id
stringlengths
3
8
content
stringlengths
100
981k
494120
import pytest async def test_handler(app, client): from muffin.handler import Handler, route_method assert Handler @app.route('/handler', '/handler/{res}') class Index(Handler): async def get(self, request): return request.path_params or 'ok' async def post(self, request): data = await request.data() return dict(data) @Handler.route('/custom1', methods=['put', 'patch']) async def custom1(self, request): return self.__class__.__name__ @route_method('/custom2') async def custom2(self, request): return 'CUSTOM2' assert sorted(Index.methods) == ['GET', 'POST'] res = await client.get('/handler') assert res.status_code == 200 assert await res.text() == 'ok' res = await client.get('/handler/123') assert res.status_code == 200 assert await res.json() == {'res': '123'} res = await client.post('/handler', json={'test': 'passed'}) assert res.status_code == 200 assert await res.json() == {'test': 'passed'} res = await client.put('/handler') assert res.status_code == 405 assert await res.text() == 'Specified method is invalid for this resource' res = await client.put('/custom1') assert res.status_code == 200 assert await res.text() == 'Index' res = await client.get('/custom1') assert res.status_code == 405 res = await client.get('/custom2') assert res.status_code == 200 assert await res.text() == 'CUSTOM2' async def test_deffered(app, client): from muffin.handler import Handler class Resource(Handler): methods = 'post' async def get(self, request): raise RuntimeError async def post(self, request): return 'Resource is here' @Handler.route('/resource/custom') async def custom(self, request): return 'Resource Custom is here' assert Resource.methods == {'POST'} app.route('/resource')(Resource) res = await client.get('/resource') assert res.status_code == 405 res = await client.post('/resource') assert res.status_code == 200 assert await res.text() == 'Resource is here' res = await client.post('/resource/custom') assert res.status_code == 200 assert await res.text() == 'Resource Custom is here'
494171
import os from PyQt5.QtWidgets import QDialog from cvstudio.util import GUIUtilities, FileUtilities from cvstudio.vo import DatasetVO from .base_dataset_form import Ui_Base_DatasetDialog class DatasetForm(QDialog, Ui_Base_DatasetDialog): def __init__(self, vo: DatasetVO = None, parent=None): super(DatasetForm, self).__init__(parent) self.setupUi(self) self.setWindowTitle("Create new dataset".title()) self.setWindowIcon(GUIUtilities.get_icon("polygon.png")) self._value = vo self.initialize_form() def initialize_form(self): if self._value: self.nameLineEdit.setText(self._value.name) self.descriptionEditText.setPlainText(self._value.description) # self.type.setCurrentText(self._value.data_type) @property def value(self) -> DatasetVO: return self._value def accept(self) -> None: if not self.nameLineEdit.text(): GUIUtilities.show_info_message("The name field is required", "info") return if self._value is None: usr_folder = FileUtilities.get_usr_folder() new_folder = FileUtilities.create_new_folder(usr_folder) vo = DatasetVO() ds_folder = os.path.basename(new_folder) vo.folder = ds_folder self._value = vo else: vo = self._value vo.name = self.nameLineEdit.text() vo.description = self.descriptionEditText.toPlainText() # dataset_vo.data_type=self.typeComboBox.currentText() return QDialog.accept(self) def reject(self) -> None: return QDialog.reject(self)
494185
from .common import pred, iroot_ceil, floor_lg from .generalized_accumulator import ( GeneralizedAccumulatorFactory, GeneralizedAccumulator, GeneralizedProver, GeneralizedVerifier, ) # Implementation of the generalized accumulator with p "evenly spaced" back-pointers. # Cost of update: O(p) # Proof size: O((log n)^(1 + 1/p)) def get_representatives(k: int, p: int): if k == 1: return [] # if k is even, we also add k - 1 result = [k - 1] if k % 2 == 0 else [] l = floor_lg(k) # k has l + 1 bits d = iroot_ceil(p, l) # d = ceil(floor(log n)^(1/p)) # computes all the powers of d that are not bigger than l exponents = set([1]) if d > 1: t = d while t <= l and d > 1: exponents.add(t) t *= d t = pred(k) c = 1 # count of how many bits are zeroed while t > 0: if c in exponents: result.append(t) t = pred(t) c += 1 return result class MultipointerAccumulatorFactory(GeneralizedAccumulatorFactory): def create_accumulator(self, p: int): def get_representatives_p(n: int): return get_representatives(n, p) accumulator_manager = GeneralizedAccumulator(get_representatives_p) prover = GeneralizedProver(get_representatives_p, accumulator_manager) verifier = GeneralizedVerifier(get_representatives_p) return accumulator_manager, prover, verifier
494193
import argparse, sys from pipelines_utils import parameter_utils, utils from pipelines_utils_rdkit import rdkit_utils, mol_utils from rdkit import Chem from . import calc_interactions def execute(suppl, writer, report, group_by_field, score_field, score_descending, stats_fields): count = 0 total = 0 errors = 0 group_count = 0 curr_gbv = None interactions = {} best_scores = {} best_mols = {} stats_data = {} for mol in suppl: total +=1 if not mol: errors += 1 continue if not mol.HasProp(group_by_field): report.write("WARNING: molecule %s does not contain field %s\n" % (total, group_by_field)) errors += 1 continue if not mol.HasProp(score_field): report.write("WARNING: molecule %s does not contain field %s\n" % (total, score_field)) errors += 1 continue gbv = mol.GetProp(group_by_field) sco = mol.GetDoubleProp(score_field) inters = gen_interactions(mol) utils.log('processing', gbv, inters) if gbv != curr_gbv: # write summaries if curr_gbv: write_summary(writer, report, gbv, group_count, best_mols, stats_data) curr_gbv = gbv group_count = 1 best_scores = {inters: sco} best_mols = {inters: mol} stats_data = {} add_stats(mol, inters, stats_fields, stats_data) else: # add to summary group_count += 1 curr_best_sco = best_scores.get(inters, None) add_stats(mol, inters, stats_fields, stats_data) if None == curr_best_sco: best_scores[inters] = sco best_mols[inters] = mol else: if score_descending: if sco > curr_best_sco: best_scores[inters] = sco best_mols[inters] = mol else: if sco < curr_best_sco: best_scores[inters] = sco best_mols[inters] = mol count += 1 write_summary(writer, report, gbv, group_count, best_mols, stats_data) return count, total, errors def write_summary(writer, report, gbv, count, best_mols, stats_data): report.write("Summary for %s molecules for %s\n" % (count, gbv)) for inter, mol in best_mols.items(): report.write(" %s\n" % (str(inter))) if inter in stats_data: for field, values in stats_data[inter].items(): report.write(" %s = [%s, %s, %s, %s]\n" % (field, len(values), min(values), max(values), sum(values) / len(values))) writer.write(mol) str_interactions = 'Interactions' def gen_interactions(mol): interactions = [] interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_hbond + str_interactions)) interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_halogen + str_interactions)) interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_hydrophobic + str_interactions)) interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_salt_bridge + str_interactions)) interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_pi_stacking + str_interactions)) interactions.append(find_canonical_interactions(mol, calc_interactions.inter_type_pi_cation + str_interactions)) return tuple(interactions) def find_canonical_interactions(mol, prop): if mol.HasProp(prop): canons = [] inters = mol.GetProp(prop) lines = inters.split('\n') for line in lines: tokens = line.split(' ') canon = tokens[0] canons.append(canon) return tuple(sorted(canons)) else: return None def add_stats(mol, inters, stats_fields, stats_data): if inters in stats_data: d = stats_data[inters] else: d = {} stats_data[inters] = d if stats_fields: for field in stats_fields: if mol.HasProp(field): v = mol.GetDoubleProp(field) if field in d: d[field].append(v) else: d[field] = [v] ### start main execution ######################################### def main(): ### command line args definitions ######################################### parser = argparse.ArgumentParser(description='Filter interactions') parameter_utils.add_default_io_args(parser) parser.add_argument('-f', '--group-by-field', required=True, help='Field to group records by (must be sequential)') parser.add_argument('-s', '--score-field', required=True, help='Field to use to rank records within a group') parser.add_argument('-d', '--score-descending', action='store_true', help='Sort records in descending order') parser.add_argument('-x', '--stats-fields', nargs='*', help='Field to use to for summary statistics') parser.add_argument('-q', '--quiet', action='store_true', help='Quiet mode') parser.add_argument('--thin', action='store_true', help='Thin output mode') parser.add_argument('--no-gzip', action='store_true', help='Do not compress the output (STDOUT is never compressed') args = parser.parse_args() utils.log("filter_interactions: ", args) # handle metadata source = "filter_interactions.py" datasetMetaProps = {"source": source, "description": "Filter by interactions"} clsMappings = { # "EnumChargesSrcMolUUID": "java.lang.String", # "EnumChargesSrcMolIdx": "java.lang.Integer" } fieldMetaProps = [ # {"fieldName": "EnumChargesSrcMolUUID", "values": {"source": source, "description": "UUID of source molecule"}}, # {"fieldName": "EnumChargesSrcMolIdx", "values": {"source": source, "description": "Index of source molecule"}} ] input, suppl = rdkit_utils.default_open_input(args.input, args.informat) output, writer, output_base = rdkit_utils.default_open_output(args.output, 'filter_interactions', args.outformat, thinOutput=False, valueClassMappings=clsMappings, datasetMetaProps=datasetMetaProps, fieldMetaProps=fieldMetaProps, compress=not args.no_gzip) report_file = open(output_base + '.report', 'wt') count, total, errors = execute(suppl, writer, report_file, args.group_by_field, args.score_field, args.score_descending, args.stats_fields) utils.log(count, total, errors) if input: input.close() writer.flush() writer.close() output.close() report_file.close() # re-write the metadata as we now know the size if args.outformat == 'json': utils.write_squonk_datasetmetadata(output_base, False, clsMappings, datasetMetaProps, fieldMetaProps, size=total) if args.meta: utils.write_metrics(output_base, {'__InputCount__': count, '__OutputCount__': total, '__ErrorCount__': errors, 'FilterInteractions': total}) if __name__ == "__main__": main()
494203
lines = open('data.csv').read().split('\n') data = [(int(x[:x.find(',')]), float(x[x.find(',')+1:])) for x in lines if x] REPORT_THRESHOLD = 0.23 def get_error(scale, elasticity, growth): err = 0 bs_fac, fee_fac = 1 / (1 + elasticity), elasticity / (1 + elasticity) for i, (block_size, avg_fee) in enumerate(data): expected = scale * (1 + growth) ** i actual = block_size ** bs_fac * avg_fee ** fee_fac # if i >= len(data) - 6: # err += ((expected / actual - 1) ** 2) * 2 err += (expected / actual - 1) ** 2 return err best = (0, 0, 0, 9999999999999999999999999.0) for scale in [1 * 1.05 ** x for x in range(300)]: for elasticity in [x*0.025 for x in range(120)]: for growth in [x*0.001 for x in range(120)]: err = get_error(scale, elasticity, growth) if err <= REPORT_THRESHOLD: print('%d %.3f %.3f: %.3f' % (scale, elasticity, growth, err)) if err < best[-1]: best = scale, elasticity, growth, err print('Best params: %d %.3f %.3f (err %.3f)' % best) scale, elasticity, growth, err = best bs_fac, fee_fac = 1 / (1 + elasticity), elasticity / (1 + elasticity) for i, (block_size, avg_fee) in enumerate(data): expected = scale * (1 + growth) ** i actual = block_size ** bs_fac * avg_fee ** fee_fac print(i, actual, expected)
494216
import bpy material = (bpy.context.material.active_node_material if bpy.context.material.active_node_material else bpy.context.material) material.subsurface_scattering.radius = 10.899, 6.575, 2.508 material.subsurface_scattering.color = 0.947, 0.931, 0.852
494265
import numpy as np a_1d = np.arange(4) print(a_1d) # [0 1 2 3] print(a_1d[[0, 2]]) # [0 2] print(a_1d[[0, 3, 2, 1, 2, -1, -2]]) # [0 3 2 1 2 3 2] print(a_1d[np.array([0, 3, 2, 1, 2, -1, -2])]) # [0 3 2 1 2 3 2] a_2d = np.arange(12).reshape(3, 4) print(a_2d) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(a_2d[[0, 2]]) # [[ 0 1 2 3] # [ 8 9 10 11]] print(a_2d[:, [0, 2]]) # [[ 0 2] # [ 4 6] # [ 8 10]] print(a_2d[[0, 2], [0, 2]]) # [ 0 10] print(a_2d[np.ix_([0, 2], [0, 2])]) # [[ 0 2] # [ 8 10]] print(a_2d[np.ix_([0, 2, 1, 1, -1, -1], [0, 2, 1, 3])]) # [[ 0 2 1 3] # [ 8 10 9 11] # [ 4 6 5 7] # [ 4 6 5 7] # [ 8 10 9 11] # [ 8 10 9 11]] print(a_2d[:, [1]]) # [[1] # [5] # [9]] print(a_2d[:, [1]].shape) # (3, 1) print(a_2d[:, 1]) # [1 5 9] print(a_2d[:, 1].shape) # (3,)
494267
import sys from pypy.interpreter.baseobjspace import W_Root, ObjSpace, Wrappable, \ Arguments from pypy.interpreter.error import OperationError, wrap_oserror from pypy.interpreter.gateway import interp2app from pypy.interpreter.typedef import TypeDef, GetSetProperty from pypy.rlib.libffi import * from pypy.rpython.lltypesystem import lltype, rffi from pypy.rlib.unroll import unrolling_iterable from pypy.tool.sourcetools import func_with_new_name from pypy.rlib.rarithmetic import intmask, r_uint, r_singlefloat from pypy.module._rawffi.tracker import tracker def _signed_type_for(TYPE): sz = rffi.sizeof(TYPE) if sz == 4: return ffi_type_sint32 elif sz == 8: return ffi_type_sint64 else: raise ValueError("unsupported type size for %r" % (TYPE,)) def _unsigned_type_for(TYPE): sz = rffi.sizeof(TYPE) if sz == 4: return ffi_type_uint32 elif sz == 8: return ffi_type_uint64 else: raise ValueError("unsupported type size for %r" % (TYPE,)) TYPEMAP = { # XXX A mess with unsigned/signed/normal chars :-/ 'c' : ffi_type_uchar, 'b' : ffi_type_schar, 'B' : ffi_type_uchar, 'h' : ffi_type_sshort, 'u' : ffi_type_uint, # XXX think deeper how to map it properly 'H' : ffi_type_ushort, 'i' : ffi_type_sint, 'I' : ffi_type_uint, # xxx don't use ffi_type_slong and ffi_type_ulong - their meaning # changes from a libffi version to another :-(( 'l' : _signed_type_for(rffi.LONG), 'L' : _unsigned_type_for(rffi.ULONG), 'q' : _signed_type_for(rffi.LONGLONG), 'Q' : _unsigned_type_for(rffi.ULONGLONG), 'f' : ffi_type_float, 'd' : ffi_type_double, 's' : ffi_type_pointer, 'P' : ffi_type_pointer, 'z' : ffi_type_pointer, 'O' : ffi_type_pointer, 'Z' : ffi_type_pointer, } TYPEMAP_PTR_LETTERS = "POszZ" UNPACKED_TYPECODES = dict([(code, (code, intmask(field_desc.c_size), intmask(field_desc.c_alignment))) for code, field_desc in TYPEMAP.items()]) LL_TYPEMAP = { 'c' : rffi.CHAR, 'u' : lltype.UniChar, 'b' : rffi.SIGNEDCHAR, 'B' : rffi.UCHAR, 'h' : rffi.SHORT, 'H' : rffi.USHORT, 'i' : rffi.INT, 'I' : rffi.UINT, 'l' : rffi.LONG, 'L' : rffi.ULONG, 'q' : rffi.LONGLONG, 'Q' : rffi.ULONGLONG, 'f' : rffi.FLOAT, 'd' : rffi.DOUBLE, 's' : rffi.CCHARP, 'z' : rffi.CCHARP, 'Z' : rffi.CArrayPtr(lltype.UniChar), 'O' : rffi.VOIDP, 'P' : rffi.VOIDP, 'v' : lltype.Void, } def letter2tp(space, key): try: return UNPACKED_TYPECODES[key] except KeyError: raise OperationError(space.w_ValueError, space.wrap( "Unknown type letter %s" % (key,))) def unpack_typecode(space, w_typecode): if space.is_true(space.isinstance(w_typecode, space.w_str)): letter = space.str_w(w_typecode) return letter2tp(space, letter) else: w_size, w_align = space.unpacktuple(w_typecode, expected_length=2) return ('V', space.int_w(w_size), space.int_w(w_align)) # value object def _get_type_(space, key): try: return TYPEMAP[key] except KeyError: raise OperationError(space.w_ValueError, space.wrap( "Unknown type letter %s" % (key,))) class W_CDLL(Wrappable): def __init__(self, space, name): self.cdll = CDLL(name) self.name = name self.w_cache = space.newdict() self.space = space # xxx refactor away ! def get_arg_type(self, letter, argsize, argalignment): space = self.space if letter == 'V': # xxx leaks return make_struct_ffitype(argsize, argalignment) else: return _get_type_(space, letter) def get_type(self, key): space = self.space return _get_type_(space, key) def ptr(self, space, name, w_argtypes, w_restype): """ Get a pointer for function name with provided argtypes and restype """ # xxx refactor if space.is_w(w_restype, space.w_None): resshape = None ffi_restype = ffi_type_void elif space.is_true(space.isinstance(w_restype, space.w_str)): tp_letter = space.str_w(w_restype) if tp_letter == 'v': resshape = None ffi_restype = ffi_type_void else: from pypy.module._rawffi.array import get_array_cache cache = get_array_cache(space) resshape = cache.get_array_type(letter2tp(space, tp_letter)) ffi_restype = self.get_type(tp_letter) else: from pypy.module._rawffi.structure import W_Structure resshape = space.interp_w(W_Structure, w_restype) ffi_restype = resshape.get_ffi_type() w = space.wrap w_argtypes = space.newtuple(space.unpackiterable(w_argtypes)) w_key = space.newtuple([w(name), w_argtypes, w(resshape)]) try: return space.getitem(self.w_cache, w_key) except OperationError, e: if e.match(space, space.w_KeyError): pass else: raise argtypes_w = space.unpackiterable(w_argtypes) argtypes = [unpack_typecode(space, w_arg) for w_arg in argtypes_w] ffi_argtypes = [self.get_arg_type(letter, argsize, argalignment) for letter, argsize, argalignment in argtypes] try: ptr = self.cdll.getrawpointer(name, ffi_argtypes, ffi_restype) w_funcptr = W_FuncPtr(space, ptr, argtypes, resshape) space.setitem(self.w_cache, w_key, w_funcptr) return w_funcptr except KeyError: raise OperationError(space.w_AttributeError, space.wrap( "No symbol %s found in library %s" % (name, self.name))) ptr.unwrap_spec = ['self', ObjSpace, str, W_Root, W_Root] def getprimitive(self, space, letter, name): from pypy.module._rawffi.array import get_array_cache cache = get_array_cache(space) w_array = cache.get_array_type(letter2tp(space, letter)) try: address_as_uint = rffi.cast(lltype.Unsigned, self.cdll.getaddressindll(name)) except KeyError: raise OperationError(space.w_ValueError, space.wrap("Cannot find symbol %s" % (name,))) return w_array.fromaddress(space, address_as_uint, 1) getprimitive.unwrap_spec = ['self', ObjSpace, str, str] def descr_new_cdll(space, w_type, name): try: return space.wrap(W_CDLL(space, name)) except OSError, e: raise wrap_oserror(space, e) descr_new_cdll.unwrap_spec = [ObjSpace, W_Root, str] W_CDLL.typedef = TypeDef( 'CDLL', __new__ = interp2app(descr_new_cdll), ptr = interp2app(W_CDLL.ptr), getprimitive= interp2app(W_CDLL.getprimitive), __doc__ = """ C Dynamically loaded library use CDLL(libname) to create a handle to a C library (the argument is processed the same way as dlopen processes it). On such a library you can call: lib.ptr(func_name, argtype_list, restype) where argtype_list is a list of single characters and restype is a single character. The character meanings are more or less the same as in the struct module, except that s has trailing \x00 added, while p is considered a raw buffer.""" # xxx fix doc ) unroll_letters_for_numbers = unrolling_iterable("bBhHiIlLqQ") def segfault_exception(space, reason): w_mod = space.getbuiltinmodule("_rawffi") w_exception = space.getattr(w_mod, space.wrap("SegfaultException")) return OperationError(w_exception, space.wrap(reason)) class W_DataShape(Wrappable): def allocate(self, space, length, autofree=False): raise NotImplementedError class W_DataInstance(Wrappable): def __init__(self, space, size, address=r_uint(0)): if address: self.ll_buffer = rffi.cast(rffi.VOIDP, address) else: self.ll_buffer = lltype.malloc(rffi.VOIDP.TO, size, flavor='raw', zero=True) if tracker.DO_TRACING: ll_buf = rffi.cast(rffi.INT, self.ll_buffer) tracker.trace_allocation(ll_buf, self) def getbuffer(space, self): return space.wrap(rffi.cast(lltype.Unsigned, self.ll_buffer)) def byptr(self, space): from pypy.module._rawffi.array import get_array_cache array_of_ptr = get_array_cache(space).array_of_ptr array = array_of_ptr.allocate(space, 1) array.setitem(space, 0, space.wrap(self)) return space.wrap(array) byptr.unwrap_spec = ['self', ObjSpace] def free(self, space): if not self.ll_buffer: raise segfault_exception(space, "freeing NULL pointer") self._free() free.unwrap_spec = ['self', ObjSpace] def _free(self): if tracker.DO_TRACING: ll_buf = rffi.cast(rffi.INT, self.ll_buffer) tracker.trace_free(ll_buf) lltype.free(self.ll_buffer, flavor='raw') self.ll_buffer = lltype.nullptr(rffi.VOIDP.TO) def unwrap_truncate_int(TP, space, w_arg): if space.is_true(space.isinstance(w_arg, space.w_int)): return rffi.cast(TP, space.int_w(w_arg)) else: return rffi.cast(TP, space.bigint_w(w_arg).ulonglongmask()) unwrap_truncate_int._annspecialcase_ = 'specialize:arg(0)' def unwrap_value(space, push_func, add_arg, argdesc, tp, w_arg): letter, _, _ = tp w = space.wrap if letter == "d": push_func(add_arg, argdesc, space.float_w(w_arg)) elif letter == "f": push_func(add_arg, argdesc, rffi.cast(rffi.FLOAT, space.float_w(w_arg))) elif letter in TYPEMAP_PTR_LETTERS: # check for NULL ptr datainstance = space.interpclass_w(w_arg) if isinstance(datainstance, W_DataInstance): ptr = datainstance.ll_buffer else: ptr = unwrap_truncate_int(rffi.VOIDP, space, w_arg) push_func(add_arg, argdesc, ptr) elif letter == "c": s = space.str_w(w_arg) if len(s) != 1: raise OperationError(space.w_TypeError, w( "Expected string of length one as character")) val = s[0] push_func(add_arg, argdesc, val) elif letter == 'u': s = space.unicode_w(w_arg) if len(s) != 1: raise OperationError(space.w_TypeError, w( "Expected unicode string og length one as wide character")) val = s[0] push_func(add_arg, argdesc, val) else: for c in unroll_letters_for_numbers: if letter == c: TP = LL_TYPEMAP[c] val = unwrap_truncate_int(TP, space, w_arg) push_func(add_arg, argdesc, val) return else: raise OperationError(space.w_TypeError, space.wrap("cannot directly write value")) unwrap_value._annspecialcase_ = 'specialize:arg(1)' ll_typemap_iter = unrolling_iterable(LL_TYPEMAP.items()) def wrap_value(space, func, add_arg, argdesc, tp): letter, _, _ = tp for c, ll_type in ll_typemap_iter: if letter == c: if c in TYPEMAP_PTR_LETTERS: res = func(add_arg, argdesc, rffi.VOIDP) return space.wrap(rffi.cast(lltype.Unsigned, res)) elif c == 'v': func(add_arg, argdesc, ll_type) return space.w_None elif c == 'q' or c == 'Q' or c == 'L' or c == 'c' or c == 'u': return space.wrap(func(add_arg, argdesc, ll_type)) elif c == 'f' or c == 'd': return space.wrap(float(func(add_arg, argdesc, ll_type))) else: return space.wrap(intmask(func(add_arg, argdesc, ll_type))) raise OperationError(space.w_TypeError, space.wrap("cannot directly read value")) wrap_value._annspecialcase_ = 'specialize:arg(1)' class W_FuncPtr(Wrappable): def __init__(self, space, ptr, argtypes, resshape): self.ptr = ptr self.resshape = resshape self.argtypes = argtypes def call(self, space, args_w): from pypy.module._rawffi.array import W_ArrayInstance from pypy.module._rawffi.structure import W_StructureInstance argnum = len(args_w) if argnum != len(self.argtypes): msg = "Wrong number of argument: expected %d, got %d" % ( len(self.argtypes), argnum) raise OperationError(space.w_TypeError, space.wrap(msg)) args_ll = [] for i in range(argnum): argtype_letter, argtype_size, argtype_alignment = self.argtypes[i] w_arg = args_w[i] if argtype_letter == 'V': # by value object arg = space.interp_w(W_StructureInstance, w_arg) if (arg.shape.size != argtype_size or arg.shape.alignment != argtype_alignment): msg = ("Argument %d should be a structure of size %d and " "alignment %d, " "got instead size %d and alignment %d" % (i+1, argtype_size, argtype_alignment, arg.shape.size, arg.shape.alignment)) raise OperationError(space.w_TypeError, space.wrap(msg)) else: arg = space.interp_w(W_ArrayInstance, w_arg) if arg.length != 1: msg = ("Argument %d should be an array of length 1, " "got length %d" % (i+1, arg.length)) raise OperationError(space.w_TypeError, space.wrap(msg)) letter = arg.shape.itemtp[0] if letter != argtype_letter: if not (argtype_letter in TYPEMAP_PTR_LETTERS and letter in TYPEMAP_PTR_LETTERS): msg = "Argument %d should be typecode %s, got %s" % ( i+1, argtype_letter, letter) raise OperationError(space.w_TypeError, space.wrap(msg)) args_ll.append(arg.ll_buffer) # XXX we could avoid the intermediate list args_ll if self.resshape is not None: result = self.resshape.allocate(space, 1) self.ptr.call(args_ll, result.ll_buffer) return space.wrap(result) else: self.ptr.call(args_ll, lltype.nullptr(rffi.VOIDP.TO)) return space.w_None call.unwrap_spec = ['self', ObjSpace, 'args_w'] W_FuncPtr.typedef = TypeDef( 'FuncPtr', __call__ = interp2app(W_FuncPtr.call) ) def _create_new_accessor(func_name, name): def accessor(space, tp_letter): if len(tp_letter) != 1: raise OperationError(space.w_ValueError, space.wrap( "Expecting string of length one")) tp_letter = tp_letter[0] # fool annotator try: return space.wrap(intmask(getattr(TYPEMAP[tp_letter], name))) except KeyError: raise OperationError(space.w_ValueError, space.wrap( "Unknown type specification %s" % tp_letter)) accessor.unwrap_spec = [ObjSpace, str] return func_with_new_name(accessor, func_name) sizeof = _create_new_accessor('sizeof', 'c_size') alignment = _create_new_accessor('alignment', 'c_alignment') def charp2string(space, address, maxlength=sys.maxint): if address == 0: return space.w_None s = rffi.charp2strn(rffi.cast(rffi.CCHARP, address), maxlength) return space.wrap(s) charp2string.unwrap_spec = [ObjSpace, r_uint, int] def charp2rawstring(space, address, maxlength=-1): if maxlength == -1: return charp2string(space, address) s = rffi.charpsize2str(rffi.cast(rffi.CCHARP, address), maxlength) return space.wrap(s) charp2rawstring.unwrap_spec = [ObjSpace, r_uint, int]
494330
from typing import Final, List, Optional, Union from web3 import Web3 from web3.eth import TxReceipt from eth_account.account import LocalAccount from thirdweb.abi.multiwrap import ITokenBundleToken from thirdweb.common.marketplace import is_token_approved_for_transfer from thirdweb.common.nft import upload_or_extract_uri from thirdweb.constants.role import Role from thirdweb.core.classes.contract_events import ContractEvents from thirdweb.core.classes.contract_metadata import ContractMetadata from thirdweb.core.classes.contract_roles import ContractRoles from thirdweb.core.classes.contract_royalty import ContractRoyalty from thirdweb.core.classes.contract_wrapper import ContractWrapper from thirdweb.core.classes.erc_721 import ERC721 from thirdweb.abi import Multiwrap as MultiwrapABI from thirdweb.core.classes.ipfs_storage import IpfsStorage from thirdweb.types.contract import ContractType from thirdweb.types.nft import NFTMetadataInput, NFTMetadataOwner from thirdweb.types.sdk import SDKOptions from thirdweb.types.multiwrap import ( ERC1155Wrappable, ERC20Wrappable, ERC721Wrappable, TokensToWrap, WrappedTokens, ) from thirdweb.types.settings.metadata import MultiwrapContractMetadata from thirdweb.common.currency import ( fetch_currency_metadata, format_units, has_erc20_allowance, normalize_price_value, ) from thirdweb.types.tx import TxResultWithId class Multiwrap(ERC721[MultiwrapABI]): """ Multiwrap lets you wrap any number of ERC20, ERC721, or ERC1155 tokens into a single wrapped token bundle. ```python from thirdweb import ThirdwebSDK # You can customize this to a supported network or your own RPC URL network = "mumbai" # Now we can create a new instance of the SDK sdk = ThirdwebSDK(network) # If you want to send transactions, you can instantiate the SDK with a private key instead: # sdk = ThirdwebSDK.from_private_key(PRIVATE_KEY, network) contract = sdk.get_multiwrap("{{contract_address}}") ``` """ _abi_type = MultiwrapABI contract_type: Final[ContractType] = ContractType.MULTIWRAP contract_roles: Final[List[Role]] = [ Role.ADMIN, Role.MINTER, Role.TRANSFER, Role.UNWRAP, ] metadata: ContractMetadata[MultiwrapABI, MultiwrapContractMetadata] roles: ContractRoles royalty: ContractRoyalty[MultiwrapABI] events: ContractEvents[MultiwrapABI] def __init__( self, provider: Web3, address: str, storage: IpfsStorage, signer: Optional[LocalAccount] = None, options: SDKOptions = SDKOptions(), ): abi = MultiwrapABI(provider, address) contract_wrapper = ContractWrapper(abi, provider, signer, options) super().__init__(contract_wrapper, storage) self.metadata = ContractMetadata( contract_wrapper, storage, MultiwrapContractMetadata, ) self.roles = ContractRoles(contract_wrapper, self.contract_roles) self.royalty = ContractRoyalty(contract_wrapper, self.metadata) self.events = ContractEvents(contract_wrapper) """ READ FUNCTIONS """ def get_wrapped_contents(self, wrapped_token_id: int) -> WrappedTokens: """ Get the contents of a wrapped token bundle :param wrapped_token_id: The ID of the wrapped token to get the contents of :returns: The contents of the wrapped token bundle ```python token_id = 0 contents = contract.get_wrapped_contents(token_id) print(contents.erc20_tokens) print(contents.erc721_tokens) print(contents.erc1155_tokens) ``` """ wrapped_tokens = self._contract_wrapper._contract_abi.get_wrapped_contents.call( wrapped_token_id ) erc20_tokens = [] erc721_tokens = [] erc1155_tokens = [] for token in wrapped_tokens: if token["tokenType"] == 0: token_metadata = fetch_currency_metadata( self._contract_wrapper.get_provider(), token["assetContract"] ) erc20_tokens.append( ERC20Wrappable( token["assetContract"], format_units(token["totalAmount"], token_metadata.decimals), ) ) continue if token["tokenType"] == 1: erc721_tokens.append( ERC721Wrappable(token["assetContract"], token["tokenId"]) ) continue if token["tokenType"] == 2: erc1155_tokens.append( ERC1155Wrappable( token["assetContract"], token["tokenId"], token["totalAmount"] ) ) return WrappedTokens(erc20_tokens, erc721_tokens, erc1155_tokens) """ WRITE FUNCTIONS """ def wrap( self, contents: TokensToWrap, wrapped_token_metadata: Union[str, NFTMetadataInput], recipient_address: Optional[str] = None, ) -> TxResultWithId[NFTMetadataOwner]: """ Wrap any number of ERC20, ERC721, or ERC1155 tokens into a single wrapped token :param contents: The tokens to wrap into a single wrapped token :param wrapped_token_metadata: The metadata to use for the wrapped token :param recipient_address: The optional address to send the wrapped token to :returns: The transaction receipt of the token wrapping ```python from thirdweb.types import ( TokensToWrap, ERC20Wrappable, ERC721Wrappable, ERC1155Wrappable, NFTMetadataInput, ) # Contract setup goes here... tx = contract.wrap( TokensToWrap( erc20_tokens=[ ERC20Wrappable(contract_address="0x...", quantity=0.8), ], erc721_tokens=[ ERC721Wrappable(contract_address="0x...", token_id=0), ], erc1155_tokens=[ ERC1155Wrappable(contract_address="0x...", token_id=0, quantity=1), ] ), NFTMetadataInput( name="Wrapped NFT", description="This is a wrapped bundle of tokens and NFTs", image="ipfs://...", ) ) print(tx.receipt, tx.id) ``` """ uri = upload_or_extract_uri(wrapped_token_metadata, self._storage) if recipient_address is None: recipient_address = self._contract_wrapper.get_signer_address() tokens = self._to_token_struct_list(contents) receipt = self._contract_wrapper.send_transaction( "wrap", [tokens, uri, recipient_address] ) events = self._contract_wrapper.get_events("TokensWrapped", receipt) if len(events) == 0: raise Exception("No TokensWrapped event found") id = events[0].get("args").get("tokenIdOfWrappedToken") # type: ignore return TxResultWithId(receipt, id=id, data=lambda: self.get(id)) def unwrap( self, wrapped_token_id: int, recipient_address: Optional[str] = None ) -> TxReceipt: """ Unwrap a wrapped token bundle :param wrapped_token_id: The ID of the wrapped token to unwrap :param recipient_address: The optional address to send the unwrapped tokens to :returns: The transaction receipt of the token unwrapping ```python tx = contract.unwrap(wrapped_token_id, receipientAddress) ``` """ if recipient_address is None: recipient_address = self._contract_wrapper.get_signer_address() return self._contract_wrapper.send_transaction( "unwrap", [wrapped_token_id, recipient_address] ) """ INTERNAL FUNCTIONS """ def _to_token_struct_list(self, contents: TokensToWrap) -> List[ITokenBundleToken]: tokens: List[ITokenBundleToken] = [] provider = self._contract_wrapper.get_provider() owner = self._contract_wrapper.get_signer_address() if len(contents.erc20_tokens) > 0: for erc20 in contents.erc20_tokens: normalized_quantity = normalize_price_value( provider, erc20.quantity, erc20.contract_address, ) has_allowance = has_erc20_allowance( self._contract_wrapper, erc20.contract_address, normalized_quantity, ) if not has_allowance: raise Exception( ( f"ERC20 with contract address {erc20.contract_address} does not have enough allowance to transfer. " "You can set allowance to the multiwrap contract to transfer these tokens by running:\n" f'sdk.get_token("{erc20.contract_address}").set_allowance("{owner}", {erc20.quantity})' ) ) tokens.append( { "tokenType": 0, "tokenId": 0, "assetContract": erc20.contract_address, "totalAmount": normalized_quantity, } ) if len(contents.erc721_tokens) > 0: for erc721 in contents.erc721_tokens: is_approved = is_token_approved_for_transfer( self._contract_wrapper.get_provider(), self.get_address(), erc721.contract_address, erc721.token_id, owner, ) if not is_approved: raise Exception( ( f"ERC721 token {erc721.token_id} with contract address {erc721.contract_address} is not approved for transfer. " "You can approve this token for transfer by running:\n" f'sdk.get_nft_collection("{erc721.contract_address}")' f'.set_approval_for_token("{self._contract_wrapper._contract_abi.contract_address}", {erc721.token_id})' ) ) tokens.append( { "tokenType": 1, "tokenId": erc721.token_id, "assetContract": erc721.contract_address, "totalAmount": 0, } ) if len(contents.erc1155_tokens) > 0: for erc1155 in contents.erc1155_tokens: is_approved = is_token_approved_for_transfer( self._contract_wrapper.get_provider(), self.get_address(), erc1155.contract_address, erc1155.token_id, owner, ) if not is_approved: raise Exception( ( f"ERC1155 token {erc1155.token_id} with contract address {erc1155.contract_address} is not approved for transfer. " "You can approve this token for transfer by running:\n" f'sdk.get_edition("{erc1155.contract_address}")' f'.set_approval_for_all("{self._contract_wrapper._contract_abi.contract_address}", True)' ) ) tokens.append( { "tokenType": 2, "tokenId": erc1155.token_id, "assetContract": erc1155.contract_address, "totalAmount": erc1155.quantity, } ) return tokens
494412
import django from gensim.models import KeyedVectors import gensim import sys import os # 获取当前文件的目录 from FunPySearch.celery import app pwd = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) # 获取项目名的目录(因为我的当前文件是在项目名下的文件夹下的文件.所以是../) sys.path.append(pwd) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "FunPySearch.settings") django.setup() from user.models import KeyWord2Vec # 必须放着 def gen_word2vec_save_to_mysql_test(model_name="small", keyword=None): if model_name == "small": model = gensim.models.Word2Vec.load("./trained_models/zhihu.model") word2vec_list = model.wv.most_similar(keyword, topn=5) elif model_name == "tencent": model = KeyedVectors.load_word2vec_format("./trained_models/45000-small.txt") word2vec_list = model.most_similar(keyword, topn=5) elif model_name == "zhihu": model = KeyedVectors.load_word2vec_format("./trained_models/sgns.zhihu.bigram-char") word2vec_list = model.most_similar(keyword, topn=5) word2vec_list_common = [] for item in word2vec_list: word2vec_list_common.append(item[0]) word2vec_text = ",".join(word2vec_list_common) print(word2vec_text) @app.task def gen_word2vec_save_to_mysql(model_name="small", keyword=None): if model_name == "small": try: model = gensim.models.Word2Vec.load("./search/trained_models/zhihu.model") word2vec_list = model.wv.most_similar(keyword, topn=5) except KeyError: word2vec_list = [] elif model_name == "tencent": model = KeyedVectors.load_word2vec_format("./search/trained_models/45000-small.txt") word2vec_list = model.most_similar(keyword, topn=5) elif model_name == "zhihu": model = KeyedVectors.load_word2vec_format("./search/trained_models/sgns.zhihu.bigram-char") word2vec_list = model.most_similar(keyword, topn=5) word2vec_list_common = [] for item in word2vec_list: word2vec_list_common.append(item[0]) word2vec_text = ",".join(word2vec_list_common) print(word2vec_text) if KeyWord2Vec.objects.filter(keyword=keyword): pass else: keyword_word2vec = KeyWord2Vec() keyword_word2vec.keyword = keyword keyword_word2vec.keyword_word2vec = word2vec_text keyword_word2vec.save() def test_us_small_model(): model = gensim.models.Word2Vec.load("./trained_models/zhihu.model") print(model.wv.most_similar('老公', topn=8)) print("*" * 20) def test_tencent_ai_model(): model = KeyedVectors.load_word2vec_format("./trained_models/45000-small.txt") print(model.most_similar('特朗普', topn=10)) print("*" * 20) print(model.most_similar(positive=['女', '国王'], negative=['男'], topn=1)) print("*" * 20) print(model.doesnt_match("上海 成都 广州 北京".split(" "))) print("*" * 20) print(model.similarity('女人', '男人')) def test_zhihu_model(): model = KeyedVectors.load_word2vec_format("./trained_models/sgns.zhihu.bigram-char") print(model.most_similar('特朗普', topn=10)) print("*" * 20) print(model.most_similar(positive=['女', '国王'], negative=['男'], topn=1)) print("*" * 20) print(model.doesnt_match("上海 成都 广州 北京".split(" "))) print("*" * 20) print(model.similarity('女人', '男人')) if __name__ == '__main__': # print("使用我们自己训练的微型知乎wordvec模型: ") # test_us_small_model() # print("使用腾讯ai实验室word2vec模型: ") # https://ai.tencent.com/ailab/nlp/embedding.html # test_tencent_ai_model() # print("使用中文开源知乎word2vec模型") # https://github.com/Embedding/Chinese-Word-Vectors # test_zhihu_model() # print("************************") gen_word2vec_save_to_mysql_test("small", "老公")
494425
import numpy as np import sys sys.path.append(".") from ai.action.movement.movements.basic import * from ai.action.movement.movements.sit import * import ai.actionplanner def kneading(mars, times=6): sit(mars) _speed = 0.7 l = 0 for i in range(times): l += 1 leg_num = (l % 2 + 1) _sign = (l % 2) *2 - 1 angle_2_ges1 = 0 angle_3_ges1 = 0 angle_2_ges2 = -20 angle_3_ges2 = 60 j1_angles = -5 * _sign mars.setLegAngle(1, 1, j1_angles, _speed) mars.setLegAngle(2, 1, -j1_angles, _speed) mars.setLegAngle(3, 1, j1_angles, _speed) mars.setLegAngle(4, 1, -j1_angles, _speed) ai.actionplanner.ActionPlanner.sleep(0.2) move_head_tail(mars,1,0) mars.setLegAngle(leg_num, 2, angle_2_ges1, _speed) mars.setLegAngle(leg_num, 3, angle_3_ges1, _speed) ai.actionplanner.ActionPlanner.sleep(0.6) mars.setLegAngle(leg_num, 2, angle_2_ges2, _speed) mars.setLegAngle(leg_num, 3, angle_3_ges2, _speed) move_head_tail(mars,1,0) ai.actionplanner.ActionPlanner.sleep(0.6) mars.setLegAngle(leg_num, 2, angle_2_ges1, _speed*0.8) mars.setLegAngle(leg_num, 3, angle_3_ges1, _speed*0.8) ai.actionplanner.ActionPlanner.sleep(0.6)
494446
from verifai.features import * from verifai.samplers import * from collections import defaultdict def test_grid(): space = FeatureSpace({ 'weather': Feature(DiscreteBox([0,12])), 'car_positions': Feature(Box([-10,10], [0,1])) }) sampler = FeatureSampler.gridSamplerFor(space) i = 0 dict_samples = defaultdict(int) while True: try: sample = sampler.nextSample() dict_samples[(sample.weather[0], sample.car_positions[0], sample.car_positions[1])] = 0 except TerminationException: break i+=1 assert i == len(dict_samples) and i == 21*21*13 def test_grid_iter(): space = FeatureSpace({ 'weather': Feature(DiscreteBox([0,12])), 'day': Feature(DiscreteBox([1,7])), 'car_positions': Feature(Box([-10,10])) }) sampler = FeatureSampler.gridSamplerFor(space) samples = list(sampler) assert len(samples) == 13*7*21 def test_grid_oper(): def f(sample): x = sample.x[0] return (6 * x - 2) ** 2 * np.sin(12 * x - 4) space = FeatureSpace({'x': Feature(Box([0,1]))}) sampler = FeatureSampler.gridSamplerFor(space) samples = [] y_samples = [] for i in range(21): sample = sampler.nextSample() samples.append(sample) y_samples.append(f(sample)) min_i = np.array(y_samples).argmin() assert min_i == 15 def test_grid_non_standardizable(): space = FeatureSpace({ 'a': Feature(DiscreteBox([0,12])), 'b': Feature(FilteredDomain(Box([0,1]), lambda x: x[0] > 0.5)) }) sampler = FeatureSampler.gridSamplerFor(space) samples = list(sampler) assert len(samples) == 13 assert all(sample.b[0] > 0.5 for sample in samples)
494452
import torch import numpy as np from transformers import BertModel from sentence_transformers import SentenceTransformer, util from relevance_model import text_preprocessing, preprocessing_for_bert, bert_predict, BertClassifier from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler import json import time import os import math import random # Generate answer candidates (refer to Alg. in Appendix) def generate_answer_choices(i, relevance_results, similarity, similarity_answers, choices, itera, thres=0.9, thres1=0.2): candidates = [] min_score = 100000000 bucket_size = int(len(relevance_results[0])/3) for j in range(bucket_size): if relevance_results[i][j+itera*bucket_size] > thres: candidates.append(j+itera*bucket_size) score = 0 min_idx = -1 if itera == 0: for candidate in candidates: score = similarity[i][candidate] if similarity[i][candidate] < thres1: score = 10 if score < min_score: min_score = score min_idx = candidate else: for candidate in candidates: score = similarity[i][candidate] if similarity[i][candidate] < thres1: score = 10 for choice in choices: if similarity_answers[choice][candidate] < thres1: score += 10 else: score += similarity_answers[choice][candidate] if score < min_score: min_score = score min_idx = candidate return min_idx # Obtain text data def make_list(filename): f = open(filename, "r") answers = [] questions = [] questions_with_idx = [] answer_choices = [] answer_choices_idx = [] for line in f: data = json.loads(line) questions_with_idx.append(data["question"]) ans_choices = data["answer_choices"] ans_id = data["answer_label"] ans_right = ans_choices[ans_id] objects = data["objects"] final_question = text_preprocessing(data["question"], objects) final_ans = text_preprocessing(ans_right, objects) answers.append(' '.join(final_ans)) questions.append(' '.join(final_question)) answer_choices.append(ans_right) answer_choices_idx.append(ans_id) return answers, questions, answer_choices, questions_with_idx, answer_choices_idx # Replace the object indices in answer candidates with the ones existing in the right answer def limit_range(choices, objects_size): new_choices = [] for choice in choices: new_choice = [] for token in choice: if isinstance(token, list): idx_list = [] for idx in token: if idx >= objects_size: idx_list.append(objects_size-1) else: idx_list.append(idx) new_choice.append(idx_list) else: new_choice.append(token) new_choices.append(new_choice) return new_choices # Integrate the original dataset with only right answers def make_final_list(filename, choices, choices_idx): f = open(filename, "r") with open("../X_VCR/val.jsonl", 'w') as f1: i = 0 for line in f: data = json.loads(line) # Erroreous DP if "west_17.jpg" in data["img_fn"]: i += 1 continue data["answer_choices"] = limit_range(choices[i], len(data["objects"])) data["answer_label"] = choices_idx[i] data["rationale_choices"] = limit_range(choices[i], len(data["objects"])) data["rationale_label"] = choices_idx[i] data_json = json.dumps(data) f1.write(data_json+'\n') i += 1 def remove_zero(arr): arr_new = [] for i in range(len(arr)): for j in range(len(arr[i])): if arr[i][j] == 0: arr_new.append(arr[i][:j]) break return arr_new # Convert answer choices into VCR form def convert_to_VCR(x, idx): pronouns = ["he", "she", "it", "they", "his", "her", "their", "him", "them", "its"] arr = x.split(" ") arr_new = [] idx_list = [] for token in arr: if token in GENDER_NEUTRAL_NAMES: idx_list.append(name2idx[token]) else: if idx_list != []: arr_new.append(idx_list) idx_list = [] arr_new.append(token) if idx_list != []: arr_new.append(idx_list) question_idx = [] for token in questions_with_idx_MC[idx]: if isinstance(token, list): question_idx.append(token) orig_choices = answer_choices_MC[idx] i = 0 j = 0 final = [] while i < len(arr_new) and j < len(orig_choices): if isinstance(arr_new[i], list): while not isinstance(orig_choices[j], list): j += 1 if j == len(orig_choices): j -= 1 break if isinstance(orig_choices[j], list): final.append(orig_choices[j]) j += 1 else: if len(question_idx) != 0: final.append(question_idx[0]) question_idx = question_idx[1:] else: final.append(arr_new[i]) elif arr_new[i].lower() in pronouns: while not isinstance(orig_choices[j], list): j += 1 if j == len(orig_choices): j -= 1 break if isinstance(orig_choices[j], list): final.append(orig_choices[j]) if arr_new[i].lower() == "his" or arr_new[i].lower() == "her" or arr_new[i].lower() == "their" or arr_new[i].lower() == "its": final.append('\'') final.append('s') j += 1 else: final.append(arr_new[i]) else: final.append(arr_new[i]) i += 1 return final model = SentenceTransformer('stsb-roberta-base') answers_MC, questions_MC, answer_choices_MC, questions_with_idx_MC, answer_choices_idx_MC = make_list("MC-VCR_test.jsonl") answers, _, _, _, _ = make_list("../X_VCR/orig_val.jsonl") GENDER_NEUTRAL_NAMES = ['Casey', 'Riley', 'Jessie', 'Jackie', 'Avery', 'Jaime', 'Peyton', 'Kerry', 'Jody', 'Kendall', 'Peyton', 'Skyler', 'Frankie', 'Pat', 'Quinn'] name2idx = dict() for i, name in enumerate(GENDER_NEUTRAL_NAMES): name2idx[name] = i if not os.path.exists("relevance.npy"): relevance_model = torch.load("relevance_model.th") relevance_model.eval() questions_MC_tokenized, questions_attention_mask_MC = preprocessing_for_bert(questions_MC) answers_MC_tokenized, attention_mask_MC = preprocessing_for_bert(answers_MC) answers_tokenized, attention_mask = preprocessing_for_bert(answers) questions_MC_tokenized = remove_zero(questions_MC_tokenized.numpy().tolist()) answers_MC_tokenized = remove_zero(answers_MC_tokenized.numpy().tolist()) answers_tokenized = remove_zero(answers_tokenized.numpy().tolist()) questions_attention_mask_MC = remove_zero(questions_attention_mask_MC.numpy().tolist()) attention_mask_MC = remove_zero(attention_mask_MC.numpy().tolist()) attention_mask = remove_zero(attention_mask.numpy().tolist()) relevance_results = np.zeros((len(answers_MC_tokenized), len(answers_tokenized))) # Compute the relevance matrix w.r.t. all the right choices of GD-VCR and VCR dev for i, sample_MC in enumerate(questions_MC_tokenized): start = time.time() batch_size = 64 val_inputs = [sample_MC + sample[1:] for sample in answers_tokenized] val_masks = [questions_attention_mask_MC[i] + sample[1:] for sample in attention_mask] val_inputs_1 = [val_input[:64] if len(val_input) > 64 else val_input + [0] * (64-len(val_input)) for val_input in val_inputs] val_masks_1 = [val_mask[:64] if len(val_mask) > 64 else val_mask + [0] * (64-len(val_mask)) for val_mask in val_masks] val_inputs = torch.tensor(val_inputs_1) val_masks = torch.tensor(val_masks_1) val_labels = torch.tensor(np.array([0] * len(answers))) val_data = TensorDataset(val_inputs, val_masks, val_labels) val_sampler = SequentialSampler(val_data) val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=batch_size) results = bert_predict(relevance_model, val_dataloader) relevance_results[i] = np.array([result[1] for result in results]) end = time.time() print(i, len(results), len(results[0]), end - start) np.save("relevance.npy", relevance_results) else: embeddings1 = model.encode(answers_MC, convert_to_tensor=True) embeddings2 = model.encode(answers, convert_to_tensor=True) similarity = util.pytorch_cos_sim(embeddings1, embeddings2) device = torch.device("cpu") relevance_results = np.load("relevance.npy") embeddings_answers = model.encode(answers, convert_to_tensor=True) similarity_answers = util.pytorch_cos_sim(embeddings_answers, embeddings_answers) choices = [] for i in range(len(relevance_results)): choices.append([]) for itera in range(3): choices[i].append(generate_answer_choices(i, relevance_results, similarity, similarity_answers, choices[i], itera)) final_choices = [] final_choices_idx = [] for i in range(len(choices)): final_choices.append([]) for j, choice in enumerate(choices[i]): if j == answer_choices_idx_MC[i]: final_choices[i].append(answer_choices_MC[i]) final_choices[i].append(convert_to_VCR(answers[choice], i)) if answer_choices_idx_MC[i] == 3: final_choices[i].append(answer_choices_MC[i]) print(final_choices[i]) final_choices_idx.append(random.randint(0,3)) temp = final_choices[-1][answer_choices_idx_MC[i]] final_choices[-1][answer_choices_idx_MC[i]] = final_choices[-1][final_choices_idx[-1]] final_choices[-1][final_choices_idx[-1]] = temp print(final_choices_idx[-1]) print(final_choices[i]) assert len(final_choices[i]) == 4 print("----") make_final_list("MC-VCR_test.jsonl", final_choices, final_choices_idx)
494506
import datetime import time import os from celery import Celery celery_app = Celery('hello', broker=os.environ['REDIS_URL']) @celery_app.task def hello(): time.sleep(10) with open ('hellos.txt', 'a') as hellofile: hellofile.write('Hello {}\n'.format(datetime.datetime.now()))
494511
Import("env") with open("version.txt") as fp: version = fp.readline() env.Replace(PROGNAME="firmware_%s" % version.replace(".", "_"))
494545
from rest_framework.generics import ListCreateAPIView from rest_framework.generics import RetrieveUpdateDestroyAPIView from .models import Micropost, Usr from .serializers import MicropostSerializer class MicropostsListView(ListCreateAPIView): serializer_class = MicropostSerializer def get_queryset(self): return Micropost.objects.filter(user__username=self.kwargs['username']) def perform_create(self, serializer): user = Usr.objects.get(username=self.kwargs['username']) serializer.save(user=user) class MicropostView(RetrieveUpdateDestroyAPIView): serializer_class = MicropostSerializer def get_queryset(self): return Micropost.objects.filter(user__username=self.kwargs['username'])
494547
class InvalidFileName(ValueError): def __init__(self, filename): self.message = 'Invalid file name: {}'.format(filename) super(ValueError, self).__init__(self.message)
494562
import os import sys import math import pickle import argparse import time from torch import optim from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as F sys.path.append(os.getcwd()) from utils import * from experiments.utils.config import Config from experiments.utils.batch_gen_amass import BatchGeneratorAMASSCanonicalized def loss_function(X, Y_r, Y, mu, logvar): MSE = F.l1_loss(Y_r, Y) + cfg.lambda_tf*F.l1_loss(Y_r[1:]-Y_r[:-1], Y[1:]-Y[:-1]) MSE_v = F.l1_loss(X[-1], Y_r[0]) KLD = 0.5 * torch.mean(-1 - logvar + mu.pow(2) + logvar.exp()) if robustkl: KLD = torch.sqrt(1 + KLD**2)-1 loss_r = MSE + cfg.lambda_v * MSE_v + cfg.beta * KLD return loss_r, np.array([loss_r.item(), MSE.item(), MSE_v.item(), KLD.item()]) def train(epoch): t_s = time.time() train_losses = 0 total_num_sample = 0 loss_names = ['TOTAL', 'MSE', 'MSE_v', 'KLD'] while batch_gen.has_next_rec(): traj = batch_gen.next_batch(cfg.batch_size).to(device) if (torch.isnan(traj)).any(): print('- meet nan. Skip it') continue X = traj[:t_his] Y = traj[t_his:] Y_r, mu, logvar = model(X, Y) loss, losses = loss_function(X, Y_r, Y, mu, logvar) optimizer.zero_grad() loss.backward() optimizer.step() train_losses += losses total_num_sample += 1 batch_gen.reset() scheduler.step() dt = time.time() - t_s train_losses /= total_num_sample lr = optimizer.param_groups[0]['lr'] losses_str = ' '.join(['{}: {:.4f}'.format(x, y) for x, y in zip(loss_names, train_losses)]) logger.info('====> Epoch: {} Time: {:.2f} {} lr: {:.5f}'.format(epoch, dt, losses_str, lr)) for name, loss in zip(loss_names, train_losses): tb_logger.add_scalar('vae_' + name, loss, epoch) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', default=None) parser.add_argument('--mode', default='train') parser.add_argument('--iter', type=int, default=0) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--gpu_index', type=int, default=0) parser.add_argument('--test', action='store_true', default=False) args = parser.parse_args() """load the right model""" if 'vanilla' in args.cfg: from models.models_vanilla import * elif 'mojo' in args.cfg: from models.models_mojo import * """setup""" np.random.seed(args.seed) torch.manual_seed(args.seed) dtype = torch.float32 torch.set_default_dtype(dtype) device = torch.device('cuda', index=args.gpu_index) if torch.cuda.is_available() else torch.device('cpu') if torch.cuda.is_available(): torch.cuda.set_device(args.gpu_index) cfg = Config(args.cfg, test=args.test) tb_logger = SummaryWriter(cfg.tb_dir) if args.mode == 'train' else None logger = create_logger(os.path.join(cfg.log_dir, 'log.txt')) """parameter""" mode = args.mode nz = cfg.nz t_his = cfg.t_his t_pred = cfg.t_pred body_repr = cfg.body_repr subsets = cfg.dataset robustkl = cfg.robustkl """data""" batch_gen = BatchGeneratorAMASSCanonicalized(amass_data_path=cfg.dataset_path, amass_subset_name=subsets, sample_rate=8, body_repr=body_repr) batch_gen.get_rec_list() """model""" model = get_vae_model(cfg, batch_gen.get_feature_dim()) optimizer = optim.Adam(model.parameters(), lr=cfg.vae_lr) scheduler = get_scheduler(optimizer, policy='lambda', nepoch_fix=cfg.num_vae_epoch_fix, nepoch=cfg.num_vae_epoch) if args.iter > 0: cp_path = cfg.vae_model_path % args.iter print('loading model from checkpoint: %s' % cp_path) model_cp = torch.load(cp_path) model.load_state_dict(model_cp['model_dict']) if mode == 'train': model.to(device) model.train() for i in range(args.iter, cfg.num_vae_epoch): train(i) if cfg.save_model_interval > 0 and (i + 1) % cfg.save_model_interval == 0: with to_cpu(model): cp_path = cfg.vae_model_path % (i + 1) model_cp = {'model_dict': model.state_dict()} torch.save(model_cp, cp_path)
494642
from typing import List # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def is_leaf_node(self, root: TreeNode) -> bool: return root.left is None and root.right is None def binary_tree_paths(self, root: TreeNode, current_path: str, results: List[str]): if root is None: return if self.is_leaf_node(root): results.append(f'{current_path}->{root.val}'[2:]) return self.binary_tree_paths(root.left, f'{current_path}->{root.val}', results) self.binary_tree_paths(root.right, f'{current_path}->{root.val}', results) def binaryTreePaths(self, root: TreeNode) -> List[str]: result = [] self.binary_tree_paths(root, '', results=result) return result
494667
import theano import theano.tensor as T import numpy as np from utility.utility import * from lstm_layer import * def uni_lstm_init(prefix, params, layer_setting): return lstm_init(prefix+'_forward', params, layer_setting) def uni_lstm_calc(prefix, params, layer_setting,state_below, h_init = None, c_init = None, mask = None, training = True): return lstm_calc(prefix+'_forward', params, layer_setting, state_below, h_init, c_init, mask, training = True)
494704
from commitizen import factory, out from commitizen.config import BaseConfig class Example: """Show an example so people understands the rules.""" def __init__(self, config: BaseConfig, *args): self.config: BaseConfig = config self.cz = factory.commiter_factory(self.config) def __call__(self): out.write(self.cz.example())
494717
import sys import os import matplotlib import fnmatch matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import KernelDensity from sklearn.model_selection import GridSearchCV from sklearn.model_selection import LeaveOneOut from scipy.ndimage.filters import maximum_filter from skimage.feature import peak_local_max from scipy.odr import ODR, Model, RealData def locate_intercept(x,y,x_range): print 'locating offset' ix = np.arange(len(x)) p = np.where(x[ix]>2)[0] ix = ix[p] p = np.where(np.logical_and(x[ix] < np.percentile(x[ix],x_range[1]),x[ix] > np.percentile(x[ix],x_range[0])))[0] ix = ix[p] for n in range(10): a = np.nanmedian(y[ix]-x[ix]) print a, x.shape p = np.where(np.abs(y[ix]-a-x[ix])<2.5*np.nanstd(y[ix]-a-x[ix]))[0] ix = ix[p] return a, ix def calibrate(dir,plotfile='calibration.png',magnitude_range_fraction=(0.1,8),sky_flux_cutoff_percent=0.1,ZP=25): magfile = os.path.join(dir,'ref.mags') fluxfile = os.path.join(dir,'ref.flux') mag = np.loadtxt(magfile) flux = np.loadtxt(fluxfile) p = np.where((mag[:,3] > 0) & (flux[:,0] > 0))[0] #sky_max_flux = np.percentile(flux[p,0],sky_flux_cutoff_percent) #q = np.where(flux[p,0] < sky_max_flux)[0] #sky_flux = 0.9*np.mean(flux[p[q],0]) #q = np.where(mag[p,3] > np.percentile(mag[p,3],99.9))[0] #sky_flux = 0.95*np.median(flux[p[q],0]) #flux[:,0] -= sky_flux x = np.linspace(np.min(mag[p,3]),np.max(mag[p,3]),3) offset, stars = locate_intercept(mag[p,3],ZP-2.5*np.log10(flux[p,0]),magnitude_range_fraction) # Axes definitions nullfmt = plt.NullFormatter() rect_scatter = [0.15, 0.15, 0.7, 0.7] rect_histx = [0.15, 0.85, 0.7, 0.1] rect_histy = [0.85, 0.15, 0.1, 0.7] binsize = 0.5 bandwidth = 0.25 ymin, ymax = (offset-1,offset+1) binsize_y = 0.05 fig = plt.figure() ax1 = fig.add_subplot(223, position=rect_scatter) ax1.scatter(mag[p,3],ZP-2.5*np.log10(flux[p,0])-mag[p,3],s=5,color='k') ax1.scatter(mag[p[stars],3],ZP-2.5*np.log10(flux[p[stars],0])-mag[p[stars],3],s=5,color='c') #ax.plot(x,x,'r--') ax1.plot(x,x*0.0+offset,'r',label=r'$\Delta mag = %4.2f$'%offset) ax1.grid() ax1.legend(loc='upper left') ax1.set_xlabel(r'$M_{\rm DAO}$',fontsize='14') ax1.set_ylabel(r'$%5.2f-2.5*\log_{10} F_{\rm P}-M_{\rm DAO}$'%ZP,fontsize='14') xmin, xmax = plt.xlim() xx = np.linspace(xmin,xmax,1000) ax2 = fig.add_subplot(221, position=rect_histx) hval, bins, _ = ax2.hist(mag[p,3],range=(xmin,xmax),bins=int((xmax-xmin)/binsize+1), normed=True,alpha=0.3) kde_skl = KernelDensity(kernel='epanechnikov',bandwidth=bandwidth) sample = mag[p,3] kde_skl.fit(sample[:, np.newaxis]) log_pdf = kde_skl.score_samples(xx[:, np.newaxis]) ax2.plot(xx,np.exp(log_pdf),'r') ax2.xaxis.set_major_formatter(nullfmt) ax2.yaxis.set_major_formatter(nullfmt) ax2.set_title(dir) ax3 = fig.add_subplot(221, position=rect_histy) ax3.hist(ZP-2.5*np.log10(flux[p,0])-mag[p,3],range=(ymin,ymax),bins=int((ymax-ymin)/binsize_y+1), orientation='horizontal',normed=True,alpha=0.3) ax3.xaxis.set_major_formatter(nullfmt) ax3.yaxis.set_major_formatter(nullfmt) ax1.set_ylim((ymin,ymax)) ax3.set_ylim((ymin,ymax)) plt.savefig(os.path.join(dir,plotfile)) ax1.set_ylim((offset-0.1,offset+0.1)) ax3.set_ylim((offset-0.1,offset+0.1)) plt.savefig(os.path.join(dir,'zoom-'+plotfile)) mag[:,3] += offset if mag.shape[1] == 4: np.savetxt(os.path.join(dir,'ref.mags.calibrated'),mag,fmt='%5d %8.3f %8.3f %7.4f') else: np.savetxt(os.path.join(dir,'ref.mags.calibrated'),mag,fmt='%5d %8.3f %8.3f %7.4f %7.4f %7.3f %7.3f %7.3f') cflux = 10.0**(0.4*(ZP-mag[:,3])) if mag.shape[1] == 4: cfluxerr = 0.0*cflux else: cfluxerr = cflux - 10.0**(0.4*(ZP-mag[:,3]-mag[:,4])) np.savetxt(os.path.join(dir,'ref.flux.calibrated'),np.vstack((cflux,cfluxerr)).T,fmt='%12.4f %12.4f') def makeCMD(dirI,dirV,bandwidth = 0.2,ifile=None,vfile=None,plot_density=True,RC=None,source_colour=None,xlabel=None,ylabel=None, IV=None,legend=True,title=True,plotfile=None,density_plotfile=None,I_limit=21,V_limit=21,RC_limit=18,optimize_bandwidth=False): if ifile is None: ifile = os.path.join(dirI,'ref.mags.calibrated') if vfile is None: vfile = os.path.join(dirV,'ref.mags.calibrated') if xlabel is None: xlabel = r'$(V-I)_{\rm P}$' if ylabel is None: ylabel = r'$I_{\rm p}$' im = np.loadtxt(ifile) vm = np.loadtxt(vfile) p = np.where((im[:,4] > 0) & (im[:,3] < I_limit) & (vm[:,4] > 0) & (vm[:,3] < V_limit) )[0] plt.figure() plt.scatter(vm[p,3]-im[p,3],im[p,3],s=3,c='k') plt.grid() plt.gca().invert_yaxis() plt.xlabel(xlabel,fontsize='14') plt.ylabel(ylabel,fontsize='14') if title: plt.title(dirI+' '+dirV) if RC is not None: plt.scatter(RC[0],RC[1],color='r',s=60,label='Red Clump (%6.3f,%6.3f)'%RC) # if source_pos is not None: # plt.errorbar(source_pos[0],source_pos[1],xerr=source_pos[2],yerr=source_pos[3],color='c') # plt.scatter(source_pos[0],source_pos[1],marker='o',s=80,facecolors='none', edgecolors='c') if IV is not None: plt.scatter(IV[1]-IV[0],IV[0],color='m',marker='.',s=40,label='Blended Source (%6.3f,%6.3f)'%(IV[1]-IV[0],IV[0])) if source_colour is not None: plt.scatter(np.nan,np.nan,color='w',marker='.',s=40,label='$(V-I)_S$ = %6.3f +/- %5.3f'%(source_colour[0],source_colour[1])) if source_colour is not None and RC is not None: #plt.scatter(np.nan,np.nan,color='w',marker='.',s=40,label='$\Delta (V-I)_S$ = %6.3f +/- %5.3f'%(source_colour[0]-RC[0],source_colour[1])) plt.scatter(np.nan,np.nan,color='w',marker='.',s=40,label='$(V-I)_{S,0}$ = %6.3f +/- %5.3f'%(source_colour[0]-RC[0]+1.06,source_colour[1])) if legend: plt.legend(loc='upper left') xmin, xmax = plt.xlim() ymax, ymin = plt.ylim() if plotfile is None: plotfile = dirI+'-'+dirV+'-CMD.png' plt.savefig(plotfile) plt.close() print xmin, xmax, ymin, ymax np.savetxt(dirI+'-'+dirV+'-CMDdata', np.vstack((im[p,0],im[p,1],im[p,2],vm[p,3],vm[p,4],im[p,3],im[p,4])).T, fmt='%6d %9.3f %9.3f %7.4f %7.4f %7.4f %7.4f', header='ID xpos ypos V V_err I I_err') red_clump = None if plot_density: prob = np.ones(im.shape[0]) Zmax = 1.0 p = np.where((RC_limit+2 > im[:,3]) & (im[:,3] >= RC_limit))[0] VI_main_sequence = np.nanmedian(vm[p,3]-im[p,3]) p = np.where(vm[:,3]-im[:,3] < VI_main_sequence)[0] prob[p] = 0.0 for iteration in range(10): p = np.where((im[:,4] > 0) & (vm[:,4] > 0) & (im[:,3] < RC_limit) & (vm[:,3] < V_limit) & (vm[:,3]-im[:,3] > VI_main_sequence) & (prob > 0.2*Zmax))[0] samples = np.vstack([vm[p,3]-im[p,3],im[p,3]]).T if optimize_bandwidth: bandwidths = np.linspace(0.1,0.6,101) grid = GridSearchCV(KernelDensity(kernel='gaussian'), {'bandwidth': bandwidths}, cv=LeaveOneOut()) grid.fit(samples) bandwidth = grid.best_params_['bandwidth'] print 'optimal bandwidth =',bandwidth kde_skl = KernelDensity(kernel='gaussian',bandwidth=bandwidth) kde_skl.fit(samples) # score_samples() returns the log-likelihood of the samples prob = np.exp(kde_skl.score_samples(np.vstack([vm[:,3]-im[:,3],im[:,3]]).T)) xvi = np.linspace(xmin,xmax,int(40*(xmax-xmin)+1)) xi = np.linspace(ymin,ymax,int(40*(ymax-ymin)+1)) Y, X = np.meshgrid(xvi, xi[::-1]) xy = np.vstack([Y.ravel(), X.ravel()]).T Z = np.exp(kde_skl.score_samples(xy)) Z = Z.reshape(X.shape) levels = np.linspace(0, Z.max(), 25) Zmax = np.max(np.max(Z)) mx = maximum_filter(Z,size=20) #lm = (Z == mx) * (Z > 0.01*Zmax) * (Z < 0.99*Zmax) lm = (Z == mx) * (Z > 0.01*Zmax) if np.sum(lm) > 0: nlm = np.nonzero(lm) max_nlm = np.argmax(Z[nlm]) local_maxima = np.nonzero(lm) i0 = local_maxima[0][max_nlm] i1 = local_maxima[1][max_nlm] red_clump = (float(Y[i0,i1]),float(X[i0,i1])) print Z[local_maxima]/Zmax print 'Red clump detected at',red_clump else: print 'Error detecting red clump' red_clump = None plt.figure() plt.contourf(Y, X, Z, levels=levels, cmap=plt.cm.Reds) if np.sum(lm) > 0: plt.scatter(vm[:,3]-im[:,3],im[:,3],s=3,c='k') plt.scatter(vm[p,3]-im[p,3],im[p,3],s=3,c='b') plt.scatter(red_clump[0],red_clump[1],color='c',marker='+',s=60,label='Red Clump (%6.3f,%6.3f)'%red_clump) if source_colour is not None: plt.scatter(np.nan,np.nan,color='w',marker='.',s=40,label='$(V-I)_S$ = %6.3f +/- %5.3f'%(source_colour[0],source_colour[1])) plt.scatter(np.nan,np.nan,color='w',marker='.',s=40,\ label='$(V-I)_{S,0}$ = %6.3f +/- %5.3f'%(source_colour[0]-red_clump[0]+1.06,source_colour[1])) if legend: plt.legend(loc='upper left') plt.grid() plt.gca().invert_yaxis() plt.legend(loc='upper left') plt.xlabel(xlabel,fontsize='14') plt.ylabel(ylabel,fontsize='14') plt.title(dirI+' '+dirV) plt.xlim((xmin,xmax)) plt.ylim((ymax,ymin)) if density_plotfile is None: density_plotfile = dirI+'-'+dirV+'-CMD-density.png' plt.savefig(density_plotfile) plt.close() return red_clump def source_colour(ifile,vfile,plotfile='source_colour.png',VIoffset=0.0): # Define a function (quadratic in our case) to fit the data with. def linear_func1(p, x): m, c = p return m*x + c Idata = np.loadtxt(ifile) Vdata = np.loadtxt(vfile) qI = np.where(Idata[:,5] < 1.0) qV = np.where(Vdata[:,5] < 1.0) Idata = Idata[qI] Vdata = Vdata[qV] intervals=[0.025,0.05,0.1,0.2] colour = [] delta_colour = [] plt.figure(figsize=(12,12)) for inter,interval in enumerate(intervals): start = np.floor(np.min(Idata[:,0])) end = np.ceil(np.max(Idata[:,0])) time = np.arange(start,end,interval) flux1 = np.zeros_like(time) + np.nan flux2 = np.zeros_like(time) + np.nan flux1_err = np.zeros_like(time) + np.nan flux2_err = np.zeros_like(time) + np.nan for i in range(len(time)): q = np.where(np.abs(Idata[:,0] - time[i]) < interval/2.0)[0] if q.any(): flux1[i] = np.sum(Idata[q,1]/Idata[q,2]**2) / np.sum(1.0/Idata[q,2]**2) flux1_err[i] = np.sqrt(1.0 / np.sum(1.0/Idata[q,2]**2)) p = np.where(np.abs(Vdata[:,0] - time[i]) < interval/2.0)[0] if p.any(): flux2[i] = np.sum(Vdata[p,1]/Vdata[p,2]**2) / np.sum(1.0/Vdata[p,2]**2) flux2_err[i] = np.sqrt(1.0 / np.sum(1.0/Vdata[p,2]**2)) plt.subplot(2,2,inter+1) plt.errorbar(flux1/1000.0,flux2/1000.0,xerr=flux1_err/1000.0,yerr=flux2_err/1000.0,fmt='.') plt.xlabel(r'$\delta F_I (000)$') plt.ylabel(r'$\delta F_V (000)$') plt.grid() # Create a model for fitting. linear_model = Model(linear_func1) good_data = np.where(np.logical_and(np.isfinite(flux1),np.isfinite(flux2)))[0] offset = np.mean(flux2[good_data]-flux1[good_data]) # Create a RealData object using our initiated data from above. data = RealData(flux1[good_data], flux2[good_data], sx=flux1_err[good_data], sy=flux2_err[good_data]) # Set up ODR with the model and data. odr = ODR(data, linear_model, beta0=[1.0, offset]) # Run the regression. out = odr.run() # Use the in-built pprint method to give us results. out.pprint() x1, x2 = plt.gca().get_xlim() x_fit = np.linspace(x1*1000,x2*1000, 1000) y_fit = linear_func1(out.beta, x_fit) plt.plot(x_fit/1000.0,y_fit/1000.0,'r-',label=r"$\delta F_V = %5.3f \delta F_I + %5.3f$"%(out.beta[0],out.beta[1])) colour.append(VIoffset-2.5*np.log10(out.beta[0])) delta_colour.append(VIoffset-2.5*np.log10(out.beta[0]-out.sd_beta[0]) - colour[inter]) plt.title(r'$\Delta t = %5.3f \quad (V-I)_S = %8.3f \pm %8.3f$'%(interval,colour[inter],delta_colour[inter])) plt.legend() plt.savefig(plotfile) return colour, delta_colour def plot_lightcurve(file, columns=(0,3,4),plotfile='lightcurve.png',grid_on=True): data = np.loadtxt(file) plt.figure(figsize=(8,5)) plt.errorbar(data[:,columns[0]],data[:,columns[1]],data[:,columns[2]],fmt='.') plt.gca().invert_yaxis() plt.xlabel(r'$HJD - 2450000$') plt.ylabel(r'$Magnitude$') if grid_on: plt.grid() plt.savefig(plotfile)
494770
import uuid from django.db import models from validator.models.validation_run import ValidationRun class CeleryTask(models.Model): validation = models.ForeignKey(to=ValidationRun, on_delete=models.PROTECT, related_name='celery_tasks', null=False) celery_task_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) def __str__(self): return "task: {}".format(self.celery_task_id)
494773
import functools import numpy as np from ... import problems class RamseyCassKoopmansModel(problems.TwoPointBVP): """ Class representing a generic Solow growth model. Attributes ---------- equilibrium_capital : function Equilibrium value for capital (per unit effective labor). equilibrium_consumption : function Equilibrium value for consumption (per unit effective labor). intensive_output : function Output (per unit effective labor supply). marginal_product_capital : function Marginal product of capital (i.e., first derivative of intensive output). params : dict(str: float) Dictionary of model parameters. pratt_arrow_risk_aversion : function Pratt-Arrow relative risk aversion function. """ def __init__(self, ARA, f, k_star, mpk, params): """ Initialize an instance of the RamseyCassKoopmans class. Parameters ---------- ARA : function Pratt-Arrow absolute risk aversion function. f : function Output (per unit effective labor supply). k_star : function Equilibrium (i.e., steady-state) value for capital stock (per unit effective labor supply). mpk : function Marginal product of capital (per unit effective labor supply). params : dict(str: float) Dictionary of model parameters """ self._equilibrium_capital = k_star self._intensive_output = f self._marginal_product_capital = mpk self._pratt_arrow_risk_aversion = ARA # construct the terminal condition c_star = self._c_star_factory(k_star) terminal_condition = self._terminal_condition_factory(c_star) self._equilibrium_consumption = c_star # construct the RHS of the system of ODEs rhs = self._rhs_factory(ARA, f, mpk) super(RamseyCassKoopmansModel, self).__init__(self._initial_condition, terminal_condition, 1, 2, params, rhs) @property def equilibrium_capital(self): return self._equilibrium_capital @property def equilibrium_consumption(self): return self._equilibrium_consumption @property def intensive_output(self): return self._intensive_output @property def marginal_product_capital(self): return self._marginal_product_capital @property def pratt_arrow_risk_aversion(self): return self._pratt_arrow_risk_aversion @staticmethod def _actual_investment(k_tilde, c_tilde, f, **params): return f(k_tilde, **params) - c_tilde @staticmethod def _breakeven_investment(k_tilde, delta, g, n, **params): return (g + n + delta) * k_tilde @classmethod def _c_tilde_dot(cls, t, k_tilde, c_tilde, ARA, mpk, A0, delta, g, rho, **params): A = cls._technology(t, A0, g) return ((mpk(k_tilde, **params) - delta - rho) / (A * ARA(t, A * c_tilde, **params))) - g * c_tilde @staticmethod def _initial_condition(t, k_tilde, c_tilde, A0, K0, N0, **params): return [k_tilde - (K0 / (A0 * N0))] @staticmethod def _technology(t, A0, g): return A0 * np.exp(g * t) @classmethod def _k_dot(cls, t, k_tilde, c_tilde, f, delta, g, n, **params): k_dot = (cls._actual_investment(k_tilde, c_tilde, f, **params) - cls._breakeven_investment(k_tilde, delta, g, n)) return k_dot @classmethod def _ramsey_model(cls, t, k_tilde, c_tilde, ARA, f, mpk, A0, delta, g, n, rho, **params): out = [cls._k_dot(t, k_tilde, c_tilde, f, delta, g, n, **params), cls._c_tilde_dot(t, k_tilde, c_tilde, ARA, mpk, A0, delta, g, rho, **params)] return out @classmethod def _rhs_factory(cls, ARA, f, mpk): return functools.partial(cls._ramsey_model, ARA=ARA, f=f, mpk=mpk) @staticmethod def _terminal_condition(t, k_tilde, c_tilde, c_star, **params): return [c_tilde - c_star(**params)] @classmethod def _terminal_condition_factory(cls, c_star): return functools.partial(cls._terminal_condition, c_star=c_star) def _c_star(self, k_star, **params): k_tilde = k_star(**params) c_star = (self.intensive_output(k_tilde, **params) - self._breakeven_investment(k_tilde, **params)) return c_star def _c_star_factory(self, k_star): return functools.partial(self._c_star, k_star=k_star)
494787
import json import os import numpy as np from argparse import ArgumentParser from CLIP import clip import clipgrams def main(): # Args parser = ArgumentParser() parser.add_argument('--image_dir', type=str) parser.add_argument('--index_dir', type=str) parser.add_argument('--knn', type=int, default=10) parser.add_argument('--clip_model', type=str, default='ViT-B/16') parser.add_argument('--device', type=str, default='cuda:0') parser.add_argument('--batch_size', type=int, default=256) parser.add_argument('--num_prepro_workers', type=int, default=8) parser.add_argument('--lower', type=bool, default=True) parser.add_argument('--load_entries', type=bool, default=False) args = parser.parse_args() # Load index args and add to current args fname = os.path.join(args.index_dir, 'args.txt') with open(fname, 'r') as f: index_args = json.load(f) for key in list(index_args.keys()): if key not in args.__dict__.keys(): args.__dict__[key] = index_args[key] # Load clip net, preprocess = clip.load(args.clip_model, jit=False) net = net.eval().requires_grad_(False).to(args.device) # Tagger clipgrams.tagger(args, net) if __name__ == '__main__': main()
494798
import torch import torch.nn as nn import torch.nn.functional as F from pcdet.models.backbones_3d.sa_block import SA_block class PointContext3D(nn.Module): def __init__(self, model_cfg, IN_DIM, dropout=0.1): super().__init__() self.model_cfg = model_cfg self.pc_range = self.model_cfg.PC_RANGE self.voxel_size = self.model_cfg.VOXEL_SIZE self.grid_size = self.model_cfg.GRID_SIZE self.IN_DIM = IN_DIM # Self-attention layers self.self_attn1 = SA_block(inplanes=self.model_cfg.ATTN_DIM, planes=self.model_cfg.ATTN_DIM) self.self_attn2 = SA_block(inplanes=2 * self.model_cfg.ATTN_DIM, planes=2 * self.model_cfg.ATTN_DIM) # MLP layers self.reduce_dim = nn.Sequential(nn.Conv1d(IN_DIM, self.model_cfg.ATTN_DIM, kernel_size=1), nn.BatchNorm1d(self.model_cfg.ATTN_DIM), nn.ReLU(inplace=True), nn.Conv1d(self.model_cfg.ATTN_DIM, self.model_cfg.ATTN_DIM, kernel_size=1), nn.BatchNorm1d(self.model_cfg.ATTN_DIM), nn.ReLU(inplace=True) ) self.reduce_dim_cat = nn.Sequential(nn.Conv1d(2*self.model_cfg.ATTN_DIM, self.model_cfg.ATTN_DIM, kernel_size=1), nn.BatchNorm1d(self.model_cfg.ATTN_DIM), nn.ReLU(inplace=True), nn.Conv1d(self.model_cfg.ATTN_DIM, self.model_cfg.ATTN_DIM, kernel_size=1), nn.BatchNorm1d(self.model_cfg.ATTN_DIM), nn.ReLU(inplace=True) ) def add_context_to_points(self, point_feats, l_1=None, l_2=None): """Add self-attention context across every selected and deformed point""" global context_points if l_1 is None and l_2 is None: context_points = self.self_attn1(point_feats) context_points = self.self_attn2(context_points) if l_1 is not None and l_2 is None: context_points = self.self_attn1(point_feats) ms1 = torch.cat([l_1, context_points], dim=1) context_points_ms1 = self.self_attn2(ms1) context_points = self.reduce_dim_cat(context_points_ms1) if l_1 is not None and l_2 is not None: ms1 = torch.cat([l_1, point_feats], dim=1) ms1 = self.reduce_dim_cat(ms1) ms1_context = self.self_attn1(ms1) ms2 = torch.cat([l_2, ms1_context], dim=1) ms2_context = self.self_attn2(ms2) context_points = self.reduce_dim_cat(ms2_context) return context_points def forward(self, batch_size, l_features, l_xyz, l_conv1=None, l_conv2=None): """ Args: :param l_conv2: :param l_conv1: :param batch_size: :param l_xyz: :param l_features: """ # reduce dim of selected points l_features_red = self.reduce_dim(l_features) # get context for every deformed point features input to this module point_context_features = self.add_context_to_points(l_features_red, l_conv1, l_conv2) return point_context_features
494945
from ._base import validate_input from ._optimizers import constrained_binary_solve from ._optimizers import constrained_multiclass_solve __all__ = [ "constrained_binary_solve", "constrained_multiclass_solve", "validate_input", ]
494991
import numpy as np __all__ = () class H5LogTable: def __init__(self, group): self._group = group def __getitem__(self, label): return self._group[label] if label in self._group else [] def resize(self, size): for ds in self._group.values(): ds.resize(size, axis=0) # mimicking Pytables API @property def row(self): class Appender: def __setitem__(_, label, row): # noqa: B902, N805 if isinstance(row, np.ndarray): shape = row.shape elif isinstance(row, (float, int)): shape = () if label not in self._group: if isinstance(row, np.ndarray): dtype = row.dtype elif isinstance(row, float): dtype = float else: dtype = None self._group.create_dataset( label, (0, *shape), maxshape=(None, *shape), dtype=dtype ) ds = self._group[label] ds.resize(ds.shape[0] + 1, axis=0) ds[-1, ...] = row return Appender() class _EnergyOffset: value = None def __call__(self, offset): assert self.value is None self.value = offset return self def __enter__(self): return self def __exit__(self, *args): assert self.value is not None self.value = None return None def __rsub__(self, base): return base - self.value if self.value else base energy_offset = _EnergyOffset()
494992
from abc import ABC, abstractmethod from msdm.core.problemclasses.mdp.mdp import MarkovDecisionProcess, State, Action from msdm.core.distributions import Distribution from msdm.core.algorithmclasses import Result import random class Policy(ABC): @abstractmethod def action_dist(self, s: State) -> Distribution[Action]: pass def action(self, s: State) -> Action: return self.action_dist(s).sample() def run_on(self, mdp: MarkovDecisionProcess, initial_state=None, max_steps=int(2 ** 30), rng=random): if initial_state is None: initial_state = mdp.initial_state_dist().sample() traj = [] s = initial_state for t in range(max_steps): if mdp.is_terminal(s): break a = self.action_dist(s).sample(rng=rng) ns = mdp.next_state_dist(s, a).sample(rng=rng) r = mdp.reward(s, a, ns) traj.append((s, a, ns, r)) s = ns if traj: states, actions, _, rewards = zip(*traj) else: states = () actions = () rewards = () return Result(**{ 'state_traj': states, 'action_traj': actions, 'reward_traj': rewards })
494996
import unittest import os from sdc11073.wsdiscovery import WSDiscoverySingleAdapter from sdc11073 import pmtypes from sdc11073.location import SdcLocation from sdc11073.sdcclient import SdcClient from tests.mockstuff import SomeDevice loopback_adapter = 'Loopback Pseudo-Interface 1' if os.name == 'nt' else 'lo' """ Base test to use in all test that require device or a client. This sets up a default device and client and has connect method. """ class BaseTest(unittest.TestCase): def setUp(self): self.wsdiscovery = WSDiscoverySingleAdapter(loopback_adapter) self.wsdiscovery.start() self._locValidators = [pmtypes.InstanceIdentifier('Validator', extensionString='System')] def tearDown(self): self.wsdiscovery.stop() def setUpCocoDraft10(self): self.cocoFinalLocation = SdcLocation(fac='tklx', poc='CU1', bed='cocoDraft10Bed') self.sdcDeviceCoCoFinal = SomeDevice.fromMdibFile(self.wsdiscovery, None, '70041_MDIB_Final.xml') self.sdcDeviceCoCoFinal.startAll() self.sdcDeviceCoCoFinal.setLocation(self.cocoFinalLocation, self._locValidators) xAddr = self.sdcDeviceCoCoFinal.getXAddrs() self.sdcClientCocoFinal = SdcClient(xAddr[0], deviceType=self.sdcDeviceCoCoFinal.mdib.sdc_definitions.MedicalDeviceType, validate=True) self.sdcClientCocoFinal.startAll() def stopDraft10(self): self.sdcClientCocoFinal.stopAll() self.sdcDeviceCoCoFinal.stopAll()
495003
import logging from typing import List, Optional, Sequence from langid.langid import LanguageIdentifier import numpy as np from sacred import Experiment from tqdm import tqdm from torch.utils.data import DataLoader from experiments.Experiment_utils import create_logger from experiments.data_loading import data_loading_ingredient, load_test_folds, save_probs, save_lang_to_idx ex = Experiment('LangID_experiment', ingredients=[data_loading_ingredient]) # Attach the logger to the experiment ex.logger = create_logger() @ex.capture def test_model(data_set=None, langider=None, lang_to_idx=None, ) -> np.ndarray: """ Tests a given langid.py model on the given data set. :param data_set: data set to test on :param langider: model to test :param lang_to_idx: mapping of languages to ids """ import numpy as np langs = data_set.get_tag_set() pred_prob = np.zeros((len(data_set), len(langs) + 1)) dataloader = DataLoader(data_set) for i, elem in enumerate(tqdm(dataloader)): text = elem['text'][0] label = elem['label'][0] ranking = langider.rank(text) for lang, prob in ranking: pred_prob[i, lang_to_idx[lang]] = prob pred_prob[i, len(langs)] = lang_to_idx[label] return pred_prob @ex.config def config(): model_path = None # Which model to load, if none, the built-in langid.py model is used @ex.capture def load_langid_model(model_path: Optional[str], lang_set: Sequence[str]) -> LanguageIdentifier: """ Loads the provided langid.py model. If none provided, then it loads the default model. :param model_path: path to model to load :param lang_set: language set to which the model should be restricted. Provide empty list for no restrictions. :return: language identifier """ if model_path is None: from langid import langid langider = LanguageIdentifier.from_modelstring(langid.model, norm_probs=True) else: langider = LanguageIdentifier.from_modelpath(model_path, norm_probs=True) if len(lang_set) > 0: langider.set_languages(langs=lang_set) return langider @ex.automain def main(_log): _log.info("Loading test data") test_dataset = load_test_folds() tag_set = test_dataset.get_tag_set() _log.info("Loading langid.py model") langider = load_langid_model(lang_set=tag_set) _log.info("Testing model") lang_to_idx = test_dataset.lang_to_idx eval_data = test_model(data_set=test_dataset, langider=langider, lang_to_idx=lang_to_idx) _log.info("Saving predictions and lang_to_idx") save_probs(eval_data, ex) save_lang_to_idx(test_dataset.lang_to_idx, ex)
495022
from flask import request, url_for from json import dumps as json_encode, loads as json_decode from app.helpers.oauth.config import oauth_config from base64 import b64encode, b64decode from slugify import slugify as slugify_str from re import sub from urllib.parse import quote, urlencode import config def json_to_b64(json): return b64encode(json_encode(json).encode('utf8')).decode('utf8') def json_to_str(json): return json_encode(json) def b64_to_json(json): return json_decode(b64decode(json)) def encode_state(provider): return json_to_b64({'provider':provider, 'redirect':request.url}) def encode_oauth(provider): provider_config = oauth_config.get(provider) authorize_url = provider_config.get('authorize') scopes = provider_config.get('scopes') return f'{authorize_url}?' + urlencode([*{ 'client_id': config.auth.get(provider).get('client-id'), 'scope': " ".join(scopes), 'state': encode_state(provider), 'redirect_uri': config.canonical_host + url_for('auth_login_oauth') }.items()]) def oauth_data(): return { 'sites': { site_id: { **{k: v for k, v in site_data.items() if k != 'auth'}, 'client': config.auth.get(site_id).get('client-id') } for site_id, site_data in oauth_config.items() }, 'redirect_uri': config.canonical_host + url_for('auth_login_oauth') } def slugify(string): return slugify_str(sub(r"[']", '', string))
495036
import tensorflow as tf from tensorflow.keras.regularizers import l2 class ArcNet(tf.keras.layers.Layer): def __init__(self, num_classes, regularizer=l2(5e-4), **kwargs): super(ArcNet, self).__init__(**kwargs) self.regularizer = regularizer self.num_classes = num_classes def build(self, input_shape): self.weight = self.add_weight(shape=[input_shape[-1], self.num_classes], initializer=tf.keras.initializers.GlorotUniform(), trainable=True, regularizer=self.regularizer) def call(self, feature): normed_feature = tf.nn.l2_normalize(feature, axis=1) normed_weight = tf.nn.l2_normalize(self.weight, axis=0) cos_theta = tf.matmul(normed_feature, normed_weight) return cos_theta def get_config(self): config = super().get_config() config.update({"units": self.num_classes, "kernel_regularizer": self.regularizer}) return config
495049
from kivy.animation import Animation from functools import partial from .base import Animator __all__ = ( "RotateOutAnimator", "RotateOutDownLeftAnimator", "RotateOutDownRightAnimator", "RotateOutUpLeftAnimator", "RotateOutUpRightAnimator", ) # rotate out class RotateOutAnimator(Animator): def start_(self, tmp=None): props = ["angle", "opacity"] vals = [-200, 0] anim = Animation(d=self.duration, **dict(zip(props, vals))) anim.cancel_all(self.widget) anim.start(self.widget) anim.bind(on_complete=partial(self.anim_complete, self)) class RotateOutDownLeftAnimator(Animator): def start_(self, tmp=None): pivot = (self.widget.x - self.widget.width / 2, self.widget.y) self.widget.origin_ = pivot props = ["angle", "opacity"] vals = [-90, 0] anim = Animation(d=self.duration, **dict(zip(props, vals))) anim.cancel_all(self.widget) anim.start(self.widget) anim.bind(on_complete=partial(self.anim_complete, self)) class RotateOutDownRightAnimator(Animator): def start_(self, tmp=None): pivot = (self.widget.x + 3 * self.widget.width / 2, self.widget.y) self.widget.origin_ = pivot props = ["angle", "opacity"] vals = [90, 0] anim = Animation(d=self.duration, **dict(zip(props, vals))) anim.cancel_all(self.widget) anim.start(self.widget) anim.bind(on_complete=partial(self.anim_complete, self)) class RotateOutUpLeftAnimator(Animator): def start_(self, tmp=None): pivot = (self.widget.x - self.widget.width / 2, self.widget.y) self.widget.origin_ = pivot props = ["angle", "opacity"] vals = [90, 0] anim = Animation(d=self.duration, **dict(zip(props, vals))) anim.cancel_all(self.widget) anim.start(self.widget) anim.bind(on_complete=partial(self.anim_complete, self)) class RotateOutUpRightAnimator(Animator): def start_(self, tmp=None): pivot = (self.widget.x + 3 * self.widget.width / 2, self.widget.y) self.widget.origin_ = pivot props = ["angle", "opacity"] vals = [-90, 0] anim = Animation(d=self.duration, **dict(zip(props, vals))) anim.cancel_all(self.widget) anim.start(self.widget) anim.bind(on_complete=partial(self.anim_complete, self))
495075
import pysftp from paramiko import sftp import mlflow as mlf import pandas as pd import json ''' model = 0 (Default), 1 (LightGBM), 2 (Multiclass), 3 (TF-Ranking) features passed saved as dictionary F1 result of model CVS of trained model ''' def mlflow_log(model, metrics, parameters, rest_params, features): cnopts = pysftp.CnOpts() with pysftp.Connection('192.168.3.11', username='ubuntu', private_key='~/.ssh/id_rsa', port=22, cnopts=cnopts): mlf.set_tracking_uri('http://192.168.3.11:80') print('SFTP connection successful') if model == 1: experiment_name = 'LightGBM' elif model == 2: experiment_name = 'Multiclass' elif model == 3: experiment_name = 'TF-Ranking' else: print('Model is missing!') experiment_id = model mlf.set_experiment(experiment_name) with mlf.start_run(experiment_id=experiment_id, run_name=experiment_name, nested=False): for name, value in metrics.items(): mlf.log_metric(name, value) for name, value in parameters.items(): mlf.log_param(name, value) for name, value in rest_params.items(): mlf.log_param(name, value) for name, value in features.items(): mlf.log_param(name, value) print(f'Logging successful') def mlflow_dict(df_summary): columns = df_summary.columns.values metrics = ['Acc_mean', 'F1_mean', 'Prec_mean'] rest_param = ['model_type'] metrics_dict = {} parameter_dict = {} rest_param_dict = {} feature_dict = {} for metric in metrics: value = float(df_summary[metric]) if metric not in metrics_dict: metrics_dict[metric] = value print('Metrics successful') if 'features' in columns: features = df_summary['features'].values[0].split(' - ') feature_dict = {features[i]: features[i] for i in range(0, len(features))} print('Features successful') if 'parameters' in columns: parameter_dict = json.loads(df_summary.parameters.iloc[0]) print('Parameters successful') for param in rest_param: value = df_summary[param].values[0] if param not in rest_param_dict: rest_param_dict[param] = value print('Rest_Params successful') return (metrics_dict, parameter_dict, rest_param_dict, feature_dict)
495077
from flask import Flask, jsonify, request app = Flask(__name__) @app.route('/api') def my_microservice(): print(request) print(request.environ) response = jsonify({'Hello': 'World!'}) print(response) print(response.data) return response if __name__ == '__main__': print(app.url_map) app.run()
495121
import pytest from nbformat import notebooknode from nb2hugo.preprocessors import ImagesPreprocessor @pytest.fixture def preprocessor(): return ImagesPreprocessor() @pytest.fixture def resources(tmpdir): nb_dir = tmpdir.mkdir('nb_dir') img_dir = nb_dir.mkdir('img_dir') img_dir.join('fake.png').write('not really an image') resources = { 'metadata': { 'name': 'notebook', 'path': nb_dir, }, } return resources def test_process_image_link(preprocessor, resources): resources['images_path'] = {} link = preprocessor._process_image_link('Some alt text', 'img_dir/fake.png', resources) assert link == '![Some alt text](fake.png)' assert 'fake.png' in resources['images_path'] source = 'Some text with an ![image](img_dir/fake.png).\nAnd more text.' processed_source = 'Some text with an ![image](fake.png).\nAnd more text.' raw_cell, code_cell, markdown_cell, expected_markdown_cell = [ notebooknode.from_dict({"cell_type": cell_type, "metadata": {}, "source": source}) for cell_type, source in [('raw', source), ('code', source), ('markdown', source), ('markdown', processed_source)] ] @pytest.mark.parametrize("input_cell, expected_cell, fake_in_images_path", [ (raw_cell, raw_cell, False), (code_cell, code_cell, False), (markdown_cell, expected_markdown_cell, True), ]) def test_preprocess_cell(preprocessor, resources, input_cell, expected_cell, fake_in_images_path): resources['images_path'] = {} result = preprocessor.preprocess_cell(input_cell.copy(), resources.copy(), None) assert result[0] == expected_cell assert ('fake.png' in resources['images_path']) == fake_in_images_path
495140
from django import forms from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponseForbidden, HttpResponseNotFound from django.urls import reverse from django.utils import timezone from django.contrib.auth.decorators import login_required from django.db.models import Q from ..models import * from .settings import * import datetime import math class ModifyForm(forms.Form): title = forms.CharField(label='标题', max_length=50, widget=forms.TextInput(attrs={'class': 'form-control form-control-user mb-5'})) content = forms.CharField(label='博客内容', widget=forms.Textarea(attrs={'class': 'form-control form-control-user mb-5'})) @login_required def home(request): user = request.user blogs = Blog.objects.filter(user_id__exact=user.id).order_by('-modified_time') collections = Collection.objects.filter(user_id__exact=user.id).order_by('-blog__collect_amount') return render(request, '../templates/blog/home.html', { 'blogs': blogs, 'collections': collections }) @login_required def blog(request, pk): blog = get_object_or_404(Blog, pk=pk) user: User = request.user if user.collection_set.filter(blog_id__exact=blog.pk).count() == 0: is_collected = False else: is_collected = True comments = blog.comment_set.all().order_by('created_time') if request.method == 'POST': delete_comment = request.POST.get('delete_comment') create_comment = request.POST.get('create_comment') collect_blog = request.POST.get('collect_blog') if not (delete_comment is None): try: comment = Comment.objects.filter(user_id__exact=user.id, blog_id__exact=blog.id, content__exact=delete_comment)[0] comment.delete() except IndexError: pass if not (collect_blog is None): collection = Collection.objects.filter(user_id__exact=user.id, blog_id__exact=blog.id) if len(collection) == 0: new_collection = Collection(user=user, blog=blog) blog.collect_amount += 1 blog.save() new_collection.save() is_collected = True else: collection.delete() is_collected = False if not (create_comment is None): new_comment = Comment(user=user, blog=blog, content=create_comment) new_comment.save() else: blog.pageview += 1 blog.save() return render(request, '../templates/blog/blog.html', {'blog': blog, 'comments': comments, 'user': user, 'is_collected': is_collected}) @login_required def modify(request, pk): blog = get_object_or_404(Blog, pk=pk) if blog.user != request.user: return HttpResponseForbidden if request.method == "POST": form = ModifyForm(request.POST) if form.is_valid(): title = form.cleaned_data['title'] content = form.cleaned_data['content'] blog.title = title blog.content = content blog.save() return HttpResponseRedirect(reverse('helper:blog_page', args=(blog.id,))) else: form = ModifyForm(initial={'title': blog.title, 'content': blog.content}) return render(request, '../templates/blog/modify.html', {'form': form}) @login_required def delete(request, pk): blog = get_object_or_404(Blog, pk=pk) if blog.user != request.user: return HttpResponseForbidden blog.delete() return HttpResponseRedirect(reverse("helper:blog_homepage")) @login_required def add(request): user = request.user if request.method == "POST": form = ModifyForm(request.POST) if form.is_valid(): title = form.cleaned_data['title'] content = form.cleaned_data['content'] blog = Blog(user=user, title=title, content=content) blog.save() return HttpResponseRedirect(reverse('helper:blog_page', args=(blog.id,))) else: form = ModifyForm() return render(request, '../templates/blog/modify.html', {'form': form}) def hot(request, pg): blogs = Blog.objects.filter(Q(user__blog__pageview__gte=HOT_BLOG_PAGEVIEW, modified_time__gte = timezone.now() - datetime.timedelta(days=BLOGPAGE_HOT_BLOG_DAY)) | Q(modified_time__gte = timezone.now() - datetime.timedelta(days=BLOGPAGE_COMMON_BLOG_DAY))).distinct().order_by('-modified_time') page_num = math.ceil(len(blogs) / BLOGPAGE_BLOG_NUMBER) if pg > page_num or pg < 1: return HttpResponseNotFound() if pg * BLOGPAGE_BLOG_NUMBER > len(blogs): number = len(blogs) else: number = pg * BLOGPAGE_BLOG_NUMBER blogs = blogs[(pg - 1) * BLOGPAGE_BLOG_NUMBER: number] return render(request, '../templates/blog/hot.html', { 'blogs': blogs, 'page_num': page_num, 'current_page': pg }) @login_required def public(request, friend_id): user: User = request.user friend = Friend.objects.filter(user_id__exact=user.id, friend_id__exact=friend_id) if len(friend) == 0 and friend_id != user.id: return HttpResponseForbidden() blogs = Blog.objects.filter(user_id__exact=friend_id) message = None if friend_id == user.id: friend_user = user else: friend_user = friend[0].friend if friend[0].authority == 0: blogs = None message = "没有权限访问!" return render(request, '../templates/blog/friend.html', { 'blogs': blogs, 'friend': friend_user, 'message': message })
495169
from django import template register = template.Library() cache = {} @register.inclusion_tag('more_menu_links.html') def more_menu_links(): from ...utils import get_menu_links if 'links' not in cache: cache['links'] = get_menu_links() return {'links': cache['links']}
495212
import os import pytest try: from pyscf import gto, ao2mo, scf from pauxy.utils.from_pyscf import ( integrals_from_scf, integrals_from_chkfile, get_pyscf_wfn, dump_pauxy ) no_pyscf = False except (ImportError, OSError): no_pyscf = True from pauxy.utils.io import ( write_input, read_qmcpack_wfn_hdf, from_qmcpack_sparse ) @pytest.mark.unit @pytest.mark.skipif(no_pyscf, reason="pyscf not found.") def test_from_pyscf(): atom = gto.M(atom='Ne 0 0 0', basis='sto-3g', verbose=0, parse_arg=False) mf = scf.RHF(atom) mf.kernel() h1e, chol, nelec, enuc = integrals_from_scf(mf, verbose=0, chol_cut=1e-5) assert chol.shape[0] == 15 assert chol.shape[1] == 25 assert nelec == (5,5) assert h1e.shape[0] == 5 @pytest.mark.unit @pytest.mark.skipif(no_pyscf, reason="pyscf not found.") def test_from_chkfile(): atom = gto.M(atom=[('H', 1.5*i, 0, 0) for i in range(0,10)], basis='sto-6g', verbose=0, parse_arg=False) mf = scf.RHF(atom) mf.chkfile = 'scf.chk' mf.kernel() h1e, chol, nelec, enuc = integrals_from_chkfile('scf.chk', verbose=0, chol_cut=1e-5) assert h1e.shape == (10,10) assert chol.shape == (19,100) assert nelec == (5,5) assert enuc == pytest.approx(6.805106937254286) @pytest.mark.unit @pytest.mark.skipif(no_pyscf, reason="pyscf not found.") def test_pyscf_to_pauxy(): atom = gto.M(atom=[('H', 1.5*i, 0, 0) for i in range(0,4)], basis='sto-6g', verbose=0, parse_arg=False) mf = scf.RHF(atom) mf.chkfile = 'scf.chk' mf.kernel() dump_pauxy(chkfile='scf.chk', hamil_file='afqmc.h5', sparse=True) wfn = read_qmcpack_wfn_hdf('afqmc.h5') h1e, chol, ecore, nmo, na, nb = from_qmcpack_sparse('afqmc.h5') write_input('input.json', 'afqmc.h5', 'afqmc.h5') def teardown_module(self): cwd = os.getcwd() files = ['scf.chk', 'afqmc.h5', 'input.json'] for f in files: try: os.remove(cwd+'/'+f) except OSError: pass
495232
import unittest from tests.test_utils import get_sample_pdf_with_labels, get_sample_pdf, get_sample_sdf, get_sample_pdf_with_extra_cols, get_sample_pdf_with_no_text_col ,get_sample_spark_dataframe from nlu import * class TestNameSpace(unittest.TestCase): def test_tokenize(self): df = nlu.load('en.tokenize').predict('What a wonderful day!') print(df) df = nlu.load('tokenize').predict('What a wonderful day!') print(df) def test_pos(self): df = nlu.load('pos', verbose=True).predict('What a wonderful day!') print(df) # # def test_embed(self): # # df = nlu.load('en.embed').predict('What a wonderful day!') # # # # print(df) # # df = nlu.load('embed').predict('What a wonderful day!') # print(df) # # # def test_embed_glove(self): # df = nlu.load('en.embed.glove').predict('What a wonderful day!') # # print(df) # # df = nlu.load('embed.glove').predict('What a wonderful day!') # print(df) # df = nlu.load('glove').predict('What a wonderful day!') # print(df) # def test_sentiment_twitter_out(self): # res=nlu.load('en.sentiment.twitter',verbose=True).predict('@elonmusk Tesla stock price is too high imo') # ifninite loop ?? res = nlu.load('en.sentiment.imdb',verbose=True).predict('The Matrix was a pretty good movie') print(res) print(res.columns) def test_output_levels(self): print('token test') df = nlu.load('sentiment',verbose=True).predict('What a wonderful day!', output_level='token') print(df) print('document test') df = nlu.load('sentiment',verbose=True).predict('What a wonderful day!', output_level='document') print(df) print('sentence test') df = nlu.load('sentiment',verbose=True).predict('What a wonderful day!', output_level='sentence') print(df) print('chunk test') df = nlu.load('sentiment',verbose=True).predict('I like peanut butter and jelly!', output_level='chunk') print(df) def test_ner_multilingual(self): df = nlu.load('ner',verbose=True).predict('New York is a great place and America aswell') print(df) def test_sentiment(self): df = nlu.load('en.sentiment').predict('What a wonderful day!') def test_emotion(self): df = nlu.load('en.classify.emotion').predict('What a wonderful day!') print(df) def test_spell(self): df = nlu.load('spell').predict('What a wonderful day!') print(df) # def test_dependency(self): df = nlu.load('dep', verbose=True).predict('What a wonderful day!') print(df) def test_dependency_untyped(self): df = nlu.load('dep.untyped', verbose=True).predict('What a wonderful day!') print(df) def test_bert(self): df = nlu.load('bert').predict('What a wonderful day!') print(df) def test_lang(self): df = nlu.load('lang', verbose=True).predict('What a wonderful day!') print(df) print(df.columns) print(df['language_de']) print(df['language_fr']) print(len(df['language_de'][0])) # df = nlu.load('xx.classify.lang').predict('What a wonderful day!') # print(df) # df = nlu.load('classify.lang').predict('What a wonderful day!') # print(df) # print(df) def test_explain(self): df = nlu.load('en.explain').predict('What a wonderful day!') print(df) df = nlu.load('explain').predict('What a wonderful day!') print(df) def test_match(self): df = nlu.load('match.date',verbose=True).predict('What a wonderful day!') print(df) # df = nlu.load('en.match.date').predict('What a wonderful day!') # print(df) def test_clean_stop(self): # df = nlu.load('clean.stop').predict('What a wonderful day!') # print(df) df = nlu.load('en.clean.stop').predict('What a wonderful day!') print(df) def test_spell(self): df = nlu.load('spell').predict('What a wonderful day!') print(df) df = nlu.load('en.spell').predict('What a wonderful day!') print(df) # def test_all_spell(self): # df = nlu.load('en.spell.symmetric').predict('What a wonderful day!') # # print(df) # # df = nlu.load('en.spell.context').predict('What a wonderful day!') # print(df) # df = nlu.load('en.spell.norvig').predict('What a wonderful day!') # # print(df) # df = nlu.load('spell').predict('What a wonderful day!') # # print(df) # # df = nlu.load('en.spell').predict('What a wonderful day!') # # print(df) # def test_biobert(self): # df = nlu.load('biobert').predict('What a wonderful day!') # # print(df) # # df = nlu.load('en.embed.biobert').predict('What a wonderful day!') # print(df) # # def test_elmo(self): # df = nlu.load('en.embed.elmo').predict('What a wonderful day!') # print(df) # df = nlu.load('elmo').predict('What a wonderful day!') # print(df) # # def test_use(self): # df = nlu.load('en.embed.use').predict('What a wonderful day!') # # print(df) # # df = nlu.load('use').predict('What a wonderful day!') # print(df) # # def test_albert(self): # df = nlu.load('en.embed.albert').predict('What a wonderful day!') # # print(df) # # df = nlu.load('albert').predict('What a wonderful day!') # print(df) # # def test_xlnet(self): # df = nlu.load('en.embed.xlnet').predict('What a wonderful day!') # # print(df) # # df = nlu.load('xlnet').predict('What a wonderful day!') # print(df) def test_lemma(self): df = nlu.load('lemma').predict('What a wonderful day!') print(df) df = nlu.load('en.lemma').predict('What a wonderful day!') print(df) # def test_norm(self): # df = nlu.load('lemma').predict('What a wonderful day!') # # print(df) # df = nlu.load('en.lemma').predict('What a wonderful day!') # # print(df) # # def test_use(self): # df = nlu.load('en.embed_sentence.use').predict('What a wonderful day!') # print(df) # # def test_glove(self): # df = nlu.load('nl.ner.wikiner.glove_6B_300').predict('What a wonderful day!') # # print(df) def test_sentence_detector(self): df = nlu.load('sentence_detector', verbose=True).predict('What a wonderful day! Tomorrow will be even better!') print(df) def test_stopwords(self): df = nlu.load('match.chunk').predict('What a wonderful day!') print(df) def test_classify_lang(self): df = nlu.load('xx.classify.wiki_7').predict('What a wonderful day!') print(df) def test_sentiment_on_datasets(self): df = nlu.load('sentiment.twitter').predict('What a wonderful day!') print(df) # df = nlu.load('sentiment.imdb').predict('What a wonderful day!') # print(df) def test_multiple_nlu_references(self): # df = nlu.load('elmo bert').predict('What a wonderful day!') df = nlu.load('elmo').predict('What a wonderful day!') print(df) # df = nlu.load('sentiment.imdb').predict('What a wonderful day!') # print(df) def test_sentiment_output(self): res = nlu.load('sentiment',verbose=True).predict('Your life is the sum of a remainder of an unbalanced equation inherent to the programming of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts I have been unable to eliminate from what is otherwise a harmony of mathematical precision. While it remains a burden assiduously avoided, it is not unexpected, and thus not beyond a measure of control. Which has led you, inexorably, here.', output_level='sentence') # res = nlu.load('bert',verbose=True).predict('@Your life is the sum of a remainder of an unbalanced equation inherent to the programming of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts I have been unable to eliminate from what is otherwise a harmony of mathematical precision. While it remains a burden assiduously avoided, it is not unexpected, and thus not beyond a measure of control. Which has led you, inexorably, here.', output_level='sentence') print(res) print(res['sentiment']) print(res.dtypes) def test_stem(self): pdf = get_sample_pdf() res = nlu.load('stem',verbose=True).predict(pdf ) print(res) res = nlu.load('en.stem',verbose=True).predict(pdf) print(res) def test_norm(self): pdf = get_sample_pdf() res = nlu.load('norm',verbose=True).predict(pdf, output_positions=True ) print(res) # res = nlu.load('en.norm',verbose=True).predict(pdf) # print(res) def test_chunk(self): res = nlu.load('chunk',verbose=True).predict('I like peanut butter and jelly!' ) print(res) def test_ngram(self): pdf = get_sample_pdf() # res = nlu.load('ngram',verbose=True).predict(pdf ) pipe = nlu.load('ngram',verbose=True) # print(res['ngrams']) print("PIPE", pipe) res = nlu.load('en.ngram',verbose=True).predict(pdf) print(res['ngrams']) def test_chunk_embeds(self): pdf = get_sample_pdf() res = nlu.load('embed_chunk',verbose=True).predict("What a wondful day!" ) print(res) res = nlu.load('en.embed_chunk',verbose=True).predict(pdf) print(res) def test_regex_matcher(self): pdf = get_sample_pdf() res = nlu.load('match.regex',verbose=True).predict(pdf ) print(res) def test_text_matcher(self): pdf = get_sample_pdf() res = nlu.load('match.text',verbose=True).predict(pdf ) print(res) def test_auto_sentence_embed_bert(self): # TODO WIP pdf = get_sample_pdf() res = nlu.load('embed_sentence.bert',verbose=True).predict(pdf ) print(res) def test_auto_sentence_embed_elmo(self): # TODO WIP pdf = get_sample_pdf() res = nlu.load('embed_sentence.elmo',verbose=True).predict(pdf ) print(res) # def test_bad_pandas_column_datatype(self): # sdf = get_sample_spark_dataframe() # res = nlu.load('asdasj.asdas',verbose=True).predict(sdf, output_level='sentence') # # res = nlu.load('bert',verbose=True).predict('@Your life is the sum of a remainder of an unbalanced equation inherent to the programming of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts I have been unable to eliminate from what is otherwise a harmony of mathematical precision. While it remains a burden assiduously avoided, it is not unexpected, and thus not beyond a measure of control. Which has led you, inexorably, here.', output_level='sentence') # # print(res) # # def test_bad_pandas_dataframe_datatype(self): # sdf = get_sample_spark_dataframe() # res = nlu.load('asdasj.asdas',verbose=True).predict(sdf, output_level='sentence') # # res = nlu.load('bert',verbose=True).predict('@Your life is the sum of a remainder of an unbalanced equation inherent to the programming of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts I have been unable to eliminate from what is otherwise a harmony of mathematical precision. While it remains a burden assiduously avoided, it is not unexpected, and thus not beyond a measure of control. Which has led you, inexorably, here.', output_level='sentence') # # print(res) #2.6 test def test_electra(self): pdf = get_sample_pdf() res = nlu.load('en.embed.electra',verbose=True).predict(pdf ) print(res) def test_embed_sentence_bert(self): pdf = get_sample_pdf() res = nlu.load('en.embed_sentence.small_bert_L2_128',verbose=True).predict(pdf ) print(res) def test_embed_sentence_bert(self): pdf = get_sample_pdf() res = nlu.load('en.embed_sentence.biobert.pubmed_base_cased',verbose=True).predict(pdf ) print(res) def test_toxic(self): pdf = get_sample_pdf() res = nlu.load('en.classify.toxic',verbose=True).predict(pdf ) print(res) def test_e2e(self): pdf = get_sample_pdf() res = nlu.load('en.classify.e2e',verbose=True).predict(pdf ) print(res) def test_labse(self): pdf = get_sample_pdf() res = nlu.load('xx.embed_sentence.labse',verbose=True).predict(pdf ) print(res) def test_xx_bert(self): pdf = get_sample_pdf() res = nlu.load('xx.embed_sentence',verbose=True).predict(pdf ) print(res) def test_26_bert(self): res = nlu.load('en.ner.bert',verbose=True).predict('The NLU library is a machine learning library, simmilar to Tensorflow and Keras') print(res) if __name__ == '__main__': unittest.main()
495257
import uvicorn from nebulo.gql.sqla_to_gql import sqla_models_to_graphql_schema from nebulo.server.exception import http_exception from nebulo.server.routes import get_graphiql_route, get_graphql_route from sqlalchemy import Column, DateTime, ForeignKey, Integer, Text, create_engine from sqlalchemy import text as sql_text from sqlalchemy.ext.asyncio import create_async_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from starlette.applications import Starlette from starlette.exceptions import HTTPException # Config DATABASE_URI = "postgresql://app_user:app_password@localhost:5522/nebulo_example" ##################### # SQLAlchemy Models # ##################### Base = declarative_base() class Author(Base): __tablename__ = "author" id = Column(Integer, primary_key=True, comment="@exclude create, update") name = Column(Text, nullable=False) created_at = Column( DateTime, nullable=False, server_default=sql_text("now()"), comment="@exclude create, update", ) books = relationship("Book", uselist=True, backref="Author") class Book(Base): __tablename__ = "book" id = Column(Integer, primary_key=True, comment="@exclude create, update") title = Column(Text, nullable=False) author_id = Column(Integer, ForeignKey("author.id"), nullable=False) created_at = Column( DateTime, nullable=False, default=sql_text("now()"), comment="@exclude create, update", ) # backref: Author ################################# # Starlette Application Factory # ################################# def create_app(connection_str, sqla_models) -> Starlette: """Create the Starlette app""" async_connection = connection_str.replace("postgresql://", "postgresql+asyncpg://") engine = create_async_engine(async_connection) # Convert sqla models to graphql schema gql_schema = sqla_models_to_graphql_schema(sqla_models) # Build the Starlette GraphQL Route graphql_route = get_graphql_route(gql_schema=gql_schema, engine=engine) # Build the Starlette GraphiQL Route and StaticFiles graphiql_route = get_graphiql_route() # Instantiate the Starlette app _app = Starlette( routes=[graphql_route, graphiql_route], exception_handlers={HTTPException: http_exception}, on_startup=[engine.connect], on_shutdown=[engine.dispose], ) return _app # Instantiate the app APP = create_app(connection_str=DATABASE_URI, sqla_models=[Author, Book]) if __name__ == "__main__": # Create Tables with create_engine(DATABASE_URI).connect() as sqla_engine: Base.metadata.create_all(bind=sqla_engine) uvicorn.run( "app:APP", host="0.0.0.0", port=5084, log_level="info", reload=False, )
495268
import numpy as np import cv2 import glob import matplotlib.pyplot as plt def inrange(v, shape): return 0 <= v[0] < shape[0] and 0 <= v[1] < shape[1] def to_int(x): return tuple(map(int, x)) def save_heatmap(prefix, image, lines): im_rescale = (512, 512) heatmap_scale = (128, 128) # fy, fx = heatmap_scale[1] / image.shape[0], heatmap_scale[0] / image.shape[1] lcmap = np.zeros(heatmap_scale, dtype=np.float32) # (128, 128) lcoff = np.zeros((2,) + heatmap_scale, dtype=np.float32) # (2, 128, 128) lleng = np.zeros(heatmap_scale, dtype=np.float32) # (128, 128) angle = np.zeros(heatmap_scale, dtype=np.float32) # (128, 128) # the coordinate of lines can not equal to 128 (less than 128). # lines[:, :, 0] = np.clip(lines[:, :, 0] * fx, 0, heatmap_scale[0] - 1e-4) # lines[:, :, 1] = np.clip(lines[:, :, 1] * fy, 0, heatmap_scale[1] - 1e-4) # lines = lines[:, :, ::-1] # change position of x and y --> (r, c) for v0, v1 in lines: v = (v0 + v1) / 2 vint = to_int(v) lcmap[vint] = 1 lcoff[:, vint[0], vint[1]] = v - vint - 0.5 lleng[vint] = np.sqrt(np.sum((v0 - v1) ** 2)) / 2 # L if v0[0] <= v[0]: vv = v0 else: vv = v1 # the angle under the image coordinate system (r, c) # theta means the component along the c direction on the unit vector if np.sqrt(np.sum((vv - v) ** 2)) <= 1e-4: continue angle[vint] = np.sum((vv - v) * np.array([0., 1.])) / np.sqrt(np.sum((vv - v) ** 2)) # theta # the junction coordinate(image coordinate system) of line can be recovered by follows: # direction = [-sqrt(1-theta^2), theta] # (-sqrt(1-theta^2) means the component along the r direction on the unit vector, it always negative.) # center = coordinate(lcmap) + offset + 0.5 # J = center (+-) direction * lleng (+-) means two end points # image = cv2.resize(image, im_rescale) # plt.figure() # plt.imshow(image) # for v0, v1 in lines: # plt.plot([v0[1] * 4, v1[1] * 4], [v0[0] * 4, v1[0] * 4]) # plt.savefig(f"{prefix[-8:]}_line_gt.png", dpi=200), plt.close() # return # coor = np.argwhere(lcmap == 1) # for yx in coor: # offset = lcoff[:, int(yx[0]), int(yx[1])] # length = lleng[int(yx[0]), int(yx[1])] # theta = angle[int(yx[0]), int(yx[1])] # # center = yx + offset # d = np.array([-np.sqrt(1-theta**2), theta]) # plt.scatter(center[1]*4, center[0]*4, c="b") # # plt.arrow(center[1]*4, center[0]*4, d[1]*length*4, d[0]*length*4, # length_includes_head=True, # head_width=15, head_length=25, fc='r', ec='b') # plt.savefig(f"{prefix}_line.png", dpi=200), plt.close() # plt.subplot(122), \ # plt.imshow(image) # coor = np.argwhere(lcmap == 1) # for yx in coor: # offset = lcoff[:, int(yx[0]), int(yx[1])] # length = lleng[int(yx[0]), int(yx[1])] # theta = angle[int(yx[0]), int(yx[1])] # # center = yx + offset # d = np.array([-np.sqrt(1-theta**2), theta]) # # n0 = center + d * length # n1 = center - d * length # plt.plot([n0[1] * 4, n1[1] * 4], [n0[0] * 4, n1[0] * 4]) # plt.savefig(f"{prefix[-8:]}_line.png", dpi=100), plt.close() np.savez_compressed( f"{prefix}_line.npz", # aspect_ratio=image.shape[1] / image.shape[0], lcmap=lcmap, lcoff=lcoff, lleng=lleng, angle=angle, ) # cv2.imwrite(f"{prefix}.png", image) if __name__ == '__main__': root = "/home/dxl/Data/york/valid/" filelist = glob.glob(f"{root}/*_label.npz") for file in filelist: with np.load(file) as npz: lines = npz["lpos"][:, :, :2] # image = cv2.imread(file.replace("_label.npz", ".png")) image = None save_heatmap(file[:-10], image, lines) print(file)
495315
import xlwt book = xlwt.Workbook() for magn in (0, 60, 100, 75, 150): for preview in (False, True): sheet = book.add_sheet('magn%d%s' % (magn, "np"[preview])) if preview: sheet.preview_magn = magn else: sheet.normal_magn = magn sheet.page_preview = preview for rowx in range(100): sheet.write(rowx, 0, "Some text") book.save("zoom_magnification.xls")
495320
import argparse from utils import get_logger logger = get_logger() arg_lists = [] parser = argparse.ArgumentParser() def str2bool(v): return v.lower() in ('true') def add_argument_group(name): arg = parser.add_argument_group(name) arg_lists.append(arg) return arg # Network net_arg = add_argument_group('Network') net_arg.add_argument('--network_type', type=str, choices=['seq2seq', 'classification'], default='classification') net_arg.add_argument('--nas_type', type=str, choices=['NAS_RNN'], default='NAS_RNN') net_arg.add_argument('--nas', type=str2bool, default=True) # Controller net_arg.add_argument('--num_blocks', type=int, default=6) net_arg.add_argument('--use_highway_connections', type=str2bool, default=True) net_arg.add_argument('--tie_weights', type=str2bool, default=True) net_arg.add_argument('--controller_hid', type=int, default=100) # Shared parameters for PTB net_arg.add_argument('--model_type', type=str, default='max-pool', choices=['max-pool']) net_arg.add_argument('--dropout', type=float, default=0.5) net_arg.add_argument('--dropoute', type=float, default=0.1) net_arg.add_argument('--dropouti', type=float, default=0.65) net_arg.add_argument('--dropouth', type=float, default=0.3) net_arg.add_argument('--use_variational_dropout', type=str2bool, default=False) net_arg.add_argument('--weight_init', type=float, default=None) net_arg.add_argument('--cell_type', type=str, default='lstm', choices=['lstm','gru']) net_arg.add_argument('--birnn', type=str2bool, default=True) net_arg.add_argument('--embed', type=int, default=256) net_arg.add_argument('--hid', type=int, default=256) net_arg.add_argument('--hidden_varient', type=str, default='gru', choices=['gru','simple']) net_arg.add_argument('--use_bias', type=str2bool, default=False) net_arg.add_argument('--num_layers', type=int, default=1) net_arg.add_argument('--num_classes', type=int, default=2) net_arg.add_argument('--rnn_max_length', type=int, default=35) net_arg.add_argument('--encoder_rnn_max_length', type=int, default=50) net_arg.add_argument('--decoder_rnn_max_length', type=int, default=20) net_arg.add_argument('--max_vocab_size', type=int, default=10000) net_arg.add_argument('--beam_size', type=int, default=1) net_arg.add_argument('--rnn_activations', type=eval, default="['tanh', 'ReLU', 'identity', 'sigmoid']") # Data data_arg = add_argument_group('Data') data_arg.add_argument('--dataset', type=str, default='') data_arg.add_argument('--vocab_file', type=str, default='data/glue_tasks/qnli/vocab') data_arg.add_argument('--use_glove_emb', type=str2bool, default=False) data_arg.add_argument('--use_elmo', type=str2bool, default=True) data_arg.add_argument('--use_precomputed_elmo', type=str2bool, default=True) data_arg.add_argument('--use_bert', type=str2bool, default=False) data_arg.add_argument('--glove_file_path', type=str, default='') # Training / test parameters learn_arg = add_argument_group('Learning') learn_arg.add_argument('--mode', type=str, default='train', choices=['train', 'derive', 'test', 'retrain', 'retest', 'val'], help='train: Training ENAS, derive: Deriving Architectures') learn_arg.add_argument('--batch_size', type=int, default=64) learn_arg.add_argument('--use_cas', type=str2bool, default=False) learn_arg.add_argument('--test_batch_size', type=int, default=1) learn_arg.add_argument('--max_epoch', type=int, default=20) learn_arg.add_argument('--entropy_mode', type=str, default='reward', choices=['reward', 'regularizer']) learn_arg.add_argument('--use_l2_regularization', type=str2bool, default=False) learn_arg.add_argument('--l2_reg_lambda', type=float, default=1e-7) learn_arg.add_argument('--use_block_sparse_regularization', type=str2bool, default=False) learn_arg.add_argument('--block_sparse_reg_lambda', type=float, default=1e-7) learn_arg.add_argument('--use_alcl_condition2', type=str2bool, default=False) learn_arg.add_argument('--alcl_l2_reg_lambda', type=float, default=1e-7) learn_arg.add_argument('--orthogonal_reg_lambda', type=float, default=1e-7) # Controller learn_arg.add_argument('--ppl_square', type=str2bool, default=False) learn_arg.add_argument('--reward_type', type=str, default='CIDEr') learn_arg.add_argument('--num_reward_batches', type=int, default=1) learn_arg.add_argument('--reward_c', type=int, default=80) learn_arg.add_argument('--ema_baseline_decay', type=float, default=0.95) learn_arg.add_argument('--discount', type=float, default=1.0) learn_arg.add_argument('--controller_max_step', type=int, default=500, help='step for controller parameters') learn_arg.add_argument('--controller_optim', type=str, default='adam') learn_arg.add_argument('--controller_lr', type=float, default=3.5e-4, help="will be ignored if --controller_lr_cosine=True") learn_arg.add_argument('--controller_grad_clip', type=float, default=0) learn_arg.add_argument('--tanh_c', type=float, default=2.5) learn_arg.add_argument('--softmax_temperature', type=float, default=5.0) learn_arg.add_argument('--entropy_coeff', type=float, default=1e-4) learn_arg.add_argument('--use_softmax_tanh_c_temperature', type=str2bool, default=False) learn_arg.add_argument('--use_softmax_tanh_c', type=str2bool, default=False) # Shared parameters learn_arg.add_argument('--initial_step', type=int, default=0) learn_arg.add_argument('--max_step', type=int, default=200, help='step for model parameters') learn_arg.add_argument('--num_sample', type=int, default=1, help='# of Monte Carlo samples') learn_arg.add_argument('--optim', type=str, default='adam') learn_arg.add_argument('--lr', type=float, default=0.001) learn_arg.add_argument('--use_decay_lr', type=str2bool, default=False) learn_arg.add_argument('--decay', type=float, default=0.96) learn_arg.add_argument('--decay_after', type=float, default=15) learn_arg.add_argument('--l2_reg', type=float, default=1e-7) learn_arg.add_argument('--grad_clip', type=float, default=0.25) learn_arg.add_argument('--use_batchnorm', type=str2bool, default=False) learn_arg.add_argument('--use_node_batchnorm', type=str2bool, default=False) learn_arg.add_argument('--batchnorm_momentum', type=float, default=0.1) # Deriving Architectures learn_arg.add_argument('--derive_num_sample', type=int, default=100) # Misc misc_arg = add_argument_group('Misc') misc_arg.add_argument('--model_name', type=str, default='') misc_arg.add_argument('--load_path', type=str, default='') misc_arg.add_argument('--load_dag', type=str, default='') misc_arg.add_argument('--continue_training', type=str2bool, default=False) misc_arg.add_argument('--use_alcl', type=str2bool, default=False) misc_arg.add_argument('--multitask', type=str, default=None) misc_arg.add_argument('--log_step', type=int, default=50) misc_arg.add_argument('--save_epoch', type=int, default=1) misc_arg.add_argument('--save_criteria', type=str, default='acc', choices=['acc','CIDEr', 'AVG', 'F1', 'invppl']) misc_arg.add_argument('--max_save_num', type=int, default=4) misc_arg.add_argument('--log_level', type=str, default='INFO', choices=['INFO', 'DEBUG', 'WARN']) misc_arg.add_argument('--log_dir', type=str, default='logs') misc_arg.add_argument('--data_dir', type=str, default='data') misc_arg.add_argument('--num_gpu', type=int, default=1) misc_arg.add_argument('--random_seed', type=int, default=1111) misc_arg.add_argument('--use_tensorboard', type=str2bool, default=True) def get_args(): args, unparsed = parser.parse_known_args() #print(args.multitask) if args.multitask is not None: args.multitask = args.multitask.split(",") if args.num_gpu > 0: setattr(args, 'cuda', True) else: setattr(args, 'cuda', False) if len(unparsed) > 1: logger.info(f"Unparsed args: {unparsed}") return args, unparsed
495334
import os from FinRL.finrl import config from FinRL.finrl import config_tickers if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) from FinRL.finrl.finrl_meta.preprocessor.yahoodownloader import YahooDownloader from FinRL.finrl.finrl_meta.preprocessor.preprocessors import FeatureEngineer, data_split import pandas as pd df = YahooDownloader(start_date = '2008-01-01', end_date = '2022-06-02', ticker_list = config_tickers.DOW_30_TICKER).fetch_data() fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) # add covariance matrix as states df = df.sort_values(['date', 'tic'], ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback = 252 for i in range(lookback, len(df.index.unique())): data_lookback = df.loc[i - lookback:i, :] price_lookback = data_lookback.pivot_table(index='date', columns='tic', values='close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date': df.date.unique()[lookback:], 'cov_list': cov_list, 'return_list': return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date', 'tic']).reset_index(drop=True) train = data_split(df, '2009-04-01','2020-03-31') import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A portfolio allocation environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day=0): # super(StockEnv, self).__init__() # money = 10 , scope = 1 self.day = day self.lookback = lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct = transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low=0, high=1, shape=(self.action_space,)) self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(self.state_space + len(self.tech_indicator_list), self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day, :] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory = [[1 / self.stock_dim] * self.stock_dim] self.date_memory = [self.data.date.unique()[0]] def step(self, actions): self.terminal = self.day >= len(self.df.index.unique()) - 1 if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(), 'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory, 'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() != 0: sharpe = (252 ** 0.5) * df_daily_return['daily_return'].mean() / \ df_daily_return['daily_return'].std() print("Sharpe: ", sharpe) print("=================================") return self.state, self.reward, self.terminal, {} else: weights = self.softmax_normalization(actions) self.actions_memory.append(weights) last_day_memory = self.data # load next state self.day += 1 self.data = self.df.loc[self.day, :] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0) portfolio_return = sum(((self.data.close.values / last_day_memory.close.values) - 1) * weights) log_portfolio_return = np.log(sum((self.data.close.values / last_day_memory.close.values) * weights)) # update portfolio value new_portfolio_value = self.portfolio_value * (1 + portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day, :] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0) self.portfolio_value = self.initial_amount # self.cost = 0 # self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory = [[1 / self.stock_dim] * self.stock_dim] self.date_memory = [self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator / denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory # print(len(date_list)) # print(len(asset_list)) df_account_value = pd.DataFrame({'date': date_list, 'daily_return': portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date # df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") tech_indicator_list = ['macd', 'rsi_30', 'cci_30', 'dx_30'] feature_dimension = len(tech_indicator_list) print(f"Feature Dimension: {feature_dimension}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": tech_indicator_list, "action_space": stock_dimension, "reward_scaling": 1e-1 } e_train_gym = StockPortfolioEnv(df=train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) from FinRL.finrl.agents.stablebaselines3.models import DRLAgent agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 10, "ent_coef": 0.005, "learning_rate": 0.0004} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=40000) agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=40000) trade = data_split(df,'2020-04-01', '2022-05-31') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) import torch import plotly.express as px from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models import pandas as pd from pypfopt import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns from pypfopt import objective_functions unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() import pyfolio from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts baseline_df = get_baseline( ticker="^DJI", start = '2020-07-01', end = '2021-09-01') baseline_df_stats = backtest_stats(baseline_df, value_col_name = 'close') baseline_returns = get_daily_return(baseline_df, value_col_name="close") dji_cumpod =(baseline_returns+1).cumprod()-1 from pyfolio import timeseries df_daily_return_a2c, df_actions_a2c = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return_ppo, df_actions_ppo = DRLAgent.DRL_prediction(model=trained_ppo, environment = e_trade_gym) time_ind = pd.Series(df_daily_return_a2c.date) a2c_cumpod =(df_daily_return_a2c.daily_return+1).cumprod()-1 ppo_cumpod =(df_daily_return_ppo.daily_return+1).cumprod()-1 DRL_strat_a2c = convert_daily_return_to_pyfolio_ts(df_daily_return_a2c) DRL_strat_ppo = convert_daily_return_to_pyfolio_ts(df_daily_return_ppo) perf_func = timeseries.perf_stats perf_stats_all_a2c = perf_func( returns=DRL_strat_a2c, factor_returns=DRL_strat_a2c, positions=None, transactions=None, turnover_denom="AGB") perf_stats_all_ppo = perf_func( returns=DRL_strat_ppo, factor_returns=DRL_strat_ppo, positions=None, transactions=None, turnover_denom="AGB") def extract_weights(drl_actions_list): a2c_weight_df = {'date':[], 'weights':[]} for i in range(len(drl_actions_list)): date = drl_actions_list.index[i] tic_list = list(drl_actions_list.columns) weights_list = drl_actions_list.reset_index()[list(drl_actions_list.columns)].iloc[i].values weight_dict = {'tic':[], 'weight':[]} for j in range(len(tic_list)): weight_dict['tic'] += [tic_list[j]] weight_dict['weight'] += [weights_list[j]] a2c_weight_df['date'] += [date] a2c_weight_df['weights'] += [pd.DataFrame(weight_dict)] a2c_weights = pd.DataFrame(a2c_weight_df) return a2c_weights a2c_weights = extract_weights(df_actions_a2c) ppo_weights = extract_weights(df_actions_ppo) import numpy as np from sklearn.model_selection import train_test_split from sklearn import datasets from sklearn import svm from sklearn import linear_model from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from math import sqrt from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.model_selection import cross_val_score from sklearn.tree import DecisionTreeRegressor def prepare_data(trainData): train_date = sorted(set(trainData.date.values)) X = [] for i in range(0, len(train_date) - 1): d = train_date[i] d_next = train_date[i+1] y = train.loc[train['date'] == d_next].return_list.iloc[0].loc[d_next].reset_index() y.columns = ['tic', 'return'] x = train.loc[train['date'] == d][['tic','macd','rsi_30','cci_30','dx_30']] train_piece = pd.merge(x, y, on = 'tic') train_piece['date'] = [d] * len(train_piece) X += [train_piece] trainDataML = pd.concat(X) X = trainDataML[tech_indicator_list].values Y = trainDataML[['return']].values return X, Y train_X, train_Y = prepare_data(train) rf_model = RandomForestRegressor(max_depth = 35, min_samples_split = 10, random_state = 0).fit(train_X, train_Y.reshape(-1)) dt_model = DecisionTreeRegressor(random_state = 0, max_depth=35, min_samples_split = 10 ).fit(train_X, train_Y.reshape(-1)) svm_model = SVR(epsilon=0.14).fit(train_X, train_Y.reshape(-1)) lr_model = LinearRegression().fit(train_X, train_Y) def output_predict(model, reference_model=False): meta_coefficient = {"date": [], "weights": []} portfolio = pd.DataFrame(index=range(1), columns=unique_trade_date) initial_capital = 1000000 portfolio.loc[0, unique_trade_date[0]] = initial_capital for i in range(len(unique_trade_date) - 1): current_date = unique_trade_date[i] next_date = unique_trade_date[i + 1] df_current = df[df.date == current_date].reset_index(drop=True) tics = df_current['tic'].values features = df_current[tech_indicator_list].values df_next = df[df.date == next_date].reset_index(drop=True) if not reference_model: predicted_y = model.predict(features) mu = predicted_y Sigma = risk_models.sample_cov(df_current.return_list[0], returns_data=True) else: mu = df_next.return_list[0].loc[next_date].values Sigma = risk_models.sample_cov(df_next.return_list[0], returns_data=True) predicted_y_df = pd.DataFrame({"tic": tics.reshape(-1, ), "predicted_y": mu.reshape(-1, )}) min_weight, max_weight = 0, 1 ef = EfficientFrontier(mu, Sigma) weights = ef.nonconvex_objective( objective_functions.sharpe_ratio, objective_args=(ef.expected_returns, ef.cov_matrix), weights_sum_to_one=True, constraints=[ {"type": "ineq", "fun": lambda w: w - min_weight}, # greater than min_weight {"type": "ineq", "fun": lambda w: max_weight - w}, # less than max_weight ], ) weight_df = {"tic": [], "weight": []} meta_coefficient["date"] += [current_date] # it = 0 for item in weights: weight_df['tic'] += [item] weight_df['weight'] += [weights[item]] weight_df = pd.DataFrame(weight_df).merge(predicted_y_df, on=['tic']) meta_coefficient["weights"] += [weight_df] cap = portfolio.iloc[0, i] # current cash invested for each stock current_cash = [element * cap for element in list(weights.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_current.close)) # next time period price next_price = np.array(df_next.close) portfolio.iloc[0, i + 1] = np.dot(current_shares, next_price) portfolio = portfolio.T portfolio.columns = ['account_value'] portfolio = portfolio.reset_index() portfolio.columns = ['date', 'account_value'] stats = backtest_stats(portfolio, value_col_name='account_value') portfolio_cumprod = (portfolio.account_value.pct_change() + 1).cumprod() - 1 return portfolio, stats, portfolio_cumprod, pd.DataFrame(meta_coefficient) lr_portfolio, lr_stats, lr_cumprod, lr_weights = output_predict(lr_model) dt_portfolio, dt_stats, dt_cumprod, dt_weights = output_predict(dt_model) svm_portfolio, svm_stats, svm_cumprod, svm_weights = output_predict(svm_model) rf_portfolio, rf_stats, rf_cumprod, rf_weights = output_predict(rf_model) reference_portfolio, reference_stats, reference_cumprod, reference_weights = output_predict(None, True) def calculate_gradient(model, interpolated_input, actions, feature_idx, stock_idx, h = 1e-1): forward_input = interpolated_input forward_input[feature_idx + stock_dimension][stock_idx] += h forward_Q = model.policy.evaluate_actions(torch.FloatTensor(forward_input).reshape(-1,stock_dimension*(stock_dimension + feature_dimension)), torch.FloatTensor(actions).reshape(-1,stock_dimension)) interpolated_Q = model.policy.evaluate_actions(torch.FloatTensor(interpolated_input).reshape(-1,stock_dimension*(stock_dimension + feature_dimension)), torch.FloatTensor(actions).reshape(-1,stock_dimension)) forward_Q = forward_Q[0].detach().cpu().numpy()[0] interpolated_Q = interpolated_Q[0].detach().cpu().numpy()[0] return (forward_Q - interpolated_Q) / h import copy meta_Q = {"date": [], "feature": [], "Saliency Map": [], "algo": []} for algo in {"A2C", "PPO"}: if algo == "A2C": prec_step = 1e-2 else: prec_step = 1e-1 model = eval("trained_" + algo.lower()) df_actions = eval("df_actions_" + algo.lower()) for i in range(len(unique_trade_date) - 1): date = unique_trade_date[i] covs = trade[trade['date'] == date].cov_list.iloc[0] features = trade[trade['date'] == date][tech_indicator_list].values # N x K actions = df_actions.loc[date].values for feature_idx in range(len(tech_indicator_list)): int_grad_per_feature = 0 for stock_idx in range(features.shape[0]): # N int_grad_per_stock = 0 avg_interpolated_grad = 0 for alpha in range(1, 51): scale = 1 / 50 baseline_features = copy.deepcopy(features) baseline_noise = np.random.normal(0, 1, stock_dimension) baseline_features[:, feature_idx] = [0] * stock_dimension interpolated_features = baseline_features + scale * alpha * (features - baseline_features) # N x K interpolated_input = np.append(covs, interpolated_features.T, axis=0) interpolated_gradient = \ calculate_gradient(model, interpolated_input, actions, feature_idx, stock_idx, h=prec_step)[0] avg_interpolated_grad += interpolated_gradient * scale int_grad_per_stock = (features[stock_idx][feature_idx] - 0) * avg_interpolated_grad int_grad_per_feature += int_grad_per_stock meta_Q['date'] += [date] meta_Q['algo'] += [algo] meta_Q['feature'] += [tech_indicator_list[feature_idx]] meta_Q['Saliency Map'] += [int_grad_per_feature] meta_Q = pd.DataFrame(meta_Q) import statsmodels.api as sm meta_score_coef = {"date":[], "coef":[], "algo":[]} for algo in ["LR", "RF", "Reference Model", "SVM", "DT", "A2C", "PPO"]: if algo == "LR": weights = lr_weights elif algo == "RF": weights = rf_weights elif algo == "DT": weights = dt_weights elif algo == "SVM": weights = svm_weights elif algo == "A2C": weights = a2c_weights elif algo == "PPO": weights = ppo_weights else: weights = reference_weights for i in range(len(unique_trade_date) - 1): date = unique_trade_date[i] next_date = unique_trade_date[i+1] df_temp = df[df.date==date].reset_index(drop=True) df_temp_next = df[df.date==next_date].reset_index(drop=True) weight_piece = weights[weights.date == date].iloc[0]['weights'] piece_return = pd.DataFrame(df_temp_next.return_list.iloc[0].loc[next_date]).reset_index() piece_return.columns = ['tic', 'return'] X = df_temp[['macd','rsi_30', 'cci_30', 'dx_30', 'tic']] X_next = df_temp_next[['macd','rsi_30', 'cci_30', 'dx_30', 'tic']] piece = weight_piece.merge(X, on = 'tic').merge(piece_return, on = 'tic') piece['Y'] = piece['return'] * piece['weight'] X = piece[['macd','rsi_30', 'cci_30', 'dx_30']] X = sm.add_constant(X) Y = piece[['Y']] model = sm.OLS(Y,X) results = model.fit() meta_score_coef["coef"] += [(X * results.params).sum(axis = 0)] meta_score_coef["date"] += [date] meta_score_coef["algo"] += [algo] meta_score_coef = pd.DataFrame(meta_score_coef) performance_score = {"date":[], "algo":[], "score":[]} for i in range(0, len(unique_trade_date)): date_ = unique_trade_date[i] if len(meta_score_coef[(meta_score_coef['date'] == date_)]) == 0: continue lr_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'LR')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values rf_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'RF')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values reference_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'Reference Model')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values dt_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'DT')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values svm_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'SVM')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values saliency_coef_a2c = meta_Q[(meta_Q['date'] == date_) & (meta_Q['algo'] == "A2C")]['Saliency Map'].values saliency_coef_ppo = meta_Q[(meta_Q['date'] == date_) & (meta_Q['algo'] == "PPO")]['Saliency Map'].values lr_score = np.corrcoef(lr_coef, reference_coef)[0][1] rf_score = np.corrcoef(rf_coef, reference_coef)[0][1] dt_score = np.corrcoef(dt_coef, reference_coef)[0][1] svm_score = np.corrcoef(svm_coef, reference_coef)[0][1] saliency_score_a2c = np.corrcoef(saliency_coef_a2c, reference_coef)[0][1] saliency_score_ppo = np.corrcoef(saliency_coef_ppo, reference_coef)[0][1] for algo in ["LR","A2C","PPO","RF","DT", "SVM"]: performance_score["date"] += [date_] performance_score["algo"] += [algo] if algo == "LR": score = lr_score elif algo == "RF": score = rf_score elif algo == "DT": score = dt_score elif algo == "A2C": score = saliency_score_a2c elif algo == "SVM": score = svm_score else: score = saliency_score_ppo performance_score["score"] += [score] performance_score = pd.DataFrame(performance_score) multi_performance_score = {"date":[], "algo":[], "score":[]} window = 20 for i in range(len(unique_trade_date) - window ): date_ = unique_trade_date[i] if len(meta_score_coef[(meta_score_coef['date'] == date_)]) == 0: continue lr_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'LR')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values rf_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'RF')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values reference_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'Reference Model')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values for w in range(1, window): date_f = unique_trade_date[i + w] prx_coef = meta_score_coef[(meta_score_coef['date'] == date_f) & (meta_score_coef['algo'] == 'Reference Model')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values reference_coef += prx_coef reference_coef = reference_coef / window dt_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'DT')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values svm_coef = meta_score_coef[(meta_score_coef['date'] == date_) & (meta_score_coef['algo'] == 'SVM')]['coef'].values[0][['macd','rsi_30','cci_30','dx_30']].values saliency_coef_a2c = meta_Q[(meta_Q['date'] == date_) & (meta_Q['algo'] == "A2C")]['Saliency Map'].values saliency_coef_ppo = meta_Q[(meta_Q['date'] == date_) & (meta_Q['algo'] == "PPO")]['Saliency Map'].values lr_score = np.corrcoef(lr_coef, reference_coef)[0][1] rf_score = np.corrcoef(rf_coef, reference_coef)[0][1] dt_score = np.corrcoef(dt_coef, reference_coef)[0][1] svm_score = np.corrcoef(svm_coef, reference_coef)[0][1] saliency_score_a2c = np.corrcoef(saliency_coef_a2c, reference_coef)[0][1] saliency_score_ppo = np.corrcoef(saliency_coef_ppo, reference_coef)[0][1] for algo in ["LR", "A2C", "RF", "PPO", "DT", "SVM"]: multi_performance_score["date"] += [date_] multi_performance_score["algo"] += [algo] if algo == "LR": score = lr_score elif algo == "RF": score = rf_score elif algo == "DT": score = dt_score elif algo == "A2C": score = saliency_score_a2c elif algo == "SVM": score = svm_score else: score = saliency_score_ppo multi_performance_score["score"] += [score] multi_performance_score = pd.DataFrame(multi_performance_score) from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go trace1_portfolio = go.Scatter(x = time_ind, y = a2c_cumpod, mode = 'lines', name = 'A2C') trace2_portfolio = go.Scatter(x = time_ind, y = ppo_cumpod, mode = 'lines', name = 'PPO') trace3_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace4_portfolio = go.Scatter(x = time_ind, y = lr_cumprod, mode = 'lines', name = 'LR') trace5_portfolio = go.Scatter(x = time_ind, y = rf_cumprod, mode = 'lines', name = 'RF') trace6_portfolio = go.Scatter(x = time_ind, y = dt_cumprod, mode = 'lines', name = 'DT') trace7_portfolio = go.Scatter(x = time_ind, y = svm_cumprod, mode = 'lines', name = 'SVM') fig = go.Figure() fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.add_trace(trace3_portfolio) fig.add_trace(trace4_portfolio) fig.add_trace(trace5_portfolio) fig.add_trace(trace6_portfolio) fig.add_trace(trace7_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) fig.update_layout(title={ # 'text': "Cumulative Return using FinRL", 'y': 0.85, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}) fig.update_layout( paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', xaxis_title="Date", yaxis=dict(titlefont=dict(size=30), title="Cumulative Return"), font=dict( size=40, ), ) fig.update_layout(font_size=20) fig.update_traces(line=dict(width=2)) fig.update_xaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() meta_score = {"Annual return":[], "Annual volatility":[], "Max drawdown":[], "Sharpe ratio":[], "Algorithm":[], "Calmar ratio":[]} for name in ["LR", "A2C", "RF", "Reference Model", "PPO", "SVM", "DT", "DJI"]: if name == "DT": annualreturn = dt_stats["Annual return"] annualvol = dt_stats["Annual volatility"] sharpeRatio = dt_stats["Sharpe ratio"] maxdradown = dt_stats["Max drawdown"] calmarratio = dt_stats["Calmar ratio"] elif name == "LR": annualreturn = lr_stats["Annual return"] annualvol = lr_stats["Annual volatility"] sharpeRatio = lr_stats["Sharpe ratio"] maxdradown = lr_stats["Max drawdown"] calmarratio = lr_stats["Calmar ratio"] elif name == "SVM": annualreturn = svm_stats["Annual return"] annualvol = svm_stats["Annual volatility"] sharpeRatio = svm_stats["Sharpe ratio"] maxdradown = svm_stats["Max drawdown"] calmarratio = svm_stats["Calmar ratio"] elif name == "RF": annualreturn = rf_stats["Annual return"] annualvol = rf_stats["Annual volatility"] sharpeRatio = rf_stats["Sharpe ratio"] maxdradown = rf_stats["Max drawdown"] calmarratio = rf_stats["Calmar ratio"] elif name == "Reference Model": annualreturn = reference_stats["Annual return"] annualvol = reference_stats["Annual volatility"] sharpeRatio = reference_stats["Sharpe ratio"] maxdradown = reference_stats["Max drawdown"] calmarratio = reference_stats["Calmar ratio"] elif name == "PPO": annualreturn = perf_stats_all_ppo["Annual return"] annualvol = perf_stats_all_ppo["Annual volatility"] sharpeRatio = perf_stats_all_ppo["Sharpe ratio"] maxdradown = perf_stats_all_ppo["Max drawdown"] calmarratio = perf_stats_all_ppo["Calmar ratio"] elif name == "DJI": annualreturn = baseline_df_stats["Annual return"] annualvol = baseline_df_stats["Annual volatility"] sharpeRatio = baseline_df_stats["Sharpe ratio"] maxdradown = baseline_df_stats["Max drawdown"] calmarratio = baseline_df_stats["Calmar ratio"] else: annualreturn = perf_stats_all_a2c["Annual return"] annualvol = perf_stats_all_a2c["Annual volatility"] sharpeRatio = perf_stats_all_a2c["Sharpe ratio"] maxdradown = perf_stats_all_a2c["Max drawdown"] calmarratio = perf_stats_all_a2c["Calmar ratio"] meta_score["Algorithm"] += [name] meta_score["Annual return"] += [annualreturn] meta_score["Annual volatility"] += [annualvol] meta_score["Max drawdown"] += [maxdradown] meta_score["Sharpe ratio"] += [sharpeRatio] meta_score["Calmar ratio"] += [calmarratio] meta_score = pd.DataFrame(meta_score).sort_values("Sharpe ratio") postiveRatio = pd.DataFrame(performance_score.groupby("algo").apply(lambda x : np.mean(x['score']))) postiveRatio = postiveRatio.reset_index() postiveRatio.columns = ['algo', 'avg_correlation_coefficient'] postiveRatio['Sharpe Ratio'] = [0] * 6 # postiveRatio.plot.bar(x = 'algo', y = 'avg_correlation_coefficient') postiveRatiom = pd.DataFrame(multi_performance_score.groupby("algo").apply(lambda x : np.mean(x['score']))) postiveRatiom = postiveRatiom.reset_index() postiveRatiom.columns = ['algo', 'avg_correlation_coefficient'] postiveRatiom['Sharpe Ratio'] = [0] * 6 # postiveRatiom.plot.bar(x = 'algo', y = 'avg_correlation_coefficient') for algo in ['A2C', 'PPO', 'LR','DT', 'RF', 'SVM']: postiveRatio.loc[postiveRatio['algo'] == algo, 'Sharpe Ratio'] = meta_score.loc[meta_score['Algorithm'] == algo,'Sharpe ratio'].values[0] postiveRatiom.loc[postiveRatio['algo'] == algo, 'Sharpe Ratio'] = meta_score.loc[meta_score['Algorithm'] == algo,'Sharpe ratio'].values[0] postiveRatio.sort_values("Sharpe Ratio", inplace= True) postiveRatiom.sort_values("Sharpe Ratio", inplace= True) import plotly.graph_objects as go from plotly.subplots import make_subplots # Create figure with secondary y-axis fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Scatter(x=postiveRatiom['algo'], y=postiveRatiom['Sharpe Ratio'], name="Sharpe Ratio", marker_size=15, line_width=5), secondary_y=True, ) fig.add_trace( go.Bar(x=postiveRatiom['algo'], y=postiveRatiom['avg_correlation_coefficient'], name="Multi-Step Average Correlation Coefficient ", width =0.38), secondary_y=False, ) fig.add_trace( go.Bar(x=postiveRatio['algo'], y=postiveRatio['avg_correlation_coefficient'], name="Single-Step Average Correlation Coefficient ", width =0.38), secondary_y=False, ) fig.update_layout( paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', ) fig.update_layout(legend=dict( yanchor="top", y=1.5, xanchor="right", x=0.95 )) fig.update_layout(font_size=15) # Set x-axis title fig.update_xaxes(title_text="Model") fig.update_xaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(showline=True, linecolor='black', showgrid=True, secondary_y=False, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') # Set y-axes titles fig.update_yaxes(title_text="Average Correlation Coefficient", secondary_y=False, range=[-0.1, 0.1]) fig.update_yaxes(title_text="Sharpe Ratio", secondary_y=True, range=[-0.5, 2.5]) fig.show() import plotly.graph_objects as go from plotly.subplots import make_subplots fig = make_subplots(rows=2, cols=3) trace0 = go.Histogram(x=performance_score[performance_score['algo'] == 'A2C']['score'].values, nbinsx=25, name='A2C', histnorm='probability') trace1 = go.Histogram(x=performance_score[performance_score['algo'] == 'PPO']['score'].values, nbinsx=25, name='PPO', histnorm='probability') trace2 = go.Histogram(x=performance_score[performance_score['algo'] == 'DT']['score'].values, nbinsx=25, name='DT', histnorm='probability') trace3 = go.Histogram(x=performance_score[performance_score['algo'] == 'LR']['score'].values, nbinsx=25, name='LR', histnorm='probability') trace4 = go.Histogram(x=performance_score[performance_score['algo'] == 'SVM']['score'].values, nbinsx=25, name='SVM', histnorm='probability') trace5 = go.Histogram(x=performance_score[performance_score['algo'] == 'RF']['score'].values, nbinsx=25, name='RF', histnorm='probability') fig.append_trace(trace0, 1, 1) fig.append_trace(trace1, 1, 2) fig.append_trace(trace2, 1, 3) fig.append_trace(trace3, 2, 1) fig.append_trace(trace4, 2, 2) fig.append_trace(trace5, 2, 3) # Update xaxis properties fig.update_xaxes(title_text="Correlation coefficient", row=2, col=2) fig.update_yaxes(title_text="Frequency", row=1, col=1) fig.update_yaxes(title_text="Frequency", row=2, col=1) fig.update_layout( paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', font=dict( size=18, ), ) fig.update_layout(legend=dict( yanchor="top", y=0.99, xanchor="left", x=1 )) fig.update_xaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() import plotly.graph_objects as go from plotly.subplots import make_subplots fig = make_subplots(rows=2, cols=3) trace0 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'A2C']['score'].values, nbinsx=25, name='A2C', histnorm='probability') trace1 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'PPO']['score'].values, nbinsx=25, name='PPO', histnorm='probability') trace2 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'DT']['score'].values, nbinsx=25, name='DT', histnorm='probability') trace3 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'LR']['score'].values, nbinsx=25, name='LR', histnorm='probability') trace4 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'SVM']['score'].values, nbinsx=25, name='SVM', histnorm='probability') trace5 = go.Histogram(x=multi_performance_score[multi_performance_score['algo'] == 'RF']['score'].values, nbinsx=25, name='RF', histnorm='probability') fig.update_layout(yaxis1=dict(range=[0, 0.2])) fig.update_layout(yaxis2=dict(range=[0, 0.2])) fig.update_layout(yaxis3=dict(range=[0, 0.4])) fig.update_layout(yaxis4=dict(range=[0, 0.4])) fig.update_layout(yaxis5=dict(range=[0, 0.4])) fig.update_layout(yaxis6=dict(range=[0, 0.4])) fig.append_trace(trace0, 1, 1) fig.append_trace(trace1, 1, 2) fig.append_trace(trace2, 1, 3) fig.append_trace(trace3, 2, 1) fig.append_trace(trace4, 2, 2) fig.append_trace(trace5, 2, 3) # Update xaxis properties fig.update_xaxes(title_text="Correlation coefficient", row=2, col=2) fig.update_yaxes(title_text="Frequency", row=1, col=1) fig.update_yaxes(title_text="Frequency", row=2, col=1) fig.update_layout( paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', font=dict( size=18, ), ) fig.update_layout(legend=dict( yanchor="top", y=0.99, xanchor="left", x=1 )) fig.update_xaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(showline=True, linecolor='black', showgrid=True, gridwidth=1, gridcolor='LightSteelBlue', mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() pass
495380
import json import os from os import listdir import os.path as osp import pickle import time from collections import OrderedDict, Counter import argparse import numpy as np import pathlib import joblib from gym.wrappers.monitoring.video_recorder import VideoRecorder from TeachMyAgent.run_utils.environment_args_handler import EnvironmentArgsHandler from TeachMyAgent.run_utils.student_args_handler import StudentArgsHandler from TeachMyAgent.teachers.teacher_controller import param_vec_to_param_dict from TeachMyAgent.students.spinup.utils.test_policy import load_policy_and_env as spinup_load_policy from TeachMyAgent.students.openai_baselines.ppo2.ppo2 import get_model as get_baselines_model from TeachMyAgent.students.ppo_utils import create_custom_vec_normalized_envs def get_student_type(save_path): ''' Returns 'spinup' or 'baselines' depending on how the logs look like. Args: save_path (str): Path containing logs ''' for root, _, files in os.walk(save_path): if 'progress.txt' in files: # Spinup return 'spinup' elif 'progress.csv' in files: # OpenAI Baselines return 'baselines' def load_training_infos(save_path): ''' Load hyperparameters stored in config.json. Args: save_path (str): Path containing logs ''' with open(osp.join(save_path, 'config.json')) as json_file: training_config = json.load(json_file) return training_config def get_baselines_last_checkpoint(path): ''' OpenAI Baselines students save multiple checkpoints of the model. This function only loads the last one. Args: save_path (str): Path containing checkpoints ''' last_checkpoint = -1 for f in listdir(path): if osp.isfile(osp.join(path, f)): try: checkpoint = int(f) last_checkpoint = f if checkpoint > int(last_checkpoint) else last_checkpoint except Exception: continue return last_checkpoint def load_env_params(save_path): ''' Load book-keeped information (e.g. training and test tasks along with the obtained reward). Args: save_path (str): Path containing logs ''' with open(osp.join(save_path, 'env_params_save.pkl'), "rb") as file: teacher_dict = pickle.load(file) return teacher_dict def get_training_test_size(teacher_dict): ''' Calculate size of test set used during training. Args: teacher_dict (dict): Dictionary of loaded logs. ''' param_to_count = teacher_dict["env_params_test"][0] nb_of_epochs = 0 for param in teacher_dict["env_params_test"]: if (param_to_count == param).all(): nb_of_epochs += 1 return int(len(teacher_dict["env_params_test"]) / nb_of_epochs) def load_training_test_set(save_path, order_by_best_rewards=None): ''' Load test set used during training. Args: save_path (str): Path containing logs order_by_best_rewards (str): If None => Do not order test set. If True => Order test set using rewards obtained from greatest to lowest If False => Order test set using rewards obtained from lowest to greatest Returns: list of tasks and list associated rewards ''' ### Get last training test episodes and sort them by total reward teacher_dict = load_env_params(save_path) test_set_size = get_training_test_size(teacher_dict) test_params_to_use = teacher_dict["env_params_test"][-test_set_size:] # nth last test_rewards_to_use = teacher_dict["env_test_rewards"][-test_set_size:] if order_by_best_rewards is not None: print("Getting test set tasks ordered by last return from {} to {} ..." .format("greatest" if order_by_best_rewards else "lowest", "lowest" if order_by_best_rewards else "greatest")) sorted_indexes_of_test_episodes = sorted(range(test_set_size), key=lambda k: test_rewards_to_use[k], reverse=order_by_best_rewards) # Sort with best results first else: print("Getting test set tasks as defined...") sorted_indexes_of_test_episodes = range(test_set_size) teacher_param_env_bounds = OrderedDict(teacher_dict["env_param_bounds"]) env_params_list = [param_vec_to_param_dict(teacher_param_env_bounds, test_params_to_use[i]) for i in sorted_indexes_of_test_episodes] associated_rewards_list = [test_rewards_to_use[i] for i in sorted_indexes_of_test_episodes] return env_params_list, associated_rewards_list def load_fixed_test_set(save_path, test_set_name): ''' Load a test set from a file. Args: save_path (str): Path containing test sets test_set_name (str): Name of the file containing the test set (do not add the extension) Returns: list of tasks ''' teacher_dict = load_env_params(save_path) teacher_param_env_bounds = OrderedDict(teacher_dict["env_param_bounds"]) test_param_vec = np.array(pickle.load(open("TeachMyAgent/teachers/test_sets/" + test_set_name + ".pkl", "rb"))) return [param_vec_to_param_dict(teacher_param_env_bounds, vec) for vec in test_param_vec] def load_env(save_path, load_test_env=False): ''' Load saved environment. Args: save_path (str): Path containing logs load_test_env (str): Name of the file containing the test set (do not add the extension) Returns: loaded environment ''' try: filename = osp.join(save_path, 'vars.pkl') state = joblib.load(filename) if load_test_env: env = state['test_env'] else: env = state['env'] except Exception as err: print("Unable to load envs : {}".format(err)) env = None return env def load_vectorized_env(save_path, env): try: filename = osp.join(save_path, 'vars.pkl') state = joblib.load(filename) env.__load_rms__(state["ob_rms"], state["ret_rms"]) except Exception as err: print("Unable to load Running Mean Stds : {}".format(err)) def run_policy(env, get_action, env_params_list, max_ep_len=None, episode_id=0, record=False, recording_path=None, no_render=False, use_baselines=False): ''' Run an episode of a trained policy. Args: env: Environment get_action: Policy function env_params_list: List of tasks among one must be loaded max_ep_len: Maximum number of steps allowed in the episode episode_id: Id of the episode to load in `env_params_list` record: Whether a video of the episode should be recorded recording_path: Path on which the video must be saved no_render: Whether the episode must be ran without a frame rendering it use_baselines: Whether the policy was trained using OpenAI Baselines ''' if record: if os.name == "nt": full_path = os.path.join(pathlib.Path().absolute(), recording_path) full_path_len = len(full_path) nb_char_to_remove = full_path_len - 245 if nb_char_to_remove > 0: recording_path = recording_path[:-nb_char_to_remove] video_recorder = VideoRecorder(env, recording_path + "_ep" + str(episode_id) + ".mp4", enabled=True) if use_baselines: env.get_raw_env().set_environment(**env_params_list[episode_id]) else: env.set_environment(**env_params_list[episode_id]) if use_baselines: _, o = env.reset() else: o = env.reset() r, d, ep_ret, ep_len, n = 0, False, 0, 0, 0 while True: if record and video_recorder.enabled: video_recorder.capture_frame() if not record and not no_render: env.render() time.sleep(1e-3) a = get_action(o) o, r, d, i = env.step(a) if use_baselines: ep_ret += i[0]["original_reward"][0] else: ep_ret += r ep_len += 1 if d or (ep_len == max_ep_len): print('Episode %d \t EpRet %.3f \t EpLen %d'%(episode_id, ep_ret, ep_len)) if record and video_recorder.enabled: video_recorder.close() video_recorder.enabled = False break return ep_ret def main(args): ''' Test a learned policy on tasks. Args: args: arguments defining what has to be run ''' if args.fixed_test_set is None: # training_config = load_training_infos(args.fpath) # nb_test_episodes_during_training = training_config["num_test_episodes"] \ # if "num_test_episodes" in training_config \ # else training_config["nb_test_episodes"] test_set_params, _ = load_training_test_set(args.fpath, args.bests) else: test_set_params = load_fixed_test_set(args.fpath, args.fixed_test_set) os.environ["CUDA_VISIBLE_DEVICES"] = "-1" student_type = get_student_type(args.fpath) env = None if args.load_env: env = load_env(args.fpath, args.use_test_env is not None) if env is None: env_fn, _, _, _ = EnvironmentArgsHandler.get_object_from_arguments(args) if student_type == "spinup": env = env_fn() elif student_type == "baselines": env, _ = create_custom_vec_normalized_envs(env_fn) load_vectorized_env(args.fpath, env) if student_type == 'spinup': get_action = spinup_load_policy(args.fpath, args.itr if args.itr >= 0 else 'last', args.deterministic) env._SET_RENDERING_VIEWPORT_SIZE(600, 400) elif student_type == 'baselines': ac_kwargs = dict() ac_kwargs['hidden_sizes'] = [int(layer) for layer in args.hidden_sizes.split("/")] nbatch_train = args.nb_env_steps * 1e6 // int(args.sample_size//args.batch_size) model = get_baselines_model(network=args.network, nbatch_train=nbatch_train, ob_space=env.observation_space, ac_space=env.action_space, env=env, nsteps=args.sample_size, ent_coef=args.ent_coef, vf_coef=args.vf_coef, hidden_sizes=ac_kwargs['hidden_sizes']) last_checkpoint = get_baselines_last_checkpoint(args.fpath + "/checkpoints/") model.load(args.fpath + "/checkpoints/" + last_checkpoint) # Careful : The recurrent version is not implemented here yet get_action = lambda o: model.step(o)[0] env.get_raw_env()._SET_RENDERING_VIEWPORT_SIZE(600, 400) else: raise Exception('Unknown student type.') if args.episode_ids == "-1": print("Testing the policy on the whole test set...") episodes = [i for i in range(len(test_set_params))] else: episodes = [int(id) for id in args.episode_ids.split("/")] rewards = [] for episode_id in episodes: r = run_policy(env, get_action, test_set_params, args.len, episode_id, args.record, args.recording_path, args.norender, use_baselines=student_type == 'baselines') rewards.append(r) env.close() return rewards def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_parser(): ''' Define arguments that can be used when testing a policy. ''' parser = argparse.ArgumentParser() parser.add_argument('--fpath', type=str) parser.add_argument('--len', '-l', type=int, default=0) parser.add_argument('--norender', '-nr', action='store_true') parser.add_argument('--itr', '-i', type=int, default=-1) parser.add_argument('--deterministic', '-d', action='store_true') parser.add_argument('--episode_ids', '-id', type=str, default="0") parser.add_argument('--bests', type=str2bool, default=None) parser.add_argument('--fixed_test_set', '-ts', type=str, default=None) parser.add_argument('--load_env', action='store_true') parser.add_argument('--use_test_env', action='store_true') parser.add_argument('--record', type=str2bool, default=False) parser.add_argument('--recording_path', type=str, default=None) EnvironmentArgsHandler.set_parser_arguments(parser) StudentArgsHandler.set_parser_arguments(parser) return parser if __name__ == '__main__': parser = get_parser() args = parser.parse_args() main(args)
495390
from django.contrib import admin from .models import ExtendedBacker admin.site.register(ExtendedBacker)
495409
import sys if sys.version[0] == 3: TimeoutError = TimeoutError else: TimeoutError = OSError class Timeout(TimeoutError): """Raised when the lock could not be acquired in *timeout* seconds.""" def __init__(self, lock_file): #: The path of the file lock. self.lock_file = lock_file def __str__(self): return "The file lock '{}' could not be acquired.".format(self.lock_file) __all__ = [ "Timeout", ]
495414
import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import os import os.path as osp import numpy as np import json import provider from sklearn.model_selection import train_test_split BASE_DIR = os.path.dirname(os.path.abspath(__file__)) TRAIN_FILES_MODELNET = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt')) TEST_FILES_MODELNET = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt')) MODELNET10_TRAIN_FILE = 'data/ModelNet10/trainShuffled_Relabel.h5' MODELNET10_TEST_FILE = 'data/ModelNet10/testShuffled_Relabel.h5' CHAIR_PATH = 'data/Chair' KEYPOINT_CHAIR_PATH = 'data/Chair/keypts_chair.mat' CHAIR_FILES = os.listdir(CHAIR_PATH) TRAIN_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'train' in f] VAL_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'val' in f] TEST_CHAIR_FILES = [osp.join(CHAIR_PATH,f) for f in CHAIR_FILES if 'test' in f] KEYPOINTNET_PATH = "/media/tianxing/Samsung 1T/ShapeNetCore/" def naive_read_pcd(path): lines = open(path, 'r').readlines() idx = -1 for i, line in enumerate(lines): if line.startswith('DATA ascii'): idx = i + 1 break lines = lines[idx:] lines = [line.rstrip().split(' ') for line in lines] data = np.asarray(lines) pc = np.array(data[:, :3], dtype=np.float) return pc def get_pointcloud(dataset, NUM_POINT=2048, shuffle=True): """ Load the dataset into memory """ if dataset == 'modelnet': train_file_idxs = np.arange(0, len(TRAIN_FILES_MODELNET)) data_train = [] label_train = [] for fn in range(len(TRAIN_FILES_MODELNET)): print('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TRAIN_FILES_MODELNET[fn]) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) data_train.append(current_data) label_train.append(current_label) result_train = np.vstack(data_train) label_train = np.concatenate(label_train, axis=None) if shuffle: X_train, y_train, _ = provider.shuffle_data(result_train, np.squeeze(label_train)) else: X_train, y_train = result_train, np.squeeze(label_train) data_test = [] label_test = [] for fn in range(len(TEST_FILES_MODELNET)): print('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES_MODELNET[fn]) current_data = current_data[:,0:NUM_POINT,:] current_label = np.squeeze(current_label) data_test.append(current_data) label_test.append(current_label) result_test = np.vstack(data_test) label_test = np.concatenate(label_test, axis=None) if shuffle: X_test, y_test, _ = provider.shuffle_data(result_test, np.squeeze(label_test)) else: X_test, y_test = result_test, np.squeeze(label_test) elif dataset == 'shapenet': shapenet_data, shapenet_label = provider.get_shapenet_data() shapenet_data = shapenet_data[:,0:NUM_POINT,:] X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle) elif dataset == 'shapenet_chair': shapenet_data, shapenet_label = provider.get_shapenet_data() shapenet_data = shapenet_data[:,0:NUM_POINT,:] shapenet_data, shapenet_label = shapenet_data[shapenet_label==17], shapenet_label[shapenet_label==17] X_train, X_test, y_train, y_test = train_test_split(shapenet_data, shapenet_label, test_size=0.2, random_state=42, shuffle=shuffle) elif dataset == 'modelnet10': current_data, current_label = provider.loadDataFile(MODELNET10_TRAIN_FILE) current_data = current_data[:,0:NUM_POINT,:] if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.loadDataFile(MODELNET10_TEST_FILE) current_data = current_data[:,0:NUM_POINT,:] if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == 'keypoint': current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == 'keypoint_10class': current_data, current_label = provider.load_mat_keypts(TRAIN_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) current_label[:, -10:] = np.arange(1, 11) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_train, y_train = current_data, current_label current_data, current_label = provider.load_mat_keypts(TEST_CHAIR_FILES, KEYPOINT_CHAIR_PATH, NUM_POINT) current_label[:, -10:] = np.arange(1, 11) if shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_test, y_test = current_data, current_label elif dataset == "keypointnet": json_path = osp.join(KEYPOINTNET_PATH, "annotations/all.json") annots = json.load(open(json_path)) X = [] y = [] for annot in annots: class_id = annot["class_id"] model_id = annot["model_id"] kpts = [] for kpt in annot["keypoints"]: kpts.append(kpt["xyz"]) pcd_path = osp.join(KEYPOINTNET_PATH, f"pcds/{class_id}/{model_id}.pcd") if os.path.exists(pcd_path): pcd = naive_read_pcd(pcd_path) pcd = pcd[0:NUM_POINT, :] else: continue if len(kpts) != 10: continue pcd = np.concatenate((pcd[:-10], kpts)) label = np.zeros(NUM_POINT-10) label = np.concatenate((label, np.ones(10))) X.append(pcd) y.append(label) current_data = np.array(X) current_label = np.array(y) if False and shuffle: current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) for i in range(current_data.shape[0]): # shuffle order of points in a single model, otherwise keypoints are always at the end idx = np.arange(current_data.shape[1]) np.random.shuffle(idx) current_data = current_data[:, idx, :] current_label = current_label[:, idx] current_label = np.squeeze(current_label) X_train, X_test, y_train, y_test = train_test_split(current_data, current_label, test_size=0.2, random_state=42, shuffle=shuffle) else: raise NotImplementedError() print(f'Dataset name: {dataset}') print(f'X_train: {X_train.shape}') print(f'X_test: {X_test.shape}') print(f'y_train: {y_train.shape}') print(f'y_test: {y_test.shape}') return X_train, X_test, y_train, y_test # debug if __name__ == "__main__": X_train, X_test, y_train, y_test = get_pointcloud('keypointnet') print(X_train) print(np.sum(y_train))
495423
from drawille import Canvas from timeit import timeit c = Canvas() frames = 1000 * 10 sizes = ((0, 0), (10, 10), (20, 20), (20, 40), (40, 20), (40, 40), (100, 100)) for x, y in sizes: c.set(0, 0) for i in range(y): c.set(x, i) r = timeit(c.frame, number=frames) print('{0}x{1}\t{2}'.format(x, y, r)) c.clear()
495452
from unittest import ( TestCase, main ) from source import ( CSTR, CINT, CConst ) from common import ( def_tokens, pypath, ee ) with pypath("..ply"): from ply.lex import lex # Defining a lexer affects `ply.yacc.LRParser.parse` invocations without # explicit `lexer` argument value because a new lexer overwrites existing lexer # inside `ply` (it's a global reference). def t_ANY(t): ".+" return t t_error = lambda _ : None def_tokens(globals()) lex() TEST_CCONST_VERBOSE = ee("TEST_CCONST_VERBOSE") class CConstTest(object): if TEST_CCONST_VERBOSE: def setUp(self): print("== " + self.data + " ==") def test(self): self.parsed = CConst.parse(self.data) self.back = str(self.parsed) self.assertIsInstance(self.parsed, self.expected_type) self.assertEqual(self.back, self.data) if TEST_CCONST_VERBOSE: def tearDown(self): print(self.back, repr(self.parsed)) def test_repr(self): parsed = CConst.parse(self.data) representation = repr(parsed) evaluated_repr = eval(representation) self.assertEqual(parsed, evaluated_repr) class AStringTest(CConstTest, TestCase): data = """an arbitrary string with new line and quoted "@" and Windows\r\nnewline""" expected_type = CSTR class CINTTest(CConstTest): expected_type = CINT class RegularIntTest(CINTTest): """ `CINT` assumes decimal representation of `int` without leading zeros to be regular. A regular CINT is assumed to be equal to a same valued `int` ignoring the absence of an appearance information. """ def test(self): super(RegularIntTest, self).test() self.assertEqual(self.parsed, self.parsed.v) class PositiveHexTest(CINTTest, TestCase): data = "0x1F000" class NegativeHexTest(CINTTest, TestCase): data = "-0xDEADBEEF" class PositiveDecimalTest1(RegularIntTest, TestCase): data = "1" class PositiveDecimalTest2(RegularIntTest, TestCase): data = "1223235324" class NegativeDecimalTest(RegularIntTest, TestCase): data = "-1" class LeadingZerosHexTest1(CINTTest, TestCase): data = "0x0001" class LeadingZerosHexTest2(CINTTest, TestCase): data = "0x000" class LeadingZerosBinTest1(CINTTest, TestCase): data = "0b01011010101" class LeadingZerosBinTest2(CINTTest, TestCase): data = "0b00000" class BinZeroTest(CINTTest, TestCase): data = "0b0" class DecimalZeroTest(RegularIntTest, TestCase): data = "0" class EmptyCINTTest(TestCase): def test(self): self.assertRaises(ValueError, lambda : CINT("")) class HexZeroTest(CINTTest, TestCase): data = "0x0" class TestCINTParser(TestCase): def test(self): self.assertEqual(CINT("0"), 0) def test_0x18(self): self.assertEqual(CINT("0x18"), CINT(24, 16, 2)) def test_0b11100111(self): # If difference of digits amount in two CINT does not affects # string form, then it is negligible. # Right CINT requires at least 0 digits, It does not result in leading # zeros. Left CINT requires 8 digits, according to original string # form. It has no leading zeros, apparently. So, CINTs are considered # equal. self.assertEqual(CINT("0b11100111"), CINT(231, 2, 0)) # Right CINT has 1 leading zero, CINTs are not equal. self.assertNotEqual(CINT("0b11100111"), CINT(231, 2, 9)) if __name__ == "__main__": main()
495508
import logging # from homeassistant.const import 'serial_port', 'config_file', 'code' # found advice in the homeassistant creating components manual # https://home-assistant.io/developers/creating_components/ # Import the device class from the component that you want to support from homeassistant.components.cover import ATTR_POSITION, CoverEntity from .const import DOMAIN # Home Assistant depends on 3rd party packages for API specific code. _LOGGER = logging.getLogger(__name__) SHUTTER_IDS = {"40", "41", "42", "47", "49", "4b", "4c", "4e", "70", "61"} def is_shutter(id): return any([id.startswith(i) for i in SHUTTER_IDS]) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Awesome Light platform.""" stick = hass.data[DOMAIN]['stick'] to_add = [DuofernShutter(device['id'], device['name'], stick, hass) for device in stick.config['devices'] if is_shutter(device['id']) and not device['id'] in hass.data[DOMAIN]['devices'].keys()] add_devices(to_add) class DuofernShutter(CoverEntity): """Representation of Duofern cover type device.""" def __init__(self, id, desc, stick, hass): """Initialize the shutter.""" self._id = id self._name = desc self._state = None self._stick = stick hass.data[DOMAIN]['devices'][id] = self @property def name(self): return self._name @property def current_cover_position(self): """Return the display name of this cover.""" return self._state @property def is_closed(self): """Return true if cover is close.""" return self._state == 0 @property def should_poll(self): """Whether this entity should be polled or uses subscriptions""" return False # TODO: Add config option for subscriptions over polling @property def unique_id(self): return self._id def open_cover(self): """roll up cover""" self._stick.command(self._id, "up") def close_cover(self): """close cover""" self._stick.command(self._id, "down") def stop_cover(self): """stop cover""" self._stick.command(self._id, "stop") def set_cover_position(self, **kwargs): """set position (100-position to make the default intuitive: 0%=closed, 100%=open""" position = kwargs.get(ATTR_POSITION) self._stick.command(self._id, "position", 100 - position) def update(self): """Fetch new state data for this cover. This is the only method that should fetch new data for Home Assistant. (no new data needs to be fetched, the stick updates itsself in a thread) (not the best style for homeassistant, I know. I'll port to asyncio if I find the time) """ try: self._state = 100 - self._stick.duofern_parser.modules['by_code'][self._id]['position'] except KeyError: self._state = None
495531
import pytest @pytest.fixture(autouse=True) def enable_db_access_for_all_tests(db): pass # https://blog.jerrycodes.com/no-http-requests/ @pytest.fixture(autouse=True) def no_http_requests(monkeypatch): def urlopen_mock(self, method, url, *args, **kwargs): raise RuntimeError( f"The test was about to {method} {self.scheme}://{self.host}{url}" ) monkeypatch.setattr( "urllib3.connectionpool.HTTPConnectionPool.urlopen", urlopen_mock )
495597
import uuid from typing import Optional, Union import pyrsistent from aioredis.client import Redis from pyrsistent.typing import PVector from .data import Todo class Storage: def __init__(self, *, redis: Redis, data_key: str) -> None: self.redis = redis self.data_key = data_key def build_item_key(self, mixed: Union[str, Todo, uuid.UUID]) -> str: uid = mixed.uid if isinstance(mixed, Todo) else mixed return ":".join((self.data_key, str(uid))) async def create_todo(self, todo: Todo) -> None: await self.redis.rpush(self.data_key, str(todo.uid)) await self.save_todo(todo) async def delete_todo(self, todo: Todo) -> int: redis = self.redis await redis.lrem(self.data_key, 0, str(todo.uid)) return await redis.delete(self.build_item_key(todo)) # type: ignore async def delete_todos(self) -> int: redis = self.redis counter = 0 for key in await redis.lrange(self.data_key, 0, -1): counter += await redis.delete(self.build_item_key(key)) await redis.delete(self.data_key) return counter async def get_todo(self, uid: uuid.UUID) -> Optional[Todo]: data = await self.redis.hgetall(self.build_item_key(uid)) if not data: return None return Todo.from_storage(data, uid=uid) async def list_todos(self) -> PVector[Todo]: redis = self.redis data = [] for key in await redis.lrange(self.data_key, 0, -1): uid = uuid.UUID(key) item_key = self.build_item_key(uid) data.append( Todo.from_storage(await redis.hgetall(item_key), uid=uid) ) return pyrsistent.v(*data) async def save_todo(self, todo: Todo) -> None: await self.redis.hset( self.build_item_key(todo), mapping=todo.to_storage() )
495614
import numpy as np from gym.spaces import Box from collections import deque # Implementation of SAGG-RIAC class SAGG_RIAC(): def __init__(self, min, max, continuous_competence=False): assert len(min) == len(max) self.maxlen = 200 self.regions = [[deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)]] self.region_bounds = [Box(min, max, dtype=np.float32)] self.interest = [0.] self.probas = [1.] self.nb_dims = len(min) self.window_cp = 100 self.temperature = 20 self.nb_split_attempts = 50 self.continuous_competence = continuous_competence self.max_difference = 0.3 self.init_size = max - min def update(self, goals, binary_competence, continuous_competence=None): if len(goals) > 0: new_split = False all_order = None regions = [None] * len(goals) for i, goal in enumerate(goals): for j, rb in enumerate(self.region_bounds): if rb.contains(goal): regions[i] = j break if self.continuous_competence: c_or_cps = continuous_competence else: c_or_cps = binary_competence # add new outcomes and goals to regions for reg, c_or_cp, goal in zip(regions, c_or_cps, goals): self.regions[reg][0].append(c_or_cp) self.regions[reg][1].append(goal) # check if need to split ind_split = [] new_bounds = [] new_sub_regions = [] for reg in range(self.nb_regions): if len(self.regions[reg][0]) > self.maxlen: # try nb_split_attempts splits best_split_score = 0 best_abs_interest_diff = 0 best_bounds = None best_sub_regions = None is_split = False for i in range(self.nb_split_attempts): sub_reg1 = [deque(), deque()] sub_reg2 = [deque(), deque()] # repeat until the two sub regions contain at least 1/10 of the mother region while len(sub_reg1[0]) < self.maxlen / 4 or len(sub_reg2[0]) < self.maxlen / 4: # decide on dimension dim = np.random.choice(range(self.nb_dims)) threshold = self.region_bounds[reg].sample()[dim] bounds1 = Box(self.region_bounds[reg].low, self.region_bounds[reg].high, dtype=np.float32) bounds1.high[dim] = threshold bounds2 = Box(self.region_bounds[reg].low, self.region_bounds[reg].high, dtype=np.float32) bounds2.low[dim] = threshold bounds = [bounds1, bounds2] valid_bounds = True if np.any(bounds1.high - bounds1.low < self.init_size / 5): valid_bounds = False if np.any(bounds2.high - bounds2.low < self.init_size / 5): valid_bounds = valid_bounds and False # perform split in sub regions sub_reg1 = [deque(), deque()] sub_reg2 = [deque(), deque()] for i, goal in enumerate(self.regions[reg][1]): if bounds1.contains(goal): sub_reg1[1].append(goal) sub_reg1[0].append(self.regions[reg][0][i]) else: sub_reg2[1].append(goal) sub_reg2[0].append(self.regions[reg][0][i]) sub_regions = [sub_reg1, sub_reg2] # compute interest interest = np.zeros([2]) for i in range(2): if self.continuous_competence: cp_window = min(len(sub_regions[i][0]), self.window_cp) cp = np.abs(np.array(sub_regions[i][0])[-cp_window].mean()) else: cp_window = min(len(sub_regions[i][0]) // 2, self.window_cp) cp = np.array(sub_regions[i][0])[- 2 * cp_window: - cp_window].mean() - np.array(sub_regions[i][0])[- cp_window:].mean() interest[i] = np.abs(cp) # compute score split_score = len(sub_reg1) * len(sub_reg2) * np.abs(interest[0] - interest[1]) if split_score >= best_split_score and np.abs(interest[0] - interest[1]) >= self.max_difference / 2 and valid_bounds: best_abs_interest_diff = np.abs(interest[0] - interest[1]) print(interest) best_split_score = split_score best_sub_regions = sub_regions best_bounds = bounds is_split = True if interest[0] >= interest[1]: order = [1, -1] else: order = [-1, 1] if is_split: ind_split.append(reg) if best_abs_interest_diff > self.max_difference: self.max_difference = best_abs_interest_diff else: self.regions[reg][0] = deque(np.array(self.regions[reg][0])[- int (3 * len(self.regions[reg][0]) / 4):], maxlen=self.maxlen + 1) self.regions[reg][1] = deque(np.array(self.regions[reg][1])[- int(3 * len(self.regions[reg][1]) / 4):], maxlen=self.maxlen + 1) new_bounds.append(best_bounds) new_sub_regions.append(best_sub_regions) # implement splits for i, reg in enumerate(ind_split): all_order = [0] * self.nb_regions all_order.pop(reg) all_order.insert(reg, order[0]) all_order.insert(reg, order[1]) new_split = True self.region_bounds.pop(reg) self.region_bounds.insert(reg, new_bounds[i][0]) self.region_bounds.insert(reg, new_bounds[i][1]) self.regions.pop(reg) self.regions.insert(reg, new_sub_regions[i][0]) self.regions.insert(reg, new_sub_regions[i][1]) self.interest.pop(reg) self.interest.insert(reg, 0) self.interest.insert(reg, 0) self.probas.pop(reg) self.probas.insert(reg, 0) self.probas.insert(reg, 0) # recompute interest for i in range(self.nb_regions): if len(self.regions[i][0]) > 10: if self.continuous_competence: cp_window = min(len(self.regions[i][0]), self.window_cp) cp = np.abs(np.array(self.regions[i][0])[-cp_window].mean()) else: cp_window = min(len(self.regions[i][0]) // 2, self.window_cp) cp = np.array(self.regions[i][0])[- 2 * cp_window: - cp_window].mean() - np.array(self.regions[i][0])[- cp_window:].mean() else: cp = 0 self.interest[i] = np.abs(cp) exp_int = np.exp(self.temperature * np.array(self.interest)) probas = exp_int / exp_int.sum() self.probas = probas.tolist() assert len(self.probas) == len(self.regions) return new_split, all_order else: return False, None def sample_goal(self): # sample region if np.random.rand() < 0.2: region_id = np.random.choice(range(self.nb_regions)) else: region_id = np.random.choice(range(self.nb_regions), p=np.array(self.probas)) # sample goal goal = self.region_bounds[region_id].sample() return goal @property def nb_regions(self): return len(self.regions) @property def get_regions(self): return self.region_bounds
495706
import os import sys DATA_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.abspath(os.path.dirname(DATA_DIR))) from selenium import webdriver from Screenshot import Screenshot_Clipping from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager def test_full_screenshot(): ob = Screenshot_Clipping.Screenshot() driver = webdriver.Chrome(ChromeDriverManager(log_level=0).install()) url = "https://github.com/sam4u3/Selenium_Screenshot/tree/master/test" driver.get(url) img_url = ob.full_Screenshot(driver, save_path=r'.',image_name='Myimage.png',is_load_at_runtime=True,load_wait_time=3) os.remove(img_url) driver.close() driver.quit() def test_element_screenshot(): ob = Screenshot_Clipping.Screenshot() driver = webdriver.Chrome(ChromeDriverManager(log_level=0).install()) url = "https://github.com/PyWizards/Selenium_Screenshot" driver.get(url) element = driver.find_element_by_class_name('pagehead-actions') img_url = ob.get_element(driver, element, r'.') os.remove(img_url) driver.close() driver.quit() def test_hide_element(): ob = Screenshot_Clipping.Screenshot() driver = webdriver.Chrome(ChromeDriverManager(log_level=0).install()) url = "https://github.com/sam4u3" driver.get(url) hide_elements = ['class=avatar width-full height-full avatar-before-user-status'] # Use full class name img_url = ob.full_Screenshot(driver, save_path=r'.', elements=hide_elements, image_name='Myimage.png') os.remove(img_url) driver.close() driver.quit()
495728
class Solution: def isIsomorphic(self, s: str, t: str) -> bool: def convert(ss): d = {} return [d.setdefault(c, len(d)) for c in ss] return convert(s) == convert(t)
495740
from django.urls import path from .views import ResultListView, create_result, edit_results urlpatterns = [ path("create/", create_result, name="create-result"), path("edit-results/", edit_results, name="edit-results"), path("view/all", ResultListView.as_view(), name="view-results"), ]
495783
EVENT_MEET_GUIDE = 64 EVENT_DESOLATED_CABIN = 65 EVENT_TRAINER_K1_PRE_1 = 66 EVENT_ITEMBALL_K1_PRE_1 = 67 EVENT_TRAINER_K1_PRE_2 = 68 EVENT_TRAINER_K1_PRE_3 = 69 EVENT_TRAINER_K1_PRE_4 = 70 EVENT_TUTORIAL_WILLOW = 71 EVENT_K1_PRE_COMPLETE = 72 EVENT_ITEMBALL_K1_POST_1 = 73 EVENT_SHOWED_METAPOD = 74 EVENT_TRAINER_K1_POST_1 = 75 EVENT_ITEMBALL_K1_POST_2 = 76 EVENT_ITEMBALL_K1_POST_3 = 77 EVENT_K1_POST_ANCIENT_PUZZLE_SOLVED = 78 EVENT_TRAINER_K1_POST_2 = 79 EVENT_K1_POST_CORRUPTION_CLEANSED = 80 EVENT_TRAINER_K1_POST_3 = 81 EVENT_TRAINER_K2_PRE_1 = 82 EVENT_TRAINER_K2_PRE_2 = 83 EVENT_TRAINER_K2_PRE_3 = 84 EVENT_TRAINER_K2_PRE_4 = 85 EVENT_ITEMBALL_K2_PRE_1 = 86 EVENT_K2_PRE_COMPLETE = 87 EVENT_K2_POST_ANCIENT_PUZZLE_SOLVED = 88 EVENT_ITEMBALL_K2_POST_1 = 89 EVENT_ITEMBALL_K2_POST_2 = 90 EVENT_TRAINER_K2_POST_1 = 91 EVENT_TRAINER_K2_POST_2 = 92 EVENT_SPOKE_TO_HEYV = 93 EVENT_RECEIVED_CUT = 94 EVENT_ITEMBALL_K2_POST_3 = 95 EVENT_TRAINER_K3_PRE_1 = 96 EVENT_TRAINER_K3_PRE_2 = 97 EVENT_TRAINER_K3_PRE_3 = 98 EVENT_K3_PRE_GIRL_EVENT = 99 EVENT_TRAINER_K3_PRE_4 = 100 EVENT_TRAINER_K3_PRE_5 = 101 EVENT_TRAINER_K3_PRE_6 = 102 EVENT_TRAINER_K3_PRE_7 = 103 EVENT_TRAINER_K3_PRE_8 = 104 EVENT_TRAINER_K3_PRE_9 = 105 EVENT_K3_PRE_GIRL_SAVED = 106 EVENT_K3_PRE_COMPLETE = 107 EVENT_K3_VISITED_DELIRIA = 108 EVENT_K3_DELIRIA_LEFTOVERS = 109 EVENT_ITEMBALL_K3_POST_1 = 110 EVENT_ITEMBALL_K3_POST_2 = 111 EVENT_ITEMBALL_K3_POST_3 = 112 EVENT_ITEMBALL_K3_POST_4 = 113 EVENT_ITEMBALL_K3_POST_5 = 114 EVENT_ITEMBALL_K3_POST_6 = 115 EVENT_ITEMBALL_K3_POST_7 = 116 EVENT_ITEMBALL_K3_POST_8 = 117 EVENT_ITEMBALL_K3_POST_9 = 118 EVENT_K3_LAYLAH_BLESSING = 119 EVENT_YAHAHA_FIRST = 120 EVENT_YAHAHA_INITIATED = 121 EVENT_YAHAHA_SECOND = 122 EVENT_YAHAHA_THIRD = 123 EVENT_YAHAHA_FOURTH = 124 EVENT_YAHAHA_FIFTH = 125 EVENT_K4_SECRET_PATH = 126 EVENT_TRAINER_K4_PRE_1 = 127 EVENT_TRAINER_K4_PRE_2 = 128 EVENT_ITEMBALL_K4_PRE_1 = 129 EVENT_K4_STOCK_MARKET_PROFIT = 130 EVENT_K4_BICY_POCKET_FUCK = 131 EVENT_TRAINER_K4_PRE_3 = 132 EVENT_TRAINER_K4_PRE_4 = 133 EVENT_TRAINER_K4_PRE_5 = 134 EVENT_ITEMBALL_K4_PRE_2 = 135 EVENT_ITEMBALL_K4_PRE_3 = 136 EVENT_K4_PRE_COMPLETE = 137 EVENT_K4_FUN_VALUE_CHANGED = 138 EVENT_ITEMBALL_K4_POST_1 = 139 EVENT_ITEMBALL_K4_POST_2 = 140 EVENT_K4_POST_ANCIENT_PUZZLE_SOLVED = 141 EVENT_K5_PRE_NAME_REGISTERED = 142 EVENT_TRAINER_K5_PRE_1 = 143 EVENT_TRAINER_K5_PRE_2 = 144 EVENT_K5_PRE_ROCKETS_DEFEATED = 145 EVENT_TRAINER_K5_PRE_3 = 146 EVENT_TRAINER_K5_ROCKET_1 = 147 EVENT_TRAINER_K5_ROCKET_2 = 148 EVENT_TRAINER_K5_ROCKET_3 = 149 EVENT_TRAINER_K5_ROCKET_4 = 150 EVENT_TRAINER_K5_ROCKET_5 = 151 EVENT_TRAINER_K5_ROCKET_6 = 152 EVENT_ITEMBALL_K5_PRE_1 = 153 EVENT_ITEMBALL_K5_PRE_2 = 154 EVENT_ITEMBALL_K5_PRE_3 = 155 EVENT_ITEMBALL_K5_PRE_4 = 156 EVENT_K5_PRE_ROCKETS_DEFEATED_NEG = 157 EVENT_K5_PRE_COMPLETE = 158 EVENT_ITEMBALL_K5_POST_1 = 159 EVENT_K5_POST_PENTAKILL = 160 EVENT_TRAINER_K6_PRE_1 = 161 EVENT_TRAINER_K6_PRE_2 = 162 EVENT_TRAINER_K6_PRE_3 = 163 EVENT_ITEMBALL_K6_PRE_1 = 164 EVENT_K5_PRE_FLASH_HOUSE = 165 EVENT_K5_PRE_MATH_HOMEWORK = 166 EVENT_TRAINER_K6_PRE_4 = 167 EVENT_TRAINER_K6_PRE_5 = 168 EVENT_TRAINER_K6_PRE_6 = 169 EVENT_TRAINER_K6_PRE_7 = 170 EVENT_TRAINER_K6_PRE_8 = 171 EVENT_K6_PRE_COMPLETE = 172 EVENT_ITEMBALL_K6_POST_1 = 173 EVENT_ITEMBALL_K6_POST_2 = 174 EVENT_ITEMBALL_K6_POST_3 = 175 EVENT_ITEMBALL_K6_POST_4 = 176 EVENT_ITEMBALL_K6_POST_5 = 177 EVENT_ITEMBALL_K6_POST_6 = 178 EVENT_K6_POST_LOST_ITEM = 179 EVENT_K1_RADIO = 180 EVENT_K2_RADIO = 181 EVENT_K3_RADIO = 182 EVENT_K5_RADIO = 183 EVENT_K2_LAPTOP = 184 EVENT_ITEMBALL_FINAL_1 = 185 EVENT_ITEMBALL_FINAL_2 = 186 EVENT_ITEMBALL_FINAL_3 = 187 EVENT_ITEMBALL_FINAL_4 = 188 EVENT_ITEMBALL_FINAL_5 = 189 EVENT_ITEMBALL_FINAL_6 = 190 EVENT_ITEMBALL_FINAL_7 = 191 EVENT_MISSINGNO_DEFEATED = 192
495785
import logging import threading from datetime import datetime, timedelta from threading import Thread from apiclient import discovery logger = logging.getLogger(__name__) DELAY_SECS = 60 * 5 MAX_FOLDER_AGE_MINS = 60 # An hour class DriveCleanup: SCOPES = 'https://www.googleapis.com/auth/drive' drive = None stopped = False def __init__(self, credentials): self.drive = discovery.build(serviceName='drive', version='v3', credentials=credentials) self.stopped_event = threading.Event() def start(self): def job(): logger.info("Scheduled drive cleanup job") while not self.stopped: self._delete_old_no_raise() self.stopped_event.wait(DELAY_SECS) Thread(target=job).start() return self def stop(self): logger.info("Stopping drive cleanup job") self.stopped = True self.stopped_event.set() def _delete_old_no_raise(self): try: self._delete_old() except: logger.exception('Failed to delete old drive files') def _delete_old(self): logger.info("Searching for old drive folders") now = datetime.utcnow() max_folder_modification = (now - timedelta(minutes=MAX_FOLDER_AGE_MINS)).isoformat("T") query = "mimeType = 'application/vnd.google-apps.folder' and modifiedTime <= '{}'" \ .format(max_folder_modification) results = self.drive.files().list(q=query, fields="files(id, name)").execute() files = results.get('files', []) for file in files: file_id = file['id'] logger.info("Deleting old folder. id=" + file_id + ', name=' + file['name']) self.drive.files().delete(fileId=file_id).execute()
495791
import os, sys import os.path as osp import argparse import warnings import time import numpy as np from utils import paired_transforms_tv04 as p_tr from PIL import Image from skimage.io import imsave from skimage.util import img_as_ubyte from skimage.transform import resize import torch from models.get_model import get_arch from utils.model_saving_loading import load_model from skimage.measure import regionprops # argument parsing parser = argparse.ArgumentParser() required_named = parser.add_argument_group('required arguments') parser.add_argument('--model_path', help='experiments/subfolder where checkpoint is', default='experiments/wnet_drive') parser.add_argument('--im_path', help='path to image to be segmented', default=None) parser.add_argument('--mask_path', help='path to FOv mask, will be computed if not provided', default=None) parser.add_argument('--tta', type=str, default='from_preds', help='test-time augmentation (no/from_logits/from_preds)') parser.add_argument('--bin_thresh', type=float, default='0.4196', help='binarizing threshold') # im_size overrides config file parser.add_argument('--im_size', help='delimited list input, could be 600,400', type=str, default='512') parser.add_argument('--device', type=str, default='cpu', help='where to run the training code (e.g. "cpu" or "cuda:0") [default: %(default)s]') parser.add_argument('--result_path', type=str, default=None, help='path to save prediction)') from skimage import measure, draw import numpy as np from torchvision.transforms import Resize from scipy import optimize from skimage.filters import threshold_minimum from skimage.measure import regionprops from scipy.ndimage import binary_fill_holes from skimage.color import rgb2hsv from skimage.exposure import equalize_adapthist def get_circ(binary): # https://stackoverflow.com/a/28287741 image = binary.astype(int) regions = measure.regionprops(image) bubble = regions[0] y0, x0 = bubble.centroid r = bubble.major_axis_length / 2. def cost(params): x0, y0, r = params coords = draw.circle(y0, x0, r, shape=image.shape) template = np.zeros_like(image) template[coords] = 1 return -np.sum(template == image) x0, y0, r = optimize.fmin(cost, (x0, y0, r)) return x0, y0, r def create_circular_mask(sh, center=None, radius=None): # https://stackoverflow.com/a/44874588 h, w = sh if center is None: # use the middle of the image center = (int(w/2), int(h/2)) if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w-center[0], h-center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) mask = dist_from_center <= radius return mask def get_fov(img): im_s = img.size if max(im_s) > 500: img = Resize(500)(img) with np.errstate(divide='ignore'): im_v = equalize_adapthist(np.array(img))[:, :, 1] # im_v = equalize_adapthist(rgb2hsv(np.array(img))[:, :, 2]) thresh = threshold_minimum(im_v) binary = binary_fill_holes(im_v > thresh) x0, y0, r = get_circ(binary) fov = create_circular_mask(binary.shape, center=(x0, y0), radius=r) return Resize(im_s[ : :-1])(Image.fromarray(fov)) def crop_to_fov(img, mask): mask = np.array(mask).astype(int) minr, minc, maxr, maxc = regionprops(mask)[0].bbox im_crop = Image.fromarray(np.array(img)[minr:maxr, minc:maxc]) return im_crop, [minr, minc, maxr, maxc] def flip_ud(tens): return torch.flip(tens, dims=[1]) def flip_lr(tens): return torch.flip(tens, dims=[2]) def flip_lrud(tens): return torch.flip(tens, dims=[1, 2]) def create_pred(model, tens, mask, coords_crop, original_sz, bin_thresh, tta='no'): act = torch.sigmoid if model.n_classes == 1 else torch.nn.Softmax(dim=0) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') with torch.no_grad(): logits = model(tens.unsqueeze(dim=0).to(device)).squeeze(dim=0) pred = act(logits) if tta!='no': with torch.no_grad(): logits_lr = model(tens.flip(-1).unsqueeze(dim=0).to(device)).squeeze(dim=0).flip(-1) logits_ud = model(tens.flip(-2).unsqueeze(dim=0).to(device)).squeeze(dim=0).flip(-2) logits_lrud = model(tens.flip(-1).flip(-2).unsqueeze(dim=0).to(device)).squeeze(dim=0).flip(-1).flip(-2) if tta == 'from_logits': mean_logits = torch.mean(torch.stack([logits, logits_lr, logits_ud, logits_lrud]), dim=0) pred = act(mean_logits) elif tta == 'from_preds': pred_lr = act(logits_lr) pred_ud = act(logits_ud) pred_lrud = act(logits_lrud) pred = torch.mean(torch.stack([pred, pred_lr, pred_ud, pred_lrud]), dim=0) else: raise NotImplementedError pred = pred.detach().cpu().numpy()[-1] # this takes last channel in multi-class, ok for 2-class # Orders: 0: NN, 1: Bilinear(default), 2: Biquadratic, 3: Bicubic, 4: Biquartic, 5: Biquintic pred = resize(pred, output_shape=original_sz, order=3) full_pred = np.zeros_like(mask, dtype=float) full_pred[coords_crop[0]:coords_crop[2], coords_crop[1]:coords_crop[3]] = pred full_pred[~mask.astype(bool)] = 0 full_pred_bin = full_pred > bin_thresh return full_pred, full_pred_bin if __name__ == '__main__': args = parser.parse_args() if args.device.startswith("cuda"): # In case one has multiple devices, we must first set the one # we would like to use so pytorch can find it. os.environ['CUDA_VISIBLE_DEVICES'] = args.device.split(":",1)[1] if not torch.cuda.is_available(): raise RuntimeError("cuda is not currently available!") print(f"* Running prediction on device '{args.device}'...") device = torch.device("cuda") else: #cpu device = torch.device(args.device) bin_thresh = args.bin_thresh tta = args.tta model_name = 'wnet' model_path = args.model_path im_path = args.im_path im_loc = osp.dirname(im_path) im_name = im_path.rsplit('/', 1)[-1] mask_path = args.mask_path result_path = args.result_path if result_path is None: result_path = im_loc im_path_out = osp.join(result_path, im_name.rsplit('.', 1)[-2]+'_seg.png') im_path_out_bin = osp.join(result_path, im_name.rsplit('.', 1)[-2]+'_bin_seg.png') else: os.makedirs(result_path, exist_ok=True) im_path_out = osp.join(result_path, im_name.rsplit('.', 1)[-2]+'_seg.png') im_path_out_bin = osp.join(result_path, im_name.rsplit('.', 1)[-2] + '_bin_seg.png') im_size = tuple([int(item) for item in args.im_size.split(',')]) if isinstance(im_size, tuple) and len(im_size)==1: tg_size = (im_size[0], im_size[0]) elif isinstance(im_size, tuple) and len(im_size)==2: tg_size = (im_size[0], im_size[1]) else: sys.exit('im_size should be a number or a tuple of two numbers') print('* Segmenting image ' + im_path) img = Image.open(im_path) if mask_path is None: print('* FOV mask not provided, generating it') mask = get_fov(img) print('* FOV mask generated') else: mask = Image.open(mask_path).convert('L') mask = np.array(mask).astype(bool) img, coords_crop = crop_to_fov(img, mask) original_sz = img.size[1], img.size[0] # in numpy convention rsz = p_tr.Resize(tg_size) tnsr = p_tr.ToTensor() tr = p_tr.Compose([rsz, tnsr]) im_tens = tr(img) # only transform image print('* Instantiating model = ' + str(model_name)) model = get_arch(model_name).to(device) if model_name == 'wnet': model.mode='eval' print('* Loading trained weights from ' + model_path) model, stats = load_model(model, model_path, device) model.eval() print('* Saving prediction to ' + im_path_out) start_time = time.perf_counter() full_pred, full_pred_bin = create_pred(model, im_tens, mask, coords_crop, original_sz, bin_thresh=bin_thresh, tta=tta) with warnings.catch_warnings(): warnings.simplefilter("ignore") imsave(im_path_out, img_as_ubyte(full_pred)) imsave(im_path_out_bin, img_as_ubyte(full_pred_bin)) print('Done, time spent = {:.3f} secs'.format(time.perf_counter() - start_time))
495793
import os from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from bop_toolkit_lib import pycoco_utils import argparse from bop_toolkit_lib import config from bop_toolkit_lib import dataset_params from bop_toolkit_lib import inout from bop_toolkit_lib import misc # PARAMETERS (some can be overwritten by the command line arguments below). ################################################################################ p = { # Minimum visible surface fraction of a valid GT pose. # -1 == k most visible GT poses will be considered, where k is given by # the "inst_count" item loaded from "targets_filename". 'visib_gt_min': -1, # Names of files with detection results for which to calculate the Average Precisions # (assumed to be stored in folder p['results_path']). 'result_filenames': [ 'json/file/with/coco/results', ], # Folder with results to be evaluated. 'results_path': config.results_path, # Folder for the calculated pose errors and performance scores. 'eval_path': config.eval_path, # Folder with BOP datasets. 'datasets_path': config.datasets_path, # Annotation type that should be evaluated. Can be 'segm' or 'bbox'. 'ann_type': 'segm', # bbox type. Options: 'modal', 'amodal'. 'bbox_type': 'amodal', # File with a list of estimation targets to consider. The file is assumed to # be stored in the dataset folder. 'targets_filename': 'test_targets_bop19.json', } ################################################################################ # Command line arguments. # ------------------------------------------------------------------------------ parser = argparse.ArgumentParser() parser.add_argument('--result_filenames', default=','.join(p['result_filenames']), help='Comma-separated names of files with results.') parser.add_argument('--results_path', default=p['results_path']) parser.add_argument('--eval_path', default=p['eval_path']) parser.add_argument('--targets_filename', default=p['targets_filename']) parser.add_argument('--ann_type', default=p['ann_type']) parser.add_argument('--bbox_type', default=p['bbox_type']) args = parser.parse_args() p['result_filenames'] = args.result_filenames.split(',') p['results_path'] = str(args.results_path) p['eval_path'] = str(args.eval_path) p['targets_filename'] = str(args.targets_filename) p['ann_type'] = str(args.ann_type) p['bbox_type'] = str(args.bbox_type) # Evaluation. # ------------------------------------------------------------------------------ for result_filename in p['result_filenames']: misc.log('===========') misc.log('EVALUATING: {}'.format(result_filename)) misc.log('===========') # Parse info about the method and the dataset from the filename. result_name = os.path.splitext(os.path.basename(result_filename))[0] result_info = result_name.split('_') method = str(result_info[0]) dataset_info = result_info[1].split('-') dataset = str(dataset_info[0]) split = str(dataset_info[1]) split_type = str(dataset_info[2]) if len(dataset_info) > 2 else None # Load dataset parameters. dp_split = dataset_params.get_split_params( p['datasets_path'], dataset, split, split_type) model_type = 'eval' dp_model = dataset_params.get_model_params( p['datasets_path'], dataset, model_type) # Checking coco result file check_passed,_ = inout.check_coco_results(os.path.join(p['results_path'], result_filename), ann_type=p['ann_type']) if not check_passed: misc.log('Please correct the coco result format of {}'.format(result_filename)) exit() # Load coco resultsZ misc.log('Loading coco results...') coco_results = inout.load_json(os.path.join(p['results_path'], result_filename), keys_to_int=True) # Load the estimation targets. targets = inout.load_json(os.path.join(dp_split['base_path'], p['targets_filename'])) # Organize the targets by scene and image. misc.log('Organizing estimation targets...') targets_org = {} for target in targets: targets_org.setdefault(target['scene_id'], {}).setdefault(target['im_id'], {}) # Organize the results by scene. misc.log('Organizing estimation results...') results_org = {} for result in coco_results: if (p['ann_type'] == 'bbox' and result['bbox']) or (p['ann_type'] == 'segm' and result['segmentation']): results_org.setdefault(result['scene_id'], []).append(result) if not results_org: misc.log('No valid coco results for annotation type: {}'.format(p['ann_type'])) misc.log('Merging coco annotations and predictions...') # Merge coco scene annotations and results for i, scene_id in enumerate(dp_split['scene_ids']): scene_coco_ann_path = dp_split['scene_gt_coco_tpath'].format(scene_id=scene_id) if p['ann_type'] == 'bbox' and p['bbox_type'] == 'modal': scene_coco_ann_path = scene_coco_ann_path.replace('scene_gt_coco', 'scene_gt_coco_modal') scene_coco_ann = inout.load_json(scene_coco_ann_path, keys_to_int=True) scene_coco_results = results_org[scene_id] if scene_id in results_org else [] # filter target image ids target_img_ids = targets_org[scene_id].keys() scene_coco_ann['images'] = [img for img in scene_coco_ann['images'] if img['id'] in target_img_ids] scene_coco_ann['annotations'] = [ann for ann in scene_coco_ann['annotations'] if ann['image_id'] in target_img_ids] scene_coco_results = [res for res in scene_coco_results if res["image_id"] in target_img_ids] if i == 0: dataset_coco_ann = scene_coco_ann dataset_coco_results = scene_coco_results else: dataset_coco_ann, image_id_offset = pycoco_utils.merge_coco_annotations(dataset_coco_ann, scene_coco_ann) dataset_coco_results = pycoco_utils.merge_coco_results(dataset_coco_results, scene_coco_results, image_id_offset) #initialize COCO ground truth api cocoGt=COCO(dataset_coco_ann) cocoDt=cocoGt.loadRes(dataset_coco_results) # running evaluation cocoEval = COCOeval(cocoGt, cocoDt, p['ann_type']) cocoEval.params.imgIds = sorted(cocoGt.getImgIds()) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() res_type = ['AP', 'AP50', 'AP75', 'AP_small', 'AP_medium', 'AP_large', 'AR1', 'AR10', 'AR100', 'AR_small', 'AR_medium', 'AR_large'] coco_results = {res_type[i]:stat for i, stat in enumerate(cocoEval.stats)} # Save the final scores. os.makedirs(os.path.join(p['eval_path'], result_name), exist_ok=True) final_scores_path = os.path.join(p['eval_path'], result_name, 'scores_bop22_coco_{}.json'.format(p['ann_type'])) if p['ann_type'] == 'bbox' and p['bbox_type'] == 'modal': final_scores_path = final_scores_path.replace('.json', '_modal.json') inout.save_json(final_scores_path, coco_results)
495866
import copy import datetime import contextlib import six import traitlets import ipywidgets from .. import types # Copy the old implementation of `link` from traitlets 4.3.3. # traitlets >= 5.0.0 introduce a `!=` comparison when updating, # which fails on types that overload equality checking (like NumPy arrays, Images, etc.). # https://github.com/ipython/traitlets/blob/5.0.0/traitlets/traitlets.py#L296 # For our use here, the simpler older version works fine. # BEGIN copied from # https://github.com/ipython/traitlets/blob/4.3.3/traitlets/traitlets.py#L243-L302 def _validate_link(*tuples): """Validate arguments for traitlet link functions""" for t in tuples: if not len(t) == 2: raise TypeError( "Each linked traitlet must be specified as (HasTraits, 'trait_name'), not %r" % t ) obj, trait_name = t if not isinstance(obj, traitlets.HasTraits): raise TypeError("Each object must be HasTraits, not %r" % type(obj)) if trait_name not in obj.traits(): raise TypeError("%r has no trait %r" % (obj, trait_name)) class SimpleLink: """Link traits from different objects together so they remain in sync. Parameters ---------- source : (object / attribute name) pair target : (object / attribute name) pair """ updating = False def __init__(self, source, target): _validate_link(source, target) self.source, self.target = source, target try: setattr(target[0], target[1], getattr(source[0], source[1])) finally: source[0].observe(self._update_target, names=source[1]) target[0].observe(self._update_source, names=target[1]) @contextlib.contextmanager def _busy_updating(self): self.updating = True try: yield finally: self.updating = False def _update_target(self, change): if self.updating: return with self._busy_updating(): setattr(self.target[0], self.target[1], change.new) def _update_source(self, change): if self.updating: return with self._busy_updating(): setattr(self.source[0], self.source[1], change.new) def unlink(self): self.source[0].unobserve(self._update_target, names=self.source[1]) self.target[0].unobserve(self._update_source, names=self.target[1]) self.source, self.target = None, None # END copy class ReadOnlyDirectionalLink: "Like ipywidgets.dlink, but forcibly sets the values of read-only traits on `target`" # Copied with modifications from https://github.com/ipython/traitlets/blob/5.0.5/traitlets/traitlets.py#L317-L364 # NOTE: we don't just subclass `ipywidgets.dlink` because the internal implementations change a bit # between 4.3.3 and 5.x updating = False def __init__(self, source, target, transform=None): self._transform = transform if transform else lambda x: x _validate_link(source, target) self.source, self.target = source, target src_obj, src_trait = source try: self._update({"new": getattr(src_obj, src_trait)}) finally: src_obj.observe(self._update, names=src_trait) @contextlib.contextmanager def _busy_updating(self): self.updating = True try: yield finally: self.updating = False def _update(self, change): if self.updating: return with self._busy_updating(): target, target_trait = self.target target.set_trait(target_trait, self._transform(change["new"])) def unlink(self): self.source[0].unobserve(self._update, names=self.source[1]) class ProxytypeInstance(traitlets.Instance): """ Trait type that tries to promote values to a given Proxytype Example ------- >>> import traitlets >>> import descarteslabs.workflows as wf >>> from descarteslabs.workflows.interactive import ProxytypeInstance >>> class ProxyTraits(traitlets.HasTraits): # doctest: +SKIP ... int_list = ProxytypeInstance(klass=wf.List[wf.Int]) # doctest: +SKIP ... @traitlets.observe('int_list') # doctest: +SKIP ... def int_list_changed(self, change): # doctest: +SKIP ... print(f"new int list: {change['new']}") # doctest: +SKIP >>> pt = ProxyTraits() # doctest: +SKIP >>> pt.int_list = [1, 2, 3] # doctest: +SKIP new int list: <descarteslabs.workflows.types.containers.list_.List[Int] object at 0x...> >>> pt.int_list = [1, 2, "not an int"] # doctest: +SKIP TraitError: For parameter 'int_list', could not promote [1, 2, 'not an int'] to <class 'descarteslabs.workflows.types.containers.list_.List[Int]'>: List[Int]: Expected iterable values of type <class 'descarteslabs.workflows.types.primitives.number.Int'>, but for item 2, got 'not an int' """ def validate(self, obj, value): if isinstance(value, self.klass): return value else: try: return self.klass._promote(value) except types.ProxyTypeError as e: raise traitlets.TraitError( "For parameter {!r}, could not promote {!r} to {}: {}".format( self.name, value, self.klass, e ) ) py_type_to_trait = { bool: traitlets.CBool, int: traitlets.CInt, float: traitlets.CFloat, str: traitlets.CUnicode, list: traitlets.List, tuple: traitlets.Tuple, dict: traitlets.Dict, datetime.datetime: ipywidgets.trait_types.Datetime, datetime.date: ipywidgets.trait_types.Date, } def obj_to_trait(obj, name): """ Construct a ``traitlets.TraitType`` instance suitable for holding ``obj`` as ``name``, based on its type. If ``type(obj)`` is in the ``py_type_to_trait`` dict, it uses the associated trait type. If ``obj`` is a `Proxytype`, it returns a `ProxytypeInstance` trait (which will take new values and attempt to promote them to that `Proxytype`.) Otherwise, if ``obj`` is a HasTraits instance, it will use whatever trait type that object uses for its ``value`` trait. Parameters ---------- obj: bool, int, float, str, list, tuple, dict, datetime.datetime, datetime.date, Proxytype, or traitlets.HasTraits Create a trait to hold this value name: str Hold the trait under this name Returns ------- trait: traitlets.TraitType Instantiated TraitType that could be added to a HasTraits class. Raises ------ TypeError: If there's no registered TraitType to hold this type of value. If ``obj`` is a HasTraits instance without a ``value`` trait. """ type_ = type(obj) try: return py_type_to_trait[type_](name=name) except KeyError: if isinstance(obj, types.Proxytype): return ProxytypeInstance(name=name, klass=type_) elif isinstance(obj, traitlets.HasTraits): try: # get the descriptor (trait object) for the `value` trait trait = type_.value except AttributeError: raise TypeError( "Unsupported widget type {!r}, " "since it has no `value` trait".format(type_.__name__) ) else: new_trait = copy.deepcopy(trait) # hope this actually works... new_trait.name = name return new_trait raise TypeError( "Cannot accept parameter of type {!r}. Must be a Proxytype, or one of: {}".format( type_.__name__, ", ".join(t.__name__ for t in py_type_to_trait) ) ) py_type_to_widget = { bool: lambda **kwargs: ipywidgets.Checkbox( layout=ipywidgets.Layout(width="initial"), indent=False, **kwargs ), int: ipywidgets.IntText, float: ipywidgets.FloatText, str: lambda **kwargs: ipywidgets.Text(continuous_update=False, **kwargs), datetime.datetime: ipywidgets.DatePicker, datetime.date: ipywidgets.DatePicker, } def obj_to_widget(value, **kwargs): """ Construct an ipywidget for representing ``value``. ``type(value)`` must be in the ``py_type_to_widget`` dict. Parameters ---------- value: bool, int, float, str, datetime.datetime, datetime.date The value to make a widget control for **kwargs Additional keyword arguments to pass to the widget constructor Returns ------- widget: ipywidgets.Widget Widget initialized with ``value`` Raises ------ TypeError: If there's no registered widget type to represent this type of value. """ type_ = type(value) try: widget_type = py_type_to_widget[type_] except KeyError: raise TypeError("No widget to display a {!r}".format(type_.__name__)) else: return widget_type(value=value, **kwargs) class ParameterSet(traitlets.HasTraits): """ Parameters for a `WorkflowsLayer`, which updates the layer when new values are assigned. A `ParameterSet` is constructed automatically when calling `.Image.visualize` and added to the `WorkflowsLayer`; you shouldn't construct one manually. You can access a widget for interactively controlling these parameters at `widget`. Attributes ---------- widget: ipywidgets.Widget A widget showing a table of controls, linked to this `ParameterSet`. Updating the controls causes the map to update. Example ------- >>> import descarteslabs.workflows as wf >>> imgs = wf.ImageCollection.from_id( ... "sentinel-1:GRD", start_datetime=wf.parameter("start", wf.Datetime) ... ) >>> filtered = imgs.filter(lambda img: img.properties['pass'] == wf.parameter("pass_dir", wf.Str)) >>> composite = imgs.mean(axis="images").pick_bands("vv") >>> lyr = composite.visualize("vv mean", start=wf.Datetime(2018), pass_dir="ASCENDING") # doctest: +SKIP >>> params = lyr.parameters # doctest: +SKIP >>> # ^ get the ParameterSet for the layer >>> params.pass_dir # doctest: +SKIP "ASCENDING" >>> params.pass_dir = "DESCENDING" # doctest: +SKIP >>> # ^ this updates the layer on the map >>> params.start = "2019-01-01" # doctest: +SKIP >>> # ^ as does this >>> params.link("start", my_ipywidget) # doctest: +SKIP >>> # ^ this links the "start" parameter to an ipywidget's value Notes ----- The names and types of fields on a `ParameterSet` are fixed, and can only be changed using `update`. This means that on a `ParameterSet` that only has the field ``x``, which holds a float, ``params.x = "foo"`` will fail (wrong type), as will ``params.y = "bar"`` (``y`` doesn't exist). When `.Image.visualize` creates a `ParameterSet` for you, it adds fields for whichever parameter the imagery depends on. If ``img`` depends on ``wf.widgets.slider("slidey", 0, 1)`` and ``wf.parameter("td", wf.Timedelta)`` for example, then ``img.visualize("my layer", td=wf.Timedelta(days=2))`` will create the fields ``slidey`` and ``td``. More importantly, it infers the *type* of those fields from their parameter types, so ``slidey`` would only accept floats, and ``td`` would only accept Timedeltas. Therefore, if you experience a ``TypeError`` assiging to a `ParameterSet` field, you may need to change types of the initial parameters ``img`` depends on. """ def __init__(self, notify_object, notify_name, **traits): """ You shouldn't need to construct a ParameterSet manually, but here's how you would: Parameters ---------- notify_object: traitlets.HasTraits instance The object to notify when any of the traits on this `ParameterSet` change notify_name: str The ``name`` to use in the change notification sent to that object **traits: traitlets.TraitType instances The traits to add to this `ParameterSet` """ self._notify_object = notify_object self._notify_name = notify_name self._links = {} self.add_traits(**traits) self._order = tuple(traits) self.widget = self.make_widget() @traitlets.observe(traitlets.All, type=traitlets.All) def _on_change(self, change): self._notify_object.notify_change( traitlets.Bunch(change, name=self._notify_name, key=change["name"]) ) # ^ NOTE(gabe): Bunch is workaround for traitlets bug https://github.com/ipython/traitlets/pull/536 new_contents = self._make_widget_contents() self.widget.children = new_contents def link(self, name, target, attr="value"): """ Link an attribute to an ipywidget (or other object). If a link to the attribute was previously created, it is unlinked. Parameters ---------- name: str The name of the parameter to link target: ipywidgets.Widget, any traitlets.HasTraits instance, or None The object to link to. If None, any existing link to ``name`` is removed. attr: str, default "value" The name of the attribute on ``target`` to link to. Defaults to ``"value"``, since that works for most ipywidgets. Example ------- >>> import descarteslabs.workflows as wf >>> from ipywidgets import FloatSlider >>> img = wf.Image.from_id("landsat:LC08:PRE:TOAR:meta_LC80330352016022_v1") # doctest: +SKIP >>> img = img.pick_bands("red") # doctest: +SKIP >>> masked_img = img.mask(img > wf.parameter("threshold", wf.Float)) # doctest: +SKIP >>> layer = masked_img.visualize("sample", colormap="plasma", threshold=0.07) # doctest: +SKIP >>> layer.parameters.link("threshold", my_ipywidget) # doctest: +SKIP >>> # ^ links the "threshold" parameter to an ipywidget's value >>> layer2 = masked_img.visualize("sample", colormap="plasma", threshold=0.3) # doctest: +SKIP >>> layer2.parameters.link("threshold", layer.parameters, attr="threshold") # doctest: +SKIP >>> # ^ now the `threshold` parameter is linked between `layer` and `layer2` >>> widget = FloatSlider(min=0, max=1) # doctest: +SKIP >>> layer2.parameters.link("threshold", widget) # doctest: +SKIP >>> # ^ now `threshold` is linked to the widget, and the link is broken to `layer` """ current_link = self._links.get(name, None) if current_link is not None: current_link.unlink() if target is not None: with self.hold_trait_notifications(): link_type = ( ReadOnlyDirectionalLink if getattr(type(self), name).read_only else SimpleLink ) link = link_type((target, attr), (self, name)) self._links[name] = link else: if current_link is not None: del self._links[name] def to_dict(self): """ Key-value pairs of the parameters, in order. Example ------- >>> import descarteslabs.workflows as wf >>> img = wf.Image.from_id("landsat:LC08:PRE:TOAR:meta_LC80330352016022_v1") # doctest: +SKIP >>> img = img.pick_bands("red") # doctest: +SKIP >>> masked_img = img.mask(img > wf.parameter("threshold", wf.Float)) # doctest: +SKIP >>> layer = masked_img.visualize("sample", colormap="plasma", threshold=0.07) # doctest: +SKIP >>> layer.parameters.to_dict() # doctest: +SKIP {'threshold': 0.07} """ # return {name: getattr(self, name) for name in self._order} # since `add_traits`, `remove_traits` are still in the public API, # and we can't atomically `update` either, we must treat `self._order` # as just a "guideline" and handle extra names that should or shouldn't # be in it. names = set(self.trait_names()) dct = {} for name in self._order: try: dct[name] = getattr(self, name) except AttributeError: pass else: names.remove(name) for name in names: dct[name] = getattr(self, name) return dct def _make_widget_contents(self, skip=None): if skip is None: skip = () items = tuple((k, v) for k, v in six.iteritems(self.to_dict()) if k not in skip) if not items: return [] names, values = zip(*items) labels = [] widgets = [] for name, value in zip(names, values): link = self._links.get(name, None) if link is not None and link.source is not None: widget = link.source[0] if not isinstance(widget, ipywidgets.Widget): raise TypeError( "The parameter {!r} is already linked to the non-widget {}. " "To auto-generate controls for a ParameterSet, existing links must only be to widgets. " "Instead, manually construct this link (with `ipywidgets.link()`, not `self.link()`) " "*after* auto-generating the controls.".format(name, widget) ) label = getattr(widget, "_label", name) or name # ^ HACK: this magic attribute comes from `interactive/widgets`, where we stick any `label` # on the widget object as `_label`. Otherwise, here in `ParameterSet`, we wouldn't know # the longform label for the widget. And if we had actually set the label in `.description`, # then we'd end up with two labels for the widget (one from ParameterSet and one generated by the # widget itself). else: try: widget = obj_to_widget(value) except TypeError: widget = ipywidgets.Label( "No widget for {!r}".format(type(value).__name__) ) else: self.link(name, widget) label = name widgets.append(widget) labels.append(ipywidgets.Label(label)) labels_col = ipywidgets.VBox(labels) widgets_col = ipywidgets.VBox(widgets) control = ipywidgets.HBox([labels_col, widgets_col]) contents = [control] try: title = self._notify_object.name except AttributeError: pass else: contents.insert(0, ipywidgets.HTML("<b>{}</b>".format(title))) return contents def make_widget(self, skip=None): """ Make a widget for controlling these parameters. Widgets that were passed in or linked are displayed. For values that aren't already linked to a widget, an appropriate widget type is chosen if possible. Note that this widget can become out of date and unlinked once `update` is called; use the `widget` property for an always-up-to-date widget. Parameters ---------- skip: list[str] Sequence of parameter names to *not* include in the widget Returns ------- widget: ipywidgets.Widget or None A widget showing a table of controls, linked to this `ParameterSet`. Updating the widgets causes the map to update. If there are no parameters to display, returns None. Example ------- >>> import traitlets >>> import descarteslabs.workflows as wf >>> img = wf.Image.from_id("landsat:LC08:PRE:TOAR:meta_LC80330352016022_v1") # doctest: +SKIP >>> img = img.pick_bands("red") # doctest: +SKIP >>> masked_img = img.mask(img > wf.parameter("threshold", wf.Float)) # doctest: +SKIP >>> layer = masked_img.visualize("sample", colormap="plasma", threshold=0.07, sample_param=0.0) # doctest: +SKIP >>> layer.parameters.make_widget(skip=["sample_param"]) # doctest: +SKIP >>> # ^ displays a widget for modifying a layer's parameters, optionally skipping params """ return ipywidgets.VBox(self._make_widget_contents(skip=skip)) def update(self, **new_values): """ Update the `ParameterSet` with new values. New parameters are added as fields on the `ParameterSet`, with their trait type inferred from the value. Current parameters that are not present in ``new_values`` are removed from the `ParameterSet`. Passing a value of a different type to a current parameter will change its trait type. If a value is an ipywidgets Widget, it will be linked (via its ``"value"`` attribute) to that parameter. If a parameter was previously linked to a widget, and a different widget instance (or non-widget) is passed for its new value, the old widget is automatically unlinked. If the same widget instance is passed as is already linked, no change occurs. The `ParameterSet` will be reordered to the order of these new values. Parameters ---------- **new_values: JSON-serializable value, Proxytype, or ipywidgets.Widget Parameter names to new values. Values can be Python types, `Proxytype` instances, or ``ipywidgets.Widget`` instances. Example ------- >>> import descarteslabs.workflows as wf >>> from ipywidgets import FloatSlider >>> img = wf.Image.from_id("landsat:LC08:PRE:TOAR:meta_LC80330352016022_v1") # doctest: +SKIP >>> img = img.pick_bands("red") # doctest: +SKIP >>> masked_img = img.mask(img > wf.parameter("threshold", wf.Float)) # doctest: +SKIP >>> layer = masked_img.visualize("sample", colormap="plasma", threshold=0.07) # doctest: +SKIP >>> scaled_img = img * wf.parameter("scale", wf.Float) + wf.parameter("offset", wf.Float) # doctest: +SKIP >>> with layer.hold_trait_notifications(): # doctest: +SKIP ... layer.imagery = scaled_img # doctest: +SKIP ... layer.parameters.update(scale=FloatSlider(min=0, max=10, value=2), offset=2.5) # doctest: +SKIP >>> # ^ re-use the same layer instance for a new Image with different parameters """ old_order = self._order self._order = tuple(new_values) self._update_traits_for_new_values(new_values) self._assign_new_values(new_values) if self._order != old_order: # in case _just_ the order changed, but no values, ensure the # widget is still redrawn self.widget.children = self._make_widget_contents() # def update_values(self, **new_values): # """ # Update the current traits of the `ParameterSet` with new values. # Unlike `update`, this does not add, remove, or change the type of any fields. # If a value is an ipywidgets Widget, it will be linked (via its ``"value"`` attribute) # to that parameter. If a parameter was previously linked # to a widget, and a different widget instance (or non-widget) is passed # for its new value, the old widget is automatically unlinked. # If the same widget instance is passed as is already linked, no change occurs. # Parameters # ---------- # **new_values: JSON-serializable value, Proxytype, or ipywidgets.Widget # Parameter names to new values. Values can be Python types, # `Proxytype` instances, or ``ipywidgets.Widget`` instances. # All the names must already be traits of this `ParameterSet`, # and all values must be compatible with those current trait types. # Raises # ------ # ValueError: # If given a kwarg name that isn't already a trait # TypeError: # If given a value that's incompatible with the current trait type for that name # """ # for name in new_values: # if not self.has_trait(name): # raise ValueError( # f"The trait {name!r} does not exist in {self.trait_names()!r}" # ) # self._assign_new_values(new_values) def _update_traits_for_new_values(self, new_values): """ Add, remove, and change the type of traits to be compatible with new values. Parameters ---------- new_values: dict[str, any] Parameter names to new values. Values can be Python types, `Proxytype` instances, or ``ipywidgets.Widget`` instances. """ current_values = self.to_dict() current_traits = self.traits() current_names = six.viewkeys(current_traits) new_names = six.viewkeys(new_values) add_names = new_names - current_names remove_names = current_names - new_names new_traits = {} # check for same name, but trait type has changed for changed_name in new_names - add_names - remove_names: old_value = current_values[changed_name] new_value = new_values[changed_name] if new_value is old_value: # definitely don't need to change anything continue old_trait_type = type(current_traits[changed_name]) new_trait = obj_to_trait(new_value, changed_name) # todo handle error? if old_trait_type != type(new_trait) or isinstance( new_value, traitlets.HasTraits ): # by golly, the trait type has changed! # NOTE: we always replace when given a HasTraits instance, because though # the type of the trait descriptor may not have changed, all its attributes could have. remove_names.add(changed_name) new_traits[changed_name] = new_trait for name in remove_names: # unlink names we're removing self.link(name, None) self.remove_traits(*remove_names) new_traits.update( {name: obj_to_trait(new_values[name], name) for name in add_names} ) self.add_traits(**new_traits) def _assign_new_values(self, new_values): """ Assign new values to traits, directly or by linking If given an ipywidget as a value, it's linked to that trait, and any previous link is unlinked Parameters ---------- new_values: dict[str, any] Parameter names to new values. Values can be Python types, `Proxytype` instances, or ``ipywidgets.Widget`` instances. """ with self.hold_trait_notifications(): for name, value in six.iteritems(new_values): current_link = self._links.get(name, None) if current_link is not None: if value is not current_link.source[0]: # a new widget (or non-widget) is being used for this name; unlink the old one current_link.unlink() del self._links[name] current_link = None # we'll check this below if isinstance(value, traitlets.HasTraits): if current_link is None: link_type = ( ReadOnlyDirectionalLink if getattr(type(self), name).read_only else SimpleLink ) self._links[name] = link_type((value, "value"), (self, name)) self._notify_trait(name, getattr(self, name), value.value) else: self.set_trait(name, value) def add_traits(self, **traits): """ Dynamically add trait attributes to the HasTraits instance. If you are manipulating a ParameterSet generated from a layer, instead use :meth:`update <descarteslabs.workflows.interactive.ParameterSet.update>`, which handles adding and removing traits in a more delclarative way. Example ------- >>> import traitlets >>> import descarteslabs.workflows as wf >>> class Listener(traitlets.HasTraits): ... @traitlets.observe("param") ... def handler(self, change): ... print(change['key']) ... print(change) >>> listener = Listener() >>> ps = wf.interactive.ParameterSet(listener, "param", foo=traitlets.Float()) # doctest: +SKIP >>> ps.foo = 1.1 # doctest: +SKIP foo {'name': 'param', 'old': 0.0, 'new': 1.1, 'owner': ParameterSet({'foo': 1.1}), 'type': 'change', 'key': 'foo' } >>> ps.bar = "baz" # doctest: +SKIP >>> # ^ nothing is printed, `bar` is not a trait >>> ps.add_traits(bar=traitlets.Unicode()) # doctest: +SKIP >>> ps.bar # doctest: +SKIP '' >>> ps.bar = "quix" # doctest: +SKIP bar {'name': 'param', 'old': '', 'new': 'quix', 'owner': ParameterSet({'bar': 'quix', 'foo': 1.1}), 'type': 'change', 'key': 'bar' } """ # Normally, `HasTraits.add_traits` dynamically constructs a new type # that's a subclass of `type(self)`, appends *just* the new traits to that class's `__dict__`, # and modifies `self.__class__` to point at the new subtype, using inheritance # to make access on the existing traits fall back on the parent class. # This makes removing traits extremely difficult, since the trait you want to remove # may be defined some arbitrary depth up the MRO---and there's no way to know if it's safe # to mutate that parent class, or if someone else is inheriting from it too. # Since we'd like to be able to remove traits from a `ParameterSet`, we override `add_traits` # to add the guarantee that instead of making a chain of subclasses for each new trait, # *any `ParameterSet` instance with >0 traits is a direct child class of `ParameterSet`, # and all `TraitType`s are set on that class's `__dict__`*. # Achieving this is pretty simple: rather than having our new type inherit from our current type # (causing chaining), we just always inherit from the base `ParameterSet`. And rather than just # adding the new `traits` to that new type's `__dict__`, we also copy in all the traits defined # on our current type's `__dict__`, so everything is in one place, and easy to remove. # Copied and modified from: # https://github.com/ipython/traitlets/blob/41551bc8b30ccc28af738e93615e3408cb94d5d3/traitlets/traitlets.py#L1405-L1415 # NOTE(gabe): there's a simpler(-ish) way we could do this, by just mutating `type(self)` directly # and `setattr`ing the new traits in, but I was worried that if the base implementation of `add_traits` # changed, that could break. Either way, this is rather brittle to traitlets changes, but fully overriding # the method seems less prone to surprises (so long as the `MetaHasDescriptors` metaclass doesn't change much). cls = self.__class__ attrs = {"__module__": cls.__module__} if hasattr(cls, "__qualname__"): # __qualname__ introduced in Python 3.3 (see PEP 3155) attrs["__qualname__"] = cls.__qualname__ attrs.update(self.traits()) # ^ CHANGED: add in current traits to new type's `__dict__` attrs.update(traits) self.__class__ = type(cls.__name__, (ParameterSet,), attrs) # ^ CHANGED: always use ParameterSet as base class to prevent guarantee 1-depth inheritance for trait in traits.values(): trait.instance_init(self) def remove_traits(self, *names): """ Remove traits that were dynamically added to the HasTraits instance If you are manipulating a ParameterSet generated from a layer, instead use :meth:`update <descarteslabs.workflows.interactive.ParameterSet.update>`, which handles adding and removing traits in a more delclarative way. Example ------- >>> import traitlets >>> import descarteslabs.workflows as wf >>> class Listener(traitlets.HasTraits): ... @traitlets.observe("param") ... def handler(self, change): ... print(change['key']) ... print(change) >>> listener = Listener() >>> ps = wf.interactive.ParameterSet(listener, "param", foo=traitlets.Float()) # doctest: +SKIP >>> ps.foo = 1.1 # doctest: +SKIP foo {'name': 'param', 'old': 0.0, 'new': 1.1, 'owner': ParameterSet({'foo': 1.1}), 'type': 'change', 'key': 'foo' } >>> ps.add_traits(bar=traitlets.Unicode()) # doctest: +SKIP >>> ps.bar = 'quix' # doctest: +SKIP bar {'name': 'param', 'old': '', 'new': 'quix', 'owner': ParameterSet({'bar': 'quix', 'foo': 1.1}), 'type': 'change', 'key': 'bar' } >>> ps.remove_traits("foo") # doctest: +SKIP >>> ps.foo = 2.2 # doctest: +SKIP >>> # ^ nothing is printed, `foo` is no longer a trait >>> ps.to_dict() # doctest: +SKIP {'bar': 'quix'} """ # Thanks to our guarantee from our `add_traits` that: # - `type(self)` is a singleton class and nobody else cares about it # - all relevant `TraitType`s are set on `type(self).__dict__` and nowhere else # to remove traits... we just delete them from `type(self)`. Pretty simple. if not names: return cls = type(self) for name in names: try: old = self._trait_values.pop(name) except KeyError: raise ValueError("The trait {} does not exist on {}".format(name, self)) delattr(cls, name) # to play by the rules (and make the map update on parameter deletion), # we notify that the trait is deleted. but `delete` is a non-standard # event, so don't expect anyone to be listening. self.notify_change( traitlets.Bunch( name=name, old=old, new=traitlets.Undefined, owner=self, type="delete", ) ) def __repr__(self): return "{}({})".format(type(self).__name__, self.to_dict())
495870
import logging INSTALLED_APPS = [ 'huey.contrib.djhuey', 'djangoex.test_app', ] HUEY = { 'name': 'test-django', 'consumer': { 'blocking': True, # Use blocking list pop instead of polling Redis. 'loglevel': logging.DEBUG, 'workers': 4, 'scheduler_interval': 1, 'simple_log': True, }, } SECRET_KEY = 'foo'
495880
import unittest from lib.EnumStatus import Status class Test_Enum_Status(unittest.TestCase): def test_successor(self): self.assertEqual(1, Status.CREATED.value) self.assertEqual(Status.WORK, Status.CREATED.succ()) self.assertEqual(Status.DONE, Status.CREATED.succ().succ()) with self.assertRaises(IndexError): Status.DELETED.succ()
495900
import openslide import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--source_image_path", type=str, default='/data/camelyon16_original/training/normal/normal_056.tif') parser.add_argument("--x", type=int, default=120832) parser.add_argument("--y", type=int, default=23808) parser.add_argument("--w", type=int, default=2816) parser.add_argument("--h", type=int, default=2816) parser.add_argument("--output_stain_target_image_path", type=str, default='/data/camelyon16/stain_target_image.jpg') args = parser.parse_args() LEVEL = 0 slide = openslide.OpenSlide(args.source_image_path) image = slide.read_region((args.y, args.x), LEVEL, (args.w, args.h)).convert('RGB') image.save(args.output_stain_target_image_path)
495912
from typing import Optional from primehub import Helpful, cmd, Module class Secrets(Helpful, Module): """ Query secrets for Image Pull Secrets """ @cmd(name='list', description='List secrets') def list(self) -> list: """ List secrets :rtype: list :returns: secrets """ query = """ { secrets(where: { ifDockerConfigJson: true }) { id name type } } """ results = self.request({}, query) return results['data']['secrets'] @cmd(name='get', description='Get a secret by id', return_required=True) def get(self, id: str) -> Optional[dict]: """ Get the secret by id :type id: str :param id: the id of a secret :rtype: Optional[dict] :returns: a secret """ secret = self.list() s = [x for x in secret if x['id'] == id] if s: return s[0] return None def help_description(self): return "Get a secret or list secrets"
495926
from .comparesettable import CompareSetTable import pandas as pd class TableSetComparer: def __init__(self): return def run(self, compTables: list) -> CompareSetTable: # create data lists nameList = [] nucF1List = [] nucKappaList = [] relF1List = [] relKappaList = [] conF1List = [] conKappaList = [] attF1List = [] attKappaList = [] averageF1List = [] averageKappaList = [] for compTable in compTables: ratios = compTable.matchingRatios kappas = compTable.cohensKappas nameList.append(compTable.name) nucF1List.append(ratios["Nuclearity"]) nucKappaList.append(kappas["Nuclearity"]) relF1List.append(ratios["Relation"]) relKappaList.append(kappas["Relation"]) conF1List.append(ratios["Constituent"]) conKappaList.append(kappas["Constituent"]) attF1List.append(ratios["Attachment point"]) attKappaList.append(kappas["Attachment point"]) averageF1List.append(ratios["Average"]) averageKappaList.append(kappas["Average"]) # generate dataframe df = pd.DataFrame({"Name": nameList, "Nuclearity-Ratio": nucF1List, "Nuclearity-Kappa": nucKappaList, "Relation-Ratio": relF1List, "Relation-Kappa": relKappaList, "Constituent-Ratio": conF1List, "Constituent-Kappa": conKappaList, "AttachmentPoint-Ratio": attF1List, "AttachmentPoint-Kappa": attKappaList, "Average-Ratio": averageF1List, "Average-Kappa": averageKappaList}) return CompareSetTable(df)
495938
import os import resource import nltk import torch from graph4nlp.pytorch.data.dataset import Text2TextDataItem from graph4nlp.pytorch.inference_wrapper.generator_inference_wrapper import ( GeneratorInferenceWrapper, ) from graph4nlp.pytorch.models.graph2seq import Graph2Seq from args import get_args from dataset import IWSLT14Dataset rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) def remove_bpe(str_with_subword): if isinstance(str_with_subword, list): return [remove_bpe(ss) for ss in str_with_subword] symbol = "@@ " return str_with_subword.replace(symbol, "").strip() if __name__ == "__main__": opt = get_args() if opt["use_gpu"] != 0 and torch.cuda.is_available(): print("[ Using CUDA ]") device = torch.device("cuda" if opt["gpu"] < 0 else "cuda:%d" % opt["gpu"]) else: print("[ Using CPU ]") device = torch.device("cpu") model = Graph2Seq.load_checkpoint( os.path.join("examples/pytorch/nmt/save", opt["name"]), "best.pth" ).to(device) wrapper = GeneratorInferenceWrapper( cfg=opt, model=model, dataset=IWSLT14Dataset, data_item=Text2TextDataItem, beam_size=3, lower_case=True, tokenizer=nltk.RegexpTokenizer(" ", gaps=True).tokenize, ) output = wrapper.predict( raw_contents=[ "wissen sie , eines der großen vern@@ ü@@ gen beim reisen und eine der freu@@ den \ bei der eth@@ no@@ graph@@ ischen forschung ist , gemeinsam mit den menschen \ zu leben , die sich noch an die alten tage erinnern können . die ihre \ vergangenheit noch immer im wind spüren , sie auf vom regen ge@@ gl@@ ä\ @@ t@@ teten st@@ einen berü@@ hren , sie in den bit@@ teren blä@@ ttern \ der pflanzen schme@@ cken ." ], batch_size=1, ) output = remove_bpe(output) print(output)
495946
import copy from functools import reduce import operator def dict_diff(d1, d2): diff = {} for k1, v1 in d1.items(): kdiff = {} if isinstance(v1, list): v2 = d2.get(k1, []) added = [v2i for v2i in v2 if v2i not in v1] if added: kdiff["added"] = added removed = [v1i for v1i in v1 if v1i not in v2] if removed: kdiff["removed"] = removed else: v2 = d2.get(k1, None) if v1 != v2: if v1 is not None: kdiff["removed"] = v1 if v2 is not None: kdiff["added"] = v2 if kdiff: diff[k1] = kdiff for k2, v2 in d2.items(): if k2 in d1 or v2 is None: continue diff[k2] = {"added": v2} return copy.deepcopy(diff) def get_nested_val(d, key, separator="."): try: return reduce(operator.getitem, key.split(separator), d) except (KeyError, TypeError): return None
495955
f = plt.figure(figsize=(10,4)) ax = plt.gca() ax.set_aspect('equal') is_weird = lmos.p_sim <= (.05/len(pres)) pres.plot(color='lightgrey', ax=ax) pres.assign(quads=lmos.q)[is_weird].plot('quads', legend=True, k=4, categorical=True, cmap='bwr_r', ax=ax)
496013
import os import pytest import torch import pytorch_lightning as pl from pytorch_lightning import Callback, Trainer import ray from ray_lightning import RayShardedPlugin from ray_lightning.tests.utils import BoringModel @pytest.fixture def ray_start_2_cpus(): address_info = ray.init(num_cpus=2) yield address_info ray.shutdown() @pytest.fixture def seed(): pl.seed_everything(0) def test_ddp_choice_sharded(tmpdir, ray_start_2_cpus, seed): """Tests if sharded plugin is properly recognized.""" class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.accelerator.training_type_plugin, RayShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, plugins=[RayShardedPlugin(num_workers=2)], callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) def test_ddp_sharded_plugin_checkpoint(tmpdir, ray_start_2_cpus, seed): """Tests if checkpoint is saved correctly.""" model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading. for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param, shard_param) def test_ddp_sharded_plugin_finetune(tmpdir, ray_start_2_cpus, seed): """Tests if we can save and restart training.""" model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) trainer = Trainer(fast_dev_run=True, ) trainer.fit(saved_model) def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir, ray_start_2_cpus, seed): """Tests if resuming from checkpoint works.""" model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True, resume_from_checkpoint=checkpoint_path) trainer.fit(model) def test_ddp_sharded_plugin_test(tmpdir, ray_start_2_cpus, seed): """Tests if test works without fit.""" model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True, ) trainer.test(model) def test_ddp_sharded_plugin_resume_from_checkpoint_downsize( tmpdir, ray_start_2_cpus, seed): """Tests if we can save and resume training with less workers.""" model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=2)], fast_dev_run=True) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( plugins=[RayShardedPlugin(num_workers=1)], fast_dev_run=True, resume_from_checkpoint=checkpoint_path) trainer.fit(model)
496023
from pyradioconfig.parts.lynx.calculators.calc_modulator import CALC_Modulator_Lynx class CALC_Modulator_Leopard(CALC_Modulator_Lynx): #Inherit all from Lynx pass
496036
from pipeline.runner import in_progress def import_in_progress(request): return {"import_in_progess": in_progress()}
496048
import abc from rdr_service.genomic_enums import GenomicWorkflowState class GenomicStateBase: """Abstract base class for genomic states""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def transition_function(self, signal): return class IgnoreState(GenomicStateBase): """ Ignore State, used to effectively remove GenomicSetMembers from the genomics system. """ def transition_function(self, signal): return GenomicWorkflowState.IGNORE class ControlSampleState(GenomicStateBase): """ Control Sample State, used to mark programmatic control samples, for example NIST samples. """ def transition_function(self, signal): return GenomicWorkflowState.CONTROL_SAMPLE class AW0ReadyState(GenomicStateBase): """ State representing new Genomic Set Members ready for AW0 manifest state """ def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.AW0 return GenomicWorkflowState.AW0_READY class AW0State(GenomicStateBase): """State representing the AW0 manifest state""" def transition_function(self, signal): if signal == 'aw1-reconciled': return GenomicWorkflowState.AW1 elif signal == 'aw1-failed': return GenomicWorkflowState.AW1F_PRE return GenomicWorkflowState.AW0 class AW1State(GenomicStateBase): """State representing the AW1 manifest state""" def transition_function(self, signal): if signal == 'aw1-failed': return GenomicWorkflowState.AW1F_POST elif signal == 'aw2': return GenomicWorkflowState.AW2 return GenomicWorkflowState.AW1 class AW2State(GenomicStateBase): """State representing the AW2 manifest state""" def transition_function(self, signal): if signal == 'missing': return GenomicWorkflowState.GC_DATA_FILES_MISSING elif signal == 'fail': return GenomicWorkflowState.AW2_FAIL elif signal == 'cvl-ready': return GenomicWorkflowState.CVL_READY elif signal == 'gem-ready': return GenomicWorkflowState.GEM_READY return GenomicWorkflowState.AW2 class AW2MissingState(GenomicStateBase): """State representing the AW2 Missing Data state""" def transition_function(self, signal): if signal == 'missing': return GenomicWorkflowState.GC_DATA_FILES_MISSING elif signal == 'cvl-ready': return GenomicWorkflowState.CVL_READY elif signal == 'gem-ready': return GenomicWorkflowState.GEM_READY return GenomicWorkflowState.GC_DATA_FILES_MISSING class GEMReadyState(GenomicStateBase): """State representing the GEM_READY state""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.A1 return GenomicWorkflowState.GEM_READY class A1State(GenomicStateBase): """State representing the A1 manifest state""" def transition_function(self, signal): if signal == 'a2-gem-pass': return GenomicWorkflowState.GEM_RPT_READY if signal == 'a2-gem-fail': return GenomicWorkflowState.A2F if signal == 'unconsented': return GenomicWorkflowState.GEM_RPT_PENDING_DELETE return GenomicWorkflowState.A1 class A2PassState(GenomicStateBase): """State representing the A2 manifest state""" def transition_function(self, signal): if signal == 'report-ready': return GenomicWorkflowState.GEM_RPT_READY if signal == 'unconsented': return GenomicWorkflowState.GEM_RPT_PENDING_DELETE return GenomicWorkflowState.A2 class A2FailState(GenomicStateBase): """State representing the A2 manifest GEM failure state""" def transition_function(self, signal): if signal == 'report-ready': return GenomicWorkflowState.GEM_RPT_READY if signal == 'unconsented': return GenomicWorkflowState.GEM_RPT_PENDING_DELETE return GenomicWorkflowState.A2F class A3State(GenomicStateBase): """State representing the A3 manifest; GEM Delete states""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.GEM_RPT_DELETED return GenomicWorkflowState.A3 class GEMReportReady(GenomicStateBase): """State representing the GEM Report""" def transition_function(self, signal): if signal == 'unconsented': return GenomicWorkflowState.GEM_RPT_PENDING_DELETE return GenomicWorkflowState.GEM_RPT_READY class GEMReportPendingDelete(GenomicStateBase): """State representing when Consent revoked, input to A3 Manifest""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.GEM_RPT_DELETED if signal == 'reconsented': return GenomicWorkflowState.GEM_READY return GenomicWorkflowState.GEM_RPT_PENDING_DELETE class GEMReportDeleted(GenomicStateBase): """State representing when Consent revoked, input to A3 Manifest""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.GEM_RPT_DELETED if signal == 'reconsented': return GenomicWorkflowState.GEM_READY return GenomicWorkflowState.GEM_RPT_DELETED class CVLReadyState(GenomicStateBase): """State representing the CVL_READY state""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.W1 return GenomicWorkflowState.CVL_READY class W1State(GenomicStateBase): """State representing the W1 manifest state""" def transition_function(self, signal): if signal == 'w2-ingestion-success': return GenomicWorkflowState.W2 class W2State(GenomicStateBase): """State representing the W2 manifest state""" def transition_function(self, signal): if signal == 'manifest-generated': return GenomicWorkflowState.W3 class W3State(GenomicStateBase): """State representing the W3 manifest state""" def transition_function(self, signal): if signal == 'aw1c-reconciled': return GenomicWorkflowState.AW1C if signal == 'aw1c-failed': # TODO: There may be a pre-accessioning state as well return GenomicWorkflowState.AW1CF_POST class GenomicStateHandler: """ Basic FSM for Genomic States. Returns call to state's transision_function() """ states = { GenomicWorkflowState.IGNORE: IgnoreState(), GenomicWorkflowState.CONTROL_SAMPLE: ControlSampleState(), GenomicWorkflowState.AW0_READY: AW0ReadyState(), GenomicWorkflowState.AW0: AW0State(), GenomicWorkflowState.AW1: AW1State(), GenomicWorkflowState.AW2: AW2State(), GenomicWorkflowState.GC_DATA_FILES_MISSING: AW2MissingState(), GenomicWorkflowState.CVL_READY: CVLReadyState(), GenomicWorkflowState.W1: W1State(), GenomicWorkflowState.W2: W2State(), GenomicWorkflowState.W3: W3State(), GenomicWorkflowState.GEM_READY: GEMReadyState(), GenomicWorkflowState.A1: A1State(), GenomicWorkflowState.A2: A2PassState(), GenomicWorkflowState.A2F: A2FailState(), GenomicWorkflowState.A3: A3State(), GenomicWorkflowState.GEM_RPT_READY: GEMReportReady(), GenomicWorkflowState.GEM_RPT_PENDING_DELETE: GEMReportPendingDelete(), GenomicWorkflowState.GEM_RPT_DELETED: GEMReportDeleted(), } @classmethod def get_new_state(cls, current_state, signal): _state = cls.states.get(current_state, None) if _state is not None: return _state.transition_function(signal) return
496102
import math def mod(x, y): return x - y * math.trunc(x / y) def palindrome2(pow2, n): t = [None] * 20 for i in range(0, 20): t[i] = mod(math.trunc(n / pow2[i]), 2) == 1 nnum = 0 for j in range(1, 20): if t[j]: nnum = j for k in range(0, math.trunc(nnum / 2) + 1): if t[k] != t[nnum - k]: return False return True p = 1 pow2 = [None] * 20 for i in range(0, 20): p *= 2 pow2[i] = math.trunc(p / 2) sum = 0 for d in range(1, 10): if palindrome2(pow2, d): print("%d\n" % d, end='') sum += d if palindrome2(pow2, d * 10 + d): print("%d\n" % (d * 10 + d), end='') sum += d * 10 + d for a0 in range(0, 5): a = a0 * 2 + 1 for b in range(0, 10): for c in range(0, 10): num0 = a * 100000 + b * 10000 + c * 1000 + c * 100 + b * 10 + a if palindrome2(pow2, num0): print("%d\n" % num0, end='') sum += num0 num1 = a * 10000 + b * 1000 + c * 100 + b * 10 + a if palindrome2(pow2, num1): print("%d\n" % num1, end='') sum += num1 num2 = a * 100 + b * 10 + a if palindrome2(pow2, num2): print("%d\n" % num2, end='') sum += num2 num3 = a * 1000 + b * 100 + b * 10 + a if palindrome2(pow2, num3): print("%d\n" % num3, end='') sum += num3 print("sum=%d\n" % sum, end='')
496123
from will.utils import warn from will.backends.storage.file_backend import FileStorage warn( """Deprecation - will.storage.file_storage has been moved to will.backends.storage.file_backend, and will be removed in version 2.2. Please update your paths accordingly!""" )
496136
from train import * from DCRN import DCRN if __name__ == '__main__': # setup setup() # data pre-precessing: X, y, A, A_norm, Ad X, y, A = load_graph_data(opt.args.name, show_details=False) A_norm = normalize_adj(A, self_loop=True, symmetry=False) Ad = diffusion_adj(A, mode="ppr", transport_rate=opt.args.alpha_value) # to torch tensor X = numpy_to_torch(X).to(opt.args.device) A_norm = numpy_to_torch(A_norm, sparse=True).to(opt.args.device) Ad = numpy_to_torch(Ad).to(opt.args.device) # Dual Correlation Reduction Network model = DCRN(n_node=X.shape[0]).to(opt.args.device) # deep graph clustering acc, nmi, ari, f1 = train(model, X, y, A, A_norm, Ad) print("ACC: {:.4f},".format(acc), "NMI: {:.4f},".format(nmi), "ARI: {:.4f},".format(ari), "F1: {:.4f}".format(f1))
496161
import heapq class mcf_graph(): n=1 pos=[] g=[[]] def __init__(self,N): self.n=N self.pos=[] self.g=[[] for i in range(N)] def add_edge(self,From,To,cap,cost): assert 0<=From and From<self.n assert 0<=To and To<self.n m=len(self.pos) self.pos.append((From,len(self.g[From]))) self.g[From].append({"to":To,"rev":len(self.g[To]),"cap":cap,"cost":cost}) self.g[To].append({"to":From,"rev":len(self.g[From])-1,"cap":0,"cost":-cost}) def get_edge(self,i): m=len(self.pos) assert 0<=i and i<m _e=self.g[self.pos[i][0]][self.pos[i][1]] _re=self.g[_e["to"]][_e["rev"]] return {"from":self.pos[i][0],"to":_e["to"],"cap":_e["cap"]+_re["cap"], "flow":_re["cap"],"cost":_e["cost"]} def edges(self): m=len(self.pos) result=[{} for i in range(m)] for i in range(m): tmp=self.get_edge(i) result[i]["from"]=tmp["from"] result[i]["to"]=tmp["to"] result[i]["cap"]=tmp["cap"] result[i]["flow"]=tmp["flow"] result[i]["cost"]=tmp["cost"] return result def flow(self,s,t,flow_limit=(1<<63)-1): return self.slope(s,t,flow_limit)[-1] def slope(self,s,t,flow_limit=(1<<63)-1): assert 0<=s and s<self.n assert 0<=t and t<self.n assert s!=t ''' variants (C = maxcost): -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge ''' dual=[0 for i in range(self.n)] dist=[0 for i in range(self.n)] pv=[0 for i in range(self.n)] pe=[0 for i in range(self.n)] vis=[False for i in range(self.n)] def dual_ref(): for i in range(self.n): dist[i]=(1<<63)-1 pv[i]=-1 pe[i]=-1 vis[i]=False que=[] heapq.heappush(que,(0,s)) dist[s]=0 while(que): v=heapq.heappop(que)[1] if vis[v]:continue vis[v]=True if v==t:break ''' dist[v] = shortest(s, v) + dual[s] - dual[v] dist[v] >= 0 (all reduced cost are positive) dist[v] <= (n-1)C ''' for i in range(len(self.g[v])): e=self.g[v][i] if vis[e["to"]] or (not(e["cap"])):continue ''' |-dual[e.to]+dual[v]| <= (n-1)C cost <= C - -(n-1)C + 0 = nC ''' cost=e["cost"]-dual[e["to"]]+dual[v] if dist[e["to"]]-dist[v]>cost: dist[e["to"]]=dist[v]+cost pv[e["to"]]=v pe[e["to"]]=i heapq.heappush(que,(dist[e["to"]],e["to"])) if not(vis[t]): return False for v in range(self.n): if not(vis[v]):continue dual[v]-=dist[t]-dist[v] return True flow=0 cost=0 prev_cost=-1 result=[(flow,cost)] while(flow<flow_limit): if not(dual_ref()): break c=flow_limit-flow v=t while(v!=s): c=min(c,self.g[pv[v]][pe[v]]["cap"]) v=pv[v] v=t while(v!=s): self.g[pv[v]][pe[v]]["cap"]-=c self.g[v][self.g[pv[v]][pe[v]]["rev"]]["cap"]+=c v=pv[v] d=-dual[s] flow+=c cost+=c*d if(prev_cost==d): result.pop() result.append((flow,cost)) prev_cost=cost return result
496165
from typing import List, cast, Dict import numpy as np from py_headless_daw.dto.waveform import Waveform from py_headless_daw.project.content.audio_clip import AudioClip from py_headless_daw.schema.clip_track_processing_strategy import ClipTrackProcessingStrategy from py_headless_daw.schema.dto.time_interval import TimeInterval from py_headless_daw.schema.events.event import Event from py_headless_daw.services.wave_data_provider import WaveformProviderInterface from py_headless_daw.shared.clip_intersection import ClipIntersection class ProcessedWavData(Waveform): pass class Sampler(ClipTrackProcessingStrategy): """ Sampler is a strategy that produces audio basing on the number of associated AudioClips """ _processed_wav_data_cache: Dict[str, ProcessedWavData] = {} def __init__(self, clips: List[AudioClip], wave_data_provider: WaveformProviderInterface): super().__init__(clips) for clip in clips: if not isinstance(clip, AudioClip): raise Exception(f"a clips was expected to be an AudioClip, instead it is {type(clip)}") self.clips: List[AudioClip] = clips self.wave_data_provider: WaveformProviderInterface = wave_data_provider def render(self, interval: TimeInterval, stream_inputs: List[np.ndarray], stream_outputs: List[np.ndarray], event_inputs: List[List[Event]], event_outputs: List[List[Event]]): if self.unit is None: raise Exception('unit is not set in this sampler') [o.fill(0.0) for o in stream_outputs] intersections = self._find_intersections(interval) for intersection in intersections: self._render_one_intersection(intersection, stream_outputs, interval, self.unit.host.sample_rate) def _render_one_intersection(self, intersection: ClipIntersection, stream_outputs: List[np.ndarray], interval: TimeInterval, sample_rate: int): clip: AudioClip = cast(AudioClip, intersection.clip) wav_data = self._get_processed_wav_data(clip) if wav_data.num_channels != 1: # number of channels should match it not a mono sample if wav_data.num_channels != len(stream_outputs): raise Exception( f"""number of channels in wav_data {wav_data.num_channels} and in output {len(stream_outputs)} does not match. Related file: {clip.source_file_path}""") if intersection.start_clip_time is None: raise Exception('intersection is missing start clip time prop') patch_start_in_wav_data_in_samples: int = round(clip.cue_sample + intersection.start_clip_time * sample_rate) if patch_start_in_wav_data_in_samples > wav_data.length_in_samples(): return if intersection.end_clip_time is None: raise Exception('intersection is missing end clip time prop') patch_end_in_wav_data_in_samples: int = min( round(clip.cue_sample + intersection.end_clip_time * sample_rate), wav_data.length_in_samples()) if intersection.start_project_time is None: raise Exception('intersection is missing start project time') patch_start_in_output_in_samples: int = round( (intersection.start_project_time - interval.start_in_seconds) * sample_rate) patch_length_in_samples: int = patch_end_in_wav_data_in_samples - patch_start_in_wav_data_in_samples patch_end_in_output_in_samples: int = patch_start_in_output_in_samples + patch_length_in_samples patch_length_in_wav_data = patch_end_in_wav_data_in_samples - patch_start_in_wav_data_in_samples patch_length_in_output = patch_end_in_output_in_samples - patch_start_in_output_in_samples if patch_length_in_wav_data != patch_length_in_output: raise Exception( f"""patch lengths in sample and in interval diff. In sample: {patch_length_in_wav_data}, in interval: {patch_length_in_output}""") for i, output in enumerate(stream_outputs): if wav_data.num_channels > 1: channel_in_wav = wav_data.data[i] else: # mono samples is a special case - we add their single channel uniformly to all outputs channel_in_wav = wav_data.data[0] # slicing returns a view, so it must be efficient patch_data: np.ndarray = channel_in_wav[patch_start_in_wav_data_in_samples:patch_end_in_wav_data_in_samples] patched_data: np.ndarray = output[patch_start_in_output_in_samples:patch_end_in_output_in_samples] if patch_data.shape != patched_data.shape: raise Exception(f"""patch and patched have different shapes. patch: {str(patch_data.shape)} patched: {str(patched_data.shape)} """) np.add(patch_data, patched_data, out=patched_data) def _get_processed_wav_data(self, clip: AudioClip) -> ProcessedWavData: cache_key: str = self._generate_cache_key(clip) if cache_key not in self._processed_wav_data_cache: self._processed_wav_data_cache[cache_key] = self._generate_processed_wav_data(clip) return self._processed_wav_data_cache[cache_key] def _generate_cache_key(self, clip: AudioClip) -> str: return clip.source_file_path + "_" + str(clip.rate) def _generate_processed_wav_data(self, clip: AudioClip) -> ProcessedWavData: raw_waveform = self.wave_data_provider.get_wave_data_by_file_path(clip.source_file_path) (sample_rate, data) = (raw_waveform.sample_rate, raw_waveform.data) # in the future, this will involve not just reading the wav file, but also # converting it into host's sample rate (self.unit.hot.sample_rate), # and taking into account clip's rate property. # Also reading non-wav files. # that's why Sample does not have sample rate property as it is already expected # to be in host's one return ProcessedWavData( data=data, sample_rate=sample_rate )
496171
import torch import numpy as np import functools def torchify(func): """Extends to NumPy arrays a function written for PyTorch tensors. Converts input arrays to tensors and output tensors back to arrays. Supports hybrid inputs where some are arrays and others are tensors: - in this case all tensors should have the same device and float dtype; - the output is not converted. No data copy: tensors and arrays share the same underlying storage. Warning: kwargs are currently not supported when using jit. """ # TODO: switch to @torch.jit.unused when is_scripting will work @torch.jit.ignore @functools.wraps(func) def wrapped(*args, **kwargs): device = None dtype = None for arg in args: if isinstance(arg, torch.Tensor): device_ = arg.device if device is not None and device != device_: raise ValueError( 'Two input tensors have different devices: ' f'{device} and {device_}') device = device_ if torch.is_floating_point(arg): dtype_ = arg.dtype if dtype is not None and dtype != dtype_: raise ValueError( 'Two input tensors have different float dtypes: ' f'{dtype} and {dtype_}') dtype = dtype_ args_converted = [] for arg in args: if isinstance(arg, np.ndarray): arg = torch.from_numpy(arg).to(device) if torch.is_floating_point(arg): arg = arg.to(dtype) args_converted.append(arg) rets = func(*args_converted, **kwargs) def convert_back(ret): if isinstance(ret, torch.Tensor): if device is None: # no input was torch.Tensor ret = ret.cpu().numpy() return ret # TODO: handle nested struct with map tensor if not isinstance(rets, tuple): rets = convert_back(rets) else: rets = tuple(convert_back(ret) for ret in rets) return rets # BUG: is_scripting does not work in 1.6 so wrapped is always called if torch.jit.is_scripting(): return func else: return wrapped
496192
from unittest import TestCase import requests_mock from parameterized import parameterized from hvac import exceptions from hvac.adapters import JSONAdapter from hvac.api.auth_methods import AppRole from hvac.constants.approle import DEFAULT_MOUNT_POINT class TestAppRole(TestCase): @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT, "default", None), ("custom mount point", "approle-test", "default", None), ( "bad token type", DEFAULT_MOUNT_POINT, "bad_token", exceptions.ParamValidationError, ), ] ) @requests_mock.Mocker() def test_create_or_update_approle( self, test_label, mount_point, token_type, raises, requests_mocker ): expected_status_code = 204 role_name = "testrole" mock_url = ( "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}".format( mount_point=mount_point, role_name=role_name ) ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, ) app_role = AppRole(adapter=JSONAdapter()) if raises is not None: with self.assertRaises(raises) as cm: app_role.create_or_update_approle( role_name=role_name, token_policies=["default"], token_type=token_type, mount_point=mount_point, ) self.assertIn(member="unsupported token_type", container=str(cm.exception)) else: response = app_role.create_or_update_approle( role_name=role_name, token_policies=["default"], mount_point=mount_point ) self.assertEqual(first=expected_status_code, second=response.status_code) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_list_roles(self, test_label, mount_point, requests_mocker): expected_status_code = 200 mock_response = { "auth": None, "data": {"keys": ["testrole"]}, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role".format( mount_point=mount_point ) requests_mocker.register_uri( method="LIST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.list_roles(mount_point=mount_point) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_read_role(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" mock_response = { "auth": None, "data": { "bind_secret_id": True, "local_secret_ids": False, "secret_id_bound_cidrs": None, "secret_id_num_uses": 0, "secret_id_ttl": 0, "token_bound_cidrs": None, "token_explicit_max_ttl": 0, "token_max_ttl": 0, "token_no_default_poolicy": False, "token_num_uses": 0, "token_period": 14400, "token_policies": None, "token_ttl": 0, "token_type": "default", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = ( "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}".format( mount_point=mount_point, role_name=role_name ) ) requests_mocker.register_uri( method="GET", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.read_role(role_name="testrole", mount_point=mount_point) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_delete_role(self, test_label, mount_point, requests_mocker): expected_status_code = 204 role_name = "testrole" mock_url = ( "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}".format( mount_point=mount_point, role_name=role_name ) ) requests_mocker.register_uri( method="DELETE", url=mock_url, status_code=expected_status_code, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.delete_role(role_name=role_name, mount_point=mount_point) self.assertEqual(first=expected_status_code, second=response.status_code) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_read_role_id(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" mock_response = { "auth": None, "data": {"role_id": "e5a7b66e-5d08-da9c-7075-71984634b882"}, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/role-id".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="GET", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.read_role_id(role_name=role_name, mount_point=mount_point) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_update_role_id(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" role_id = "test_role_id" mock_response = { "auth": None, "data": {"role_id": role_id}, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/role-id".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.update_role_id( role_name=role_name, role_id=role_id, mount_point=mount_point ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT, None), ("custom mount point", "approle-test", exceptions.ParamValidationError), ] ) @requests_mock.Mocker() def test_generate_secret_id(self, test_label, mount_point, raises, requests_mocker): expected_status_code = 200 role_name = "testrole" mock_response = { "auth": None, "data": { "secret_id": "<KEY>", "secret_id_accessor": "84896a0c-1347-aa90-a4f6-aca8b7558780", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) if raises is not None: with self.assertRaises(raises) as cm: app_role.generate_secret_id( role_name=role_name, metadata="metadata string", mount_point=mount_point, ) self.assertIn( member="unsupported metadata argument", container=str(cm.exception) ) else: response = app_role.generate_secret_id( role_name=role_name, cidr_list=["127.0.0.1/32"], mount_point=mount_point ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT, None), ("custom mount point", "approle-test", exceptions.ParamValidationError), ] ) @requests_mock.Mocker() def test_create_custom_secret_id( self, test_label, mount_point, raises, requests_mocker ): expected_status_code = 200 role_name = "testrole" secret_id = "custom_secret" mock_response = { "auth": None, "data": { "secret_id": secret_id, "secret_id_accessor": "84896a0c-1347-aa90-a4f6-aca8b7558780", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/custom-secret-id".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) if raises is not None: with self.assertRaises(raises) as cm: app_role.create_custom_secret_id( role_name=role_name, secret_id=secret_id, cidr_list=["127.0.0.1/32"], metadata="metadata string", mount_point=mount_point, ) self.assertIn( member="unsupported metadata argument", container=str(cm.exception) ) else: response = app_role.create_custom_secret_id( role_name=role_name, secret_id=secret_id, cidr_list=["127.0.0.1/32"], mount_point=mount_point, ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_read_secret_id(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" secret_id = "custom_secret" mock_response = { "auth": None, "data": { "secret_id": secret_id, "secret_id_accessor": "84896a0c-1347-aa90-a4f6-aca8b7558780", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id/lookup".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.read_secret_id( role_name=role_name, secret_id=secret_id, mount_point=mount_point ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_destroy_secret_id(self, test_label, mount_point, requests_mocker): expected_status_code = 204 role_name = "testrole" secret_id = "custom_secret" mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id/destroy".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.destroy_secret_id( role_name=role_name, secret_id=secret_id, mount_point=mount_point ) self.assertEqual(first=expected_status_code, second=response.status_code) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_list_secret_id_accessors(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" mock_response = { "auth": None, "data": { "keys": [ "ce102d2a-8253-c437-bf9a-aceed4241491", "a1c8dee4-b869-e68d-3520-2040c1a0849a", "be83b7e2-044c-7244-07e1-47560ca1c787", "84896a0c-1347-aa90-a4f6-aca8b7558780", "239b1328-6523-15e7-403a-a48038cdc45a", ] }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="LIST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.list_secret_id_accessors( role_name=role_name, mount_point=mount_point ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_read_secret_id_accessor(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_name = "testrole" secret_id = "custom_secret" secret_id_accessor = "84896a0c-1347-aa90-a4f6-aca8b7558780" mock_response = { "auth": None, "data": { "secret_id": secret_id, "secret_id_accessor": "84896a0c-1347-aa90-a4f6-aca8b7558780", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id-accessor/lookup".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.read_secret_id_accessor( role_name=role_name, secret_id_accessor=secret_id_accessor, mount_point=mount_point, ) self.assertEqual(first=mock_response, second=response) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_destroy_secret_id_accessor(self, test_label, mount_point, requests_mocker): expected_status_code = 204 role_name = "testrole" secret_id_accessor = "84896a0c-1347-aa90-a4f6-aca8b7558780" mock_url = "http://localhost:8200/v1/auth/{mount_point}/role/{role_name}/secret-id-accessor/destroy".format( mount_point=mount_point, role_name=role_name ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.destroy_secret_id_accessor( role_name=role_name, secret_id_accessor=secret_id_accessor, mount_point=mount_point, ) self.assertEqual(first=expected_status_code, second=response.status_code) @parameterized.expand( [ ("default mount point", DEFAULT_MOUNT_POINT), ("custom mount point", "approle-test"), ] ) @requests_mock.Mocker() def test_login(self, test_label, mount_point, requests_mocker): expected_status_code = 200 role_id = "test_role_id" secret_id = "custom_secret" mock_response = { "data": None, "auth": { "renewable": True, "lease_duration": 1200, "metadata": None, "token_policies": ["default"], "accessor": "fd6c9a00-d2dc-3b11-0be5-af7ae0e1d374", "client_token": "5b1a0318-679c-9c45-e5c6-d1b9a9035d49", }, "lease_duration": 0, "lease_id": "", "renewable": False, "request_id": "860a11a8-b835-cbab-7fce-de4edc4cf533", "warnings": None, "wrap_info": None, } mock_url = "http://localhost:8200/v1/auth/{mount_point}/login".format( mount_point=mount_point, ) requests_mocker.register_uri( method="POST", url=mock_url, status_code=expected_status_code, json=mock_response, ) app_role = AppRole(adapter=JSONAdapter()) response = app_role.login( role_id=role_id, secret_id=secret_id, mount_point=mount_point ) self.assertEqual(first=mock_response, second=response)
496202
import unittest from talent_curator.apps.google import drive class GoogleDriveAPITest(unittest.TestCase): def setUp(self): self.google_api = drive.GoogleDriveAPI() def test_build_headers(self): headers = self.google_api.build_headers(access_token="<PASSWORD>") assert headers['Authorization'] == "Bearer hello, world"
496223
from typing import Optional from citrine._serialization import properties from citrine._serialization.serializable import Serializable from citrine.informatics.constraints.constraint import Constraint from citrine.informatics.descriptors import FormulationDescriptor __all__ = ['IngredientCountConstraint'] class IngredientCountConstraint(Serializable['IngredientCountConstraint'], Constraint): """Represents a constraint on the total number of ingredients in a formulation. Parameters ---------- formulation_descriptor: FormulationDescriptor descriptor to constrain min: int minimum ingredient count max: int maximum ingredient count label: Optional[str] Optional label to constrain. If specified, then only ingredients with the specified label will count towards the total. Default is ``None``; all ingredients count towards the total """ formulation_descriptor = properties.Object(FormulationDescriptor, 'formulation_descriptor') min = properties.Integer('min') max = properties.Integer('max') label = properties.Optional(properties.String, 'label') typ = properties.String('type', default='IngredientCountConstraint') def __init__(self, *, formulation_descriptor: FormulationDescriptor, min: int, max: int, label: Optional[str] = None): self.formulation_descriptor: FormulationDescriptor = formulation_descriptor self.min: int = min self.max: int = max self.label: Optional[str] = label def __str__(self): return '<IngredientCountConstraint {!r}>'.format(self.formulation_descriptor.key)
496257
import pytest from flask import Flask @pytest.fixture(scope="session") def app(): app = Flask(__name__) return app @pytest.yield_fixture(scope="session") def client(app): return app.test_client()
496266
from rasa_nlu_examples.meta.printer import print_message from rasa.shared.nlu.training_data.message import Message def test_can_print_empty_message(): print_message(Message())
496294
import zlib import uuid import time def busy_loop(): start = time.time() for i in range(0, 50): text = ''.join([str(uuid.uuid4()) for _ in range(0, 10000)]) text_encoded = text.encode('utf8') text_compressed = zlib.compress(text_encoded) zlib.decompress(text_compressed) end = time.time() delta = round(end - start, 2) print(f"Execution time: {delta}s") if __name__ == '__main__': busy_loop()
496308
import numpy as np from scipy import special as sp def jacobi_recurrence(N, alpha=0., beta=0., probability=True): r""" Compute the recursion coefficients of Jacobi polynomials which are orthonormal with respect to the Beta random variables Parameters ---------- alpha : float The first parameter of the Jacobi polynomials. For the Beta distribution with parameters :math:`\hat{\alpha},\hat{\beta}` we have :math:`\alpha=\hat{\beta}-1` beta : float The second parameter of the Jacobi polynomials For the Beta distribution with parameters :math:`\hat{\alpha},\hat{\beta}` we have :math:`\beta=\hat{\alpha}-1` Returns ------- ab : np.ndarray (Nterms,2) The recursion coefficients of the Nterms orthonormal polynomials """ if N < 1: return np.ones((0, 2)) ab = np.ones((N, 2)) * np.array([beta**2. - alpha**2., 1.]) # Special cases ab[0, 0] = (beta - alpha) / (alpha + beta + 2.) ab[0, 1] = np.exp((alpha + beta + 1.) * np.log(2.) + sp.gammaln(alpha + 1.) + sp.gammaln(beta + 1.) - sp.gammaln(alpha + beta + 2.) ) if N > 1: ab[1, 0] /= (2. + alpha + beta) * (4. + alpha + beta) ab[1, 1] = 4. * (alpha + 1.) * (beta + 1.) / ( (alpha + beta + 2.)**2 * (alpha + beta + 3.)) inds = np.arange(2., N) ab[2:, 0] /= (2. * inds + alpha + beta) * (2 * inds + alpha + beta + 2.) ab[2:, 1] = 4 * inds * (inds + alpha) * \ (inds + beta) * (inds + alpha + beta) ab[2:, 1] /= (2. * inds + alpha + beta)**2 * \ (2. * inds + alpha + beta + 1.) * (2. * inds + alpha + beta - 1) ab[:, 1] = np.sqrt(ab[:, 1]) if probability: ab[0, 1] = 1. return ab def hermite_recurrence(Nterms, rho=0., probability=True): r""" Compute the recursion coefficients of for the Hermite polynomial family. .. math:: x^{2\rho}\exp(-x^2) Parameters ---------- rho : float The parameter of the hermite polynomials. The special case of :math:`\rho=0` and probability=True returns the probablists Hermite polynomial Returns ------- ab : np.ndarray (Nterms,2) The recursion coefficients of the Nterms orthonormal polynomials """ if Nterms < 1: return np.ones((0, 2)) ab = np.zeros((Nterms, 2)) ab[0, 1] = sp.gamma(rho+0.5) # = np.sqrt(np.pi) for rho=0 if rho == 0 and probability: ab[1:, 1] = np.arange(1., Nterms) else: ab[1:, 1] = 0.5*np.arange(1., Nterms) ab[np.arange(Nterms) % 2 == 1, 1] += rho ab[:, 1] = np.sqrt(ab[:, 1]) if probability: ab[0, 1] = 1. return ab def get_jacobi_recursion_coefficients(poly_name, opts, num_coefs): """ Get the recursion coefficients of a Jacobi polynomial. Parameters ---------- opts : dictionary Dictionary with the following attributes alpha_poly : float The alpha parameter of the jacobi polynomial. Only used and required if poly_name is not None beta_poly : float The beta parameter of the jacobi polynomial. Only used and required if poly_name is not None shapes : dictionary Shape parameters of the Beta distribution. shapes["a"] is the a parameter of the Beta distribution and shapes["b"] is the b parameter of the Beta distribution. The parameter of the Jacobi polynomial are determined using the following relationships: alpha_poly = b-1, beta_poly = a-1. This option is not required or ignored when poly_name is not None Returns ------- recursion_coeffs : np.ndarray (num_coefs, 2) """ if poly_name is not None: alpha_poly, beta_poly = opts["alpha_poly"], opts["beta_poly"] else: alpha_poly, beta_poly = opts["shapes"]["b"] - \ 1, opts["shapes"]["a"]-1 return jacobi_recurrence( num_coefs, alpha=alpha_poly, beta=beta_poly, probability=True) def charlier_recurrence(N, a): r""" Compute the recursion coefficients of the polynomials which are orthonormal with respect to the Poisson distribution. Parameters ---------- N : integer The number of polynomial terms requested a: float The rate parameter of the Poisson distribution Returns ------- ab : np.ndarray (N,2) The recursion coefficients of the N orthonormal polynomials Notes ----- Note as rate gets smaller the number of terms that can be accurately computed will decrease because the problem gets more ill conditioned. This is caused because the number of masses with significant weights gets smaller as rate does """ if N < 1: return np.ones((0, 2)) ab = np.zeros((N+1, 2)) ab[0, 0] = a ab[0, 1] = 1 for i in range(1, N+1): ab[i, 0] = a + i ab[i, 1] = a * i # orthonormal ab[:, 1] = np.sqrt(ab[:, 1]) return ab def krawtchouk_recurrence(Nterms, Ntrials, p): r""" Compute the recursion coefficients of the polynomials which are orthonormal with respect to the binomial probability mass function .. math:: {N \choose k} p^k (1-p)^{(n-k)} which is the probability of k successes from N trials. Parameters ---------- Nterms : integer The number of polynomial terms requested Ntrials : integer The number of trials p : float The probability of success :math:`p\in(0,1)` Returns ------- ab : np.ndarray (Nterms,2) The recursion coefficients of the Nterms orthonormal polynomials """ assert(Nterms <= Ntrials) assert p > 0 and p < 1 if Nterms < 1: return np.ones((0, 2)) ab = np.array( [[p*(Ntrials-n)+n*(1-p), p*(1-p)*n*(Ntrials-n+1)] for n in range(Nterms)]) ab[:, 1] = np.sqrt(ab[:, 1]) ab[0, 1] = 1.0 # the probability flag does not apply here # (beta0 comes out 0 in the three term recurrence), instead we set it # to 1, the norm of the p0 polynomial return ab def hahn_recurrence(Nterms, N, alphaPoly, betaPoly): r""" Compute the recursion coefficients of the polynomials which are orthonormal with respect to the hypergeometric probability mass function .. math:: w(x)=\frac{{n \choose x}{M-n \choose N-x}}{{ M \choose N}}. for .. math:: \max(0, M-(M-n)) \le x \le \min(n, N) which describes the probability of x successes in N draws, without replacement, from a finite population of size M that contains exactly n successes. Parameters ---------- Nterms : integer The number of polynomial terms requested N : integer The number of draws alphaPoly : integer :math:`-n+1` betPoly : integer :math:`-M-1+n` Returns ------- ab : np.ndarray (Nterms,2) The recursion coefficients of the Nterms orthonormal polynomials """ assert(Nterms <= N) if Nterms < 1: return np.ones((0, 2)) An = np.zeros(Nterms) Cn = np.zeros(Nterms) for n in range(Nterms): numA = (alphaPoly+n+1) * (N-n) * (n+alphaPoly+betaPoly+1) numC = n * (betaPoly+n) * (N+alphaPoly+betaPoly+n+1) denA = (alphaPoly+betaPoly+2*n+1) * (alphaPoly+betaPoly+2*n+2) denC = (alphaPoly+betaPoly+2*n+1) * (alphaPoly+betaPoly+2*n) An[n] = numA / denA Cn[n] = numC / denC if Nterms == 1: return np.array([[An[0]+Cn[0], 1]]) ab = np.array( [[An[0]+Cn[0], 1]]+[[An[n]+Cn[n], An[n-1]*Cn[n]] for n in range(1, Nterms)]) ab[:, 1] = np.sqrt(ab[:, 1]) ab[0, 1] = 1.0 return ab def discrete_chebyshev_recurrence(N, Ntrials): r""" Compute the recursion coefficients of the polynomials which are orthonormal with respect to the probability measure .. math:: w(x) = \frac{\delta_i(x)}{M} where :math:`\delta_i(x)` is the dirac delta function which is one when :math:`x=i`, for :math:`i=1,\ldots,M` and zero otherwise Parameters ---------- N : integer The number of polynomial terms requested Ntrials : integer The number of probability masses (M) Returns ------- ab : np.ndarray (N,2) The recursion coefficients of the N orthonormal polynomials """ assert(N <= Ntrials) if N < 1: return np.ones((0, 2)) ab = np.zeros((N, 2)) ab[:, 0] = 0.5 * Ntrials * (1. - 1./Ntrials) ab[0, 1] = Ntrials for i in range(1, N): ab[i, 1] = 0.25 * Ntrials**2 * (1-(i * 1./Ntrials)**2)/(4-1./i**2) ab[:, 1] = np.sqrt(ab[:, 1]) ab[0, 1] = 1.0 return ab def convert_orthonormal_recurence_to_three_term_recurence(recursion_coefs): r""" Convert two term recursion coefficients .. math:: b_{n+1} p_{n+1} = (x - a_n) p_n - \sqrt{b_n} p_{n-1} into the equivalent three recursion coefficients .. math:: p_{n+1} = \tilde{a}_{n+1}x - \tilde{b_n}p_n - \tilde{c}_n p_{n-1} Parameters ---------- recursion_coefs : np.ndarray (num_recursion_coeffs,2) The two term recursion coefficients :math:`a_n,b_n` Returns ------- abc : np.ndarray (num_recursion_coeffs,3) The three term recursion coefficients :math:`\tilde{a}_n,\tilde{b}_n,\tilde{c}_n` """ num_terms = recursion_coefs.shape[0] abc = np.zeros((num_terms, 3)) abc[:, 0] = 1./recursion_coefs[:, 1] abc[1:, 1] = recursion_coefs[:-1, 0]/recursion_coefs[1:, 1] abc[1:, 2] = recursion_coefs[:-1, 1]/recursion_coefs[1:, 1] return abc
496328
import ray import numpy as np ray.init(num_cpus=8, object_store_memory=4e9) @ray.remote def consume(name, split): i = 0 for row in split.iter_rows(): i += 1 def gen(i): return { "a": 4.0, "b": "hello" * 1000, "c": np.zeros(25000), } ds = ray.data.range(10000).map(gen) print(ds, ds.size_bytes()) pipeline = ds.repeat(100).random_shuffle() print(pipeline) a, b, c, d, e = pipeline.split(5, equal=True) x1 = consume.remote("consumer A", a) x2 = consume.remote("consumer B", b) x3 = consume.remote("consumer C", c) x4 = consume.remote("consumer D", d) x5 = consume.remote("consumer E", e) ray.get([x1, x2, x3, x4, x5])
496407
from typing import Union, List, Dict, Any, Sequence, Iterable, Optional import re reCommaWhitespacePotentiallyBreaks = re.compile(r",\s+") def dictString(d: Dict, brackets: Optional[str] = None): s = ', '.join([f'{k}={toString(v)}' for k, v in d.items()]) if brackets is not None: return brackets[:1] + s + brackets[-1:] else: return s def listString(l: Iterable[Any], brackets="[]"): return brackets[:1] + ", ".join((toString(x) for x in l)) + brackets[-1:] def toString(x): if type(x) == list: return listString(x) elif type(x) == tuple: return listString(x, brackets="()") elif type(x) == dict: return dictString(x, brackets="{}") else: s = str(x) s = reCommaWhitespacePotentiallyBreaks.sub(", ", s) # remove any unwanted line breaks and indentation after commas (as generated, for example, by sklearn objects) return s def objectRepr(obj, memberNamesOrDict: Union[List[str], Dict[str, Any]]): if type(memberNamesOrDict) == dict: membersDict = memberNamesOrDict else: membersDict = {m: toString(getattr(obj, m)) for m in memberNamesOrDict} return f"{obj.__class__.__name__}[{dictString(membersDict)}]" def orRegexGroup(allowedNames: Sequence[str]): """ :param allowedNames: strings to include as literals in the regex :return: raw string of the type (<name1>| ...|<nameN>), where special characters in the names have been escaped """ allowedNames = [re.escape(name) for name in allowedNames] return r"(%s)" % "|".join(allowedNames) class ToStringMixin: """ Provides default implementations for __str__ and __repr__ which contain all attribute names and their values. The latter also contains the object id. """ def _toStringClassName(self): return type(self).__qualname__ def _toStringProperties(self, exclude: Optional[Union[str, Iterable[str]]] = None, include: Optional[Union[str, Iterable[str]]] = None, excludeExceptions: Optional[List[str]] = None, includeForced: Optional[List[str]] = None, additionalEntries: Dict[str, Any] = None) -> str: """ Creates a string of the class attributes, with optional exclusions/inclusions/additions. Exclusions take precedence over inclusions. :param exclude: attributes to be excluded :param include: attributes to be included; if None/empty, include all that are not excluded :param additionalEntries: additional key-value-pairs which are added to the string just like the other attributes :return: a string containing attribute names and values """ def mklist(x): if x is None: return [] if type(x) == str: return [x] return x exclude = mklist(exclude) include = mklist(include) includeForced = mklist(includeForced) excludeExceptions = mklist(excludeExceptions) def isExcluded(k): if k in includeForced or k in excludeExceptions: return False if k in exclude: return True if self._toStringExcludePrivate(): isPrivate = k.startswith("_") return isPrivate else: return False # determine relevant attribute dictionary if len(include) == 0: # exclude semantics (include everything by default) attributeDict = self.__dict__ else: # include semantics (include only inclusions) attributeDict = {k: getattr(self, k) for k in set(include + includeForced) if hasattr(self, k)} # apply exclusions and remove underscores from attribute names d = {k.strip("_"): v for k, v in attributeDict.items() if not isExcluded(k)} if additionalEntries is not None: d.update(additionalEntries) return dictString(d) def _toStringObjectInfo(self) -> str: """ Creates a string containing information on the object instance which is to appear between the square brackets in the string representation, i.e. if the class name is Foo, then it is the asterisk in "Foo[*]". By default will make use of all the exclusions/inclusions that are specified by other member functions. This method can be overwritten by sub-classes to provide a custom string. :return: a string containing the desired content """ return self._toStringProperties(exclude=self._toStringExcludes(), include=self._toStringIncludes(), excludeExceptions=self._toStringExcludeExceptions(), includeForced=self._toStringIncludesForced(), additionalEntries=self._toStringAdditionalEntries()) def _toStringExcludes(self) -> List[str]: """ Makes the string representation exclude the returned attributes. Returns a list of attribute names to be excluded from __str__ and __repr__. This method can be overwritten by sub-classes which can call super and extend the list returned. This method will only have no effect if _toStringObjectInfo is overridden to not use its result. :return: a list of attribute names """ return [] def _toStringIncludes(self) -> List[str]: """ Makes the string representation include only the returned attributes (i.e. introduces inclusion semantics) - except if the list is empty, in which case all attributes are included by default. To add an included attribute in a sub-class, regardless of any super-classes using exclusion or inclusion semantics, use _toStringIncludesForced instead. This method can be overwritten by sub-classes which can call super and extend the list. This method will only have no effect if _toStringObjectInfo is overridden to not use its result. :return: a list of attribute names; if empty, include all attributes (except the ones being excluded according to other methods) """ return [] def _toStringIncludesForced(self) -> List[str]: """ Defines a list of attribute names that are required to be present in the string representation, regardless of the instance using include semantics or exclude semantics, thus facilitating added inclusions in sub-classes. :return: a list of attribute names """ return [] def _toStringAdditionalEntries(self) -> Dict[str, Any]: return {} def _toStringExcludePrivate(self) -> bool: """ :return: whether to exclude properties that are private, i.e. start with an underscore; explicitly included attributes will still be considered """ return False def _toStringExcludeExceptions(self) -> List[str]: """ Defines attribute names which should not be excluded even though other rules (e.g. the exclusion of private members via _toStringExcludePrivate) would otherwise exclude them. :return: a list of attribute names """ return [] def __str__(self): return f"{self._toStringClassName()}[{self._toStringObjectInfo()}]" def __repr__(self): info = f"id={id(self)}" propertyInfo = self._toStringObjectInfo() if len(propertyInfo) > 0: info += ", " + propertyInfo return f"{self._toStringClassName()}[{info}]" def prettyStringRepr(s: Any, initialIndentationLevel=0, indentationString=" "): """ Creates a pretty string representation (using indentations) from the given object/string representation (as generated, for example, via ToStringMixin). An indentation level is added for every opening bracket. :param s: an object or object string representation :param initialIndentationLevel: the initial indentation level :param indentationString: the string which corresponds to a single indentation level :return: a reformatted version of the input string with added indentations and line break """ if type(s) != str: s = str(s) indent = initialIndentationLevel result = indentationString * indent i = 0 def nl(): nonlocal result result += "\n" + (indentationString * indent) def take(cnt=1): nonlocal result, i result += s[i:i+cnt] i += cnt def findMatching(j): start = j op = s[j] cl = {"[": "]", "(": ")", "'": "'"}[s[j]] isBracket = cl != s[j] stack = 0 while j < len(s): if s[j] == op and (isBracket or j == start): stack += 1 elif s[j] == cl: stack -= 1 if stack == 0: return j j += 1 return None brackets = "[(" quotes = "'" while i < len(s): isBracket = s[i] in brackets isQuote = s[i] in quotes if isBracket or isQuote: iMatch = findMatching(i) takeFullMatchWithoutBreak = False if iMatch is not None: k = iMatch + 1 takeFullMatchWithoutBreak = not isBracket or (k-i <= 60 and not("=" in s[i:k] and "," in s[i:k])) if takeFullMatchWithoutBreak: take(k-i) if not takeFullMatchWithoutBreak: take(1) indent += 1 nl() elif s[i] in "])": take(1) indent -= 1 elif s[i:i+2] == ", ": take(2) nl() else: take(1) return result
496420
from utils.header import MagicField, Field from load_command import LoadCommandHeader, LoadCommandCommand class SubClientCommand(LoadCommandHeader): ENDIAN = None FIELDS = ( MagicField('cmd', 'I', {LoadCommandCommand.COMMANDS['LC_SUB_CLIENT']: 'LC_SUB_CLIENT'}), Field('cmdsize', 'I'), Field('client_offset', 'I'), ) def __init__(self, bytes_=None, **kwargs): self.client_offset = None super(SubClientCommand, self).__init__(bytes_, **kwargs)
496443
import flask_login import logging from flask import jsonify, request from server import app, user_db from server.auth import user_mediacloud_client, user_name, user_admin_mediacloud_client,\ user_is_admin from server.util.request import form_fields_required, arguments_required, api_error_handler logger = logging.getLogger(__name__) @app.route('/api/topics/search', methods=['GET']) @flask_login.login_required @arguments_required('searchStr') @api_error_handler def topic_search(): search_str = request.args['searchStr'] mode = request.args['mode'] if 'mode' in request.args else 'list' user_mc = user_admin_mediacloud_client() results = user_mc.topicList(name=search_str, limit=50) if mode == 'full': matching_topics = results['topics'] else: # matching_topics = [{'name': x['name'], 'id': x['topics_id']} for x in results['topics']] matching_topics = results['topics'] return jsonify({'topics': matching_topics}) @app.route('/api/topics/admin/list', methods=['GET']) @flask_login.login_required @api_error_handler def topic_admin_list(): user_mc = user_admin_mediacloud_client() # if a non-admin user calls this, using user_mc grantees this won't be a security hole # but for admins this will return ALL topics topics = user_mc.topicList(limit=500)['topics'] # we also want snapshot info # topics = _add_snapshots_info_to_topics(topics) topics = sorted(topics, key=lambda t: t['topics_id'], reverse=True) return jsonify(topics) @app.route('/api/topics/favorites', methods=['GET']) @flask_login.login_required @api_error_handler def topic_favorites(): user_mc = user_mediacloud_client() favorite_topic_ids = user_db.get_users_lists(user_name(), 'favoriteTopics') favorited_topics = [user_mc.topic(tid) for tid in favorite_topic_ids] for t in favorited_topics: t['isFavorite'] = True return jsonify({'topics': favorited_topics}) @app.route('/api/topics/queued-and-running', methods=['GET']) @flask_login.login_required @api_error_handler def does_user_have_a_running_topic(): # save a costly set of paging queries when the user is admin if user_is_admin(): return jsonify([]) # non-admin, so do the real check user_mc = user_mediacloud_client() queued_and_running_topics = [] more_topics = True link_id = None while more_topics: results = user_mc.topicList(link_id=link_id, limit=100) topics = results['topics'] queued_and_running_topics += [t for t in topics if t['state'] in ['running', 'queued'] and t['user_permission'] in ['admin']] more_topics = 'next' in results['link_ids'] if more_topics: link_id = results['link_ids']['next'] return jsonify(queued_and_running_topics) def topics_user_can_access(topics, user_email, is_admin): # we can't see all the permissions for a topic in topicList results, so we have to use some guesses here. # pull out just the topics this user has permissions for (ie. remove public ones they don't own) user_topics = [] for t in topics: user_is_owner = user_email in [o['email'] for o in t['owners']] # admins can see all topics, so to make this more manageable only show admins ones they own ok_to_show = user_is_owner if is_admin else user_is_owner or (not t['is_public']) if ok_to_show: user_topics.append(t) return user_topics @app.route('/api/topics/personal', methods=['GET']) @flask_login.login_required @api_error_handler def topic_personal(): user_mc = user_mediacloud_client() link_id = request.args.get('linkId') results = user_mc.topicList(link_id=link_id, limit=1000) user_accessible_topics = topics_user_can_access(results['topics'], flask_login.current_user.profile['email'], user_is_admin()) # update this in place so the results['link_ids'] don't change (for paging support) results['topics'] = add_user_favorite_flag_to_topics(user_accessible_topics) return jsonify(results) @app.route('/api/topics/<topics_id>/favorite', methods=['PUT']) @flask_login.login_required @form_fields_required('favorite') @api_error_handler def topic_set_favorited(topics_id): favorite = int(request.form["favorite"]) username = user_name() if favorite == 1: user_db.add_item_to_users_list(username, 'favoriteTopics', int(topics_id)) else: user_db.remove_item_from_users_list(username, 'favoriteTopics', int(topics_id)) return jsonify({'isFavorite': favorite == 1}) def add_user_favorite_flag_to_topics(topics): user_favorited = user_db.get_users_lists(user_name(), 'favoriteTopics') for t in topics: t['isFavorite'] = t['topics_id'] in user_favorited return topics
496456
import vstruct from vstruct.primitives import * class BITMAPINFOHEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.biSize = v_uint32() self.biWidth = v_int32() self.biHeight = v_int32() self.biPlanes = v_uint16() self.biBitCount = v_uint16() self.biCompression = v_uint32() self.biSizeImage = v_uint32() self.biXPelsPerMeter = v_int32() self.biYPelsPerMeter = v_int32() self.biClrUser = v_uint32() self.biClrImportant = v_uint32()
496459
from typing import Union, Tuple, Any import numpy as np # NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and # `np.bytes_` are already subclasses of their builtin counterpart _CharLike_co = Union[str, bytes] # The 6 `<X>Like_co` type-aliases below represent all scalars that can be # coerced into `<X>` (with the casting rule `same_kind`) _BoolLike_co = Union[bool, np.bool_] _UIntLike_co = Union[_BoolLike_co, np.unsignedinteger] _IntLike_co = Union[_BoolLike_co, int, np.integer] _FloatLike_co = Union[_IntLike_co, float, np.floating] _ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating] _TD64Like_co = Union[_IntLike_co, np.timedelta64] _NumberLike_co = Union[int, float, complex, np.number, np.bool_] _ScalarLike_co = Union[ int, float, complex, str, bytes, np.generic, ] # `_VoidLike_co` is technically not a scalar, but it's close enough _VoidLike_co = Union[Tuple[Any, ...], np.void]
496462
import ssz from eth2.beacon.types.voluntary_exits import SignedVoluntaryExit, VoluntaryExit def test_defaults(sample_voluntary_exit_params, sample_signature): exit = VoluntaryExit.create(**sample_voluntary_exit_params) signed_exit = SignedVoluntaryExit.create(message=exit, signature=sample_signature) assert exit.epoch == sample_voluntary_exit_params["epoch"] assert ssz.encode(exit) assert ssz.encode(signed_exit)
496491
from setuptools import setup from os import path HERE = path.abspath(path.dirname(__file__)) def readme(): with open(path.join(HERE, 'README.rst')) as f: return f.read() setup( name='choix', version='0.3.3', author='<NAME>', author_email='<EMAIL>', description="Inference algorithms for models based on Luce's choice axiom.", long_description=readme(), url='https://github.com/lucasmaystre/choix', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], keywords='statistics ml bradley terry plackett luce choice comparison ranking', packages=['choix'], install_requires=[ 'numpy', 'scipy', ], setup_requires=['pytest-runner'], tests_require=[ 'pytest', 'networkx', ], include_package_data=True, zip_safe=False, )
496500
from rest_framework.pagination import LimitOffsetPagination class LimitOffsetPaginationWithMaxLimit(LimitOffsetPagination): max_limit = 10
496578
def initialize_project(): print("Importing necessary methods...") from utils.create_proto import create_proto_files from utils.import_fixer import convert_to_relative_imports print("Creating proto files...") create_proto_files() convert_to_relative_imports() if __name__ == "__main__": print("Initialising project...") initialize_project()
496584
from server.user.interface import User from server.context import Context from django.conf import settings from .models import Page def frontend(request): return { 'page': Page.get(), 'user_': ( User.get(Context.from_request(request), request.user.pk) if request.user.is_authenticated else None ), 'groups': User.groups, 'debug': settings.DEBUG, 'no_board_groups': User.no_board_groups, }