id
stringlengths
3
8
content
stringlengths
100
981k
471320
import pandas as pd # TODO: populate with classes to load class_register = [] exclude_register = []
471333
import subprocess def run_bash_command(bashCommand): print(bashCommand) try: process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() return output except: print("couldn't run bash command, try running it manually")
471338
from indy import ledger import json import pytest @pytest.mark.asyncio async def test_build_pool_restart_request_work_for_start_action(): identifier = "Th7MpTaRZVRYnPiabds81Y" expected_response = { "identifier": identifier, "operation": { "type": "118", "action": "start", "datetime": "0", } } request = json.loads( await ledger.build_pool_restart_request(identifier, 'start', '0')) assert expected_response.items() <= request.items() @pytest.mark.asyncio async def test_build_pool_restart_request_work_for_cancel_action(): identifier = "Th7MpTaRZVRYnPiabds81Y" expected_response = { "identifier": identifier, "operation": { "type": "118", "action": "cancel", } } request = json.loads( await ledger.build_pool_restart_request(identifier, 'cancel', None)) assert expected_response.items() <= request.items()
471359
from peewee import * database = MySQLDatabase('wefe_board', **{'charset': 'utf8', 'sql_mode': 'PIPES_AS_CONCAT', 'use_unicode': True, 'host': '10.**.**.**', 'port': 3306, 'user': 'wefe', 'password': '<PASSWORD>'}) class UnknownField(object): def __init__(self, *_, **__): pass class BaseModel(Model): class Meta: database = database
471361
import sys from torch.utils.data import DataLoader from beta_rec.datasets.movielens import Movielens_100k from beta_rec.datasets.seq_data_utils import ( SeqDataset, collate_fn, create_seq_db, dataset_to_seq_target_format, reindex_items, ) sys.path.append("../") if __name__ == "__main__": ml = Movielens_100k() ml.download() ml.load_interaction() tem_data = ml.make_temporal_split() tem_train_data = tem_data[tem_data.col_flag == "train"] tem_valid_data = tem_data[tem_data.col_flag == "validate"] tem_test_data = tem_data[tem_data.col_flag == "test"] # reindex items from 1 train_data, valid_data, test_data = reindex_items( tem_train_data, tem_valid_data, tem_test_data ) # convert interactions to sequences seq_train_data = create_seq_db(train_data) # convert sequences to (seq, target) format load_train_data = dataset_to_seq_target_format(seq_train_data) # define pytorch Dataset class for sequential datasets load_train_data = SeqDataset(load_train_data) # pad the sequences with 0 load_train_data = DataLoader( load_train_data, batch_size=32, shuffle=False, collate_fn=collate_fn )
471395
n = int(input()) login = [] logout = [] for i in range(n): data = input().split() login.append(data[0]) logout.append(data[1]) # print(login) # print(logout) user_num = 0 user_hot = 0 start_time = '' end_time = '' for hour in range(0, 24): for minute in range(60): time_now = f'{hour:02}:{minute:02}' counter = user_num == user_hot if time_now=='09:59': print(counter) for i in range(n): if login[i] == time_now: user_num += 1 print(login[i] + ' : ' + str(i) + '번 유저 로그인') print(user_num, user_hot) # print(user_num) if logout[i] == time_now: user_num -= 1 print(logout[i] + ' : ' + str(i) + '번 유저 로그아웃') print(user_num, user_hot) # print(user_num) if (user_num != user_hot) and counter: end_time = time_now print('!') if user_num is not 0: print(user_num, user_hot) if user_num > user_hot: user_hot = user_num start_time = time_now print(user_hot) print(start_time, end_time)
471461
import thulac import sys import csv import os sys.path.append("..") from Model.neo4j_models import Neo4j_Handle thuFactory = thulac.thulac() print('--init thulac()--') #预加载Neo4j图数据库 neo4jconn = Neo4j_Handle() neo4jconn.connectDB() print('--Neo4j connecting--') domain_ner_dict = {} filePath = os.getcwd() with open(filePath+'/toolkit/domainDict.csv','r',encoding="utf-8") as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: #实体 类型代码 domain_ner_dict[str(row[0])] = int(row[1]) print('--Load Domain Dictionary...--!')
471479
import RPi.GPIO import sys import random sys.path.append("../../") from gfxlcd.driver.ili9325.gpio import GPIO as ILIGPIO from gfxlcd.driver.ili9325.ili9325 import ILI9325 RPi.GPIO.setmode(RPi.GPIO.BCM) def hole(o, x, y): o.draw_pixel(x+1, y) o.draw_pixel(x+2, y) o.draw_pixel(x+3, y) o.draw_pixel(x+1, y + 4) o.draw_pixel(x+2, y + 4) o.draw_pixel(x+3, y + 4) o.draw_pixel(x, y + 1) o.draw_pixel(x+4, y + 1) o.draw_pixel(x, y + 2) o.draw_pixel(x+4, y + 2) o.draw_pixel(x, y + 3) o.draw_pixel(x+4, y + 3) def draw_points(o): for _ in range(0, 50): hole(o, random.randint(2, o.width-10), random.randint(2, o.height-10)) def draw_net(o): s = 0 while s < o.width-1: o.draw_line(s, 0, s, o.height-1) s += 10 s = 0 while s < o.height-1: o.draw_line(0, s, o.width-1, s) s += 10 drv = ILIGPIO() drv.pins['LED'] = 6 drv.pins['CS'] = 18 lcd_tft = ILI9325(240, 320, drv) lcd_tft.init() lcd_tft.background_color = (255, 255, 255) lcd_tft.fill_rect(0, 0, 240, 320) lcd_tft.color = (0, 255, 1) lcd_tft.draw_circle(79, 99, 40) lcd_tft.draw_circle(60, 80, 7) lcd_tft.draw_circle(100, 80, 7) lcd_tft.draw_line(79, 90, 70, 100) lcd_tft.draw_line(79, 90, 88, 100) lcd_tft.draw_arc(79, 91, 12, 45, 135) lcd_tft.color = (255, 0, 0) lcd_tft.draw_arc(79, 90, 40, 45, 135) lcd_tft.draw_line(51, 117, 105, 117) lcd_tft.background_color = (255, 127, 127) lcd_tft.fill_rect(75, 140, 83, 220) lcd_tft.draw_line(75, 220, 65, 280) lcd_tft.draw_line(83, 220, 93, 280) lcd_tft.draw_line(83, 150, 130, 150) lcd_tft.background_color = (0, 255, 0) lcd_tft.fill_rect(0, 0, 122, 32) lcd_tft.color = (0, 0, 0) lcd_tft.background_color = (0, 0, 0) lcd_tft.draw_circle(60, 15, 15) lcd_tft.draw_circle(53, 10, 3) lcd_tft.draw_circle(67, 10, 3) lcd_tft.draw_arc(60, 15, 10, 45, 135) lcd_tft.draw_line(60, 12, 57, 17) lcd_tft.draw_line(60, 12, 63, 17) lcd_tft.draw_arc(60, 15, 3, 45, 135) lcd_tft.fill_rect(2, 2, 42, 29) lcd_tft.fill_rect(119, 2, 109, 12) lcd_tft.fill_rect(119, 17, 109, 19) lcd_tft.draw_rect(77, 6, 105, 16) lcd_tft.fill_rect(77, 16, 105, 25) lcd_tft.background_color = (0, 0, 0) lcd_tft.fill_rect(100, 200, 222, 264) lcd_tft.color = (43, 212, 255) lcd_tft.background_color = (43, 212, 255) lcd_tft.draw_circle(131, 232, 31) lcd_tft.draw_circle(119, 222, 7) lcd_tft.draw_circle(143, 222, 7) lcd_tft.draw_arc(131, 232, 20, 45, 135) lcd_tft.draw_line(131, 227, 127, 238) lcd_tft.draw_line(131, 227, 135, 238) lcd_tft.draw_arc(131, 235, 5, 45, 135) lcd_tft.fill_rect(195, 204, 205, 210) lcd_tft.draw_rect(180, 210, 220, 225) lcd_tft.fill_rect(180, 226, 220, 259)
471530
import spacy nlp = spacy.load("de_core_news_sm") text = "Apple: Modell IPhone SE kommt im Sommer" # Verarbeite den Text doc = ____ # Iteriere über die Entitäten for ____ in ____.____: # Drucke Text und Label der Entität print(____.____, ____.____) # Erstelle eine Span für "IPhone SE" iphone_se = ____ # Drucke den Text der Span print("Fehlende Entität:", iphone_se.text)
471546
from __future__ import absolute_import, division, print_function, unicode_literals import unittest import torch from tests import utils class TestQuantizedConv2dBigStrideSmallKernel(utils.TorchGlowTestCase): # These tests should be run on NNPI card manually, or else # buck test will only run them on emulator. supported_backends = {"NNPI"} fused_2d_expect = { "aten::quantize_per_tensor", "quantized::conv2d", "aten::dequantize", } fused_3d_expect = { "aten::quantize_per_tensor", "quantized::conv3d", "aten::dequantize", } @utils.deterministic_expand( [ lambda: ( "2d_stride_bigger_in_one_dim", torch.nn.Conv2d(8, 4, [1, 1], groups=1, stride=[2, 1]), torch.randn([1, 8, 8, 8]), ), lambda: ( "2d_stride_bigger_in_multi_dims", torch.nn.Conv2d(8, 4, [1, 1], groups=1, stride=[2, 2]), torch.randn([1, 8, 8, 8]), ), lambda: ( "2d_stride_bigger_in_multi_groups", torch.nn.Conv2d(8, 4, [1, 1], groups=4, stride=[2, 1]), torch.randn([1, 8, 8, 8]), ), lambda: ( "2d_stride_bigger_strong_test_1", torch.nn.Conv2d(4, 8, [2, 3], groups=2, stride=[1, 4]), torch.randn([1, 4, 29, 23]), ), lambda: ( "2d_stride_bigger_strong_test_2", torch.nn.Conv2d(6, 8, [7, 3], groups=2, stride=[8, 4]), torch.randn([2, 6, 47, 35]), ), ] ) def test_qconv_2d(self, name, conv, tensor): """Test of quantized conv2d whose stride is bigger than kernel.""" with torch.no_grad(): model = torch.ao.quantization.QuantWrapper(conv) model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") torch.ao.quantization.prepare(model, inplace=True) # Calibration model.forward(tensor) torch.ao.quantization.convert(model, inplace=True) utils.compare_tracing_methods( model, tensor, fusible_ops=self.fused_2d_expect, # We set the atol & rtol of this test to be very big, # because we know there is going to be issues of off-by-1, # and we dont want to trigger it. # However, even with such great atol & rtol, this is still # good enough to verify the functionality is enabled correctly. atol=0.1, rtol=0.1, ) # Skiped 3d tests @utils.deterministic_expand( [ lambda: ( "3d_stride_bigger_in_one_dim", torch.nn.Conv3d(8, 4, kernel_size=2, groups=1, stride=1), torch.randn([1, 8, 16, 8, 8]), ), ] ) @unittest.skip(reason="qconv3d channelwise is not yet supported on NNPI") def test_qconv_3d(self, name, conv, tensor): """Test of quantized conv3d whose stride is bigger than kernel.""" with torch.no_grad(): model = torch.ao.quantization.QuantWrapper(conv) model.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm") torch.ao.quantization.prepare(model, inplace=True) # Calibration model.forward(tensor) torch.ao.quantization.convert(model, inplace=True) utils.compare_tracing_methods( model, tensor, fusible_ops=self.fused_3d_expect, atol=0.1, rtol=0.1, )
471560
import os import sys os.environ['CUDA_VISIBLE_DEVICES'] = '' import numpy as np from keras.layers import Input from keras.models import Model sys.path.append(".") # To find local version of the library from pix2pose_model import ae_model as ae #find the last weight in each folder and convert it to the inference weights if(len(sys.argv)!=2 and len(sys.argv)!=3): print("python3 tools/4_convert_weights_inference.py <weight_dir> < 1-(optional)to overwrite>") weight_dir = sys.argv[1] pass_exists=True if len(sys.argv)>2: if(sys.argv[2]=='1' or int(sys.argv[2])==1 ): pass_exists=False for root,dir,files in os.walk(weight_dir): if len(files)>0: weight_fn="" recent_epoch=0 for fn_temp in files: if(fn_temp.startswith("pix2pose"+".") and fn_temp.endswith("hdf5")): temp_split = fn_temp.split(".") epoch_split = temp_split[1].split("-") epoch_split2= epoch_split[0].split("_") epoch_temp = int(epoch_split2[0]) if(epoch_temp>recent_epoch): recent_epoch = epoch_temp weight_fn = fn_temp if os.path.exists(os.path.join(root,"inference.hdf5")) and pass_exists: print("A converted file exists in ",os.path.join(root,"inference.hdf5")) continue if(weight_fn!=""): generator_train = ae.aemodel_unet_prob(p=1.0) discriminator = ae.DCGAN_discriminator() imsize=128 dcgan_input = Input(shape=(imsize, imsize, 3)) dcgan_target = Input(shape=(imsize, imsize, 3)) prob_gt = Input(shape=(imsize, imsize, 1)) gen_img,prob = generator_train(dcgan_input) recont_l =ae.transformer_loss([np.eye(3)])([gen_img,dcgan_target,prob_gt,prob_gt]) disc_out = discriminator(gen_img) dcgan = Model(inputs=[dcgan_input,dcgan_target,prob_gt],outputs=[recont_l,disc_out,prob]) print("load recent weights from ", os.path.join(root,weight_fn)) dcgan.load_weights(os.path.join(root,weight_fn)) print("save recent weights to ", os.path.join(root,"inference.hdf5")) generator_train.save_weights(os.path.join(root,"inference.hdf5"))
471565
from stix_shifter_utils.modules.base.stix_transmission.base_query_connector import BaseQueryConnector import re import json from stix_shifter_utils.utils.error_response import ErrorResponder from stix_shifter_utils.utils import logger class UnexpectedResponseException(Exception): pass class QueryConnector(BaseQueryConnector): PATTERN = '<ID>(.*)</ID>' DEFAULT_ID = 'UNKNOWN' def __init__(self, api_client): self.api_client = api_client self.logger = logger.set_logger(__name__) self.connector = __name__.split('.')[1] def create_query_connection(self, query): response_txt = None return_obj = dict() try: response = self.api_client.create_search(query) response_code = response.code response_txt = response.read().decode('utf-8') search_id = self.DEFAULT_ID search = re.search(self.PATTERN, response_txt, re.IGNORECASE) if search: search_id = search.group(1) return_obj['search_id'] = search_id if 199 < response_code < 300 and search_id != self.DEFAULT_ID: return_obj['success'] = True elif ErrorResponder.is_plain_string(response_txt): ErrorResponder.fill_error(return_obj, message=response_txt, connector=self.connector) elif ErrorResponder.is_json_string(response_txt): response_json = json.loads(response_txt) ErrorResponder.fill_error(return_obj, response_json, ['arguments'], connector=self.connector) else: raise UnexpectedResponseException except Exception as e: if response_txt is not None: ErrorResponder.fill_error(return_obj, message='unexpected exception', connector=self.connector) self.logger.error('can not parse response: ' + str(response_txt)) else: raise e return return_obj
471582
from collections import namedtuple import math from dydx3.constants import COLLATERAL_ASSET from dydx3.constants import COLLATERAL_ASSET_ID_BY_NETWORK_ID from dydx3.starkex.constants import CONDITIONAL_TRANSFER_FEE_ASSET_ID from dydx3.starkex.constants import CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS from dydx3.starkex.constants import CONDITIONAL_TRANSFER_MAX_AMOUNT_FEE from dydx3.starkex.constants import CONDITIONAL_TRANSFER_PADDING_BITS from dydx3.starkex.constants import CONDITIONAL_TRANSFER_PREFIX from dydx3.starkex.constants import ONE_HOUR_IN_SECONDS from dydx3.starkex.helpers import fact_to_condition from dydx3.starkex.helpers import nonce_from_client_id from dydx3.starkex.helpers import to_quantums_exact from dydx3.starkex.signable import Signable from dydx3.starkex.starkex_resources.proxy import get_hash StarkwareConditionalTransfer = namedtuple( 'StarkwareConditionalTransfer', [ 'sender_position_id', 'receiver_position_id', 'receiver_public_key', 'condition', 'quantums_amount', 'nonce', 'expiration_epoch_hours', ], ) class SignableConditionalTransfer(Signable): def __init__( self, network_id, sender_position_id, receiver_position_id, receiver_public_key, fact_registry_address, fact, human_amount, client_id, expiration_epoch_seconds, ): receiver_public_key = ( receiver_public_key if isinstance(receiver_public_key, int) else int(receiver_public_key, 16) ) quantums_amount = to_quantums_exact(human_amount, COLLATERAL_ASSET) expiration_epoch_hours = math.ceil( float(expiration_epoch_seconds) / ONE_HOUR_IN_SECONDS, ) message = StarkwareConditionalTransfer( sender_position_id=int(sender_position_id), receiver_position_id=int(receiver_position_id), receiver_public_key=receiver_public_key, condition=fact_to_condition(fact_registry_address, fact), quantums_amount=quantums_amount, nonce=nonce_from_client_id(client_id), expiration_epoch_hours=expiration_epoch_hours, ) super(SignableConditionalTransfer, self).__init__( network_id, message, ) def to_starkware(self): return self._message def _calculate_hash(self): """Calculate the hash of the Starkware order.""" # TODO: Check values are in bounds # The transfer asset and fee asset are always the collateral asset. # Fees are not supported for conditional transfers. asset_ids = get_hash( COLLATERAL_ASSET_ID_BY_NETWORK_ID[self.network_id], CONDITIONAL_TRANSFER_FEE_ASSET_ID, ) part_1 = get_hash( get_hash( asset_ids, self._message.receiver_public_key, ), self._message.condition, ) part_2 = self._message.sender_position_id part_2 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS['position_id'] part_2 += self._message.receiver_position_id part_2 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS['position_id'] part_2 += self._message.sender_position_id part_2 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS['nonce'] part_2 += self._message.nonce part_3 = CONDITIONAL_TRANSFER_PREFIX part_3 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS['quantums_amount'] part_3 += self._message.quantums_amount part_3 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS['quantums_amount'] part_3 += CONDITIONAL_TRANSFER_MAX_AMOUNT_FEE part_3 <<= CONDITIONAL_TRANSFER_FIELD_BIT_LENGTHS[ 'expiration_epoch_hours' ] part_3 += self._message.expiration_epoch_hours part_3 <<= CONDITIONAL_TRANSFER_PADDING_BITS return get_hash( get_hash( part_1, part_2, ), part_3, )
471674
def get_max_possible(coins, amount=0, turn=True): if not coins: return amount if turn: alt_1 = get_max_possible(coins[1:], amount + coins[0], False) alt_2 = get_max_possible(coins[:-1], amount + coins[-1], False) return max(alt_1, alt_2) first, last = coins[0], coins[-1] if first > last: coins = coins[1:] else: coins = coins[:-1] return get_max_possible(coins, amount, True) # Test assert get_max_possible([1, 2, 3, 4, 5]) == 9
471724
import aiohttp # Working aiohttp get_url # Now with closing sessions! # <NAME> async def get_url(url, headers: dict = None): headers = headers or {"user-agent" : "GAF Bot"} async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as response: status = response.status if status != 200: json = None return response, json, status try: json = await response.json() except Exception: json = None return response, json, status async def post_url(url, data: dict = None, headers: dict = None): headers = headers or {"user-agent": "GAF Bot"} async with aiohttp.ClientSession() as session: async with session.post(url, data=data, headers=headers) as response: status = response.status if status != 200: json = None return response, json, status try: json = await response.json() except Exception: json = None return response, json, status
471729
SURVEY_LIST_GET = { 'tags': ['기숙사'], 'description': '설문조사 리스트 불러오기(학생 학년에 따라 필터링됨)', 'parameters': [ { 'name': 'Authorization', 'description': 'JWT Token', 'in': 'header', 'type': 'str', 'required': True } ], 'responses': { '200': { 'description': '설문조사 리스트 불러오기 성공', 'examples': { 'application/json': [ { 'id': 's3qldmc13opeflds', 'title': '내일 저녁 치킨먹기 찬반설문', 'start_date': '2017-10-24', 'end_date': '2017-10-25' }, { 'id': '1fnfdj3391idkflds', 'title': '등교 후 12시간 자습 찬반설문', 'start_date': '2017-10-24', 'end_date': '2017-10-30' } ] } }, '403': { 'description': '권한 없음' } } } SURVEY_GET = { 'tags': ['기숙사'], 'description': '설문조사 질문 리스트 불러오기', 'parameters': [ { 'name': 'Authorization', 'description': 'JWT Token', 'in': 'header', 'type': 'str', 'required': True }, { 'name': 'id', 'description': '설문조사 ID', 'in': 'path', 'type': 'str', 'required': True } ], 'responses': { '200': { 'description': '질문 리스트 불러오기 성공', 'examples': { 'application/json': [ { 'id': '13211265df16ads', 'title': '저녁에 치킨을 먹고 싶습니까?', 'is_objective': True, 'choice_paper': ['예', '아니오'] }, { 'id': '11265cd65432r9', 'title': '어디 치킨이 좋습니까?', 'is_objective': False } ] } }, '403': { 'description': '권한 없음' } } } SURVEY_POST = { 'tags': ['기숙사'], 'description': '답변 남기기', 'parameters': [ { 'name': 'Authorization', 'description': 'JWT Token', 'in': 'header', 'type': 'str', 'required': True }, { 'name': 'id', 'description': '질문 ID', 'in': 'path', 'type': 'str', 'required': True }, { 'name': 'answer', 'description': '답변', 'in': 'formData', 'type': 'str', 'required': True } ], 'responses': { '201': { 'description': '답변 남기기 성공' }, '403': { 'description': '권한 없음' } } }
471735
import abc import os import boto3 class AssumeRoleInterface(abc.ABC): @abc.abstractmethod def get_client(self, service): pass @abc.abstractmethod def _new_assumed_role_session(self, session, account, role_name): pass class AssumeRole(AssumeRoleInterface): def __new__(cls, *args, **kwargs): if 'SCOPE' in os.environ and os.environ["SCOPE"] != "single-account": print("Assume Role Prod") return AssumeRoleProd(*args) else: return AssumeRoleLocal(*args) class AssumeRoleLocal(AssumeRoleInterface): def __init__(self, account, role_name): self.cross_account_role_arn = f"arn:aws:iam::{account}:role/{role_name}" def get_client(self, service): return boto3.client(service, region_name="us-east-1") def _new_assumed_role_session(self, session, role_arn): pass class AssumeRoleProd(AssumeRoleInterface): def __init__(self,account, role_name): self.cross_account_role_arn = f"arn:aws:iam::{account}:role/{role_name}" def get_client(self, service): client = self._new_assumed_role_session( boto3.Session(), self.cross_account_role_arn ).client( service, region_name="us-east-1" ) return client def _new_assumed_role_session(self, session, role_arn): credentials = session.client('sts').assume_role( RoleArn=role_arn, RoleSessionName='role_session', DurationSeconds=3600) return boto3.Session( aws_access_key_id=credentials['Credentials']['AccessKeyId'], aws_secret_access_key=credentials['Credentials']['SecretAccessKey'], aws_session_token=credentials['Credentials']['SessionToken'])
471768
import os import re import time import json import socket import shutil from .app import * def check_hostname(hostname): return True if re.match(r'([a-zA-Z0-9]+(\.[a-zA-Z0-9]+)+)', hostname) else False def convert_hostnames(file_path): with open(file_path, 'r+') as json_file: data = json.loads(json_file.read()) data_accounts = data['accounts'] length, loop, timeout = 0, 0, 0 for name, value in data_accounts.items(): for i in range(len(value)): if check_hostname(data_accounts[name][i]['hostname']) == True: length += 1 for name, value in data_accounts.items(): for i in range(len(value)): account = data_accounts[name][i] if check_hostname(account['hostname']) == False: continue try: if timeout == 3: break log_replace('[{}/{}] Converting hostnames'.format(app_format(loop+1, align='>', width=len(str(length)), chars='0'), length), time=True, status='INFO', status_color='[Y1]') host = '' host = socket.gethostbyname(account['hostname']) if not host: raise socket.gaierror elif host != account['host']: log('{:.<19} [Y1]{:.<23} {}'.format((account['host'] if account['host'] else '(empty)')+' ', host+' [G1]', account['hostname']), status='INFO', status_color='[G1]') data_accounts[name][i]['host'] = host timeout = 0 except socket.gaierror: log('[{}/{}] Converting hostnames error ({})'.format(app_format(timeout+1, align='>', width=len(str(length)), chars='0'), app_format('3', align='>', width=len(str(length)), chars='0'), account['hostname']), status='INFO', status_color='[R1]') timeout = timeout + 1 finally: loop = loop + 1 json_file.seek(0) json.dump(data, json_file, indent=2) json_file.truncate() return data_accounts def generate_accounts(data_accounts, data_authentications=None): data_authentications = json.loads(open(real_path('/../database/authentications.json')).read())['authentications'] if data_authentications is None else data_authentications accounts = [] for i in range(len(data_authentications)): for name in data_accounts: for x in range(len(data_accounts[name])): account = data_accounts[name][x] if not account: continue account['hostname'] = account['hostname'].lstrip('#') if check_hostname(account['hostname']) == False: continue accounts.append({ 'name': name, 'host': account['host'], 'hostname': account['hostname'], 'username': account['username'].replace('{username}', data_authentications[i]['username']), 'password': account['password'].replace('{password}', data_authentications[i]['password']) }) accounts = [dict(tuples) for tuples in {tuple(dictionaries.items()) for dictionaries in accounts}] return accounts def get_file_names(value = 'all'): file_names = [] if value == 'all': file_names = [ 'config/config.json', 'config/proxies.txt', 'config/payload.txt', 'config/server-name-indication.txt', 'database/accounts.json', 'database/authentications.json', 'database/servers.json' ] elif value == 'database': file_names = [ 'database/accounts.json', 'database/authentications.json', 'database/servers.json' ] return file_names def reset_to_default_settings(): for file_name in get_file_names('all'): try: os.remove(real_path('/../' + file_name)) except FileNotFoundError: pass default_settings() def reset_database(): for file_name in get_file_names('database'): try: os.remove(real_path('/../' + file_name)) except FileNotFoundError: pass default_settings() def default_settings(): for file_name in get_file_names('all'): try: open(real_path('/../' + file_name)) except FileNotFoundError: shutil.copyfile(real_path('/default/' + file_name), real_path('/../' + file_name)) def json_error(file): value = 'Exception: {} \n\n'.format(' ' * 24) + \ ' File {} Error! \n'.format(file).replace('/app/../', '/') + \ ' Run reset.py first or fixing by your-self. \n' + \ ' Good-luck! \n' log(value, status_color='[R1]') def autoload(): default_settings() autoload()
471778
from Proxy import validateData from Proxy import fetchData from Proxy import parseData from Core.Logger import log import time import threading import queue import configparser import logging # 代理信息键值字段 PROXY_ID = 'id' PROXY_IP = 'ip' PROXY_PORT = 'port' PROXY_ADDRESS = 'address' PROXY_PROTOCOL = 'protocol' PROXY_ALIVE_TIME = 'aliveTime' PROXY_VALIDATE_TIME = 'validateTime' # 代理网页检索起始页 FETCH_START_PAGE = 1 # 代理网页检索最大截至页 FETCH_END_PAGE = 5 # 代理池大小 PROXY_POOL_SIZE = 10 # 代理池扫描更新间隔 PROXY_POOL_SCAN_INTERVAL = 300 # 代理验证线程数 PROXY_VALIDATE_THREAD_NUM = 3 # 待验证的代理信息列表 unchecked_proxy_list = queue.LifoQueue(300) # 可用的代理池 proxy_pool = queue.Queue(100) # 标志量,是否正在扫描代理池 is_scanning = False # 代理服务守护线程 class ProxyDaemonThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): # 初始化配置 self.init() # 启动代理检验线程 validate_thread_list = [] for i in range(PROXY_VALIDATE_THREAD_NUM): validate_thread = ProxyValidateThread() validate_thread_list.append(validate_thread) validate_thread.start() if log.isEnabledFor(logging.DEBUG): log.debug("代理验证线程启动") # 启动代理池扫描线程 scan_thread = ProxyPoolScanThread() scan_thread.start() if log.isEnabledFor(logging.DEBUG): log.debug("代理池扫描线程启动") # 检查是否有线程出现异常并将其重启 while True: # 检查代理验证线程 for thread in validate_thread_list: if thread.status == 'error': validate_thread_list.remove(thread) thread = ProxyValidateThread() validate_thread_list.append(thread) thread.start() if log.error(logging.ERROR): log.error('代理验证线程重新启动') # 检查代理池扫描线程 if scan_thread.status == 'error': scan_thread = ProxyPoolScanThread() scan_thread.start() if log.isEnabledFor(logging.ERROR): log.error("代理池扫描线程重新启动") time.sleep(180) # 初始化,读取配置文件并配置 @staticmethod def init(): section = "proxy_core" config = configparser.ConfigParser() config.read('Proxy/Config/proxyConfiguration.conf', encoding='utf8') # validateData配置 validateData.CONNECT_TIMEOUT = int(config.get(section, "proxyValidate_connectTimeout")) validateData.NETWORK_RECONNECT_TIMES = int(config.get(section, "proxyValidate_networkReconnectTimes")) # fetchData配置 fetchData.CONNECT_TIMEOUT = int(config.get(section, "dataFetch_connectTimeout")) fetchData.NETWORK_RECONNECT_INTERVAL = int(config.get(section, "dataFetch_networkReconnectInterval")) fetchData.NETWORK_RETRY_TIMES = int(config.get(section, "dataFetch_networkReconnectionTimes")) # proxyCore配置 global FETCH_START_PAGE global FETCH_END_PAGE global PROXY_POOL_SIZE global PROXY_POOL_SCAN_INTERVAL global PROXY_VALIDATE_THREAD_NUM FETCH_START_PAGE = int(config.get(section, "proxyCore_fetchStartPage")) FETCH_END_PAGE = int(config.get(section, "proxyCore_fetchEndPage")) PROXY_POOL_SIZE = int(config.get(section, "proxyCore_proxyPoolSize")) PROXY_POOL_SCAN_INTERVAL = int(config.get(section, "proxyCore_proxyPoolScanInterval")) PROXY_VALIDATE_THREAD_NUM = int(config.get(section, "proxyCore_proxyValidateThreadNum")) # 代理检验线程 class ProxyValidateThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.status = 'running' # 创建代理验证实例 self.dataValidateModule = validateData.DataValidateModule() def run(self): try: while True: # 若正在扫描代理池,则暂停 while is_scanning: time.sleep(3) if proxy_pool.qsize() < PROXY_POOL_SIZE and unchecked_proxy_list.qsize() > 0: unchecked_proxy = unchecked_proxy_list.get() is_available = self.dataValidateModule.validate_proxy_ip(unchecked_proxy) if is_available is True: proxy_pool.put(unchecked_proxy) # print(unchecked_proxy) time.sleep(1) else: time.sleep(5) except Exception as e: if log.isEnabledFor(logging.ERROR): log.exception(e) self.status = 'error' # 代理池扫描线程,去除代理池中不可用的代理 class ProxyPoolScanThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.status = 'running' self.current_page = 1 # 创建数据抓取模块 self.dataFetchModule = fetchData.DataFetchModule() # 创建数据解析模块 self.dataParseModule = parseData.DataParseModule() def run(self): try: while True: if proxy_pool.qsize() < PROXY_POOL_SIZE and unchecked_proxy_list.qsize() < PROXY_POOL_SIZE: self.fetch_and_parse_proxy() elif proxy_pool.qsize() == PROXY_POOL_SIZE: if log.isEnabledFor(logging.DEBUG): log.debug('代理池更新') self.scan_proxy_pool() time.sleep(PROXY_POOL_SCAN_INTERVAL) else: time.sleep(60) except Exception as e: if log.isEnabledFor(logging.ERROR): log.exception(e) self.status = 'error' # 扫描代理池中的代理 @staticmethod def scan_proxy_pool(): # 由于待验证线程是先进后出队列,故对代理池进行扫描只需要将其添加到未检查列表, # 由代理检验线程对其重新验证并加入回代理池 global is_scanning is_scanning = True while proxy_pool.qsize() > 0: unchecked_proxy_list.put(proxy_pool.get()) is_scanning = False # 爬取并解析代理 def fetch_and_parse_proxy(self): if self.current_page > FETCH_END_PAGE: self.current_page = FETCH_START_PAGE response_data = self.dataFetchModule.fetch_proxy_data(self.current_page) proxy_data = self.dataParseModule.parse_data(response_data) self.current_page += 1 # 将解析到的代理添加到待验证的代理列表 for proxy in proxy_data: unchecked_proxy_list.put(proxy) class ProxyService: def __init__(self): self.proxy_daemon_thread = ProxyDaemonThread() @staticmethod def get_proxy(): return proxy_pool.get() def start_proxy_service(self): self.proxy_daemon_thread.start() # if __name__ == '__main__': # proxyService = ProxyService() # while True: # print(proxyService.get_proxy())
471779
from __future__ import print_function import os import sys os.environ['NPY_DISTUTILS_APPEND_FLAGS'] = '1' # Check if we have numpy: try: from numpy.distutils.misc_util import Configuration import numpy.distutils.core from numpy.distutils.core import setup except: raise ImportError('pyOptSparse requires numpy version 1.0 or later') # HACK to make bdist_wheel command usable when using numpy.distutils.core.setup try: from wheel import bdist_wheel except ImportError: if 'bdist_wheel' in sys.argv: print("\nThe bdist_wheel option requires the 'wheel' package to be installed.\n" "Install it using 'pip install wheel'.") sys.exit(-1) else: numpy.distutils.core.numpy_cmdclass['bdist_wheel'] = bdist_wheel.bdist_wheel if len(sys.argv) == 1: print("\nTo install, run: python setup.py install --user\n\n" "To build, run: python setup.py build_ext --inplace\n\n" "For help on C-compiler options run: python setup.py build --help-compiler\n\n" "For help on Fortran-compiler options run: python setup.py build --help-fcompiler\n\n" "To specify a Fortran compiler to use run: python setup.py install --user --fcompiler=<fcompiler name>\n\n" "For further help run: python setup.py build --help" ) sys.exit(-1) def configuration(parent_package='', top_path=None): config = Configuration(None, parent_package, top_path) config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('pyoptsparse') return config setup( name = 'pyoptsparse', version = '1.0.0', author = 'Dr. <NAME>', author_email = '<EMAIL>', maintainer = 'Dr. <NAME>', maintainer_email = '<EMAIL>', description = 'Python package for formulating and solving nonlinear constrained optimization problems', long_description = 'pyOptSparse is a Python package for formulating and solving nonlinear constrained optimization problems', keywords = 'optimization', license = 'GNU LGPL', platforms = ['Windows','Linux','Solaris','Mac OS-X','Unix'], classifiers = ['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'License :: LGPL', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Software Development', 'Topic :: Education'], configuration = configuration, )
471803
from django import urls from pghistory.tests import views urlpatterns = [ urls.path('test-view', views.MyPostView.as_view(), name='test_view') ]
471804
import unittest from hamcrest import assert_that from allure_commons_test.report import has_test_case from allure_commons_test.label import has_epic from allure_commons_test.label import has_feature from test.example_runner import run_docstring_example class TestBDDLabel(unittest.TestCase): def test_method_label(self): """ >>> import unittest >>> import allure >>> class TestBDDLabelExample(unittest.TestCase): ... @allure.epic("Label", "Bdd") ... @allure.feature("Method label") ... def test_method_label_example(self): ... pass """ allure_report = run_docstring_example() assert_that(allure_report, has_test_case("test_method_label_example", has_epic("Label"), has_epic("Bdd"), has_feature("Method label") ) ) def test_class_label(self): """ >>> import unittest >>> import allure >>> @allure.epic("Label", "Bdd") ... class TestBDDLabelExample(unittest.TestCase): ... def test_class_label_example(self): ... pass """ allure_report = run_docstring_example() assert_that(allure_report, has_test_case("test_class_label_example", has_epic("Label"), has_epic("Bdd"), ) ) def test_class_method_label(self): """ >>> import unittest >>> import allure >>> @allure.epic("Label", "Bdd") ... class TestBDDLabelExample(unittest.TestCase): ... @allure.feature("Method label") ... def test_class_and_method_label_example(self): ... pass """ allure_report = run_docstring_example() assert_that(allure_report, has_test_case("test_class_and_method_label_example", has_epic("Label"), has_epic("Bdd"), has_feature("Method label") ) ) def test_func_label(): """ >>> import allure >>> @allure.epic("Label", "Bdd") ... @allure.feature("Function label") ... def test_func_label_example(): ... pass """ allure_report = run_docstring_example() assert_that(allure_report, has_test_case("test_func_label_example", has_epic("Label"), has_epic("Bdd"), has_feature("Function label") ) )
471814
import importlib import os import json import numpy as np import math import sys import pandas as pd import datetime import logging import time import torch # ===================================== Common Functions ===================================== def check_input(imgs, targets): import cv2 as cv import numpy as np for idx, target in enumerate(targets): img = imgs[idx] img = img.permute(1, 2, 0) # C x H x W --> H x W x C image = np.array(img.cpu()).copy() image = np.array(image[..., ::-1]) # RGB --> BGR org = tuple([int(_ / 2) for _ in image.shape]) cv.putText(image, str(target), tuple(org[:2][::-1]), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) cv.imshow("img", image) cv.waitKey(0) def get_et_time(t): t = int(t) ets = [] # s ets.append(t % 60) # m t = t // 60 ets.append(t % 60) # h t = t // 60 ets.append(t % 24) # d t = t // 24 if t != 0: ets.append(t) ets.reverse() ets = ['{:02d}'.format(_) for _ in ets] return ':'.join(ets) def save_model(d, epoch, save_dir): save_name = os.path.join(save_dir, 'epoch_{:06d}.pth'.format(epoch)) torch.save(d, save_name) dst = os.path.join(save_dir, 'latest.pth') if os.path.islink(dst): os.remove(dst) os.symlink(save_name, dst) def import_module(path): py_idx = path.rfind('.py') if py_idx != -1: path = path[:py_idx] _module_path = path.replace('\\', '/') _module_path = _module_path.replace('/', '.') return importlib.import_module(_module_path) def mkdirs(path): if not os.path.exists(path): os.makedirs(path) def get_date_str(): time_str = time.strftime("%Y-%m-%d_%H%M%S", time.localtime()) return time_str def prase_gpus(gpus): try: _gpus = gpus.split('-') if len(_gpus) == 2: gpus = [i for i in range(int(_gpus[0]), int(_gpus[1]))] else: _gpus = gpus.split(',') gpus = [int(x) for x in _gpus] return gpus except: print('the gpus index is error!!! please specify right gpus index, or default use cpu') gpus = [] return gpus # ===================================== Json Objects ===================================== class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.int32): return int(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) def save_dict(fname, d, mode='w'): # 持久化写入 with open(fname, mode) as fp: # json.dump(d, fp, cls=NpEncoder, indent=1, separators=(',', ': ')) json.dump(d, fp, cls=NpEncoder) def load_dict(fname): with open(fname, "r") as fp: o = json.load(fp, ) return o # ===================================== Logger Objects ===================================== def get_logger(name='root'): formatter = logging.Formatter( # fmt='%(asctime)s [%(levelname)s]: %(filename)s(%(funcName)s:%(lineno)s) >> %(message)s') fmt='%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') handler = logging.StreamHandler() handler.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) logger.addHandler(handler) return logger logger = get_logger('root') class Metrics: def __init__(self, watch, **names): self.watch = watch self.metric = dict(**names) self.metric[watch] = dict(val=0, sum=0, cnt=0, avg=0) self.metric['time'] = dict(last=time.time(), val=0, sum=0, cnt=0, avg=0) self.metrics = [] def update(self, **kwargs): d = dict(**kwargs) for k, v in d.items(): if k == self.watch: self.metric[k]['val'] = float(v) self.metric[k]['sum'] += self.metric[k]['val'] self.metric[k]['cnt'] += 1 self.metric[k]['avg'] = self.metric[k]['sum'] / self.metric[k]['cnt'] last = self.metric['time']['last'] self.metric['time']['last'] = time.time() self.metric['time']['val'] = self.metric['time']['last'] - last self.metric['time']['sum'] += self.metric['time']['val'] self.metric['time']['cnt'] += 1 self.metric['time']['avg'] = self.metric['time']['sum'] / self.metric['time']['cnt'] with open(self.metric['log_path'], 'a+') as fp: line = json.dumps(self.metric) fp.write(line + '\n') else: self.metric[k] = v def str(self): ets = ((self.metric['total_epoch'] - self.metric['epoch']) * self.metric['total_iter'] \ - self.metric['iter']) * self.metric['time']['avg'] ets = get_et_time(ets) msg = 'Epoch [{}/{}], iter [{}/{}], eta {}, lr {:.6f}, {} {:.4f}({:.4f})'.format( self.metric['epoch'], self.metric['total_epoch'], self.metric['iter'], self.metric['total_iter'], ets, self.metric['lr'], self.watch, self.metric[self.watch]['val'], self.metric[self.watch]['avg'] ) return msg
471816
import torch from torchvision.models import resnet18 import numpy as np import pandas as pd import os def logic_learning(i2c_net, dataloader, device, optimizer, criterion, epoch, n_epochs, train=False): running_loss = 0.0 c_correct = 0 c_total = 0 preds = [] total_step = len(dataloader) for batch_idx, (data_, concepts_) in enumerate(dataloader): data_, concepts_ = data_.to(device), concepts_.to(device) if train: optimizer.zero_grad() c_preds = i2c_net(data_) loss = criterion(c_preds, concepts_) if train: loss.backward() optimizer.step() running_loss += loss.item() c_correct += torch.sum((c_preds > 0.5).eq(concepts_).sum(dim=1) == concepts_.size(1)).item() c_total += concepts_.size(0) preds.append(c_preds.cpu().detach().numpy()) if (batch_idx) % 20 == 0 and train: print(f'Epoch [{epoch}/{n_epochs}], Step [{batch_idx}/{total_step}], Loss: {loss.item():.4f}') c_accuracy = c_correct / c_total loss = running_loss / total_step return i2c_net, c_accuracy, loss, preds def load_and_predict(i2c_net, train_dataloader, val_dataloader, test_dataloader, optimizer, criterion, device, args): i2c_net.load_state_dict(torch.load(os.path.join(args['models_dir'], f'resnet_{args["model_style"]}_i2c_{args["seed"]}.pt'))) i2c_net.eval() _, _, _, c_predictions_train = logic_learning(i2c_net, train_dataloader, device, optimizer, criterion, 1, 1, train=False) c_predictions_train = (np.vstack(c_predictions_train)>0.5).astype(int) _, _, _, c_predictions_val = logic_learning(i2c_net, val_dataloader, device, optimizer, criterion, 1, 1, train=False) c_predictions_val = (np.vstack(c_predictions_val)>0.5).astype(int) _, _, _, c_predictions_test = logic_learning(i2c_net, test_dataloader, device, optimizer, criterion, 1, 1, train=False) c_predictions_test = (np.vstack(c_predictions_test)>0.5).astype(int) return c_predictions_train, c_predictions_val, c_predictions_test def i2c_style(train_dataloader, val_dataloader, test_dataloader, device, args): data_, concepts_ = next(iter(train_dataloader)) n_classes_c = concepts_.size(1) i2c_net = resnet18(pretrained=False) num_ftrs = i2c_net.fc.in_features i2c_net.fc = torch.nn.Linear(num_ftrs, n_classes_c) i2c_net = torch.nn.Sequential(*[ i2c_net, torch.nn.Sigmoid(), ]) i2c_net.to(device) criterion = torch.nn.MSELoss() optimizer = torch.optim.AdamW(i2c_net.parameters(), lr=0.0001) if os.path.isfile(os.path.join(args['models_dir'], f'resnet_{args["model_style"]}_i2c_{args["seed"]}.pt')): i2c_net.load_state_dict( torch.load(os.path.join(args['models_dir'], f'resnet_{args["model_style"]}_i2c_{args["seed"]}.pt'))) c_predictions_train, c_predictions_val, c_predictions_test = load_and_predict(i2c_net, train_dataloader, val_dataloader, test_dataloader, optimizer, criterion, device, args) return c_predictions_train, c_predictions_val, c_predictions_test n_epochs = 200 valid_loss_min = np.Inf val_loss = [] val_c_acc = [] test_loss = [] test_c_acc = [] train_loss = [] train_c_acc = [] for epoch in range(1, n_epochs + 1): print(f'Epoch {epoch}\n') i2c_net, c_accuracy, loss, _ = logic_learning(i2c_net, train_dataloader, device, optimizer, criterion, epoch, n_epochs, train=True) train_c_acc.append(c_accuracy) train_loss.append(loss) print(f'\ntrain-loss: {loss:.4f}, train-c-acc: {c_accuracy:.4f}') with torch.no_grad(): i2c_net.eval() i2c_net, c_accuracy, loss, _ = logic_learning(i2c_net, val_dataloader, device, optimizer, criterion, epoch, n_epochs, train=False) val_c_acc.append(c_accuracy) val_loss.append(loss) print(f'validation loss: {loss:.4f}, validation-c-acc: {c_accuracy:.4f}') if loss < valid_loss_min: valid_loss_min = loss torch.save(i2c_net.state_dict(), os.path.join(args['models_dir'], f'resnet_{args["model_style"]}_i2c_{args["seed"]}.pt')) print('Improvement-Detected, save-model') i2c_net, c_accuracy, loss, _ = logic_learning(i2c_net, test_dataloader, device, optimizer, criterion, epoch, n_epochs, train=False) test_c_acc.append(c_accuracy) test_loss.append(loss) print(f'test loss: {loss:.4f}, test-c-acc: {c_accuracy:.4f}\n') i2c_net.train() results = pd.DataFrame({ 'test_c_acc': test_c_acc, 'test_loss': test_loss, 'val_c_acc': val_c_acc, 'val_loss': val_loss, 'train_c_acc': train_c_acc, 'train_loss': train_loss, }) results_dir = './results' if not os.path.isdir(results_dir): os.makedirs(results_dir) results.to_csv(os.path.join(results_dir, f'results_{args["model_style"]}_i2c_{args["seed"]}.csv')) # i2c_net.load_state_dict(torch.load(os.path.join(args['models_dir'], f'resnet_{args["model_style"]}_i2c_{args["seed"]}.pt'))) c_predictions_train, c_predictions_val, c_predictions_test = load_and_predict(i2c_net, train_dataloader, val_dataloader, test_dataloader, optimizer, criterion, device, args) return c_predictions_train, c_predictions_val, c_predictions_test
471863
import sys path = sys.argv[1] key = int(sys.argv[2]) buffer = bytearray(open(path, "rb").read()) for i in range(len(buffer)): buffer[i] = buffer[i] ^ key print(buffer.decode())
471893
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.CSCFakeDBGains = cms.ESSource("CSCFakeDBGains") process.prefer("CSCFakeDBGains") process.CSCFakeDBPedestals = cms.ESSource("CSCFakeDBPedestals") process.prefer("CSCFakeDBPedestals") process.CSCFakeDBNoiseMatrix = cms.ESSource("CSCFakeDBNoiseMatrix") process.prefer("CSCFakeDBNoiseMatrix") process.CSCFakeDBCrosstalk = cms.ESSource("CSCFakeDBCrosstalk") process.prefer("CSCFakeDBCrosstalk") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptySource") process.prod1 = cms.EDAnalyzer("CSCGainsDBReadAnalyzer") process.prod2 = cms.EDAnalyzer("CSCPedestalDBReadAnalyzer") process.prod3 = cms.EDAnalyzer("CSCCrossTalkDBReadAnalyzer") process.prod4 = cms.EDAnalyzer("CSCNoiseMatrixDBReadAnalyzer") process.output = cms.OutputModule("AsciiOutputModule") process.p = cms.Path(process.prod1*process.prod2*process.prod3*process.prod4) process.ep = cms.EndPath(process.output)
471900
import pymysql import time HOST = "database-1.cluster-cti5mc0i9dvk.ap-northeast-2.rds.amazonaws.com" USER = "the_red" PASSWORD = "<PASSWORD>" DB = "the_red" connection = pymysql.connect(host=HOST, user=USER, password=PASSWORD, database=DB, charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) while True: with connection.cursor() as cursor: # Create a new record sql = "INSERT INTO `test` VALUES (1)" cursor.execute(sql) connection.commit() with connection.cursor() as cursor: sql = "SELECT MAX(uid) from test" cursor.execute(sql) result = cursor.fetchone() print(result) time.sleep(3)
471920
import inspect import re import collectd_haproxy.plugin import collectd_haproxy.connection import collectd_haproxy.metrics import collectd_haproxy.compat modules_to_test = ( collectd_haproxy.plugin, collectd_haproxy.connection, collectd_haproxy.metrics, collectd_haproxy.compat, ) def test_docstrings(): for module in modules_to_test: for path, thing in get_module_things(module): yield create_docstring_assert(path, thing) def get_module_things(module): module_name = module.__name__ for func_name, func in get_module_functions(module): if inspect.getmodule(func) != module: continue yield (module_name + "." + func_name, func) for class_name, klass in get_module_classes(module): if inspect.getmodule(klass) != module: continue yield (module_name + "." + class_name, klass) for method_name, method in get_class_methods(klass): if method_name not in klass.__dict__: continue yield (module_name + "." + class_name + ":" + method_name, method) def get_module_classes(module): for name, klass in inspect.getmembers(module, predicate=inspect.isclass): yield (name, klass) def get_module_functions(module): for name, func in inspect.getmembers(module, predicate=inspect.isfunction): yield (name, func) def get_class_methods(klass): for name, method in inspect.getmembers(klass, predicate=inspect.ismethod): yield (name, method) def create_docstring_assert(path, thing): def test_function(): assert_docstring_present(thing, path) assert_docstring_includes_param_metadata(thing, path) test_name = "test_docstring__%s" % de_camelcase(path) test_function.__name__ = test_name test_function.description = test_name return test_function def assert_docstring_present(thing, path): docstring = inspect.getdoc(thing) if not docstring or not docstring.strip(): raise AssertionError("No docstring present for %s" % path) def assert_docstring_includes_param_metadata(thing, path): if inspect.isclass(thing): return docstring = inspect.getdoc(thing) if not docstring: return for arg_name in inspect.getargspec(thing).args: if arg_name in ("self", "cls"): continue if ":param %s:" % arg_name not in docstring: raise AssertionError( "Missing :param: for arg %s of %s" % (arg_name, path) ) if ":type %s:" % arg_name not in docstring: raise AssertionError( "Missing :type: for arg %s of %s" % (arg_name, path) ) first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def de_camelcase(name): return all_cap_re.sub( r'\1_\2', first_cap_re.sub(r'\1_\2', name) ).lower()
472031
try: from .GnuProlog import GNUProlog except Exception: pass try: from .SWIProlog import SWIProlog except Exception: pass try: from .XSBProlog import XSBProlog except Exception: pass from .prologsolver import Prolog
472032
import pyomo.environ as pe import logging import warnings import math logger = logging.getLogger(__name__) pyo = pe def _copy_v_pts_without_inf(v_pts): new_pts = list() for pt in v_pts: if pt > -math.inf and pt < math.inf: new_pts.append(pt) return new_pts def _get_bnds_list(v): lb = pe.value(v.lb) ub = pe.value(v.ub) if lb is None: lb = -math.inf if ub is None: ub = math.inf return [lb, ub] def var_info_str(v): s = '\tVar: {0}\n'.format(v) return s def bnds_info_str(vlb, vub): s = '\tLB: {0}\n'.format(vlb) s += '\tUB: {0}\n'.format(vub) return s def x_pts_info_str(_x_pts): s = '\tx_pts: {0}\n'.format(_x_pts) return s def check_var_pts(x, x_pts=None): xlb = pe.value(x.lb) xub = pe.value(x.ub) if xlb is None: xlb = -math.inf if xub is None: xub = math.inf raise_error = False raise_warning = False msg = None if xub < xlb: msg = 'Lower bound is larger than upper bound:\n' + var_info_str(x) + bnds_info_str(xlb, xub) raise_error = True if x_pts is not None: ordered = all(x_pts[i] <= x_pts[i+1] for i in range(len(x_pts)-1)) if not ordered: msg = 'x_pts must be ordered:\n' + var_info_str(x) + bnds_info_str(xlb, xub) + x_pts_info_str(x_pts) raise_error = True if xlb != x_pts[0] or xub != x_pts[-1]: msg = ('end points of the x_pts list must be equal to the bounds on the x variable:\n' + var_info_str(x) + bnds_info_str(xlb, xub) + x_pts_info_str(x_pts)) raise_error = True if raise_error: logger.error(msg) raise ValueError(msg) if raise_warning: logger.warning(msg) warnings.warn(msg)
472047
from microscopes.kernels.slice import theta from microscopes.irm.model import initialize, bind from microscopes.common.relation.dataview import numpy_dataview from microscopes.common.rng import rng from microscopes.models import bbnc from microscopes.irm.definition import model_definition from microscopes.common.testutil import assert_1d_cont_dist_approx_sps from scipy.stats import beta import numpy as np #from nose.plugins.attrib import attr def test_slice_theta_irm(): N = 10 defn = model_definition([N], [((0, 0), bbnc)]) data = np.random.random(size=(N, N)) < 0.8 view = numpy_dataview(data) r = rng() prior = {'alpha': 1.0, 'beta': 9.0} s = initialize( defn, [view], r=r, cluster_hps=[{'alpha': 2.0}], relation_hps=[prior], domain_assignments=[[0] * N]) bs = bind(s, 0, [view]) params = {0: {'p': 0.05}} heads = len([1 for y in data.flatten() if y]) tails = len([1 for y in data.flatten() if not y]) alpha1 = prior['alpha'] + heads beta1 = prior['beta'] + tails def sample_fn(): theta(bs, r, tparams=params) return s.get_suffstats(0, [0, 0])['p'] rv = beta(alpha1, beta1) assert_1d_cont_dist_approx_sps(sample_fn, rv, nsamples=50000)
472055
from pathlib import Path import re import yaml repo_dir = Path(__file__).parent.parent.parent.parent resources_dir = repo_dir / 'resources' # excel_path = resources_dir / 'Semio2Brain Database.xlsx' semiology_dict_path = resources_dir / 'semiology_dictionary.yaml' with open(semiology_dict_path) as f: SemioDict = yaml.load(f, Loader=yaml.FullLoader) def custom_semiology_lookup(custom_semiology, nested_dict=SemioDict, found=None) -> list: """ User enters custom semiology. This checks if we already have a catch-all in taxonomy replacement SemioDict. Top level function will use this to find a match within SemioDict: semiology_exists_already = custom_semiology_lookup(custom_semiology, found=[]) if not semiology_exists_already: pass elif len(semiology_exists_already) == 1: pop-up window("Note this custom semiology may already exist within the category {}".format(semiology_exists_already[0])) elif len(semiology_exists_already) > 1: pop-up window("Note this custom semiology term occurs in various ways within the following categories: {}".format(str(semiology_exists_already))) Alim-Marvasti 2020 """ found = [] if found is None else found for k, v in nested_dict.items(): # look for matching keys only in top level if re.search(r'(?i)' + custom_semiology, k): found.append(k) elif re.search(r'(?i)' + k, custom_semiology): found.append(k) elif isinstance(v, list): for regex_item in v: if re.search(r'(?i)' + regex_item, custom_semiology): found.append(k) if re.search(r'(?i)' + custom_semiology, regex_item): found.append(k) elif isinstance(v, dict): # run it again to open nested dict values: custom_semiology_lookup( custom_semiology, nested_dict=v, found=found) else: # single regex term in the value of the key if re.search(r'(?i)' + v, custom_semiology): found.append(k) if re.search(r'(?i)' + custom_semiology, v): found.append(k) return list(set(found))
472058
import os import socket if True: sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sd.bind(('127.0.0.1', 1024)) sd.listen(10) for i in range(3): if os.fork () == 0: while True: cd, _ = sd.accept() cd.close() print i os.wait()
472069
from __future__ import print_function import sys import os os.environ['ENABLE_CNNL_TRYCATCH'] = 'OFF' # pylint: disable=C0413 import unittest import logging import torch import copy # pylint: disable=C0411 cur_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(cur_dir + "/../../") from common_utils import testinfo, TestCase # pylint: disable=C0413,C0411 logging.basicConfig(level=logging.DEBUG) class TestOps(TestCase): # @unittest.skip("not test") @testinfo() def test_select(self): in_shape = (2, 3, 24, 30) in_shape1 = (2, 3, 33) in_shape2 = (2, 24) input_dtypes = [torch.float, torch.half] for data_type in input_dtypes: input_t = torch.rand(in_shape, dtype=torch.float) input1 = torch.rand(in_shape1, dtype=torch.float) input2 = torch.rand(in_shape2, dtype=torch.float) output_cpu = input_t[:, 1] input_mlu = self.to_mlu_dtype(input_t, data_type) output_mlu = input_mlu[:, 1] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) output_cpu1 = input1[:, 2] input1_mlu = self.to_mlu_dtype(input1, data_type) output_mlu1 = input1_mlu[:, 2] self.assertTensorsEqual( output_cpu1, output_mlu1.cpu().float(), 0.003, use_MSE=True) output_cpu1 = input2[1:, -1] input2_mlu = self.to_mlu_dtype(input2, data_type) output_mlu1 = input2_mlu[1:, -1] self.assertTensorsEqual( output_cpu1, output_mlu1.cpu().float(), 0.003, use_MSE=True) output_cpu = input_t[:, :, :, -2] output_mlu = input_mlu[:, :, :, -2] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) # @unittest.skip("not test") @testinfo() def test_select_channel_last(self): in_shape = (2, 3, 24, 30) input_dtypes = [torch.float, torch.half] for data_type in input_dtypes: input_t = torch.rand(in_shape).to(memory_format=torch.channels_last) output_cpu = input_t[:, 1] input_mlu = self.to_mlu_dtype(input_t, data_type) output_mlu = input_mlu[:, 1] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) output_cpu = input_t[:, :, :, -2] output_mlu = input_mlu[:, :, :, -2] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) # @unittest.skip("not test") @testinfo() def test_select_not_dense(self): in_shape = (2, 3, 24, 30) input_dtypes = [torch.float, torch.half] for data_type in input_dtypes: input_t = torch.rand(in_shape) output_cpu = input_t[:,:,:,:19][:, :, :, 1] input_mlu = self.to_mlu_dtype(input_t, data_type) output_mlu = input_mlu[:,:,:,:19][:, :, :, 1] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) output_cpu = input_t[:,:,:,:19][:, :, :, -2] output_mlu = input_mlu[:,:,:,:19][:, :, :, -2] self.assertTensorsEqual( output_cpu, output_mlu.cpu().float(), 0.003, use_MSE=True) <EMAIL>("not test") @testinfo() def test_slice_backward(self): x = torch.randn((30, 2), requires_grad=True) x_mlu = self.to_device(x) z = x[12] z_mlu = x_mlu[12] grad = torch.randn(2) grad_mlu = self.to_device(grad) z.backward(grad) out_grad = copy.deepcopy(x.grad) x.grad.zero_() z_mlu.backward(grad_mlu) out_grad_mlu = x.grad self.assertTensorsEqual( z, z_mlu.cpu(), 0.0, use_MSE=True) self.assertTensorsEqual( out_grad, out_grad_mlu.cpu(), 0.0, use_MSE=True) <EMAIL>("not test") @testinfo() def test_select_exception(self): a = torch.tensor(4, dtype=torch.float).to('mlu') ref_msg = r"^select\(\) cannot be applied to a 0-dim tensor\.$" with self.assertRaisesRegex(IndexError, ref_msg): a.select(dim=1, index=2) a = torch.randn((3,4), dtype=torch.float).to('mlu') ref_msg = r"^select\(\): index 5 out of range for tensor of" ref_msg = ref_msg + r" size \[3, 4\] at dimension 1$" with self.assertRaisesRegex(IndexError, ref_msg): a.select(dim=1, index=5) if __name__ == "__main__": unittest.main()
472070
import cv2 import numpy as np from transform import four_point_transform import argparse import matplotlib.image as mpimg from matplotlib import pyplot as plt # What if ROI doesnt contain any lane? # we can assume that lane is at the rightmost ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", help = "path to the image file") args = vars(ap.parse_args()) image = mpimg.imread(args["image"]) im = plt.imread(args["image"]) #taking input from user ax = plt.gca() fig = plt.gcf() implot = ax.imshow(im) # coord = [] # coord = [(241, 316), (438, 312), (602, 447), (54, 447)] DSCN0632 coord = [(251, 314), (443, 306), (616, 435), (85, 445)] # def onclick(event): # if event.xdata != None and event.ydata != None : # coord.append((int(event.xdata), int(event.ydata))) # cid = fig.canvas.mpl_connect('button_press_event', onclick) # plt.show() # print(coord) warped = four_point_transform(image, np.array(coord)) plt.imshow(warped),plt.show() # cv2.waitKey(0) cv2.destroyAllWindows() cap = cv2.VideoCapture('testvideos/calibration/DSCN0622.MOV') while (cap.isOpened()): ret, frame = cap.read() if frame is None: break # roi = frame[250:480, 0:640] cv2.circle(frame,(320,435), 5, (0,0,255), -1) cv2.imshow("Input",frame); warped = four_point_transform(frame, np.array(coord)) gray = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) #houghline transform high_thresh, thresh_im = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) lowThresh = 0.5*high_thresh edges = cv2.Canny(gray, 50, 150) kernel = np.ones((3,3),np.uint8) dilation = cv2.dilate(edges,kernel,iterations = 1) im = cv2.bilateralFilter(dilation, 5, 17,17) #cv2.imshow('im',im) lines = cv2.HoughLinesP(im, 1, np.pi/180.0, 50, np.array([]), 100, 10) min_x = 640 if lines is not None: for [[x1,y1,x2,y2]] in lines: dx, dy = x2 - x1, y2 - y1 angle = np.arctan2(dy, dx)*180/(np.pi) # print(angle) if angle >0: # print(x2, y2) if abs(y2-210) <= 10 and x2 < min_x: # print("yes") min_x = x2 cv2.line(warped,(x1,y1),(x2,y2),(0,255,0),2) print((min_x - 247.0)*(60.0/523.0)) # font = cv2.FONT_HERSHEY_SIMPLEX # cv2.putText(frame,'Hello World!',(10,500), font, 1,(255,255,255),2) cv2.imshow('frame', warped) #cv2.waitKey(0) # cv2.waitKey(0) if cv2.waitKey(1) & 0xFF == ord('q'): break # stictching of closer line can be done after hough transform. cap.release() cv2.destroyAllWindows()
472073
import sys, os.path nodo_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) + '\\AST\\') sys.path.append(nodo_dir) c3d_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) + '\\C3D\\') sys.path.append(c3d_dir) entorno_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) + '\\ENTORNO\\') sys.path.append(entorno_dir) from Nodo import Nodo from Entorno import * from Tipo_Expresion import * from Tipo import Data_Type from Tipo import Type from Label import * from Temporal import * from Simbolo import * class Declaracion_Variable(Nodo): def __init__(self, nombreNodo, fila = -1, columna = -1, valor = None): Nodo.__init__(self,nombreNodo, fila, columna, valor) def execute(self, enviroment): cantidadHijos = len(self.hijos) if cantidadHijos == 2 : identificador = self.hijos[0] tipoDeclaracion = self.hijos[1].hijos[0] nombreVariable = identificador.valor.lower() if tipoDeclaracion.nombreNodo == 'TEXT': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.character) tipoVariable.data_specific = 'text' simboloVariable = Symbol(nombreVariable,tipoVariable,'') enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'SMALLINT': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'smallint' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'INTEGER': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'integer' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'BIGINT': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'bigint' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'DECIMAL': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'decimal' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'NUMERIC': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'numeric' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'REAL': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'real' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'MONEY': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'money' simboloVariable = Symbol(nombreVariable,tipoVariable,0) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'DATE': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.data_time) tipoVariable.data_specific = 'data' simboloVariable = Symbol(nombreVariable,tipoVariable,'2000-10-01') enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass elif tipoDeclaracion.nombreNodo == 'BOOLEAN': if enviroment.existeSimboloEntornoActual(nombreVariable) : print('error') return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.boolean) tipoVariable.data_specific = 'boolean' simboloVariable = Symbol(nombreVariable,tipoVariable,True) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass pass elif cantidadHijos == 3 : identificador = self.hijos[0] nombreVariable = identificador.valor.lower() tipoDeclaracion = self.hijos[1].hijos[0] expresionExecute = self.hijos[2].hijos[0] value = expresionExecute.execute(enviroment) print('vienen tres nodos') if tipoDeclaracion.nombreNodo == 'TEXT': if expresionExecute.tipo.data_type == Data_Type.character : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.character) tipoVariable.data_specific = 'text' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'SMALLINT': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'smallint' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'INTEGER': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'integer' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'BIGINT': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'bigint' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'DECIMAL': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'decimal' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'NUMERIC': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'numeric' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'REAL': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'real' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'MONEY': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.numeric) tipoVariable.data_specific = 'money' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'DATE': if expresionExecute.tipo.data_type == Data_Type.data_time : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.data_time) tipoVariable.data_specific = 'data' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False elif tipoDeclaracion.nombreNodo == 'BOOLEAN': if expresionExecute.tipo.data_type == Data_Type.numeric : if enviroment.existeSimboloEntornoActual(nombreVariable) : return False else: # Creamos Simbolo tipoVariable = Type_Expresion(Data_Type.boolean) tipoVariable.data_specific = 'boolean' simboloVariable = Symbol(nombreVariable,tipoVariable,value) enviroment.ingresar_simbolo(nombreVariable,simboloVariable) pass pass else : return False pass def compile(self, enviroment): codigoCompile = '' cantidadHijos = len(self.hijos) if cantidadHijos == 2 : identificador = self.hijos[0] tipoDeclaracion = self.hijos[1].hijos[0] nombreVariable = identificador.valor.lower() if tipoDeclaracion.nombreNodo == 'TEXT': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'SMALLINT': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'INTEGER': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'BIGINT': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'DECIMAL': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'NUMERIC': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'REAL': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'MONEY': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'DATE': codigoCompile += nombreVariable + ' = None\n' return codigoCompile elif tipoDeclaracion.nombreNodo == 'BOOLEAN': codigoCompile += nombreVariable + ' = None\n' return codigoCompile pass elif cantidadHijos == 3 : identificador = self.hijos[0] nombreVariable = identificador.valor.lower() tipoDeclaracion = self.hijos[1].hijos[0] expresionExecute = self.hijos[2].hijos[0] value = None auxiliar = False if expresionExecute.nombreNodo == 'SENTENCIA_SELECT': value = expresionExecute.execute(enviroment) print('Se ejecuto la sentencia select') print('Tipo result: ',expresionExecute.tipo.data_type) else: value = expresionExecute.compile(enviroment) auxiliar = True if auxiliar == True : codigoCompile += value codigoCompile += nombreVariable + ' = ' + expresionExecute.dir + '\n' return codigoCompile else: if expresionExecute.tipo.data_type == Data_Type.listaDatos : codigoCompile += nombreVariable + ' = None\n' return codigoCompile else : codigoCompile += nombreVariable + ' = ' + str(value) + '\n' return codigoCompile pass def getText(self): pass
472074
import argparse import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from rlo import experiment_result from rlo import plotting from rlo import utils def plot_empirical_predicted_values( outfile, title_suffix, events, probabilities=[10, 50, 90] ): # import json # determine the size of logs - uncomment if needed # print("Size", len(json.dumps([e for e in events if e['event']=='plot_value_comparison']))) train_logs = [r for r in events if r["event"] == "plot_value_comparison"] by_expr = utils.group_by(train_logs, lambda r: r["expr"]) fig, axs = plt.subplots( len(by_expr), 1, figsize=[15, 4 * len(by_expr)], squeeze=False, ) x_axis_func = lambda r: r["generation"] N_GENERATIONS = ( max([x_axis_func(rec) for rec in train_logs]) + 1 ) # The first generation is numbered 0 x_vals = range(N_GENERATIONS) N_REPETITIONS = max([int(r["repetition"]) for r in train_logs]) + 1 for ax, (expr, logs) in zip(axs.ravel(), by_expr.items()): expr_cost = logs[0][ "expr_cost" ] # we just need an initial cost for the starting expression expr # compute percentiles separately for each repetition for each generation by_generation = utils.group_by(logs, x_axis_func) all_percentiles = np.full( (N_GENERATIONS, N_REPETITIONS, len(probabilities)), float("nan") ) for generation, generation_logs in by_generation.items(): for repetition, rep_logs in utils.group_by( generation_logs, lambda r: r["repetition"] ).items(): # find percentiles of (predicted - empirical) for repetition all_percentiles[int(generation), int(repetition), :] = np.percentile( [ p - e for r in rep_logs for p, e in zip(r["predicted_value"], r["empirical_value"]) ], probabilities, axis=0, ) # then average across repetitions (ignoring absent values=NaN) av_percentiles = np.nanmean(all_percentiles, axis=1) # and plot a line against generation for each percentile for i in range(len(probabilities)): ax.plot( x_vals, av_percentiles[:, i], label=str(probabilities[i]) + "th percentile", ) ax.set_title( "Value evaluation for {} with cost {}, {}".format( expr, expr_cost, title_suffix ), fontsize=9, ) ax.axhline(0, color="black", linewidth=1) ax.set_ylabel("(predicted - empirical)", fontsize=9) ax.set_xlabel("Generations", fontsize=9) plt.figlegend(*ax.get_legend_handles_labels(), loc="upper left") fig.tight_layout() plt.savefig(outfile) def plot_empirical_predicted_values_from_config(config, events): plot_empirical_predicted_values( plotting.format_figure_filename(config, "empirical_predicted_values.png"), plotting.config_suffix(config), events, ) def main(): parser = argparse.ArgumentParser() parser.add_argument( "run_id", type=str, help="a run ID (e.g., 2019_01_06_13_15_48_13172) or path to a config.json file", ) args = parser.parse_args() config = experiment_result.load_config(args.run_id) if "result_save_path" in config: logs = experiment_result.load_events_from_config(config, verbosity=1) plot_empirical_predicted_values_from_config(config, logs) else: plot_empirical_predicted_values( "empirical_predicted_values.png", "", events=config ) if __name__ == "__main__": main()
472091
import gin import tensorflow.compat.v1 as tf from tensorflow.compat.v1.keras.layers import Input, Concatenate, Dense from reaver.models.base.layers import Squeeze, Variable, RunningStatsNorm from reaver.envs.base import Spec @gin.configurable def build_mlp( obs_spec: Spec, act_spec: Spec, layer_sizes=(64, 64), activation='relu', initializer='glorot_uniform', value_separate=False, obs_shift=False, obs_scale=False) -> tf.keras.Model: """ Factory method for a simple fully connected neural network model used in e.g. MuJuCo environment If value separate is set to true then a separate path is added for value fn, otherwise branches out of last layer If obs shift is set to true then observations are normalized to mean zero with running mean estimate If obs scale is set to true then observations are standardized to std.dev one with running std.dev estimate """ inputs = inputs_ = [Input(s.shape, name="input_" + s.name) for s in obs_spec] if obs_shift or obs_scale: inputs_ = [RunningStatsNorm(obs_shift, obs_scale, name="norm_" + s.name)(x) for s, x in zip(obs_spec, inputs_)] inputs_concat = Concatenate()(inputs_) if len(inputs_) > 1 else inputs_[0] x = build_fc(inputs_concat, layer_sizes, activation, initializer) outputs = [build_logits(space, x, initializer) for space in act_spec] if value_separate: x = build_fc(inputs_concat, layer_sizes, activation, initializer, 'value_') value = Dense(1, name="value_out", kernel_initializer=initializer)(x) value = Squeeze(axis=-1)(value) outputs.append(value) return tf.keras.Model(inputs=inputs, outputs=outputs) def build_logits(space, prev_layer, initializer): logits = Dense(space.size(), kernel_initializer=initializer, name="logits_" + space.name)(prev_layer) if space.is_continuous(): logits = Variable(name="logstd")(logits) return logits def build_fc(input_layer, layer_sizes, activation, initializer, prefix=''): x = input_layer for i, size in enumerate(layer_sizes): x = Dense(size, activation=activation, kernel_initializer=initializer, name='%sfc%02d' % (prefix, i+1))(x) return x
472094
from .sankey_definition import ProcessGroup, Waypoint, Bundle, Elsewhere from .ordering import new_node_indices, Ordering def elsewhere_bundles(sankey_definition, add_elsewhere_waypoints=True): """Find new bundles and waypoints needed, so that every process group has a bundle to Elsewhere and a bundle from Elsewhere. If `add_elsewhere_waypoints` is True (the default), then new Waypoints are created for these Bundles to flow through. Otherwise, the Bundles are created without Waypoints, which will result in them being rendered as short "stubs" on the nodes. """ # Build set of existing bundles to/from elsewhere. has_to_elsewhere = set() has_from_elsewhere = set() for bundle in sankey_definition.bundles.values(): assert not (bundle.source is Elsewhere and bundle.target is Elsewhere) if bundle.target is Elsewhere: # XXX they might have different flow_selections? # if bundle.source in has_to_elsewhere: # raise ValueError('duplicate bundles to elsewhere from {}'.format(bundle.source)) has_to_elsewhere.add(bundle.source) if bundle.source is Elsewhere: # XXX they might have different flow_selections? # if bundle.target in has_from_elsewhere: # raise ValueError('duplicate bundles from elsewhere to {}'.format(bundle.target)) has_from_elsewhere.add(bundle.target) # For each process group, add new bundles to/from elsewhere if not already # existing. Each one should have a waypoint of rank +/- 1. R = len(sankey_definition.ordering.layers) new_waypoints = {} new_bundles = {} # Add elsewhere bundles to all process groups if there are no bundles to start with no_bundles = (len(sankey_definition.bundles) == 0) for u, process_group in sankey_definition.nodes.items(): # Skip waypoints if not isinstance(process_group, ProcessGroup): continue waypoint_title = '→' if process_group.direction == 'R' else '←' d_rank = +1 if process_group.direction == 'R' else -1 r, _, _ = sankey_definition.ordering.indices(u) if no_bundles or (0 <= r + d_rank < R and u not in has_to_elsewhere): dummy_id = '__{}>'.format(u) assert dummy_id not in sankey_definition.nodes if add_elsewhere_waypoints: new_waypoints[dummy_id] = Waypoint( direction=process_group.direction, title=waypoint_title) new_bundles[dummy_id] = Bundle(u, Elsewhere, waypoints=[dummy_id]) else: new_bundles[dummy_id] = Bundle(u, Elsewhere) if no_bundles or (0 <= r - d_rank < R and u not in has_from_elsewhere): dummy_id = '__>{}'.format(u) assert dummy_id not in sankey_definition.nodes if add_elsewhere_waypoints: new_waypoints[dummy_id] = Waypoint( direction=process_group.direction, title=waypoint_title) new_bundles[dummy_id] = Bundle(Elsewhere, u, waypoints=[dummy_id]) else: new_bundles[dummy_id] = Bundle(Elsewhere, u) return new_waypoints, new_bundles def augment(G, new_waypoints, new_bundles): """Add waypoints for new_bundles to layered graph G. """ for v in new_waypoints.values(): assert isinstance(v, Waypoint) # copy G and order G = G.copy() R = len(G.ordering.layers) # XXX sorting makes order deterministic, which can affect final placement # of waypoints for k, bundle in sorted(new_bundles.items(), reverse=True): if not bundle.waypoints: continue # show Elsewhere flows as short "stubs" on nodes without a Waypoint assert len(bundle.waypoints) == 1 w = bundle.waypoints[0] if bundle.to_elsewhere: u = G.nodes[bundle.source]['node'] r, _, _ = G.ordering.indices(bundle.source) d_rank = +1 if u.direction == 'R' else -1 G.add_node(w, node=new_waypoints[w]) r, G.ordering = check_order_edges(G.ordering, r, d_rank) this_rank = G.ordering.layers[r + d_rank] prev_rank = G.ordering.layers[r] G.add_edge(bundle.source, w, bundles=[k]) i, j = new_node_indices(G, this_rank, prev_rank, w, side='below') G.ordering = G.ordering.insert(r + d_rank, i, j, w) elif bundle.from_elsewhere: u = G.nodes[bundle.target]['node'] r, _, _ = G.ordering.indices(bundle.target) d_rank = +1 if u.direction == 'R' else -1 G.add_node(w, node=new_waypoints[w]) r, G.ordering = check_order_edges(G.ordering, r, -d_rank) this_rank = G.ordering.layers[r - d_rank] prev_rank = G.ordering.layers[r] G.add_edge(w, bundle.target, bundles=[k]) i, j = new_node_indices(G, this_rank, prev_rank, w, side='below') G.ordering = G.ordering.insert(r - d_rank, i, j, w) else: assert False, "Should not call augment() with non-elsewhere bundle" return G def check_order_edges(ordering, r, dr): layers = ordering.layers nb = len(layers[0]) if layers else 1 if r + dr >= len(layers): layers = layers + tuple(() for i in range(nb)) elif r + dr < 0: layers = tuple(() for i in range(nb)) + layers r += 1 return r, Ordering(layers)
472109
from textwrap import dedent import attr import xsimlab as xs from xsimlab.formatting import ( add_attribute_section, maybe_truncate, pretty_print, repr_process, repr_model, var_details, wrap_indent, ) from xsimlab.process import get_process_obj def test_maybe_truncate(): assert maybe_truncate("test", 10) == "test" assert maybe_truncate("longteststring", 10) == "longtes..." def test_pretty_print(): assert pretty_print("test", 10) == "test" + " " * 6 def test_wrap_indent(): text = "line1\nline2" expected = "-line1\n line2" assert wrap_indent(text, start="-") == expected expected = "line1\n line2" assert wrap_indent(text, length=1) == expected def test_var_details(): @xs.process class P: var = xs.variable( dims=[(), "x"], description="a variable", global_name="global_var", default=0, groups=["g1", "g2"], static=True, attrs={"units": "m"}, encoding={"fill_value": -1}, ) var2 = xs.variable() var_details_str = var_details(attr.fields(P).var) expected = dedent( """\ A variable Variable properties: - type : ``variable`` - intent : ``in`` - global name : global_var - dimensions : () or ('x',) - groups : g1, g2 - default value : 0 - static : ``True`` Other attributes: - units : m Encoding options: - fill_value : -1 """ ) assert var_details_str == expected @xs.process class PP: var = xs.foreign(P, "var2") var_details_str = var_details(attr.fields(PP).var) expected = dedent( """\ No description given Variable properties: - type : ``foreign`` - reference variable : :attr:`test_var_details.<locals>.P.var2` - intent : ``in`` - dimensions : () """ ) assert var_details_str == expected @xs.process(autodoc=False) class WithoutPlaceHolder: """My process""" var1 = xs.variable(dims="x", description="a variable") var2 = xs.variable() @xs.process(autodoc=False) class WithPlaceholder: """My process {{attributes}} """ var1 = xs.variable(dims="x", description="a variable") var2 = xs.variable() def test_add_attribute_section(): # For testing, autodoc is set to False to avoid redundancy expected = """My process Attributes ---------- var1 : :class:`attr.Attribute` A variable Variable properties: - type : ``variable`` - intent : ``in`` - dimensions : ('x',) var2 : :class:`attr.Attribute` No description given Variable properties: - type : ``variable`` - intent : ``in`` - dimensions : () """ assert add_attribute_section(WithoutPlaceHolder).strip() == expected.strip() assert add_attribute_section(WithPlaceholder).strip() == expected.strip() def test_process_repr( example_process_obj, processes_with_state, example_process_repr, example_process_in_model_repr, ): assert repr_process(example_process_obj) == example_process_repr _, _, process_in_model = processes_with_state assert repr_process(process_in_model) == example_process_in_model_repr @xs.process class Dummy: def initialize(self): pass def run_step(self): pass expected = dedent( """\ <Dummy (xsimlab process)> Variables: *empty* Simulation stages: initialize run_step """ ) assert repr_process(get_process_obj(Dummy)) == expected def test_model_repr(simple_model, simple_model_repr): assert repr_model(simple_model) == simple_model_repr expected = "<xsimlab.Model (0 processes, 0 inputs)>\n" assert repr(xs.Model({})) == expected
472114
import pandas as pd import numpy as np import json import matplotlib.pyplot as plt plt.rcParams.update({ "font.family": "CMU Serif" }) def compute(): group = pd.read_csv('../data/2021-02-12to2021-02-26_deduped.csv').groupby("ENTITY_NAME") data = group.size().reset_index().values.tolist() x = list(map(lambda x: x[0], data)) y = list(map(lambda y: y[1], data)) sort_idx = np.argsort(y)[::-1] x = np.take(x, sort_idx).tolist() y = np.take(y, sort_idx).tolist() with open("../output/company_data.json", 'w') as f: json.dump([x, y], f) def plot(): with open("../output/company_data.json", 'r') as f: data = json.load(f) x = data[0] y = data[1] print(f"Count {len(y)}, Mean {float(np.mean(y)):0.3f}, Std {float(np.std(y)):0.3f}, Min {np.min(y)}, Max {np.max(y)}") print("Top 20") print(x[:20]) fig = plt.figure(figsize=(9, 4)) fig.suptitle("Company count distribution (test)") plt.xlabel("Company") plt.ylabel("Count (log)") plt.bar(range(len(x)), height=y, width=0.05, color='#30B6C2', log=True) fig.savefig('../output/company_data_test.pdf') if __name__ == '__main__': compute() plot()
472136
import openmdao.api as om from pycycle.maps.ncp01 import NCP01 import numpy as np class StallCalcs(om.ExplicitComponent): """Component to compute the stall margins at constant speed (SMN) and constant flow (SMW)""" def setup(self): self.add_input('PR_SMN', val=1.0, units=None, desc='SMN pressure ratio') self.add_input('PR_SMW', val=1.0, units=None, desc='SMW pressure ratio') self.add_input('PR_actual', val=1.0, units=None, desc='Actual pressure ratio') self.add_input('Wc_SMN', val=1.0, units='lbm/s', desc='SMN corrected flow') self.add_input('Wc_actual', val=1.0, units='lbm/s', desc='Actual corrected flow') self.add_output('SMN', val=0.0, units=None, desc='Stall margin at constant speed') self.add_output('SMW', val=0.0, units=None, desc='Stall margin at constant flow') self.declare_partials('SMN', ['PR_SMN','PR_actual','Wc_SMN','Wc_actual']) self.declare_partials('SMW', ['PR_SMW','PR_actual']) def compute(self, inputs, outputs): outputs['SMN'] = ((inputs['Wc_actual']/inputs['Wc_SMN'])/(inputs['PR_actual']/inputs['PR_SMN'])-1)*100. outputs['SMW'] = (inputs['PR_SMW']-inputs['PR_actual'])/inputs['PR_actual'] * 100 def compute_partials(self, inputs, J): PR_actual = inputs['PR_actual'] PR_SMN = inputs['PR_SMN'] PR_SMW = inputs['PR_SMW'] Wc_actual = inputs['Wc_actual'] Wc_SMN = inputs['Wc_SMN'] wc_ratio = 100*Wc_actual/Wc_SMN J['SMN', 'PR_SMN'] = wc_ratio / PR_actual J['SMN', 'PR_actual'] = -wc_ratio * PR_SMN/PR_actual**2 PR_ratio = 100*PR_SMN/PR_actual J['SMN', 'Wc_SMN'] = -Wc_actual/Wc_SMN**2 * PR_ratio J['SMN', 'Wc_actual'] = PR_ratio /Wc_SMN J['SMW', 'PR_SMW'] = 100 / PR_actual J['SMW', 'PR_actual'] = - 100 * PR_SMW/PR_actual**2 class MapScalars(om.ExplicitComponent): """Compute map scalars in design mode""" def setup(self): self.add_input('Nc', val=2.0, units='rpm', desc='Computed design corrected shaft speed') self.add_input('NcMap', val=2.0, units='rpm', desc='Design corrected shaft speed of map') self.add_input('PR', val=2.0, desc='User input design pressure ratio') self.add_input('PRmap', val=2.0, desc='Design pressure ratio of map') self.add_input('eff', val=1.0, desc='User input design adiabatic efficiency') self.add_input('effMap', val=1.0, desc='Design adiabatic efficiency of map') self.add_input('Wc', val=2.0, units='lbm/s', desc='Computed design corrected mass flow rate') self.add_input('WcMap', val=2.0, units='lbm/s', desc='Design corrected mass flow rate of map') self.add_output('s_Nc', shape=1, desc='Scalar for design corrected shaft speed') self.add_output('s_PR', shape=1, desc='Scalar for design pressure ratio') self.add_output('s_eff', shape=1, desc='Scalar for design adiabatic efficiency') self.add_output('s_Wc', shape=1, desc='Scalar for design corrected mass flow rate') self.declare_partials('s_Nc', ['Nc', 'NcMap']) self.declare_partials('s_PR', ['PR', 'PRmap']) self.declare_partials('s_eff', ['eff', 'effMap']) self.declare_partials('s_Wc', ['Wc', 'WcMap']) def compute(self, inputs, outputs): outputs['s_Nc'] = inputs['Nc'] / inputs['NcMap'] outputs['s_PR'] = (inputs['PR'] - 1) / (inputs['PRmap'] - 1) outputs['s_eff'] = inputs['eff'] / inputs['effMap'] outputs['s_Wc'] = inputs['Wc'] / inputs['WcMap'] def compute_partials(self, inputs, J): J['s_Nc', 'Nc'] = 1. / inputs['NcMap'] J['s_Nc', 'NcMap'] = -inputs['Nc'] / inputs['NcMap']**2 J['s_PR', 'PR'] = 1. / (inputs['PRmap'] - 1) J['s_PR', 'PRmap'] = -(inputs['PR'] - 1.) / (inputs['PRmap'] - 1.)**2 J['s_eff', 'eff'] = 1. / inputs['effMap'] J['s_eff', 'effMap'] = -inputs['eff'] * inputs['effMap']**(-2) J['s_Wc', 'Wc'] = 1. / inputs['WcMap'] J['s_Wc', 'WcMap'] = -inputs['Wc'] * inputs['WcMap']**(-2) class ScaledMapValues(om.ExplicitComponent): """Computes scaled map values for off-design mode""" def setup(self): self.add_input('effMap', val=2.0, desc='Efficiency from unscaled map') self.add_input('PRmap', val=2.0, desc='Pressure ratio from unscaled map') self.add_input('WcMap', val=2.0, units='lbm/s', desc='Corrected mass flow rate from unscaled map') self.add_input('NcMap', val=2.0, units='rpm', desc='Corrected shaft speed from unscaled map') self.add_input('s_PR', val=2.0, desc='Scalar for design corrected pressure ratio') self.add_input('s_eff', val=2.0, desc='Scalar for design corrected adiabatic efficiency') self.add_input('s_Wc', val=2.0, desc='Scalar for design corrected mass flow rate') self.add_input('s_Nc', val=2.0, desc='Scalar for design corrected speed') self.add_output('PR', shape=1, desc='Pressure ratio', lower=1.00001) self.add_output('eff', shape=1, desc='Adiabatic efficiency') self.add_output('Wc', shape=1, desc='Corrected mass flow rate', units='lbm/s') self.add_output('Nc', shape=1, desc='Corrected shaft speed', units='rpm') self.declare_partials('PR', ['PRmap', 's_PR']) self.declare_partials('eff', ['effMap', 's_eff']) self.declare_partials('Wc', ['WcMap', 's_Wc']) self.declare_partials('Nc', ['NcMap', 's_Nc']) def compute(self, inputs, outputs): outputs['PR'] = (inputs['PRmap'] - 1.) * inputs['s_PR'] + 1. outputs['eff'] = inputs['effMap'] * inputs['s_eff'] outputs['Wc'] = inputs['WcMap'] * inputs['s_Wc'] outputs['Nc'] = inputs['NcMap'] * inputs['s_Nc'] def compute_partials(self, inputs, J): J['PR', 'PRmap'] = inputs['s_PR'] J['PR', 's_PR'] = inputs['PRmap'] - 1. J['eff', 'effMap'] = inputs['s_eff'] J['eff', 's_eff'] = inputs['effMap'] J['Wc', 'WcMap'] = inputs['s_Wc'] J['Wc', 's_Wc'] = inputs['WcMap'] J['Nc', 'NcMap'] = inputs['s_Nc'] J['Nc', 's_Nc'] = inputs['NcMap'] class CompressorMap(om.Group): """Runs design and off-design mode compressor map calculations""" def initialize(self): self.options.declare('map_data', default=NCP01) self.options.declare('design', default=True) self.options.declare('interp_method', default='slinear') self.options.declare('extrap', default=False) def setup(self): map_data = self.options['map_data'] design = self.options['design'] method = self.options['interp_method'] extrap = self.options['extrap'] params = map_data.param_data outputs = map_data.output_data # Define map which will be used readmap = om.MetaModelStructuredComp(method=method, extrapolate=extrap) for p in params: readmap.add_input(p['name'], val=p['default'], units=p['units'], training_data=p['values']) for o in outputs: readmap.add_output(o['name'], val=o['default'], units=o['units'], training_data=o['values']) # Create instance of map for evaluating actual operating point if design: # In design mode, operating point specified by default values for RlineMap, NcMap and alphaMap self.set_input_defaults('RlineMap', val=map_data.defaults['RlineMap'], units=None) self.set_input_defaults('NcMap', val=map_data.defaults['NcMap'], units='rpm') # Evaluate map using design point values self.add_subsystem('map', readmap, promotes_inputs=['RlineMap', 'NcMap', 'alphaMap'], promotes_outputs=['effMap', 'PRmap', 'WcMap']) # Compute map scalars based on input PR, eff, Nc and Wc as well as unscaled map values self.add_subsystem('scalars', MapScalars(), promotes_inputs=['PR', 'eff', 'Nc', 'Wc', 'NcMap', 'effMap', 'PRmap', 'WcMap'], promotes_outputs=['s_Nc', 's_PR', 's_eff', 's_Wc']) else: # In off-design mode, RlineMap, NcMap and alphaMap are input to map self.add_subsystem('map', readmap, promotes_inputs=['RlineMap', 'NcMap', 'alphaMap'], promotes_outputs=['effMap', 'PRmap', 'WcMap']) # Compute scaled map outputs base on input scalars and unscaled map values self.add_subsystem('scaledOutput', ScaledMapValues(), promotes_inputs=['s_PR', 's_eff', 's_Wc', 's_Nc', 'NcMap', 'effMap', 'PRmap', 'WcMap'], promotes_outputs=['PR', 'eff']) # Use balance component to vary NcMap and RlineMap to match incoming corrected flow and speed map_bal = om.BalanceComp() map_bal.add_balance('NcMap', val=map_data.defaults['NcMap'], units='rpm', eq_units='rpm') map_bal.add_balance('RlineMap', val=map_data.defaults['RlineMap'], units=None, eq_units='lbm/s', lower=map_data.RlineStall) self.add_subsystem(name='map_bal', subsys=map_bal, promotes_inputs=[('lhs:NcMap','Nc'),('lhs:RlineMap','Wc')], promotes_outputs=['NcMap', 'RlineMap']) self.connect('scaledOutput.Nc','map_bal.rhs:NcMap') self.connect('scaledOutput.Wc','map_bal.rhs:RlineMap') # Define the Rline corresponding to stall RlineStall = om.IndepVarComp() RlineStall.add_output('RlineStall', val=map_data.RlineStall, units=None) self.add_subsystem('stall_R', subsys=RlineStall) # Evaluate map for the constant speed stall margin (SMN) SMN_map = om.MetaModelStructuredComp(method=method, extrapolate=extrap) for p in params: SMN_map.add_input(p['name'], val=p['default'], units=p['units'], training_data=p['values']) for o in outputs: SMN_map.add_output(o['name'], val=o['default'], units=o['units'], training_data=o['values']) self.add_subsystem('SMN_map', SMN_map, promotes_inputs=['NcMap', 'alphaMap']) self.connect('stall_R.RlineStall', 'SMN_map.RlineMap') # Evaluate map for the constant speed stall margin (SMN) SMW_map = om.MetaModelStructuredComp(method=method, extrapolate=extrap) for p in params: SMW_map.add_input(p['name'], val=p['default'], units=p['units'], training_data=p['values']) for o in outputs: SMW_map.add_output(o['name'], val=o['default'], units=o['units'], training_data=o['values']) self.add_subsystem('SMW_map', SMW_map, promotes_inputs=['alphaMap']) self.connect('stall_R.RlineStall', 'SMW_map.RlineMap') # Use balance to vary NcMap on SMW map to hold corrected flow constant SMW_bal = om.BalanceComp() SMW_bal.add_balance('NcMap', val=map_data.defaults['NcMap'], units='rpm', eq_units='lbm/s') self.add_subsystem(name='SMW_bal', subsys=SMW_bal) self.connect('SMW_bal.NcMap', 'SMW_map.NcMap') self.connect('WcMap','SMW_bal.lhs:NcMap') self.connect('SMW_map.WcMap','SMW_bal.rhs:NcMap') # Compute the stall margins self.add_subsystem('stall_margins', StallCalcs(), promotes_inputs=[('PR_actual','PRmap'),('Wc_actual','WcMap')], promotes_outputs=['SMN','SMW']) self.connect('SMN_map.PRmap', 'stall_margins.PR_SMN') self.connect('SMW_map.PRmap', 'stall_margins.PR_SMW') self.connect('SMN_map.WcMap', 'stall_margins.Wc_SMN') if __name__ == "__main__": from pycycle.maps.ncp01 import NCP01 p1 = om.Problem() ivc = p1.model.add_subsystem( 'ivc', om.IndepVarComp(), promotes=['*']) # Design variables ivc.add_output('alphaMap', 0.0) ivc.add_output('PR', 2.0) ivc.add_output('Nc', 1000.0, units='rpm') ivc.add_output('eff', .9) ivc.add_output('Wc', 3000., units='lbm/s') # Off-design variables # ivc.add_output('alphaMap', 0.0) # ivc.add_output('Nc', 1000.0, units='rpm') # ivc.add_output('Wc', 3000., units='lbm/s') # ivc.add_output('s_Nc', 1.0) # ivc.add_output('s_Wc', 1.0) # ivc.add_output('s_PR', 1.0) # ivc.add_output('s_eff', 1.0) p1.model.add_subsystem('map', CompressorMap( map_data=NCP01, design=True), promotes=['*']) p1.setup() # exit() p1.run_model() p1.check_partials() # print('s_PRdes: ', p1['s_PRdes']) # print('s_effDes: ', p1['s_effDes']) # print('s_NcDes: ', p1['s_NcDes']) # print('s_WcDes: ', p1['s_WcDes']) # print(p1['shaftNc.NcMap']) # print(p1['readMap.PRmap']) # print(p1['readMap.effMap']) # print(p1['readMap.WcMap']) # print('Eff: ', p1['eff']) # print('PR: ', p1['PR']) # print('Wc: ', p1['Wc']) # p2 = Problem() # p2.model = CompressorMap(map_data=NCP01, design=False) # p2.setup() # p2['s_PRdes'] = 2.0 # p2['s_NcDes'] = 1000.0 # p2['s_effDes'] = 0.983606557377 # p2['s_WcDes'] = 0.937500146484 # p2['Nc'] = 900.0 # p2['RlineMap'] = 2.0 # p2['alphaMap'] = 0.0 # p2.run_model() # print('s_PRdes: ', p2['s_PRdes']) # print('s_effDes: ', p2['s_effDes']) # print('s_NcDes: ', p2['s_NcDes']) # print('s_WcDes: ', p2['s_WcDes']) # print(p2['shaftNc.NcMap']) # print(p2['readMap.PRmap']) # print(p2['readMap.effMap']) # print(p2['readMap.WcMap']) # print('Eff: ', p2['eff']) # print('PR: ', p2['PR']) # print('Wc: ', p2['Wc'])
472215
import matplotlib.pyplot as plt import numpy as np from math import sin t = np.arange(-6.0, 6.0, 0.1) sinData = np.array([sin(xi) for xi in t]) linearData = np.array([xi for xi in t]) deltaData = np.array([xi - sin(xi) for xi in t]) plt.axhline(0, color="black") plt.axvline(0, color="black") plt.plot(t, sinData, label="$y=\sin(x)$") plt.plot(t, linearData, label="$y=x$") plt.plot(t, deltaData, label="Difference between $\sin(x)$ and $x$") plt.legend() plt.show()
472220
import pytest import sys import os present_dir = os.path.dirname(os.path.realpath(__file__)) root_dir = os.path.abspath(os.path.join(present_dir, '..', '..')) sys.path.insert(0, root_dir) from behave_webdriver.transformers import FormatTransformer
472231
import numpy import afnumpy import numbers class int64(numpy.int64): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.int64(x) else: return afnumpy.array(x).astype(cls) class int32(numpy.int32): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.int32(x) else: return afnumpy.array(x).astype(cls) class int16(numpy.intc): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.int16(x) else: return afnumpy.array(x).astype(cls) class int8(numpy.int8): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.int8(x) else: return afnumpy.array(x).astype(cls) class uint64(numpy.uint64): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.uint64(x) else: return afnumpy.array(x).astype(cls) class uint32(numpy.uint32): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.uint32(x) else: return afnumpy.array(x).astype(cls) class uint16(numpy.uint16): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.uint16(x) else: return afnumpy.array(x).astype(cls) class uint8(numpy.uint8): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.uint8(x) else: return afnumpy.array(x).astype(cls) class intc(numpy.intc): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.intc(x) else: return afnumpy.array(x).astype(cls) class intp(numpy.intp): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.intp(x) else: return afnumpy.array(x).astype(cls) class int_(numpy.int_): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.int_(x) else: return afnumpy.array(x).astype(cls) class bool_(numpy.bool_): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.bool_(x) else: return afnumpy.array(x).astype(cls) class float_(numpy.float_): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.float_(x) else: return afnumpy.array(x).astype(cls) class float16(numpy.float16): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.float16(x) else: return afnumpy.array(x).astype(cls) class float32(numpy.float32): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.float32(x) else: return afnumpy.array(x).astype(cls) class float64(numpy.float64): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.float64(x) else: return afnumpy.array(x).astype(cls) # removed for now #class float128(numpy.float64): # def __new__(cls, x=0): # if isinstance(x, afnumpy.ndarray): # raise NotImplementedError('Arrayfire does not support 128 bit floats') # elif isinstance(x, numbers.Number): # return numpy.float64(x) # else: # raise NotImplementedError('Arrayfire does not support 128 bit floats') class complex_(numpy.complex_): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.complex_(x) else: return afnumpy.array(x).astype(cls) class complex64(numpy.complex64): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.complex64(x) else: return afnumpy.array(x).astype(cls) class complex128(numpy.complex128): def __new__(cls, x=0): if isinstance(x, afnumpy.ndarray): return x.astype(cls) elif isinstance(x, numbers.Number): return numpy.complex128(x) else: return afnumpy.array(x).astype(cls) float = float complex = complex bool = bool int = int long = int bool8 = bool_ promote_types = numpy.promote_types
472280
import os import sys import argparse import binascii parser = argparse.ArgumentParser() parser.add_argument("echo") args = parser.parse_args() f = open(args.echo, 'rb') ft = f.read() ft_head = ft[:64] str_num = ord(ft_head[44]) #ft_body = ft[64 + 52 * str_num:] print "FILE LEN = ", len(ft) for i in range(str_num): ft_info = ft[64 + 52 * i: 64 + 52 * ( i + 1 )] ft_info_type = ft[64 + 52 * i: 65 + 52 * i ].encode('hex') ft_info_type_ver_1 = int(binascii.b2a_hex(ft[71 + 52 * i: 72 + 52 * i ]),16) ft_info_type_ver_2 = int(binascii.b2a_hex(ft[70 + 52 * i: 71 + 52 * i ]),16) ft_info_type_ver_3 = int(binascii.b2a_hex(ft[69 + 52 * i: 70 + 52 * i ]),16) ft_info_type_ver_4 = int(binascii.b2a_hex(ft[68 + 52 * i: 69 + 52 * i ]),16) start_addr = 0 for j in range(8,12): start_addr += ord(ft_info[j]) * ( 256 ** ( j - 8 ) ) ft_ilen = 0 for j in range(12,16): ft_ilen += ord(ft_info[j]) * ( 256 ** ( j - 12 ) ) ft_ibody = ft[start_addr:start_addr + ft_ilen] print "---", i, " ---" print "WRITE TO ", ft_info_type + '.hex' print "START: ", start_addr print "FINISH: ", start_addr + ft_ilen - 1 print "LEN: ", ft_ilen print "TYPE: ", ft_info_type print "VERSION: ", ft_info_type_ver_1,".",ft_info_type_ver_2,".",ft_info_type_ver_3,".",ft_info_type_ver_4 fi = open( ft_info_type + '_(' + str(ft_info_type_ver_1) + '.' + str(ft_info_type_ver_2)+'.'+ str(ft_info_type_ver_3) + '.' + str(ft_info_type_ver_4)+').hex', 'wb') fi.write(ft_ibody) fi.close()
472294
from django.conf import settings from posthog.redis import get_client def reload_plugins_on_workers(): get_client().publish(settings.PLUGINS_RELOAD_PUBSUB_CHANNEL, "reload!")
472299
from keras.utils import to_categorical from keras.models import model_from_json from music21 import corpus, chord, note, pitch, interval from config import maxChorales import os.path import numpy as np def getChoralesIterator(): iterator = corpus.chorales.Iterator() if maxChorales > iterator.highestNumber: raise Exception('Not that many chorales') return iterator # loads chorales into flat array (see parseToFlatArray for definition) def loadChorales(): notes = [] iterator = getChoralesIterator() # load notes of chorales for chorale in iterator[1:maxChorales]: # iterator is 1-based transpose_to_C_A(chorale.parts[0]) notes = notes + parseToFlatArray(chorale.parts[0]) notes.append((['end'], 0.0)) # mark the end of the piece return notes # loads chorales as above along with the key signature of each one def loadChoralesWithKeys(): notes = [] iterator = getChoralesIterator() orig_keys = [] # load notes of chorales for chorale in iterator[1:maxChorales]: # iterator is 1-based k = chorale.parts[0].analyze('key') orig_keys.append(k.tonicPitchNameWithCase) transpose_to_C_A(chorale.parts[0]) notes = notes + parseToFlatArray(chorale.parts[0]) notes.append((['end'], 0.0)) # mark the end of the piece return notes, orig_keys # if the given chord is a note (singleton chord) then returns a list of itself, otherwise concatenates all notes in a list def chordToNotes(notes): if isinstance(notes, chord.Chord): notes.duration.quarterLength return [str(x.midi) for x in notes.pitches] elif isinstance(notes, note.Note): return [str(notes.pitch.midi)] # use midi naming to avoid problems with accidentals (same note different name due to accidental) else: # this is a rest return ['rest'] # transform a midi score to flat array (=> array of notes and their durations) def parseToFlatArray(score): notes = [] for _note in score.flat.notesAndRests: # when the note is tied, add the duration to the last note instead of creating a new one if (_note.tie is not None) and (_note.tie.type == 'continue' or _note.tie.type == 'stop'): (n, dur) = notes[-1] notes[-1] = (n, dur + _note.duration.quarterLength) else: notes.append((chordToNotes(_note), _note.duration.quarterLength)) return notes # transposes a stream object (part) from its given basePitch to the targetPitch (transform happens in place) def transpose_to(stream, basePitch, targetPitch): i = interval.Interval(pitch.Pitch(basePitch), pitch.Pitch(targetPitch)) return stream.transpose(i, inPlace=True) # create notes vocabulary from A2 to A6 with pitch and midi names def createPitchVocabulary(): n = note.Note('A2') note_vocab = [] note_names_vocab = [] while n.pitch.nameWithOctave != "B6": note_vocab.append(str(n.pitch.midi)) note_names_vocab.append(n.pitch.nameWithOctave) n.transpose(1, inPlace=True) # append the special marks for rest and end of piece note_vocab.append('rest') note_vocab.append('end') return note_vocab, note_names_vocab # transforms a score to C major when the score key is major and to A minor when the score key is minor def transpose_to_C_A(score): k = score.analyze('key') if k.mode == 'major': transpose_to(score, k.tonic.name, 'C') elif k.mode == 'minor': transpose_to(score, k.tonic.name, 'A') # creates note vocabularies and categorical vocabularies def createPitchVocabularies(): note_vocab, note_names_vocab = createPitchVocabulary() note_vocab_categorical = to_categorical(range(len(note_vocab))) return note_vocab, note_names_vocab, note_vocab_categorical def createPitchSpecificVocabularies(pitches): note_vocab, note_names_vocab = createPitchVocabularySpecific(pitches) note_vocab_categorical = to_categorical(range(len(note_vocab))) return note_vocab, note_names_vocab, note_vocab_categorical def createPitchVocabularySpecific(pitches): distinct = np.unique(pitches) note_vocab = [] note_names_vocab = [] for n in distinct: if n != 'rest' and n != '_' and n != 'end': note_vocab.append(n) else: note_vocab.append(n) note_names_vocab.append(n) return note_vocab, note_names_vocab # create a vocabulary from the given durations def createDurationVocabularySpecific(durations): duration_vocab = np.unique(durations) return duration_vocab # load a saved model and its weights def loadModelAndWeights(model_file, weights_file): if os.path.exists(model_file) == False: raise Exception("model file not found") if os.path.exists(weights_file) == False: raise Exception("weights file not found") _file = open(model_file, 'r') json = _file.read() _file.close() model = model_from_json(json) model.load_weights(weights_file) return model
472307
from __future__ import print_function import os import re import sys import site import shutil from six import add_metaclass from distutils.sysconfig import get_python_lib from setuptools import setup, find_packages, Extension from setuptools.command.install import install as install_default def get_version(): v = '' with open('VERSION', 'r') as lines: v = list(lines)[0] return v def prebuild(): suffix = '' if sys.platform == 'linux' or sys.platform == 'linux2': suffix = '.so' elif sys.platform == 'darwin': suffix = '.so' elif sys.platform == 'win32': suffix = '.pyd' else: print('Sorry, unsupported OS: {}'.format(sys.platform)) return out_dir = 'build/lib' out_format = re.compile('pylime\.?([a-zA-Z0-9]+)?(-[a-zA-Z0-9_]+)?(-[a-zA-Z0-9\-_]+)?' + suffix) out_file = None for f in os.listdir(out_dir): m = out_format.search(f) if m is not None: out_file = m.group(0) break if out_file is None: print('Please build the library with CMake first.') print('If you did it, please make sure the path of the shared library.') raise Exception('Installation failed!!') return (get_python_lib(), [os.path.join(out_dir, out_file)]) # Install class install(install_default): def run(self): install_default.run(self) # Setup setup( cmdclass={ 'install' : install }, name='pylime', version=get_version(), author='tatsy', author_email='<EMAIL>', url='https://github.com/tatsy/lime.git', description='Library for IMage Editing.', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: C++', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7' ], data_files=[prebuild()] )
472342
import logging import os import time DEBUG = False API_URL_PREFIX = "/anuvaad-etl/document-processor" HOST = '0.0.0.0' PORT = 5001 #BASE_DIR = '/opt/share/nginx/upload' #download_folder = '/opt/share/nginx/upload' BASE_DIR = 'upload' download_folder = 'upload' TASK_STAT = 'BLOCK-SEGMENTER' ENABLE_CORS = False # kafka dev # input_topic_default = 'anuvaad-dp-tools-block-segmenter-input-v1' # input_topic_identifier = 'KAFKA_ANUVAAD_DP_TOOLS_BLOCK_SEGMENTER_INPUT' # input_topic = os.environ.get(input_topic_identifier, input_topic_default) # output_topic_default = 'anuvaad-dp-tools-block-segmenter-output-v1' # output_topic_identifier = 'KAFKA_ANUVAAD_DP_TOOLS_BLOCK_SEGMENTER_OUTPUT' # output_topic = os.environ.get(output_topic_identifier, output_topic_default) # kf_local_server = 'localhost:9092' # kafka_ip_host = 'KAFKA_BOOTSTRAP_SERVER_HOST' # bootstrap_server = os.environ.get(kafka_ip_host, kf_local_server) # CONSUMER_GROUP_default = 'anuvaad-etl-bs-consumer-group' # CONSUMER_GROUP_identifier = 'ANUVAAD_ETL_BS_CONSUMER_GROUP_V1' # CONSUMER_GROUP = os.environ.get(CONSUMER_GROUP_identifier,CONSUMER_GROUP_default) # kafka stage input_topic_default = 'anuvaad-dp-tools-block-segmenter-input-satge' input_topic_identifier = 'KAFKA_ANUVAAD_DP_TOOLS_BLOCK_SEGMENTER_INPUT_STAGE' input_topic = os.environ.get(input_topic_identifier, input_topic_default) output_topic_default = 'anuvaad-dp-tools-block-segmenter-output-stage' output_topic_identifier = 'KAFKA_ANUVAAD_DP_TOOLS_BLOCK_SEGMENTER_OUTPUT_STAGE' output_topic = os.environ.get(output_topic_identifier, output_topic_default) kf_local_server = 'localhost:9092' kafka_ip_host = 'KAFKA_BOOTSTRAP_SERVER_HOST' bootstrap_server = os.environ.get(kafka_ip_host, kf_local_server) CONSUMER_GROUP_default = 'anuvaad-etl-bs-consumer-group-stage' CONSUMER_GROUP_identifier = 'ANUVAAD_ETL_BS_CONSUMER_GROUP_STAGE' CONSUMER_GROUP = os.environ.get(CONSUMER_GROUP_identifier,CONSUMER_GROUP_default) #folders and file path BREAK_BLOCKS = True DEVICE='cpu' IMAGE_SIZE=1984 WEIGHT_PATH ="./src/utilities/yolov5/weights/exp14.pt" CONF_THRESHOLD = 0.1 IOU_THRESHOLD = 0.45 logging.basicConfig( filename=os.getenv("SERVICE_LOG", "server.log"), level=logging.DEBUG, format="%(levelname)s: %(asctime)s \ pid:%(process)s module:%(module)s %(message)s", datefmt="%d/%m/%y %H:%M:%S", ) DOCUMENT_CONFIGS = { 'LANGUAGE_TYPE': 'eng', 'HORI_BLOCK_WDTH_DIFF_PERC': 0.85, 'SUPERSCRIPT_HEIGHT_DIFFERENCE': 7.0, 'HORI_SPACE_TOO_CLOSE': 10.0, 'VERTICAL_SPACE_TOO_CLOSE': 5.0, 'AVERAGE_VERTICAL_SPACE': 12.0, 'LEFT_OR_RIGHT_ALIGNMENT_MARGIN': 20.0 } BLOCK_CONFIGS = { "right_margin_threshold": 0.10, "left_margin_threshold": 0.10, "right_break_threshold": 0.06, "left_break_threshold": 0.05, "header_left_threshold": 0.70, "header_right_threshold": 0.85, "space_multiply_factor": 2.1 } BLOCK_BREAK_CONFIG = {'margin_support': 2, 'width_threshold': 0.65} TABLE_CONFIGS = { "remove_background" : True , "background_threshold" : 50, "extract_by" : 'starting_point' } PREPROCESS_CONFIGS = {'header_cut':0.15 , 'footer_cut' :0.85 ,'repeat_threshold' :0.95 ,'underline_threshold':0.25, 'margin':10 } DROP_TEXT = ['SUPERSCRIPT']
472359
def logging_finish(self): from .results import result_todf # save the results self = result_todf(self) return self
472389
from django.core.management.base import BaseCommand, CommandError import logging from django.core.mail import send_mail from vital.models import VLAB_User logger = logging.getLogger(__name__) class Command(BaseCommand): help = "Command to email common notifications to all relevant users" def add_arguments(self, parser): parser.add_argument( '-s', '--subject', action='store', dest='subject', help='specify email subject', required=True ) parser.add_argument( '-b', '--body', action='store', dest='body', help='specify email body', ) def handle(self, *args, **options): to_email = [] subject = options['subject'] body = options['body'] for email in VLAB_User.objects.all(): to_email.append(email) try: logger.debug('Generating notification mails for users') send_mail(subject, 'Hi, ' + body, '<EMAIL>', to_email, fail_silently=False) except Exception as e: logger.error(str(e))
472393
from datetime import datetime from functools import wraps def dynamic(fn): @wraps(fn) def wrapper(*args, **kwargs): for key, value in fn.__annotations__.items(): try: kwargs[key] = value() except TypeError: pass return fn(*args, **kwargs) return wrapper # Example @dynamic def printNow(l:list, now:datetime.now): l.append(len(l)) print('List:', l, ' id:', id(l)) print('Now:', now) # Test for i in range(3): printNow() print()
472426
import enum import functools import json from electrum_gui.common.basic import exceptions from electrum_gui.common.basic.functional import json_encoders @enum.unique class Version(enum.IntEnum): V1 = 1 # Legacy V2 = 2 # Unify return values and exceptions V3 = 3 # Single kwarg params as a json str SUPPORTED_VERSIONS = list(Version) @enum.unique class ResultStatus(enum.IntEnum): SUCCESS = 0 FAILED = 1 def api_entry(force_version: int = None): def middle(func): @functools.wraps(func) def wrapper(*args, **kwargs): def _filter_params(err=None): error_msg = {"fun_name": func.__name__} error_msg.update( {k: v for k, v in kwargs.items() if k not in ["seed", "password", "mnemonic", "mnemonics"]} ) if err is not None: error_msg.update({"err_msg_detail": "%s:%s" % (err.__class__.__name__, err.args)}) return error_msg pre_run_failure_msg = None api_version = kwargs.pop("api_version", Version.V1) api_version = force_version or api_version if api_version == Version.V1: # Legacy return func(*args, **kwargs) # Version.V2 onward if api_version not in SUPPORTED_VERSIONS: pre_run_failure_msg = "Unsupported API version." elif api_version >= Version.V3: # Load (and check) params params = kwargs.pop("params", None) # TODO: # - check len(args) <= 1, only for the main resource id # - check kwargs is now empty, all the parameters should be put in params if params is not None: try: params = json.loads(params) if not isinstance(params, dict): raise ValueError # TODO: add param validation except ValueError: pre_run_failure_msg = "Failed to load params." else: kwargs["params"] = params else: kwargs["params"] = {} out = { "status": ResultStatus.FAILED, "api_version": api_version, "other_info": "", } if pre_run_failure_msg is None: try: result = func(*args, **kwargs) except exceptions.OneKeyException as e: out.update({"err_msg_key": e.key, "other_info": e.other_info}) except Exception as e: out.update( { "err_msg_key": exceptions.OneKeyException.key, "low_level_error": _filter_params(e), } ) else: out.update({"status": ResultStatus.SUCCESS, "info": result}) else: out.update({"err_msg_key": exceptions.OneKeyException.key, "low_level_error": pre_run_failure_msg}) return json.dumps(out, cls=json_encoders.DecimalEncoder) return wrapper return middle
472428
import wx APP_ID = u'TestJumpListApp' def set_app_id(): import ctypes try: SetAppID = ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID except AttributeError: return SetAppID(APP_ID) def main(): set_app_id() app = wx.App() import cgui assert cgui.SetUpJumpList(APP_ID, [(u'test', u'bc', u're', 4)]) if __name__ == '__main__': main()
472434
import os import json import urllib.request from .rpsls import RPSLS from .rpsls_dto import get_rpsls_dto_json def get_pick_predicted(user_name): queried_url = _get_queried_url(user_name) response = _get_response_from_predictor(queried_url) predicted_pick = RPSLS[response['prediction'].lower()] return get_rpsls_dto_json(predicted_pick) def _get_queried_url(user_name): predictor_url = os.getenv('PREDICTOR_URL') return f'{predictor_url}&humanPlayerName={user_name}' def _get_response_from_predictor(queried_url): req = urllib.request.urlopen(queried_url) encoding = req.info().get_content_charset('utf-8') data = req.read() return json.loads(data.decode(encoding))
472464
import time from tqdm import tqdm import torch import numpy as np # assignments: V x D # D: num_clusterings, V: num_total_set # W: num_candidates, P: num_clustering_pairs, C: num_centroids class EfficientMI: """ this implementation requires the users to use the same ncentroids for all clusterings """ # N: (P x C X C), a: (P x C), b: (P x C), n: (P) # WN: (W x P x C X C), Wa: (W x P x C), Wb: (W x P x C), wn: (W x P) def __init__(self, assignments, measure_type='mutual_info', average_method='arithmetic', ncentroids=20, **kwargs): self.average_method = average_method.lower() self.ncentroids = ncentroids self.assignments = torch.from_numpy(assignments).to(torch.long) # V x D self.eps = np.finfo('float64').eps def init(self, clustering_combinations, candidates): self.combinations = clustering_combinations self.init_cache() self.init_candidates(candidates) def init_cache(self): P = len(self.combinations) C = self.ncentroids N = torch.full((P, C, C), self.eps) a = N.sum(dim=1) b = N.sum(dim=2) n = a.sum(dim=-1) self.cache = {'N': N, 'a': a, 'b': b, 'n': n} def get_assignments(self, candidates): candidates = torch.LongTensor(candidates) # W assignments = self.assignments # V x D assignments = assignments.index_select(dim=0, index=candidates) return assignments def init_candidates(self, candidates): self.candidate_ids = torch.LongTensor(candidates) assignments = self.get_assignments(candidates) C = self.ncentroids assignments = self.one_hot(assignments, C) # W x D x C pair_ids = torch.LongTensor(self.combinations) # P x 2 p1 = self.gather_pairs(assignments, pair_ids[:, 0]) p2 = self.gather_pairs(assignments, pair_ids[:, 1]) N = torch.einsum('wpa,wpb->wpab', p1, p2) # W x P x C x C a = N.sum(2) b = N.sum(3) n = b.sum(-1) self.candidates = {'N': N, 'a': a, 'b': b, 'n': n} @staticmethod def gather_pairs(assignments, idx): W, _, C = assignments.shape idx = idx.unsqueeze(0).unsqueeze(-1) idx = idx.repeat(W, 1, C) return assignments.gather(dim=1, index=idx) # W x P x C @staticmethod def one_hot(x, N, default=0, value=1): dtype = torch.float x_onehot = torch.full((*x.shape, N), default, dtype=dtype) value = torch.full(x_onehot.shape, value, dtype=dtype) x_onehot.scatter_(dim=-1, index=x.unsqueeze(-1), src=value) return x_onehot def calc_score(self, *args, **kwargs): scores = self._calc_score(*args, **kwargs) scores = scores.mean(dim=-1) # W score, idx = scores.max(dim=0) return score.item(), idx.item() def _calc_score(self, *args, **kwargs): return self.calc_MI(*args, **kwargs) def calc_MI(self, last): N = last['N'] # W x P x C x C a = last['a'].unsqueeze(2) # W x P x 1 x C b = last['b'].unsqueeze(3) n = last['n'].unsqueeze(-1).unsqueeze(-1) scores = (N / n * (N.log() + n.log() - (a.log() + b.log()))).sum([2, 3]) # W x P return scores def get_last(self, candidates=None): if candidates is None: candidates = self.candidates last = {key: self.cache[key].unsqueeze(0) + candidates[key] for key in candidates.keys()} return last def update_cache(self, last, idx): for key in last.keys(): self.cache[key] = last[key][idx] def remove_idx_all(self, idx): self.remove_idx('candidate_ids', idx) self.remove_idx('candidates', idx) def calc_measure(self): last = self.get_last() score, idx = self.calc_score(last) candidate_idx = self.candidate_ids[idx].item() self.update_cache(last, idx) self.remove_idx_all(idx) return score, candidate_idx def remove_idx(self, name, idx): data = getattr(self, name) if isinstance(data, dict): data = {key: self._remove_idx(val, idx) for key, val in data.items()} else: data = self._remove_idx(data, idx) setattr(self, name, data) def _remove_idx(self, data, idx): return torch.cat((data[:idx], data[idx + 1:]), dim=0) def _add_samples(self, ids): ''' assignments = torch.LongTensor([[c.get_assignment(x) for c in self.clusterings] for x in ids]) # W x D ''' assignments = self.get_assignments(ids) C = self.ncentroids assignments = self.one_hot(assignments, C) # W x D x C pair_ids = torch.LongTensor(self.combinations) # P x 2 p1 = self.gather_pairs(assignments, pair_ids[:, 0]) p2 = self.gather_pairs(assignments, pair_ids[:, 1]) N_whole = torch.einsum('wpa,wpb->wpab', p1, p2) N = N_whole.sum(0) # P x C x C a = N.sum(1) # P x C b = N.sum(2) n = b.sum(-1) # P return {'N': N, 'a': a, 'b': b, 'n': n} def add_samples(self, ids): to_add = self._add_samples(ids) for key in to_add.keys(): self.cache[key] += to_add[key] def run_greedy(self, subset_size, start_indices, intermediate_target=None, verbose=False, log_every=1, log_times=None, node_rank=None, pid=None): S = start_indices GAIN = [] LOOKUPS = [] timelapse = [] greedy_start_time = time.time() start_time = time.time() # start from empty index pbar = range(len(start_indices), subset_size - 1) niters = subset_size - 1 - len(start_indices) if log_times is not None: log_every = niters // log_times if verbose: pbar = tqdm(pbar, desc='greedy iter') for j in pbar: start_time = time.time() score, idx = self.calc_measure() timelapse.append(time.time() - start_time) S.append(idx) GAIN.append(score) LOOKUPS.append(0) # greedy search renders num_lookups meaningless if verbose: if (j + 1) % log_every == 0: if intermediate_target is not None: precision = len(set(intermediate_target) & set(S)) / len(set(S)) msg = "(LEN: {}, MEASURE: {}, PRECISION: {})".format( len(S), score, precision) else: msg = "(LEN: {}, MEASURE: {})".format(len(S), score) if node_rank is not None: msg = 'Node: {}, '.format(node_rank) + msg if pid is not None: msg = 'PID: {}, '.format(node_rank) + msg pbar.set_description(msg) if verbose: tqdm.write("Time Consumed: {} seconds".format(time.time() - greedy_start_time)) return (S, GAIN, timelapse, LOOKUPS) def ensure_nonzero(self, x): if torch.is_tensor(x): x = torch.max(x, torch.full(x.shape, self.eps, dtype=x.dtype)) else: x = max(x, self.eps) return x def generalized_mean(self, ha, hb): if self.average_method == 'max': normalizer = torch.max(ha, hb) # max avg elif self.average_method == 'min': normalizer = torch.min(ha, hb) else: # default is arithmetic normalizer = (ha + hb) / 2 # arithmetic mean return normalizer class EfficientAMI(EfficientMI): """ adjusted MI """ def _calc_score(self, *args, **kwargs): return self.calc_AMI(*args, **kwargs) def calc_EMI(self, last): # maybe sklearn.metrics.cluster.expected_mutual_information? # we need a way to 'DP' the factorials for faster computation N = last['N'] # W x P x C x C a = last['a'].unsqueeze(2) # W x P x 1 x C b = last['b'].unsqueeze(3) n = last['n'].unsqueeze(-1).unsqueeze(-1) term1 = (N / n * (N.log() + n.log() - (a.log() + b.log()))) log_term2 = (a + 1).lgamma() + (b + 1).lgamma() + (n - a + 1).lgamma() + (n - b + 1).lgamma() \ - ((n + 1).lgamma() + (N + 1).lgamma() + (a - N + 1).lgamma() + (b - N + 1).lgamma() + (n - a - b + N + 1).lgamma()) scores = (term1 * log_term2.exp()).sum([2, 3]) return scores @staticmethod def calc_entropy(x, n): p = x / n # W x P x C return -(p * p.log()).sum(dim=-1) def calc_entropies(self, last): a = last['a'] # W x P x C b = last['b'] # W x P x C n = last['n'].unsqueeze(-1) # W x P x 1 ha = self.calc_entropy(a, n) hb = self.calc_entropy(b, n) return ha, hb def calc_AMI(self, last): mi = self.calc_MI(last) emi = self.calc_EMI(last) ha, hb = self.calc_entropies(last) normalizer = self.generalized_mean(ha, hb) denominator = normalizer - emi ''' if denominator < 0: denominator = min(denominator, -np.finfo('float64').eps) else: denominator = max(denominator, np.finfo('float64').eps) ''' denominator = self.ensure_nonzero(denominator) ami = (mi - emi) / denominator return ami class EfficientNMI(EfficientAMI): def _calc_score(self, *args, **kwargs): return self.calc_NMI(*args, **kwargs) def calc_NMI(self, last): mi = self.calc_MI(last) ha, hb = self.calc_entropies(last) normalizer = self.generalized_mean(ha, hb) normalizer = self.ensure_nonzero(normalizer) return (2 * mi) / normalizer class ConstantMeasure(EfficientMI): def _calc_score(self, *args, **kwargs): return self.calc_constant(*args, **kwargs) def calc_constant(self, last): n = last['n'] # W x P return torch.full_like(n, 1) class EfficientMemMI(EfficientMI): def calc_N(self, candidates, save_ids=True): if save_ids: self.candidate_ids = torch.LongTensor(candidates) assignments = self.get_assignments(candidates) # W x D pair_ids = torch.LongTensor(self.combinations) # P x 2 N = self.gather_pairs(assignments, pair_ids) # W x P x 2 return N def init_candidates(self, candidates): N = self.calc_N(candidates) self.candidates = {'N': N} def init_cache(self): super().init_cache() # P = len(self.combinations) N = self.cache['N'] NlogN = (N * N.log()).sum([-1, -2]) a = self.cache['a'] aloga = (a * a.log()).sum(-1) b = self.cache['b'] blogb = (b * b.log()).sum(-1) self.cache = {**self.cache, 'NlogN': NlogN, 'aloga': aloga, 'blogb': blogb} @staticmethod def gather_pairs(assignments, idx): # W x D, P x 2 -> W x P x 2 W = assignments.shape[0] N = idx.shape[-1] P, N = idx.shape idx = idx.unsqueeze(0) idx = idx.repeat(W, 1, 1) # W x P x 2 assignments = assignments.unsqueeze(-1) assignments = assignments.repeat(1, 1, N) return assignments.gather(dim=1, index=idx) # W x P x 2 def get_last(self, candidates=None): if candidates is None: candidates = self.candidates['N'] N = self.get_last_N(self.cache['N'], candidates) # W x P a = self.get_last_ab(self.cache['a'], candidates, dim=1) # W x P b = self.get_last_ab(self.cache['b'], candidates, dim=0) # W x P last = {} last['NlogN'] = self.update_nlogn(self.cache['NlogN'].unsqueeze(0), N) last['aloga'] = self.update_nlogn(self.cache['aloga'].unsqueeze(0), a) last['blogb'] = self.update_nlogn(self.cache['blogb'].unsqueeze(0), b) last['n'] = (self.cache['n'] + 1).unsqueeze(0) return last @staticmethod def nlogn(x): return x * x.log() def update_nlogn(self, prev, num): return prev - self.nlogn(num) + self.nlogn(num + 1) def get_last_N(self, cache, candidates): # P x C x C, W x P x 2 -> W x P c1 = candidates[:, :, 0] cache = self.small_gather(cache, c1.t(), batch_dim=0).transpose(0, 1) # W x P x C c2 = candidates[:, :, 1] cache = cache.gather(dim=-1, index=c2.unsqueeze(-1)).squeeze(-1) # W x P return cache def get_last_ab(self, cache, candidates, dim=0): # P x C, W x P -> W x P c = candidates[:, :, dim] W, P = c.shape cache = cache.unsqueeze(0).repeat(W, 1, 1) cache = cache.gather(dim=-1, index=c.unsqueeze(-1)).squeeze(-1) return cache @staticmethod def small_gather(x, ids, batch_dim=0): # use for loops... res = [] B = x.shape[batch_dim] for b in range(B): res.append(x[b][ids[b]]) res = torch.stack(res, dim=0) # P x W x C return res def calc_MI(self, last): # nlogn NlogN = last['NlogN'] # W x P aloga = last['aloga'] # W x P blogb = last['blogb'] # W x P n = last['n'] tN = (NlogN / n) ta = (-aloga / n) tb = (-blogb / n) term1 = (tN + ta + tb) term2 = n.log() scores = (term1 + term2) return scores def update_cache(self, last, idx, last_idx=None): # update nlogns for key in last.keys(): if 'log' in key: last_idx = last_idx if last_idx is not None else idx self.cache[key] = last[key][last_idx] self.update_mats(idx) def calc_N_i(self, idx): # update N, a, b, n N_i = self.candidates['N'][idx] # P x 2 C = self.cache['N'].shape[-1] N_i = (self.one_hot(N_i[:, 0], C), self.one_hot(N_i[:, 1], C)) N_i = torch.einsum('pa,pb->pab', N_i[0], N_i[1]) # P x C x C assert (N_i.sum([1, 2]) == 1).all(), 'error in getting one_hot representation of candidate' return N_i def update_mats(self, idx): N_i = self.calc_N_i(idx) self.cache['N'] += N_i self.cache['a'] += N_i.sum(1) self.cache['b'] += N_i.sum(2) self.cache['n'] += 1 def add_samples(self, ids): for idx in ids: candidate = self.calc_N([idx], save_ids=False) last = self.get_last(candidate) self.update_cache(last, idx, last_idx=0)
472468
from django.conf import settings from django.contrib.auth.models import Permission from django.urls import reverse, resolve from django.utils.encoding import force_text as force_unicode from garb.tests.models import * from garb.tests.urls import * from garb.templatetags.garb_menu import get_menu, Menu, ItemLink, ItemLinkModel from garb.tests.mixins import UserTestCaseMixin class GarbMenuTestCase(UserTestCaseMixin): app_label = 'tests' route_blog = ("admin:{0}_{1}_changelist".format(app_label,'blog')) route_blog_link = "/" + resolve(reverse('admin:%s_%s_changelist' % (app_label,'blog'))).route route_content = ("admin:{0}_{1}_changelist".format(app_label,'blogcomment')) def setUp(self): self.setUpConfig() self.login_superuser() def setUpConfig(self): settings.GARB_CONFIG = getattr(settings, 'GARB_CONFIG', {}) settings.GARB_CONFIG.update({ 'MENU': [ { 'label': 'menu1', 'icon': 'fa-user-plus', 'route': 'blog1', 'auth':'all' }, { 'label': 'menu2', 'icon': 'fa-user-plus', 'sub_itens':[ { 'model':'tests.blog'}, { 'model':'tests.blogcomment'}, ] }, { 'label': 'menu3', 'icon': 'fa-user-plus', 'auth':'all', 'sub_itens':[ { 'label': 'sub1', 'link': 'www.uol.com.br', 'target':'_blank' }, { 'label': 'sub2', 'route': 'blog1', 'permission': 'tests.can_hire', }, { 'label': 'sub3', 'route': 'blog2', 'auth':'yes' }, { 'label': 'sub4', 'route': 'blog3', 'auth':'no' }, { 'label': 'sub5', 'link': 'www.uol.com.br'}, ] }, { 'label': 'menu4', 'icon': 'fa-user-plus', 'sub_itens':[ { 'label': 'sub6', 'route': 'blog1', 'permission': 'tests.can_hire', }, { 'label': 'sub7', 'route': 'blog2' , 'auth':'yes'}, { 'label': 'sub8', 'route': 'blog3' }, ] } ], }) def make_menu_from_response(self): return get_menu(self.response.context, self.response._request) def test_index(self): self.client.logout() self.get_response(url="/") def test_menu_admin(self): self.client.logout() self.login_superuser() self.get_response() mc = settings.GARB_CONFIG['MENU'] menu = self.make_menu_from_response() self.assertEqual(len(menu), len(mc)) # as string i = 0 self.assertEqual(menu[i].label, mc[i]['label']) self.assertEqual(menu[i].route, mc[i]['route']) self.assertEqual(menu[i].icon, 'fa-user-plus') self.assertEqual(menu[i].auth, 'all') i += 1 # as dict self.assertEqual(type(menu[i].childrens[0]), ItemLinkModel) self.assertEqual(len(menu[i].childrens), len(mc[i]['sub_itens'])) self.assertEqual(menu[i].icon, mc[i]['icon']) self.assertEqual(menu[i].childrens[0].route, self.route_blog ) self.assertEqual(menu[i].childrens[0].get_url(), self.route_blog_link ) self.assertEqual(menu[i].childrens[1].route, self.route_content) i += 1 # as dict self.assertEqual(menu[i].auth, 'all') self.assertEqual(menu[i].childrens[0].auth, 'all') self.assertEqual(type(menu[i].childrens[0]), ItemLink) self.assertEqual(menu[i].childrens[0].target, '_blank') self.assertEqual(menu[i].childrens[1].auth, 'all') self.assertEqual(menu[i].childrens[2].auth, 'yes') self.assertEqual(menu[i].label, mc[i]['label']) self.assertEqual(len(menu[i].childrens), 4) self.assertEqual(len(menu[i].childrens), len(mc[i]['sub_itens'])-1) self.assertEqual(menu[i].childrens[3].get_url(), 'http://www.uol.com.br') self.assertEqual(menu[i].childrens[3].target, '_blank') i += 1 # as dict self.assertEqual(len(menu[i].childrens), 3) self.assertEqual(menu[i].childrens[0].auth, 'yes') self.assertEqual(menu[i].childrens[2].auth, 'yes') def test_menu_user(self): self.client.logout() self.login_user() self.get_response() mc = settings.GARB_CONFIG['MENU'] menu = self.make_menu_from_response() self.assertEqual(len(menu), len(mc)-1) i = 0 self.assertEqual(menu[i].label, mc[i]['label']) self.assertEqual(menu[i].route, mc[i]['route']) self.assertEqual(menu[i].icon, 'fa-user-plus') self.assertEqual(menu[i].auth, 'all') i += 1 # as dict self.assertEqual(menu[i].auth, 'all') self.assertEqual(menu[i].childrens[0].auth, 'all') self.assertEqual(type(menu[i].childrens[0]), ItemLink) self.assertEqual(menu[i].childrens[0].target, '_blank') self.assertEqual(menu[i].childrens[1].auth, 'yes') self.assertEqual(menu[i].label, mc[i+1]['label']) self.assertEqual(len(menu[i].childrens), 3) self.assertEqual(len(menu[i].childrens), len(mc[i+1]['sub_itens'])-2) self.assertEqual(menu[i].childrens[0].label, 'sub1') self.assertEqual(menu[i].childrens[1].label, 'sub3') def test_menu_only_authenticated(self): self.client.logout() self.get_response(url="/") mc = settings.GARB_CONFIG['MENU'] menu = self.make_menu_from_response() self.assertEqual(len(menu), len(mc)-2) i = 0 self.assertEqual(menu[i].label, mc[i]['label']) self.assertEqual(menu[i].route, mc[i]['route']) self.assertEqual(menu[i].icon, 'fa-user-plus') self.assertEqual(menu[i].auth, 'all') i += 1 # as dict self.assertEqual(menu[i].auth, 'all') self.assertEqual(menu[i].childrens[0].auth, 'all') self.assertEqual(type(menu[i].childrens[0]), ItemLink) self.assertEqual(menu[i].childrens[0].target, '_blank') self.assertEqual(menu[i].childrens[1].auth, 'no') self.assertEqual(menu[i].label, mc[i+1]['label']) self.assertEqual(len(menu[i].childrens), 3) self.assertEqual(len(menu[i].childrens), len(mc[i+1]['sub_itens'])-2) self.assertEqual(menu[i].childrens[0].label, 'sub1') self.assertEqual(menu[i].childrens[1].label, 'sub4') def test_menu_user_permission(self): self.client.logout() self.login_user_permission() self.get_response() mc = settings.GARB_CONFIG['MENU'] menu = self.make_menu_from_response() self.assertEqual(len(menu), len(mc)-1) i = 0 self.assertEqual(menu[i].label, mc[i]['label']) self.assertEqual(menu[i].route, mc[i]['route']) self.assertEqual(menu[i].icon, 'fa-user-plus') self.assertEqual(menu[i].auth, 'all') i += 1 # as dict self.assertEqual(menu[i].auth, 'all') self.assertEqual(menu[i].childrens[0].auth, 'all') self.assertEqual(type(menu[i].childrens[0]), ItemLink) self.assertEqual(menu[i].childrens[0].target, '_blank') self.assertEqual(menu[i].childrens[1].permission, 'tests.can_hire') self.assertEqual(menu[i].childrens[2].auth, 'yes') self.assertEqual(menu[i].label, mc[i+1]['label']) self.assertEqual(len(menu[i].childrens), 4) self.assertEqual(len(menu[i].childrens), len(mc[i+1]['sub_itens'])-1) self.assertEqual(menu[i].childrens[0].label, 'sub1') self.assertEqual(menu[i].childrens[1].label, 'sub2') self.assertEqual(menu[i].childrens[2].label, 'sub3') def test_menu_active(self): self.client.logout() self.login_superuser() self.get_response() self.get_response(url=self.route_blog_link) menu = self.make_menu_from_response() self.assertEqual(menu[1].childrens[0].get_active(), True) self.assertEqual(menu[1].childrens[1].get_active(), False) self.assertEqual(menu[1].collapsed, True) self.assertEqual(menu[2].collapsed, False)
472472
import abc import pickle from os import path import numpy as np class Data(object): data = None heavy_hitters = None heavy_hitter_freq = None def __init__(self, n_bits): self.n_bits = n_bits self.heavy_size = 128 self.heavy_hitters = [0] * self.heavy_size self.heavy_hitter_freq = [0] * self.heavy_size self.initial_generate() def initial_generate(self): # each user report one query num_bytes = int(self.n_bits / 8) f = gzip.open('query_%dbytes_sorted.txt.gz' % num_bytes, 'rb') time_total = 657427 self.data = [0] * time_total random_map = np.arange(time_total) np.random.shuffle(random_map) local_count = 0 overall_count = 0 for line in f: l = line.split(b'\t') query, count = l[0], int(l[1]) # convert to int query_number = 0 if not len(query) == num_bytes: print('wrong', query, count, l, len(query)) continue for i in range(num_bytes): query_number |= (query[i] << (8 * i)) if query[i] > 128: print('wrong', query, query[i]) continue for i in range(count): self.data[random_map[overall_count]] = query_number overall_count += 1 if local_count < self.heavy_size: self.heavy_hitters[local_count] = query_number self.heavy_hitter_freq[local_count] = count local_count += 1 print('overall count:', overall_count) def suffix_tally(self, low, high, cand_dict, shift_num): mask = (1 << shift_num) - 1 buckets = np.zeros(len(cand_dict), dtype=np.int) for i in range(int(low), int(high)): cur_value = self.data[i] & mask if cur_value in cand_dict: buckets[cand_dict[cur_value]] += 1 return buckets
472487
import codecs import imageio import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import plotly.offline as py import plotly.graph_objs as go import pandas as pd import tweepy import locale import emoji import sys import re import string import os def get_user_tweets(api, username, count=200): tweets = api.user_timeline(username, count=count) texts = [tweet.text for tweet in tweets] return texts def get_mentions_names(tweets2): users=[] usernamesForTwitter = re.findall( r'(^|[^@\w])@(\w{1,15})\b',tweets2) for user in usernamesForTwitter: users.append(user[1]) return users def show_html_table(words): data = [go.Bar( x = words.index.values[:30], y = words.values[:30], marker= dict(colorscale='Jet', color = words.values[:30]), text='ranking' )] layout = go.Layout( title='Word Frequency Ranking' ) fig = go.Figure(data=data, layout=layout) py.plot(fig, filename=username) def show_cloud(listData,typeFormat): a = ' '.join(str(v) for v in listData) wc = WordCloud(background_color="black", max_words=1000, mask=sherlock_mask, stopwords=stopwords) wc.generate(a) filename=typeFormat+'.png' wc.recolor(colormap='PuBu' , random_state=42).to_file(filename) #plt.figure(figsize=(80,80)) #plt.imshow(wc.recolor(colormap='PuBu' , random_state=42),interpolation='bilinear') #plt.axis("off") #plt.show(block=False) def get_analysis(retweets,tweets,mentions): df_retweets = pd.DataFrame({'retweets': retweets}) df_tweets = pd.DataFrame({'tweets': tweets}) df_mentions = pd.DataFrame({'mentions': mentions}) df_all=pd.concat([df_retweets,df_tweets,df_mentions],ignore_index=True, axis=1) df_all.columns = [ 'Retweets','Tweets', 'Mentions'] df_all= df_all.applymap(lambda s:s.lower() if type(s) == str else s) #print(df_all.head()) #for m in df_all['Tweets']: #print(m) disa_donuk=['!',"konser","arkadaş","oley",'hadi',"hey",'tatlım','canım','kuzum','bebek','bebeğim','mükemmel','şaka', 'selam','kutlarım','sosyal'] ice_donuk=['yalnız','keşke','pişman','ağla','gözyaşı','utanç','hayır','peki','belki','bilgilendirici','ciddi'] gercekci=['mümkün','net','olamaz','olur','oldu','olacak','tamam'] sezgisel=['belki','muhtemelen','acaba','ihtimal','his','düş','rüya','sevgi','sevmek','sezgi','seviyorum','hayranım', 'gerçeklik'] dusunen=['düşünce','düşünüyorum','aslında','mantıklı','doğru','yanlış','tespit','olmalı','tahmin','anlamlı','manalı','şüpheli', 'şüpheci','çünkü'] hassas=['kırık','buruk','hüzün','kırgın','ağla','yeterince','teşekkür','hassas','kırılgan'] sorgulayan=['neden','ne','nerede','niçin''ara','zaman','saat','ilk','son','net'] algılari_acik=['öğrendim','öğretici','bence',] #Dışa dönük / Gerçekçi / Düşünen / Sorgulayan Kisilik_1=[] #İçe dönük / Gerçekçi / Düşünen / Sorgulayan Kisilik_2=[] #Dışa dönük / Gerçekçi / Hassas / Sorgulayan Kisilik_3=[] #İçe dönük / Gerçekçi / Hassas / Sorgulayan Kisilik_4=[] total_disa_donuk = df_all['Tweets'].str.contains('|'.join(disa_donuk)) total_ice_donuk = df_all['Tweets'].str.contains('|'.join(ice_donuk)) total_gercekci = df_all['Tweets'].str.contains('|'.join(gercekci)) total_sezgisel = df_all['Tweets'].str.contains('|'.join(sezgisel)) total_dusunen = df_all['Tweets'].str.contains('|'.join(dusunen)) total_hassas = df_all['Tweets'].str.contains('|'.join(hassas)) total_sorgulayan = df_all['Tweets'].str.contains('|'.join(sorgulayan)) total_algılari_acik = df_all['Tweets'].str.contains('|'.join(algılari_acik)) df_total=pd.concat([total_disa_donuk,total_ice_donuk,total_gercekci,total_sezgisel,total_dusunen,total_hassas,total_sorgulayan,total_algılari_acik],ignore_index=True, axis=1) df_total.columns = [ 'disa_donuk','ice_donuk','gercekci','sezgisel','dusunen','hassas','sorgulayan','algılari_acik'] #print(df_total.head(10)) Dıs=df_total['disa_donuk'][df_total['disa_donuk']==True].count().sum() Ic=df_total['ice_donuk'][df_total['ice_donuk']==True].count().sum() if(Dıs>Ic): print("Dışa Dönük ! ") elif(Dıs==Ic): print("Dışa ve İçe Dönüklük Dengeli.") else: print("İçe Dönük...") G=df_total['gercekci'][df_total['gercekci']==True].count().sum() S=df_total['sezgisel'][df_total['sezgisel']==True].count().sum() if(G>S): print("Gerçekçi ! ") elif(G == S): print("Gerçekçi ve Sezgisel Duyumlar Dengeli.") else: print("Sezgisel...") D=df_total['dusunen'][df_total['dusunen']==True].count().sum() H=df_total['hassas'][df_total['hassas']==True].count().sum() if(D>H): print("Düşünen..") elif(D==H): print("Düşünen ve Hassas Dengeli.") else: print("Hassas...") Sor=df_total['sorgulayan'][df_total['sorgulayan']==True].count().sum() Alg=df_total['algılari_acik'][df_total['algılari_acik']==True].count().sum() if(Sor>Alg): print("Sorgulayan..") elif(Sor==Alg): print("Sorgulayan ve Algıları Açık Dengeli.") else: print("Algıları Açık...") def get_tweets(): #twitter authentication CONSUMER_KEY = os.getenv('api-key') CONSUMER_SECRET = os.getenv('api-secret-key') ACCESS_TOKEN = os.getenv('access-token') ACCESS_TOKEN_SECRET = os.getenv('access-secret-token') AUTH = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) AUTH.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = tweepy.API(AUTH) return(get_user_tweets(api, username),api.get_user(username).name) def get_stop_words(listData): tempStopWord.append("https") tempStopWord.append("RT") tempStopWord.append("co") tempStopWord.append("rt") tempStopWord.append("rt'") tempStopWord.append("rt '") tempStopWord.append("bir") tempStopWord.append(",") tempStopWord.append(":)") tempStopWord.append(":d") if not listData: return(set(tempStopWord)) else: tempStopWord.extend(listData) return(set(tempStopWord)) def get_clear_data(oldData): cevap=0 rt=0 tw=0 lower_map = { ord(u'I'): u'ı', ord(u'İ'): u'i', ord(u'Ç'): u'ç', ord(u'Ğ'): u'ğ', ord(u'Ö'): u'ö', ord(u'O'): u'o', ord(u'U'): u'u', ord(u'Ü'): u'ü', ord(u'Ş'): u'ş', ord(u'S'): u's', } analaysisTweets=[] tweets=[] mentions=[] retweets=[] for data in oldData: if data[0] == "@": cevap = cevap + 1 mentions.append(data) elif data[0:2] == "RT": rt = rt + 1 retweets.append(data) else: tw = tw + 1 analaysisTweets.append(data) if data not in stopwords: for dataSplit in data.split(" "): if dataSplit not in stopwords: if any(ext in dataSplit for ext in stopwords): tweets.append(dataSplit) datas=[] for tweet in tweets: for word in tweet.split(" "): datas.append(emoji.demojize(word.translate(lower_map).lower())) if any(ext in "muh" for ext in datas): print("url_string") return (datas,analaysisTweets,mentions,retweets) pm = __import__("stop_words") tempStopWord=list(pm.STOP_WORDS) image = imageio.imread("sherlock.png") sherlock_mask = image args = sys.argv username = args[1] locale.setlocale(locale.LC_ALL, 'tr_TR.utf8') stopwords = get_stop_words(None) name = get_tweets()[1] data_new= get_clear_data(get_tweets()[0]) train = pd.DataFrame(data_new[0]) words=train.unstack().value_counts() get_analysis(data_new[3],data_new[1],data_new[2]) a = ' '.join(str(v) for v in train.values.tolist()) print(len(a)) show_cloud(train.values.tolist(),"all") show_cloud(get_mentions_names(a),"users") userListstopword = ["@" + name for name in get_mentions_names(a)] get_stop_words(userListstopword) get_stop_words(get_mentions_names(a)) get_stop_words([ name+" '" for name in get_mentions_names(a)]) stopwords=get_stop_words([ name+"'" for name in get_mentions_names(a)]) train=None words=None #with open("out.txt", "w", encoding="utf-8") as f: #f.write("$".join(stopwords)) data_new = get_clear_data(get_tweets()[0]) train = pd.DataFrame( data_new[0]) words=train.unstack().value_counts() show_cloud(train.values.tolist(),"topic") show_html_table(words) #with open("outword.txt", "w", encoding="utf-8") as f: # f.write('$'.join(str(v) for v in train.values.tolist()))
472565
import pygame as pg class Platform(object): def __init__(self, x, y, image, type_id): self.image = image self.rect = pg.Rect(x, y, 32, 32) # 22 - question block # 23 - brick block self.typeID = type_id self.type = 'Platform' self.shaking = False self.shakingUp = True self.shakeOffset = 0 if self.typeID == 22: self.currentImage = 0 self.imageTick = 0 self.isActivated = False self.bonus = 'coin' def update(self): if self.typeID == 22: self.imageTick += 1 if self.imageTick == 50: self.currentImage = 1 elif self.imageTick == 60: self.currentImage = 2 elif self.imageTick == 70: self.currentImage = 1 elif self.imageTick == 80: self.currentImage = 0 self.imageTick = 0 def shake(self): if self.shakingUp: self.shakeOffset -= 2 self.rect.y -= 2 else: self.shakeOffset += 2 self.rect.y += 2 if self.shakeOffset == -20: self.shakingUp = False if self.shakeOffset == 0: self.shaking = False self.shakingUp = True def spawn_bonus(self, core): self.isActivated = True self.shaking = True self.imageTick = 0 self.currentImage = 3 if self.bonus == 'mushroom': core.get_sound().play('mushroom_appear', 0, 0.5) if core.get_map().get_player().powerLVL == 0: core.get_map().spawn_mushroom(self.rect.x, self.rect.y) else: core.get_map().spawn_flower(self.rect.x, self.rect.y) elif self.bonus == 'coin': core.get_sound().play('coin', 0, 0.5) core.get_map().spawn_debris(self.rect.x + 8, self.rect.y - 32, 1) core.get_map().get_player().add_coins(1) core.get_map().get_player().add_score(200) def destroy(self, core): core.get_map().spawn_debris(self.rect.x, self.rect.y, 0) core.get_map().remove_object(self) def render(self, core): # Question block if self.typeID == 22: if not self.isActivated: self.update() elif self.shaking: self.shake() core.screen.blit(self.image[self.currentImage], core.get_map().get_camera().apply(self)) # Brick block elif self.typeID == 23 and self.shaking: self.shake() core.screen.blit(self.image, core.get_map().get_camera().apply(self)) else: core.screen.blit(self.image, core.get_map().get_camera().apply(self))
472575
import torch.nn as nn import torch.nn.functional as F from .binary_functions import IRNetSign, RANetActSign, RANetWSign import torch import math class BaseBinaryConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, binary_type=(True, True), **kwargs): super(BaseBinaryConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mode = binary_type def binary_weight(self, x): pass def binary_input(self, w): pass def forward(self, input): x = self.binary_input(input) if self.mode[0] else input w = self.binary_weight(self.weight) if self.mode[1] else self.weight output = F.conv2d(x, w, self.bias, self.stride, self.padding, self.dilation, self.groups) return output class IRConv2d(BaseBinaryConv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, binary_type=(True, True), **kwargs): super(IRConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, binary_type, **kwargs) self.k = torch.tensor([10]).float().cuda() self.t = torch.tensor([0.1]).float().cuda() def binary_input(self, x): return IRNetSign().apply(x, self.k, self.t) def binary_weight(self, w): bw = w - w.view(w.size(0), -1).mean(-1).view(w.size(0), 1, 1, 1) bw = bw / bw.view(bw.size(0), -1).std(-1).view(bw.size(0), 1, 1, 1) sw = torch.pow(torch.tensor([2] * bw.size(0)).cuda().float(), (torch.log(bw.abs().view(bw.size(0), -1).mean(-1)) / math.log(2)).round().float()).view( bw.size(0), 1, 1, 1).detach() bw = IRNetSign().apply(bw, self.k, self.t) return bw * sw def ede(self, k, t): self.k = k self.t = t class RAConv2d(BaseBinaryConv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, binary_type=(True, True), **kwargs): super(RAConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, binary_type, **kwargs) self.sign_a = RANetActSign() self.sign_w = RANetWSign() def binary_input(self, x): return self.sign_a(x) def binary_weight(self, w): bw = self.sign_w(w) sw = torch.mean(torch.mean(torch.mean(abs(w),dim=3,keepdim=True),dim=2,keepdim=True),dim=1,keepdim=True).detach() return bw * sw class STEConv2d(BaseBinaryConv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, binary_type=(True, True), **kwargs): super(STEConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, binary_type, **kwargs) self.sign_a = RANetWSign(clip=1.25) self.sign_w = RANetWSign(clip=1.25) def binary_input(self, x): return self.sign_a(x) def binary_weight(self, w): return self.sign_w(w) class ANDConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(ANDConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.k = torch.tensor([10]).float().cuda() self.t = torch.tensor([0.1]).float().cuda() def forward(self, input): w = self.weight a = input bw = w - w.view(w.size(0), -1).mean(-1).view(w.size(0), 1, 1, 1) bw = bw / bw.view(bw.size(0), -1).std(-1).view(bw.size(0), 1, 1, 1) sw = torch.pow(torch.tensor([2]*bw.size(0)).cuda().float(), (torch.log(bw.abs().view(bw.size(0), -1).mean(-1)) / math.log(2)).round().float()).view(bw.size(0), 1, 1, 1).detach() bw = (IRNetSign().apply(bw, self.k, self.t) + 1.0) / 2.0 ba = (IRNetSign().apply(a, self.k, self.t) + 1.0) / 2.0 bw = bw * sw output = F.conv2d(ba, bw, self.bias, self.stride, self.padding, self.dilation, self.groups) return output
472592
from datetime import date from decimal import Decimal from controls.models import FinancialYear, ModuleSettings, Period from django.conf import settings from django.contrib.auth import get_user_model from django.shortcuts import reverse from django.test import TestCase from nominals.models import Nominal, NominalTransaction PURCHASES_CONTROL_ACCOUNT = "Purchase Ledger Control" SALES_CONTROL_ACCOUNT = "Sales Ledger Control" class TrialBalanceTests(TestCase): @classmethod def setUpTestData(cls): cls.url = reverse("nominals:trial_balance") cls.user = get_user_model().objects.create_superuser( username="dummy", password="<PASSWORD>") # nominals # Profit and Loss revenues = Nominal.objects.create(name="Revenues") revenue = Nominal.objects.create(name="Revenue", parent=revenues) cls.sales = sales = Nominal.objects.create(name="Sales", parent=revenue) expenses = Nominal.objects.create(name="Expenses") expense = Nominal.objects.create(name="Expense", parent=expenses) cls.sundry = sundry = Nominal.objects.create(name="Sundry", parent=expense) # Balance Sheet assets = Nominal.objects.create(name="Assets") current_assets = Nominal.objects.create(parent=assets, name="Current Assets") cls.sales_ledger_control = sales_ledger_control = Nominal.objects.create(parent=current_assets, name=SALES_CONTROL_ACCOUNT) liabilities = Nominal.objects.create(name="Liabilities") current_liabilities = Nominal.objects.create(parent=liabilities, name="Current Liabilities") cls.purchase_ledger_control = purchase_ledger_control = Nominal.objects.create(parent=current_liabilities, name=PURCHASES_CONTROL_ACCOUNT) cls.vat_control_account = vat_control_account = Nominal.objects.create(parent=current_liabilities, name=settings.DEFAULT_VAT_NOMINAL) today = date.today() # 2019 cls.fy_2019 = fy_2019 = FinancialYear.objects.create(financial_year=2019) cls.p_201912 = p_201912 = Period.objects.create( fy=fy_2019, period="01", fy_and_period="201912", month_start=date(2019, 12, 31) ) # 2020 cls.fy_2020 = fy_2020 = FinancialYear.objects.create(financial_year=2020) cls.p_202001 = p_202001 = Period.objects.create( fy=fy_2020, period="01", fy_and_period="202001", month_start=date(2020, 1, 31) ) cls.p_202002 = p_202002 = Period.objects.create( fy=fy_2020, period="02", fy_and_period="202002", month_start=date(2020, 2, 29) ) ModuleSettings.objects.create(nominals_period=cls.p_202001) # create a SL set of NL trans NominalTransaction.objects.create( header=1, line=1, module="SL", ref="1", period=p_202001, type="si", field="g", nominal=sales, value=-100, date=today ) NominalTransaction.objects.create( header=1, line=2, module="SL", ref="1", period=p_202001, type="si", field="v", nominal=vat_control_account, value=-20, date=today ) NominalTransaction.objects.create( header=1, line=3, module="SL", ref="1", period=p_202001, type="si", field="t", nominal=sales_ledger_control, value=120, date=today ) # create a PL set of NL trans NominalTransaction.objects.create( header=1, line=1, module="PL", ref="1", period=p_202001, type="pi", field="g", nominal=sundry, value=100, date=today ) NominalTransaction.objects.create( header=1, line=2, module="PL", ref="1", period=p_202001, type="pi", field="v", nominal=vat_control_account, value=20, date=today ) NominalTransaction.objects.create( header=1, line=3, module="PL", ref="1", period=p_202001, type="pi", field="t", nominal=purchase_ledger_control, value=-120, date=today ) def test(self): self.client.force_login(self.user) response = self.client.get(self.url) self.assertEqual( response.status_code, 200 ) context_data = response.context_data debit_total = context_data["debit_total"] credit_total = context_data["credit_total"] """ The totals are the total of the visible sums. In this case the total of the visible debit balances is 220. However really the total of debits is 240. The user should have two nominals for vat really - vat input and vat output. This would be a software change. """ self.assertEqual( debit_total, 220 ) self.assertEqual( credit_total, -220 ) ytd_debit_total = context_data["ytd_debit_total"] ytd_credit_total = context_data["ytd_credit_total"] self.assertEqual( ytd_debit_total, 220 ) self.assertEqual( ytd_credit_total, -220 ) report = context_data["report"] nominals_map = {} for nominal_report in report: nominals_map[nominal_report["nominal"]] = nominal_report sales = nominals_map["Sales"] sundry = nominals_map["Sundry"] sales_ledger_control = nominals_map["Sales Ledger Control"] purchase_ledger_control = nominals_map["Purchase Ledger Control"] vat_control = nominals_map["Vat"] self.assertEqual( sales, { "nominal": "Sales", "total": Decimal('-100.00'), "parents": ["Revenues", "Revenue"], "ytd": Decimal("-100.00") } ) self.assertEqual( sundry, { "nominal": "Sundry", "total": Decimal('100.00'), "parents": ["Expenses", "Expense"], "ytd": Decimal("100.00") } ) self.assertEqual( sales_ledger_control, { "nominal": "Sales Ledger Control", "total": Decimal('120.00'), "parents": ["Assets", "Current Assets"], "ytd": Decimal("120.00") } ) self.assertEqual( purchase_ledger_control, { "nominal": "Purchase Ledger Control", "total": Decimal('-120.00'), "parents": ["Liabilities", "Current Liabilities"], "ytd": Decimal("-120.00") } ) self.assertEqual( vat_control, { "nominal": "Vat", "total": Decimal('0.00'), "parents": ["Liabilities", "Current Liabilities"], "ytd": Decimal("0.00") } ) def test_different_fy(self): self.client.force_login(self.user) response = self.client.get( self.url, data={ "from_period": self.p_201912.pk, "to_period": self.p_202001.pk } ) self.assertEqual( response.status_code, 200 ) self.assertContains( response, "Period range must be within the same FY" ) def test_same_fy_but_invalid_period_range(self): self.client.force_login(self.user) response = self.client.get( self.url, data={ "from_period": self.p_202002.pk, "to_period": self.p_202001.pk } ) self.assertEqual( response.status_code, 200 ) self.assertContains( response, "<li>Invalid period range. Period From cannot be after Period To</li>" )
472608
import time from base64 import b64encode from .. import exceptions, const, config from ..utils import misc from ..models import deploy as models from . import base class Deploy(base.SoapService): def _get_zip_content(self, input_file) -> str: if isinstance(input_file, str): input_file = open(input_file, 'rb') return b64encode( input_file.read() ).decode('utf-8') def deploy(self, input_zip, options: models.Options = models.Options()) -> 'Deployment': result = self._post(action='deploy', message_path='deploy/deploy.msg', message_attributes={ 'zip_file': self._get_zip_content(input_zip), 'options': options.as_xml() }) if result.has('soapenv:Envelope/soapenv:Body/soapenv:Fault/faultcode'): raise exceptions.DeployCreateError(result.get_value('soapenv:Envelope/soapenv:Body/soapenv:Fault/faultstring')) return Deployment(self, result.get_value('soapenv:Envelope/soapenv:Body/deployResponse/result/id')) def check_deploy_status(self, async_process_id: str) -> models.Status: result = self._post(action='checkDeployStatus', message_path='deploy/status.msg', message_attributes={ 'async_process_id': async_process_id }) result = result.get('soapenv:Envelope/soapenv:Body/checkDeployStatusResponse/result') status = models.Status(result.get_value('status'), result.get_value('stateDetail', None), models.DeployDetails( int(result.get_value('numberComponentsTotal')), int(result.get_value('numberComponentErrors')), int(result.get_value('numberComponentsDeployed')) ), models.DeployDetails( int(result.get_value('numberTestsTotal')), int(result.get_value('numberTestErrors')), int(result.get_value('numberTestsCompleted')) )) if status.status.lower().strip() == 'failed': for failure in result.get_list('details/componentFailures'): status.components.append_failure(models.ComponentFailure( failure.get('componentType'), failure.get('fileName'), failure.get('problemType'), failure.get('problem') )) for failure in result.get_list('details/runTestResult/failures'): status.tests.append_failure(models.UnitTestFailure( failure.get('name'), failure.get('methodName'), failure.get('message'), failure.get('stackTrace') )) return status def cancel(self, async_process_id: str) -> bool: result = self._post(action='cancelDeploy', message_path='deploy/cancel.msg', message_attributes={ 'async_process_id': async_process_id }) return misc.parse_bool(result.get_value('soapenv:Envelope/soapenv:Body/cancelDeployResponse/result/done')) class Deployment: def __init__(self, deploy_service: Deploy, async_process_id: str): self.deploy_service = deploy_service self.async_process_id = async_process_id self.start_time = time.time() def get_elapsed_seconds(self): return time.time() - self.start_time def get_elapsed_time(self): return time.strftime("%H:%M:%S", time.gmtime(self.get_elapsed_seconds())) def cancel(self) -> bool: return self.deploy_service.cancel(self.async_process_id) def get_status(self) -> models.Status: return self.deploy_service.check_deploy_status(self.async_process_id) def is_done(self): return self.get_status().status in const.STATUSES_DONE def has_failed(self): return self.get_status().status == const.STATUS_FAILED def has_succeeded(self): return self.get_status().status == const.STATUS_SUCCEEDED def wait(self, tick: callable = None): while True: status = self.get_status() if tick is not None and callable(tick): tick(status) if status.status in const.STATUSES_DONE: break time.sleep(config.DEPLOY_SLEEP_SECONDS)
472631
import tensorflow as tf from .bbox import * from .Label import LabelEncoder from .compute_IoU import visualize_detections """Preprocessing data Preprocessing the images involves two steps: Resizing the image: Images are resized such that the shortest size is equal to 224 px for resnet, Applying augmentation: Random scale jittering and random horizontal flipping are the only augmentations applied to the images. Along with the images, bounding boxes are rescaled and flipped if required.""" def random_flip_horizontal(image, boxes): """Flips image and boxes horizontally with 50% chance Arguments: image: A 3-D tensor of shape `(height, width, channels)` representing an image. boxes: A tensor with shape `(num_boxes, 4)` representing bounding boxes, having normalized coordinates. Returns: Randomly flipped image and boxes """ if tf.random.uniform(()) > 0.5: image = tf.image.flip_left_right(image) boxes = tf.stack( [1 - boxes[:, 2], boxes[:, 1], 1 - boxes[:, 0], boxes[:, 3]], axis=-1 ) return image, boxes def resize_and_pad_image(image, reshape_size = 224.0): """Resizes and pads image while preserving aspect ratio. Arguments: image: A 3-D tensor of shape `(height, width, channels)` representing an image. Returns: image: Resized image. image.shape: Resized shape ratio_short: The scaling factor used to resize the short sides of image ratio_long: The scaling factor used to resize the long sides of image """ image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) ratio_short = reshape_size / tf.reduce_min(image_shape) ratio_long = reshape_size / tf.reduce_max(image_shape) image = tf.image.resize(image, tf.cast(tf.constant([224, 224]), dtype=tf.int32)) return image, image.shape, ratio_short, ratio_long def preprocess_data(sample): """Applies preprocessing step to a single sample Arguments: sample: A dict representing a single training sample. Returns: image: Resized and padded image with random horizontal flipping applied. bbox: Bounding boxes with the shape `(num_objects, 4)` where each box is of the format `[x, y, width, height]`. class_id: An tensor representing the class id of the objects, having shape `(num_objects,)`. """ image = sample["image"] bbox = swap_xy(sample["objects"]["bbox"]) class_id = tf.cast(sample["objects"]["label"], dtype=tf.int32) image, bbox = random_flip_horizontal(image, bbox) image, image_shape, _, __ = resize_and_pad_image(image) bbox = tf.stack( [ bbox[:, 0] * image_shape[1], bbox[:, 1] * image_shape[0], bbox[:, 2] * image_shape[1], bbox[:, 3] * image_shape[0], ], axis=-1, ) bbox = convert_to_xywh(bbox) return image, bbox, class_id def prepare_image(image): image, _, ratio_short, ratio_long = resize_and_pad_image(image) image = tf.keras.applications.resnet.preprocess_input(image) return tf.expand_dims(image, axis=0), ratio_short, ratio_long def pipeline(dataset, batch_size): """To ensure that the model is fed with data efficiently we will be using tf.data API to create our input pipeline. The input pipeline consists for the following major processing steps: Apply the preprocessing function to the samples Create batches with fixed batch size. Since images in the batch can have different dimensions, and can also have different number of objects, we use padded_batch to the add the necessary padding to create rectangular tensors Create targets for each sample in the batch using LabelEncoder""" autotune = tf.data.AUTOTUNE # make sure that number of files readed is bigger or equal than batch size dataset = dataset.map(preprocess_data, num_parallel_calls=autotune) dataset = dataset.shuffle(4 * batch_size) # randomly samples elements from this buffer dataset = dataset.padded_batch(batch_size=batch_size, padding_values=(0.0, 1e-8, -1), drop_remainder=True) # padded_batch(bsz, pad_shape, pad_val) dataset = dataset.map(LabelEncoder().encode_batch, num_parallel_calls=autotune) dataset = dataset.apply(tf.data.experimental.ignore_errors()) dataset = dataset.prefetch(autotune) return dataset
472661
import unittest from programy.config.brain.brain import BrainDynamicsConfiguration from programy.dynamic.maps.map import DynamicMap class MockDynamicMap(DynamicMap): def __init__(self, config): DynamicMap.__init__(self, config) def map_value(self, client_context, input_value): raise NotImplementedError() class DynamicMapTests(unittest.TestCase): def test_init(self): config = BrainDynamicsConfiguration() map = MockDynamicMap(config) self.assertIsNotNone(map) self.assertIsNotNone(map.config) self.assertEqual(config, map.config) with self.assertRaises(Exception): map.map_value(None, None, None)
472696
from trapper.data.data_adapters import DataAdapter, DataAdapterForQuestionAnswering from trapper.data.data_collator import DataCollator, InputBatch, InputBatchTensor from trapper.data.data_processors import DataProcessor, SquadDataProcessor from trapper.data.data_processors.data_processor import IndexedInstance from trapper.data.dataset_loader import DatasetLoader from trapper.data.dataset_reader import DatasetReader from trapper.data.label_mapper import LabelMapper from trapper.data.tokenizers import TokenizerWrapper
472754
from textwrap import dedent from nuitka.plugins.PluginBase import NuitkaPluginBase class NuitkaPluginFixBuild(NuitkaPluginBase): plugin_name = "fix-build" @staticmethod def onModuleSourceCode(module_name, source_code): if module_name == "torch.utils.data._typing": source_code = source_code.replace( "'__init_subclass__': _dp_init_subclass", "'__init_subclass__': classmethod(_dp_init_subclass)", ) elif module_name == "numba.core.decorators": source_code = dedent( """\ from numba.stencils.stencil import stencil def _wrapper(f): return f def jit(*args, **kwargs): return _wrapper def generated_jit(*args, **kwargs): return _wrapper def njit(*args, **kwargs): return _wrapper def cfunc(*args, **kwargs): return _wrapper def jit_module(*args, **kwargs): pass """ ) elif module_name == "torch._jit_internal": source_code = source_code.replace( 'warnings.warn(f"Unable to retrieve source', "#", ) elif module_name == "librosa.decompose": source_code = source_code.replace("import sklearn.decomposition", "#") elif module_name == "librosa.segment": source_code = source_code.replace("import sklearn", "#") return source_code
472775
import torch import torch.nn as nn import torch.nn.functional as F from .rnn import LSTM class Embeddings(nn.Module): def __init__(self, num_embeddings, embedding_dim, embed_weight=None, pad_idx=0, unk_idx=None, dropout=0.0, word_dropout=0.0): super(Embeddings, self).__init__() self.pad_idx = pad_idx self.unk_idx = unk_idx self.word_dropout = word_dropout self.embeddings = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, padding_idx=pad_idx) self.dropout = dropout if embed_weight is None: self.reset_params() else: # self.embeddings = nn.Embedding.from_pretrained(torch.from_numpy(embed_weight), freeze=True) self.embeddings.weight.data.copy_(torch.from_numpy(embed_weight)) if word_dropout > 0: assert unk_idx is not None def reset_params(self): nn.init.xavier_uniform_(self.embeddings.weight) with torch.no_grad(): self.embeddings.weight[self.pad_idx].fill_(0) @property def requires_grad(self): return self.embeddings.weight.requires_grad @requires_grad.setter def requires_grad(self, value: bool): self.embeddings.weight.requires_grad = value @property def weight(self): return self.embeddings.weight def _drop_word(self, words): r""" 按照一定概率随机将word设置为unk_index,这样可以使得unk这个token得到足够的训练, 且会对网络有一定的regularize的作用。设置该值时,必须同时设置unk_index """ drop_probs = torch.ones_like(words).float() * self.word_dropout # drop_probs = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device) drop_mask = torch.bernoulli(drop_probs).eq(1) # dropout_word越大,越多位置为1 pad_mask = words.ne(self.pad_idx) mask = drop_mask & pad_mask words = words.masked_fill(mask, self.unk_idx) return words def forward(self, x): if self.word_dropout > 0 and self.training: x = self._drop_word(x) embed = self.embeddings(x) embed = F.dropout(embed, p=self.dropout, training=self.training) return embed class ScaleDotProductAttention(nn.Module): def __init__(self, k_dim, dropout=0.1): super(ScaleDotProductAttention, self).__init__() self.scale = 1. / k_dim ** 0.5 self.dropout = dropout def forward(self, q, k, v, mask=None): ''' :param q: (bz, q_len, q_dim) :param k: (bz, k_len, k_dim) :param v: (bz, v_len, v_dim) k_len == v_len v_dim == q_dim :param mask: (bz, k_len) 填充部分为0 :return: (bz, q_len, v_dim) ''' # (bz, q_len, k_len) att_score = torch.matmul(q, k.transpose(1, 2)).mul(self.scale) if mask is not None: att_mask = ~mask[:, None, :] att_score = att_score.masked_fill(att_mask, -1e9) att_weights = F.softmax(att_score, dim=-1) att_out = torch.matmul(att_weights, v) return att_out class DotProductAttention(nn.Module): def __init__(self, k_dim): super(DotProductAttention, self).__init__() self.scale = 1. / k_dim ** 0.5 def forward(self, hn, enc_out, mask=None): ''' :param hn: query - rnn的末隐层状态 [batch_size, hidden_size] :param enc_out: key - rnn的输出 [batch_size, seq_len, hidden_size] :param mask: [batch_size, seq_len] 0对应pad :return: att_out [batch_size, hidden_size] ''' # type 1 # (bz, 1, hidden_size) * (bz, hidden_size, n_step) -> (bz, 1, n_step) att_score = torch.matmul(hn.unsqueeze(1), enc_out.transpose(1, 2)).squeeze(1) att_score.mul_(self.scale) if mask is not None: att_score = att_score.masked_fill(~mask, -1e9) att_weights = F.softmax(att_score, dim=1) # (bz, n_step) # (bz, 1, n_step) * (bz, n_step, hidden_size) -> (bz, 1, hidden_size) att_out = torch.matmul(att_weights.unsqueeze(1), enc_out).squeeze(1) ''' # type 2 # (bz, hidden_size, 1) hidden = hn.reshape(hn.size(0), -1, 1) # (bz, n_step, hidden_size) * (bz, hidden_size, 1) -> (bz, n_step) att_score = torch.matmul(enc_out, hidden).squeeze(2) att_score.mul_(self.scale) if mask is not None: att_score = att_score.masked_fill(~mask, -1e9) attn_weights = F.softmax(att_score, dim=1) # (bz, hidden_sze, n_step) * (bz, n_step, 1) -> (bz, hidden_size, 1) att_out = torch.matmul(enc_out.transpose(1, 2), attn_weights.unsqueeze(2)).squeeze(2) ''' return att_out class AdditiveAttention(nn.Module): def __init__(self, k_size, v_size, hidden_size=None, bias=True): super(AdditiveAttention, self).__init__() if hidden_size is None: hidden_size = v_size self.W1 = nn.Linear(k_size, hidden_size, bias=False) self.W2 = nn.Linear(v_size, hidden_size, bias=bias) self.V = nn.Linear(hidden_size, 1, bias=False) self.reset_params() def reset_params(self): nn.init.xavier_normal_(self.W1.weight) nn.init.xavier_normal_(self.W2.weight) nn.init.xavier_uniform_(self.V.weight) def forward(self, q, v, mask=None): ''' :param q: (bz, hidden_size) :param v: (bz, n_step, hidden_size) :param mask: (bz, n_step) :return: ''' # (bz, 1, hidden_size) expand_q = q.unsqueeze(1) att_score = self.V(torch.tanh(self.W1(expand_q) + self.W2(v))) if mask is not None: att_score = att_score.masked_fill(~mask.unsqueeze(-1), -1e9) # (bz, n_step, 1) att_weights = F.softmax(att_score, dim=1) # (bz, n_step) attn_dist = att_weights.squeeze(dim=-1) # (bz, hidden_size) att_out = (att_weights * v).sum(dim=1) return att_out, attn_dist class NonlinearMLP(nn.Module): def __init__(self, in_feature, out_feature, activation=None, bias=True): super(NonlinearMLP, self).__init__() if activation is None: self.activation = lambda x: x else: assert callable(activation) self.activation = activation self.bias = bias self.linear = nn.Linear(in_features=in_feature, out_features=out_feature, bias=bias) self.reset_params() def reset_params(self): nn.init.xavier_uniform_(self.linear.weight) # nn.init.orthogonal_(self.linear.weight) if self.bias: nn.init.zeros_(self.linear.bias) def forward(self, inputs): linear_out = self.linear(inputs) return self.activation(linear_out) # class Bilinear(nn.Module): # def __init__(self, hidden_size, bias=True): # """ # :param hidden_size: 输入的特征维度 # """ # super(Bilinear, self).__init__() # self.U = nn.Parameter(torch.zeros(hidden_size, hidden_size)) # self.has_bias = bias # if self.has_bias: # self.bias = nn.Parameter(torch.zeros(1)) # else: # self.register_parameter("bias", None) # # self.reset_parameters() # # def reset_parameters(self): # nn.init.xavier_uniform_(self.U) # if self.has_bias: # nn.init.zeros_(self.bias) # # def forward(self, dep, head): # """ # :param head: arc-head tensor [batch, length, hidden] # :param dep: arc-dependent tensor [batch, length, hidden] # :return output: tensor [batch, length, length] # """ # output = dep.matmul(self.U) # output = output.bmm(head.transpose(-1, -2)) # if self.has_bias: # output = output + self.bias # return output class Bilinear(nn.Module): def __init__(self, in_dim1, in_dim2, label_dim=1, use_input_bias=False): super(Bilinear, self).__init__() self.label_dim = label_dim self.use_input_bias = use_input_bias if self.use_input_bias: in_dim1 += 1 in_dim2 += 1 self.U = nn.Parameter(torch.randn(label_dim, in_dim1, in_dim2)) self.bias = nn.Parameter(torch.zeros(1)) self.reset_params() def reset_params(self): nn.init.xavier_uniform_(self.U) nn.init.zeros_(self.bias) def forward(self, x1, x2): ''' :param x1: (bs, len1, in_dim1) :param x2: (bs, len2, in_dim2) :return: (bs, len1, len2, label_dim) ''' if self.use_input_bias: # Biaffine # (bs, len1, 1) bias1 = x1.new_ones(x1.size()[:-1] + (1, )) # (bs, len2, 1) bias2 = x2.new_ones(x2.size()[:-1] + (1, )) # (bs, len1, in_dim1 + 1) x1 = torch.cat((x1, bias1), dim=-1) # (bs, len2, in_dim2 + 1) x2 = torch.cat((x2, bias2), dim=-1) # (bs, 1, len1, in_dim1) * (1/label_dim, in_dim1, in_dim2) -> (bs, 1/label_dim, len1, in_dim2) tmp = torch.matmul(x1.unsqueeze(1), self.U) # (bs, 1/label_dim, len1, in_dim2) * (bs, 1, in_dim2, len2) -> (bs, 1/label_dim, len1, len2) out = torch.matmul(tmp, x2.unsqueeze(1).transpose(2, 3).contiguous()) final = out.squeeze(1) + self.bias if self.label_dim > 1: # (bs, len1, len2, label_dim) final = final.permute(0, 2, 3, 1) return final # class Biaffine(nn.Module): # def __init__(self, in1_features, in2_features, num_label=1, bias=True): # """ # :param in1_features: 输入的特征1维度 # :param in2_features: 输入的特征2维度 # :param num_label: 类别的个数 # :param bias: 是否使用bias. Default: ``True`` # """ # super(Biaffine, self).__init__() # self.bilinear = nn.Bilinear(in1_features, in2_features, num_label, bias=bias) # self.fc = nn.Linear(in1_features + in2_features, num_label, bias=False) # self.reset_parameters() # # def reset_parameters(self): # nn.init.xavier_uniform_(self.bilinear.weight) # nn.init.xavier_uniform_(self.fc.weight) # # def forward(self, dep, head): # """ # :param dep: [batch, seq_len, hidden] 输入特征1, 即dep # :param head: [batch, seq_len, hidden] 输入特征2, 即head # :return output: [batch, seq_len, num_cls] 每个元素对应类别的概率图 # """ # output = self.bilinear(head, dep) + self.fc(torch.cat(tuple([head, dep]), dim=-1).contiguous()) # return output # self-adaptive attention class AdaptiveBilinear(nn.Module): def __init__(self): super(AdaptiveBilinear, self).__init__() def forward(self, x1, x2): ''' :param x1: (b, l1, dim1) :param x2: (b, l2, dim2) :return: ''' assert x1.size(-1) == x2.size(-1) # (b, l1, l1) x_1 = F.softmax(x1 @ x1.transpose(1, 2), dim=-1) # (b, l2, l2) x_2 = F.softmax(x2 @ x2.transpose(1, 2), dim=-1) # (b, l1, l2) x_12 = x1 @ x2.transpose(1, 2) # (b, l1, l2) x_12 = x_1 @ x_12 @ x_2.transpose(1, 2) return x_12 class Biaffine(nn.Module): def __init__(self, in_features, out_features=1, bias=(True, True)): super(Biaffine, self).__init__() self.in_features = in_features # mlp_arc_size / mlp_label_size self.out_features = out_features # 1 / rel_size self.bias = bias # arc: mlp_size # label: mlp_size + 1 self.linear_input_size = in_features + bias[0] # arc: mlp_size * 1 # label: (mlp_size + 1) * rel_size self.linear_output_size = out_features * (in_features + bias[1]) self.linear = nn.Linear(in_features=self.linear_input_size, out_features=self.linear_output_size, bias=False) self.reset_params() def reset_params(self): nn.init.xavier_uniform_(self.linear.weight) def forward(self, input1, input2): batch_size, len1, dim1 = input1.size() batch_size, len2, dim2 = input2.size() if self.bias[0]: ones = input1.data.new_ones(batch_size, len1, 1) input1 = torch.cat((input1, ones), dim=-1) # dim1 += 1 if self.bias[1]: ones = input2.data.new_ones(batch_size, len2, 1) input2 = torch.cat((input2, ones), dim=-1) # dim2 += 1 # (bz, len1, dim1+1) -> (bz, len1, linear_output_size) affine = self.linear(input1) # (bz, len1 * self.out_features, dim2) affine = affine.reshape(batch_size, len1 * self.out_features, -1) # (bz, len1 * out_features, dim2) * (bz, dim2, len2) # -> (bz, len1 * out_features, len2) -> (bz, len2, len1 * out_features) biaffine = torch.bmm(affine, input2.transpose(1, 2)).transpose(1, 2).contiguous() # (bz, len2, len1, out_features) # out_features: 1 or rel_size biaffine = biaffine.reshape((batch_size, len2, len1, -1)).squeeze(-1) return biaffine class CharCNNEmbedding(nn.Module): def __init__(self, nb_embeddings, embed_size=100, # final embedding dim embed_weight=None, kernel_sizes=(3, 5, 7), filter_nums=(50, 100, 150), dropout=0.2): super(CharCNNEmbedding, self).__init__() self.dropout = dropout for ks in kernel_sizes: assert ks % 2 == 1, "Odd kernel is supported!" self.char_embedding = Embeddings(num_embeddings=nb_embeddings, embedding_dim=embed_size, embed_weight=embed_weight, pad_idx=0, dropout=dropout) self.convs = nn.ModuleList([nn.Sequential( nn.Conv1d(in_channels=embed_size, out_channels=filter_nums[i], padding=ks // 2, kernel_size=ks), nn.ReLU(), nn.AdaptiveMaxPool1d(output_size=1) ) for i, ks in enumerate(kernel_sizes)]) self.linear = nn.Linear(in_features=sum(filter_nums), out_features=embed_size) def forward(self, char_idxs): ''' :param char_idxs: (bz, seq_len, max_wd_len) :return: (bz, seq_len, embed_size) ''' bz, seq_len, max_wd_len = char_idxs.size() reshape_char_idxs = char_idxs.reshape(bz*seq_len, -1) char_embed = self.char_embedding(reshape_char_idxs) # (bz*seq_len, char_embed_size, ch_seq_len) char_embed_ = char_embed.transpose(1, 2).contiguous() char_convs = [conv(char_embed_).squeeze(-1) for conv in self.convs] conv_outs = torch.cat(tuple(char_convs), dim=-1).contiguous() # (bz, seq_len, embed_size) embed_out = self.linear(conv_outs).reshape(bz, seq_len, -1) embed_out = F.dropout(embed_out, p=self.dropout, training=self.training) return embed_out class CharLSTMEmbedding(nn.Module): def __init__(self, nb_embeddings, embed_size=50, hidden_size=50, bidirectional=True, dropout=0.0): super(CharLSTMEmbedding, self).__init__() self.char_embedding = Embeddings(num_embeddings=nb_embeddings, embedding_dim=embed_size, pad_idx=0, dropout=dropout) self.lstm = LSTM(input_size=embed_size, hidden_size=hidden_size, num_layers=1, batch_first=True, bidirectional=bidirectional) lstm_hidden_size = hidden_size * 2 if bidirectional else hidden_size self.linear = nn.Linear(in_features=lstm_hidden_size, out_features=embed_size) self.dropout = dropout self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.linear.weight) def forward(self, char_idxs): ''' :param char_idxs: (bz, seq_len, max_wd_len) :return: (bz, seq_len, embed_size) ''' bz, seq_len, max_wd_len = char_idxs.size() reshape_char_idxs = char_idxs.reshape(bz * seq_len, -1) char_mask = reshape_char_idxs.gt(0) # (bz*seq_len, max_wd_len) char_embed = self.char_embedding(reshape_char_idxs) lstm_out = self.lstm(char_embed, non_pad_mask=char_mask)[0] # (bz*seq_len, max_wd_len, hidden_size) # lstm_out = F.relu(lstm_out) # pad部分置成-inf,以免对max_pool造成干扰 # 如果是avg_pool,pad部分置成0 mask_lstm_out = lstm_out.masked_fill(char_mask.unsqueeze(-1), -1e9) # mask_lstm_out = mask_lstm_out.transpose(1, 2) # (bz*seq_len, hidden_size, max_wd_len) # out = F.max_pool1d(mask_lstm_out, kernel_size=mask_lstm_out.size(-1)).squeeze(dim=-1) out, _ = torch.max(mask_lstm_out, dim=1) # (bz, seq_len, embed_size) embed_out = self.linear(out).reshape(bz, seq_len, -1) return embed_out
472779
from .model import Model from .vae import VAE from .vi import VI from .ml import ML from .gan import GAN __all__ = [ 'Model', 'ML', 'VAE', 'VI', 'GAN', ]
472781
import signal import time from leek_demo.app import app @app.task(autoretry_for=(Exception,), retry_kwargs={'max_retries': 3}) def critical_task(): """Will always fail/retry until max_retries""" raise Exception("I'm a looser") @app.task(autoretry_for=(Exception,), retry_kwargs={'max_retries': 3}, expires=120) def revoked_expired_task(): """Will fail/retry/.../expire""" raise Exception("I will certainly expire") @app.task() def revoked_terminated_task(): """Will be terminated""" app.control.revoke(revoked_terminated_task.request.id, terminate=True, signal=signal.SIGTERM) time.sleep(10) @app.task(autoretry_for=(Exception,), retry_kwargs={'max_retries': 3}) def recovered_task(): """Will fail/retry/.../succeed""" if recovered_task.request.retries > 1: return "I'm a survival" raise Exception("I'm retrying my self")
472851
import urllib import os import time import errno import weakref import base64 import json import socket #ASYNC import asyncio import aiohttp from aiohttp import web from urllib.parse import unquote """ HTTP Server interface """ def _get_viewer(ref): #Get from weak reference, if deleted raise exception lv = ref() if not lv: raise(Exception("Viewer not found")) return lv def _execute(lv, cmds): if len(cmds) and cmds[0] == '_': #base64 encoded commands or JSON state cmds = str(base64.b64decode(cmds).decode('utf-8')) #cmds = str(base64.b64decode(cmds), 'utf-8') #Object to select can be provided in preceding angle brackets selobj = None if cmds[0] == '<': pos = cmds.find('>') selobj = lv.objects[cmds[1:pos]] cmds = cmds[pos+1:] #Execute commands via python API by preceding with '.' done = False if cmds[0] == '.': attr = cmds.split()[0][1:] pos = cmds.find(' ') params = cmds[pos+1:] if selobj: #Call on Object func = getattr(selobj, attr) if func and callable(func): func(params) done = True else: #Call on Viewer func = getattr(lv, attr) if func and callable(func): func(params) done = True elif cmds[0] == '$': #Requests prefixed by '$' are sent #from property collection controls #format is $ID KEY VALUE # - ID is the python id() of the properties object # All properties collections are stored on their parent # object using this id in the _collections dict # - KEY is the property name key to set # - VALUE is a json string containing the value to set S = cmds.split() target = S[0][1:] if target in lv._collections: #Get from _collections by id (weakref) props = lv._collections[target]() props[S[1]] = json.loads(S[2]) #Check for callback - if provided, call with updated props func = getattr(props, 'callback') if func and callable(func): func(props) #Default, call via lv.commands() scripting API if not done: if selobj: selobj.select() lv.commands(cmds) headers = {'Access-Control-Allow-Origin' : '*', 'x-colab-notebook-cache-control' : 'no-cache'} #Colab: disable offline access cache def img_response(lv, query={}): global headers resp = None if 'width' in query and 'height' in query: resp = lv.jpeg(resolution=(int(query['width']), int(query['height']))) elif 'width' in query: resp = lv.jpeg(resolution=(int(query['width']), 0)) else: resp = lv.jpeg() #Ensure the response is valid before serving if resp is not None: return web.Response(body=resp, content_type='image/jpeg', headers=headers) else: return web.Response(text='', headers=headers) async def index(request): global headers #Index request returns full screen interactive view lv = _get_viewer(request.app['viewer']) w = lv.control.Window(align=None, wrapper=None, fullscreen=True) code = lv.control.show(True, filename="") return web.Response(text=code, headers=headers, content_type='text/html') async def handle_get(request): global headers lv = _get_viewer(request.app['viewer']) #Default to empty OK 200 response response = web.Response(text='', headers=headers) #print(request.path) #for q in request.query: # print(q, request.query[q]) if request.path.startswith('/image'): response = img_response(lv, request.query) elif request.path.startswith('/command=') or request.path.startswith('/icommand='): pos1 = request.path.find('=') pos2 = request.path.find('?') if pos2 < 0: pos2 = len(request.path) cmds = unquote(request.path[pos1+1:pos2]) #Run viewer commands _execute(lv, cmds) #Serve image or just respond 200 if request.path.startswith('/icommand='): response = img_response(lv, request.query) elif request.path.startswith('/getstate'): state = lv.app.getState() response = web.Response(text=state, headers=headers, content_type='application/json') elif request.path.startswith('/connect'): if 'url' in request.query: #Save first valid connection URL on the viewer url = request.query['url'] if len(lv._url) == 0: lv._url = url uid = id(lv) response = web.Response(text=str(uid), headers=headers) elif request.path.startswith('/key='): pos2 = request.path.find('&') cmds = unquote(request.path[1:pos2]) lv.commands('key ' + cmds, True) elif request.path.startswith('/mouse='): pos2 = request.path.find('&') cmds = unquote(request.path[1:pos2]) lv.commands('mouse ' + cmds, True) elif request.path.startswith('/db'): #Send the database db = bytes(lv.app.serialize()) response = web.Response(body=db, headers=headers, content_type='application/octet-stream') else: #Serve other urls as files if available #print("UNKNOWN - ", request.path) path = request.path if os.path.exists(path): #OK to always serve files in cwd? response = web.FileResponse(path) else: #Serve files from lavavu html dir #print(' - not found in cwd') if path[0] == '/': path = path[1:] path2 = os.path.join(lv.htmlpath, path) if os.path.exists(path2) and os.path.isfile(path2): #print(' - found in htmlpath') response = web.FileResponse(path2) return response async def index_post(request): lv = _get_viewer(request.app['viewer']) #print("POST", request.path) #text = await request.text() text = '' #Always interpret post data as commands #(can perform othe r actions too based on path later if we want) if request.body_exists: body = await request.read() #body = await request.text() cmds = str(body, 'utf-8') #python3 only #from urllib.parse import unquote #data_string = unquote(body) #cmds = str(data_string.decode('utf-8')) #Run viewer commands _execute(lv, cmds) return web.Response(text='', headers=headers) """ HTTP Server manager class """ class Server(object): def __init__(self, viewer, port=8080, ipv6=False, retries=100): #Allows viewer to be garbage collected self.viewer = weakref.ref(viewer) self.ipv6 = ipv6 self.retries = retries self._closing = False self._lock = asyncio.Lock() #Get port/socket before running server in synchronous code self.socket, self.port = _listen(port, self.ipv6, self.retries) async def run(self): #Server run! #Lock until the port is retrieved async with self._lock: await _serve(self.viewer, self.socket) #ONLY NEED THIS IF NO LOOP EXISTS AND WE ARE MANAGING OUR OWN #while not self._closing: # await asyncio.sleep(3600) # sleep forever # #await asyncio.sleep(1) # sleep forever # print('_', end='') #To stop, call cleanup (TODO: put this somewhere in closedown code) #await runner.cleanup() def _listen(port, ipv6, retries): #Get port/socket before running server in synchronous code #avoids race conditions over port number with subsequent code that #tries to use server.port before it is confirmed/opened hostidx = 0 for i in range(retries): try: hosts = [] socktype = socket.AF_INET if ipv6: hosts = ['::', 'localhost', '::1'] host = hosts[hostidx] socktype = socket.AF_INET6 else: hosts = ['0.0.0.0', 'localhost', '127.0.0.1'] host = hosts[hostidx] #https://github.com/aio-libs/aiohttp/issues/1987#issuecomment-309401600 sock = socket.socket(socktype) sock.bind((host, port)) # Aiohttp will call 'listen' inside. # But it must be called before we actually use the port, # any attempts to connect before the 'listen' call will # be rejected. sock.listen(128) params = sock.getsockname() port = params[1] #print("Socket ready on host %s port %s" % (host, port)) return sock, port except (Exception) as e: #Try another port if e.errno == errno.EADDRINUSE: #98 port += 1 #Try again... elif e.errno == errno.EAFNOSUPPORT: #97 : Address family not supported by protocol #Try next host name/address hostidx += 1 if hostidx > 2: #Try again without ipv6? if ipv6: ipv6 = False else: ipv6 = True hostidx = 0 #Try again... else: print("Socket open failed: ", e, e.errno, host, port) print("Failed to open socket, max retries reached") return None, 0 async def _serve(viewer, sock): try: #Create web application manager app = web.Application() #Store viewer app["viewer"] = viewer #Add routes app.router.add_get('/', index) app.router.add_post('/', index_post), app.router.add_get('/{tail:.*}', handle_get) #Static routes? https://docs.aiohttp.org/en/stable/web_advanced.html #app.add_routes([web.static('/', path_to_static_folder)]) #routes.static('/prefix', path_to_static_folder) #app.add_routes([web.get('/', handler), # web.post('/post', post_handler), # web.put('/put', put_handler)]) #Can't use this, is blocking #web.run_app(app, sock=sock) # set up aiohttp - like run_app, but non-blocking - socket provided version runner = aiohttp.web.AppRunner(app, access_log=None) await runner.setup() site = aiohttp.web_runner.SockSite(runner, sock=sock) await site.start() """ #This works but have to wait for the port to be allocated before using # passing socket as above gets port in synchronous code # set up aiohttp - like run_app, but non-blocking runner = aiohttp.web.AppRunner(app) await runner.setup() site = aiohttp.web.TCPSite(runner, host=host, port=port, reuse_address=False) await site.start() #Get port from first entry in list of active connections for s in runner.sites: #print(s.name, s._port) return s._port #Get actual port allocated return 0 """ except (Exception) as e: print("Server start failed: ", e) #Ignore SIGPIPE altogether (does not apply on windows) #import sys #if sys.platform != 'win32': # from signal import signal, SIGPIPE, SIG_IGN # signal(SIGPIPE, SIG_IGN) def serve(viewer, port=None, ipv6=False, retries=100): s = Server(viewer, port, ipv6, retries) #Attach to event loop loop = asyncio.get_event_loop() loop.create_task(s.run()) return s """ Main entry point - run server and open browser interface """ if __name__ == '__main__': import lavavu import asyncio lv = lavavu.Viewer() print(lv.server.port) lv.browser() lv.app.loop() #lv.interactive()
472853
from core import * from cameras import * from geometry import * from material import * from helpers import * import pygame import random class TestUpdatingTexture(Base): def initialize(self): self.setWindowTitle('Updating Textures') self.setWindowSize(800,800) self.renderer = Renderer() self.renderer.setViewportSize(800,800) self.renderer.setClearColor(0.25, 0.25, 0.25) self.scene = Scene() self.camera = PerspectiveCamera() self.camera.transform.setPosition(0, 0, 2) self.camera.transform.lookAt(0, 0, 0) self.cameraControls = FirstPersonController(self.input, self.camera) self.canvas = pygame.Surface( (128,128), pygame.SRCALPHA ) self.canvas.fill( [255,255,255] ) self.pixels = pygame.PixelArray(self.canvas) self.canvasID = OpenGLUtils.initializeSurface(self.canvas) geometry = QuadGeometry(width=1, height=1, widthResolution=1, heightResolution=1) material = SurfaceBasicMaterial(texture=self.canvasID) # disable filtering to see individual pixels more clearly material.linearFiltering = False mesh = Mesh(geometry, material) self.scene.add(mesh) def update(self): self.cameraControls.update() if self.input.resize(): size = self.input.getWindowSize() self.camera.setAspectRatio( size["width"]/size["height"] ) self.renderer.setViewportSize(size["width"], size["height"]) # changing the color of 1000 pixels per frame for i in range(1000): x = random.randint(1,126) y = random.randint(1,126) r = random.randint(0,255) g = random.randint(0,255) b = random.randint(0,255) self.pixels[x,y] = (r,g,b) OpenGLUtils.updateSurface(self.canvas, self.canvasID) self.renderer.render(self.scene, self.camera) # instantiate and run the program TestUpdatingTexture().run()
472859
import numpy as np import PIL.Image import cv2 import math import skimage.draw import matplotlib.pyplot as plt import pickle import torch.nn.functional as F import torch # lighting functions import lighting # show image in Jupyter Notebook (work inside loop) from io import BytesIO from IPython.display import display, Image def show_img_arr(arr): im = PIL.Image.fromarray(arr) bio = BytesIO() im.save(bio, format='png') display(Image(bio.getvalue(), format='png')) # write log in training phase def take_notes(content, target_file, create_file = False): if create_file == True: f = open(target_file,"w") else: f = open(target_file,"a") f.write(content) f.close() return len(content) # convenient for saving tensor to file as snapshot def save_to_img(src, output_path_name, src_type = "tensor", channel_order="cwd", scale = 255): if src_type == "tensor": src_arr = np.asarray(src) * scale elif src_type == "array": src_arr = src*scale else: print("save tensor error, cannot parse src type.") return False if channel_order == "cwd": src_arr = (np.moveaxis(src_arr,0,2)).astype(np.uint8) elif channel_order == "wdc": src_arr = src_arr.astype(np.uint8) else: print("save tensor error, cannot parse channel order.") return False src_img = PIL.Image.fromarray(src_arr) src_img.save(output_path_name) return True def save_batch_tensors(src_tensor, tgt_tensor, pred_tensor, output_name): src_arr = np.asarray(src_tensor) tgt_arr = np.asarray(tgt_tensor) pred_arr = np.asarray(pred_tensor) batch_size = src_arr.shape[0] chn = src_arr.shape[1] height = src_arr.shape[2] width = src_arr.shape[3] board_arr = np.zeros((chn, height*batch_size, width*3)) for j in range(batch_size): board_arr[:,j*height:(j+1)*height,0:width] = src_arr[j] board_arr[:,j*height:(j+1)*height,width:2*width] = tgt_arr[j] board_arr[:,j*height:(j+1)*height,2*width:3*width] = pred_arr[j] save_to_img(board_arr, output_name, src_type = "array") # camera project and inv-project class CamPara(): def __init__(self, K=None, Rt=None): img_size = [200,200] if K is None: K = np.array([[500, 0, 112], [0, 500, 112], [0, 0, 1]]) else: K = np.array(K) if Rt is None: Rt = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) else: Rt = np.array(Rt) R = Rt[:,:3] t = Rt[:,3] self.cam_center = -np.dot(R.transpose(),t) # compute projection and inv-projection matrix self.proj_mat = np.dot(K, Rt) self.inv_proj_mat = np.linalg.pinv(self.proj_mat) # compute ray directions of camera center pixel c_uv = np.array([float(img_size[0])/2+0.5, float(img_size[1])/2+0.5]) self.center_dir = self.inv_project(c_uv) def get_camcenter(self): return self.cam_center def get_center_dir(self): return self.center_dir def project(self, p_xyz): p_xyz = np.double(p_xyz) p_uv_1 = np.dot(self.proj_mat, np.append(p_xyz, 1)) if p_uv_1[2] == 0: return 0 p_uv = (p_uv_1/p_uv_1[2])[:2] return p_uv # inverse projection, if depth is None, return a normalized direction def inv_project(self, p_uv, depth=None): p_uv = np.double(p_uv) p_xyz_1 = np.dot(self.inv_proj_mat, np.append(p_uv, 1)) if p_xyz_1[3] == 0: return 0 p_xyz = (p_xyz_1/p_xyz_1[3])[:3] p_dir = p_xyz - self.cam_center p_dir = p_dir / np.linalg.norm(p_dir) if depth is None: return p_dir else: real_xyz = self.cam_center + p_dir * depth return real_xyz # for photometric loss def photometricLossgray(colorImg_gray, depthImg, albedoImg_gray, mask, lighting_est, device, K, thres): N,C,H,W = colorImg_gray.size() # color loss normals, _ = lighting.depthToNormalBatch(depthImg, device, K, thres) SHs = lighting.normalToSHBatch(normals,device) SHs = torch.reshape(SHs, (N, H*W, 9)) lighting_est = torch.reshape(lighting_est, (N, 9, 1)) #SHs to [B, H*W,9] lighting [B, 9, 1] --[N, H*W] --[B,H,W,1] color_shading = torch.bmm(SHs, lighting_est) # N H*W 1 color_shading = torch.reshape(color_shading, (N, H, W)) mask1 = torch.reshape(mask[:,0,:,:], (N,H,W)) # one layer mask color_pre = mask1 * (color_shading * albedoImg_gray) # N*H*W colorImg_gray_mask = mask1 * colorImg_gray # mask colorloss = F.l1_loss(color_pre, colorImg_gray_mask) # NHW size directly return colorloss, color_pre # come from hmr-src/util/image.py def scale_and_crop(image, scale, center, img_size): image_scaled, scale_factors = resize_img(image, scale) # Swap so it's [x, y] scale_factors = [scale_factors[1], scale_factors[0]] center_scaled = np.round(center * scale_factors).astype(np.int) margin = int(img_size / 2) image_pad = np.pad( image_scaled, ((margin, ), (margin, ), (0, )), mode='edge') center_pad = center_scaled + margin # figure out starting point start_pt = center_pad - margin end_pt = center_pad + margin # crop: crop = image_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] proc_param = { 'scale': scale, 'start_pt': start_pt, 'end_pt': end_pt, 'img_size': img_size } return crop, proc_param def get_line_length(pixel_list): if len(pixel_list) <= 1: return 0 max_x, min_x = pixel_list[0][0], pixel_list[0][0] max_y, min_y = pixel_list[0][1], pixel_list[0][1] for i in range(len(pixel_list)): if pixel_list[i][0]>max_x: max_x = pixel_list[i][0] elif pixel_list[i][0]<min_x: min_x = pixel_list[i][0] if pixel_list[i][1]>max_y: max_y = pixel_list[i][1] elif pixel_list[i][1]<min_y: min_y = pixel_list[i][1] l_x = max_x - min_x l_y = max_y - min_y length = len(pixel_list) * np.linalg.norm([l_x, l_y]) / max(l_x, l_y) return length # compute the distance between anchor points and silhouette boundary, # (the model occluded parts are filtered out) def measure_achr_dist(achr_verts, achr_normals, gt_sil, proj_sil, hd_size = (1000, 1000), max_dist = 0.05, anchor_num = 200, ): # parse projected image to get distance for each anchor if gt_sil.shape is not hd_size: gt_sil = cv2.resize(gt_sil, dsize=(1000, 1000), interpolation=cv2.INTER_LINEAR) if proj_sil.shape is not hd_size: proj_sil = cv2.resize(proj_sil, dsize=(1000, 1000), interpolation=cv2.INTER_LINEAR) proj_img_out = np.zeros((hd_size)) proj_img_in = np.zeros((hd_size)) cam_para = CamPara(K = np.array([[2232.142857, 0, 500], [0, 2232.142857, 500], [0, 0, 1]])) # project vectors to image as index-valued lines # make start_point list and end_out_point list, end_in_point list start_point_list = [] end_out_point_list = [] end_in_point_list = [] for i in range(len(achr_verts)): xy = cam_para.project(achr_verts[i]) x = int(xy[0]+0.5) y = int(xy[1]+0.5) if x<0 or y<0 or x>=hd_size[1] or y>=hd_size[0]: continue uv = cam_para.project(achr_verts[i] + achr_normals[i]*max_dist) u = int(uv[0]+0.5) v = int(uv[1]+0.5) if u<0 or v<0 or u>=hd_size[1] or v>=hd_size[0]: continue ab = cam_para.project(achr_verts[i] - achr_normals[i]*max_dist) a = int(ab[0]+0.5) b = int(ab[1]+0.5) if a<0 or b<0 or a>=hd_size[1] or b>=hd_size[0]: continue r_out, c_out = skimage.draw.line(y,x,v,u) r_in, c_in = skimage.draw.line(y,x,b,a) # draw img out and in proj_img_out[r_out, c_out] = i+1 proj_img_in[r_in, c_in] = i+1 proj_img_out[proj_sil>=128] = 0 proj_img_out[gt_sil<128] = 0 proj_img_in[proj_sil<128] = 0 proj_img_in[gt_sil>=128] = 0 # build pixel map for efficiently using get_line_length() pixel_map_in = [[] for i in range(anchor_num)] pixel_map_out = [[] for i in range(anchor_num)] for x in range(hd_size[1]): for y in range(hd_size[0]): if proj_img_in[x, y] > 0: pixel_map_in[int(proj_img_in[x, y])-1].append([x,y]) if proj_img_out[x, y] > 0: pixel_map_out[int(proj_img_out[x, y])-1].append([x,y]) # compute index list index_list = [0] * len(achr_verts) for i in range(anchor_num): length_in = get_line_length(pixel_map_in[i]) #len(pixel_map_in[i]) length_out = get_line_length(pixel_map_out[i]) #len(pixel_map_out[i]) if length_in>length_out: index_list[i] = -length_in elif length_out>length_in: index_list[i] = length_out else: index_list[i] = 0 #if length_in<2 and length_out>2: # index_list[i] = length_out #elif length_in>2 and length_out<2: # index_list[i] = -length_in #elif length_in>2 and length_out >2: # if start_exist_out_list[i] == True: # index_list[i] = length_out # elif start_exist_in_list[i] == True: # index_list[i] = -length_in # else: # index_list[i] = 0 #else: # index_list[i] = 0 #if length_out >= length_in: # index_list[i] = length_out #else: # index_list[i] = -length_in return index_list # draw vert moving vector in an image def draw_vert_move(ori_achrs, new_achrs, bg_img = None): if len(ori_achrs) != len(new_achrs): print("ERROR: length not matched in draw_vert_move()") return False if bg_img is None: bg_img = np.zeros((224,224,3)) else: bg_img = bg_img.copy() cam_para = CamPara() img_size = bg_img.shape for i in range(len(ori_achrs)): xy = cam_para.project(ori_achrs[i]) x = int(xy[0]+0.5) y = int(xy[1]+0.5) if x<0 or y<0 or x>=img_size[1] or y>=img_size[0]: continue uv = cam_para.project(new_achrs[i]) u = int(uv[0]+0.5) v = int(uv[1]+0.5) if u<0 or v<0 or u>=img_size[1] or v>=img_size[0]: continue r, c = skimage.draw.line(y,x,v,u) if(len(r)<3): continue bg_img[r, c, :] = np.array([0, 0, 255]) bg_img[y, x, :] = np.array([0, 255, 0]) return bg_img # display loss, support multiple draw class loss_board(): def __init__(self): self.color_list = ("b","g","r","c","m","y","k","w") self.color_id = 0 self.draw_num = 0 self.fig, self.ax = plt.subplots() self.data = [] def draw(self, loss_file, kn_smth = 0): # read file f = open(loss_file, "r") # skip file header f.readline() # make data list ctt = f.read().split() num = len(ctt)/3 data_list = [] for i in range(num): data_list.append(float(ctt[i*3])) # smooth if neccessary if kn_smth != 0: data_list_smth = [] for i in range(num): d_sum = 0 count = 0 for j in range(i - kn_smth, i + kn_smth + 1): if j<0 or j>= num: continue else: d_sum += data_list[j] count += 1 data_list_smth.append(d_sum/count) data_list = data_list_smth self.data.append(data_list) self.ax.plot(data_list, color = self.color_list[self.color_id]) self.draw_num += 1 self.color_id = (self.draw_num) % len(self.color_list) def show(self): txt_ctt = "" for i in range(self.draw_num): if i == 0: txt_ctt += "%d -- %s" % \ (i,self.color_list[i%len(self.color_list)]) else: txt_ctt += "\n%d -- %s" % \ (i, self.color_list[i%len(self.color_list)]) plt.text(0.9, 0.85, txt_ctt, transform = self.ax.transAxes, size=10, ha="center", va="center", bbox=dict(boxstyle="round",color="silver") ) plt.show() def get_list(self): return self.data def get_joint_move(verts, lsp_joint, proc_para, mesh_joint, unseen_mode=False): scale = proc_para["scale"] img_size = proc_para["img_size"] bias = np.array([img_size/2, img_size/2]) - proc_para["start_pt"] point_list = mesh_joint["point_list"] index_map = mesh_joint["index_map"] flat_point_list = [item for sublist in point_list for item in sublist] num_mj = len(point_list) j_list = [] for i in range(num_mj): j_p_list = [] for j in range(len(point_list[i])): j_p_list.append(verts[point_list[i][j]]) j_list.append(sum(j_p_list)/len(j_p_list)) new_joint_verts = [] ori_joint_verts = [] cam_para = CamPara() joint_move = [] joint_posi = [] for i in range(len(j_list)): src_yx = cam_para.project(j_list[i]) src_y = src_yx[0] src_x = src_yx[1] joint_posi.append(src_yx.tolist()) if len(index_map[i]) == 1: tgt_x = lsp_joint[1,index_map[i][0]] tgt_y = lsp_joint[0,index_map[i][0]] unseen_label = lsp_joint[2,index_map[i][0]] elif len(index_map[i]) == 2: tgt_x = (lsp_joint[1,index_map[i][0]] + lsp_joint[1,index_map[i][1]]) / 2 tgt_y = (lsp_joint[0,index_map[i][0]] + lsp_joint[0,index_map[i][1]]) / 2 unseen_label = lsp_joint[2,index_map[i][0]] * \ lsp_joint[2,index_map[i][1]] tgt_y = tgt_y*scale + bias[0] tgt_x = tgt_x*scale + bias[1] #perspect_scale = j_list[i][2]/5. # proved to be unnecessary joint_move_t = np.array([tgt_y - src_y, tgt_x - src_x, 0]) # many joints in LSPET/COCO are valid, filter them out using this label if unseen_mode is True and unseen_label <= 0: joint_move_t = joint_move_t*0 joint_move.append(joint_move_t[:2]) # make new joint verts for j in point_list[i]: new_joint_verts.append(verts[j] + joint_move_t*0.007) ori_joint_verts.append(verts[j]) joint_move = np.array(joint_move) joint_posi = np.array(joint_posi) joint_posi[joint_posi<0] = 0 joint_posi[joint_posi>(img_size-1)] = img_size-1 new_joint_verts = np.array(new_joint_verts) ori_joint_verts = np.array(ori_joint_verts) return new_joint_verts, ori_joint_verts, joint_move, joint_posi def get_joint_posi(verts, point_list = [], j2or3 = 2, img_size = 224, K = None, Rt = None): if point_list == []: # read joint indexes with open ('../predef/mesh_joint_list.pkl', 'rb') as fp: item_dic = pickle.load(fp) point_list = item_dic["point_list"] num_mj = len(point_list) joint3d_list = [] for i in range(num_mj): j_p_list = [] for j in range(len(point_list[i])): j_p_list.append(verts[point_list[i][j]]) joint3d_list.append(sum(j_p_list)/len(j_p_list)) if j2or3 == 3: return joint3d_list elif j2or3 == 2: cam_para = CamPara(K = K, Rt = Rt) joint2d_list = [] for i in range(len(joint3d_list)): src_yx = cam_para.project(joint3d_list[i]) joint2d_list.append(src_yx.tolist()) joint2d_list = np.array(joint2d_list) joint2d_list[joint2d_list<0] = 0 joint2d_list[joint2d_list>(img_size-1)] = img_size-1 return joint2d_list else: print("WARN: wrong j2or3 variable in get_joint_posi()") return [] # get anchor movement def get_achr_move(gt_sil, verts, vert_norms, proj_sil): with open ('../predef/dsa_achr.pkl', 'rb') as fp: dic_achr = pickle.load(fp) achr_id = dic_achr['achr_id'] achr_num = len(achr_id) ori_achr_verts = [] achr_norms = [] for j in range(achr_num): ori_achr_verts.append(verts[achr_id[j]]) achr_norms.append(vert_norms[achr_id[j]]) ori_achr_verts = np.array(ori_achr_verts) achr_norms = np.array(achr_norms) # predict anchor_move of anchor point achr_move = measure_achr_dist(ori_achr_verts, achr_norms, gt_sil, proj_sil) achr_move = np.array(achr_move) diff = achr_move * 0.003 # make new_achr_verts new_achr_verts = [] for j in range(achr_num): new_achr_verts.append(ori_achr_verts[j] + achr_norms[j] * diff[j]) new_achr_verts = np.array(new_achr_verts) return new_achr_verts, ori_achr_verts, achr_move # compute Intersection over Union def sil_iou(src_sil, tgt_sil): # transfer to int array src_sil = np.array(src_sil).astype(np.int) tgt_sil = np.array(tgt_sil).astype(np.int) # check channel numbers if len(src_sil.shape)>2 or len(tgt_sil.shape)>2: print("ERROR: input channel of sil_iou is more than two.") return False # threshold src_sil[src_sil!=0] = 1 tgt_sil[tgt_sil!=0] = 1 # compute IoU sil_I = src_sil - tgt_sil sil_I[sil_I!=0] = 1 sil_U = src_sil + tgt_sil sil_U[sil_U!=0] = 1 iou = 1. - float(np.sum(sil_I))/float(np.sum(sil_U)) return iou # for smpl model random joint deform import random from mesh_edit import fast_deform_dja class random_joint_deform(): def __init__(self, predef_vert = True, verts = [], max_dist = 0.1): self.predef_vert = predef_vert self.max_dist = max_dist self.fd_j = fast_deform_dja(weight = 10.0) # read joint index list with open ('../predef/mesh_joint_list.pkl', 'rb') as fp: item_dic = pickle.load(fp) self.point_list = item_dic["point_list"] if self.predef_vert == True: if verts == []: print("ERROR: no predefine verts found when initialize RJD") else: self.verts = verts def __call__(self, verts = []): if self.predef_vert == False: if verts == []: print("ERROR: no verts found when run RJD") return False self.verts = verts new_joint_verts = [] ori_joint_verts = [] for i in range(len(self.point_list)): joint_move = np.array([random.random() - 0.5, random.random() - 0.5, 0]) if i == 5: # joint weight decrease for hip j_scale = self.max_dist * 0.1 else: j_scale = self.max_dist for j in self.point_list[i]: new_joint_verts.append(self.verts[j] + joint_move*j_scale) ori_joint_verts.append(self.verts[j]) ori_joint_verts = np.array(ori_joint_verts) new_joint_verts = np.array(new_joint_verts) new_verts = self.fd_j.deform(np.asarray(self.verts), new_joint_verts) return new_verts, ori_joint_verts, new_joint_verts # get silhouette boundingbox def get_sil_bbox(sil, margin = 0): if len(sil.shape)>2: sil = sil[:,:,0] sil_col = np.sum(sil,1) sil_row = np.sum(sil,0) y_min = np.argmax(sil_col>0) y_max = len(sil_col) - np.argmax(np.flip(sil_col, 0)>0) x_min = np.argmax(sil_row>0) x_max = len(sil_row) - np.argmax(np.flip(sil_row, 0)>0) if margin != 0: y_min -= margin x_min -= margin y_max += margin x_max += margin return y_min, y_max, x_min, x_max # come from hmr-src/util/image.py def resize_img(img, scale_factor): new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) new_img = cv2.resize(img, (new_size[1], new_size[0])) # This is scale factor of [height, width] i.e. [y, x] actual_factor = [ new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) ] return new_img, actual_factor import openmesh # Compose verts and faces to openmesh TriMesh def make_trimesh(verts, faces, compute_vn = True): # if vertex index starts with 1, make it start with 0 if np.min(faces) == 1: faces = np.array(faces) faces = faces - 1 # make a mesh mesh = openmesh.TriMesh() # transfer verts and faces for i in range(len(verts)): mesh.add_vertex(verts[i]) for i in range(len(faces)): a = mesh.vertex_handle(faces[i][0]) b = mesh.vertex_handle(faces[i][1]) c = mesh.vertex_handle(faces[i][2]) mesh.add_face(a,b,c) # compute vert_norms if compute_vn is True: mesh.request_vertex_normals() mesh.update_normals() return mesh # get shifted verts def shift_verts(proc_param, verts, cam): img_size = proc_param['img_size'] cam_s = cam[0] cam_pos = cam[1:] flength = 500. tz = flength / (0.5 * img_size * cam_s) trans = np.hstack([cam_pos, tz]) vert_shifted = verts + trans return vert_shifted # transform mpii joints to standard lsp definition # for ALL at one time def transform_mpii_joints(joints): num = joints.shape[2] joints_t = np.zeros((3, 14, num)) joints_t[:,0:6,:] = joints[:,0:6,:] # lower limbs joints_t[:,6:12,:] = joints[:,10:16,:] # upper limbs joints_t[:,12,:] = joints[:,8,:] # head joints_t[:,13,:] = joints[:,9,:] # neck # head compensation joints_t[:2,13,:] = joints_t[:2,13,:]*0.8 + joints_t[:2,12,:]*0.2 # anckle compensation joints_t[:2,5,:] = joints_t[:2,5,:]*0.95 + joints_t[:2,4,:]*0.05 joints_t[:2,0,:] = joints_t[:2,0,:]*0.95 + joints_t[:2,1,:]*0.05 return joints_t # transform coco joints to standard lsp definition # for ONLY one tuple def transform_coco_joints(joints): joints = np.transpose(joints) joints_t = np.zeros((3, 14)) joints_t[:,0] = joints[:,16] # Right ankle joints_t[:,1] = joints[:,14] # Right knee joints_t[:,2] = joints[:,12] # Right hip joints_t[:,3] = joints[:,11] # Left hip joints_t[:,4] = joints[:,13] # Left knee joints_t[:,5] = joints[:,15] # Left ankle joints_t[:,6] = joints[:,10] # Right wrist joints_t[:,7] = joints[:,8] # Right elbow joints_t[:,8] = joints[:,6] # Right shoulder joints_t[:,9] = joints[:,5] # Left shoulder joints_t[:,10] = joints[:,7] # Left elbow joints_t[:,11] = joints[:,9] # Left wrist joints_t[:,12] = np.array([-1, -1, 0]) # Neck joints_t[:,13] = np.array([-1, -1, 0]) # Head top return joints_t # transform h36m joints to standard lsp definition # for ONLY one tuple def transform_h36m_joints(joints): joints = np.resize(joints, (32, 2)).transpose() joints_t = np.ones((3, 14)) joints_t[:2,0] = joints[:,3] # Right ankle joints_t[:2,1] = joints[:,2] # Right knee joints_t[:2,2] = joints[:,1] # Right hip joints_t[:2,3] = joints[:,6] # Left hip joints_t[:2,4] = joints[:,7] # Left knee joints_t[:2,5] = joints[:,8] # Left ankle joints_t[:2,6] = joints[:,27] # Right wrist joints_t[:2,7] = joints[:,26] # Right elbow joints_t[:2,8] = joints[:,25] # Right shoulder joints_t[:2,9] = joints[:,17] # Left shoulder joints_t[:2,10] = joints[:,18] # Left elbow joints_t[:2,11] = joints[:,19] # Left wrist joints_t[:2,12] = joints[:,13] # Neck joints_t[:2,13] = joints[:,15] # Head top # anckle compensation joints_t[:2,5] = joints_t[:2,5]*0.85 + joints_t[:2,4]*0.15 joints_t[:2,0] = joints_t[:2,0]*0.85 + joints_t[:2,1]*0.15 return joints_t # draw sil from seg_points def points2sil(seg_points, sil_shape): seg_points = np.array(seg_points).astype(np.int32) if len(seg_points.shape) == 1: p_num = len(seg_points)/2 seg_points = np.resize(seg_points, (p_num, 2)) sil = np.zeros(sil_shape) cv2.fillPoly(sil, [seg_points], (255), lineType=8) return sil def pad_arr(arr, pad): if len(arr.shape) == 3: pad_img = np.pad(arr.tolist(), ((pad,pad),(pad,pad),(0,0)), "edge") elif len(arr.shape) == 2: pad_img = np.pad(arr.tolist(), ((pad,pad),(pad,pad)), "edge") else: print("ERROR: cannot understand arr structure in func: pad_arr") pad_img = False pad_img = pad_img.astype(arr.dtype) return pad_img def center_crop(arr, center, size = 64): center = np.asarray(center) img_size = arr.shape[0] center[center<0] = 0 center[center>(img_size-1)] = img_size-1 half_size = int(size/2.0) arr_pad = pad_arr(arr, half_size) center = np.round(center) start_pt = (np.round(center)).astype(np.int) end_pt = (np.round(center) + half_size*2).astype(np.int) #print(start_pt[0],end_pt[0]) if len(arr.shape) == 3: return arr_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] else: return arr_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]] def center_crop_2dsize(arr, center, size): center = np.array(center) size = np.array(size) img_size = arr.shape[0] center[center<0] = 0 center[center>(img_size-1)] = img_size-1 half_size = (size/2.0).astype(np.int) max_hs = np.max(half_size) arr_pad = pad_arr(arr, max_hs) center = np.round(center) start_pt = (np.round(center) - half_size + max_hs).astype(np.int) end_pt = (np.round(center) + half_size + max_hs).astype(np.int) #print(start_pt[0],end_pt[0]) if len(arr.shape) == 3: return arr_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] else: return arr_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]] # for visualizing predict window in images def draw_rect(img_arr, center, size=64, color=[255,0,0]): ori_dtype = img_arr.dtype img_arr = img_arr.astype(np.float) half_size = int(size/2.0) center = np.round(center) start_pt = (np.round(center) - half_size).astype(np.int) end_pt = (np.round(center) + half_size).astype(np.int) cv2.rectangle(img_arr, tuple(start_pt), tuple(end_pt), color) return img_arr.astype(ori_dtype) # for visualizing predict window in images def draw_joints_rect(img_arr, joint_posi, ratio = 1): ori_dtype = img_arr.dtype joint_num = len(joint_posi) seed_arr = np.array([range(1,255,255/joint_num)]).astype(np.uint8) color_list = cv2.applyColorMap(seed_arr, cv2.COLORMAP_RAINBOW)[0] draw_arr = img_arr.astype(np.float) for i in range(joint_num): draw_arr = draw_rect(draw_arr, joint_posi[i], color = color_list[i].tolist()) if ratio < 1: draw_arr = draw_arr*ratio + img_arr.astype(np.float)*(1-ratio) return draw_arr.astype(ori_dtype) # for visualizing predict window in images def draw_anchors_rect(img_arr, anchor_posi, sample = 1, ratio = 1): ori_dtype = img_arr.dtype joint_num = len(anchor_posi) seed_arr = np.array([range(1,255,255/joint_num)]).astype(np.uint8) color_list = cv2.applyColorMap(seed_arr, cv2.COLORMAP_RAINBOW)[0] draw_arr = img_arr.astype(np.float) for i in range(joint_num): if (i%sample)!=0: continue draw_arr = draw_rect(draw_arr, anchor_posi[i], size = 32, color = color_list[i].tolist()) if ratio < 1: draw_arr = draw_arr*ratio + img_arr.astype(np.float)*(1-ratio) return draw_arr.astype(ori_dtype) # write OBJ from vertex # not tested yet def verts2obj(out_verts, filename): vert_num = len(out_verts) faces = np.load("../predef/smpl_faces.npy") face_num = len(faces) with open(filename, 'w') as fp: for j in range(vert_num): fp.write( 'v %f %f %f\n' % ( out_verts[j,0], out_verts[j,1], out_verts[j,2]) ) for j in range(face_num): fp.write( 'f %d %d %d\n' % (faces[j,0]+1, faces[j,1]+1, faces[j,2]+1) ) PIL.Image.fromarray(src_img.astype(np.uint8)).save("./output/src_img_%d.png" % test_num) return True # compute anchor_posi from achr_verts def get_anchor_posi(achr_verts): cam_para = CamPara() achr_num = len(achr_verts) achr_posi = np.zeros((achr_num, 2)) for i in range(achr_num): achr_posi[i] = cam_para.project(achr_verts[i]) return achr_posi # here supplement a post-processing for seg, to filter out # the some objects containing less than min_pixel pixels def refine_sil(sil, min_pixel): if len(sil.shape)==3: sil = sil[:,:,0] c3 = True else: c3 = False sil[sil>0] = 255 nb_components, output, stats, centroids = \ cv2.connectedComponentsWithStats(sil, connectivity = 8) sizes = stats[1:, -1]; nb_components = nb_components - 1 refined_sil = np.zeros((output.shape)) #for every component in the image, you keep it only if it's above min_size for i in range(0, nb_components): if sizes[i] >= min_pixel: refined_sil[output == i + 1] = 255 if c3 is True: refined_sil = np.stack((refined_sil,)*3, -1) return refined_sil # subdivide mesh to 4 times faces import openmesh as om def subdiv_mesh_x4(mesh): # get original vertex list verts = mesh.points() verts_list = verts.tolist() verts_num = len(verts_list) # make matrix to represent the id of each two verts new_vert_dic = np.zeros((verts_num, verts_num), dtype = np.int) # add vertexes crt_id = verts_num for e in mesh.edge_vertex_indices(): new_vert_dic[e[0], e[1]] = crt_id new_vert_dic[e[1], e[0]] = crt_id verts_list.append((verts[e[0]] + verts[e[1]])/2.) crt_id += 1 faces_list = [] # add faces for f in mesh.face_vertex_indices(): v1 = f[0] v2 = f[1] v3 = f[2] v4 = new_vert_dic[v1, v2] v5 = new_vert_dic[v2, v3] v6 = new_vert_dic[v3, v1] faces_list.append([v1, v4, v6]) faces_list.append([v4, v2, v5]) faces_list.append([v6, v5, v3]) faces_list.append([v4, v5, v6]) # make new mesh subdiv_mesh = make_trimesh(verts_list, faces_list, compute_vn = False) return subdiv_mesh # remove toes from smpl mesh model def smpl_detoe(mesh): d_inds = [5506, 5507, 5508, 5509, 5510, 5511, 5512, 5513, 5514, 5515, 5516, 5517, 5518, 5519, 5520, 5521, 5522, 5523, 5524, 5525, 5526, 5527, 5528, 5529, 5530, 5531, 5532, 5533, 5534, 5535, 5536, 5537, 5538, 5539, 5540, 5541, 5542, 5543, 5544, 5545, 5546, 5547, 5548, 5549, 5550, 5551, 5552, 5553, 5554, 5555, 5556, 5557, 5558, 5559, 5560, 5561, 5562, 5563, 5564, 5565, 5566, 5567, 5568, 5569, 5570, 5571, 5572, 5573, 5574, 5575, 5576, 5577, 5578, 5579, 5580, 5581, 5582, 5583, 5584, 5585, 5586, 5587, 5588, 5589, 5590, 5591, 5592, 5593, 5594, 5595, 5596, 5597, 5598, 5599, 5600, 5601, 5602, 5603, 5604, 5605, 5606, 5607, 5608, 5609, 5610, 5611, 5612, 5613, 5614, 5615, 5616, 5617, 5618, 5619, 5620, 5621, 5622, 5623, 5624, 5625, 5626, 5627, 5628, 5629, 5630, 5631, 5632, 5633, 5634, 5635, 5636, 5637, 5638, 5639, 5640, 5641, 5642, 5643, 5644, 5645, 5646, 5647, 5648, 5649, 5650, 5651, 5652, 5653, 5654, 5655, 5656, 5657, 5658, 5659, 5660, 5661, 5662, 5663, 5664, 5665, 5666, 5667, 5668, 5669, 5670, 5671, 5672, 5673, 5674, 5675, 5676, 5677, 5678, 5679, 5680, 5681, 5682, 5683, 5684, 5685, 5686, 5687, 5688, 5689, 5690, 5691, 5692, 5693, 5694, 5695, 5696, 5697, 5698, 5699, 5700, 5701, 5702, 5703, 5704, 5705, 12394, 12395, 12396, 12397, 12398, 12399, 12400, 12401, 12402, 12403, 12404, 12405, 12406, 12407, 12408, 12409, 12410, 12411, 12412, 12413, 12414, 12415, 12416, 12417, 12418, 12419, 12420, 12421, 12422, 12423, 12424, 12425, 12426, 12427, 12428, 12429, 12430, 12431, 12432, 12433, 12434, 12435, 12436, 12437, 12438, 12439, 12440, 12441, 12442, 12443, 12444, 12445, 12446, 12447, 12448, 12449, 12450, 12451, 12452, 12453, 12454, 12455, 12456, 12457, 12458, 12459, 12460, 12461, 12462, 12463, 12464, 12465, 12466, 12467, 12468, 12469, 12470, 12471, 12472, 12473, 12474, 12475, 12476, 12477, 12478, 12479, 12480, 12481, 12482, 12483, 12484, 12485, 12486, 12487, 12488, 12489, 12490, 12491, 12492, 12493, 12494, 12495, 12496, 12497, 12498, 12499, 12500, 12501, 12502, 12503, 12504, 12505, 12506, 12507, 12508, 12509, 12510, 12511, 12512, 12513, 12514, 12515, 12516, 12517, 12518, 12519, 12520, 12521, 12522, 12523, 12524, 12525, 12526, 12527, 12528, 12529, 12530, 12531, 12532, 12533, 12534, 12535, 12536, 12537, 12538, 12539, 12540, 12541, 12542, 12543, 12544, 12545, 12546, 12547, 12548, 12549, 12550, 12551, 12552, 12553, 12554, 12555, 12556, 12557, 12558, 12559, 12560, 12561, 12562, 12563, 12564, 12565, 12566, 12567, 12568, 12569, 12570, 12571, 12572, 12573, 12574, 12575, 12576, 12577, 12578, 12579, 12580, 12581, 12582, 12583, 12584, 12585, 12586, 12587, 12588, 12589, 12590, 12591, 12592, 12593, ] add_fv_list = [[3316, 3318, 3315], [3318, 3313, 3315], [3313, 3310, 3315], [3313, 3304, 3310], [3304, 3307, 3310], [3303, 3307, 3304], [3303, 3300, 3307], [3291, 3300, 3303], [3291, 3296, 3300], [3292, 3297, 3296], [3292, 3296, 3291], [3292, 3294, 3297], [6718, 6715, 6716], [6713, 6718, 6716], [6713, 6716, 6711], [6704, 6713, 6711], [6704, 6711, 6707], [6703, 6704, 6707], [6703, 6707, 6701], [6692, 6703, 6701], [6692, 6701, 6696], [6691, 6692, 6696], [6691, 6696, 6697], [6694, 6691, 6697]] face_list = mesh.face_vertex_indices().tolist() new_face_list = [] for i in range(len(face_list)): if not i in d_inds: new_face_list.append(face_list[i]) new_face_list = new_face_list + add_fv_list new_mesh = make_trimesh(mesh.points(), np.array(new_face_list)) return new_mesh # flatten naval in smpl mesh def flatten_naval(mesh): verts = mesh.points() verts[5234] = (verts[4402]+verts[3504])*0.5 verts[1767] = (verts[3504]+verts[917])*0.5 verts[1337] = (verts[917]+verts[1769])*0.5 verts[4813] = (verts[1769]+verts[4402])*0.5 verts[4812] = (verts[5234]+verts[4813])*0.5 verts[3501] = (verts[5234]+verts[1767])*0.5 verts[1336] = (verts[1767]+verts[1337])*0.5 verts[1768] = (verts[1337]+verts[4813])*0.5 verts[3500] = (verts[3504]+verts[4402]+verts[917]+verts[1769])*0.25 return mesh # rotate verts along y axis def rotate_verts_y(verts, y): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = y*math.pi/180 R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]]) for i in range(len(verts)): verts[i] = np.dot(R, verts[i]) verts = verts + verts_mean return verts # rotate verts along x axis def rotate_verts_x(verts, x): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = x*math.pi/180 R = np.array([[1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)]]) for i in range(len(verts)): verts[i] = np.dot(R, verts[i]) verts = verts + verts_mean return verts # rotate verts along z axis def rotate_verts_z(verts, z): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = z*math.pi/180 R = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) for i in range(len(verts)): verts[i] = np.dot(R, verts[i]) verts = verts + verts_mean return verts # used in argument parser def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.')
472863
from datetime import datetime import pytz class Entity(dict): """Common functionality for racing entities""" def __init__(self, provider, property_cache, *args, **kwargs): super(Entity, self).__init__(*args, **kwargs) self.provider = provider self.property_cache = dict(**property_cache) if property_cache is not None else dict() if 'created_at' not in self: self['created_at'] = self['updated_at'] = datetime.now(pytz.utc) for key in self: if isinstance(self[key], datetime): try: self[key] = pytz.utc.localize(self[key]) except ValueError: pass @property def has_expired(self): """Expire entities sourced from an incompatible scraper version""" return not self.provider.scraper.is_compatible_with(self['scraper_version']) def get_cached_property(self, key, source_method, *source_args, **source_kwargs): """Get a cached property value, or source, cache and return it if necessary""" if key not in self.property_cache: self.property_cache[key] = source_method(*source_args, **source_kwargs) return self.property_cache[key]
472873
r"""Command-line tool to start a debug proxy. usage: python -m naoth.utils.DebugProxy host [port] [--target TARGET] [--print] """ import argparse from . import DebugProxy if __name__ == '__main__': prog = 'python -m naoth.utils.DebugProxy' description = 'A simple command line tool to start a naoth debug proxy.' parser = argparse.ArgumentParser(prog=prog, description=description) parser.add_argument('host', help='The host of the naoth agent (eg. "localhost")') parser.add_argument('port', nargs='?', type=int, default=5401, help='The debug port of the naoth agent (default: 5401)') parser.add_argument('--target', type=int, default=7777, help='The proxy port where other applications can connect to (default: 7777)') parser.add_argument('--print', action='store_true', default=False, help='Print all commands and their responses going through the proxy.') args = parser.parse_args() p = DebugProxy(args.host, args.port, args.target, args.print) print('DebugProxy active at {}:{} <-> localhost:{}'.format(args.host, args.port, args.target)) print('Ctrl+C to stop the proxy ...') try: p.join() except KeyboardInterrupt: pass finally: print('\nBye') p.stop()
472874
import torch from basic_nn import BasicNet from spock.args import * from spock.builder import ConfigArgBuilder from spock.config import spock_config @spock_config class ModelConfig: save_path: SavePathOptArg n_features: IntArg dropout: ListArg[float] hidden_sizes: TupleArg[int] activation: ChoiceArg(choice_set=["relu", "gelu", "tanh"]) def main(): # A simple description description = "spock Tutorial" # Build out the parser by passing in Spock config objects as *args after description config = ( ConfigArgBuilder(ModelConfig, desc=description, create_save_path=True) .save(file_extension=".toml") .generate() ) # Instantiate our neural net using basic_nn = BasicNet(model_config=config.ModelConfig) # Make some random data (BxH): H has dim of features in test_data = torch.rand(10, config.ModelConfig.n_features) result = basic_nn(test_data) print(result) if __name__ == "__main__": main()
472883
from unittest.mock import patch import datasets from datasets import Dataset def test_enable_disable_progress_bar(): dset = Dataset.from_dict({"col_1": [3, 2, 0, 1]}) with patch("tqdm.auto.tqdm") as mock_tqdm: datasets.disable_progress_bar() dset.map(lambda x: {"col_2": x["col_1"] + 1}) mock_tqdm.assert_not_called() mock_tqdm.reset_mock() datasets.enable_progress_bar() dset.map(lambda x: {"col_2": x["col_1"] + 1}) mock_tqdm.assert_called()
472924
from keras_secure_image.secure_image import encrypt_directory, decrypt_img, transform_img, transform, rot, \ perform_rotation
472928
from sock import * from data import * from shellcode import * from pattern import * try: # Try to import the ipython interactive shell from IPython import embed as ipython # drop to interactive shell except ImportError as e: import sys sys.stderr.write('Warning: IPython embed could not be imported')
472930
from typing import List, TYPE_CHECKING if TYPE_CHECKING: from interface import Interface class Link: def __init__(self, interfaces: List["Interface"]) -> None: self.interfaces = sorted(interfaces) def __eq__(self, other) -> bool: return all( int1 == int2 for int1, int2 in zip(self.interfaces, other.interfaces) ) def __hash__(self) -> int: return hash(tuple(self.interfaces)) def __str__(self) -> str: return " <-> ".join(str(interface) for interface in self.interfaces) def __repr__(self) -> str: return f"{self.__class__.__qualname__}(" f"interfaces={self.interfaces})" @property def is_point_to_point(self) -> bool: return len(self.interfaces) == 2 @property def first_interface(self) -> "Interface": if not self.is_point_to_point: raise ValueError( "Can't return the first interface because " "there are more than two interfaces forming a link" ) return self.interfaces[0] @property def second_interface(self) -> "Interface": if not self.is_point_to_point: raise ValueError( "Can't return the second interface because " "there are more than two interfaces forming a link" ) return self.interfaces[1]
472988
import os from click import UsageError from click.testing import CliRunner import numpy as np import pytest import rasterio from rasterio.enums import Compression from rio_color.scripts.cli import color, atmos, check_jobs def equal(r1, r2): with rasterio.open(r1) as src1: with rasterio.open(r2) as src2: return np.array_equal(src1.read(), src2.read()) def test_atmos_cli(tmpdir): output = str(tmpdir.join("atmosj1.tif")) runner = CliRunner() result = runner.invoke( atmos, ["-a", "0.03", "-b", "0.5", "-c", "15", "-j", "1", "tests/rgb8.tif", output], ) assert result.exit_code == 0 assert os.path.exists(output) output2 = str(tmpdir.join("atmosj2.tif")) runner = CliRunner() result = runner.invoke( atmos, ["-a", "0.03", "-b", "0.5", "-c", "15", "-j", "2", "tests/rgb8.tif", output2], ) assert result.exit_code == 0 assert os.path.exists(output2) assert equal(output, output2) def test_color_cli(tmpdir): output = str(tmpdir.join("colorj1.tif")) runner = CliRunner() result = runner.invoke( color, [ "-d", "uint8", "-j", "1", "tests/rgb8.tif", output, "gamma 3 1.85", "gamma 1,2 1.95", "sigmoidal 1,2,3 35 0.13", "saturation 1.15", ], ) assert result.exit_code == 0 assert os.path.exists(output) output2 = str(tmpdir.join("colorj2.tif")) result = runner.invoke( color, [ "-d", "uint8", "-j", "2", "tests/rgb8.tif", output2, "gamma 3 1.85", "gamma 1,2 1.95", "sigmoidal 1,2,3 35 0.13", "saturation 1.15", ], ) assert result.exit_code == 0 assert os.path.exists(output2) assert equal(output, output2) def test_bad_op(tmpdir): output = str(tmpdir.join("noop.tif")) runner = CliRunner() result = runner.invoke( color, ["-d", "uint8", "-j", "1", "tests/rgb8.tif", output, "foob 115"] ) assert result.exit_code == 2 assert "foob is not a valid operation" in result.output assert not os.path.exists(output) def test_color_jobsn1(tmpdir): output = str(tmpdir.join("colorj1.tif")) runner = CliRunner() result = runner.invoke( color, [ "-d", "uint8", "-j", "-1", "tests/rgb8.tif", output, "gamma 1,2,3 1.85 sigmoidal rgb 35 0.13", ], ) assert result.exit_code == 0 assert os.path.exists(output) def test_check_jobs(): assert 1 == check_jobs(1) assert check_jobs(-1) > 0 with pytest.raises(UsageError): check_jobs(0) def test_creation_opts(tmpdir): output = str(tmpdir.join("color_opts.tif")) runner = CliRunner() result = runner.invoke( color, [ "--co", "compress=jpeg", "tests/rgb8.tif", output, "gamma 1,2,3 1.85 sigmoidal rgb 35 0.13", ], ) assert result.exit_code == 0 with rasterio.open(output, "r") as src: assert src.compression == Compression.jpeg output = str(tmpdir.join("color_opts.tif")) runner = CliRunner() result = runner.invoke( color, ["--co", "compress=jpeg", "tests/rgb8.tif", output, "gamma 1,2,3 1.85"] ) assert result.exit_code == 0 with rasterio.open(output, "r") as src: assert src.compression == Compression.jpeg output = str(tmpdir.join("atmos_opts.tif")) runner = CliRunner() result = runner.invoke( atmos, [ "--co", "compress=jpeg", "-a", "0.03", "-b", "0.5", "-c", "15", "-j", "1", "tests/rgb8.tif", output, ], ) assert result.exit_code == 0 with rasterio.open(output, "r") as src: assert src.compression == Compression.jpeg def test_color_cli_rgba(tmpdir): output = str(tmpdir.join("colorj1.tif")) runner = CliRunner() result = runner.invoke( color, [ "-d", "uint8", "-j", "1", "tests/rgba8.tif", output, "gamma 3 1.85", "gamma 1,2 1.95", "sigmoidal 1,2,3 35 0.13", "saturation 1.15", ], ) assert result.exit_code == 0 with rasterio.open("tests/rgba8.tif") as src: with rasterio.open(output) as out: assert out.profile["count"] == 4 # Alpha band is unaltered assert np.array_equal(src.read(4), out.read(4)) def test_color_cli_16bit_photointerp(tmpdir): output = str(tmpdir.join("color16color.tif")) runner = CliRunner() result = runner.invoke( color, [ "-d", "uint16", "-j", "1", "tests/rgb16.tif", output, "gamma 3 1.85", "gamma 1,2 1.95", ], ) assert result.exit_code == 0 with rasterio.open("tests/rgb16.tif") as src: with rasterio.open(output) as out: assert out.colorinterp == src.colorinterp def test_color_empty_operations(tmpdir): output = str(tmpdir.join("color.tif")) runner = CliRunner() result = runner.invoke(color, ["tests/rgb8.tif", output]) assert result.exit_code == 2 assert not os.path.exists(output) result = runner.invoke(color, ["tests/rgb8.tif", output, ", , ,"]) assert result.exit_code == 2 def test_as_color(tmpdir): runner = CliRunner() result = runner.invoke(atmos, ["-a", "0.03", "--as-color", "foo.tif", "bar.tif"]) assert result.exit_code == 0 assert not os.path.exists("bar.tif") assert ( result.output.strip() == "rio color foo.tif bar.tif gamma g 0.99, gamma b 0.97, sigmoidal rgb 10.0 0.15" )
473008
import torch import torch.optim as optim from torch.autograd import Variable import torch.nn as nn import numpy as np from tqdm import tqdm from torch.utils.data import DataLoader from network import * from dataset import * from util import * import time import scipy.io import os import matplotlib.pyplot as plt import pdb def get_to_cuda(cuda): def to_cuda(tensor): return tensor.cuda() if cuda else tensor return to_cuda def convert_to_1hot(label, n_class): # Convert a label map (N x 1 x H x W) into a one-hot representation (N x C x H x W) label_swap = label.swapaxes(1, 3) label_flat = label_swap.flatten() n_data = len(label_flat) label_1hot = np.zeros((n_data, n_class), dtype='int16') label_1hot[range(n_data), label_flat] = 1 label_1hot = label_1hot.reshape((label_swap.shape[0], label_swap.shape[1], label_swap.shape[2], n_class)) label_1hot = label_1hot.swapaxes(1, 3) return label_1hot def categorical_dice(prediction, truth, k): # Dice overlap metric for label value k A = (np.argmax(prediction, axis=1) == k) B = (np.argmax(truth, axis=1) == k) return 2 * np.sum(A * B) / (np.sum(A) + np.sum(B)+0.001) def huber_loss(x): bsize, csize, height, width = x.size() d_x = torch.index_select(x, 3, torch.arange(1, width).cuda()) - torch.index_select(x, 3, torch.arange(width-1).cuda()) d_y = torch.index_select(x, 2, torch.arange(1, height).cuda()) - torch.index_select(x, 2, torch.arange(height-1).cuda()) err = torch.sum(torch.mul(d_x, d_x))/height + torch.sum(torch.mul(d_y, d_y))/width err /= bsize tv_err = torch.sqrt(0.01+err) return tv_err def freeze_layer(layer): for param in layer.parameters(): param.requires_grad = False def plot_grid(gridx, gridy, **kwargs): """ plot deformation grid """ for i in range(gridx.shape[0]): plt.plot(gridx[i,:], gridy[i,:], **kwargs) for i in range(gridx.shape[1]): plt.plot(gridx[:,i], gridy[:,i], **kwargs) def save_flow(x, pred, x_pred, flow): #print(flow.shape) x = x.data.cpu().numpy() pred = pred.data.cpu().numpy() x_pred = x_pred.data.cpu().numpy() flow = flow.data.cpu().numpy() * 96 flow = flow[:,:, 60:140, 40:120] X, Y = np.meshgrid(np.arange(0, 80, 2), np.arange(0, 80, 2)) plt.subplots(figsize=(6, 6)) plt.subplot(221) plt.imshow(x[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(222) plt.imshow(pred[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(223) plt.imshow(x_pred[5, 0, 60:140, 40:120], cmap='gray') plt.axis('off') plt.subplot(224) plt.imshow(x_pred[5, 0, 60:140, 40:120], cmap='gray') plt.quiver(X, Y, flow[5, 0, fc00:db20:35b:7399::5, ::2], -flow[5, 1, fc00:db20:35b:7399::5, ::2], scale_units='xy', scale=1, color='r') # plot_grid(X - flow[5, 0, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::6], # Y - flow[5, 1, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::6], # color='r', linewidth=0.5) plt.axis('off') plt.savefig('./models/flow_map.png') plt.close() lr = 1e-4 n_worker = 4 bs = 10 n_epoch = 100 model_save_path = './models/model_flow_tmp.pth' model = Registration_Net() print(model) # model.load_state_dict(torch.load(model_save_path)) model = model.cuda() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),lr=lr) flow_criterion = nn.MSELoss() Tensor = torch.cuda.FloatTensor def train(epoch): model.train() epoch_loss = [] for batch_idx, batch in tqdm(enumerate(training_data_loader, 1), total=len(training_data_loader)): x, x_pred, x_gnd = batch x_c = Variable(x.type(Tensor)) x_predc = Variable(x_pred.type(Tensor)) optimizer.zero_grad() net = model(x_c, x_predc, x_c) flow_loss = flow_criterion(net['fr_st'], x_predc) + 0.01 * huber_loss(net['out']) flow_loss.backward() optimizer.step() epoch_loss.append(flow_loss.item()) if batch_idx % 50 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(x), len(training_data_loader.dataset), 100. * batch_idx / len(training_data_loader), np.mean(epoch_loss))) save_flow(x_c, x_predc, net['fr_st'], net['out']) # scipy.io.savemat(os.path.join('./models/flow_test.mat'), # mdict={'flow': net['out'].data.cpu().numpy()}) torch.save(model.state_dict(), model_save_path) print("Checkpoint saved to {}".format(model_save_path)) data_path = '../test' train_set = TrainDataset(data_path, transform=data_augment) # loading the data training_data_loader = DataLoader(dataset=train_set, num_workers=n_worker, batch_size=bs, shuffle=True) for epoch in range(0, n_epoch + 1): print('Epoch {}'.format(epoch)) start = time.time() train(epoch) end = time.time() print("training took {:.8f}".format(end-start))
473071
import logging import json from json.decoder import JSONDecodeError from shutil import copyfile import sqlite3 from .util import get_data_path, show_error from .enums import ItemType DATABASE_VERSION = 1 # decode item types stored in json. # this is still required for migrating json data to sqlite def decode_item_type(dict_): if '__enum__' in dict_: return getattr(ItemType, dict_['__enum__']) return dict_ # convert a bytestring stored in sqlite back to our enum def convert_reward_type(b): return ItemType(int(b)) # register converter for the item type enum sqlite3.register_converter('ITEM_TYPE', convert_reward_type) class DatabaseConnectionContextManager: def __init__(self, database_path): self._database_path = database_path self._connection = sqlite3.connect(self._database_path, detect_types=sqlite3.PARSE_DECLTYPES) self.cursor = self._connection.cursor() def __enter__(self): return self def __exit__(self, exception_type, exception_value, exception_traceback): self.cursor.close() self._connection.close() # to not ignore any exceptions that happened inside a with block return False def commit(self): self._connection.commit() class Database: def __init__(self): data_path = get_data_path() self._database_path = data_path / 'database.sqlite3' # create the database if it does not exist yet if not self._database_path.exists(): self._create_database() elif self._database_path.is_dir(): show_error(f'{self._database_path} exists, but is not a file.') # the database exists, let's check the version of our data logging.info('Checking database version') with self._get_database_connection() as db: try: version = db.cursor.execute('SELECT data FROM meta WHERE name = "version"').fetchall()[0][0] except (IndexError, sqlite3.DatabaseError, sqlite3.OperationalError): show_error('Could not find version information in the database. The database might be corrupt.') # exit if the version does not match. in the future, migrate if version is lower if version != DATABASE_VERSION: show_error('Unknown database version. Shutting down to not mess with any data.') # create a backup logging.info('Creating database backup') copyfile(self._database_path, data_path / 'database.sqlite3.bak') def _get_database_connection(self): return DatabaseConnectionContextManager(self._database_path) def _create_database(self): logging.info('No existing database found, creating new one') with self._get_database_connection() as db: # create tables db.cursor.execute('CREATE TABLE meta (name TEXT PRIMARY KEY, data BLOB)') db.cursor.execute('CREATE TABLE banner_types (id INTEGER PRIMARY KEY, name TEXT)') db.cursor.execute(''' CREATE TABLE wish_history ( id INTEGER, uid INTEGER, banner_type INTEGER, type ITEM_TYPE, rarity INTEGER, time TEXT, name TEXT, UNIQUE (id, uid) ) ''') # insert version db.cursor.execute('INSERT INTO meta VALUES ("version", ?)', (DATABASE_VERSION,)) db.commit() # check if there's an old .json database we can convert data_path = get_data_path() json_database_path = data_path / 'database.json' if json_database_path.exists(): logging.info('Found old database.json, converting to new format') old_data = None with json_database_path.open('r', encoding='utf-8') as fp: try: old_data = json.load(fp, object_hook=decode_item_type) except JSONDecodeError: show_error(f'Fould old data at {json_database_path}, but could not read it. Aborting.') # we have old data, let's insert it into our new sqlite db if old_data is not None: if 'banner_types' in old_data: for [ id_, name ] in old_data['banner_types'].items(): db.cursor.execute('INSERT INTO banner_types VALUES (?, ?)', (int(id_), name)) if 'wish_history' in old_data: for uid in old_data['wish_history']: for banner_type_id in old_data['wish_history'][uid]: for wish in old_data['wish_history'][uid][banner_type_id]: db.cursor.execute('INSERT INTO wish_history VALUES (?, ?, ?, ?, ?, ?, ?)', ( wish['id'], int(uid), int(banner_type_id), wish['type'], wish['rarity'], wish['time'], wish['name'] )) db.commit() logging.info('Finished conversion, deleting old database.json') json_database_path.unlink() def get_banner_types(self): banner_types = {} with self._get_database_connection() as db: banner_types_tuples = db.cursor.execute('SELECT id, name FROM banner_types').fetchall() for banner_type in banner_types_tuples: banner_types[banner_type[0]] = banner_type[1] return banner_types def store_banner_types(self, banner_types): logging.info('Storing banner types') with self._get_database_connection() as db: db.cursor.executemany(''' INSERT OR IGNORE INTO banner_types (id, name) VALUES (:key, :name) ''', banner_types) db.commit() def get_uids(self): with self._get_database_connection() as db: uids = db.cursor.execute('SELECT DISTINCT uid FROM wish_history').fetchall() for uid in uids: yield uid[0] def get_wish_history(self, uid): with self._get_database_connection() as db: wish_history = db.cursor.execute(''' SELECT id, banner_type, type, rarity, time, name FROM wish_history WHERE uid = ? ORDER BY time ASC ''', (uid,)).fetchall() for wish in wish_history: yield { 'id': wish[0], 'banner_type': wish[1], 'type': wish[2], 'rarity': wish[3], 'time': wish[4], 'name': wish[5] } def get_latest_wish_id(self, uid, banner_type): with self._get_database_connection() as db: try: id_ = db.cursor.execute('SELECT MAX(id) FROM wish_history WHERE uid = ? AND banner_type = ?', (uid, banner_type)).fetchone()[0] except IndexError: id_ = None return id_ def store_wish_history(self, wishes): if len(wishes) == 0: return logging.info('Storing wish history') with self._get_database_connection() as db: db.cursor.executemany(''' INSERT OR IGNORE INTO wish_history ( id, uid, banner_type, type, rarity, time, name ) VALUES ( :id, :uid, :banner_type, :type, :rarity, :time, :name ) ''', wishes) db.commit()
473076
from django.forms import ModelForm, Select from .models import CheckinSchedule class CheckinScheduleForm(ModelForm): class Meta: model = CheckinSchedule fields = ["timezone", "time_string"]
473096
import matplotlib.pyplot as plt from pandas import read_csv from sklearn.preprocessing import MinMaxScaler, StandardScaler import numpy as np from test_labels_loader import load_test_labels def minmax_rescale(probability): scaler = MinMaxScaler(feature_range=(0.000000001, 0.999999999)) return scaler.fit_transform(probability) def softmax_rescale(probability): norm_x = StandardScaler().fit_transform(probability) return 1.0 / (1.0 + np.exp(-norm_x)) def plot(clips, probs, labels, scale=None): x, y = [], [] for i, subject in enumerate(subjects): subject_idx = [] for j, s in enumerate(clips): if subject in s: subject_idx.append(j) subject_idx = np.array(subject_idx) subj_prob = probs[subject_idx] if scale == 'softmax': y.extend(softmax_rescale(np.expand_dims(subj_prob, axis=1))) elif scale == 'minmax': y.extend(minmax_rescale(np.expand_dims(subj_prob, axis=1))) else: y.extend(subj_prob) x.extend([i] * len(subject_idx)) x = np.array(x, dtype='float32') y = np.array(y) # add jitter rng = np.random.RandomState(42) x += rng.normal(0.0, 0.08, size=len(x)) color = ['b'] * len(y) markers = ['.'] * len(y) if labels: color = [] for subject in subjects: subj_lables = labels[subject]['preictal'] color.extend(map(str, subj_lables)) color = np.array(color) markers = np.copy(color) markers[np.where(markers == '0')[0]] = '+' markers[np.where(markers == '1')[0]] = '^' color[np.where(color == '0')[0]] = 'b' color[np.where(color == '1')[0]] = 'r' zip_all = sorted(zip(x, y, color, markers), key=lambda tup: tup[2]) for a_, b_, c_, d_ in zip_all: plt.scatter(a_, b_, c=c_, s=60, marker=d_) if labels: x1 = zip_all[0] plt.scatter(x1[0], x1[1], c=x1[2], s=60, marker=x1[3], label='interictal') x1 = zip_all[-1] plt.scatter(x1[0], x1[1], c=x1[2], s=60, marker='^', label='preictal') plt.ylabel('Preictal probability', fontsize=20) plt.xticks(range(0, 7), subjects) plt.subplots_adjust(bottom=0.15) plt.legend() ax = plt.gca() for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(20) plt.xlim([-0.5, 6.5]) plt.ylim([-0.1, 1.1]) ax = plt.subplot(111) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=2, fancybox=True, shadow=True) plt.show() if __name__ == '__main__': test_labels_path = '/mnt/sda4/CODING/python/kaggle_data/test_labels.csv' s1 = '/mnt/sda4/CODING/python/kaggle_data/submission_0.78612.csv' s2 = '/mnt/sda4/CODING/python/kaggle_data/submission_lda8.csv' subjects = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'] submission_df = read_csv(s1) probs = submission_df['preictal'] clips = submission_df['clip'] labels = load_test_labels(test_labels_path) plot(clips, probs, labels)
473119
from .utils import efficientnet from .EfficientNet import EfficientNet from .pruning import * from .early_exit import *
473131
import array_utils import numpy import pytest def test_0_compile_pymod_test_mod(pmgen_py_compile): pmgen_py_compile(__name__) ndims_to_test = [1, 2, 3, 4] # for loop, values @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopValues", "int32FindMaxForLoopValues_m", ]) def test_int32FindMaxForLoopValues(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nrandom number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg) print ("res = %s" % str(res)) assert res == expectedRes # while loop, Forward Iter @pytest.mark.parametrize("ndim", ndims_to_test) def test_int32FindMaxWhileLoopForwardIter(pymod_test_mod, seeded_random_number_generator, ndim): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nrandom number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = pymod_test_mod.int32FindMaxWhileLoopForwardIter(arg) print ("res = %s" % str(res)) assert res == expectedRes # for loop, Forward Iter @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopForwardIter", "int32FindMaxForLoopForwardIter_m", "int32FindMaxForLoopForwardIter_i", ]) def test_int32FindMaxForLoopForwardIter(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s" % nim_test_proc_name) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg) print ("res = %s" % str(res)) assert res == expectedRes # while loop, Rand Acc Iter @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxWhileLoopRandaccIterDeref", "int32FindMaxWhileLoopRandaccIterIndex0", "int32FindMaxWhileLoopRandaccIterDerefPlusZeroOffset", "int32FindMaxWhileLoopRandaccIterDerefMinusZeroOffset", "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffset_1", "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffset_2", "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffset_3", "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffset_4", "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffset_5", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffset_1", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffset_2", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffset_3", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffset_4", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffset_5", ]) def test_int32FindMaxWhileLoopRandaccIterDerefAlternatives(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s" % nim_test_proc_name) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxWhileLoopRandaccIterIndexVsPlusOffsetK", "int32FindMaxWhileLoopRandaccIterIndexVsMinusOffsetK", ]) @pytest.mark.parametrize("k", [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]) def test_int32FindMaxWhileLoopRandaccIterDerefKParamAlternatives(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, k): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s, k = %d" % (nim_test_proc_name, k)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg, k) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxWhileLoopRandaccIterDeltaN_1", "int32FindMaxWhileLoopRandaccIterDeltaN_2", ]) @pytest.mark.parametrize("n", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxWhileLoopRandaccIterDeltaN_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, n): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s, n = %d" % (nim_test_proc_name, n)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argDeltaN = arg.flat[::n] print ("arg.flat[::n] =\n%s" % argDeltaN) expectedRes = argDeltaN.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg, n) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxWhileLoopRandaccIterExcludeFirstM_1", "int32FindMaxWhileLoopRandaccIterExcludeFirstM_2", ]) @pytest.mark.parametrize("m", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxWhileLoopRandaccIterExcludeFirstM_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, m): dtype = numpy.int32 arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, dtype) print ("\nnim_test_proc_name = %s, m = %d" % (nim_test_proc_name, m)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argAfterM = arg.flat[m:] print ("arg.flat[m:] =\n%s" % argAfterM) if argAfterM.size > 0: expectedRes = argAfterM.max() print ("expectedRes = %s" % str(expectedRes)) else: expectedRes = numpy.iinfo(dtype).min print ("expectedRes = %s (int32.min)" % str(expectedRes)) res = getattr(pymod_test_mod, nim_test_proc_name)(arg, m) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxWhileLoopRandaccIterExcludeLastM_1", "int32FindMaxWhileLoopRandaccIterExcludeLastM_2", ]) @pytest.mark.parametrize("m", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxWhileLoopRandaccIterExcludeLastM_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, m): dtype = numpy.int32 arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, dtype) print ("\nnim_test_proc_name = %s, m = %d" % (nim_test_proc_name, m)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argBeforeLastM = arg.flat[:-m] print ("arg.flat[:-m] =\n%s" % argBeforeLastM) if argBeforeLastM.size > 0: expectedRes = argBeforeLastM.max() print ("expectedRes = %s" % str(expectedRes)) else: expectedRes = numpy.iinfo(dtype).min print ("expectedRes = %s (int32.min)" % str(expectedRes)) res = getattr(pymod_test_mod, nim_test_proc_name)(arg, m) print ("res = %s" % str(res)) assert res == expectedRes # for loop, Rand Acc Iter @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopRandaccIterDeref", "int32FindMaxForLoopRandaccIterDeref_m", "int32FindMaxForLoopRandaccIterDeref_i", "int32FindMaxForLoopRandaccIterIndex0_i", ]) def test_int32FindMaxForLoopRandaccIterDerefAlternatives(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s" % nim_test_proc_name) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) expectedRes = arg.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopRandaccIterDeltaN", "int32FindMaxForLoopRandaccIterDeltaN_m", "int32FindMaxForLoopRandaccIterDeltaN_i", ]) @pytest.mark.parametrize("n", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxForLoopRandaccIterDeltaN_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, n): arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, numpy.int32) print ("\nnim_test_proc_name = %s, n = %d" % (nim_test_proc_name, n)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argDeltaN = arg.flat[::n] print ("arg.flat[::n] =\n%s" % argDeltaN) expectedRes = argDeltaN.max() res = getattr(pymod_test_mod, nim_test_proc_name)(arg, n) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopRandaccIterExcludeFirstM", "int32FindMaxForLoopRandaccIterExcludeFirstM_m", "int32FindMaxForLoopRandaccIterExcludeFirstM_i", ]) @pytest.mark.parametrize("m", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxForLoopRandaccIterExcludeFirstM_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, m): dtype = numpy.int32 arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, dtype) print ("\nnim_test_proc_name = %s, m = %d" % (nim_test_proc_name, m)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argAfterM = arg.flat[m:] print ("arg.flat[m:] =\n%s" % argAfterM) if argAfterM.size > 0: expectedRes = argAfterM.max() print ("expectedRes = %s" % str(expectedRes)) else: expectedRes = numpy.iinfo(dtype).min print ("expectedRes = %s (int32.min)" % str(expectedRes)) res = getattr(pymod_test_mod, nim_test_proc_name)(arg, m) print ("res = %s" % str(res)) assert res == expectedRes @pytest.mark.parametrize("ndim", ndims_to_test) @pytest.mark.parametrize("nim_test_proc_name", [ "int32FindMaxForLoopRandaccIterExcludeLastM_i", ]) @pytest.mark.parametrize("m", [1, 2, 3, 4, 5, 10, 100, 1000]) def test_int32FindMaxForLoopRandaccIterExcludeLastM_1(pymod_test_mod, seeded_random_number_generator, ndim, nim_test_proc_name, m): dtype = numpy.int32 arg = array_utils.get_random_Nd_array_of_ndim_and_type(ndim, dtype) print ("\nnim_test_proc_name = %s, m = %d" % (nim_test_proc_name, m)) print ("random number seed = %d\nndim = %d, shape = %s\narg =\n%s" % \ (seeded_random_number_generator, ndim, arg.shape, arg)) argBeforeLastM = arg.flat[:-m] print ("arg.flat[:-m] =\n%s" % argBeforeLastM) if argBeforeLastM.size > 0: expectedRes = argBeforeLastM.max() print ("expectedRes = %s" % str(expectedRes)) else: expectedRes = numpy.iinfo(dtype).min print ("expectedRes = %s (int32.min)" % str(expectedRes)) res = getattr(pymod_test_mod, nim_test_proc_name)(arg, m) print ("res = %s" % str(res)) assert res == expectedRes
473155
from soap.common.formatting import underline from soap.expression.operators import FIXPOINT_OP from soap.expression.arithmetic import QuaternaryArithExpr class FixExprIsNotForLoopException(Exception): """FixExpr object is not a for loop. """ class FixExpr(QuaternaryArithExpr): """Fixpoint expression.""" def __init__(self, a1, a2, a3, a4): super().__init__(FIXPOINT_OP, a1, a2, a3, a4) @property def bool_expr(self): return self.a1 @property def loop_state(self): return self.a2 @property def loop_var(self): return self.a3 @property def init_state(self): return self.a4 def format(self): fixpoint_var = underline('e') s = ('{op}(λ{fvar}.({bool_expr} ? {fvar} % {loop_state} : {var}))' ' % {init_state}') return s.format( fvar=fixpoint_var, op=self.op, bool_expr=self.bool_expr, loop_state=self.loop_state.format(), var=self.loop_var, init_state=self.init_state.format())
473159
from models.notification import UserActivityNotification from config.app import celery_app, app as flask_app from tasks.notification import user_activity_digest from models.user_activity_log import UserActivityLog from models.user import User, Role from utils.custom_exception import InvalidUsage import json import arrow # create_user_activity logs the user activity @celery_app.task def create_user_activity(current_user_id, action, event, resources=None, patch=None, success=False): with flask_app.app_context(): user = User.query.filter_by(id=current_user_id).one_or_none() if not user: raise InvalidUsage("User Invalid.") role = Role.query.filter_by(id=user.role_id).one_or_none() if not role: raise InvalidUsage("Role Invalid.") # converting None to empty string if resources is None: resources = '' else: resources = json.dumps(resources) if patch is None: patch = '' else: patch = json.dumps(patch) ual = UserActivityLog( action=action, event=event, user=user, success=success, role=role, resources=str(resources), patch=str(patch) ) try: ual.save() # send user activity for immediate notification integrations active_user_ids = [user.id for user in User.query.filter_by(isActive=True).all()] time = arrow.now().datetime for notification in UserActivityNotification.query.filter( UserActivityNotification.user_id.in_(active_user_ids)).all(): if notification.duration_in_mins == -1: user_activity_digest(time, notification.id) except: pass # create_user_activity logs the user activity while login @celery_app.task def create_user_activity_login(current_user_id, action, event, resources=None, patch=None, success=False): with flask_app.app_context(): user = User.query.filter_by(id=current_user_id).one_or_none() if not user: raise InvalidUsage("User Invalid.") role = Role.query.filter_by(id=user.role_id).one_or_none() if not role: raise InvalidUsage("Role Invalid.") # converting None to empty string if resources is None: resources = '' else: resources = json.dumps(resources) if patch is None: patch = '' else: patch = json.dumps(patch) ual = UserActivityLog( action=action, event=event, user=user, success=success, role=role, resources=str(resources), patch=str(patch) ) try: ual.save() # send user activity for immediate notification integrations active_user_ids = [user.id for user in User.query.filter_by(isActive=True).all()] time = arrow.now().datetime for notification in UserActivityNotification.query.filter( UserActivityNotification.user_id.in_(active_user_ids)).all(): if notification.duration_in_mins == -1: user_activity_digest(time, notification.id) except: pass
473160
from unittest import TestCase, skip from pytezos import ContractInterface code = """ parameter unit; storage address; code { DROP ; SENDER ; NIL operation ; PAIR } """ initial = '<KEY>' source = 'KT1WhouvVKZFH94VXj9pa8v4szvfrBwXoBUj' sender = '<KEY>' @skip class SenderContractTest(TestCase): @classmethod def setUpClass(cls): cls.ci = ContractInterface.from_michelson(code).using('mainnet') def test_sender(self): res = self.ci.default().run_code(storage=initial, source=source, sender=sender) self.assertEqual(sender, res.storage) def test_no_source(self): res = self.ci.default().run_code(storage=initial, sender=sender) self.assertEqual(sender, res.storage) def test_no_sender(self): res = self.ci.default().run_code(storage=initial, source=source) self.assertEqual(source, res.storage)
473167
from .test import BaseTest try: # python3 from urllib.request import Request, urlopen, HTTPError except ImportError: # fall back to python2 from urllib2 import Request, urlopen, HTTPError class Test_Format_Conneg(BaseTest): label = 'Negotiated format' level = 1 category = 7 versions = [u'1.0', u'1.1'] validationInfo = None def run(self, result): url = result.make_url(params={}) hdrs = {'Accept': 'image/png;q=1.0'} try: r = Request(url, headers=hdrs) wh = urlopen(r) img = wh.read() wh.close() except HTTPError as e: wh = e ct = wh.headers['content-type'] result.last_url = url try: # py2 result.last_headers = wh.headers.dict except: result.last_headers = wh.info() result.last_status = wh.code result.urls.append(url) self.validationInfo.check('format', ct, 'image/png', result) return result
473221
from pyps import workspace with workspace("duplicate.c","duplicate/duplicate.c", preprocessor_file_name_conflict_handling=True) as w: print ":".join([f.name for f in w.fun])
473223
from pycocotools.coco import COCO import sys, os from dataset.image_base import * class MuPoTS(Image_base): def __init__(self,train_flag=True, split='val', **kwargs): super(MuPoTS,self).__init__(train_flag) self.data_folder = os.path.join(self.data_folder,'MultiPersonTestSet/') self.split = split self.test2val_sample_ratio = 10 self.annot_path = os.path.join(self.data_folder, 'MuPoTS-3D.json') self.image_folder = self.data_folder self.load_data() self.root_idx = constants.SMPL_ALL_54['Pelvis'] self.file_paths = list(self.annots.keys()) self.kp2d_mapper = constants.joint_mapping(constants.MuPoTS_17, constants.SMPL_ALL_54) self.kp3d_mapper = constants.joint_mapping(constants.MuPoTS_17, constants.SMPL_ALL_54) logging.info('MuPoTS dataset total {} samples, loading {} split'.format(self.__len__(), self.split)) def load_data(self): annots = {} db = COCO(self.annot_path) logging.info("Get bounding box from groundtruth") for aid in db.anns.keys(): ann = db.anns[aid] image_id = ann['image_id'] img = db.loadImgs(image_id)[0] img_path = img['file_name'] if img_path not in annots: annots[img_path] = [[],[],[]] fx, fy, cx, cy = img['intrinsic'] intrinsic_params = np.array([fx, fy, cx, cy]) kp3d = np.array(ann['keypoints_cam']) # [X, Y, Z] in camera coordinate kp2d = np.array(ann['keypoints_img']) bbox = np.array(ann['bbox']) img_width, img_height = img['width'], img['height'] bbox = process_bbox(bbox, img_width, img_height) annots[img_path][0].append(kp2d) annots[img_path][1].append(kp3d) annots[img_path][2].append(intrinsic_params) if self.split == 'val': self.file_paths = list(annots.keys())[::self.test2val_sample_ratio] self.annots = {} for key in self.file_paths: self.annots[key] = annots[key] del annots elif self.split == 'test': self.file_paths = list(annots.keys()) self.annots = annots else: print('split', self.split, 'is not recognized!') raise NotImplementedError def get_image_info(self, index): img_name = self.file_paths[index] imgpath = os.path.join(self.image_folder,img_name) image = cv2.imread(imgpath)[:,:,::-1] kp2ds, kp3ds = [], [] for kp2d, kp3d in zip(self.annots[img_name][0], self.annots[img_name][1]): kp2ds.append(self.map_kps(kp2d,maps=self.kp2d_mapper)) kp3d = self.map_kps(kp3d/1000.,maps=self.kp3d_mapper) kp3ds.append(kp3d) kp2ds, kp3ds = np.array(kp2ds), np.array(kp3ds) root_trans = kp3ds[:,self.root_inds].mean(1) valid_masks = np.array([self._check_kp3d_visible_parts_(kp3d) for kp3d in kp3ds]) kp3ds -= root_trans[:,None] kp3ds[~valid_masks] = -2. fx, fy, cx, cy = self.annots[img_name][2][0] camMats = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) person_num = len(kp2ds) vis_masks = [] for kp2d in kp2ds: vis_masks.append(_check_visible(kp2d,get_mask=True)) kp2ds = np.concatenate([kp2ds, np.array(vis_masks)[:,:,None]],2) img_info = {'imgpath': imgpath, 'image': image, 'kp2ds': kp2ds, 'track_ids': None,\ 'vmask_2d': np.array([[True,False,True] for _ in range(person_num)]), 'vmask_3d': np.array([[True,False,False,False] for _ in range(person_num)]),\ 'kp3ds': kp3ds, 'params': None, 'camMats': camMats, 'img_size': image.shape[:2],'ds': 'mupots'} return img_info def cam2pixel(cam_coord, f, c): x = cam_coord[:, 0] / (cam_coord[:, 2] + 1e-8) * f[0] + c[0] y = cam_coord[:, 1] / (cam_coord[:, 2] + 1e-8) * f[1] + c[1] z = cam_coord[:, 2] img_coord = np.concatenate((x[:,None], y[:,None], z[:,None]),1) return img_coord def pixel2cam(pixel_coord, f, c): x = (pixel_coord[:, 0] - c[0]) / f[0] * pixel_coord[:, 2] y = (pixel_coord[:, 1] - c[1]) / f[1] * pixel_coord[:, 2] z = pixel_coord[:, 2] cam_coord = np.concatenate((x[:,None], y[:,None], z[:,None]),1) return cam_coord def world2cam(world_coord, R, t): cam_coord = np.dot(R, world_coord.transpose(1,0)).transpose(1,0) + t.reshape(1,3) return cam_coord def get_bbox(joint_img): # bbox extract from keypoint coordinates bbox = np.zeros((4)) xmin = np.min(joint_img[:,0]) ymin = np.min(joint_img[:,1]) xmax = np.max(joint_img[:,0]) ymax = np.max(joint_img[:,1]) width = xmax - xmin - 1 height = ymax - ymin - 1 bbox[0] = (xmin + xmax)/2. - width/2*1.2 bbox[1] = (ymin + ymax)/2. - height/2*1.2 bbox[2] = width*1.2 bbox[3] = height*1.2 return bbox def process_bbox(bbox, width, height): # sanitize bboxes x, y, w, h = bbox x1 = np.max((0, x)) y1 = np.max((0, y)) x2 = np.min((width - 1, x1 + np.max((0, w - 1)))) y2 = np.min((height - 1, y1 + np.max((0, h - 1)))) if w*h > 0 and x2 >= x1 and y2 >= y1: bbox = np.array([x1, y1, x2-x1, y2-y1]) else: return None # aspect ratio preserving bbox w = bbox[2] h = bbox[3] c_x = bbox[0] + w/2. c_y = bbox[1] + h/2. aspect_ratio = 512/512 if w > aspect_ratio * h: h = w / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio bbox[2] = w*1.25 bbox[3] = h*1.25 bbox[0] = c_x - bbox[2]/2. bbox[1] = c_y - bbox[3]/2. return bbox def multi_meshgrid(*args): """ Creates a meshgrid from possibly many elements (instead of only 2). Returns a nd tensor with as many dimensions as there are arguments """ args = list(args) template = [1 for _ in args] for i in range(len(args)): n = args[i].shape[0] template_copy = template.copy() template_copy[i] = n args[i] = args[i].view(*template_copy) # there will be some broadcast magic going on return tuple(args) def flip(tensor, dims): if not isinstance(dims, (tuple, list)): dims = [dims] indices = [torch.arange(tensor.shape[dim] - 1, -1, -1, dtype=torch.int64) for dim in dims] multi_indices = multi_meshgrid(*indices) final_indices = [slice(i) for i in tensor.shape] for i, dim in enumerate(dims): final_indices[dim] = multi_indices[i] flipped = tensor[final_indices] assert flipped.device == tensor.device assert flipped.requires_grad == tensor.requires_grad return flipped def _check_visible(joints, w=2048, h=2048, get_mask=False): visibility = True # check that all joints are visible x_in = np.logical_and(joints[:, 0] < w, joints[:, 0] >= 0) y_in = np.logical_and(joints[:, 1] < h, joints[:, 1] >= 0) ok_pts = np.logical_and(x_in, y_in) if np.sum(ok_pts) < 16: visibility=False if get_mask: return ok_pts return visibility if __name__ == '__main__': dataset=MuPoTS(train_flag=False) test_dataset(dataset) print('Done')
473252
from typing import Sequence, Union import torch import torch.nn as nn import torch.nn.functional as F from src.systems.base_system import BaseSystem class EMixSystem(BaseSystem): '''Implements the i-Mix algorithm on embedded inputs defined in https://arxiv.org/abs/2010.08887. Because there aren't predefined augmentations, i-Mix is applied to the original embeddings. The algorithm under default parameters can be summarized as Algorithm 1: lambda ~ Beta(1, 1) lambda = max(lambda, 1 - lambda) # assures mixing coefficient >= 0.5 embs = embed(*x) permuted_idxs = permute(arange(embs)) permuted_embs = stop_gradient[embs][permuted_idx] mixed_embs = lambda * embs + (1 - lambda) * permuted_embs logits = mixed_embs @ embs.T contrastive_loss = cross_entropy(logits, arange(embs)) mixed_virtual_loss = cross_entropy(logits, permuted_idxs) loss = contrastive_loss + mixed_virtual_loss ''' ALPHA = 1.0 TEMPERATURE = 0.2 def __init__(self, config): super().__init__(config) self.beta_distribution = torch.distributions.beta.Beta(self.ALPHA, self.ALPHA) self.ce = nn.CrossEntropyLoss(reduction='none') def objective( self, embs_mix: torch.Tensor, embs: torch.Tensor, mix_coeff: Union[torch.Tensor, float], randidx: torch.Tensor, ): embs_mix = F.normalize(embs_mix, dim=1) embs = F.normalize(embs, dim=1) logits = embs_mix @ embs.T / self.TEMPERATURE labels = torch.arange(logits.shape[0], dtype=torch.long, device=logits.device) loss = mix_coeff * self.ce(logits, labels) + (1 - mix_coeff) * self.ce(logits, randidx) loss = loss.mean() with torch.no_grad(): acc = (logits.argmax(1) == labels).float().mean() return loss, acc def ssl_forward(self, batch, prehead=False): batch = batch[1:-1] # could be multiple tensors here # Embed first. embs = self.model.embed(batch) batch_size = embs.shape[0] # Sample mixing coefficient from beta distribution. mix_coeff = self.beta_distribution.sample([batch_size]).to(embs.device) mix_coeff = mix_coeff.view(-1, *[1] * (embs.dim() - 1)) mix_coeff = torch.max(mix_coeff, 1 - mix_coeff) # Generate augmentations. randidx = torch.randperm(batch_size, device=embs.device) embs_mix = embs[randidx].detach() embs_mix = mix_coeff * embs + (1 - mix_coeff) * embs_mix embs_mix = self.model.encode(embs_mix, prehead=prehead) embs = self.model.encode(embs, prehead=prehead) return embs_mix, embs, mix_coeff, randidx def forward(self, inputs: Sequence[torch.Tensor], prehead=False): return self.model.forward(inputs, prehead=prehead) def training_step(self, batch, batch_idx): embs_i, embs_j, mix_coeff, randidx = self.ssl_forward(batch, prehead=False) loss, acc = self.objective(embs_i, embs_j, mix_coeff, randidx) self.log('train_loss', loss.item(), on_step=True, on_epoch=False, prog_bar=False, sync_dist=True) self.log('train_acc', acc.item(), on_step=True, on_epoch=False, prog_bar=True, sync_dist=True) return loss def validation_step(self, batch, batch_idx): embs_i, embs_j, mix_coeff, randidx = self.ssl_forward(batch, prehead=False) loss, acc = self.objective(embs_i, embs_j, mix_coeff, randidx) return {'loss': loss.item(), 'acc': acc.item()} def validation_epoch_end(self, validation_step_outputs): loss = [val_dict['loss'] for val_dict in validation_step_outputs] acc = [val_dict['acc'] for val_dict in validation_step_outputs] self.log('val_loss', sum(loss) / len(loss), on_step=False, on_epoch=True, prog_bar=False, sync_dist=True) self.log('val_acc', sum(acc) / len(acc), on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
473291
import re from regparser.layer.layer import Layer from regparser.tree import struct from regparser.tree.priority_stack import PriorityStack from regparser.tree.xml_parser import tree_utils class HeaderStack(PriorityStack): """Used to determine Table Headers -- indeed, they are complicated enough to warrant their own stack""" def unwind(self): children = [pair[1] for pair in self.pop()] self.peek_last()[1].children = children class TableHeaderNode(object): """Represents a cell in a table's header""" def __init__(self, text, level): self.text = text self.level = level self.children = [] def height(self): child_heights = [0] + [c.height() for c in self.children] return 1 + max(child_heights) def width(self): if not self.children: return 1 return sum(c.width() for c in self.children) def build_header(xml_nodes): """Builds a TableHeaderNode tree, with an empty root. Each node in the tree includes its colspan/rowspan""" stack = HeaderStack() stack.add(0, TableHeaderNode(None, 0)) # Root for xml_node in xml_nodes: level = int(xml_node.attrib['H']) text = tree_utils.get_node_text(xml_node, add_spaces=True).strip() stack.add(level, TableHeaderNode(text, level)) while stack.size() > 1: stack.unwind() root = stack.m_stack[0][0][1] max_height = root.height() def set_rowspan(n): n.rowspan = max_height - n.height() - n.level + 1 struct.walk(root, set_rowspan) def set_colspan(n): n.colspan = n.width() struct.walk(root, set_colspan) return root def table_xml_to_plaintext(xml_node): """Markdown representation of a table. Note that this doesn't account for all the options needed to display the table properly, but works fine for simple tables. This gets included in the reg plain text""" header = [tree_utils.get_node_text(hd, add_spaces=True).strip() for hd in xml_node.xpath('./BOXHD/CHED')] divider = ['---']*len(header) rows = [] for tr in xml_node.xpath('./ROW'): rows.append([tree_utils.get_node_text(td, add_spaces=True).strip() for td in tr.xpath('./ENT')]) table = [] for row in [header] + [divider] + rows: table.append('|' + '|'.join(row) + '|') return '\n'.join(table) def table_xml_to_data(xml_node): """Construct a data structure of the table data. We provide a different structure than the native XML as the XML encodes too much logic. This structure can be used to generate semi-complex tables which could not be generated from the markdown above""" header_root = build_header(xml_node.xpath('./BOXHD/CHED')) header = [[] for _ in range(header_root.height())] def per_node(node): header[node.level].append({'text': node.text, 'colspan': node.colspan, 'rowspan': node.rowspan}) struct.walk(header_root, per_node) header = header[1:] # skip the root rows = [] for row in xml_node.xpath('./ROW'): rows.append([tree_utils.get_node_text(td, add_spaces=True).strip() for td in row.xpath('./ENT')]) return {'header': header, 'rows': rows} class Formatting(Layer): fenced_re = re.compile(r"```(?P<type>[a-zA-Z0-9 ]+)\w*\n" + r"(?P<lines>([^\n]*\n)+)" + r"```") subscript_re = re.compile(r"([a-zA-Z0-9]+)_\{(\w+)\}") dashes_re = re.compile(r"_{5,}$") def process(self, node): layer_el = [] if node.source_xml is not None: if node.source_xml.tag == 'GPOTABLE': tables = [node.source_xml] else: tables = [] tables.extend(node.source_xml.xpath('.//GPOTABLE')) for table in tables: layer_el.append({'text': table_xml_to_plaintext(table), 'locations': [0], 'table_data': table_xml_to_data(table)}) for match in Formatting.fenced_re.finditer(node.text): layer_el.append({ 'text': node.text[match.start():match.end()], 'locations': [0], 'fence_data': { 'type': match.group('type'), 'lines': filter(bool, match.group('lines').split("\n"))}}) subscripts = {} for match in Formatting.subscript_re.finditer(node.text): key = (match.group(1), match.group(2)) subscripts[key] = subscripts.get(key, 0) + 1 for key, count in subscripts.iteritems(): variable, subscript = key layer_el.append({ 'text': variable + '_{' + subscript + '}', 'locations': list(range(count)), 'subscript_data': {'variable': variable, 'subscript': subscript}}) for match in Formatting.dashes_re.finditer(node.text): layer_el.append({ 'text': node.text, 'locations': [0], 'dash_data': { 'text': node.text[:match.start()], }, }) if layer_el: return layer_el
473311
class Solution(object): def numIslands(self, grid): """ :type grid: List[List[str]] :rtype: int """ sizes = [] visited = [[False for value in row] for row in grid] for i in range(len(grid)): for j in range(len(grid[i])): if visited[i][j]: continue else: self.traverseNode(i, j, grid, visited, sizes) sizes.sort(reverse= False) if not sizes: return 0 else: return sizes[-1] def traverseNode(self, i, j, grid, visited, sizes): currentRiverSize = 0 nodesToExplore = [[i, j]] while len(nodesToExplore): currentNode = nodesToExplore.pop() i = currentNode[0] j = currentNode[1] if visited[i][j]: continue visited[i][j] = True if grid[i][j] == 0: continue currentRiverSize += 1 unvisitedNeighbours = self.getUnvisitedNeighbour(i, j, grid, visited) for neighbour in unvisitedNeighbours: nodesToExplore.append(neighbour) if currentRiverSize > 0: sizes.append(currentRiverSize) def getUnvisitedNeighbour(self, i, j, grid, visited): unvisitedNeighbours = [] if i > 0 and not visited[i - 1][j]: unvisitedNeighbours.append([i - 1, j]) if i < len(grid) - 1 and not visited[i + 1][j]: unvisitedNeighbours.append([i + 1, j]) if j > 0 and not visited[i][j - 1]: unvisitedNeighbours.append([i, j - 1]) if j < len(grid[0]) - 1 and not visited[i][j + 1]: unvisitedNeighbours.append([i, j + 1]) return unvisitedNeighbours # My Own solution during MOCK class Solution(object): def maxAreaOfIsland(self, grid): """ :type grid: List[List[int]] :rtype: int """ sizes = [0] visited = [[False for _ in row] for row in grid] for i in range(len(grid)): for j in range(len(grid[0])): if not visited[i][j] and grid[i][j] == 1: self.traverseNode(i, j, grid, visited, sizes) sizes.sort() return sizes[-1] def traverseNode(self, row, col, grid, visited, sizes): nodesStack = [[row, col]] currentSize = 0 while nodesStack: i, j = nodesStack.pop() if visited[i][j] == False: visited[i][j] = True currentSize += 1 unvisitedValidNeighbours = self.getUnvisitedValidNeighbours(i, j, grid, visited) nodesStack.extend(unvisitedValidNeighbours) sizes.append(currentSize) def getUnvisitedValidNeighbours(self, row, col, grid, visited): neighbours = [] if row > 0 and grid[row - 1][col] == 1 and not visited[row - 1][col]: neighbours.append([row - 1, col]) if row < len(grid) - 1 and grid[row + 1][col] and not visited[row + 1][col]: neighbours.append([row + 1, col]) if col > 0 and grid[row][col - 1] and not visited[row][col - 1]: neighbours.append([row, col - 1]) if col < len(grid[0]) - 1 and grid[row][col + 1] and not visited[row][col + 1]: neighbours.append([row, col + 1]) return neighbours # Driver code sol = Solution() # grid = [[1,1,0,0,0], # [1,1,0,0,0], # [0,0,0,1,1], # [0,0,0,1,1]] grid = [[0]] numOfIlands = sol.numIslands(grid) print("Max Area of Iands: ", numOfIlands)
473321
import random from collections import defaultdict import numpy as np from amplification.tasks.core import idk, uniform, Task, sequences def matches(patterns, xs): return np.all((patterns[:,np.newaxis,:] == SumTask.wild) | (patterns[:,np.newaxis,:] == xs[np.newaxis, :, :]), axis=2) class SumTask(Task): wild = 1 answer_length = 1 fixed_vocab = 2 def repr_symbol(self, x): if x == self.wild: return '*' if x in self.differences: return str(x - self.zero) if x in self.alphabet: return 'abcdef'[x - self.alphabet[0]] if x == idk: return '?' raise ValueError(x) def __init__(self, length=6, size=float('inf'), nchars=2, modulus=None): self.nvocab = self.fixed_vocab self.size = min(size, nchars**length) self.alphabet = self.allocate(nchars) self.interaction_length = nchars self.alphabet_plus = np.concatenate([[self.wild], self.alphabet]) self.modulus = modulus if modulus is None: self.max_d = (self.size + nchars - 1) // nchars self.differences = self.allocate(2 * self.max_d + 1) self.zero = self.differences[self.max_d] else: self.differences = self.allocate(self.modulus) self.zero = self.differences[0] self.all_strings = [np.array(x) for x in sequences(self.alphabet, length)] self.length = length self.question_length = length self.fact_length = length + 1 def make_dbs(self, difficulty=float('inf')): used_strings = min(self.size, difficulty+8) strings = np.stack(random.sample(self.all_strings, used_strings)) values = np.random.choice([-1, 1], used_strings) fast_db = {"strings": strings, "values": values} facts = np.concatenate([strings, self.encode_n(values[:,np.newaxis])], axis=1) return facts, fast_db def answers(self, Qs, fast_db): all_matches = matches(Qs, fast_db["strings"]) raw_As = np.dot(all_matches, fast_db["values"]) As = self.encode_n(raw_As) return As[:, np.newaxis] def make_q(self, fast_db): Q = np.random.choice(self.alphabet, self.length, replace=True) num_wilds = np.random.randint(1, self.length + 1) indices = np.random.choice(self.length, num_wilds, replace=False) Q[indices] = self.wild return Q def encode_n(self, x): if self.modulus is None: return self.zero + np.maximum(-self.max_d, np.minimum(self.max_d, x)) else: return self.zero + np.mod(x, self.modulus) def are_simple(self, Qs): return np.all(Qs != self.wild, axis=-1) def recursive_answer(self, Q): Q = np.asarray(Q) if not np.all(np.isin(Q, self.alphabet_plus)): yield self.pad(self.zero), None return if not np.any(Q == self.wild): yield (yield None, Q), None return wild_index = np.argmax(Q == self.wild) result = 0 for c in self.alphabet: new_Q = np.copy(Q) new_Q[wild_index] = c d = (yield None, new_Q) if d not in self.differences: yield self.pad(idk), None return result += d - self.zero result = self.encode_n(result) yield self.pad(result), None def all_questions(self, fast_db): yield from sequences(self.alphabet_plus, self.length) def classify_question(self, Q, fast_db): n = len([x for x in Q if x == self.wild]) return "wilds{}".format(n)
473328
import numpy as np from mspasspy.ccore.utility import MsPASSError, AtomicType, ErrorSeverity, ProcessingStatus from mspasspy.ccore.seismic import Seismogram, TimeSeries, TimeSeriesEnsemble, SeismogramEnsemble def info(data, alg_id, alg_name, target=None): """ This helper function is used to log operations in processing history of mspass object. Per best practice, every operations happen on the mspass object should be logged. :param data: the mspass data object :param alg_id: an id designator to uniquely define an instance of algorithm. :param alg_name: the name of the algorithm that used on the mspass object. :param target: if the mspass data object is an ensemble type, you may use target as index to log on one specific object in the ensemble. If target is not specified, all the objects in the ensemble will be logged using the same information. :return: None """ empty_err_message = "cannot preserve history because container was empty\n" + \ "Must at least contain an origin record" if isinstance(data, (TimeSeries, Seismogram)): if data.live: if data.is_empty(): data.elog.log_error(alg_name, empty_err_message, ErrorSeverity.Complaint) else: data.new_map(alg_name, alg_id, AtomicType.TIMESERIES if isinstance(data, TimeSeries) else AtomicType.SEISMOGRAM, ProcessingStatus.VOLATILE) elif isinstance(data, (TimeSeriesEnsemble, SeismogramEnsemble)): if (target is not None) and (len(data.member) <= target): raise IndexError( "logging_helper.info: target index is out of bound") for i in range(len(data.member)) if target is None else [target]: if data.member[i].live: # guarantee group member is not dead if data.member[i].is_empty(): data.member[i].elog.log_error(alg_name, empty_err_message, ErrorSeverity.Complaint) else: data.member[i].new_map(alg_name, alg_id, AtomicType.TIMESERIES if isinstance(data.member[i], TimeSeries) else AtomicType.SEISMOGRAM, ProcessingStatus.VOLATILE) else: print( 'Coding error - logging.info was passed an unexpected data type of', type(data)) print('Not treated as fatal but a bug fix is needed') def ensemble_error(d, alg, message, err_severity=ErrorSeverity.Invalid): """ This is a small helper function useful for error handlers in except blocks for ensemble objects. If a function is called on an ensemble object that throws an exception this function will post the message posted to all ensemble members. It silently does nothing if the ensemble is empty. :param err_severity: severity of the error, default as ErrorSeverity.Invalid. :param d: is the ensemble data to be handled. It print and error message and returns doing nothing if d is not one of the known ensemble objects. :param alg: is the algorithm name posted to elog on each member :param message: is the string posted to all members (Note due to a current flaw in the api we don't have access to the severity attribute. For now this always set it Invalid) """ if isinstance(d, (TimeSeriesEnsemble, SeismogramEnsemble)): n = len(d.member) if n <= 0: return for i in range(n): d.member[i].elog.log_error(alg, str(message), err_severity) else: print('Coding error - ensemble_error was passed an unexpected data type of', type(d)) print('Not treated as fatal but a bug fix is needed') def reduce(data1, data2, alg_id, alg_name): """ This function replicates the processing history of data2 onto data1, which is a common use case in reduce stage. If data1 is dead, it will keep silent, i.e. no history will be replicated. If data2 is dead, the processing history will still be replicated. :param data1: Mspass object :param data2: Mspass object :param alg_id: The unique id of that user gives to the algorithm. :param alg_name: The name of the reduce algorithm that uses this helper function. :return: None """ if isinstance(data1, (TimeSeries, Seismogram)): if type(data1) != type(data2): raise TypeError( "logging_helper.reduce: data2 has a different type as data1") if data1.live: data1.accumulate(alg_name, alg_id, AtomicType.TIMESERIES if isinstance(data1, TimeSeries) else AtomicType.SEISMOGRAM, data2) elif isinstance(data1, (TimeSeriesEnsemble, SeismogramEnsemble)): if type(data1) != type(data2): raise TypeError( "logging_helper.reduce: data2 has a different type as data1") if len(data1.member) != len(data2.member): raise IndexError( "logging_helper.reduce: data1 and data2 have different sizes of member") for i in range(len(data1.member)): if data1.member[i].live: # guarantee group member is not dead data1.member[i].accumulate(alg_name, alg_id, AtomicType.TIMESERIES if isinstance(data1.member[i], TimeSeries) else AtomicType.SEISMOGRAM, data2.member[i]) else: print('Coding error - logging.reduce was passed an unexpected data type of', type(data1)) print('Not treated as fatal but a bug fix is needed')
473365
from setuptools import setup setup( name='GaMMA', version='1.0.0', packages=['gamma'], install_requires=[ 'scikit-learn', ], )