id
stringlengths
3
8
content
stringlengths
100
981k
462271
import os import sys import threading import subprocess def _try_to_kill(process): try: process.kill() except Exception: pass def touch(path): if not os.path.exists(path): with open(path, 'w') as _: pass class Process(object): def __init__(self, args): self._process = subprocess.Popen(args) self._event = threading.Event() self._result = None thread = threading.Thread(target=self._run) thread.setDaemon(True) thread.start() def _run(self): self._process.communicate() self._result = self._process.returncode self._event.set() def wait(self, timeout): self._event.wait(timeout=timeout) _try_to_kill(self._process) return self._result if __name__ == '__main__': yndexer = sys.argv[1] timeout = int(sys.argv[2]) output_file = sys.argv[3] input_file = sys.argv[4] partition_count = sys.argv[5] partition_index = sys.argv[6] process = Process([yndexer, '-f', input_file, '-y', output_file, '-c', partition_count, '-i', partition_index]) result = process.wait(timeout=timeout) if result != 0: print >> sys.stderr, 'Yndexing process finished with code', result touch(output_file)
462275
from twitch.helix import Video from tcd.settings import Settings class Format: def __init__(self, video: Video, format_name: str): self.video: Video = video self.format_name: str = format_name self.format_dictionary: dict = Settings().config['formats'][format_name]
462319
import input_parser import pandas as pd import app_classifier import config import timing class ClassificationResult: def __init__(self, accuracy, file_name): self.accuracy = accuracy self.file_name = file_name def __str__(self): return "Total accuracy: " + str(self.accuracy) + " for " + self.file_name def explorative_classification(): file_contents, label_list = input_parser.parse_input_files(config.get_record_dir(), combine_sc_vectors=False) results = [] for idx, fc in enumerate(file_contents): labels = label_list[idx] print("\nEvaluate ", fc.file_name) X = [fc] Y = pd.Series(labels) total_accuracy = app_classifier.do_kfold_cross_validation(X, Y, verbose=False) results.append(ClassificationResult(total_accuracy, fc.file_name)) results.sort(key = lambda classificationResult: classificationResult.accuracy, reverse=True) print("\nSummary for files in " + config.get_record_dir() + ":\n") for r in results: print(r) def main(): timing.start_measurement() print("Do explorative classification with separate input files") explorative_classification() timing.stop_measurement() main()
462325
def message_says_hello(msg): """Make sure that the response was friendly""" assert msg.payload.get("message") == "hello world"
462346
from typing import Mapping, Sequence, Union import torch from pyro.distributions import TorchDistribution from torch.distributions import register_kl from torch.distributions.constraints import Constraint from .multivariate import MultivariateDistribution def _iterate_parts(value, ndims: Sequence[int]): for ndim in ndims: yield value[..., :ndim] value = value[..., ndim:] class _FactorisedSupport(Constraint): def __init__(self, supports: Sequence[Constraint], ndims: Sequence[int]): self.supports = supports self.ndims = ndims def check(self, value): return all(support.check(part) for support, part in zip(self.supports, _iterate_parts(value, self.ndims))) class Factorised(MultivariateDistribution): arg_constraints = {} def __init__(self, factors: Union[Sequence[TorchDistribution], Mapping[str, TorchDistribution]], validate_args=None, var_names=None): if isinstance(factors, Mapping): if var_names is not None: raise ValueError("var_names should not be given alongside a factor dictionary") var_names = list(factors.keys()) factors = list(factors.values()) self.factors = factors batch_shape = factors[0].batch_shape event_shape = torch.Size([sum(factor.event_shape[0] for factor in self.factors)]) self._ndims = [factor.event_shape[0] if len(factor.event_shape) > 0 else 1 for factor in self.factors] super().__init__(batch_shape, event_shape, validate_args, var_names=var_names) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Factorised, _instance) batch_shape = torch.Size(batch_shape) new.factors = [factor.expand(batch_shape) for factor in self.factors] new._ndims = self._ndims super(Factorised, new).__init__(batch_shape, self.event_shape, validate_args=False, var_names=self.variable_names) new._validate_args = self._validate_args return new @property def has_rsample(self): return any(factor.has_rsample for factor in self.factors) @property def support(self): return _FactorisedSupport([factor.support for factor in self.factors], self._ndims) def rsample(self, sample_shape=torch.Size()): return torch.cat([factor.rsample(sample_shape) for factor in self.factors], dim=-1) @property def num_variables(self): return len(self.factors) @property def variable_shapes(self): return [factor.event_shape[0] for factor in self.factors] def _marginalise_single(self, factor_index: int) -> TorchDistribution: return self.factors[factor_index] def _marginalise_multi(self, factor_indices: Sequence[int]) -> 'Factorised': return Factorised([self.factors[i] for i in factor_indices], validate_args=self._validate_args) def _condition(self, marg_indices, cond_indices, cond_values, squeeze): cond_dist = self.marginalise(marg_indices[0] if squeeze else marg_indices) cond_batch_shape = torch.Size([cond_values[0].shape[0]]) + cond_dist.batch_shape return cond_dist.expand(cond_batch_shape) def log_prob(self, value): return sum(factor.log_prob(part) for factor, part in zip(self.factors, self.partition_dimensions(value))) def entropy(self): return sum(factor.entropy() for factor in self.factors) def partition_dimensions(self, data): return _iterate_parts(data, self._ndims) @property def mean(self): return torch.cat([factor.mean for factor in self.factors], dim=-1) @property def variance(self): return sum(factor.variance for factor in self.factors) def __repr__(self): factors = self.factors if self.variable_names is not None: factors = dict(zip(self.variable_names, factors)) return self.__class__.__name__ + f"({factors})" @register_kl(Factorised, Factorised) def _kl_factorised_factorised(p: Factorised, q: Factorised): return sum(kl_divergence(p_factor, q_factor) for p_factor, q_factor in zip(p.factors, q.factors)) if __name__ == '__main__': from pyro.distributions import Dirichlet, MultivariateNormal from torch.distributions import kl_divergence from distributions.mixture import Mixture B, D1, D2 = 5, 3, 4 N = 1000 dist1 = MultivariateNormal(torch.zeros(D1), torch.eye(D1)).expand((B,)) dist2 = Dirichlet(torch.ones(D2)).expand((B,)) print(dist1.batch_shape, dist1.event_shape) print(dist2.batch_shape, dist2.event_shape) fact = Factorised([dist1, dist2]) print(fact.batch_shape, fact.event_shape) samples = fact.rsample((N,)) print(samples[0]) print(samples.shape) logp = fact.log_prob(samples) print(logp.shape) entropy = fact.entropy() print(entropy.shape) print(entropy, -logp.mean()) print() print(kl_divergence(fact, fact)) mixture = Mixture(torch.ones(B), fact) samples = mixture.rsample((N,)) logp = mixture.log_prob(samples) print(samples.shape) print(logp.shape)
462368
from fabric.api import hide, run, env import time import json def run_cmd(cmd): with hide('output', 'running', 'warnings'): return run(cmd, timeout=1200) def check(**kwargs): ''' Login over SSH and execute shell command ''' jdata = kwargs['jdata'] logger = kwargs['logger'] env.gateway = jdata['data']['gateway'] env.host_string = jdata['data']['host_string'] env.user = jdata['data']['username'] env.key = jdata['data']['sshkey'] env.shell = "/bin/sh -c" env.disable_known_hosts = True env.warn_only = True env.abort_on_prompts = True results = run_cmd("uname -a") if results.succeeded: if "FreeBSD" in results: cmd = "swapinfo" results = run_cmd(cmd) if results.succeeded: lines = results.splitlines() swapinfo = lines[1].split() total_swap = int(swapinfo[1]) used_swap = int(swapinfo[2]) else: return None else: cmd = "cat /proc/meminfo" results = run_cmd(cmd) if results.succeeded: swapstats = {} for line in results.splitlines(): line_data = line.split() key = line_data[0].rstrip(":") swapstats[key] = int(line_data[1]) total_swap = swapstats['SwapTotal'] used_swap = swapstats['SwapTotal'] - swapstats['SwapFree'] else: return None else: return None logger.debug("swap-used: Total Swap {0} Swap Used {1} ".format(total_swap, used_swap)) if total_swap == 0: # avoid dividing by zero return True used_perc = float(used_swap) / float(total_swap) threshold = float(jdata['data']['threshold']) / 100 logger.debug("swap-used: Used Percent {0} Threshold {1}".format(used_perc, threshold)) if used_perc < threshold: return True else: return False
462374
import pysinsy from nnmnkwii.io import hts # TODO: consider replacing pysinsy to pure python implementation _global_sinsy = None def _lazy_init(dic_dir=None): if dic_dir is None: dic_dir = pysinsy.get_default_dic_dir() global _global_sinsy if _global_sinsy is None: _global_sinsy = pysinsy.sinsy.Sinsy() assert _global_sinsy.setLanguages("j", dic_dir) def xml2lab(xml): """Convert musicxml to HTS full context labels Args: xml (str): Path to musicxml file. Returns: HTS full context labels """ _lazy_init() _global_sinsy.loadScoreFromMusicXML(xml) label = _global_sinsy.createLabelData(False, 1, 1) label = hts.load(lines=label.getData()) _global_sinsy.clearScore() return label
462390
def main(): for x in range(4): if x == 5: break else: print("Well of course that didn't happen") for x in range(7): if x == 5: break else: print("H-hey wait!") i = 0 while i < 3: print("Works with while too") for x in range(3): print("BTW don't worry about nested breaks") break if i == 10: break i += 1 else: print("Yeah not likely") print(i) if __name__ == '__main__': main()
462396
import unittest from chainer import function_node from chainer import testing def dummy(): pass class TestNoNumpyFunction(unittest.TestCase): def test_no_numpy_function(self): with self.assertRaises(ValueError): testing.unary_math_function_unittest(dummy) # no numpy.dummy class DummyLinear(function_node.FunctionNode): @property def label(self): return 'dummy_linear' def forward(self, x): return x[0], def backward(self, indexes, gy): return gy[0], def dummy_linear(x): return DummyLinear().apply((x,))[0] @testing.unary_math_function_unittest(dummy_linear, func_expected=lambda x, dtype: x) class TestIsLinear(unittest.TestCase): pass testing.run_module(__name__, __file__)
462401
import os from prometheus_client import CONTENT_TYPE_LATEST, CollectorRegistry, \ core, multiprocess, start_http_server from prometheus_client.exposition import generate_latest from sanic.response import raw from . import endpoint, metrics from .exceptions import SanicPrometheusError class MonitorSetup: def __init__(self, app, metrics_path, multiprocess_on=False): self._app = app self._multiprocess_on = multiprocess_on self._metrics_path = metrics_path def expose_endpoint(self): """ Expose /metrics endpoint on the same Sanic server. This may be useful if Sanic is launched from a container and you do not want to expose more than one port for some reason. """ @self._app.route(self._metrics_path, methods=['GET']) async def expose_metrics(request): return raw(self._get_metrics_data(), content_type=CONTENT_TYPE_LATEST) def start_server(self, addr='', port=8000): """ Expose /metrics endpoint on a new server that will be launched on `<addr>:<port>`. This may be useful if you want to restrict access to metrics data with firewall rules. NOTE: can not be used in multiprocessing mode """ if self._multiprocess_on: raise SanicPrometheusError( "start_server can not be used when multiprocessing " + "is turned on") start_http_server(addr=addr, port=port) def _get_metrics_data(self): if not self._multiprocess_on: registry = core.REGISTRY else: registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) data = generate_latest(registry) return data def monitor(app, endpoint_type='url:1', get_endpoint_fn=None, latency_buckets=None, mmc_period_sec=30, multiprocess_mode='all', metrics_path='/metrics', is_middleware=True, metrics_list=None): """ Regiesters a bunch of metrics for Sanic server (request latency, count, etc) and exposes /metrics endpoint to allow Prometheus to scrape them out. :param metrics_list: :param is_middleware: :param metrics_path: :param multiprocess_mode: :param app: an instance of sanic.app :param endpoint_type: All request related metrics have a label called 'endpoint'. It can be fetched from Sanic `request` object using different strategies specified by `endpoint_type`: url - full relative path of a request URL (i.e. for http://something/a/b/c?f=x you end up having `/a/b/c` as the endpoint) url:n - like URL but with at most `n` path elements in the endpoint (i.e. with `url:1` http://something/a/b/c becomes `/a`). custom - custom endpoint fetching funciton that should be specified by `get_endpoint_fn` :param get_endpoint_fn: a custom endpoint fetching function that is ignored until `endpoint_type='custom'`. get_endpoint_fn = lambda r: ... where `r` is Sanic request object :param latency_buckets: an optional list of bucket sizes for latency histogram (see prometheus `Histogram` metric) :param mmc_period_sec: set a period (in seconds) of how frequently memory usage related metrics are collected. Setting it to None will disable memory metrics collection. :multiprocess_mode': :metrics_path: path where metrics will be exposed NOTE: memory usage is not collected when when multiprocessing is enabled """ multiprocess_on = 'prometheus_multiproc_dir' in os.environ get_endpoint = endpoint.fn_by_type(endpoint_type, get_endpoint_fn) memcollect_enabled = mmc_period_sec is not None @app.listener('before_server_start') def before_start(app, loop): app.metrics = {} metrics.init( app, latency_buckets, multiprocess_mode, memcollect_enabled=memcollect_enabled, metrics_list=metrics_list, ) if is_middleware is True: @app.middleware('request') async def before_request(request): if request.path != metrics_path and request.method != "OPTIONS": metrics.before_request_handler(request) @app.middleware('response') async def before_response(request, response): if request.path != metrics_path and request.method != "OPTIONS": metrics.after_request_handler(request, response, get_endpoint) if multiprocess_on: @app.listener('after_server_stop') def after_stop(app, loop): multiprocess.mark_process_dead(os.getpid()) elif memcollect_enabled: @app.listener('before_server_start') async def start_memcollect_task(app, loop): app.memcollect_task = loop.create_task( metrics.periodic_memcollect_task( app, mmc_period_sec, loop ) ) @app.listener('after_server_stop') async def stop_memcollect_task(app, loop): app.memcollect_task.cancel() return MonitorSetup(app, metrics_path, multiprocess_on) __all__ = ['monitor']
462409
from typing import List, Tuple from drkns.configunit.ConfigUnit import ConfigUnit from drkns.generation.GenerationTemplate import GenerationTemplate from drkns.generation.generation.get_group_block import get_group_block from drkns.generation.pattern_util \ import format_list_in_template from drkns.generation._tags import groups_tag, all_group_names_tag def get_formatted_from_groups_configuration( generation_template: GenerationTemplate, groups: List[Tuple[str, List[ConfigUnit], List[str]]] ) -> str: group_blocks = [] all_group_names = [] for group_name, group_config_units, dependency_groups_name in groups: group_block = get_group_block( generation_template, group_name, group_config_units, dependency_groups_name) group_blocks.append(group_block) all_group_names.append(group_name) formatted = generation_template.template formatted = format_list_in_template( groups_tag, group_blocks, formatted, line_level=True) formatted = format_list_in_template( all_group_names_tag, all_group_names, formatted, line_level=False) return formatted
462414
import urllib.request, urllib.parse, urllib.error from bs4 import BeautifulSoup import ssl import pdb import requests import time from random import randint import csv class amazon_review_scraper: # Ignore SSL certificate errors ssl._create_default_https_context = ssl._create_unverified_context csv_data = [] csv_head = ["Rating", "Title", "Date", "Verified Purchase", "Body", "Helpful Votes"] def __init__(self, url, start_page, end_page, time_upper_limit): self.url = url self.set_url() self.start_page = int(start_page) self.end_page = int(end_page) self.time_upper_limit = time_upper_limit def set_sleep_timer(self): sleep_time = randint(0, int(self.time_upper_limit)) print("\nSleeping for " + str(sleep_time) + " seconds.") time.sleep(sleep_time) def set_url(self): # removing pageNumber parameter if it exists in the url url = self.url.split("&pageNumber") if len(url) > 1: self.url = url[0] else : self.url = url def set_start_page(self, start_page): url = self.url + "&pageNumber=" + str(start_page) return url def build_rating(self, review): return str(review).split("<span class=\"a-icon-alt\">")[1].split("</span>")[0].split(" ")[0] def build_title(self, review): return str(review).split("data-hook=\"review-title\"")[1].split("\">")[1].split("</a>")[0] def build_date(self, review): return str(review).split("data-hook=\"review-date\">")[1].split("</span>")[0].split("on ")[1] def build_verified_purchase(self, review): # Yes = purchased, No = not purchased try: str(review).split("data-hook=\"avp-badge\">")[1].split("</span>")[0] return "Yes" except: return "No" def build_body(self, review): body = str(review).split("data-hook=\"review-body\">")[1].split("</span>")[0] + "\n" # to remove <br>, <br/> and </br> body = body.replace("<br>", ".").replace("<br/>", ".").replace("</br>", ".").strip() return body def build_votes(self, review): try : votes = str(review).split("data-hook=\"helpful-vote-statement\"")[1].split(">")[1].split("<")[0].strip().split() if votes[0] == "One" : return "1" else : return votes[0] except : return "0" def scrape(self): start_page = self.start_page end_page = self.end_page if end_page < start_page: print("Start page cannot be greater than end page. Please try again.") exit() self.csv_data.append(self.csv_head) while start_page <= end_page : try: url = self.set_start_page(start_page) except: print("URL entered is wrong. Please try again with the right URL.") exit() # Sleep because Amazon might block your IP if there are too many requests every second self.set_sleep_timer() print("Scraping page " + str(start_page) + ".") # Amazon blocks requests that don't come from browser. Hence need to mention user-agent user_agent = 'Mozilla/5.0' headers = {'User-Agent' : user_agent} values = {} data = urllib.parse.urlencode(values).encode('utf-8') req = urllib.request.Request(url, data, headers) response = urllib.request.urlopen(req) html = response.read() soup = BeautifulSoup(html, 'html.parser') reviews = soup.find_all("div", attrs={"class": "a-section review"}) for review in reviews : csv_body = [] # Star Rating rating = self.build_rating(review) csv_body.append(rating) # Title title = self.build_title(review) csv_body.append(title) # Date date = self.build_date(review) csv_body.append(date) # Verified Purchase verified_purchase = self.build_verified_purchase(review) csv_body.append(verified_purchase) # Body body = self.build_body(review) csv_body.append(body) # Helpful Votes votes = self.build_votes(review) csv_body.append(votes) self.csv_data.append(csv_body) start_page += 1 def write_csv(self, file_name): print("\nWriting to file.\n") with open((file_name + '.csv'), 'w') as csv_file : writer = csv.writer(csv_file, delimiter=',') writer.writerows(self.csv_data)
462422
from pylab import * from scipy import * from scipy import optimize import argparse import sys import os # Generate data points with noise # Read in csv file and set length and width """ This program reads in a set of points from a csv file and interprets these points. These points correspond to a torpedo, emperor, or wire. Goal: Calculate aspect ratio and height. Output: Aspect ratio and height (written to a csv file). """ # c**2 = a**2 + b **2 - 2ab cos (theta) # theta = arc cos((c**2 - a**2 - b**2)/ -2ab) # Returns the angle of a triangle with hypoteneus c and legs a and b def lawOfCos(c,a,b): try: return acos((c**2 - a**2 - b**2)/(-2.*a*b)) finally: # No angle return 0 # c = sqrt(a**2 + b**2) # input: x and y of both points # output: distance between points def distance(a_x,a_y,b_x,b_y): return math.sqrt((b_y - a_y)**2. + (b_x - a_x)**2.) parser = argparse.ArgumentParser() parser.add_argument('-r','--redTorpedo',action = "store_true") parser.add_argument('-b','--blueTorpedo',action= "store_true") parser.add_argument('-w','--wire',action = "store_true") parser.add_argument('-e','--emperor',action = "store_true") args = parser.parse_args() if (args.redTorpedo): csv_file = open('red_torpedo_raw_data.csv','r') out_file = open('red_torpedo.csv','w') elif (args.blueTorpedo): csv_file = open('blue_torpedo_raw_data.csv','r') out_file = open('blue_torpedo.csv','w') elif (args.wire): csv_file = open('wire_raw_data.csv','r') out_file = open('wire.csv','w') elif (args.emperor): csv_file = open('emperor_raw_data.csv','r') out_file = open('emperor.csv','w') raw_data = csv_file.readlines() csv_file.close() #process raw data for line in raw_data: split_line = line.split(',') tl_x = split_line[0] tl_y = split_line[1] tr_x = split_line[2] tr_y = split_line[3] bl_x = split_line[4] bl_y = split_line[5] br_x = split_line[6] br_y = split_line[7] north_dist = split_line[8] east_dist = split_line[9] total_dist = split_line[10] #width and heights tw = distance(tl_x,tl_y,tr_x,tr_y) top_width = tw bw = distance(bl_x,br_y,bl_x,bl_y) bottom_width = bw lh = distance(tl_x,tl_y,bl_x,bl_y) left_height = lh rh = distance(tr_x,tr_y,br_x,br_x) right_height = rh #average height edge #used for distance to center of the object average_edge = (lh + rh) / 2 #aspect ratio larger_width = max(tw,bw) larger_height = max(lh,rh) aspect = larger_width/larger_height #angle to object angle = math.atan2(north,east) csv_line = [average_edge,aspect,angle] out_file.write(csv_line) out_file.close() """ #unused for now #finds angles of each edge of perceived quadrilateral for i in range(len(raw_data)): #diagonals tl_diag, br_diag = distance(tr_x[i],tr_y[i],bl_x[i],bl_y[i]) tr_diag, bl_diag = distance(tl_x[i],tl_y[i],br_x[i],br_y[i]) #angles tla = lawOfCos(tl_diag,tw,lh) tl_angle[i] = tla tra = lawOfcos(tr_diag,tw,rh) tr_angle[i] = tra bla = lawOfCos(bl_diag,bw,lh) bl_angle[i] = bla bra = lawOfCos(br_diag,bw,rh) br_angle[i] = bra """
462509
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.daylighting import DaylightingDelightControls log = logging.getLogger(__name__) class TestDaylightingDelightControls(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_daylightingdelightcontrols(self): pyidf.validation_level = ValidationLevel.error obj = DaylightingDelightControls() # alpha var_name = "Name" obj.name = var_name # object-list var_zone_name = "object-list|Zone Name" obj.zone_name = var_zone_name # integer var_lighting_control_type = 2 obj.lighting_control_type = var_lighting_control_type # real var_minimum_input_power_fraction_for_continuous_dimming_control = 0.3 obj.minimum_input_power_fraction_for_continuous_dimming_control = var_minimum_input_power_fraction_for_continuous_dimming_control # real var_minimum_light_output_fraction_for_continuous_dimming_control = 0.3 obj.minimum_light_output_fraction_for_continuous_dimming_control = var_minimum_light_output_fraction_for_continuous_dimming_control # integer var_number_of_stepped_control_steps = 6 obj.number_of_stepped_control_steps = var_number_of_stepped_control_steps # real var_probability_lighting_will_be_reset_when_needed_in_manual_stepped_control = 0.5 obj.probability_lighting_will_be_reset_when_needed_in_manual_stepped_control = var_probability_lighting_will_be_reset_when_needed_in_manual_stepped_control # real var_gridding_resolution = 0.0001 obj.gridding_resolution = var_gridding_resolution idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.daylightingdelightcontrolss[0].name, var_name) self.assertEqual(idf2.daylightingdelightcontrolss[0].zone_name, var_zone_name) self.assertEqual(idf2.daylightingdelightcontrolss[0].lighting_control_type, var_lighting_control_type) self.assertAlmostEqual(idf2.daylightingdelightcontrolss[0].minimum_input_power_fraction_for_continuous_dimming_control, var_minimum_input_power_fraction_for_continuous_dimming_control) self.assertAlmostEqual(idf2.daylightingdelightcontrolss[0].minimum_light_output_fraction_for_continuous_dimming_control, var_minimum_light_output_fraction_for_continuous_dimming_control) self.assertEqual(idf2.daylightingdelightcontrolss[0].number_of_stepped_control_steps, var_number_of_stepped_control_steps) self.assertAlmostEqual(idf2.daylightingdelightcontrolss[0].probability_lighting_will_be_reset_when_needed_in_manual_stepped_control, var_probability_lighting_will_be_reset_when_needed_in_manual_stepped_control) self.assertAlmostEqual(idf2.daylightingdelightcontrolss[0].gridding_resolution, var_gridding_resolution)
462510
class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: List[int] """ # Using Boyer-Moore Majority Vote Algorithm # Since we only use equality comparison, and cnt_a and cnt_b are initialized to 0 # thus initializing a and b to 0 doesn't change result even if the nums contains negative numbers # or 0. a = b = 0 cnt_a = cnt_b = 0 for e in nums: if a == e: cnt_a += 1 elif b == e: cnt_b += 1 elif cnt_a == 0: a = e cnt_a = 1 elif cnt_b == 0: b = e cnt_b = 1 else: cnt_a -= 1 cnt_b -= 1 cnt_a = cnt_b = 0 for e in nums: if e == a: cnt_a += 1 elif e == b: cnt_b += 1 result = [] total = len(nums) if cnt_a > total // 3: result.append(a) if cnt_b > total // 3: result.append(b) return result
462524
from __future__ import print_function, division import unittest class Vector: def __init__(s, *args, **_kwargs): kwargs = { 'base_class': (int, float), } kwargs.update(_kwargs) s.base = kwargs['base_class'] if len(args) == 1 and hasattr(args[0], '__iter__'): s.v = tuple(args[0]) elif len(args) != 0: s.v = tuple(args) else: s.v = ["dummy"] if not all(isinstance(x, s.base) for x in s.v): raise ValueError('Invalid Argument Specified: {!r}'.format(args)) def norm(s): import math # Calculate euclidean norm return math.sqrt(sum(map(lambda x: x**2, s.v))) def _prepare_other_as_vector(s, other): if not isinstance(other, s.__class__): other = s.__class__(other) if len(s) != len(other): raise ValueError('Vector\'s dimension doesn\'t match: {!r}'.format(other)) return other def add(s, other): other = s._prepare_other_as_vector(other) return s.__class__(map(lambda x: x[0] + x[1], zip(s.v, other.v)), base_class=s.base) def sub(s, other): other = s._prepare_other_as_vector(other) return s.__class__(map(lambda x: x[0] - x[1], zip(s.v, other.v)), base_class=s.base) def scalar_mult(s, other): if not isinstance(other, s.base): raise ValueError('{!r} must be an instance of {!r}'.format(other, s.base)) return s.__class__(map(lambda x: other * x, s.v), base_class=s.base) def inner_product(s, other): try: other = s._prepare_other_as_vector(other) except ValueError: raise ValueError('Inner product can calculate between vector and vector: {!r}'.format(other)) return sum(map(lambda x: x[0] * x[1], zip(s.v, other.v))) def __len__(s): return len(s.v) def __getitem__(s, n): assert n < len(s), 'The specified index out of bounds: {}'.format(n) return s.v[n] def __iter__(s): return iter(s.v) def __eq__(s, other): if isinstance(other, Vector): return s.v == other.v elif hasattr(other, '__iter__'): return s.v == tuple(other) return False def __repr__(s): return '{}({!r})'.format(s.__class__.__name__, s.v) def __str__(s): return '({})'.format(', '.join(map(str, s.v)))
462535
import numpy as np import warnings import os import h5py from tqdm import tqdm import pickle from torch.utils.data import Dataset warnings.filterwarnings('ignore') def pc_normalize(pc): centroid = np.mean(pc, axis=0) pc = pc - centroid m = np.max(np.sqrt(np.sum(pc**2, axis=1))) pc = pc / m return pc def farthest_point_sample(point, npoint): """ Input: xyz: pointcloud data, [N, D] npoint: number of samples Return: centroids: sampled pointcloud index, [npoint, D] """ N, D = point.shape xyz = point[:,:3] centroids = np.zeros((npoint,)) distance = np.ones((N,)) * 1e10 farthest = np.random.randint(0, N) for i in range(npoint): centroids[i] = farthest centroid = xyz[farthest, :] dist = np.sum((xyz - centroid) ** 2, -1) mask = dist < distance distance[mask] = dist[mask] farthest = np.argmax(distance, -1) point = point[centroids.astype(np.int32)] return point def convert_to_binary_mask(masks): binary_masks = [] for i in range(masks.shape[0]): binary_mask = np.ones(masks[i].shape) bg_idx = np.where(masks[i,:]==-1) binary_mask[bg_idx] = 0 binary_masks.append(binary_mask) binary_masks = np.array(binary_masks) return binary_masks class ScanObjectNNDataLoader(Dataset): def __init__(self, root, npoint=1024, split='train', uniform=False, normal_channel=True, cache_size=15000): self.root = root self.npoints = npoint self.uniform = uniform #self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt') #self.cat = [line.rstrip() for line in open(self.catfile)] #self.classes = dict(zip(self.cat, range(len(self.cat)))) self.normal_channel = normal_channel #shape_ids = {} #shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))] #shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))] assert (split == 'train' or split == 'test') #shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]] # list of (shape_name, shape_txt_file_path) tuple data = h5py.File(self.root + '/' + split + '_objectdataset_augmentedrot_scale75.h5', 'r') self.points = data['data'][:] self.labels = data['label'][:] self.masks = convert_to_binary_mask(data['mask'][:]) print('The size of %s data is %d'%(split,self.points.shape[0])) self.cache_size = cache_size # how many data points to cache in memory self.cache = {} # from index to (point_set, cls) tuple def __len__(self): return self.points.shape[0] def _get_item(self, index): if index in self.cache: point_set, cls, mask = self.cache[index] else: point_set = self.points[index] cls = self.labels[index] mask = self.masks[index] #fn = self.datapath[index] #cls = self.classes[self.datapath[index][0]] #cls = np.array([cls]).astype(np.int32) #point_set = self.all_data[fn[1]] if self.uniform: point_set = farthest_point_sample(point_set, self.npoints) else: point_set = point_set[0:self.npoints,:] mask = mask[0:self.npoints] point_set[:, 0:3] = pc_normalize(point_set[:, 0:3]) if not self.normal_channel: point_set = point_set[:, 0:3] if len(self.cache) < self.cache_size: self.cache[index] = (point_set, cls, mask) return point_set, cls, mask def __getitem__(self, index): return self._get_item(index) if __name__ == '__main__': import torch data = ModelNetDataLoader('/data/modelnet40_normal_resampled/',split='train', uniform=False, normal_channel=True,) DataLoader = torch.utils.data.DataLoader(data, batch_size=12, shuffle=True) for point,label in DataLoader: print(point.shape) print(label.shape)
462538
def getResNet50Init(): string = '\ layer {\n\ bottom: "image"\n\ top: "conv1"\n\ name: "conv1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 7\n\ pad: 3\n\ stride: 2\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "conv1"\n\ top: "conv1"\n\ name: "bn_conv1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "conv1"\n\ top: "conv1"\n\ name: "scale_conv1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "conv1"\n\ top: "conv1"\n\ name: "conv1_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "conv1"\n\ top: "pool1"\n\ name: "pool1"\n\ type: "Pooling"\n\ pooling_param {\n\ kernel_size: 3\n\ stride: 2\n\ pool: MAX\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "pool1"\n\ top: "res2a_branch1"\n\ name: "res2a_branch1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch1"\n\ top: "res2a_branch1"\n\ name: "bn2a_branch1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch1"\n\ top: "res2a_branch1"\n\ name: "scale2a_branch1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "pool1"\n\ top: "res2a_branch2a"\n\ name: "res2a_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2a"\n\ name: "bn2a_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2a"\n\ name: "scale2a_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2a"\n\ name: "res2a_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2b"\n\ name: "res2a_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2b"\n\ name: "bn2a_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2b"\n\ name: "scale2a_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2b"\n\ name: "res2a_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2c"\n\ name: "res2a_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2c"\n\ top: "res2a_branch2c"\n\ name: "bn2a_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch2c"\n\ top: "res2a_branch2c"\n\ name: "scale2a_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a_branch1"\n\ bottom: "res2a_branch2c"\n\ top: "res2a"\n\ name: "res2a"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res2a"\n\ top: "res2a"\n\ name: "res2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2a"\n\ top: "res2b_branch2a"\n\ name: "res2b_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2a"\n\ name: "bn2b_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2a"\n\ name: "scale2b_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2a"\n\ name: "res2b_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2b"\n\ name: "res2b_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2b"\n\ name: "bn2b_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2b"\n\ name: "scale2b_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2b"\n\ name: "res2b_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2c"\n\ name: "res2b_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2c"\n\ top: "res2b_branch2c"\n\ name: "bn2b_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b_branch2c"\n\ top: "res2b_branch2c"\n\ name: "scale2b_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2a"\n\ bottom: "res2b_branch2c"\n\ top: "res2b"\n\ name: "res2b"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res2b"\n\ top: "res2b"\n\ name: "res2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2b"\n\ top: "res2c_branch2a"\n\ name: "res2c_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2a"\n\ name: "bn2c_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2a"\n\ name: "scale2c_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2a"\n\ name: "res2c_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2b"\n\ name: "res2c_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2b"\n\ name: "bn2c_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2b"\n\ name: "scale2c_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2b"\n\ name: "res2c_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2c"\n\ name: "res2c_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2c"\n\ top: "res2c_branch2c"\n\ name: "bn2c_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c_branch2c"\n\ top: "res2c_branch2c"\n\ name: "scale2c_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2b"\n\ bottom: "res2c_branch2c"\n\ top: "res2c"\n\ name: "res2c"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res2c"\n\ top: "res2c"\n\ name: "res2c_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res2c"\n\ top: "res3a_branch1"\n\ name: "res3a_branch1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 2\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch1"\n\ top: "res3a_branch1"\n\ name: "bn3a_branch1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch1"\n\ top: "res3a_branch1"\n\ name: "scale3a_branch1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res2c"\n\ top: "res3a_branch2a"\n\ name: "res3a_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 2\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2a"\n\ name: "bn3a_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2a"\n\ name: "scale3a_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2a"\n\ name: "res3a_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2b"\n\ name: "res3a_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2b"\n\ name: "bn3a_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2b"\n\ name: "scale3a_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2b"\n\ name: "res3a_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2c"\n\ name: "res3a_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2c"\n\ top: "res3a_branch2c"\n\ name: "bn3a_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch2c"\n\ top: "res3a_branch2c"\n\ name: "scale3a_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a_branch1"\n\ bottom: "res3a_branch2c"\n\ top: "res3a"\n\ name: "res3a"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res3a"\n\ top: "res3a"\n\ name: "res3a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3a"\n\ top: "res3b_branch2a"\n\ name: "res3b_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2a"\n\ top: "res3b_branch2a"\n\ name: "bn3b_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2a"\n\ top: "res3b_branch2a"\n\ name: "scale3b_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2a"\n\ top: "res3b_branch2a"\n\ name: "res3b_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2a"\n\ top: "res3b_branch2b"\n\ name: "res3b_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2b"\n\ top: "res3b_branch2b"\n\ name: "bn3b_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2b"\n\ top: "res3b_branch2b"\n\ name: "scale3b_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2b"\n\ top: "res3b_branch2b"\n\ name: "res3b_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2b"\n\ top: "res3b_branch2c"\n\ name: "res3b_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2c"\n\ top: "res3b_branch2c"\n\ name: "bn3b_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b_branch2c"\n\ top: "res3b_branch2c"\n\ name: "scale3b_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3a"\n\ bottom: "res3b_branch2c"\n\ top: "res3b"\n\ name: "res3b"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res3b"\n\ top: "res3b"\n\ name: "res3b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3b"\n\ top: "res3c_branch2a"\n\ name: "res3c_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2a"\n\ top: "res3c_branch2a"\n\ name: "bn3c_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2a"\n\ top: "res3c_branch2a"\n\ name: "scale3c_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2a"\n\ top: "res3c_branch2a"\n\ name: "res3c_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2a"\n\ top: "res3c_branch2b"\n\ name: "res3c_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2b"\n\ top: "res3c_branch2b"\n\ name: "bn3c_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2b"\n\ top: "res3c_branch2b"\n\ name: "scale3c_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2b"\n\ top: "res3c_branch2b"\n\ name: "res3c_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2b"\n\ top: "res3c_branch2c"\n\ name: "res3c_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2c"\n\ top: "res3c_branch2c"\n\ name: "bn3c_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c_branch2c"\n\ top: "res3c_branch2c"\n\ name: "scale3c_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3b"\n\ bottom: "res3c_branch2c"\n\ top: "res3c"\n\ name: "res3c"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res3c"\n\ top: "res3c"\n\ name: "res3c_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3c"\n\ top: "res3d_branch2a"\n\ name: "res3d_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2a"\n\ top: "res3d_branch2a"\n\ name: "bn3d_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2a"\n\ top: "res3d_branch2a"\n\ name: "scale3d_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2a"\n\ top: "res3d_branch2a"\n\ name: "res3d_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2a"\n\ top: "res3d_branch2b"\n\ name: "res3d_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2b"\n\ top: "res3d_branch2b"\n\ name: "bn3d_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2b"\n\ top: "res3d_branch2b"\n\ name: "scale3d_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2b"\n\ top: "res3d_branch2b"\n\ name: "res3d_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2b"\n\ top: "res3d_branch2c"\n\ name: "res3d_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2c"\n\ top: "res3d_branch2c"\n\ name: "bn3d_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3d_branch2c"\n\ top: "res3d_branch2c"\n\ name: "scale3d_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ \n\ layer {\n\ bottom: "res3c"\n\ bottom: "res3d_branch2c"\n\ top: "res3d"\n\ name: "res3d"\n\ type: "Eltwise"\n\ }\n\ \n\ layer {\n\ bottom: "res3d"\n\ top: "res3d"\n\ name: "res3d_relu"\n\ type: "ReLU"\n\ }\n' return string def getResNet152Init(): string = '\ layer {\n\ bottom: "image"\n\ top: "conv1"\n\ name: "conv1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 7\n\ pad: 3\n\ stride: 2\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "conv1"\n\ top: "conv1"\n\ name: "bn_conv1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "conv1"\n\ top: "conv1"\n\ name: "scale_conv1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "conv1"\n\ bottom: "conv1"\n\ name: "conv1_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "conv1"\n\ top: "pool1"\n\ name: "pool1"\n\ type: "Pooling"\n\ pooling_param {\n\ kernel_size: 3\n\ stride: 2\n\ pool: MAX\n\ }\n\ }\n\ layer {\n\ bottom: "pool1"\n\ top: "res2a_branch1"\n\ name: "res2a_branch1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch1"\n\ top: "res2a_branch1"\n\ name: "bn2a_branch1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch1"\n\ top: "res2a_branch1"\n\ name: "scale2a_branch1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "pool1"\n\ top: "res2a_branch2a"\n\ name: "res2a_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2a"\n\ name: "bn2a_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2a"\n\ name: "scale2a_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2a_branch2a"\n\ bottom: "res2a_branch2a"\n\ name: "res2a_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2a_branch2a"\n\ top: "res2a_branch2b"\n\ name: "res2a_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2b"\n\ name: "bn2a_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2b"\n\ name: "scale2a_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2a_branch2b"\n\ bottom: "res2a_branch2b"\n\ name: "res2a_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2a_branch2b"\n\ top: "res2a_branch2c"\n\ name: "res2a_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2c"\n\ top: "res2a_branch2c"\n\ name: "bn2a_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch2c"\n\ top: "res2a_branch2c"\n\ name: "scale2a_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a_branch1"\n\ bottom: "res2a_branch2c"\n\ top: "res2a"\n\ name: "res2a"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res2a"\n\ top: "res2a"\n\ name: "res2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2a"\n\ top: "res2b_branch2a"\n\ name: "res2b_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2a"\n\ name: "bn2b_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2a"\n\ name: "scale2b_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2b_branch2a"\n\ bottom: "res2b_branch2a"\n\ name: "res2b_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2b_branch2a"\n\ top: "res2b_branch2b"\n\ name: "res2b_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2b"\n\ name: "bn2b_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2b"\n\ name: "scale2b_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2b_branch2b"\n\ bottom: "res2b_branch2b"\n\ name: "res2b_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2b_branch2b"\n\ top: "res2b_branch2c"\n\ name: "res2b_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2c"\n\ top: "res2b_branch2c"\n\ name: "bn2b_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2b_branch2c"\n\ top: "res2b_branch2c"\n\ name: "scale2b_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2a"\n\ bottom: "res2b_branch2c"\n\ top: "res2b"\n\ name: "res2b"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res2b"\n\ top: "res2b"\n\ name: "res2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2b"\n\ top: "res2c_branch2a"\n\ name: "res2c_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2a"\n\ name: "bn2c_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2a"\n\ name: "scale2c_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2c_branch2a"\n\ bottom: "res2c_branch2a"\n\ name: "res2c_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2c_branch2a"\n\ top: "res2c_branch2b"\n\ name: "res2c_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 64\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2b"\n\ name: "bn2c_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2b"\n\ name: "scale2c_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res2c_branch2b"\n\ bottom: "res2c_branch2b"\n\ name: "res2c_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2c_branch2b"\n\ top: "res2c_branch2c"\n\ name: "res2c_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 256\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2c"\n\ top: "res2c_branch2c"\n\ name: "bn2c_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2c_branch2c"\n\ top: "res2c_branch2c"\n\ name: "scale2c_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2b"\n\ bottom: "res2c_branch2c"\n\ top: "res2c"\n\ name: "res2c"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res2c"\n\ top: "res2c"\n\ name: "res2c_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res2c"\n\ top: "res3a_branch1"\n\ name: "res3a_branch1"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 2\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch1"\n\ top: "res3a_branch1"\n\ name: "bn3a_branch1"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch1"\n\ top: "res3a_branch1"\n\ name: "scale3a_branch1"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res2c"\n\ top: "res3a_branch2a"\n\ name: "res3a_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 2\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2a"\n\ name: "bn3a_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2a"\n\ name: "scale3a_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3a_branch2a"\n\ bottom: "res3a_branch2a"\n\ name: "res3a_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3a_branch2a"\n\ top: "res3a_branch2b"\n\ name: "res3a_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2b"\n\ name: "bn3a_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2b"\n\ name: "scale3a_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3a_branch2b"\n\ bottom: "res3a_branch2b"\n\ name: "res3a_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3a_branch2b"\n\ top: "res3a_branch2c"\n\ name: "res3a_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2c"\n\ top: "res3a_branch2c"\n\ name: "bn3a_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch2c"\n\ top: "res3a_branch2c"\n\ name: "scale3a_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a_branch1"\n\ bottom: "res3a_branch2c"\n\ top: "res3a"\n\ name: "res3a"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3a"\n\ top: "res3a"\n\ name: "res3a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3a"\n\ top: "res3b1_branch2a"\n\ name: "res3b1_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2a"\n\ top: "res3b1_branch2a"\n\ name: "bn3b1_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2a"\n\ top: "res3b1_branch2a"\n\ name: "scale3b1_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b1_branch2a"\n\ bottom: "res3b1_branch2a"\n\ name: "res3b1_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b1_branch2a"\n\ top: "res3b1_branch2b"\n\ name: "res3b1_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2b"\n\ top: "res3b1_branch2b"\n\ name: "bn3b1_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2b"\n\ top: "res3b1_branch2b"\n\ name: "scale3b1_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b1_branch2b"\n\ bottom: "res3b1_branch2b"\n\ name: "res3b1_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b1_branch2b"\n\ top: "res3b1_branch2c"\n\ name: "res3b1_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2c"\n\ top: "res3b1_branch2c"\n\ name: "bn3b1_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1_branch2c"\n\ top: "res3b1_branch2c"\n\ name: "scale3b1_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3a"\n\ bottom: "res3b1_branch2c"\n\ top: "res3b1"\n\ name: "res3b1"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b1"\n\ top: "res3b1"\n\ name: "res3b1_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b1"\n\ top: "res3b2_branch2a"\n\ name: "res3b2_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2a"\n\ top: "res3b2_branch2a"\n\ name: "bn3b2_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2a"\n\ top: "res3b2_branch2a"\n\ name: "scale3b2_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b2_branch2a"\n\ bottom: "res3b2_branch2a"\n\ name: "res3b2_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b2_branch2a"\n\ top: "res3b2_branch2b"\n\ name: "res3b2_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2b"\n\ top: "res3b2_branch2b"\n\ name: "bn3b2_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2b"\n\ top: "res3b2_branch2b"\n\ name: "scale3b2_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b2_branch2b"\n\ bottom: "res3b2_branch2b"\n\ name: "res3b2_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b2_branch2b"\n\ top: "res3b2_branch2c"\n\ name: "res3b2_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2c"\n\ top: "res3b2_branch2c"\n\ name: "bn3b2_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2_branch2c"\n\ top: "res3b2_branch2c"\n\ name: "scale3b2_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b1"\n\ bottom: "res3b2_branch2c"\n\ top: "res3b2"\n\ name: "res3b2"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b2"\n\ top: "res3b2"\n\ name: "res3b2_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b2"\n\ top: "res3b3_branch2a"\n\ name: "res3b3_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2a"\n\ top: "res3b3_branch2a"\n\ name: "bn3b3_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2a"\n\ top: "res3b3_branch2a"\n\ name: "scale3b3_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b3_branch2a"\n\ bottom: "res3b3_branch2a"\n\ name: "res3b3_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b3_branch2a"\n\ top: "res3b3_branch2b"\n\ name: "res3b3_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2b"\n\ top: "res3b3_branch2b"\n\ name: "bn3b3_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2b"\n\ top: "res3b3_branch2b"\n\ name: "scale3b3_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b3_branch2b"\n\ bottom: "res3b3_branch2b"\n\ name: "res3b3_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b3_branch2b"\n\ top: "res3b3_branch2c"\n\ name: "res3b3_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2c"\n\ top: "res3b3_branch2c"\n\ name: "bn3b3_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3_branch2c"\n\ top: "res3b3_branch2c"\n\ name: "scale3b3_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b2"\n\ bottom: "res3b3_branch2c"\n\ top: "res3b3"\n\ name: "res3b3"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b3"\n\ top: "res3b3"\n\ name: "res3b3_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b3"\n\ top: "res3b4_branch2a"\n\ name: "res3b4_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2a"\n\ top: "res3b4_branch2a"\n\ name: "bn3b4_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2a"\n\ top: "res3b4_branch2a"\n\ name: "scale3b4_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b4_branch2a"\n\ bottom: "res3b4_branch2a"\n\ name: "res3b4_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b4_branch2a"\n\ top: "res3b4_branch2b"\n\ name: "res3b4_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2b"\n\ top: "res3b4_branch2b"\n\ name: "bn3b4_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2b"\n\ top: "res3b4_branch2b"\n\ name: "scale3b4_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b4_branch2b"\n\ bottom: "res3b4_branch2b"\n\ name: "res3b4_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b4_branch2b"\n\ top: "res3b4_branch2c"\n\ name: "res3b4_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2c"\n\ top: "res3b4_branch2c"\n\ name: "bn3b4_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4_branch2c"\n\ top: "res3b4_branch2c"\n\ name: "scale3b4_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b3"\n\ bottom: "res3b4_branch2c"\n\ top: "res3b4"\n\ name: "res3b4"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b4"\n\ top: "res3b4"\n\ name: "res3b4_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b4"\n\ top: "res3b5_branch2a"\n\ name: "res3b5_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2a"\n\ top: "res3b5_branch2a"\n\ name: "bn3b5_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2a"\n\ top: "res3b5_branch2a"\n\ name: "scale3b5_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b5_branch2a"\n\ bottom: "res3b5_branch2a"\n\ name: "res3b5_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b5_branch2a"\n\ top: "res3b5_branch2b"\n\ name: "res3b5_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2b"\n\ top: "res3b5_branch2b"\n\ name: "bn3b5_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2b"\n\ top: "res3b5_branch2b"\n\ name: "scale3b5_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b5_branch2b"\n\ bottom: "res3b5_branch2b"\n\ name: "res3b5_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b5_branch2b"\n\ top: "res3b5_branch2c"\n\ name: "res3b5_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2c"\n\ top: "res3b5_branch2c"\n\ name: "bn3b5_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5_branch2c"\n\ top: "res3b5_branch2c"\n\ name: "scale3b5_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b4"\n\ bottom: "res3b5_branch2c"\n\ top: "res3b5"\n\ name: "res3b5"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b5"\n\ top: "res3b5"\n\ name: "res3b5_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b5"\n\ top: "res3b6_branch2a"\n\ name: "res3b6_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2a"\n\ top: "res3b6_branch2a"\n\ name: "bn3b6_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2a"\n\ top: "res3b6_branch2a"\n\ name: "scale3b6_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b6_branch2a"\n\ bottom: "res3b6_branch2a"\n\ name: "res3b6_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b6_branch2a"\n\ top: "res3b6_branch2b"\n\ name: "res3b6_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2b"\n\ top: "res3b6_branch2b"\n\ name: "bn3b6_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2b"\n\ top: "res3b6_branch2b"\n\ name: "scale3b6_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b6_branch2b"\n\ bottom: "res3b6_branch2b"\n\ name: "res3b6_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b6_branch2b"\n\ top: "res3b6_branch2c"\n\ name: "res3b6_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2c"\n\ top: "res3b6_branch2c"\n\ name: "bn3b6_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6_branch2c"\n\ top: "res3b6_branch2c"\n\ name: "scale3b6_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b5"\n\ bottom: "res3b6_branch2c"\n\ top: "res3b6"\n\ name: "res3b6"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b6"\n\ top: "res3b6"\n\ name: "res3b6_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b6"\n\ top: "res3b7_branch2a"\n\ name: "res3b7_branch2a"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2a"\n\ top: "res3b7_branch2a"\n\ name: "bn3b7_branch2a"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2a"\n\ top: "res3b7_branch2a"\n\ name: "scale3b7_branch2a"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b7_branch2a"\n\ bottom: "res3b7_branch2a"\n\ name: "res3b7_branch2a_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b7_branch2a"\n\ top: "res3b7_branch2b"\n\ name: "res3b7_branch2b"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 128\n\ kernel_size: 3\n\ pad: 1\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2b"\n\ top: "res3b7_branch2b"\n\ name: "bn3b7_branch2b"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2b"\n\ top: "res3b7_branch2b"\n\ name: "scale3b7_branch2b"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ top: "res3b7_branch2b"\n\ bottom: "res3b7_branch2b"\n\ name: "res3b7_branch2b_relu"\n\ type: "ReLU"\n\ }\n\ layer {\n\ bottom: "res3b7_branch2b"\n\ top: "res3b7_branch2c"\n\ name: "res3b7_branch2c"\n\ type: "Convolution"\n\ convolution_param {\n\ num_output: 512\n\ kernel_size: 1\n\ pad: 0\n\ stride: 1\n\ bias_term: false\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2c"\n\ top: "res3b7_branch2c"\n\ name: "bn3b7_branch2c"\n\ type: "BatchNorm"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b7_branch2c"\n\ top: "res3b7_branch2c"\n\ name: "scale3b7_branch2c"\n\ type: "Scale"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ bottom: "res3b6"\n\ bottom: "res3b7_branch2c"\n\ top: "res3b7"\n\ name: "res3b7"\n\ type: "Eltwise"\n\ }\n\ layer {\n\ bottom: "res3b7"\n\ top: "res3b7"\n\ name: "res3b7_relu"\n\ type: "ReLU"\n\ }\n' return string def getResNet101v2Init(): string = '\ layer {\n\ name: "conv1"\n\ type: "Convolution"\n\ bottom: "image"\n\ top: "conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 3\n\ kernel_size: 7\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "conv1"\n\ top: "conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "conv1_scale"\n\ type: "Scale"\n\ bottom: "conv1"\n\ top: "conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "conv1_relu"\n\ type: "ReLU"\n\ bottom: "conv1"\n\ top: "conv1"\n\ }\n\ layer {\n\ name: "pool1"\n\ type: "Pooling"\n\ bottom: "conv1"\n\ top: "pool1"\n\ pooling_param {\n\ pool: MAX\n\ kernel_size: 3\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1"\n\ type: "Convolution"\n\ bottom: "pool1"\n\ top: "res1_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_scale"\n\ type: "Scale"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ }\n\ layer {\n\ name: "res1_conv2"\n\ type: "Convolution"\n\ bottom: "res1_conv1"\n\ top: "res1_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_scale"\n\ type: "Scale"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ }\n\ layer {\n\ name: "res1_conv3"\n\ type: "Convolution"\n\ bottom: "res1_conv2"\n\ top: "res1_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_match_conv"\n\ type: "Convolution"\n\ bottom: "pool1"\n\ top: "res1_match_conv"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_eletwise"\n\ type: "Eltwise"\n\ bottom: "res1_match_conv"\n\ bottom: "res1_conv3"\n\ top: "res1_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res2_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_eletwise"\n\ top: "res2_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_scale"\n\ type: "Scale"\n\ bottom: "res2_bn"\n\ top: "res2_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_relu"\n\ type: "ReLU"\n\ bottom: "res2_bn"\n\ top: "res2_bn"\n\ }\n\ layer {\n\ name: "res2_conv1"\n\ type: "Convolution"\n\ bottom: "res2_bn"\n\ top: "res2_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_scale"\n\ type: "Scale"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ }\n\ layer {\n\ name: "res2_conv2"\n\ type: "Convolution"\n\ bottom: "res2_conv1"\n\ top: "res2_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_scale"\n\ type: "Scale"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ }\n\ layer {\n\ name: "res2_conv3"\n\ type: "Convolution"\n\ bottom: "res2_conv2"\n\ top: "res2_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_eletwise"\n\ type: "Eltwise"\n\ bottom: "res1_eletwise"\n\ bottom: "res2_conv3"\n\ top: "res2_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res3_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_eletwise"\n\ top: "res3_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_scale"\n\ type: "Scale"\n\ bottom: "res3_bn"\n\ top: "res3_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_relu"\n\ type: "ReLU"\n\ bottom: "res3_bn"\n\ top: "res3_bn"\n\ }\n\ layer {\n\ name: "res3_conv1"\n\ type: "Convolution"\n\ bottom: "res3_bn"\n\ top: "res3_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_scale"\n\ type: "Scale"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ }\n\ layer {\n\ name: "res3_conv2"\n\ type: "Convolution"\n\ bottom: "res3_conv1"\n\ top: "res3_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_scale"\n\ type: "Scale"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ }\n\ layer {\n\ name: "res3_conv3"\n\ type: "Convolution"\n\ bottom: "res3_conv2"\n\ top: "res3_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_eletwise"\n\ type: "Eltwise"\n\ bottom: "res2_eletwise"\n\ bottom: "res3_conv3"\n\ top: "res3_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res4_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_eletwise"\n\ top: "res4_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_scale"\n\ type: "Scale"\n\ bottom: "res4_bn"\n\ top: "res4_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_relu"\n\ type: "ReLU"\n\ bottom: "res4_bn"\n\ top: "res4_bn"\n\ }\n\ layer {\n\ name: "res4_conv1"\n\ type: "Convolution"\n\ bottom: "res4_bn"\n\ top: "res4_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_scale"\n\ type: "Scale"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ }\n\ layer {\n\ name: "res4_conv2"\n\ type: "Convolution"\n\ bottom: "res4_conv1"\n\ top: "res4_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_scale"\n\ type: "Scale"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ }\n\ layer {\n\ name: "res4_conv3"\n\ type: "Convolution"\n\ bottom: "res4_conv2"\n\ top: "res4_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res4_match_conv"\n\ type: "Convolution"\n\ bottom: "res4_bn"\n\ top: "res4_match_conv"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "res4_eletwise"\n\ type: "Eltwise"\n\ bottom: "res4_match_conv"\n\ bottom: "res4_conv3"\n\ top: "res4_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res5_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_eletwise"\n\ top: "res5_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_scale"\n\ type: "Scale"\n\ bottom: "res5_bn"\n\ top: "res5_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_relu"\n\ type: "ReLU"\n\ bottom: "res5_bn"\n\ top: "res5_bn"\n\ }\n\ layer {\n\ name: "res5_conv1"\n\ type: "Convolution"\n\ bottom: "res5_bn"\n\ top: "res5_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_scale"\n\ type: "Scale"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ }\n\ layer {\n\ name: "res5_conv2"\n\ type: "Convolution"\n\ bottom: "res5_conv1"\n\ top: "res5_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_scale"\n\ type: "Scale"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ }\n\ layer {\n\ name: "res5_conv3"\n\ type: "Convolution"\n\ bottom: "res5_conv2"\n\ top: "res5_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_eletwise"\n\ type: "Eltwise"\n\ bottom: "res4_eletwise"\n\ bottom: "res5_conv3"\n\ top: "res5_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res6_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_eletwise"\n\ top: "res6_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_scale"\n\ type: "Scale"\n\ bottom: "res6_bn"\n\ top: "res6_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_relu"\n\ type: "ReLU"\n\ bottom: "res6_bn"\n\ top: "res6_bn"\n\ }\n\ layer {\n\ name: "res6_conv1"\n\ type: "Convolution"\n\ bottom: "res6_bn"\n\ top: "res6_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_scale"\n\ type: "Scale"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ }\n\ layer {\n\ name: "res6_conv2"\n\ type: "Convolution"\n\ bottom: "res6_conv1"\n\ top: "res6_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_scale"\n\ type: "Scale"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ }\n\ layer {\n\ name: "res6_conv3"\n\ type: "Convolution"\n\ bottom: "res6_conv2"\n\ top: "res6_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_eletwise"\n\ type: "Eltwise"\n\ bottom: "res5_eletwise"\n\ bottom: "res6_conv3"\n\ top: "res6_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res7_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_eletwise"\n\ top: "res7_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_scale"\n\ type: "Scale"\n\ bottom: "res7_bn"\n\ top: "res7_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_relu"\n\ type: "ReLU"\n\ bottom: "res7_bn"\n\ top: "res7_bn"\n\ }\n\ layer {\n\ name: "res7_conv1"\n\ type: "Convolution"\n\ bottom: "res7_bn"\n\ top: "res7_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_scale"\n\ type: "Scale"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ }\n\ layer {\n\ name: "res7_conv2"\n\ type: "Convolution"\n\ bottom: "res7_conv1"\n\ top: "res7_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_scale"\n\ type: "Scale"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ }\n\ layer {\n\ name: "res7_conv3"\n\ type: "Convolution"\n\ bottom: "res7_conv2"\n\ top: "res7_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_eletwise"\n\ type: "Eltwise"\n\ bottom: "res6_eletwise"\n\ bottom: "res7_conv3"\n\ top: "res7_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res8_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_eletwise"\n\ top: "res8_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res8_scale"\n\ type: "Scale"\n\ bottom: "res8_bn"\n\ top: "res8_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res8_relu"\n\ type: "ReLU"\n\ bottom: "res8_bn"\n\ top: "res8_bn"\n\ }\n\ layer {\n\ name: "res8_conv1"\n\ type: "Convolution"\n\ bottom: "res8_bn"\n\ top: "res8_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_scale"\n\ type: "Scale"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ }\n' return string def getResNet152v2Init(): string = '\ layer {\n\ name: "conv1"\n\ type: "Convolution"\n\ bottom: "image"\n\ top: "conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 3\n\ kernel_size: 7\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "conv1"\n\ top: "conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "conv1_scale"\n\ type: "Scale"\n\ bottom: "conv1"\n\ top: "conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "conv1_relu"\n\ type: "ReLU"\n\ bottom: "conv1"\n\ top: "conv1"\n\ }\n\ layer {\n\ name: "pool1"\n\ type: "Pooling"\n\ bottom: "conv1"\n\ top: "pool1"\n\ pooling_param {\n\ pool: MAX\n\ kernel_size: 3\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1"\n\ type: "Convolution"\n\ bottom: "pool1"\n\ top: "res1_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_scale"\n\ type: "Scale"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res1_conv1"\n\ top: "res1_conv1"\n\ }\n\ layer {\n\ name: "res1_conv2"\n\ type: "Convolution"\n\ bottom: "res1_conv1"\n\ top: "res1_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_scale"\n\ type: "Scale"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res1_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res1_conv2"\n\ top: "res1_conv2"\n\ }\n\ layer {\n\ name: "res1_conv3"\n\ type: "Convolution"\n\ bottom: "res1_conv2"\n\ top: "res1_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res1_match_conv"\n\ type: "Convolution"\n\ bottom: "pool1"\n\ top: "res1_match_conv"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ bias_filler {\n\ type: "constant"\n\ value: 0.2\n\ }\n\ }\n\ }\n\ layer {\n\ name: "res1_eletwise"\n\ type: "Eltwise"\n\ bottom: "res1_match_conv"\n\ bottom: "res1_conv3"\n\ top: "res1_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res2_bn"\n\ type: "BatchNorm"\n\ bottom: "res1_eletwise"\n\ top: "res2_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_scale"\n\ type: "Scale"\n\ bottom: "res2_bn"\n\ top: "res2_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_relu"\n\ type: "ReLU"\n\ bottom: "res2_bn"\n\ top: "res2_bn"\n\ }\n\ layer {\n\ name: "res2_conv1"\n\ type: "Convolution"\n\ bottom: "res2_bn"\n\ top: "res2_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_scale"\n\ type: "Scale"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res2_conv1"\n\ top: "res2_conv1"\n\ }\n\ layer {\n\ name: "res2_conv2"\n\ type: "Convolution"\n\ bottom: "res2_conv1"\n\ top: "res2_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_scale"\n\ type: "Scale"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res2_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res2_conv2"\n\ top: "res2_conv2"\n\ }\n\ layer {\n\ name: "res2_conv3"\n\ type: "Convolution"\n\ bottom: "res2_conv2"\n\ top: "res2_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res2_eletwise"\n\ type: "Eltwise"\n\ bottom: "res1_eletwise"\n\ bottom: "res2_conv3"\n\ top: "res2_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res3_bn"\n\ type: "BatchNorm"\n\ bottom: "res2_eletwise"\n\ top: "res3_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_scale"\n\ type: "Scale"\n\ bottom: "res3_bn"\n\ top: "res3_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_relu"\n\ type: "ReLU"\n\ bottom: "res3_bn"\n\ top: "res3_bn"\n\ }\n\ layer {\n\ name: "res3_conv1"\n\ type: "Convolution"\n\ bottom: "res3_bn"\n\ top: "res3_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_scale"\n\ type: "Scale"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res3_conv1"\n\ top: "res3_conv1"\n\ }\n\ layer {\n\ name: "res3_conv2"\n\ type: "Convolution"\n\ bottom: "res3_conv1"\n\ top: "res3_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 64\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_scale"\n\ type: "Scale"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res3_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res3_conv2"\n\ top: "res3_conv2"\n\ }\n\ layer {\n\ name: "res3_conv3"\n\ type: "Convolution"\n\ bottom: "res3_conv2"\n\ top: "res3_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res3_eletwise"\n\ type: "Eltwise"\n\ bottom: "res2_eletwise"\n\ bottom: "res3_conv3"\n\ top: "res3_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res4_bn"\n\ type: "BatchNorm"\n\ bottom: "res3_eletwise"\n\ top: "res4_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_scale"\n\ type: "Scale"\n\ bottom: "res4_bn"\n\ top: "res4_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_relu"\n\ type: "ReLU"\n\ bottom: "res4_bn"\n\ top: "res4_bn"\n\ }\n\ layer {\n\ name: "res4_conv1"\n\ type: "Convolution"\n\ bottom: "res4_bn"\n\ top: "res4_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_scale"\n\ type: "Scale"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res4_conv1"\n\ top: "res4_conv1"\n\ }\n\ layer {\n\ name: "res4_conv2"\n\ type: "Convolution"\n\ bottom: "res4_conv1"\n\ top: "res4_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 2\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_scale"\n\ type: "Scale"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res4_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res4_conv2"\n\ top: "res4_conv2"\n\ }\n\ layer {\n\ name: "res4_conv3"\n\ type: "Convolution"\n\ bottom: "res4_conv2"\n\ top: "res4_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res4_match_conv"\n\ type: "Convolution"\n\ bottom: "res4_bn"\n\ top: "res4_match_conv"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 2\n\ bias_filler {\n\ type: "constant"\n\ value: 0.2\n\ }\n\ }\n\ }\n\ layer {\n\ name: "res4_eletwise"\n\ type: "Eltwise"\n\ bottom: "res4_match_conv"\n\ bottom: "res4_conv3"\n\ top: "res4_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res5_bn"\n\ type: "BatchNorm"\n\ bottom: "res4_eletwise"\n\ top: "res5_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_scale"\n\ type: "Scale"\n\ bottom: "res5_bn"\n\ top: "res5_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_relu"\n\ type: "ReLU"\n\ bottom: "res5_bn"\n\ top: "res5_bn"\n\ }\n\ layer {\n\ name: "res5_conv1"\n\ type: "Convolution"\n\ bottom: "res5_bn"\n\ top: "res5_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_scale"\n\ type: "Scale"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res5_conv1"\n\ top: "res5_conv1"\n\ }\n\ layer {\n\ name: "res5_conv2"\n\ type: "Convolution"\n\ bottom: "res5_conv1"\n\ top: "res5_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_scale"\n\ type: "Scale"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res5_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res5_conv2"\n\ top: "res5_conv2"\n\ }\n\ layer {\n\ name: "res5_conv3"\n\ type: "Convolution"\n\ bottom: "res5_conv2"\n\ top: "res5_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res5_eletwise"\n\ type: "Eltwise"\n\ bottom: "res4_eletwise"\n\ bottom: "res5_conv3"\n\ top: "res5_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res6_bn"\n\ type: "BatchNorm"\n\ bottom: "res5_eletwise"\n\ top: "res6_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_scale"\n\ type: "Scale"\n\ bottom: "res6_bn"\n\ top: "res6_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_relu"\n\ type: "ReLU"\n\ bottom: "res6_bn"\n\ top: "res6_bn"\n\ }\n\ layer {\n\ name: "res6_conv1"\n\ type: "Convolution"\n\ bottom: "res6_bn"\n\ top: "res6_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_scale"\n\ type: "Scale"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res6_conv1"\n\ top: "res6_conv1"\n\ }\n\ layer {\n\ name: "res6_conv2"\n\ type: "Convolution"\n\ bottom: "res6_conv1"\n\ top: "res6_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_scale"\n\ type: "Scale"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res6_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res6_conv2"\n\ top: "res6_conv2"\n\ }\n\ layer {\n\ name: "res6_conv3"\n\ type: "Convolution"\n\ bottom: "res6_conv2"\n\ top: "res6_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res6_eletwise"\n\ type: "Eltwise"\n\ bottom: "res5_eletwise"\n\ bottom: "res6_conv3"\n\ top: "res6_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res7_bn"\n\ type: "BatchNorm"\n\ bottom: "res6_eletwise"\n\ top: "res7_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_scale"\n\ type: "Scale"\n\ bottom: "res7_bn"\n\ top: "res7_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_relu"\n\ type: "ReLU"\n\ bottom: "res7_bn"\n\ top: "res7_bn"\n\ }\n\ layer {\n\ name: "res7_conv1"\n\ type: "Convolution"\n\ bottom: "res7_bn"\n\ top: "res7_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_scale"\n\ type: "Scale"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res7_conv1"\n\ top: "res7_conv1"\n\ }\n\ layer {\n\ name: "res7_conv2"\n\ type: "Convolution"\n\ bottom: "res7_conv1"\n\ top: "res7_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_scale"\n\ type: "Scale"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res7_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res7_conv2"\n\ top: "res7_conv2"\n\ }\n\ layer {\n\ name: "res7_conv3"\n\ type: "Convolution"\n\ bottom: "res7_conv2"\n\ top: "res7_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res7_eletwise"\n\ type: "Eltwise"\n\ bottom: "res6_eletwise"\n\ bottom: "res7_conv3"\n\ top: "res7_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res8_bn"\n\ type: "BatchNorm"\n\ bottom: "res7_eletwise"\n\ top: "res8_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res8_scale"\n\ type: "Scale"\n\ bottom: "res8_bn"\n\ top: "res8_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res8_relu"\n\ type: "ReLU"\n\ bottom: "res8_bn"\n\ top: "res8_bn"\n\ }\n\ layer {\n\ name: "res8_conv1"\n\ type: "Convolution"\n\ bottom: "res8_bn"\n\ top: "res8_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_scale"\n\ type: "Scale"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res8_conv1"\n\ top: "res8_conv1"\n\ }\n\ layer {\n\ name: "res8_conv2"\n\ type: "Convolution"\n\ bottom: "res8_conv1"\n\ top: "res8_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res8_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res8_conv2"\n\ top: "res8_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv2_scale"\n\ type: "Scale"\n\ bottom: "res8_conv2"\n\ top: "res8_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res8_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res8_conv2"\n\ top: "res8_conv2"\n\ }\n\ layer {\n\ name: "res8_conv3"\n\ type: "Convolution"\n\ bottom: "res8_conv2"\n\ top: "res8_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res8_eletwise"\n\ type: "Eltwise"\n\ bottom: "res7_eletwise"\n\ bottom: "res8_conv3"\n\ top: "res8_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res9_bn"\n\ type: "BatchNorm"\n\ bottom: "res8_eletwise"\n\ top: "res9_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res9_scale"\n\ type: "Scale"\n\ bottom: "res9_bn"\n\ top: "res9_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res9_relu"\n\ type: "ReLU"\n\ bottom: "res9_bn"\n\ top: "res9_bn"\n\ }\n\ layer {\n\ name: "res9_conv1"\n\ type: "Convolution"\n\ bottom: "res9_bn"\n\ top: "res9_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res9_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res9_conv1"\n\ top: "res9_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res9_conv1_scale"\n\ type: "Scale"\n\ bottom: "res9_conv1"\n\ top: "res9_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res9_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res9_conv1"\n\ top: "res9_conv1"\n\ }\n\ layer {\n\ name: "res9_conv2"\n\ type: "Convolution"\n\ bottom: "res9_conv1"\n\ top: "res9_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res9_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res9_conv2"\n\ top: "res9_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res9_conv2_scale"\n\ type: "Scale"\n\ bottom: "res9_conv2"\n\ top: "res9_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res9_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res9_conv2"\n\ top: "res9_conv2"\n\ }\n\ layer {\n\ name: "res9_conv3"\n\ type: "Convolution"\n\ bottom: "res9_conv2"\n\ top: "res9_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res9_eletwise"\n\ type: "Eltwise"\n\ bottom: "res8_eletwise"\n\ bottom: "res9_conv3"\n\ top: "res9_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res10_bn"\n\ type: "BatchNorm"\n\ bottom: "res9_eletwise"\n\ top: "res10_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res10_scale"\n\ type: "Scale"\n\ bottom: "res10_bn"\n\ top: "res10_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res10_relu"\n\ type: "ReLU"\n\ bottom: "res10_bn"\n\ top: "res10_bn"\n\ }\n\ layer {\n\ name: "res10_conv1"\n\ type: "Convolution"\n\ bottom: "res10_bn"\n\ top: "res10_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res10_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res10_conv1"\n\ top: "res10_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res10_conv1_scale"\n\ type: "Scale"\n\ bottom: "res10_conv1"\n\ top: "res10_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res10_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res10_conv1"\n\ top: "res10_conv1"\n\ }\n\ layer {\n\ name: "res10_conv2"\n\ type: "Convolution"\n\ bottom: "res10_conv1"\n\ top: "res10_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res10_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res10_conv2"\n\ top: "res10_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res10_conv2_scale"\n\ type: "Scale"\n\ bottom: "res10_conv2"\n\ top: "res10_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res10_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res10_conv2"\n\ top: "res10_conv2"\n\ }\n\ layer {\n\ name: "res10_conv3"\n\ type: "Convolution"\n\ bottom: "res10_conv2"\n\ top: "res10_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res10_eletwise"\n\ type: "Eltwise"\n\ bottom: "res9_eletwise"\n\ bottom: "res10_conv3"\n\ top: "res10_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res11_bn"\n\ type: "BatchNorm"\n\ bottom: "res10_eletwise"\n\ top: "res11_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res11_scale"\n\ type: "Scale"\n\ bottom: "res11_bn"\n\ top: "res11_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res11_relu"\n\ type: "ReLU"\n\ bottom: "res11_bn"\n\ top: "res11_bn"\n\ }\n\ layer {\n\ name: "res11_conv1"\n\ type: "Convolution"\n\ bottom: "res11_bn"\n\ top: "res11_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res11_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res11_conv1"\n\ top: "res11_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res11_conv1_scale"\n\ type: "Scale"\n\ bottom: "res11_conv1"\n\ top: "res11_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res11_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res11_conv1"\n\ top: "res11_conv1"\n\ }\n\ layer {\n\ name: "res11_conv2"\n\ type: "Convolution"\n\ bottom: "res11_conv1"\n\ top: "res11_conv2"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 128\n\ pad: 1\n\ kernel_size: 3\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res11_conv2_bn"\n\ type: "BatchNorm"\n\ bottom: "res11_conv2"\n\ top: "res11_conv2"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res11_conv2_scale"\n\ type: "Scale"\n\ bottom: "res11_conv2"\n\ top: "res11_conv2"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res11_conv2_relu"\n\ type: "ReLU"\n\ bottom: "res11_conv2"\n\ top: "res11_conv2"\n\ }\n\ layer {\n\ name: "res11_conv3"\n\ type: "Convolution"\n\ bottom: "res11_conv2"\n\ top: "res11_conv3"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 512\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res11_eletwise"\n\ type: "Eltwise"\n\ bottom: "res10_eletwise"\n\ bottom: "res11_conv3"\n\ top: "res11_eletwise"\n\ eltwise_param {\n\ operation: SUM\n\ }\n\ }\n\ layer {\n\ name: "res12_bn"\n\ type: "BatchNorm"\n\ bottom: "res11_eletwise"\n\ top: "res12_bn"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res12_scale"\n\ type: "Scale"\n\ bottom: "res12_bn"\n\ top: "res12_bn"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res12_relu"\n\ type: "ReLU"\n\ bottom: "res12_bn"\n\ top: "res12_bn"\n\ }\n\ layer {\n\ name: "res12_conv1"\n\ type: "Convolution"\n\ bottom: "res12_bn"\n\ top: "res12_conv1"\n\ convolution_param {\n\ bias_term: false\n\ num_output: 256\n\ pad: 0\n\ kernel_size: 1\n\ stride: 1\n\ }\n\ }\n\ layer {\n\ name: "res12_conv1_bn"\n\ type: "BatchNorm"\n\ bottom: "res12_conv1"\n\ top: "res12_conv1"\n\ batch_norm_param {\n\ use_global_stats: true\n\ }\n\ }\n\ layer {\n\ name: "res12_conv1_scale"\n\ type: "Scale"\n\ bottom: "res12_conv1"\n\ top: "res12_conv1"\n\ scale_param {\n\ bias_term: true\n\ }\n\ }\n\ layer {\n\ name: "res12_conv1_relu"\n\ type: "ReLU"\n\ bottom: "res12_conv1"\n\ top: "res12_conv1"\n\ }\n' return string
462540
import time import torch import torch.utils.data from kge.job import Job from kge.job.train import TrainingJob, _generate_worker_init_fn class TrainingJob1vsAll(TrainingJob): """Samples SPO pairs and queries sp_ and _po, treating all other entities as negative.""" def __init__( self, config, dataset, parent_job=None, model=None, forward_only=False ): super().__init__( config, dataset, parent_job, model=model, forward_only=forward_only ) config.log("Initializing spo training job...") self.type_str = "1vsAll" if self.__class__ == TrainingJob1vsAll: for f in Job.job_created_hooks: f(self) def _prepare(self): """Construct dataloader""" super()._prepare() self.num_examples = self.dataset.split(self.train_split).size(0) self.loader = torch.utils.data.DataLoader( range(self.num_examples), collate_fn=lambda batch: { "triples": self.dataset.split(self.train_split)[batch, :].long() }, shuffle=True, batch_size=self.batch_size, num_workers=self.config.get("train.num_workers"), worker_init_fn=_generate_worker_init_fn(self.config), pin_memory=self.config.get("train.pin_memory"), ) def _prepare_batch( self, batch_index, batch, result: TrainingJob._ProcessBatchResult ): result.size = len(batch["triples"]) def _process_subbatch( self, batch_index, batch, subbatch_slice, result: TrainingJob._ProcessBatchResult, ): batch_size = result.size # prepare result.prepare_time -= time.time() triples = batch["triples"][subbatch_slice].to(self.device) result.prepare_time += time.time() # forward/backward pass (sp) result.forward_time -= time.time() scores_sp = self.model.score_sp(triples[:, 0], triples[:, 1]) loss_value_sp = self.loss(scores_sp, triples[:, 2]) / batch_size result.avg_loss += loss_value_sp.item() result.forward_time += time.time() result.backward_time = -time.time() if not self.is_forward_only: loss_value_sp.backward() result.backward_time += time.time() # forward/backward pass (po) result.forward_time -= time.time() scores_po = self.model.score_po(triples[:, 1], triples[:, 2]) loss_value_po = self.loss(scores_po, triples[:, 0]) / batch_size result.avg_loss += loss_value_po.item() result.forward_time += time.time() result.backward_time -= time.time() if not self.is_forward_only: loss_value_po.backward() result.backward_time += time.time()
462542
favorite_places = { 'znn': ['chengdu', 'shanghai', 'hangzhou'], 'yl': ['chengdu', 'huang montains'], 'other': ['xian', 'xinjiang', 'nanji'] } for name, places in favorite_places.items(): print("\n" + name.title() + " likes the following places:") for place in places: print("- " + place.title())
462594
import os import types import pandas as pd import pytest from skmine.datasets import fimi from skmine.datasets import get_data_home def mock_urlopen(url): for i in range(2): transaction = " ".join("{}".format(i * j) for j in range(2)) + " \n" yield bytes(transaction, encoding="utf-8") def mock_read_pickle(*args, **kwargs): return pd.Series([[1, 2, 3], [4, 5]]) def test_fetch_any(monkeypatch): name = "imaginary_dataset" # force file to be in DATA_HOME, so we don't need to fetch it monkeypatch.setattr(os, "listdir", lambda *args: ["{}.dat".format(name)]) monkeypatch.setattr(pd, "read_pickle", mock_read_pickle) data = fimi.fetch_any("{}.dat".format(name)) assert data.shape == (2,) pd.testing.assert_series_equal(pd.Series([3, 2], name=name), data.map(len)) # now DATA_HOME to be empty, file has to be fetched monkeypatch.setattr(os, "listdir", lambda *args: list()) monkeypatch.setattr(fimi, "urlopen", mock_urlopen) name = "other_imaginary_dataset" data = fimi.fetch_any("{}.dat".format(name)) assert data.shape == (2,) pd.testing.assert_series_equal(pd.Series([2, 2], name=name), data.map(len))
462613
from typing import Optional from typing import Text, Dict, Any from tfx import types from tfx.dsl.components.base import base_component from tfx.dsl.components.base import executor_spec from tfx.types.component_spec import ChannelParameter from tfx.types.component_spec import ComponentSpec from tfx.types.component_spec import ExecutionParameter from tfx.types.standard_artifacts import Examples, Model, Schema, \ ModelEvaluation, ModelBlessing from zenml.components.evaluator import constants from zenml.components.evaluator import executor class ZenMLEvaluatorSpec(ComponentSpec): PARAMETERS = {constants.SOURCE: ExecutionParameter(type=Text), constants.ARGS: ExecutionParameter(Text)} INPUTS = { constants.EXAMPLES: ChannelParameter(type=Examples), constants.MODEL: ChannelParameter(type=Model, optional=True), constants.BASELINE_MODEL: ChannelParameter(type=Model, optional=True), constants.SCHEMA: ChannelParameter(type=Schema, optional=True) } OUTPUTS = { constants.EVALUATION: ChannelParameter(type=ModelEvaluation), constants.BLESSING: ChannelParameter(type=ModelBlessing, optional=True), } class Evaluator(base_component.BaseComponent): """ A new adapted version version of the TFX Evaluator component. In contrast to the original evaluator component, it utilizes a ZenML EvaluatorStep and allows the model agnostic evaluation. """ SPEC_CLASS = ZenMLEvaluatorSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor) def __init__( self, source: Text, source_args: Dict[Text, Any], examples: types.Channel = None, model: types.Channel = None, baseline_model: Optional[types.Channel] = None, blessing: Optional[types.Channel] = None, output: Optional[types.Channel] = None, schema: Optional[types.Channel] = None): # Create the output artifact if not provided evaluation = output or types.Channel(type=ModelEvaluation) blessing = blessing or types.Channel(type=ModelBlessing) # Create the spec spec = ZenMLEvaluatorSpec(source=source, args=source_args, examples=examples, model=model, baseline_model=baseline_model, blessing=blessing, schema=schema, evaluation=evaluation) super(Evaluator, self).__init__(spec=spec)
462620
import numpy as np import tensorflow as tf from collections import Counter from textdect.convertmodel import ConvertedModel from misc.freezemodel import FreezedModel from mesgclsf.datapreptools import resize_to_desired from mesgclsf.s2train import FEATURE_HEIGHT, FEATURE_WIDTH def classify(classifier, session, img_arr, stride=16): """ Take an image file (an output from the first step), read and analyze the image, and returns the class ID of the input image based on the message content on it. Args: classifier: A FreezedModel constructed based on a trained model for step 2. session: The TensorFlow session. img_arr: A numpy ndarray that holds the image features. stride: Optional. The stride of the sliding. Returns: class_id: Message class ID of the input image. confidence: A percentage indicating how many slided images were predicted as this class identified by the class_id. """ height, width = FEATURE_HEIGHT, FEATURE_WIDTH resized_img = resize_to_desired(img_arr) img_height, img_width = resized_img.shape assert img_height == height features = [] for x in range(0, img_width - FEATURE_WIDTH + 1, stride): this_win = resized_img[:, x:x + FEATURE_WIDTH] features.append(this_win.reshape(-1)) _, indices = classifier.predict(session, np.asarray(features)) img_cnt = len(features) cls_list = [] for i in range(img_cnt): cls_list.append(indices[i][0]) class_id, pos_cnt = Counter(cls_list).most_common()[0] confidence = (pos_cnt / img_cnt) * 100.0 return class_id, confidence def detect_and_classify(detector, classifier, session, image_array, debug=False): boxes = detector.predict(session, image_array) for box in boxes: xmin, ymin, xmax, ymax = box.get_coordinates() gry_arr = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY) area_img = gry_arr[ymin:ymax, xmin:xmax] cls_id, conf = classify(classifier, session, area_img) if debug: cv2.rectangle(image_array, (xmin, ymin), (xmax, ymax), (255, 0, 0), 1) print("class ID: {}, confidence: {}".format(cls_id, conf)) if __name__ == "__main__": import cv2 import json import os import matplotlib.pyplot as plt from time import time from settings import PROJECT_ROOT t0 = time() model_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result') s1_model = 's1_keras_model.pb' lss_model = 's2_lss_model.pb' tas_model = 's2_tas_model.pb' sign_type = 'TAS' # LSS or TAS img_file = os.path.join(PROJECT_ROOT, 'Data', 'Step1', 'Test', 'sign1.jpg') img_arr = cv2.imread(img_file) s1_config_file = os.path.join(PROJECT_ROOT, 'textdect', 'config.json') with open(s1_config_file) as config_buffer: s1_config = json.loads(config_buffer.read()) with tf.Graph().as_default() as graph: detector = ConvertedModel(s1_config, graph, 's1_keras', model_dir, s1_model) lss_classifier = FreezedModel(graph, 's2_lss', model_dir, lss_model) tas_classifier = FreezedModel(graph, 's2_tas', model_dir, tas_model) with tf.Session(graph=graph) as sess: if sign_type == 'LSS': detect_and_classify(detector, lss_classifier, sess, img_arr, debug=True) else: detect_and_classify(detector, tas_classifier, sess, img_arr, debug=True) t1 = time() print("Running time: {:4.2f} seconds".format(t1-t0)) plt.imshow(img_arr) plt.show()
462635
import sys import numpy as np from PyQt5 import QtWidgets from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import QDialog, QPushButton, QWidget, QHBoxLayout, QApplication, QLabel, QVBoxLayout, QGridLayout from PyQt5.uic import loadUi import cv2 imageT = None import windowSize class mywin(QtWidgets.QDialog): def __init__(self): super(mywin, self).__init__() # loadUi('img.ui',self) self.desktop = QApplication.desktop() self.screenRect = self.desktop.screenGeometry() self.height = self.screenRect.height() self.width = self.screenRect.width() self.setWindowTitle("PyScrcpy") print("pc屏幕分辨率为", (self.height, self.width)) minAxis = min(self.width, self.height) * 0.9 // 2 * 2 minAxis = int(minAxis) self.resize(minAxis * 9 // 16, minAxis) layout = QHBoxLayout() frameLayout = QHBoxLayout() buttonLayout = QVBoxLayout() self.all_btn = all_btn = QPushButton() all_btn.setText("一键启动") self.start_btn = start_btn = QPushButton() start_btn.setText("启动server") self.androit_btn = androit_btn = QPushButton() androit_btn.setText("启动android") self.qrShow_btn=qrShow_btn=QPushButton() qrShow_btn.setText("显示二维码") # self.load_btn.clicked.connect(self.loadimage) # self. buttonLayout.addWidget(all_btn) buttonLayout.addWidget(start_btn) buttonLayout.addWidget(androit_btn) buttonLayout.addWidget(qrShow_btn) buttonLayout.addStretch() self.img_label = QLabel() # self.img_label.setMinimumWidth(720) frameLayout.addWidget(self.img_label) layout.addLayout(buttonLayout) layout.addLayout(frameLayout) self.setLayout(layout) # self.setLayout(wLayout) def loadimage(self): global imageT # image = cv2.cvtColor(imageT, cv2.COLOR_BGR2RGB) self.qimg = QImage(imageT.data, imageT.shape[1], imageT.shape[0], QImage.Format_RGB888) # QPixmap.loadFromData() # self.qimg = self.qimg.rgbSwapped() self.img_label.setPixmap(QPixmap.fromImage(self.qimg)) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) window = mywin() window.show() window.setWindowTitle("window") # window.setGeometry(100,100,400,300) sys.exit(app.exec_())
462667
from citrus import * import img import sf2d ST_LOAD = 0 ST_DISP = 1 ST_END = 2 class App: state = ST_LOAD bg = None load_pat = ['-', '\\', '|', '/'] load_pat_idx = 0 def __init__(self): sf2d.init() console.init(gfx.SCREEN_BOTTOM) self.bg_loader = img.load_png(open('romfs:/bgtest.png', 'rb'), background=True) def run(self): while apt.main_loop(): hid.scan_input() if self.state == ST_LOAD: self.load_state() elif self.state == ST_DISP: self.display_state() elif self.state == ST_END: sf2d.fini() break def load_state(self): tex = self.bg_loader.get_image() if tex is not None: del self.bg_loader self.bg = sf2d.Texture(tex[0], tex[1], sf2d.TEXFMT_RGBA8, sf2d.PLACE_RAM, tex[3]) self.state = ST_DISP print('\x1b[1;1H' + (' ' * 50)) return print('\x1b[1;1HLoading %s' % self.load_pat[self.load_pat_idx]) self.load_pat_idx += 1 if self.load_pat_idx >= len(self.load_pat): self.load_pat_idx = 0 sf2d.swap_buffers() def display_state(self): if hid.keys_down() & hid.KEY_START: self.state = ST_END sf2d.start_frame(gfx.SCREEN_TOP, gfx.SIDE_LEFT) self.bg.draw(0, 0) sf2d.end_frame() sf2d.swap_buffers() App().run()
462692
import os from pathlib import Path from unittest.mock import patch import pytest from streamlink_cli.utils.path import replace_chars, replace_path from tests import posix_only, windows_only @pytest.mark.parametrize("char", [i for i in range(32)]) def test_replace_chars_unprintable(char: int): assert replace_chars(f"foo{chr(char)}{chr(char)}bar") == "foo_bar", "Replaces unprintable characters" @posix_only @pytest.mark.parametrize("char", "/".split()) def test_replace_chars_posix(char: str): assert replace_chars(f"foo{char}{char}bar") == "foo_bar", "Replaces multiple unsupported characters in a row" @windows_only @pytest.mark.parametrize("char", "\x7f\"*/:<>?\\|".split()) def test_replace_chars_windows(char: str): assert replace_chars(f"foo{char}{char}bar") == "foo_bar", "Replaces multiple unsupported characters in a row" @posix_only def test_replace_chars_posix_all(): assert replace_chars("".join(chr(i) for i in range(32)) + "/") == "_" @windows_only def test_replace_chars_windows_all(): assert replace_chars("".join(chr(i) for i in range(32)) + "\x7f\"*/:<>?\\|") == "_" @posix_only def test_replace_chars_posix_override(): all_chars = "".join(chr(i) for i in range(32)) + "\x7f\"*:/<>?\\|" assert replace_chars(all_chars) == "_\x7f\"*:_<>?\\|" assert replace_chars(all_chars, "posix") == "_\x7f\"*:_<>?\\|" assert replace_chars(all_chars, "unix") == "_\x7f\"*:_<>?\\|" assert replace_chars(all_chars, "windows") == "_" assert replace_chars(all_chars, "win32") == "_" @windows_only def test_replace_chars_windows_override(): all_chars = "".join(chr(i) for i in range(32)) + "\x7f\"*:/<>?\\|" assert replace_chars(all_chars) == "_" assert replace_chars(all_chars, "posix") == "_\x7f\"*:_<>?\\|" assert replace_chars(all_chars, "unix") == "_\x7f\"*:_<>?\\|" assert replace_chars(all_chars, "windows") == "_" assert replace_chars(all_chars, "win32") == "_" def test_replace_chars_replacement(): assert replace_chars("\x00", None, "+") == "+" def test_replace_path(): def mapper(s): return dict(foo=".", bar="..").get(s, s) path = Path("foo", ".", "bar", "..", "baz") expected = Path("_", ".", "_", "..", "baz") assert replace_path(path, mapper) == expected, "Only replaces mapped parts which are in the special parts tuple" @posix_only def test_replace_path_expanduser_posix(): with patch.object(os, "environ", {"HOME": "/home/foo"}): assert replace_path("~/bar", lambda s: s) == Path("/home/foo/bar") assert replace_path("foo/bar", lambda s: dict(foo="~").get(s, s)) == Path("~/bar") @windows_only def test_replace_path_expanduser_windows(): with patch.object(os, "environ", {"USERPROFILE": "C:\\Users\\foo"}): assert replace_path("~\\bar", lambda s: s) == Path("C:\\Users\\foo\\bar") assert replace_path("foo\\bar", lambda s: dict(foo="~").get(s, s)) == Path("~\\bar")
462693
import theano, cPickle import theano.tensor as T import numpy as np from fftconv import cufft, cuifft def initialize_matrix(n_in, n_out, name, rng, init='rand'): if (init=='rand') or (init=='randSmall'): bin = np.sqrt(6. / (n_in + n_out)) values = np.asarray(rng.uniform(low=-bin, high=bin, size=(n_in, n_out)), dtype=theano.config.floatX) if (init=='randSmall'): values=np.float32(0.01)*values elif (init=='identity'): if (n_in >= n_out): values = np.concatenate([np.eye(n_out).astype(theano.config.floatX),np.zeros((n_in-n_out,n_out)).astype(theano.config.floatX)],axis=0) else: values = np.concatenate([np.eye(n_in).astype(theano.config.floatX),np.zeros((n_in,n_out-n_in)).astype(theano.config.floatX)],axis=1) else: raise ValueError("Unknown initialization method ["+init+"]") return theano.shared(value=values, name=name) def initialize_matrix_np(n_in, n_out, rng): bin = np.sqrt(6. / (n_in + n_out)) values = np.asarray(rng.uniform(low=-bin, high=bin, size=(n_in, n_out)), dtype=theano.config.floatX) return values def do_fft(input, n_hidden): fft_input = T.reshape(input, (input.shape[0], 2, n_hidden)) fft_input = fft_input.dimshuffle(0,2,1) fft_output = cufft(fft_input) / T.sqrt(n_hidden) fft_output = fft_output.dimshuffle(0,2,1) output = T.reshape(fft_output, (input.shape[0], 2*n_hidden)) return output def do_ifft(input, n_hidden): ifft_input = T.reshape(input, (input.shape[0], 2, n_hidden)) ifft_input = ifft_input.dimshuffle(0,2,1) ifft_output = cuifft(ifft_input) / T.sqrt(n_hidden) ifft_output = ifft_output.dimshuffle(0,2,1) output = T.reshape(ifft_output, (input.shape[0], 2*n_hidden)) return output def times_diag(input, n_hidden, diag, swap_re_im): # input is a Ix2n_hidden matrix, where I is number # of training examples # diag is a n_hidden-dimensional real vector, which creates # the 2n_hidden x 2n_hidden complex diagonal matrix using # e.^{j.*diag}=cos(diag)+j.*sin(diag) d = T.concatenate([diag, -diag]) #d is 2n_hidden Re = T.cos(d).dimshuffle('x',0) Im = T.sin(d).dimshuffle('x',0) input_times_Re = input * Re input_times_Im = input * Im output = input_times_Re + input_times_Im[:, swap_re_im] return output def vec_permutation(input, index_permute): return input[:, index_permute] def times_reflection(input, n_hidden, reflection): input_re = input[:, :n_hidden] input_im = input[:, n_hidden:] reflect_re = reflection[:n_hidden] reflect_im = reflection[n_hidden:] vstarv = (reflection**2).sum() input_re_reflect_re = T.dot(input_re, reflect_re) input_re_reflect_im = T.dot(input_re, reflect_im) input_im_reflect_re = T.dot(input_im, reflect_re) input_im_reflect_im = T.dot(input_im, reflect_im) a = T.outer(input_re_reflect_re - input_im_reflect_im, reflect_re) b = T.outer(input_re_reflect_im + input_im_reflect_re, reflect_im) c = T.outer(input_re_reflect_re - input_im_reflect_im, reflect_im) d = T.outer(input_re_reflect_im + input_im_reflect_re, reflect_re) output = input output = T.inc_subtensor(output[:, :n_hidden], - 2. / vstarv * (a + b)) output = T.inc_subtensor(output[:, n_hidden:], - 2. / vstarv * (d - c)) return output def times_reflection_sub(input, n_hidden, n_sub, reflection): #print "n_hidden=%d, n_sub=%d" % (n_hidden,n_sub) input_re = input[:, :n_hidden] input_im = input[:, n_hidden:] n_start=n_hidden-n_sub #print "n_start=%d" % n_start reflect_re = reflection[n_start:n_hidden] reflect_im = reflection[(n_hidden+n_start):] vstarv = (reflect_re**2).sum() + (reflect_im**2).sum() input_re_reflect_re = T.dot(input_re[:,n_start:], reflect_re) input_re_reflect_im = T.dot(input_re[:,n_start:], reflect_im) input_im_reflect_re = T.dot(input_im[:,n_start:], reflect_re) input_im_reflect_im = T.dot(input_im[:,n_start:], reflect_im) a = T.outer(input_re_reflect_re - input_im_reflect_im, reflect_re) b = T.outer(input_re_reflect_im + input_im_reflect_re, reflect_im) c = T.outer(input_re_reflect_re - input_im_reflect_im, reflect_im) d = T.outer(input_re_reflect_im + input_im_reflect_re, reflect_re) output = input output = T.inc_subtensor(output[:, n_start:n_hidden], - 2. / vstarv * (a + b)) output = T.inc_subtensor(output[:, (n_hidden+n_start):], - 2. / vstarv * (d - c)) return output def times_givens(input,n_hidden,gparams,idx): # input is a Ix2n complex matrix in augmented ReIm form. # gparams is a 3-dim vector parameterizing a Givens rotation. # idx are two indices of the Givens rotation. # # output will be Ix2n complex matrix in augmented ReIm form # Givens rotation using gparams=(phi,psi,chi) is # [ cos(phi)*exp( j*psi), sin(phi)*exp( j*chi) ] # [-sin(phi)*exp(-j*psi), cos(phi)*exp(-j*chi) ] cos_phi=T.cos(gparams[0]) sin_phi=T.sin(gparams[0]) cos_psi=T.cos(gparams[1]) sin_psi=T.sin(gparams[1]) cos_chi=T.cos(gparams[2]) sin_chi=T.sin(gparams[2]) G11_re=cos_phi*cos_psi G11_im=cos_phi*sin_psi G12_re=sin_phi*cos_chi G12_im=sin_phi*sin_chi G21_re=-sin_phi*cos_chi G21_im= sin_phi*sin_chi G22_re= cos_phi*cos_psi G22_im=-cos_phi*sin_psi idx=T.cast(idx,'int64') output=input # Re{y_{i1}}=Re{ G11*x_{i1}+G12*x_{i2} } #output[:,idx[0]] output = T.set_subtensor(output[:,idx[0]], \ (G11_re*input[:,idx[0]]-G11_im*input[:,idx[0]+n_hidden]) \ +(G12_re*input[:,idx[1]]-G12_im*input[:,idx[1]+n_hidden])) # Im{y_{i1}}=Im{ G11*x_{i1}+G12*x_{i2} } #output[:,idx[0]+n_hidden] output = T.set_subtensor(output[:,idx[0]+n_hidden], \ (G11_im*input[:,idx[0]]+G11_re*input[:,idx[0]+n_hidden]) \ +(G12_im*input[:,idx[1]]+G12_re*input[:,idx[1]+n_hidden])) # Re{y_{i2}}=Re{ G21*x_{i1}+G22*x_{i2} } #output[:,idx[1]] output = T.set_subtensor(output[:,idx[1]], \ (G21_re*input[:,idx[0]]-G21_im*input[:,idx[0]+n_hidden]) \ +(G22_re*input[:,idx[1]]-G22_im*input[:,idx[1]+n_hidden])) # Im{y_{i2}}=Im{ G21*x_{i1}+G22*x_{i2} } #output[:,idx[1]+n_hidden] output = T.set_subtensor(output[:,idx[1]+n_hidden], \ (G21_im*input[:,idx[0]]+G21_re*input[:,idx[0]+n_hidden]) \ +(G22_im*input[:,idx[1]]+G22_re*input[:,idx[1]+n_hidden])) return output def compute_cost_t(lin_output, loss_function, y_t, ymask_t=None, z_t=None, lam=0.0): if (loss_function == 'CE') or (loss_function == 'CE_of_sum'): RNN_output = T.nnet.softmax(lin_output) CE = T.nnet.categorical_crossentropy(RNN_output, y_t) if ymask_t is not None: RNN_output=RNN_output*ymask_t CE = CE*(ymask_t.dimshuffle(0,)) cost_t = CE.mean() acc_t =(T.eq(T.argmax(RNN_output, axis=-1), y_t)).mean(dtype=theano.config.floatX) elif loss_function == 'MSE': mse = (lin_output - y_t)**2 if ymask_t is not None: mse = mse*((ymask_t[:,0]).dimshuffle(0,'x')) #mse = mse*ymask_t[:,0:1] cost_t = mse.mean() #acc_t = theano.shared(np.float32(0.0)) acc_t = cost_t elif loss_function == 'MSEplusL1': mseOnly = (lin_output - y_t)**2 L1 = T.sqrt(1e-5 + T.sum(lin_output**2,axis=1,keepdims=True)) mse = mseOnly + lam*L1 if ymask_t is not None: mse = mse*((ymask_t[:,0]).dimshuffle(0,'x')) cost_t = mse.mean() acc_t = mseOnly.mean() #elif loss_function == 'NMSE': # err=(lin_output - y_t)**2 # err_sum=T.sum(err,axis=0) # err_sum=T.sum(err_sum,axis=-1) # ypow=y_t**2 # ypow_sum=T.sum(ypow,axis=0) # ypow_sum=T.sum(ypow_sum,axis=-1) # cost_t = (err_sum / (1e-5+ypow_sum)).mean() # acc_t = theano.shared(np.float32(0.0)) elif (loss_function == 'g_loss') or (loss_function == 'none_in_scan'): cost_t=theano.shared(np.float32(0.0)) acc_t =theano.shared(np.float32(0.0)) elif loss_function == 'd_loss': RNN_output = T.nnet.sigmoid(lin_output) # clip the output of the sigmoid to avoid 0s, and thus NaNs in cross entropy: RNN_output_clip = T.clip(RNN_output,1e-7,1.0-1e-7) costs_t = T.nnet.binary_crossentropy(RNN_output_clip, y_t) if ymask_t is not None: costs_t = costs_t*(ymask_t.dimshuffle(0,)) cost_t = costs_t.mean() idx_half=costs_t.shape[0]/2 costs_t_fake=costs_t[:idx_half] costs_t_real=costs_t[idx_half:] acc_t = [costs_t_fake.mean()/2,costs_t_real.mean()/2] return cost_t, acc_t def initialize_data_nodes(loss_function, input_type, out_every_t): # if input_type is real or complex, will be size n_fram x n_input x n_utt x = T.tensor3() if input_type == 'real' or input_type == 'complex' else T.matrix(dtype='int32') if 'CE' in loss_function: y = T.matrix(dtype='int32') if out_every_t else T.vector(dtype='int32') else: # y will be n_fram x n_output x n_utt y = T.tensor3() if out_every_t else T.matrix() return x, y def IRNN(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE'): np.random.seed(1234) rng = np.random.RandomState(1234) x, y = initialize_data_nodes(loss_function, input_type, out_every_t) inputs = [x, y] h_0 = theano.shared(np.zeros((1, n_hidden), dtype=theano.config.floatX)) V = initialize_matrix(n_input, n_hidden, 'V', rng) W = theano.shared(np.identity(n_hidden, dtype=theano.config.floatX)) out_mat = initialize_matrix(n_hidden, n_output, 'out_mat', rng) hidden_bias = theano.shared(np.zeros((n_hidden,), dtype=theano.config.floatX)) out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX)) parameters = [h_0, V, W, out_mat, hidden_bias, out_bias] def recurrence(x_t, y_t, h_prev, cost_prev, acc_prev, V, W, hidden_bias, out_mat, out_bias): if loss_function == 'CE': data_lin_output = V[x_t] else: data_lin_output = T.dot(x_t, V) h_t = T.nnet.relu(T.dot(h_prev, W) + data_lin_output + hidden_bias.dimshuffle('x', 0)) if out_every_t: lin_output = T.dot(h_t, out_mat) + out_bias.dimshuffle('x', 0) cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, cost_t, acc_t non_sequences = [V, W, hidden_bias, out_mat, out_bias] h_0_batch = T.tile(h_0, [x.shape[1], 1]) if out_every_t: sequences = [x, y] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1])] outputs_info = [h_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] [hidden_states, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info = outputs_info) if not out_every_t: lin_output = T.dot(hidden_states[-1,:,:], out_mat) + out_bias.dimshuffle('x', 0) costs = compute_cost_t(lin_output, loss_function, y) else: cost = cost_steps.mean() accuracy = acc_steps.mean() costs = [cost, accuracy] return inputs, parameters, costs def tanhRNN(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE'): np.random.seed(1234) rng = np.random.RandomState(1234) x, y = initialize_data_nodes(loss_function, input_type, out_every_t) inputs = [x, y] h_0 = theano.shared(np.zeros((1, n_hidden), dtype=theano.config.floatX)) V = initialize_matrix(n_input, n_hidden, 'V', rng) W = initialize_matrix(n_hidden, n_hidden, 'W', rng) out_mat = initialize_matrix(n_hidden, n_output, 'out_mat', rng) hidden_bias = theano.shared(np.zeros((n_hidden,), dtype=theano.config.floatX)) out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX)) parameters = [h_0, V, W, out_mat, hidden_bias, out_bias] def recurrence(x_t, y_t, h_prev, cost_prev, acc_prev, V, W, hidden_bias, out_mat, out_bias): if loss_function == 'CE': data_lin_output = V[x_t] else: data_lin_output = T.dot(x_t, V) h_t = T.tanh(T.dot(h_prev, W) + data_lin_output + hidden_bias.dimshuffle('x', 0)) if out_every_t: lin_output = T.dot(h_t, out_mat) + out_bias.dimshuffle('x', 0) cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, cost_t, acc_t non_sequences = [V, W, hidden_bias, out_mat, out_bias] h_0_batch = T.tile(h_0, [x.shape[1], 1]) if out_every_t: sequences = [x, y] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1])] outputs_info = [h_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] [hidden_states, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) if not out_every_t: lin_output = T.dot(hidden_states[-1,:,:], out_mat) + out_bias.dimshuffle('x', 0) costs = compute_cost_t(lin_output, loss_function, y) else: cost = cost_steps.mean() accuracy = acc_steps.mean() costs = [cost, accuracy] return inputs, parameters, costs def LSTM(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE',flag_use_mask=False,flag_return_lin_output=False,flag_return_hidden_states=False,cost_weight=None,cost_transform=None,seed=1234): np.random.seed(seed) rng = np.random.RandomState(seed) W_i = initialize_matrix(n_input, n_hidden, 'W_i', rng) W_f = initialize_matrix(n_input, n_hidden, 'W_f', rng) W_c = initialize_matrix(n_input, n_hidden, 'W_c', rng) W_o = initialize_matrix(n_input, n_hidden, 'W_o', rng) U_i = initialize_matrix(n_hidden, n_hidden, 'U_i', rng) U_f = initialize_matrix(n_hidden, n_hidden, 'U_f', rng) U_c = initialize_matrix(n_hidden, n_hidden, 'U_c', rng) U_o = initialize_matrix(n_hidden, n_hidden, 'U_o', rng) V_o = initialize_matrix(n_hidden, n_hidden, 'V_o', rng) b_i = theano.shared(np.zeros((n_hidden,), dtype=theano.config.floatX)) b_f = theano.shared(np.ones((n_hidden,), dtype=theano.config.floatX)) b_c = theano.shared(np.zeros((n_hidden,), dtype=theano.config.floatX)) b_o = theano.shared(np.zeros((n_hidden,), dtype=theano.config.floatX)) h_0 = theano.shared(np.zeros((1, n_hidden), dtype=theano.config.floatX)) state_0 = theano.shared(np.zeros((1, n_hidden), dtype=theano.config.floatX)) out_mat = initialize_matrix(n_hidden, n_output, 'out_mat', rng) out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX)) parameters = [W_i, W_f, W_c, W_o, U_i, U_f, U_c, U_o, V_o, b_i, b_f, b_c, b_o, h_0, state_0, out_mat, out_bias] x, y = initialize_data_nodes(loss_function, input_type, out_every_t) if flag_use_mask: if loss_function == 'CE': ymask = T.matrix(dtype='int8') if out_every_t else T.vector(dtype='int8') else: # y will be n_fram x n_output x n_utt ymask = T.tensor3(dtype='int8') if out_every_t else T.matrix(dtype='int8') def recurrence(x_t, y_t, ymask_t, h_prev, state_prev, cost_prev, acc_prev, W_i, W_f, W_c, W_o, U_i, U_f, U_c, U_o, V_o, b_i, b_f, b_c, b_o, out_mat, out_bias): if (loss_function == 'CE') and (input_type=='categorical'): x_t_W_i = W_i[x_t] x_t_W_c = W_c[x_t] x_t_W_f = W_f[x_t] x_t_W_o = W_o[x_t] else: x_t_W_i = T.dot(x_t, W_i) x_t_W_c = T.dot(x_t, W_c) x_t_W_f = T.dot(x_t, W_f) x_t_W_o = T.dot(x_t, W_o) input_t = T.nnet.sigmoid(x_t_W_i + T.dot(h_prev, U_i) + b_i.dimshuffle('x', 0)) candidate_t = T.tanh(x_t_W_c + T.dot(h_prev, U_c) + b_c.dimshuffle('x', 0)) forget_t = T.nnet.sigmoid(x_t_W_f + T.dot(h_prev, U_f) + b_f.dimshuffle('x', 0)) state_t = input_t * candidate_t + forget_t * state_prev output_t = T.nnet.sigmoid(x_t_W_o + T.dot(h_prev, U_o) + T.dot(state_t, V_o) + b_o.dimshuffle('x', 0)) h_t = output_t * T.tanh(state_t) if out_every_t: lin_output = T.dot(h_t, out_mat) + out_bias.dimshuffle('x', 0) if flag_use_mask: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t, ymask_t=ymask_t) else: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, state_t, cost_t, acc_t non_sequences = [W_i, W_f, W_c, W_o, U_i, U_f, U_c, U_o, V_o, b_i, b_f, b_c, b_o, out_mat, out_bias] h_0_batch = T.tile(h_0, [x.shape[1], 1]) state_0_batch = T.tile(state_0, [x.shape[1], 1]) if out_every_t: if flag_use_mask: sequences = [x, y, ymask] else: sequences = [x, y, T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)), [x.shape[0], 1, 1])] else: if flag_use_mask: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1]), T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)), [x.shape[0], 1, 1])] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1]), T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)),[x.shape[0], 1, 1])] outputs_info = [h_0_batch, state_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] [hidden_states, states, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) if flag_return_lin_output: #if output_type=='complex': # lin_output = T.dot(hidden_states, out_mat) + out_bias.dimshuffle('x',0) #elif output_type=='real': lin_output = T.dot(hidden_states, out_mat) + out_bias.dimshuffle('x',0) if not out_every_t: lin_output = T.dot(hidden_states[-1,:,:], out_mat) + out_bias.dimshuffle('x', 0) costs = compute_cost_t(lin_output, loss_function, y) cost=costs[0] accuracy=costs[1] else: if (cost_transform=='magTimesPhase'): cosPhase=T.cos(lin_output) sinPhase=T.sin(lin_output) linMag=np.sqrt(10**(x/10.0)-1e-5) yest_real=linMag*cosPhase yest_imag=linMag*sinPhase yest=T.concatenate([yest_real,yest_imag],axis=2) mse=(yest-y)**2 cost_steps=T.mean(mse*ymask[:,:,0].dimshuffle(0,1,'x'),axis=2) elif cost_transform is not None: # assume that cost_transform is an inverse DFT followed by synthesis windowing lin_output_real=lin_output[:,:,:n_output//2] lin_output_imag=lin_output[:,:,n_output//2:] lin_output_sym_real=T.concatenate([lin_output_real,lin_output_real[:,:,n_output//2-2:0:-1]],axis=2) lin_output_sym_imag=T.concatenate([-lin_output_imag,lin_output_imag[:,:,n_output//2-2:0:-1]],axis=2) lin_output_sym=T.concatenate([lin_output_sym_real,lin_output_sym_imag],axis=2) yest_xform=T.dot(lin_output_sym,cost_transform) # apply synthesis window yest_xform=yest_xform*cost_weight.dimshuffle('x','x',0) y_real=y[:,:,:n_output//2] y_imag=y[:,:,n_output//2:] y_sym_real=T.concatenate([y_real,y_real[:,:,n_output//2-2:0:-1]],axis=2) y_sym_imag=T.concatenate([-y_imag,y_imag[:,:,n_output//2-2:0:-1]],axis=2) y_sym=T.concatenate([y_sym_real,y_sym_imag],axis=2) y_xform=T.dot(y_sym,cost_transform) # apply synthesis window y_xform=y_xform*cost_weight.dimshuffle('x','x',0) mse=(y_xform-yest_xform)**2 cost_steps=T.mean(mse*ymask[:,:,0].dimshuffle(0,1,'x'),axis=2) cost = cost_steps.mean() accuracy = acc_steps.mean() costs = [cost, accuracy] if (loss_function=='CE_of_sum'): yest = T.sum(lin_output,axis=0) #sum over time_steps, yest is Nseq x n_output yest_softmax = T.nnet.softmax(yest) cost = T.nnet.categorical_crossentropy(yest_softmax, y[0,:]).mean() accuracy = T.eq(T.argmax(yest, axis=-1), y[0,:]).mean(dtype=theano.config.floatX) costs = [cost,accuracy] if flag_return_lin_output: costs = [cost, accuracy, lin_output] if flag_return_hidden_states: costs = costs + [hidden_states] #nmse_local = ymask.dimshuffle(0,1)*( (lin_output-y)**2 )/( 1e-5 + y**2 ) nmse_local = theano.shared(np.float32(0.0)) costs = costs + [nmse_local] costs = costs + [cost_steps] if flag_use_mask: return [x, y, ymask], parameters, costs else: return [x, y], parameters, costs def initialize_unitary(n,impl,rng,name_suffix='',n_Givens=0,init='rand'): if (impl == 'adhoc'): # ad-hoc parameterization of Arjovsky, Shah, and Bengio 2015 reflection = initialize_matrix(2, 2*n, 'reflection'+name_suffix, rng) theta = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(3, n)), dtype=theano.config.floatX), name='theta'+name_suffix) index_permute = rng.permutation(n) index_permute_long = np.concatenate((index_permute, index_permute + n)) Wparams = [theta,reflection,index_permute_long] elif (impl == 'full'): """ # fixed full unitary matrix Z=rng.randn(n,n).astype(np.complex64)+1j*rng.randn(n,n).astype(np.complex64) UZ, SZ, VZ=np.linalg.svd(Z) Wc=np.dot(UZ,VZ) WcRe=np.transpose(np.real(Wc)) WcIm=np.transpose(np.imag(Wc)) Waug = theano.shared(np.concatenate( [np.concatenate([WcRe,WcIm],axis=1),np.concatenate([(-1)*WcIm,WcRe],axis=1)], axis=0),name='Waug'+name_suffix) """ if (init=='rand'): # use ad-hoc for initialization reflection = initialize_matrix(2, 2*n, 'reflection'+name_suffix, rng) theta = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(3, n)), dtype=theano.config.floatX), name='theta'+name_suffix) index_permute = rng.permutation(n) index_permute_long = np.concatenate((index_permute, index_permute + n)) WcRe=np.eye(n).astype(np.float32) WcIm=np.zeros((n,n)).astype(np.float32) Waug=np.concatenate( [np.concatenate([WcRe,WcIm],axis=1),np.concatenate([WcIm,WcRe],axis=1)], axis=0) swap_re_im = np.concatenate((np.arange(n, 2*n), np.arange(n))) Waug_variable=times_unitary(Waug,n,swap_re_im,[theta,reflection,index_permute_long],'adhoc') Waug=theano.shared(Waug_variable.eval().astype(np.float32),name='Waug'+name_suffix) elif (init=='identity'): WcRe=np.eye(n).astype(np.float32) WcIm=np.zeros((n,n)).astype(np.float32) Waug_np=np.concatenate( [np.concatenate([WcRe,WcIm],axis=1),np.concatenate([WcIm,WcRe],axis=1)], axis=0) Waug=theano.shared(Waug_np,name='Waug'+name_suffix) Wparams = [Waug] elif (impl == 'givens'): # composition of Givens rotations gphipsi = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(n_Givens, 1, 2)), dtype=theano.config.floatX), name='gphipsi') gchi = theano.shared(np.asarray(np.arccos(rng.uniform(low=0, high=1, size=(n_Givens, 1, 1))), dtype=theano.config.floatX), name='gchi') #galp = theano.shared(np.asarray(rng.uniform(low=-np.pi, # high=np.pi, # size=(1, 1)), # dtype=theano.config.floatX), # name='galp') # build indices for Givens rotations: Nchoose2=(n)*(n-1)/2; # generate a random permutation of 1:(N choose 2) Nchoose2perm=rng.permutation(Nchoose2) # take the first n_Givens values Nchoose2perm=Nchoose2perm[:n_Givens] # initialize Givens indices gidx_np=np.zeros((n_Givens,1,2),dtype=np.int32) ig=0 #absolute Givens index ig_sel=0 #indices for selected Givens indices for ig1 in range(0,n): for ig2 in range(ig1+1,n): if ig in Nchoose2perm: ig_sel=np.where(Nchoose2perm==ig) ig_sel=ig_sel[0][0] gidx_np[ig_sel,0,:]=np.reshape([ig1,ig2],(1,1,2)) ig=ig+1 gidx=theano.shared(gidx_np) Wparams = [gphipsi, gchi, gidx] return Wparams def initialize_complex_RNN_layer(n_hidden,Wimpl,rng,hidden_bias_mean,name_suffix='',n_Givens=0,hidden_bias_init='rand',h_0_init='rand',W_init='rand'): # hidden bias if (hidden_bias_init=='rand'): hidden_bias = theano.shared(np.asarray(hidden_bias_mean+rng.uniform(low=-0.01, high=0.01, size=(n_hidden,)), dtype=theano.config.floatX), name='hidden_bias'+name_suffix) elif (hidden_bias_init=='zero'): hidden_bias = theano.shared(np.zeros((n_hidden,)).astype(theano.config.floatX),name='hidden_bias'+name_suffix) else: raise ValueError("Unknown initialization method %s for hidden_bias" % hidden_bias_init) # initial state h_0 h_0_size=(1,2*n_hidden) if (h_0_init=='rand'): bucket = np.sqrt(3. / 2 / n_hidden) h_0 = theano.shared(np.asarray(rng.uniform(low=-bucket, high=bucket, size=h_0_size), dtype=theano.config.floatX), name='h_0'+name_suffix) elif (h_0_init=='zero'): h_0 = theano.shared(np.zeros(h_0_size).astype(theano.config.floatX),name='h_0'+name_suffix) else: raise ValueError("Unknown initialization method %s for h_0" % h_0_init) # unitary transition matrix W Wparams = initialize_unitary(n_hidden,Wimpl,rng,name_suffix=name_suffix,n_Givens=n_Givens,init=W_init) """ if (Wimpl == 'adhoc'): # ad-hoc parameterization of Arjovsky, Shah, and Bengio 2015 reflection = initialize_matrix(2, 2*n_hidden, 'reflection'+name_suffix, rng) theta = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(3, n_hidden)), dtype=theano.config.floatX), name='theta'+name_suffix) index_permute = np.random.permutation(n_hidden) index_permute_long = np.concatenate((index_permute, index_permute + n_hidden)) Wparams = [theta,reflection,index_permute_long] elif (Wimpl == 'full'): # fixed full unitary matrix Z=prng_Givens.randn(n_hidden,n_hidden).astype(np.complex64)+1j*prng_Givens.randn(n_hidden,n_hidden).astype(np.complex64) UZ, SZ, VZ=np.linalg.svd(Z) Wc=np.dot(UZ,VZ) WcRe=np.transpose(np.real(Wc)) WcIm=np.transpose(np.imag(Wc)) Waug = theano.shared(np.concatenate( [np.concatenate([WcRe,WcIm],axis=1),np.concatenate([(-1)*WcIm,WcRe],axis=1)], axis=0),name='Waug'+name_suffix) Wparams = [Waug] elif (Wimpl == 'givens'): # composition of Givens rotations gphipsi = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(n_Givens, 1, 2)), dtype=theano.config.floatX), name='gphipsi') gchi = theano.shared(np.asarray(np.arccos(rng.uniform(low=0, high=1, size=(n_Givens, 1, 1))), dtype=theano.config.floatX), name='gchi') #galp = theano.shared(np.asarray(rng.uniform(low=-np.pi, # high=np.pi, # size=(1, 1)), # dtype=theano.config.floatX), # name='galp') # build indices for Givens rotations: Nchoose2=(n_hidden)*(n_hidden-1)/2; # generate a random permutation of 1:(N choose 2) Nchoose2perm=prng_Givens.permutation(Nchoose2) # take the first n_Givens values Nchoose2perm=Nchoose2perm[:n_Givens] # initialize Givens indices gidx_np=np.zeros((n_Givens,1,2),dtype=np.int32) ig=0 #absolute Givens index ig_sel=0 #indices for selected Givens indices for ig1 in range(0,n_hidden): for ig2 in range(ig1+1,n_hidden): if ig in Nchoose2perm: ig_sel=np.where(Nchoose2perm==ig) ig_sel=ig_sel[0][0] gidx_np[ig_sel,0,:]=np.reshape([ig1,ig2],(1,1,2)) ig=ig+1 gidx=theano.shared(gidx_np) Wparams = [gphipsi, gchi, gidx] """ return hidden_bias, h_0, Wparams def times_unitary(x,n,swap_re_im,Wparams,Wimpl): # multiply tensor x on the right by the unitary matrix W parameterized by Wparams if (Wimpl == 'adhoc'): theta=Wparams[0] reflection=Wparams[1] index_permute_long=Wparams[2] step1 = times_diag(x, n, theta[0,:], swap_re_im) step2 = do_fft(step1, n) step3 = times_reflection(step2, n, reflection[0,:]) step4 = vec_permutation(step3, index_permute_long) step5 = times_diag(step4, n, theta[1,:], swap_re_im) step6 = do_ifft(step5, n) step7 = times_reflection(step6, n, reflection[1,:]) step8 = times_diag(step7, n, theta[2,:], swap_re_im) y = step8 elif (Wimpl == 'full'): Waug=Wparams[0] y = T.dot(x,Waug) elif (Wimpl == 'givens'): gphipsi=Wparams[0] gchi=Wparams[1] gidx=Wparams[2] # scan method for composing Givens rotations givens_steps=h_prev #output of this inner scan should be I x 2*n givens_outputs, updates = theano.scan(fn=lambda gphipsi, gchi, gidx, Gh_prev: times_givens(Gh_prev, n, T.reshape(T.concatenate([gphipsi,gchi],axis=1),[3]), T.reshape(gidx,[2])), sequences=[gphipsi,gchi,gidx], outputs_info=givens_steps) # output of composition of Givens rotations: y=T.reshape(givens_outputs[-1,:,:],(givens_outputs.shape[1],givens_outputs.shape[2])) return y def complex_RNN(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE', output_type='real', fidx=None, flag_return_lin_output=False,name_suffix='',x_spec=None,flag_feed_forward=False,flag_use_mask=False,hidden_bias_mean=0.0,lam=0.0,Wimpl="adhoc",n_Givens=None,prng_Givens=np.random.RandomState(),Vnorm=0.0,Unorm=0.0,flag_return_hidden_states=False,n_layers=1,cost_weight=None,cost_transform=None,flag_noComplexConstraint=0,seed=1234,V_init='rand',U_init='rand',W_init='rand',h_0_init='rand',out_bias_init='rand',hidden_bias_init='rand',flag_add_input_to_output=False,flag_connect_input_to_layers=False,flag_broadcast_silo=False): np.random.seed(seed) rng = np.random.RandomState(seed) # Initialize input and output parameters: V, U, out_bias0 # input matrix V if flag_noComplexConstraint and (input_type=='complex'): V = initialize_matrix(2*n_input, 2*n_hidden, 'V'+name_suffix, rng, init=V_init) Vaug = V else: V = initialize_matrix(n_input, 2*n_hidden, 'V'+name_suffix, rng, init=V_init) if (Vnorm>0.0): # normalize the rows of V by the L2 norm (note that the variable V here is actually V^T, so we normalize the columns) Vr = V[:,:n_hidden] Vi = V[:,n_hidden:] Vnorms = T.sqrt(1e-5 + T.sum(Vr**2,axis=0,keepdims=True) + T.sum(Vi**2,axis=0,keepdims=True)) Vn = T.concatenate( [Vr/(1e-5 + Vnorms), Vi/(1e-5 + Vnorms)], axis=1) # scale so row norms are desired number Vn = V*T.sqrt(Vnorm) else: Vn = V if input_type=='complex': Vim = T.concatenate([ (-1)*Vn[:,n_hidden:], Vn[:,:n_hidden] ],axis=1) #concatenate along columns to make [-V_I, V_R] Vaug = T.concatenate([ Vn, Vim ],axis=0) #concatenate along rows to make [V_R, V_I; -V_I, V_R] # output matrix U if flag_noComplexConstraint and (input_type=='complex'): U = initialize_matrix(2*n_hidden,2*n_output,'U'+name_suffix,rng, init=U_init) Uaug=U else: U = initialize_matrix(2 * n_hidden, n_output, 'U'+name_suffix, rng, init=U_init) if (Unorm > 0.0): # normalize the cols of U by the L2 norm (note that the variable U here is actually U^H, so we normalize the rows) Ur = U[:n_hidden,:] Ui = U[n_hidden:,:] Unorms = T.sqrt(1e-5 + T.sum(Ur**2,axis=1,keepdims=True) + T.sum(Ui**2,axis=1,keepdims=True)) Un = T.concatenate([ Ur/(1e-5 + Unorms), Ui/(1e-5 + Unorms) ], axis=0) # scale so col norms are desired number Un = Un*T.sqrt(Unorm) else: Un = U if output_type=='complex': Uim = T.concatenate([ (-1)*Un[n_hidden:,:], Un[:n_hidden,:] ],axis=0) #concatenate along rows to make [-U_I; U_R] Uaug = T.concatenate([ Un,Uim ],axis=1) #concatante along cols to make [U_R, -U_I; U_I, U_R] # note that this is a little weird compared to the convention elsewhere in this code that # right-multiplication real-composite form is [A, B; -B, A]. The weirdness is because of the original # implementation, which initialized U for real-valued outputs as U=[A; B], which really should have # been U=[A; -B] # output bias out_bias if output_type=='complex': out_bias = theano.shared(np.zeros((2*n_output,), dtype=theano.config.floatX), name='out_bias'+name_suffix) else: out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX), name='out_bias'+name_suffix) # initialize layer 1 parameters hidden_bias, h_0, Wparams = initialize_complex_RNN_layer(n_hidden,Wimpl,rng,hidden_bias_mean,name_suffix=name_suffix,n_Givens=n_Givens,hidden_bias_init=hidden_bias_init,h_0_init=h_0_init,W_init=W_init) # extract recurrent parameters into this namespace if flag_feed_forward: # just doing feed-foward, so remove any recurrent parameters if (Wimpl == 'adhoc'): #theta = theano.shared(np.float32(0.0)) h_0_size=(1,2*n_hidden) h_0 = theano.shared(np.asarray(np.zeros(h_0_size),dtype=theano.config.floatX)) parameters = [V, U, hidden_bias, out_bias] else: if (Wimpl == 'adhoc'): # ad-hoc parameterization of Arjovsky, Shah, and Bengio 2015 theta = Wparams[0] reflection = Wparams[1] index_permute_long = Wparams[2] parameters = [V, U, hidden_bias, reflection, out_bias, theta, h_0] #Wparams = [theta] elif (Wimpl == 'full'): # fixed full unitary matrix Waug=Wparams[0] parameters = [V, U, hidden_bias, out_bias, h_0, Waug] #Wparams = [Waug] elif (Wimpl == 'givens'): # composition of Givens rotations gphipsi = Wparams[0] gchi = Wparams[1] gidx = Wparams[2] parameters = [V,U, hidden_bias, out_bias, h_0, gphipsi, gchi] #Wparams = [gphipsi, gchi, gidx] h_0_all_layers = h_0 # initialize additional layer parameters addl_layers_params=[] addl_layers_params_optim=[] for i_layer in range(2,n_layers+1): betw_layer_suffix='_L%d_to_L%d' % (i_layer-1,i_layer) layer_suffix='_L%d' % i_layer Wvparams_cur = initialize_unitary(n_hidden,Wimpl,rng,name_suffix=(name_suffix+betw_layer_suffix),n_Givens=n_Givens,init=W_init) hidden_bias_cur, h_0_cur, Wparams_cur = initialize_complex_RNN_layer(n_hidden,Wimpl,rng,hidden_bias_mean,name_suffix=(name_suffix + layer_suffix),n_Givens=n_Givens,hidden_bias_init=hidden_bias_init,h_0_init=h_0_init,W_init=W_init) addl_layers_params = addl_layers_params + Wvparams_cur + [hidden_bias_cur, h_0_cur, ] + Wparams_cur if (Wimpl=='adhoc'): # don't include permutation indices in the list of parameters to be optimized addl_layers_params_optim = addl_layers_params_optim + Wvparams_cur[0:2] + [hidden_bias_cur, h_0_cur] + Wparams_cur[0:2] else: addl_layers_params_optim = addl_layers_params if flag_connect_input_to_layers: Vk = initialize_matrix(n_input, 2*n_hidden, 'V'+name_suffix+layer_suffix, rng, init=V_init) if (Vnorm>0.0): # normalize the rows of V by the L2 norm (note that the variable V here is actually V^T, so we normalize the columns) Vkr = Vk[:,:n_hidden] Vki = Vk[:,n_hidden:] Vknorms = T.sqrt(1e-5 + T.sum(Vkr**2,axis=0,keepdims=True) + T.sum(Vki**2,axis=0,keepdims=True)) Vkn = T.concatenate( [Vkr/(1e-5 + Vknorms), Vki/(1e-5 + Vknorms)], axis=1) # scale so row norms are desired number Vkn = Vk*T.sqrt(Vknorm) else: Vkn = Vk if input_type=='complex': Vkim = T.concatenate([ (-1)*Vkn[:,n_hidden:], Vkn[:,:n_hidden] ],axis=1) #concatenate along columns to make [-V_I, V_R] Vkaug = T.concatenate([ Vkn, Vkim ],axis=0) #concatenate along rows to make [V_R, V_I; -V_I, V_R] addl_layers_params = addl_layers_params + [Vkaug] else: addl_layers_params = addl_layers_params + [Vkn] addl_layers_params_optim = addl_layers_params_optim + [Vk] h_0_all_layers = T.concatenate([h_0_all_layers,h_0_cur],axis=1) parameters = parameters + addl_layers_params_optim # initialize data nodes x, y = initialize_data_nodes(loss_function, input_type, out_every_t) if flag_use_mask: if 'CE' in loss_function: ymask = T.matrix(dtype='int8') if out_every_t else T.vector(dtype='int8') else: # y will be n_fram x n_output x n_utt ymask = T.tensor3(dtype='int8') if out_every_t else T.matrix(dtype='int8') if x_spec is not None: # x is specified, set x to this: x = x_spec swap_re_im = np.concatenate((np.arange(n_hidden, 2*n_hidden), np.arange(n_hidden))) # define the recurrence used by theano.scan def recurrence(x_t, y_t, ymask_t, h_prev, cost_prev, acc_prev, V, hidden_bias, out_bias, U, *argv): # h_prev is of size n_batch x n_layers*2*n_hidden # strip W parameters off variable arguments list if (Wimpl=='full'): Wparams=argv[0:1] argv=argv[1:] else: Wparams=argv[0:3] argv=argv[3:] if not flag_feed_forward: # Compute hidden linear transform: W h_{t-1} h_prev_layer1 = h_prev[:,0:2*n_hidden] hidden_lin_output = times_unitary(h_prev_layer1,n_hidden,swap_re_im,Wparams,Wimpl) # Compute data linear transform if ('CE' in loss_function) and (input_type=='categorical'): # inputs are categorical, so just use them as indices into V data_lin_output = V[T.cast(x_t, 'int32')] else: # second dimension of real-valued x_t should be of size n_input, first dimension of V should be of size n_input # (or augmented, where the dimension of summation is 2*n_input and V is of real/imag. augmented form) data_lin_output = T.dot(x_t, V) # Total linear output if not flag_feed_forward: lin_output = hidden_lin_output + data_lin_output else: lin_output = data_lin_output # Apply non-linearity ---------------------------- # scale RELU nonlinearity # add a little bit to sqrt argument to ensure stable gradients, # since gradient of sqrt(x) is -0.5/sqrt(x) modulus = T.sqrt(1e-9+lin_output**2 + lin_output[:, swap_re_im]**2) rescale = T.maximum(modulus + T.tile(hidden_bias, [2]).dimshuffle('x', 0), 0.) / (modulus) h_t = lin_output * rescale h_t_all_layers = h_t # Compute additional recurrent layers for i_layer in range(2,n_layers+1): # strip Wv parameters off variable arguments list if (Wimpl=='full'): Wvparams_cur=argv[0:1] argv=argv[1:] else: Wvparams_cur=argv[0:3] argv=argv[3:] # strip hidden_bias for this layer off argv hidden_bias_cur = argv[0] argv=argv[1:] # strip h_0 for this layer off argv #h_0_cur = argv[0] #unused, since h_0_all_layers is all layers' h_0s concatenated argv=argv[1:] # strip W parameters off variable arguments list if (Wimpl=='full'): Wparams_cur=argv[0:1] argv=argv[1:] else: Wparams_cur=argv[0:3] argv=argv[3:] if flag_connect_input_to_layers: # strip layer-dependent input transforms off variable arugments list Vk=argv[0] argv=argv[1:] # Compute the linear parts of the layer ---------- if not flag_feed_forward: # get previous hidden state h_{t-1} for this layer: if flag_broadcast_silo: # use top of the previous iteration stack for h_{t-1} h_prev_cur = h_prev[:,(n_layers-1)*2*n_hidden:n_layers*2*n_hidden] else: h_prev_cur = h_prev[:,(i_layer-1)*2*n_hidden:i_layer*2*n_hidden] # Compute hidden linear transform: W h_{t-1} hidden_lin_output_cur = times_unitary(h_prev_cur,n_hidden,swap_re_im,Wparams_cur,Wimpl) # Compute "data linear transform", which for this intermediate layer is the previous layer's h_t transformed by Wv data_lin_output_cur = times_unitary(h_t,n_hidden,swap_re_im,Wvparams_cur,Wimpl) # Total linear output if not flag_feed_forward: lin_output_cur = hidden_lin_output_cur + data_lin_output_cur else: lin_output_cur = data_lin_output_cur if flag_connect_input_to_layers: lin_output_cur = lin_output_cur + T.dot(x_t,Vk) # Apply non-linearity ---------------------------- # scale RELU nonlinearity # add a little bit to sqrt argument to ensure stable gradients, # since gradient of sqrt(x) is -0.5/sqrt(x) modulus = T.sqrt(1e-9+lin_output_cur**2 + lin_output_cur[:, swap_re_im]**2) rescale = T.maximum(modulus + T.tile(hidden_bias_cur, [2]).dimshuffle('x', 0), 0.) / (modulus) h_t = lin_output_cur * rescale h_t_all_layers = T.concatenate([h_t_all_layers,h_t],axis=1) # assume we aren't passing any preactivation to compute_cost z_t = None if loss_function == 'MSEplusL1': z_t = h_t if out_every_t: lin_output = T.dot(h_t, U) + out_bias.dimshuffle('x', 0) if flag_add_input_to_output: lin_output=lin_output + x_t if flag_use_mask: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t, ymask_t=ymask_t, z_t=z_t, lam=lam) else: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t, z_t=z_t, lam=lam) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t_all_layers, cost_t, acc_t def recurrence_Givens(x_t, y_t, ymask_t, h_prev, cost_prev, acc_prev, V, hidden_bias, out_bias, U, gphipsi, gchi, gidx): if not flag_feed_forward: # scan method for composing Givens rotations givens_steps=h_prev #output of this inner scan should be I x 2*n_hidden givens_outputs, updates = theano.scan(fn=lambda gphipsi, gchi, gidx, Gh_prev: times_givens(Gh_prev, n_hidden, T.reshape(T.concatenate([gphipsi,gchi],axis=1),[3]), T.reshape(gidx,[2])), sequences=[gphipsi,gchi,gidx], outputs_info=givens_steps) # output of composition of Givens rotations: hidden_lin_output=T.reshape(givens_outputs[-1,:,:],(givens_outputs.shape[1],givens_outputs.shape[2])) # Compute data linear transform if ('CE' in loss_function) and (input_type=='categorical'): # inputs are categorical, so just use them as indices into V data_lin_output = V[T.cast(x_t, 'int32')] else: # second dimension of real-valued x_t should be of size n_input, first dimension of V should be of size n_input # (or augmented, where the dimension of summation is 2*n_input and V is of real/imag. augmented form) data_lin_output = T.dot(x_t, V) # Total linear output if not flag_feed_forward: lin_output = hidden_lin_output + data_lin_output else: lin_output = data_lin_output # Apply non-linearity ---------------------------- # scale RELU nonlinearity # add a little bit to sqrt argument to ensure stable gradients, # since gradient of sqrt(x) is -0.5/sqrt(x) modulus = T.sqrt(1e-9+lin_output**2 + lin_output[:, swap_re_im]**2) rescale = T.maximum(modulus + T.tile(hidden_bias, [2]).dimshuffle('x', 0), 0.) / (modulus) h_t = lin_output * rescale # assume we aren't passing any preactivation to compute_cost z_t = None if loss_function == 'MSEplusL1': z_t = h_t if out_every_t: lin_output = T.dot(h_t, U) + out_bias.dimshuffle('x', 0) if flag_use_mask: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t, ymask_t=ymask_t, z_t=z_t, lam=lam) else: cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t, z_t=z_t, lam=lam) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, cost_t, acc_t # compute hidden states # h_0_batch should be n_utt x n_layers*2*n_hidden, since scan goes over first dimension of x, which is the maximum STFT length in frames h_0_batch = T.tile(h_0_all_layers, [x.shape[1], 1]) if (Wimpl=='givens'): if input_type=='complex' and output_type=='complex': # pass in augmented input and output transformations non_sequences = [Vaug, hidden_bias, out_bias, Uaug, gphipsi, gchi, gidx] elif input_type=='complex': non_sequences = [Vaug, hidden_bias, out_bias, Un, gphipsi, gchi, gidx] elif output_type=='complex': non_sequences = [Vn , hidden_bias, out_bias, Uaug, gphipsi, gchi, gidx] else: non_sequences = [Vn , hidden_bias, out_bias, Un, gphipsi, gchi, gidx] else: if input_type=='complex' and output_type=='complex': # pass in augmented input and output transformations non_sequences = [Vaug, hidden_bias, out_bias, Uaug] + Wparams + addl_layers_params elif input_type=='complex': non_sequences = [Vaug, hidden_bias, out_bias, Un] + Wparams + addl_layers_params elif output_type=='complex': non_sequences = [Vn , hidden_bias, out_bias, Uaug] + Wparams + addl_layers_params else: non_sequences = [Vn , hidden_bias, out_bias, Un] + Wparams + addl_layers_params if out_every_t: if flag_use_mask: sequences = [x, y, ymask] else: sequences = [x, y, T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)), [x.shape[0], 1, 1])] else: if flag_use_mask: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1]), T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)), [x.shape[0], 1, 1])] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1]), T.tile(theano.shared(np.ones((1,1),dtype=theano.config.floatX)),[x.shape[0], 1, 1])] outputs_info=[h_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] if (Wimpl=='givens'): [hidden_states_all_layers, cost_steps, acc_steps], updates = theano.scan(fn=recurrence_Givens, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) else: [hidden_states_all_layers, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) # get hidden states of last layer hidden_states = hidden_states_all_layers[:,:,(n_layers-1)*2*n_hidden:] if flag_return_lin_output: if output_type=='complex': lin_output = T.dot(hidden_states, Uaug) + out_bias.dimshuffle('x',0) else: lin_output = T.dot(hidden_states, Un) + out_bias.dimshuffle('x',0) if flag_add_input_to_output: lin_output = lin_output + x if not out_every_t: #TODO: here, if flag_use_mask is set, need to use a for-loop to select the desired time-step for each utterance lin_output = T.dot(hidden_states[-1,:,:], Un) + out_bias.dimshuffle('x', 0) z_t = None if loss_function == 'MSEplusL1': z_t = hidden_states[-1,:,:] costs = compute_cost_t(lin_output, loss_function, y, z_t=z_t, lam=lam) cost=costs[0] accuracy=costs[1] else: if (cost_transform=='magTimesPhase'): cosPhase=T.cos(lin_output) sinPhase=T.sin(lin_output) linMag=np.sqrt(10**(x/10.0)-1e-5) yest_real=linMag*cosPhase yest_imag=linMag*sinPhase yest=T.concatenate([yest_real,yest_imag],axis=2) mse=(yest-y)**2 cost_steps=T.mean(mse*ymask[:,:,0].dimshuffle(0,1,'x'),axis=2) elif cost_transform is not None: # assume that cost_transform is an inverse DFT followed by synthesis windowing lin_output_real=lin_output[:,:,:n_output] lin_output_imag=lin_output[:,:,n_output:] lin_output_sym_real=T.concatenate([lin_output_real,lin_output_real[:,:,n_output-2:0:-1]],axis=2) lin_output_sym_imag=T.concatenate([-lin_output_imag,lin_output_imag[:,:,n_output-2:0:-1]],axis=2) lin_output_sym=T.concatenate([lin_output_sym_real,lin_output_sym_imag],axis=2) yest_xform=T.dot(lin_output_sym,cost_transform) # apply synthesis window yest_xform=yest_xform*cost_weight.dimshuffle('x','x',0) y_real=y[:,:,:n_output] y_imag=y[:,:,n_output:] y_sym_real=T.concatenate([y_real,y_real[:,:,n_output-2:0:-1]],axis=2) y_sym_imag=T.concatenate([-y_imag,y_imag[:,:,n_output-2:0:-1]],axis=2) y_sym=T.concatenate([y_sym_real,y_sym_imag],axis=2) y_xform=T.dot(y_sym,cost_transform) # apply synthesis window y_xform=y_xform*cost_weight.dimshuffle('x','x',0) mse=(y_xform-yest_xform)**2 cost_steps=T.mean(mse*ymask[:,:,0].dimshuffle(0,1,'x'),axis=2) cost = cost_steps.mean() accuracy = acc_steps.mean() if (loss_function=='CE_of_sum'): yest = T.sum(lin_output,axis=0) #sum over time_steps, yest is Nseq x n_output yest_softmax = T.nnet.softmax(yest) cost = T.nnet.categorical_crossentropy(yest_softmax, y[0,:]).mean() accuracy = T.eq(T.argmax(yest, axis=-1), y[0,:]).mean(dtype=theano.config.floatX) if flag_return_lin_output: costs = [cost, accuracy, lin_output] if flag_return_hidden_states: costs = costs + [hidden_states] #nmse_local = ymask.dimshuffle(0,1)*( (lin_output-y)**2 )/( 1e-5 + y**2 ) nmse_local = theano.shared(np.float32(0.0)) costs = costs + [nmse_local] costs = costs + [cost_steps] else: costs = [cost, accuracy] if flag_use_mask: return [x,y,ymask], parameters, costs else: return [x, y], parameters, costs def Givens_RNN(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE', output_type='real', fidx=None, flag_return_lin_output=False, flag_useGivensForLoop=False): # composes {n_hidden}\choose{2} Givens rotations to form W, which is guaranteed # to cover the entire unitary group U(n_hidden) [<NAME>, <NAME>, "Random Unitary Matrices", 1994] np.random.seed(1234) rng = np.random.RandomState(1234) # Initialize parameters: theta, V_re, V_im, hidden_bias, U, out_bias, h_0 if input_type=='complex': V = initialize_matrix(n_input, 2*n_hidden, 'V', rng) Vim = T.concatenate([ (-1)*V[:,n_hidden:], V[:,:n_hidden] ],axis=1) #concatenate along columns to make [-V_I, V_R] Vaug = T.concatenate([ V, Vim ],axis=0) #concatenate along rows to make [V_R, V_I; -V_I, V_R] else: V = initialize_matrix(n_input, 2*n_hidden, 'V', rng) if output_type=='complex': U = initialize_matrix(2 * n_hidden, n_output, 'U', rng) Uim = T.concatenate([ (-1)*U[n_hidden:,:], U[:n_hidden,:] ],axis=0) #concatenate along rows to make [-U_I; U_R] Uaug = T.concatenate([ U,Uim ],axis=1) #concatante along columns to make [U_R, U_I; -U_I, U_R] else: U = initialize_matrix(2 * n_hidden, n_output, 'U', rng) hidden_bias = theano.shared(np.asarray(rng.uniform(low=-0.01, high=0.01, size=(n_hidden,)), dtype=theano.config.floatX), name='hidden_bias') if output_type=='complex': out_bias = theano.shared(np.zeros((2*n_output,), dtype=theano.config.floatX), name='out_bias') else: out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX), name='out_bias') Nchoose2=(n_hidden)*(n_hidden-1)/2; gphipsi = theano.shared(np.asarray(rng.uniform(low=-np.pi, high=np.pi, size=(Nchoose2, 1, 2)), dtype=theano.config.floatX), name='gphipsi') gchi = theano.shared(np.asarray(np.arccos(rng.uniform(low=0, high=1, size=(Nchoose2, 1, 1))), dtype=theano.config.floatX), name='gchi') #galp = theano.shared(np.asarray(rng.uniform(low=-np.pi, # high=np.pi, # size=(1, 1)), # dtype=theano.config.floatX), # name='galp') # build indices for Givens rotations: gidx=np.zeros((Nchoose2,1,2),dtype=np.int32) ig=0 for ig1 in range(0,n_hidden): for ig2 in range(ig1+1,n_hidden): gidx[ig,0,:]=np.reshape([ig1,ig2],(1,1,2)) ig=ig+1 bucket = np.sqrt(3. / 2 / n_hidden) h_0_size=(1,2*n_hidden) h_0 = theano.shared(np.asarray(rng.uniform(low=-bucket, high=bucket, size=h_0_size), dtype=theano.config.floatX), name='h_0') parameters = [V, U, hidden_bias, out_bias, h_0, gphipsi, gchi] x, y = initialize_data_nodes(loss_function, input_type, out_every_t) swap_re_im = np.concatenate((np.arange(n_hidden, 2*n_hidden), np.arange(n_hidden))) # define the recurrence used by theano.scan def recurrence(x_t, y_t, h_prev, cost_prev, acc_prev, V, hidden_bias, out_bias, U, gphipsi, gchi, gidx): # h_prev is nutt x 2*n_hidden # Compute hidden linear transform ##complex_RNN steps #step1 = times_diag(h_prev, n_hidden, theta[0,:], swap_re_im) #step2 = do_fft(step1, n_hidden) #step3 = times_reflection(step2, n_hidden, reflection[0,:]) #step4 = vec_permutation(step3, index_permute_long) #step5 = times_diag(step4, n_hidden, theta[1,:], swap_re_im) #step6 = do_ifft(step5, n_hidden) #step7 = times_reflection(step6, n_hidden, reflection[1,:]) #step8 = times_diag(step7, n_hidden, theta[2,:], swap_re_im) # #hidden_lin_output = step8 if flag_useGivensForLoop: # for loop method hidden_lin_output=h_prev ig=0; #absolute matrix index for ig1 in range(0,n_hidden): for ig2 in range(ig1+1,n_hidden): hidden_lin_output=T.set_subtensor(hidden_lin_output[:,[ig1,ig2,ig1+n_hidden,ig2+n_hidden]], times_givens(hidden_lin_output[:,[ig1,ig2,ig1+n_hidden,ig2+n_hidden]], 2, T.reshape(T.concatenate([gphipsi[ig,:],gchi[ig,:]],axis=1),[3]), np.asarray([1,2],dtype=np.int32))) else: # scan method for composing Givens rotations givens_steps=h_prev #output of this inner scan should be I x 2*n_hidden givens_outputs, updates = theano.scan(fn=lambda gphipsi, gchi, gidx, Gh_prev: times_givens(Gh_prev, n_hidden, T.reshape(T.concatenate([gphipsi,gchi],axis=1),[3]), T.reshape(gidx,[2])), sequences=[gphipsi,gchi,gidx], outputs_info=[givens_steps]) # output of composition of Givens rotations: hidden_lin_output=T.reshape(givens_outputs[-1,:,:],(givens_outputs.shape[1],givens_outputs.shape[2])) # Compute data linear transform if loss_function == 'CE': # inputs are categorical, so just use them as indices into V data_lin_output = V[T.cast(x_t, 'int32')] # elif input_type=='complex': # # second dimension of complex-valued x_t should be of size 2*n_input, with 0:(n_input-1) the real part and # # n_input:end the imag. part # data_lin_output = T.dot(x_t, V) else: # second dimension of real-valued x_t should be of size n_input, first dimension of V should be of size n_input # (or augmented, where the dimension of summation is 2*n_input and V is of real/imag. augmented form) data_lin_output = T.dot(x_t, V) # Total linear output lin_output = hidden_lin_output + data_lin_output # Apply non-linearity ---------------------------- # scale RELU nonlinearity modulus = T.sqrt(lin_output**2 + lin_output[:, swap_re_im]**2) rescale = T.maximum(modulus + T.tile(hidden_bias, [2]).dimshuffle('x', 0), 0.) / (modulus + 1e-5) h_t = lin_output * rescale if out_every_t: lin_output = T.dot(h_t, U) + out_bias.dimshuffle('x', 0) cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, cost_t, acc_t # compute hidden states # h_0_batch should be n_utt x 2*n_hidden, since scan goes over first dimension of x, which is the maximum STFT length in frames h_0_batch = T.tile(h_0, [x.shape[1], 1]) if input_type=='complex' and output_type=='complex': # pass in augmented input and output transformations non_sequences = [Vaug, hidden_bias, out_bias, Uaug, gphipsi, gchi, gidx] elif input_type=='complex': non_sequences = [Vaug, hidden_bias, out_bias, U, gphipsi, gchi, gidx] elif output_type=='complex': non_sequences = [V , hidden_bias, out_bias, Uaug, gphipsi, gchi, gidx] else: non_sequences = [V, hidden_bias, out_bias, U, gphipsi, gchi, gidx] if out_every_t: sequences = [x, y] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1])] outputs_info=[h_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] [hidden_states, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) if not out_every_t: lin_output = T.dot(hidden_states[-1,:,:], U) + out_bias.dimshuffle('x', 0) costs = compute_cost_t(lin_output, loss_function, y) else: cost = cost_steps.mean() accuracy = acc_steps.mean() if flag_return_lin_output: if output_type=='complex': lin_outputs = T.dot(hidden_states, Uaug) + out_bias.dimshuffle('x',0) elif output_type=='real': lin_outputs = T.dot(hidden_states, U) + out_bias.dimshuffle('x',0) costs = [cost, accuracy, lin_outputs] else: costs = [cost, accuracy] return [x, y], parameters, costs def cue_RNN(n_input, n_hidden, n_output, input_type='real', out_every_t=False, loss_function='CE', n_reflections=None, flag_telescope=True): # composes n_reflections Householder reflection matrices to make W, defaults to telescoping # Householder matrices, which is related to the subgroup algorithm. if n_reflections is None: # use n_hidden reflections by default (samples entire unitary group) n_reflections=n_hidden np.random.seed(1234) rng = np.random.RandomState(1234) # Initialize parameters: theta, V_re, V_im, hidden_bias, U, out_bias, h_0 V = initialize_matrix(n_input, 2*n_hidden, 'V', rng) U = initialize_matrix(2 * n_hidden, n_output, 'U', rng) hidden_bias = theano.shared(np.asarray(rng.uniform(low=-0.01, high=0.01, size=(n_hidden,)), dtype=theano.config.floatX), name='hidden_bias') reflection = initialize_matrix(n_reflections, 2*n_hidden, 'reflection', rng) out_bias = theano.shared(np.zeros((n_output,), dtype=theano.config.floatX), name='out_bias') bucket = np.sqrt(3. / 2 / n_hidden) h_0 = theano.shared(np.asarray(rng.uniform(low=-bucket, high=bucket, size=(1, 2 * n_hidden)), dtype=theano.config.floatX), name='h_0') parameters = [V, U, hidden_bias, reflection, out_bias, h_0] x, y = initialize_data_nodes(loss_function, input_type, out_every_t) swap_re_im = np.concatenate((np.arange(n_hidden, 2*n_hidden), np.arange(n_hidden))) # define the recurrence used by theano.scan def recurrence(x_t, y_t, h_prev, cost_prev, acc_prev, V, hidden_bias, out_bias, U): # Compute hidden linear transform # def apply_reflection(ireflection, rinput, n_hidden, reflection): # return times_reflection(rinput, n_hidden, reflection[ireflection,:]) # # outputs_info=[h_prev] # sequences=[np.arange(n_reflections)] # non_sequences=[n_hidden,reflection] # # hidden_lin_output = theano.scan(fn=apply_reflection, # outputs_info=outputs_info, # sequences=sequences, # non_sequences=non_sequences) # hidden_lin_output = hidden_lin_output[-1] step=h_prev #for ii in range(0,n_reflections): # step=times_reflection(step, n_hidden, reflection[ii,:]) for ii in range(n_hidden,n_hidden-n_reflections,-1): if flag_telescope: step=times_reflection_sub(step, n_hidden, ii, reflection[ii-1,:]) else: step=times_reflection(step, n_hidden, reflection[ii-1,:]) hidden_lin_output = step # Compute data linear transform if loss_function == 'CE': data_lin_output = V[T.cast(x_t, 'int32')] else: data_lin_output = T.dot(x_t, V) # Total linear output lin_output = hidden_lin_output + data_lin_output # Apply non-linearity ---------------------------- # scale RELU nonlinearity modulus = T.sqrt(lin_output**2 + lin_output[:, swap_re_im]**2) rescale = T.maximum(modulus + T.tile(hidden_bias, [2]).dimshuffle('x', 0), 0.) / (modulus + 1e-5) h_t = lin_output * rescale if out_every_t: lin_output = T.dot(h_t, U) + out_bias.dimshuffle('x', 0) cost_t, acc_t = compute_cost_t(lin_output, loss_function, y_t) else: cost_t = theano.shared(np.float32(0.0)) acc_t = theano.shared(np.float32(0.0)) return h_t, cost_t, acc_t # compute hidden states h_0_batch = T.tile(h_0, [x.shape[1], 1]) non_sequences = [V, hidden_bias, out_bias, U] if out_every_t: sequences = [x, y] else: sequences = [x, T.tile(theano.shared(np.zeros((1,1), dtype=theano.config.floatX)), [x.shape[0], 1, 1])] outputs_info=[h_0_batch, theano.shared(np.float32(0.0)), theano.shared(np.float32(0.0))] [hidden_states, cost_steps, acc_steps], updates = theano.scan(fn=recurrence, sequences=sequences, non_sequences=non_sequences, outputs_info=outputs_info) if not out_every_t: lin_output = T.dot(hidden_states[-1,:,:], U) + out_bias.dimshuffle('x', 0) costs = compute_cost_t(lin_output, loss_function, y) else: cost = cost_steps.mean() accuracy = acc_steps.mean() costs = [cost, accuracy] return [x, y], parameters, costs
462702
from numpy.random import random, normal figure(4) clf() axis([-10, 10, -10, 10]) # Define properties of the "bouncing balls" n = 10 pos = (20 * random(n*2) - 10).reshape(n, 2) vel = (0.3 * normal(size=n*2)).reshape(n, 2) sizes = normal(200, 100, size=n) # Colors where each row is (Red, Green, Blue, Alpha). Each can go # from 0 to 1. Alpha is the transparency. colors = random([n, 4]) # Draw all the circles and return an object ``circles`` that allows # manipulation of the plotted circles. circles=scatter(pos[:,0], pos[:,1], marker=(5,0,1), s=sizes, c=colors) for i in range(100): pos = pos + vel bounce = abs(pos) > 10 # Find balls that are outside walls vel[bounce] = -vel[bounce] # Bounce if outside the walls clf() axis([-10, 10, -10, 10]) scatter(pos[:,0], pos[:,1], marker=(5,0,i), s=sizes, c=colors) draw() # circles.set_offsets(pos) # Change the positions # draw()
462808
from rest_framework.pagination import PageNumberPagination class PageSizeNumberPagination(PageNumberPagination): page_size_query_param = 'page_size'
462862
import pytest from stake.watchlist import AddToWatchlistRequest, RemoveFromWatchlistRequest # flake8: noqa @pytest.mark.asyncio async def test_add_to_watchlist(tracing_client): added = await tracing_client.watchlist.add(AddToWatchlistRequest(symbol="SPOT")) assert added.watching @pytest.mark.asyncio async def test_remove_from_watchlist(tracing_client): removed = await tracing_client.watchlist.remove( RemoveFromWatchlistRequest(symbol="SPOT") ) assert not removed.watching @pytest.mark.asyncio async def test_list_watchlist(tracing_client): watched = await tracing_client.watchlist.list() assert len(watched) == 6
462868
E = EuclideanSpace(3) x, y, z = E.default_chart()[:] v = E.vector_field(-y, x, sin(x*y*z), name='v') sphinx_plot(v.plot(max_range=1.5, scale=0.5))
462891
import torch import torch.nn as nn from deepblast.ops import operators import numba import numpy as np use_numba = True @numba.njit def _soft_max_numba(X): M = X[0] for i in range(1, 3): M = X[i] if X[i] > M else M A = np.empty_like(X) S = 0.0 for i in range(3): A[i] = np.exp(X[i] - M) S += A[i] for i in range(3): A[i] /= S M += np.log(S) return M, A @numba.njit def _soft_max_hessian_product_numba(P, Z): prod = P * Z prod = np.empty_like(P) for i in range(3): prod[i] = P[i] * Z[i] res = np.empty_like(P) total = np.sum(prod) for i in range(3): res[i] = prod[i] - P[i] * total return res @numba.njit def _forward_pass_numba(theta, A): N, M = theta.shape V = np.zeros((N + 1, M + 1)) # N x M Q = np.zeros((N + 2, M + 2, 3)) # N x M x S Q[N + 1, M + 1] = 1 m, x, y = 1, 0, 2 maxargs = np.empty(3) for i in range(1, N + 1): for j in range(1, M + 1): maxargs[x] = A[i - 1, j - 1] + V[i - 1, j] # x maxargs[m] = V[i - 1, j - 1] # m maxargs[y] = A[i - j, 1 - 1] + V[i, j - 1] # y v, Q[i, j] = _soft_max_numba(maxargs) V[i, j] = theta[i - 1, j - 1] + v Vt = V[N, M] return Vt, Q def _forward_pass(theta, A, operator='softmax'): """ Forward pass to calculate DP alignment matrix Parameters ---------- theta : torch.Tensor Input potentials of dimension N x M. This represents the pairwise residue match scores. A : torch.Tensor Gap penality (scalar valued) operator : str The smoothed maximum operator. Returns ------- Vt : torch.Tensor Terminal alignment score (just 1 dimension) Q : torch.Tensor Derivatives of max theta + v of dimension N x M x S. """ if not use_numba or operator != 'softmax': operator = operators[operator] new = theta.new N, M = theta.size() V = new(N + 1, M + 1).zero_() # N x M Q = new(N + 2, M + 2, 3).zero_() # N x M x S Q[N + 1, M + 1] = 1 for i in range(1, N + 1): for j in range(1, M + 1): tmp = torch.Tensor([ A[i - 1, j - 1] + V[i - 1, j], V[i - 1, j - 1], A[i - 1, j - 1] + V[i, j - 1] ]) v, Q[i, j] = operator.max(tmp) V[i, j] = theta[i - 1, j - 1] + v Vt = V[N, M] else: Vt, Q = _forward_pass_numba( theta.detach().cpu().numpy(), A.detach().cpu().numpy()) Vt = torch.tensor(Vt, dtype=theta.dtype) Q = torch.from_numpy(Q) return Vt, Q @numba.njit def _backward_pass_numba(Et, Q): m, x, y = 1, 0, 2 n_1, m_1, _ = Q.shape N, M = n_1 - 2, m_1 - 2 E = np.zeros((N + 2, M + 2)) E[N + 1, M + 1] = Et Q[N + 1, M + 1] = 1 for ir in range(1, N + 1): i = N + 1 - ir for jr in range(1, M + 1): j = M + 1 - jr E[i, j] = Q[i + 1, j, x] * E[i + 1, j] + \ Q[i + 1, j + 1, m] * E[i + 1, j + 1] + \ Q[i, j + 1, y] * E[i, j + 1] return E def _backward_pass(Et, Q): """ Backward pass to calculate grad DP Parameters ---------- Et : torch.Tensor Terminal alignment edge (scalar valued). Q : torch.Tensor Derivatives of max (theta + v) of dimension N x M x S. Returns ------- E : torch.Tensor Traceback matrix of dimension N x M x S """ if not use_numba: m, x, y = 1, 0, 2 n_1, m_1, _ = Q.shape new = Q.new N, M = n_1 - 2, m_1 - 2 E = new(N + 2, M + 2).zero_() E[N + 1, M + 1] = 1 * Et Q[N + 1, M + 1] = 1 for i in reversed(range(1, N + 1)): for j in reversed(range(1, M + 1)): E[i, j] = Q[i + 1, j, x] * E[i + 1, j] + \ Q[i + 1, j + 1, m] * E[i + 1, j + 1] + \ Q[i, j + 1, y] * E[i, j + 1] else: import collections if isinstance(Et, collections.abc.Sequence): Et_float = float(Et[0]) else: Et_float = float(Et) E = torch.from_numpy(_backward_pass_numba( Et_float, Q.detach().cpu().numpy())) return E @numba.njit def _adjoint_forward_pass_numba(Q, Ztheta, ZA): N, M = Ztheta.shape N, M = N - 2, M - 2 Vd = np.zeros((N + 1, M + 1)) # N x M Qd = np.zeros((N + 2, M + 2, 3)) # N x M x S m, x, y = 1, 0, 2 maxargs = np.empty(3) for i in range(1, N + 1): for j in range(1, M + 1): # Note: the indexing of ZA doesn't match Ztheta # See forward_pass method. maxargs[x] = ZA[i - 1, j - 1] + Vd[i - 1, j] maxargs[m] = Vd[i - 1, j - 1] maxargs[y] = ZA[i - 1, j - 1] + Vd[i, j - 1] Vd[i, j] = Ztheta[i, j] + \ Q[i, j, x] * maxargs[0] + \ Q[i, j, m] * maxargs[1] + \ Q[i, j, y] * maxargs[2] Qd[i, j] = _soft_max_hessian_product_numba( Q[i, j], maxargs) return Vd[N, M], Qd def _adjoint_forward_pass(Q, Ztheta, ZA, operator='softmax'): """ Calculate directional derivatives and Hessians. Parameters ---------- Q : torch.Tensor Derivatives of max theta + v of dimension N x M x S Ztheta : torch.Tensor Derivative of theta of dimension N x M ZA : torch.Tensor Derivative of gap score. operator : str The smoothed maximum operator. Returns ------- Vd : torch.Tensor Derivatives of V of dimension N x M Qd : torch.Tensor Derivatives of Q of dimension N x M x S """ if not use_numba or operator != 'softmax': m, x, y = 1, 0, 2 operator = operators[operator] new = Ztheta.new N, M = Ztheta.size() N, M = N - 2, M - 2 Vd = new(N + 1, M + 1).zero_() # N x M Qd = new(N + 2, M + 2, 3).zero_() # N x M x S for i in range(1, N + 1): for j in range(1, M + 1): Vd[i, j] = Ztheta[i, j] + \ Q[i, j, x] * (ZA[i - 1, j - 1] + Vd[i - 1, j]) + \ Q[i, j, m] * Vd[i - 1, j - 1] + \ Q[i, j, y] * (ZA[i - 1, j - 1] + Vd[i, j - 1]) vd = torch.Tensor([(ZA[i - 1, j - 1] + Vd[i - 1, j]), Vd[i - 1, j - 1], (ZA[i - 1, j - 1] + Vd[i, j - 1])]) Qd[i, j] = operator.hessian_product(Q[i, j], vd) return Vd[N, M], Qd else: Vd, Qd = _adjoint_forward_pass_numba( Q.detach().cpu().numpy(), Ztheta.detach().cpu().numpy(), ZA.detach().cpu().numpy()) Vd = torch.tensor(Vd, dtype=Ztheta.dtype) Qd = torch.from_numpy(Qd) return Vd, Qd @numba.njit def _adjoint_backward_pass_numba(E, Q, Qd): m, x, y = 1, 0, 2 n_1, m_1, _ = Q.shape N, M = n_1 - 2, m_1 - 2 Ed = np.zeros((N + 2, M + 2)) for ir in range(1, N + 1): i = N + 1 - ir for jr in range(1, M + 1): j = M + 1 - jr Ed[i, j] = Qd[i + 1, j, x] * E[i + 1, j] + \ Q[i + 1, j, x] * Ed[i + 1, j] + \ Qd[i + 1, j + 1, m] * E[i + 1, j + 1] + \ Q[i + 1, j + 1, m] * Ed[i + 1, j + 1] + \ Qd[i, j + 1, y] * E[i, j + 1] + \ Q[i, j + 1, y] * Ed[i, j + 1] return Ed def _adjoint_backward_pass(E, Q, Qd): """ Calculate directional derivatives and Hessians. Parameters ---------- E : torch.Tensor Traceback matrix of dimension N x M Q : torch.Tensor Derivatives of max theta + v of dimension N x M x S Qd : torch.Tensor Derivatives of Q of dimension N x M Returns ------- Ed : torch.Tensor Derivative of traceback matrix of dimension N x M. Notes ----- Careful with Ztheta, it actually has dimensions (N + 2) x (M + 2). The border elements aren't useful, only need Ztheta[1:-1, 1:-1] """ if not use_numba: m, x, y = 1, 0, 2 n_1, m_1, _ = Q.shape new = Q.new N, M = n_1 - 2, m_1 - 2 Ed = new(N + 2, M + 2).zero_() for i in reversed(range(1, N + 1)): for j in reversed(range(1, M + 1)): Ed[i, j] = Qd[i + 1, j, x] * E[i + 1, j] + \ Q[i + 1, j, x] * Ed[i + 1, j] + \ Qd[i + 1, j + 1, m] * E[i + 1, j + 1] + \ Q[i + 1, j + 1, m] * Ed[i + 1, j + 1] + \ Qd[i, j + 1, y] * E[i, j + 1] + \ Q[i, j + 1, y] * Ed[i, j + 1] else: Ed = _adjoint_backward_pass_numba( E.detach().cpu().numpy(), Q.detach().cpu().numpy(), Qd.detach().cpu().numpy()) Ed = torch.tensor(Ed) return Ed class NeedlemanWunschFunction(torch.autograd.Function): @staticmethod def forward(ctx, theta, A, operator): # Return both the alignment matrix Vt, Q = _forward_pass(theta, A, operator) ctx.save_for_backward(theta, A, Q) ctx.others = operator return Vt @staticmethod def backward(ctx, Et): """ Parameters ---------- ctx : ? Some autograd context object Et : torch.Tensor Last alignment trace (scalar value) """ theta, A, Q = ctx.saved_tensors operator = ctx.others E, A = NeedlemanWunschFunctionBackward.apply( theta, A, Et, Q, operator) return E[1:-1, 1:-1], A, None, None, None class NeedlemanWunschFunctionBackward(torch.autograd.Function): @staticmethod def forward(ctx, theta, A, Et, Q, operator): E = _backward_pass(Et, Q) ctx.save_for_backward(E, Q) ctx.others = operator return E, A @staticmethod def backward(ctx, Ztheta, ZA): """ Parameters ---------- ctx : ? Some autograd context object Ztheta : torch.Tensor Derivative of theta of dimension N x M ZA : torch.Tensor Derivative of affine gap matrix """ E, Q = ctx.saved_tensors operator = ctx.others Vtd, Qd = _adjoint_forward_pass(Q, Ztheta, ZA, operator) Ed = _adjoint_backward_pass(E, Q, Qd) Ed = Ed[1:-1, 1:-1] return Ed, None, Vtd, None, None, None class NeedlemanWunschDecoder(nn.Module): def __init__(self, operator): super().__init__() self.operator = operator def forward(self, theta, A): theta = theta.cpu() A = A.cpu() return NeedlemanWunschFunction.apply( theta, A, self.operator) def traceback(self, grad): """ Computes traceback Parameters ---------- grad : torch.Tensor Gradients of the alignment matrix. Returns ------- states : list of tuple Indices representing matches. """ m, x, y = 1, 0, 2 N, M = grad.shape states = torch.zeros(max(N, M)) i, j = N - 1, M - 1 states = [(i, j, m)] max_ = -100000 while True: idx = torch.Tensor([[i - 1, j], [i - 1, j - 1], [i, j - 1]]).long() left = max_ if i <= 0 else grad[i - 1, j] diag = max_ if (i <= 0 and j <= 0) else grad[i - 1, j - 1] upper = max_ if j <= 0 else grad[i, j - 1] if diag == max_ and upper == max_ and left == max_: break ij = torch.argmax(torch.Tensor([left, diag, upper])) xmy = torch.Tensor([x, m, y]) i, j = int(idx[ij][0]), int(idx[ij][1]) s = int(xmy[ij]) states.append((i, j, s)) # take care of any outstanding gaps while i > 0: i = i - 1 s = x states.append((i, j, s)) while j > 0: j = j - 1 s = y states.append((i, j, s)) return states[::-1] def decode(self, theta, A): """ Shortcut for doing inference. """ # data, batch_sizes = theta theta = theta.cpu() A = A.cpu() with torch.enable_grad(): # data.requires_grad_() nll = self.forward(theta, A) v = torch.sum(nll) v_grad, _ = torch.autograd.grad( v, (theta, A), create_graph=True) return v_grad
462901
from unittest import TestCase from bot.duel_links_runtime import DuelLinkRunTimeOptions from bot.utils.data import read_json_file, write_data_file class TestDuelLinkRunTimeOptions(TestCase): def setUp(self): file = r'D:\Sync\OneDrive\Yu-gi-oh_bot\run_at_test.json' self.runtimeoptions = DuelLinkRunTimeOptions(file) def test_update(self): self.runtimeoptions.update() self.runtimeoptions.run_now = True self.runtimeoptions.dump() tmp_data = read_json_file(self.runtimeoptions._file) runtimedict = self.runtimeoptions.dump_options() self.assertTrue(tmp_data == runtimedict, "Expecting them to be the same") tmp_data['run_now'] = False write_data_file(tmp_data, self.runtimeoptions._file) self.runtimeoptions.update() runtimedict = self.runtimeoptions.dump_options() self.assertTrue(tmp_data == runtimedict, "Expecting them to be the same") def test_dump(self): self.runtimeoptions.dump() tmp_data = read_json_file(self.runtimeoptions._file) runtimedict = self.runtimeoptions.dump_options() self.assertTrue(tmp_data == runtimedict, "Expecting them to be the same") def test_runtimeerrors(self): self.runtimeoptions.update() self.runtimeoptions.stop = 'Yes' self.assertTrue(self.runtimeoptions.stop != 'Yes', 'Cannot change to type string') self.runtimeoptions.next_run_at = 'Try' self.assertTrue(self.runtimeoptions.next_run_at != 'Try', 'Cannot change from datetime to string')
462904
import re from functools import partial import markdown from veripress.helpers import to_list class Parser(object): """Base parser class.""" # this should be overridden in subclasses, # and should be a compiled regular expression _read_more_exp = None def __init__(self): if self._read_more_exp is not None and \ isinstance(self._read_more_exp, str): # compile the regular expression # make the regex require new lines above and below the sep flag self._read_more_exp = re.compile( r'\r?\n\s*?' + self._read_more_exp + r'\s*?\r?\n', re.IGNORECASE ) def parse_preview(self, raw_content): """ Parse the preview part of the content, and return the parsed string and whether there is more content or not. If the preview part is equal to the whole part, the second element of the returned tuple will be False, else True. :param raw_content: raw content :return: tuple(parsed string, whether there is more content or not) """ if self._read_more_exp is None: return self.parse_whole(raw_content), False sp = self._read_more_exp.split(raw_content, maxsplit=1) if len(sp) == 2 and sp[0]: has_more_content = True result = sp[0].rstrip() else: has_more_content = False result = raw_content # since the preview part contains no read_more_sep, # we can safely use the parse_whole method return self.parse_whole(result), has_more_content def parse_whole(self, raw_content): """ Parse the whole part of the content. Should be overridden in subclasses. """ raise NotImplementedError def remove_read_more_sep(self, raw_content): """ Removes the first read_more_sep that occurs in raw_content. Subclasses should call this method to preprocess raw_content. """ if self._read_more_exp is None: return raw_content sp = self._read_more_exp.split(raw_content, maxsplit=1) if len(sp) == 2 and sp[0]: result = '\n\n'.join((sp[0].rstrip(), sp[1].lstrip())) else: result = raw_content return result # key: extension name, value: standard format name _ext_format_mapping = {} # key: standard format name, value: parser instance _format_parser_mapping = {} def get_standard_format_name(ext_name): """ Get the standard format name of the given extension. :param ext_name: extension name :return: standard format name """ return _ext_format_mapping.get(ext_name.lower()) def get_parser(format_name): """ Get parser of the given format. :param format_name: standard format name :return: the parser instance """ return _format_parser_mapping.get(format_name.lower()) def parser(format_name, ext_names=None): """ Decorate a parser class to register it. :param format_name: standard format name :param ext_names: supported extension name """ def decorator(cls): format_name_lower = format_name.lower() if ext_names is None: _ext_format_mapping[format_name_lower] = format_name_lower else: for ext in to_list(ext_names): _ext_format_mapping[ext.lower()] = format_name_lower _format_parser_mapping[format_name_lower] = cls() return cls return decorator @parser('txt', ext_names=['txt']) class TxtParser(Parser): """Txt content parser.""" _read_more_exp = r'-{3,}[ \t]*more[ \t]*-{3,}' def parse_whole(self, raw_content): raw_content = self.remove_read_more_sep(raw_content) return '<pre class="txt">{}</pre>'.format(raw_content) @parser('markdown', ext_names=['md', 'mdown', 'markdown']) class MarkdownParser(Parser): """Markdown content parser.""" _read_more_exp = r'<!--\s*more\s*-->' _markdown = partial( markdown.markdown, output_format='html5', extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite' ], extension_configs={ 'markdown.extensions.codehilite': { 'guess_lang': False, 'css_class': 'highlight', 'use_pygments': True } }, ) def parse_whole(self, raw_content): raw_content = self.remove_read_more_sep(raw_content) return self._markdown(raw_content).strip()
462915
import logging import os from django import forms from django.utils.translation import ugettext_lazy as _ from mayan.apps.views.forms import DetailForm from ..models.document_models import Document from ..settings import setting_language from ..utils import get_language, get_language_choices __all__ = ('DocumentForm', 'DocumentPropertiesForm',) logger = logging.getLogger(name=__name__) class DocumentForm(forms.ModelForm): """ Base form for the minimal document properties. Meant to be subclassed. """ class Meta: fields = ('label', 'description', 'language') model = Document def __init__(self, *args, **kwargs): document_type = kwargs.pop('document_type', None) super().__init__(*args, **kwargs) # Is a document (documents app edit) and has been saved (sources # app upload)? if self.instance and self.instance.pk: document_type = self.instance.document_type else: self.initial.update({'language': setting_language.value}) filenames_queryset = document_type.filenames.filter(enabled=True) if filenames_queryset: self.fields[ 'document_type_available_filenames' ] = forms.ModelChoiceField( queryset=filenames_queryset, required=False, label=_('Quick document rename'), widget=forms.Select( attrs={ 'class': 'select2' } ) ) self.fields['preserve_extension'] = forms.BooleanField( label=_('Preserve extension'), required=False, help_text=_( 'Takes the file extension and moves it to the end of the ' 'filename allowing operating systems that rely on file ' 'extensions to open document correctly.' ) ) self.fields['language'].widget = forms.Select( choices=get_language_choices(), attrs={ 'class': 'select2' } ) def clean(self): self.cleaned_data['label'] = self.get_final_label( # Fallback to the instance label if there is no label key or # there is a label key and is an empty string filename=self.cleaned_data.get('label') or self.instance.label ) return self.cleaned_data def get_final_label(self, filename): if 'document_type_available_filenames' in self.cleaned_data: if self.cleaned_data['document_type_available_filenames']: if self.cleaned_data['preserve_extension']: filename, extension = os.path.splitext(filename) filename = '{}{}'.format( self.cleaned_data[ 'document_type_available_filenames' ].filename, extension ) else: filename = self.cleaned_data[ 'document_type_available_filenames' ].filename return filename class DocumentPropertiesForm(DetailForm): """ Detail class form to display a document file based properties """ def __init__(self, *args, **kwargs): document = kwargs['instance'] extra_fields = [ { 'label': _('Date created'), 'field': 'datetime_created', 'widget': forms.widgets.DateTimeInput }, {'label': _('UUID'), 'field': 'uuid'}, { 'label': _('Language'), 'func': lambda x: get_language( language_code=document.language ) }, ] kwargs['extra_fields'] = extra_fields super().__init__(*args, **kwargs) class Meta: fields = ('document_type', 'description') model = Document
462918
import os, glob, platform #find out if we're running on mac or linux and set the dynamic library extension dylib_ext = "" if platform.system().lower() == "darwin": dylib_ext = ".dylib" else: dylib_ext = ".so" print("Running on " + platform.system()) #make sure the release folder exists, and clean out any .o/.so file if there are any if not os.path.exists( "release" ): os.makedirs( "release" ) os.chdir( "release" ) o_files = glob.glob( "*.o" ) o_files.extend( glob.glob( "*" + dylib_ext ) ) for o_file in o_files: os.remove( o_file ) os.chdir( ".." ) #make sure the debug folder exists, and clean out any .o/.so files if there are any if not os.path.exists( "debug" ): os.makedirs( "debug" ) os.chdir( "debug" ) o_files = glob.glob( "*.o" ); o_files.extend( glob.glob( "*" + dylib_ext ) ) for o_file in o_files: os.remove( o_file ) os.chdir( ".." ) #find all the cpp files in /source. We'll compile all of them os.chdir( "source" ) cpp_files = glob.glob( "*.cpp" ); os.chdir( ".." ) #specify the search paths/dependencies/options for gcc include_paths = [ "../include" ] link_paths = [ "../lib" ] link_dependencies = [ "-lAnalyzer64" ] #refers to libAnalyzer.dylib or libAnalyzer.so debug_compile_flags = "-O0 -w -c -fpic -g" release_compile_flags = "-O3 -w -c -fpic" #loop through all the cpp files, build up the gcc command line, and attempt to compile each cpp file for cpp_file in cpp_files: #g++ command = "g++ " #include paths for path in include_paths: command += "-I\"" + path + "\" " release_command = command release_command += release_compile_flags release_command += " -o\"release/" + cpp_file.replace( ".cpp", ".o" ) + "\" " #the output file release_command += "\"" + "source/" + cpp_file + "\"" #the cpp file to compile debug_command = command debug_command += debug_compile_flags debug_command += " -o\"debug/" + cpp_file.replace( ".cpp", ".o" ) + "\" " #the output file debug_command += "\"" + "source/" + cpp_file + "\"" #the cpp file to compile #run the commands from the command line print(release_command) os.system( release_command ) print(debug_command) os.system( debug_command ) #lastly, link #g++ command = "g++ " #add the library search paths for link_path in link_paths: command += "-L\"" + link_path + "\" " #add libraries to link against for link_dependency in link_dependencies: command += link_dependency + " " #make a dynamic (shared) library (.so/.dylib) if dylib_ext == ".dylib": command += "-dynamiclib " else: command += "-shared " #figgure out what the name of this analyzer is analyzer_name = "" for cpp_file in cpp_files: if cpp_file.endswith( "Analyzer.cpp" ): analyzer_name = cpp_file.replace( "Analyzer.cpp", "" ) break #the files to create (.so/.dylib files) if dylib_ext == ".dylib": release_command = command + "-o release/lib" + analyzer_name + "Analyzer.dylib " debug_command = command + "-o debug/lib" + analyzer_name + "Analyzer.dylib " else: release_command = command + "-o\"release/lib" + analyzer_name + "Analyzer.so\" " debug_command = command + "-o\"debug/lib" + analyzer_name + "Analyzer.so\" " #add all the object files to link for cpp_file in cpp_files: release_command += "release/" + cpp_file.replace( ".cpp", ".o" ) + " " debug_command += "debug/" + cpp_file.replace( ".cpp", ".o" ) + " " #run the commands from the command line print(release_command) os.system( release_command ) print(debug_command) os.system( debug_command )
462931
import datetime import ipaddress from tests.common import constants class TrafficPorts(object): """ Generate a list of ports needed for the PFC Watchdog test""" def __init__(self, mg_facts, neighbors, vlan_nw): """ Args: mg_facts (dict): parsed minigraph info neighbors (list): 'device_conn' info from connection graph facts vlan_nw (string): ip in the vlan range specified in the DUT """ self.mg_facts = mg_facts self.bgp_info = self.mg_facts['minigraph_bgp'] self.port_idx_info = self.mg_facts['minigraph_port_indices'] self.pc_info = self.mg_facts['minigraph_portchannels'] self.vlan_info = self.mg_facts['minigraph_vlans'] self.neighbors = neighbors self.vlan_nw = vlan_nw self.test_ports = dict() self.pfc_wd_rx_port = None self.pfc_wd_rx_port_addr = None self.pfc_wd_rx_neighbor_addr = None self.pfc_wd_rx_port_id = None def build_port_list(self): """ Generate a list of ports to be used for the test For T0 topology, the port list is built parsing the portchannel and vlan info and for T1, port list is constructed from the interface info """ if self.mg_facts['minigraph_interfaces']: self.parse_intf_list() elif self.mg_facts['minigraph_portchannels']: self.parse_pc_list() elif 'minigraph_vlan_sub_interfaces' in self.mg_facts: self.parse_vlan_sub_interface_list() if self.mg_facts['minigraph_vlans']: self.test_ports.update(self.parse_vlan_list()) return self.test_ports def parse_intf_list(self): """ Built the port info from the ports in 'minigraph_interfaces' The constructed port info is a dict with a port as the key (transmit port) and value contains all the info associated with this port (its fanout neighbor, receive port, receive ptf id, transmit ptf id, neighbor addr etc). The first port in the list is assumed to be the Rx port. The rest of the ports will use this port as the Rx port while populating their dict info. The selected Rx port when used as a transmit port will use the next port in the list as its associated Rx port """ pfc_wd_test_port = None first_pair = False for intf in self.mg_facts['minigraph_interfaces']: if ipaddress.ip_address(unicode(intf['addr'])).version != 4: continue # first port if not self.pfc_wd_rx_port: self.pfc_wd_rx_port = intf['attachto'] self.pfc_wd_rx_port_addr = intf['addr'] self.pfc_wd_rx_port_id = self.port_idx_info[self.pfc_wd_rx_port] elif not pfc_wd_test_port: # second port first_pair = True # populate info for all ports except the first one if first_pair or pfc_wd_test_port: pfc_wd_test_port = intf['attachto'] pfc_wd_test_port_addr = intf['addr'] pfc_wd_test_port_id = self.port_idx_info[pfc_wd_test_port] pfc_wd_test_neighbor_addr = None for item in self.bgp_info: if ipaddress.ip_address(unicode(item['addr'])).version != 4: continue if not self.pfc_wd_rx_neighbor_addr and item['peer_addr'] == self.pfc_wd_rx_port_addr: self.pfc_wd_rx_neighbor_addr = item['addr'] if item['peer_addr'] == pfc_wd_test_port_addr: pfc_wd_test_neighbor_addr = item['addr'] self.test_ports[pfc_wd_test_port] = {'test_neighbor_addr': pfc_wd_test_neighbor_addr, 'rx_port': [self.pfc_wd_rx_port], 'rx_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'peer_device': self.neighbors[pfc_wd_test_port]['peerdevice'], 'test_port_id': pfc_wd_test_port_id, 'rx_port_id': [self.pfc_wd_rx_port_id], 'test_port_type': 'interface' } # populate info for the first port if first_pair: self.test_ports[self.pfc_wd_rx_port] = {'test_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'rx_port': [pfc_wd_test_port], 'rx_neighbor_addr': pfc_wd_test_neighbor_addr, 'peer_device': self.neighbors[self.pfc_wd_rx_port]['peerdevice'], 'test_port_id': self.pfc_wd_rx_port_id, 'rx_port_id': [pfc_wd_test_port_id], 'test_port_type': 'interface' } first_pair = False def parse_pc_list(self): """ Built the port info from the ports in portchannel The constructed port info is a dict with a port as the key (transmit port) and value contains all the info associated with this port (its fanout neighbor, receive ports, receive ptf ids, transmit ptf ids, neighbor portchannel addr, its own portchannel addr etc). The first port in the list is assumed to be the Rx port. The rest of the ports will use this port as the Rx port while populating their dict info. The selected Rx port when used as a transmit port will use the next port in the list as its associated Rx port """ pfc_wd_test_port = None first_pair = False for item in self.mg_facts['minigraph_portchannel_interfaces']: if ipaddress.ip_address(unicode(item['addr'])).version != 4: continue pc = item['attachto'] # first port if not self.pfc_wd_rx_port: self.pfc_wd_rx_portchannel = pc self.pfc_wd_rx_port = self.pc_info[pc]['members'] self.pfc_wd_rx_port_addr = item['addr'] self.pfc_wd_rx_port_id = [self.port_idx_info[port] for port in self.pfc_wd_rx_port] elif not pfc_wd_test_port: # second port first_pair = True # populate info for all ports except the first one if first_pair or pfc_wd_test_port: pfc_wd_test_portchannel = pc pfc_wd_test_port = self.pc_info[pc]['members'] pfc_wd_test_port_addr = item['addr'] pfc_wd_test_port_id = [self.port_idx_info[port] for port in pfc_wd_test_port] pfc_wd_test_neighbor_addr = None for bgp_item in self.bgp_info: if ipaddress.ip_address(unicode(bgp_item['addr'])).version != 4: continue if not self.pfc_wd_rx_neighbor_addr and bgp_item['peer_addr'] == self.pfc_wd_rx_port_addr: self.pfc_wd_rx_neighbor_addr = bgp_item['addr'] if bgp_item['peer_addr'] == pfc_wd_test_port_addr: pfc_wd_test_neighbor_addr = bgp_item['addr'] for port in pfc_wd_test_port: self.test_ports[port] = {'test_neighbor_addr': pfc_wd_test_neighbor_addr, 'rx_port': self.pfc_wd_rx_port, 'rx_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'peer_device': self.neighbors[port]['peerdevice'], 'test_port_id': self.port_idx_info[port], 'rx_port_id': self.pfc_wd_rx_port_id, 'test_portchannel_members': pfc_wd_test_port_id, 'test_port_type': 'portchannel' } # populate info for the first port if first_pair: for port in self.pfc_wd_rx_port: self.test_ports[port] = {'test_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'rx_port': pfc_wd_test_port, 'rx_neighbor_addr': pfc_wd_test_neighbor_addr, 'peer_device': self.neighbors[port]['peerdevice'], 'test_port_id': self.port_idx_info[port], 'rx_port_id': pfc_wd_test_port_id, 'test_portchannel_members': self.pfc_wd_rx_port_id, 'test_port_type': 'portchannel' } first_pair = False def parse_vlan_list(self): """ Add vlan specific port info to the already populated port info dict. Each vlan interface will be the key and value contains all the info associated with this port (receive fanout neighbor, receive port receive ptf id, transmit ptf id, neighbor addr etc). Args: None Returns: temp_ports (dict): port info constructed from the vlan interfaces """ temp_ports = dict() vlan_details = self.vlan_info.values()[0] vlan_members = vlan_details['members'] vlan_type = vlan_details.get('type') vlan_id = vlan_details['vlanid'] rx_port = self.pfc_wd_rx_port if isinstance(self.pfc_wd_rx_port, list) else [self.pfc_wd_rx_port] rx_port_id = self.pfc_wd_rx_port_id if isinstance(self.pfc_wd_rx_port_id, list) else [self.pfc_wd_rx_port_id] for item in vlan_members: temp_ports[item] = {'test_neighbor_addr': self.vlan_nw, 'rx_port': rx_port, 'rx_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'peer_device': self.neighbors[item]['peerdevice'], 'test_port_id': self.port_idx_info[item], 'rx_port_id': rx_port_id, 'test_port_type': 'vlan' } if hasattr(self, 'pfc_wd_rx_port_vlan_id'): temp_ports[item]['rx_port_vlan_id'] = self.pfc_wd_rx_port_vlan_id if vlan_type is not None and vlan_type == 'Tagged': temp_ports[item]['test_port_vlan_id'] = vlan_id return temp_ports def parse_vlan_sub_interface_list(self): """Build the port info from the vlan sub-interfaces.""" pfc_wd_test_port = None first_pair = False for sub_intf in self.mg_facts['minigraph_vlan_sub_interfaces']: if ipaddress.ip_address(unicode(sub_intf['addr'])).version != 4: continue intf_name, vlan_id = sub_intf['attachto'].split(constants.VLAN_SUB_INTERFACE_SEPARATOR) # first port if not self.pfc_wd_rx_port: self.pfc_wd_rx_port = intf_name self.pfc_wd_rx_port_addr = sub_intf['addr'] self.pfc_wd_rx_port_id = self.port_idx_info[self.pfc_wd_rx_port] self.pfc_wd_rx_port_vlan_id = vlan_id elif not pfc_wd_test_port: # second port first_pair = True # populate info for all ports except the first one if first_pair or pfc_wd_test_port: pfc_wd_test_port = intf_name pfc_wd_test_port_addr = sub_intf['addr'] pfc_wd_test_port_id = self.port_idx_info[pfc_wd_test_port] pfc_wd_test_neighbor_addr = None for item in self.bgp_info: if ipaddress.ip_address(unicode(item['addr'])).version != 4: continue if not self.pfc_wd_rx_neighbor_addr and item['peer_addr'] == self.pfc_wd_rx_port_addr: self.pfc_wd_rx_neighbor_addr = item['addr'] if item['peer_addr'] == pfc_wd_test_port_addr: pfc_wd_test_neighbor_addr = item['addr'] self.test_ports[pfc_wd_test_port] = {'test_neighbor_addr': pfc_wd_test_neighbor_addr, 'rx_port': [self.pfc_wd_rx_port], 'rx_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'peer_device': self.neighbors[pfc_wd_test_port]['peerdevice'], 'test_port_id': pfc_wd_test_port_id, 'rx_port_id': [self.pfc_wd_rx_port_id], 'rx_port_vlan_id': self.pfc_wd_rx_port_vlan_id, 'test_port_vlan_id': vlan_id, 'test_port_type': 'interface' } # populate info for the first port if first_pair: self.test_ports[self.pfc_wd_rx_port] = {'test_neighbor_addr': self.pfc_wd_rx_neighbor_addr, 'rx_port': [pfc_wd_test_port], 'rx_neighbor_addr': pfc_wd_test_neighbor_addr, 'peer_device': self.neighbors[self.pfc_wd_rx_port]['peerdevice'], 'test_port_id': self.pfc_wd_rx_port_id, 'rx_port_id': [pfc_wd_test_port_id], 'rx_port_vlan_id': vlan_id, 'test_port_vlan_id': self.pfc_wd_rx_port_vlan_id, 'test_port_type': 'interface' } first_pair = False def set_pfc_timers(): """ Set PFC timers Args: None Returns: pfc_timers (dict) """ pfc_timers = {'pfc_wd_detect_time': 400, 'pfc_wd_restore_time': 400, 'pfc_wd_restore_time_large': 3000, 'pfc_wd_poll_time': 400 } return pfc_timers def select_test_ports(test_ports): """ Select a subset of ports from the generated port info Args: test_ports (dict): Constructed port info Returns: selected_ports (dict): random port info or set of ports matching seed """ selected_ports = dict() rx_ports = set() seed = int(datetime.datetime.today().day) for port, port_info in test_ports.items(): rx_port = port_info["rx_port"] if isinstance(rx_port, (list, tuple)): rx_ports.update(rx_port) else: rx_ports.add(rx_port) if (int(port_info['test_port_id']) % 15) == (seed % 15): selected_ports[port] = port_info # filter out selected ports that also act as rx ports selected_ports = {p: pi for p, pi in selected_ports.items() if p not in rx_port} if not selected_ports: random_port = test_ports.keys()[0] selected_ports[random_port] = test_ports[random_port] return selected_ports def start_wd_on_ports(duthost, port, restore_time, detect_time, action="drop"): """ Starts PFCwd on ports Args: port (string): single port or space separated list of ports restore_time (int): PFC storm restoration time detect_time (int): PFC storm detection time action (string): PFCwd action. values include 'drop', 'forward' """ duthost.command("pfcwd start --action {} --restoration-time {} {} {}" .format(action, restore_time, port, detect_time))
462972
class BaseData(object): def __init__(self, unit): self.unit = unit def change_units(self, new_units): self.unit = new_units
463005
import logging from collections import deque from teether.cfg.bb import BB from teether.cfg.instruction import Instruction from teether.cfg.opcodes import opcodes class ArgumentTooShort(Exception): pass def disass(code, i=0): assert isinstance(code, bytes) while i < len(code): loc = i op = code[i] arg = None inslen = 1 if not op in opcodes: break # raise IllegalInstruction('%02x at %d'%(op, i)) if 0x60 <= op <= 0x7f: arglen = op - 0x5f inslen += arglen arg = code[i + 1:i + 1 + arglen] if len(arg) < arglen: raise ArgumentTooShort i += arglen i += 1 yield Instruction(loc, op, arg) # End basic block on STOP, JUMP, JUMPI, RETURN, REVERT, RAISE, or if the following instruction is a JUMPDEST if op in (0x00, 0x56, 0x57, 0xf3, 0xfd, 0xfe, 0xff) or (i < len(code) and code[i] == 0x5b): break def generate_BBs(code): fallthrough_locs = [i + 1 for i, c in enumerate(code) if c == 0x57] jumpdest_locs = [i for i, c in enumerate(code) if c == 0x5b] leader_candidates = {0} | set(fallthrough_locs) | set(jumpdest_locs) for l in sorted(leader_candidates): try: instructions = list(disass(code, l)) if instructions: yield BB(instructions) except: continue
463026
from enum import Enum from typing import Any, Dict, Optional from eth2._utils.bls import bls from eth2._utils.bls.backends import MilagroBackend from eth2.beacon.tools.fixtures.test_part import TestPart from eth2.configs import Eth2Config from .test_handler import Input, Output, TestHandler class BLSSetting(Enum): OPTIONAL = 0 ENABLED = 1 DISABLED = 2 def _select_bls_backend(bls_setting: BLSSetting) -> None: if bls_setting == BLSSetting.DISABLED: bls.use_noop_backend() elif bls_setting == BLSSetting.ENABLED: bls.use(MilagroBackend) elif bls_setting == BLSSetting.OPTIONAL: # do not verify BLS to save time bls.use_noop_backend() # META_KEY is the prefix of the filename of the YAML file storing metadata about a test case. # e.g. in the context of a test case file tree, there is a file `meta.yaml`. META_KEY = "meta" BLS_SETTING_KEY = "bls_setting" class TestCase: name: str handler: TestHandler[Any, Any] test_case_parts: Dict[str, TestPart] config: Optional[Eth2Config] def __init__( self, name: str, handler: TestHandler[Input, Output], test_case_parts: Dict[str, TestPart], config: Optional[Eth2Config], ) -> None: self.name = name self.handler = handler self.test_case_parts = test_case_parts self.config = config self.metadata = self._load_metadata() self._process_meta(self.metadata) def _load_metadata(self) -> Dict[str, Any]: if META_KEY not in self.test_case_parts: return {} metadata_test_part = self.test_case_parts[META_KEY] return metadata_test_part.load() def _process_meta(self, metadata: Dict[str, Any]) -> None: self.bls_setting = BLSSetting(metadata.get(BLS_SETTING_KEY, 0)) def valid(self) -> bool: return self.handler.valid(self.test_case_parts) def execute(self) -> None: _select_bls_backend(self.bls_setting) inputs = self.handler.parse_inputs(self.test_case_parts, self.metadata) outputs = self.handler.run_with(inputs, self.config) # NOTE: parse outputs after running the handler as we may trigger # an exception due to an invalid test case that should raise before # invalid decoding of empty output we expect to be missing. expected_outputs = self.handler.parse_outputs(self.test_case_parts) self.handler.condition(outputs, expected_outputs)
463048
import numpy as np import numpy.testing as npt from stumpy import scrump, stump, config from stumpy.scrump import prescrump import pytest import naive test_data = [ ( np.array([9, 8100, -60, 7], dtype=np.float64), np.array([584, -11, 23, 79, 1001, 0, -19], dtype=np.float64), ), ( np.random.uniform(-1000, 1000, [8]).astype(np.float64), np.random.uniform(-1000, 1000, [64]).astype(np.float64), ), ] window_size = [8, 16, 32] substitution_locations = [(slice(0, 0), 0, -1, slice(1, 3), [0, 3])] substitution_values = [np.nan, np.inf] percentages = [(0.01, 0.1, 1.0)] @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_self_join(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_B, s=s, exclusion_zone=zone) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_A_B_join(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_A, m, T_B, s=s) np.random.seed(seed) comp_P, comp_I = prescrump(T_A, m, T_B=T_B, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_prescrump_A_B_join_swap(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_A, s=s) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, T_B=T_A, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_prescrump_self_join_larger_window(T_A, T_B, m): if len(T_B) > m: zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_B, s=s, exclusion_zone=zone) np.random.seed(seed) comp_P, comp_I = prescrump(T_B, m, s=s) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) def test_scrump_int_input(): with pytest.raises(TypeError): scrump(np.arange(10), 5, ignore_trivial=True, percentage=1.0, pre_scrump=False) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_self_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_A_B_join(T_A, T_B, percentages): m = 3 for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_A, m, T_B, percentage, None, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_A, m, T_B, ignore_trivial=False, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_A_B_join_swap(T_A, T_B, percentages): m = 3 for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_A, percentage, None, False, None) ref_P = ref_mp[:, 0] # ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, T_A, ignore_trivial=False, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ # comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) @pytest.mark.parametrize("percentages", percentages) def test_scrump_self_join_larger_window(T_A, T_B, m, percentages): if len(T_B) > m: zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_self_join_full(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_B, m, exclusion_zone=zone) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump(T_B, m, ignore_trivial=True, percentage=1.0, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) ref_mp = stump(T_B, m, ignore_trivial=True) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_A_B_join_full(T_A, T_B): m = 3 ref_mp = naive.stamp(T_A, m, T_B=T_B) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump(T_A, m, T_B, ignore_trivial=False, percentage=1.0, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) ref_mp = stump(T_A, m, T_B=T_B, ignore_trivial=False) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_A_B_join_full_swap(T_A, T_B): m = 3 ref_mp = naive.stamp(T_B, m, T_B=T_A) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump(T_B, m, T_A, ignore_trivial=False, percentage=1.0, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_scrump_self_join_full_larger_window(T_A, T_B, m): if len(T_B) > m: zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_B, m, exclusion_zone=zone) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump(T_B, m, ignore_trivial=True, percentage=1.0, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_plus_plus_self_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_B, m, T_B, s=s, exclusion_zone=zone) ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, True, s) for i in range(ref_mp.shape[0]): if ref_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = ref_P[i] ref_mp[i, 1] = ref_I[i] ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] # ref_left_I = ref_mp[:, 2] # ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T_B, m, ignore_trivial=True, percentage=percentage, pre_scrump=True, s=s ) approx.update() comp_P = approx.P_ comp_I = approx.I_ # comp_left_I = approx.left_I_ # comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_I) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) # npt.assert_almost_equal(ref_left_I, comp_left_I) # npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("percentages", percentages) def test_scrump_plus_plus_A_B_join(T_A, T_B, percentages): m = 3 zone = int(np.ceil(m / 4)) for s in range(1, zone + 1): for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_P, ref_I = naive.prescrump(T_A, m, T_B, s=s) ref_mp = naive.scrump(T_A, m, T_B, percentage, None, False, None) for i in range(ref_mp.shape[0]): if ref_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = ref_P[i] ref_mp[i, 1] = ref_I[i] ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump( T_A, m, T_B, ignore_trivial=False, percentage=percentage, pre_scrump=True, s=s, ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_plus_plus_self_join_full(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_B, m, exclusion_zone=zone) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump( T_B, m, ignore_trivial=True, percentage=1.0, pre_scrump=True, s=zone ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_plus_plus_A_B_join_full(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_A, m, T_B=T_B) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump( T_A, m, T_B=T_B, ignore_trivial=False, percentage=1.0, pre_scrump=True, s=zone ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) def test_scrump_plus_plus_A_B_join_full_swap(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.stamp(T_B, m, T_B=T_A) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] approx = scrump( T_B, m, T_B=T_A, ignore_trivial=False, percentage=1.0, pre_scrump=True, s=zone ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("percentages", percentages) def test_scrump_constant_subsequence_self_join(percentages): T = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64))) m = 3 zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T, m, T, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("percentages", percentages) def test_scrump_identical_subsequence_self_join(percentages): identical = np.random.rand(8) T = np.random.rand(20) T[1 : 1 + identical.shape[0]] = identical T[11 : 11 + identical.shape[0]] = identical m = 3 zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T, m, T, percentage, zone, False, None) ref_P = ref_mp[:, 0] # ref_I = ref_mp[:, 1] # ref_left_I = ref_mp[:, 2] # ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump( T, m, ignore_trivial=True, percentage=percentage, pre_scrump=False ) approx.update() comp_P = approx.P_ # comp_I = approx.I_ # comp_left_I = approx.left_I_ # comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P, decimal=config.STUMPY_TEST_PRECISION) # npt.assert_almost_equal(ref_I, comp_I) # npt.assert_almost_equal(ref_left_I, comp_left_I) # npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("substitute", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) @pytest.mark.parametrize("percentages", percentages) def test_scrump_nan_inf_self_join( T_A, T_B, substitute, substitution_locations, percentages ): m = 3 T_B_sub = T_B.copy() for substitution_location in substitution_locations: T_B_sub[:] = T_B[:] T_B_sub[substitution_location] = substitute zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T_B_sub, m, T_B_sub, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump(T_B_sub, m, percentage=percentage, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I) @pytest.mark.parametrize("percentages", percentages) def test_scrump_nan_zero_mean_self_join(percentages): T = np.array([-1, 0, 1, np.inf, 1, 0, -1]) m = 3 zone = int(np.ceil(m / 4)) for percentage in percentages: seed = np.random.randint(100000) np.random.seed(seed) ref_mp = naive.scrump(T, m, T, percentage, zone, False, None) ref_P = ref_mp[:, 0] ref_I = ref_mp[:, 1] ref_left_I = ref_mp[:, 2] ref_right_I = ref_mp[:, 3] np.random.seed(seed) approx = scrump(T, m, percentage=percentage, pre_scrump=False) approx.update() comp_P = approx.P_ comp_I = approx.I_ comp_left_I = approx.left_I_ comp_right_I = approx.right_I_ naive.replace_inf(ref_P) naive.replace_inf(comp_P) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I) npt.assert_almost_equal(ref_left_I, comp_left_I) npt.assert_almost_equal(ref_right_I, comp_right_I)
463071
from NIENV import * # GENERAL # self.input(index) <- access to input data # self.outputs[index].set_val(val) <- set output data port value # self.main_widget <- access to main widget # self.exec_output(index) <- executes an execution output # EDITING # self.create_new_input(type_, label, widget_name=None, widget_pos='under', pos=-1) # self.delete_input(input or index) # self.create_new_output(type_, label, pos=-1) # self.delete_output(output or index) # LOGGING # mylog = self.new_log('Example Log') # mylog.log('I\'m alive!!') # self.log_message('hello global!', 'global') # self.log_message('that\'s not good', 'error') class %CLASS%(NodeInstance): def __init__(self, params): super(%CLASS%, self).__init__(params) self.special_actions['add target option'] = {'method': M(self.action_add_target_option)} self.log = self.new_log('Log Node Log') self.default_target = 'personal' self.showing_target_option = False self.target = self.default_target def action_add_target_option(self): del self.special_actions['add target option'] self.add_target_option() def add_target_option(self): self.special_actions['remove target option'] = {'method': M(self.action_remove_target_option)} self.create_new_input('data', 'target', widget_name='LogTargetComboBox', widget_pos='besides') self.showing_target_option = True def action_remove_target_option(self): del self.special_actions['remove target option'] self.remove_target_option() def remove_target_option(self): self.special_actions['add target option'] = {'method': M(self.action_add_target_option)} self.delete_input(-1) self.target = self.default_target self.showing_target_option = False def update_event(self, input_called=-1): if input_called == 0: if self.target == 'personal': self.log.log(self.input(1)) else: self.log_message(self.input(1), target=self.target) self.exec_output(0) def get_data(self): data = {'target': self.target, 'showing target': self.showing_target_option} return data def set_data(self, data): self.target = data['target'] self.showing_target_option = data['showing target'] def remove_event(self): pass
463081
import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.font_manager matplotlib.font_manager._rebuild() import matplotlib.pyplot as plt import copy import pickle import pdb from matplotlib import rc # rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) rc('text', usetex=True) filehandler = open('lmpc_object.pkl', 'rb') lmpc = pickle.load(filehandler) # ========================================================= # Plot closed-loop trajectories at iteration j # ========================================================= it = 19 plt.figure() xcl = np.array(lmpc.SS[0]).T plt.plot(xcl[0,:], xcl[1,:], 'sr', label='sampled Safe Set') for i in range(1,it-1): xcl = np.array(lmpc.SS[i]).T plt.plot(xcl[0,:], xcl[1,:], 'sr') i = it-1 xcl = np.array(lmpc.SS[i]).T plt.plot(xcl[0,:], xcl[1,:], '-ob', label='LMPC closed-loop') plt.plot(lmpc.xOpt[0,:], lmpc.xOpt[1,:], '--*k', label='Optimal trajectory') plt.legend(fontsize=16) plt.xlabel('$x_1$', fontsize=20) plt.ylabel('$x_2$', fontsize=20) plt.xlim([-16,1]) plt.ylim([-0.5,7]) plt.show() # ========================================================= # Plot closed-loop trajectories # ========================================================= it = lmpc.it plt.figure() xcl = np.array(lmpc.SS[0]).T plt.plot(xcl[0,:], xcl[1,:], '-dg', label='Initial feasible trajectory') for i in range(1,it-1): xcl = np.array(lmpc.SS[i]).T plt.plot(xcl[0,:], xcl[1,:], 'sr') plt.plot(0, 0, 'sr', label='Stored data') i = it-1 xcl = np.array(lmpc.SS[i]).T plt.plot(xcl[0,:], xcl[1,:], '-ob', label='LMPC closed-loop') plt.plot(lmpc.xOpt[0,:], lmpc.xOpt[1,:], '--*k', label='Optimal trajectory') plt.legend(fontsize=16) plt.xlabel('$x_1$', fontsize=20) plt.ylabel('$x_2$', fontsize=20) # ========================================================= # Plot iteration cost # ========================================================= plt.figure() totCost = [] for i in range(0,it): xcl = np.array(lmpc.SS[i]).T totCost.append(lmpc.Qfun[i][0]) plt.plot(totCost, '-ob', label='Iteration Cost') plt.plot([0, it-1], [lmpc.optCost, lmpc.optCost], '--k', label='Optimal cost') plt.xlabel('$\mathrm{Iteration}$', fontsize=20) plt.legend(fontsize=16) # ========================================================= # Plot iteration cost just LMPC # ========================================================= plt.figure() totCost = [] for i in range(1,it): xcl = np.array(lmpc.SS[i]).T totCost.append(lmpc.Qfun[i][0]) plt.plot(range(1, it, 1),totCost, '-ob', label='Iteration Cost') plt.plot([0, it-1], [lmpc.optCost, lmpc.optCost], '--k', label='Optimal cost') plt.xlabel('$\mathrm{Iteration}$', fontsize=20) plt.legend(fontsize=16) print("Percentage deviation: ", np.abs((lmpc.optCost-totCost[-1])/lmpc.optCost)*100) plt.show()
463094
import numpy as np import cv2 def blend_map(img, map, factor, colormap=cv2.COLORMAP_JET): """ Function to blend an image and a probability map. :param img: The image :param map: The map :param factor: factor * img + (1-factor) * map :param colormap: a cv2 colormap. :return: The blended image. """ assert 0 < factor < 1, 'factor must satisfy 0 < factor < 1' map = np.float32(map) map /= map.max() map *= 255 map = map.astype(np.uint8) blend = cv2.addWeighted(src1=img, alpha=factor, src2=cv2.applyColorMap(map, colormap), beta=(1-factor), gamma=0) return blend palette = np.array([[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]], dtype=np.uint8) def seg_to_rgb(segm): prediction = np.argmax(segm, axis=0) h, w = prediction.shape rgb = np.reshape(palette[prediction.ravel()], newshape=(h, w, 3)) return rgb
463107
import cloudsight def call_vision_api(image_filename, api_keys): api_key = api_keys['cloudsight']['api_key'] api_secret = api_keys['cloudsight']['api_secret'] # Via example found here: # https://github.com/cloudsight/cloudsight-python auth = cloudsight.SimpleAuth(api_key) api = cloudsight.API(auth) with open(image_filename, 'rb') as image_file: response = api.image_request(image_file, image_filename) response = api.wait(response['token'], timeout=60) return response def get_standardized_result(api_result): output = { 'captions' : [], } if api_result['status'] == 'completed': output['captions'].append((api_result["name"], None)) elif api_result['status'] == 'skipped': output['captions'].append(("error_skipped_because_" + api_result["reason"], None)) else: output['captions'].append(("error_" + api_result["status"], None)) return output
463110
from pythonwarrior.abilities.base import AbilityBase class DirectionOfStairs(AbilityBase): def description(self): return ("Returns the direction ('left', 'right', 'forward'," "'backward') the stairs are from your location") def perform(self): return self._unit.position.relative_direction_of_stairs()
463129
import logging from .mem import Ram, Registers, Uniques from .arch import instantiate_architecture logger = logging.getLogger(__name__) class State(object): def __init__(self, api_base): self.api_base = api_base self.arch = instantiate_architecture(self.api_base) if self.arch is None: raise RuntimeError("No supported architectures found") self.registers = Registers(self.api_base, self.arch) self.ram = Ram(self.api_base, self.arch) self.uniques = None def execute_cur_location(self): return self._step_cur_loc(True) def inspect_cur_location(self): return self._step_cur_loc(False) def _step_cur_loc(self, do_execute): self.uniques = Uniques(self.api_base, self.arch) # Get the instructions and instruction size instrs, instr_size = self.ram.get_code(self.get_pc()) # Step the prog counter before any branches might update it self.step_pc() # Execute each instruction run_type = "Executing" if do_execute else "Instruction" log_type = logger.debug if do_execute else logger.info for instr in instrs: log_type("{} {}".format(run_type, instr)) if do_execute: instr.execute(self) logger.debug(self) return self.get_pc() def __str__(self): return "Registers {}\nRam {}\nUniques {}".format(self.registers, self.ram, self.uniques) def get_pc(self): return self.registers.load(self.arch.pc_offset, self.arch.reg_len) def set_pc(self, location): self.registers.store(self.arch.pc_offset, self.arch.reg_len, location) def step_pc(self): cur_loc = self.get_pc() _, instr_size = self.ram.get_code(cur_loc) self.set_pc(cur_loc + instr_size) def set_varnode(self, varnode, value): if varnode.isRegister(): self.registers.store(varnode.offset, varnode.size, value) elif varnode.isUnique(): self.uniques.store(varnode.offset, varnode.size, value) elif varnode.isAddress(): self.ram.store(varnode.offset, varnode.size, value) elif varnode.getAddress().isStackAddress(): addr = self.arch.resolve_stack_address(self, varnode.offset) self.ram.store(addr, varnode.size, value) else: raise RuntimeError("Invalid varnode for setting: {}" "".format(varnode)) def read_varnode(self, varnode): if varnode.isRegister(): return self.registers.load(varnode.offset, varnode.size) elif varnode.isUnique(): return self.uniques.load(varnode.offset, varnode.size) elif varnode.isAddress(): return self.ram.load(varnode.offset, varnode.size) elif varnode.isConstant(): return varnode.offset elif varnode.getAddress().isStackAddress(): addr = self.arch.resolve_stack_address(self, varnode.offset) return self.ram.load(addr, varnode.size) else: raise RuntimeError("Unknown varnode type: {}".format(varnode)) def setup_stack(self): self.arch.setup_stack(self) def fake_function_call(self, func_addr): self.arch.fake_function_call(self, func_addr)
463161
from office365.runtime.client_path import ClientPath from office365.runtime.odata.odata_path_builder import ODataPathBuilder class ServiceOperationPath(ClientPath): """ Resource path to address Service Operations which represents simple functions exposed by an OData service""" def __init__(self, name, parameters=None, parent=None): """ :type parameters: list or dict or office365.runtime.client_value.ClientValue or None :type name: str :type parent: office365.runtime.client_path.ClientPath """ super(ServiceOperationPath, self).__init__(parent) self._name = name self._parameters = parameters @property def segments(self): return [self.delimiter, ODataPathBuilder.from_operation(self._name, self._parameters)]
463184
width = int(input()) while width % 2 == 0: text = input() totalDots = chr(46) * (width - len(text)) halfDots = int(width / 2) halfLen = len(text) / 2 firstDots = chr(46) * (halfDots - int(halfLen)) secondDots = chr(46) * (halfDots - int(halfLen)) if text == "END": break elif len(text) % 2 != 0: secondDots = chr(46) * (halfDots - int(halfLen) - 1) print(firstDots+text+secondDots) elif len(text) % 2 == 0: print(firstDots+text+secondDots) while width % 2 != 0: text = input() totalDots = chr(46) * (width - len(text)) halfDots = int(width / 2) halfLen = len(text) / 2 firstDots = chr(46) * (halfDots - int(halfLen)) secondDots = chr(46) * (halfDots - int(halfLen)) if text == "END": break elif len(text) % 2 != 0: print(firstDots+text+secondDots) elif len(text) % 2 == 0: firstDots = chr(46) * (halfDots - int(halfLen) + 1) print(firstDots+text+secondDots)
463217
from .modules import Transformer, TransformerEncoderLayer, TransformerDecoderLayer, ScaledDotProductAttention, \ MultiHeadAttention, PositionalEmbedding, PositionWise
463228
import string def key_generation(key): # initializing all and generating key_matrix main=string.ascii_lowercase.replace('j','.') # convert all alphabets to lower key=key.lower() key_matrix=['' for i in range(5)] # if we have spaces in key, those are ignored automatically i=0;j=0 for c in key: if c in main: # putting into matrix key_matrix[i]+=c # to make sure repeated characters in key # doesnt include in the key_matrix, we replace the # alphabet into . in the main, whenever comes in iteration main=main.replace(c,'.') # counting column change j+=1 # if column count exceeds 5 if(j>4): # row count is increased i+=1 # column count is set again to zero j=0 # to place other alphabets in the key_matrix # the i and j values returned from the previous loop # are again used in this loop, continuing the values in them for c in main: if c!='.': key_matrix[i]+=c j+=1 if j>4: i+=1 j=0 return(key_matrix) # Now plaintext is to be converted into cipher text def conversion(plain_text): # seggrigating the maeesage into pairs plain_text_pairs=[] # replacing repeated characters in pair with other letter, x cipher_text_pairs=[] # remove spaces plain_text=plain_text.replace(" ","") # convert to lower case plain_text=plain_text.lower() # RULE1: if both letters in the pair are same or one letter is left at last, # replace second letter with x or add x, else continue with normal pairing i=0 # let plain_text be abhi while i<len(plain_text): # i=0,1,2,3 a=plain_text[i] b='' if((i+1)==len(plain_text)): # if the chosen letter is last and doesnt have pair # then the pai will be x b='x' else: # else the next letter will be pair with the previous letter b=plain_text[i+1] if(a!=b): plain_text_pairs.append(a+b) # if not equal then leave the next letter, # as it became pair with previous alphabet i+=2 else: plain_text_pairs.append(a+'x') # else dont leave the next letter and put x # in place of repeated letter and conitnue with the next letter # which is repeated (according to algo) i+=1 print("plain text pairs: ",plain_text_pairs) for pair in plain_text_pairs: # RULE2: if the letters are in the same row, replace them with # letters to their immediate right respectively flag=False for row in key_matrix: if(pair[0] in row and pair[1] in row): # find will return index of a letter in string j0=row.find(pair[0]) j1=row.find(pair[1]) cipher_text_pair=row[(j0+1)%5]+row[(j1+1)%5] cipher_text_pairs.append(cipher_text_pair) flag=True if flag: continue # RULE3: if the letters are in the same column, replace them with # letters to their immediate below respectively for j in range(5): col="".join([key_matrix[i][j] for i in range(5)]) if(pair[0] in col and pair[1] in col): # find will return index of a letter in string i0=col.find(pair[0]) i1=col.find(pair[1]) cipher_text_pair=col[(i0+1)%5]+col[(i1+1)%5] cipher_text_pairs.append(cipher_text_pair) flag=True if flag: continue #RULE:4 if letters are not on the same row or column, # replace with the letters on the same row respectively but # at the other pair of corners of rectangle, # which is defined by the original pair i0=0 i1=0 j0=0 j1=0 for i in range(5): row=key_matrix[i] if(pair[0] in row): i0=i j0=row.find(pair[0]) if(pair[1] in row): i1=i j1=row.find(pair[1]) cipher_text_pair=key_matrix[i0][j1]+key_matrix[i1][j0] cipher_text_pairs.append(cipher_text_pair) print("cipher text pairs: ",cipher_text_pairs) # final statements print('plain text: ',plain_text) print('cipher text: ',"".join(cipher_text_pairs)) key=input("Enter the key: ") # calling first function key_matrix=key_generation(key) print("Key Matrix for encryption:") print(key_matrix) plain_text=input("Enter the message: ") # calling second function conversion(plain_text) ''' ----------OUTPUT---------- Enter the key: Make my day beautiful Key Matrix for encryption: ['makey', 'dbuti', 'flcgh', 'nopqr', 'svwxz'] Enter the message: hi there my name is abhiram plain text pairs: ['hi', 'th', 'er', 'em', 'yn', 'am', 'ei', 'sa', 'bh', 'ir', 'am'] cipher text pairs: ['rh', 'ig', 'yq', 'ya', 'mr', 'ka', 'yt', 'vm', 'il', 'hz', 'ka'] plain text: hitheremynameisabhiram cipher text: rhigyqyamrkaytvmilhzka >>> ''' ''' Took help from: 1. https://www.youtube.com/watch?v=U_J2xnhblPg 2. https://www.youtube.com/watch?v=O8MxWNfrzho&t=4s 3. https://www.youtube.com/watch?v=66K1tplwYqg&t=5s 4. https://www.youtube.com/watch?v=2PUInSjhxNs Thanks for the help !!! '''
463233
import unittest from py.game_logic.Research import Research class Research_test(unittest.TestCase): def test_add_and_check_researched_nodes(self): res = Research() node= 'advanced spam canning' self.assertFalse(res.isUnlocked(node)) res.unlock(node) self.assertTrue(res.isUnlocked(node))
463237
from interpretador.interpretador import Interpretador class ConfigurarInterpretador: def __init__(self): pass def gerar_regex_compilado_interpretador(self, dicLetras:dict, dic_comandos:dict, idioma:str) -> tuple: """Compila todos os regex que o interpretador poderá usar Args: Returns: (regex_compilado, regex_comandos) """ diretorio_base = '' bool_ignorar_todos_breakpoints = True bool_logs = False dic_regex_compilado = None re_comandos = None instancia = Interpretador( bool_logs, [], bool_ignorar_todos_breakpoints, diretorio_base, dicLetras, dic_comandos, idioma, dic_regex_compilado, re_comandos) dic_regex_compilado = instancia.dic_regex_compilado re_comandos = instancia.re_comandos del instancia del diretorio_base del bool_ignorar_todos_breakpoints del bool_logs return (dic_regex_compilado, re_comandos) def carregar_dicionario_letra(self, dic_comandos:dict) -> dict: """ Carrega um dicionário com as primeiras letras de todos os comandos disponíveis """ dic_letras = {} # Anda por todos os comandos for k, v in dic_comandos.items(): # Cria uma lista pela chave de cada comando dic_letras[k] = [] # Para cada subcomando for valor in v["comando"]: # Pega a primeira letra do subcomando valor = valor[0].strip() # Adiona no dicionário a primeira letra do comando if valor == "": dic_letras[k].append(valor) else: valor = valor.lower() if valor[0] not in dic_letras[k]: dic_letras[k].append(valor[0]) return dic_letras
463243
from time import gmtime, strftime import os import reporter def getTimeStamp(): return strftime("%Y/%m/%d | %H:%M:%S", gmtime()) def info(message, sendReport=False): logAndWrite(getTimeStamp(), " | INFO | ", message) if sendReport: reporter.report('info', message) def warn(message, sendReport=False): logAndWrite(getTimeStamp(), " | WARN | ", message) if sendReport: reporter.report('warn', message) def crit(message, sendReport=False): logAndWrite(getTimeStamp(), " | CRIT | ", message) if sendReport: reporter.report('crit', message) def logAndWrite(timestamp, code, message): print(timestamp + code + message) f = open(logFile, 'a+') f.write(timestamp + code + message + '\n') f.close() def announceLogFile(sendReport = True): info("Logging to: " + logFileName, sendReport) logDir = "logs" if not os.path.exists(logDir): os.makedirs(logDir) logFileName = "ucscresults.monitor." + strftime("%Y%m%d.%H%M%S", gmtime()) + ".log" logFile = logDir + '/' + logFileName
463279
import errno import json import logging import os __all__ = ['get_config', 'get_default_config_filename', 'get_application_config', 'expand_env_vars'] logger = logging.getLogger(__name__) def get_default_config_filename(): config_filename = os.path.join(os.path.abspath(os.getcwd()), "application.cfg") return config_filename def _load_secrets(filename='/secrets'): # pragma: no cover try: with open(filename, 'r') as secrets_file: secrets = json.load(secrets_file) except IOError as e: if e.errno in (errno.ENOENT, errno.EISDIR): return {} e.strerror = 'Unable to load configuration file (%s)' % e.strerror raise return secrets def get_config(config_filename=None, secrets_file='/secrets'): config_filename = config_filename or get_default_config_filename() logger.debug('config filename: {}'.format(config_filename)) with open(config_filename, 'r') as cfg: config = json.load(cfg) secrets = _load_secrets(filename=secrets_file) if secrets: # pragma: no cover try: import secure_config.secrets as sec config = sec.load_secret_dict(password=secrets['encryption_key'], config_dict=config) except ImportError as e: logger.debug('secure_config not installed') return config def get_application_config(config): try: return config['application'] except KeyError: return [] def get_meta_db_config_path(config): username = get_user(config) password = get_password(config) db_path = 'postgresql://{db_username}:{db_pwd}@{host}:{port}/{db_name}'.format( db_name=config['metadb']['db_name'], db_username=username, db_pwd=password, host=config['metadb']['host'], port=config['metadb']['port'] ) return db_path def get_user(config): try: server = config['metadb']['server'] username = '@'.join([config['metadb']['db_username'], server]) except KeyError: username = config['metadb']['db_username'] return username def get_password(config): try: password = config['metadb']['db_pwd'].decrypt() except AttributeError: password = config['metadb']['db_pwd'] return password
463308
function diginto(thestruct, level) if nargin < 2 level = 0; end fn = fieldnames(thestruct); for n = 1:length(fn) tabs = ''; for m = 1:level tabs = [tabs ' ']; end disp([tabs fn{n}]) fn2 = getfield(thestruct,fn{n}); if isstruct(fn2) diginto(fn2, level+1); end end end
463341
import os,sys import gzip review_file = sys.argv[1] output_path = sys.argv[2] min_count = int(sys.argv[3]) output_path += 'min_count' + str(min_count) + '/' if not os.path.exists(output_path): os.makedirs(output_path) #read all words, users, products word_count_map = {} user_set = set() product_set = set() with gzip.open(review_file, 'r') as g: for l in g: l = eval(l) user = l['reviewerID'] product = l['asin'] review_text = l['reviewText'] summary = l['summary'] user_set.add(user) product_set.add(product) for term in review_text.strip().split(' '): if term not in word_count_map: word_count_map[term] = 0 word_count_map[term] += 1 for term in summary.strip().split(' '): if term not in word_count_map: word_count_map[term] = 0 word_count_map[term] += 1 #filter vocabulary by min_count delete_key = set() for key in word_count_map: if word_count_map[key] < min_count: delete_key.add(key) #output word, user, product indexes word_list = list(set(word_count_map.keys()) - delete_key) with gzip.open(output_path + 'vocab.txt.gz','w') as fout: for word in word_list: fout.write(word + '\n') user_list = list(user_set) with gzip.open(output_path + 'users.txt.gz','w') as fout: for user in user_list: fout.write(user + '\n') product_list = list(product_set) with gzip.open(output_path + 'product.txt.gz','w') as fout: for product in product_list: fout.write(product + '\n') #read and output indexed reviews def index_set(s): i = 0 s_map = {} for key in s: s_map[key] = str(i) i += 1 return s_map word_map = index_set(word_list) user_map = index_set(user_list) product_map = index_set(product_list) with gzip.open(output_path + 'review_text.txt.gz', 'w') as fout_text, gzip.open(output_path + 'review_u_p.txt.gz', 'w') as fout_u_p: with gzip.open(output_path + 'review_id.txt.gz', 'w') as fout_id: with gzip.open(review_file, 'r') as g: index = 0 for l in g: l = eval(l) user = l['reviewerID'] product = l['asin'] review_text = l['reviewText'] summary = l['summary'] count_words = 0 for term in summary.strip().split(' '): if term in word_map: fout_text.write(word_map[term] + ' ') count_words += 1 for term in review_text.strip().split(' '): if term in word_map: fout_text.write(word_map[term] + ' ') count_words += 1 if count_words > 0: fout_text.write('\n') fout_u_p.write(user_map[user] + ' ' + product_map[product] + '\n') fout_id.write('line_' + str(index) + '\n') index += 1
463345
import tensorwatch as tw import random, time def static_hist(): w = tw.Watcher() s = w.create_stream() v = tw.Visualizer(s, vis_type='histogram', bins=6) v.show() for _ in range(100): s.write(random.random()*10) tw.plt_loop() def dynamic_hist(): w = tw.Watcher() s = w.create_stream() v = tw.Visualizer(s, vis_type='histogram', bins=6, clear_after_each=True) v.show() for _ in range(100): s.write([random.random()*10 for _ in range(100)]) tw.plt_loop(count=3) dynamic_hist()
463351
import torch import torch.nn as nn from models.word_model import CaptionModel class Seq2SeqAttention(nn.Module): def __init__(self, hs_enc, hs_dec, attn_size): """ Args: hs_enc: encoder hidden size hs_dec: decoder hidden size attn_size: attention vector size """ super(Seq2SeqAttention, self).__init__() self.h2attn = nn.Linear(hs_enc + hs_dec, attn_size) self.v = nn.Parameter(torch.randn(attn_size)) nn.init.kaiming_uniform_(self.h2attn.weight) def forward(self, h_dec, h_enc, src_lens): """ Args: h_dec: decoder hidden state, [N, hs_dec] h_enc: encoder hiddens/outputs, [N, src_max_len, hs_enc] src_lens: source (encoder input) lengths, [N, ] """ N = h_enc.size(0) src_max_len = h_enc.size(1) h_dec = h_dec.unsqueeze(1).repeat(1, src_max_len, 1) # [N, src_max_len, hs_dec] attn_input = torch.cat((h_dec, h_enc), dim=-1) attn_out = torch.tanh(self.h2attn(attn_input)) # [N, src_max_len, attn_size] v = self.v.repeat(N, 1).unsqueeze(1) # [N, 1, attn_size] # score = torch.bmm(v, attn_out.permute(0, 2, 1)).squeeze(1) # [N, src_max_len] score = (v@attn_out.permute(0, 2, 1)).squeeze(1) # [N, src_max_len] idxs = torch.arange(src_max_len).repeat(N).view(N, src_max_len) mask = (idxs < src_lens.view(-1, 1)).to(h_dec.device) score = score.masked_fill(mask == 0, -1e10) weights = torch.softmax(score, dim=-1) # [N, src_max_len] # ctx = torch.bmm(weights.unsqueeze(1), h_enc).squeeze(1) # [N, hs_enc] ctx = (weights.unsqueeze(1)@h_enc).squeeze(1) # [N, hs_enc] return ctx, weights class Seq2SeqAttnModel(CaptionModel): def __init__(self, encoder, decoder, **kwargs): super(Seq2SeqAttnModel, self).__init__(encoder, decoder, **kwargs) def train_forward(self, encoded, caps, cap_lens, **kwargs): # Bahdanau attention only supports step-by-step implementation, so we implement forward in # step-by-step manner whether in training or evaluation return self.stepwise_forward(encoded, caps, cap_lens, **kwargs) def prepare_output(self, encoded, output, max_length): super(Seq2SeqAttnModel, self).prepare_output(encoded, output, max_length) attn_weights = torch.empty(output["seqs"].size(0), max(encoded["audio_embeds_lens"]), max_length) output["attn_weights"] = attn_weights def prepare_decoder_input(self, decoder_input, encoded, caps, output, t, **kwargs): super(Seq2SeqAttnModel, self).prepare_decoder_input(decoder_input, encoded, caps, output, t, **kwargs) if t == 0: decoder_input["enc_mem"] = encoded["audio_embeds"] decoder_input["enc_mem_lens"] = encoded["audio_embeds_lens"] if encoded["state"] is None: state = self.decoder.init_hidden(output["seqs"].size(0)) state = state.to(encoded["audio_embeds"].device) decoder_input["state"] = state # decoder_input: { "word": ..., "state": ..., "enc_mem": ..., "enc_mem_lens": ... } def stepwise_process_step(self, output, output_t, t, sampled): super(Seq2SeqAttnModel, self).stepwise_process_step(output, output_t, t, sampled) output["attn_weights"][:, :, t] = output_t["weights"] def prepare_beamsearch_output(self, output, beam_size, encoded, max_length): super(Seq2SeqAttnModel, self).prepare_beamsearch_output(output, beam_size, encoded, max_length) output["attn_weights"] = torch.empty(beam_size, max(encoded["audio_embeds_lens"]), max_length) def prepare_beamsearch_decoder_input(self, decoder_input, encoded, output, i, t, beam_size): super(Seq2SeqAttnModel, self).prepare_beamsearch_decoder_input(decoder_input, encoded, output, i, t, beam_size) if t == 0: enc_mem = encoded["audio_embeds"][i] decoder_input["enc_mem"] = enc_mem.unsqueeze(0).repeat(beam_size, 1, 1) enc_mem_lens = encoded["audio_embeds_lens"][i] decoder_input["enc_mem_lens"] = enc_mem_lens.repeat(beam_size) if decoder_input["state"] is None: decoder_input["state"] = self.decoder.init_hidden(beam_size) decoder_input["state"] = decoder_input["state"].to(decoder_input["enc_mem"].device) def beamsearch_step(self, decoder_input, encoded, output, i, t, beam_size): output_t = super(Seq2SeqAttnModel, self).beamsearch_step(decoder_input, encoded, output, i, t, beam_size) output["attn_weights"][:, :, t] = output_t["weights"] return output_t def beamsearch_process_step(self, output, output_t): super().beamsearch_process_step(output, output_t) output["attn_weights"] = output["attn_weights"][output["prev_word_inds"], :, :] def beamsearch_process(self, output, output_i, i): output["seqs"][i] = output_i["seqs"][0] output["attn_weights"][i] = output_i["attn_weights"][0] class Seq2SeqAttnEnsemble(): def __init__(self, models, max_length=20) -> None: self.models = models self.max_length = max_length self.end_idx = models[0].end_idx def inference(self, feats, feat_lens): encoded = [] for model in self.models: encoded.append(model.encoder(feats, feat_lens)) N = feats.size(0) output_seqs = torch.empty(N, self.max_length, dtype=torch.long).fill_(self.end_idx)
463361
from sdk import * def delegate(node, account, amount): newDelegation = NetWorkDelegate(account, amount, node + "/keystore/") newDelegation.send_network_Delegate() def check_rewards(result, balance, pending): if balance != '': balance = str(balance) + '0' * 18 if int(result['balance']) < int(balance): sys.exit(-1) if pending != None: if len(result['pending']) != len(pending): sys.exit(-1) for i, amt in enumerate(pending): if amt != result['pending'][i]['amount']: sys.exit(-1) def check_total_rewards(result, expected_exclude_withdrawn): if result < expected_exclude_withdrawn: sys.exit(-1) if __name__ == "__main__": # create validator account funder = addValidatorWalletAccounts(node_0) # create delegator account delegator = createAccount(node_0, 2500000, funder) # delegates some OLT and wait for rewards distribution delegation_amt = 2000000 delegation_amt_long = str(delegation_amt) + '0' * 18 delegate(node_0, delegator, delegation_amt_long) wait_for(4) # query and check balance res = query_rewards(delegator) check_rewards(res, '6', []) # overdraw MUST fail overdraw_amount = '100' + '0' * 18 withdraw = WithdrawRewards(delegator, overdraw_amount, node_0 + "/keystore/") withdraw.send(exit_on_err=False, mode=TxSync) print bcolors.OKGREEN + "#### Overdraw rewards failed as expected" + bcolors.ENDC # initiate 2 withdrawals pending = [] total = 0 for i in range(2): amt = i + 2 amt_long = str(amt) + '0' * 18 withdraw = WithdrawRewards(delegator, amt_long, node_0 + "/keystore/") withdraw.send(exit_on_err=True, mode=TxSync) pending.append(amt_long) total += amt wait_for(2) # query account balance before mature balance_before = query_balance(delegator) # query and check pending withdrawal res = query_rewards(delegator) check_rewards(res, '0', pending) print bcolors.OKGREEN + "#### Successfully withdrawn delegator rewards" + bcolors.ENDC # query and check again after maturity wait_for(4) res1 = query_rewards(delegator) check_rewards(res1, '', []) print bcolors.OKGREEN + "#### Successfully matured delegator rewards" + bcolors.ENDC # fully undelegate newDelegation = NetWorkDelegate(delegator, delegation_amt_long, node_0 + "/keystore/") newDelegation.send_network_undelegate(delegation_amt_long) wait_for(4) # withdraw all balance res2 = query_rewards(delegator) withdraw = WithdrawRewards(delegator, res2['balance'], node_0 + "/keystore/") withdraw.send(exit_on_err=True, mode=TxSync) # test query ListDelegation when there is no delegation and no rewards balance, only pending rewards wait_for(2) query_result = query_delegation() expected_delegation = 0 expected_pending_delegation = 0 expected_pending_rewards = int(res2['balance']) check_query_delegation(query_result, 0, expected_delegation, expected_pending_delegation, False, expected_pending_rewards) print bcolors.OKGREEN + "#### Successfully tested query ListDelegation with pending rewards" + bcolors.ENDC print bcolors.OKGREEN + "#### Successfully withdrawn all rewards" + bcolors.ENDC # query and check account balance balance_after = query_balance(delegator) check_balance(balance_before, balance_after, total + delegation_amt) # below is to test total rewards query # create another delegator account funder1 = addValidatorWalletAccounts(node_1) delegator1 = createAccount(node_1, 8000000, funder1) # delegates some OLT and wait for rewards distribution delegation_amt = '5000000' + '0' * 18 delegate(node_1, delegator1, delegation_amt_long) wait_for(4) # initiate 1 withdrawal amt1 = 3 amt1_long = str(amt1) + '0' * 18 withdraw1 = WithdrawRewards(delegator1, amt1_long, node_1 + "/keystore/") withdraw1.send(True) wait_for(7) # query total rewards and check res = query_rewards(delegator) res1 = query_rewards(delegator1) total = query_total_rewards() check_total_rewards(total['totalRewards'], int(res['balance']) * pow(10, 18) + int(res1['balance']) * pow(10, 18)) print bcolors.OKGREEN + "#### Successfully tested query total rewards" + bcolors.ENDC
463396
import argparse import logging import sys import Queue from migrator.Migrator import Migrator from migrator.ArtifactoryDockerAccess import ArtifactoryDockerAccess from migrator.DockerRegistryAccess import DockerRegistryAccess from migrator.QuayAccess import QuayAccess from migrator.DTRAccess import DTRAccess import os import shutil dir_path = os.path.dirname(os.path.realpath(__file__)) ''' Entry point and argument parser for Docker to Artifactory migrator Supports: generic - Migrate from a generic, token based registry. ecr - Migrate from an Amazon Elastic Container Registry quay - Migrate from a SaaS Quay registry. quayee - Migrate from Quay Enterprise. ''' # Globals NUM_OF_WORKERS = 2 MIN_NUM_OF_WORKERS = 1 MAX_NUM_OF_WORKERS = 16 def add_extra_args(parser): parser.add_argument('--ignore-certs', dest='ignore_cert', action='store_const', const=True, default=False, help='Ignore any certificate errors from both source and destination') parser.add_argument('--overwrite', action='store_true', help='Overwrite existing image/tag on the destination') parser.add_argument('--num-of-workers', dest='workers', type=int, default=NUM_OF_WORKERS, help='Number of worker threads. Defaults to %d.' % NUM_OF_WORKERS) parser.add_argument('-v', '--verbose', action='store_true', help='Make the operation more talkative') # Provide a predefined set of images to import parser.add_argument('--image-file', dest='image_file', help='Limit the import to a set of images in the provided file. ' 'Format of new line separated file: \'<image-name>:<tag>\' OR ' '\'<image-name>\' to import all tags of that repository.') def add_art_access(parser): art_group = parser.add_argument_group('artifactory') art_group.add_argument('artifactory', help='The destination Artifactory URL') art_group.add_argument('username', help='The username to use for authentication to Artifactory') art_group.add_argument('password', help='The password to use for authentication to Artifactory') art_group.add_argument('repo', help='The docker repository in Artifactory to store the images') # Sets up the argument parser for the application def get_arg_parser(): parser = argparse.ArgumentParser(prog='python DockerMigrator.py', description='Docker registry to Artifactory migrator.') # Generic Registry Parser subparsers = parser.add_subparsers(help='sub-command help') parser_generic = subparsers.add_parser('generic', help='A generic tool to migrate a single registry') # Source registry access source_group = parser_generic.add_argument_group('source') source_group.add_argument('source', help='The source registry URL') source_group.add_argument('--source-username', help='The username to use for authentication to the source') source_group.add_argument('--source-password', help='The password to use for authentication to the source') # Artifactory access add_art_access(parser_generic) # Extra options add_extra_args(parser_generic) parser_generic.set_defaults(func=generic_migration) # ECR parser_ecr = subparsers.add_parser('ecr', help='A tool to migrate from Amazon Elastic Container Registry (ECR)') # Source registry access source_group = parser_ecr.add_argument_group('source') source_group.add_argument('source', help='The source registry URL') source_group.add_argument('token', help='The token generated by the aws tool') # Artifactory access add_art_access(parser_ecr) # Extra options add_extra_args(parser_ecr) parser_ecr.set_defaults(func=ecr_migration) # DTR parser_dtr = subparsers.add_parser('dtr', help='A tool to migrate from Docker Trusted Registry (DTR)') # Source registry access source_group = parser_dtr.add_argument_group('source') source_group.add_argument('source', help='The DTR registry URL') source_group.add_argument('dtr_username', help='The username of a DTR admin') source_group.add_argument('dtr_password', help='The DTR admin password or token') # Artifactory access add_art_access(parser_dtr) # Extra options add_extra_args(parser_dtr) parser_dtr.set_defaults(func=dtr_migration) # GCR parser_gcr = subparsers.add_parser('gcr', help='A tool to migrate from Google Container Registry (GCR)') # Source registry access source_group = parser_gcr.add_argument_group('source') source_group.add_argument('--source', help='The source registry URL (defaults to https://gcr.io)', default='https://gcr.io') source_group.add_argument('keyfile', help='The Google JSON key file') # Artifactory access add_art_access(parser_gcr) # Extra options add_extra_args(parser_gcr) parser_gcr.set_defaults(func=gcr_migration) # QUAY parser_quay = subparsers.add_parser('quay', help='A tool specifically for Quay SaaS') quay = parser_quay.add_argument_group('source') quay.add_argument('namespace', help='The username or organization to import repositories from') quay.add_argument('token', help='The OAuth2 Access Token') # Artifactory access add_art_access(parser_quay) # Extra options add_extra_args(parser_quay) parser_quay.set_defaults(func=quay_migration) # Quay enterprise parser_quay_ee = subparsers.add_parser('quayee', help='A tool specifically for Quay Enterprise') quay_ee = parser_quay_ee.add_argument_group('source') quay_ee.add_argument('source', help='The source registry URL') quay_ee.add_argument('--source-username', help='The super user username') quay_ee.add_argument('--source-password', help='The super user password') quay_ee.add_argument('--token', help='The OAuth2 Access Token') # Artifactory access add_art_access(parser_quay_ee) # Extra options add_extra_args(parser_quay_ee) parser_quay_ee.set_defaults(func=quay_ee_migration) return parser ''' Parse image file Returns two different lists, one with just image names and one with image/tag tuple. Example: Input file: image_name1 image_name2, image_name3:tag1 image_name4:tag2 Result: [image_name1, image_name2,...], [(image_name3, tag1), (image_name4, tag2),...] ''' def parse_image_file(file_path): image_names = [] images = [] try: with open(file_path) as f: content = f.readlines() for unprocessed_line in content: line = unprocessed_line.strip() if ':' in line: name, tag = line.split(':') if name and tag: images.append((name, tag)) elif len(line) > 0: image_names.append(line) return image_names, images except Exception as ex: logging.error("Unable to read in image file '%s' due to %s" % (file_path, str(ex))) return [], [] def parse_key_file(file_path): try: with open(file_path) as f: content = f.read() return content except Exception as ex: logging.error("Unable to read in key file '%s' due to %s" % (file_path, str(ex))) return None ''' Generic migration for a V2 token based Docker registry @param args - The user provided arguments @param work_dir - The temporary work directory @registry - The source registry (for info only) ''' def generic_migration(args, work_dir, registry="generic"): # Verify the more intricate argument requirements if bool(args.source_username) != bool(args.source_password): parser.error("--source-username and --source-password must both be provided or neither.") if args.workers < MIN_NUM_OF_WORKERS or args.workers > MAX_NUM_OF_WORKERS: parser.error("--num-of-workers must be between %d and %d." % (MIN_NUM_OF_WORKERS, MAX_NUM_OF_WORKERS)) # Set up and verify the connection to the source registry source = DockerRegistryAccess(url=args.source, username=args.source_username, password=args.source_password, ignore_cert=args.ignore_cert) common_migration(args, work_dir, source, registry) ''' ECR migration @param args - The user provided arguments @param work_dir - The temporary work directory ''' def ecr_migration(args, work_dir): if args.workers < MIN_NUM_OF_WORKERS or args.workers > MAX_NUM_OF_WORKERS: parser.error("--num-of-workers must be between %d and %d." % (MIN_NUM_OF_WORKERS, MAX_NUM_OF_WORKERS)) # Set up and verify the connection to the source registry source = DockerRegistryAccess(url=args.source, username='AWS', password=args.token, method='basic', ignore_cert=args.ignore_cert) common_migration(args, work_dir, source, "ecr") ''' GCR migration @param args - The user provided arguments @param work_dir - The temporary work directory ''' def gcr_migration(args, work_dir): if args.workers < MIN_NUM_OF_WORKERS or args.workers > MAX_NUM_OF_WORKERS: parser.error("--num-of-workers must be between %d and %d." % (MIN_NUM_OF_WORKERS, MAX_NUM_OF_WORKERS)) password = parse_key_file(args.keyfile) if not password: sys.exit("Unable to read key file or key is empty.") # Set up and verify the connection to the source registry source = DockerRegistryAccess(url=args.source, username='_json_key', password=password, method='basic', ignore_cert=args.ignore_cert) common_migration(args, work_dir, source, "gcr") ''' DTR migration @param args - The user provided arguments @param work_dir - The temporary work directory ''' def dtr_migration(args, work_dir): if args.workers < MIN_NUM_OF_WORKERS or args.workers > MAX_NUM_OF_WORKERS: parser.error("--num-of-workers must be between %d and %d." % (MIN_NUM_OF_WORKERS, MAX_NUM_OF_WORKERS)) # Set up and verify the connection to the source registry source = DTRAccess(url=args.source, username=args.dtr_username, password=args.dtr_password, ignore_cert=args.ignore_cert) common_migration(args, work_dir, source, "ecr") ''' Common migration procedure @param args - The user provided arguments @param work_dir - The temporary work directory @param source - The source access @registry - The source registry (for info only) ''' def common_migration(args, work_dir, source, registry="NA"): if not source.verify_is_v2(): sys.exit("The provided URL does not appear to be a valid V2 repository.") # Set up and verify the connection to Artifactory art_access = setup_art_access(args.artifactory, args.username, args.password, args.repo, args.ignore_cert) image_names = [] q = Queue.Queue() # Build the list of image/tags # If the user provides a set of images, don't query the upstream if 'image_file' in args and args.image_file: image_names, images = parse_image_file(args.image_file) for image_name, tag in images: q.put_nowait((image_name, tag)) else: logging.info("Requesting catalog from source registry.") image_names = source.get_catalog() if not image_names: print "Found no repositories." if image_names: print "Found %d repositories." % len(image_names) populate_tags(image_names, source, q) if not q.empty(): # Perform the migration perform_migration(source, art_access, q, work_dir, registry) else: print "Nothing to migrate." ''' Set up and verify the connection to Artifactory @param artifactory_url - The URL to the Artifactory instance @param username - The username to access Artifactory @param password - The password (API Key, encrypted password, token) to access Artifactory @param repo - The repo name @param ignore_cert - True if the certificate to this instance should be ignored ''' def setup_art_access(artifactory_url, username, password, repo, ignore_cert): art_access = ArtifactoryDockerAccess(url=artifactory_url, username=username, password=password, repo=repo, ignore_cert=ignore_cert) if not art_access.is_valid(): sys.exit("The provided Artifactory URL or credentials do not appear valid.") if not art_access.is_valid_version(): sys.exit("The provided Artifactory instance is version %s but only 4.4.3+ is supported." % art_access.get_version()) if not art_access.is_valid_docker_repo(): sys.exit("The repo %s does not appear to be a valid V2 Docker repository." % args.repo) return art_access ''' Finds and populates the tags for a set of image names @param image_names - A list of images names @param source - Access to the source registry @param q - The queue to populate with (image_name, tag) tuples ''' def populate_tags(image_names, source, q): print "Populating set of image/tags..." for image_name in image_names: image_name = str(image_name) tags = source.get_tags(image_name) if tags: print "Found %d tags for repository %s." % (len(tags), image_name) for tag in tags: tag = str(tag) q.put_nowait((image_name, tag)) ''' Perform the migration @param source - Access to the source registry @param art_access - Access to the Artifactory destination @param q - The queue of (image, tag) tuples that have to be migrated @param work_dir - The temporary working directory @registry - The source registry (for info only) ''' def perform_migration(source, art_access, q, work_dir, registry="NA"): print "Performing migration for %d image/tags." % q.qsize() art_access.report_usage(registry) m = Migrator(source, art_access, q, args.workers, args.overwrite, work_dir) m.migrate() print "Migration finished." # Report any skipped images skipped_list = list(m.get_skipped_queue().queue) skipped_count = len(skipped_list) if skipped_list and skipped_count > 0: print "Skipped %d images because they already exist in Artifactory." % skipped_count # Report on any failures failure_list = list(m.get_failure_queue().queue) failure_count = len(failure_list) if failure_list and failure_count > 0: print "Failed to migrate the following %d images: " % failure_count for image, tag in failure_list: print " %s/%s" % (image, tag) def quay_migration(args, work_dir): # Set up and verify the connection to Artifactory art_access = setup_art_access(args.artifactory, args.username, args.password, args.repo, args.ignore_cert) q = Queue.Queue() # If the user provides a set of images, don't query the upstream if 'image_file' in args and args.image_file: image_names, images = parse_image_file(args.image_file) for image_name, tag in images: q.put_nowait((image_name, tag)) else: quay = QuayAccess(args.namespace, args.token) image_names = quay.get_catalog() if not image_names: logging.error("Failed to retrieve catalog.") # Set up the token based connection to Quay source = DockerRegistryAccess(url="https://quay.io", username="$oauthtoken", password=args.token, ignore_cert=args.ignore_cert) if image_names: print "Found %d repositories." % len(image_names) populate_tags(image_names, source, q) if not q.empty(): # Perform the migration perform_migration(source, art_access, q, work_dir, "quay") else: print "Nothing to migrate." def quay_ee_migration(args, work_dir): # Verify arguments if bool(args.source_username) != bool(args.source_password): parser.error("--source-username and --source-password must both be provided or neither.") if bool(args.token) and bool(args.source_username): parser.error("The token and source username/password arguments are mutually exclusive.") if not(bool(args.token) or bool(args.source_username)): parser.error("The token or source username/password arguments must be specified.") if bool(args.token): # Transform the token into username/password args.source_username = "$oauthtoken" args.source_password = args.token generic_migration(args, work_dir, "quayee") def setup_logging(level): fmt = "%(asctime)s [%(threadName)s] [%(levelname)s]" fmt += " (%(name)s:%(lineno)d) - %(message)s" formatter = logging.Formatter(fmt) stdouth = logging.StreamHandler(sys.stdout) stdouth.setFormatter(formatter) logger = logging.getLogger() logger.setLevel(level) logger.handlers = [] logger.addHandler(stdouth) if __name__ == '__main__': # Argument parsing logging.info("Parsing and verifying user provided arguments.") parser = get_arg_parser() args = parser.parse_args() # Set log level if args.verbose: setup_logging(logging.INFO) else: setup_logging(logging.WARN) # Create temp dir work_dir = os.path.join(dir_path, 'workdir') if not os.path.exists(work_dir): try: os.makedirs(work_dir) except: sys.exit("Failed to create work directory '%s'" % work_dir) # Calls the appropriate function based on user's selected operation args.func(args, work_dir) # Delete temp dir if os.path.exists(work_dir): shutil.rmtree(work_dir, ignore_errors=True)
463410
from torch.nn import Module from getalp.wsd.torch_fix import * import math class PositionalEncoding(Module): def __init__(self, input_embeddings_size, max_len=5000): super().__init__() pe = torch_zeros(max_len, input_embeddings_size) # max_len x input_embeddings_size position = torch_arange(start=0, end=max_len, step=1).unsqueeze(1) # max_len x 1 div_term = torch_exp((torch_arange(start=0, end=input_embeddings_size, step=2, dtype=torch_float32) * -(math.log(10000.0) / input_embeddings_size))) pe[:, 0::2] = torch_sin(position.float() * div_term) pe[:, 1::2] = torch_cos(position.float() * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) self.pe = pe self.input_embeddings_size = input_embeddings_size # inputs: # - int (seq) # output: # - FloatTensor (1 x seq x hidden) def forward(self, seq: int, full: bool = True): if full: return self.pe[:, :seq, :] else: return self.pe[:, seq, :]
463445
import sys sys.path.append("../") from settings import (NES_PALETTE_HEX, animation_settings) from core import sprite RiderRightStandard01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x8w4x8", "x7w5r1x7", "x7w4r3x6", "x7r3b3x7", "x7w4b1w1x7", "x7b1r2w4x6", "x6w2r3x9", "x5w2b1r2w1x9", "x5w1b1w1r5x1b1x5", "x5w1b1w2r3b1r1b1x5", "x5w1b2w1x3w2b1x5", "x2r3w2b2w1x1r2w1r4x2", "x5b2w1b1w2r2w2x3r1x1", "x2b2r3b1w1b1w1r3w2b2x2", "x1b2x1r3b1w3r2x1w2x1b2x1", "b2x2r2x1w1r3b1x1b2w1x2b2", "b1x2b1x2w2r3b1x1b1x1w2x2b1", "b1x2w4x1r3x2b1x2w1x2b1", "b2x3b2x1r4x1b2x3b2", "x1b2x1b2x4b1x3b2x1b2x1", "x2b3x10b3x2", ] ) RiderRightStandard02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x7w4x8", "x6w5r1x7", "x6w4r3x6", "x6r3b3x7", "x6w4b1w1x7", "x6b1r2w4x6", "x5w2r3x9", "x4w2b1r2w1x9", "x4w1b1w1r2w1x9", "x4w1b1w1r3x9", "x4w1b2w1r4x1b1x5", "x5w1b2w1r2b1r1b1x5", "x6w1b1w2x1w2b1x5", "x1r3b3w1b1w1r2w1r4x2", "x2b5w3r2w3b1x1r1x1", "x1b1x1r3b1r3b1r2w2x1b1x2", "b1x2r3w1r3b1r1x1b1w2x1b1x1", "b1x1w1r2w2r3b1x1b1x1w2x2b1", "b1x5b1r4x1b1x5b1", "b2x2b2x3b1x2b2x3b2", "x1b4x8b4x2", ] ) RiderRightWheelie01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x6w4x10", "x5w5r1x9", "x5w4r3x8", "x5r3b3x9", "x5w4b1w1x9", "x5b1r2w4x8", "x5w1r3x11", "x4w2r6x1b1x6", "x4w1b1w1r4b1r1b1x6", "x4w1b1w2x3w2b1r3x3", "x4w1b2w2x1r2w2x6", "x4w3b1w2r3w2b3x2", "x2r2b2w2b1w1r3w2b1x1b2x1", "x1r1x2r3b1w1b1w1r2b1w1x3b2", "x2b2r3b1w2r1x2b1w3x2b1", "x1b2x1r2w1b1r3x2b2x1w1x2b1", "b2x3b1w1x1r3x2b2x3b2", "b1x2b1w3x1r4x2b2x1b2x1", "b1x2w2x1b1x2r1b1x4b3x2", "b2x3b2x13", "x1b2x1b2x14", "x2b3x15", ] ) RiderRightWheelie02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x3w4x12", "x2w5r1x11", "x2w4r3x10", "x2r3b3x11", "x2w4b1w1x11", "x2b1r2w4x1b1x8", "x2w1r3b1x3b1x2r1x5", "x2w1r6b1r1b1r2x5", "x2w1b1r5x1w1r1x2b3x2", "x2w1b2w1x3r1w3b2x1b2x1", "x2w2b1w3x1r3w2x3b2", "x3w1b3w2r3b1w1x4b1", "x3w4b1w1b1r1x1b1w3x2b1", "x3b3w3r1x2b2x3b2", "r2b2r1b1w1r3x3b2x1b2x1", "x2r3x1r5x3b3x2", "x1b1r3b1w1r5x7", "b2x1r2w2x1r2b1x8", "b1x4w1b1x12", "b1x2b1w2b1x12", "b2x3b2x12", "x1b2x1b2x13", "x2b3x14", ] ) RiderRightWheelie03 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x3w4x11", "x2w5r1x10", "x2w4r3x9", "x2r3b3x10", "x2w4b1w1x10", "x2b1r2w4b1x3r1x4", "x1w2r2b1x3b1x2r1x5", "x1w2r5b1r1b1r2b3x2", "x1w1b1r5x1w2r1b2x1b2x1", "x1w1b1w1r2x2r2w4x2b2", "x1w1b1w4b1r3b1x1w2x2b1", "x1w2b3w3r2b1x2w1x2b1", "x2w4b2w1b1x1b2x3b2", "x3b2w3r2x2b2x1b2x1", "x1r1b2r2b1r4x2b3x2", "x1r1x1r3b1r5x6", "r1x2r3b1w1r5x5", "x2b1r2b1w2x1r1b1x7", "x1b2x3w1b1x10", "x1b1x3w2b1x10", "x1b1x2b1w1x1b1x10", "x1b2x3b2x10", "x2b2x1b2x11", "x3b3x12", ] ) RiderRightWheelie04 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x2w4x13", "x1w5r1x12", "x1w4r3x4r1x6", "x1r3b3x4r1x2b3x2", "x1w4b1w1x1b1x2r1x1b2x1b2x1", "x1b1r2w4b2r1x1b2x3b2", "w2r2b1x3r1w5x4b1", "w2r5b1x2w6x2b1", "w1b1r5x2r2x1b2x3b2", "w2b1r2w3r4x1b2x1b2x1", "x1w2b3w3b1r1x3b3x2", "x2w4b2w1r1b2x7", "x5w4r2b1r1x6", "x4b3w1r5x6", "x4b4r3b1x7", "x3r1b1r3b1w1r1x8", "x2r2x1r3w2x9", "x2r1x2r2x1w1b1x9", "x1r1x2b2r1x1w1b2x8", "x4b1x3w1x1b1x8", "x4b1x2b1w1x1b1x8", "x4b2x3b2x8", "x5b2x1b2x9", "x6b3x10", ] ) RiderRightWheelie05 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x2w4x14", "x1w5r1x13", "x1w4r3x5r1x6", "x1r3b3x5r2x1b3x2", "x1w4b1w1x2b1x2r1x1b2x1b2x1", "x1b1r2w4x2b1r1x1b2x3b2", "w2r3b1x3r1w7x2b1", "w1b1r3x2r2b1w1x2b1x2w1x2b1", "w2b1r6x1r3b2x3b2", "x1w2r5w2r3x1b2x1b2x1", "x1w2b1w2b1w1b1w2b1r1x2b3x2", "x2w1b3w5r1b1x7", "x2w5b2w1r3x7", "x3w3b3r5x6", "x5b3r1b1r5x5", "x5b2r2w2r1b1x7", "x4r1x1r3b1w1x9", "x4r1x1r3x1w1b1x8", "x3r2x1b1r1x2w1b2x7", "x6b1x3w1x1b1x7", "x6b1x3w1x1b1x7", "x6b2x3b2x7", "x7b2x1b2x8", "x8b3x9", ] ) RiderRightWheelie06 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "w":NES_PALETTE_HEX[3, 0], "r":NES_PALETTE_HEX[0, 6], }, matrix = [ "x2w4x12", "x1w5r1x6b3x2", "x1w4r3x4b2x1b2x1", "x1r3b3x2r1x1b2x3b2", "x1w4b1w1x2r1x1b1x1w2x2b1", "x1b1r2w4x1r1x1w4x2b1", "w2r3b1x3r1x1w1b1x3b2", "w2r4x1b2w3b2x1b2x1", "w2r3x3r1w1r1x2b3x2", "w2b1r5b1r4x5", "w2b1w1r4w2r1b4x3", "x1w1b2w3b2w2r5x2", "x1w3b3w3r5x3", "x2w8r4b1x3", "x3w4x2b3r2x4", "x9b2r1w2x4", "x9b2r2w2b1x2", "x9b2r2w2b2x1", "x9r1x1r2x1w1x1b2", "x9r1x1b1x2w1x2b1", "x9r1x1b1x2w1x2b1", "x9r1x1b2x3b2", "x12b2x1b2x1", "x13b3x2", ] ) ExciteBikeBG01 = sprite( palette = { "d":NES_PALETTE_HEX[0, 8], "r":NES_PALETTE_HEX[2, 8], "g":NES_PALETTE_HEX[2, 9], "p":NES_PALETTE_HEX[3, 13], }, matrix = [ "d3g8d8g8d5", "d3g8d8g8d5", "g32", "g32", "g32", "g32", "g32", "g32", "g32", "g32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r2d2r1d2r3d2r1d2r3d2r1d2r3d2r1d2r1", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", ] ) ExciteBikeBG02 = sprite( palette = { "d":NES_PALETTE_HEX[0, 10], "r":NES_PALETTE_HEX[2, 9], "g":NES_PALETTE_HEX[0, 2], "p":NES_PALETTE_HEX[3, 9], }, matrix = [ "d3g8d8g8d5", "d3g8d8g8d5", "g32", "g32", "g32", "g32", "g32", "g32", "g32", "g32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r2d2r1d2r3d2r1d2r3d2r1d2r3d2r1d2r1", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", "r32", ] ) #Doesn't contrast well with rider's helmet # ExciteBikeBG02 = sprite( # palette = { # "d":NES_PALETTE_HEX[0, 8], # "r":NES_PALETTE_HEX[2, 8], # "g":NES_PALETTE_HEX[2, 9], # "p":NES_PALETTE_HEX[3, 13], # }, # matrix = [ # "g32", # "g32", # "g32", # "g32", # "p2g10p6g10p4", # "p3g8p8g8p5", # "r1p2g8r1p1r1p2r1p2g8r1p1r1p2", # "d1r1p1g8r2d1r2d1r1p1g8r2d1r2", # "d1r2g8d1r1d1r2d1r2g8d1r1d1r2", # "d1r1d1g8d3r2d1r1d1g8d3r2", # "d3g8d8g8d5", # "d3g8d8g8d5", # "g32", # "g32", # "g32", # "g32", # "g32", # "g32", # "g32", # "g32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r32", # "r2d2r1d2r3d2r1d2r3d2r1d2r3d2r1d2r1", # ] # ) excitebike_animation = animation_settings( sprite_list=[ [RiderRightStandard01, RiderRightStandard02], [RiderRightWheelie01, RiderRightWheelie01, RiderRightWheelie02, RiderRightWheelie02, RiderRightWheelie03, RiderRightWheelie03, RiderRightWheelie04, RiderRightWheelie04, RiderRightWheelie05, RiderRightWheelie05, RiderRightWheelie06, RiderRightWheelie06, RiderRightWheelie05, RiderRightWheelie05, RiderRightWheelie04, RiderRightWheelie04, RiderRightWheelie03, RiderRightWheelie03, RiderRightWheelie02, RiderRightWheelie02, ], ], bg_sprites=[ExciteBikeBG01, ExciteBikeBG02], xoffs=[ [0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], yoffs=[ [0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,], ], frame_time=0.03, spbg_ratio=2, center=True, bg_scroll_speed=(1, 0), cycles_per_char=5, reversible=False, )
463497
from django.contrib import admin from .models import Location, State, RegionalLead class LocationAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ( 'name', 'state') search_fields = ('name',) list_filter = ( 'name', 'state') class StateAdmin(admin.ModelAdmin): list_per_page = 10 search_fields = ('name',) admin.site.register(Location, LocationAdmin) admin.site.register(State, StateAdmin) admin.site.register(RegionalLead)
463500
from os import getcwd from sys import path from cv2 import resize from foo.pictureR import pictureFind class Booty: def __init__(self, cwd): self.cwd = cwd self.bootyPicPath = cwd + '/res/booty/pics' self.bootyList = {'RMA70-12':pictureFind.picRead(self.bootyPicPath + '/RMA70-12.png'), 'RMA70-24':pictureFind.picRead(self.bootyPicPath + '/RMA70-24.png' ), '白马醇':pictureFind.picRead(self.bootyPicPath + '/白马醇.png'), '炽合金':pictureFind.picRead(self.bootyPicPath + '/炽合金.png'), '炽合金块':pictureFind.picRead(self.bootyPicPath + '/炽合金块.png'), '代糖':pictureFind.picRead(self.bootyPicPath + '/代糖.png'), '改量装置':pictureFind.picRead(self.bootyPicPath + '/改量装置.png'), '固源岩':pictureFind.picRead(self.bootyPicPath + '/固源岩.png'), '固源岩组':pictureFind.picRead(self.bootyPicPath + '/固源岩组.png'), '聚合凝胶':pictureFind.picRead(self.bootyPicPath + '/聚合凝胶.png'), '聚酸酯':pictureFind.picRead(self.bootyPicPath + '/聚酸酯.png'), '聚酸酯块':pictureFind.picRead(self.bootyPicPath + '/聚酸酯块.png'), '聚酸酯组':pictureFind.picRead(self.bootyPicPath + '/聚酸酯组.png'), '凝胶':pictureFind.picRead(self.bootyPicPath + '/凝胶.png'), '扭转醇':pictureFind.picRead(self.bootyPicPath + '/扭转醇.png'), '破损装置':pictureFind.picRead(self.bootyPicPath + '/破损装置.png'), '轻锰矿':pictureFind.picRead(self.bootyPicPath + '/轻锰矿.png'), '全新装置':pictureFind.picRead(self.bootyPicPath + '/全新装置.png'), '三水锰矿':pictureFind.picRead(self.bootyPicPath + '/三水锰矿.png'), '双酮':pictureFind.picRead(self.bootyPicPath + '/双酮.png'), '糖':pictureFind.picRead(self.bootyPicPath + '/糖.png'), '糖聚块':pictureFind.picRead(self.bootyPicPath + '/糖聚块.png'), '糖组':pictureFind.picRead(self.bootyPicPath + '/糖组.png'), '提纯源岩':pictureFind.picRead(self.bootyPicPath + '/提纯源岩.png'), '酮凝集':pictureFind.picRead(self.bootyPicPath + '/酮凝集.png'), '酮凝集组':pictureFind.picRead(self.bootyPicPath + '/酮凝集组.png'), '酮阵列':pictureFind.picRead(self.bootyPicPath + '/酮阵列.png'), '五水研磨石':pictureFind.picRead(self.bootyPicPath + '/五水研磨石.png'), '研磨石':pictureFind.picRead(self.bootyPicPath + '/研磨石.png'), '异铁':pictureFind.picRead(self.bootyPicPath + '/异铁.png'), '异铁块':pictureFind.picRead(self.bootyPicPath + '/异铁块.png'), '异铁碎片':pictureFind.picRead(self.bootyPicPath + '/异铁碎片.png'), '异铁组':pictureFind.picRead(self.bootyPicPath + '/异铁组.png'), '源岩':pictureFind.picRead(self.bootyPicPath + '/源岩.png'), '酯原料':pictureFind.picRead(self.bootyPicPath + '/酯原料.png'), '装置':pictureFind.picRead(self.bootyPicPath + '/装置.png'), '晶体元件':pictureFind.picRead(self.bootyPicPath + '/晶体元件.png'), '晶体电子单元':pictureFind.picRead(self.bootyPicPath + '/晶体电子单元.png'), '晶体电路':pictureFind.picRead(self.bootyPicPath + '/晶体电路.png'), '辅助芯片':pictureFind.picRead(self.bootyPicPath + '/辅助芯片.png'), '近卫芯片':pictureFind.picRead(self.bootyPicPath + '/近卫芯片.png'), '狙击芯片':pictureFind.picRead(self.bootyPicPath + '/狙击芯片.png'), '术师芯片':pictureFind.picRead(self.bootyPicPath + '/术师芯片.png'), '特种芯片':pictureFind.picRead(self.bootyPicPath + '/特种芯片.png'), '先锋芯片':pictureFind.picRead(self.bootyPicPath + '/先锋芯片.png'), '医疗芯片':pictureFind.picRead(self.bootyPicPath + '/医疗芯片.png'), '重装芯片':pictureFind.picRead(self.bootyPicPath + '/重装芯片.png'), '辅助芯片组':pictureFind.picRead(self.bootyPicPath + '/辅助芯片组.png'), '近卫芯片组':pictureFind.picRead(self.bootyPicPath + '/近卫芯片组.png'), '狙击芯片组':pictureFind.picRead(self.bootyPicPath + '/狙击芯片组.png'), '术师芯片组':pictureFind.picRead(self.bootyPicPath + '/术师芯片组.png'), '特种芯片组':pictureFind.picRead(self.bootyPicPath + '/特种芯片组.png'), '先锋芯片组':pictureFind.picRead(self.bootyPicPath + '/先锋芯片组.png'), '医疗芯片组':pictureFind.picRead(self.bootyPicPath + '/医疗芯片组.png'), '重装芯片组':pictureFind.picRead(self.bootyPicPath + '/重装芯片组.png')} self.one = pictureFind.picRead(self.cwd + '/res/booty/num/1.png') self.two = pictureFind.picRead(self.cwd + '/res/booty/num/2.png') def bootyCheck(self, bootyName, screenshot): scs = pictureFind.imreadCH(screenshot) scs = resize(scs, (1920, 1080)) scs = scs[770:1080, 710:1920] bootyInfo = pictureFind.matchImg(scs, self.bootyList[bootyName], confidencevalue=0.5, targetSize=(0,0)) if bootyInfo == None: return 0 else: rdPos = bootyInfo['rectangle'][3] if '芯片组' in bootyName: corpX1 = rdPos[0] - 20 corpX2 = rdPos[0] + 25 corpY1 = rdPos[1] + 15 corpY2 = rdPos[1] + 60 elif '芯片' in bootyName: corpX1 = rdPos[0] - 15 corpX2 = rdPos[0] + 25 corpY1 = rdPos[1] + 15 corpY2 = rdPos[1] + 60 else: corpX1 = rdPos[0] - 30 corpX2 = rdPos[0] + 10 corpY1 = rdPos[1] + 5 corpY2 = rdPos[1] + 50 if corpX1 < 0 or corpX2 > 1210 or corpY1 < 0 or corpY2 > 310: return 0 bootyNumPic = scs[corpY1:corpY2, corpX1:corpX2] oneCheck = pictureFind.matchImg(bootyNumPic, self.one, targetSize=(0,0)) twoCheck = pictureFind.matchImg(bootyNumPic, self.two, targetSize=(0,0)) if oneCheck != None: return 1 elif twoCheck != None: return 2 else: return 0
463553
from smp_manifold_learning.scripts.proj_ecmnn import eval_projection import numpy as np import argparse parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("-d", "--dataset_option", default=1, type=int) if __name__ == '__main__': n_data_samples = 100 tolerance = 1e-1 # threshold for points to be considered on the manifold step_size = 0.25 extrapolation_factor = 1.0 # describes extrapolation of sampled data from dataset rand_seed = 1 plot_results = False use_sign = False np.random.seed(rand_seed) args = parser.parse_args() dataset_option = args.dataset_option manifold = {1: "3Dsphere", 2: "3Dcircle", 3: "3dof_v2_traj", 4: "6dof_traj"} expmode = {0: "normal", 1: "wo_augmentation", 2: "wo_rand_combination_normaleigvecs", 3: "wo_siamese_losses", 4: "wo_nspace_alignment", 5: "noisy_normal", 6: "no_siam_reflection", 7: "no_siam_frac_aug", 8: "no_siam_same_levelvec", 9: "aug_variation"} epoch = 25 for expmode_id in [0, 1, 3, 4, 5, 6, 7, 8]: if dataset_option == 4: hidden_sizes = [128, 64, 32, 16] else: hidden_sizes = [36, 24, 18, 10] if expmode_id == 9: aug_vars = [1, 2, 3, 4, 5, 6, 7] else: aug_vars = [9] for N_aug in aug_vars: if expmode_id == 9: expname = 'normal%d' % N_aug else: expname = expmode[expmode_id] proj_success_frac_list = list() for randseed in range(3): log_dir = '/%s/%s/r%02d/best/' % (manifold[dataset_option], expname, randseed) proj_success_frac = eval_projection(dataset_option, n_data_samples, tolerance, extrapolation_factor, epoch, hidden_sizes, step_size, use_sign, log_dir, plot_results) proj_success_frac_list.append(proj_success_frac) proj_success_frac_mean = np.mean(np.array(proj_success_frac_list)) proj_success_frac_std = np.std(np.array(proj_success_frac_list)) print('dataset %s , exp mode %s:' % (manifold[dataset_option], expmode[expmode_id])) print(' proj_success_frac = %f +- %f' % (proj_success_frac_mean, proj_success_frac_std))
463558
from __future__ import print_function import numpy as np import os class NpzDataset(object): ''' Write out NPZ datasets one file at a time, with information in filenames for easy access and data aggregation. This is a fairly slow way to do things but prevents a lot of the problems with massive amounts of data being held in memory. ''' def __init__(self, name): ''' Create a folder to hold different archives in ''' self.name = os.path.expanduser(name) try: os.mkdir(name) except OSError: pass def write(self, example, i, r, image_type=None): ''' Write an example out to disk. ''' if r > 0.: status = "success" else: status = "failure" filename = "example%06d.%s.npz"%(i,status) filename = os.path.join(self.name, filename) if image_type is not None: example["image_type"] = image_type np.savez(filename, **example) def load(self,success_only=False): ''' Read a whole set of data files in. This part could definitely be faster/more efficient. Parameters: ----------- success_only: exclude examples without the "success" tag in their filename when loading. Good when learning certain types of models. Returns: -------- data: dict of features and other information. ''' files = os.listdir(self.name) files.sort() data = {} i = 0 for f in files: if not f[0] == '.': i += 1 print("%d:"%i, f) if success_only: name = f.split('.') if name[0] == 'failure': continue fdata = np.load(os.path.join(self.name,f)) for key, value in fdata.items(): if key not in data: data[key] = value if value.shape[0] == 0: continue data[key] = np.concatenate([data[key],value],axis=0) return data def preprocess(self, train=0.6, val=0.2): ''' TODO(cpaxton) Create train/val/test splits ''' assert train+val <= 1.0 and train+val > 0. test = 1.0 - train - val
463584
import importlib from django.conf import settings from auction.utils.loader import load_class LOT_MODEL = getattr(settings, 'AUCTION_LOT_MODEL', 'auction.models.defaults.Lot') Lot = load_class(LOT_MODEL, 'AUCTION_LOT_MODEL')
463600
import unittest from six import StringIO import sys import re import pandas as pd from auditai import misc def pass_fail_count(output): pass_cnt = len(re.findall('pass', output)) fail_cnt = len(re.findall('fail', output)) return pass_cnt, fail_cnt class TestMisc(unittest.TestCase): def setUp(self): self.labels = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.results = [0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 0.25, 0.75, 0.75, 0.75] def test_bias_test_check_all_pass(self): """ Testing unbias results. Default test_thresh = 0.50 and all tests pass. """ capturedOutput = StringIO() sys.stdout = capturedOutput misc.bias_test_check(self.labels, self.results, category='test_group') sys.stdout = sys.__stdout__ pass_cnt, fail_cnt = pass_fail_count(capturedOutput.getvalue()) self.assertEqual(pass_cnt, 5) self.assertEqual(fail_cnt, 0) def test_bias_test_check_below_min_thresh(self): """ Testing unbias results at a test_threshold below min(results). Unable to run all tests all labels are classified into one group. """ capturedOutput = StringIO() sys.stdout = capturedOutput misc.bias_test_check(self.labels, self.results, category='test_group', test_thresh=0.20) sys.stdout = sys.__stdout__ pass_cnt, fail_cnt = pass_fail_count(capturedOutput.getvalue()) self.assertEqual(pass_cnt, 0) self.assertEqual(fail_cnt, 0) def test_bias_test_completely_bias(self): """ Testing bias results at a test_threshold of 0.50. All tests will fail. """ labels = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] results = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1] capturedOutput = StringIO() sys.stdout = capturedOutput misc.bias_test_check(labels, results, category='test_group') sys.stdout = sys.__stdout__ pass_cnt, fail_cnt = pass_fail_count(capturedOutput.getvalue()) self.assertEqual(pass_cnt, 0) self.assertEqual(fail_cnt, 5) def test_one_way_mi(self): df = pd.DataFrame({'feat1': [1, 2, 3, 2, 1], 'feat2': [3, 2, 1, 2, 3], 'feat3': [1, 2, 3, 2, 1], 'feat4': [1, 2, 3, 2, 1], 'group': [1, 1, 3, 4, 5], 'y': [1, 2, 1, 1, 2]}) expected_output = { 'feature': {0: 'feat1', 1: 'feat2', 2: 'feat3', 3: 'feat4'}, 'group': {0: 0.12, 1: 0.12, 2: 0.12, 3: 0.12}, 'group_scaled': {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0}, 'y': {0: 0.12, 1: 0.12, 2: 0.12, 3: 0.12}, 'y_scaled': {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0}} features = ['feat1', 'feat2', 'feat3', 'feat4'] group_column = 'group' y_var = 'y' output = misc.one_way_mi(df, features, group_column, y_var, (4, 2)) for col in [group_column, y_var, group_column+'_scaled', y_var+'_scaled']: output[col] = output[col].round(2) self.assertEqual(output.to_dict(), expected_output)
463729
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() requirements = ["click", "fabric", "numpy", "pyYAML", "click-config-file"] setup( name="shepherd_herd", version="0.2.6", description="Synchronized Energy Harvesting Emulator and Recorder CLI", long_description=README, long_description_content_type="text/markdown", packages=["shepherd_herd"], license="MIT", classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "Programming Language :: Python :: 3", ], install_requires=requirements, author="<NAME>", author_email="<EMAIL>", entry_points={"console_scripts": ["shepherd-herd=shepherd_herd:main"]}, )
463768
from lie_logger.application import LoggerComponent from mdstudio.runner import main if __name__ == '__main__': main(LoggerComponent)
463820
from __future__ import print_function, unicode_literals core_store_students_programs = False core_store_students_programs_path = 'files_stored' core_experiment_poll_time = 350 # seconds # Ports core_facade_port = 18341 core_facade_server_route = 'testing-route' core_server_url = 'http://127.0.0.1:%s/weblab/' % core_facade_port # Scheduling core_coordinator_db_name = 'WebLabCoordination' core_coordinator_db_username = 'weblab' core_coordinator_db_password = '<PASSWORD>' core_coordinator_laboratory_servers = { "mylab:myprocess2@myhost" : { "exp1|dummy1|Dummy experiments" : "dummy1@dummy1", "exp1|dummy2|Dummy experiments" : "dummy2@dummy2", } } core_coordinator_external_servers = {} core_scheduling_systems = { "dummy1" : ("PRIORITY_QUEUE", {}), "dummy2" : ("PRIORITY_QUEUE", {}), }
463830
from typing import List from calyx.py_ast import * from dahlia_utils import * from calyx.gen_exp import generate_exp_taylor_series_approximation ### Dahlia Implementations for Relay Call Nodes ### # Context: While implementing a Relay frontend for # Calyx, we decided it would be easier to implement # the Relay calls, e.g. `nn.softmax`, in Dahlia, and # then lower the corresponding function definition # to a Calyx program. Perhaps one day these will # be replaced directly with Calyx components. # # In some cases, there is an effort to allow certain # functions take on varying dimensionality, which # trades off code readability for minimizing duplication. # # Local variables declared in each Dahlia implementation # should use the `__` prefix, e.g. `x` should be named `__x` # to avoid name collisions. def broadcast(fd: DahliaFuncDef) -> str: """Implements array broadcasting: Two dimensions are compatible when either (1) they're equal, or (2) one of them is `1`. It is not required that both operands have the same number of dimensions either. When lowering from Relay IR, we are guaranteed the arrays are compatible for broadcasting. Example: first operand: 64 x 1 x 32 second operand: 16 x 1 result: 64 x 16 x 32 -> for (i = 0...64) { for (j = 0..16) { for (k = 0..32) { result[i][j][k] := op1[i][0][k] op op2[j][0]; ... Reference: https://numpy.org/doc/stable/user/basics.broadcasting.html """ op1, op2, res = fd.args[0], fd.args[1], fd.dest op1_dims, op2_dims, res_dims = ( get_dims(op1.comp), get_dims(op2.comp), get_dims(res.comp), ) # Get memory sizes in reversed order. op1_sizes, op2_sizes, res_sizes = [], [], [] for i in reversed(range(0, op1_dims)): op1_sizes.append(op1.comp.args[i + 1]) for i in reversed(range(0, op2_dims)): op2_sizes.append(op2.comp.args[i + 1]) for i in reversed(range(0, res_dims)): res_sizes.append(res.comp.args[i + 1]) # Gets the last variable name for indexing, since # we will compare sizes in the reverse direction. index_var = chr(ord(CHARACTER_I) + res_dims - 1) # Determine the value address value at each index. # This will either be a variable name or `0`. index_zero = "[0]" op1_indices, op2_indices, res_indices = [], [], [] for i in range(0, len(res_sizes)): current_dimension = f"[__{index_var}]" res_indices.append(current_dimension) if op1_dims > op2_dims and len(op2_sizes) <= i: op1_indices.append(current_dimension) elif op2_dims > op1_dims and len(op1_sizes) <= i: op2_indices.append(current_dimension) elif op1_sizes[i] == op2_sizes[i]: op1_indices.append(current_dimension) op2_indices.append(current_dimension) elif op1_sizes[i] > op2_sizes[i]: op1_indices.append(current_dimension) op2_indices.append(index_zero) else: # op2_sizes[i] < op1_sizes[i] op1_indices.append(index_zero) op2_indices.append(current_dimension) index_var = next_character(index_var, -1) # Resulting index in the nested for loop, # e.g. for `op1[i][j][0][k]`, this is `[i][j][0][k]`. op1_index = "".join(reversed(op1_indices)) op2_index = "".join(reversed(op2_indices)) res_index = "".join(reversed(res_indices)) loop_body = ( f"{res.id.name}{res_index} := {op1.id.name}{op1_index} " f"{BinaryOps[fd.function_id]} {op2.id.name}{op2_index};" ) return emit_dahlia_definition(fd, emit_dahlia_loop(res, loop_body)) def dropout(fd: DahliaFuncDef) -> str: """https://tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.dropout""" p = fd.attributes.get_str("rate") data, res = fd.args[0], fd.dest data_type = fd.data_type num_dims = get_dims(res.comp) inverse_rate = 1 / (1 - p) indices = [] var_name = CHARACTER_I for n in range(num_dims): # Determine loop body indices. indices.append(f"[__{var_name}]") var_name = next_character(var_name) indices = "".join(indices) loop_body = f"{res.id.name}{indices} := {data.id.name}{indices} * ({inverse_rate} as {data_type});" return emit_dahlia_definition(fd, emit_dahlia_loop(res, loop_body)) # https://github.com/cucapra/calyx/issues/401 # Please read the issue above before trying # to lower this using `relay.fromtext`. def expand_dims(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.expand_dims""" axis = fd.attributes.get_int("axis") data, res = fd.args[0], fd.dest res_indices, data_indices = "", "" var_name = CHARACTER_I num_dims = get_dims(data.comp) for n in range(num_dims): # Determine loop body indices. index = f"[__{var_name}]" res_indices += index data_indices += index if axis == n + 1: # Append expanded dimensions. res_indices += "[0]" * fd.attributes.get_int("num_newaxis") var_name = next_character(var_name) loop_body = f"{res.id.name}{res_indices} := {data.id.name}{data_indices};" return emit_dahlia_definition(fd, emit_dahlia_loop(data, loop_body)) def negative(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.negative""" inp, res = fd.args[0], fd.dest var_name = CHARACTER_I indices = "" num_dims = get_dims(inp.comp) for _ in range(num_dims): # Determine loop body indices. indices += f"[__{var_name}]" var_name = next_character(var_name) zero = f"(0.0 as {fd.data_type})" if "fix" in fd.data_type else "0" loop_body = f"{res.id.name}{indices} := {zero} - {inp.id.name}{indices};" return emit_dahlia_definition(fd, emit_dahlia_loop(res, loop_body)) def batch_flatten(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.batch_flatten""" data, res = fd.args[0], fd.dest var_name = CHARACTER_I args = data.comp.args data_indices = "" res_indices = f"[__{var_name}]" num_dims = get_dims(data.comp) for i in range(num_dims): index = f"[__{var_name}]" data_indices += index var_name = next_character(var_name) var_name = f"__{var_name}" res_indices += f"[{var_name}]" loop_body = f"""{res.id.name}{res_indices} := \ {data.id.name}{data_indices}; \ {var_name} := {var_name} + 1;""" return emit_dahlia_definition( fd, ( # Uses the index after the batch dimension. f"let {var_name}: ubit<{res.comp.args[4]}> = 0;", emit_dahlia_loop(data, loop_body), ), ) def bias_add(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.bias_add""" data, bias, res = fd.args[0], fd.args[1], fd.dest axis_attribute = fd.attributes.get_int("axis") num_dims = get_dims(data.comp) axis = num_dims - 1 if axis_attribute == -1 else axis_attribute var_name = CHARACTER_I data_indices = "" args = data.comp.args for i in range(num_dims): # Determine loop body indices based on `axis` provided. size = args[i + 1] index_size = args[i + 1 + num_dims] index = f"[__{var_name}]" if axis == i: # Determine which `var_name` is # associated with the bias index. bias_index = index data_indices += index var_name = next_character(var_name) loop_body = f"""{res.id.name}{data_indices} := {data.id.name}{data_indices} + {bias.id.name}{bias_index};""" return emit_dahlia_definition(fd, emit_dahlia_loop(data, loop_body)) def max_pool2d(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.max_pool2d""" data, res = fd.args[0], fd.dest strides = fd.attributes.get_int_tuple("strides") pool_size = fd.attributes.get_int_tuple("pool_size") layout = fd.attributes.get_str("layout") ceil_mode = fd.attributes.get_int("ceil_mode") assert ( layout == "NCHW" ), f"""Layout \'{layout}\' is not currently supported for nn.max_pool2d; please use `NCHW`.""" assert ( ceil_mode == False ), "`ceil_mode` is not currently supported for nn.max_pool2d" args = res.comp.args width = args[0] data_type = fd.data_type size0, size1, size2, size3 = args[1:5] return emit_dahlia_definition( fd, f"""for (let __b: ubit<{width}> = 0..{size0}) {{ for (let __c: ubit<{width}> = 0..{size1}) {{ for (let __y: ubit<{width}> = 0..{size2}) {{ for (let __x: ubit<{width}> = 0..{size3}) {{ let __stride_y: ubit<{width}> = __y * {strides[0]}/*strides[0]*/; let __stride_x: ubit<{width}> = __x * {strides[1]}/*strides[1]*/; let __max: {data_type} = {data.id.name}[__b][__c][__stride_y][__stride_x]; for (let __m: ubit<{width}> = 0..{pool_size[0]}/*pool_size[0]*/) {{ for (let __n: ubit<{width}> = 0..{pool_size[1]}/*pool_size[1]*/) {{ let __pool_y: ubit<{width}> = __stride_y + __m; let __pool_x: ubit<{width}> = __stride_x + __n; let __current: {data_type} = {data.id.name}[__b][__c][__pool_y][__pool_x]; if (__current > __max) {{ __max := __current; }} }} }} {res.id.name}[__b][__c][__y][__x] := __max; }} }} }} }} """, ) def relu(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.relu""" data, res = fd.args[0], fd.dest num_dims = get_dims(data.comp) args = data.comp.args indices = "" var_name = CHARACTER_I for _ in range(num_dims): indices += f"[__{var_name}]" var_name = next_character(var_name) data_type = fd.data_type zero = f'({"0.0" if "fix" in data_type else "0"} as {data_type})' input = f"{data.id.name}{indices}" result = f"{res.id.name}{indices}" loop_body = f"""if ({input} > {zero}) {{ {result} := {input}; }} else {{ {result} := {zero}; }}""" return emit_dahlia_definition(fd, emit_dahlia_loop(data, loop_body)) def sqrt(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.sqrt""" data, res = fd.args[0], fd.dest num_dims = get_dims(data.comp) args = data.comp.args indices = "" var_name = CHARACTER_I for _ in range(num_dims): indices += f"[__{var_name}]" var_name = next_character(var_name) loop_body = f"""let __tmp = sqrt({data.id.name}{indices}); {res.id.name}{indices} := __tmp;""" return emit_dahlia_definition(fd, emit_dahlia_loop(data, loop_body)) def batch_matmul(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.batch_matmul""" a, b, res = fd.args[0], fd.args[1], fd.dest type = fd.data_type bitwidth, M1_size0, M1_size1, M1_size2 = a.comp.args[0:4] M1_index_size0, M1_index_size1, M1_index_size2 = a.comp.args[4:7] M2_size0, M2_size1, M2_size2 = b.comp.args[1:4] M2_index_size0, M2_index_size1, M2_index_size2 = b.comp.args[4:7] return emit_dahlia_definition( fd, f"""let __transpose_{b.id.name}: {type}[{M2_size0}][{M2_size2}][{M2_size1}]; for (let __batch: ubit<{M1_index_size0}> = 0..{M1_size0}) {{ for (let __i: ubit<{M2_index_size1}> = 0..{M2_size1}) {{ for (let __j: ubit<{M2_index_size2}> = 0..{M2_size2}) {{ __transpose_{b.id.name}[__batch][__j][__i] := {b.id.name}[__batch][__i][__j]; }} }} }} --- for (let __batch: ubit<{M1_index_size0}> = 0..{M1_size0}) {{ for (let __i: ubit<{M1_index_size1}> = 0..{M1_size1}) {{ for (let __j: ubit<{M2_index_size1}> = 0..{M2_size1}) {{ for (let __k: ubit<{M2_index_size2}> = 0..{M2_size2}) {{ let __product = {a.id.name}[__batch][__i][__k] * __transpose_{b.id.name}[__batch][__k][__j]; }} combine {{ {res.id.name}[__batch][__i][__j] += __product; }} }} }} }} """, ) def dense(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.dense""" a, b, res = fd.args[0], fd.args[1], fd.dest type = fd.data_type M1_size0, M1_size1 = a.comp.args[1:3] M1_index_size0, M1_index_size1 = a.comp.args[3:5] M2_size0, M2_size1, M2_index_size0, M2_index_size1 = b.comp.args[1:5] return emit_dahlia_definition( fd, f"""let __transpose_{b.id.name}: {type}[{M2_size1}][{M2_size0}]; for (let __i: ubit<{M2_index_size0}> = 0..{M2_size0}) {{ for (let __j: ubit<{M2_index_size1}> = 0..{M2_size1}) {{ __transpose_{b.id.name}[__j][__i] := {b.id.name}[__i][__j]; }} }} for (let __i: ubit<{M1_index_size0}> = 0..{M1_size0}) {{ for (let __j: ubit<{M2_index_size0}> = 0..{M2_size0}) {{ for (let __k: ubit<{M1_index_size1}> = 0..{M1_size1}) {{ let __product = {a.id.name}[__i][__k] * __transpose_{b.id.name}[__k][__j]; }} combine {{ {res.id.name}[__i][__j] += __product; }} }} }} """, ) def conv2d(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.conv2d""" data, weight, res = fd.args[0], fd.args[1], fd.dest data_type = fd.data_type strides = fd.attributes.get_int_tuple("strides") kernel_size = fd.attributes.get_int_tuple("kernel_size") size0, size1, size2, size3 = res.comp.args[1:5] # If no channels provided, inferred from second dimension of the data. channels = fd.attributes.get_int("channels") or data.comp.args[2] return emit_dahlia_definition( fd, f"""for (let __b: ubit<32> = 0..{size0}) {{ for (let __c: ubit<32> = 0..{size1}) {{ for (let __y: ubit<32> = 0..{size2}) {{ for (let __x: ubit<32> = 0..{size3}) {{ let __sum: {data_type} = {'0.0' if 'fix' in data_type else '0'}; for (let __k: ubit<32> = 0..{channels}) {{ for (let __dy: ubit<32> = 0..{kernel_size[1]}/*kernel_size[1]*/) {{ for (let __dx: ubit<32> = 0..{kernel_size[0]}/*kernel_size[0]*/) {{ let __kernel_y: ubit<32> = (/*strides[0]*/{strides[0]} * __y) + __dy; let __kernel_x: ubit<32> = (/*strides[1]*/{strides[1]} * __x) + __dx; }} combine {{ __sum += {data.id.name}[__b][__k][__kernel_y][__kernel_x] * {weight.id.name}[__c][__k][__dy][__dx]; }} }} }} {res.id.name}[__b][__c][__y][__x] := __sum; }} }} }} }} """, ) def reshape(fd: DahliaFuncDef) -> str: """https://tvm.apache.org/docs/api/python/relay/index.html#tvm.relay.reshape""" data, res = fd.args[0], fd.dest newshape = fd.attributes.get_int_tuple("newshape") ddims = get_dims(data.comp) rdims = get_dims(res.comp) assert ( # See the TVM Relay API for significance of `newshape` values. newshape[0] == -1 and rdims == 2 ), f"""Only supports a subset of `reshape` functionality (i.e. where the dimensions are inferred). E.g. let %x: Tensor[(1, 2, 2, 2), float32] = ...; let %x1: Tensor[(1, 8), float32] = reshape(%x, newshape[-1, 8]); --- [Actual] newshape[0]: {newshape[0]}, rdims: {rdims}""" data_indices, res_indices = "", "" var_name = CHARACTER_I for _ in range(ddims): data_indices += f"[__{var_name}]" var_name = next_character(var_name) data_type = fd.data_type input = f"{data.id.name}{data_indices}" result = f"{res.id.name}[0][__m]" loop_body = f"""{result} := {input}; __m += (1 as ubit<{res.comp.args[4]}>);""" program = ( f"let __m: ubit<{res.comp.args[4]}> = 0;", emit_dahlia_loop(data, loop_body), ) return emit_dahlia_definition(fd, program) def softmax(fd: DahliaFuncDef) -> str: """tvm.apache.org/docs/api/python/relay/nn.html#tvm.relay.nn.softmax""" data, res = fd.args[0], fd.dest axis = fd.attributes.get_int("axis") assert axis == -1 or axis == 1, f"nn.softmax with axis = {axis} is not supported." data_type = fd.data_type size0, size1, index_size0, index_size1 = data.comp.args[1:5] return emit_dahlia_definition( fd, f""" let __max :{data_type} = {data.id.name}[0][0]; for (let __i: ubit<{index_size0}> = 0..{size0}) {{ for (let __j: ubit<{index_size1}> = 0..{size1}) {{ if ({data.id.name}[__i][__j] > __max) {{ __max := {data.id.name}[__i][__j]; }} }} }} for (let __i: ubit<{index_size0}> = 0..{size0}) {{ let __exp_sum: {data_type} = {'0.0' if 'fix' in data_type else '0'}; for (let __j: ubit<{index_size1}> = 0..{size1}) {{ let __t0 = {data.id.name}[__i][__j] - __max; let __t1 = exp(__t0); __exp_sum += __t1; }} for (let __k: ubit<{index_size1}> = 0..{size1}) {{ let __t2 = {data.id.name}[__i][__k] - __max; let __t3 = exp(__t2); {res.id.name}[__i][__k] := __t3 / __exp_sum; }} }}""", ) # Mapping from Relay function names to their respective Dahlia lowering. RelayCallNodes = { "expand_dims": expand_dims, "negative": negative, "batch_flatten": batch_flatten, "batch_matmul": batch_matmul, "bias_add": bias_add, "conv2d": conv2d, "dense": dense, "dropout": dropout, "reshape": reshape, "max_pool2d": max_pool2d, "relu": relu, "softmax": softmax, "sqrt": sqrt, } # Mapping from Relay binary calls to # the respective Dahlia operator. BinaryOps = {"add": "+", "divide": "/", "multiply": "*", "subtract": "-"} def emit_components(func_defs: List[DahliaFuncDef]) -> str: """Returns a string containing all the components created from the list of Dahlia function definitions. This does not include the import statement. """ if not func_defs: return "" dahlia_definitions = [] for func_def in func_defs: id = func_def.function_id assert ( id in RelayCallNodes or id in BinaryOps ), f"{id} not supported for lowering." # If the function is a binary operation, use broadcasting. # Otherwise, use the associated Relay function. apply = broadcast if id in BinaryOps else RelayCallNodes[id] dahlia_definitions.append(apply(func_def)) type = func_defs[0].data_type imports = [ f"""import futil("primitives/math.futil") {{ def exp(x: {type}): {type}; def sqrt(in: {type}): {type}; def fp_sqrt(in: {type}): {type}; }}""" ] exp_components = "" if any(f.function_id == "softmax" for f in func_defs): # Import `exp` operator for softmax. sep = type.find(",") width = int(type[type.find("<") + 1 : sep]) int_width = int(type[sep + 1 : type.find(">")]) exp_components = generate_exp_taylor_series_approximation( degree=8, width=width, int_width=int_width, is_signed="u" not in type, ) exp_components = "\n".join(c.doc() for c in exp_components) return dahlia_to_calyx(imports, dahlia_definitions) + exp_components
463835
import autograd.numpy as np import tensorflow as tf import theano.tensor as T import torch from examples._tools import ExampleRunner from numpy import linalg as la, random as rnd import pymanopt from pymanopt.manifolds import FixedRankEmbedded from pymanopt.solvers import ConjugateGradient SUPPORTED_BACKENDS = ( "Autograd", "Callable", "PyTorch", "TensorFlow", "Theano" ) def create_cost_egrad(backend, A, rank): m, n = A.shape egrad = None if backend == "Autograd": @pymanopt.function.Autograd def cost(u, s, vt): X = u @ np.diag(s) @ vt return np.linalg.norm(X - A) ** 2 elif backend == "Callable": @pymanopt.function.Callable def cost(u, s, vt): X = u @ np.diag(s) @ vt return la.norm(X - A) ** 2 @pymanopt.function.Callable def egrad(u, s, vt): X = u @ np.diag(s) @ vt S = np.diag(s) gu = 2 * (X - A) @ (S @ vt).T gs = 2 * np.diag(u.T @ (X - A) @ vt.T) gvt = 2 * (u @ S).T @ (X - A) return gu, gs, gvt elif backend == "PyTorch": A_ = torch.from_numpy(A) @pymanopt.function.PyTorch def cost(u, s, vt): X = torch.matmul(u, torch.matmul(torch.diag(s), vt)) return torch.norm(X - A_) ** 2 elif backend == "TensorFlow": u = tf.Variable(tf.zeros((m, rank), dtype=np.float64), name="u") s = tf.Variable(tf.zeros(rank, dtype=np.float64), name="s") vt = tf.Variable(tf.zeros((rank, n), dtype=np.float64), name="vt") @pymanopt.function.TensorFlow def cost(u, s, vt): X = tf.matmul(u, tf.matmul(tf.linalg.diag(s), vt)) return tf.norm(X - A) ** 2 elif backend == "Theano": u = T.matrix() s = T.vector() vt = T.matrix() @pymanopt.function.Theano(u, s, vt) def cost(u, s, vt): X = T.dot(T.dot(u, T.diag(s)), vt) return (X - A).norm(2) ** 2 else: raise ValueError("Unsupported backend '{:s}'".format(backend)) return cost, egrad def run(backend=SUPPORTED_BACKENDS[0], quiet=True): m, n, rank = 5, 4, 2 matrix = rnd.randn(m, n) cost, egrad = create_cost_egrad(backend, matrix, rank) manifold = FixedRankEmbedded(m, n, rank) problem = pymanopt.Problem(manifold, cost=cost, egrad=egrad) if quiet: problem.verbosity = 0 solver = ConjugateGradient() left_singular_vectors, singular_values, right_singular_vectors = \ solver.solve(problem) low_rank_approximation = (left_singular_vectors @ np.diag(singular_values) @ right_singular_vectors) if not quiet: u, s, vt = la.svd(matrix, full_matrices=False) indices = np.argsort(s)[-rank:] low_rank_solution = (u[:, indices] @ np.diag(s[indices]) @ vt[indices, :]) print("Analytic low-rank solution:") print() print(low_rank_solution) print() print("Rank-{} approximation:".format(rank)) print() print(low_rank_approximation) print() print("Frobenius norm error:", la.norm(low_rank_approximation - low_rank_solution)) print() if __name__ == "__main__": runner = ExampleRunner(run, "Low-rank matrix approximation", SUPPORTED_BACKENDS) runner.run()
463851
import tensorflow as tf from .op import linear, batch_norm, flatten from .output import OutputType, Normalization import numpy as np from enum import Enum import os class Network(object): def __init__(self, scope_name): self.scope_name = scope_name def build(self, input): raise NotImplementedError @property def all_vars(self): return tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope_name) @property def trainable_vars(self): return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.scope_name) def print_layers(self): print("Layers of {}".format(self.scope_name)) print(self.all_vars) def save(self, sess, folder): saver = tf.train.Saver(self.all_vars) path = os.path.join(folder, "model.ckpt") saver.save(sess, path) def load(self, sess, folder): saver = tf.train.Saver(self.all_vars) path = os.path.join(folder, "model.ckpt") saver.restore(sess, path) class Discriminator(Network): def __init__(self, num_layers=5, num_units=200, scope_name="discriminator", *args, **kwargs): super(Discriminator, self).__init__( scope_name=scope_name, *args, **kwargs) self.num_layers = num_layers self.num_units = num_units def build(self, input_feature, input_attribute, train): with tf.variable_scope(self.scope_name, reuse=tf.AUTO_REUSE): input_feature = flatten(input_feature) input_attribute = flatten(input_attribute) input_ = tf.concat([input_feature, input_attribute], 1) layers = [input_feature, input_attribute, input_] for i in range(self.num_layers - 1): with tf.variable_scope("layer{}".format(i)): layers.append(linear(layers[-1], self.num_units)) layers.append(tf.nn.relu(layers[-1])) # if (i > 0): # layers.append(batch_norm()(layers[-1], train=train)) with tf.variable_scope("layer{}".format(self.num_layers - 1)): layers.append(linear(layers[-1], 1)) # batch_size * 1 layers.append(tf.squeeze(layers[-1], 1)) # batch_size return layers[-1] class AttrDiscriminator(Network): def __init__(self, num_layers=5, num_units=200, scope_name="attrDiscriminator", *args, **kwargs): super(AttrDiscriminator, self).__init__( scope_name=scope_name, *args, **kwargs) self.num_layers = num_layers self.num_units = num_units def build(self, input_attribute, train): with tf.variable_scope(self.scope_name, reuse=tf.AUTO_REUSE): input_attribute = flatten(input_attribute) layers = [input_attribute] for i in range(self.num_layers - 1): with tf.variable_scope("layer{}".format(i)): layers.append(linear(layers[-1], self.num_units)) layers.append(tf.nn.relu(layers[-1])) # if (i > 0): # layers.append(batch_norm()(layers[-1], train=train)) with tf.variable_scope("layer{}".format(self.num_layers - 1)): layers.append(linear(layers[-1], 1)) # batch_size * 1 layers.append(tf.squeeze(layers[-1], 1)) # batch_size return layers[-1] class RNNInitialStateType(Enum): ZERO = "ZERO" RANDOM = "RANDOM" VARIABLE = "VARIABLE" class DoppelGANgerGenerator(Network): def __init__(self, feed_back, noise, feature_outputs, attribute_outputs, real_attribute_mask, sample_len, attribute_num_units=100, attribute_num_layers=3, feature_num_units=100, feature_num_layers=1, initial_state=RNNInitialStateType.RANDOM, initial_stddev=0.02, scope_name="DoppelGANgerGenerator", *args, **kwargs): super(DoppelGANgerGenerator, self).__init__( scope_name=scope_name, *args, **kwargs) self.feed_back = feed_back self.noise = noise self.attribute_num_units = attribute_num_units self.attribute_num_layers = attribute_num_layers self.feature_num_units = feature_num_units self.feature_outputs = feature_outputs self.attribute_outputs = attribute_outputs self.real_attribute_mask = real_attribute_mask self.feature_num_layers = feature_num_layers self.sample_len = sample_len self.initial_state = initial_state self.initial_stddev = initial_stddev self.feature_out_dim = (np.sum([t.dim for t in feature_outputs]) * self.sample_len) self.attribute_out_dim = np.sum([t.dim for t in attribute_outputs]) if not self.noise and not self.feed_back: raise Exception("noise and feed_back should have at least " "one True") self.real_attribute_outputs = [] self.addi_attribute_outputs = [] self.real_attribute_out_dim = 0 self.addi_attribute_out_dim = 0 for i in range(len(self.real_attribute_mask)): if self.real_attribute_mask[i]: self.real_attribute_outputs.append( self.attribute_outputs[i]) self.real_attribute_out_dim += self.attribute_outputs[i].dim else: self.addi_attribute_outputs.append( self.attribute_outputs[i]) self.addi_attribute_out_dim += \ self.attribute_outputs[i].dim for i in range(len(self.real_attribute_mask) - 1): if (self.real_attribute_mask[i] == False and self.real_attribute_mask[i + 1] == True): raise Exception("Real attribute should come first") self.gen_flag_id = None for i in range(len(self.feature_outputs)): if self.feature_outputs[i].is_gen_flag: self.gen_flag_id = i break if self.gen_flag_id is None: raise Exception("cannot find gen_flag_id") if self.feature_outputs[self.gen_flag_id].dim != 2: raise Exception("gen flag output's dim should be 2") self.STR_REAL = "real" self.STR_ADDI = "addi" def build(self, attribute_input_noise, addi_attribute_input_noise, feature_input_noise, feature_input_data, train, attribute=None): with tf.variable_scope(self.scope_name, reuse=tf.AUTO_REUSE): batch_size = tf.shape(feature_input_noise)[0] if attribute is None: all_attribute = [] all_discrete_attribute = [] if len(self.addi_attribute_outputs) > 0: all_attribute_input_noise = \ [attribute_input_noise, addi_attribute_input_noise] all_attribute_outputs = \ [self.real_attribute_outputs, self.addi_attribute_outputs] all_attribute_part_name = \ [self.STR_REAL, self.STR_ADDI] all_attribute_out_dim = \ [self.real_attribute_out_dim, self.addi_attribute_out_dim] else: all_attribute_input_noise = [attribute_input_noise] all_attribute_outputs = [self.real_attribute_outputs] all_attribute_part_name = [self.STR_REAL] all_attribute_out_dim = [self.real_attribute_out_dim] else: all_attribute = [attribute] all_discrete_attribute = [attribute] if len(self.addi_attribute_outputs) > 0: all_attribute_input_noise = \ [addi_attribute_input_noise] all_attribute_outputs = \ [self.addi_attribute_outputs] all_attribute_part_name = \ [self.STR_ADDI] all_attribute_out_dim = [self.addi_attribute_out_dim] else: all_attribute_input_noise = [] all_attribute_outputs = [] all_attribute_part_name = [] all_attribute_out_dim = [] for part_i in range(len(all_attribute_input_noise)): with tf.variable_scope( "attribute_{}".format(all_attribute_part_name[part_i]), reuse=tf.AUTO_REUSE): if len(all_discrete_attribute) > 0: layers = [tf.concat( [all_attribute_input_noise[part_i]] + all_discrete_attribute, axis=1)] else: layers = [all_attribute_input_noise[part_i]] for i in range(self.attribute_num_layers - 1): with tf.variable_scope("layer{}".format(i)): layers.append( linear(layers[-1], self.attribute_num_units)) layers.append(tf.nn.relu(layers[-1])) layers.append(batch_norm()( layers[-1], train=train)) with tf.variable_scope( "layer{}".format(self.attribute_num_layers - 1), reuse=tf.AUTO_REUSE): part_attribute = [] part_discrete_attribute = [] for i in range(len(all_attribute_outputs[part_i])): with tf.variable_scope("output{}".format(i), reuse=tf.AUTO_REUSE): output = all_attribute_outputs[part_i][i] sub_output_ori = linear(layers[-1], output.dim) if (output.type_ == OutputType.DISCRETE): sub_output = tf.nn.softmax(sub_output_ori) sub_output_discrete = tf.one_hot( tf.argmax(sub_output, axis=1), output.dim) elif (output.type_ == OutputType.CONTINUOUS): if (output.normalization == Normalization.ZERO_ONE): sub_output = tf.nn.sigmoid( sub_output_ori) elif (output.normalization == Normalization.MINUSONE_ONE): sub_output = tf.nn.tanh(sub_output_ori) else: raise Exception("unknown normalization" " type") sub_output_discrete = sub_output else: raise Exception("unknown output type") part_attribute.append(sub_output) part_discrete_attribute.append( sub_output_discrete) part_attribute = tf.concat(part_attribute, axis=1) part_discrete_attribute = tf.concat( part_discrete_attribute, axis=1) part_attribute = tf.reshape( part_attribute, [batch_size, all_attribute_out_dim[part_i]]) part_discrete_attribute = tf.reshape( part_discrete_attribute, [batch_size, all_attribute_out_dim[part_i]]) # batch_size * dim part_discrete_attribute = tf.stop_gradient( part_discrete_attribute) all_attribute.append(part_attribute) all_discrete_attribute.append(part_discrete_attribute) all_attribute = tf.concat(all_attribute, axis=1) all_discrete_attribute = tf.concat(all_discrete_attribute, axis=1) all_attribute = tf.reshape( all_attribute, [batch_size, self.attribute_out_dim]) all_discrete_attribute = tf.reshape( all_discrete_attribute, [batch_size, self.attribute_out_dim]) with tf.variable_scope("feature", reuse=tf.AUTO_REUSE): all_cell = [] for i in range(self.feature_num_layers): with tf.variable_scope("unit{}".format(i), reuse=tf.AUTO_REUSE): cell = tf.nn.rnn_cell.LSTMCell( num_units=self.feature_num_units, state_is_tuple=True) all_cell.append(cell) rnn_network = tf.nn.rnn_cell.MultiRNNCell(all_cell) feature_input_data_dim = \ len(feature_input_data.get_shape().as_list()) if feature_input_data_dim == 3: feature_input_data_reshape = tf.transpose( feature_input_data, [1, 0, 2]) feature_input_noise_reshape = tf.transpose( feature_input_noise, [1, 0, 2]) # time * batch_size * ? if self.initial_state == RNNInitialStateType.ZERO: initial_state = rnn_network.zero_state( batch_size, tf.float32) elif self.initial_state == RNNInitialStateType.RANDOM: initial_state = tf.random_normal( shape=(self.feature_num_layers, 2, batch_size, self.feature_num_units), mean=0.0, stddev=1.0) initial_state = tf.unstack(initial_state, axis=0) initial_state = tuple( [tf.nn.rnn_cell.LSTMStateTuple( initial_state[idx][0], initial_state[idx][1]) for idx in range(self.feature_num_layers)]) elif self.initial_state == RNNInitialStateType.VARIABLE: initial_state = [] for i in range(self.feature_num_layers): sub_initial_state1 = tf.get_variable( "layer{}_initial_state1".format(i), (1, self.feature_num_units), initializer=tf.random_normal_initializer( stddev=self.initial_stddev)) sub_initial_state1 = tf.tile( sub_initial_state1, (batch_size, 1)) sub_initial_state2 = tf.get_variable( "layer{}_initial_state2".format(i), (1, self.feature_num_units), initializer=tf.random_normal_initializer( stddev=self.initial_stddev)) sub_initial_state2 = tf.tile( sub_initial_state2, (batch_size, 1)) sub_initial_state = tf.nn.rnn_cell.LSTMStateTuple( sub_initial_state1, sub_initial_state2) initial_state.append(sub_initial_state) initial_state = tuple(initial_state) else: raise NotImplementedError time = feature_input_noise.get_shape().as_list()[1] if time is None: time = tf.shape(feature_input_noise)[1] def compute(i, state, last_output, all_output, gen_flag, all_gen_flag, all_cur_argmax, last_cell_output): input_all = [all_discrete_attribute] if self.noise: input_all.append(feature_input_noise_reshape[i]) if self.feed_back: if feature_input_data_dim == 3: input_all.append(feature_input_data_reshape[i]) else: input_all.append(last_output) input_all = tf.concat(input_all, axis=1) cell_new_output, new_state = rnn_network(input_all, state) new_output_all = [] id_ = 0 for j in range(self.sample_len): for k in range(len(self.feature_outputs)): with tf.variable_scope("output{}".format(id_), reuse=tf.AUTO_REUSE): output = self.feature_outputs[k] sub_output = linear( cell_new_output, output.dim) if (output.type_ == OutputType.DISCRETE): sub_output = tf.nn.softmax(sub_output) elif (output.type_ == OutputType.CONTINUOUS): if (output.normalization == Normalization.ZERO_ONE): sub_output = tf.nn.sigmoid(sub_output) elif (output.normalization == Normalization.MINUSONE_ONE): sub_output = tf.nn.tanh(sub_output) else: raise Exception("unknown normalization" " type") else: raise Exception("unknown output type") new_output_all.append(sub_output) id_ += 1 new_output = tf.concat(new_output_all, axis=1) for j in range(self.sample_len): all_gen_flag = all_gen_flag.write( i * self.sample_len + j, gen_flag) cur_gen_flag = tf.to_float(tf.equal(tf.argmax( new_output_all[(j * len(self.feature_outputs) + self.gen_flag_id)], axis=1), 0)) cur_gen_flag = tf.reshape(cur_gen_flag, [-1, 1]) all_cur_argmax = all_cur_argmax.write( i * self.sample_len + j, tf.argmax( new_output_all[(j * len(self.feature_outputs) + self.gen_flag_id)], axis=1)) gen_flag = gen_flag * cur_gen_flag return (i + 1, new_state, new_output, all_output.write(i, new_output), gen_flag, all_gen_flag, all_cur_argmax, cell_new_output) (i, state, _, feature, _, gen_flag, cur_argmax, cell_output) = \ tf.while_loop( lambda a, b, c, d, e, f, g, h: tf.logical_and(a < time, tf.equal(tf.reduce_max(e), 1)), compute, (0, initial_state, feature_input_data if feature_input_data_dim == 2 else feature_input_data_reshape[0], tf.TensorArray(tf.float32, time), tf.ones((batch_size, 1)), tf.TensorArray(tf.float32, time * self.sample_len), tf.TensorArray(tf.int64, time * self.sample_len), tf.zeros((batch_size, self.feature_num_units)))) def fill_rest(i, all_output, all_gen_flag, all_cur_argmax): all_output = all_output.write( i, tf.zeros((batch_size, self.feature_out_dim))) for j in range(self.sample_len): all_gen_flag = all_gen_flag.write( i * self.sample_len + j, tf.zeros((batch_size, 1))) all_cur_argmax = all_cur_argmax.write( i * self.sample_len + j, tf.zeros((batch_size,), dtype=tf.int64)) return (i + 1, all_output, all_gen_flag, all_cur_argmax) _, feature, gen_flag, cur_argmax = tf.while_loop( lambda a, b, c, d: a < time, fill_rest, (i, feature, gen_flag, cur_argmax)) feature = feature.stack() # time * batch_size * (dim * sample_len) gen_flag = gen_flag.stack() # (time * sample_len) * batch_size * 1 cur_argmax = cur_argmax.stack() gen_flag = tf.transpose(gen_flag, [1, 0, 2]) # batch_size * (time * sample_len) * 1 cur_argmax = tf.transpose(cur_argmax, [1, 0]) # batch_size * (time * sample_len) length = tf.reduce_sum(gen_flag, [1, 2]) # batch_size feature = tf.transpose(feature, [1, 0, 2]) # batch_size * time * (dim * sample_len) gen_flag_t = tf.reshape( gen_flag, [batch_size, time, self.sample_len]) # batch_size * time * sample_len gen_flag_t = tf.reduce_sum(gen_flag_t, [2]) # batch_size * time gen_flag_t = tf.to_float(gen_flag_t > 0.5) gen_flag_t = tf.expand_dims(gen_flag_t, 2) # batch_size * time * 1 gen_flag_t = tf.tile( gen_flag_t, [1, 1, self.feature_out_dim]) # batch_size * time * (dim * sample_len) # zero out the parts after sequence ends feature = feature * gen_flag_t feature = tf.reshape( feature, [batch_size, time * self.sample_len, self.feature_out_dim / self.sample_len]) # batch_size * (time * sample_len) * dim return feature, all_attribute, gen_flag, length, cur_argmax
463854
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.hvac_templates import HvactemplateSystemUnitaryHeatPumpAirToAir log = logging.getLogger(__name__) class TestHvactemplateSystemUnitaryHeatPumpAirToAir(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_hvactemplatesystemunitaryheatpumpairtoair(self): pyidf.validation_level = ValidationLevel.error obj = HvactemplateSystemUnitaryHeatPumpAirToAir() # alpha var_name = "Name" obj.name = var_name # object-list var_system_availability_schedule_name = "object-list|System Availability Schedule Name" obj.system_availability_schedule_name = var_system_availability_schedule_name # object-list var_control_zone_or_thermostat_location_name = "object-list|Control Zone or Thermostat Location Name" obj.control_zone_or_thermostat_location_name = var_control_zone_or_thermostat_location_name # real var_cooling_supply_air_flow_rate = 0.0001 obj.cooling_supply_air_flow_rate = var_cooling_supply_air_flow_rate # real var_heating_supply_air_flow_rate = 0.0001 obj.heating_supply_air_flow_rate = var_heating_supply_air_flow_rate # real var_no_load_supply_air_flow_rate = 0.0 obj.no_load_supply_air_flow_rate = var_no_load_supply_air_flow_rate # object-list var_supply_fan_operating_mode_schedule_name = "object-list|Supply Fan Operating Mode Schedule Name" obj.supply_fan_operating_mode_schedule_name = var_supply_fan_operating_mode_schedule_name # alpha var_supply_fan_placement = "BlowThrough" obj.supply_fan_placement = var_supply_fan_placement # real var_supply_fan_total_efficiency = 0.50005 obj.supply_fan_total_efficiency = var_supply_fan_total_efficiency # real var_supply_fan_delta_pressure = 0.0 obj.supply_fan_delta_pressure = var_supply_fan_delta_pressure # real var_supply_fan_motor_efficiency = 0.50005 obj.supply_fan_motor_efficiency = var_supply_fan_motor_efficiency # real var_supply_fan_motor_in_air_stream_fraction = 0.5 obj.supply_fan_motor_in_air_stream_fraction = var_supply_fan_motor_in_air_stream_fraction # alpha var_cooling_coil_type = "SingleSpeedDX" obj.cooling_coil_type = var_cooling_coil_type # object-list var_cooling_coil_availability_schedule_name = "object-list|Cooling Coil Availability Schedule Name" obj.cooling_coil_availability_schedule_name = var_cooling_coil_availability_schedule_name # real var_cooling_design_supply_air_temperature = 15.15 obj.cooling_design_supply_air_temperature = var_cooling_design_supply_air_temperature # real var_cooling_coil_gross_rated_total_capacity = 16.16 obj.cooling_coil_gross_rated_total_capacity = var_cooling_coil_gross_rated_total_capacity # real var_cooling_coil_gross_rated_sensible_heat_ratio = 0.75 obj.cooling_coil_gross_rated_sensible_heat_ratio = var_cooling_coil_gross_rated_sensible_heat_ratio # real var_cooling_coil_gross_rated_cop = 0.0001 obj.cooling_coil_gross_rated_cop = var_cooling_coil_gross_rated_cop # alpha var_heat_pump_heating_coil_type = "SingleSpeedDXHeatPump" obj.heat_pump_heating_coil_type = var_heat_pump_heating_coil_type # object-list var_heat_pump_heating_coil_availability_schedule_name = "object-list|Heat Pump Heating Coil Availability Schedule Name" obj.heat_pump_heating_coil_availability_schedule_name = var_heat_pump_heating_coil_availability_schedule_name # real var_heating_design_supply_air_temperature = 21.21 obj.heating_design_supply_air_temperature = var_heating_design_supply_air_temperature # real var_heat_pump_heating_coil_gross_rated_capacity = 0.0001 obj.heat_pump_heating_coil_gross_rated_capacity = var_heat_pump_heating_coil_gross_rated_capacity # real var_heat_pump_heating_coil_rated_cop = 0.0001 obj.heat_pump_heating_coil_rated_cop = var_heat_pump_heating_coil_rated_cop # real var_heat_pump_heating_minimum_outdoor_drybulb_temperature = -20.0 obj.heat_pump_heating_minimum_outdoor_drybulb_temperature = var_heat_pump_heating_minimum_outdoor_drybulb_temperature # real var_heat_pump_defrost_maximum_outdoor_drybulb_temperature = 3.61 obj.heat_pump_defrost_maximum_outdoor_drybulb_temperature = var_heat_pump_defrost_maximum_outdoor_drybulb_temperature # alpha var_heat_pump_defrost_strategy = "ReverseCycle" obj.heat_pump_defrost_strategy = var_heat_pump_defrost_strategy # alpha var_heat_pump_defrost_control = "Timed" obj.heat_pump_defrost_control = var_heat_pump_defrost_control # real var_heat_pump_defrost_time_period_fraction = 0.0 obj.heat_pump_defrost_time_period_fraction = var_heat_pump_defrost_time_period_fraction # alpha var_supplemental_heating_coil_type = "Electric" obj.supplemental_heating_coil_type = var_supplemental_heating_coil_type # object-list var_supplemental_heating_coil_availability_schedule_name = "object-list|Supplemental Heating Coil Availability Schedule Name" obj.supplemental_heating_coil_availability_schedule_name = var_supplemental_heating_coil_availability_schedule_name # real var_supplemental_heating_coil_capacity = 31.31 obj.supplemental_heating_coil_capacity = var_supplemental_heating_coil_capacity # real var_supplemental_heating_coil_maximum_outdoor_drybulb_temperature = 21.0 obj.supplemental_heating_coil_maximum_outdoor_drybulb_temperature = var_supplemental_heating_coil_maximum_outdoor_drybulb_temperature # real var_supplemental_gas_heating_coil_efficiency = 0.5 obj.supplemental_gas_heating_coil_efficiency = var_supplemental_gas_heating_coil_efficiency # real var_supplemental_gas_heating_coil_parasitic_electric_load = 0.0 obj.supplemental_gas_heating_coil_parasitic_electric_load = var_supplemental_gas_heating_coil_parasitic_electric_load # real var_maximum_outdoor_air_flow_rate = 0.0 obj.maximum_outdoor_air_flow_rate = var_maximum_outdoor_air_flow_rate # real var_minimum_outdoor_air_flow_rate = 0.0 obj.minimum_outdoor_air_flow_rate = var_minimum_outdoor_air_flow_rate # object-list var_minimum_outdoor_air_schedule_name = "object-list|Minimum Outdoor Air Schedule Name" obj.minimum_outdoor_air_schedule_name = var_minimum_outdoor_air_schedule_name # alpha var_economizer_type = "FixedDryBulb" obj.economizer_type = var_economizer_type # alpha var_economizer_lockout = "NoLockout" obj.economizer_lockout = var_economizer_lockout # real var_economizer_maximum_limit_drybulb_temperature = 40.4 obj.economizer_maximum_limit_drybulb_temperature = var_economizer_maximum_limit_drybulb_temperature # real var_economizer_maximum_limit_enthalpy = 41.41 obj.economizer_maximum_limit_enthalpy = var_economizer_maximum_limit_enthalpy # real var_economizer_maximum_limit_dewpoint_temperature = 42.42 obj.economizer_maximum_limit_dewpoint_temperature = var_economizer_maximum_limit_dewpoint_temperature # real var_economizer_minimum_limit_drybulb_temperature = 43.43 obj.economizer_minimum_limit_drybulb_temperature = var_economizer_minimum_limit_drybulb_temperature # object-list var_supply_plenum_name = "object-list|Supply Plenum Name" obj.supply_plenum_name = var_supply_plenum_name # object-list var_return_plenum_name = "object-list|Return Plenum Name" obj.return_plenum_name = var_return_plenum_name # alpha var_night_cycle_control = "StayOff" obj.night_cycle_control = var_night_cycle_control # object-list var_night_cycle_control_zone_name = "object-list|Night Cycle Control Zone Name" obj.night_cycle_control_zone_name = var_night_cycle_control_zone_name # alpha var_heat_recovery_type = "None" obj.heat_recovery_type = var_heat_recovery_type # real var_sensible_heat_recovery_effectiveness = 0.5 obj.sensible_heat_recovery_effectiveness = var_sensible_heat_recovery_effectiveness # real var_latent_heat_recovery_effectiveness = 0.5 obj.latent_heat_recovery_effectiveness = var_latent_heat_recovery_effectiveness # alpha var_humidifier_type = "None" obj.humidifier_type = var_humidifier_type # object-list var_humidifier_availability_schedule_name = "object-list|Humidifier Availability Schedule Name" obj.humidifier_availability_schedule_name = var_humidifier_availability_schedule_name # real var_humidifier_rated_capacity = 0.0 obj.humidifier_rated_capacity = var_humidifier_rated_capacity # real var_humidifier_rated_electric_power = 0.0 obj.humidifier_rated_electric_power = var_humidifier_rated_electric_power # object-list var_humidifier_control_zone_name = "object-list|Humidifier Control Zone Name" obj.humidifier_control_zone_name = var_humidifier_control_zone_name # real var_humidifier_setpoint = 50.0 obj.humidifier_setpoint = var_humidifier_setpoint # alpha var_return_fan = "Yes" obj.return_fan = var_return_fan # real var_return_fan_total_efficiency = 0.50005 obj.return_fan_total_efficiency = var_return_fan_total_efficiency # real var_return_fan_delta_pressure = 0.0 obj.return_fan_delta_pressure = var_return_fan_delta_pressure # real var_return_fan_motor_efficiency = 0.50005 obj.return_fan_motor_efficiency = var_return_fan_motor_efficiency # real var_return_fan_motor_in_air_stream_fraction = 0.5 obj.return_fan_motor_in_air_stream_fraction = var_return_fan_motor_in_air_stream_fraction idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].name, var_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].system_availability_schedule_name, var_system_availability_schedule_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].control_zone_or_thermostat_location_name, var_control_zone_or_thermostat_location_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_supply_air_flow_rate, var_cooling_supply_air_flow_rate) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heating_supply_air_flow_rate, var_heating_supply_air_flow_rate) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].no_load_supply_air_flow_rate, var_no_load_supply_air_flow_rate) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_operating_mode_schedule_name, var_supply_fan_operating_mode_schedule_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_placement, var_supply_fan_placement) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_total_efficiency, var_supply_fan_total_efficiency) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_delta_pressure, var_supply_fan_delta_pressure) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_motor_efficiency, var_supply_fan_motor_efficiency) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_fan_motor_in_air_stream_fraction, var_supply_fan_motor_in_air_stream_fraction) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_coil_type, var_cooling_coil_type) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_coil_availability_schedule_name, var_cooling_coil_availability_schedule_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_design_supply_air_temperature, var_cooling_design_supply_air_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_coil_gross_rated_total_capacity, var_cooling_coil_gross_rated_total_capacity) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_coil_gross_rated_sensible_heat_ratio, var_cooling_coil_gross_rated_sensible_heat_ratio) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].cooling_coil_gross_rated_cop, var_cooling_coil_gross_rated_cop) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_heating_coil_type, var_heat_pump_heating_coil_type) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_heating_coil_availability_schedule_name, var_heat_pump_heating_coil_availability_schedule_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heating_design_supply_air_temperature, var_heating_design_supply_air_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_heating_coil_gross_rated_capacity, var_heat_pump_heating_coil_gross_rated_capacity) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_heating_coil_rated_cop, var_heat_pump_heating_coil_rated_cop) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_heating_minimum_outdoor_drybulb_temperature, var_heat_pump_heating_minimum_outdoor_drybulb_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_defrost_maximum_outdoor_drybulb_temperature, var_heat_pump_defrost_maximum_outdoor_drybulb_temperature) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_defrost_strategy, var_heat_pump_defrost_strategy) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_defrost_control, var_heat_pump_defrost_control) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_pump_defrost_time_period_fraction, var_heat_pump_defrost_time_period_fraction) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_heating_coil_type, var_supplemental_heating_coil_type) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_heating_coil_availability_schedule_name, var_supplemental_heating_coil_availability_schedule_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_heating_coil_capacity, var_supplemental_heating_coil_capacity) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_heating_coil_maximum_outdoor_drybulb_temperature, var_supplemental_heating_coil_maximum_outdoor_drybulb_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_gas_heating_coil_efficiency, var_supplemental_gas_heating_coil_efficiency) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supplemental_gas_heating_coil_parasitic_electric_load, var_supplemental_gas_heating_coil_parasitic_electric_load) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].maximum_outdoor_air_flow_rate, var_maximum_outdoor_air_flow_rate) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].minimum_outdoor_air_flow_rate, var_minimum_outdoor_air_flow_rate) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].minimum_outdoor_air_schedule_name, var_minimum_outdoor_air_schedule_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_type, var_economizer_type) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_lockout, var_economizer_lockout) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_maximum_limit_drybulb_temperature, var_economizer_maximum_limit_drybulb_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_maximum_limit_enthalpy, var_economizer_maximum_limit_enthalpy) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_maximum_limit_dewpoint_temperature, var_economizer_maximum_limit_dewpoint_temperature) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].economizer_minimum_limit_drybulb_temperature, var_economizer_minimum_limit_drybulb_temperature) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].supply_plenum_name, var_supply_plenum_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_plenum_name, var_return_plenum_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].night_cycle_control, var_night_cycle_control) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].night_cycle_control_zone_name, var_night_cycle_control_zone_name) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].heat_recovery_type, var_heat_recovery_type) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].sensible_heat_recovery_effectiveness, var_sensible_heat_recovery_effectiveness) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].latent_heat_recovery_effectiveness, var_latent_heat_recovery_effectiveness) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_type, var_humidifier_type) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_availability_schedule_name, var_humidifier_availability_schedule_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_rated_capacity, var_humidifier_rated_capacity) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_rated_electric_power, var_humidifier_rated_electric_power) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_control_zone_name, var_humidifier_control_zone_name) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].humidifier_setpoint, var_humidifier_setpoint) self.assertEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_fan, var_return_fan) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_fan_total_efficiency, var_return_fan_total_efficiency) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_fan_delta_pressure, var_return_fan_delta_pressure) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_fan_motor_efficiency, var_return_fan_motor_efficiency) self.assertAlmostEqual(idf2.hvactemplatesystemunitaryheatpumpairtoairs[0].return_fan_motor_in_air_stream_fraction, var_return_fan_motor_in_air_stream_fraction)
463859
from torch.nn import Module from torch.autograd import Function import torch.nn.functional as F from torch.autograd import Variable import math import shapely from shapely.geometry import Polygon, MultiPoint import pixel_weights_cpu import pixel_weights_cuda import torch import numpy as np import cv2 class PiousFunction(Function): @staticmethod def forward(ctx, loc_p, loc_t, grid, k, is_hard): ctx.k = k if loc_p.is_cuda: ctx.grad_loc_memory = torch.zeros( (loc_p.size(0), 5), dtype=torch.float32).cuda() pious = pixel_weights_cuda.forward_cuda( loc_p, loc_t, grid, k, is_hard, ctx.grad_loc_memory) else: pious = pixel_weights_cpu.forward_cpu(loc_p, loc_t, grid, k) return pious @staticmethod def backward(ctx, grad_pious): grad_loc_memory = ctx.grad_loc_memory if grad_pious.is_cuda: grad_loc_p = pixel_weights_cuda.backward_cuda( grad_pious, grad_loc_memory) return grad_loc_p, None, None, None, None else: return None, None, None, None, None class Pious(Module): def __init__(self, k=10, is_hard=False): super(Pious, self).__init__() self.k = k self.is_hard = is_hard def forward(self, loc_p, loc_t, grid): pious = PiousFunction.apply( loc_p, loc_t, grid, self.k, self.is_hard) return pious class JaccardRFunction(Function): @staticmethod def forward(ctx, loc_p, loc_t, grid): if loc_p.is_cuda: pious = pixel_weights_cuda.overlap_r_cuda( loc_p, loc_t, grid) return pious else: assert 1==0, 'Not Support' class JaccardR(Module): def forward(self, loc_p, loc_t, grid): pious = JaccardRFunction.apply( loc_p, loc_t, grid) return pious def template_pixels(height, width): xv, yv = torch.meshgrid( [torch.arange(-100, width + 100), torch.arange(-100, height + 100)]) xy = torch.stack((xv, yv), -1) grid_xy = xy.reshape(-1, 2).float() + 0.5 return grid_xy def rbox2corners(rboxes): w_sin = 0.5 * rboxes[:, 2:3] * torch.sin(rboxes[:, 4:5]) w_cos = 0.5 * rboxes[:, 2:3] * torch.cos(rboxes[:, 4:5]) h_sin = 0.5 * rboxes[:, 3:4] * torch.sin(rboxes[:, 4:5]) h_cos = 0.5 * rboxes[:, 3:4] * torch.cos(rboxes[:, 4:5]) cornerx0 = rboxes[:, :1] + w_cos + h_sin cornery0 = rboxes[:, 1:2] - w_sin + h_cos cornerx1 = rboxes[:, :1] - w_cos + h_sin cornery1 = rboxes[:, 1:2] + w_sin + h_cos cornerx2 = rboxes[:, :1] - w_cos - h_sin cornery2 = rboxes[:, 1:2] + w_sin - h_cos cornerx3 = rboxes[:, :1] + w_cos - h_sin cornery3 = rboxes[:, 1:2] - w_sin - h_cos corners = torch.cat([cornerx0, cornery0, cornerx1, cornery1, cornerx2, cornery2, cornerx3, cornery3], -1) return corners def template_w_pixels(width): x = torch.tensor(torch.arange(-100, width + 100)) grid_x = x.float() + 0.5 return grid_x def rbox2corners_torch(loc): cos_w = 0.5 * loc[:, 2:3] * torch.cos(loc[:, 4:5]) sin_w = 0.5 * loc[:, 2:3] * torch.sin(loc[:, 4:5]) cos_h = 0.5 * loc[:, 3:4] * torch.cos(loc[:, 4:5]) sin_h = 0.5 * loc[:, 3:4] * torch.sin(loc[:, 4:5]) x0 = loc[:, 0:1] + cos_w + sin_h y0 = loc[:, 1:2] - sin_w + cos_h x1 = loc[:, 0:1] - cos_w + sin_h y1 = loc[:, 1:2] + sin_w + cos_h x2 = loc[:, 0:1] - cos_w - sin_h y2 = loc[:, 1:2] + sin_w - cos_h x3 = loc[:, 0:1] + cos_w - sin_h y3 = loc[:, 1:2] - sin_w - cos_h rbox = torch.cat((x0, y0, x1, y1, x2, y2, x3, y3), -1) return rbox def rbox2corners_cpu(cx, cy, cwidth, cheight, angle): x0 = cx + 0.5 * cwidth * math.cos(angle) + 0.5 * cheight * math.sin(angle) y0 = cy - 0.5 * cwidth * math.sin(angle) + 0.5 * cheight * math.cos(angle) x1 = cx - 0.5 * cwidth * math.cos(angle) + 0.5 * cheight * math.sin(angle) y1 = cy + 0.5 * cwidth * math.sin(angle) + 0.5 * cheight * math.cos(angle) x2 = cx - 0.5 * cwidth * math.cos(angle) - 0.5 * cheight * math.sin(angle) y2 = cy + 0.5 * cwidth * math.sin(angle) - 0.5 * cheight * math.cos(angle) x3 = cx + 0.5 * cwidth * math.cos(angle) - 0.5 * cheight * math.sin(angle) y3 = cy - 0.5 * cwidth * math.sin(angle) - 0.5 * cheight * math.cos(angle) rbox = np.array([[x0, y0], [x1, y1], [x2, y2], [x3, y3]], dtype=np.float32) return rbox # loc --> num x dim x 5 # grid_xy --> num x dim x 2 def kernel_function(dis, k, t): # clamp to avoid nan factor = torch.clamp(-k * (dis - t), -50, 50) return 1.0 - 1.0 / (torch.exp(factor) + 1) # loc --> num x dim x 5 # grid_xy --> num x dim x 2 def pixel_weights(loc, grid_xy, k): xx = torch.pow(loc[:, :, 0:2], 2).sum(2) yy = torch.pow(grid_xy, 2).sum(2) dis = xx + yy # dis - 2 * x * yT dis.addmm_(1, -2, loc[:, 0, 0:2], grid_xy[0].t()) dis = dis.clamp(min=1e-9).sqrt() # for numerical stability a1 = loc[:, :, -1] - torch.acos((grid_xy[:, :, 0] - loc[:, :, 0]) / dis) a2 = loc[:, :, -1] + torch.acos((grid_xy[:, :, 0] - loc[:, :, 0]) / dis) a = torch.where(loc[:, :, 1] > grid_xy[:, :, 1], a1, a2) dis_w = dis * torch.abs(torch.cos(a)) dis_h = dis * torch.abs(torch.sin(a)) # return dis_h pixel_weights = kernel_function( dis_w, k, loc[:, :, 2] / 2.) * kernel_function(dis_h, k, loc[:, :, 3] / 2.) return pixel_weights def PIoU(loc_p, loc_t, grid_xy, k=10): num = loc_p.size(0) dim = grid_xy.size(0) loc_pp = loc_p.unsqueeze(1).expand(num, dim, 5) loc_tt = loc_t.unsqueeze(1).expand(num, dim, 5) grid_xyxy = grid_xy.unsqueeze(0).expand(num, dim, 2) pixel_p_weights = pixel_weights(loc_pp, grid_xyxy, k) pixel_t_weights = pixel_weights(loc_tt, grid_xyxy, k) inter_pixel_area = pixel_p_weights * pixel_t_weights intersection_area = torch.sum(inter_pixel_area, 1) union_pixel_area = pixel_p_weights + \ pixel_t_weights - inter_pixel_area union_area = torch.sum(union_pixel_area, 1) pious = intersection_area / (union_area + 1e-9) return torch.sum(1 - pious), pious def HPIoU(loc_p, loc_t, grid_xy, k=10): num = loc_p.size(0) dim = grid_xy.size(0) loc_pp = loc_p.unsqueeze(1).expand(num, dim, 5) loc_tt = loc_t.unsqueeze(1).expand(num, dim, 5) grid_xyxy = grid_xy.unsqueeze(0).expand(num, dim, 2) area_p = loc_p[:, 2] * loc_p[:, 3] area_t = loc_t[:, 2] * loc_t[:, 3] pixel_p_weights = pixel_weights(loc_pp, grid_xyxy, k) pixel_t_weights = pixel_weights(loc_tt, grid_xyxy, k) inter_pixel_area = pixel_p_weights * pixel_t_weights intersection_area = torch.sum(inter_pixel_area, 1) union_area = area_p + area_t - intersection_area pious = intersection_area / (union_area + 1e-9) return torch.sum(1 - pious), pious def intersect(box_a, box_b): """ We resize both tensors to [A,B,2] without new malloc: [A,2] -> [A,1,2] -> [A,B,2] [B,2] -> [1,B,2] -> [A,B,2] Then we compute the area of intersect between box_a and box_b when the angles is same: 0. Args: box_a: (tensor) bounding boxes, Shape: [A, 5]. box_b: (tensor) bounding boxes, Shape: [B, 5]. Return: (tensor) intersection area, Shape: [A,B]. """ A = box_a.size(0) B = box_b.size(0) max_xy = torch.min(box_a[:, 2:4].unsqueeze(1).expand(A, B, 2), box_b[:, 2:4].unsqueeze(0).expand(A, B, 2)) min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) return inter[:, :, 0] * inter[:, :, 1] def get_grid(box_a, box_b): """ We resize both tensors to [A,B,2] without new malloc: [A,2] -> [A,1,2] -> [A,B,2] [B,2] -> [1,B,2] -> [A,B,2] Then we compute the area of intersect between box_a and box_b when the angles is same: 0. Args: box_a: (tensor) bounding boxes, Shape: [A, 5]. box_b: (tensor) bounding boxes, Shape: [B, 5]. Return: (tensor) intersection area, Shape: [A,B]. """ A = box_a.size(0) B = box_b.size(0) max_xy = torch.min(box_a[:, 2:4].unsqueeze(1).expand(A, B, 2), box_b[:, 2:4].unsqueeze(0).expand(A, B, 2)) min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) grid = torch.cat((min_xy, max_xy), -1) inter = torch.clamp((max_xy - min_xy), min=0) return grid, inter[:, :, 0] * inter[:, :, 1] def point_form(boxes): """ Convert prior_boxes to (xmin, ymin, xmax, ymax) representation for comparison to point form ground truth data. Args: boxes: (tensor) center-size default boxes from priorbox layers. Return: boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. """ return torch.cat((boxes[:, :2] - boxes[:, 2:4] / 2, # xmin, ymin boxes[:, :2] + boxes[:, 2:4] / 2, boxes[:, 4:5]), 1) # xmax, ymax def jaccard(box_a, box_b): inter = intersect(box_a, box_b) print('inter: ', inter) area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] union = area_a + area_b - inter return inter / (union + 1e-9) def test_jaccardr(): jaccardr_f = JaccardR() for item in range(100): print('item: ', item) loc_pxy = torch.randint(10, 300, [10, 2]).float() loc_pwh = torch.randint(10, 200, [10, 2]).float() loc_pa = torch.randint(-180, 180, [10, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) loc_txy = torch.randint(10, 300, [20, 2]).float() loc_twh = torch.randint(10, 200, [20, 2]).float() loc_ta = torch.randint(-180, 180, [20, 1]) / 180.0 * 3.141593 loc_t = torch.cat((loc_txy, loc_twh, loc_ta), -1) loc_p = loc_p.float() loc_t = loc_t.float() corners_p = rbox2corners_torch(loc_p) corners_t = rbox2corners_torch(loc_t) if torch.cuda.is_available(): print('------------pixel_weights_gpu test on gpu------------') corners_p = corners_p.cuda() corners_t = corners_t.cuda() # print('corners_p: ', corners_p.shape) # print('corners_t: ', corners_t.shape) jaccard_r_gpu = jaccardr_f(corners_p, corners_t) # print('jaccard_r_gpu: ', jaccard_r_gpu[jaccard_r_gpu > 0.001]) else: print('You device have not a GPU') print('..................polygon................') loc_p = loc_p.cpu().numpy() loc_t = loc_t.cpu().numpy() pious = [] for i in range(loc_p.shape[0]): for j in range(loc_t.shape[0]): corners_p = rbox2corners_cpu(loc_p[i][0], loc_p[i][1], loc_p[i] [2], loc_p[i][3], loc_p[i][4]) corners_t = rbox2corners_cpu(loc_t[j][0], loc_t[j][1], loc_t[j] [2], loc_t[j][3], loc_t[j][4]) p1 = Polygon(corners_p) p2 = Polygon(corners_t) inter_area = p1.intersection(p2).area iou = inter_area / (loc_p[i][2] * loc_p[i] [3] + loc_t[j][2] * loc_t[j][3] - inter_area) pious.append(round(iou, 4)) pious_np = np.array(pious) pious_np = pious_np.reshape(loc_p.shape[0], -1) # print('pious: ', pious_np[pious_np > 0.001]) gap = np.sum(np.abs(pious_np - jaccard_r_gpu.cpu().numpy())) if gap < 0.005: print('-------------->pass gap: ', gap) else: print('-------------->error gap') assert 1 == 0, gap def test_hiou(): jaccardr_f = JaccardR() loc_pxy = torch.randint(10, 300, [3, 2]).float() loc_pwh = torch.randint(10, 200, [3, 2]).float() loc_pa = torch.randint(-180, 180, [3, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) loc_txy = torch.randint(10, 300, [4, 2]).float() loc_twh = torch.randint(10, 200, [4, 2]).float() loc_ta = torch.randint(-180, 180, [4, 1]) / 180.0 * 3.141593 loc_t = torch.cat((loc_txy, loc_twh, loc_ta), -1) loc_p = loc_p.float() loc_t = loc_t.float() corners_p = rbox2corners_torch(loc_p) corners_t = rbox2corners_torch(loc_t) xmin_p, _ = torch.min(corners_p[:, 0::2], -1, keepdim=True) ymin_p, _ = torch.min(corners_p[:, 1::2], -1, keepdim=True) xmax_p, _ = torch.max(corners_p[:, 0::2], -1, keepdim=True) ymax_p, _ = torch.max(corners_p[:, 1::2], -1, keepdim=True) xmin_t, _ = torch.min(corners_t[:, 0::2], -1, keepdim=True) ymin_t, _ = torch.min(corners_t[:, 1::2], -1, keepdim=True) xmax_t, _ = torch.max(corners_t[:, 0::2], -1, keepdim=True) ymax_t, _ = torch.max(corners_t[:, 1::2], -1, keepdim=True) box_p = torch.cat((xmin_p, ymin_p, xmax_p, ymax_p), -1) print('ymin_p: ', ymin_p) print('corners_p: ', corners_p) box_t = torch.cat((xmin_t, ymin_t, xmax_t, ymax_t), -1) print('box_t: ', (box_t[:, 3] - box_t[:, 1]) * (box_t[:, 2] - box_t[:, 0])) overlaps = jaccard(box_p, box_t) corners_p = corners_p.cuda() corners_t = corners_t.cuda() jaccard_r_gpu = jaccardr_f(corners_p, corners_t) print('jaccard_r_gpu: ', jaccard_r_gpu) print('overlaps: ', overlaps) def corners_box_form(corners): xmin, _ = torch.min(corners[:, 0::2], -1, keepdim=True) ymin, _ = torch.min(corners[:, 1::2], -1, keepdim=True) xmax, _ = torch.max(corners[:, 0::2], -1, keepdim=True) ymax, _ = torch.max(corners[:, 1::2], -1, keepdim=True) corners_box = torch.cat((xmin, ymin, xmax, ymax), -1) return corners_box def jaccard_fast(box_a, box_b): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. Here we operate on ground truth boxes and default boxes. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,5] box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,5] Return: jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] """ A = box_a.size(0) B = box_b.size(0) max_xy = torch.min(box_a[:, 2:4].unsqueeze(1).expand(A, B, 2), box_b[:, 2:4].unsqueeze(0).expand(A, B, 2)) min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) grid = torch.cat((min_xy, max_xy), -1) inter = torch.clamp((max_xy - min_xy), min=0) inter_area = inter[:, :, 0] * inter[:, :, 1] area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter_area) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter_area) # [A,B] union = area_a + area_b - inter_area h_iou = inter_area / union # [A,B] return torch.cat((grid, h_iou.reshape(h_iou.size(0), -1, 1)), -1) def test_pious_fast(): jaccardr_f = JaccardR() loc_pxy = torch.randint(10, 300, [3, 2]).float() loc_pwh = torch.randint(10, 200, [3, 2]).float() loc_pa = torch.randint(-180, 180, [3, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) loc_txy = torch.randint(10, 300, [4, 2]).float() loc_twh = torch.randint(10, 200, [4, 2]).float() loc_ta = torch.randint(-180, 180, [4, 1]) / 180.0 * 3.141593 loc_t = torch.cat((loc_txy, loc_twh, loc_ta), -1) loc_p = loc_p.float() loc_t = loc_t.float() corners_p = rbox2corners_torch(loc_p) corners_t = rbox2corners_torch(loc_t) grid = jaccard_fast(corners_box_form(corners_p), corners_box_form(corners_t)) overlaps = jaccardr_f(loc_p.cuda(), loc_t.cuda(), grid.cuda()) print('grid: ', grid.shape) print('overlaps: ', overlaps) print('..................polygon................') loc_p = loc_p.cpu().numpy() loc_t = loc_t.cpu().numpy() pious = [] for i in range(loc_p.shape[0]): for j in range(loc_t.shape[0]): corners_p = rbox2corners_cpu(loc_p[i][0], loc_p[i][1], loc_p[i] [2], loc_p[i][3], loc_p[i][4]) corners_t = rbox2corners_cpu(loc_t[j][0], loc_t[j][1], loc_t[j] [2], loc_t[j][3], loc_t[j][4]) p1 = Polygon(corners_p) p2 = Polygon(corners_t) inter_area = p1.intersection(p2).area iou = inter_area / (loc_p[i][2] * loc_p[i] [3] + loc_t[j][2] * loc_t[j][3] - inter_area) pious.append(round(iou, 4)) pious_np = np.array(pious) pious_np = pious_np.reshape(loc_p.shape[0], -1) print('pious: ', pious_np) def test_pious(): for item in range(100): print('item: ', item) loc_pxy = torch.randint(10, 300, [10, 2]).float() loc_pwh = torch.randint(20, 200, [10, 2]).float() loc_pa = torch.randint(-180, 180, [10, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) loc_txy = torch.randint(10, 300, [10, 2]).float() loc_twh = torch.randint(20, 200, [10, 2]).float() loc_ta = torch.randint(-180, 180, [10, 1]) / 180.0 * 3.141593 loc_t = torch.cat((loc_txy, loc_twh, loc_ta), -1) grid_xy = template_pixels(512, 512) grid_x = template_w_pixels(512) num = loc_p.size(0) dim = grid_xy.size(0) loc_p = loc_p.float() loc_t = loc_t.float() grid_xy = grid_xy.float() loc_p = Variable(loc_p, requires_grad=True) piou_loss, pious_big = PIoU(loc_p, loc_t.data, grid_xy.data, 10) piou_loss.backward() grad_loc_p_big = loc_p.grad PiousF = Pious(10) # print('pious_big: ', pious_big) # print('grad_loc_p_big: ', grad_loc_p_big) if torch.cuda.is_available(): print('------------pixel_weights_gpu test on gpu------------') loc_p = loc_p.cuda() loc_t = loc_t.cuda() grid_xy = grid_xy.cuda() grid_x = grid_x.cuda() loc_p = Variable(loc_p, requires_grad=True) pious_gpu = PiousF(loc_p, loc_t, grid_x) # # print('pious_gpu: ', pious_gpu) piou = torch.sum(1 - pious_gpu) piou.backward() loc_p_grad = loc_p.grad print('gap piou: ', torch.sum(pious_big.cuda() - pious_gpu) / 10) # # print('gap: ', grad_loc_p_big, loc_p_grad) print('gap grad piou: ', torch.sum(grad_loc_p_big.cuda() - loc_p_grad) / 10) # print('grad: ') # print('grad: ', loc_p_grad) else: print('You device have not a GPU') def test_hpious(): for item in range(10): print('item: ', item) loc_pxy = torch.randint(10, 300, [10, 2]).float() loc_pwh = torch.randint(20, 200, [10, 2]).float() loc_pa = torch.randint(-180, 180, [10, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) loc_txy = torch.randint(10, 300, [10, 2]).float() loc_twh = torch.randint(20, 200, [10, 2]).float() loc_ta = torch.randint(-180, 180, [10, 1]) / 180.0 * 3.141593 loc_t = torch.cat((loc_txy, loc_twh, loc_ta), -1) grid_xy = template_pixels(512, 512) grid_x = template_w_pixels(512) num = loc_p.size(0) dim = grid_xy.size(0) loc_p = loc_p.float() loc_t = loc_t.float() grid_xy = grid_xy.float() loc_p = Variable(loc_p, requires_grad=True) hpiou_loss, hpious_big = HPIoU(loc_p, loc_t.data, grid_xy.data, 10) # print('hpious_big: ', hpious_big) hpiou_loss.backward() grad_loc_p_big = loc_p.grad HPiousF = Pious(k=10, is_hard=True) if torch.cuda.is_available(): print('------------pixel_weights_gpu test on gpu------------') loc_p = loc_p.cuda() loc_t = loc_t.cuda() grid_xy = grid_xy.cuda() grid_x = grid_x.cuda() loc_p = Variable(loc_p, requires_grad=True) hpious_gpu = HPiousF(loc_p, loc_t, grid_x) # print('hpious_gpu: ', hpious_gpu) piou = torch.sum(1 - hpious_gpu) piou.backward() loc_p_grad = loc_p.grad print('gap piou: ', torch.sum(hpious_big.cuda() - hpious_gpu) / 10) print('gap grad: ', grad_loc_p_big, loc_p_grad) print('gap grad piou: ', torch.sum(grad_loc_p_big.cuda() - loc_p_grad) / 10) # print('grad: ') # print('grad: ', loc_p_grad) else: print('You device have not a GPU') # print('..................polygon................') # loc_p = loc_p.detach().cpu().numpy() # loc_t = loc_t.detach().cpu().numpy() # pious = [] # for i in range(loc_p.shape[0]): # corners_p = rbox2corners_cpu(loc_p[i][0], loc_p[i][1], loc_p[i] # [2], loc_p[i][3], loc_p[i][4]) # corners_t = rbox2corners_cpu(loc_t[i][0], loc_t[i][1], loc_t[i] # [2], loc_t[i][3], loc_t[i][4]) # p1 = Polygon(corners_p) # p2 = Polygon(corners_t) # inter_area = p1.intersection(p2).area # iou = inter_area / (loc_p[i][2] * loc_p[i] # [3] + loc_t[i][2] * loc_t[i][3] - inter_area) # pious.append(round(iou, 4)) # print('pious: ', pious) def test_corners(): loc_pxy = torch.randint(10, 300, [3, 2]).float() loc_pwh = torch.randint(20, 200, [3, 2]).float() loc_pa = torch.randint(-180, 180, [3, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) corners_p = rbox2corners_torch(loc_p) print('corners_p: ', corners_p) rbox = loc_p.cpu().numpy() for item in range(3): point = cv2.boxPoints(((rbox[item][0], rbox[item][1]), (rbox[item][2], rbox[item][3]), rbox[item][4])) print('point: ', point) def test_resize(): loc_pxy = torch.randint(10, 300, [3, 2]).float() loc_pwh = torch.randint(20, 200, [3, 2]).float() loc_pa = torch.randint(-180, 180, [3, 1]) / 180.0 * 3.141593 loc_p = torch.cat((loc_pxy, loc_pwh, loc_pa), -1) corners_p = rbox2corners_torch(loc_p) loc_p_resize = loc_p[:, 0:4] * 0.25 print('loc_p_resize: ', loc_p_resize) corners_p_s = corners_p * 0.25 corners_p_s = corners_p_s.numpy() for item in range(3): box = np.int0([corners_p_s[item][0], corners_p_s[item][1], corners_p_s[item][2], corners_p_s[item][3], corners_p_s[item][4], corners_p_s[item][5], corners_p_s[item][6], corners_p_s[item][7]]) box = box.reshape([-1, 2]) rect = cv2.minAreaRect(box) rwidth, rheight = rect[1] rangle = rect[2] if rwidth > rheight: rangle = np.abs(rangle) else: temp = rwidth rwidth = rheight rheight = temp rangle = np.abs(rangle) + 90 rbox = [rect[0][0], rect[0][1], rwidth, rheight, rangle / 180.0 * 3.141593] print('rbox: ', rbox) if __name__ == '__main__': # test_jaccardr() # test_hiou() test_pious() # PIoU() # test_pious_fast() # test_hpious() # test_corners() # test_resize()
463860
import os import sublime from PHPUnitKit.plugin import _get_php_executable from PHPUnitKit.tests import unittest class TestGetPHPExecutable(unittest.TestCase): def setUp(self): super().setUp() self.versions_path = unittest.fixtures_path(os.path.join('get_php_executable', 'versions')) def test_returns_none_when_no_executable_found(self): self.assertIsNone(_get_php_executable(unittest.fixtures_path('foobar'), self.versions_path)) def test_can_retrieve_from_setting(self): expected = unittest.fixtures_path(os.path.join('get_php_executable', 'php')) actual = _get_php_executable(unittest.fixtures_path('foobar'), self.versions_path, expected) self.assertEqual(actual, expected) def test_setting_not_found_raises_exeption(self): with self.assertRaisesRegex(ValueError, 'phpunit\\.php_executable.*is not an executable file'): _get_php_executable( unittest.fixtures_path('foobar'), self.versions_path, unittest.fixtures_path(os.path.join('get_php_executable', 'foobar')) ) @unittest.mock.patch('PHPUnitKit.plugin.platform') def test_linux_get_from_php_version_file(self, platform): platform.return_value = 'linux' expected = unittest.fixtures_path(os.path.join('get_php_executable', 'versions', '7.3.0', 'bin', 'php')) actual = _get_php_executable( unittest.fixtures_path('get_php_executable'), self.versions_path, unittest.fixtures_path('get_php_executable') ) self.assertEqual(actual, expected) @unittest.mock.patch('PHPUnitKit.plugin.platform') def test_windows_get_from_php_version_file(self, platform): platform.return_value = 'windows' expected = unittest.fixtures_path(os.path.join('get_php_executable', 'versions', '7.3.0', 'php.exe')) actual = _get_php_executable( unittest.fixtures_path('get_php_executable'), self.versions_path, unittest.fixtures_path('get_php_executable') ) self.assertEqual(actual, expected) def test_invalid_version_file_number_raises_exception(self): with self.assertRaisesRegex(ValueError, 'not a valid version number'): _get_php_executable(unittest.fixtures_path('get_php_executable/invalid'), self.versions_path) def test_no_versions_path_raises_exception(self): with self.assertRaisesRegex(ValueError, 'is not set'): _get_php_executable(unittest.fixtures_path('get_php_executable'), None) def test_invalid_versions_path_raises_exception(self): with self.assertRaisesRegex(ValueError, 'does not exist or is not a valid directory'): _get_php_executable(unittest.fixtures_path('get_php_executable'), unittest.fixtures_path('foobar')) def test_non_executable_raises_exeption(self): if sublime.platform() == 'windows': actual = _get_php_executable( unittest.fixtures_path(os.path.join('get_php_executable', 'not_executable')), self.versions_path) expected = unittest.fixtures_path(os.path.join('get_php_executable', 'versions', '7.2.0', 'php.exe')) self.assertEqual(actual, expected) else: with self.assertRaisesRegex(ValueError, 'is not an executable file'): _get_php_executable( unittest.fixtures_path(os.path.join('get_php_executable', 'not_executable')), self.versions_path)
463952
import unittest import click from biolinkml.generators import graphqlgen from tests.test_scripts.environment import env from tests.utils.clicktestcase import ClickTestCase class GenGraphqlTestCase(ClickTestCase): testdir = "gengraphql" click_ep = graphqlgen.cli prog_name = "gen-graphql" env = env def test_help(self): self.do_test("--help", 'help') def test_meta(self): self.do_test([], 'meta.graphql') self.do_test('-f xsv', 'meta_error', expected_error=click.exceptions.BadParameter) if __name__ == '__main__': unittest.main()
463963
from houdini.data import AbstractDataCollection, db class BuddyList(db.Model): __tablename__ = 'buddy_list' penguin_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) buddy_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False, index=True) best_buddy = db.Column(db.Boolean, nullable=False, server_default=db.text("false")) class BuddyRequest(db.Model): __tablename__ = 'buddy_request' penguin_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) requester_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) class IgnoreList(db.Model): __tablename__ = 'ignore_list' penguin_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) ignore_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False, index=True) class Character(db.Model): __tablename__ = 'character' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30), nullable=False) gift_id = db.Column(db.ForeignKey('item.id', ondelete='CASCADE', onupdate='CASCADE')) stamp_id = db.Column(db.ForeignKey('stamp.id', ondelete='CASCADE', onupdate='CASCADE')) class CharacterBuddy(db.Model): __tablename__ = 'character_buddy' penguin_id = db.Column(db.ForeignKey('penguin.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) character_id = db.Column(db.ForeignKey('character.id', ondelete='CASCADE', onupdate='CASCADE'), primary_key=True, nullable=False) best_buddy = db.Column(db.Boolean, nullable=False, server_default=db.text("false")) class BuddyListCollection(AbstractDataCollection): __model__ = BuddyList __filterby__ = 'penguin_id' __indexby__ = 'buddy_id' class IgnoreListCollection(AbstractDataCollection): __model__ = IgnoreList __filterby__ = 'penguin_id' __indexby__ = 'ignore_id' class BuddyRequestCollection(AbstractDataCollection): __model__ = BuddyRequest __filterby__ = 'penguin_id' __indexby__ = 'requester_id' class CharacterCollection(AbstractDataCollection): __model__ = Character __filterby__ = 'id' __indexby__ = 'id' class CharacterBuddyCollection(AbstractDataCollection): __model__ = CharacterBuddy __filterby__ = 'penguin_id' __indexby__ = 'character_id'
464003
class JenkinsMetadata(object): """ This class is the model of the Jenkins data relating to the build that ran the tests or collected the metrics. This class is how the model is represented in the HTTP API """ def __init__(self, jenkins_job_id): self.jenkins_job_id = jenkins_job_id
464009
from django.test import TestCase class SampleTest(TestCase): def test_1_equals_1(self): self.assertEquals(1, 1)
464013
from opyoid.provider import Provider from opyoid.utils import InjectedT class FromInstanceProvider(Provider[InjectedT]): def __init__(self, instance: InjectedT) -> None: self._instance = instance def get(self) -> InjectedT: return self._instance
464040
from threading import Thread def my_function(): print("printing from thread") if __name__ == "__main__": threads = [Thread(target=my_function) for _ in range(10)] for thread in threads: thread.start() for thread in threads: thread.join()
464128
import os import mindmeld from telegram.ext import ( Updater, CommandHandler, MessageHandler, Filters, ConversationHandler, CallbackContext, ) import logging import requests from dotenv import load_dotenv url = "http://localhost:7150/parse" load_dotenv() updater = Updater(token=os.getenv('BOT_TOKEN'), use_context=True) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) dispatcher = updater.dispatcher def start(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text="Hello, I'm Journey. What can I do for you?") def message_received(update: Updater, context: CallbackContext): msg = update.message.text body = {"text": msg} response = requests.post(url, json=body) print(response.json()) context.bot.send_message(chat_id=update.effective_chat.id, text=response.json()["directives"][0].payload.text) message_handler = MessageHandler(Filters.text, message_received) dispatcher.add_handler(message_handler) start_handler = CommandHandler('start', start) dispatcher.add_handler(start_handler) updater.start_polling()
464154
import os import json import datetime from django.http import HttpResponse from django.views.generic import TemplateView from django.utils.safestring import mark_safe from django.utils import timezone from django.template.loader import render_to_string from person.models import Person from document.models import Dossier from document.models import Submitter from document.models import Kamervraag from document.models import Kamerstuk from document.views import TimelineKamervraagItem from document.views import TimelineKamerstukItem from government.models import Government from website import settings from stats.views import get_example_plot_html class HomeView(TemplateView): template_name = "website/index.html" context_object_name = "homepage" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) return context class ContactView(TemplateView): template_name = "website/contact.html" context_object_name = "contact" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['contact_email'] = settings.CONTACT_EMAIL return context def create_timeline_date(date): return { 'year': date.year, 'month': date.month, 'day': date.day } def get_dossier_timeline_json(request): governments = Government.objects.all() eras = [] for government in governments: if government.date_dissolved: end_date = government.date_dissolved else: end_date = timezone.now() text = { 'headline': government.name, 'text': government.name } era = { 'start_date': create_timeline_date(government.date_formed), 'end_date': create_timeline_date(end_date), 'text': text } eras.append(era) events = [] if 'dossier_pk' in request.GET: dossier = Dossier.objects.get(id=request.GET['dossier_pk']) for kamerstuk in dossier.kamerstukken: text = { 'headline': kamerstuk.type_short, 'text': kamerstuk.type_long } event = { 'start_date': create_timeline_date(kamerstuk.document.date_published), 'text': text } events.append(event) timeline_info = { 'events': events, 'eras': eras } timeline_json = json.dumps(timeline_info, sort_keys=True, indent=4) # print(timeline_json) return HttpResponse(timeline_json, content_type='application/json') class PlotExampleView(TemplateView): template_name = "website/plot_examples.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['plot_html'] = mark_safe(get_example_plot_html()) return context class DatabaseDumpsView(TemplateView): template_name = "website/database_dumps.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) backup_files = self.get_files(settings.DBBACKUP_STORAGE_OPTIONS['location']) context['backup_files'] = sorted(backup_files, key=lambda backup: backup['datetime_created'], reverse=True) return context @staticmethod def get_files(path): files = [] for (dirpath, dirnames, filenames) in os.walk(path): for file in filenames: if '.gitignore' in file or 'readme.txt' in file: continue filepath = os.path.join(dirpath, file) size = os.path.getsize(filepath) datetime_created = os.path.getctime(filepath) files.append({ 'file': file, 'size': int(size)/1024/1024, 'datetime_created': datetime.datetime.fromtimestamp(datetime_created) }) return files class CSVExportsView(TemplateView): template_name = "website/csv_exports.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) files = DatabaseDumpsView.get_files(settings.CSV_EXPORT_PATH) context['files'] = sorted(files, key=lambda file: file['datetime_created'], reverse=True) return context class PersonTimelineView(TemplateView): template_name = "website/items/person_timeline.html" @staticmethod def get_timeline_items(person, year=None): if year: year = int(year) submitters = Submitter.objects.filter(person=person, document__date_published__range=[datetime.date(year=year, day=1, month=1), datetime.date(year=year, day=31, month=12)]) else: submitters = Submitter.objects.filter(person=person) submitter_ids = list(submitters.values_list('id', flat=True)) timeline_items = [] kamervragen = Kamervraag.objects.filter(document__submitter__in=submitter_ids).select_related('document', 'kamerantwoord') for kamervraag in kamervragen: timeline_items.append(TimelineKamervraagItem(kamervraag)) kamerstukken = Kamerstuk.objects.filter(document__submitter__in=submitter_ids).select_related('document') for kamerstuk in kamerstukken: timeline_items.append(TimelineKamerstukItem(kamerstuk)) timeline_items = sorted(timeline_items, key=lambda items: items.date, reverse=True) return timeline_items def get_context_data(self, slug, year, **kwargs): year = int(year) context = super().get_context_data(**kwargs) person = Person.objects.get(slug=slug) timeline_items = [] has_next = True while len(timeline_items) == 0: timeline_items = PersonTimelineView.get_timeline_items(person, year) if timeline_items: break if year < 1996: has_next = False break year -= 1 if year == datetime.date.today().year: next_year = None else: next_year = year + 1 context['timeline_items'] = timeline_items context['person'] = person context['is_person_timeline'] = True context['previous_year'] = year - 1 context['next_year'] = next_year context['has_next'] = has_next return context def get_person_timeline_html(request): person = Person.objects.get(id=request.GET['person_id']) year = int(request.GET['year']) timeline_items = PersonTimelineView.get_timeline_items(person, year) if year == datetime.date.today().year: next_year = None else: next_year = year + 1 html = render_to_string('website/items/person_timeline.html', { 'timeline_items': timeline_items, 'person': person, 'is_person_timeline': True, 'previous_year': year-1, 'year': next_year, 'has_next': True }) response = json.dumps({'html': html}) return HttpResponse(response, content_type='application/json')
464181
def test_enter(player, limo): player.perform("enter limo") assert player.saw("You enter a fancy limo") assert player.saw("electric") def test_enter_and_exit(player, limo): player.perform("enter limo") player.forget() player.perform("go out") assert player.saw("Antechamber")
464205
from abc import ABC, abstractmethod from typing import Optional, Tuple import torch from torch import Tensor, nn from torch.distributions import Bernoulli, Categorical, Distribution, Normal from torch.nn import functional as F from ..prelude import Array, Index, Self from ..utils import Device class Policy(ABC): """Represents parameterized stochastic policies.""" def __init__(self, dist: Distribution) -> None: self.dist = dist self._action: Optional[Tensor] = None self._baction: Optional[Tensor] = None def action(self) -> Tensor: """Sample actions or returns cached actions.""" if self._action is None: self._action = self.sample() # If batch size == 1, flatten the action return self._action.squeeze(dim=0) def baction(self) -> Tensor: """Sample 'backwardable' actions by PyTorch's ``rsample``.""" if self._baction is None: self._baction = self.rsample() return self._baction.squeeze(dim=0) def set_action(self, action: Tensor) -> None: """Set cached actions.""" self._action = action @torch.no_grad() def sample(self) -> Tensor: """Sample actions with ``requires_grad=True``.""" return self.dist.sample() def rsample(self) -> Tensor: """Sample with reparameterization trick. Returned tensor is backwardable.""" return self.dist.rsample() def eval_action(self, deterministic: bool = False, to_numpy: bool = True) -> Array: """Sample actions for evaluation without setting cached actions.""" if deterministic: act = self.best_action() else: act = self.sample() if to_numpy: return act.squeeze_().cpu().numpy() else: return act.squeeze_() @abstractmethod def __getitem__(self, idx: Index) -> Self: pass @abstractmethod def best_action(self) -> Tensor: pass @abstractmethod def log_prob( self, action: Optional[Tensor] = None, use_baction: bool = False, ) -> Tensor: pass @abstractmethod def entropy(self) -> Tensor: pass @abstractmethod def detach(self) -> Self: pass class BernoulliPolicy(Policy): def __init__(self, *args, **kwargs) -> None: super().__init__(Bernoulli(*args, **kwargs)) self.dist: Bernoulli def best_action(self) -> Tensor: return self.dist.probs > 0.5 def log_prob( self, action: Optional[Tensor] = None, use_baction: bool = False, ) -> Tensor: if action is None: action = self.bactions() if use_baction else self.action() return self.dist.log_prob(action) def entropy(self) -> Tensor: return self.dist.entropy() def __getitem__(self, idx: Index) -> Self: return self.__class__(logits=self.dist.logits[idx]) def detach(self) -> Self: return self.__class__(logits=self.dist.logits.detach()) class CategoricalPolicy(Policy): def __init__(self, *args, **kwargs) -> None: super().__init__(Categorical(*args, **kwargs)) self.dist: Categorical def best_action(self) -> Tensor: return self.dist.probs.argmax(dim=-1) def log_prob( self, action: Optional[Tensor] = None, use_baction: bool = False, ) -> Tensor: if action is None: action = self.bactions() if use_baction else self.action() return self.dist.log_prob(action) def entropy(self) -> Tensor: return self.dist.entropy() def __getitem__(self, idx: Index) -> Self: return self.__class__(logits=self.dist.logits[idx]) def detach(self) -> Self: return self.__class__(logits=self.dist.logits.detach()) class GaussianPolicy(Policy): def __init__(self, *args, **kwargs) -> None: super().__init__(Normal(*args, **kwargs)) self.dist: Normal def best_action(self) -> Tensor: return self.dist.mean def entropy(self) -> Tensor: return self.dist.entropy().sum(-1) def log_prob( self, action: Optional[Tensor] = None, use_baction: bool = False, ) -> Tensor: if action is None: action = self.bactions() if use_baction else self.action() return self.dist.log_prob(action).sum(-1) def __getitem__(self, idx: Index) -> Self: return self.__class__(self.dist.mean[idx], self.dist.stddev[idx]) def detach(self) -> Self: return self.__class__(self.dist.mean.detach(), self.dist.stddev.detach()) class TanhGaussianPolicy(GaussianPolicy): def __init__(self, *args, epsilon: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self._pre_tanh: Optional[Tensor] = None self.epsilon = epsilon def sample(self) -> Tensor: pre_tanh = self.dist.sample().detach() self._pre_tanh = pre_tanh return torch.tanh(pre_tanh) def rsample(self) -> Tensor: res = self.dist.rsample() self._pre_tanh = res return torch.tanh(res) def best_action(self) -> Tensor: return torch.tanh(self.dist.mean) def log_prob( self, action: Optional[Tensor] = None, use_baction: bool = False, ) -> Tensor: if action is None: action = self._baction if use_baction else self.action() if self._pre_tanh is None: pre_tanh = torch.log((1.0 + action) / (1.0 - action)) / 2 else: pre_tanh = self._pre_tanh log_n = self.dist.log_prob(pre_tanh).sum(-1) log_da_du = torch.log(1.0 - action ** 2 + self.epsilon).sum(-1) return log_n - log_da_du class PolicyDist(ABC, nn.Module): def __init__(self, action_dim: int, *args, **kwargs) -> None: super().__init__() self.action_dim = action_dim @property def input_dim(self) -> int: return self.action_dim @abstractmethod def forward(self, t: Tensor) -> Policy: pass class BernoulliDist(PolicyDist): """Bernoulli policy with no learnable parameter""" def __init__(self, action_dim: int = 1, *args, **kwargs) -> None: super().__init__(action_dim) def forward(self, x: Tensor) -> Policy: return BernoulliPolicy(logits=x) class CategoricalDist(PolicyDist): """Categorical policy with no learnable parameter""" def forward(self, x: Tensor) -> Policy: return CategoricalPolicy(logits=x) class GaussinanDist(PolicyDist): """Gaussian policy which takes both mean and stdev as inputs.""" @property def input_dim(self) -> int: return self.action_dim * 2 def forward(self, x: Tensor) -> Policy: size = x.size(1) // 2 mean, stddev = x[:, :size], x[:, size:] return GaussianPolicy(mean, F.softplus(stddev)) class TanhGaussianDist(GaussinanDist): """Tanh clipped Gaussian policy.""" def __init__( self, action_dim: int, *args, logstd_range: Tuple[float, float] = (-20.0, 2.0), **kwargs, ) -> None: super().__init__(action_dim) self.logstd_range = logstd_range def forward(self, x: Tensor) -> Policy: size = x.size(1) // 2 mu, logstd = x[:, :size], x[:, size:] std = torch.exp(logstd.clamp_(*self.logstd_range)) return TanhGaussianPolicy(mu, std) class SeparateStdGaussianDist(PolicyDist): """Gaussian policy which takes only mean as an input, and has a standard deviation independent with states, as a lernable parameter. """ def __init__(self, action_dim: int, device: Device, *args, **kwargs) -> None: super().__init__(action_dim) self.stddev = nn.Parameter(device.zeros(action_dim)) def forward(self, x: Tensor) -> Policy: return GaussianPolicy(x, F.softplus(self.stddev)) class PerOptionStdGaussianDist(PolicyDist): """The same as `SeparateStdGaussianDist`, but has a dimention for options""" def __init__( self, action_dim: int, device: Device, *args, noptions: int = 1, **kwargs ) -> None: super().__init__(action_dim) self.stddev = nn.Parameter(device.zeros((noptions, action_dim))) def forward(self, x: Tensor) -> Policy: return GaussianPolicy(x, F.softplus(self.stddev))
464211
import torch.nn as nn import torch.nn.functional as F from sodium.utils import setup_logger from sodium.base import BaseModel logger = setup_logger(__name__) class MNISTModel(BaseModel): def __init__(self, dropout_value=0.08): self.dropout_value = dropout_value # dropout value super(MNISTModel, self).__init__() # Input Block self.convblock1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=14, kernel_size=(3, 3), padding=0, bias=False), nn.BatchNorm2d(14), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 26 # CONVOLUTION BLOCK 1 self.convblock2 = nn.Sequential( nn.Conv2d(in_channels=14, out_channels=30, kernel_size=(3, 3), padding=0, bias=False), nn.BatchNorm2d(30), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 24 # TRANSITION BLOCK 1 self.convblock3 = nn.Sequential( nn.Conv2d(in_channels=30, out_channels=10, kernel_size=(1, 1), padding=0, bias=False), ) # output_size = 24 self.pool1 = nn.MaxPool2d(2, 2) # output_size = 12 # CONVOLUTION BLOCK 2 self.convblock4 = nn.Sequential( nn.Conv2d(in_channels=10, out_channels=14, kernel_size=(3, 3), padding=0, bias=False), nn.BatchNorm2d(14), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 10 self.convblock5 = nn.Sequential( nn.Conv2d(in_channels=14, out_channels=15, kernel_size=(3, 3), padding=0, bias=False), nn.BatchNorm2d(15), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 8 self.convblock6 = nn.Sequential( nn.Conv2d(in_channels=15, out_channels=15, kernel_size=(3, 3), padding=0, bias=False), nn.BatchNorm2d(15), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 6 # OUTPUT BLOCK self.gap = nn.Sequential( nn.AvgPool2d(kernel_size=6) ) # output_size = 1 self.convblock7 = nn.Sequential( nn.Conv2d(in_channels=15, out_channels=15, kernel_size=(1, 1), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(15), nn.Dropout(self.dropout_value) ) self.convblock8 = nn.Sequential( nn.Conv2d(in_channels=15, out_channels=10, kernel_size=(1, 1), padding=0, bias=False), ) self.dropout = nn.Dropout(self.dropout_value) def forward(self, x): x = self.convblock1(x) x = self.convblock2(x) x = self.convblock3(x) x = self.pool1(x) x = self.convblock4(x) x = self.convblock5(x) x = self.convblock6(x) x = self.gap(x) x = self.convblock7(x) x = self.convblock8(x) x = x.view(-1, 10) return F.log_softmax(x, dim=-1) class CIFAR10Model(BaseModel): def __init__(self, dropout_value=0.25): self.dropout_value = dropout_value # dropout value super(CIFAR10Model, self).__init__() # Input Block self.convblock1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 32 # CONVOLUTION BLOCK 1 self.convblock2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 32 # TRANSITION BLOCK 1 self.convblock3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(1, 1), padding=0, bias=False), ) # output_size = 32 self.pool1 = nn.MaxPool2d(2, 2) # output_size = 16 # CONVOLUTION BLOCK 2 # DEPTHWISE CONVOLUTION AND POINTWISE CONVOLUTION self.depthwise1 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=0, groups=32, bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 16 self.convblock4 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(1, 1), padding=0, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 16 # TRANSITION BLOCK 2 self.pool2 = nn.MaxPool2d(2, 2) # output_size = 8 # CONVOLUTION BLOCK 3 self.convblock5 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=4, dilation=2, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 11 self.convblock6 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Dropout(self.dropout_value) ) # output_size = 11 # TRANSITION BLOCK 3 self.pool3 = nn.MaxPool2d(2, 2) # output_size = 5 # OUTPUT BLOCK self.gap = nn.Sequential( nn.AvgPool2d(kernel_size=5) ) # output_size = 1 self.convblock7 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(1, 1), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(128), nn.Dropout(self.dropout_value) ) self.convblock8 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=10, kernel_size=(1, 1), padding=0, bias=False), ) self.dropout = nn.Dropout(self.dropout_value) def forward(self, x): x = self.convblock1(x) x = self.convblock2(x) x = self.convblock3(x) x = self.pool1(x) x = self.depthwise1(x) x = self.convblock4(x) x = self.pool2(x) x = self.convblock5(x) x = self.convblock6(x) x = self.pool3(x) x = self.gap(x) x = self.convblock7(x) x = self.convblock8(x) x = x.view(-1, 10) return F.log_softmax(x, dim=-1)
464236
import cartography.intel.digitalocean.platform import tests.data.digitalocean.platform TEST_UPDATE_TAG = 123456789 def test_transform_and_load_account(neo4j_session): account_res = tests.data.digitalocean.platform.ACCOUNT_RESPONSE """ Test that we can correctly transform and load DOAccount nodes to Neo4j. """ account = cartography.intel.digitalocean.platform.transform_account(account_res) cartography.intel.digitalocean.platform.load_account(neo4j_session, account, TEST_UPDATE_TAG) query = """ MATCH(a:DOAccount{id:{AccountId}}) RETURN a.id, a.uuid, a.droplet_limit, a.floating_ip_limit, a.status, a.lastupdated """ nodes = neo4j_session.run( query, AccountId=account_res.uuid, ) actual_nodes = { ( n['a.id'], n['a.uuid'], n['a.droplet_limit'], n['a.floating_ip_limit'], n['a.status'], n['a.lastupdated'], ) for n in nodes } expected_nodes = { ( account_res.uuid, account_res.uuid, account_res.droplet_limit, account_res.floating_ip_limit, account_res.status, TEST_UPDATE_TAG, ), } assert actual_nodes == expected_nodes
464248
from textwrap import dedent from tests import check_as_expected ROOT = 'superhelp.helpers.print_help.' def test_misc(): test_conf = [ ( dedent("""\ pet = 'cat' """), { ROOT + 'print_overview': 0, } ), ( dedent("""\ pet = 'cat' print(pet) """), { ROOT + 'print_overview': 1, } ), ( dedent("""\ for i in range(2): print('Hi') """), { ROOT + 'print_overview': 1, } ), ( dedent("""\ for i in range(2): print(f'Hi {i}') """), { ROOT + 'print_overview': 1, } ), ( dedent("""\ print('Hi') print('Hi') print('Hi') """), { ROOT + 'print_overview': 1, } ), ( dedent("""\ p = print p('Hi') p('Hi') """), { ROOT + 'print_overview': 1, } ), ] check_as_expected(test_conf, execute_code=True) check_as_expected(test_conf, execute_code=False) # test_misc()
464259
from typing import List, Tuple, Union import numpy as np from ...utils.geometry import project_points_onto_plane def displayed_plane_from_nd_line_segment( start_point: np.ndarray, end_point: np.ndarray, dims_displayed: Union[List[int], np.ndarray], ) -> Tuple[np.ndarray, np.ndarray]: """Get the plane defined by start_point and the normal vector that goes from start_point to end_point. Note the start_point and end_point are nD and the returned plane is in the displayed dimensions (i.e., 3D). Parameters ---------- start_point : np.ndarray The start point of the line segment in nD coordinates. end_point : np.ndarray The end point of the line segment in nD coordinates.. dims_displayed : Union[List[int], np.ndarray] The dimensions of the data array currently in view. Returns ------- plane_point : np.ndarray The point on the plane that intersects the click ray. This is returned in data coordinates with only the dimensions that are displayed. plane_normal : np.ndarray The normal unit vector for the plane. It points in the direction of the click in data coordinates. """ plane_point = start_point[dims_displayed] end_position_view = end_point[dims_displayed] ray_direction = end_position_view - plane_point plane_normal = ray_direction / np.linalg.norm(ray_direction) return plane_point, plane_normal def drag_data_to_projected_distance( start_position, end_position, view_direction, vector ): """Calculate the projected distance between two mouse events. Project the drag vector between two mouse events onto a 3D vector specified in data coordinates. The general strategy is to 1) find mouse drag start and end positions, project them onto a pseudo-canvas (a plane aligned with the canvas) in data coordinates. 2) project the mouse drag vector onto the (normalised) vector in data coordinates Parameters ---------- start_position : np.ndarray Starting point of the drag vector in data coordinates end_position : np.ndarray End point of the drag vector in data coordinates view_direction : np.ndarray Vector defining the plane normal of the plane onto which the drag vector is projected. vector : np.ndarray (3,) unit vector or (n, 3) array thereof on which to project the drag vector from start_event to end_event. This argument is defined in data coordinates. Returns ------- projected_distance : (1, ) or (n, ) np.ndarray of float """ # enforce at least 2d input vector = np.atleast_2d(vector) # Store the start and end positions in world coordinates start_position = np.asarray(start_position) end_position = np.asarray(end_position) # Project the start and end positions onto a pseudo-canvas, a plane # parallel to the rendered canvas in data coordinates. end_position_canvas, _ = project_points_onto_plane( end_position, start_position, view_direction ) # Calculate the drag vector on the pseudo-canvas. drag_vector_canvas = np.squeeze(end_position_canvas - start_position) # Project the drag vector onto the specified vector(s), return the distance return np.einsum('j, ij -> i', drag_vector_canvas, vector).squeeze()
464283
import numpy as np import neorl.benchmarks.cec17 as functions #import all cec17 functions import neorl.benchmarks.classic as classics #import all classical functions from neorl.benchmarks.classic import ackley, levy, bohachevsky #import specific functions from neorl.benchmarks.cec17 import f3, f10, f21 #import cec17 specific functions from neorl.benchmarks import bench_2dplot #import the built-in plotter d1 = 2 #set dimension for classical functions d2 = 10 #set dimension for cec functions (choose between 2, 10, 20, 30, 50 or 100) print('------------------------------------------------------') print('Classical Functions') print('------------------------------------------------------') for f in classics.all_functions: sample = np.random.uniform(low=0, high=10, size=d1) y = f(sample) print('Function: {}, x={}, y={}'.format(f.__name__, np.round(sample,2), np.round(y,2))) print('------------------------------------------------------') print('CEC2017 Functions') print('------------------------------------------------------') for f in functions.all_functions: sample = np.random.uniform(low=-10, high=10, size=d2) y = f(sample) print('Function: {}, x={}, y={}'.format(f.__name__, np.round(sample,2), np.round(y,2))) print('------------------------------------------------------') print('Function Plotter') print('------------------------------------------------------') bench_2dplot(f3, domain=(-50,50), points=60) bench_2dplot(f10, savepng='ex4_f10.png') bench_2dplot(f21, savepng='ex4_f21.png') bench_2dplot(ackley, savepng='ex4_ackley.png') bench_2dplot(levy, domain=(-10,10)) bench_2dplot(bohachevsky, points=50) #------------------------------------------------------------------------------ #NOTE: CEC'17 functions: f11-f20, f29, f30 are not defined for d=2 dimensions, #so the plotter will FAIL for these functions #------------------------------------------------------------------------------
464326
import sublime from .typing import Optional, Union class ProgressReporter: def __init__(self, title: str) -> None: self.title = title self._message = None # type: Optional[str] self._percentage = None # type: Union[None, int, float] def __del__(self) -> None: pass def _render(self) -> str: result = self.title if self._message: result += ': ' + self._message if self._percentage: fmt = ' ({:.1f}%)' if isinstance(self._percentage, float) else ' ({}%)' result += fmt.format(self._percentage) return result def __call__(self, message: Optional[str], percentage: Union[None, int, float]) -> None: if percentage is not None: self._percentage = percentage if message is not None: self._message = message class ViewProgressReporter(ProgressReporter): def __init__(self, view: sublime.View, key: str, title: str, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__init__(title) self._view = view self._key = key self.__call__(message, percentage) def __del__(self) -> None: self._view.erase_status(self._key) super().__del__() def __call__(self, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__call__(message, percentage) self._view.set_status(self._key, self._render()) class WindowProgressReporter(ProgressReporter): def __init__(self, window: sublime.Window, key: str, title: str, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__init__(title) self._window = window self._key = key self.__call__(message, percentage) def __del__(self) -> None: for view in self._window.views(): view.erase_status(self._key) super().__del__() def __call__(self, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__call__(message, percentage) display = self._render() for view in self._window.views(): view.set_status(self._key, display) class ApplicationProgressReporter(ProgressReporter): def __init__(self, key: str, title: str, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__init__(title) self._key = key self.__call__(message, percentage) def __del__(self) -> None: for window in sublime.windows(): for view in window.views(): view.erase_status(self._key) super().__del__() def __call__(self, message: Optional[str] = None, percentage: Union[None, int, float] = None) -> None: super().__call__(message, percentage) display = self._render() for window in sublime.windows(): for view in window.views(): view.set_status(self._key, display)
464336
import ctypes from sys import platform as _platform_name if _platform_name.startswith('win'): time_t = ctypes.c_uint32 else: time_t = ctypes.c_uint64 class DSPROJECT(ctypes.Structure): _fields_ = [("dsapiVersionNo", ctypes.c_int), ("sessionId", ctypes.c_int), ("valueMark", ctypes.c_ubyte), ("fieldMark", ctypes.c_ubyte)] class DSJOB(ctypes.Structure): _fields_ = [("hProject", ctypes.POINTER(DSPROJECT)), ("serverJobHandle", ctypes.c_char_p), ("logData", ctypes.c_char_p), ("logDataLen", ctypes.c_int), ("logDataPsn", ctypes.c_int)] class _DSJOBINFO(ctypes.Union): _fields_ = [("jobStatus", ctypes.c_int), ("jobController", ctypes.c_char_p), ("jobStartTime", time_t), ("jobWaveNumber", ctypes.c_int), ("userStatus", ctypes.c_char_p), ("stageList", ctypes.POINTER(ctypes.c_char)), ("paramList", ctypes.POINTER(ctypes.c_char)), ("jobName", ctypes.c_char_p), ("jobControl", ctypes.c_int), ("jobPid", ctypes.c_int), ("jobLastTime", time_t), ("jobInvocations", ctypes.POINTER(ctypes.c_char)), ("jobInterimStatus", ctypes.c_int), ("jobInvocationId", ctypes.c_char_p), ("jobDesc", ctypes.c_char_p), ("stageList2", ctypes.POINTER(ctypes.c_char)), ("jobElapsed", ctypes.c_int), ("jobDMIService", ctypes.c_int), ("jobMultiInvokable", ctypes.c_int), ("jobFullDesc", ctypes.c_char_p), ("jobRestartable", ctypes.c_int)] class DSJOBINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSJOBINFO)] class _DSPROJECTINFO(ctypes.Union): _fields_ = [("jobList", ctypes.POINTER(ctypes.c_char)), ("projectName", ctypes.c_char_p), ("projectPath", ctypes.c_char_p), ("hostName", ctypes.c_char_p), ("installTag", ctypes.c_char_p), ("tcpPort", ctypes.c_char_p)] class DSPROJECTINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSPROJECTINFO)] class DSLOGEVENT(ctypes.Structure): _fields_ = [("eventId", ctypes.c_int), ("timestamp", time_t), ("type", ctypes.c_int), ("message", ctypes.c_char_p)] class DSLOGDETAILFULL(ctypes.Structure): _fields_ = [("eventId", ctypes.c_int), ("timestamp", time_t), ("type", ctypes.c_int), ("username", ctypes.c_char_p), ("fullMessage", ctypes.POINTER(ctypes.c_char)), ("messageId", ctypes.c_char_p), ("invocationId", ctypes.c_char_p)] class DSLOGDETAIL(ctypes.Structure): _fields_ = [("eventId", ctypes.c_int), ("timestamp", time_t), ("type", ctypes.c_int), ("username", ctypes.c_char_p), ("fullMessage", ctypes.POINTER(ctypes.c_char))] class _DSPARAM(ctypes.Union): _fields_ = [("pString", ctypes.c_char_p), ("pEncrypt", ctypes.c_char_p), ("pInt", ctypes.c_int), ("pFloat", ctypes.c_float), ("pPath", ctypes.c_char_p), ("pListValue", ctypes.c_char_p), ("pDate", ctypes.c_char_p), ("pTime", ctypes.c_char_p)] class DSPARAM(ctypes.Structure): _fields_ = [("paramType", ctypes.c_int), ("paramValue", _DSPARAM)] class DSPARAMINFO(ctypes.Structure): _fields_ = [("defaultValue", DSPARAM), ("helpText", ctypes.c_char_p), ("paramPrompt", ctypes.c_char_p), ("paramType", ctypes.c_int), ("desDefaultValue", DSPARAM), ("listValues", ctypes.c_char_p), ("desListValues", ctypes.c_char_p), ("promptAtRun", ctypes.c_int)] class _DSREPORTINFO(ctypes.Union): _fields_ = [("reportText", ctypes.c_char_p)] class DSREPORTINFO(ctypes.Structure): _fields_ = [("reportType", ctypes.c_int), ("info", _DSREPORTINFO)] class DSREPOSUSAGEJOB(ctypes.Structure): pass DSREPOSUSAGEJOB._fields_ = [("jobname", ctypes.c_char_p), ("jobtype", ctypes.c_int), ("nextjob", ctypes.POINTER(DSREPOSUSAGEJOB)), ("childjob", ctypes.POINTER(DSREPOSUSAGEJOB))] class _DSREPOSUSAGE(ctypes.Union): _fields_ = [("jobs", ctypes.POINTER(DSREPOSUSAGEJOB))] class DSREPOSUSAGE(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSREPOSUSAGE)] class DSREPOSJOBINFO(ctypes.Structure): pass DSREPOSJOBINFO._fields_ = [("jobname", ctypes.c_char_p), ("jobtype", ctypes.c_int), ("nextjob", ctypes.POINTER(DSREPOSJOBINFO))] class _DSREPOSINFO(ctypes.Union): _fields_ = [("jobs", ctypes.POINTER(DSREPOSJOBINFO))] class DSREPOSINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSREPOSINFO)] class _DSSTAGEINFO(ctypes.Union): _fields_ = [("lastError", DSLOGDETAIL), ("typeName", ctypes.c_char_p), ("inRowNum", ctypes.c_int), ("linkList", ctypes.POINTER(ctypes.c_char)), ("stageName", ctypes.c_char_p), ("varList", ctypes.POINTER(ctypes.c_char)), ("stageStartTime", time_t), ("stageEndTime", time_t), ("linkTypes", ctypes.POINTER(ctypes.c_char)), ("stageDesc", ctypes.c_char_p), ("instList", ctypes.POINTER(ctypes.c_char)), ("cpuList", ctypes.POINTER(ctypes.c_char)), ("stageElapsed", ctypes.c_char_p), ("pidList", ctypes.POINTER(ctypes.c_char)), ("stageStatus", ctypes.c_int), ("custInfoList", ctypes.POINTER(ctypes.c_char))] class DSSTAGEINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSSTAGEINFO)] class _DSLINKINFO(ctypes.Union): _fields_ = [("lastError", DSLOGDETAIL), ("rowCount", ctypes.c_int), ("linkName", ctypes.c_char_p), ("linkSQLState", ctypes.c_char_p), ("linkDBMSCode", ctypes.c_char_p), ("linkDesc", ctypes.c_char_p), ("linkedStage", ctypes.c_char_p), ("rowCountList", ctypes.POINTER(ctypes.c_char))] class DSLINKINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSLINKINFO)] class _DSVARINFO(ctypes.Union): _fields_ = [("varValue", ctypes.c_char_p), ("varDesc", ctypes.c_char_p)] class DSVARINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSVARINFO)] class _DSCUSTINFO(ctypes.Union): _fields_ = [("custInfoValue", ctypes.c_char_p), ("custInfoDesc", ctypes.c_char_p)] class DSCUSTINFO(ctypes.Structure): _fields_ = [("infoType", ctypes.c_int), ("info", _DSCUSTINFO)]
464346
import os.path import unittest import nbformat from nbparameterise import code, Parameter samplenb = os.path.join(os.path.dirname(__file__), 'sample.ipynb') class BasicTestCase(unittest.TestCase): def setUp(self): with open(samplenb) as f: self.nb = nbformat.read(f, as_version=4) self.params = code.extract_parameters(self.nb) def test_extract(self): assert self.params == [ Parameter('a', str, "Some text"), Parameter('b', int, 12), Parameter('b2', int, -7), Parameter('c', float, 14.0), Parameter('d', bool, False), Parameter('e', list, [0, 1.0, True, "text", [0, 1]]), Parameter('f', dict, {0: 0, "item": True, "dict": {0: "text"}}), ] assert self.params[4].comment == '# comment:bool' assert self.params[6].comment == '# comment:dict' assert self.params[3].metadata == {'display_name': 'Sea'} def test_rebuild(self): from_form = [ self.params[0].with_value("New text"), self.params[1].with_value(21), self.params[2].with_value(-3), self.params[3].with_value(0.25), self.params[4].with_value(True), ] nb = code.replace_definitions(self.nb, from_form, execute=False) assert "# comment:bool" in nb.cells[0].source ns = {} exec(nb.cells[0].source, ns) assert ns['a'] == "New text" assert ns['b'] == 21 assert ns['b2'] == -3 assert ns['c'] == 0.25 assert ns['d'] == True def test_new_values(self): params = code.parameter_values(self.params, a = "New text", c = 12.0 ) assert [p.name for p in params] == ['a', 'b', 'b2', 'c', 'd', 'e', 'f'] assert params[0].value == 'New text' assert params[1].value == 12 assert params[3].value == 12.0 assert isinstance(params[3].value, float) assert params[4].value == False def test_parameter_repr(): p = Parameter('days', int, 7, metadata={'foo': 'boo'}, comment='# Days to show') p2 = eval(repr(p)) # The repr should eval to an identical Parameter assert p2 == p assert p2.metadata == p.metadata assert p2.comment == p.comment
464347
from jiraauth import jclient import debugmode """ This script was used to copy target versions (customfield_10304) into the fix version field. It's a decent example of how to iterate over search results and update issues in the result set """ i = 0 maxResults=50 num = 50 while i < num: num, results = jclient.search_issues_with_total('"Target Version/s" is not EMPTY and status not in (Resolved, Closed)', startAt=i) for issue in results: print "checking " + issue.key newFixVersions = None for target_version in issue.fields.customfield_10304: if not len([ x for x in issue.fields.fixVersions if x.id == target_version.id ]): if not newFixVersions: newFixVersions = [ x for x in issue.fields.fixVersions ] newFixVersions.append(target_version) if newFixVersions: print "Updating " + issue.key + " was " + \ ",".join(sorted([x.name for x in issue.fields.fixVersions ])) + \ " now " + ",".join(sorted([x.name for x in newFixVersions ])) issue.update(fixVersions=[ { 'name': x.name } for x in newFixVersions ]) i += maxResults print i
464400
from datasets.base.factory import DatasetFactory from datasets.base.video.dataset import VideoDataset from datasets.types.specialized_dataset import SpecializedVideoDatasetType from datasets.base.video.filter.func import apply_filters_on_video_dataset_ from datasets.MOT.dataset import MultipleObjectTrackingDataset_MemoryMapped from typing import List __all__ = ['MultipleObjectTrackingDatasetFactory'] class MultipleObjectTrackingDatasetFactory(DatasetFactory): def __init__(self, seeds: list): super(MultipleObjectTrackingDatasetFactory, self).__init__(seeds, VideoDataset, SpecializedVideoDatasetType.MultipleObjectTracking, apply_filters_on_video_dataset_, SpecializedVideoDatasetType.MultipleObjectTracking, MultipleObjectTrackingDataset_MemoryMapped) def construct(self, filters: list=None, cache_base_format: bool=True, dump_human_readable: bool=False) -> List[MultipleObjectTrackingDataset_MemoryMapped]: return super(MultipleObjectTrackingDatasetFactory, self).construct(filters, cache_base_format, dump_human_readable) def construct_as_base_interface(self, filters=None, make_cache=False, dump_human_readable=False) -> List[VideoDataset]: return super(MultipleObjectTrackingDatasetFactory, self).construct_as_base_interface(filters, make_cache, dump_human_readable)
464412
from . import views from django.conf.urls import url urlpatterns = [ url(r'^(?P<appname>[^/]+)/$', 'oplog.views.api_oplogs', name='api_oplogs'), ]
464465
from node import Node from arrow import Arrow from polygon import Polygon class DownArrow(Arrow): def __init__(self, position = (0, 0)): Arrow.__init__(self, position, [Node(-0.4, 0.0), Node(0, 0.5), Node(0.4, 0.0)]) def tip(self): return Node(*(self.position())) + self.nodes()[1] def direction(self): return Node(0, 1) def connector(self): return Node(self.position()[0], self.position()[1])