corpus): filename = os.path.join(output_folder, '{}_normalized.txt'.format(corpus_id[i])) if not update or not os.path.isfile(filename): normalized_tokens.append(normalized_step(doc, force=force, lemmatization=True)) else: with open(filename, 'r') as f: normalized_tokens.extend(f.read().split()) f.close() progress.update(task, advance=1, error=error, doc=corpus_id[i]) except Exception as e: print(TAB + '[bold red]:double_exclamation_mark: Could not normalized the tokens. Details: {}'.format(e)) exit(40) print(TAB + "> Normalize... [green][DONE]") all_grams = [] doc_grammed = [] try: with Progress( TAB + "> Compute ngrams... [IN PROGRESS]\n", BarColumn(30), TimeRemainingColumn(), "| Document [blue]{task.fields[doc]} [white]({task.completed}/{task.total})" "{task.fields[error]}", transient=True, console=console ) as progress: task = progress.add_task("Compute tokens...", total=len(corpus_id), error="", doc=corpus_id[0]) for i, doc in enumerate(normalized_tokens): error = "" filename = os.path.join(output_folder, '{}_normalized.txt'.format(corpus_id[i])) if not update or not os.path.isfile(filename): grams = ngram_step(doc, ngrams_config, force=force) merged = [] for g in grams.values(): merged.extend(g) doc_grammed.append(merged) all_grams.extend(merged) else: error = "\n| Load document as already normalized." with open(filename, 'r') as f: all_grams.extend(f.read().split()) doc_grammed.append(None) f.close() progress.update(task, advance=1, error=error, doc=corpus_id[i]) except Exception: console.print_exception() print(TAB + "> Compute ngrams... [green][DONE]") f = Counter(all_grams) with open(os.path.join(output_folder, 'full_dictionary.txt'), 'w') as outfile: json.dump(f, outfile, indent=4, sort_keys=True) print(TAB + '> Save the full dictionary [green][DONE]') with Progress( TAB + "> Save normalized documents... [IN PROGRESS]\n", BarColumn(30), TimeRemainingColumn(), "| Document [blue]{task.fields[doc]} [white]({task.completed}/{task.total})" "{task.fields[error]}", transient=True, console=console ) as progress: task = progress.add_task("Compute tokens...", total=len(doc_grammed), error="", doc=corpus_id[0]) for i, doc in enumerate(doc_grammed): if doc is not None: with open(os.path.join(output_folder, '{}_normalized.txt'.format(corpus_id[i])), 'a') as file: file.write(' '.join(doc)) progress.update(task, advance=1, error=error, doc=corpus_id[i]) print(TAB + '> Save normalized documents... [green][DONE]') def main(args): console = Console(record=True) run(console, args.build, args.title, args.force, args.u) def parse_args(parser): args = parser.parse_args() # Check path return args if __name__ == "__main__": parser = argparse.ArgumentParser(description='Turn a collection of documents into a BoW and TF-IDF representation.') parser.add_argument('--build', type=str, default="./build/echr_database/") parser.add_argument('--title', type=str) parser.add_argument('-f', action='store_true') parser.add_argument('-u', action='store_true') args = parse_args(parser) main(args)
458365
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * clr.AddReference("RevitNodes") import Revit clr.ImportExtensions(Revit.Elements) def GetDimensionReferences(item): if hasattr(item, "References"): return [item.Document.GetElement(x.ElementId) for x in item.References] else: return None dimensions = UnwrapElement(IN[0]) if isinstance(IN[0], list): OUT = [GetDimensionReferences(x) for x in dimensions] else: OUT = GetDimensionReferences(dimensions)
458372
from torchnlp.nn.attention import Attention from torchnlp.nn.lock_dropout import LockedDropout from torchnlp.nn.weight_drop import WeightDropGRU from torchnlp.nn.weight_drop import WeightDropLSTM from torchnlp.nn.weight_drop import WeightDropLinear from torchnlp.nn.weight_drop import WeightDrop from torchnlp.nn.cnn_encoder import CNNEncoder __all__ = [ 'LockedDropout', 'Attention', 'CNNEncoder', 'WeightDrop', 'WeightDropGRU', 'WeightDropLSTM', 'WeightDropLinear', ]
458412
class Solution(object): def removeInterval(self, intervals, toBeRemoved): """ :type intervals: List[List[int]] :type toBeRemoved: List[int] :rtype: List[List[int]] """ removeStart, removeEnd = toBeRemoved output = [] for start, end in intervals: if end <= removeStart or start >= removeEnd: output.append([start, end]) elif start < removeStart and end > removeEnd: output.append([start, removeStart]) output.append([removeEnd, end]) elif start < removeStart and end <= removeEnd: output.append([start, removeStart]) elif start >= removeStart and end > removeEnd: output.append([removeEnd, end]) return output
458448
import argparse import csv import os from pprint import pprint ERROR_STRINGS = { 'uniqueness_error': '"{0} must be unique.".format(fieldname)', 'required_error': '"Required field {0} is missing.".format(fieldname)', 'type_error': '"{0} must be of type {1}.".format(fieldname, data_type)', 'len_error': ('"{0} must be no more than {1} characters.".format' '(fieldname, length)') } TAS_KEY_IDENTIFIERS = [ 'AllocationTransferRecipientAgencyId', 'AgencyIdentifier', 'BeginningPeriodOfAvailability', 'EndingPeriodOfAvailability', 'AvailabilityTypeCode', 'MainAccountCode' ] KEY_IDENTIFIERS = { 'appropriation': [], 'object_class_program_activity': [ 'ProgramActivityCode', 'ObjectClass' ], 'award': [ 'FainAwardNumber' ], 'award_financial': [ 'ObjectClass', 'FainAwardNumber' ] } class Validator(object): '''A validator which will read in 4 csv files and perform various validations''' def __init__(self, appropriation_file, object_class_file, award_financial_file, award_file, rules_dir): self.appropriations = self.load_data(appropriation_file) self.object_class = self.load_data(object_class_file) self.award_financial = self.load_data(award_financial_file) self.award = self.load_data(award_file) self.appropriations_rules = self.load_simple_rules(rules_dir + 'appropriation_rules.csv') self.object_class_rules = self.load_simple_rules(rules_dir + 'object_class_program_activity_rules.csv') self.award_financial_rules = self.load_simple_rules(rules_dir + 'award_financial_rules.csv') self.award_rules = self.load_simple_rules(rules_dir + 'award_rules.csv') self.results = self.validate_submission() def load_data(self, dataframe): '''Loads data from submitted agency CSV Expects: dataframe: dataframe of the agency-submitted CSV Outputs: A list of dicts''' if dataframe is None: return '' return dataframe.to_dict('records') def load_simple_rules(self, rules_file): base = os.path.dirname(__file__) filepath = filename = os.path.join(base, rules_file) rules_dict = {} rules = csv.DictReader(open(filepath, 'rU')) for row in rules: rules_dict[row['fieldname']] = row return rules_dict def check_required(self, required, value): if not eval(required) or value: return True elif value == 0: return True def check_data_type(self, data_type, value): try: eval(data_type)(value) return True except ValueError: return False def check_length(self, length, value): if len(str(value)) <= int(length): return True def check_unique(self, value): ''' TODO: micahsaul''' pass def generate_error(self, error_type, fieldname, submitted_value, hard_fail=True, data_type='', length=''): result = {} result['error_type'] = error_type result['hard_fail'] = hard_fail result['fieldname'] = fieldname result['value'] = submitted_value result['error_string'] = eval(ERROR_STRINGS[error_type]) return result def build_tas(self, data): #key = '' #for field in TAS_KEY_IDENTIFIERS: # if data[field]: # key += str(data[field]) + '-' #return key[:-1] return "" # just return blank string since TAS fields changed def build_key(self, data, fields): keys = {} for field in fields: is_key = data.get(field,None) if is_key: keys[field] = data[field] return keys def validate_row(self, row, rules): '''Runs a set of simple validation rules against submitted data. Expects: data: A single dict from the list produced by load_data() rules: A dict of simple validation rules from load_simple_rules Outputs: A list of validation errors and metadata''' results = [] for field in row: if field in rules: rule = rules[field] if not self.check_required(rule['required'], row[field]): error = self.generate_error('required_error', field, 'n/a') results.append(error) continue if row[field]: if not self.check_data_type(rule['data_type'], row[field]): error = self.generate_error('type_error', field, row[field], data_type=rule['data_type']) results.append(error) if not self.check_length(rule['field_length'], row[field]): error = self.generate_error('len_error', field, row[field], length=rule['field_length']) results.append(error) else: #for the prototype, ignore extra columns on submitted csvs pass return results def validate_file(self, filename, data, rules): '''Runs all validations on a single file. Expects: filename: The type of file being validated. data: A list of dicts produced by load_data() rules: A dict of simple validation rules from load_simple_rules() Outputs: A dict, keyed by a docname + row number, containing errors and original data. ''' results = {} row_count = 0 for row in data: row_count += 1 errors = self.validate_row(row, rules) if errors: row_id = filename + '_row' + str(row_count) result = {} result['errors'] = errors result['data'] = row if filename != 'award': result['tas_identifier'] = self.build_tas(row) result['identifiers'] = self.build_key( row, KEY_IDENTIFIERS[filename]) results[row_id] = result return results def validate_submission(self): results = [] results.append(self.validate_file('appropriations', self.appropriations, self.appropriations_rules)) results.append(self.validate_file('object_class', self.object_class, self.object_class_rules)) results.append(self.validate_file('award_financial', self.award_financial, self.award_financial_rules)) results.append(self.validate_file('award', self.award, self.award_rules)) return results class ValidatorSingle(Validator): def __init__(self, file_dataframe, file_template, rules_dir): self.file_data = self.load_data(file_dataframe) self.file_template = file_template self.rules = self.load_simple_rules(rules_dir + file_template[:-4] + '_rules' + file_template[-4:]) self.results = [] self.results.append(self.validate_file(file_template[:-4], self.file_data, self.rules)) if __name__ == '__main__': parser = argparse.ArgumentParser(description=( 'Validates the four CSV files in the DATA Act Agency submission')) parser.add_argument('appropriation', help="Appropriation CSV") parser.add_argument('object_class', help="Object Class CSV") parser.add_argument('award_financial', help="Award Financial CSV") parser.add_argument('award', help="Award CSV") parser.add_argument('rules_dir', help="Path to rules directory") args = parser.parse_args() validator = Validator(args.appropriation, args.object_class, args.award_financial, args.award, args.rules_dir ) pprint(validator.results)
458466
import argparse from collections import defaultdict import cv2 from PIL import Image, ImageDraw import numpy as np import torch from models import load_model_from_path from utils import coerce_to_path_and_create_dir, coerce_to_path_and_check_exist, get_files_from_dir from utils.constant import (CONTEXT_BACKGROUND_COLOR, ILLUSTRATION_LABEL, TEXT_LABEL, LABEL_TO_COLOR_MAPPING, MODEL_FILE, SEG_GROUND_TRUTH_FMT) from utils.image import resize, LabeledArray2Image from utils.logger import get_logger, print_info, print_error, print_warning from utils.metrics import RunningMetrics from utils.path import MODELS_PATH VALID_EXTENSIONS = ['jpeg', 'JPEG', 'jpg', 'JPG', 'pdf', 'tiff'] GT_COLOR = (0, 255, 0) LABEL_TO_DOCUMENT_CC_AREA_RATIO_THRESHOLD = { ILLUSTRATION_LABEL: 0.005, TEXT_LABEL: 0.0001, } class Evaluator: """Pipeline to evaluate a given trained segmentation NN model on a given input_dir""" def __init__(self, input_dir, output_dir, tag="default", seg_fmt=SEG_GROUND_TRUTH_FMT, labels_to_eval=None, save_annotations=True, labels_to_annot=None, predict_bbox=False, verbose=True): self.input_dir = coerce_to_path_and_check_exist(input_dir).absolute() self.files = get_files_from_dir(self.input_dir, valid_extensions=VALID_EXTENSIONS, recursive=True, sort=True) self.output_dir = coerce_to_path_and_create_dir(output_dir).absolute() self.seg_fmt = seg_fmt self.logger = get_logger(self.output_dir, name='evaluator') model_path = coerce_to_path_and_check_exist(MODELS_PATH / tag / MODEL_FILE) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model, (self.img_size, restricted_labels, self.normalize) = load_model_from_path( model_path, device=self.device, attributes_to_return=['train_resolution', 'restricted_labels', 'normalize']) self.model.eval() self.restricted_labels = sorted(restricted_labels) self.labels_to_eval = [ILLUSTRATION_LABEL] if labels_to_eval is None else sorted(labels_to_eval) self.labels_to_rm = set(self.restricted_labels).difference(self.labels_to_eval) assert len(set(self.labels_to_eval).intersection(self.restricted_labels)) == len(self.labels_to_eval) self.restricted_colors = [LABEL_TO_COLOR_MAPPING[l] for l in self.restricted_labels] self.label_idx_color_mapping = {self.restricted_labels.index(l) + 1: c for l, c in zip(self.restricted_labels, self.restricted_colors)} self.color_label_idx_mapping = {c: l for l, c in self.label_idx_color_mapping.items()} self.metrics = defaultdict(lambda : RunningMetrics(self.restricted_labels, self.labels_to_eval)) self.save_annotations = save_annotations self.labels_to_annot = labels_to_annot or self.labels_to_eval self.predict_bbox = predict_bbox self.verbose = verbose self.print_and_log_info('Output dir: {}'.format(self.output_dir.absolute())) self.print_and_log_info('Evaluator initialised with kwargs {}'.format( {'labels_to_eval': self.labels_to_eval, 'save_annotations': save_annotations})) self.print_and_log_info('Model tag: {}'.format(model_path.parent.name)) self.print_and_log_info('Model characteristics: train_resolution={}, restricted_labels={}' .format(self.img_size, self.restricted_labels)) self.print_and_log_info('Found {} input files to process'.format(len(self.files))) def print_and_log_info(self, string): self.logger.info(string) if self.verbose: print_info(string) def print_and_log_error(self, string): self.logger.error(string) if self.verbose: print_error(string) def print_and_log_warning(self, string): self.logger.warning(string) if self.verbose: print_warning(string) def run(self): for filename in self.files: self.print_and_log_info('Processing {}'.format(filename.relative_to(self.input_dir))) label_file = filename.parent / self.seg_fmt.format(filename.stem, 'png') dir_path = filename.parent.relative_to(self.input_dir) img = Image.open(filename).convert('RGB') pred = self.predict(img) if not label_file.exists(): self.print_and_log_warning('Ground truth not found') gt = None else: if Image.open(label_file).size == img.size: gt = self.encode_segmap(Image.open(label_file)) self.metrics[str(dir_path)].update(gt, pred) else: self.print_and_log_error(filename.relative_to(self.input_dir)) if self.save_annotations: output_path = self.output_dir / dir_path output_path.mkdir(exist_ok=True) pred_img = LabeledArray2Image.convert(pred, self.label_idx_color_mapping) mask = Image.fromarray((np.array(pred_img) == (0, 0, 0)).all(axis=-1).astype(np.uint8) * 127 + 128) blend_img = Image.composite(img, pred_img, mask) empty_pred, empty_gt = np.all(pred == 0), True lw = int(min([0.01 * img.size[0], 0.01 * img.size[1]])) if gt is not None: for label in self.labels_to_eval: if label in gt: mask_gt = (gt == label).astype(np.uint8) contours = cv2.findContours(mask_gt, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] for cnt in contours: empty_gt = False draw = ImageDraw.Draw(blend_img) draw.line(list(map(tuple, cnt.reshape(-1, 2).tolist())) + cnt[0][0].tolist(), fill=GT_COLOR, width=lw) if not empty_pred or not empty_gt: blend_img = resize(blend_img.convert('RGB'), (1000, 1000)) blend_img.save(output_path / '{}.jpg'.format(filename.stem)) self.save_metrics() self.print_and_log_info('Evaluator run is over') def encode_segmap(self, img): arr_segmap = np.array(img) unique_colors = set([color for size, color in img.getcolors()]).difference({CONTEXT_BACKGROUND_COLOR}) label = np.zeros(arr_segmap.shape[:2], dtype=np.uint8) for color in unique_colors: if color in self.restricted_colors: mask = (arr_segmap == color).all(axis=-1) label[mask] = self.color_label_idx_mapping[color] return label @torch.no_grad() def predict(self, image): red_img = resize(image, size=self.img_size, keep_aspect_ratio=True) inp = np.array(red_img, dtype=np.float32) / 255 if self.normalize: inp = ((inp - inp.mean(axis=(0, 1))) / (inp.std(axis=(0, 1)) + 10**-7)) inp = torch.from_numpy(inp.transpose(2, 0, 1)).float().to(self.device) # HWC -> CHW tensor pred = self.model(inp.reshape(1, *inp.shape))[0].max(0)[1].cpu().numpy() res = np.zeros(pred.shape, dtype=np.uint8) for label in self.labels_to_annot: mask_pred = (pred == self.restricted_labels.index(label) + 1).astype(np.uint8) _, contours, _ = cv2.findContours(mask_pred, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: cnt_area = cv2.contourArea(cnt) if cnt_area / (pred.shape[0] * pred.shape[1]) >= LABEL_TO_DOCUMENT_CC_AREA_RATIO_THRESHOLD[label]: if self.predict_bbox: x, y, width, height = cv2.boundingRect(cnt) bbox = np.asarray([[x, y], [x+width, y], [x+width, y+height], [x, y+height]]) cv2.fillPoly(res, [bbox], color=self.restricted_labels.index(label) + 1) else: cv2.fillPoly(res, [cnt], color=self.restricted_labels.index(label) + 1) res = cv2.resize(res, image.size, interpolation=cv2.INTER_NEAREST) return res def save_metrics(self): metric_names = next(iter(self.metrics.values())).names all_values = [[] for _ in range(len(metric_names))] with open(self.output_dir / 'metrics.tsv', mode='w') as f: f.write('dir_name\t{}\n'.format('\t'.join(metric_names))) for name, metrics in self.metrics.items(): values = list(metrics.get().values()) f.write('{}\t{}\n'.format(name, '\t'.join(map('{:.4f}'.format, values)))) [all_values[k].append(v) for k, v in enumerate(values)] if len(self.metrics) > 1: mean_values = list(map(np.mean, all_values)) f.write('{}\t{}\n'.format('average', '\t'.join(map('{:.4f}'.format, mean_values)))) print_info('Metrics saved') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Pipeline to evaluate a NN model on a given input_dir') parser.add_argument('-i', '--input_dir', nargs='?', type=str, required=True, help='Input directory') parser.add_argument('-o', '--output_dir', nargs='?', type=str, required=True, help='Output directory') parser.add_argument('-t', '--tag', nargs='?', type=str, default='default', help='Model tag to evaluate') parser.add_argument('-l', '--labels', nargs='+', type=int, default=[1], help='Labels to eval') parser.add_argument('-s', '--save_annot', action='store_true', help='Whether to save annotations') parser.add_argument('-lta', '--labels_to_annot', nargs='+', type=int, default=None, help='Labels to annotate') parser.add_argument('-b', '--pred_bbox', action='store_true', help='Whether to predict bounding boxes') args = parser.parse_args() input_dir = coerce_to_path_and_check_exist(args.input_dir) evaluator = Evaluator(input_dir, args.output_dir, tag=args.tag, labels_to_eval=args.labels, save_annotations=args.save_annot if args.labels_to_annot is None else True, labels_to_annot=args.labels_to_annot, predict_bbox=args.pred_bbox) evaluator.run()
458524
import gc import numpy from sppy.linalg.GeneralLinearOperator import GeneralLinearOperator from sppy.lib.Parameter import Parameter def biCGSTAB(A, b, maxIter=1000, tol=10**-6): """ Solve the linear system of equations given by A x = b where A is a csarray and b is a numpy array of the same dtype. Uses the Iterative stabilized bi-conjugate gradient method. :param A: A csarray object of size n x n :param b: A numpy array of length n of the same dtype as A. :param maxIter: The maximum number of iteartions of the method :param tol: The error tolerance :return x: A numpy array corresponding to the solution vector. :return i: The output code: 0 = success, 1 = numerical Issue, 2 = no convergence, 3 = invalid input """ return A._array.biCGSTAB(b, maxIter, tol) def norm(A, ord=None): """ This function returns the Frobenius norm of the input A, which is defined as sqrt(sum A_ij^2). :param A: A csarray object. :param ord: The type of norm required, currently ignored. :return: The Frobenius norm of A. """ return A._array.norm() def rsvd(A, k, p=10, q=2, omega=None): """ Compute the randomised SVD using the algorithm on page 9 of Halko et al., Finding Structure with randomness: stochastic algorithms for constructing approximate matrix decompositions, 2009. Finds the partial SVD of a sparse or dense matrix A, resolving the largest k singular vectors/values, using exponent q and k+p projections. Returns the left and right singular vectors, and the singular values. The resulting matrix can be approximated using A ~ U s V.T. To improve the approximation quality for a fixed k, increase p or q. :param A: A sparse or dense matrix or GeneralLinearOperator :param k: The number of singular values and random projections :param p: The oversampling parameter :param q: The exponent for the projections. :param omega: An initial matrix to perform random projections onto with at least k columns :return U: The left singular vectors :return s: The singular values :return V: The right singular vectors """ Parameter.checkInt(k, 1, float("inf")) Parameter.checkInt(p, 0, float("inf")) Parameter.checkInt(q, 0, float("inf")) if isinstance(A, GeneralLinearOperator): L = A else: L = GeneralLinearOperator.asLinearOperator(A) n = L.shape[1] if omega == None: omega = numpy.random.randn(n, k+p) else: omega = numpy.c_[omega, numpy.random.randn(n, p+k - omega.shape[1])] Y = L.matmat(omega) del omega for i in range(q): Y = L.rmatmat(Y) gc.collect() Y = L.matmat(Y) gc.collect() Q, R = numpy.linalg.qr(Y) del Y del R gc.collect() B = L.rmatmat(Q).T U, s, V = numpy.linalg.svd(B, full_matrices=False) del B V = V.T U = Q.dot(U) U = U[:, 0:k] s = s[0:k] V = V[:, 0:k] return U, s, V
458555
from collections import defaultdict class TrackRelatedChanges(object): def __init__(self): self.create_models = defaultdict(list) self.update_models = defaultdict(list) self.delete_models = defaultdict(list) def has_tracked_models(self, model_class=None): return any(( self.has_tracked_models_to_create(model_class), self.has_tracked_models_to_update(model_class), self.has_tracked_models_to_delete(model_class) )) def has_tracked_models_to_delete(self, model_class=None): return self._has_tracked_models(self.delete_models, model_class) def has_tracked_models_to_update(self, model_class=None): return self._has_tracked_models(self.update_models, model_class) def has_tracked_models_to_create(self, model_class=None): return self._has_tracked_models(self.create_models, model_class) def _has_tracked_models(self, storage, model_class=None): if model_class: return bool(storage[model_class]) return any(models for models in storage.values()) def clear_tracked_models(self, model_class=None): if not model_class: self.create_models.clear() self.update_models.clear() self.delete_models.clear() else: self.create_models[model_class] = [] self.update_models[model_class] = [] self.delete_models[model_class] = [] self.on_tracked_models_cleared(model_class) def on_tracked_models_cleared(self, model_class=None): """ Override this to be notified when tracked models have been cleared. :param model_class: May be None which indicates that all types have been cleared. """ pass def track_create(self, model): self.create_models[model.__class__].append(model) def track_update(self, model): self.update_models[model.__class__].append(model) def track_delete(self, model): self.delete_models[model.__class__].append(model) def get_live_tracked_models(self, model_class): """Return tracked models that have not been deleted """ return self.update_models[model_class] + self.create_models[model_class] def get_tracked_models_to_create(self, model_class): return self.create_models[model_class] def get_tracked_models_to_update(self, model_class): return self.update_models[model_class] def get_tracked_models_to_delete(self, model_class): return self.delete_models[model_class]
458568
import matplotlib.cm as cm import html from IPython.display import display, HTML import torch import numpy as np from transformers import pipeline def value2rgba(x, cmap=cm.RdYlGn, alpha_mult=1.0): "Convert a value `x` from 0 to 1 (inclusive) to an RGBA tuple according to `cmap` times transparency `alpha_mult`." c = cmap(x) rgb = (np.array(c[:-1]) * 255).astype(int) a = c[-1] * alpha_mult return tuple(rgb.tolist() + [a]) def piece_prob_html(pieces, prob, sep=' ', **kwargs): html_code,spans = ['<span style="font-family: monospace;">'], [] for p, a in zip(pieces, prob): p = html.escape(p) c = str(value2rgba(a, alpha_mult=0.5, **kwargs)) spans.append(f'<span title="{a:.3f}" style="background-color: rgba{c};">{p}</span>') html_code.append(sep.join(spans)) html_code.append('</span>') return ''.join(html_code) def show_piece_attn(*args, **kwargs): from IPython.display import display, HTML display(HTML(piece_prob_html(*args, **kwargs))) def split_text(x, max_length): length = len(x) if length > max_length: splits = length // max_length y = list() [y.append(torch.tensor([x[i : i + max_length]])) for i in range(0, splits*max_length, max_length)] if length % max_length > 0: y.append(torch.tensor([x[splits*max_length : length]])) else: y = list(torch.tensor([x])) return y def nothing_ent(i, word): return { 'entity': 'O', 'score': 0, 'index': i, 'word': word, 'start': 0, 'end': 0 } def generate_highlighted_text(model, tokenizer, text): ner_model = pipeline( 'token-classification', model=model, tokenizer=tokenizer, ignore_labels=None, device=0) result = ner_model(text) tokens = ner_model.tokenizer.tokenize(text) label_indeces = [i['index'] - 1 for i in result] entities = list() for i, word in enumerate(tokens): if i in label_indeces: entities.append(result[label_indeces.index(i)]) else: entities.append(nothing_ent(i, word)) entities = ner_model.group_entities(entities) spans = [e['word'] for e in entities] probs = [e['score'] for e in entities] return piece_prob_html(spans, probs, sep=' ')
458622
import trio import anyio import mock import attr import copy import time from functools import partial from contextlib import asynccontextmanager, AsyncExitStack from asyncscope import main_scope from distkv.default import CFG from distkv.server import Server from distkv.codec import unpacker from distkv.util import attrdict, combine_dict, NotGiven, ValueEvent from distkv.mock import S as _S from asyncserf.stream import SerfEvent from distmqtt.utils import create_queue import logging logger = logging.getLogger(__name__) otm = time.time @asynccontextmanager async def stdtest(n=1, run=True, ssl=False, tocks=20, **kw): C_OUT = CFG.get("_stdout", NotGiven) if C_OUT is not NotGiven: del CFG["_stdout"] TESTCFG = copy.deepcopy(CFG) TESTCFG.server.port = None TESTCFG.server.backend = "serf" TESTCFG.root = "test" if C_OUT is not NotGiven: CFG["_stdout"] = C_OUT TESTCFG["_stdout"] = C_OUT if ssl: import ssl import trustme ca = trustme.CA() cert = ca.issue_server_cert(u"127.0.0.1") server_ctx = ssl.create_default_context(purpose=ssl.Purpose.CLIENT_AUTH) client_ctx = ssl.create_default_context(purpose=ssl.Purpose.SERVER_AUTH) ca.configure_trust(client_ctx) cert.configure_cert(server_ctx) else: server_ctx = client_ctx = False clock = trio.lowlevel.current_clock() clock.autojump_threshold = 0.0 # clock.rate = 5 @attr.s class S(_S): splits = attr.ib(factory=set) serfs = attr.ib(factory=set) def split(self, s): assert s not in self.splits logger.debug("Split: add %d", s) self.splits.add(s) def join(self, s): logger.debug("Split: join %d", s) self.splits.remove(s) async def mock_get_host_port(st, host): i = int(host[host.rindex("_") + 1 :]) # noqa: E203 s = st.s[i] await s.is_serving for host, port, *_ in s.ports: if host == "::" or host[0] != ":": return host, port def tm(): try: return trio.current_time() except RuntimeError: return otm() async def mock_set_tock(self, old): assert self._tock < tocks, "Test didn't terminate. Limit:" + str(tocks) await old() async with main_scope("_distkv_test_serf") as scp: tg = scp._tg st = S(tg, client_ctx) async with AsyncExitStack() as ex: st.ex = ex # pylint: disable=attribute-defined-outside-init ex.enter_context(mock.patch("time.time", new=tm)) ex.enter_context(mock.patch("time.monotonic", new=tm)) logging._startTime = tm() ex.enter_context( mock.patch("asyncserf.serf_client", new=partial(mock_serf_client, st)) ) for i in range(n): name = "test_" + str(i) args = kw.get(name, kw.get("args", attrdict())) args["cfg"] = combine_dict( args.get("cfg", {}), { "connect": {"ssl": client_ctx}, "server": { "bind_default": { "host": "127.0.0.1", "port": i + 50120, "ssl": server_ctx, }, "serf": {"i": i}, }, }, TESTCFG, ) s = Server(name, **args) ex.enter_context( mock.patch.object(s, "_set_tock", new=partial(mock_set_tock, s, s._set_tock)) ) ex.enter_context( mock.patch.object(s, "_get_host_port", new=partial(mock_get_host_port, st)) ) st.s.append(s) evts = [] for i in range(n): if kw.get("run_" + str(i), run): evt = anyio.Event() tg.spawn(partial(st.s[i].serve, ready_evt=evt)) evts.append(evt) for e in evts: await e.wait() try: yield st finally: with anyio.fail_after(2, shield=True): logger.info("Runtime: %s", clock.current_time()) tg.cancel_scope.cancel() logger.info("End") pass # unwinding ex:AsyncExitStack @asynccontextmanager async def mock_serf_client(master, **cfg): async with anyio.create_task_group() as tg: ms = MockServ(tg, master, **cfg) master.serfs.add(ms) try: yield ms finally: master.serfs.remove(ms) pass # terminating mock_serf_client nursery class MockServ: def __init__(self, tg, master, **cfg): self.cfg = cfg self._tg = tg self.streams = {} self._master = master def __hash__(self): return id(self) async def spawn(self, fn, *args, **kw): async def run(evt): with anyio.CancelScope() as sc: await evt.set(sc) await fn(*args, **kw) evt = ValueEvent() self._tg.spawn(run, evt) return await evt.get() async def event(self, name, payload, coalesce=True): try: logger.debug("SERF:%s: %r", name, unpacker(payload)) except Exception: logger.debug("SERF:%s: %r (raw)", name, payload) assert not coalesce, "'coalesce' must be cleared!" i_self = self.cfg.get("i", 0) for s in list(self._master.serfs): i_s = s.cfg.get("i", 0) for x in self._master.splits: if (i_s < x) != (i_self < x): break else: n = tuple(name.split(".")) while n: sl = s.streams.get(n, ()) for sn in sl: await sn.q.put((name, payload)) n = n[:-1] def stream(self, typ): """compat for supporting asyncactor""" if not typ.startswith("user:"): raise RuntimeError("not supported") typ = typ[5:] return self.serf_mon(typ) def serf_mon(self, typ): if "," in typ: raise RuntimeError("not supported") s = MockSerfStream(self, "user:" + typ) return s async def serf_send(self, typ, payload): """compat for supporting asyncactor""" return await self.event(typ, payload) class MockSerfStream: q = None def __init__(self, serf, typ): self.serf = serf assert typ.startswith("user:") self.typ = tuple(typ[5:].split(".")) async def __aenter__(self): self.q = create_queue(100) self.serf.streams.setdefault(self.typ, []).append(self) return self async def __aexit__(self, *tb): self.serf.streams[self.typ].remove(self) del self.q def __aiter__(self): return self async def __anext__(self): res = await self.q.get() evt = SerfEvent(self) evt.topic, evt.payload = res return evt
458640
from .api import * # noqa; F401, F403 from .jni import * # noqa; F401, F403 from .types import * # noqa; F401, F403 __version__ = '0.2.5'
458651
import traceback from itertools import chain import shutil, os, re from hashlib import sha1 import psutil import ctypes ASTERISKS = r'**********' user32 = ctypes.WinDLL('user32') SW_MAXIMISE = 3 window_titles = [] GetWindowText = ctypes.windll.user32.GetWindowTextW GetWindowTextLength = ctypes.windll.user32.GetWindowTextLengthW IsWindowVisible = ctypes.windll.user32.IsWindowVisible EnumWindows = ctypes.windll.user32.EnumWindows EnumWindowsProc = ctypes.WINFUNCTYPE(ctypes.c_bool, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int)) JoinSep = '_' def cat_lists(L): lst = list(chain(*L)) return lst def convert2float_s(str_t): try: dig_t = float(str_t) except: dig_t = float('nan') return dig_t def convert_s(obj): ret = obj if isinstance(obj,str): if obj==ASTERISKS: ret = float('nan') else: for func in [int,float]: try: ret = func(obj) break except: pass return ret def copyfiles(path_src, path_dst, files): if not os.path.isdir(path_dst): os.makedirs(path_dst) for file in files: file_src = os.path.join(path_src, file) file_dst = os.path.join(path_dst, file) shutil.copy(file_src, file_dst) def copyfiles_pattern(path_src, path_dst, pattern, files=None): if files is None: if os.path.isdir(path_src): files = os.listdir(path_src) else: files = [] if not os.path.isdir(path_dst): os.makedirs(path_dst) for file in files: if re.match(file,pattern): file_src = os.path.join(path_src, file) file_dst = os.path.join(path_dst, file) shutil.copy(file_src, file_dst) def delete_files_pattern(path_t, pattern): if isinstance(path_t, str) and isinstance(pattern, str): if os.path.isdir(path_t): files = os.listdir(path_t) files_d = [x for x in files if re.match(pattern, x)] for fd in files_d: try: pfd = os.path.join(path_t, fd) os.remove(pfd) except: print('error in deleting %s' % fd) def get_all_process_legacy(): attrs_as_dict = ['pid', 'name', 'username', 'exe', 'create_time'] pid_list = psutil.pids() list_process = [] for pid in pid_list: try: dict_t = psutil.Process(pid).as_dict(attrs=attrs_as_dict) list_process.append(dict_t) except: traceback.print_exc() return list_process def get_all_process(name=None): attrs_as_dict = ['pid', 'name', 'username', 'exe', 'create_time'] list_process = [] for r in psutil.process_iter(): try: if (name is None) or (isinstance(name, str) and r.name() == name): dict_t = r.as_dict(attrs=attrs_as_dict) list_process.append(dict_t) except: traceback.print_exc() return list_process def get_all_process_tasklist(name=None): keys = ['name', 'exe', 'type', ''] r = os.popen('tasklist') A = r.read() B = [x.split() for x in A.split('\n')] # TODO: how to split?? def generate_new_files_save_yield(path_save, prefix_save, postfix_save='', try_ori=False, flag_dir = False, return_path = False, join_underline=True): if try_ori: count = -1 else: count = 0 max_count = 100000 if isinstance(prefix_save, str) and isinstance(postfix_save, str): if join_underline and prefix_save[-1]!=JoinSep: prefix_save = prefix_save+JoinSep while count <= max_count: if count == -1: file_name = prefix_save.rstrip(JoinSep) + postfix_save else: file_name = prefix_save + str(count) + postfix_save file_path_t = os.path.join(path_save, file_name) if flag_dir: flag_t = os.path.isdir(file_path_t) else: flag_t = os.path.isfile(file_path_t) if not flag_t: if return_path: rt = os.path.join(path_save,file_name) else: rt = file_name yield rt count += 1 def formulate_list_of_dicts(list_dicts): list_keys = union_all_keys(list_dicts) list_result = arrange_list_dict_by_keys(list_dicts, list_keys) return list_keys, list_result def union_all_keys(list_dicts): list_keys_raw = [] for dict_t in list_dicts: if isinstance(dict_t, dict): list_keys_raw.extend(dict_t.keys()) list_keys = list(set(list_keys_raw)) return list_keys def arrange_list_dict_by_keys(list_dicts, list_keys, dict_translate=None): num_keys = len(list_keys) list_result = [] if isinstance(dict_translate, dict): dict_translate_reverse = {v: k for k, v in dict_translate.items()} keys_o_r = dict_translate_reverse.keys() keys_o = dict_translate.keys() else: dict_translate_reverse = {} keys_o_r = [] keys_o = [] for dict_t in list_dicts: if isinstance(dict_t, dict): keys_dict_t = dict_t.keys() result_t = [] for key_t in list_keys: appended = False if key_t in keys_dict_t: result_t.append(dict_t[key_t]) appended = True elif key_t in keys_o: key_t_n = dict_translate[key_t] if key_t_n in keys_dict_t: result_t.append(dict_t[key_t_n]) appended = True elif key_t in keys_o_r: key_t_n = dict_translate_reverse[key_t] if key_t_n in keys_dict_t: result_t.append(dict_t[key_t_n]) appended = True if not appended: result_t.append(None) else: result_t = [None] * num_keys list_result.append(result_t) return list_result def gen_token(): return sha1(os.urandom(24)).hexdigest() def hide_window(): hWnd = user32.GetForegroundWindow() if hWnd: user32.ShowWindow(hWnd, 2) ctypes.windll.kernel32.CloseHandle(hWnd) def foreach_window(hwnd, lParam): global window_titles if IsWindowVisible(hwnd): length = GetWindowTextLength(hwnd) buff = ctypes.create_unicode_buffer(length + 1) GetWindowText(hwnd, buff, length + 1) window_titles.append(buff.value) return True def foreach_window_hide(hwnd,window_name, lParam): if IsWindowVisible(hwnd): length = GetWindowTextLength(hwnd) buff = ctypes.create_unicode_buffer(length + 1) GetWindowText(hwnd, buff, length + 1) if isinstance(buff.value,str): if str.find(buff.value,window_name)!=-1: user32.ShowWindow(hwnd, 2) return True return False def hide_window_by_name(window_name): def foreach_window_t(x,y): return foreach_window_hide(x,window_name,y) EnumWindows(EnumWindowsProc(foreach_window_t), 0) def get_window_titles(): global window_titles window_titles = [] EnumWindows(EnumWindowsProc(foreach_window), 0) return window_titles if __name__=='__main__': for i in range(100): a = gen_token() print(a)
458656
import re import dateparser import itertools from malaya.num2word import to_cardinal from malaya.text.function import ( is_english, is_malay, multireplace, case_of, replace_laugh, replace_mengeluh, ) from malaya.text.regex import ( _past_date_string, _now_date_string, _future_date_string, _yesterday_tomorrow_date_string, _depan_date_string, _expressions, _left_datetime, _right_datetime, _today_time, _left_datetodaytime, _right_datetodaytime, _left_yesterdaydatetime, _right_yesterdaydatetime, _left_yesterdaydatetodaytime, _right_yesterdaydatetodaytime, ) from malaya.text.tatabahasa import ( date_replace, consonants, sounds, bulan, ) from malaya.text.normalization import ( _remove_postfix, _normalize_title, _is_number_regex, _string_to_num, _replace_compound, cardinal, digit_unit, rom_to_int, ordinal, fraction, money, ignore_words, digit, ) from malaya.text.rules import rules_normalizer from malaya.cluster import cluster_words from malaya.function import validator from herpetologist import check_type from typing import Callable import logging logger = logging.getLogger('malaya.normalize') def normalized_entity(normalized): money_ = re.findall(_expressions['money'], normalized) money_ = [(s, money(s)[1]) for s in money_] dates_ = re.findall(_expressions['date'], normalized) past_date_string_ = re.findall(_past_date_string, normalized) logger.debug(f'past_date_string_: {past_date_string_}') now_date_string_ = re.findall(_now_date_string, normalized) logger.debug(f'now_date_string_: {now_date_string_}') future_date_string_ = re.findall(_future_date_string, normalized) logger.debug(f'future_date_string_: {future_date_string_}') yesterday_date_string_ = re.findall( _yesterday_tomorrow_date_string, normalized ) logger.debug(f'yesterday_date_string_: {yesterday_date_string_}') depan_date_string_ = re.findall(_depan_date_string, normalized) logger.debug(f'depan_date_string_: {depan_date_string_}') today_time_ = re.findall(_today_time, normalized) logger.debug(f'today_time_: {today_time_}') time_ = re.findall(_expressions['time'], normalized) logger.debug(f'time_: {time_}') left_datetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_left_datetime, normalized) ] logger.debug(f'left_datetime_: {left_datetime_}') right_datetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_right_datetime, normalized) ] logger.debug(f'right_datetime_: {left_datetime_}') today_left_datetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_left_datetodaytime, normalized) ] logger.debug(f'today_left_datetime_: {today_left_datetime_}') today_right_datetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_right_datetodaytime, normalized) ] logger.debug(f'today_right_datetime_: {today_right_datetime_}') left_yesterdaydatetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_left_yesterdaydatetime, normalized) ] logger.debug(f'left_yesterdaydatetime_: {left_yesterdaydatetime_}') right_yesterdaydatetime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_right_yesterdaydatetime, normalized) ] logger.debug(f'right_yesterdaydatetime_: {right_yesterdaydatetime_}') left_yesterdaydatetodaytime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_left_yesterdaydatetodaytime, normalized) ] logger.debug(f'left_yesterdaydatetodaytime_: {left_yesterdaydatetodaytime_}') right_yesterdaydatetodaytime_ = [ f'{i[0]} {i[1]}' for i in re.findall(_right_yesterdaydatetodaytime, normalized) ] logger.debug(f'right_yesterdaydatetodaytime_: {right_yesterdaydatetodaytime_}') dates_ = ( dates_ + past_date_string_ + now_date_string_ + future_date_string_ + yesterday_date_string_ + depan_date_string_ + time_ + today_time_ + left_datetime_ + right_datetime_ + today_left_datetime_ + today_right_datetime_ + left_yesterdaydatetime_ + right_yesterdaydatetime_ + left_yesterdaydatetodaytime_ + right_yesterdaydatetodaytime_ ) dates_ = [d.replace('.', ':') for d in dates_ if not isinstance(d, tuple)] dates_ = [multireplace(s, date_replace) for s in dates_] dates_ = [re.sub(r'[ ]+', ' ', s).strip() for s in dates_] dates_ = cluster_words(dates_) dates_ = {s: dateparser.parse(s) for s in dates_} money_ = {s[0]: s[1] for s in money_} return dates_, money_ def check_repeat(word): if word[-1].isdigit() and not word[-2].isdigit(): repeat = int(word[-1]) word = word[:-1] else: repeat = 1 if repeat < 1: repeat = 1 return word, repeat def groupby(string): results = [] for word in string.split(): if not ( _is_number_regex(word) or re.findall(_expressions['url'], word) or re.findall(_expressions['money'], word.lower()) or re.findall(_expressions['number'], word) ): word = ''.join([''.join(s)[:2] for _, s in itertools.groupby(word)]) results.append(word) return ' '.join(results) def put_spacing_num(string): string = re.sub('[A-Za-z]+', lambda ele: ' ' + ele[0] + ' ', string).split() for i in range(len(string)): if _is_number_regex(string[i]): string[i] = ' '.join([to_cardinal(int(n)) for n in string[i]]) string = ' '.join(string) return re.sub(r'[ ]+', ' ', string).strip() class Normalizer: def __init__(self, tokenizer, speller=None): self._tokenizer = tokenizer self._speller = speller @check_type def normalize( self, string: str, normalize_text: bool = True, normalize_entity: bool = True, normalize_url: bool = False, normalize_email: bool = False, normalize_year: bool = True, normalize_telephone: bool = True, normalize_date: bool = True, normalize_time: bool = True, check_english_func=is_english, check_malay_func=is_malay, **kwargs, ): """ Normalize a string. Parameters ---------- string : str normalize_text: bool, (default=True) if True, will try to replace shortforms with internal corpus. normalize_entity: bool, (default=True) normalize entities, only effect `date`, `datetime`, `time` and `money` patterns string only. normalize_url: bool, (default=False) if True, replace `://` with empty and `.` with `dot`. `https://huseinhouse.com` -> `https huseinhouse dot com`. normalize_email: bool, (default=False) if True, replace `@` with `di`, `.` with `dot`. `huse<EMAIL>` -> `husein dot zol kosong lima di gmail dot com`. normalize_year: bool, (default=True) if True, `tahun 1987` -> `tahun sembilan belas lapan puluh tujuh`. if True, `1970-an` -> `sembilan belas tujuh puluh an`. if False, `tahun 1987` -> `tahun seribu sembilan ratus lapan puluh tujuh`. normalize_telephone: bool, (default=True) if True, `no 012-1234567` -> `no kosong satu dua, satu dua tiga empat lima enam tujuh` normalize_date: bool, (default=True) if True, `01/12/2001` -> `satu disember dua ribu satu`. if True, `Jun 2017` -> `satu Jun dua ribu tujuh belas`. if True, `2017 Jun` -> `satu Jun dua ribu tujuh belas`. if False, `2017 Jun` -> `01/06/2017`. if False, `Jun 2017` -> `01/06/2017`. normalize_time: bool, (default=True) if True, `pukul 2.30` -> `pukul dua tiga puluh minit`. if False, `pukul 2.30` -> `'02:00:00'` check_english_func: Callable, (default=malaya.text.is_english) function to check a word in english dictionary, default is malaya.text.is_english. check_malay_func: Callable, (default=malaya.text.is_malay) function to check a word in malay dictionary, default is malaya.text.is_malay. Returns ------- string: {'normalize', 'date', 'money'} """ tokenized = self._tokenizer(string) s = f'tokenized: {tokenized}' logger.debug(s) string = ' '.join(tokenized) string = groupby(string) if normalize_text: string = replace_laugh(string) string = replace_mengeluh(string) string = _replace_compound(string) if hasattr(self._speller, 'normalize_elongated'): string = [ self._speller.normalize_elongated(word) if len(re.findall(r'(.)\1{1}', word)) and not word[0].isupper() and not word.lower().startswith('ke-') and not _is_number_regex(word) else word for word in string.split() ] string = ' '.join(string) result, normalized = [], [] tokenized = self._tokenizer(string) index = 0 while index < len(tokenized): word = tokenized[index] word_lower = word.lower() word_upper = word.upper() first_c = word[0].isupper() s = f'index: {index}, word: {word}, queue: {result}' logger.debug(s) if word in '~@#$%^&*()_+{}|[:"\'];<>,.?/-': s = f'index: {index}, word: {word}, condition punct' logger.debug(s) result.append(word) index += 1 continue normalized.append(rules_normalizer.get(word_lower, word_lower)) if word_lower in ignore_words: s = f'index: {index}, word: {word}, condition ignore words' logger.debug(s) result.append(word) index += 1 continue if ( first_c and not len(re.findall(_expressions['money'], word_lower)) and not len(re.findall(_expressions['date'], word_lower)) ): s = f'index: {index}, word: {word}, condition not in money and date' logger.debug(s) if word_lower in rules_normalizer and normalize_text: result.append(case_of(word)(rules_normalizer[word_lower])) index += 1 continue elif word_upper not in ['KE', 'PADA', 'RM', 'SEN', 'HINGGA']: result.append( _normalize_title(word) if normalize_text else word ) index += 1 continue if check_english_func is not None: s = f'index: {index}, word: {word}, condition check english' logger.debug(s) if check_english_func(word_lower): result.append(word) index += 1 continue if check_malay_func is not None: s = f'index: {index}, word: {word}, condition check malay' logger.debug(s) if check_malay_func(word_lower) and word_lower not in ['pada', 'ke']: result.append(word) index += 1 continue if len(word) > 2 and normalize_text: s = f'index: {index}, word: {word}, condition len(word) > 2 and norm text' logger.debug(s) if word[-2] in consonants and word[-1] == 'e': word = word[:-1] + 'a' if word[0] == 'x' and len(word) > 1 and normalize_text: s = f'index: {index}, word: {word}, condition word[0] == `x` and len(word) > 1 and norm text' logger.debug(s) result_string = 'tak ' word = word[1:] else: s = f'index: {index}, word: {word}, condition else for (word[0] == `x` and len(word) > 1 and norm text)' logger.debug(s) result_string = '' if word_lower == 'ke' and index < (len(tokenized) - 2): s = f'index: {index}, word: {word}, condition ke' logger.debug(s) if tokenized[index + 1] == '-' and _is_number_regex( tokenized[index + 2] ): result.append( ordinal( word + tokenized[index + 1] + tokenized[index + 2] ) ) index += 3 continue elif tokenized[index + 1] == '-' and re.match( '.*(V|X|I|L|D)', tokenized[index + 2] ): result.append( ordinal( word + tokenized[index + 1] + str(rom_to_int(tokenized[index + 2])) ) ) index += 3 continue else: result.append('ke') index += 1 continue if _is_number_regex(word) and index < (len(tokenized) - 2): s = f'index: {index}, word: {word}, condition hingga' logger.debug(s) if tokenized[index + 1] == '-' and _is_number_regex( tokenized[index + 2] ): result.append( to_cardinal(_string_to_num(word)) + ' hingga ' + to_cardinal(_string_to_num(tokenized[index + 2])) ) index += 3 continue if word_lower == 'pada' and index < (len(tokenized) - 3): s = f'index: {index}, word: {word}, condition pada hari bulan' logger.debug(s) if ( _is_number_regex(tokenized[index + 1]) and tokenized[index + 2] in '/-' and _is_number_regex(tokenized[index + 3]) ): result.append( 'pada %s hari bulan %s' % ( to_cardinal(_string_to_num(tokenized[index + 1])), to_cardinal(_string_to_num(tokenized[index + 3])), ) ) index += 4 continue if ( word_lower in ['tahun', 'thun'] and index < (len(tokenized) - 1) and normalize_year ): s = f'index: {index}, word: {word}, condition tahun' logger.debug(s) if ( _is_number_regex(tokenized[index + 1]) and len(tokenized[index + 1]) == 4 ): t = tokenized[index + 1] if t[1] != '0': l = to_cardinal(int(t[:2])) r = to_cardinal(int(t[2:])) c = f'{l} {r}' else: c = to_cardinal(int(t)) if ( index < (len(tokenized) - 3) and tokenized[index + 2] == '-' and tokenized[index + 3].lower() == 'an' ): end = 'an' plus = 4 else: end = '' plus = 2 result.append(f'tahun {c}{end}') index += plus continue if _is_number_regex(word) and index < (len(tokenized) - 2): s = f'index: {index}, word: {word}, condition fraction' logger.debug(s) if tokenized[index + 1] == '/' and _is_number_regex( tokenized[index + 2] ): result.append( fraction( word + tokenized[index + 1] + tokenized[index + 2] ) ) index += 3 continue if ( tokenized[index + 1] == '-' and tokenized[index + 2].lower() == 'an' and normalize_year and len(word) == 4 ): t = word if t[1] != '0': l = to_cardinal(int(t[:2])) r = to_cardinal(int(t[2:])) c = f'{l} {r}' else: c = to_cardinal(int(t)) result.append(f'{c}an') index += 3 continue if re.findall(_expressions['money'], word_lower): s = f'index: {index}, word: {word}, condition money' logger.debug(s) money_, _ = money(word) result.append(money_) if index < (len(tokenized) - 1): if tokenized[index + 1].lower() in ('sen', 'cent'): index += 2 else: index += 1 else: index += 1 continue if re.findall(_expressions['date'], word_lower): s = f'index: {index}, word: {word}, condition date' logger.debug(s) word = word_lower word = multireplace(word, date_replace) word = re.sub(r'[ ]+', ' ', word).strip() try: s = f'index: {index}, word: {word}, parsing date' logger.debug(s) parsed = dateparser.parse(word) if parsed: word = parsed.strftime('%d/%m/%Y') if normalize_date: day, month, year = word.split('/') day = cardinal(day) month = bulan[int(month)].title() year = cardinal(year) word = f'{day} {month} {year}' except Exception as e: logger.warning(str(e)) result.append(word) index += 1 continue if ( re.findall(_expressions['time'], word_lower) or re.findall(_expressions['time_pukul'], word_lower) ): s = f'index: {index}, word: {word}, condition time' logger.debug(s) word = word_lower word = multireplace(word, date_replace) word = re.sub(r'[ ]+', ' ', word).strip() try: s = f'index: {index}, word: {word}, parsing time' logger.debug(s) parsed = dateparser.parse(word.replace('.', ':')) if parsed: word = parsed.strftime('%H:%M:%S') if normalize_time: hour, minute, second = word.split(':') hour = cardinal(hour) if int(minute) > 0: minute = cardinal(minute) minute = f'{minute} minit' else: minute = '' if int(second) > 0: second = cardinal(second) second = f'{second} saat' else: second = '' word = f'pukul {hour} {minute} {second}' word = re.sub(r'[ ]+', ' ', word).strip() except Exception as e: logger.warning(str(e)) result.append(word) index += 1 continue if re.findall(_expressions['hashtag'], word_lower): s = f'index: {index}, word: {word}, condition hashtag' logger.debug(s) result.append(word) index += 1 continue if re.findall(_expressions['url'], word_lower): s = f'index: {index}, word: {word}, condition url' logger.debug(s) if normalize_url: word = word.replace('://', ' ').replace('.', ' dot ') word = put_spacing_num(word) word = word.replace('https', 'HTTPS').replace('http', 'HTTP').replace('www', 'WWW') result.append(word) index += 1 continue if re.findall(_expressions['email'], word_lower): s = f'index: {index}, word: {word}, condition email' logger.debug(s) if normalize_email: word = ( word.replace('://', ' ') .replace('.', ' dot ') .replace('@', ' di ') ) word = put_spacing_num(word) result.append(word) index += 1 continue if re.findall(_expressions['phone'], word_lower): s = f'index: {index}, word: {word}, condition phone' logger.debug(s) if normalize_telephone: splitted = word.split('-') if len(splitted) == 2: left = put_spacing_num(splitted[0]) right = put_spacing_num(splitted[1]) word = f'{left}, {right}' result.append(word) index += 1 continue if re.findall(_expressions['user'], word_lower): s = f'index: {index}, word: {word}, condition user' logger.debug(s) result.append(word) index += 1 continue if ( re.findall(_expressions['temperature'], word_lower) or re.findall(_expressions['distance'], word_lower) or re.findall(_expressions['volume'], word_lower) or re.findall(_expressions['duration'], word_lower) or re.findall(_expressions['weight'], word_lower) ): s = f'index: {index}, word: {word}, condition units' logger.debug(s) word = word.replace(' ', '') result.append(digit_unit(word)) index += 1 continue if ( re.findall(_expressions['percent'], word_lower) ): s = f'index: {index}, word: {word}, condition percent' logger.debug(s) word = word.replace('%', '') result.append(cardinal(word) + ' peratus') index += 1 continue if re.findall(_expressions['ic'], word_lower): s = f'index: {index}, word: {word}, condition IC' logger.debug(s) result.append(digit(word)) index += 1 continue if ( re.findall(_expressions['number'], word_lower) and word_lower[0] == '0' and '.' not in word_lower ): s = f'index: {index}, word: {word}, condition digit and word[0] == `0`' logger.debug(s) result.append(digit(word)) index += 1 continue cardinal_ = cardinal(word) if cardinal_ != word: s = f'index: {index}, word: {word}, condition cardinal' logger.debug(s) result.append(cardinal_) index += 1 continue normalized_ke = ordinal(word) if normalized_ke != word: s = f'index: {index}, word: {word}, condition normalized ke' logger.debug(s) result.append(normalized_ke) index += 1 continue word, end_result_string = _remove_postfix(word) if normalize_text: word, repeat = check_repeat(word) else: repeat = 1 if normalize_text: s = f'index: {index}, word: {word}, condition normalize text' logger.debug(s) if word in sounds: selected = sounds[word] elif word in rules_normalizer: selected = rules_normalizer[word] elif self._speller: selected = self._speller.correct( word, string=' '.join(tokenized), index=index ) else: selected = word else: selected = word selected = '-'.join([selected] * repeat) result.append(result_string + selected + end_result_string) index += 1 result = ' '.join(result) normalized = ' '.join(normalized) if normalize_entity: dates_, money_ = normalized_entity(normalized) else: dates_, money_ = {}, {} return {'normalize': result, 'date': dates_, 'money': money_} def normalizer(speller=None, **kwargs): """ Load a Normalizer using any spelling correction model. Parameters ---------- speller : spelling correction object, optional (default = None) Returns ------- result: malaya.normalize.Normalizer class """ validator.validate_object_methods( speller, ['correct', 'normalize_elongated'], 'speller' ) from malaya.preprocessing import Tokenizer tokenizer = Tokenizer(**kwargs).tokenize return Normalizer(tokenizer, speller)
458675
import FWCore.ParameterSet.Config as cms generator = cms.EDFilter("Herwig7GeneratorFilter", hwpp_cmsDefaults = cms.vstring('+hwpp_basicSetup', '+hwpp_setParticlesStableForDetector'), run = cms.string('InterfaceMatchboxTest'), dumpConfig = cms.untracked.string('HerwigConfig.in'), repository = cms.string('${HERWIGPATH}/HerwigDefaults.rpo'), dataLocation = cms.string('${HERWIGPATH:-6}'), hwpp_setParticlesStableForDetector = cms.vstring('set /Herwig/Particles/mu-:Stable Stable', 'set /Herwig/Particles/mu+:Stable Stable', 'set /Herwig/Particles/Sigma-:Stable Stable', 'set /Herwig/Particles/Sigmabar+:Stable Stable', 'set /Herwig/Particles/Lambda0:Stable Stable', 'set /Herwig/Particles/Lambdabar0:Stable Stable', 'set /Herwig/Particles/Sigma+:Stable Stable', 'set /Herwig/Particles/Sigmabar-:Stable Stable', 'set /Herwig/Particles/Xi-:Stable Stable', 'set /Herwig/Particles/Xibar+:Stable Stable', 'set /Herwig/Particles/Xi0:Stable Stable', 'set /Herwig/Particles/Xibar0:Stable Stable', 'set /Herwig/Particles/Omega-:Stable Stable', 'set /Herwig/Particles/Omegabar+:Stable Stable', 'set /Herwig/Particles/pi+:Stable Stable', 'set /Herwig/Particles/pi-:Stable Stable', 'set /Herwig/Particles/K+:Stable Stable', 'set /Herwig/Particles/K-:Stable Stable', 'set /Herwig/Particles/K_S0:Stable Stable', 'set /Herwig/Particles/K_L0:Stable Stable'), generatorModule = cms.string('/Herwig/Generators/EventGenerator'), eventHandlers = cms.string('/Herwig/EventHandlers'), hwpp_basicSetup = cms.vstring('#read Matchbox/GenericCollider.in', '#create ThePEG::RandomEngineGlue /Herwig/RandomGlue', '#set /Herwig/Generators/EventGenerator:RandomNumberGenerator /Herwig/RandomGlue', 'set /Herwig/Generators/EventGenerator:DebugLevel 2', 'set /Herwig/Generators/EventGenerator:PrintEvent 1', 'set /Herwig/Generators/EventGenerator:MaxErrors 10000'), configFiles = cms.vstring(), crossSection = cms.untracked.double(-1), parameterSets = cms.vstring( 'Matchbox', 'hwpp_cmsDefaults'), filterEfficiency = cms.untracked.double(1.0), Matchbox = cms.vstring( 'read snippets/Matchbox.in', 'read snippets/PPCollider.in', 'read Matchbox/DefaultPPJets.in', 'cd /Herwig/EventHandlers', 'set EventHandler:LuminosityFunction:Energy 13000*GeV', '## Model assumptions', 'read Matchbox/StandardModelLike.in', 'read Matchbox/DiagonalCKM.in', '## Set the order of the couplings', 'cd /Herwig/MatrixElements/Matchbox', 'set Factory:OrderInAlphaS 2', 'set Factory:OrderInAlphaEW 0', '## Select the process', 'do Factory:Process p p -> j j', '#read Matchbox/MadGraph-GoSam.in', 'read Matchbox/MadGraph-MadGraph.in', '#read Matchbox/MadGraph-OpenLoops.in', 'cd /Herwig/MatrixElements/Matchbox', 'set /Herwig/Cuts/FirstJet:PtMin 30.*GeV', '#set /Herwig/MatrixElements/Matchbox/ScalesHTScale:JetPtCut 30.*GeV', 'set Factory:ScaleChoice Scales/SHatScale', '#set Factory:ScaleChoice Scales/HTScale', 'read Matchbox/MCatNLO-DefaultShower.in', '# read Matchbox/NLO-NoShower.in', '# read Matchbox/LO-NoShower.in', 'read Matchbox/LO.in', 'read Matchbox/FiveFlavourScheme.in', 'read Matchbox/MMHT2014.in', 'do /Herwig/MatrixElements/Matchbox/Factory:ProductionMode', ) ) ProductionFilterSequence = cms.Sequence(generator)
458692
import logging import time from modules.base_module import Module from client import Client import common ACTIONS = ["danceBoy1", "danceBoy2", "danceBoy3", "danceBoy4", "danceBoyKoreanStyle", "danceBoyIreland", "danceBoyDisco", "danceBoyGrooveJam", "danceGirl1", "danceGirl2", "danceGirl3", "danceGirl4", "danceGirlKoreanStyle", "danceGirlIreland", "danceGirlDisco", "danceGirlGrooveJam", "idle1", "idle2", "idle3", "idle4", "idle5", "Yes", "Rage", "Proud", "Gratitude", "Disgust", "Discontent", "Dab", "Crying", "Applaud", "Amazement", "EmotionYes", "EmotionRage", "Laugh1", "Laugh2", "Laugh3", "lgh:Laugh1", "lgh:Laugh2", "lgh:Laugh3", "couturierPodiumStairsItem9", "animation=PhotoPose2", "animation=PhotoPose3", "animation=PhotoPose4", "animation=PhotoPose5", "animation=PhotoPose6", "animation=PhotoPose7", "animation=PhotoPose8", "animation=PhotoPose9", "animation=PhotoPose10", "animation=SceneDrums", "animation=SceneGuitar", "animation=ScenePiano", "animation=SceneVocal", "animation=FlashMobDance", "SitInBath@avatarAnimation", "animation=SceneCursed2|disableLoop=1", "animation=SceneCursed1|disableLoop=1"] def check_action(prefix, action): if action in ACTIONS: return True elif action.startswith("sitItem"): return True elif action.startswith("car"): return True if prefix == "h": try: int(action.split(":")[0]) return True except ValueError: return False return False class Location(Module): def __init__(self, server): self.server = server self.commands = {"r": self.room} self.refresh_cooldown = {} self.actions = {"ks": "kiss", "hg": "hug", "gf": "giveFive", "k": "kickAss", "sl": "slap", "lks": "longKiss", "hs": "handShake", "aks": "airKiss"} async def room(self, msg, client): subcommand = msg[1].split(".")[2] if subcommand in ["u", "m", "k", "sa", "sl", "bd", "lks", "hs", "ks", "hg", "gf", "aks"]: msg.pop(0) if msg[1]["uid"] != client.uid: return if "at" in msg[1]: prefix = msg[0].split(".")[0] if not check_action(prefix, msg[1]["at"]): msg[1]["at"] = "" if subcommand == "u": client.position = (msg[1]["x"], msg[1]["y"]) client.direction = msg[1]["d"] if "at" in msg[1]: client.action_tag = msg[1]["at"] else: client.action_tag = "" client.state = msg[1]["st"] elif subcommand in self.actions: action = self.actions[subcommand] uid = msg[1]["tmid"] rl = self.server.modules["rl"] link = await rl.get_link(client.uid, uid) if link: await rl.add_progress(action, link) online = self.server.online try: room = self.server.rooms[client.room].copy() except KeyError: return for uid in room: try: tmp = online[uid] except KeyError: continue await tmp.send(msg) elif subcommand == "ra": if client.uid in self.refresh_cooldown: if time.time() - self.refresh_cooldown[client.uid] < 3: return self.refresh_cooldown[client.uid] = time.time() await refresh_avatar(client, self.server) else: logging.warning(f"Command {msg[1]} not found") async def join_room(self, client, room): if room in self.server.rooms: self.server.rooms[room].append(client.uid) else: self.server.rooms[room] = [client.uid] client.room = room client.position = (-1.0, -1.0) client.action_tag = "" client.state = 0 client.dimension = 4 plr = await gen_plr(client, self.server) prefix = common.get_prefix(client.room) online = self.server.online new_room = self.server.rooms[room].copy() location_name = room.split("_")[0] if location_name == "canyon": client.canyon_lid = "l1" cc = await get_cc(room, self.server) else: cc = None for uid in new_room: if uid not in online: continue tmp = online[uid] await tmp.send([f"{prefix}.r.jn", {"plr": plr, "cc": cc}]) await tmp.send([client.room, client.uid], type_=16) async def leave_room(self, client): if client.uid not in self.server.rooms[client.room]: return self.server.rooms[client.room].remove(client.uid) old_room = self.server.rooms[client.room].copy() if old_room: prefix = common.get_prefix(client.room) online = self.server.online location_name = client.room.split("_")[0] if location_name == "canyon": cc = await get_cc(client.room, self.server) else: cc = None for uid in old_room: try: tmp = online[uid] except KeyError: continue await tmp.send([f"{prefix}.r.lv", {"uid": client.uid, "cc": cc}]) await tmp.send([client.room, client.uid], type_=17) else: del self.server.rooms[client.room] room = client.room.split("_") if room[0] == "house" and room[1] == client.uid: await self.server.modules["h"].owner_at_house(client.uid, False) client.room = None async def gen_plr(client, server): if isinstance(client, Client): uid = client.uid else: uid = client apprnc = await server.get_appearance(uid) if not apprnc: return None user_data = await server.get_user_data(uid) clths = await server.get_clothes(uid, type_=2) mobile_skin = await server.redis.get(f"uid:{uid}:mobile_skin") mobile_accessory = await server.redis.get(f"uid:{uid}:mobile_ac") mobile_ringtone = await server.redis.get(f"uid:{uid}:mobile_rt") if not mobile_skin: mobile_skin = "blackMobileSkin" plr = {"uid": uid, "apprnc": apprnc, "clths": clths, "mbm": {"ac": mobile_accessory, "sk": mobile_skin, "rt": mobile_ringtone}, "usrinf": {"rl": user_data["role"], "sid": uid}} bubble = await server.redis.get(f"uid:{uid}:bubble") text_color = await server.redis.get(f"uid:{uid}:tcl") plr["chtdcm"] = {"bdc": bubble, "tcl": text_color, "spks": ["bushStickerPack", "froggyStickerPack", "doveStickerPack", "jackStickerPack", "catStickerPack", "sharkStickerPack"]} if isinstance(client, Client): if await server.redis.get(f"uid:{uid}:loc_disabled"): shlc = False else: shlc = True plr["locinfo"] = {"st": client.state, "s": "127.0.0.1", "at": client.action_tag, "d": client.dimension, "x": client.position[0], "y": client.position[1], "shlc": shlc, "pl": "", "l": client.room} cid = await server.redis.get(f"uid:{uid}:clan") if cid: clan = server.modules["cln"] info = await clan.get_clan(cid) plr["clif"] = {"tg": info["tag"], "icn": info["icon"], "ctl": info["name"], "clv": info["lvl"], "cid": cid, "crl": info["members"][uid]["role"]} else: plr["clif"] = None plr["ci"] = await get_city_info(uid, server) plr["pf"] = {"pf": {"jntr": {"tp": "jntr", "l": 20, "pgs": 0}, "phtghr": {"tp": "phtghr", "l": 20, "pgs": 0}, "grdnr": {"tp": "grdnr", "l": 20, "pgs": 0}, "vsgst": {"tp": "vsgst", "l": 20, "pgs": 0}}} return plr async def get_city_info(uid, server): user_data = await server.get_user_data(uid) rl = server.modules["rl"] relations = await server.redis.smembers(f"rl:{uid}") cmid = 0 ceid = 0 for link in relations: relation = await rl._get_relation(uid, link) if not relation: continue if relation["rlt"]["s"] // 10 == 7: cmid = relation["uid"] if relation["rlt"]["s"] // 10 == 6: ceid = relation["uid"] if ceid and cmid: break if await server.redis.get(f"uid:{uid}:hide_crown"): show_crown = False else: show_crown = True psrtdcr = await server.redis.get(f"uid:{uid}:psrtdcr") if psrtdcr: psrtdcr = int(psrtdcr) else: psrtdcr = 1 snowscore = await server.redis.get(f"uid:{uid}:snowscore") if snowscore: snowscore = int(snowscore) else: snowscore = 0 plcmt = {"pc": {"snowboardRating": {"uid": 0, "ct": 2, "cid": 812, "cr": snowscore}}} ci = {"exp": user_data["exp"], "crt": user_data["crt"], "hrt": user_data["hrt"], "fexp": 0, "gdc": 0, "lgt": 0, "vip": user_data["premium"], "vexp": user_data["prem_time"], "vsexp": user_data["prem_time"], "vsact": True, "vret": 0, "vfgc": 0, "ceid": ceid, "cmid": cmid, "dr": True, "spp": 0, "tts": None, "eml": None, "ys": 0, "ysct": 0, "fak": None, "shcr": show_crown, "gtrfrd": 0, "strfrd": 0, "rtrtm": 0, "kyktid": None, "actrt": user_data["act"], "compid": 0, "actrp": 0, "actrd": 1899999999, "shousd": False, "rpt": 0, "as": None, "lvt": user_data["lvt"], "lrnt": 0, "lwts": 0, "skid": "iceRinkSkate1", "skrt": int(time.time()+10000000), "bcld": 0, "trid": user_data["trid"], "trcd": 0, "sbid": None, "sbrt": 0, "plcmt": plcmt, "pamns": {"amn": []}, "crst": 0, "psrtdcr": psrtdcr, "dl": True} if user_data["premium"]: ci["actrp"] = 1 ci["rpt"] = 600 return ci async def refresh_avatar(client, server): if not client.room: return plr = await gen_plr(client, server) prefix = common.get_prefix(client.room) online = server.online room = server.rooms[client.room].copy() for uid in room: try: tmp = online[uid] except KeyError: continue await tmp.send([f"{prefix}.r.ra", {"plr": plr}]) async def get_cc(room, server): room = server.rooms[room].copy() online = server.online cc = {"cc": []} i = 1 for uid in room: if uid not in online: continue car = await get_car(uid, server.redis) cc["cc"].append({'pss': [uid], 'uid': uid, 'ctid': car, 'gtp': '', 'sid': str(i)}) i += 1 return cc async def get_car(uid, r): for room in await r.smembers(f"rooms:{uid}"): for item in await r.smembers(f"rooms:{uid}:{room}:items"): if "car" in item.lower() or "bike" in item.lower() or \ "tank" in item.lower(): return item.split("_")[0] return "carPtcChrry"
458716
import discord, random from discord.ext import commands from discord_slash import cog_ext from discord_slash.utils.manage_commands import create_option, create_choice class Slash(commands.Cog): def __init__(self, bot): self.bot = bot @cog_ext.cog_slash(name="rps", description="Jouer au rock scroll scissors !", options=[ create_option( name="joueur", description="Pierre, scroll ou scissors ?", option_type=3, required=True, choices=[ create_choice( name="pierre", value="rock" ), create_choice( name="papier", value="scroll" ), create_choice( name="ciseaux", value="scissors" )])]) async def _rps(self, ctx, joueur: str): bot_ = ["rock", "scroll", "scissors"] bot_ = random.choice(bot_) bot_emoji = f":{bot_}:" joueur_emoji = f":{joueur}:" if joueur == bot_: msg = ":crossed_swords: Égalité !" elif joueur == "rock" and bot_ == "scroll": msg = "Tu as perdu..." elif joueur == "scroll" and bot_ == "scissors": msg = "Tu as perdu..." elif joueur == "scissors" and bot_ == "rock": msg = "Tu as perdu..." elif joueur == "rock" and bot_ == "scissors": msg = "Tu as gagné !" elif joueur == "scroll" and bot_ == "rock": msg = "Tu as gagné !" elif joueur == "scissors" and bot_ == "scroll": msg = "Tu as gagné !" bot_ = bot_.replace("rock", "pierre").replace("scroll", "papier").replace("scissors", "ciseaux") joueur = joueur.replace("rock", "pierre").replace("scroll", "papier").replace("scissors", "ciseaux") embed = discord.Embed(title="<NAME>") embed.add_field(name="** **", value=f"{joueur_emoji} {ctx.author.mention} : {joueur}\n{bot_emoji} <@760171813866700850> : {bot_}", inline=False) embed.add_field(name="** **", value=msg, inline=False) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Slash(bot)) def teardown(bot): bot.remove_cog("rps")
458749
from recipe_scrapers.tastesoflizzyt import TastesOfLizzyT from tests import ScraperTest class TestTastesOfLizzyTScraper(ScraperTest): scraper_class = TastesOfLizzyT def test_host(self): self.assertEqual("tastesoflizzyt.com", self.harvester_class.host()) def test_canonical_url(self): self.assertEqual( "https://www.tastesoflizzyt.com/soft-baked-gingerbread-cookies/", self.harvester_class.canonical_url(), ) def test_title(self): self.assertEqual(self.harvester_class.title(), "Soft Gingerbread Cookies") def test_total_time(self): self.assertEqual(27, self.harvester_class.total_time()) def test_yields(self): self.assertEqual("60 serving(s)", self.harvester_class.yields()) def test_ingredients(self): self.assertCountEqual( [ "1 cup shortening", "1 cup brown sugar packed", "1 cup molasses", "1 cup buttermilk", "5 1/2 cups flour", "4 teaspoons baking soda", "1 teaspoon ginger", "3/4 teaspoon cinnamon", "1/4 teaspoon nutmeg", "1/4 teaspoon cloves", "1 teaspoons salt", "1/2 cup extra sugar for rolling dough", ], self.harvester_class.ingredients(), ) def test_instructions(self): self.assertEqual( "In a large bowl, cream together the shortening, brown sugar, molasses and buttermilk.\nIn a separate bowl, sift together the flour, baking soda, ginger, cinnamon, nutmeg, cloves and salt.\nAdd the dry ingredients to the creamed sugar mixture and mix well.\nRoll the dough into balls and then roll the balls in sugar.\nPlace the cookie dough balls on an ungreased cookie sheet and bake at 350 degrees for 11-12 minutes.\nAllow the cookies to cool on a wire rack and then store in an airtight container.", self.harvester_class.instructions(), )
458777
import abc import asyncio from typing import AnyStr, ClassVar, List, Optional, TypeVar, Dict, Mapping T = TypeVar("T") class Response(abc.ABC): status_code: int status_codes_success: ClassVar[List[int]] content_type: str async def read(self) -> AnyStr: """ Should return json-serializable bytes or str object """ raise NotImplementedError async def close(self): """ Will be called after reading response [Guaranteed in core.request.Requests::make_return] """ raise NotImplementedError class ConnectorException(Exception): ... class Connector(abc.ABC): def __init__( self, timeout: float, default_headers: Mapping[str, str], loop: Optional[asyncio.AbstractEventLoop] = None, ): """ :param timeout: request timeout should be float'able :param default_headers: flat [str,str] mapping :param loop: asyncio's abstract event loop compatible """ self.timeout = timeout self.default_headers = default_headers self.loop = loop async def request( self, method: str, url: str, *, params: Optional[Dict[str, str]] = None, data: Optional[AnyStr] = None, headers: Optional[Dict[str, str]] = None, ) -> Response: """ Should implement http request for particular method :param method: HTTP method :param url: URL string :param params: Dictionary of query holding parameters (e.g: url + "?" + key=val + sep) :param data: Request body :param headers: Dictionary holding headers (default headers are in lower priority, this dict can overlap with default) :return: Implemented `Response` object """ raise NotImplementedError async def close(self): """ Should "close" connector, can be used to close all current streams etc. Can be called several times, `closed` flag may be required. """ raise NotImplementedError @classmethod def from_connector(cls, connector: 'Connector') -> 'Connector': """ Get current class' connector instance. Implemented method. :param connector: old connector to be replace """ return cls( timeout=connector.timeout, default_headers=connector.default_headers, loop=connector.loop )
458784
from django.contrib.auth import get_user_model from graphene import Node, Field, GlobalID, String from graphene_django.types import DjangoObjectType, ObjectType from polls.schema import PollQueries from users.jwt_schema import TokensInterface class UserNode(DjangoObjectType): class Meta: model = get_user_model() only_fields = ( 'id', 'last_login', 'is_superuser', 'username', 'first_name', 'last_name', 'email', 'is_staff', 'is_active', 'date_joined', ) interfaces = (Node, TokensInterface) class Viewer(ObjectType, PollQueries): id = GlobalID() user = Field(UserNode, jwt_token=String()) class Meta: interfaces = (TokensInterface,)
458795
import random import torch import torch.nn as nn from ..util import box_ops from ..util.misc import NestedTensor from .deformable_detr import DeformableDETR from .detr import DETR class DETRTrackingBase(nn.Module): def __init__(self, track_query_false_positive_prob=0.0, track_query_false_negative_prob=0.0, track_query_noise=0.0, matcher=None): self._matcher = matcher self._track_query_false_positive_prob = track_query_false_positive_prob self._track_query_false_negative_prob = track_query_false_negative_prob self._track_query_noise = track_query_noise self._tracking = False def train(self, mode: bool = True): """Sets the module in train mode.""" self._tracking = False return super().train(mode) def tracking(self): """Sets the module in tracking mode.""" self.eval() self._tracking = True def forward(self, samples: NestedTensor, targets: list = None): if targets is not None and not self._tracking: prev_out, *_ = super().forward([targets[0]['prev_image']]) prev_outputs_without_aux = { k: v for k, v in prev_out.items() if 'aux_outputs' not in k} prev_targets = [ {k.replace('prev_', ''): v for k, v in target.items() if "prev" in k} for target in targets] prev_indices = self._matcher(prev_outputs_without_aux, prev_targets) for i, (target, prev_ind) in enumerate(zip(targets, prev_indices)): prev_out_ind, prev_target_ind = prev_ind # random subset if self._track_query_false_negative_prob: random_subset_mask = torch.empty(len(prev_target_ind)).uniform_() random_subset_mask = random_subset_mask.ge( self._track_query_false_negative_prob) prev_out_ind = prev_out_ind[random_subset_mask] prev_target_ind = prev_target_ind[random_subset_mask] # detected prev frame tracks prev_track_ids = target['prev_track_ids'][prev_target_ind] # match track ids between frames target_ind_match_matrix = prev_track_ids.unsqueeze(dim=1).eq(target['track_ids']) target_ind_matching = target_ind_match_matrix.any(dim=1) target_ind_matched_idx = target_ind_match_matrix.nonzero()[:, 1] # current frame track ids detected in the prev frame # track_ids = target['track_ids'][target_ind_matched_idx] # index of prev frame detection in current frame box list target['track_query_match_ids'] = target_ind_matched_idx # random false positives prev_boxes_matched = prev_out['pred_boxes'][i, prev_out_ind[target_ind_matching]] not_prev_out_ind = torch.arange(prev_out['pred_boxes'].shape[1]) not_prev_out_ind = [ ind.item() for ind in not_prev_out_ind if ind not in prev_out_ind] random_false_out_ind = [] for prev_box_matched in prev_boxes_matched: if random.uniform(0, 1) < self._track_query_false_positive_prob: prev_boxes_unmatched = prev_out['pred_boxes'][i, not_prev_out_ind] # only cxcy # box_dists = prev_box_matched[:2].sub(prev_boxes_unmatched[:, :2]).abs() # box_dists = box_dists.pow(2).sum(dim=-1).sqrt() # box_weights = 1.0 / box_dists.add(1e-8) prev_box_ious, _ = box_ops.box_iou( box_ops.box_cxcywh_to_xyxy(prev_box_matched.unsqueeze(dim=0)), box_ops.box_cxcywh_to_xyxy(prev_boxes_unmatched)) box_weights = prev_box_ious[0] if box_weights.gt(0.0).any(): random_false_out_idx = not_prev_out_ind.pop( torch.multinomial(box_weights.cpu(), 1).item()) random_false_out_ind.append(random_false_out_idx) prev_out_ind = torch.tensor(prev_out_ind.tolist() + random_false_out_ind).long() target_ind_matching = torch.tensor( target_ind_matching.tolist() + [False, ] * len(random_false_out_ind)).bool() # matches indices with 1.0 and not matched -1.0 track_queries_match_mask = torch.ones_like(target_ind_matching).float() track_queries_match_mask[~target_ind_matching] = -1.0 # set prev frame info hs_embeds = prev_out['hs_embed'][i, prev_out_ind] if self._track_query_noise and not torch.isnan(hs_embeds.std()).any(): track_query_noise = torch.randn_like(hs_embeds) \ * hs_embeds.std(dim=1, keepdim=True) hs_embeds = hs_embeds + track_query_noise * self._track_query_noise # hs_embeds = track_query_noise * self._track_query_noise \ # + hs_embeds * (1 - self._track_query_noise) target['track_query_hs_embeds'] = hs_embeds target['track_query_boxes'] = prev_out['pred_boxes'][i, prev_out_ind].detach() # add zeros for detection object queries device = track_queries_match_mask.device track_queries_match_mask = torch.tensor( track_queries_match_mask.tolist() + [0, ] * self.num_queries) target['track_queries_match_mask'] = track_queries_match_mask.to(device) out, targets, features, memory, hs = super().forward(samples, targets) return out, targets, features, memory, hs # TODO: with meta classes class DETRTracking(DETRTrackingBase, DETR): def __init__(self, tracking_kwargs, detr_kwargs): DETR.__init__(self, **detr_kwargs) DETRTrackingBase.__init__(self, **tracking_kwargs) class DeformableDETRTracking(DETRTrackingBase, DeformableDETR): def __init__(self, tracking_kwargs, detr_kwargs): DeformableDETR.__init__(self, **detr_kwargs) DETRTrackingBase.__init__(self, **tracking_kwargs)
458797
from __future__ import print_function from CherwellAPI import CherwellClient ######################################################################################### # This example demonstrates how the CherwellAPI Connection object can be used to # retrieve the business object template for a Cherwell Business Object ########################################################################################### ############################################# # Change the following to suit your instance ############################################# base_uri = "http://<Your Cherwell Host here>" username = "<Your UserName Here>" password = "<<PASSWORD>>" api_key = "<Your Cherwell REST API Client Key here>" # Create a new CherwellClient connection cherwell_client = CherwellClient.Connection(base_uri, api_key, username, password) # Show the template for the incident object print("Cherwell Template for Incident is:\n{}".format( cherwell_client.get_business_object_template("Incident") ))
458818
from .attrdict import AttrDict class Configuration(AttrDict): """Represents the running configuration. This class never raises IndexError, instead it will return None if a section or option does not yet exist. """ def __getitem__(self, key): """Returns a config section, creating it if it doesn't exist yet. """ if key not in self._data: self._data[key] = ConfigurationSection(self) return self._data[key] class ConfigurationSection(Configuration): def __init__(self, parent, *args, **kwargs): super(ConfigurationSection, self).__init__(*args, **kwargs) self._parent = parent def __getitem__(self, key): """Returns a config value, pulling from the `user` section as a fallback. This is called when the attribute is accessed either via the get method or through [ ] index. """ if key in self._data and self._data.get(key) is not None: return self._data[key] elif key in self._parent.user: return self._parent.user[key] return None def __getattr__(self, key): """Returns the config value from the `user` section. This is called when the attribute is accessed via dot notation but does not exist. """ if key[0] != '_' and key in self._parent['user']: return self._parent['user'][key] return None def __setattr__(self, key, value): """Sets dictionary value when an attribute is set. """ super().__setattr__(key, value) if key[0] != '_': self._data[key] = value class SubparserWrapper(object): """Wrap subparsers so we can track what options the user passed. """ def __init__(self, cli, submodule, subparser): self.cli = cli self.submodule = submodule self.subparser = subparser for attr in dir(subparser): if not hasattr(self, attr): setattr(self, attr, getattr(subparser, attr)) def completer(self, completer): """Add an arpcomplete completer to this subcommand. """ self.subparser.completer = completer def add_argument(self, *args, **kwargs): """Add an argument for this subcommand. This also stores the default for the argument in `self.cli.default_arguments`. """ if kwargs.get('action') == 'store_boolean': # Store boolean will call us again with the enable/disable flag arguments return handle_store_boolean(self, *args, **kwargs) completer = None if kwargs.get('completer'): completer = kwargs['completer'] del kwargs['completer'] self.cli.acquire_lock() argument_name = get_argument_name(self.cli._arg_parser, *args, **kwargs) if completer: self.subparser.add_argument(*args, **kwargs).completer = completer else: self.subparser.add_argument(*args, **kwargs) if kwargs.get('action') == 'store_false': self.cli._config_store_false.append(argument_name) if kwargs.get('action') == 'store_true': self.cli._config_store_true.append(argument_name) if self.submodule not in self.cli.default_arguments: self.cli.default_arguments[self.submodule] = {} self.cli.default_arguments[self.submodule][argument_name] = kwargs.get('default') self.cli.release_lock() def get_argument_strings(arg_parser, *args, **kwargs): """Takes argparse arguments and returns a list of argument strings or positional names. """ try: return arg_parser._get_optional_kwargs(*args, **kwargs)['option_strings'] except ValueError: return [arg_parser._get_positional_kwargs(*args, **kwargs)['dest']] def get_argument_name(arg_parser, *args, **kwargs): """Takes argparse arguments and returns the dest name. """ try: return arg_parser._get_optional_kwargs(*args, **kwargs)['dest'] except ValueError: return arg_parser._get_positional_kwargs(*args, **kwargs)['dest'] def handle_store_boolean(self, *args, **kwargs): """Does the add_argument for action='store_boolean'. """ disabled_args = None disabled_kwargs = kwargs.copy() disabled_kwargs['action'] = 'store_false' disabled_kwargs['dest'] = get_argument_name(getattr(self, 'cli', self)._arg_parser, *args, **kwargs) disabled_kwargs['help'] = 'Disable ' + kwargs['help'] kwargs['action'] = 'store_true' kwargs['help'] = 'Enable ' + kwargs['help'] for flag in args: if flag[:2] == '--': disabled_args = ('--no-' + flag[2:],) break self.add_argument(*args, **kwargs) self.add_argument(*disabled_args, **disabled_kwargs) return (args, kwargs, disabled_args, disabled_kwargs)
458855
ABORTED = 'Aborted' FAILED = 'Failed' NOT_PROCESSED = 'Not Processed' COMPLETED = 'Completed' ERROR_STATES = ( ABORTED, FAILED, NOT_PROCESSED, )
458858
import torch import numpy as np from torch import nn from util import denormalize_image from skimage.metrics import structural_similarity class HybridLoss(nn.Module): def __init__(self, device, l1_weight=None, l2_weight=None): super().__init__() self.l1_loss = nn.L1Loss(reduction="none").to(device) self.l2_loss = nn.MSELoss(reduction="none").to(device) if l1_weight is None: l1_weight = 1. if l2_weight is None: l2_weight = 1. self.l1_weight = l1_weight self.l2_weight = l2_weight def _compute_psnr(self, gt_pixels, rendered_pixels): l2 = self.l2_loss(gt_pixels.float(), rendered_pixels.float()).mean() PSNR = 20 * np.log10(255.) if l2.item() != 0: PSNR -= 10 * np.log10(l2.item()) return float(PSNR) @staticmethod def _compute_ssim(img1, img2, mask): i1 = img1.permute(0, 2, 3, 1).cpu().numpy() i2 = img2.permute(0, 2, 3, 1).cpu().numpy() ssim_img = [] for i in range(img1.shape[0]): mssim, S = structural_similarity(i1[i], i2[i], data_range=2, multichannel=True, full=True) ssim_img.append(torch.from_numpy(S).permute(2, 0, 1)) ssim_img = torch.stack(ssim_img).to(device=mask.device) ssim_img = ssim_img.permute(0, 2, 3, 1)[mask] ssim = ssim_img.mean() return ssim.item() # mask = mask.permute(0, 2, 3, 1).cpu().numpy() # ssim = compare_ssim(i1, i2, multichannel=True, full=True) # (_, channel, _, _) = img1.size() # # compute window # gauss = [math.exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)] # gauss = torch.Tensor(gauss) # gauss = gauss / gauss.sum() # # _1D_window = gauss.unsqueeze(1) # _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) # window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() # window = window.to(device=img1.device, dtype=img1.dtype) # # # compute ssim map # mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) # mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) # # mu1_sq, mu2_sq, mu1_mu2 = mu1.pow(2), mu2.pow(2), mu1 * mu2 # # sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq # sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq # sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 # # # BCHW # ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) # ssim_map = ssim_map.permute(0, 2, 3, 1) # ssim_map = ssim_map.masked_select(mask).view(-1, 3) # ssim_score = ssim_map.mean() # return ssim_score def __call__(self, gt_image, rendered_image, mask, omit_metrics=False): assert gt_image.shape == rendered_image.shape B, C, H, W = gt_image.shape mask = mask.view(B, H, W) gt_pixels = gt_image.permute(0, 2, 3, 1)[mask].view(-1, C) rendered_pixels = rendered_image.permute(0, 2, 3, 1)[mask].view(-1, C) l1_loss = self.l1_loss(gt_pixels, rendered_pixels).mean(dim=1).mean() l2_loss = self.l2_loss(gt_pixels, rendered_pixels).mean(dim=1).mean() loss_obj = self.l1_weight * l1_loss + self.l2_weight * l2_loss loss_logs = { 'l1_loss': l1_loss.detach().item(), 'l2_loss': l2_loss.detach().item(), 'l_loss': loss_obj.detach().item(), } if not omit_metrics: loss_logs['SSIM'] = self._compute_ssim(gt_image, rendered_image, mask) gt_pixels = denormalize_image(gt_pixels) rendered_pixels = denormalize_image(rendered_pixels) loss_logs['PSNR'] = self._compute_psnr(gt_pixels, rendered_pixels) return loss_obj, loss_logs
458904
import solana_rpc as rpc from common import ValidatorConfig from common import print_json from common import measurement_from_fields from monitoring_config import config def calculate_output_data(config: ValidatorConfig): data = rpc.load_solana_validators(config) measurements = [] for info in data: measurement = measurement_from_fields("validators", info, config) measurements.append(measurement) return measurements print_json(calculate_output_data(config))
458907
from typing import Iterable, TypedDict class OptionDict(TypedDict): contractSymbol: str strike: float currency: str lastPrice: float change: float percentChange: float ask: float contractSize: str expiration: int lastTradeDate: int impliedVolatility: float inTheMoney: bool volume: int bid: float openInterest: int class OptionQuoteDictBase(TypedDict): language: str region: str quoteType: str quoteSourceName: str triggerable: bool currency: str sharesOutstanding: int bookValue: float fiftyDayAverage: float fiftyDayAverageChange: float fiftyDayAverageChangePercent: float twoHundredDayAverage: float twoHundredDayAverageChange: float twoHundredDayAverageChangePercent: float marketCap: int forwardPE: float priceToBook: float sourceInterval: int exchangeDataDelayedBy: int tradeable: bool ask: float bidSize: int askSize: int fullExchangeName: str financialCurrency: str regularMarketOpen: float averageDailyVolume3Month: int averageDailyVolume10Day: int fiftyTwoWeekLowChange: float fiftyTwoWeekLowChangePercent: float fiftyTwoWeekRange: str fiftyTwoWeekHighChange: float fiftyTwoWeekHighChangePercent: float fiftyTwoWeekLow: float fiftyTwoWeekHigh: float dividendDate: int earningsTimestamp: int earningsTimestampStart: int earningsTimestampEnd: int trailingAnnualDividendRate: float trailingPE: float trailingAnnualDividendYield: float epsTrailingTwelveMonths: float epsForward: float epsCurrentYear: float priceEpsCurrentYear: float exchange: str shortName: str longName: str messageBoardId: str exchangeTimezoneName: str exchangeTimezoneShortName: str gmtOffSetMilliseconds: int market: str esgPopulated: bool marketState: str firstTradeDateMilliseconds: int priceHint: int regularMarketChange: float regularMarketChangePercent: float regularMarketTime: float regularMarketPrice: float regularMarketDayHigh: float regularMarketDayRange: str regularMarketDayLow: float regularMarketVolume: int regularMarketPreviousClose: float bid: float displayName: str symbol: str class OptionQuoteDict(OptionQuoteDictBase, total=False): preMarketChange: float preMarketChangePercent: float preMarketTime: float preMarketPrice: float class OptionsDict(TypedDict): expirationDate: int hasMiniOptions: bool calls: Iterable[OptionDict] puts: Iterable[OptionDict] class OptionsDataRecord(OptionDict): underlyingSymbol: str type: str
458930
import json from datetime import timedelta from unittest import mock import pytest from boto3.exceptions import RetriesExceededError, S3UploadFailedError from django.contrib.auth.models import AnonymousUser from django.contrib.sessions.middleware import SessionMiddleware from django.db.models import FileField from django.test import override_settings from wagtail.core.rich_text import RichText from core import cms_slugs, wagtail_hooks from core.models import DetailPage from core.wagtail_hooks import ( FileTransferError, S3FileFieldAdapter, S3WagtailTransferFile, editor_css, register_s3_media_file_adapter, ) from tests.helpers import make_test_video from tests.unit.core import factories from tests.unit.learn.factories import LessonPageFactory LOREM_IPSUM = ( 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. ' 'Verum hoc loco sumo verbis his eandem certe vim voluptatis ' 'Epicurum nosse quam ceteros. Consequentia exquirere, quoad sit ' 'id, quod volumus, effectum. Et quidem saepe quaerimus verbum ' 'Latinum par Graeco et quod idem valeat; Quam illa ardentis ' 'amores excitaret sui! Cur tandem? Nihil est enim, de quo aliter ' 'tu sentias atque ego, modo commutatis verbis ipsas res conferamus. ' ) @pytest.mark.django_db def test_anonymous_user_required_handles_anonymous_users(rf, domestic_homepage): request = rf.get('/') request.user = AnonymousUser() response = wagtail_hooks.anonymous_user_required( page=domestic_homepage, request=request, serve_args=[], serve_kwargs={}, ) assert response is None @pytest.mark.django_db def test_anonymous_user_required_handles_authenticated_users(rf, domestic_homepage, user): request = rf.get('/') request.user = user middleware = SessionMiddleware() middleware.process_request(request) request.session.save() response = wagtail_hooks.anonymous_user_required( page=domestic_homepage, request=request, serve_args=[], serve_kwargs={}, ) assert response.status_code == 302 assert response.url == domestic_homepage.anonymous_user_required_redirect_url @pytest.mark.django_db def test_login_required_signup_wizard_ignores_irrelevant_pages(rf, domestic_homepage): request = rf.get('/') request.user = AnonymousUser() response = wagtail_hooks.login_required_signup_wizard( page=domestic_homepage, request=request, serve_args=[], serve_kwargs={}, ) assert response is None @pytest.mark.django_db def test_login_required_signup_wizard_handles_anonymous_users(rf, domestic_homepage): page = LessonPageFactory(parent=domestic_homepage) request = rf.get('/foo/bar/') request.user = AnonymousUser() middleware = SessionMiddleware() middleware.process_request(request) request.session.save() response = wagtail_hooks.login_required_signup_wizard( page=page, request=request, serve_args=[], serve_kwargs={}, ) assert response.status_code == 302 assert response.url == '/signup/tailored-content/start/?next=/foo/bar/' @pytest.mark.django_db def test_login_required_signup_wizard_handles_anonymous_users_opting_out(rf, domestic_homepage, user): page = LessonPageFactory(parent=domestic_homepage) first_request = rf.get('/foo/bar/', {'show-generic-content': True}) first_request.user = AnonymousUser() middleware = SessionMiddleware() middleware.process_request(first_request) first_request.session.save() response = wagtail_hooks.login_required_signup_wizard( page=page, request=first_request, serve_args=[], serve_kwargs={}, ) assert response is None second_request = rf.get('/foo/bar/') second_request.user = user second_request.session = first_request.session response = wagtail_hooks.login_required_signup_wizard( page=page, request=second_request, serve_args=[], serve_kwargs={}, ) assert response is None @pytest.mark.django_db def test_login_required_signup_wizard_handles_authenticated_users(rf, user, domestic_homepage): page = LessonPageFactory(parent=domestic_homepage) request = rf.get('/') request.user = user response = wagtail_hooks.login_required_signup_wizard( page=page, request=request, serve_args=[], serve_kwargs={}, ) assert response is None @pytest.mark.django_db def test_estimated_read_time_calculation(rf, domestic_homepage): # IF THIS TEST FAILS BASED ON OFF-BY-ONE-SECOND DURATIONS... check whether # your changeset has slightly increased the size of the HTML page, which # may have slightly pushed up the default/empty-page readtime (either in # real terms or just in terms of elements that affect the calculation). If # so, pushing up the expected time variables in the test is OK to do. request = rf.get('/') request.user = AnonymousUser() reading_content = f'<p>{ LOREM_IPSUM * 10}</p>' detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', hero=[], body=[], objective=[('paragraph', RichText(reading_content))], ) # Every real-world page will have a revision, so the test needs one, too revision = detail_page.save_revision() revision.publish() expected_duration = timedelta(seconds=152) detail_page.refresh_from_db() assert detail_page.estimated_read_duration != expected_duration wagtail_hooks._set_read_time(page=detail_page, request=request) detail_page.refresh_from_db() assert detail_page.estimated_read_duration == expected_duration @pytest.mark.django_db def test_estimated_read_time_calculation__checks_text_and_video(rf, domestic_homepage): # IF THIS TEST FAILS BASED ON OFF-BY-ONE-SECOND DURATIONS... check whether # your changeset has slightly increased the size of the HTML page, which # may have slightly pushed up the default/empty-page readtime (either in # real terms or just in terms of elements that affect the calculation). If # so, pushing up the expected time variables in the test is OK to do. request = rf.get('/') request.user = AnonymousUser() video_for_hero = make_test_video(duration=123) video_for_hero.save() reading_content = f'<p>{ LOREM_IPSUM * 10}</p>' detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', hero=[ ('Video', factories.SimpleVideoBlockFactory(video=video_for_hero)), ], objective=[('paragraph', RichText(reading_content))], body=[], # if needed StreamField rich-text and video content can be added ) # Every real-world page will have a revision, so the test needs one, too revision = detail_page.save_revision() revision.publish() expected_duration = timedelta(seconds=153 + 123) # reading + watching detail_page.refresh_from_db() assert detail_page.estimated_read_duration != expected_duration wagtail_hooks._set_read_time(page=detail_page, request=request) detail_page.refresh_from_db() assert detail_page.estimated_read_duration == expected_duration @pytest.mark.django_db def test_estimated_read_time_calculation__checks_video(rf, domestic_homepage): # IF THIS TEST FAILS BASED ON OFF-BY-ONE-SECOND DURATIONS... check whether # your changeset has slightly increased the size of the HTML page, which # may have slightly pushed up the default/empty-page readtime (either in # real terms or just in terms of elements that affect the calculation). If # so, pushing up the expected time variables in the test is OK to do. request = rf.get('/') request.user = AnonymousUser() video_for_hero = make_test_video(duration=123) video_for_hero.save() detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', hero=[ ('Video', factories.SimpleVideoBlockFactory(video=video_for_hero)), ], objective=[], body=[], # if needed StreamField rich-text and video content can be added ) # Every real-world page will have a revision, so the test needs one, too revision = detail_page.save_revision() revision.publish() expected_duration = timedelta(seconds=4 + 123) # reading + watching detail_page.refresh_from_db() assert detail_page.estimated_read_duration != expected_duration wagtail_hooks._set_read_time(page=detail_page, request=request) detail_page.refresh_from_db() assert detail_page.estimated_read_duration == expected_duration @pytest.mark.django_db def test_estimated_read_time_calculation__updates_only_draft_if_appropriate(rf, domestic_homepage): # IF THIS TEST FAILS BASED ON OFF-BY-ONE-SECOND DURATIONS... check whether # your changeset has slightly increased the size of the HTML page, which # may have slightly pushed up the default/empty-page readtime (either in # real terms or just in terms of elements that affect the calculation). If # so, pushing up the expected time variables in the test is OK to do. request = rf.get('/') request.user = AnonymousUser() video_for_hero = make_test_video(duration=124) video_for_hero.save() detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) assert detail_page.live is True original_live_read_duration = detail_page.estimated_read_duration assert original_live_read_duration is None # Note: for test simplicity here, we're not adding streamfield content to our # revision - it is enough to just notice how the readtimes for Draft vs Live # are appropriate updated at the expected times, based on the minimal default # content of a DetailPage. revision = detail_page.save_revision() assert json.loads(revision.content_json)['estimated_read_duration'] == original_live_read_duration detail_page.refresh_from_db() wagtail_hooks._set_read_time(page=detail_page, request=request) detail_page.refresh_from_db() expected_duration = timedelta(seconds=2) # NB just the read time of a skeleton DetailPage # show the live version is not updated yet assert detail_page.has_unpublished_changes is True assert detail_page.estimated_read_duration != expected_duration assert detail_page.estimated_read_duration == original_live_read_duration # but the draft is latest_rev = detail_page.get_latest_revision() assert revision == latest_rev assert json.loads(latest_rev.content_json)['estimated_read_duration'] == str(expected_duration) # Now publish the draft and show it updates the live, too latest_rev.publish() detail_page.refresh_from_db() wagtail_hooks._set_read_time(page=detail_page, request=request) detail_page.refresh_from_db() assert detail_page.estimated_read_duration != original_live_read_duration # NOTE: for a reason unrelated to the point of _this_ test, the readtime # of the published page CAN BE calculated as slightly longer than the draft. # This may be in part due to the page having a very small amount of content. assert detail_page.estimated_read_duration == timedelta(seconds=3) @pytest.mark.django_db def test_estimated_read_time_calculation__forced_update_of_live(rf, domestic_homepage): # This test is a variant of test_estimated_read_time_calculation__updates_only_draft_if_appropriate # IF THIS TEST FAILS BASED ON OFF-BY-ONE-SECOND DURATIONS... check whether # your changeset has slightly increased the size of the HTML page, which # may have slightly pushed up the default/empty-page readtime (either in # real terms or just in terms of elements that affect the calculation). If # so, pushing up the expected time variables in the test is OK to do. request = rf.get('/') request.user = AnonymousUser() video_for_hero = make_test_video(duration=124) video_for_hero.save() detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) assert detail_page.live is True original_live_read_duration = detail_page.estimated_read_duration assert original_live_read_duration is None # Make a revision, so we have both draft and live in existence revision = detail_page.save_revision() assert json.loads(revision.content_json)['estimated_read_duration'] == original_live_read_duration detail_page.refresh_from_db() wagtail_hooks._set_read_time( page=detail_page, request=request, is_post_creation=True, # THIS will mean the live page is updated at the same time as the draft ) detail_page.refresh_from_db() expected_duration = timedelta(seconds=2) # NB just the read time of a skeleton DetailPage # show the live version is updated yet assert detail_page.estimated_read_duration == expected_duration assert detail_page.has_unpublished_changes is True # and the draft is updated too latest_rev = detail_page.get_latest_revision() assert revision == latest_rev assert json.loads(latest_rev.content_json)['estimated_read_duration'] == str(expected_duration) @pytest.mark.parametrize('is_post_creation_val', (True, False)) @pytest.mark.django_db def test__set_read_time__passes_through_is_post_creation( rf, domestic_homepage, is_post_creation_val, ): request = rf.get('/') detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) with mock.patch( 'core.wagtail_hooks._update_data_for_appropriate_version' ) as mocked_update_data_for_appropriate_version: wagtail_hooks._set_read_time(request, detail_page, is_post_creation=is_post_creation_val) expected_seconds = 2 mocked_update_data_for_appropriate_version.assert_called_once_with( page=detail_page, force_page_update=is_post_creation_val, data_to_update={'estimated_read_duration': timedelta(seconds=expected_seconds)}, ) @pytest.mark.django_db @pytest.mark.parametrize('force_update', (False, True)) def test__update_data_for_appropriate_version(domestic_homepage, rf, force_update): request = rf.get('/') request.user = AnonymousUser() detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) assert detail_page.live is True # Make a revision, so we have both draft and live in existence revision = detail_page.save_revision() assert detail_page.get_latest_revision() == revision assert detail_page.title != 'Dummy Title' assert json.loads(revision.content_json)['title'] == detail_page.title wagtail_hooks._update_data_for_appropriate_version( page=detail_page, force_page_update=force_update, data_to_update={'title': 'Dummy Title'} ) revision.refresh_from_db() assert json.loads(revision.content_json)['title'] == 'Dummy Title' detail_page.refresh_from_db() if force_update: assert detail_page.title == 'Dummy Title' else: assert detail_page.title != 'Dummy Title' @pytest.mark.django_db def test_set_read_time__after_create_page(domestic_homepage, rf): request = rf.get('/') detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) with mock.patch('core.wagtail_hooks._set_read_time') as mock__set_read_time: wagtail_hooks.set_read_time__after_create_page(request, detail_page) mock__set_read_time.assert_called_once_with(request, detail_page, is_post_creation=True) @pytest.mark.django_db def test_set_read_time__after_edit_page(domestic_homepage, rf): request = rf.get('/') detail_page = factories.DetailPageFactory( parent=domestic_homepage, template='learn/detail_page.html', body=[], ) with mock.patch('core.wagtail_hooks._set_read_time') as mock__set_read_time: wagtail_hooks.set_read_time__after_edit_page(request, detail_page) mock__set_read_time.assert_called_once_with(request, detail_page) def test_wagtail_transfer_custom_adapter_methods___get_relevant_s3_meta(): mock_field = mock.Mock(name='mock_field') adapter = S3FileFieldAdapter(mock_field) mock_field_value = mock.Mock(name='mock_field_value') mock_field_value.storage.bucket.name = 'test-bucket-name' mock_field_value.name = 'test-bucket-key' # There are other attributes on the real object, eg 'url' mock_objectsummary_instance = mock.Mock(name='mock_objectsummary_instance') mock_objectsummary_instance.size = 1234567 mock_objectsummary_instance.e_tag.replace.return_value = '<KEY>' # The double quoting is correct - ETags are meant to be double-quoted. # See https://tools.ietf.org/html/rfc2616#section-14.19 mock_objectsummary_class = mock.Mock(name='mock ObjectSummary') mock_objectsummary_class.return_value = mock_objectsummary_instance with mock.patch('core.wagtail_hooks.s3.ObjectSummary', mock_objectsummary_class): meta = adapter._get_relevant_s3_meta(mock_field_value) mock_objectsummary_class.assert_called_once_with('test-bucket-name', 'test-bucket-key') assert meta == {'size': 1234567, 'hash': 'aabbccddeeff112233445566'} @pytest.mark.parametrize( 'etag_val,expected', ( ('"<KEY>"', '<KEY>'), ('aabbccddeeff112233445566', '<KEY>'), ("<KEY>", '<KEY>'), # noqa Q000 - this was deliberate ), ) def test_wagtail_transfer_custom_adapter_methods___get_file_hash(etag_val, expected): mock_field = mock.Mock(name='mock_field') adapter = S3FileFieldAdapter(mock_field) mock_objectsummary_instance = mock.Mock(name='mock_objectsummary_instance') mock_objectsummary_instance.size = 1234567 mock_objectsummary_instance.e_tag = etag_val hash_ = adapter._get_file_hash(mock_objectsummary_instance) assert hash_ == expected @pytest.mark.parametrize( 'file_url,expected', ( # See constants.AWS_S3_MAIN_HOSTNAME_OPTIONS ( 'https://w-t-test-bucket.s3.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ( 'http://w-t-test-bucket.s3.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ( 'https://w-t-test-bucket.s3.eu-west-2.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ( 'https://w-t-test-bucket.s3.dualstack.eu-west-2.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ( 'https://w-t-test-bucket.s3-accesspoint.eu-west-2.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ( 'https://w-t-test-bucket.s3-accesspoint.dualstack.eu-west-2.amazonaws.com/media/path/to/file.mp4', ('w-t-test-bucket', 'media/path/to/file.mp4'), ), ), ) def test_wagtail_transfer_custom_adapter_methods___get_imported_file_bucket_and_key(file_url, expected): mock_field = mock.Mock(name='mock_field') adapter = S3FileFieldAdapter(mock_field) assert adapter._get_imported_file_bucket_and_key(file_url) == expected @override_settings(MEDIA_URL='https://magna-fake-example.s3.amazonaws.com') @pytest.mark.parametrize( 'url,expected', ( ( 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', { 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', }, ), (None, None), ), ) def test_wagtail_transfer_custom_adapter_methods__serialize(url, expected): file_field = FileField() if url: mock_field_value = mock.Mock() mock_field_value.url = url # There are other attributes on the real object, but we're only using url here else: mock_field_value = None file_field.value_from_object = mock.Mock(return_value=mock_field_value) adapter = S3FileFieldAdapter(file_field) instance = mock.Mock() mock_get_relevant_s3_meta = mock.Mock( return_value={'download_url': url, 'size': 123321, 'hash': 'aabbccddeeff665544332211'} ) with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): output = adapter.serialize(instance) assert output == expected file_field.value_from_object.assert_called_once_with(instance) if url: mock_get_relevant_s3_meta.assert_called_once_with(field_value=mock_field_value) #################################################################################################### # Cases for S3FileFieldAdapter.populate_field # These following tests are repetitive, but using parametrize() to DRY them up just # made them really complex # 1. File not already imported, source's hash matches hashes with existing file, so no import needed # 2. File not already imported, source's hash doesn't match existing file, so we do a fresh import # 3. As above, but an exception is raised during file.transfer() # 4. File was already imported - no need to re-import # 5. Null `value` param, we abandon early def test_wagtail_transfer_custom_adapter_methods__populate_field__case_1(): # 1. File not already imported, source's hash matches hashes with existing file, so no import needed file_field = FileField() file_field.get_attname = mock.Mock(return_value='some-filefield') mock_field_value = mock.Mock(name='mock_field_value') mock_field_value.storage.bucket.name = 'test-bucket-name' mock_field_value.name = 'test-bucket-key' file_field.value_from_object = mock.Mock(return_value=mock_field_value) adapter = S3FileFieldAdapter(file_field) fake_value = { 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', } adapter._get_imported_file_bucket_and_key = mock.Mock( return_value=('magna-fake-example.s3.amazonaws.com', 'path/to/file.jpg') ) mock_context = mock.Mock() mock_context.imported_files_by_source_url = {} mock_imported_file = mock.Mock(name='mock_imported_file') mock_get_relevant_s3_meta = mock.Mock( return_value={ 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', # same as existing file, so no import will happen } ) mock_s3_file = mock.Mock(name='mock_s3_file') mock_s3_file.source_url = 'MOCK_SOURCE_URL_VALUE' mock_s3_file.transfer.return_value = mock_imported_file mock_S3WagtailTransferFile = mock.Mock(return_value=mock_s3_file) # noqa N806 mock_instance = mock.Mock() with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): with mock.patch('core.wagtail_hooks.S3WagtailTransferFile', mock_S3WagtailTransferFile): adapter.populate_field( instance=mock_instance, value=fake_value, context=mock_context, ) assert adapter._get_imported_file_bucket_and_key.call_count == 0 mock_get_relevant_s3_meta.assert_called_once_with(field_value=mock_field_value) assert mock_S3WagtailTransferFile.call_count == 0 assert mock_s3_file.transfer.call_count == 0 def test_wagtail_transfer_custom_adapter_methods__populate_field__case_2(): # 2. File not already imported, source's hash DOES NOT match existing file, so we do a fresh import file_field = FileField() file_field.get_attname = mock.Mock(return_value='some-filefield') mock_field_value = mock.Mock(name='mock_field_value') mock_field_value.storage.bucket.name = 'test-bucket-name' mock_field_value.name = 'test-bucket-key' file_field.value_from_object = mock.Mock(return_value=mock_field_value) mock_instance = mock.Mock() adapter = S3FileFieldAdapter(file_field) fake_value = { 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', } adapter._get_imported_file_bucket_and_key = mock.Mock( return_value=('magna-fake-example.s3.amazonaws.com', 'path/to/file.jpg') ) mock_context = mock.Mock() mock_context.imported_files_by_source_url = {} mock_imported_file = mock.Mock(name='mock_imported_file') mock_get_relevant_s3_meta = mock.Mock( return_value={ 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'bbccddeeff', # ie, does NOT match } ) mock_s3_file = mock.Mock(name='mock_s3_file') mock_s3_file.source_url = 'MOCK_SOURCE_URL_VALUE' mock_s3_file.transfer.return_value = mock_imported_file mock_S3WagtailTransferFile = mock.Mock(return_value=mock_s3_file) # noqa N806 with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): with mock.patch('core.wagtail_hooks.S3WagtailTransferFile', mock_S3WagtailTransferFile): adapter.populate_field( instance=mock_instance, value=fake_value, context=mock_context, ) # the importer was called mock_get_relevant_s3_meta.assert_called_once_with(field_value=mock_field_value) adapter._get_imported_file_bucket_and_key.assert_called_once_with(fake_value['download_url']) mock_S3WagtailTransferFile.assert_called_once_with( local_filename='path/to/file.jpg', # not changed by DefaultStorage in this test size=123321, hash_='aabbccddeeff665544332211', source_url='https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', source_bucket='magna-fake-example.s3.amazonaws.com', source_key='path/to/file.jpg', ) mock_s3_file.transfer.assert_called_once_with() # Deliberately no args # show the imported file is now in the cache so it won't be re-imported assert mock_context.imported_files_by_source_url['MOCK_SOURCE_URL_VALUE'] == mock_imported_file def test_wagtail_transfer_custom_adapter_methods__populate_field__case_3(): # 3. As above, but an exception is raised during file.transfer() file_field = FileField() file_field.get_attname = mock.Mock(return_value='some-filefield') mock_field_value = mock.Mock(name='mock_field_value') mock_field_value.storage.bucket.name = 'test-bucket-name' mock_field_value.name = 'test-bucket-key' file_field.value_from_object = mock.Mock(return_value=mock_field_value) mock_instance = mock.Mock() adapter = S3FileFieldAdapter(file_field) fake_value = { 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', } adapter._get_imported_file_bucket_and_key = mock.Mock( return_value=('magna-fake-example.s3.amazonaws.com', 'path/to/file.jpg') ) mock_context = mock.Mock() mock_context.imported_files_by_source_url = {} mock_get_relevant_s3_meta = mock.Mock( return_value={ 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'bbccddeeff', # ie, does NOT match } ) mock_s3_file = mock.Mock(name='mock_s3_file') mock_s3_file.source_url = 'MOCK_SOURCE_URL_VALUE' mock_s3_file.transfer.side_effect = FileTransferError('Faked') mock_S3WagtailTransferFile = mock.Mock(return_value=mock_s3_file) # noqa N806 with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): with mock.patch('core.wagtail_hooks.S3WagtailTransferFile', mock_S3WagtailTransferFile): adapter.populate_field( instance=mock_instance, value=fake_value, context=mock_context, ) # the importer was called, but dudn't succeed mock_get_relevant_s3_meta.assert_called_once_with(field_value=mock_field_value) adapter._get_imported_file_bucket_and_key.assert_called_once_with(fake_value['download_url']) mock_S3WagtailTransferFile.assert_called_once_with( local_filename='path/to/file.jpg', # not changed by DefaultStorage in this test size=123321, hash_='aabbccddeeff665544332211', source_url='https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', source_bucket='magna-fake-example.s3.amazonaws.com', source_key='path/to/file.jpg', ) mock_s3_file.transfer.assert_called_once_with() # Deliberately no args # show the imported file is NOT in the cache because we failde assert 'MOCK_SOURCE_URL_VALUE' not in mock_context.imported_files_by_source_url def test_wagtail_transfer_custom_adapter_methods__populate_field__case_4(): # 4. File was already imported - no need to re-import file_field = FileField() file_field.get_attname = mock.Mock(return_value='some-filefield') mock_field_value = mock.Mock(name='mock_field_value') mock_field_value.storage.bucket.name = 'test-bucket-name' mock_field_value.name = 'test-bucket-key' file_field.value_from_object = mock.Mock(return_value=mock_field_value) mock_instance = mock.Mock() adapter = S3FileFieldAdapter(file_field) fake_value = { 'download_url': 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', 'size': 123321, 'hash': 'aabbccddeeff665544332211', } adapter._get_imported_file_bucket_and_key = mock.Mock() mock_imported_file = mock.Mock(name='mock_imported_file') mock_context = mock.Mock() mock_context.imported_files_by_source_url = { 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg': mock_imported_file } mock_get_relevant_s3_meta = mock.Mock() mock_S3WagtailTransferFile = mock.Mock() # noqa N806 with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): with mock.patch('core.wagtail_hooks.S3WagtailTransferFile', mock_S3WagtailTransferFile): adapter.populate_field( instance=mock_instance, value=fake_value, context=mock_context, ) assert adapter._get_imported_file_bucket_and_key.call_count == 0 assert mock_get_relevant_s3_meta.call_count == 0 assert mock_S3WagtailTransferFile.call_count == 0 def test_wagtail_transfer_custom_adapter_methods__populate_field__case_5(): # 5. Null `value` param, we abandon early file_field = FileField() file_field.get_attname = mock.Mock(return_value='some-filefield') file_field.value_from_object = mock.Mock() mock_instance = mock.Mock() adapter = S3FileFieldAdapter(file_field) fake_value = {} adapter._get_imported_file_bucket_and_key = mock.Mock() mock_context = mock.Mock() mock_get_relevant_s3_meta = mock.Mock() mock_S3WagtailTransferFile = mock.Mock() # noqa N806 with mock.patch('core.wagtail_hooks.S3FileFieldAdapter._get_relevant_s3_meta', mock_get_relevant_s3_meta): with mock.patch('core.wagtail_hooks.S3WagtailTransferFile', mock_S3WagtailTransferFile): adapter.populate_field( instance=mock_instance, value=fake_value, context=mock_context, ) assert file_field.value_from_object.call_count == 0 assert adapter._get_imported_file_bucket_and_key.call_count == 0 assert mock_get_relevant_s3_meta.call_count == 0 assert mock_S3WagtailTransferFile.call_count == 0 #################################################################################################### @override_settings(AWS_STORAGE_BUCKET_NAME='magna-fake-bucket-2') @mock.patch('core.wagtail_hooks.s3.meta.client.copy') @mock.patch('core.wagtail_hooks.ImportedFile.objects.create') def test_s3wagtailtransferfile__transfer( mock_importedfile_objects_create, mock_s3_client_copy, ): file = S3WagtailTransferFile( local_filename='path/to/file.jpg', # not changed by DefaultStorage in this test size=123321, hash_='aabbccddeeff665544332211', source_url='https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', source_bucket='magna-fake-bucket-1.s3.amazonaws.com', source_key='path/to/file.jpg', ) assert file.local_filename == 'path/to/file.jpg' assert file.size == 123321 assert file.hash == 'aabbccddeeff665544332211' assert file.source_url == 'https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg' assert file.source_bucket == 'magna-fake-bucket-1.s3.amazonaws.com' assert file.source_key == 'path/to/file.jpg' assert not mock_s3_client_copy.called file.transfer() mock_s3_client_copy.assert_called_once_with( {'Bucket': file.source_bucket, 'Key': file.source_key}, 'magna-fake-bucket-2', file.local_filename, ) mock_importedfile_objects_create.assert_called_once_with( file=file.local_filename, source_url=file.source_url, hash=file.hash, size=file.size, ) @pytest.mark.parametrize( 'exception_class', ( RetriesExceededError, S3UploadFailedError, ValueError, ), ) @mock.patch('core.wagtail_hooks.s3.meta.client.copy') def test_s3wagtailtransferfile__transfer__covered_exceptions(mock_s3_client_copy, exception_class): file = S3WagtailTransferFile( local_filename='path/to/file.jpg', # not changed by DefaultStorage in this test size=123321, hash_='aabbccddeeff665544332211', source_url='https://magna-fake-example.s3.amazonaws.com/path/to/file.jpg', source_bucket='magna-fake-bucket-1.s3.amazonaws.com', source_key='path/to/file.jpg', ) mock_s3_client_copy.side_effect = exception_class('Faked') with pytest.raises(FileTransferError): file.transfer() @pytest.mark.parametrize( 'user_media_on_s3,expected', ( (True, {FileField: S3FileFieldAdapter}), (False, {}), ), ) def test_register_s3_media_file_adapter(user_media_on_s3, expected): with override_settings(USER_MEDIA_ON_S3=user_media_on_s3): assert register_s3_media_file_adapter() == expected def _fake_static(value): return '/path/to/static/' + value @mock.patch('core.wagtail_hooks.static') def test_case_study_editor_css(mock_static): mock_static.side_effect = _fake_static assert editor_css() == '<link rel="stylesheet" href="/path/to/static/cms-admin/css/case-study.css">' @pytest.mark.django_db @pytest.mark.parametrize( 'request_path', ( '/test/path/', '/test/path/?token=test', ), ) def test_authenticated_user_required__sets_next_param(rf, request_path): instance = DetailPage() assert instance.authenticated_user_required_redirect_url == cms_slugs.SIGNUP_URL request = rf.get(request_path) request.user = AnonymousUser() output = wagtail_hooks.authenticated_user_required(instance, request, [], {}) assert output.status_code == 302 assert output._headers['location'] == ('Location', f'{cms_slugs.SIGNUP_URL}?next={request_path}')
458932
import os from collections import defaultdict os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" import numpy numpy.random.seed(1) import tensorflow as tf import logging import math from tensorflow import logging as log from tensorflow.python import debug as tf_debug from collections import OrderedDict from data_iterator_elmo import TextIterator from tensorflow.contrib import rnn import tensorflow.contrib.layers as layers import warnings import pickle as pkl import sys import pprint import pdb import os import copy import time import pickle import h5py import numpy as np logger = logging.getLogger(__name__) def get_elmo(batch_data, max_seq_length, max_news, embedding_file, day_flag=False): # first prepare for padding zero_word = [] zero_news = [] one_batch = [] ''' zero_word = [0.0]*1024 #new way to generate all zero list zero_news = [zero_word for _ in range(max_seq_length)] ''' for w in range(1024): zero_word.append(float(0)) for n in range(max_seq_length): zero_news.append(zero_word) # deal with batch without days if day_flag is False: ''' same implementation but might be faster for samples,i in enumerate(batch_data): one_sample = [] for news,j in enumerate(i): if int(j) == -1: ''' for samples in range(len(batch_data)): one_sample = [] for news in range(len(batch_data[samples])): if int(batch_data[samples][news]) == -1: elmo_news = zero_news else: with h5py.File(embedding_file, 'r') as fin: elmo_news = np.average(fin[str(batch_data[samples][news])], axis=0).tolist() while len(elmo_news) < max_seq_length: elmo_news.append(zero_word) for d0 in range(len(elmo_news)): elmo_news[d0] = np.array(elmo_news[d0]) one_sample.append(np.array(elmo_news)) one_batch.append(np.array(one_sample)) return np.array(one_batch) # deal with batch with days else: ''' same implementation but might be faster for samples,i in enumerate(batch_data): one_sample = [] for days,j in enumerate(i): one_day = [] for news,z in enumerate(j): if int(z) == -1: ''' for samples in range(len(batch_data)): one_sample = [] for days in range(len(batch_data[samples])): one_day = [] for news in range(len(batch_data[samples][days])): if int(batch_data[samples][days][news]) == -1: elmo_news = zero_news else: with h5py.File(embedding_file, 'r') as fin: elmo_news = np.average(fin[str(batch_data[samples][days][news])], axis=0).tolist() while len(elmo_news) < max_seq_length: elmo_news.append(zero_word) for d in range(len(elmo_news)): elmo_news[d] = np.array(elmo_news[d]) one_day.append(np.array(elmo_news)) one_sample.append(np.array(one_day)) one_batch.append(np.array(one_sample)) return np.array(one_batch) def _s(pp, name): # add perfix return '{}_{}'.format(pp, name) def load_params(path, params): pp = numpy.load(path) for kk, vv in params.iteritems(): if kk not in pp: warnings.warn('{} is not in the archive'.format(kk)) continue params[kk] = pp[kk] return params def xavier_init(fan_in, fan_out, constant=1): low = -constant * numpy.sqrt(6.0 / (fan_in + fan_out)) high = constant * numpy.sqrt(6.0 / (fan_in + fan_out)) W = numpy.random.uniform(low=low, high=high, size=(fan_in, fan_out)) return W.astype('float32') def ortho_weight(ndim): # used by norm_weight below """ Random orthogonal weights Used by norm_weights(below), in which case, we are ensuring that the rows are orthogonal (i.e W = U \Sigma V, U has the same # of rows, V has the same # of cols) """ W = numpy.random.randn(ndim, ndim) u, s, v = numpy.linalg.svd(W) return u.astype('float32') def norm_weight(nin, nout=None, scale=0.01, ortho=True): """ Random weights drawn from a Gaussian """ if nout is None: nout = nin if nout == nin and ortho: W = ortho_weight(nin) else: # W = numpy.random.uniform(-0.5,0.5,size=(nin,nout)) W = scale * numpy.random.randn(nin, nout) return W.astype('float32') def prepare_data(sequence, sequence_d1, sequence_d2, labels, options, maxlen=None, max_word=100): # length = [len(s) for s in sequence] length, length_d1, length_d2 = [], [], [] for i, d1, d2 in zip(sequence, sequence_d1, sequence_d2): dd1, dd2 = list(), list() length.append(len(i)) for day in d1: dd1.append(len(day)) length_d1.append(dd1) for day in d2: dd2.append(len(day)) length_d2.append(dd2) if maxlen is not None: # max length is the news level new_sequence = [] new_lengths = [] new_sequence_d1 = [] new_lengths_d1 = [] new_sequence_d2 = [] new_lengths_d2 = [] for l, s, ld1, sd1, ld2, sd2 in zip(length, sequence, length_d1, sequence_d1, length_d2, sequence_d2): dd1, lld1, dd2, lld2 = list(), list(), list(), list() if l < maxlen: new_sequence.append(s) new_lengths.append(l) for i, j in zip(ld1, sd1): if i < maxlen: dd1.append(j) lld1.append(i) new_sequence_d1.append(dd1) new_lengths_d1.append(lld1) for i, j in zip(ld2, sd2): if i < maxlen: dd2.append(j) lld2.append(i) new_sequence_d2.append(dd2) new_lengths_d2.append(lld2) length = new_lengths # This step is to filter the sentence which length is bigger sequence = new_sequence # than the max length. length means number of news. sequence means # length of each sentence length_d1 = new_lengths_d1 sequence_d1 = new_sequence_d1 length_d2 = new_lengths_d2 sequence_d2 = new_sequence_d2 ##TODO need to be careful, set the max length bigger to avoid bug if len(length) < 1: return None, None, None, None, None, None, None, None # day1 = len(sequence_d1[0]) # day2 = len(sequence_d2[0]) day1 = options['delay1'] - 1 day2 = options['delay2'] - options['delay1'] maxlen_x = numpy.max(length) # max time step try: maxlen_xd1 = numpy.max([numpy.max(i) for i in length_d1]) maxlen_xd2 = numpy.max([numpy.max(i) for i in length_d2]) except ValueError as e: print(str(e)) maxlen_xd1 = 100 maxlen_xd2 = 100 n_samples = len(sequence) # number of samples== batch max_sequence = max(len(j) for i in sequence for j in i) # find the sequence max length max_sequence_d1 = max(len(j) for i in sequence_d1 for z in i for j in z) max_sequence_d2 = max(len(j) for i in sequence_d2 for z in i for j in z) max_sequence = max_word if max_sequence > max_word else max_sequence # shrink the data size max_sequence_d1 = max_word if max_sequence_d1 > max_word else max_sequence_d1 # shrink the data size max_sequence_d2 = max_word if max_sequence_d2 > max_word else max_sequence_d2 # shrink the data size ##TODO for x x = numpy.zeros((n_samples, maxlen_x, max_sequence)).astype('int64') x_mask = numpy.zeros((n_samples, maxlen_x)).astype('float32') ##TODO for x_d1 x_d1 = numpy.zeros((n_samples, day1, maxlen_xd1, max_sequence_d1)).astype('int64') x_d1_mask = numpy.zeros((n_samples, day1, maxlen_xd1)).astype('float32') ##TODO for x_d2 x_d2 = numpy.zeros((n_samples, day2, maxlen_xd2, max_sequence_d2)).astype('int64') x_d2_mask = numpy.zeros((n_samples, day2, maxlen_xd2)).astype('float32') final_mask = numpy.ones((n_samples, 1 + day1 + day2)).astype('float32') # l = numpy.array(labels).astype('int64') ##TODO for label l = numpy.zeros((n_samples,)).astype('int64') for index, (i, j, k, ll) in enumerate(zip(sequence, sequence_d1, sequence_d2, labels)): # batch size l[index] = ll for idx, ss in enumerate(i): # time step # x[idx, index, :sequence_length[idx]] = ss if len(ss) < max_sequence: x[index, idx, :len(ss)] = ss else: x[index, idx, :max_sequence] = ss[:max_sequence] x_mask[index, idx] = 1. for jj, day in enumerate(j): for idx, ss in enumerate(day): if len(ss) < max_sequence_d1: x_d1[index, jj, idx, :len(ss)] = ss else: x_d1[index, jj, idx, :max_sequence_d1] = ss[:max_sequence_d1] x_d1_mask[index, jj, idx] = 1. for jj, day in enumerate(k): for idx, ss in enumerate(day): if len(ss) < max_sequence_d2: x_d2[index, jj, idx, :len(ss)] = ss else: x_d2[index, jj, idx, :max_sequence_d2] = ss[:max_sequence_d2] x_d2_mask[index, jj, idx] = 1. ''' haha = numpy.absolute(numpy.sign(x)) hehe = numpy.absolute(numpy.sign(x_d1)) jiji = numpy.absolute(numpy.sign(x_d2)) ''' return x, x_mask, x_d1, x_d1_mask, x_d2, x_d2_mask, l, final_mask, max_sequence, max_sequence_d1, max_sequence_d2 def days(emb, sequence_mask, news_mask, keep_prob, is_training, options, elmo): # emb batch,day,news, sequence,embedding, 32*3*40*13*100 # sequence_mask batch, day, news,sequence 32*3*40*13 # news_mask batch, day, news, 32*3*40 batch = tf.shape(emb)[0] day = tf.shape(emb)[1] new_s = tf.shape(emb)[2] word = tf.shape(emb)[3] word_level_inputs = tf.reshape(emb, [batch * day * new_s, word, options['dim_word']]) elmo = tf.reshape(elmo, [batch * day * new_s, word, 1024]) word_level_mask = tf.reshape(sequence_mask, [batch * day * new_s, word]) news_level_mask = tf.reshape(news_mask, [batch * day, new_s]) ##TODO word level LSTM word_encoder_out = bilstm_filter(word_level_inputs, word_level_mask, keep_prob, prefix='sequence_encode', dim=options['dim'], is_training=is_training) # output shape: batch*day*news,sequence,2*lstm_units(32*3*40)*12*600 #word_encoder_out = tf.concat(word_encoder_out, 2) * tf.expand_dims(word_level_mask, -1) # mask the output word_encoder_out = tf.concat([tf.concat(word_encoder_out, 2), elmo], 2) * tf.expand_dims(word_level_mask, -1) # mask the output #concat elmo ##TODO word level attention word_level_output = attention_v2(word_encoder_out, word_level_mask, name='word_attention', keep=keep_prob, r=10, is_training=is_training) # word_level_output shape is (32*3*40)*600 ''' word_level_output = tf.reduce_sum(word_encoder_out * tf.expand_dims(word_level_mask, -1), 1) / tf.expand_dims( tf.reduce_sum(word_level_mask, 1) + 1e-8, 1) ''' ##TODO average word # word_level_output = tf.reduce_sum(word_level_inputs * tf.expand_dims(word_level_mask, -1), 1) / tf.expand_dims( # tf.reduce_sum(word_level_mask, 1) + 1e-8, 1)# word_level_output shape is (32*3*40)*100 if options['use_dropout']: word_level_output = layers.dropout(word_level_output, keep_prob=keep_prob, is_training=is_training, seed=None) news_level_input = tf.reshape(word_level_output, [batch * day, new_s, 2 * options['dim'] + 1024]) # (32*3)*40*600 news_level_input = news_level_input * tf.expand_dims(news_level_mask, -1) # mask before attention ##TODO news level attention news_level_output = attention_v2(news_level_input, news_level_mask, name='news_attention', keep=keep_prob, r=10, is_training=is_training) # shape is (32*3)*600 ##TODO average news # news_level_output = tf.reduce_sum(news_level_input * tf.expand_dims(news_level_mask, -1), 1) / tf.expand_dims( # tf.reduce_sum(news_level_mask, 1) + 1e-8, 1) # shape is (32*3)*600 day_level_output = tf.reshape(news_level_output, [batch, day, 2 * options['dim'] + 1024]) # (32*3)*600 return day_level_output def news(emb, sequence_mask, news_mask, keep_prob, is_training, options, elmo): # emb batch,news, sequence,embedding, 32*40*13*100 # sequence_mask batch, news,sequence 32*40*13 # news_mask batch, news, 32*40 batch = tf.shape(emb)[0] new_s = tf.shape(emb)[1] word = tf.shape(emb)[2] word_level_inputs = tf.reshape(emb, [batch * new_s, word, options['dim_word']]) elmo = tf.reshape(elmo, [batch * new_s, word, 1024]) word_level_mask = tf.reshape(sequence_mask, [batch * new_s, word]) ##TODO word level LSTM word_encoder_out = bilstm_filter(word_level_inputs, word_level_mask, keep_prob, prefix='sequence_encode', dim=options['dim'], is_training=is_training) # output shape: batch*news,sequence,2*lstm_units(32*40)*12*600 #word_encoder_out = tf.concat(word_encoder_out, 2) * tf.expand_dims(word_level_mask, -1) # mask the output word_encoder_out = tf.concat([tf.concat(word_encoder_out, 2), elmo], 2) * tf.expand_dims(word_level_mask, -1) #concat two lstm layers, also with the elmo embedding word_level_output = attention_v2(word_encoder_out, word_level_mask, name='word_attention', keep=keep_prob, r=10, is_training=is_training) ''' word_level_output = tf.reduce_sum(word_encoder_out * tf.expand_dims(word_level_mask, -1), 1) / tf.expand_dims( tf.reduce_sum(word_level_mask, 1) + 1e-8, 1) ''' # word_level_output shape is (32*40)*600 ##TODO average word # word_level_output = tf.reduce_sum(word_level_inputs * tf.expand_dims(word_level_mask, -1), 1) / tf.expand_dims( # tf.reduce_sum(word_level_mask, 1) + 1e-8, 1)# word_level_output shape is (32*40)*100 if options['use_dropout']: word_level_output = layers.dropout(word_level_output, keep_prob=keep_prob, is_training=is_training, seed=None) news_level_input = tf.reshape(word_level_output, [batch, new_s, 2 * options['dim'] + 1024]) # 32*40*600 news_level_input = news_level_input * tf.expand_dims(news_mask, -1) # mask before attention ##TODO news level attention news_level_output = attention_v2(news_level_input, news_mask, name='news_attention', keep=keep_prob, r=10, is_training=is_training) # shape is 32*600 ##TODO average news # news_level_output = tf.reduce_sum(news_level_input * tf.expand_dims(news_mask, -1), 1) / tf.expand_dims( # tf.reduce_sum(news_mask, 1) + 1e-8, 1) # shape is 32*600 return news_level_output def attention_v1(input, masks, name='attention', nin=600, keep=1.0, is_training=True): # input is batch,time_step,hidden_state (32*40)*13*600 mask (32*40)*13 # hidden layer is:batch,hidden_shape,attention_hidden_size (32*40)*13*1200 or (32*40)*13*600 # attention shape after squeeze is (32*40)*13, # batch,time_step,attention_size (32*40)*13*1 with tf.variable_scope(name_or_scope=name, reuse=tf.AUTO_REUSE): hidden = tf.layers.dense(input, nin / 2, activation=tf.nn.tanh, use_bias=True, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='hidden', reuse=tf.AUTO_REUSE) # hidden = layers.dropout(hidden, keep_prob=keep, is_training=is_training) # hidden = tf.layers.batch_normalization(hidden, training=is_training) # hidden=tf.nn.tanh(hidden) attention = tf.layers.dense(hidden, 1, activation=None, use_bias=False, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='out', reuse=tf.AUTO_REUSE) padding = tf.fill(tf.shape(attention), float('-1e8')) # float('-inf') attention = tf.where(tf.equal(tf.expand_dims(masks, -1), 0.), padding, attention) # fill 0 with a small number for softmax attention = tf.nn.softmax(attention, 1, name='softmax') * tf.expand_dims(masks, -1) # 32*40*r #mask the attention here is not really neccesary, results = tf.reduce_sum(input * attention, axis=1) # 32*600 # outputs = tf.squeeze(tf.matmul(tf.transpose(attention, [0, 2, 1]), input)) # transpose to batch,hidden,time_step return results def attention_v2(input, mask, name='attention', nin=600, keep=1.0, r=10, is_training=True): # input is batch,time_step,hidden_state (32*40)*13*600 mask (32*40)*13 # hidden layer is:batch,hidden_shape,attention_hidden_size (32*40)*13*1200 or (32*40)*13*600 # attention shape after squeeze is (32*40)*13, # batch,time_step,attention_size (32*40)*13*1 with tf.variable_scope(name_or_scope=name, reuse=tf.AUTO_REUSE): masks = tf.stack([mask] * r, -1) # copy r time for filling (32*40)*13*r iden = tf.eye(r, batch_shape=[tf.shape(input)[0]]) # an identity matrix (32*40)*13*13 hidden = tf.layers.dense(input, nin / 2, activation=tf.nn.tanh, use_bias=False, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='hidden', reuse=tf.AUTO_REUSE) # hidden = layers.dropout(hidden, keep_prob=keep, is_training=is_training) # hidden = tf.layers.batch_normalization(hidden, training=is_training) # hidden=tf.nn.tanh(hidden) attention = tf.layers.dense(hidden, r, activation=None, use_bias=False, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='out', reuse=tf.AUTO_REUSE) # attention shape is 32*40*r padding = tf.fill(tf.shape(attention), float('-1e8')) # float('-inf') attention = tf.where(tf.equal(masks, 0.), padding, attention) # fill 0 with a small number for softmax attention = tf.nn.softmax(attention, 1, name='softmax') * masks # (32*40)*13*r #mask the attention here is not really neccesary, penalty = tf.norm((tf.matmul(tf.transpose(attention, [0, 2, 1]), attention) - iden), ord='fro', axis=(-2, -1)) # the Frobenius norm penalty 32 dimension # attention = attention + beta * tf.expand_dims(tf.expand_dims(penalty, -1), -1) # expand twice # outputs = tf.reduce_sum(input * attention, axis=1)#(32*40)*600 outputs = tf.matmul(tf.transpose(attention, [0, 2, 1]), input) # transpose to batch,hidden,time_step ##TODO average sentence attention # results = tf.reduce_mean(outputs, 1) # average sentence attention ##TODO attention over attention over_hidden = tf.layers.dense(outputs, nin, activation=tf.nn.tanh, use_bias=False, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='over_attention_hidden', reuse=tf.AUTO_REUSE) over_attention = tf.layers.dense(over_hidden, 1, activation=None, use_bias=False, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='over_attention_out', reuse=tf.AUTO_REUSE) over_attention = tf.nn.softmax(over_attention, 1, name='over_attention_softmax') results = tf.reduce_sum(outputs * over_attention, axis=1) # 32*600 ''' outputs = tf.reshape(outputs, [tf.shape(outputs)[0], -1]) ##TODO becarful changed some thing if name == 'sentence_attention': outputs.set_shape([None, nin * (r ** 2)]) else: outputs.set_shape([None, nin * r]) ''' return results # result shape is batch, hidden_unit (32*40)*600 def lstm_filter(input, mask, keep_prob, prefix='lstm', dim=300, is_training=True): with tf.variable_scope(name_or_scope=prefix, reuse=tf.AUTO_REUSE): sequence = tf.cast(tf.reduce_sum(mask, 1), tf.int32) lstm_fw_cell = rnn.LSTMCell(dim, forget_bias=0.0, initializer=tf.orthogonal_initializer(), state_is_tuple=True) keep_rate = tf.cond(is_training is not False and keep_prob < 1, lambda: 0.8, lambda: 1.0) cell_dp_fw = rnn.DropoutWrapper(cell=lstm_fw_cell, output_keep_prob=keep_rate) outputs, _ = tf.nn.dynamic_rnn(cell_dp_fw, input, sequence_length=sequence, swap_memory=False, dtype=tf.float32) return outputs def bilstm_filter(input, mask, keep_prob, prefix='lstm', dim=300, is_training=True): with tf.variable_scope(name_or_scope=prefix, reuse=tf.AUTO_REUSE): sequence = tf.cast(tf.reduce_sum(mask, 1), tf.int32) lstm_fw_cell = rnn.LSTMBlockCell(dim, forget_bias=1.0) # initializer=tf.orthogonal_initializer(), state_is_tuple=True # back directions lstm_bw_cell = rnn.LSTMBlockCell(dim, forget_bias=1.0) keep_rate = tf.cond(is_training is not False and keep_prob < 1, lambda: 0.8, lambda: 1.0) cell_dp_fw = rnn.DropoutWrapper(cell=lstm_fw_cell, output_keep_prob=keep_rate) cell_dp_bw = rnn.DropoutWrapper(cell=lstm_bw_cell, output_keep_prob=keep_rate) outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_dp_fw, cell_dp_bw, input, sequence_length=sequence, swap_memory=False, dtype=tf.float32) # batch major return outputs def init_params(options, worddicts): params = OrderedDict() # embedding params['Wemb'] = norm_weight(options['n_words'], options['dim_word']) # read embedding from GloVe if options['embedding']: with open(options['embedding'], 'r') as f: for line in f: tmp = line.split() word = tmp[0] vector = tmp[1:] if word in worddicts and worddicts[word] < options['n_words']: try: params['Wemb'][worddicts[word], :] = vector # encoder: bidirectional RNN except ValueError as e: print(str(e)) return params def word_embedding(options, params): embeddings = tf.get_variable("embeddings", shape=[options['n_words'], options['dim_word']], initializer=tf.constant_initializer(numpy.array( params['Wemb']))) # tf.constant_initializer(numpy.array(params['Wemb'])) return embeddings def build_model(embedding, options): """ Builds the entire computational graph used for training """ # description string: #words x #samples with tf.device('/gpu:0'): with tf.variable_scope('input'): x = tf.placeholder(tf.int64, shape=[None, None, None], name='x') # 3D vector batch,news and sequence(before embedding)40*32*13 x_mask = tf.placeholder(tf.float32, shape=[None, None], name='x_mask') # mask batch,news x_elmo_d0 = tf.placeholder(tf.float32, shape=[None, None, None, None], name='x_elmo_d0') y = tf.placeholder(tf.int64, shape=[None], name='y') x_d1 = tf.placeholder(tf.int64, shape=[None, None, None, None], name='x_d1') x_d1_mask = tf.placeholder(tf.float32, shape=[None, None, None], name='x_d1_mask') x_elmo_d1 = tf.placeholder(tf.float32, shape=[None, None, None, None, None], name='x_elmo_d1') x_d2 = tf.placeholder(tf.int64, shape=[None, None, None, None], name='x_d2') x_d2_mask = tf.placeholder(tf.float32, shape=[None, None, None], name='x_d2_mask') x_elmo_d2 = tf.placeholder(tf.float32, shape=[None, None, None, None, None], name='x_elmo_d2') final_mask = tf.placeholder(tf.float32, shape=[None, None], name='final_mask') tech = tf.placeholder(tf.float32, shape=[None, None, 7], name='technical') # shape is batch time unit # final_mask shape is day*n_samples ##TODO important keep_prob = tf.placeholder(tf.float32, [], name='keep_prob') is_training = tf.placeholder(tf.bool, name='is_training') ##TODO important sequence_mask = tf.cast(tf.abs(tf.sign(x)), tf.float32) # 3D sequence_d1_mask = tf.cast(tf.abs(tf.sign(x_d1)), tf.float32) # 4D sequence_d2_mask = tf.cast(tf.abs(tf.sign(x_d2)), tf.float32) # 4D n_timesteps = tf.shape(x)[0] # time steps n_samples = tf.shape(x)[1] # n samples # # word embedding ##TODO word embedding emb = tf.nn.embedding_lookup(embedding, x) emb_d1 = tf.nn.embedding_lookup(embedding, x_d1) emb_d2 = tf.nn.embedding_lookup(embedding, x_d2) '''if options['use_dropout']: emb = layers.dropout(emb, keep_prob=keep_prob, is_training=is_training) ''' with tf.device('/gpu:0'): # fed into the input of BILSTM from the official document ##TODO word level LSTM with tf.name_scope('news'): att = news(emb, sequence_mask, x_mask, keep_prob, is_training, options, x_elmo_d0) ##TODO att shape 32*200 att_day1 32*2*200 att_day2 32*4*200 with tf.name_scope('day1'): att_day1 = days(emb_d1, sequence_d1_mask, x_d1_mask, keep_prob, is_training, options, x_elmo_d1) # TODO bilstm layers # Change the time step and batch with tf.device('/gpu:0'): with tf.name_scope('day2'): att_day2 = days(emb_d2, sequence_d2_mask, x_d2_mask, keep_prob, is_training, options, x_elmo_d2) with tf.name_scope('final'): final = tf.concat([att_day2, att_day1, tf.expand_dims(att, 1)], 1) '''if options['use_dropout']: final = layers.dropout(final, keep_prob=keep_prob, is_training=is_training) ''' # final shape is 8*32*600 if options['last_layer'] == 'LSTM': final = bilstm_filter(final, final_mask, keep_prob, prefix='day_lstm', dim=100, is_training=is_training) # output shape: batch,time_step,2*lstm_unit(concate) 32*7*600 # tech_ind = lstm_filter(tech, tf.ones(shape=[tf.shape(tech)[0],tf.shape(tech)[1]]), keep_prob, prefix='tech_lstm', dim=50, # is_training=is_training) ##TODO day level attention att_final = attention_v2(tf.concat(final, 2), final_mask, name='day_attention', keep=keep_prob, r=4, is_training=is_training) # already masked after attention ##TODO take day lstm average # att_final = tf.reduce_mean(tf.concat(final,2),1) # tech_att = tf.reduce_mean(tf.concat(tech_ind,2),1) ##TODO take the lasts # tech_att=tech_ind[:,-1,:] # att_final = tf.concat([att_final,tech_att],axis=1) logit = tf.layers.dense(att_final, 100, activation=tf.nn.tanh, use_bias=True, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='ff', reuse=tf.AUTO_REUSE) # logit = tf.layers.batch_normalization(logit, training=is_training) # logit=tf.nn.tanh(logit) ''' # logit1 = tf.reduce_sum(tf.concat(final,2) * tf.expand_dims(final_mask,-1),0) / tf.expand_dims(tf.reduce_sum(final_mask,0),1) # logit2 = tf.reduce_max(ctx3 * tf.expand_dims(x1_mask,2),0) ''' if options['last_layer'] == 'CNN': att_ctx = tf.concat([att_day1, tf.expand_dims(att, 1)], 1) xavier = layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32) conv1 = tf.layers.conv1d(att_ctx, filters=options['CNN_filter'], kernel_size=options['CNN_kernel'], padding='same', strides=1, activation=tf.nn.relu, kernel_initializer=xavier, name='conv1') conv2 = tf.layers.conv1d(final, filters=options['CNN_filter'], kernel_size=options['CNN_kernel'], padding='same', strides=1, activation=tf.nn.relu, kernel_initializer=xavier, name='conv2') pool1 = tf.layers.max_pooling1d(conv1, pool_size=2, strides=2, padding='same', data_format='channels_last', name='pool1') pool2 = tf.layers.max_pooling1d(conv2, pool_size=2, strides=2, padding='same', data_format='channels_last', name='pool2') d1size = math.ceil(options['delay1'] / 2) * options['CNN_filter'] d2size = math.ceil(options['delay2'] / 2) * options['CNN_filter'] pool1_flat = tf.reshape(pool1, [-1, d1size]) pool2_flat = tf.reshape(pool2, [-1, d2size]) cnn_final = tf.concat([att, pool1_flat, pool2_flat], -1) logit = tf.layers.dense(cnn_final, 300, activation=tf.nn.tanh, use_bias=True, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='ff', reuse=tf.AUTO_REUSE) # logit = tf.layers.batch_normalization(logit, training=is_training) # logit=tf.nn.tanh(logit) if options['use_dropout']: logit = layers.dropout(logit, keep_prob=keep_prob, is_training=is_training, seed=None) pred = tf.layers.dense(logit, 2, activation=None, use_bias=True, kernel_initializer=layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32), name='fout', reuse=tf.AUTO_REUSE) logger.info('Building f_cost...') # todo not same labels = tf.one_hot(y, depth=2, axis=1) # labels = y preds = tf.nn.softmax(pred, 1, name='softmax') # preds = tf.nn.sigmoid(pred) # pred=tf.reshape(pred,[-1]) cost = tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=labels) # cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels,logits=pred),1) # cost = -tf.reduce_sum((tf.cast(labels, tf.float32) * tf.log(preds + 1e-8)),axis=1) # cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=y) logger.info('Done') ''' logit1 = tf.reduce_sum(ctx1 * tf.expand_dims(x_mask, 2), 0) / tf.expand_dims(tf.reduce_sum(x_mask, 0), 1) logit2 = tf.reduce_max(ctx1 * tf.expand_dims(x_mask, 2), 0) logit = tf.concat([logit1, logit2], 1) ''' with tf.variable_scope('logging'): tf.summary.scalar('current_cost', tf.reduce_mean(cost)) tf.summary.histogram('predicted_value', preds) summary = tf.summary.merge_all() return is_training, cost, x, x_mask, y, n_timesteps, preds, summary def predict_pro_acc(sess, cost, prepare_data, model_options, iterator, maxlen, correct_pred, pred, summary, eidx, is_training, train_op, plot=None, writer=None, validate=False): # fo = open(_s(prefix,'pre.txt'), "w") num = 0 valid_acc = 0 total_cost = 0 loss = 0 result = 0 final_result = [] # sess.add_tensor_filter("val_test_spot") for x_sent, x_d1_sent, x_d2_sent, y_sent, y_tech, elmo_d0, elmo_d1, elmo_d2 in iterator: num += len(x_sent) data_x, data_x_mask, data_x_d1, data_x_d1_mask, data_x_d2, data_x_d2_mask, data_y, final_mask, max_sequence_d0, \ max_sequence_d1, max_sequence_d2 = prepare_data( x_sent, x_d1_sent, x_d2_sent, y_sent, model_options, maxlen=maxlen) if validate is True: elmo_d0_embedding = get_elmo(elmo_d0, max_sequence_d0, model_options['cut_news'], model_options['validate_elmo']) elmo_d1_embedding = get_elmo(elmo_d1, max_sequence_d1, model_options['cut_news'], model_options['validate_elmo'], day_flag=True) elmo_d2_embedding = get_elmo(elmo_d2, max_sequence_d2, model_options['cut_news'], model_options['validate_elmo'], day_flag=True) else: elmo_d0_embedding = get_elmo(elmo_d0, max_sequence_d0, model_options['cut_news'], model_options['test_elmo']) elmo_d1_embedding = get_elmo(elmo_d1, max_sequence_d1, model_options['cut_news'], model_options['test_elmo'], day_flag=True) elmo_d2_embedding = get_elmo(elmo_d2, max_sequence_d2, model_options['cut_news'], model_options['test_elmo'], day_flag=True) loss, result, preds = sess.run([cost, correct_pred, pred], feed_dict={'input/x:0': data_x, 'input/x_mask:0': data_x_mask, 'input/x_elmo_d0:0': elmo_d0_embedding, 'input/y:0': data_y, 'input/x_d1:0': data_x_d1, 'input/x_d1_mask:0': data_x_d1_mask, 'input/x_elmo_d1:0': elmo_d1_embedding, 'input/x_d2:0': data_x_d2, 'input/x_d2_mask:0': data_x_d2_mask, 'input/x_elmo_d2:0': elmo_d2_embedding, 'input/final_mask:0': final_mask, 'input/technical:0': y_tech, 'input/keep_prob:0': 1.0, 'input/is_training:0': is_training}) valid_acc += result.sum() total_cost += loss.sum() if plot is not None: if validate is True: plot['validate'].append(loss.sum() / len(x_sent)) else: plot['testing'].append(loss.sum() / len(x_sent)) final_result.extend(result.tolist()) final_acc = 1.0 * valid_acc / num final_loss = 1.0 * total_cost / num # if writer is not None: # writer.add_summary(test_summary, eidx) # print result,preds,loss,result_ print(preds, result, num) return final_acc, final_loss, final_result def train( dim_word=100, # word vector dimensionality dim=100, # the number of GRU units encoder='lstm', # encoder model decoder='lstm', # decoder model patience=10, # early stopping patience max_epochs=5000, finish_after=10000000, # finish after this many updates decay_c=0., # L2 regularization penalty clip_c=-1., # gradient clipping threshold lrate=0.0004, # learning rate n_words=100000, # vocabulary size n_words_lemma=100000, maxlen=100, # maximum length of the description optimizer='adam', batch_size=32, valid_batch_size=32, save_model='../../models/', saveto='model.npz', dispFreq=100, validFreq=1000, saveFreq=1000, # save the parameters after every saveFreq updates use_dropout=False, reload_=False, verbose=False, # print verbose information for debug but slow speed delay1=3, delay2=7, delay_tech=5, types='title', cut_word=False, cut_news=False, last_layer="LSTM", CNN_filter=64, CNN_kernel=3, keep_prob=0.8, datasets=[], valid_datasets=[], test_datasets=[], tech_data=[], dictionary=[], kb_dicts=[], embedding='', # pretrain embedding file, such as word2vec, GLOVE dim_kb=5, RUN_NAME="histogram_visualization", wait_N=10, train_elmo='', validate_elmo='', test_elmo='' ): logging.basicConfig(level=logging.DEBUG, format="%(asctime)s: %(name)s: %(levelname)s: %(message)s", filename='./log_result.txt') # Model options model_options = locals().copy() # tf.reset_default_graph() # tf.set_random_seed(2345) with open(dictionary, 'rb') as f: worddicts = pkl.load(f) logger.info("Loading knowledge base ...") # reload options if reload_ and os.path.exists(saveto): logger.info("Reload options") with open('%s.pkl' % saveto, 'rb') as f: model_options = pkl.load(f) logger.debug(pprint.pformat(model_options)) logger.info("Loading data") train = TextIterator(datasets[0], datasets[1], tech_data, dict=dictionary, delay1=delay1, delay2=delay2, delay_tech=delay_tech, types=types, n_words=n_words, batch_size=batch_size, cut_word=cut_word, cut_news=cut_news, shuffle=True, shuffle_sentence=False) train_valid = TextIterator(datasets[0], datasets[1], tech_data, dict=dictionary, delay1=delay1, delay2=delay2, delay_tech=delay_tech, types=types, n_words=n_words, batch_size=valid_batch_size, cut_word=cut_word, cut_news=cut_news, shuffle=False, shuffle_sentence=False) valid = TextIterator(valid_datasets[0], valid_datasets[1], tech_data, dict=dictionary, delay1=delay1, delay2=delay2, delay_tech=delay_tech, types=types, n_words=n_words, batch_size=valid_batch_size, cut_word=cut_word, cut_news=cut_news, shuffle=False, shuffle_sentence=False) test = TextIterator(test_datasets[0], test_datasets[1], tech_data, dict=dictionary, delay1=delay1, delay2=delay2, delay_tech=delay_tech, types=types, n_words=n_words, batch_size=valid_batch_size, cut_word=cut_word, cut_news=cut_news, shuffle=False, shuffle_sentence=False) # Initialize (or reload) the parameters using 'model_options' # then build the tensorflow graph logger.info("init_word_embedding") params = init_params(model_options, worddicts) embedding = word_embedding(model_options, params) is_training, cost, x, x_mask, y, n_timesteps, pred, summary = build_model(embedding, model_options) with tf.variable_scope('train'): lr = tf.Variable(0.0, trainable=False) def assign_lr(session, lr_value): session.run(tf.assign(lr, lr_value)) logger.info('Building optimizers...') # optimizer = tf.train.AdamOptimizer(learning_rate=lr) optimizer = tf.train.AdadeltaOptimizer(learning_rate=lr, rho=0.95) logger.info('Done') # print all variables tvars = tf.trainable_variables() for var in tvars: print(var.name, var.shape) lossL = tf.add_n([tf.nn.l2_loss(v) for v in tvars if ('embeddings' not in v.name and 'bias' not in v.name)]) # lossL2 = lossL * 0.0005 print("don't do L2 variables:") print([v.name for v in tvars if ('embeddings' in v.name or 'bias' in v.name)]) print("\n do L2 variables:") print([v.name for v in tvars if ('embeddings' not in v.name and 'bias' not in v.name)]) cost = cost + lossL2 grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), model_options['clip_c']) extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): train_op = optimizer.apply_gradients(zip(grads, tvars)) # train_op = optimizer.minimize(cost) op_loss = tf.reduce_mean(cost) op_L2 = tf.reduce_mean(lossL) logger.info("correct_pred") correct_pred = tf.equal(tf.argmax(input=pred, axis=1), y) # make prediction logger.info("Done") temp_accuracy = tf.cast(correct_pred, tf.float32) # change to float32 logger.info("init variables") init = tf.global_variables_initializer() logger.info("Done") # saver saver = tf.train.Saver(max_to_keep=15) config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.4 config.gpu_options.allow_growth = True # gpu_options = tf.GPUOptions(allow_growth=True) # sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: # sess = tf_debug.LocalCLIDebugWrapperSession(sess) training_writer = tf.summary.FileWriter("./logs/{}/training".format(RUN_NAME), sess.graph) validate_writer = tf.summary.FileWriter("./logs/{}/validate".format(RUN_NAME), sess.graph) testing_writer = tf.summary.FileWriter("./logs/{}/testing".format(RUN_NAME), sess.graph) sess.run(init) history_errs = [] history_valid_result = [] history_test_result = [] # reload history if reload_ and os.path.exists(saveto): logger.info("Reload history error") history_errs = list(numpy.load(saveto)['history_errs']) bad_counter = 0 if validFreq == -1: validFreq = len(train[0]) / batch_size if saveFreq == -1: saveFreq = len(train[0]) / batch_size loss_plot = defaultdict(list) uidx = 0 estop = False valid_acc_record = [] test_acc_record = [] best_num = -1 best_epoch_num = 0 lr_change_list = [] fine_tune_flag = 0 wait_counter = 0 wait_N = model_options['wait_N'] learning_rate = model_options['lrate'] assign_lr(sess, learning_rate) for eidx in range(max_epochs): n_samples = 0 training_cost = 0 training_acc = 0 for x, x_d1, x_d2, y, y_tech, elmo_d0, elmo_d1, elmo_d2 in train: n_samples += len(x) uidx += 1 keep_prob = model_options['keep_prob'] is_training = True data_x, data_x_mask, data_x_d1, data_x_d1_mask, data_x_d2, data_x_d2_mask, data_y, final_mask,\ max_sequence_d0, max_sequence_d1, max_sequence_d2 = prepare_data( x, x_d1, x_d2, y, model_options, maxlen=maxlen) elmo_d0_embedding = get_elmo(elmo_d0, max_sequence_d0, model_options['cut_news'], model_options['train_elmo']) elmo_d1_embedding = get_elmo(elmo_d1, max_sequence_d1, model_options['cut_news'], model_options['train_elmo'], day_flag=True) elmo_d2_embedding = get_elmo(elmo_d2, max_sequence_d2, model_options['cut_news'], model_options['train_elmo'], day_flag=True) print(data_x.shape, data_x_mask.shape, data_x_d1.shape, data_x_d1_mask.shape, data_x_d2.shape, data_x_d2_mask.shape, final_mask.shape, data_y.shape) assert data_y.shape[0] == data_x.shape[0], 'Size does not match' if x is None: logger.debug('Minibatch with zero sample under length {0}'.format(maxlen)) uidx -= 1 continue ud_start = time.time() _, loss, loss_no_mean, temp_acc, l2_check = sess.run([train_op, op_loss, cost, temp_accuracy, op_L2], feed_dict={'input/x:0': data_x, 'input/x_mask:0': data_x_mask, 'input/x_elmo_d0:0': elmo_d0_embedding, 'input/y:0': data_y, 'input/x_d1:0': data_x_d1, 'input/x_d1_mask:0': data_x_d1_mask, 'input/x_elmo_d1:0': elmo_d1_embedding, 'input/x_d2:0': data_x_d2, 'input/x_d2_mask:0': data_x_d2_mask, 'input/x_elmo_d2:0': elmo_d2_embedding, 'input/final_mask:0': final_mask, 'input/technical:0': y_tech, 'input/keep_prob:0': keep_prob, 'input/is_training:0': is_training}) ud = time.time() - ud_start training_cost += loss_no_mean.sum() training_acc += temp_acc.sum() loss_plot['training'].append(loss) '''train_summary = sess.run(summary, feed_dict={'input/x:0': data_x, 'input/x_mask:0': data_x_mask, 'input/y:0': data_y,'input/keep_prob:0':keep_prob,'input/is_training:0':is_training}) training_writer.add_summary(train_summary, eidx)''' if numpy.mod(uidx, dispFreq) == 0: logger.debug('Epoch {0} Update {1} Cost {2} L2 {3} TIME {4}'.format(eidx, uidx, loss, l2_check, ud)) # validate model on validation set and early stop if necessary if numpy.mod(uidx, validFreq) == 0: is_training = False valid_acc, valid_loss, valid_final_result = predict_pro_acc(sess, cost, prepare_data, model_options, valid, maxlen, correct_pred, pred, summary, eidx, is_training, train_op, loss_plot, validate_writer, validate=True) test_acc, test_loss, test_final_result = predict_pro_acc(sess, cost, prepare_data, model_options, test, maxlen, correct_pred, pred, summary, eidx, is_training, train_op, loss_plot, testing_writer) # valid_err = 1.0 - valid_acc valid_err = valid_loss history_errs.append(valid_err) history_valid_result.append(valid_final_result) history_test_result.append(test_final_result) loss_plot['validate_ep'].append(valid_loss) loss_plot['testing_ep'].append(test_loss) logger.debug('Epoch {0}'.format(eidx)) logger.debug('Valid cost {0}'.format(valid_loss)) logger.debug('Valid accuracy {0}'.format(valid_acc)) logger.debug('Test cost {0}'.format(test_loss)) logger.debug('Test accuracy {0}'.format(test_acc)) logger.debug('learning_rate: {0}'.format(learning_rate)) valid_acc_record.append(valid_acc) test_acc_record.append(test_acc) if uidx == 0 or valid_err <= numpy.array(history_errs).min(): best_num = best_num + 1 best_epoch_num = eidx wait_counter = 0 logger.info("Saving...") saver.save(sess, _s(_s(_s(save_model, "epoch"), str(best_num)), "model.ckpt")) logger.info(_s(_s(_s(save_model, "epoch"), str(best_num)), "model.ckpt")) numpy.savez(saveto, history_errs=history_errs, **params) pkl.dump(model_options, open('{}.pkl'.format(saveto), 'wb')) logger.info("Done") if valid_err > numpy.array(history_errs).min(): wait_counter += 1 # wait_counter +=1 if valid_err>numpy.array(history_errs).min() else 0 if wait_counter >= wait_N: logger.info("wait_counter max, need to half the lr") # print 'wait_counter max, need to half the lr' bad_counter += 1 wait_counter = 0 logger.debug('bad_counter: {0}'.format(bad_counter)) # TODO change the learining rate # learning_rate = learning_rate * 0.9 # learning_rate = learning_rate # assign_lr(sess, learning_rate) lr_change_list.append(eidx) logger.debug('lrate change to: {0}'.format(learning_rate)) # print 'lrate change to: ' + str(lrate) if bad_counter > patience and fine_tune_flag == 0: logger.debug('ATTENTION! INTO FINE TUNING STAGE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') optimizer = tf.train.MomentumOptimizer(learning_rate=0.000001, momentum=0.6) fine_tune_flag = 1 bad_counter = 0 if bad_counter > patience and fine_tune_flag == 1: logger.info("Early Stop!") estop = True break if numpy.isnan(valid_err): pdb.set_trace() # finish after this many updates if uidx >= finish_after: logger.debug('Finishing after iterations! {0}'.format(uidx)) # print 'Finishing after %d iterations!' % uidx estop = True break logger.debug('Seen samples: {0}'.format(n_samples)) logger.debug('Training accuracy: {0}'.format(1.0 * training_acc / n_samples)) loss_plot['training_ep'].append(training_cost / n_samples) # print 'Seen %d samples' % n_samples logger.debug('Saved loss_plot pickle') with open("important_plot.pickle", 'wb') as handle: pkl.dump(loss_plot, handle, protocol=pkl.HIGHEST_PROTOCOL) if estop: break with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: # Restore variables from disk. saver.restore(sess, _s(_s(_s(save_model, "epoch"), str(best_num)), "model.ckpt")) keep_prob = 1 is_training = False logger.info('=' * 80) logger.info('Final Result') logger.info('=' * 80) logger.debug('best epoch {0}'.format(best_epoch_num)) valid_acc, valid_cost, valid_final_result = predict_pro_acc(sess, cost, prepare_data, model_options, valid, maxlen, correct_pred, pred, summary, eidx, train_op, is_training, None) logger.debug('Valid cost {0}'.format(valid_cost)) logger.debug('Valid accuracy {0}'.format(valid_acc)) # print 'Valid cost', valid_cost # print 'Valid accuracy', valid_acc test_acc, test_cost, test_final_result = predict_pro_acc(sess, cost, prepare_data, model_options, test, maxlen, correct_pred, pred, summary, eidx, train_op, is_training, None) logger.debug('Test cost {0}'.format(test_cost)) logger.debug('Test accuracy {0}'.format(test_acc)) # print 'best epoch ', best_epoch_num train_acc, train_cost, _ = predict_pro_acc(sess, cost, prepare_data, model_options, train_valid, maxlen, correct_pred, pred, summary, eidx, train_op, is_training, None) logger.debug('Train cost {0}'.format(train_cost)) logger.debug('Train accuracy {0}'.format(train_acc)) valid_m = numpy.array(history_valid_result) test_m = numpy.array(history_test_result) valid_final_result = (numpy.array([valid_final_result]) == False) test_final_result = (numpy.array([test_final_result]) == False) # print(numpy.all(valid_m, axis = 0)) # print(numpy.all(test_m, axis=0)) print('validation: all prediction through every epoch that are the same:', numpy.where(numpy.all(valid_m, axis=0))) # Not right print('testing: all prediction through every epoch that are the same:', numpy.where(numpy.all(test_m, axis=0))) print('validation: final prediction that is False:', numpy.where(valid_final_result)) print('testing: final prediction that is False:', numpy.where(test_final_result)) if os.path.exists('history_predict.npz'): logger.info("Load and save to history_predict.npz") valid_history = numpy.load('history_predict.npz')['valid_final_result'] test_history = numpy.load('history_predict.npz')['test_final_result'] vv = numpy.concatenate((valid_history, valid_final_result), axis=0) tt = numpy.concatenate((test_history, valid_final_result), axis=0) print('Concate shape valid:', vv.shape) print('Print all validate history outputs that return False', numpy.where(numpy.all(vv, axis=0))) print('Concate shape test:', tt.shape) print('Print all test history outputs that return False', numpy.where(numpy.all(tt, axis=0))) numpy.savez('history_predict.npz', valid_final_result=vv, test_final_result=tt, **params) else: numpy.savez('history_predict.npz', valid_final_result=valid_final_result, test_final_result=test_final_result, **params) # print 'Train cost', train_cost # print 'Train accuracy', train_acc # print 'Test cost ', test_cost # print 'Test accuracy ', test_acc return None if __name__ == '__main__': pass
458937
import random from adsimulator.templates.domains import get_functional_level_list, TLD_LIST from adsimulator.templates.default_values import get_complementary_value from adsimulator.utils.boolean import generate_boolean_value from adsimulator.utils.parameters import get_dict_param_value, get_perc_param_value, print_domain_generation_parameters from adsimulator.utils.domains import generate_trust_sid def generate_domain(session, domain_name, domain_sid, domain_dn, parameters): prob = get_dict_param_value("Domain", "functionalLevelProbability", parameters) functional_level = random.choice(get_functional_level_list(prob)) print_domain_generation_parameters(prob) session.run( """ MERGE (n:Base {name:$domain}) SET n:Domain, n.highvalue=true, n.objectid=$objectid, n.distinguishedname=$dn, n.functionallevel=$fl """, domain=domain_name, objectid=domain_sid, dn=domain_dn, fl=functional_level ) return functional_level def generate_trusts(session, domain_name, domain_names, parameters): available_names = domain_names current_domain_name = str(domain_name).split(".")[0] if current_domain_name in available_names: available_names.remove(current_domain_name) sid_filtering_perc = get_perc_param_value("Domain", "Trusts", parameters)["SIDFilteringProbability"] n_trust = get_dict_param_value("Domain", "Trusts", parameters) if len(available_names) < n_trust["Inbound"]: n_trust["Inbound"] = len(available_names) print("Generating", str(n_trust["Inbound"]), "inbound domain trusts (sidfiltering probability:", sid_filtering_perc, "%)") for i in range(0, n_trust["Inbound"]): available_names = generate_inbound_trust(session, domain_name, available_names, sid_filtering_perc) if len(available_names) < n_trust["Outbound"]: n_trust["Outbound"] = len(available_names) print("Generating", str(n_trust["Outbound"]), "outbound domain trusts (sidfiltering probability:", sid_filtering_perc, "%)") for i in range(0, n_trust["Outbound"]): available_names = generate_outbound_trust(session, domain_name, available_names, sid_filtering_perc) if len(available_names) < n_trust["Bidirectional"]: n_trust["Bidirectional"] = len(available_names) print("Generating", str(n_trust["Bidirectional"]), "bidirectional domain trusts (sidfiltering probability:", sid_filtering_perc, "%)") for i in range(0, n_trust["Bidirectional"]): available_names = generate_bidirectional_trust(session, domain_name, available_names, sid_filtering_perc) def generate_inbound_trust(session, domain_name, available_names, sid_filtering_perc): sid_filtering = generate_boolean_value(sid_filtering_perc, get_complementary_value(sid_filtering_perc)) name = random.choice(available_names) available_names.remove(name) trust_name = name + random.choice(TLD_LIST) trust_sid = generate_trust_sid() session.run( """ MERGE (n:Domain {name:$domainname}) WITH n MERGE (m: Domain {name:$trustname, objectid:$trustsid}) WITH n,m MERGE (n)-[:TrustedBy {isacl:false, sidfiltering: $sidfiltering, transitive: 'false', trusttype: 'Forest'}]->(m) """, trustname=trust_name, trustsid=trust_sid, domainname=domain_name, sidfiltering=sid_filtering ) return available_names def generate_outbound_trust(session, domain_name, available_names, sid_filtering_perc): sid_filtering = generate_boolean_value(sid_filtering_perc, get_complementary_value(sid_filtering_perc)) name = random.choice(available_names) available_names.remove(name) trust_name = name + random.choice(TLD_LIST) trust_sid = generate_trust_sid() session.run( """ MERGE (n:Domain {name:$domainname}) WITH n MERGE (m: Domain {name:$trustname, objectid:$trustsid}) WITH n,m MERGE (m)-[:TrustedBy {isacl:false, sidfiltering: $sidfiltering, transitive: 'false', trusttype: 'Forest'}]->(n) """, trustname=trust_name, trustsid=trust_sid, domainname=domain_name, sidfiltering=sid_filtering ) return available_names def generate_bidirectional_trust(session, domain_name, available_names, sid_filtering_perc): sid_filtering = generate_boolean_value(sid_filtering_perc, get_complementary_value(sid_filtering_perc)) name = random.choice(available_names) available_names.remove(name) trust_name = name + "." + domain_name trust_sid = generate_trust_sid() session.run( """ MERGE (n:Domain {name:$domainname}) WITH n MERGE (m: Domain {name:$trustname, objectid:$trustsid}) WITH n,m MERGE (n)-[:TrustedBy {isacl:false, sidfiltering: $sidfiltering, transitive: 'true', trusttype: 'ParentChild'}]->(m) MERGE (m)-[:TrustedBy {isacl:false, sidfiltering: $sidfiltering, transitive: 'true', trusttype: 'ParentChild'}]->(n) """, trustname=trust_name, trustsid=trust_sid, domainname=domain_name, sidfiltering=sid_filtering ) return available_names
458944
import numpy as np import pytest import torch from obp.policy.offline_continuous import ContinuousNNPolicyLearner # dim_context, pg_method, bandwidth, output_space, hidden_layer_size, activation, solver, alpha, # batch_size, learning_rate_init, max_iter, shuffle, random_state, tol, momentum, nesterovs_momentum, # early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, q_func_estimator_hyperparams, description invalid_input_of_nn_policy_learner_init = [ ( 0, # "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`dim_context`= 0, must be >= 1", ), ( 10, "None", # 2, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "pg_method must be one of 'dgp', 'ipw', or 'dr'", ), ( 10, "ipw", -0.1, # (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`bandwidth`= -0.1, must be > 0", ), ( 10, "ipw", 0.1, ("", ""), # (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "output_space must be tuple of integers or floats", ), ( 10, "ipw", 0.1, (-10, 10), (100, ""), # "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "hidden_layer_size must be tuple of positive integers", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "None", # "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "activation must be one of 'identity', 'logistic', 'tanh', 'relu', or 'elu'", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "None", # 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "solver must be one of 'adam', 'adagrad', or 'sgd'", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", -1.0, # "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`alpha`= -1.0, must be >= 0.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, 0, # 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "batch_size must be a positive integer or 'auto'", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0, # 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`learning_rate_init`= 0.0, must be > 0.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 0, # True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`max_iter`= 0, must be >= 1", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, None, # 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "shuffle must be a bool", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, "", # 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "'' cannot be used to seed", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, -1.0, # 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`tol`= -1.0, must be > 0.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 2.0, # True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "`momentum`= 2.0, must be <= 1.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, "", # True, 0.1, 0.9, 0.999, 1e-8, 10, None, "nesterovs_momentum must be a bool", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, None, # 0.1, 0.9, 0.999, 1e-8, 10, None, "early_stopping must be a bool", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "lbfgs", # 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, # 0.1, 0.9, 0.999, 1e-8, 10, None, "solver must be one of 'adam', 'adagrad', or 'sgd',", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 2.0, # 0.9, 0.999, 1e-8, 10, None, "`validation_fraction`= 2.0, must be <= 1.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 2.0, # 0.999, 1e-8, 10, None, "`beta_1`= 2.0, must be <= 1.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 2.0, # 1e-8, 10, None, "`beta_2`= 2.0, must be <= 1.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, -1.0, # 10, None, "`epsilon`= -1.0, must be >= 0.0", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 0, # None, "`n_iter_no_change`= 0, must be >= 1", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, "", # "q_func_estimator_hyperparams must be a dict,", ), ] valid_input_of_nn_policy_learner_init = [ ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "valid input", ), ( 10, "dpg", None, (-10, 10), (100, 50, 100), "relu", "adam", 0.001, "auto", 0.0001, 200, True, 123, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, None, "valid input", ), ( 10, "ipw", 0.1, (-10, 10), (100, 50, 100), "logistic", "sgd", 0.001, 50, 0.0001, 200, True, None, 1e-4, 0.9, True, True, 0.1, 0.9, 0.999, 1e-8, 10, {}, "valid input", ), ] @pytest.mark.parametrize( "dim_context, pg_method, bandwidth, output_space, hidden_layer_size, activation, solver, alpha, batch_size, learning_rate_init, max_iter, shuffle, random_state, tol, momentum, nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, q_func_estimator_hyperparams, description", invalid_input_of_nn_policy_learner_init, ) def test_nn_policy_learner_init_using_invalid_inputs( dim_context, pg_method, bandwidth, output_space, hidden_layer_size, activation, solver, alpha, batch_size, learning_rate_init, max_iter, shuffle, random_state, tol, momentum, nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, q_func_estimator_hyperparams, description, ): with pytest.raises(ValueError, match=f"{description}*"): _ = ContinuousNNPolicyLearner( dim_context=dim_context, pg_method=pg_method, bandwidth=bandwidth, output_space=output_space, hidden_layer_size=hidden_layer_size, activation=activation, solver=solver, alpha=alpha, batch_size=batch_size, learning_rate_init=learning_rate_init, max_iter=max_iter, shuffle=shuffle, random_state=random_state, tol=tol, momentum=momentum, nesterovs_momentum=nesterovs_momentum, early_stopping=early_stopping, validation_fraction=validation_fraction, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, n_iter_no_change=n_iter_no_change, q_func_estimator_hyperparams=q_func_estimator_hyperparams, ) @pytest.mark.parametrize( "dim_context, pg_method, bandwidth, output_space, hidden_layer_size, activation, solver, alpha, batch_size, learning_rate_init, max_iter, shuffle, random_state, tol, momentum, nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, q_func_estimator_hyperparams, description", valid_input_of_nn_policy_learner_init, ) def test_nn_policy_learner_init_using_valid_inputs( dim_context, pg_method, bandwidth, output_space, hidden_layer_size, activation, solver, alpha, batch_size, learning_rate_init, max_iter, shuffle, random_state, tol, momentum, nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, epsilon, n_iter_no_change, q_func_estimator_hyperparams, description, ): nn_policy_learner = ContinuousNNPolicyLearner( dim_context=dim_context, pg_method=pg_method, bandwidth=bandwidth, output_space=output_space, hidden_layer_size=hidden_layer_size, activation=activation, solver=solver, alpha=alpha, batch_size=batch_size, learning_rate_init=learning_rate_init, max_iter=max_iter, shuffle=shuffle, random_state=random_state, tol=tol, momentum=momentum, nesterovs_momentum=nesterovs_momentum, early_stopping=early_stopping, validation_fraction=validation_fraction, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, n_iter_no_change=n_iter_no_change, q_func_estimator_hyperparams=q_func_estimator_hyperparams, ) assert isinstance(nn_policy_learner, ContinuousNNPolicyLearner) def test_nn_policy_learner_create_train_data_for_opl(): context = np.ones((100, 2), dtype=np.int32) action = np.zeros(100, dtype=np.int32) reward = np.ones((100,), dtype=np.float32) pscore = np.array([0.5] * 100, dtype=np.float32) learner1 = ContinuousNNPolicyLearner(dim_context=2, pg_method="dpg") training_loader, validation_loader = learner1._create_train_data_for_opl( context=context, action=action, reward=reward, pscore=pscore, ) assert isinstance(training_loader, torch.utils.data.DataLoader) assert validation_loader is None learner2 = ContinuousNNPolicyLearner( dim_context=2, pg_method="dpg", early_stopping=True, ) training_loader, validation_loader = learner2._create_train_data_for_opl( context=context, action=action, reward=reward, pscore=pscore, ) assert isinstance(training_loader, torch.utils.data.DataLoader) assert isinstance(validation_loader, torch.utils.data.DataLoader) # context, action, reward, pscore, description invalid_input_of_nn_policy_learner_fit = [ ( 5, # np.ones(5), np.ones(5), np.ones(5) * 0.5, "context must be 2D array", ), ( np.ones(5), # np.ones(5), np.ones(5), np.ones(5) * 0.5, "context must be 2D array", ), ( np.ones((5, 2)), 5, # np.ones(5), np.ones(5) * 0.5, "action_by_behavior_policy must be 1D array", ), ( np.ones((5, 2)), np.ones((5, 2)), # np.ones(5), np.ones(5) * 0.5, "action_by_behavior_policy must be 1D array", ), ( np.ones((5, 2)), np.ones(5), 5, # np.ones(5) * 0.5, "reward must be 1D array", ), ( np.ones((5, 2)), np.ones(5), np.ones((5, 2)), # np.ones(5) * 0.5, "reward must be 1D array", ), ( np.ones((5, 2)), np.ones(5), np.ones(5), 0.5, # "pscore must be 1D array", ), ( np.ones((5, 2)), np.ones(5), np.ones(5), np.ones((5, 2)) * 0.5, # "pscore must be 1D array", ), ( np.ones((4, 2)), # np.ones(5), np.ones(5), np.ones(5) * 0.5, "Expected `context.shape[0]", ), ( np.ones((5, 2)), np.ones(4), # np.ones(5), np.ones(5) * 0.5, "Expected `context.shape[0]", ), ( np.ones((5, 2)), np.ones(5), np.ones(4), # np.ones(5) * 0.5, "Expected `context.shape[0]", ), ( np.ones((5, 2)), np.ones(5), np.ones(5), np.arange(5) * 0.1, # "pscore must be positive", ), ( np.ones((5, 3)), # np.ones(5), np.ones(5), np.ones(5) * 0.5, "Expected `context.shape[1]", ), ] valid_input_of_nn_policy_learner_fit = [ ( np.ones((5, 2)), np.ones(5), np.ones(5), np.ones(5) * 0.5, "valid input (pscore is given)", ), ( np.ones((5, 2)), np.ones(5), np.ones(5), None, "valid input (pscore is not given)", ), ] @pytest.mark.parametrize( "context, action, reward, pscore, description", invalid_input_of_nn_policy_learner_fit, ) def test_nn_policy_learner_fit_using_invalid_inputs( context, action, reward, pscore, description, ): with pytest.raises(ValueError, match=f"{description}*"): # set parameters dim_context = 2 pg_method = "dpg" learner = ContinuousNNPolicyLearner( dim_context=dim_context, pg_method=pg_method ) learner.fit( context=context, action=action, reward=reward, pscore=pscore, ) @pytest.mark.parametrize( "context, action, reward, pscore, description", valid_input_of_nn_policy_learner_fit, ) def test_nn_policy_learner_fit_using_valid_inputs( context, action, reward, pscore, description, ): # set parameters dim_context = 2 pg_method = "dpg" learner = ContinuousNNPolicyLearner(dim_context=dim_context, pg_method=pg_method) learner.fit( context=context, action=action, reward=reward, pscore=pscore, ) def test_nn_policy_learner_predict(): # synthetic data context = np.ones((5, 2)) action = np.ones(5) reward = np.ones(5) # set parameters dim_context = 2 pg_method = "dpg" output_space = (-10, 10) learner = ContinuousNNPolicyLearner( dim_context=dim_context, pg_method=pg_method, output_space=output_space ) learner.fit( context=context, action=action, reward=reward, ) # shape error with pytest.raises(ValueError, match="context must be 2D array"): learner.predict(context=np.ones(5)) with pytest.raises(ValueError, match="context must be 2D array"): learner.predict(context="np.ones(5)") # inconsistency between dim_context and context with pytest.raises(ValueError, match="Expected `context.shape[1]*"): learner.predict(context=np.ones((5, 3))) # check output shape predicted_actions = learner.predict(context=context) assert predicted_actions.shape[0] == context.shape[0] assert predicted_actions.ndim == 1 assert np.all(output_space[0] <= predicted_actions) or np.all( predicted_actions <= output_space[1] )
458954
from collie.utils import merge_docstrings # START: test class definitions # NOTE: we include classes here since pytest does not accept classes as fixtures class BaseClass: """ This is the short description. This is a longer description. It contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array **kwargs References ---------- arg8: list arg9: int No description above, and that is okay! """ def __init__(self, arg1, arg2, arg3, **kwargs): pass class ChildClass(BaseClass): """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg4: int An important argument! References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ def __init__(self, arg1, arg2, arg3, arg4): pass class ChildClassWithArgs(BaseClass): """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg4: int An important argument! *args: arguments A description for these args here. References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ def __init__(self, arg1, arg2, arg3, arg4, *args): pass class ChildClassWithKwargs(BaseClass): """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg4: int An important argument! **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ def __init__(self, arg1, arg2, arg3, arg4, **kwargs): pass class ChildClassWithArgsAndKwargs(BaseClass): """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ def __init__(self, arg1, arg2, arg3, arg4, *args, **kwargs): pass class ChildClassNoParamaters(BaseClass): """ No ``Parameters`` section at all here! References ---------- arg8 """ def __init__(self): pass class ChildClassParamatersOnly(BaseClass): """ Note that nothing is after the ``Parameters`` section here. Parameters ---------- arg1: str The first argument arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` """ def __init__(self, arg1, arg2, arg3, arg4, *args, **kwargs): pass class ChildClassExtraParamatersNoDoc(BaseClass): """ Note that nothing is after the ``Parameters`` section here. Parameters ---------- arg1: str The first argument arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` """ def __init__(self, arg1, arg2, arg3, arg4, extra, *args, **kwargs): pass class ChildClassWithTwoExtraSections(BaseClass): """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. Notes ----- This is a note. The above ``References`` section used to say ``Returns``, but classes do not return anything and I did not feel inclined to change the description. """ def __init__(self, arg1, arg2, arg3, arg4, *args, **kwargs): pass # START: tests def test_merge_docstrings(): expected = """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ actual = merge_docstrings(BaseClass, ChildClass.__doc__, ChildClass.__init__) print(expected) print(actual) assert actual == expected def test_merge_docstrings_with_args(): expected = """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! *args: arguments A description for these args here. References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ actual = merge_docstrings(BaseClass, ChildClassWithArgs.__doc__, ChildClassWithArgs.__init__) assert actual == expected def test_merge_docstrings_with_kwargs(): expected = """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ actual = merge_docstrings(BaseClass, ChildClassWithKwargs.__doc__, ChildClassWithKwargs.__init__) assert actual == expected def test_merge_docstrings_with_args_and_kwargs(): expected = """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. """ actual = merge_docstrings(BaseClass, ChildClassWithArgsAndKwargs.__doc__, ChildClassWithArgsAndKwargs.__init__) assert actual == expected def test_merge_docstrings_no_paramaters_section(): expected = """ No ``Parameters`` section at all here! References ---------- arg8 """ actual = merge_docstrings(BaseClass, ChildClassNoParamaters.__doc__, ChildClassNoParamaters.__init__) assert actual == expected def test_merge_docstrings_parameters_section_nothing_after(): expected = """ Note that nothing is after the ``Parameters`` section here. Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` """ actual = merge_docstrings(BaseClass, ChildClassParamatersOnly.__doc__, ChildClassParamatersOnly.__init__) assert actual == expected def test_merge_docstrings_extra_parameter_included_with_no_documentation(): expected = """ Note that nothing is after the ``Parameters`` section here. Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` """ actual = merge_docstrings(BaseClass, ChildClassExtraParamatersNoDoc.__doc__, ChildClassExtraParamatersNoDoc.__init__) assert actual == expected def test_merge_docstrings_with_two_extra_sections(): expected = """ This is the short description for the child. This is a longer description for the child. It also contains many lines. With line breaks, like this. You can also have new paragraphs! NOTE: This is an important note! Look, a new line of documentation after the note! Parameters ---------- arg1: str The first argument arg2: int This argument's description is longer. See how it is on a new line: * Even with a bullet list now! arg3: np.array arg4: int An important argument! *args: arguments **kwargs: keyword argument Additional keyword arguments to pass into ``BaseClass`` References ---------- arg8: list arg9: int No description above, and that is okay! arg10: str This one is new. Notes ----- This is a note. The above ``References`` section used to say ``Returns``, but classes do not return anything and I did not feel inclined to change the description. """ actual = merge_docstrings(BaseClass, ChildClassWithTwoExtraSections.__doc__, ChildClassWithTwoExtraSections.__init__) assert actual == expected
459009
from flask import Flask, request from flask_restful import Api, Resource import json import os app = Flask(__name__) api = Api(app) class UserList(Resource): filename = 'users.json' def get_users(self): users = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: users = json.loads(fp.read()) return users def get(self): if not os.path.exists(self.filename): return 'users.json is not exists' r = self.get_users() s = '' for d in r: email = d['email'] password = d['password'] s += '[email: {}, pw: {}]'.format(email, password) return s def post(self): r_json = request.get_json() email = r_json['email'] password = r_json['password'] r = self.get_users() for d in r: if email == d['email']: return '{} is aleady exists'.format(email) _id = 0 for d in r: _id = max(_id, d['id']) _id = _id + 1 r_json['id'] = _id r.append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'email: {}, pw: {}'.format(email, password) def put(self): r_json = request.get_json() _id = r_json['id'] password = r_json['password'] users = self.get_users() found = False for idx, _ in enumerate(users): if users[idx]['id'] == _id: found = True users[idx]['password'] = password if not found: return '{} is not exists'.format(_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(users)) return 'update password successfully' def delete(self): r_json = request.get_json() _id = r_json['id'] users = self.get_users() found = False for idx, _ in enumerate(users): if users[idx]['id'] == _id: found = True del users[idx] if not found: return '{} is not exists'.format(_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(users)) return '{} deleted successfully'.format(_id) class ArticleList(Resource): filename = 'articles.json' def get_articles(self): articles = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: articles = json.loads(fp.read()) return articles def get(self): if not os.path.exists(self.filename): return 'articles.json is not exists' r = self.get_articles() s = '' for d in r: article_id = d['id'] user_id = d['user_id'] title = d['title'] content = d['content'] s += '[id: {}, user_id: {}, title: {}, content: {}]'.format(article_id, user_id, title, content) return s def post(self): r_json = request.get_json() user_id = r_json['user_id'] title = r_json['title'] content = r_json['content'] r = self.get_articles() a_id = 0 for d in r: a_id = max(a_id, d['id']) a_id = a_id + 1 r_json['id'] = a_id r.append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return ' The content of user {} is posted successfully'.format(user_id) def put(self): r_json = request.get_json() article_id = r_json['id'] title = r_json['title'] content = r_json['content'] r = self.get_articles() found = False for idx, _ in enumerate(r): if r[idx]['id'] == article_id: found = True r[idx]['title'] = title r[idx]['content'] = content if not found: return 'article {} does not exist'.format(article_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'update title and content of {} successfully'.format(article_id) def delete(self): r_json = request.get_json() article_id = r_json['id'] r = self.get_articles() found = False for idx, _ in enumerate(r): if r[idx]['id'] == article_id: found = True del r[idx] if not found: return 'article {} does not exist',format(article_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return '{} deleted successfully'.format(article_id) class CommentList(Resource): filename = 'comments.json' def get_comments(self): comments = [] if os.path.exists(self.filename): with open(self.filename, 'r') as fp: comments = json.loads(fp.read()) return comments def get(self): if not os.path.exists(self.filename): return 'comments.json is not exists' r = self.get_comments() s = '' for d in r: comment_id = d['id'] user_id = d['user_id'] article_id = d['a_id'] content = d['content'] s += '[id: {}, user_id: {}, article_id: {}, content: {}]'.format(comment_id, user_id, article_id, content) return s def post(self): r_json = request.get_json() user_id = r_json['user_id'] article_id = r_json['a_id'] content = r_json['content'] r = self.get_comments() c_id = 0 for d in r: c_id = max(c_id, d['id']) c_id = c_id + 1 r_json['id'] = c_id r.append(r_json) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'The comment of user {} is posted successfully on article {}'.format(user_id, article_id) def put(self): r_json = request.get_json() comment_id = r_json['id'] content = r_json['content'] r = self.get_comments() found = False for idx, _ in enumerate(r): if r[idx]['id'] == comment_id: found = True r[idx]['content'] = content if not found: return 'comment {} does not exist'.format(comment_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'comment {} is updated successfully'.format(comment_id) def delete(self): r_json = request.get_json() comment_id = r_json['id'] r = self.get_comments() found = False for idx, _ in enumerate(r): if r[idx]['id'] == comment_id: found = True del r[idx] if not found: return 'comment {} does not exist'.format(comment_id) with open(self.filename, 'w') as fp: fp.write(json.dumps(r)) return 'comment {} is deleted successfully'.format(comment_id) class LikeList(Resource): def get(self): return "" def post(self): return "" def put(self): return "" def delete(self): return "" api.add_resource(UserList, '/api/users') api.add_resource(ArticleList, '/api/articles') api.add_resource(CommentList, '/api/comments') api.add_resource(LikeList, '/api/likes') if __name__ == '__main__': app.run(host='0.0.0.0', port=5002, debug=True)
459017
import demistomock as demisto # noqa: F401 from typing import Dict, Tuple, List from datetime import timezone from CommonServerPython import * """Cyberpion Integration for Cortex XSOAR (aka Demisto) """ ''' IMPORTS ''' # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' CONSTANTS ''' DATE_FORMAT = '%Y-%m-%d %H:%M:%S.%f %Z' DEFAULT_MAX_INCIDENTS_TO_FETCH = 200 CONNECTION_TIMEOUT = 30.0 READ_TIMEOUT = 30.0 VALID_STATUS_CODES = (200,) NUM_OF_RETRIES = 3 BACKOFF_FACTOR = 1.0 # see documentation in CommonServerPython._http_request ACTION_ITEM_TYPE_NAME = 'cyberpion_action_item' ''' CLIENT CLASS ''' class Client(BaseClient): """Client class to interact with the service API This Client implements API calls, and does not contain any Demisto logic. Should only do requests and return data. It inherits from BaseClient defined in CommonServer Python. Most calls use _http_request() that handles proxy, SSL verification, etc. For this implementation, no special attributes defined """ def get_domain_state(self, domain: str): params = { 'verbosity': 'details', 'domain': domain } demisto.debug(f'getting domain state for domain- {domain}') http_response = self._http_request( method='GET', url_suffix='/domainstate/', params=params, resp_type='json', ok_codes=VALID_STATUS_CODES, timeout=(CONNECTION_TIMEOUT, READ_TIMEOUT), retries=NUM_OF_RETRIES, backoff_factor=BACKOFF_FACTOR, raise_on_status=True ) if 'results' not in http_response: raise Exception(f'bad response from server!. response: {json.dumps(http_response, indent=2)}') http_response = http_response['results'] if len(http_response) == 0: demisto.error(f'no response from server for domain: {domain}') return {} http_response = http_response[0] demisto.debug(f'after getting domain state for domain- {domain}') reverse_ips = http_response.get('ips') if reverse_ips is None: raise Exception(f'in server\'s response: ips is none. response: {json.dumps(http_response, indent=2)}') if type(reverse_ips) is dict: formatted_reverse_ips = '\n'.join( [f'{k}: {v}' for k, v in reverse_ips.items()]) else: formatted_reverse_ips = reverse_ips http_response['ips'] = formatted_reverse_ips domain_types = http_response.get('domain_types') if domain_types is None: raise Exception( f'in server\'s response: domain_types is none. response: {json.dumps(http_response, indent=2)}') domain_info = '' for idx, domain_type in enumerate(domain_types, 1): domain_info += f'{idx}.\n' domain_info += '\n'.join( [f'{k}: {v}' for k, v in domain_type.items()]) http_response['domain_types'] = domain_info return http_response def get_action_items(self, min_severity: int, alert_types: list = None, show_only_active=True, max_fetch: int = None, last_fetched_creation_time: str = None, domain: str = None ) -> List[dict]: params = { 'verbosity': 'details', 'urgency__gte': min_severity, 'ordering': 'creation_time', 'is_open': 'true' if show_only_active else 'false' } if alert_types: params['category'] = ','.join(alert_types) if max_fetch: params['page_size'] = max_fetch if last_fetched_creation_time: params['creation_time__gt'] = last_fetched_creation_time if domain: params['domain'] = domain http_responses = [] # call API params['page'] = str(1) demisto.debug(f'getting action items, domain={domain}') http_response = self._http_request( method='GET', url_suffix='/actionitems/', params=params, resp_type='json', ok_codes=VALID_STATUS_CODES, timeout=(CONNECTION_TIMEOUT, READ_TIMEOUT), retries=NUM_OF_RETRIES, backoff_factor=BACKOFF_FACTOR, raise_on_status=True ) demisto.debug(f'after getting action items, domain={domain}') if 'results' not in http_response: raise Exception('failed to read action items.\nError: got response without \'results\' key') results = http_response['results'] for idx, action_item in enumerate(results): technical_det = action_item.get('technical_details', {}) if technical_det is None: raise Exception(f'technical details is none. {json.dumps(action_item, indent=2)}') if type(technical_det) is dict: formatted_technical_details = '\n'.join( [f'{k}: {v}' for k, v in technical_det.items()]) else: formatted_technical_details = technical_det results[idx]['technical_details'] = formatted_technical_details results[idx]['alert_type'] = ACTION_ITEM_TYPE_NAME http_responses.append(results) demisto.debug(f'finished getting action items, number of pages: {len(http_responses)}, domain={domain}') final_results = [] for response in http_responses: final_results += response return final_results def get_domain_action_items(self, domain: str, min_severity: int, alert_types: list = None, show_only_active=True ) -> Dict[str, Any]: # call API return { "Domain": domain, "Vulnerabilities": self.get_action_items(domain=domain, min_severity=min_severity, alert_types=alert_types, show_only_active=show_only_active, max_fetch=None) } ''' HELPER FUNCTIONS ''' def convert_to_demisto_severity(severity: float) -> int: """Maps Cyberpion severity to Cortex XSOAR severity Converts the Cyberpion alert severity level (1 to 10, float) to Cortex XSOAR incident severity (1 to 4) for mapping. :type severity: ``float`` :param severity: severity as returned from the Cyberpion API (float) :return: Cortex XSOAR Severity (1 to 4) :rtype: ``int`` """ # In this case the mapping is straightforward, but more complex mappings # might be required in your integration, so a dedicated function is # recommended. This mapping should also be documented. if 0 <= severity <= 2.5: return 1 elif 2.6 <= severity <= 5: return 2 elif 5.1 <= severity <= 7.5: return 3 elif 7.6 <= severity <= 10: return 4 raise Exception('value of severity is not between 0-10. invalid value of severity: {}'.format(severity)) ''' COMMAND FUNCTIONS ''' def test_module(client: Client) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type client: ``Client`` :param Client: client to use :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ try: client.get_domain_action_items(domain='company1.com', min_severity=2) client.get_action_items(max_fetch=2, min_severity=1, alert_types=['PKI']) client.get_domain_state('company1.com') except DemistoException as e: if 'Forbidden' in str(e): return 'Authorization Error: make sure API Key is correctly set' else: raise e return 'ok' def fetch_incidents(client: Client, max_fetch: int, min_severity: int, alert_types: list, show_only_active: bool, first_fetch: str = None ) -> Tuple[Dict[str, str], List[dict]]: """This function retrieves new alerts every interval (default is 1 minute). :type client: ``Client`` :param Client: Cyberpion integration client to use :type max_fetch: ``int`` :param max_fetch: Maximum numbers of incidents per fetch :type min_severity: `int` :param min_severity: minimum severity of the alert to search for. Options are 1 to 10 :type alert_types: ``List[str]`` :param alert_type: type of alerts to search for. There is no list of predefined types :type first_fetch: `str` :param first_fetch: first date to fetch from. if null, all incidents will be fetched :return: A tuple containing two elements: next_run (``Dict[str, str]``): Contains the timestamp that will be used in ``last_run`` on the next fetch. incidents (``List[dict]``): List of incidents that will be created in XSOAR :rtype: ``Tuple[Dict[str, int], List[dict]]`` """ last_run_dict = demisto.getLastRun() if 'last_fetch' in last_run_dict: last_fetch = last_run_dict['last_fetch'] demisto.debug('last fetch: {}'.format(str(last_fetch))) else: demisto.debug('no previous data... this means this is the first time we are fetching incidents') last_fetch = first_fetch demisto.debug("Cyberpion fetch incidents last run time\\first fetch: {}".format( str(last_fetch) if last_fetch else 'fetching all incidents, without time filter')) action_items = client.get_action_items( max_fetch=max_fetch, min_severity=min_severity, alert_types=alert_types, show_only_active=show_only_active, last_fetched_creation_time=last_fetch ) incidents = [] for action_item in action_items: creation_date = action_item['creation_time'] # must be string of a DATE_FORMAT iso_format_data = datetime.strptime(creation_date, DATE_FORMAT).replace( tzinfo=timezone.utc).isoformat() incident = { 'name': '{} - {}'.format(action_item['title'], action_item['domain']), # name is required field, must be set 'occurred': iso_format_data, 'rawJSON': json.dumps(action_item), 'severity': convert_to_demisto_severity(action_item['urgency']), } # put in last_incident_date the last action_items creation date. assuming it's ordered by creation date # last_incident_date = creation_date incidents.append(incident) # last incident's time added to new_last_run_dict, so we can next time ask for incidents with creation_time__gt this time if len(action_items) > 0: last_incident_date = action_items[-1]['creation_time'] else: # if no action items from last_incident_date to now, keep asking next time for (new incidents) from # last_incident_date and on last_incident_date = last_fetch new_last_run_dict = {'last_fetch': last_incident_date} return new_last_run_dict, incidents def get_domain_state_command(client: Client, args: Dict[str, Any]) -> CommandResults: domain = args.get('domain') if not domain: raise ValueError('no domain specified') demisto.debug(f'getting domain state {domain}') domain_state = client.get_domain_state(domain) demisto.debug(f'creating domain state table for domain {domain}') markdown = '### Cyberpion\n' markdown += tableToMarkdown('Domain State', domain_state, headers=[ "id", "domain", "ips", "risk_rank", "vuln_count", "cname_chain", "domain_types", "discovery_date", ]) demisto.debug(f'finished creating domain state table for domain {domain}') return CommandResults( readable_output=markdown, outputs_prefix='Cyberpion', outputs_key_field='id', outputs={"DomainState": domain_state} ) def get_domain_action_items_command(client: Client, args: Dict[str, Any], min_severity: int, alert_types: list = None, show_only_active: bool = True) -> CommandResults: domain = args.get('domain') if not domain: raise ValueError('no domain specified') demisto.debug(f'getting action items for domain {domain}') domain_data = client.get_domain_action_items(domain=domain, min_severity=min_severity, show_only_active=show_only_active, alert_types=alert_types, ) demisto.debug(f'creating action items table data for domain {domain}') markdown = '### Cyberpion\n' markdown += tableToMarkdown('Action Items', domain_data['Vulnerabilities'], headers=[ "domain", "category", "urgency", "is_open", "creation_time", "link", "title", "impact", "summary", "solution", "description", "technical_details" ]) demisto.debug(f'finished creating table data for domain {domain}. returning command result') return CommandResults( readable_output=markdown, outputs_prefix='Cyberpion.DomainData', outputs_key_field='id', outputs=domain_data ) ''' MAIN FUNCTION ''' def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ # get the service API url base_url = demisto.params()['url'] api_key = demisto.params()['apikey'] min_severity = demisto.params()['minSeverity'] # mandatory alert_types = demisto.params()['categories'] # mandatory show_only_active = demisto.params()['ShowOnlyOpen'] # mandatory verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: headers = { 'Authorization': 'Token {}'.format(api_key) } client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy) if demisto.command() == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif demisto.command() == 'cyberpion-get-domain-state': return_results(get_domain_state_command(client, demisto.args())) elif demisto.command() == 'cyberpion-get-domain-action-items': return_results(get_domain_action_items_command(client, demisto.args(), min_severity=min_severity, alert_types=alert_types, show_only_active=show_only_active)) elif demisto.command() == 'fetch-incidents': # Set and define the fetch incidents command to run after activated via integration settings. max_fetch = demisto.params().get('maxFetch') first_fetch: str = demisto.params().get('first_fetch') if first_fetch: months_back = datetime.now() - timedelta(days=30 * int(first_fetch)) first_fetch = datetime.strftime(months_back, DATE_FORMAT) if not max_fetch: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH try: max_fetch = int(max_fetch) if max_fetch > 500 or max_fetch < 1: raise ValueError() except ValueError: raise ValueError('max_fetch must be an integer between 1 to 500') if max_fetch > DEFAULT_MAX_INCIDENTS_TO_FETCH: max_fetch = DEFAULT_MAX_INCIDENTS_TO_FETCH new_last_run_dict, incidents = fetch_incidents( client=client, max_fetch=max_fetch, min_severity=min_severity, show_only_active=show_only_active, alert_types=alert_types, first_fetch=first_fetch ) # create incidents demisto.incidents(incidents) # saves next_run for the time fetch-incidents is invoked demisto.setLastRun(new_last_run_dict) else: raise NotImplementedError(f'no such command: {demisto.command()}') # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Cyberpion integration: Failed to execute {demisto.command()} command.\nError:\n{str(e)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): main()
459019
from pytest import mark from graphene.types import ID, Field, ObjectType, Schema from graphene.types.scalars import String from graphene.relay.mutation import ClientIDMutation class SharedFields(object): shared = String() class MyNode(ObjectType): # class Meta: # interfaces = (Node, ) id = ID() name = String() class SaySomethingAsync(ClientIDMutation): class Input: what = String() phrase = String() @staticmethod async def mutate_and_get_payload(self, info, what, client_mutation_id=None): return SaySomethingAsync(phrase=str(what)) # MyEdge = MyNode.Connection.Edge class MyEdge(ObjectType): node = Field(MyNode) cursor = String() class OtherMutation(ClientIDMutation): class Input(SharedFields): additional_field = String() name = String() my_node_edge = Field(MyEdge) @staticmethod def mutate_and_get_payload( self, info, shared="", additional_field="", client_mutation_id=None ): edge_type = MyEdge return OtherMutation( name=shared + additional_field, my_node_edge=edge_type(cursor="1", node=MyNode(name="name")), ) class RootQuery(ObjectType): something = String() class Mutation(ObjectType): say_promise = SaySomethingAsync.Field() other = OtherMutation.Field() schema = Schema(query=RootQuery, mutation=Mutation) @mark.asyncio async def test_node_query_promise(): executed = await schema.execute_async( 'mutation a { sayPromise(input: {what:"hello", clientMutationId:"1"}) { phrase } }' ) assert not executed.errors assert executed.data == {"sayPromise": {"phrase": "hello"}} @mark.asyncio async def test_edge_query(): executed = await schema.execute_async( 'mutation a { other(input: {clientMutationId:"1"}) { clientMutationId, myNodeEdge { cursor node { name }} } }' ) assert not executed.errors assert dict(executed.data) == { "other": { "clientMutationId": "1", "myNodeEdge": {"cursor": "1", "node": {"name": "name"}}, } }
459037
from __future__ import absolute_import, unicode_literals from django.contrib.gis.db import models from django.utils.functional import cached_property from django.utils.translation import ugettext as _ from wagtail.core import blocks from wagtail.core.models import Orderable, Page from wagtail.admin.edit_handlers import ( FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, TabbedInterface, ) from wagtail.core.fields import StreamField from wagtail.admin.edit_handlers import StreamFieldPanel from modelcluster.fields import ParentalKey from wagtailgeowidget.blocks import GeoBlock, GeoAddressBlock from wagtailgeowidget.edit_handlers import GeoPanel class GeoLocation(models.Model): title = models.CharField(max_length=255) address = models.CharField(max_length=250, blank=True, null=True) location = models.PointField(srid=4326, null=True, blank=True) panels = [ FieldPanel('title'), MultiFieldPanel([ FieldPanel('address'), GeoPanel('location', address_field='address') ], _('Geo details')), ] class GeoPageRelatedLocations(Orderable, GeoLocation): page = ParentalKey( 'geopage.GeoPage', related_name='related_locations', on_delete=models.CASCADE ) class GeoPage(Page): address = models.CharField(max_length=250, blank=True, null=True) location = models.PointField(srid=4326, null=True, blank=True) content_panels = Page.content_panels + [ InlinePanel('related_locations', label="Related locations"), ] location_panels = [ MultiFieldPanel([ FieldPanel('address'), GeoPanel('location', address_field='address'), ], heading='Location') ] edit_handler = TabbedInterface([ ObjectList(content_panels, heading='Content'), ObjectList(location_panels, heading='Location'), ObjectList(Page.settings_panels, heading='Settings', classname="settings"), ]) class GeoStreamPage(Page): body = StreamField([ ('map', GeoBlock()), ('map_struct', blocks.StructBlock([ ('address', GeoAddressBlock(required=True)), ('map', GeoBlock(address_field='address')), ], icon='user')) ]) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ] def get_context(self, request): data = super(GeoStreamPage, self).get_context(request) return data class ClassicGeoPage(Page): address = models.CharField(max_length=250, blank=True, null=True) location = models.CharField(max_length=250, blank=True, null=True) content_panels = Page.content_panels + [ MultiFieldPanel([ FieldPanel('address'), GeoPanel('location', address_field='address', hide_latlng=True), ], _('Geo details')), ] def get_context(self, request): data = super(ClassicGeoPage, self).get_context(request) return data @cached_property def point(self): from wagtailgeowidget.helpers import geosgeometry_str_to_struct return geosgeometry_str_to_struct(self.location) @property def lat(self): return self.point['y'] @property def lng(self): return self.point['x']
459044
import collections import contextlib import wave AudioFormat = collections.namedtuple('AudioFormat', 'rate channels width') DEFAULT_RATE = 16000 DEFAULT_CHANNELS = 1 DEFAULT_WIDTH = 2 DEFAULT_FORMAT = AudioFormat(DEFAULT_RATE, DEFAULT_CHANNELS, DEFAULT_WIDTH) class AudioFile: def __init__(self, audio_path, as_path=False, audio_format=DEFAULT_FORMAT): self.audio_path = audio_path self.audio_format = audio_format self.as_path = as_path self.open_file = None self.tmp_file_path = None def __enter__(self): if self.audio_path.endswith('.wav'): self.open_file = wave.open(self.audio_path, 'r') if read_audio_format_from_wav_file(self.open_file) == self.audio_format: if self.as_path: self.open_file.close() return self.audio_path return self.open_file self.open_file.close() def __exit__(self, *args): if not self.as_path: self.open_file.close() if self.tmp_file_path is not None: os.remove(self.tmp_file_path) def read_audio_format_from_wav_file(wav_file): return AudioFormat(wav_file.getframerate(), wav_file.getnchannels(), wav_file.getsampwidth()) def get_num_samples(pcm_buffer_size, audio_format=DEFAULT_FORMAT): return pcm_buffer_size // (audio_format.channels * audio_format.width) def get_pcm_duration(pcm_buffer_size, audio_format=DEFAULT_FORMAT): """Calculates duration in seconds of a binary PCM buffer (typically read from a WAV file)""" return get_num_samples(pcm_buffer_size, audio_format) / audio_format.rate def read_frames(wav_file, frame_duration_ms=30, yield_remainder=False): audio_format = read_audio_format_from_wav_file(wav_file) frame_size = int(audio_format.rate * (frame_duration_ms / 1000.0)) while True: try: data = wav_file.readframes(frame_size) if not yield_remainder and get_pcm_duration(len(data), audio_format) * 1000 < frame_duration_ms: break yield data except EOFError: break def read_frames_from_file(audio_path, audio_format=DEFAULT_FORMAT, frame_duration_ms=30, yield_remainder=False): with AudioFile(audio_path, audio_format=audio_format) as wav_file: for frame in read_frames(wav_file, frame_duration_ms=frame_duration_ms, yield_remainder=yield_remainder): yield frame def split(audio_frames, audio_format=DEFAULT_FORMAT, num_padding_frames=10, threshold=0.5, aggressiveness=3): from webrtcvad import Vad # pylint: disable=import-outside-toplevel if audio_format.channels != 1: raise ValueError('VAD-splitting requires mono samples') if audio_format.width != 2: raise ValueError('VAD-splitting requires 16 bit samples') if audio_format.rate not in [8000, 16000, 32000, 48000]: raise ValueError( 'VAD-splitting only supported for sample rates 8000, 16000, 32000, or 48000') if aggressiveness not in [0, 1, 2, 3]: raise ValueError( 'VAD-splitting aggressiveness mode has to be one of 0, 1, 2, or 3') ring_buffer = collections.deque(maxlen=num_padding_frames) triggered = False vad = Vad(int(aggressiveness)) voiced_frames = [] frame_duration_ms = 0 frame_index = 0 for frame_index, frame in enumerate(audio_frames): frame_duration_ms = get_pcm_duration(len(frame), audio_format) * 1000 if int(frame_duration_ms) not in [10, 20, 30]: raise ValueError( 'VAD-splitting only supported for frame durations 10, 20, or 30 ms') is_speech = vad.is_speech(frame, audio_format.rate) if not triggered: ring_buffer.append((frame, is_speech)) num_voiced = len([f for f, speech in ring_buffer if speech]) if num_voiced > threshold * ring_buffer.maxlen: triggered = True for f, s in ring_buffer: voiced_frames.append(f) ring_buffer.clear() else: voiced_frames.append(frame) ring_buffer.append((frame, is_speech)) num_unvoiced = len([f for f, speech in ring_buffer if not speech]) if num_unvoiced > threshold * ring_buffer.maxlen: triggered = False yield b''.join(voiced_frames), \ frame_duration_ms * max(0, frame_index - len(voiced_frames)), \ frame_duration_ms * frame_index ring_buffer.clear() voiced_frames = [] if len(voiced_frames) > 0: yield b''.join(voiced_frames), \ frame_duration_ms * (frame_index - len(voiced_frames)), \ frame_duration_ms * (frame_index + 1)
459047
import os import sys import ast import pytest import warnings warnings.filterwarnings("ignore") from python_minifier import minify, unparse def gather_files(): print('Interpreter version: ', sys.version_info) print('sys.path: ', sys.path) for sys_path in sys.path: for subdir, dirs, files in os.walk(sys_path): for file in filter(lambda f: f.endswith('.py'), [os.path.join(subdir, file) for file in files]): yield file @pytest.mark.parametrize('path', gather_files()) def test_file(path): try: with open(path, 'rb') as f: source = f.read() except IOError: pytest.skip('IOError opening file') try: original_ast = ast.parse(source, path) except SyntaxError: pytest.skip('Invalid syntax in file') # Test unparsing unparse(original_ast) # Test transforms minify(source, filename=path)
459049
import json import os import streamlit as st import plotly as py import plotly.figure_factory as ff from random import sample from msmarco import load_msmarco_queries, load_msmarco_qrels, extract_querie_relevance from embedding import create_document_embedding from pandas import DataFrame import tensorflow_hub as hub from sentence_transformers import SentenceTransformer from experiments import evaluate, create_vespa_body_request, vespa_search os.environ["TFHUB_CACHE_DIR"] = "data/models" QUERIES_FILE_PATH = "data/msmarco/train_test_set/msmarco-doctest-queries.tsv.gz" RELEVANCE_FILE_PATH = "data/msmarco/train_test_set/msmarco-doctest-qrels.tsv.gz" RANK_PROFILE_OPTIONS = ( "BM25", "Native Rank", "embedding(title) + embedding(body)", "BM25 + embedding(title) + embedding(body)", ) # todo: think how I am going to encode and present Scaled ranking functions # "Scaled (AND) BM25 + title and body gse": "listwise_linear_bm25_gse_title_body_and", # "Scaled (OR) BM25 + title and body gse": "listwise_linear_bm25_gse_title_body_or", RANK_PROFILE_MAP = { "BM25": "bm25", "Native Rank": "default", "embedding(title) + embedding(body)": { "word2vec": "word2vec_title_body_all", "gse": "gse_title_body_all", "bert": "bert_title_body_all", }, "BM25 + embedding(title) + embedding(body)": { "word2vec": "bm25_word2vec_title_body_all", "gse": "bm25_gse_title_body_all", "bert": "bm25_bert_title_body_all", }, } # todo: I think I dont need RANK_PROFILE_EMBEDDING # RANK_PROFILE_EMBEDDING = { # "bm25": None, # "default": None, # "word2vec_title_body_all": "word2vec", # "bm25_word2vec_title_body_all": "word2vec", # "gse_title_body_all": "gse", # "bm25_gse_title_body_all": "gse", # "listwise_linear_bm25_gse_title_body_and": "gse", # "listwise_linear_bm25_gse_title_body_or": "gse", # "bert_title_body_all": "bert", # "bm25_bert_title_body_all": "bert", # } GRAMMAR_OPTIONS = ["None", "AND", "OR", "weakAND"] GRAMMAR_OPERATOR_MAP = {"AND": False, "OR": True} EMBEDDING_OPTIONS = ["word2vec", "gse", "bert"] ANN_OPTIONS = ["None", "title", "body", "title_body"] LIMIT_HITS_GRAPH = 10 def get_rank_profile(rank_profile, embedding): if "embedding" in rank_profile: return RANK_PROFILE_MAP[rank_profile][embedding] else: return RANK_PROFILE_MAP[rank_profile] @st.cache(ignore_hash=True) def retrieve_model(model_type): if model_type == "word2vec": return { "model": hub.load( "https://tfhub.dev/google/Wiki-words-500-with-normalization/2" ), "model_source": "tf_hub", } elif model_type == "gse": return { "model": hub.load("https://tfhub.dev/google/universal-sentence-encoder/4"), "model_source": "tf_hub", } elif model_type == "bert": return { "model": SentenceTransformer("distilbert-base-nli-stsb-mean-tokens"), "model_source": "bert", } def create_experiment_file_name(rank_profile, grammar_operator, ann, embedding, hits): file_name = "grammar_{}_ann_{}_rank_{}_embedding_{}_hits_{}".format( grammar_operator, ann, get_rank_profile(rank_profile, embedding), embedding, hits, ) return file_name def compute_all_options( vespa_url, vespa_port, output_dir, rank_profiles, grammar_operators, ann_operators, embeddings, hits, ): query_relevance = sample_query_relevance_data(number_queries=None) for rank_profile in rank_profiles: for grammar_operator in grammar_operators: grammar_operator = None if grammar_operator is "None" else grammar_operator for ann in ann_operators: ann = None if ann is "None" else ann for embedding in embeddings: file_name = create_experiment_file_name( rank_profile, grammar_operator, ann, embedding, hits ) file_path = os.path.join(output_dir, file_name) if not os.path.exists(file_path): model1 = retrieve_model(embedding) try: records, aggregate_metrics, position_freq = evaluate( query_relevance=query_relevance, parsed_rank_profile=get_rank_profile( rank_profile, embedding ), grammar_operator=grammar_operator, ann_operator=ann, embedding_type=embedding, vespa_url=vespa_url, vespa_port=vespa_port, hits=int(hits), model=model1, ) except ValueError as e: print(str(e)) continue with open(file_path, "w") as f: f.write( json.dumps( { "aggregate_metrics": aggregate_metrics, "position_freq": position_freq, } ) ) def load_all_options( output_dir, rank_profiles, grammar_operators, ann_operators, embeddings, hits ): results = [] for rank_profile in rank_profiles: for grammar_operator in grammar_operators: for ann in ann_operators: for embedding in embeddings: file_name = create_experiment_file_name( rank_profile, grammar_operator, ann, embedding, hits ) file_path = os.path.join(output_dir, file_name) try: result = json.load(open(file_path, "r")) except FileNotFoundError: continue result.update( { "rank_profile": rank_profile, "grammar_operator": grammar_operator, "ann_operator": ann, "embedding_type": embedding, } ) results.append(result) return results def main(): vespa_url = st.sidebar.text_input("Vespa url", "http://localhost") vespa_port = st.sidebar.text_input("Vespa port", 8080) page = st.sidebar.selectbox( "Choose a page", ["Simple query", "Ranking function comparison", "Results summary", "Report"], ) if page == "Simple query": page_simple_query_page(vespa_url=vespa_url, vespa_port=vespa_port) # elif page == "Ranking function comparison": # page_ranking_function_comparison(vespa_url=vespa_url, vespa_port=vespa_port) elif page == "Results summary": page_results_summary(vespa_url=vespa_url, vespa_port=vespa_port) def page_results_summary(vespa_url, vespa_port): grammar_operators = st.multiselect("Choose grammar operators", GRAMMAR_OPTIONS) ann_operators = st.multiselect("ANN operator", ANN_OPTIONS) rank_profiles = st.multiselect("Choose rank profiles", RANK_PROFILE_OPTIONS) embeddings = st.multiselect("Embedding type", EMBEDDING_OPTIONS) output_dir = "data/msmarco/experiments" if st.button("Evaluate"): hits = 100 compute_all_options( vespa_url, vespa_port, output_dir, rank_profiles, grammar_operators, ann_operators, embeddings, hits, ) results = load_all_options( output_dir, rank_profiles, grammar_operators, ann_operators, embeddings, hits, ) position_freqs = [] ranking_names = [] results_summary = [] for result in results: position_freqs.append(result["position_freq"]) ranking_names.append(result["aggregate_metrics"]["rank_name"]) results_summary.append( { "rank_name": result["aggregate_metrics"]["rank_name"], "rank_profile": result["rank_profile"], "grammar_operator": result["grammar_operator"], "ann_operator": result["ann_operator"], "embedding_type": result["embedding_type"], "number_queries": result["aggregate_metrics"]["number_queries"], "qps": result["aggregate_metrics"]["qps"], "mrr": result["aggregate_metrics"]["mrr"], "recall": result["aggregate_metrics"]["recall"], "average_matched": result["aggregate_metrics"]["average_matched"], } ) display_results(position_freqs, ranking_names, results_summary, hits) def display_results( position_freqs, ranking_names, results_summary, hits, display_graph=True ): if display_graph: hits = min(hits, LIMIT_HITS_GRAPH) z = [list(x) for x in zip(*position_freqs)] z_text = z x = ranking_names y = [str(x + 1) for x in range(int(hits))] fig = ff.create_annotated_heatmap( z, x=x, y=y, annotation_text=z_text, colorscale=py.colors.diverging.RdYlGn ) fig.update_layout( xaxis_title_text="Rank profile", # xaxis label yaxis_title_text="Position", # yaxis label ) fig.update_yaxes(autorange="reversed") st.plotly_chart(fig) st.write( DataFrame.from_records(results_summary).sort_values(by="mrr", ascending=False) ) # def page_ranking_function_comparison(vespa_url, vespa_port): # rank_profile_1 = st.sidebar.selectbox( # "Ranking 1: rank profile", RANK_PROFILE_OPTIONS # ) # grammar_operator_1 = st.sidebar.selectbox("Ranking 1: Grammar", ("AND", "OR")) # ann_operator_1 = None # if RANK_PROFILE_EMBEDDING[RANK_PROFILE_MAP[rank_profile_1]] in EMBEDDING_OPTIONS: # ann_operator_1 = st.sidebar.selectbox( # "Ranking 1: ANN operator", (None, "title", "body", "title_body") # ) # rank_profile_2 = st.sidebar.selectbox( # "Ranking 2: rank profile", RANK_PROFILE_OPTIONS # ) # grammar_operator_2 = st.sidebar.selectbox("Ranking 2: Grammar", ("AND", "OR")) # ann_operator_2 = None # if RANK_PROFILE_EMBEDDING[RANK_PROFILE_MAP[rank_profile_2]] in EMBEDDING_OPTIONS: # ann_operator_2 = st.sidebar.selectbox( # "Ranking 2: ANN operator", (None, "title", "body", "title_body") # ) # number_queries = int(st.text_input("Number of queries to send", "20")) # # hits = int(st.text_input("Number of hits to evaluate per query", "10")) # # if st.button("Evaluate"): # query_relevance = sample_query_relevance_data(number_queries=number_queries) # # model1 = retrieve_model( # RANK_PROFILE_EMBEDDING[RANK_PROFILE_MAP[rank_profile_1]] # ) # records_1, aggregate_metrics_1, position_freq_1 = evaluate( # query_relevance=query_relevance, # parsed_rank_profile=RANK_PROFILE_MAP[rank_profile_1], # grammar_operator=GRAMMAR_OPERATOR_MAP[grammar_operator_1], # vespa_url=vespa_url, # vespa_port=vespa_port, # hits=int(hits), # model=model1, # ann=ann_operator_1, # ) # # model2 = retrieve_model( # RANK_PROFILE_EMBEDDING[RANK_PROFILE_MAP[rank_profile_2]] # ) # records_2, aggregate_metrics_2, position_freq_2 = evaluate( # query_relevance=query_relevance, # parsed_rank_profile=RANK_PROFILE_MAP[rank_profile_2], # grammar_operator=GRAMMAR_OPERATOR_MAP[grammar_operator_2], # vespa_url=vespa_url, # vespa_port=vespa_port, # hits=int(hits), # model=model2, # ann=ann_operator_2, # ) # position_freqs = [position_freq_1, position_freq_2] # ranking_names = [ # aggregate_metrics_1["rank_name"], # aggregate_metrics_2["rank_name"], # ] # results_summary = [aggregate_metrics_1, aggregate_metrics_2] # # display_results(position_freqs, ranking_names, results_summary, hits) def page_simple_query_page(vespa_url, vespa_port): predefined_queries = st.checkbox("Use pre-defined queries") if predefined_queries: query_relevance = sample_query_relevance_data(number_queries=5) query_relevance = { query: relevant_id for _, (query, relevant_id) in query_relevance.items() } query = st.selectbox("Choose a query", list(query_relevance.keys())) else: query = st.text_input("Query", "") st.markdown("---") grammar_operator = st.selectbox("Choose grammar operators", GRAMMAR_OPTIONS) grammar_operator = None if grammar_operator is "None" else grammar_operator if grammar_operator is None: available_ann_options = [x for x in ANN_OPTIONS if x is not "None"] else: available_ann_options = ANN_OPTIONS ann_operator = st.selectbox("ANN operator", available_ann_options) ann_operator = None if ann_operator is "None" else ann_operator rank_profile = st.selectbox("Choose rank profiles", RANK_PROFILE_OPTIONS) if "embedding" in rank_profile or ann_operator is not None: embedding = st.selectbox("Embedding type", EMBEDDING_OPTIONS) else: embedding = None embedding_vector = None if embedding in EMBEDDING_OPTIONS: model = retrieve_model(embedding) embedding_vector = create_document_embedding( text=query, model=model["model"], model_source=model["model_source"], normalize=True, ) st.markdown("---") if query != "": print_request_body = st.checkbox("Print request body?") debug = st.checkbox("Debug?") output_format = st.radio( "Select output format", ("parsed vespa results", "raw vespa results") ) tracelevel = None trace = st.checkbox("Specify tracelevel?") if trace: tracelevel = st.selectbox("Tracelevel", [3, 9], 0) request_body = create_vespa_body_request( query=query, parsed_rank_profile=get_rank_profile( rank_profile=rank_profile, embedding=embedding ), grammar_operator=grammar_operator, ann_operator=ann_operator, embedding_type=embedding, hits=10, embedding_vector=embedding_vector, tracelevel=tracelevel, ) search_results = vespa_search( vespa_url=vespa_url, vespa_port=vespa_port, body=request_body ) # # Debug # if debug: if "children" in search_results["root"]: debug_data = [] for hit in search_results["root"]["children"]: debug_data.append( { "complete_id": hit["id"], "id": hit["fields"]["id"], "title_dot_product": hit["fields"]["rankfeatures"].get( "rankingExpression(dot_product_title)" ), "body_dot_product": hit["fields"]["rankfeatures"].get( "rankingExpression(dot_product_body)" ), } ) st.write(DataFrame.from_records(debug_data)) st.markdown("---") if print_request_body: st.write(request_body) if output_format == "raw vespa results": st.markdown("## Showing raw results") st.write(search_results) elif output_format == "parsed vespa results": st.markdown("## Showing parsed results") st.markdown("### Click to see more") results_title = {} if "children" in search_results["root"]: for hit in search_results["root"]["children"]: if ( predefined_queries and hit["fields"]["id"] == query_relevance[query] ): results_title["*** " + hit["fields"]["title"] + " ***"] = { "url": hit["fields"]["url"], "body": hit["fields"]["body"], "relevance": hit["relevance"], "id": hit["id"], } else: results_title[hit["fields"]["title"]] = { "url": hit["fields"]["url"], "body": hit["fields"]["body"], "relevance": hit["relevance"], "id": hit["id"], } for title in results_title: if st.checkbox(title): st.markdown( "* relevance: {}".format(results_title[title]["relevance"]) ) st.markdown("* docid: {}".format(results_title[title]["id"])) st.markdown("* url: {}".format(results_title[title]["url"])) st.markdown("* text:") st.write(results_title[title]["body"]) else: st.markdown("## No hits available") @st.cache() def sample_query_relevance_data(number_queries): queries = load_msmarco_queries(queries_file_path=QUERIES_FILE_PATH) qrels = load_msmarco_qrels(relevance_file_path=RELEVANCE_FILE_PATH) if number_queries is not None: qrels = {k: qrels[k] for k in sample(list(qrels), number_queries)} query_relevance = extract_querie_relevance(qrels, queries) return query_relevance if __name__ == "__main__": main()
459066
import datetime import json import lzma import os import os.path import platform import sys # for DataVisitor import ast, inspect from collections import OrderedDict from importlib import util from lxml import etree from pycsp3.dashboard import options from pycsp3.problems.data import parsing from pycsp3.tools.aggregator import build_similar_constraints from pycsp3.tools.compactor import build_compact_forms from pycsp3.tools.curser import OpOverrider, convert_to_namedtuples, is_namedtuple from pycsp3.tools.slider import handle_slides from pycsp3.tools.utilities import Stopwatch, GREEN, WHITE, Error from pycsp3.tools.xcsp import build_document None_Values = ['None', '', 'null'] # adding 'none'? class Compilation: string_model = None string_data = None model = None data = None solve = None stopwatch = None stopwatch2 = None done = False user_filename = None @staticmethod def load(console=False): _load(console=console) @staticmethod def set_filename(_user_filename): Compilation.user_filename = _user_filename @staticmethod def compile(disabling_opoverrider=True): return _compile(disabling_opoverrider) def _load_options(): options.set_values("data", "dataparser", "dataexport", "dataformat", "variant", "checker", "solver", "output") options.set_flags("dataexport", "compress", "ev", "display", "time", "noComments", "recognizeSlides", "keepSmartConditions", "restrictTablesWrtDomains", "safe", "solve", "dontcompactValues", "usemeta", "debug", "verbose") if options.checker is None: options.checker = "fast" assert options.checker in {"complete", "fast", "none"} options.parse(sys.argv[1:]) def _load_model(): try: name = sys.argv[0] assert name.strip().endswith(".py"), "The first argument has to be a python file." + str(name) model_string = name[name.rfind(os.sep) + 1:name.rfind(".")] specification = util.spec_from_file_location("", name) model = util.module_from_spec(specification) return model, model_string except Exception: usage("It was not possible to read the file: " + sys.argv[0]) raise def _load_data(): def _load_data_sequence(raw_data): od = [None if v in None_Values else int(v) if v and v.isdigit() else v for v in raw_data] return OrderedDict([("f" + str(i), od[i]) for i, v in enumerate(raw_data)]), od # return DataVisitor(raw_data).visit(ast.parse(inspect.getsource(Compilation.model))) def _arg_value(s): return None if s in None_Values else int(s) if s.isdigit() else s def _load_multiple_data_pieces(): # formatting instructions not possible in that case s = "" for arg in args: if "=" in arg: t = arg.split('=') value = _arg_value(t[1]) compilation_data[t[0]] = value s += "-" + str(value) else: assert arg.endswith("json") assert os.path.exists(arg), "The file " + arg + " does not exist (in the specified directory)." + str(os.path) with open(arg) as f: compilation_data.update(json.loads(f.read(), object_pairs_hook=OrderedDict)) s += "-" + arg.split(os.sep)[-1:][0].split(".")[:1][0] return compilation_data, s data = options.data if data is None: return OrderedDict(), "" if data.endswith(".json"): # a single json file assert os.path.exists(data), "The file " + data + " does not exist (in the specified directory)." with open(data) as f: return json.loads(f.read(), object_pairs_hook=OrderedDict), "-" + data.split(os.sep)[-1:][0].split(".")[:1][0] compilation_data = OrderedDict() # the object used for recording the data, available in the model # if '{' in data and '}' in data: # compilation_data = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()), object_pairs_hook=OrderedDict) # for k, v in compilation_data.items(): setattr(compilation_data, k, v) ordered_data = list(compilation_data.values()) if (data[0], data[-1]) in [('[', ']'), ('(', ')')]: # NB: these characters may be needed to be escaped as in \[2,3\] args = data[1:-1].split(",") if "json" in data: return _load_multiple_data_pieces() if '=' in data: assert data.count('=') == data.count(',') + 1, "badly formed string of data " + data ordered_data = [] for arg in args: t = arg.split('=') value = _arg_value(t[1]) compilation_data[t[0]] = value ordered_data.append(value) else: compilation_data, ordered_data = _load_data_sequence(args) else: compilation_data, ordered_data = _load_data_sequence([data]) df = options.dataformat if df: if df[0] == '[': assert df[-1] == ']' df = df[1:-1] df = df.split(',') assert len(df) == len(ordered_data) ss = "-".join(df).format(*ordered_data) else: ss = "-".join(str(v) for v in ordered_data) string_data = "-" + ss return compilation_data, string_data def _load_dataparser(parser_file, data_value): try: compilation_data = parsing.register_fields(data_value) # the object used for recording data is returned, available in the model specification = util.spec_from_file_location("", parser_file) specification.loader.exec_module(util.module_from_spec(specification)) string_data = "-" + options.data.split(os.sep)[-1:][0].split(".")[:1][0] if options.data else None if string_data is None: string_data = Compilation.string_data if Compilation.string_data else "" # in case data are recorded through the dataparser (after asking the user) return compilation_data, string_data except Exception: usage("It was not possible to correctly read the file: " + parser_file) raise def _load(*, console=False): Compilation.stopwatch = Stopwatch() _load_options() if console is False: Compilation.model, Compilation.string_model = _load_model() if options.dataparser: Compilation.data, Compilation.string_data = _load_dataparser(options.dataparser, options.data) else: Compilation.data, Compilation.string_data = _load_data() Compilation.data = convert_to_namedtuples(Compilation.data) Compilation.string_data = Compilation.string_data.replace("/", "-") if len(Compilation.data) == 0: Compilation.data = None elif len(Compilation.data) == 1: Compilation.data = Compilation.data[0] # the value instead of a tuple of size 1 else: Compilation.string_model = "Console" Compilation.string_data = "" OpOverrider.enable() options.time and print("\tWCK for loading model and data:", Compilation.stopwatch.elapsed_time(), "seconds") def default_data(filename): if filename[0] == '.': fn = os.path.abspath('.') + filename[1:] else: fn = os.path.dirname(os.path.realpath(__file__)) + os.sep + "problems" + os.sep + "data" + os.sep + "json" + os.sep + filename assert fn.endswith(".json") assert os.path.exists(fn), "The file " + fn + " does not exist (in the specified directory)." with open(fn) as f: Compilation.data = convert_to_namedtuples(json.loads(f.read(), object_pairs_hook=OrderedDict)) Compilation.string_data = "-" + filename.split(os.sep)[-1:][0].split(".")[:1][0] if len(Compilation.data) == 1: Compilation.data = Compilation.data[0] # the value instead of a tuple of size 1 return Compilation.data def _compile(disabling_opoverrider=False): # used to save data in jSON def prepare_for_json(obj): if is_namedtuple(obj): r = obj._asdict() for k in r: r[k] = prepare_for_json(r[k]) return r if isinstance(obj, list): for i in range(len(obj)): obj[i] = prepare_for_json(obj[i]) return obj return str(obj) if isinstance(obj, datetime.time) else obj if Error.errorOccurrence: return None if disabling_opoverrider: OpOverrider.disable() if Compilation.user_filename is None and options.output is not None: Compilation.set_filename(options.output) if Compilation.user_filename is not None: if options.output is None and options.verbose: print(" * User-defined XML file name:", Compilation.user_filename) filename = Compilation.user_filename if filename.endswith(".xml"): filename_prefix = filename[:-4] # can be useful if data are exported else: filename_prefix = Compilation.string_model + ("-" + options.variant if options.variant else "") + Compilation.string_data filename = filename_prefix + ".xml" stopwatch = Stopwatch() if options.verbose: print(" PyCSP3 (Python:" + platform.python_version() + ", Path:" + os.path.abspath(__file__) + ")\n") build_similar_constraints() options.time and print("\tWCK for generating groups:", stopwatch.elapsed_time(reset=True), "seconds") handle_slides() options.time and print("\tWCK for handling slides:", stopwatch.elapsed_time(reset=True), "seconds") build_compact_forms() options.time and print("\tWCK for compacting forms:", stopwatch.elapsed_time(reset=True), "seconds") root = build_document() if root is not None: pretty_text = etree.tostring(root, pretty_print=True, xml_declaration=False, encoding='UTF-8').decode("UTF-8") if options.display: print("\n", pretty_text) else: with open(filename, "w") as f: f.write(pretty_text) print(" * Generating the file " + filename + " completed in " + GREEN + Compilation.stopwatch.elapsed_time() + WHITE + " seconds.") if options.compress: with lzma.open(filename + ".lzma", "w") as f: f.write(bytes(pretty_text, 'utf-8')) print("\tGeneration of the file " + filename + ".lzma completed.\n") options.time and print("\tWCK for generating files:", stopwatch.elapsed_time(reset=True), "seconds") if options.dataexport: if isinstance(options.dataexport, bool): json_prefix = options.data.split("/")[-1:][0].split(".")[:1][0] if options.dataparser else filename_prefix # TODO if data are given with name as e.g., in [k=3,l=9,b=0,r=0,v=9] for Bibd, maybe we should sort them else: json_prefix = str(options.dataexport) with open(json_prefix + '.json', 'w') as f: json.dump(prepare_for_json(Compilation.data), f) print(" Generation for data saving of the file " + json_prefix + '.json' + " completed.") # print(" Total wall clock time:", Compilation.stopwatch.elapsed_time(), "seconds") Compilation.done = True cop = root is not None and root.attrib and root.attrib["type"] == "COP" return filename, cop def usage(message): print(message) print("\nThe PyCSP3 Compiler allows us to generate XCSP3 files.") print("\n\nUsage: python3.5 <model> <data>") print(" - <model> is the name of a Python file containing a PyCSP3 model (i.e., a Python file with code posting variables/constraints/objectives)") print(" - <data> is either a fixed list of elementary data or the name of a JSON file") # solver = s if s[0] not in {'[', '('} else s[1:re.search("[,)\]]", s).start()]
459068
from Core.App import App from Core.Ui import * from Services.Messages import Messages from Services.Utils.Image.Config import Config as ImageLoaderConfig from os import path class FormInfo(QtWidgets.QDialog, UiFile.formInfo): def __init__(self, windowTitle, videoData, formData, enableLabelTranslation=False, enableLabelSelection=False, enableFieldTranslation=False, enableFieldSelection=False): super().__init__(parent=App.getActiveWindow(), useWindowGeometry=False) self.setWindowTitle(windowTitle) self.videoData = videoData self.formData = formData self.enableLabelTranslation = enableLabelTranslation self.enableLabelSelection = enableLabelSelection self.enableFieldTranslation = enableFieldTranslation self.enableFieldSelection = enableFieldSelection if self.videoData == None: self.tabWidget.setTabVisible(1, False) self.videoWidgetPlaceholder.hide() self.line.hide() else: self.setWindowFlag(QtCore.Qt.WindowMaximizeButtonHint) Utils.setPlaceholder(self.videoWidgetPlaceholder, Ui.VideoWidget(self.videoData, resizable=True, showMore=False)) self.setPreviewTab() self.setFormData() self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Ok) def setFormData(self): for key, value in self.formData.items(): if not isinstance(key, QtCore.QObject): key = QtWidgets.QLabel(T(str(key)) if self.enableLabelTranslation else str(key)) if self.videoData != None: key.setText("{}:".format(key.text())) if not isinstance(value, QtCore.QObject): value = QtWidgets.QLabel(T(str(value)) if self.enableFieldTranslation else str(value)) if self.videoData != None: value.setSizePolicy(QtWidgets.QSizePolicy.Ignored, QtWidgets.QSizePolicy.Preferred) if self.enableLabelSelection and type(key) == QtWidgets.QLabel: key.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse | QtCore.Qt.TextSelectableByKeyboard) if self.enableFieldSelection and type(value) == QtWidgets.QLabel: value.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse | QtCore.Qt.TextSelectableByKeyboard) self.formInfoArea.layout().addRow(key, value) def setPreviewTab(self): self.previewWidget = Ui.VideoWidget(self.videoData, resizable=True, previewOnly=True) Utils.setPlaceholder(self.previewVideoWidgetPlaceholder, self.previewWidget) self.saveImageButton.clicked.connect(self.saveImage) self.embedUrl = self.previewWidget.metaData["thumbnailImage"][0].format(width=1920, height=1080) if self.embedUrl == "": self.urlArea.setEnabled(False) else: self.urlData.setText(self.embedUrl) self.urlData.setCursorPosition(0) self.copyUrlButton.clicked.connect(self.copyUrl) self.openUrlButton.clicked.connect(self.openUrl) def saveImage(self): DB.temp.updateDefaultDirectory() directory = DB.temp.getDefaultDirectory() filters = self.getAvailableFormats() initialFilter = DB.temp.getDefaultFormat(ImageLoaderConfig.IMAGE_DATA_TYPE) fileName = Utils.askSaveDirectory(Utils.joinPath(directory, self.createFileName()), filters, initialFilter) if fileName != None: try: self.previewWidget.thumbnail_image.pixmap().save(fileName) except: Utils.info(*Messages.INFO.FILE_SYSTEM_ERROR) else: self.saveOptions(fileName) if Utils.ask( "save-complete", "{}\n\n{}".format(T("#Save completed."), fileName), okText="open", cancelText="ok" ): try: Utils.openFile(fileName) except: Utils.info(*Messages.INFO.FILE_NOT_FOUND) def createFileName(self): return Utils.getValidFileName( "[{type} {preview}] [{channel}] {id}".format( type=self.formData["file-type"], preview=T("preview"), channel=self.formData["channel"], id=self.videoData.id ) ) def getAvailableFormats(self): return ["jpg", "png"] def saveOptions(self, absoluteFileName): directory = path.dirname(absoluteFileName) fileFormat = path.basename(absoluteFileName).rsplit(".", 1)[1] DB.temp.setDefaultDirectory(directory) DB.temp.setDefaultFormat(ImageLoaderConfig.IMAGE_DATA_TYPE, fileFormat) def copyUrl(self): Utils.copyToClipboard(self.embedUrl) Utils.info("notification", "#Copied to clipboard.") def openUrl(self): Utils.openUrl(self.embedUrl)
459085
from sqlalchemy import Column, DateTime, ForeignKey, Integer, String from sqlalchemy.orm import backref, relationship from okcupyd.db import Base, OKCBase class User(OKCBase): __tablename__ = 'user' @classmethod def from_profile(cls, profile): return cls(okc_id=profile.id, handle=profile.username, age=profile.age, location=profile.location) handle = Column(String, nullable=False) age = Column(String, nullable=False) location = Column(String, nullable=False) class OKCupydUser(Base): __tablename__ = 'okcupyd_user' inbox_last_updated = Column(DateTime, nullable=True) outbox_last_updated = Column(DateTime, nullable=True) user_id = Column(Integer, ForeignKey("user.id"), unique=True) user = relationship("User", foreign_keys=[user_id], backref=backref('okcupyd_user', uselist=False))
459087
load("@build_bazel_rules_swift//swift:repositories.bzl", "swift_rules_dependencies") load("@build_bazel_rules_apple//apple:repositories.bzl", "apple_rules_dependencies") load("@build_bazel_apple_support//lib:repositories.bzl", "apple_support_dependencies") load("@rules_jvm_external//:defs.bzl", "maven_install") load("@rules_detekt//detekt:dependencies.bzl", "rules_detekt_dependencies") load("@io_bazel_rules_kotlin//kotlin:repositories.bzl", "kotlin_repositories") load("@io_grpc_grpc_java//:repositories.bzl", "grpc_java_repositories") load("@rules_proto_grpc//protobuf:repositories.bzl", "protobuf_repos") load("@rules_proto_grpc//java:repositories.bzl", rules_proto_grpc_java_repos = "java_repos") load("@rules_python//python:pip.bzl", "pip_install") load("@robolectric//bazel:robolectric.bzl", "robolectric_repositories") load("@rules_java//java:repositories.bzl", "rules_java_dependencies") def _default_extra_swift_sources_impl(ctx): ctx.file("WORKSPACE", "") ctx.file("empty.swift", "") ctx.file("BUILD.bazel", """ filegroup( name = "extra_swift_srcs", srcs = ["empty.swift"], visibility = ["//visibility:public"], ) objc_library( name = "extra_private_dep", module_name = "FakeDep", visibility = ["//visibility:public"], )""") _default_extra_swift_sources = repository_rule( implementation = _default_extra_swift_sources_impl, ) def _default_extra_jni_deps_impl(ctx): ctx.file("WORKSPACE", "") ctx.file("BUILD.bazel", """ cc_library( name = "extra_jni_dep", visibility = ["//visibility:public"], )""") _default_extra_jni_deps = repository_rule( implementation = _default_extra_jni_deps_impl, ) def envoy_mobile_dependencies(extra_maven_dependencies = []): if not native.existing_rule("envoy_mobile_extra_swift_sources"): _default_extra_swift_sources(name = "envoy_mobile_extra_swift_sources") if not native.existing_rule("envoy_mobile_extra_jni_deps"): _default_extra_jni_deps(name = "envoy_mobile_extra_jni_deps") swift_dependencies() kotlin_dependencies(extra_maven_dependencies) python_dependencies() def swift_dependencies(): apple_support_dependencies() apple_rules_dependencies(ignore_version_differences = True) swift_rules_dependencies() def kotlin_dependencies(extra_maven_dependencies = []): rules_java_dependencies() maven_install( artifacts = [ "com.google.code.findbugs:jsr305:3.0.2", "com.google.flatbuffers:flatbuffers-java:2.0.3", # Kotlin "org.jetbrains.kotlin:kotlin-stdlib-jdk8:1.6.21", "org.jetbrains.kotlin:kotlin-stdlib-common:1.6.21", "org.jetbrains.kotlin:kotlin-stdlib:1.6.21", "androidx.recyclerview:recyclerview:1.1.0", "androidx.core:core:1.3.2", # Dokka "org.jetbrains.dokka:dokka-cli:1.5.31", "org.jetbrains.dokka:javadoc-plugin:1.5.31", # Test artifacts "org.assertj:assertj-core:3.12.0", "junit:junit:4.12", "org.mockito:mockito-inline:2.28.2", "org.mockito:mockito-core:2.28.2", "com.squareup.okhttp3:okhttp:4.9.1", "com.squareup.okhttp3:mockwebserver:4.9.1", "io.github.classgraph:classgraph:4.8.121", "io.netty:netty-all:4.1.74.Final", # Android test artifacts "androidx.test:core:1.3.0", "androidx.test:rules:1.3.0", "androidx.test:runner:1.3.0", "androidx.test:monitor:1.3.0", "androidx.test.ext:junit:1.1.2", "org.robolectric:robolectric:4.4", "org.hamcrest:hamcrest:2.2", "com.google.truth:truth:1.1", ] + extra_maven_dependencies, version_conflict_policy = "pinned", repositories = [ "https://repo1.maven.org/maven2", "https://maven.google.com", ], ) kotlin_repositories() rules_detekt_dependencies() robolectric_repositories() grpc_java_repositories( omit_bazel_skylib = True, omit_com_google_protobuf = True, omit_com_google_protobuf_javalite = True, omit_net_zlib = True, ) protobuf_repos() rules_proto_grpc_java_repos() def python_dependencies(): # TODO: bifurcate dev deps vs. prod deps # pip_install( # requirements = ":dev_requirements.txt", # ) pip_install( requirements = "//third_party/python:requirements.txt", timeout = 1000, )
459113
from django import template from django.template.defaultfilters import stringfilter from django.conf import settings from django.contrib.staticfiles.templatetags.staticfiles import static import os import json register = template.Library() @register.simple_tag def webpack(asset_name: str) -> str: if settings.ENV == 'production': # Read version-stamped urls from manifest.json once and cache for process lifetime if not hasattr(webpack, 'manifest'): webpack.manifest = json.loads(open(os.path.join(settings.STATIC_DIR, "build/manifest.json")).read()) return settings.STATIC_URL + "build/" + webpack.manifest[asset_name] else: return settings.WEBPACK_DEV_URL + "/" + asset_name
459129
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # from matplotlib.ticker import FormatStrFormatter import librosa import librosa.display # original_sample = 'Real Test/full_train_test_true.wav' # ds_sample = 'Real Test/full_train_test_ds.wav' # reco_sample = 'Real Test/full_train_test_reco.wav' # output_file_name = 'Real Test/real_full_train_test_spec_comp.pdf' # original_sample = 'full_train_test_true.wav' # ds_sample = 'full_train_test_ds.wav' # reco_sample = 'full_train_test_reco.wav' # output_file_name = 'full_train_test_spec_comp.pdf' # original_sample = 'full_train_validation_true.wav' # ds_sample = 'full_train_validation_ds.wav' # reco_sample = 'full_train_validation_reco.wav' # output_file_name = 'full_train_validation_spec_comp.pdf' original_sample = 'overtrain_true.wav' ds_sample = 'overtrain_ds.wav' reco_sample = 'overtrain_reco.wav' output_file_name = 'overtrain_spec_comp.pdf' # original_sample = 'loss_function_comparison/gm_overtrain_true.wav' # ds_sample = 'loss_function_comparison/gm_overtrain_ds.wav' # reco_sample = 'loss_function_comparison/gm_overtrain_reco.wav' # output_file_name = 'loss_function_comparison/gm_overtrain_spec_comp.pdf' n_fft = 4*512 # n_fft = 256 y_true, sr_true = librosa.load(original_sample, sr=None) y_ds, sr_ds = librosa.load(ds_sample, sr=None) y_reco, sr_reco = librosa.load(reco_sample, sr=None) def compute_signal_to_noise(truth, reco): return 10.*np.log10(np.sqrt(np.sum(truth**2))/np.sqrt( np.sum((truth - reco)**2))) def plot_all(true_spectrogram, ds_spectrogram, reco_spectrogram, true_waveform, ds_waveform, reco_waveform, true_sr, ds_sr, reco_sr, ofile, n_fft): # max_frame = 200 max_frame = 100 plt.figure(figsize=(8, 6)) if not (true_sr == ds_sr == reco_sr): print('Warning: time axis on waveform plots will be meaningless') # compute dB-scale magnitudes true_dB = librosa.amplitude_to_db(true_spectrogram, ref=np.max) ds_dB = librosa.amplitude_to_db(ds_spectrogram, ref=np.max) reco_dB = librosa.amplitude_to_db(reco_spectrogram, ref=np.max) # compute LSD true_X = np.log10(np.abs(true_spectrogram)**2) ds_X = np.log10(np.abs(ds_spectrogram)**2) reco_X = np.log10(np.abs(reco_spectrogram)**2) ds_X_diff_squared = (true_X - ds_X)**2 reco_X_diff_squared = (true_X - reco_X)**2 ds_lsd = np.mean(np.sqrt(np.mean(ds_X_diff_squared, axis=0))) reco_lsd = np.mean(np.sqrt(np.mean(reco_X_diff_squared, axis=0))) # spectrogram plots # cmap = 'nipy_spectral' # cmap = 'rainbow_r' # cmap = 'gist_rainbow' cmap = 'viridis' # cmap = 'inferno_r' # cmap = 'magma_r' # cmap = 'plasma_r' ax = plt.subplot(3, 2, 1) plt.title('True Spectrum (dB)') fig = librosa.display.specshow(true_dB, sr=true_sr, y_axis='hz', x_axis='time', hop_length=n_fft/4, cmap=cmap, edgecolors='face') fig.axes.set_xticklabels([]) plt.xlabel('') plt.ylabel('frequency (Hz)') ax = plt.subplot(3, 2, 3) plt.title('Downsampled Spectrum (dB)') fig = librosa.display.specshow(ds_dB, sr=ds_sr, y_axis='hz', x_axis='time', hop_length=n_fft/4, cmap=cmap, edgecolors='face') fig.axes.set_xticklabels([]) plt.xlabel('') plt.ylabel('frequency (Hz)') ax.text(0.65, 0.25, r'LSD={:.2}'.format(ds_lsd), color='blue', fontsize=13, transform=ax.transAxes, backgroundcolor='white') ax = plt.subplot(3, 2, 5) plt.title('Reconstructed Spectrum (dB)') fig = librosa.display.specshow(reco_dB, sr=reco_sr, y_axis='hz', x_axis='time', hop_length=n_fft/4, cmap=cmap, edgecolors='face') plt.xlabel('time (s)') plt.ylabel('frequency (Hz)') ax.text(0.65, 0.25, r'LSD={:.2}'.format(reco_lsd), color='blue', fontsize=13, transform=ax.transAxes, backgroundcolor='white') # compute SNR for waveform plots ds_snr = compute_signal_to_noise(true_waveform, ds_waveform) reco_snr = compute_signal_to_noise(true_waveform, reco_waveform) # waveform plots ax = plt.subplot(3, 2, 2) ax.set_xticklabels([]) true_time = np.arange(max_frame, dtype=np.float)/float(true_sr) plt.title('True Waveform (16 kbps)') fig = plt.plot(true_time, true_waveform[:max_frame]) plt.ylabel('amplitude') ax = plt.subplot(3, 2, 4) ax.set_xticklabels([]) ds_time = np.arange(max_frame, dtype=np.float)/float(ds_sr) plt.title('Downsampled Waveform (4 kbps)') fig = plt.plot(ds_time, ds_waveform[:max_frame]) plt.ylabel('amplitude') ax.text(0.05, 0.1, r'SNR={:.1f}'.format(ds_snr), color='blue', fontsize=13, transform=ax.transAxes, backgroundcolor='white') ax = plt.subplot(3, 2, 6) reco_time = np.arange(max_frame, dtype=np.float)/float(reco_sr) plt.title('Reconstructed Waveform (16 kbps)') fig = plt.plot(reco_time, reco_waveform[:max_frame]) plt.ylabel('amplitude') plt.xlabel('time (s)') ax.text(0.05, 0.1, r'SNR={:.1f}'.format(reco_snr), color='blue', fontsize=13, transform=ax.transAxes, backgroundcolor='white') plt.tight_layout() plt.savefig(ofile) # Reads wav file and produces spectrum def read_audio_spectrum(x, **kwd_args): return librosa.core.stft(x, **kwd_args) true_spectrogram = read_audio_spectrum(y_true, n_fft=n_fft) ds_spectrogram = read_audio_spectrum(y_ds, n_fft=n_fft) reco_spectrogram = read_audio_spectrum(y_reco, n_fft=n_fft) plot_all(true_spectrogram, ds_spectrogram, reco_spectrogram, y_true, y_ds, y_reco, sr_true, sr_ds, sr_reco, output_file_name, n_fft)
459210
from django.conf.urls import include, url from rest_framework import routers from . import viewsets router = routers.DefaultRouter() router.register(r'organizations', viewsets.OrganizationViewSet) router.register(r'applications', viewsets.ApplicationViewSet) router.register(r'tags', viewsets.TagViewSet) router.register(r'people', viewsets.PersonViewSet) router.register(r'engagements', viewsets.EngagementViewSet) router.register(r'activities', viewsets.ActivityViewSet) router.register(r'activities_types', viewsets.ActivityTypeViewSet) router.register(r'users', viewsets.UserViewSet) urlpatterns = [ url(r'^v0/', include(router.urls), name='v0'), #url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), ]
459224
import unittest import os import shutil import yaml import xnmt from xnmt import events, param_collections, persistence, utils class TestPath(unittest.TestCase): def setUp(self): pass def test_init(self): self.assertTrue(type(persistence.Path(""))==persistence.Path) self.assertTrue(type(persistence.Path(".."))==persistence.Path) self.assertTrue(type(persistence.Path(".2"))==persistence.Path) self.assertTrue(type(persistence.Path("one.2"))==persistence.Path) with self.assertRaises(ValueError): persistence.Path(".one.") persistence.Path("one..2") def test_str(self): self.assertEqual(str(persistence.Path("one.2")), "one.2") self.assertEqual(str(persistence.Path("")), "") def test_set(self): s = {persistence.Path("one.2"), persistence.Path("one.1.3"), persistence.Path("one.1.3")} self.assertIn(persistence.Path("one.2"), s) self.assertEqual(len(s), 2) def test_append(self): self.assertEqual(str(persistence.Path("one").append("2")), "one.2") self.assertEqual(str(persistence.Path("").append("2")), "2") self.assertEqual(str(persistence.Path(".").append("2")), ".2") self.assertEqual(str(persistence.Path(".1.2").append("2")), ".1.2.2") with self.assertRaises(ValueError): persistence.Path("one").append("") with self.assertRaises(ValueError): persistence.Path("one").append(".") with self.assertRaises(ValueError): persistence.Path("one").append("two.3") def test_add_path(self): self.assertEqual(str(persistence.Path("one").add_path(persistence.Path("2"))), "one.2") self.assertEqual(str(persistence.Path("one").add_path(persistence.Path("2.3"))), "one.2.3") self.assertEqual(str(persistence.Path("").add_path(persistence.Path("2.3"))), "2.3") self.assertEqual(str(persistence.Path("one.2").add_path(persistence.Path(""))), "one.2") self.assertEqual(str(persistence.Path("").add_path(persistence.Path(""))), "") self.assertEqual(str(persistence.Path(".").add_path(persistence.Path(""))), ".") self.assertEqual(str(persistence.Path(".").add_path(persistence.Path("one.two"))), ".one.two") self.assertEqual(str(persistence.Path(".xy").add_path(persistence.Path("one.two"))), ".xy.one.two") with self.assertRaises(NotImplementedError): persistence.Path("one").add_path(persistence.Path(".2.3")) def test_get_absolute(self): self.assertEqual(persistence.Path(".").get_absolute(persistence.Path("1.2")), persistence.Path("1.2")) self.assertEqual(persistence.Path(".x.y").get_absolute(persistence.Path("1.2")), persistence.Path("1.2.x.y")) self.assertEqual(persistence.Path("..x.y").get_absolute(persistence.Path("1.2")), persistence.Path("1.x.y")) self.assertEqual(persistence.Path("...x.y").get_absolute(persistence.Path("1.2")), persistence.Path("x.y")) with self.assertRaises(ValueError): persistence.Path("....x.y").get_absolute(persistence.Path("1.2")) def test_descend_one(self): self.assertEqual(str(persistence.Path("one.2.3").descend_one()), "2.3") self.assertEqual(str(persistence.Path("3").descend_one()), "") with self.assertRaises(ValueError): persistence.Path("").descend_one() with self.assertRaises(ValueError): persistence.Path(".one.2").descend_one() def test_len(self): self.assertEqual(len(persistence.Path("")), 0) self.assertEqual(len(persistence.Path("one")), 1) self.assertEqual(len(persistence.Path("one.2.3")), 3) with self.assertRaises(ValueError): len(persistence.Path(".one")) len(persistence.Path(".")) def test_get_item(self): self.assertEqual(persistence.Path("one")[0], "one") self.assertEqual(persistence.Path("one.2.3")[0], "one") self.assertEqual(persistence.Path("one.2.3")[2], "3") self.assertEqual(persistence.Path("one.2.3")[-1], "3") with self.assertRaises(ValueError): persistence.Path(".one.2.3")[-1] def test_get_item_slice(self): self.assertEqual(str(persistence.Path("one")[0:1]), "one") self.assertEqual(str(persistence.Path("one.2.3")[1:3]), "2.3") self.assertEqual(str(persistence.Path("one.2.3")[0:-1]), "one.2") self.assertEqual(str(persistence.Path("one.2.3")[-1:]), "3") with self.assertRaises(ValueError): persistence.Path(".one.2.3")[0:1:-1] def test_parent(self): self.assertEqual(persistence.Path("one").parent(), persistence.Path("")) self.assertEqual(persistence.Path("one.two.three").parent(), persistence.Path("one.two")) self.assertEqual(persistence.Path(".one").parent(), persistence.Path(".")) with self.assertRaises(ValueError): persistence.Path(".").parent() with self.assertRaises(ValueError): persistence.Path("").parent() def test_eq(self): self.assertEqual(persistence.Path(""), persistence.Path("")) self.assertEqual(persistence.Path(".."), persistence.Path("..")) self.assertEqual(persistence.Path("one.2"), persistence.Path("one.2")) self.assertEqual(persistence.Path("one.2"), persistence.Path("one.2.3").parent()) self.assertNotEqual(persistence.Path("one.2"), persistence.Path("one.2.3")) self.assertNotEqual(persistence.Path(""), persistence.Path(".")) def test_ancestors(self): self.assertEqual(persistence.Path("").ancestors(), {persistence.Path("")}) self.assertEqual(persistence.Path("a").ancestors(), {persistence.Path(""), persistence.Path("a")}) self.assertEqual(persistence.Path("one.two.three").ancestors(), {persistence.Path(""), persistence.Path("one"), persistence.Path("one.two"), persistence.Path("one.two.three")}) class DummyClass(persistence.Serializable): yaml_tag = "!DummyClass" @persistence.serializable_init def __init__(self, arg1, arg2="{V2}", arg3="{V3}"): self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 class DummyClass2(persistence.Serializable): yaml_tag = "!DummyClass2" @persistence.serializable_init def __init__(self, arg1=persistence.bare(DummyClass)): self.arg1 = arg1 class DummyClass3(persistence.Serializable): yaml_tag = "!DummyClass3" @persistence.serializable_init def __init__(self, arg1=persistence.bare(DummyClass2)): self.arg1 = arg1 class DummyClassForgotBare(persistence.Serializable): yaml_tag = "!DummyClassForgotBare" @persistence.serializable_init def __init__(self, arg1=DummyClass("")): self.arg1 = arg1 class TestPreloader(unittest.TestCase): def setUp(self): yaml.add_representer(DummyClass, xnmt.init_representer) self.out_dir = "test/tmp" utils.make_parent_dir(f"{self.out_dir}/asdf") def test_experiment_names_from_file(self): with open(f"{self.out_dir}/tmp.yaml", "w") as f_out: yaml.dump({ "exp1": DummyClass(""), "exp2": DummyClass(""), "exp10": DummyClass("") }, f_out) self.assertListEqual(persistence.YamlPreloader.experiment_names_from_file(f"{self.out_dir}/tmp.yaml"), ["exp1", "exp10", "exp2"]) def test_inconsistent_loadserialized(self): with open(f"{self.out_dir}/tmp1.yaml", "w") as f_out: yaml.dump(DummyClass(arg1="v1"), f_out) test_obj = yaml.load(f""" a: !LoadSerialized filename: {self.out_dir}/tmp1.yaml bad_arg: 1 """) with self.assertRaises(ValueError): persistence.YamlPreloader.preload_obj(test_obj, "SOME_EXP_NAME", "SOME_EXP_DIR") def test_inconsistent_loadserialized2(self): with open(f"{self.out_dir}/tmp1.yaml", "w") as f_out: yaml.dump(DummyClass(arg1="v1"), f_out) test_obj = yaml.load(f""" a: !LoadSerialized filename: {self.out_dir}/tmp1.yaml overwrite: - path: a - val: b """) with self.assertRaises(ValueError): persistence.YamlPreloader.preload_obj(test_obj, "SOME_EXP_NAME", "SOME_EXP_DIR") def test_placeholder_loadserialized(self): with open(f"{self.out_dir}/tmp1.yaml", "w") as f_out: yaml.dump(DummyClass(arg1="v1"), f_out) test_obj = yaml.load(f""" a: !LoadSerialized filename: '{{EXP_DIR}}/{{EXP}}.yaml' """) persistence.YamlPreloader.preload_obj(test_obj, exp_name = "tmp1", exp_dir=self.out_dir) def test_load_referenced_serialized_top(self): with open(f"{self.out_dir}/tmp1.yaml", "w") as f_out: yaml.dump(DummyClass(arg1="v1"), f_out) test_obj = yaml.load(f"!LoadSerialized {{ filename: {self.out_dir}/tmp1.yaml }}") loaded_obj = persistence.YamlPreloader._load_serialized(test_obj) self.assertIsInstance(loaded_obj, DummyClass) self.assertEqual(loaded_obj.arg1, "v1") def test_load_referenced_serialized_nested(self): with open(f"{self.out_dir}/tmp1.yaml", "w") as f_out: yaml.dump(DummyClass(arg1="v1"), f_out) test_obj = yaml.load(f""" a: 1 b: !LoadSerialized filename: {self.out_dir}/tmp1.yaml overwrite: - path: arg1 val: !LoadSerialized filename: {self.out_dir}/tmp1.yaml """) loaded_obj = persistence.YamlPreloader._load_serialized(test_obj) self.assertIsInstance(loaded_obj["b"], DummyClass) self.assertIsInstance(loaded_obj["b"].arg1, DummyClass) def test_resolve_kwargs(self): test_obj = yaml.load(""" !DummyClass kwargs: arg1: 1 other_arg: 2 """) persistence.YamlPreloader._resolve_kwargs(test_obj) self.assertFalse(hasattr(test_obj, "kwargs")) self.assertFalse(hasattr(test_obj, "arg2")) self.assertEqual(getattr(test_obj, "arg1", None), 1) self.assertEqual(getattr(test_obj, "other_arg", None), 2) def test_resolve_bare_default_args(self): test_obj = yaml.load(""" a: !DummyClass arg1: !DummyClass2 {} b: !DummyClass3 {} """) persistence.YamlPreloader._resolve_bare_default_args(test_obj) self.assertIsInstance(test_obj["a"].arg1.arg1, DummyClass) self.assertIsInstance(test_obj["b"].arg1, DummyClass2) self.assertIsInstance(test_obj["b"].arg1.arg1, DummyClass) def test_resolve_bare_default_args_illegal(self): test_obj = yaml.load(""" a: !DummyClassForgotBare {} """) with self.assertRaises(ValueError): persistence.YamlPreloader._resolve_bare_default_args(test_obj) def test_format_strings(self): test_obj = yaml.load(""" a: !DummyClass arg1: '{V1}' other_arg: 2 b: !DummyClass arg1: 1 other_arg: '{V2}' c: '{V1}/bla' d: ['bla', 'bla.{V2}'] """) persistence.YamlPreloader._format_strings(test_obj, {"V1":"val1", "V2":"val2"}) self.assertEqual(test_obj["a"].arg1, "val1") self.assertEqual(test_obj["a"].other_arg, 2) self.assertEqual(test_obj["a"].arg2, "val2") self.assertFalse(hasattr(test_obj["a"], "arg3")) self.assertEqual(test_obj["b"].arg1, 1) self.assertEqual(test_obj["b"].other_arg, '{V2}') self.assertEqual(test_obj["b"].arg2, "val2") self.assertFalse(hasattr(test_obj["b"], "arg3")) self.assertEqual(test_obj["c"], "val1/bla") self.assertListEqual(test_obj["d"], ["bla", "bla.val2"]) class DummyArgClass(persistence.Serializable): yaml_tag = "!DummyArgClass" @persistence.serializable_init def __init__(self, arg1, arg2): pass # arg1 and arg2 are purposefully not kept class DummyArgClass2(persistence.Serializable): yaml_tag = "!DummyArgClass2" @persistence.serializable_init def __init__(self, v): self.v = v class TestSaving(unittest.TestCase): def setUp(self): events.clear() xnmt.resolved_serialize_params = {} yaml.add_representer(DummyArgClass, xnmt.init_representer) yaml.add_representer(DummyArgClass2, xnmt.init_representer) self.out_dir = os.path.join("test", "tmp") utils.make_parent_dir(os.path.join(self.out_dir, "asdf")) self.model_file = os.path.join(self.out_dir, "saved.mod") param_collections.ParamManager.init_param_col() param_collections.ParamManager.param_col.model_file = self.model_file def test_shallow(self): test_obj = yaml.load(""" a: !DummyArgClass arg1: !DummyArgClass2 _xnmt_id: id1 v: some_val arg2: !Ref { name: id1 } """) preloaded = persistence.YamlPreloader.preload_obj(root=test_obj,exp_name="exp1",exp_dir=self.out_dir) initalized = persistence.initialize_if_needed(preloaded) persistence.save_to_file(self.model_file, initalized) def test_mid(self): test_obj = yaml.load(""" a: !DummyArgClass arg1: !DummyArgClass2 v: !DummyArgClass2 _xnmt_id: id1 v: some_val arg2: !DummyArgClass2 v: !Ref { name: id1 } """) preloaded = persistence.YamlPreloader.preload_obj(root=test_obj,exp_name="exp1",exp_dir=self.out_dir) initalized = persistence.initialize_if_needed(preloaded) persistence.save_to_file(self.model_file, initalized) def test_deep(self): test_obj = yaml.load(""" a: !DummyArgClass arg1: !DummyArgClass2 v: !DummyArgClass2 v: !DummyArgClass2 _xnmt_id: id1 v: some_val arg2: !DummyArgClass2 v: !DummyArgClass2 v: !Ref { name: id1 } """) preloaded = persistence.YamlPreloader.preload_obj(root=test_obj,exp_name="exp1",exp_dir=self.out_dir) initalized = persistence.initialize_if_needed(preloaded) persistence.save_to_file(self.model_file, initalized) def test_double_ref(self): test_obj = yaml.load(""" a: !DummyArgClass arg1: !DummyArgClass2 _xnmt_id: id1 v: some_val arg2: - !Ref { name: id1 } - !Ref { name: id1 } """) preloaded = persistence.YamlPreloader.preload_obj(root=test_obj,exp_name="exp1",exp_dir=self.out_dir) initalized = persistence.initialize_if_needed(preloaded) persistence.save_to_file(self.model_file, initalized) def tearDown(self): try: if os.path.isdir(os.path.join("test","tmp")): shutil.rmtree(os.path.join("test","tmp")) except: pass class TestReferences(unittest.TestCase): def setUp(self): events.clear() xnmt.resolved_serialize_params = {} yaml.add_representer(DummyArgClass, xnmt.init_representer) yaml.add_representer(DummyArgClass2, xnmt.init_representer) self.out_dir = os.path.join("test", "tmp") utils.make_parent_dir(os.path.join(self.out_dir, "asdf")) self.model_file = os.path.join(self.out_dir, "saved.mod") param_collections.ParamManager.init_param_col() param_collections.ParamManager.param_col.model_file = self.model_file def test_simple_reference(self): test_obj = yaml.load(""" !DummyArgClass arg1: !DummyArgClass arg1: !DummyArgClass2 { v: some_val } arg2: !DummyArgClass2 { v: some_other_val } arg2: !Ref { path: arg1 } """) preloaded = persistence.YamlPreloader.preload_obj(root=test_obj,exp_name="exp1",exp_dir=self.out_dir) initialized = persistence.initialize_if_needed(preloaded) dump = persistence._dump(initialized) reloaded = yaml.load(dump) if isinstance(reloaded.arg1, persistence.Ref): reloaded.arg1, reloaded.arg2 = reloaded.arg2, reloaded.arg1 self.assertIsInstance(reloaded.arg1, DummyArgClass) self.assertIsInstance(reloaded.arg2, persistence.Ref) self.assertIsInstance(reloaded.arg1.arg1, DummyArgClass2) self.assertIsInstance(reloaded.arg1.arg2, DummyArgClass2) if __name__ == '__main__': unittest.main()
459236
import random import pykka from mopidy.core import listener from mopidy_youtube import logger, youtube from mopidy_youtube.data import extract_video_id, format_video_uri autoplay_enabled = False strict_autoplay = False max_autoplay_length = None autoplayed = [] max_degrees_of_separation = 3 class YouTubeAutoplayer(pykka.ThreadingActor, listener.CoreListener): def __init__(self, config, core): super().__init__() self.config = config self.core = core self.autoplay_enabled = config["youtube"]["autoplay_enabled"] self.strict_autoplay = config["youtube"]["strict_autoplay"] self.max_degrees_of_separation = config["youtube"]["max_degrees_of_separation"] self.max_autoplay_length = config["youtube"]["max_autoplay_length"] self.base_track_id = "" self.degrees_of_separation = 0 # Called by mopidy on start of playback of a URI # This function emulates the youtube autoplay functionality by retrieving the most # most related video to a video just played by a youtube API call, adding this new # video URI to the tracklist # # With the option "strict_autoplay" enabled, the next played URI will be the newly # added video. Without the option "strict_autoplay" enabled [default], the autoplay # functionality will only be executed if the end of the current tracklist is reached # # The autoplay functionality will not work correctly in combination with the repeat # option and is therefore disabled if repeat is enabled def track_playback_started(self, tl_track): if not self.autoplay_enabled: return None [tlTrackId, track] = tl_track if not track.uri.startswith("youtube:") and not track.uri.startswith("yt:"): return None try: tl = self.core.tracklist if tl.get_repeat().get() is True: logger.warn("Autoplayer: will not add tracks when repeat is enabled.") return None if tl.get_random().get() is True: logger.warn( "Autoplayer: shuffle will not work when autoplay is enabled." ) if self.strict_autoplay is False: tlTracks = tl.get_tl_tracks().get() if len(tlTracks) != 0: if tlTrackId is not tlTracks[-1].tlid: logger.debug("Autoplayer: called not at end of track list.") return None elif tl.get_consume().get() is True: logger.warning( "Autoplayer: when having consume track enabled, " 'try with "strict_autoplay" option enabled for ' "better results" ) return None current_track_id = extract_video_id(track.uri) if self.max_degrees_of_separation: if self.degrees_of_separation < self.max_degrees_of_separation: self.degrees_of_separation += 1 logger.debug("incrementing autoplay degrees of separation") else: current_track_id = self.base_track_id self.degrees_of_separation = 0 logger.debug("resetting to autoplay base track id") if current_track_id not in autoplayed: self.base_track_id = current_track_id autoplayed.append(current_track_id) # avoid replaying track self.degrees_of_separation = 0 logger.debug("setting new autoplay base id") current_track = youtube.Video.get(current_track_id) current_track.related_videos related_videos = current_track.related_videos.get() logger.debug( f"autoplayer is adding a track related to {current_track.title.get()}" ) # remove already autoplayed related_videos[:] = [ related_video for related_video in related_videos if related_video.id not in autoplayed ] # remove if track_length is 0 (probably a live video) or None related_videos[:] = [ related_video for related_video in related_videos if related_video.length.get() ] # remove if too long if self.max_autoplay_length: related_videos[:] = [ related_video for related_video in related_videos if related_video.length.get() < self.max_autoplay_length ] if len(related_videos) == 0: logger.warn( f"could not get videos related to" f"{current_track.title.get()}: ending autoplay" ) return None else: next_video = random.choice(related_videos) autoplayed.append(next_video.id) uri = [format_video_uri(next_video.id)] tl.add(uris=uri).get() return None except Exception as e: logger.error('Autoplayer error "%s"', e) return None
459314
import os import platform import tempfile import unittest import urllib from cupy import testing from cupyx.tools import install_library import pytest @testing.parameterize( {'library': 'cudnn'}, {'library': 'cutensor'}, {'library': 'nccl'}, ) class TestInstallLibrary(unittest.TestCase): @testing.slow def test_install(self): system = platform.system() if system == 'Windows' and self.library == 'nccl': pytest.skip('NCCL is only available for Linux') # Try installing library for all supported CUDA versions for rec in install_library.library_records[self.library]: cuda = rec['cuda'] version = rec[self.library] filenames = rec['assets'][system]['filenames'] with tempfile.TemporaryDirectory() as d: install_library.install_lib(cuda, d, self.library) self._check_installed( d, cuda, self.library, version, filenames) def _check_installed(self, prefix, cuda, lib, version, filenames): install_root = os.path.join(prefix, cuda, lib, version) assert os.path.isdir(install_root) for _x, _y, files in os.walk(install_root): for filename in filenames: if filename in files: return pytest.fail('expected file cound not be found') def test_urls(self): assets = [r['assets'] for r in install_library.library_records[self.library]] for asset in assets: for system in asset.keys(): url = asset[system]['url'] with urllib.request.urlopen( urllib.request.Request(url, method='HEAD')) as resp: assert resp.getcode() == 200 def test_main(self): install_library.main( ['--library', self.library, '--action', 'dump', '--cuda', 'null'])
459338
from django.core.management.base import NoArgsCommand, BaseCommand from django.core.mail import send_mail, EmailMessage from optparse import make_option from texas.models import * from datetime import datetime import random import string import time class Command(BaseCommand): args = "<occurrence_id>" help = "Send email blast to purchasers" def handle(self, *args, **options): occurrence_id = args[0] purchases = Purchase.objects.filter(occurrence__id=occurrence_id, status='P').order_by('user__email'); #purchases = purchases.filter(user__email='<EMAIL>') last_email = '' for purchase in purchases: if purchase.user.email == last_email: print 'skip' else: print purchase.user.email event = purchase.occurrence.event site = Site.objects.get(id=settings.SITE_ID) subject = "New Ticketing Hours for %s - Please Read" % event.label from_address = "<EMAIL>" to_address = [purchase.user.email] body = """Just 1 day away from the Fall Burn and I wanted to get some important information out to you. There will be new Ticketing Hours for this burn Thursday 5pm - Friday 3am (CLOSED 3am - 9am) Friday 9am - Saturday 1:30am (CLOSED 1:30am - 9am) Saturday 9am - Saturday 8pm (CLOSED After 8pm till the end of the event) Sunday - CLOSED Monday - CLOSED If you show up during closed hours, you will be asked to leave the site until 9am the following morning. There will be no hanging out in the parking lot during closed hours. As the ticket purchaser it is your responsibility to forward this information on to those you purchased tickets for. Please pass it along to everyone you know who has a ticket. Thank You!""" if False and event.survival_guide: body += """\n\nYour survival guide for the event is attached, please review it at your convenince.""" email = EmailMessage(subject, body, from_address, to_address) if False and event.survival_guide: try: email.attach_file("/srv/django/tickets/static/%s" % (event.survival_guide)) except: pass email.send() time.sleep(1) last_email = purchase.user.email
459346
import matplotlib.pyplot as plt def gantt_chart_plot(JOBS, SCHEDULE, Machine_available, Title): bw = 0.3 plt.figure(figsize=(12, 0.7*(len(JOBS.keys())))) idx = 0 for j in sorted(JOBS.keys()): x = 0 y = JOBS[j]['release'] plt.fill_between([x,y],[idx-bw,idx-bw],[idx+bw,idx+bw], color='cyan', alpha=0.6, label="release constraint") x = SCHEDULE[j]['start'] y = SCHEDULE[j]['finish'] plt.fill_between([x,y],[idx-bw,idx-bw],[idx+bw,idx+bw], color='red', alpha=0.5, label="process interval") plt.plot([x,y,y,x,x], [idx-bw,idx-bw,idx+bw,idx+bw,idx-bw],color='k') plt.text((SCHEDULE[j]['start'] + SCHEDULE[j]['finish'])/2.0,idx, 'Job ' + str(j), color='white', weight='bold', horizontalalignment='center', verticalalignment='center') idx += 1 plt.ylim(-0.5, idx-0.5) plt.title('Job Schedule '+ Title) plt.xlabel('Time') plt.ylabel('Jobs') plt.yticks(range(len(JOBS)), JOBS.keys()) plt.grid() xlim = plt.xlim() # order machine for plotting nicely MACHINES = sorted(set([SCHEDULE[j]['machine'] for j in JOBS.keys()])) plt.figure(figsize=(12, 0.7*len(MACHINES))) for j in sorted(JOBS.keys()): idx = MACHINES.index(SCHEDULE[j]['machine']) x = 0 y = Machine_available[idx] plt.fill_between([x,y],[idx-bw,idx-bw],[idx+bw,idx+bw], color='green', alpha=0.5) x = SCHEDULE[j]['start'] y = SCHEDULE[j]['finish'] plt.fill_between([x,y],[idx-bw,idx-bw],[idx+bw,idx+bw], color='red', alpha=0.5) plt.plot([x,y,y,x,x], [idx-bw,idx-bw,idx+bw,idx+bw,idx-bw],color='k') plt.text((SCHEDULE[j]['start'] + SCHEDULE[j]['finish'])/2.0,idx, 'Job ' + str(j), color='white', weight='bold', horizontalalignment='center', verticalalignment='center') plt.xlim(xlim) plt.ylim(-0.5, len(MACHINES)-0.5) plt.title('Machine Schedule '+ Title) plt.yticks(range(len(MACHINES)), MACHINES) plt.ylabel('Machines') plt.grid() def formulate_jobs_dict(job_ids, release_times, process_intervals, wait_times): job_dict = {} for idx, j_id in enumerate(job_ids): job_dict[j_id] = {} job_dict[j_id]['release'] = release_times[idx] job_dict[j_id]['duration'] = process_intervals[idx] job_dict[j_id]['waiting'] = wait_times[idx] return job_dict def formulate_schedule_dict(job_ids, release_times, process_intervals, wait_times, machine_dispatches): schedule_dict = {} for idx, j_id in enumerate(job_ids): schedule_dict[j_id] = {} schedule_dict[j_id]['start'] = release_times[idx]+wait_times[idx] schedule_dict[j_id]['finish'] = release_times[idx]+process_intervals[idx]+wait_times[idx] schedule_dict[j_id]['machine'] = machine_dispatches[idx] return schedule_dict
459349
import numpy as np import json, os import preprocessors.fft as fft from utils.loader import load_grouped_train_data, load_train_data from utils.config_name_creator import * from sklearn.linear_model import LogisticRegression import cPickle from sklearn.cross_validation import StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn.metrics import log_loss, roc_curve, auc from commons import reshape_data def predict(model, x_test, n_test_examples, n_timesteps): pred_1m = model.predict_proba(x_test)[:, 1] pred_10m = np.reshape(pred_1m, (n_test_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) return pred_10m def cross_validate(subject, data_path, reg_C, random_cv=False): if random_cv: d = load_train_data(data_path,subject) x, y = d['x'], d['y'] skf = StratifiedKFold(y, n_folds=10) else: filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) data_grouped_by_hour = load_grouped_train_data(data_path, subject, filenames_grouped_by_hour) n_preictal, n_interictal = len(data_grouped_by_hour['preictal']), len(data_grouped_by_hour['interictal']) hours_data = data_grouped_by_hour['preictal'] + data_grouped_by_hour['interictal'] hours_labels = np.concatenate((np.ones(n_preictal), np.zeros(n_interictal))) n_folds = n_preictal skf = StratifiedKFold(hours_labels, n_folds=n_folds) preictal_probs, labels = [], [] for train_indexes, valid_indexes in skf: x_train, x_valid = [], [] y_train, y_valid = [], [] for i in train_indexes: x_train.extend(hours_data[i]) y_train.extend(hours_labels[i] * np.ones(len(hours_data[i]))) for i in valid_indexes: x_valid.extend(hours_data[i]) y_valid.extend(hours_labels[i] * np.ones(len(hours_data[i]))) x_train = [x[..., np.newaxis] for x in x_train] x_train = np.concatenate(x_train, axis=3) x_train = np.rollaxis(x_train, axis=3) y_train = np.array(y_train) x_valid = [x[..., np.newaxis] for x in x_valid] x_valid = np.concatenate(x_valid, axis=3) x_valid = np.rollaxis(x_valid, axis=3) y_valid = np.array(y_valid) n_valid_examples = x_valid.shape[0] n_timesteps = x_valid.shape[-1] x_train, y_train = reshape_data(x_train, y_train) data_scaler = StandardScaler() x_train = data_scaler.fit_transform(x_train) logreg = LogisticRegression(C=reg_C) logreg.fit(x_train, y_train) x_valid = reshape_data(x_valid) x_valid = data_scaler.transform(x_valid) p_valid = predict(logreg, x_valid, n_valid_examples, n_timesteps) preictal_probs.extend(p_valid) labels.extend(y_valid) return preictal_probs, labels def run_trainer(): with open('SETTINGS.json') as f: settings_dict = json.load(f) # path data_path = settings_dict['path']['processed_data_path'] + '/' + create_fft_data_name(settings_dict) print data_path if not os.path.exists(data_path): fft.run_fft_preprocessor() subjects = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'] for reg_C in [10000000, 100, 10, 1.0, 0.1, 0.01]: print reg_C all_valid_probs = [] all_valid_y = [] for subject in subjects: p, y = cross_validate(subject, data_path, reg_C=reg_C) all_valid_probs.extend(p) all_valid_y.extend(y) fpr, tpr, _ = roc_curve(all_valid_y, all_valid_probs, pos_label=1) print auc(fpr, tpr) print log_loss(all_valid_y, all_valid_probs) if __name__ == '__main__': run_trainer()
459362
import threading import queue import time class track_cmd(object): """docstring for track""" def __init__(self, _id): super(track_cmd, self).__init__() self.q = queue.Queue() self.stop = True self._msg = {"id": _id, "stat": None} def start(self): self.stop = False # socket thread self.track_thread = threading.Thread(target=self.track_loop) self.track_thread.start() def track_loop(self): while not self.stop: time.sleep(0) try: if not self.q.empty(): msg = self.q.get() if msg is None: self.stop = True else: self._msg = msg except: pass def msg(self): return dict(self._msg) def stat(self): return self._msg["stat"] def complete(self, time_out=0): if time_out > 0: start = time.time() while time.time() <= start + time_out: time.sleep(0) try: stat = self.stat() if any([stat > 1, stat < 0]): break except: pass else: while True: time.sleep(0) try: stat = self.stat() if any([stat > 1, stat < 0]): break except: pass return self.stat()
459365
from typing import Dict, Union import numpy as np from keras import Input, Model from keras.layers import Flatten, Dense, Dropout from numpy import ndarray from pandas import DataFrame from sklearn.base import ClassifierMixin from src.encoding.encoding_parser import EncodingParser from src.predictive_model.models import PredictiveModels class NNClassifier(ClassifierMixin): """ Neural Network classifier, implements the same methods as the sklearn models to make it simple to add """ # noinspection PyTypeChecker def __init__(self, **kwargs: Dict[str, Union[int, str, float]]): """initializes the Neural Network classifier :param kwargs: configuration containing the predictive_model parameters, encoding and training parameters """ self._n_hidden_layers = int(kwargs['n_hidden_layers']) self._n_hidden_units = int(kwargs['n_hidden_units']) self._activation = str(kwargs['activation']) self._n_epochs = int(kwargs['n_epochs']) self._encoding = str(kwargs['encoding']) self._dropout_rate = float(kwargs['dropout_rate']) self._is_binary_classifier = bool(kwargs['is_binary_classifier']) self._encoding_parser = EncodingParser(self._encoding, self._is_binary_classifier, task=PredictiveModels.CLASSIFICATION.value) self._model = None self.classes_ = None # this is set for compatibility reasons def fit(self, train_data: DataFrame, targets: ndarray) -> None: """creates and fits the predictive_model first the encoded data is parsed, then the predictive_model created and then trained :param train_data: encoded training dataset :param targets: encoded target dataset """ targets = DataFrame(targets, columns=['label']) train_data = self._encoding_parser.parse_training_dataset(train_data) targets = self._encoding_parser.parse_targets(targets) self.classes_ = targets.T model_inputs = Input(train_data.shape[1:]) predicted = model_inputs if self._encoding in ['simpleIndex', 'complex', 'lastPayload']: predicted = Flatten()(predicted) for _ in range(self._n_hidden_layers): predicted = Dense(self._n_hidden_units, activation=self._activation)(predicted) predicted = Dropout(self._dropout_rate)(predicted) if self._is_binary_classifier: predicted = Dense(1, activation='sigmoid')(predicted) else: predicted = Dense(targets.shape[1], activation='softmax')(predicted) self._model = Model(model_inputs, predicted) if self._is_binary_classifier: self._model.compile(loss='binary_crossentropy', optimizer='adam') else: self._model.compile(loss='categorical_crossentropy', optimizer='adam') self._model.fit(train_data, targets, epochs=self._n_epochs) def predict(self, test_data: DataFrame) -> ndarray: """returns predictive_model predictions parses the encoded test dataset, then returns the predictive_model predictions :param test_data: encoded test dataset :return: predictive_model predictions """ test_data = self._encoding_parser.parse_testing_dataset(test_data) predictions = self._model.predict(test_data) if self._is_binary_classifier: predictions = predictions.astype(bool) else: predictions = np.argmax(predictions, -1) return predictions def predict_proba(self, test_data: DataFrame) -> ndarray: """returns the classification probability parses the test dataset and returns the raw prediction probabilities of the predictive_model :param test_data: encoded test dataset :return: predictive_model prediction probabilities """ test_data = self._encoding_parser.parse_testing_dataset(test_data) predictions = self._model.predict(test_data) if self._is_binary_classifier: predictions = np.max(predictions, -1) predictions = np.vstack((1 - predictions, predictions)).T return predictions def reset(self) -> None: """ placeholder to allow use with other sklearn algorithms """
459375
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from commcare_cloud.commands.command_base import CommandBase class TestEnvironments(CommandBase): command = 'test-environments' help = "Run test environments" def run(self, args, unknown_args): import nose nose.runmodule('commcare_cloud.manage_commcare_cloud', argv=['manage-commcare-cloud', '-v'])
459385
from __future__ import absolute_import from django import forms from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.utils.translation import ugettext_lazy as _ from sentry import features, roles from sentry.models import ( AuditLogEntry, AuditLogEntryEvent, Organization, OrganizationMember, OrganizationMemberTeam ) from sentry.web.frontend.base import BaseView class NewOrganizationForm(forms.ModelForm): name = forms.CharField(label=_('Organization Name'), max_length=200, widget=forms.TextInput(attrs={'placeholder': _('My Company')})) class Meta: fields = ('name',) model = Organization class CreateOrganizationView(BaseView): def get_form(self, request): return NewOrganizationForm(request.POST or None) def has_permission(self, request): return features.has('organizations:create', actor=request.user) def handle(self, request): form = self.get_form(request) if form.is_valid(): org = form.save() om = OrganizationMember.objects.create( organization=org, user=request.user, role=roles.get_top_dog().id, ) team = org.team_set.create( name=org.name, ) OrganizationMemberTeam.objects.create( team=team, organizationmember=om, is_active=True ) AuditLogEntry.objects.create( organization=org, actor=request.user, ip_address=request.META['REMOTE_ADDR'], target_object=org.id, event=AuditLogEntryEvent.ORG_ADD, data=org.get_audit_log_data(), ) url = reverse('sentry-create-project', args=[org.slug]) return HttpResponseRedirect('{}?team={}'.format(url, team.slug)) context = { 'form': form, } return self.respond('sentry/create-organization.html', context)
459392
from sqlalchemy.inspection import inspect from .config import ALLOWED_METHODS class Model(object): __pks__ = None __url__ = None __cols__ = None __rels__ = None __table__ = None __hidden__ = [] __version__ = '1' __description__ = None __methods__ = ALLOWED_METHODS collection_suffix = 'List' def __str__(self): """ :return: (str) primary key value """ return str(getattr(self, self.primary_key_field())) @classmethod def _load_columns(cls): """ """ cls.__pks__ = [] cls.__cols__ = {} for i in cls.__dict__: if not (i.startswith('_') or i in cls.__hidden__): col = getattr(cls, i) try: if col.primary_key: cls.__pks__.append(i) cls.__cols__[i] = col except AttributeError: pass @classmethod def _load_related(cls, **kwargs): """ """ cls.__rels__ = {} for r in inspect(cls).relationships: try: rel = r.argument.class_ except AttributeError: rel = r.argument key = rel.__name__ columns = rel().columns() instance = getattr(cls, r.key) cls.__rels__.update({key: dict(instance=instance, columns=columns)}) @classmethod def columns(cls): """ :return: """ if cls.__cols__ is None: cls._load_columns() return cls.__cols__ @classmethod def required(cls): """ :return: """ columns = [] for col, c in cls.columns().items(): if not (c.nullable or c.primary_key) or (c.primary_key and not c.autoincrement): columns.append(col) return columns @classmethod def searchable(cls): """ :return: """ columns = [] for col, c in cls.columns().items(): if c.type.python_type is str: columns.append(col) return columns @classmethod def optional(cls): """ :return: """ columns = [] for col, c in cls.columns().items(): if c.nullable: columns.append(col) return columns @classmethod def primary_key_field(cls): """ :return: """ if cls.__pks__ is None: cls._load_columns() return cls.__pks__[0] @classmethod def related(cls, name=None, **kwargs): """ :param name: :return: """ if not cls.__rels__: cls._load_related(**kwargs) if name is None: return cls.__rels__ for k in cls.__rels__.keys(): if k == name: return cls.__rels__.get(k).get('instance'), \ cls.__rels__.get(k).get('columns') return None, None @classmethod def submodel_from_url(cls, url): """ :param url: :return: """ for r in inspect(cls).relationships: try: rel = r.argument.class_ except AttributeError: rel = r.argument if rel.__url__ == url: return rel @classmethod def validate(cls, data): """ :param data: """ fields = cls.required() + cls.optional() unknown = [k for k in data if k not in fields] missing = list(set(cls.required()) - set(data.keys())) return missing if len(missing) else None, unknown if len(unknown) else None @classmethod def description(cls): """ :return: """ related = {} fields = [] for r in inspect(cls).relationships: try: rel = r.argument.class_ except AttributeError: rel = r.argument related.update({rel.__name__: rel.__url__}) for col, c in cls.columns().items(): fields.append(dict( name=col, type=c.type.python_type.__name__, key=c.primary_key, nullable=c.nullable, unique=c.unique, description=c.comment )) return dict( url=cls.__url__, name=cls.__name__, methods=list(cls.__methods__), description=cls.__description__ or cls.__table__.comment, related=related, fields=fields ) def to_dict(self, links=False): """ :param links: :return: """ resp = {} data = self if isinstance(self, dict) else self.__dict__ for k, v in data.items(): if k.startswith('_') or k in self.__hidden__: continue if isinstance(v, Model): resp.update({v.__class__.__name__: v.to_dict(links)}) elif isinstance(v, list): if len(v) > 0: name = v[0].__class__.__name__ + self.collection_suffix resp.update({name: [i.to_dict(links) for i in v]}) else: resp.update({k: v}) if links: resp['_links'] = self.links() return resp def links(self): """ :return: """ link_dict = dict(self=self.resource_uri()) for r in inspect(self.__class__).relationships: try: key = r.argument.class_.__name__ url = r.argument.class_.__url__ except AttributeError: key = r.argument.__name__ url = r.argument.__url__ link_dict[key] = "{}{}".format(self.resource_uri(), url) return link_dict def resource_uri(self): """ :return: """ pk = getattr(self, self.primary_key_field()) return "{}/{}".format(self.__url__, pk) if pk else None def update(self, attributes): """ :param attributes: :return: """ for attr, val in attributes.items(): if attr in self.columns().keys(): setattr(self, attr, val) return self
459421
import sys import os import glob import re import gzip import click import numpy as np import csv from collections import defaultdict import logging from typing import * import velocyto as vcy from ._run import _run logging.basicConfig(stream=sys.stdout, format='%(asctime)s - %(levelname)s - %(message)s', level=logging.DEBUG) @click.command(short_help="Runs the velocity analysis for a Chromium Sample") @click.argument("samplefolder", type=click.Path(exists=True, file_okay=False, dir_okay=True, readable=True, writable=True, resolve_path=True)) @click.argument("gtffile", type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True)) @click.option("--metadatatable", "-s", help="Table containing metadata of the various samples (csv fortmated rows are samples and cols are entries)", default=None, type=click.Path(resolve_path=True, file_okay=True, dir_okay=False, readable=True)) @click.option("--mask", "-m", help=".gtf file containing intervals to mask", default=None, type=click.Path(resolve_path=True, file_okay=True, dir_okay=False, readable=True)) @click.option("--logic", "-l", help="The logic to use for the filtering (default: Default)", default="Default") @click.option("--multimap", "-M", help="""Consider not unique mappings (not reccomended)""", default=False, is_flag=True) @click.option("--samtools-threads", "-@", help="The number of threads to use to sort the bam by cellID file using samtools", default=16) @click.option("--samtools-memory", help="The number of MB used for every thread by samtools to sort the bam file", default=2048) @click.option("--dtype", "-t", help="The dtype of the loom file layers - if more than 6000 molecules/reads per gene per cell are expected set uint32 to avoid truncation (default run_10x: uint16)", default="uint16") @click.option("--dump", "-d", help="For debugging purposes only: it will dump a molecular mapping report to hdf5. --dump N, saves a cell every N cells. If p is prepended a more complete (but huge) pickle report is printed (default: 0)", default="0") @click.option('--verbose', '-v', help="Set the vebosity level: -v (only warinings) -vv (warinings and info) -vvv (warinings, info and debug)", count=True, default=1) def run10x(samplefolder: str, gtffile: str, metadatatable: str, mask: str, logic: str, multimap: bool, samtools_threads: int, samtools_memory: int, dtype: str, dump: str, verbose: str) -> None: """Runs the velocity analysis for a Chromium 10X Sample 10XSAMPLEFOLDER specifies the cellranger sample folder GTFFILE genome annotation file """ # Check that the 10X analysis was run successfully if not os.path.isfile(os.path.join(samplefolder, "_log")): logging.error("This is an older version of cellranger, cannot check if the output are ready, make sure of this yourself") elif "Pipestance completed successfully!" not in open(os.path.join(samplefolder, "_log")).read(): logging.error("The outputs are not ready") bamfile = os.path.join(samplefolder, "outs", "possorted_genome_bam.bam") bcmatches = glob.glob(os.path.join(samplefolder, os.path.normcase("outs/filtered_gene_bc_matrices/*/barcodes.tsv"))) if len(bcmatches) == 0: bcmatches = glob.glob(os.path.join(samplefolder, os.path.normcase("outs/filtered_feature_bc_matrix/barcodes.tsv.gz"))) if len(bcmatches) == 0: logging.error("Can not locate the barcodes.tsv file!") bcfile = bcmatches[0] outputfolder = os.path.join(samplefolder, "velocyto") sampleid = os.path.basename(samplefolder.rstrip("/").rstrip("\\")) assert not os.path.exists(os.path.join(outputfolder, f"{sampleid}.loom")), "The output already exist. Aborted!" additional_ca = {} try: tsne_file = os.path.join(samplefolder, "outs", "analysis", "tsne", "2_components", "projection.csv") if os.path.exists(tsne_file): tsne = np.loadtxt(tsne_file, usecols=(1, 2), delimiter=',', skiprows=1) additional_ca["_X"] = tsne[:, 0].astype('float32') additional_ca["_Y"] = tsne[:, 1].astype('float32') clusters_file = os.path.join(samplefolder, "outs", "analysis", "clustering", "graphclust", "clusters.csv") if os.path.exists(clusters_file): labels = np.loadtxt(clusters_file, usecols=(1, ), delimiter=',', skiprows=1) additional_ca["Clusters"] = labels.astype('int') - 1 except Exception: logging.error("Some IO problem in loading cellranger tsne/pca/kmeans files occurred!") return _run(bamfile=(bamfile, ), gtffile=gtffile, bcfile=bcfile, outputfolder=outputfolder, sampleid=sampleid, metadatatable=metadatatable, repmask=mask, onefilepercell=False, logic=logic, without_umi=False, umi_extension="no", multimap=multimap, test=False, samtools_threads=samtools_threads, samtools_memory=samtools_memory, dump=dump, loom_numeric_dtype=dtype, verbose=verbose, additional_ca=additional_ca)
459436
from torch.nn.modules.loss import _Loss import torch import math import numpy as np from scipy.optimize import linear_sum_assignment import torch.nn.functional as F def loss_calculation( pred_cent, pred_ref,pred_foot_ref, pred_rot, pred_num, pred_mode, target_s,points, w, target_mode): bs = 1 num_p = 1000 points = points.contiguous().view(bs * num_p, 1, 3) # 1000*1*3 input point cloud pred_num = pred_num.contiguous().view(bs * num_p, 3) pred_mode = pred_mode.contiguous().view(bs * num_p, 3) pred_cent = pred_cent.contiguous().view(bs * num_p, 1, 3) pred_ref = pred_ref.contiguous().view(bs * num_p, -1, 3) pred_foot_ref = pred_foot_ref.contiguous().view(bs * num_p, -1, 3) pred_rot = pred_rot.contiguous().view(bs * num_p, -1, 3) pred_rot_foot = pred_rot.view(bs * num_p, -1, 3) target_mode = target_mode.view(-1) target_mode_ = target_mode target_mode = target_mode.view(bs, 1, 1).repeat(1, num_p, 1).view(bs * num_p) target_s = target_s.view(bs, 1, -1, 3).repeat(1, num_p, 1, 1).view(bs * num_p, -1, 3) target_cent = target_s[:, 0, :].view(bs * num_p, -1, 3) target_sym = target_s[:, 1:, :].view(bs * num_p, -1, 3) target_sym_vec = torch.add(target_sym, -target_cent) # 1000,-1 ,3 # target_sym_vec = torch.norm(target_sym_vec,dim=2) target_sym_vec = F.normalize(target_sym_vec,p=2,dim=2) cent_pred = torch.add(points, pred_cent) # 1000,1,3 ref_pred = torch.add(points, pred_ref) ref_foot_pred = torch.add(points, pred_foot_ref) cross_entropy = torch.nn.CrossEntropyLoss() mode_loss = cross_entropy(pred_mode, target_mode) center_loss = torch.mean(torch.norm((cent_pred - target_cent), dim=2), dim=1) # (1000) ######### cost matrix ######### cosine angle of pred norm and target norm mean_pred_ref = torch.mean(pred_ref, dim=0) mean_ref_pred = torch.mean(ref_pred, dim=0) mean_target_vec = torch.mean(target_sym_vec, dim=0) cost_matrix = torch.zeros(mean_pred_ref.shape[0], target_sym_vec.shape[1]) for i in range(mean_pred_ref.shape[0]): for j in range(mean_target_vec.shape[0]): a = mean_pred_ref[i, :].view(1, 3) b = mean_target_vec[j, :].view(3, 1) product = torch.mm(a, b) norm_a = torch.norm(a, dim=1) norm_b = torch.norm(b,dim=0) cost = torch.abs(product / (torch.add(norm_a, 0.00001)*torch.add(norm_b, 0.00001))) cost_matrix[i, j] = torch.acos(cost.reshape(-1)) ###### optimal assiment ###### min cost for each point is the point-wise solusion row_id_, col_id_ = linear_sum_assignment(cost_matrix.detach().numpy()) if mean_target_vec.shape[0] >1: corr = np.array([row_id_,col_id_]).T ordered_id = corr[corr[:,1].argsort()] row_id = ordered_id[:,0] col_id = ordered_id[:,1] else : row_id = row_id_ col_id = col_id_ ref_out = ref_pred[:, row_id, :] ref_out_vec = pred_ref[:, row_id, :] ref_out_foot = ref_foot_pred[:, row_id, :] ref_out_vec_foot = pred_foot_ref[:, row_id, :] target_id = label_trans(torch.tensor(row_id)).cuda().float() target_ref = ref_pt(points, target_cent, target_sym_vec)[:, col_id, :].cuda() target_foot_ref = points + 0.5*(target_ref-points) target_sym_vec_orderd = target_sym_vec[:,col_id,:] id_loss = torch.nn.BCELoss() mean_pred_num = torch.mean(pred_num, dim=0) num_loss = id_loss(mean_pred_num, target_id) # (1) ref_loss = 0 ref_foot_loss = 0 ref_co_loss = 0 rot_foot_loss = 0 rot_co_loss = 0 if target_mode_ != 0: rot_foot_pred = torch.add(points, pred_rot_foot)#1000,1,3 point_to_cent = torch.add(-points, target_cent)#1000,1,3 product = torch.bmm(target_sym_vec.view(1000,1,3), point_to_cent.view(1000,3,1)).view(1000) cos = product / ( torch.norm(point_to_cent.view(1000, 3), dim=1) * torch.norm(target_sym_vec.view(1000,3), dim=1)+0.00001).view(1000) point_to_cent_nom = torch.norm(point_to_cent.view(1000,3), dim=1) cent_to_foot = (-point_to_cent_nom * cos).view(1000,1).repeat(1,3)*(target_sym_vec.view(1000,3)) target_rot_foot = target_cent + cent_to_foot.view(1000,1,3) rot_foot_loss = torch.mean(torch.norm(target_rot_foot - rot_foot_pred, dim=2), dim=1).cuda() #0.1 pt_to_foot = rot_foot_pred - points rot_co_loss = torch.mean(torch.bmm(pt_to_foot.view(1000,1,3), cent_to_foot.view(1000,3,1)).view(-1)).cuda()**(2)#0.001 if target_mode_ != 1: ref_out_len = torch.norm(ref_out_vec, dim=2) ref_distance = torch.norm((ref_out - target_ref), dim=2) ref_loss = torch.mean(torch.div(ref_distance, ref_out_len+0.00001), dim=1).cuda() ref_foot_loss = torch.mean(torch.norm(ref_out_foot - target_foot_ref, dim=2), dim=1).cuda()#0.1 ref_co_loss = torch.mean(torch.mean(torch.norm(ref_out_vec_foot * 2 - pred_ref[:, row_id, :], dim=2), dim=1)).cuda()**(2)#0.1 #######caculate angle error if target_mode_ == 1: pred_axis = cent_pred.view(1000,3) - rot_foot_pred.view(1000,3) best_norm = F.normalize(pred_axis,p=2,dim=1).view(1000,1,3) target_norm = target_sym_vec_orderd[0, :].view(1, 3, 1).repeat(1000,1,1) products = torch.abs(torch.bmm(best_norm, target_norm)) else: best_ref = torch.mean(ref_out_vec, dim=0) products = torch.zeros(best_ref.shape[0]) for i in range(best_ref.shape[0]): best_norm = best_ref[i, :].view(1, 3).cuda() target_norm = target_sym_vec_orderd[0, i, :].view(3, 1) product = torch.abs(torch.mm(best_norm, target_norm) / ( torch.norm(best_norm, dim=1) * torch.norm(target_norm.contiguous().transpose(1, 0), dim=1))+0.00001) products[i] = product dis = torch.mean(w * center_loss + ref_loss + ref_foot_loss + rot_foot_loss, dim=0) loss = dis + 2 * num_loss + mode_loss + w * 0.5*ref_co_loss + 0.5* w * rot_co_loss center_dis = torch.mean(center_loss.view(bs, num_p), dim=1) ref_dis = dis angle_error = torch.mean(torch.acos(products) / math.pi * 180) error_num = torch.mean(num_loss) error_mode = torch.mean(mode_loss) return loss, loss, center_dis.data.cpu(), ref_dis, angle_error, error_num.data.cpu(), error_mode.cpu() def ref_pt(pt, cent, sym_vect): pt_pred = torch.zeros(sym_vect.shape) for i in range(sym_vect.shape[1]): center = cent.view(1000,3,1) norm = sym_vect[:, i, :].view(1000,1,3) d = -torch.bmm(norm,center) pt_ = pt-2*(torch.bmm(norm, pt.view(1000,3,1)) + d)*norm pt_pred[:, i, :] = pt_.view(1000,3) return pt_pred def label_trans(input): if input.shape[0] == 3: label = torch.tensor([1, 1, 1]) elif input.shape[0] == 2: if input.equal(torch.tensor([0, 1])) or input.equal(torch.tensor([1, 0])): label = torch.tensor([1, 1, 0]) if input.equal(torch.tensor([0, 2])) or input.equal(torch.tensor([2, 0])): label = torch.tensor([1, 0, 1]) if input.equal(torch.tensor([1, 2])) or input.equal(torch.tensor([2, 1])): label = torch.tensor([0, 1, 1]) else: #input.shape[0] == 1: if input.equal(torch.tensor([0])): label = torch.tensor([1, 0, 0]) if input.equal(torch.tensor([1])): label = torch.tensor([0, 1, 0]) if input.equal(torch.tensor([2])): label = torch.tensor([0, 0, 1]) else: try: return label except Exception as e: print(e.args) print(input) return label class Loss(_Loss): def __init__(self, num_points_mesh): super(Loss, self).__init__(True) self.num_pt_mesh = num_points_mesh def forward(self, pred_cent, pred_ref, pred_foot_ref, pred_rot,pred_num, pred_mode, target_s, points, w, target_mode): return loss_calculation(pred_cent, pred_ref, pred_foot_ref, pred_rot,pred_num, pred_mode, target_s, points, w, target_mode)
459472
from configuration.utils import get_connection_helper_from_env class Config: connection_helper = get_connection_helper_from_env()
459481
import os import pytest from plio.io.io_controlnetwork import to_isis from plio.io.io_controlnetwork import write_filelist from autocnet.examples import get_path from autocnet.matcher.suppression_funcs import error from autocnet.graph.network import CandidateGraph import pandas as pd import numpy as np @pytest.mark.xfail class TestTwoImageMatching(): """ Feature: As a user I wish to automatically match two images to Generate an ISIS control network Scenario: Match two images Given a manually specified adjacency structure named two_image_adjacency.json When read create an adjacency graph Then extract image data and attribute nodes And find features and descriptors And apply a FLANN matcher Then create a C object from the graph matches Then output a control network """ def setUp(self): self.serial_numbers = {'AS15-M-0295_SML.png': '1971-07-31T01:24:11.754', 'AS15-M-0296_SML.png': '1971-07-31T01:24:36.970', 'AS15-M-0297_SML.png': '1971-07-31T01:25:02.243', 'AS15-M-0298_SML.png': '1971-07-31T01:25:27.457', 'AS15-M-0299_SML.png': '1971-07-31T01:25:52.669', 'AS15-M-0300_SML.png': '1971-07-31T01:26:17.923'} for k, v in self.serial_numbers.items(): self.serial_numbers[k] = 'APOLLO15/METRIC/{}'.format(v) @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.filterwarnings('ignore::RuntimeWarning') def test_two_image(self): # Step: Create an adjacency graph adjacency = get_path('two_image_adjacency.json') basepath = get_path('Apollo15') cg = CandidateGraph.from_adjacency(adjacency, basepath=basepath) assert 2 == cg.number_of_nodes() assert 1 == cg.number_of_edges() # Step: Extract image data and attribute nodes cg.extract_features(extractor_method='vlfeat') for i, node in cg.nodes.data('data'): assert node.nkeypoints in range(4000, 6000) # Step: Compute the coverage ratios for i, node in cg.nodes.data('data'): ratio = node.coverage() assert 0.98 < round(ratio, 8) < 0.99 cg.decompose_and_match(k=2, maxiteration=2) assert isinstance(cg.edges[0,1]['data'].smembership, np.ndarray) # Create fundamental matrix cg.compute_fundamental_matrices() for s, d, e in cg.edges.data('data'): assert isinstance(e.fundamental_matrix, np.ndarray) e.compute_fundamental_error(clean_keys=['fundamental']) assert 'fundamental_equality' in e.costs.columns matches, _ = e.clean(clean_keys=['fundamental']) # Apply AMNS cg.suppress(k=30, xkey='x', ykey='y', suppression_func=error) # Step: Compute subpixel offsets for candidate points cg.subpixel_register(clean_keys=['suppression']) def tearDown(self): try: os.remove('TestTwoImageMatching.net') os.remove('fromlist.lis') except: pass
459486
import struct, sys import dfu, device_platform class ExecConfig: def __init__(self, info, aes_crypto_cmd): self.info = info self.aes_crypto_cmd = aes_crypto_cmd def match(self, info): return info == self.info[0].ljust(0x40, '\0') + self.info[1].ljust(0x40, '\0') + self.info[2].ljust(0x80, '\0') configs = [ ExecConfig(('SecureROM for s5l8947xsi, Copyright 2011, Apple Inc.', 'RELEASE', 'iBoot-1458.2'), aes_crypto_cmd=0x7060+1), ExecConfig(('SecureROM for s5l8950xsi, Copyright 2011, Apple Inc.', 'RELEASE', 'iBoot-1145.3'), aes_crypto_cmd=0x7300+1), ExecConfig(('SecureROM for s5l8955xsi, Copyright 2011, Apple Inc.', 'RELEASE', 'iBoot-1145.3.3'), aes_crypto_cmd=0x7340+1), ExecConfig(('SecureROM for t8002si, Copyright 2007-2014, Apple Inc.', 'ROMRELEASE', 'iBoot-2651.0.0.1.31'), aes_crypto_cmd=0x86DC+1), ExecConfig(('SecureROM for t8004si, Copyright 2007-2014, Apple Inc.', 'ROMRELEASE', 'iBoot-2651.0.0.3.3'), aes_crypto_cmd=0x786C+1), ExecConfig(('SecureROM for s5l8960xsi, Copyright 2012, Apple Inc.', 'RELEASE', 'iBoot-1704.10'), aes_crypto_cmd=0x10000B9A8), ExecConfig(('SecureROM for t8010si, Copyright 2007-2015, Apple Inc.', 'ROMRELEASE', 'iBoot-2696.0.0.1.33'), aes_crypto_cmd=0x10000C8F4), ExecConfig(('SecureROM for t8011si, Copyright 2007-2015, Apple Inc.', 'ROMRELEASE', 'iBoot-3135.0.0.2.3'), aes_crypto_cmd=0x10000C994), ExecConfig(('SecureROM for t8015si, Copyright 2007-2016, Apple Inc.', 'ROMRELEASE', 'iBoot-3332.0.0.1.23'), aes_crypto_cmd=0x100009E9C), ] EXEC_MAGIC = 'execexec'[::-1] DONE_MAGIC = 'donedone'[::-1] MEMC_MAGIC = 'memcmemc'[::-1] MEMS_MAGIC = 'memsmems'[::-1] USB_READ_LIMIT = 0x8000 CMD_TIMEOUT = 5000 AES_BLOCK_SIZE = 16 AES_ENCRYPT = 16 AES_DECRYPT = 17 AES_GID_KEY = 0x20000200 AES_UID_KEY = 0x20000201 class PwnedUSBDevice(): def memset(self, address, c, length): self.command(self.cmd_memset(address, c, length), 0) def memcpy(self, dest, src, length): self.command(self.cmd_memcpy(dest, src, length), 0) def read_memory_ptr(self, address): return struct.unpack('<%s' % self.cmd_arg_type(), self.read_memory(address, self.cmd_arg_size()))[0] def read_memory_uint8(self, address): return struct.unpack('<B', self.read_memory(address, 1))[0] def read_memory_uint16(self, address): return struct.unpack('<H', self.read_memory(address, 2))[0] def read_memory_uint32(self, address): return struct.unpack('<I', self.read_memory(address, 4))[0] def read_memory_uint64(self, address): return struct.unpack('<Q', self.read_memory(address, 8))[0] def write_memory(self, address, data): self.command(self.cmd_memcpy(address, self.cmd_data_address(3), len(data)) + data, 0) def write_memory_ptr(self, address, value): self.write_memory(address, struct.pack('<%s' % self.cmd_arg_type(), value)) def write_memory_uint8(self, address, value): self.write_memory(address, struct.pack('<B', value)) def write_memory_uint16(self, address, value): self.write_memory(address, struct.pack('<H', value)) def write_memory_uint32(self, address, value): self.write_memory(address, struct.pack('<I', value)) def write_memory_uint64(self, address, value): self.write_memory(address, struct.pack('<Q', value)) def cmd_arg_type(self): return 'Q' if self.platform.arch == 'arm64' else 'I' def cmd_arg_size(self): return 8 if self.platform.arch == 'arm64' else 4 def cmd_data_offset(self, index): return 16 + index * self.cmd_arg_size() def cmd_data_address(self, index): return self.load_base() + self.cmd_data_offset(index) def cmd_memcpy(self, dest, src, length): return struct.pack('<8s8x3%s' % self.cmd_arg_type(), MEMC_MAGIC, dest, src, length) def cmd_memset(self, address, c, length): return struct.pack('<8s8x3%s' % self.cmd_arg_type(), MEMS_MAGIC, address, c, length) def load_base(self): if 'SRTG:' in self.serial_number: return self.platform.dfu_image_base else: return self.platform.dfu_load_base def image_base(self): if 'SRTG:' in self.serial_number: return self.platform.rom_base else: return self.platform.dfu_image_base def usb_serial_number(self, key): for pair in self.serial_number.split(' '): if pair.startswith(key + ':'): k,v = pair.split(':') if v[0] == '[' and v[-1] == ']': return v[1:-1] else: return int(v, 16) return None def aes(self, data, action, key): assert len(data) % AES_BLOCK_SIZE == 0 (retval, received) = self.execute(len(data), self.config.aes_crypto_cmd, action, self.cmd_data_address(7), self.cmd_data_address(0), len(data), key, 0, 0, data) assert retval & 0xFFFFFFFF == 0 return received[:len(data)] def read_memory(self, address, length): data = str() while len(data) < length: part_length = min(length - len(data), USB_READ_LIMIT - self.cmd_data_offset(0)) response = self.command(self.cmd_memcpy(self.cmd_data_address(0), address + len(data), part_length), self.cmd_data_offset(0) + part_length) assert response[:8] == DONE_MAGIC data += response[self.cmd_data_offset(0):] return data def command(self, request_data, response_length): assert 0 <= response_length <= USB_READ_LIMIT device = dfu.acquire_device() assert self.serial_number == device.serial_number dfu.send_data(device, '\0' * 16) device.ctrl_transfer(0x21, 1, 0, 0, 0, 100) device.ctrl_transfer(0xA1, 3, 0, 0, 6, 100) device.ctrl_transfer(0xA1, 3, 0, 0, 6, 100) dfu.send_data(device, request_data) # HACK if response_length == 0: response = device.ctrl_transfer(0xA1, 2, 0xFFFF, 0, response_length + 1, CMD_TIMEOUT).tostring()[1:] else: response = device.ctrl_transfer(0xA1, 2, 0xFFFF, 0, response_length, CMD_TIMEOUT).tostring() dfu.release_device(device) assert len(response) == response_length return response def execute(self, response_length, *args): cmd = str() for i in range(len(args)): if isinstance(args[i], (int, long)): cmd += struct.pack('<%s' % self.cmd_arg_type(), args[i]) elif isinstance(args[i], basestring) and i == len(args) - 1: cmd += args[i] else: print 'ERROR: usbexec.execute: invalid argument at position %s' % i sys.exit(1) if i == 0 and self.platform.arch != 'arm64': cmd += '\0' * 4 response = self.command(EXEC_MAGIC + cmd, self.cmd_data_offset(0) + response_length) done, retval = struct.unpack('<8sQ', response[:self.cmd_data_offset(0)]) assert done == DONE_MAGIC return retval, response[self.cmd_data_offset(0):] def __init__(self): self.config = None self.platform = None device = dfu.acquire_device() self.serial_number = device.serial_number dfu.release_device(device) for dp in device_platform.all_platforms: if self.serial_number.startswith('CPID:%04x CPRV:%02x ' % (dp.cpid, dp.cprv)): self.platform = dp break if self.platform is None: print self.serial_number print 'ERROR: No matching usbexec.platform found for this device.' sys.exit(1) info = self.read_memory(self.image_base() + 0x200, 0x100) for config in configs: if config.match(info): self.config = config break if self.config is None: print info print 'ERROR: No matching usbexec.config found for this image.' sys.exit(1)
459488
import json import logging import random import sys import deterministic_network import member_replicated import client from statemachine import sequence_generator import BaseHTTPServer from SimpleHTTPServer import SimpleHTTPRequestHandler class TimeLogger(logging.Logger): def makeRecord(self, name, lvl, fn, lno, msg, args, exc_info, func=None, extra=None): extra = extra or {} extra['simtime'] = self.network.now return logging.Logger.makeRecord(self, name, lvl, fn, lno, msg, args, exc_info, func=func, extra=extra) def status_json(request, network): rv = {} for node_name, node in network.nodes.iteritems(): nrv = rv[node_name] = {} for n in dir(node): if not (n.startswith('leader_') or n.startswith('acceptor_') or n.startswith('replica_')): continue v = getattr(node, n) if callable(v): continue if n == 'leader_scout': if v: v = {'scout_id': v.scout_id, 'scout_ballot_num': v.scout_ballot_num} if n == 'acceptor_accepted': v = sorted(v.iteritems()) if n == 'leader_commanders': continue nrv[n] = v request.send_response(200) request.send_header('Content-Type', 'text/json') request.end_headers() request.wfile.write(json.dumps(rv, sort_keys=True, indent=4, separators=(',', ': '))) import string def run_monitor_web(network): class HandlerClass(SimpleHTTPRequestHandler): protocol_version = 'HTTP/1.0' def log_request(self, *args, **kwargs): pass def do_GET(self): if self.path == '/status': return status_json(self, network) elif self.path == '/': self.path = '/index.html' return SimpleHTTPRequestHandler.do_GET(self) httpd = BaseHTTPServer.HTTPServer(('', 8010), HandlerClass) import threading thd = threading.Thread(target=httpd.serve_forever) thd.setDaemon(1) thd.start() if __name__ == "__main__": if len(sys.argv) == 1: rndseed = random.randint(0, sys.maxint) pause = False else: rndseed = int(sys.argv[1]) pause = True print "RANDOM SEED:", rndseed network = deterministic_network.Network(rndseed, pause) logging.basicConfig( format="%(simtime)4.4f - %(name)s - %(message)s", level=logging.DEBUG) logging.setLoggerClass(TimeLogger) TimeLogger.network = network # add the seed seed = member_replicated.ClusterSeed(network.new_node(), initial_state=0) # set up the members members = [member_replicated.ClusterMember(network.new_node(), sequence_generator, peers=[seed.address]) for _ in range(3)] # set up the client client_node = network.new_node() client = client.Client(client_node) # kill and create nodes often def modify(): if not network.rnd.randint(0, 2): # KILL if len(network.nodes) > 5: victim = network.rnd.choice(network.nodes.keys()) if victim != client_node.address: network.nodes[victim].kill() else: # create if len(network.nodes) < 10: node = member_replicated.ClusterMember(network.new_node(), sequence_generator, peers=network.nodes.keys()) node.start() client_node.set_timer(network.rnd.uniform(2.0, 3.0), modify) client_node.set_timer(1.0, modify) # run_monitor_web(network) for member in members: member.start() client.start() network.run()
459494
import sys import gaptrain as gt import autode as ade from autode.wrappers.keywords import GradientKeywords gt.GTConfig.n_cores = 10 idx = int(sys.argv[2]) mol = ade.Molecule(smiles=sys.argv[1]) mol.optimise(method=ade.methods.XTB()) mol.print_xyz_file() system = gt.System(box_size=[50, 50, 50]) system.add_molecules(gt.Molecule(f'{mol.name}.xyz')) for _ in range(3): data, gap = gt.active.train(system, method_name='xtb', max_active_iters=100, temp=500) tau = gt.Tau(configs=[system.configuration() for _ in range(3)], e_lower=0.04336, temp=300) tau.calculate(gap=gap, method_name='xtb') with open(f'{idx}_tau.txt', 'a') as tau_file: print(sum(c.n_evals for c in data), len(data), str(tau), file=tau_file)
459558
from typing import Union, Any, List, Optional import rdflib from . import * class TextPropertyMixin: def from_user(self, value: Any) -> Union[None, rdflib.Literal]: if value is None: return None if not isinstance(value, str): raise TypeError(f'Expecting string, got {type(value)}') return rdflib.Literal(value) def to_user(self, value: Any) -> str: return str(value) class TextSingletonProperty(TextPropertyMixin, SingletonProperty): def __init__(self, property_owner: Any, property_uri: str, lower_bound: int, upper_bound: int, validation_rules: Optional[List] = None, initial_value: Optional[str] = None): super().__init__(property_owner, property_uri, lower_bound, upper_bound, validation_rules) # See https://github.com/SynBioDex/pySBOL3/issues/208 # The empty string is boolean False, so explicitly check for None # so that we don't discard an empty string as an initial value if initial_value is not None: self.set(initial_value) class TextListProperty(TextPropertyMixin, ListProperty): def __init__(self, property_owner: Any, property_uri: str, lower_bound: int, upper_bound: int, validation_rules: Optional[List] = None, initial_value: Optional[str] = None): super().__init__(property_owner, property_uri, lower_bound, upper_bound, validation_rules) if initial_value is not None: self.set(initial_value) def TextProperty(property_owner: Any, property_uri: str, lower_bound: int, upper_bound: Union[int, float], validation_rules: Optional[List] = None, initial_value: Optional[Union[str, List[str]]] = None) -> Property: if upper_bound == 1: return TextSingletonProperty(property_owner, property_uri, lower_bound, upper_bound, validation_rules, initial_value) return TextListProperty(property_owner, property_uri, lower_bound, upper_bound, validation_rules, initial_value)
459563
import pyeapi from getpass import getpass connection = pyeapi.client.connect( transport="https", host="arista8.lasthop.io", username="pyclass", password=getpass(), port="443", ) enable = getpass("Enable: ") device = pyeapi.client.Node(connection, enablepwd=enable) vlan_cfg = device.api("vlans") print(vlan_cfg) """ >>> vlan_cfg <pyeapi.api.vlans.Vlans object at 0x7f3f39eaac88> >>> vlan_cfg.getall() {'1': {'vlan_id': '1', 'name': 'default', 'state': 'active', 'trunk_groups': []}} >>> vlan_cfg.get(1) {'vlan_id': 1, 'name': 'default', 'state': 'active', 'trunk_groups': []} >>> help(vlan_cfg.create) >>> vlan_cfg.create(225) True >>> vlan_cfg.create(226) True >>> vlan_cfg.create(226) True >>> vlan_cfg.create(227) True >>> vlan_cfg.set_name(225, "blue") True >>> vlan_cfg.set_name(226, "red") True >>> vlan_cfg.set_name(227, "orange") True >>> vlan_cfg.getall() {'1': {'vlan_id': '1', 'name': 'default', 'state': 'active', 'trunk_groups': []}, '225': {'vlan_id': '225', 'name': 'blue', 'state': 'active', 'trunk_groups': []}, '226': {'vlan_id': '226', 'name': 'red', 'state': 'active', 'trunk_groups': []}, '227': {'vlan_id': '227', 'name': 'orange', 'state': 'active', 'trunk_groups': []}} """
459566
import numpy from scipy.optimize import curve_fit import matplotlib.pyplot as plt # Define some test data which is close to Gaussian data = numpy.random.normal(size=10000) hist, bin_edges = numpy.histogram(data, density=True) bin_centres = (bin_edges[:-1] + bin_edges[1:])/2 # Define model function to be used to fit to the data above: def gauss(x, *p): A, mu, sigma = p return A*numpy.exp(-(x-mu)**2/(2.*sigma**2)) # p0 is the initial guess for the fitting coefficients (A, mu and sigma above) p0 = [1., 0., 1.] coeff, var_matrix = curve_fit(gauss, bin_centres, hist, p0=p0) # Get the fitted curve hist_fit = gauss(bin_centres, *coeff) plt.plot(bin_centres, hist, label='Test data') plt.plot(bin_centres, hist_fit, label='Fitted data') # Finally, lets get the fitting parameters, i.e. the mean and standard deviation: print 'Fitted mean = ', coeff[1] print 'Fitted standard deviation = ', coeff[2] plt.show()
459624
from SWDErrors import * import time import Adafruit_BBIO.GPIO as GPIO # --- BeagleBoneSWD # Use of BeableBone GPIO to pilot SWD signal # (c) <NAME> - www.disk91.com # # Usage : # GPIO48 is connected to SWD_CLK signal # GPIO60 is connected to SWD_IO signal # # Add in the header of the existing files # from BeagleBoneSWD import * # Modify existing files to use BeagleBoneSWD : # busPirate = PirateSWD("/dev/ttyUSB0") # busPirate = BeagleBoneSWD("") # class BeagleBoneNewSWD: def __init__ (self,notused, vreg): self.SWDIO = "P9_12" self.SWDCK = "P9_15" self.debug = False self.debugFull = False # GPIO 60 - P9_12 sur SWD_IO GPIO.setup(self.SWDIO, GPIO.OUT) GPIO.output(self.SWDIO, GPIO.LOW) #GPIO 48 - P9_15 sur SWD_CLK GPIO.setup(self.SWDCK, GPIO.OUT) GPIO.output(self.SWDCK, GPIO.HIGH) self.sendBytes([0xFF] * 8) self.sendBytes([0x00] * 8) self.sendBytes([0xFF] * 8) self.sendBytes([0x79, 0xE7]) # activate SWD interface self.resyncSWD() def resetBP (self): print "DEBUG : resetBP" def tristatePins (self): print "DEBUG : tristatePins" # this is the fastest port-clearing scheme I could devise def clear (self, more = 0): print "DEBUG : clear" def short_sleep(self): #time.sleep(0.0001) i=0 def readBits (self, count): GPIO.setup(self.SWDIO, GPIO.IN) ret = [] for x in xrange(0, count): GPIO.output(self.SWDCK,GPIO.HIGH) self.short_sleep() GPIO.output(self.SWDCK,GPIO.LOW) if GPIO.input(self.SWDIO): ret.append(1) else: ret.append(0) self.short_sleep() GPIO.setup(self.SWDIO, GPIO.OUT) GPIO.output(self.SWDIO, GPIO.LOW) if self.debug: print "DEBUG - readBits(%d)" % count + "values - %s" %ret return ret def sendBits ( self, bits ): for b in bits: if b == 0 : GPIO.output(self.SWDIO, GPIO.LOW) if self.debugFull: print "DEBUG - writeBits 0" else: GPIO.output(self.SWDIO, GPIO.HIGH) if self.debugFull: print "DEBUG - writeBits 1" GPIO.output(self.SWDCK,GPIO.HIGH) self.short_sleep() GPIO.output(self.SWDCK,GPIO.LOW) self.short_sleep() def skipBits (self, count): if self.debug: print "DEBUG - skipBits(%d)" % count self.readBits (count) def readBytes (self, count): ret = [] for x in xrange(0, count): v = self.readBits(8) k = 0 for i in v: k = 2*k + i ret.append(k); if self.debug: print "DEBUG - readBytes : %s " % ret return ret def sendBytes (self, data): if self.debug: print "DEBUG - sendBytes %s" % data for v in data: db = [int(( v >> y) & 1) for y in range(7,-1, -1)] self.sendBits(db) #self.sendBits(db[::-1]) def resyncSWD (self): self.sendBytes([0xFF] * 8) self.sendBytes([0x00] * 8) def readSWD (self, ap, register): if self.debug: print "DEBUG - readSWD %s " % [calcOpcode(ap, register, True)] # transmit the opcode self.sendBytes([calcOpcode(ap, register, True)]) # check the response ack = self.readBits(3) if ack[0:3] != [1,0,0]: if ack[0:3] == [0,1,0]: raise SWDWaitError(ack[0:3]) elif ack[0:3] == [0,0,1]: raise SWDFaultError(ack[0:3]) else: raise SWDProtocolError(ack[0:3]) # read the next 4 bytes data = [reverseBits(b) for b in self.readBytes(4)] data.reverse() # read the parity bit and turnaround period extra = self.readBits(3) # check the parity if sum([bitCount(x) for x in data[0:4]]) % 2 != extra[0]: raise SWDParityError() # idle clocking to allow transactions to complete self.sendBytes([0x00]) self.sendBytes([0x00]) # return the data return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3] def writeSWD (self, ap, register, data, ignoreACK = False): if self.debug: print "DEBUG - writeSWD %s " % [calcOpcode(ap, register, False)] # transmit the opcode self.sendBytes([calcOpcode(ap, register, False)]) # check the response if required if ignoreACK: self.skipBits(5) else: ack = self.readBits(5) #print ack if ack[0:3] != [1,0,0]: if ack[0:3] == [0,1,0]: raise SWDWaitError(ack[0:3]) elif ack[0:3] == [0,0,1]: raise SWDFaultError(ack[0:3]) else: raise SWDProtocolError(ack[0:3]) # mangle the data endianness payload = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00] payload[0] = reverseBits((data >> 0) & 0xFF) payload[1] = reverseBits((data >> 8) & 0xFF) payload[2] = reverseBits((data >> 16) & 0xFF) payload[3] = reverseBits((data >> 24) & 0xFF) # add the parity bit if sum([bitCount(x) for x in payload[0:4]]) % 2: payload[4] = 0x80 # output the data, idle clocking is on the end of the payload self.sendBytes(payload) def bitCount(int_type): count = 0 while(int_type): int_type &= int_type - 1 count += 1 return(count) def reverseBits (x): a = ((x & 0xAA) >> 1) | ((x & 0x55) << 1) b = ((a & 0xCC) >> 2) | ((a & 0x33) << 2) c = ((b & 0xF0) >> 4) | ((b & 0x0F) << 4) return c def calcOpcode (ap, register, read): opcode = 0x00 opcode = opcode | (0x20 if read else 0x00) opcode = opcode | (0x40 if ap else 0x00) opcode = opcode | ((register & 0x01) << 4) | ((register & 0x02) << 2) opcode = opcode | ((bitCount(opcode) & 1) << 2) opcode = opcode | 0x81 return opcode
459628
import os from winthingies.process import Process from winthingies.win32.kernel32 import kernel32 current_process = kernel32.GetCurrentProcess() CURRENT_PROCESS = Process( os.getpid(), current_process )
459691
import flask from tests.utils import assert_span_http_status_code from . import BaseFlaskTestCase class FlaskErrorhandlerTestCase(BaseFlaskTestCase): def test_default_404_handler(self): """ When making a 404 request And no user defined error handler is defined We create the expected spans """ # Make our 404 request res = self.client.get("/unknown") self.assertEqual(res.status_code, 404) spans = self.get_spans() req_span = self.find_span_by_name(spans, "flask.request") dispatch_span = self.find_span_by_name(spans, "flask.dispatch_request") user_ex_span = self.find_span_by_name(spans, "flask.handle_user_exception") http_ex_span = self.find_span_by_name(spans, "flask.handle_http_exception") # flask.request span self.assertEqual(req_span.error, 0) assert_span_http_status_code(req_span, 404) self.assertIsNone(req_span.get_tag("flask.endpoint")) self.assertIsNone(req_span.get_tag("flask.url_rule")) # flask.dispatch_request span self.assertEqual(dispatch_span.error, 0) self.assertIsNone(dispatch_span.get_tag("error.msg")) self.assertIsNone(dispatch_span.get_tag("error.stack")) self.assertIsNone(dispatch_span.get_tag("error.type")) # flask.handle_user_exception span self.assertEqual(user_ex_span.meta, dict()) self.assertEqual(user_ex_span.error, 0) # flask.handle_http_exception span self.assertEqual(http_ex_span.meta, dict()) self.assertEqual(http_ex_span.error, 0) def test_abort_500(self): """ When making a 500 request And no user defined error handler is defined We create the expected spans """ @self.app.route("/500") def endpoint_500(): flask.abort(500) # Make our 500 request res = self.client.get("/500") self.assertEqual(res.status_code, 500) spans = self.get_spans() req_span = self.find_span_by_name(spans, "flask.request") dispatch_span = self.find_span_by_name(spans, "flask.dispatch_request") endpoint_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.endpoint_500") user_ex_span = self.find_span_by_name(spans, "flask.handle_user_exception") http_ex_span = self.find_span_by_name(spans, "flask.handle_http_exception") # flask.request span self.assertEqual(req_span.error, 1) assert_span_http_status_code(req_span, 500) self.assertEqual(req_span.get_tag("flask.endpoint"), "endpoint_500") self.assertEqual(req_span.get_tag("flask.url_rule"), "/500") # flask.dispatch_request span self.assertEqual(dispatch_span.error, 1) error_msg = dispatch_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("500 Internal Server Error")) error_stack = dispatch_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = dispatch_span.get_tag("error.type") self.assertEqual(error_type, "werkzeug.exceptions.InternalServerError") # tests.contrib.flask.test_errorhandler.endpoint_500 span self.assertEqual(endpoint_span.error, 1) error_msg = endpoint_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("500 Internal Server Error")) error_stack = endpoint_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = endpoint_span.get_tag("error.type") self.assertEqual(error_type, "werkzeug.exceptions.InternalServerError") # flask.handle_user_exception span self.assertEqual(user_ex_span.meta, dict()) self.assertEqual(user_ex_span.error, 0) # flask.handle_http_exception span self.assertEqual(http_ex_span.meta, dict()) self.assertEqual(http_ex_span.error, 0) def test_abort_500_custom_handler(self): """ When making a 500 request And a user defined error handler is defined We create the expected spans """ @self.app.errorhandler(500) def handle_500(e): return "whoops", 200 @self.app.route("/500") def endpoint_500(): flask.abort(500) # Make our 500 request res = self.client.get("/500") self.assertEqual(res.status_code, 200) self.assertEqual(res.data, b"whoops") spans = self.get_spans() req_span = self.find_span_by_name(spans, "flask.request") dispatch_span = self.find_span_by_name(spans, "flask.dispatch_request") endpoint_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.endpoint_500") handler_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.handle_500") user_ex_span = self.find_span_by_name(spans, "flask.handle_user_exception") http_ex_span = self.find_span_by_name(spans, "flask.handle_http_exception") # flask.request span self.assertEqual(req_span.error, 0) assert_span_http_status_code(req_span, 200) self.assertEqual(req_span.get_tag("flask.endpoint"), "endpoint_500") self.assertEqual(req_span.get_tag("flask.url_rule"), "/500") # flask.dispatch_request span self.assertEqual(dispatch_span.error, 1) error_msg = dispatch_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("500 Internal Server Error")) error_stack = dispatch_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = dispatch_span.get_tag("error.type") self.assertEqual(error_type, "werkzeug.exceptions.InternalServerError") # tests.contrib.flask.test_errorhandler.endpoint_500 span self.assertEqual(endpoint_span.error, 1) error_msg = endpoint_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("500 Internal Server Error")) error_stack = endpoint_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = endpoint_span.get_tag("error.type") self.assertEqual(error_type, "werkzeug.exceptions.InternalServerError") # tests.contrib.flask.test_errorhandler.handle_500 span self.assertEqual(handler_span.error, 0) self.assertIsNone(handler_span.get_tag("error.msg")) self.assertIsNone(handler_span.get_tag("error.stack")) self.assertIsNone(handler_span.get_tag("error.type")) # flask.handle_user_exception span self.assertEqual(user_ex_span.meta, dict()) self.assertEqual(user_ex_span.error, 0) # flask.handle_http_exception span self.assertEqual(http_ex_span.meta, dict()) self.assertEqual(http_ex_span.error, 0) def test_raise_user_exception(self): """ When raising a custom user exception And no user defined error handler is defined We create the expected spans """ class FlaskTestException(Exception): pass @self.app.route("/error") def endpoint_error(): raise FlaskTestException("custom error message") # Make our 500 request res = self.client.get("/error") self.assertEqual(res.status_code, 500) spans = self.get_spans() req_span = self.find_span_by_name(spans, "flask.request") dispatch_span = self.find_span_by_name(spans, "flask.dispatch_request") endpoint_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.endpoint_error") user_ex_span = self.find_span_by_name(spans, "flask.handle_user_exception") http_ex_span = self.find_span_by_name(spans, "flask.handle_http_exception", required=False) # flask.request span self.assertEqual(req_span.error, 1) assert_span_http_status_code(req_span, 500) self.assertEqual(req_span.get_tag("flask.endpoint"), "endpoint_error") self.assertEqual(req_span.get_tag("flask.url_rule"), "/error") # flask.dispatch_request span self.assertEqual(dispatch_span.error, 1) error_msg = dispatch_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("custom error message")) error_stack = dispatch_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = dispatch_span.get_tag("error.type") self.assertEqual(error_type, "tests.contrib.flask.test_errorhandler.FlaskTestException") # tests.contrib.flask.test_errorhandler.endpoint_500 span self.assertEqual(endpoint_span.error, 1) error_msg = endpoint_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("custom error message")) error_stack = endpoint_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = endpoint_span.get_tag("error.type") self.assertEqual(error_type, "tests.contrib.flask.test_errorhandler.FlaskTestException") # flask.handle_user_exception span self.assertEqual(user_ex_span.error, 1) error_msg = user_ex_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("custom error message")) error_stack = user_ex_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = user_ex_span.get_tag("error.type") self.assertEqual(error_type, "tests.contrib.flask.test_errorhandler.FlaskTestException") # flask.handle_http_exception span self.assertIsNone(http_ex_span) def test_raise_user_exception_handler(self): """ When raising a custom user exception And a user defined error handler is defined We create the expected spans """ class FlaskTestException(Exception): pass @self.app.errorhandler(FlaskTestException) def handle_error(e): return "whoops", 200 @self.app.route("/error") def endpoint_error(): raise FlaskTestException("custom error message") # Make our 500 request res = self.client.get("/error") self.assertEqual(res.status_code, 200) self.assertEqual(res.data, b"whoops") spans = self.get_spans() req_span = self.find_span_by_name(spans, "flask.request") dispatch_span = self.find_span_by_name(spans, "flask.dispatch_request") endpoint_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.endpoint_error") handler_span = self.find_span_by_name(spans, "tests.contrib.flask.test_errorhandler.handle_error") user_ex_span = self.find_span_by_name(spans, "flask.handle_user_exception") http_ex_span = self.find_span_by_name(spans, "flask.handle_http_exception", required=False) # flask.request span self.assertEqual(req_span.error, 0) assert_span_http_status_code(req_span, 200) self.assertEqual(req_span.get_tag("flask.endpoint"), "endpoint_error") self.assertEqual(req_span.get_tag("flask.url_rule"), "/error") # flask.dispatch_request span self.assertEqual(dispatch_span.error, 1) error_msg = dispatch_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("custom error message")) error_stack = dispatch_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = dispatch_span.get_tag("error.type") self.assertEqual(error_type, "tests.contrib.flask.test_errorhandler.FlaskTestException") # tests.contrib.flask.test_errorhandler.endpoint_500 span self.assertEqual(endpoint_span.error, 1) error_msg = endpoint_span.get_tag("error.msg") self.assertTrue(error_msg.startswith("custom error message")) error_stack = endpoint_span.get_tag("error.stack") self.assertTrue(error_stack.startswith("Traceback (most recent call last):")) error_type = endpoint_span.get_tag("error.type") self.assertEqual(error_type, "tests.contrib.flask.test_errorhandler.FlaskTestException") # tests.contrib.flask.test_errorhandler.handle_error span self.assertEqual(handler_span.error, 0) # flask.handle_user_exception span self.assertEqual(user_ex_span.error, 0) self.assertEqual(user_ex_span.meta, dict()) # flask.handle_http_exception span self.assertIsNone(http_ex_span)
459714
import sys import argparse import importlib import pathlib import os from . import tester from . import j1939 from . import logreader from .errors import Error # Remove once less users are using the old package structure. from . import database as db from .version import __version__ __author__ = '<NAME>' class _ErrorSubparser: def __init__(self, subparser_name, error_message): self.subparser_name = subparser_name self.error_message = error_message def add_subparser(self, subparser_list): err_parser = \ subparser_list.add_parser(self.subparser_name, description = self.error_message) err_parser.add_argument("args", nargs="*") err_parser.set_defaults(func=self._print_error) def _print_error(self, args): raise ImportError(self.error_message) def _load_subparser(subparser_name, subparsers): """Load a subparser for a CLI command in a safe manner. i.e., if the subparser cannot be loaded due to an import error or similar, no exception is raised if another command was invoked on the CLI.""" try: result = importlib.import_module(f'.subparsers.{subparser_name}', package='cantools') result.add_subparser(subparsers) except ImportError as e: result = _ErrorSubparser(subparser_name, f'Command "{subparser_name}" is unavailable: "{e}"') result.add_subparser(subparsers) def _main(): parser = argparse.ArgumentParser( description='Various CAN utilities.', formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument('-d', '--debug', action='store_true') parser.add_argument('--version', action='version', version=__version__, help='Print version information and exit.') # Workaround to make the subparser required in Python 3. subparsers = parser.add_subparsers(title='subcommands', dest='subcommand') subparsers.required = True # load all subparses which have a source file in the cantools # module's 'subparsers' sub-directory subparsers_dir = pathlib.Path(__file__).parent / 'subparsers' for cur_file_name in os.listdir(subparsers_dir): if cur_file_name.startswith('__'): continue if cur_file_name.endswith('.py'): subparser_name = cur_file_name[:-3] _load_subparser(subparser_name, subparsers) elif (subparsers_dir / cur_file_name / "__init__.py").is_file(): subparser_name = cur_file_name _load_subparser(subparser_name, subparsers) args = parser.parse_args() if args.debug: args.func(args) else: try: args.func(args) except BaseException as e: sys.exit('error: ' + str(e))
459750
import sys import re import yaml from collections import defaultdict from os import path from glob import glob # Generate markdown link definitions for all documents in each of the # collections defined in Jekyll configuration. CONFIG_FILE = '_config.yml' DOCUMENT_EXTENSION = 'md' INCLUDE_DIRECTORY = '_includes' def load_config(fn): with open(fn) as f: return yaml.load(f) def collections(): '''Return list of collections defined in CONFIG_FILE.''' conf = load_config(CONFIG_FILE) if 'collections' in conf: return conf['collections'] else: return [] def collection_path(collection): '''Return path for given collection.''' return '_' + collection def documents(collection): '''Return set of documents in given collection.''' cpath = collection_path(collection) qpath = path.join(cpath, '*.' + DOCUMENT_EXTENSION) docs = glob(qpath) return set([path.basename(d) for d in docs]) def slugify(name): # modified from http://stackoverflow.com/q/5574042 #import unicodedata slug = name #slug = unicodedata.normalize('NFKD', slug) slug = slug.encode('ascii', 'ignore') # Note: allow slashes in slugs slug = re.sub(r'[^a-zA-Z0-9/]+', '-', slug).strip('-') slug = re.sub(r'[-]+', '-', slug) # Note: Markdown link definitions are case-insensitive, so lower() # is required to get the correct matches (see # http://daringfireball.net/projects/markdown/syntax#link) slug = slug.lower() return slug def linkdef_names(collection, document): '''Return list of link definition names for collection, document pair.''' root = path.splitext(document)[0] return [slugify(root), slugify(path.join(collection, root))] def select_linkdefs(collection, linked_docs): '''Return list of link definitions for given collection. linked_docs is a map from candidate link definition names to (collection, document pairs.''' # helper for cmp_linked def alpha_prefix(s): '''Return non-empty initial alphabetic prefix of given string, if any, and full string otherwise.''' m = re.match(r'^([a-z]+)', s) if m: return m.group(1) else: return s # sort function for candidates def cmp_linked(a, b): # prioritize exact collection matches, next matches by initial # alphabetic prefix on collection, and finally just sort to # default order. if a[0] == collection: return -1 if b[0] == collection: return 1 if alpha_prefix(a[0]) == alpha_prefix(collection): return -1 if alpha_prefix(b[0]) == alpha_prefix(collection): return 1 return cmp(a, b) selected = {} for l in sorted(linked_docs): candidates = linked_docs[l][:] candidates.sort(cmp_linked) selected[l] = candidates[0] return selected def generate_links(collection, links): generated = [] for name, target in links.items(): dest_coll, dest_doc = target s = '[%s]: ' % name dest_doc = re.sub(r'\.md$', '.html', dest_doc) if collection == dest_doc: # local link s += dest_doc elif collection == '': # non-local to subdir s += path.join(dest_coll, dest_doc) else: # non-local to sister directory s+= path.join('..', dest_coll, dest_doc) generated.append(s) return generated def output_links(collection, links): outfn = path.join(INCLUDE_DIRECTORY, collection + '-links.md') def link_sort(a, b): # sort by number of slashes first, text next return cmp((a.count('/'), a), (b.count('/'), b)) with open(outfn, 'wt') as outf: for l in sorted(links, link_sort): print >> outf, l def process_collections(): collection_documents = {} for c in collections(): collection_documents[c] = documents(c) # map potential link definition names to collection, document # pairs that they may apply to. linked_docs = defaultdict(list) for c in collection_documents: for d in collection_documents[c]: for l in linkdef_names(c, d): linked_docs[l].append((c, d)) linked_docs = dict(linked_docs) # select link definitions for each collection. selected_links = {} for c in collection_documents: selected_links[c] = select_linkdefs(c, linked_docs) # generate link definition strings for each collection generated_links = {} for c in collection_documents: generated_links[c] = generate_links(c, selected_links[c]) # finally, write into include directory for c in collection_documents: output_links(c, generated_links[c]) def main(argv=None): if argv is None: argv = sys.argv process_collections() if __name__ == '__main__': sys.exit(main(sys.argv))
459828
import argparse import os import sys import shutil import subprocess import shlex import signal import athanor from athanor.utils import partial_match class AthanorLauncher: name = "Athanor" root = os.path.abspath(os.path.dirname(athanor.__file__)) startup = os.path.join( os.path.abspath(os.path.dirname(athanor.__file__)), "startup.py" ) game_template = os.path.abspath( os.path.join( os.path.abspath(os.path.dirname(athanor.__file__)), "game_template" ) ) def __init__(self): self.parser = self.create_parser() self.applications = [] self.choices = ["start", "stop", "noop"] self.operations = { "_noop": self.operation_noop, "start": self.operation_start, "stop": self.operation_stop, "_passthru": self.operation_passthru, } self.profile_path = None def create_parser(self): """ Creates an ArgumentParser for this launcher. """ parser = argparse.ArgumentParser( description="BOO", formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument( "--init", nargs=1, action="store", dest="init", metavar="<folder>" ) parser.add_argument( "--app", nargs=1, action="store", dest="app", metavar="<folder>" ) parser.add_argument( "operation", nargs="?", action="store", metavar="<operation>", default="_noop", ) return parser def ensure_running(self, app): """ Checks whether a named app is running. Args: app (str): The name of the appplication being checked. Raises: ValueError (str): If the app is not running. """ pidfile = os.path.join(os.getcwd(), f"{app}.pid") if not os.path.exists(pidfile): raise ValueError(f"Process {app} is not running!") with open(pidfile, "r") as p: if not (pid := int(p.read())): raise ValueError(f"Process pid for {app} corrupted.") try: # This doesn't actually do anything except verify that the process exists. os.kill(pid, 0) except OSError: print(f"Process ID for {app} seems stale. Removing stale pidfile.") os.remove(pidfile) return False return True def ensure_stopped(self, app): """ Checks whether a named app is not running. Args: app (str): The name of the appplication being checked. Raises: ValueError (str): If the app is running. """ pidfile = os.path.join(os.getcwd(), f"{app}.pid") if not os.path.exists(pidfile): return True with open(pidfile, "r") as p: if not (pid := int(p.read())): raise ValueError(f"Process pid for {app} corrupted.") try: os.kill(pid, 0) except OSError: return True return False def set_profile_path(self, args): cur_dir = os.getcwd() if not os.path.exists(os.path.join(cur_dir, "appdata")): raise ValueError(f"Current directory is not a valid {self.name} profile!") self.profile_path = cur_dir def operation_start(self, op, args, unknown): for app in self.applications: if not self.ensure_stopped(app): raise ValueError(f"Process {app} is already running!") for app in self.applications: env = os.environ.copy() env["ATHANOR_PROFILE"] = self.profile_path env["ATHANOR_APPNAME"] = app cmd = f"{sys.executable} {self.startup}" subprocess.Popen(shlex.split(cmd), env=env) def operation_noop(self, op, args, unknown): pass def operation_stop(self, op, args, unknown): for app in self.applications: if not self.ensure_running(app): raise ValueError(f"Process {app} is not running.") for app in self.applications: pidfile = os.path.join(os.getcwd(), f"{app}.pid") with open(pidfile, "r") as p: if not (pid := int(p.read())): raise ValueError(f"Process pid for {app} corrupted.") os.kill(pid, signal.SIGTERM) os.remove(pidfile) print(f"Stopped process {pid} - {app}") def operation_passthru(self, op, args, unknown): """ God only knows what people typed here. Let their program figure it out! Overload this to process the operation. """ raise Exception(f"Unsupported command {op}") def option_init(self, name, un_args): prof_path = os.path.join(os.getcwd(), name) if not os.path.exists(prof_path): shutil.copytree(self.game_template, prof_path) os.rename( os.path.join(prof_path, "gitignore"), os.path.join(prof_path, ".gitignore"), ) print(f"Game Profile created at {prof_path}") else: print(f"Game Profile at {prof_path} already exists!") def run(self): args, unknown_args = self.parser.parse_known_args() option = args.operation.lower() operation = option if option not in self.choices: option = "_passthru" try: if args.init: self.option_init(args.init[0], unknown_args) option = "_noop" operation = "_noop" if option in ["start", "stop", "_passthru"]: # first, ensure we are running this program from the proper directory. self.set_profile_path(args) os.chdir(self.profile_path) # next, insert the new cwd into path. import sys sys.path.insert(0, os.getcwd()) # now we should be able to import appdata! from appdata.config import Launcher l_config = Launcher() l_config.setup() # choose either all apps or a specific app to focus on. if args.app: if not (found := partial_match(args.app[0], l_config.applications)): raise ValueError( f"No registered Athanor application: {args.app[0]}" ) self.applications = [found] else: self.applications = l_config.applications # Find and execute the operation. if not (op_func := self.operations.get(option, None)): raise ValueError(f"No operation: {option}") op_func(operation, args, unknown_args) except Exception as e: import sys import traceback traceback.print_exc(file=sys.stdout) print(f"Something done goofed: {e}")
459830
from functools import partial from .util import ViewTestCase from Tutkain.src import test class TestTest(ViewTestCase): def assertAlwaysYields(self, content, expected, producer): self.set_view_content(content) for n in range(len(content)): self.assertEquals(expected, producer(n), n) def test_current(self): current = partial(test.current, self.view) self.assertAlwaysYields("(deftest foo)", "foo", current) self.assertAlwaysYields("(deftest foo ())", "foo", current) self.assertAlwaysYields("(deftest ^:foo bar)", "bar", current) self.set_view_content("(doseq (deftest ^:foo bar))") self.assertEquals(None, test.current(self.view, 6)) self.assertEquals("bar", test.current(self.view, 7)) self.assertEquals("bar", test.current(self.view, 26)) self.assertEquals(None, test.current(self.view, 27))
459838
from textwrap import dedent from pyexcel.internal.common import get_sheet_headers from pyexcel.internal.generators import SheetStream from pyexcel.plugins.sources.output_to_memory import WriteSheetToMemory from nose.tools import eq_ from pyexcel_io import manager as manager def test_save_to(): file_type = "csv" io = manager.get_io(file_type) g = (i for i in [[1, 2], [3, 4]]) ss = WriteSheetToMemory( file_type=file_type, file_stream=io, lineterminator="\n" ) sheet_stream = SheetStream("test", g) ss.write_data(sheet_stream) content = io.getvalue() expected = dedent( """\ 1,2 3,4 """ ) assert content == expected def test_get_sheet_headers(): data = iter([["a", "b", "c"], [1, 2, 3]]) sheet_stream = SheetStream("test", data) colnames_array = get_sheet_headers(sheet_stream) eq_(colnames_array, ["a", "b", "c"])
459843
import matplotlib as mpl mpl.use('Agg') # noqa import argparse import os import json import pickle import yaml import numpy import hashlib from jinja2 import Environment, FileSystemLoader from ann_benchmarks import results from ann_benchmarks.datasets import get_dataset from ann_benchmarks.plotting.plot_variants import (all_plot_variants as plot_variants) from ann_benchmarks.plotting.metrics import all_metrics as metrics from ann_benchmarks.plotting.utils import (get_plot_label, compute_metrics, compute_all_metrics, create_pointset, create_linestyles) import plot colors = [ "rgba(166,206,227,1)", "rgba(31,120,180,1)", "rgba(178,223,138,1)", "rgba(51,160,44,1)", "rgba(251,154,153,1)", "rgba(227,26,28,1)", "rgba(253,191,111,1)", "rgba(255,127,0,1)", "rgba(202,178,214,1)" ] point_styles = { "o": "circle", "<": "triangle", "*": "star", "x": "cross", "+": "rect", } def convert_color(color): r, g, b, a = color return "rgba(%(r)d, %(g)d, %(b)d, %(a)d)" % { "r": r * 255, "g": g * 255, "b": b * 255, "a": a} def convert_linestyle(ls): new_ls = {} for algo in ls.keys(): algostyle = ls[algo] new_ls[algo] = (convert_color(algostyle[0]), convert_color(algostyle[1]), algostyle[2], point_styles[algostyle[3]]) return new_ls def get_run_desc(properties): return "%(dataset)s_%(count)d_%(distance)s" % properties def get_dataset_from_desc(desc): return desc.split("_")[0] def get_count_from_desc(desc): return desc.split("_")[1] def get_distance_from_desc(desc): return desc.split("_")[2] def get_dataset_label(desc): return "{} (k = {})".format(get_dataset_from_desc(desc), get_count_from_desc(desc)) def directory_path(s): if not os.path.isdir(s): raise argparse.ArgumentTypeError("'%s' is not a directory" % s) return s + "/" def prepare_data(data, xn, yn): """Change format from (algo, instance, dict) to (algo, instance, x, y).""" res = [] for algo, algo_name, result in data: res.append((algo, algo_name, result[xn], result[yn])) return res parser = argparse.ArgumentParser() parser.add_argument( '--plottype', help='Generate only the plots specified', nargs='*', choices=plot_variants.keys(), default=plot_variants.keys()) parser.add_argument( '--outputdir', help='Select output directory', default='.', type=directory_path, action='store') parser.add_argument( '--latex', help='generates latex code for each plot', action='store_true') parser.add_argument( '--scatter', help='create scatterplot for data', action='store_true') parser.add_argument( '--recompute', help='Clears the cache and recomputes the metrics', action='store_true') args = parser.parse_args() def get_lines(all_data, xn, yn, render_all_points): """ For each algorithm run on a dataset, obtain its performance curve coords.""" plot_data = [] for algo in sorted(all_data.keys(), key=lambda x: x.lower()): xs, ys, ls, axs, ays, als = \ create_pointset(prepare_data(all_data[algo], xn, yn), xn, yn) if render_all_points: xs, ys, ls = axs, ays, als plot_data.append({"name": algo, "coords": zip(xs, ys), "labels": ls, "scatter": render_all_points}) return plot_data def create_plot(all_data, xn, yn, linestyle, j2_env, additional_label="", plottype="line"): xm, ym = (metrics[xn], metrics[yn]) render_all_points = plottype == "bubble" plot_data = get_lines(all_data, xn, yn, render_all_points) latex_code = j2_env.get_template("latex.template").\ render(plot_data=plot_data, caption=get_plot_label(xm, ym), xlabel=xm["description"], ylabel=ym["description"]) plot_data = get_lines(all_data, xn, yn, render_all_points) button_label = hashlib.sha224((get_plot_label(xm, ym) + additional_label) .encode("utf-8")).hexdigest() return j2_env.get_template("chartjs.template").\ render(args=args, latex_code=latex_code, button_label=button_label, data_points=plot_data, xlabel=xm["description"], ylabel=ym["description"], plottype=plottype, plot_label=get_plot_label(xm, ym), label=additional_label, linestyle=linestyle, render_all_points=render_all_points) def build_detail_site(data, label_func, j2_env, linestyles, batch=False): for (name, runs) in data.items(): print("Building '%s'" % name) all_runs = runs.keys() label = label_func(name) data = {"normal": [], "scatter": []} for plottype in args.plottype: xn, yn = plot_variants[plottype] data["normal"].append(create_plot( runs, xn, yn, convert_linestyle(linestyles), j2_env)) if args.scatter: data["scatter"].append( create_plot(runs, xn, yn, convert_linestyle(linestyles), j2_env, "Scatterplot ", "bubble")) # create png plot for summary page data_for_plot = {} for k in runs.keys(): data_for_plot[k] = prepare_data(runs[k], 'k-nn', 'qps') plot.create_plot( data_for_plot, False, 'linear', 'log', 'k-nn', 'qps', args.outputdir + name + '.png', linestyles, batch) output_path = \ args.outputdir + name + '.html' with open(output_path, "w") as text_file: text_file.write(j2_env.get_template("detail_page.html"). render(title=label, plot_data=data, args=args, batch=batch)) def build_index_site(datasets, algorithms, j2_env, file_name): dataset_data = {'batch': [], 'non-batch': []} for mode in ['batch', 'non-batch']: distance_measures = sorted( set([get_distance_from_desc(e) for e in datasets[mode].keys()])) sorted_datasets = sorted( set([get_dataset_from_desc(e) for e in datasets[mode].keys()])) for dm in distance_measures: d = {"name": dm.capitalize(), "entries": []} for ds in sorted_datasets: matching_datasets = [e for e in datasets[mode].keys() if get_dataset_from_desc(e) == ds and # noqa get_distance_from_desc(e) == dm] sorted_matches = sorted( matching_datasets, key=lambda e: int(get_count_from_desc(e))) for idd in sorted_matches: d["entries"].append( {"name": idd, "desc": get_dataset_label(idd)}) dataset_data[mode].append(d) with open(args.outputdir + "index.html", "w") as text_file: text_file.write(j2_env.get_template("summary.html"). render(title="ANN-Benchmarks", dataset_with_distances=dataset_data, algorithms=algorithms)) def load_all_results(): """Read all result files and compute all metrics""" all_runs_by_dataset = {'batch': {}, 'non-batch': {}} all_runs_by_algorithm = {'batch': {}, 'non-batch': {}} cached_true_dist = [] old_sdn = None for mode in ["non-batch", "batch"]: for properties, f in results.load_all_results(batch_mode=(mode == "batch")): sdn = get_run_desc(properties) if sdn != old_sdn: dataset, _ = get_dataset(properties["dataset"]) cached_true_dist = list(dataset["distances"]) old_sdn = sdn algo_ds = get_dataset_label(sdn) desc_suffix = ("-batch" if mode == "batch" else "") algo = properties["algo"] + desc_suffix sdn += desc_suffix ms = compute_all_metrics( cached_true_dist, f, properties, args.recompute) all_runs_by_algorithm[mode].setdefault( algo, {}).setdefault(algo_ds, []).append(ms) all_runs_by_dataset[mode].setdefault( sdn, {}).setdefault(algo, []).append(ms) return (all_runs_by_dataset, all_runs_by_algorithm) j2_env = Environment(loader=FileSystemLoader("./templates/"), trim_blocks=True) j2_env.globals.update(zip=zip, len=len) runs_by_ds, runs_by_algo = load_all_results() dataset_names = [get_dataset_label(x) for x in list( runs_by_ds['batch'].keys()) + list(runs_by_ds['non-batch'].keys())] algorithm_names = list(runs_by_algo['batch'].keys( )) + list(runs_by_algo['non-batch'].keys()) linestyles = {**create_linestyles(dataset_names), **create_linestyles(algorithm_names)} build_detail_site( runs_by_ds['non-batch'], lambda label: get_dataset_label(label), j2_env, linestyles, False) build_detail_site( runs_by_ds['batch'], lambda label: get_dataset_label(label), j2_env, linestyles, True) build_detail_site( runs_by_algo['non-batch'], lambda x: x, j2_env, linestyles, False) build_detail_site( runs_by_algo['batch'], lambda x: x, j2_env, linestyles, True) build_index_site(runs_by_ds, runs_by_algo, j2_env, "index.html")
459865
class Solution: def getHappyString(self, n: int, k: int) -> str: base = 1 << (n - 1) if k > 3 * base: return '' table = {'a': 'bc', 'b': 'ac', 'c': 'ab'} k -= 1 index, k = divmod(k, base) result = chr(ord('a') + index) base >>= 1 while base > 0: index, k = divmod(k, base) result += table[result[-1]][index] base >>= 1 return result
459867
import torch from sklearn.metrics import normalized_mutual_info_score eps = 1e-10 class MixedMultiLabelLoss(torch.nn.modules.loss._Loss): def __init__(self, exclusive_classes_mask: torch.tensor, excl_loss=torch.nn.CrossEntropyLoss(), non_excl_loss=torch.nn.BCEWithLogitsLoss()): super(MixedMultiLabelLoss, self).__init__() assert exclusive_classes_mask.dtype == torch.bool, "Only boolean mask are allowed" self.exclusive_classes = exclusive_classes_mask self.excl_loss = excl_loss self.non_excl_loss = non_excl_loss def __call__(self, output, target, *args, **kwargs) -> torch.tensor: assert output.shape[1] == self.exclusive_classes.squeeze().shape[0], \ f"boolean mask shape {self.exclusive_classes.squeeze().shape}, " \ f"different from output number of classes {output.shape[1]}" excl_output = output[:, self.exclusive_classes] excl_target = target[:, self.exclusive_classes] excl_target = excl_target.argmax(dim=1) non_excl_output = output[:, ~self.exclusive_classes] non_excl_target = target[:, ~self.exclusive_classes] excl_loss = self.excl_loss(excl_output, excl_target) non_excl_loss = self.non_excl_loss(non_excl_output, non_excl_target) return excl_loss + non_excl_loss class MutualInformationLoss(torch.nn.modules.loss._Loss): def __init__(self, penalize_inactive=False, inactive_weight=1e-2): self.penalize_inactive = penalize_inactive self.inactive_weight = inactive_weight super(MutualInformationLoss, self).__init__() def __call__(self, output, *args, **kwargs) -> torch.tensor: output_probability = torch.nn.Sigmoid()(output) mi_loss = 1 - mutual_information(output_probability, normalized=True) if self.penalize_inactive: mean_inactivation = (1 / torch.sum(output_probability, dim=0)) * output_probability.shape[0] inactivation_loss = torch.sum(mean_inactivation) * self.inactive_weight return mi_loss + inactivation_loss return mi_loss def _conditional_probabilities(x): # Normalized probability over all the outputs on each sample that each outputs holds true z = 0.99 d = torch.as_tensor(x.shape[1]) beta = torch.log(z * (d - 1) / (1 - z)) sum_outputs_over_sample = torch.reshape(torch.sum(torch.exp(beta * x), 1), (x.shape[0], 1)) cond_probabilities = torch.div(torch.exp(beta * x), sum_outputs_over_sample + eps) + eps return torch.squeeze(cond_probabilities) def _conditional_entropy(output, sample_probability): # Compute the conditional entropy by summing over all the outputs and over all samples the product of... cond_probabilities = _conditional_probabilities(output) log_cond_prob = torch.log(cond_probabilities) c_entropy_on_sample = torch.sum(torch.multiply(cond_probabilities, log_cond_prob), 1) cond_entropy = - torch.sum(c_entropy_on_sample * torch.squeeze(sample_probability), 0) cond_entropy = torch.squeeze(cond_entropy) return cond_entropy def _entropy(output, sample_probability): # Compute the marginal_probabilities of each output by summing on all the samples the cond_probabilities cond_probabilities = _conditional_probabilities(output) * sample_probability marginal_probabilities = torch.sum(cond_probabilities, 0) marginal_probabilities = torch.reshape(marginal_probabilities, (1, output.shape[1])) # Compute the entropy by summing on all the outputs the product among the marginal_probabilities and their log entropy = - torch.sum(torch.multiply(marginal_probabilities, torch.log(marginal_probabilities)), 1) return torch.squeeze(entropy) def mutual_information(output: torch.Tensor, sample_probability=None, normalized=False) -> torch.tensor: # Sample probability: if not given may be supposed to be = 1/n_sample. # Anyway need to be normalized to sum(p(xi))= 1 if sample_probability is None: n_samples = torch.as_tensor(output.shape[0]) sample_probability = 1 / n_samples else: # assert sample_probability.shape.ndims == 1, "Wrong sample_probability. Should be an array (n_sample, 1), " \ # "received an array with shape " + sample_probability.shape sample_probability = sample_probability / (torch.sum(sample_probability) + eps) + eps sample_probability = torch.reshape(sample_probability, shape=(sample_probability.shape[0], 1)) entropy_t = _entropy(output, sample_probability) cond_entropy_t = _conditional_entropy(output, sample_probability) mutual_info_t = entropy_t - cond_entropy_t if normalized: normalized_mutual_info_t = mutual_info_t / entropy_t scikit_nmi = normalized_mutual_info_score(output, ) return normalized_mutual_info_t return mutual_info_t
459910
import sys import argparse import logging import numpy as np import statistics import tensorflow as tf from scipy.spatial.distance import cosine from linguistic_style_transfer_model.config import global_config from linguistic_style_transfer_model.utils import log_initializer, lexicon_helper logger = logging.getLogger(global_config.logger_name) def load_glove_model(glove_file): logger.debug("Loading Glove Model") model = dict() with open(glove_file) as f: for line in f: split_line = line.split() word = split_line[0] embedding = np.array([float(val) for val in split_line[1:]]) model[word] = embedding logger.debug("Done. {} words loaded!".format(len(model))) return model def get_sentence_embedding(tokens, model): embeddings = np.asarray([model[token] for token in tokens if token in model]) min_embedding = np.min(embeddings, axis=0) max_embedding = np.max(embeddings, axis=0) mean_embedding = np.mean(embeddings, axis=0) sentence_embedding = np.concatenate([min_embedding, max_embedding, mean_embedding], axis=0) return sentence_embedding def get_content_preservation_score(actual_word_lists, generated_word_lists, embedding_model): sentiment_words = lexicon_helper.get_sentiment_words() cosine_distances = list() skip_count = 0 for word_list_1, word_list_2 in zip(actual_word_lists, generated_word_lists): cosine_similarity = 0 words_1 = set(word_list_1) words_2 = set(word_list_2) words_1 -= sentiment_words words_2 -= sentiment_words try: cosine_similarity = 1 - cosine( get_sentence_embedding(words_1, embedding_model), get_sentence_embedding(words_2, embedding_model)) cosine_distances.append(cosine_similarity) except ValueError: skip_count += 1 logger.debug("Skipped lines: {} :-: {}".format(word_list_1, word_list_2)) logger.debug("{} lines skipped due to errors".format(skip_count)) mean_cosine_distance = statistics.mean(cosine_distances) if cosine_distances else 0 del sentiment_words return mean_cosine_distance def get_word_overlap_score(actual_word_lists, generated_word_lists): english_stopwords = lexicon_helper.get_stopwords() sentiment_words = lexicon_helper.get_sentiment_words() scores = list() for word_list_1, word_list_2 in zip(actual_word_lists, generated_word_lists): score = 0 words_1 = set(word_list_1) words_2 = set(word_list_2) words_1 -= sentiment_words words_1 -= english_stopwords words_2 -= sentiment_words words_2 -= english_stopwords word_intersection = words_1 & words_2 word_union = words_1 | words_2 if word_union: score = len(word_intersection) / len(word_union) scores.append(score) word_overlap_score = statistics.mean(scores) if scores else 0 del english_stopwords del sentiment_words return word_overlap_score def run_content_preservation_evaluator(source_file_path, target_file_path, embeddings_file): glove_model = load_glove_model(embeddings_file) actual_word_lists, generated_word_lists = list(), list() with open(source_file_path) as source_file, open(target_file_path) as target_file: for line_1, line_2 in zip(source_file, target_file): actual_word_lists.append(tf.keras.preprocessing.text.text_to_word_sequence(line_1)) generated_word_lists.append(tf.keras.preprocessing.text.text_to_word_sequence(line_2)) content_preservation_score = get_content_preservation_score( actual_word_lists, generated_word_lists, glove_model) word_overlap_score = get_word_overlap_score( actual_word_lists, generated_word_lists) return [content_preservation_score, word_overlap_score] def main(argv): parser = argparse.ArgumentParser() parser.add_argument("--embeddings-file-path", type=str, required=True) parser.add_argument("--source-file-path", type=str, required=True) parser.add_argument("--target-file-path", type=str, required=True) global logger logger = log_initializer.setup_custom_logger(global_config.logger_name, "DEBUG") options = vars(parser.parse_args(args=argv)) [content_preservation_score, word_overlap_score] = run_content_preservation_evaluator( options["source_file_path"], options["target_file_path"], options["embeddings_file_path"]) logger.info("Aggregate content preservation: {}".format(content_preservation_score)) logger.info("Aggregate word overlap: {}".format(word_overlap_score)) if __name__ == "__main__": main(sys.argv[1:])
459925
import time from django.conf import settings from jwcrypto import jwk, jwt SIGNING_ALG = "RS256" EXPIRY_TIME = 15 * 60 # 15 minutes ID_PRIVATE_KEY = jwk.JWK.from_pem(settings.IDENTITY_RSA_PRIVATE_KEY.encode("utf-8")) def mint_access_jwt(key: jwk.JWK, urn: str) -> jwt.JWT: """ Mint a JWT with the following claims: - use -> access - this says that this JWT is strictly an access JWT - iat -> now - this says that this JWT isn't active until the current time. this protects us from attacks from clock skew - exp -> expiry_time - this makes sure our JWT is only valid for EXPIRY_TIME """ now = time.time() expiry_time = now + EXPIRY_TIME token = jwt.JWT( header={"alg": SIGNING_ALG}, claims={"sub": urn, "use": "access", "iat": now, "exp": expiry_time}, ) token.make_signed_token(key) return token def mint_refresh_jwt(key: jwk.JWK, urn: str) -> jwt.JWT: """ Mint a JWT with the following claims: - use -> refresh - this says that this JWT is strictly a refresh JWT - iat -> now - this says that this JWT isn't active until the current time. this protects us from attacks from clock skew - no exp claim because refresh JWTs do not expire """ now = time.time() token = jwt.JWT( header={"alg": SIGNING_ALG}, claims={"sub": urn, "use": "refresh", "iat": now} ) token.make_signed_token(key) return token
459955
import openmc import openmc.examples import pytest @pytest.fixture(scope='module') def myplot(): plot = openmc.Plot(name='myplot') plot.width = (100., 100.) plot.origin = (2., 3., -10.) plot.pixels = (500, 500) plot.filename = 'myplot' plot.type = 'slice' plot.basis = 'yz' plot.background = 'black' plot.background = (0, 0, 0) plot.color_by = 'material' m1, m2 = openmc.Material(), openmc.Material() plot.colors = {m1: (0, 255, 0), m2: (0, 0, 255)} plot.colors = {m1: 'green', m2: 'blue'} plot.mask_components = [openmc.Material()] plot.mask_background = 'white' plot.mask_background = (255, 255, 255) plot.overlap_color = (255, 211, 0) plot.overlap_color = 'yellow' plot.show_overlaps = True plot.level = 1 plot.meshlines = { 'type': 'tally', 'id': 1, 'linewidth': 2, 'color': (40, 30, 20) } return plot def test_attributes(myplot): assert myplot.name == 'myplot' def test_repr(myplot): r = repr(myplot) assert isinstance(r, str) def test_from_geometry(): width = 25. s = openmc.Sphere(r=width/2, boundary_type='vacuum') c = openmc.Cell(region=-s) univ = openmc.Universe(cells=[c]) geom = openmc.Geometry(univ) for basis in ('xy', 'yz', 'xz'): plot = openmc.Plot.from_geometry(geom, basis) assert plot.origin == pytest.approx((0., 0., 0.)) assert plot.width == pytest.approx((width, width)) assert plot.basis == basis def test_highlight_domains(): plot = openmc.Plot() plot.color_by = 'material' plots = openmc.Plots([plot]) model = openmc.examples.pwr_pin_cell() mats = {m for m in model.materials if 'UO2' in m.name} plots.highlight_domains(model.geometry, mats) def test_xml_element(myplot): elem = myplot.to_xml_element() assert 'id' in elem.attrib assert 'color_by' in elem.attrib assert 'type' in elem.attrib assert elem.find('origin') is not None assert elem.find('width') is not None assert elem.find('pixels') is not None assert elem.find('background').text == '0 0 0' newplot = openmc.Plot.from_xml_element(elem) attributes = ('id', 'color_by', 'filename', 'type', 'basis', 'level', 'meshlines', 'show_overlaps', 'origin', 'width', 'pixels', 'background', 'mask_background') for attr in attributes: assert getattr(newplot, attr) == getattr(myplot, attr), attr def test_plots(run_in_tmpdir): p1 = openmc.Plot(name='plot1') p1.origin = (5., 5., 5.) p2 = openmc.Plot(name='plot2') p2.origin = (-3., -3., -3.) plots = openmc.Plots([p1, p2]) assert len(plots) == 2 p3 = openmc.Plot(name='plot3') plots.append(p3) assert len(plots) == 3 plots.export_to_xml() # from_xml new_plots = openmc.Plots.from_xml() assert len(plots) assert plots[0].origin == p1.origin assert plots[1].origin == p2.origin
459976
from PATHS import * import pandas as pd import json def get_imdb_ids(): return json.load(open(imdb_ids_path)) def get_ratings(): df = pd.read_csv('ratings.tsv', sep='\t', header=0) return df def map_ratings(): ids = get_imdb_ids() df = get_ratings() df_ids = df['tconst'].tolist() cntr = 0 for imdb_id in ids: if imdb_id in df_ids: df_val = df[df['tconst'] == imdb_id] with open("./bollywood_ratings.csv", 'a') as f: print("FETCHING: " + str(imdb_id) + " DONE: " + str(cntr)) f.write(str(imdb_id) + "," + str(df_val.values[0][1]) + "," + str(df_val.values[0][2]) + "\n") f.close() # else: # print(imdb_id) cntr = cntr + 1 if __name__ == '__main__': map_ratings()
460049
from codecs import open from tempfile import NamedTemporaryFile from multiprocessing import Manager from collections import OrderedDict from genmod.utils import VariantPrinter from genmod.vcf_tools import (get_variant_dict, get_info_dict, get_variant_id, HeaderParser) def setup_vcf_file(): """ Print some variants to a vcf file and return the filename """ vcf_lines = [ '##fileformat=VCFv4.1\n', '##INFO=<ID=MQ,Number=1,Type=Float,Description="RMS Mapping Quality">\n', '##contig=<ID=1,length=249250621,assembly=b37>\n', '##reference=file:///humgen/gsa-hpprojects/GATK/bundle'\ '/current/b37/human_g1k_v37.fasta\n', '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tfather\tmother\tproband\n', '1\t11900\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/1:60\t0/1:60\t1/1:60\n', '1\t879585\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/1:60\t0/0:60\t0/1:60\n', '1\t879586\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/1:60\t0/1:60\n', '1\t947378\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/0:60\t0/1:60\n', '1\t973348\t.\tG\tA\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/0:60\t0/1:60\n', '3\t879585\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/1:60\t0/0:60\t0/1:60\n', '3\t879586\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/1:60\t0/1:60\n', '3\t947378\t.\tA\tT\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/0:60\t0/1:60\n', '3\t973348\t.\tG\tA\t100\tPASS\tMQ=1\tGT:GQ\t0/0:60\t0/0:60\t0/1:60\n' ] vcf_file = NamedTemporaryFile(mode='w+t', delete=False, suffix='.vcf') vcf_file.writelines(vcf_lines) vcf_file.seek(0) vcf_file.close() return vcf_file.name def test_variant_printer(): """Test the variant printer""" vcf_file = setup_vcf_file() variant_queue = Manager().Queue() head = HeaderParser() outfile = NamedTemporaryFile(mode='w+t', delete=False, suffix='.vcf') outfile.close() variant_printer = VariantPrinter( task_queue=variant_queue, head=head, mode='chromosome', outfile = outfile.name ) variant_printer.start() batch = OrderedDict() for line in open(vcf_file): line = line.rstrip() if line.startswith('#'): if line.startswith('##'): head.parse_meta_data(line) else: head.parse_header_line(line) else: variant_dict = get_variant_dict(line, head.header) variant_id = get_variant_id(variant_dict) variant_dict['variant_id'] = variant_id variant_dict['info_dict'] = get_info_dict(variant_dict['INFO']) variant_queue.put(variant_dict) variant_queue.put(None) variant_printer.join() variants = [] with open(outfile.name, 'r', 'utf-8-sig') as f: for line in f: variants.append(line.rstrip().split('\t')) assert variants[0][0] == '1' assert variants[0][2] == '11900'
460077
import unittest import os from modules.DatabaseModule.DBManager import DBManager from opentera.db.models.TeraUser import TeraUser from opentera.config.ConfigManager import ConfigManager from tests.opentera.db.models.BaseModelsTest import BaseModelsTest class DBManagerTeraUserAccessTest(BaseModelsTest): filename = os.path.join(os.path.dirname(__file__), 'DBManagerTeraUserAccessTest.db') SQLITE = { 'filename': filename } def setUp(self): super().setUp() self.admin_user = TeraUser.get_user_by_username('admin') self.test_user = TeraUser.get_user_by_username('user') def test_instance(self): self.assertNotEqual(self.admin_user, None) self.assertNotEqual(self.test_user, None) def test_admin_get_accessible_users_ids(self): users = DBManager.userAccess(self.admin_user).get_accessible_users() self.assertEqual(len(users), 6) def test_admin_accessible_sites(self): sites = DBManager.userAccess(self.admin_user).get_accessible_sites() self.assertEqual(len(sites), 2) def test_admin_accessible_sites(self): sites = DBManager.userAccess(self.test_user).get_accessible_sites() self.assertEqual(len(sites), 1)
460153
import cv2 import torch import math import numpy as np def describe_opencv(model, img, kpts, N, mag_factor, use_gpu = True): """ Rectifies patches around openCV keypoints, and returns patches tensor """ patches = [] for kp in kpts: x,y = kp.pt s = kp.size a = kp.angle s = mag_factor * s / N cos = math.cos(a * math.pi / 180.0) sin = math.sin(a * math.pi / 180.0) M = np.matrix([ [+s * cos, -s * sin, (-s * cos + s * sin) * N / 2.0 + x], [+s * sin, +s * cos, (-s * sin - s * cos) * N / 2.0 + y]]) patch = cv2.warpAffine(img, M, (N, N), flags=cv2.WARP_INVERSE_MAP + \ cv2.INTER_CUBIC + cv2.WARP_FILL_OUTLIERS) patches.append(patch) patches = torch.from_numpy(np.asarray(patches)).float() patches = torch.unsqueeze(patches,1) if use_gpu: patches = patches.cuda() descrs = model(patches) return descrs.detach().cpu().numpy()
460156
import asyncio import logging from hearthstone.asyncio import asyncio_utils from hearthstone.battlebots.random_bot import RandomBot from hearthstone.simulator.core.randomizer import DefaultRandomizer from hearthstone.simulator.host.async_host import AsyncHost logger = logging.getLogger(__name__) async def main(): hosts = [AsyncHost({f'RandomBot{i}': RandomBot(i + j) for i in range(8)}) for j in range(25) ] for j, host in enumerate(hosts): host.tavern.randomizer = DefaultRandomizer(j) tasks = [asyncio_utils.create_task(host.async_play_game(), logger=logger) for host in hosts] await asyncio.gather(*tasks) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
460166
r""" ============================ Single Gramian angular field ============================ A Gramian angular field is an image obtained from a time series, representing some kind of temporal correlation between each pair of values from the time series. Two methods are available: Gramian angular summation field and Gramian angular difference field. It is implemented as :class:`pyts.image.GramianAngularField`. In this example, the considered time series is the sequence of the sine function values for 1000 equally-spaced points in the interval :math:`[0, 4\pi]`. Both the corresponding Gramnian angular summation and difference fields are plotted. Since the API is designed for machine learning, the :meth:`~pyts.image.GramianAngularField.transform` method of the :class:`pyts.image.GramianAngularField` class expects a data set of time series as input, so the time series is transformed into a data set with a single time series (``X = np.array([x])``) and the first element of the data set of Gramian angular fields is retrieved (``ax_gasf.imshow(X_gasf[0], ...``). """ # Author: <NAME> <<EMAIL>> # License: BSD-3-Clause import numpy as np import matplotlib.pyplot as plt from pyts.image import GramianAngularField # Create a toy time series using the sine function time_points = np.linspace(0, 4 * np.pi, 1000) x = np.sin(time_points) X = np.array([x]) # Compute Gramian angular fields gasf = GramianAngularField(method='summation') X_gasf = gasf.fit_transform(X) gadf = GramianAngularField(method='difference') X_gadf = gadf.fit_transform(X) # Plot the time series and its recurrence plot width_ratios = (2, 7, 7, 0.4) height_ratios = (2, 7) width = 10 height = width * sum(height_ratios) / sum(width_ratios) fig = plt.figure(figsize=(width, height)) gs = fig.add_gridspec(2, 4, width_ratios=width_ratios, height_ratios=height_ratios, left=0.1, right=0.9, bottom=0.1, top=0.9, wspace=0.1, hspace=0.1) # Define the ticks and their labels for both axes time_ticks = np.linspace(0, 4 * np.pi, 9) time_ticklabels = [r'$0$', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$', r'$\frac{5\pi}{2}$', r'$3\pi$', r'$\frac{7\pi}{2}$', r'$4\pi$'] value_ticks = [-1, 0, 1] reversed_value_ticks = value_ticks[::-1] # Plot the time series on the left with inverted axes ax_left = fig.add_subplot(gs[1, 0]) ax_left.plot(x, time_points) ax_left.set_xticks(reversed_value_ticks) ax_left.set_xticklabels(reversed_value_ticks, rotation=90) ax_left.set_yticks(time_ticks) ax_left.set_yticklabels(time_ticklabels, rotation=90) ax_left.set_ylim((0, 4 * np.pi)) ax_left.invert_xaxis() # Plot the time series on the top ax_top1 = fig.add_subplot(gs[0, 1]) ax_top2 = fig.add_subplot(gs[0, 2]) for ax in (ax_top1, ax_top2): ax.plot(time_points, x) ax.set_xticks(time_ticks) ax.set_xticklabels(time_ticklabels) ax.set_yticks(value_ticks) ax.xaxis.tick_top() ax.set_xlim((0, 4 * np.pi)) ax_top1.set_yticklabels(value_ticks) ax_top2.set_yticklabels([]) # Plot the Gramian angular fields on the bottom right ax_gasf = fig.add_subplot(gs[1, 1]) ax_gasf.imshow(X_gasf[0], cmap='rainbow', origin='lower', extent=[0, 4 * np.pi, 0, 4 * np.pi]) ax_gasf.set_xticks([]) ax_gasf.set_yticks([]) ax_gasf.set_title('Gramian Angular Summation Field', y=-0.09) ax_gadf = fig.add_subplot(gs[1, 2]) im = ax_gadf.imshow(X_gadf[0], cmap='rainbow', origin='lower', extent=[0, 4 * np.pi, 0, 4 * np.pi]) ax_gadf.set_xticks([]) ax_gadf.set_yticks([]) ax_gadf.set_title('Gramian Angular Difference Field', y=-0.09) # Add colorbar ax_cbar = fig.add_subplot(gs[1, 3]) fig.colorbar(im, cax=ax_cbar) plt.show()
460178
from data.data_generation import generate_gaussian from manifold_alignment.ssma import ManifoldAlignment import numpy as np from utils.classification_list import lda_pred, accuracy_stats import matplotlib.pyplot as plt # my test function to see if it works. Should be in the 80s range of # accuracy def test_ma_gaussian(ma_method='wang', n_components=2, plot=False): # define some dictionaries with empty labeled lists X ={}; Y={}; X['label'] = []; X['unlabel'] = []; X['test'] = [] Y['label'] = []; Y['unlabel'] = []; Y['test'] = [] # assign labels from gaussian dataset X1, X2, XT1, XT2, \ Y1, Y2, YT1, YT2, \ U1, U2 = generate_gaussian(plot_data=plot) # create appropriate data structures based off of # the manifold alignment class criteria X['label'] = [X1, X2] X['unlabel'] = [U1, U2] X['test'] = [XT1, XT2] Y['label'] = [Y1 , Y2] Y['test'] = [YT1, YT2] print(np.shape(X['label'][0]), np.shape(Y['label'][0])) print(np.shape(X['unlabel'][0])) print(np.shape(X['test'][0]), np.shape(Y['test'][0])) print(np.shape(X['label'][1]), np.shape(Y['label'][1])) print(np.shape(X['unlabel'][1])) print(np.shape(X['test'][1]), np.shape(Y['test'][1])) ma_method = ManifoldAlignment(ma_method=ma_method, lap_method='personal') ma_method.fit(X,Y) Xproj = ma_method.transform(X, n_components=2) Y['pred'] = lda_pred(Xproj['train'], Xproj['test'], Y['label'], Y['test']) Acc_stats = accuracy_stats(Y['pred'], Y['test']) Lg = ma_method.L_g Vs = ma_method.V_s Vd = ma_method.V_d import matplotlib.pyplot as plt fig, ax = plt.subplots(nrows=3, ncols=1, figsize=(10,10)) ax[0].spy(Lg, precision=1E-5, markersize=.2) ax[0].set_title('Geometric Laplacian') ax[1].spy(Vs, precision=1E-5, markersize=.2) ax[1].set_title('Similarity Potential') ax[2].spy(Vd, precision=1E-5, markersize=.2) ax[2].set_title('Dissimilarity Potential') plt.show() print('AA - Domain 1: {s}'.format(s=Acc_stats['AA'][0])) print('AA - Domain 2: {s}'.format(s=Acc_stats['AA'][1])) if __name__ == "__main__": test_ma_gaussian(ma_method='ssma', n_components=3, plot=True)
460186
from typing import Dict, Optional import attr from terra_sdk.core import AccAddress, Coins, ValAddress from ..params import APIParams from ._base import BaseAsyncAPI, sync_bind __all__ = ["AsyncDistributionAPI", "DistributionAPI", "Rewards"] @attr.s class Rewards: rewards: Dict[ValAddress, Coins] = attr.ib() """Delegator rewards, indexed by validator operator address.""" total: Coins = attr.ib() """Total sum of rewards.""" class AsyncDistributionAPI(BaseAsyncAPI): async def rewards(self, delegator: AccAddress, params: Optional[APIParams] = None) -> Rewards: """Fetches the staking reward data for a delegator. Args: delegator (AccAddress): delegator account address params (APIParams): optional parameters Returns: Rewards: delegator rewards """ res = await self._c._get( f"/cosmos/distribution/v1beta1/delegators/{delegator}/rewards", params ) return Rewards( rewards={ item["validator_address"]: Coins.from_data(item["reward"] or []) for item in res["rewards"] }, total=Coins.from_data(res["total"]), ) async def validator_commission(self, validator: ValAddress, params: Optional[APIParams] = None) -> Coins: """Fetches the commission reward data for a validator. Args: validator (ValAddress): validator operator address params (APIParams): optional parameters Returns: ValidatorCommission: validator rewards """ res = await self._c._get( f"/cosmos/distribution/v1beta1/validators/{validator}/commission", params ) commission = res["commission"] return Coins.from_data(commission["commission"]) async def withdraw_address(self, delegator: AccAddress, params: Optional[APIParams] = None) -> AccAddress: """Fetches the withdraw address associated with a delegator. Args: delegator (AccAddress): delegator account address params (APIParams): optional parameters Returns: AccAddress: withdraw address """ res = await self._c._get( f"/cosmos/distribution/v1beta1/delegators/{delegator}/withdraw_address", params ) return res.get("withdraw_address") async def community_pool(self, params: Optional[APIParams] = None) -> Coins: """Fetches the community pool. Args: params (APIParams): optional parameters Returns: Coins: community pool """ res = await self._c._get("/cosmos/distribution/v1beta1/community_pool",params) return Coins.from_data(res.get("pool")) async def parameters(self, params: Optional[APIParams] = None) -> dict: """Fetches the Distribution module parameters. Args: params (APIParams): optional parameters Returns: dict: Distribution module parameters """ res = await self._c._get("/cosmos/distribution/v1beta1/params", params) return res.get("params") class DistributionAPI(AsyncDistributionAPI): @sync_bind(AsyncDistributionAPI.rewards) def rewards(self, delegator: AccAddress, params: Optional[APIParams] = None) -> Rewards: pass rewards.__doc__ = AsyncDistributionAPI.rewards.__doc__ @sync_bind(AsyncDistributionAPI.validator_commission) def validator_commission(self, validator: ValAddress, params: Optional[APIParams] = None) -> Coins: pass validator_commission.__doc__ = AsyncDistributionAPI.validator_commission.__doc__ @sync_bind(AsyncDistributionAPI.withdraw_address) def withdraw_address(self, delegator: AccAddress, params: Optional[APIParams] = None) -> AccAddress: pass withdraw_address.__doc__ = AsyncDistributionAPI.withdraw_address.__doc__ @sync_bind(AsyncDistributionAPI.community_pool) def community_pool(self, params: Optional[APIParams] = None) -> Coins: pass community_pool.__doc__ = AsyncDistributionAPI.community_pool.__doc__ @sync_bind(AsyncDistributionAPI.parameters) def parameters(self, params: Optional[APIParams] = None) -> dict: pass parameters.__doc__ = AsyncDistributionAPI.parameters.__doc__
460201
import json from rgd.views import _SpatialDetailView from . import models class FMVMetaDetailView(_SpatialDetailView): model = models.FMVMeta def _get_extent(self, object): extent = super()._get_extent(object) if object.ground_union is not None: # All or none of these will be set, only check one extent['collect'] = object.ground_union.json extent['ground_frames'] = object.ground_frames.json extent['frame_numbers'] = object._blob_to_array(object.frame_numbers) return extent def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) context['frame_rate'] = json.dumps(self.object.fmv_file.frame_rate) return context
460203
import os import random import decimal import string import hashlib import sha3 import pyqrcode from deprecated import deprecated # Number of PIP in 1 BIP PIP = 1000000000000000000 # Prefixes PREFIX_ADDR = 'Mx' PREFIX_PUBKEY = 'Mp' PREFIX_CHECK = 'Mc' PREFIX_TX = 'Mt' @deprecated("Use 'to_bip', 'to_pip' shortcuts or MinterHelper methods") class MinterConvertor: """ Class contains different converters """ # PIP in BIP DEFAULT = 1000000000000000000 @classmethod def convert_value(cls, value, to, prec=33): """ Convert values from/to pip/bip. Args: value (string|int|Decimal|float): value to convert to (string): coin to convert value to prec (int): decimal context precision (decimal number length) Returns: int|Decimal """ # Get default decimal context context = decimal.getcontext() # Set temporary decimal context for calculation decimal.setcontext( decimal.Context(prec=prec, rounding=decimal.ROUND_DOWN) ) # PIP in BIP in Decimal default = decimal.Decimal(str(cls.DEFAULT)) # Value in Decimal value = decimal.Decimal(str(value)) # Make conversion if to == 'pip': value = int(value * default) elif to == 'bip': value /= default # Reset decimal context to default decimal.setcontext(context) return value @classmethod def encode_coin_name(cls, symbol): """ Add nulls to coin name Args: symbol (string): coin symbol Returns: string """ return symbol + chr(0) * (10 - len(symbol)) @classmethod def decode_coin_name(cls, symbol): """ Args: symbol (bytes|str) Returns: string """ if hasattr(symbol, 'decode'): symbol = symbol.decode() return symbol.replace(chr(0), '') class MinterHelper: """ Class which contains different helpers """ @staticmethod def keccak_hash(data, digest_bits=256): """ Create Keccak hash. Args: data (bytes) digest_bits (int) Returns: hex (string) """ if digest_bits == 256: khash = sha3.keccak_256() else: raise NotImplementedError khash.update(data) return khash.hexdigest() @staticmethod @deprecated('Unnecessary method') def hex2bin(string): return bytes.fromhex(string) @classmethod def hex2bin_recursive(cls, _dict): """ Recursively convert hexdigit dict values to bytes. Args: _dict (dict) Returns: dict """ def ctype_xdigit(s): """ Checks if all of the characters in "s" are hexadecimal 'digits'. Args: s (string): string to check """ return all(c in string.hexdigits for c in s) for k, v in _dict.items(): if type(v) == dict: cls.hex2bin_recursive(v) elif type(v) == str and ctype_xdigit(v): try: _dict[k] = bytes.fromhex(v) except ValueError: pass return _dict @staticmethod @deprecated('Unnecessary method') def bin2hex(bts): return bts.hex() @staticmethod @deprecated('Unnecessary method') def bin2int(number): return int.from_bytes(number, 'big') @staticmethod def get_validator_address(pub_key, upper=True): """ Get validator address from it's pub key (Mp...). Validator address is used in signing blocks. Args: pub_key (string): candidate public key (Mp....) upper (bool) Returns: string, validator address """ pub_key = bytes.fromhex(MinterHelper.prefix_remove(pub_key)) vaddress = hashlib.sha256(pub_key).hexdigest()[:40] return vaddress.upper() if upper else vaddress @staticmethod def generate_qr(text, fn=None, path='', error='H', version=None, mode=None, output='svg', module_color='black', background='white', quiet_zone=4): """ Generate QR code from text and save to file. Detailed documentation for `pyqrcode` package can be found here: https://pythonhosted.org/PyQRCode/index.html Args: text (str): Text, that should be encoded to QR fn (str): Filename for generated QR. If not provided random filename is generated. path (str): Path to save generate QR error (str|int): The error parameter sets the error correction level of the code. Each level has an associated name given by a letter: L, M, Q, or H; each level can correct up to 7, 15, 25, or 30 percent of the data respectively. version (int): The version parameter specifies the size and data capacity of the code. Versions are any integer between 1 and 40 mode (str): The mode param sets how the contents will be encoded. Three of the four possible encodings are available. By default, the object uses the most efficient encoding for the contents. You can override this behavior by setting this parameter. output (str): Render modes. Available: text|terminal|svg. In `text`|`terminal` modes QR code is printed, `svg` mode saves QR code to file `fn` to path `path`. module_color (str): String color of QR code data. Is used only for `terminal` and `svg` modes. background (str): String color of QR code background. Is used only for `terminal` and `svg` modes. quiet_zone (int): QR code quiet zone. Returns: fnpath (str): Path to generated QR """ # Generate QR code object qrcode = pyqrcode.create(content=text, error=error, version=version, mode=mode) # Render QR code depending on `output` param if output == 'text': print(qrcode.text(quiet_zone=quiet_zone)) elif output == 'terminal': print( qrcode.terminal( module_color=module_color, background=background, quiet_zone=quiet_zone ) ) elif output == 'svg': # Generate filename, if not provided if not fn: fn = text + str(random.randint(10000, 99999)) fn = hashlib.sha256(fn.encode()).hexdigest()[:10] fnpath = os.path.join(path, fn + '.svg') # Save QR code to file qrcode.svg(file=fnpath, module_color=module_color, background=background, quiet_zone=quiet_zone) return fnpath else: raise Exception('Wrong QR code render mode') @staticmethod def bytes_len(value, encoding='utf-8'): """ Count bytes length Args: value (str|bytes) encoding (str) """ if type(value) is str: value = bytes(value, encoding=encoding) return len(value) @staticmethod def encode_coin_name(symbol): """ Add nulls to coin name Args: symbol (string): coin symbol Returns: string """ return symbol + chr(0) * (10 - len(symbol)) @staticmethod def decode_coin_name(symbol): """ Args: symbol (bytes|str) Returns: string """ if hasattr(symbol, 'decode'): symbol = symbol.decode() return symbol.replace(chr(0), '') @staticmethod def to_pip(value): """ Convert BIPs to PIPs. Always cast value to str, due to float behaviour: Decimal(0.1) = Decimal('0.10000000000004524352345234') Decimal('0.1') = Decimal('0.1') Args: value (str|float|int|Decimal): value in BIP Returns: int """ return int(decimal.Decimal(str(value)) * decimal.Decimal(PIP)) @staticmethod def to_bip(value): """ Convert PIPs to BIPs. Use dynamic Decimal precision, depending on value length. Args: value (int|str|Decimal): value in PIP Returns: Decimal """ # Check if value is correct PIP value value = str(value) if not value.isdigit(): raise ValueError(f'{value} is not correct PIP value') # Get default decimal context context = decimal.getcontext() # Set temporary decimal context for calculation decimal.setcontext( decimal.Context(prec=len(value), rounding=decimal.ROUND_DOWN) ) # Convert value value = decimal.Decimal(value) / decimal.Decimal(PIP) # Reset decimal context to default decimal.setcontext(context) return value @staticmethod def prefix_add(value, prefix): if prefix not in [PREFIX_ADDR, PREFIX_PUBKEY, PREFIX_CHECK, PREFIX_TX]: raise ValueError(f"Unknown prefix '{prefix}'") return prefix + value @staticmethod def prefix_remove(value): value = value.replace(PREFIX_ADDR, '') value = value.replace(PREFIX_PUBKEY, '') value = value.replace(PREFIX_CHECK, '') value = value.replace(PREFIX_TX, '') return value @deprecated("Deprecated. Use 'MinterHelper' class instead") class MinterPrefix: """ Class with minter prefixes and operations with them. """ # Minter wallet address prefix ADDRESS = 'Mx' # Minter public key prefix PUBLIC_KEY = 'Mp' # Minter redeem check prefix CHECK = 'Mc' # Minter transaction prefix TRANSACTION = 'Mt' @staticmethod def remove_prefix(string, prefix): return string.replace(prefix, '')
460214
import eel eel.init('client') @eel.expose def PYejecutarScript(): #el contenido del script se recibe y se guarda en la variable x par aluego ejecutarla texto="ejecutar query" print('Ejecutando query ') return texto @eel.expose def PYAbrirArchivo(x): #guardar la ruta del archivo en la variable x f = open (x,'r') mensaje = f.read() contenidoQuery=mensaje f.close() print('Query abierto') return contenidoQuery @eel.expose def PYguardarArchivo(x,y): #guardar la ruta del archivo en la variable x # guardar el contenido de un query en y # y luego se sobre escribe el archivo file = open(x, "w") file.write(y) file.close() print('Guardado') return y @eel.expose def PYcrearBD(): contenidoBD="DB" print('Se ha creado la base de datos') return contenidoBD @eel.expose def PYcrearTabla(): #se guarda el nombre de la tabla en la variable x contenidoTabla="tabla" print('Se ha creado la tabla') return contenidoTabla eel.start('main.html', size=(1024, 768)) #let input = document.querySelector("input[name='abrir']"); # # let textarea = document.querySelector("textarea[name='query1']");
460224
import os import unittest from unittest import TestCase import pandas as pd from tests.test_utils import create_train_test_prod_split, split from uq360.utils.utils import UseTransformer from uq360.algorithms.blackbox_metamodel.short_text_classification import ShortTextClassificationWrapper import numpy as np import logging import tensorflow as tf tf.get_logger().setLevel(logging.ERROR) @unittest.skip("too long") class TestShortTextClassification(TestCase): def _generate_mock_data(self, n_samples, n_classes, n_features): from sklearn.datasets import make_classification return make_classification(n_samples=n_samples, n_features=n_features, n_classes=n_classes, n_informative=n_features, n_redundant=0, random_state=42, class_sep=10) # Note, this test is expected to take some time (about 2 mins) def test_short_text_predictor(self): x, y = self.get_text_data() x_train, y_train, x_test, y_test, x_prod, y_prod = create_train_test_prod_split(x, y) obj = UseTransformer() x_train_encoded = obj.transform(X=x_train) x_test_encoded = obj.transform(X=x_test) x_prod_encoded = obj.transform(X=x_prod) x = np.concatenate((x_train_encoded, x_test_encoded, x_prod_encoded), axis=0) y = np.concatenate((y_train, y_test, y_prod), axis=0) # use the base model and grab the top confidence for every data point that we have model = self.train_model(x_train_encoded, y_train) x_proba = model.predict_proba(x) confs_sorted = np.sort(x_proba) top_confs = confs_sorted[:, -1] # find the median median = np.median(top_confs) # create two buckets less_than_median = np.where(top_confs < median) greater_than_median = np.where(top_confs >= median) x_train_new, y_train_new, x_test_new, y_test_new, prod_test_data, prod_test_label = split(x, y, less_than_median, greater_than_median, 0.3) # train a new model using the training data created in the previous step model_trained_on_conf_based_split = self.train_model(x_train_new, y_train_new) # acc on test data acc = model_trained_on_conf_based_split.score(x_test_new, y_test_new) # acc on prod data acc = model_trained_on_conf_based_split.score(prod_test_data, prod_test_label) print("acc on prod", acc) p1 = ShortTextClassificationWrapper(base_model=model_trained_on_conf_based_split) p1.fit(x_train_new, y_train_new, x_test_new, y_test_new) y_mean, y_pred, y_score = p1.predict(prod_test_data) delta = abs(y_mean - acc * 100) self.assertTrue(delta <= 5) def train_model(self, x, y): """ returns model object """ from sklearn.neural_network import MLPClassifier model = MLPClassifier() model.fit(x, y) return model def get_text_data(self): li_data = [] li_labels = [] li_len = [] local_file = os.path.abspath( os.path.join(os.getcwd(), "..", "data", "text", "atis", "atis.train.w-intent.iob.csv")) df = pd.read_csv(local_file, index_col=None, header=0) li_data.append(df['example']) li_labels.append(df['intent']) frame = pd.concat(li_data, axis=0, ignore_index=True) npdata = frame.to_numpy() frame_labels = pd.concat(li_labels, axis=0, ignore_index=True) npdata_labels = frame_labels.to_numpy() return npdata, npdata_labels if __name__ == '__main__': unittest.main()
460230
import unittest import json from httmock import urlmatch, HTTMock, response from six.moves.urllib.parse import unquote from xunleipy.remote import XunLeiRemote @urlmatch(netloc=r'(.*\.)?xunlei\.com') def xunlei_mock(url, request): headers = {} content = {} if url.path == '/check': headers = { 'Set-Cookie': 'check_result=0:!tst;' } elif url.path == '/sec2login/': headers = { 'Set-Cookie': 'userid=test1234;' } elif url.path == '/createTask': body = request.body body = unquote(body)[5:] task_list = json.loads(body)['tasks'] tasks = [] for task in task_list: tasks.append({ 'name': task['name'], 'url': task['url'], 'taskid': 1, 'result': 0, 'msg': '', 'id': 1 }) content = { 'rtn': 0, 'tasks': tasks } elif url.path == '/del': content = { 'rtn': 0, 'tasks': [ {'msg': '', 'id': '50', 'result': 0}, {'msg': '', 'id': '51', 'result': 0} ] } return response(200, content, headers, None, 5, request) class LoginTest(unittest.TestCase): def test_create_task_success(self): with HTTMock(xunlei_mock): u = 'testname' p = '<PASSWORD>pass' xlr = XunLeiRemote(u, p) res = xlr.add_tasks_to_remote( "8498352EB4F5208X0001", task_list=[{ 'url': 'ed2k://|file|=cu6wpmujve4rbsv4xdqd2r5ogkmgksgo|/', 'gcid': '', 'cid': '', 'name': '.WEB-HR.AAC.1024x576.x264.mkv', 'filesize': 514276262 }] ) data = res self.assertEqual(data['rtn'], 0) self.assertTrue('taskid' in data['tasks'][0]) def test_create_tasks_by_urls_success(self): with HTTMock(xunlei_mock): u = 'testname' p = '<PASSWORD>' xlr = XunLeiRemote(u, p) url_list = [ 'ed2k://|file|=cu6wpmujve4rbsv4xdqd2r5ogkmgksgo|1234|as/', 'movietrailers.apple.com/movies/wb/prisoners/prisoners-tlr1_h720p.mov' # NOQA ] res = xlr.add_urls_to_remote( "8498352EB4F5208X0001", url_list=url_list ) data = res self.assertEqual(data['rtn'], 0) self.assertTrue('taskid' in data['tasks'][0]) for task in data['tasks']: self.assertTrue(task['url'] in url_list) class DeleteTestCase(unittest.TestCase): def test_delete_tasks_by_task_infos(self): with HTTMock(xunlei_mock): u = 'testname' p = '<PASSWORD>' xlr = XunLeiRemote(u, p) res = xlr.delete_tasks_by_task_infos(xlr.pid, []) for data in res: self.assertTrue('result' in data) self.assertEqual(data['result'], 0) def test_delete_all_tasks_in_recycle(self): with HTTMock(xunlei_mock): u = 'testname' p = '<PASSWORD>' xlr = XunLeiRemote(u, p) res = xlr.delete_all_tasks_in_recycle(xlr.pid) self.assertEqual(res['rtn'], 0) self.assertTrue('tasks' in res) for data in res['tasks']: self.assertTrue('result' in data) self.assertEqual(data['result'], 0) if __name__ == '__main__': unittest.main()
460250
import pytest import clavier @pytest.mark.parametrize( "w1,w2,expected", [("kitten", "sitting", 3), ("saturday", "sunday", 3)] ) def test_levenshtein(w1, w2, expected): """Tests word distance by assuming the distance between characters is always 1.""" keyboard = clavier.load_qwerty() def mock_distance(c1, c2): return 1 if c1 != c2 else 0 keyboard.char_distance = mock_distance assert keyboard.word_distance(w1, w2) == expected
460271
import ipaddress import logging from django.db import models from django.utils.safestring import mark_safe from netfields import InetAddressField, NetManager from peering.enums import BGPState, IPFamily from peering.fields import TTLField from utils.models import ChangeLoggedModel, TaggableModel from .mixins import PolicyMixin class AbstractGroup(ChangeLoggedModel, TaggableModel, PolicyMixin): name = models.CharField(max_length=128) slug = models.SlugField(unique=True, max_length=255) comments = models.TextField(blank=True) import_routing_policies = models.ManyToManyField( "RoutingPolicy", blank=True, related_name="%(class)s_import_routing_policies" ) export_routing_policies = models.ManyToManyField( "RoutingPolicy", blank=True, related_name="%(class)s_export_routing_policies" ) communities = models.ManyToManyField("Community", blank=True) check_bgp_session_states = models.BooleanField(default=False) bgp_session_states_update = models.DateTimeField(blank=True, null=True) class Meta: abstract = True ordering = ["name", "slug"] def export_policies(self): return self.export_routing_policies.all() def import_policies(self): return self.import_routing_policies.all() def get_peering_sessions_list_url(self): raise NotImplementedError() def get_peering_sessions(self): raise NotImplementedError() def poll_peering_sessions(self): raise NotImplementedError() class BGPSession(ChangeLoggedModel, TaggableModel, PolicyMixin): """ Abstract class used to define common caracteristics of BGP sessions. A BGP session is always defined with the following fields: * a unique service reference, blank or user defined * an autonomous system, it can also be called a peer * an IP address used to establish the session * a plain text password * an encrypted version of the password if the user asked for encryption * a TTL for multihoping * an enabled or disabled status telling if the session should be administratively up or down * import routing policies to apply to prefixes sent by the remote device * export routing policies to apply to prefixed sent to the remote device * a BGP state giving the current operational state of session (it will remain to unkown if the is disabled) * a received prefix count (it will stay none if polling is disabled) * a advertised prefix count (it will stay none if polling is disabled) * a date and time record of the last established state of the session * comments that consist of plain text that can use the markdown format """ service_reference = models.CharField( max_length=255, unique=True, blank=True, null=True, help_text="Optional internal service reference", ) autonomous_system = models.ForeignKey("AutonomousSystem", on_delete=models.CASCADE) ip_address = InetAddressField(store_prefix_length=False, verbose_name="IP address") password = <PASSWORD>.<PASSWORD>(max_length=255, blank=True, null=True) encrypted_password = models.CharField(max_length=255, blank=True, null=True) multihop_ttl = TTLField( blank=True, default=1, verbose_name="Multihop TTL", help_text="Use a value greater than 1 for BGP multihop sessions", ) enabled = models.BooleanField(default=True) import_routing_policies = models.ManyToManyField( "RoutingPolicy", blank=True, related_name="%(class)s_import_routing_policies" ) export_routing_policies = models.ManyToManyField( "RoutingPolicy", blank=True, related_name="%(class)s_export_routing_policies" ) bgp_state = models.CharField( max_length=50, choices=BGPState.choices, blank=True, null=True ) received_prefix_count = models.PositiveIntegerField(blank=True, default=0) advertised_prefix_count = models.PositiveIntegerField(blank=True, default=0) last_established_state = models.DateTimeField(blank=True, null=True) comments = models.TextField(blank=True) objects = NetManager() logger = logging.getLogger("peering.manager.peering") class Meta: abstract = True ordering = ["service_reference", "autonomous_system", "ip_address"] def __str__(self): return ( self.service_reference or f"AS{self.autonomous_system.asn} - {self.ip_address}" ) @property def ip_address_version(self): return ipaddress.ip_address(self.ip_address).version def _merge_policies(self, merged_policies, new_policies): for policy in new_policies: # Only merge universal policies or policies of same IP family if policy in merged_policies or policy.address_family not in ( IPFamily.ALL, self.ip_address_version, ): continue merged_policies.append(policy) return merged_policies def export_policies(self): return self.export_routing_policies.all() def merged_export_policies(self, reverse=False): merged = [p for p in self.export_policies()] # Merge policies from nested objects (first AS, then BGP group) self._merge_policies(merged, self.autonomous_system.export_policies()) group = None if hasattr(self, "ixp_connection"): group = self.ixp_connection.internet_exchange_point else: group = self.bgp_group if group: self._merge_policies(merged, group.export_policies()) return list(reversed(merged)) if reverse else merged def import_policies(self): return self.import_routing_policies.all() def merged_import_policies(self, reverse=False): # Get own policies merged = [p for p in self.import_policies()] # Merge policies from nested objects (first AS, then BGP group) self._merge_policies(merged, self.autonomous_system.import_policies()) group = None if hasattr(self, "ixp_connection"): group = self.ixp_connection.internet_exchange_point else: group = self.bgp_group if group: self._merge_policies(merged, group.import_policies()) return list(reversed(merged)) if reverse else merged def merged_communities(self): merged = [c for c in self.autonomous_system.communities.all()] group = None if hasattr(self, "ixp_connection"): group = self.ixp_connection.internet_exchange_point else: group = self.bgp_group for c in group.communities.all(): if c not in merged: merged.append(c) return merged def poll(self): raise NotImplementedError def get_bgp_state_html(self): """ Return an HTML element based on the BGP state. """ if self.bgp_state == BGPState.IDLE: badge = "danger" elif self.bgp_state in (BGPState.CONNECT, BGPState.ACTIVE): badge = "warning" elif self.bgp_state in (BGPState.OPENSENT, BGPState.OPENCONFIRM): badge = "info" elif self.bgp_state == BGPState.ESTABLISHED: badge = "success" else: badge = "secondary" return mark_safe( f'<span class="badge badge-{badge}">{self.get_bgp_state_display() or "Unknown"}</span>' ) def encrypt_password(self, commit=True): """ Sets the `encrypted_password` field if a crypto module is found for the given platform. The field will be set to `None` otherwise. Returns `True` if the encrypted password has been changed, `False` otherwise. """ try: router = getattr(self, "router") except AttributeError: router = getattr(self.ixp_connection, "router", None) if not router or not router.platform or not router.encrypt_passwords: return False if not self.password and self.encrypted_password: self.encrypted_password = "" if commit: self.save() return True if not self.encrypted_password: # If the password is not encrypted yet, do it self.encrypted_password = router.platform.encrypt_password(self.password) else: # Try to re-encrypt the encrypted password, if the resulting string is the # same it means the password matches the router platform algorithm is_up_to_date = self.encrypted_password == router.platform.encrypt_password( self.encrypted_password ) if not is_up_to_date: self.encrypted_password = router.platform.encrypt_password( self.password ) # Check if the encrypted password matches the clear one # Force re-encryption if there a difference if self.password != router.platform.decrypt_password(self.encrypted_password): self.encrypted_password = router.platform.encrypt_password(self.password) if commit: self.save() return True class Template(ChangeLoggedModel, TaggableModel): name = models.CharField(max_length=128) template = models.TextField() comments = models.TextField(blank=True) class Meta: abstract = True ordering = ["name"] def render(self, variables): raise NotImplementedError() def __str__(self): return self.name
460300
import pybullet_data import glob import pybullet import pybullet_utils.bullet_client as bc import time import numpy as np from gym.utils import seeding import gym import os import inspect from myGym.envs.camera import Camera import pkg_resources currentdir = pkg_resources.resource_filename("myGym", "envs") repodir = pkg_resources.resource_filename("myGym", "./") class BaseEnv(gym.Env): """ The base class for environments without rendering Parameters: :param gui_on: (bool) Whether or not to use PyBullet built-in GUI :param objects_dir_path: (str) Path to directory with URDF files for objects :param max_steps: (int) The maximum number of actions per episode :param show_bounding_boxes_gui: (bool) Whether or not to show bounding boxes in GUI :param changing_light_gui: (bool) Whether or not to change light in GUI :param shadows_on_gui: (bool) Whether or not to show shadows in GUI """ metadata = {'render.modes': [ 'human', 'rgb_array'], 'video.frames_per_second': 50} def __init__(self, gui_on=True, objects_dir_path=pkg_resources.resource_filename("myGym", "envs/"), max_steps=1024, show_bounding_boxes_gui=False, changing_light_gui=False, shadows_on_gui=True ): self.gui_on = gui_on self.max_steps = max_steps self.show_bounding_boxes_gui = show_bounding_boxes_gui self.changing_light_gui = changing_light_gui self.shadows_on_gui = shadows_on_gui # Set episode information self.episode_start_time = None self.episode_over = False self.episode_failed = False self.episode_reward = 0.0 self.episode_final_reward = [] self.episode_final_distance = [] self.episode_number = 0 self.episode_steps = 0 self.episode_max_time = 300 self.episode_info = "" # Set general params self.time_step = 1. / 240. self.urdf_root = pybullet_data.getDataPath() self.observation = {} # Set objects information self.objects_dir_path = objects_dir_path self.env_objects = [] self.scene_objects_uids = {} self.all_objects_filenames = self._get_all_urdf_filenames(self.objects_dir_path) # Set GUI self._connect_to_physics_server() # Set env params and load models self._set_physics() self._setup_scene() self._set_observation_space() self._set_action_space() def _connect_to_physics_server(self): """ Connect to the PyBullet physics server in SHARED_MEMORY, GUI or DIRECT mode """ if self.gui_on: self.p = bc.BulletClient(connection_mode=pybullet.GUI) # if (self.p < 0): # self.p = bc.BulletClient(connection_mode=p.GUI) self._set_gui_mode() else: self.p = bc.BulletClient(connection_mode=pybullet.DIRECT) self.p.setPhysicsEngineParameter(enableFileCaching=0) def _set_gui_mode(self): """ Set GUI parameters: camera, shadows, extra elements """ self.p.resetDebugVisualizerCamera(3.3, 0, -41, [0.0, 0.0, 0.33]) self.p.configureDebugVisualizer(self.p.COV_ENABLE_SHADOWS, self.shadows_on_gui) self.p.configureDebugVisualizer(self.p.COV_ENABLE_GUI, 0) def _set_physics(self): """ Set physics engine parameters """ self.p.setGravity(0, 0, -9.81) self.p.setPhysicsEngineParameter(solverResidualThreshold=0.001, numSolverIterations=150, numSubSteps=20, useSplitImpulse=1, collisionFilterMode=1, constraintSolverType=self.p.CONSTRAINT_SOLVER_LCP_DANTZIG, globalCFM=0.000001, contactBreakingThreshold=0.001) self.p.setTimeStep(self.time_step) self.p.setRealTimeSimulation(0) self.p.setPhysicsEngineParameter(enableConeFriction=1) print(self.p.getPhysicsEngineParameters()) def _setup_scene(self): """ Set up scene elements (furniture, objects, robots) """ raise NotImplementedError def _set_observation_space(self): """ Set limits of observations """ raise NotImplementedError def _set_action_space(self): """ Set limits of actions """ raise NotImplementedError def _get_observation(self): """ Get info about the state of the environment Returns: :return observation: (object) Observation of the environment """ raise NotImplementedError def step(self, action): """ Apply action on the environment Parameters: :param action: (object) An action provided by the agent Returns: :return observation: (object) :return reward: (float) :return done: (bool): :return info: (dict): """ raise NotImplementedError def _add_scene_object_uid(self, scene_object_uid, name): """ Call this method in order to enable texturization of object Parameters: :param scene_object: (int) """ self.scene_objects_uids[scene_object_uid] = name def get_scene_object_uid_by_name(self, name): for uid, object_name in self.scene_objects_uids.items(): if name == object_name: return uid return None def seed(self, seed=None): """ Set the seed for this env's random number generator(s) """ self.np_random, seed = seeding.np_random(seed) return [seed] def hard_reset(self): """ Full reset of the simulation. Delete and load again all objects and reset physics. """ self.p.resetSimulation() self.p.disconnect() self._connect_to_physics_server() self.scene_objects_uids = {} #self.episode_number = 0 self._set_physics() self._setup_scene() def _restart_episode(self): """ Reset episode information and delete all objects """ self.p.removeAllUserDebugItems() self.episode_start_time = time.time() self.episode_over = False self.episode_failed = False self.episode_reward = 0.0 self.episode_steps = 0 def reset(self, hard=False): """ Reset the state of the environment """ if hard: self.hard_reset() else: self._remove_all_objects() self._restart_episode() def _draw_bounding_boxes(self): """ Show bounding boxes in tne PyBullet GUI """ for object in self.env_objects: object.draw_bounding_box() def _compute_reward(self): """ Compute reward for the agent """ return NotImplementedError def _print_episode_summary(self, info_dict={}): """ Show an extra information about the episode Parameters: :param info_dict: (dict) Extra info """ if self.episode_failed: episode_status = "FAILURE" else: episode_status = "SUCCESS" print("#---------Episode-Summary---------#") print("Episode number: " + str(self.episode_number)) print("Episode's number of steps: " + str(self.episode_steps)) print("Episode status: " + episode_status) print("Episode info: " + self.episode_info) print("Episode reward: " + str(self.episode_reward)) print("Last step reward: " + str(self.reward.rewards_history[-1])) print("#---------------------------------#") for key, value in info_dict.items(): print(key + ": " + str(value)) def _get_random_urdf_filenames(self, n, used_objects=None): """ Sample random URDF files from directory with objects URDFs Parameters: :param n: (int) Number of URDF's :param used_objects: (list) Specified subset of objects Returns: :return selected_objects_filenames: (list) """ if used_objects or (self.all_objects_filenames is None): all_objects_filenames = [] for object_name in used_objects: if "virtual" in object_name: all_objects_filenames.append(object_name) for file in self.all_objects_filenames: if '/'+object_name+'.' in file: all_objects_filenames.append(file) else: # uses self.all_objects_filenames pass assert all_objects_filenames is not None selected_objects_filenames = [] total_num_objects = len(all_objects_filenames) if (n <= total_num_objects): selected_objects = np.random.choice( np.arange(total_num_objects), n, replace=True) else: selected_objects = list(np.arange(total_num_objects)) remain = n - total_num_objects selected_objects += list(np.random.choice( np.arange(total_num_objects), remain)) for object_id in selected_objects: selected_objects_filenames.append(all_objects_filenames[object_id]) return selected_objects_filenames def _get_all_urdf_filenames(self, dir): """ Get all URDF filenames from directory Parameters: :param dir: (int) Number of URDFs Returns: :return filenames: (list) """ list_all = [] for (dirpath, dirnames, filenames) in os.walk(self.objects_dir_path): if '_old' not in dirpath and 'urdf' in dirpath: list_all += [os.path.join(dirpath, file) for file in filenames] return list_all def _remove_object(self, object): """ Totally remove object from the simulation Parameters: :param object: (EnvObject) Object to remove """ self.env_objects.remove(object) self.p.removeBody(object.uid) def _remove_all_objects(self): """ Remove all objects from simulation (not scene objects or robots) """ env_objects_copy = self.env_objects[:] for env_object in env_objects_copy: self._remove_object(env_object) def get_texturizable_objects_uids(self): """ Get all objects in the environment, on which textures can be applied Returns: :return texturizable_objects_uids: (list) """ return [object.get_uid() for object in self.env_objects] + list(self.scene_objects_uids.keys()) def get_colorizable_objects_uids(self): """ Get all objects in the environment, which color can be changed Returns: :return colorizable_objects_uids: (list) """ return [object.get_uid() for object in self.env_objects] + list(self.scene_objects_uids.keys()) def __del__(self): """ Disconnect from the physics server """ self.p.disconnect() class CameraEnv(BaseEnv): """ The class for environments with rendering Parameters: :param camera_resolution: (list) The number of pixels in image (WxH) :param shadows_on: (bool) Whether or not to use shadows while rendering, only applies to ER_TINY_RENDERER :param render_on: (bool) Turn on rendering :param renderer: (int) self.p.ER_TINY_RENDERER (CPU) or self.p.ER_BULLET_HARDWARE_OPENGL (GPU) :param active_cameras: (list) Set 1 at a position(=camera number) to save images from this camera """ def __init__(self, camera_resolution=[640, 480], shadows_on=True, render_on=True, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL, active_cameras=None, **kwargs): super(CameraEnv, self).__init__(**kwargs) self.camera_resolution = camera_resolution self.shadows_on = shadows_on self.render_on = render_on self.renderer = renderer self.active_cameras = active_cameras self.cameras = [] self.set_light() self._set_cameras() def set_light(self, light_direction=[1, 1, 1], light_color=[0.1, 0.1, 0.1], light_distance=1., light_ambient=1., light_diffuse=1., light_specular=1.): """ Set light parameters for rendering, doesn't affect PyBullet GUI. Appart from light_direction, all parameters only apply to ER_TINY_RENDERER. Parameters: :param light_direction: (list) Specifies the world position of the light source :param light_color: (list) Directional light color in RGB in range 0..1 :param light_distance: (float) Distance of the light along the normalized light_direction :param light_ambient: (float) Light ambient coefficient in range 0..1 :param light_diffuse: (float) Light diffuse coefficient in range 0..1 :param light_specular: (float) Light specular coefficient in range 0..1 """ self.light_direction = light_direction self.light_color = light_color self.light_distance = light_distance self.light_ambient = light_ambient self.light_diffuse = light_diffuse self.light_specular = light_specular def get_render_parameters(self): """ Return environment parameters for rendering, initially is intended to use by cameras Returns: :return render_parameters: (dict) Render parameters """ return { "width": self.camera_resolution[0], "height": self.camera_resolution[1], "lightDirection": self.light_direction, "lightColor": self.light_color, "lightDistance": self.light_distance, "shadow": 1 if self.shadows_on else 0, "lightAmbientCoeff": self.light_ambient, "lightDiffuseCoeff": self.light_diffuse, "lightSpecularCoeff": self.light_specular, "renderer": self.renderer } def _set_cameras(self): """ Set cameras available to use for rendering """ raise NotImplementedError def get_cameras(self): return self.cameras def add_camera(self, **kwargs): """ Add new camera to the environment Parameters: :param position: (list) Eye position in Cartesian world coordinates :prarm target_position: (list) Position of the target point :param up_vector: (list) Up vector of the camera :param up_axis_index: (int) Either 1 for Y or 2 for Z axis up :param yaw: (float) Yaw angle in degrees left/right around up-axis :param pitch: (float) Pitch in degrees up/down :param roll: (float) Roll in degrees around forward vector :param distance: (float) Distance from eye to focus point :param field_of_view: (float) Field of view :param near_plane_distance: (float) Near plane distance :param far_plane_distance: (float) Far plane distance """ self.cameras.append(Camera(env=self, **kwargs)) def set_active_cameras(self, active_cameras): if (len(active_cameras) == len(self.cameras)): self.active_cameras = active_cameras def change_current_camera(self, camera_num): print("Change camera to " + str(self.current_camera)) self.current_camera = camera_num def render(self, mode="rgb_array", camera_id=None): """ Get image (image, depth, segmentation_mask) from camera or active cameras Parameters: :param mode: (str) rgb_array to return RGB image :param camera_id: (int) Get image from specified camera Returns: :return camera_data: (dict) Key: camera_id, Value: info from camera """ if mode != "rgb_array": return np.array([]) camera_data = {} if self.render_on: if camera_id is not None: camera_data[camera_id] = self.cameras[camera_id].render() else: for camera_num in range(len(self.active_cameras)): if self.active_cameras[camera_num]: camera_data[camera_num] = self.cameras[camera_num].render() return camera_data def project_point_to_camera_image(self, point, camera_id): """ Project 3D point in Cartesian world coordinates to 2D point in pixel space Parameters: :param point: (list) 3D point in Cartesian world coordinates :param camera_id: (int) Index of camera to project on Returns: :return 2d_point: (list) 2D coordinates of point on imageg """ return self.cameras[camera_id].project_point_to_image(point) def get_camera_opencv_matrix_values(self, camera_id): """ Compute values of OpenCV matrix Parameters: :param camera_id: (int) Index of camera to get matrix from Returns: :return values: (dict) fx, fy, cx, cy values """ return self.cameras[camera_id].get_opencv_camera_matrix_values()