id
stringlengths
3
8
content
stringlengths
100
981k
43467
from __future__ import absolute_import __author__ = '<NAME>' import time import struct try: from pebble import pulse2 except ImportError: pass from . import BaseTransport, MessageTargetWatch from libpebble2.exceptions import ConnectionError, PebbleError class PULSETransport(BaseTransport): """ Represents a direct connection to a physical/virtual Pebble uses the PULSEv2 interface. This transport expects to be given a PULSE2 Link object. :param connection: A PULSE2 Link object to tunnel Pebble Protocol over. :type link: pulse2.link.Link """ must_initialise = True PPOPULSE_PORT = 0x3e22 OPCODE_PROTOCOL_DATA = 0x1 OPCODE_PROTOCOL_OPEN = 0x2 OPCODE_PROTOCOL_CLOSE = 0x3 def __init__(self, link): self.link = link self.connection = None self.buffer = b'' @staticmethod def _chunks(list_items, chunk_length): for i in xrange(0, len(list_items), chunk_length): yield list_items[i:i+chunk_length] def connect(self): self.connection = self.link.open_socket('reliable', self.PPOPULSE_PORT) if not self.connection: raise ConnectionError('Failed to open PPoPULSE socket') self._send_with_opcode(self.OPCODE_PROTOCOL_OPEN) start_time = time.time() while time.time() < start_time + 10.0: opcode, _ = self._recv_with_opcode() if opcode == self.OPCODE_PROTOCOL_OPEN: break else: raise ConnectionError('Timeout waiting for PPoPULSE open ACK') def disconnect(self): if self.connected: try: self._send_with_opcode(self.OPCODE_PROTOCOL_CLOSE) except pulse2.exceptions.SocketClosed: pass self.connection.close() self.connection = None @property def connected(self): return self.connection is not None def read_packet(self): while self.connected: if len(self.buffer) >= 2: length, = struct.unpack('!H', self.buffer[:2]) length += 4 if len(self.buffer) >= length: msg_data = self.buffer[:length] self.buffer = self.buffer[length:] return MessageTargetWatch(), msg_data opcode, data = self._recv_with_opcode() if opcode == self.OPCODE_PROTOCOL_DATA: self.buffer += data def send_packet(self, message, target=MessageTargetWatch()): assert isinstance(target, MessageTargetWatch) for chunk in self._chunks(message, self.connection.mtu - 1): self._send_with_opcode(self.OPCODE_PROTOCOL_DATA, chunk) def _recv_with_opcode(self): try: packet = self.connection.receive(block=True) except (AttributeError, pulse2.exceptions.SocketClosed): self.connection = None raise ConnectionError('PULSE transport closed') assert len(packet) >= 1 opcode = ord(packet[0]) data = packet[1:] return opcode, data def _send_with_opcode(self, opcode, body=None): assert self.connected data = chr(opcode) if body: data += body self.connection.send(data)
43490
import symjax import symjax.tensor as T import matplotlib.pyplot as plt import numpy as np J = 5 Q = 4 scales = T.power(2, T.linspace(0.1, J - 1, J * Q)) scales = scales[:, None] print(scales.get()) wavelet = symjax.tensor.signal.complex_morlet(5 * scales, np.pi / scales) waveletw = symjax.tensor.signal.fourier_complex_morlet( 5 * scales, np.pi / scales, wavelet.shape[-1] ) waveletlp = symjax.tensor.signal.littewood_paley_normalization( waveletw, down=np.pi / scales[-1, 0] ) wavelet = wavelet.get() waveletw = waveletw.get() waveletlp = waveletlp.get() plt.subplot(321) for i in range(J * Q): fr = np.real(np.fft.fft(np.fft.ifftshift(wavelet[i]))) fi = np.imag(np.fft.fft(np.fft.ifftshift(wavelet[i]))) plt.plot(i + fr, "--b") plt.plot(i + fi, "--r") plt.subplot(322) for i in range(J * Q): plt.plot(2 * i + wavelet[i].real, c="b") plt.plot(2 * i + wavelet[i].imag, c="r") plt.subplot(324) for i in range(J * Q): fr = np.real(np.fft.fftshift(np.fft.ifft(waveletw[i]))) fi = np.imag(np.fft.fftshift(np.fft.ifft(waveletw[i]))) plt.plot(2 * i + fr / fr.max(), "--b") plt.plot(2 * i + fi / fi.max(), "--r") plt.subplot(323) for i in range(J * Q): plt.plot(i + waveletw[i].real, c="b") plt.plot(i + waveletw[i].imag, c="r") plt.subplot(325) for i in range(J * Q): plt.plot(i + waveletlp[i].real, c="b") plt.plot(i + waveletlp[i].imag, c="r") plt.plot(np.abs(waveletlp).sum(0), c="g") plt.subplot(326) for i in range(J * Q): fr = np.real(np.fft.fftshift(np.fft.ifft(waveletlp[i]))) fi = np.imag(np.fft.fftshift(np.fft.ifft(waveletlp[i]))) plt.plot(2 * i + fr / fr.max(), "--b") plt.plot(2 * i + fi / fi.max(), "--r") # plt.show() plt.savefig("wavelets.png")
43526
import torchvision.transforms as T from torchvision.datasets import ImageFolder class WHURS19(ImageFolder): """ WHU-RS19 dataset from'Structural High-resolution Satellite Image Indexing', Xia at al. (2010) https://hal.archives-ouvertes.fr/file/index/docid/458685/filename/structural_satellite_indexing_XYDG.pdf """ def __init__( self, root: str = ".data/WHU-RS19", transform: T.Compose = T.Compose([T.ToTensor()]) ): super().__init__( root=root, transform=transform )
43534
from lcu_driver import Connector connector = Connector() @connector.ready async def connect(connection): print('LCU API is ready to be used.') @connector.close async def disconnect(connection): print('Finished task') connector.start()
43568
import theano.tensor as tt from theano import scan from . import multivariate from . import continuous from . import distribution __all__ = [ 'AR1', 'GaussianRandomWalk', 'GARCH11', 'EulerMaruyama', 'MvGaussianRandomWalk', 'MvStudentTRandomWalk' ] class AR1(distribution.Continuous): """ Autoregressive process with 1 lag. Parameters ---------- k : tensor effect of lagged value on current value tau_e : tensor precision for innovations """ def __init__(self, k, tau_e, *args, **kwargs): super(AR1, self).__init__(*args, **kwargs) self.k = k self.tau_e = tau_e self.tau = tau_e * (1 - k ** 2) self.mode = 0. def logp(self, x): k = self.k tau_e = self.tau_e x_im1 = x[:-1] x_i = x[1:] boundary = continuous.Normal.dist(0, tau_e).logp innov_like = continuous.Normal.dist(k * x_im1, tau_e).logp(x_i) return boundary(x[0]) + tt.sum(innov_like) + boundary(x[-1]) class GaussianRandomWalk(distribution.Continuous): """ Random Walk with Normal innovations Parameters ---------- tau : tensor tau > 0, innovation precision sd : tensor sd > 0, innovation standard deviation (alternative to specifying tau) mu: tensor innovation drift, defaults to 0.0 init : distribution distribution for initial value (Defaults to Flat()) """ def __init__(self, tau=None, init=continuous.Flat.dist(), sd=None, mu=0., *args, **kwargs): super(GaussianRandomWalk, self).__init__(*args, **kwargs) self.tau = tau self.sd = sd self.mu = mu self.init = init self.mean = 0. def logp(self, x): tau = self.tau sd = self.sd mu = self.mu init = self.init x_im1 = x[:-1] x_i = x[1:] innov_like = continuous.Normal.dist(mu=x_im1 + mu, tau=tau, sd=sd).logp(x_i) return init.logp(x[0]) + tt.sum(innov_like) class GARCH11(distribution.Continuous): """ GARCH(1,1) with Normal innovations. The model is specified by y_t = sigma_t * z_t sigma_t^2 = omega + alpha_1 * y_{t-1}^2 + beta_1 * sigma_{t-1}^2 with z_t iid and Normal with mean zero and unit standard deviation. Parameters ---------- omega : distribution omega > 0, distribution for mean variance alpha_1 : distribution alpha_1 >= 0, distribution for autoregressive term beta_1 : distribution beta_1 >= 0, alpha_1 + beta_1 < 1, distribution for moving average term initial_vol : distribution initial_vol >= 0, distribution for initial volatility, sigma_0 """ def __init__(self, omega=None, alpha_1=None, beta_1=None, initial_vol=None, *args, **kwargs): super(GARCH11, self).__init__(*args, **kwargs) self.omega = omega self.alpha_1 = alpha_1 self.beta_1 = beta_1 self.initial_vol = initial_vol self.mean = 0 def get_volatility(self, x): x = x[:-1] def volatility_update(x, vol, w, a, b): return tt.sqrt(w + a * tt.square(x) + b * tt.square(vol)) vol, _ = scan(fn=volatility_update, sequences=[x], outputs_info=[self.initial_vol], non_sequences=[self.omega, self.alpha_1, self.beta_1]) return tt.concatenate(self.initial_vol, vol) def logp(self, x): vol = self.get_volatility(x) return tt.sum(continuous.Normal.dist(0, sd=vol).logp(x)) class EulerMaruyama(distribution.Continuous): """ Stochastic differential equation discretized with the Euler-Maruyama method. Parameters ---------- dt : float time step of discretization sde_fn : callable function returning the drift and diffusion coefficients of SDE sde_pars : tuple parameters of the SDE, passed as *args to sde_fn """ def __init__(self, dt, sde_fn, sde_pars, *args, **kwds): super(EulerMaruyama, self).__init__(*args, **kwds) self.dt = dt self.sde_fn = sde_fn self.sde_pars = sde_pars def logp(self, x): xt = x[:-1] f, g = self.sde_fn(x[:-1], *self.sde_pars) mu = xt + self.dt * f sd = tt.sqrt(self.dt) * g return tt.sum(continuous.Normal.dist(mu=mu, sd=sd).logp(x[1:])) class MvGaussianRandomWalk(distribution.Continuous): """ Multivariate Random Walk with Normal innovations Parameters ---------- mu : tensor innovation drift, defaults to 0.0 cov : tensor pos def matrix, innovation covariance matrix tau : tensor pos def matrix, innovation precision (alternative to specifying cov) init : distribution distribution for initial value (Defaults to Flat()) """ def __init__(self, mu=0., cov=None, tau=None, init=continuous.Flat.dist(), *args, **kwargs): super(MvGaussianRandomWalk, self).__init__(*args, **kwargs) tau, cov = multivariate.get_tau_cov(mu, tau=tau, cov=cov) self.tau = tau self.cov = cov self.mu = mu self.init = init self.mean = 0. def logp(self, x): tau = self.tau mu = self.mu init = self.init x_im1 = x[:-1] x_i = x[1:] innov_like = multivariate.MvNormal.dist(mu=x_im1 + mu, tau=tau).logp(x_i) return init.logp(x[0]) + tt.sum(innov_like) class MvStudentTRandomWalk(distribution.Continuous): """ Multivariate Random Walk with StudentT innovations Parameters ---------- nu : degrees of freedom mu : tensor innovation drift, defaults to 0.0 cov : tensor pos def matrix, innovation covariance matrix tau : tensor pos def matrix, innovation precision (alternative to specifying cov) init : distribution distribution for initial value (Defaults to Flat()) """ def __init__(self, nu, mu=0., cov=None, tau=None, init=continuous.Flat.dist(), *args, **kwargs): super(MvStudentTRandomWalk, self).__init__(*args, **kwargs) tau, cov = multivariate.get_tau_cov(mu, tau=tau, cov=cov) self.tau = tau self.cov = cov self.mu = mu self.nu = nu self.init = init self.mean = 0. def logp(self, x): cov = self.cov mu = self.mu nu = self.nu init = self.init x_im1 = x[:-1] x_i = x[1:] innov_like = multivariate.MvStudentT.dist(nu, cov, mu=x_im1 + mu).logp(x_i) return init.logp(x[0]) + tt.sum(innov_like)
43571
import pytest from monty.serialization import MontyDecoder from monty.serialization import loadfn from emmet.core.thermo import ThermoDoc @pytest.fixture(scope="session") def Fe3O4_structure(test_dir): structure = loadfn(test_dir / "thermo/Fe3O4_structure.json") return structure @pytest.fixture(scope="session") def Fe2O3a_structure(test_dir): structure = loadfn(test_dir / "thermo/Fe2O3a_structure.json") return structure @pytest.fixture(scope="session") def Fe2O3b_structure(test_dir): structure = loadfn(test_dir / "thermo/Fe2O3b_structure.json") return structure @pytest.fixture(scope="session") def Fe_structure(test_dir): structure = loadfn(test_dir / "thermo/Fe_structure.json") return structure @pytest.fixture(scope="session") def O_structure(test_dir): structure = loadfn(test_dir / "thermo/O_structure.json") return structure @pytest.fixture def entries( Fe3O4_structure, Fe2O3a_structure, Fe2O3b_structure, Fe_structure, O_structure ): return MontyDecoder().process_decoded( [ { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedStructureEntry", "correction": 0.0, "structure": Fe3O4_structure.as_dict(), "entry_id": "mp-1", "energy": -382.146593528, "composition": {"Fe": 24.0, "O": 32.0}, "name": "Fe3O4", "attribute": None, "@version": "2020.4.29", }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedStructureEntry", "correction": 0.0, "structure": Fe2O3a_structure.as_dict(), "entry_id": "mp-2", "energy": -270.38765404, "composition": {"Fe": 16.0, "O": 24.0}, "name": "Fe2O3", "attribute": None, "@version": "2020.4.29", }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedStructureEntry", "correction": 0.0, "structure": O_structure.as_dict(), "entry_id": "mp-3", "energy": -92.274692568, "composition": {"O": 24.0}, "name": "O", "attribute": None, "@version": "2020.4.29", }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedStructureEntry", "correction": 0.0, "structure": Fe_structure.as_dict(), "entry_id": "mp-4", "energy": -13.00419661, "composition": {"Fe": 2.0}, "name": "Fe", "attribute": None, "@version": "2020.4.29", }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedStructureEntry", "correction": 0.0, "structure": Fe2O3b_structure.as_dict(), "entry_id": "mp-5", "energy": -1080.82678592, "composition": {"Fe": 64.0, "O": 96.0}, "name": "Fe2O3", "attribute": None, "@version": "2020.4.29", }, ] ) def test_from_entries(entries): docs, pd = ThermoDoc.from_entries(entries, deprecated=False) assert len(docs) == len(entries) assert all([d.energy_type == "Unknown" for d in docs]) unstable_doc = next(d for d in docs if d.material_id == "mp-5") assert unstable_doc.is_stable is False assert all([d.is_stable for d in docs if d != unstable_doc])
43591
from colorama import Fore, Style def console_log(text, _type=None, title=None, space=False, space_number=0): # Checking text instance is string if isinstance(text, str): if title is None: if _type == 'success': return print(Style.DIM + Fore.GREEN + '[SUCCESS]' + Style.RESET_ALL + ' ' + text) elif _type == 'warning': return print(Style.DIM + Fore.YELLOW + '[WARNING]' + Style.RESET_ALL + ' ' + text) elif _type == 'error': return print(Style.DIM + Fore.RED + '[ERROR]' + Style.RESET_ALL + ' ' + text) else: return print(text) elif title is not None \ and isinstance(title, str) and not space: if _type == 'success': return print(Style.DIM + Fore.GREEN + '[SUCCESS]' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) elif _type == 'warning': return print(Style.DIM + Fore.YELLOW + '[WARNING]' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) elif _type == 'error': return print(Style.DIM + Fore.RED + '[ERROR]' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) else: return print(Fore.WHITE + title + ': ' + Style.RESET_ALL + text) elif title is not None \ and isinstance(title, str) and space: if _type == 'success': return print(Style.DIM + Fore.GREEN + ' ' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) elif _type == 'warning': return print(Style.DIM + Fore.YELLOW + ' ' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) elif _type == 'error': return print(Style.DIM + Fore.RED + ' ' + Style.RESET_ALL + ' ' + Fore.WHITE + title + ': ' + Style.RESET_ALL + text) else: if space_number is 0: return print(Fore.WHITE + '' + title + ': ' + Style.RESET_ALL + text) else: return print(Fore.WHITE + ' ' * space_number + title + ': ' + Style.RESET_ALL + text)
43611
import torch import torch.nn.functional as F from exptune.exptune import ExperimentSettings, Metric, TrialResources from exptune.hyperparams import ( ChoiceHyperParam, LogUniformHyperParam, UniformHyperParam, ) from exptune.search_strategies import GridSearchStrategy from exptune.summaries.final_run_summaries import TestMetricSummaries, TrialCurvePlotter from exptune.utils import PatientStopper from ogb.graphproppred.evaluate import Evaluator from ray.tune.schedulers import AsyncHyperBandScheduler from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from experiments.exp_config import BaseGraphConfig, Extra from experiments.mol.pna_style_models import ( EgcHIVNet, GatHIVNet, GcnHIVNet, GinHIVNet, MpnnHIVNet, ) from experiments.mol.utils import mol_data from experiments.utils import data_location, load_pretrained, print_model_parameters REPEATS = 10 ITERS = 100 NUM_LAYERS = 4 PRETRAINED_CONF = { "gcn": (240, "https://www.dropbox.com/s/wn0wpmko8vl5aq1/gcn.pt?dl=1"), "gat": (240, "https://www.dropbox.com/s/ohihapt36lykekw/gat.pt?dl=1"), "gin": (240, "https://www.dropbox.com/s/0rjxeixit6jtinq/gin.pt?dl=1"), "mpnn_max": (180, "https://www.dropbox.com/s/jxuams6l82tdb1v/mpnn_max.pt?dl=1"), "mpnn_add": (180, "https://www.dropbox.com/s/op0takj73p1qwzy/mpnn_sum.pt?dl=1"), "egc_s": (236, "https://www.dropbox.com/s/hrohxtt9vlps9sf/mcn_s.pt?dl=1"), "egc_m": (224, "https://www.dropbox.com/s/hnbtmzka1r1t2hk/mcn_m.pt?dl=1"), } def train(model, optimizer, data, device, loss_fn): model = model.to(device) model.train() num_batches = 0 loss_total = 0.0 for batch in data["train"]: batch = batch.to(device) optimizer.zero_grad() out = model(batch) # nan targets (unlabeled) should be ignored when computing training loss is_labeled = batch.y == batch.y loss = loss_fn( out.to(torch.float32)[is_labeled], batch.y.to(torch.float32)[is_labeled] ) loss.backward() optimizer.step() loss_total += loss.item() num_batches += 1 return {"train_loss": loss_total / num_batches} @torch.no_grad() def evaluate(model, data, device, split, evaluator, metric_key, loss_fn): model = model.to(device) model.eval() y_true = [] y_pred = [] loss_total = 0.0 num_batches = 0 for batch in data[split]: batch = batch.to(device) pred = model(batch) is_labeled = batch.y == batch.y loss_total += loss_fn( pred.to(torch.float32)[is_labeled], batch.y.to(torch.float32)[is_labeled] ).item() y_true.append(batch.y.view(pred.shape).detach().cpu()) y_pred.append(pred.detach().cpu()) num_batches += 1 y_true = torch.cat(y_true, dim=0).numpy() y_pred = torch.cat(y_pred, dim=0).numpy() input_dict = {"y_true": y_true, "y_pred": y_pred} return { f"{split}_metric": evaluator.eval(input_dict)[metric_key], f"{split}_loss": loss_total / num_batches, } class MolConfig(BaseGraphConfig): def __init__( self, dataset, hidden, ) -> None: super().__init__(debug_mode=False) assert dataset in ["hiv", "pcba"] self.dataset = dataset self.hidden = hidden if self.dataset == "hiv": self.loss_fn = F.binary_cross_entropy_with_logits self.num_tasks = 1 self.eval_metric_key = "rocauc" elif self.dataset == "pcba": self.loss_fn = F.binary_cross_entropy_with_logits self.num_tasks = 128 self.eval_metric_key = "ap" self.evaluator = Evaluator(f"ogbg-mol{self.dataset}") def settings(self) -> ExperimentSettings: return ExperimentSettings( f"mol-{self.dataset}", final_repeats=REPEATS, final_max_iterations=ITERS, ) def resource_requirements(self) -> TrialResources: return TrialResources(cpus=2, gpus=0.25) def search_strategy(self): return GridSearchStrategy({"lr": 5, "wd": 2, "dropout": 2}) def trial_scheduler(self): metric = self.trial_metric() return AsyncHyperBandScheduler( metric=metric.name, mode=metric.mode, max_t=ITERS, grace_period=30 ) def trial_metric(self) -> Metric: return Metric("valid_metric", "max") def stoppers(self): metric = self.trial_metric() return [ PatientStopper( metric=metric.name, mode=metric.mode, patience=20, max_iters=ITERS ) ] def optimizer(self, model, hparams): return Adam(model.parameters(), lr=hparams["lr"], weight_decay=hparams["wd"]) def extra_setup(self, model, optimizer, hparams): print_model_parameters(model) return Extra( device=torch.device("cuda" if torch.cuda.is_available() else "cpu"), lr_scheduler=ReduceLROnPlateau( optimizer, mode="max", factor=0.5, patience=10, min_lr=1e-5 ), ) def data(self, pinned_objs, hparams): return mol_data( data_location(), dataset=self.dataset, batch_size=hparams["batch_size"] ) def hyperparams(self): return { "lr": LogUniformHyperParam(0.0001, 0.01, default=0.001), "batch_size": ChoiceHyperParam([32, 64], default=32), "wd": LogUniformHyperParam(0.0001, 0.001, default=0.0005), "dropout": UniformHyperParam(0.0, 0.2, default=0.2), } def train(self, model, optimizer, data, extra, iteration: int): return train(model, optimizer, data, extra.device, self.loss_fn), None def val(self, model, data, extra, iteration: int): v_metrics = evaluate( model, data, extra.device, "valid", self.evaluator, self.eval_metric_key, self.loss_fn, ) t_metrics = evaluate( model, data, extra.device, "test", self.evaluator, self.eval_metric_key, self.loss_fn, ) extra.lr_scheduler.step(v_metrics["valid_metric"]) return {**v_metrics, **t_metrics}, None def test(self, model, data, extra): return ( evaluate( model, data, extra.device, "test", self.evaluator, self.eval_metric_key, self.loss_fn, ), None, ) def persist_trial(self, checkpoint_dir, model, optimizer, hparams, extra): out = { "model": model.state_dict(), "opt": optimizer.state_dict(), "lr_scheduler": extra.lr_scheduler.state_dict(), "hparams": hparams, } torch.save(out, str(checkpoint_dir / "checkpoint.pt")) def restore_trial(self, checkpoint_dir, map_location=None): checkpoint = torch.load( str(checkpoint_dir / "checkpoint.pt"), map_location=map_location ) hparams = checkpoint["hparams"] model = self.model(hparams) model.load_state_dict(checkpoint["model"]) opt = self.optimizer(model, hparams) opt.load_state_dict(checkpoint["opt"]) extra = self.extra_setup(model, opt, hparams) extra.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) return model, opt, hparams, extra def final_runs_summaries(self): return [ TrialCurvePlotter( [ "train_loss", "valid_metric", "test_metric", "valid_loss", "test_loss", ], name="loss_curves", ), TestMetricSummaries(), ] class GcnMolConfig(MolConfig): def model(self, hparams): return GcnHIVNet( hidden_dim=self.hidden, num_graph_layers=NUM_LAYERS, in_feat_drop=hparams["dropout"], residual=True, ) def pretrained(self, model_dir): return load_pretrained( self, dataset_name="hiv", model_name="gcn", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, ) class GatMolConfig(MolConfig): def model(self, hparams): return GatHIVNet( hidden_dim=self.hidden, num_graph_layers=NUM_LAYERS, in_feat_drop=hparams["dropout"], residual=True, ) def pretrained(self, model_dir): return load_pretrained( self, dataset_name="hiv", model_name="gat", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, ) class GinMolConfig(MolConfig): def model(self, hparams): return GinHIVNet( hidden_dim=self.hidden, num_graph_layers=NUM_LAYERS, in_feat_drop=hparams["dropout"], residual=True, ) def pretrained(self, model_dir): return load_pretrained( self, dataset_name="hiv", model_name="gin", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, ) class EgcMolConfig(MolConfig): def __init__(self, dataset, hidden, softmax, num_bases, num_heads, aggrs) -> None: super().__init__(dataset=dataset, hidden=hidden) self.softmax = softmax self.num_bases = num_bases self.num_heads = num_heads self.aggrs = aggrs.split(",") def model(self, hparams): return EgcHIVNet( hidden_dim=self.hidden, num_graph_layers=NUM_LAYERS, in_feat_drop=hparams["dropout"], residual=True, readout="mean", softmax=self.softmax, bases=self.num_bases, heads=self.num_heads, aggrs=self.aggrs, ) def pretrained(self, model_dir): assert not self.softmax if len(self.aggrs) == 1: assert "symadd" in self.aggrs assert self.hidden == 236 and self.num_heads == 4 and self.num_bases == 4 model = "egc_s" elif len(self.aggrs) == 3: assert set(self.aggrs).issuperset({"add", "max", "mean"}) assert self.hidden == 224 and self.num_heads == 4 and self.num_bases == 4 model = "egc_m" else: raise ValueError return load_pretrained( self, dataset_name="hiv", model_name=model, hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, ) class MpnnMolConfig(MolConfig): def __init__(self, dataset, hidden, aggr) -> None: super().__init__(dataset, hidden) self.aggr = aggr def model(self, hparams): return MpnnHIVNet( hidden_dim=self.hidden, num_graph_layers=NUM_LAYERS, in_feat_drop=hparams["dropout"], residual=True, aggr=self.aggr, ) def pretrained(self, model_dir): return load_pretrained( self, dataset_name="hiv", model_name=f"mpnn_{self.aggr}", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, )
43614
import angr ###################################### # accept (but not really) ###################################### class accept(angr.SimProcedure): #pylint:disable=arguments-differ def run(self, sockfd, addr, addrlen): conc_addrlen = self.state.mem[addrlen].int.concrete addr_data = self.state.solver.BVS('accept_addr', conc_addrlen*8, key=('api', 'accept', 'addr')) self.state.memory.store(addr, addr_data) ident = 'unknown' if not sockfd.symbolic: sockfd = self.state.solver.eval(sockfd) if sockfd in self.state.posix.fd: simsockfd = self.state.posix.fd[sockfd] for potential_ident in self.state.posix.sockets: if self.state.posix.sockets[potential_ident][0] is simsockfd.read_storage and \ self.state.posix.sockets[potential_ident][1] is simsockfd.write_storage: ident = potential_ident break ident_counters = dict(self.state.globals.get('accept_idents', {})) ident_counters[ident] = ident_counters.get(ident, 0) + 1 self.state.globals['accept_idents'] = ident_counters fd = self.state.posix.open_socket(('accept', ident, ident_counters[ident])) return fd
43627
import panel as pn def test_alert(): my_alert = pn.pane.Alert("foo", alert_type="primary") my_button = pn.widgets.Button(name="Toggle") def toggle(event): if my_alert.alert_type == "primary": my_alert.alert_type == "success" else: my_alert.alert_type = "primary" my_alert.object = my_alert.alert_type my_button.on_click(toggle) pn.Row(my_alert, my_button).show() test_alert()
43653
import torch import torch.nn as nn import argparse from torch.utils.data import Dataset import sys ''' Block of net ''' def net_block(n_in, n_out): block = nn.Sequential(nn.Linear(n_in, n_out), nn.BatchNorm1d(n_out), nn.ReLU()) return block class Model(nn.Module): def __init__(self, n_input, n_hidden, num_class, opt, toplevel=False): super(Model, self).__init__() self.opt = opt self.toplevel = toplevel self.block1 = net_block(n_input, n_hidden) self.dropout = nn.Dropout(p=0.1) if (opt.glove or opt.sift or opt.prefix10m): #if include skip connection: #self.block_mid = net_block(n_hidden + n_input, n_hidden) self.block_mid = net_block(n_hidden, n_hidden) if toplevel: self.block2 = net_block(n_hidden, n_hidden) self.fc1 = nn.Linear(n_hidden, num_class) self.softmax = nn.Softmax(dim=-1) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) nn.init.constant_(m.bias, 0.01) def forward(self, x): y = self.block1(x) #y = self.dropout(x1) if self.opt.glove or self.opt.sift or self.opt.prefix10m: #if include skip connection: #y = self.block_mid(torch.cat([x, y], dim=1)) y = self.block_mid(y) if self.toplevel: y = self.block2(y) y = self.dropout(y) out = self.fc1(y) out = self.softmax(out) return out def get_dataset(data, shuffle, param_batch_size): X, y = data dset = torch.utils.data.TensorDataset(X.float(), y) loader = torch.utils.data.DataLoader(dataset=dset, batch_size=param_batch_size, shuffle=shuffle) return loader def write_results(result, output): result = (-result.detach().numpy()).argsort(axis=1) for i in range(result.shape[0]): output.write(" ".join([str(x) for x in result[i]]) + "\n") def run(param_feat, param_lr, param_batch_size): print("RUNNING WITH: features="+str(param_feat)+"; lr="+str(param_lr)+"; batch_size="+str(param_batch_size)) input_dim = 100 # read data X, y = torch.load('./data/parts64/data.path') import numpy as np dataset = np.load('./data/parts64/dataset.npy') queries = np.load('./data/parts64/queries.npy') n_data = X.size(0) split = int(n_data * 0.95) trainloader = get_dataset((X[:split], y[:split]), shuffle=True, param_batch_size=param_batch_size) valloader = get_dataset((X[split:], y[split:]), shuffle=False, param_batch_size=param_batch_size) # build model m = Model model = m(input_dim=input_dim, feat_dim=param_feat, num_class=64, args=None).cuda() # criterion crit = nn.CrossEntropyLoss().cuda() # optimizer # optimizer = torch.optim.RMSprop(model.parameters(), args.lr) lr = param_lr optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=10**(-4)) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 30, 35, 38, 39], gamma=0.1) # start training! losses = [] iterations = 40 for ep in range(1, iterations + 1): print("==="+str(ep)+"===") loss_sum = 0. train_acc_tot = 0 train_n_tot = 0 scheduler.step() for i, (X, y) in enumerate(trainloader): y_pred = model(X.cuda()) loss = crit(y_pred, y.cuda()) optimizer.zero_grad() loss.backward() optimizer.step() loss_sum += loss.item() train_acc_tot += (y_pred.argmax(dim=1).cpu() == y).sum().item() train_n_tot += X.size(0) print("loss:", loss_sum) print("train acc:", train_acc_tot*1. / train_n_tot) losses.append(loss_sum / len(trainloader)) acc_tot = 0 n_tot = 0. for i, (X, y) in enumerate(valloader): y_pred = model(X.cuda()) acc_tot += (y_pred.argmax(dim=1).cpu() == y).sum().item() n_tot += X.size(0) print("val acc:", acc_tot / n_tot) print("Doing inference and writing result files...") # inference on data batch_size = 10000 param_str = "_".join(sys.argv[1:]) with open("./data/parts64/data_prediction"+param_str+".txt","w") as output: for b in range(0, n_data, batch_size): data_batch_results = model(torch.from_numpy(dataset[b:b+batch_size]).float().cuda()).cpu() write_results(data_batch_results, output) # inference on queries query_results = model(torch.from_numpy(queries).float().cuda()).cpu() with open("./data/parts64/queries_prediction"+param_str+".txt","w") as output: write_results(query_results, output) if __name__ == "__main__": run(int(sys.argv[1]), float(sys.argv[2]), int(sys.argv[3]))
43688
import copy import torch as th from torch.optim import Adam import torch.nn.functional as F from torch.nn.utils import clip_grad_norm_ class SACLearner: def __init__(self, mac, args): self.args = args self.mac = mac self.params = list(mac.parameters()) self.learn_cnt= 0 self.optimiser = Adam(self.params, lr=args.lr) self.clip_grad_param = 1 # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.target_param = list(self.target_mac.parameters()) self.last_target_update_episode = 0 self.tau = self.args.tau self.gpu_enable = True def soft_update(self, local_model , target_model): for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data) def _update_targets(self): for target_param, local_param in zip(self.target_mac.parameters(), self.mac.parameters()): target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data) def train(self, batch): # Get the relevant quantities obs = batch['obs'] feat = batch['feat'] avail = batch['avail'] action_list = batch['action'] reward_list = batch['reward'] next_obs = batch['next_obs'] next_feat = batch['next_feat'] mask_list = 1 - batch['done'] next_avail = batch['next_avail'] y_list = [0] obs = th.FloatTensor(obs) feat = th.FloatTensor(feat) avail = th.FloatTensor(avail) a = th.LongTensor(action_list)#batch.action)) rew = th.FloatTensor(reward_list)##batch.reward)) rew = rew.view(-1)#, 1) mask = th.LongTensor(mask_list)#batch.mask)) mask = mask.view(-1)#, 1) next_obs = th.FloatTensor(next_obs) next_feat = th.FloatTensor(next_feat) next_avail = th.FloatTensor(next_avail) ind = th.arange(a.shape[0]) if self.gpu_enable: obs = obs.cuda() feat = feat.cuda() avail = avail.cuda() a = a.cuda() rew = rew.cuda() mask = mask.cuda() next_obs = next_obs.cuda() next_feat = next_feat.cuda() next_avail = next_avail.cuda() ind = ind.cuda() # Calculate estimated Q-Values mac_out, _ = self.mac.forward([[obs, feat], avail]) # Pick the Q-Values for the actions taken by each agent chosen_action_qvals = mac_out[ind, a] # Remove the last dim target_mac_out = self.target_mac.forward([[next_obs, next_feat], next_avail])[0] # ---------------------------- update actor ---------------------------- # current_alpha = copy.deepcopy(self.mac.agent.alpha) _, action_probs, log_pis = self.mac.get_act_probs([[obs, feat], avail]) q1 = self.mac.agent.critic1([obs, feat]) V1 = (action_probs.cuda() * q1.cuda()).sum(1) q2 = self.mac.agent.critic2([obs, feat]) V2 = (action_probs.cuda() * q2.cuda()).sum(1) min_Q = action_probs.cuda() * th.min(q1,q2) actor_loss = (self.mac.agent.alpha.cuda() * log_pis.cuda() - min_Q).sum(1).mean() self.mac.agent.actor_optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.mac.agent.actor_optimizer.step() # Compute alpha loss entropy = (log_pis * action_probs).sum(1) alpha_loss = - (self.mac.agent.log_alpha.exp() * (entropy.cpu() + self.mac.agent.target_entropy).detach().cpu()).mean() self.mac.agent.alpha_optimizer.zero_grad() alpha_loss.backward(retain_graph=True) self.mac.agent.alpha_optimizer.step() self.mac.agent.alpha = self.mac.agent.log_alpha.exp().detach() # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models with th.no_grad(): idx = th.eq(mask, 1) Q_targets = rew _, action_probs_next, log_pis_next = self.mac.get_act_probs\ ([[next_obs[idx],next_feat[idx]],None]) Q_target1_next = self.mac.agent.critic1_target([next_obs[idx],next_feat[idx]]) Q_target2_next = self.mac.agent.critic2_target([next_obs[idx],next_feat[idx]]) V1_next = (action_probs_next.cuda() * Q_target1_next).sum(1) V2_next = (action_probs_next.cuda() * Q_target2_next).sum(1) V_target_next = th.min(V1_next,V2_next) - (self.mac.agent.alpha.cuda()* log_pis_next.cuda()).sum(1) # Compute Q targets for current states (y_i) Q_targets[idx] = rew[idx] + (self.args.gamma * V_target_next) # Compute critic loss critic1_loss = 0.5 * F.mse_loss(V1, Q_targets) critic2_loss = 0.5 * F.mse_loss(V2, Q_targets) # Update critics # critic 1 self.mac.agent.critic1_optimizer.zero_grad() critic1_loss.backward(retain_graph=True) clip_grad_norm_(self.mac.agent.critic1.parameters(), self.clip_grad_param) self.mac.agent.critic1_optimizer.step() # critic 2 self.mac.agent.critic2_optimizer.zero_grad() critic2_loss.backward() clip_grad_norm_(self.mac.agent.critic2.parameters(), self.clip_grad_param) self.mac.agent.critic2_optimizer.step() self.learn_cnt += 1 if self.learn_cnt / self.args.target_update_interval >= 1.0: self._update_targets() self.soft_update(self.mac.agent.critic1, self.mac.agent.critic1_target) self.soft_update(self.mac.agent.critic2, self.mac.agent.critic2_target) self.learn_cnt = 0 return { 'actor_loss': actor_loss.item(), 'alpha_loss': alpha_loss.item(), 'critic1_loss': critic1_loss.item(), 'critic2_loss': critic2_loss.item() } def cuda(self): self.mac.cuda() self.target_mac.cuda() def save_models(self, path): self.mac.save_models(path) th.save(self.optimiser.state_dict(), "{}/opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) # Not quite right but I don't want to save target networks self.target_mac.load_models(path) self.optimiser.load_state_dict(th.load("{}/opt.th".format(path), map_location=lambda storage, loc: storage))
43697
import numpy as np import pytest import pytoolkit as tk def test_load_voc_od_split(data_dir): ds = tk.datasets.load_voc_od_split(data_dir / "od", split="train") assert len(ds) == 3 assert tuple(ds.metadata["class_names"]) == ("~", "〇") ann = ds.labels[0] assert ann.path == (data_dir / "od" / "JPEGImages" / "無題.jpg") assert ann.width == 768 assert ann.height == 614 assert len(ann.classes) == 1 assert ann.classes[0] == 0 assert (ann.difficults == np.array([False])).all() assert ann.bboxes[0] == pytest.approx( np.array([203 - 1, 255 - 1, 601 - 1, 355 - 1]) / [768, 614, 768, 614] )
43700
try: from . import generic as g except BaseException: import generic as g class AdjacencyTest(g.unittest.TestCase): def test_radius(self): for radius in [0.1, 1.0, 3.1459, 29.20]: m = g.trimesh.creation.cylinder( radius=radius, height=radius * 10) # remove the cylinder cap signs = (g.np.sign(m.vertices[:, 2]) < 0)[m.faces] not_cap = ~g.np.logical_or( signs.all(axis=1), ~signs.any(axis=1)) m.update_faces(not_cap) # compare the calculated radius radii = m.face_adjacency_radius radii = radii[g.np.isfinite(radii)] assert g.np.allclose(radii, radius, atol=radius / 100) if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
43711
import datetime import io import json import zipfile from pathlib import Path import pyrsistent import pytest import yaml from aiohttp import web from openapi_core.shortcuts import create_spec from yarl import URL from rororo import ( BaseSettings, get_openapi_context, get_openapi_schema, get_openapi_spec, openapi_context, OperationTableDef, setup_openapi, setup_settings_from_environ, ) from rororo.annotations import DictStrAny from rororo.openapi import get_validated_data from rororo.openapi.exceptions import ( ConfigurationError, OperationError, validation_error_context, ValidationError, ) ROOT_PATH = Path(__file__).parent INVALID_OPENAPI_JSON_PATH = ROOT_PATH / "invalid-openapi.json" INVALID_OPENAPI_YAML_PATH = ROOT_PATH / "invalid-openapi.yaml" OPENAPI_JSON_PATH = ROOT_PATH / "openapi.json" OPENAPI_YAML_PATH = ROOT_PATH / "openapi.yaml" TEST_NESTED_OBJECT = { "uid": "6fccda1b-0873-4c8a-bceb-a2acfe5851da", "type": "nested-object", "data": { "data_item": {"key": "value1", "any_data": {}}, "data_items": [ {"key": "value2", "any_data": {"two": 2}}, {"key": "value3", "any_data": {"three": 3}}, ], "str_items": ["1", "2", "3"], }, "any_data": {"key1": "value1", "key2": "value2", "list": [1, 2, 3]}, } operations = OperationTableDef() invalid_operations = OperationTableDef() def custom_json_loader(content: bytes) -> DictStrAny: return json.load(io.BytesIO(content)) def custom_yaml_loader(content: bytes) -> DictStrAny: return yaml.load(content, Loader=yaml.SafeLoader) @invalid_operations.register("does-not-exist") async def does_not_exist(request: web.Request) -> web.Response: return web.Response(text="Hello, world!") @operations.register("create-post") async def create_post(request: web.Request) -> web.Response: data = get_validated_data(request) published_at: datetime.datetime = data["published_at"] with validation_error_context("body", "published_at"): if published_at.tzinfo is None: raise ValidationError(message="Invalid value") return web.json_response( {**data, "id": 1, "published_at": data["published_at"].isoformat()}, status=201, ) @operations.register async def hello_world(request: web.Request) -> web.Response: with openapi_context(request) as context: name = context.parameters.query.get("name") or "world" email = context.parameters.query.get("email") or "<EMAIL>" return web.json_response( {"message": f"Hello, {name}!", "email": email} ) @operations.register async def retrieve_any_object_from_request_body( request: web.Request, ) -> web.Response: return web.json_response(pyrsistent.thaw(get_validated_data(request))) @operations.register async def retrieve_array_from_request_body( request: web.Request, ) -> web.Response: with openapi_context(request) as context: return web.json_response(pyrsistent.thaw(context.data)) @operations.register async def retrieve_empty(request: web.Request) -> web.Response: context = get_openapi_context(request) return web.Response( status=204, headers={"X-API-Key": context.security.get("apiKey") or ""} ) @operations.register async def retrieve_invalid_response(request: web.Request) -> web.Response: return web.json_response({}) @operations.register async def retrieve_post(request: web.Request) -> web.Response: context = get_openapi_context(request) return web.json_response( {"id": context.parameters.path["post_id"], "title": "The Post"} ) @operations.register async def retrieve_nested_object_from_request_body( request: web.Request, ) -> web.Response: with openapi_context(request) as context: data = pyrsistent.thaw(context.data) data["uid"] = str(data["uid"]) return web.json_response( data, headers={ "X-Data-Type": str(type(context.data)), "X-Data-Data-Data-Items-Type": str( type(context.data["data"]["data_items"]) ), "X-Data-Data-Str-Items-Type": str( type(context.data["data"]["str_items"]) ), "X-Data-UID-Type": str(type(context.data["uid"])), }, ) @operations.register async def retrieve_zip(request: web.Request) -> web.Response: output = io.BytesIO() with zipfile.ZipFile(output, "w") as handler: handler.writestr("hello.txt", "Hello, world!") output.seek(0) return web.Response( body=output, content_type="application/zip", headers={"Content-Disposition": "attachment; filename=hello.zip"}, ) @operations.register async def upload_image(request: web.Request) -> web.Response: return web.Response( body=get_openapi_context(request).data, content_type=request.content_type, status=201, ) @operations.register async def upload_text(request: web.Request) -> web.Response: return web.Response( text=get_openapi_context(request).data, content_type=request.content_type, status=201, ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_any_object_request_body(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url=URL("/api/") ) client = await aiohttp_client(app) response = await client.post("/api/any-object", json=TEST_NESTED_OBJECT) assert response.status == 200 assert await response.json() == TEST_NESTED_OBJECT @pytest.mark.parametrize( "data, expected_status, expected_response", ( ( {}, 422, {"detail": [{"loc": ["body"], "message": "[] is too short"}]}, ), ( [], 422, {"detail": [{"loc": ["body"], "message": "[] is too short"}]}, ), ( [""], 422, {"detail": [{"loc": ["body", 0], "message": "'' is too short"}]}, ), (["Hello", "world!"], 200, ["Hello", "world!"]), ), ) async def test_array_request_body( aiohttp_client, data, expected_status, expected_response ): app = setup_openapi( web.Application(), OPENAPI_YAML_PATH, operations, server_url=URL("/api"), ) client = await aiohttp_client(app) response = await client.post("/api/array", json=data) assert response.status == expected_status assert await response.json() == expected_response @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_create_post_201(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) published_at = "2020-04-01T12:00:00+02:00" client = await aiohttp_client(app) response = await client.post( "/api/create-post", json={ "title": "Post", "slug": "post", "content": "Post Content", "published_at": published_at, }, ) assert response.status == 201 assert await response.json() == { "id": 1, "title": "Post", "slug": "post", "content": "Post Content", "published_at": published_at, } @pytest.mark.parametrize( "schema_path, invalid_data, expected_detail", ( ( OPENAPI_JSON_PATH, {}, [ {"loc": ["body", "title"], "message": "Field required"}, {"loc": ["body", "slug"], "message": "Field required"}, {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_YAML_PATH, {"title": "Title"}, [ {"loc": ["body", "slug"], "message": "Field required"}, {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_JSON_PATH, {"title": "Title", "slug": "slug"}, [ {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_YAML_PATH, {"title": "Title", "slug": "slug", "content": "Content"}, [{"loc": ["body", "published_at"], "message": "Field required"}], ), ), ) async def test_create_post_422( aiohttp_client, schema_path, invalid_data, expected_detail ): app = setup_openapi( web.Application(), schema_path, operations, server_url=URL("/dev-api"), ) client = await aiohttp_client(app) response = await client.post("/dev-api/create-post", json=invalid_data) assert response.status == 422 assert (await response.json())["detail"] == expected_detail @pytest.mark.parametrize( "schema_path, schema_loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) def test_custom_schema_loader(schema_path, schema_loader): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/", schema_loader=schema_loader, ) assert isinstance(get_openapi_schema(app), dict) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_email_format(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get( "/api/hello", params={"email": "<EMAIL>"} ) assert response.status == 200 assert (await response.json())["email"] == "<EMAIL>" @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_invalid_parameter_format(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/posts/not-an-integer") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "post_id"], "message": "'not-an-integer' is not a type of 'integer'", } ] } @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_invalid_parameter_value(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/posts/0") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "post_id"], "message": "0 is less than the minimum of 1", } ] } def test_get_openapi_schema_no_schema(): with pytest.raises(ConfigurationError): get_openapi_schema(web.Application()) def test_get_openapi_spec_no_spec(): with pytest.raises(ConfigurationError): get_openapi_spec(web.Application()) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_multiple_request_errors(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/hello?name=&email=") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "name"], "message": "Empty parameter value", }, { "loc": ["parameters", "email"], "message": "Empty parameter value", }, ] } @pytest.mark.parametrize( "schema_path, query_string, expected_message", ( (OPENAPI_JSON_PATH, None, "Hello, world!"), (OPENAPI_JSON_PATH, "?name=Name", "Hello, Name!"), (str(OPENAPI_JSON_PATH), None, "Hello, world!"), (str(OPENAPI_JSON_PATH), "?name=Name", "Hello, Name!"), (OPENAPI_YAML_PATH, None, "Hello, world!"), (OPENAPI_YAML_PATH, "?name=Name", "Hello, Name!"), (str(OPENAPI_YAML_PATH), None, "Hello, world!"), (str(OPENAPI_YAML_PATH), "?name=Name", "Hello, Name!"), ), ) async def test_openapi( aiohttp_client, schema_path, query_string, expected_message ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) url = "/api/hello" response = await client.get( f"{url}{query_string}" if query_string is not None else url ) assert response.status == 200 assert (await response.json())["message"] == expected_message @pytest.mark.parametrize("is_enabled", (False, True)) async def test_openapi_validate_response(aiohttp_client, is_enabled): app = web.Application() setup_openapi( app, OPENAPI_YAML_PATH, operations, server_url="/api", is_validate_response=is_enabled, ) client = await aiohttp_client(app) response = await client.get("/api/hello") assert response.status == 200 assert await response.json() == { "message": "Hello, world!", "email": "<EMAIL>", } @pytest.mark.parametrize( "has_openapi_schema_handler, url, expected_status", ( (True, "/api/openapi.json", 200), (False, "/api/openapi.yaml", 404), (True, "/api/openapi.yaml", 200), (False, "/api/openapi.yaml", 404), (True, "/api/openapi.txt", 500), (False, "/api/openapi.txt", 404), ), ) async def test_openapi_schema_handler( aiohttp_client, has_openapi_schema_handler, url, expected_status ): app = web.Application() setup_openapi( app, OPENAPI_YAML_PATH, operations, server_url=URL("/api"), has_openapi_schema_handler=has_openapi_schema_handler, ) client = await aiohttp_client(app) response = await client.get(url) assert response.status == expected_status @pytest.mark.parametrize( "schema_path, headers, expected", ( (OPENAPI_JSON_PATH, {}, ""), (OPENAPI_JSON_PATH, {"X-API-Key": "apiKey"}, "apiKey"), (OPENAPI_YAML_PATH, {}, ""), (OPENAPI_YAML_PATH, {"X-API-Key": "apiKey"}, "apiKey"), ), ) async def test_optional_security_scheme( aiohttp_client, schema_path, headers, expected ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/empty", headers=headers) assert response.status == 204 assert response.headers["X-API-Key"] == expected @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_request_body_nested_object(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.post("/api/nested-object", json=TEST_NESTED_OBJECT) assert response.status == 200 assert response.headers["X-Data-Type"] == "<class 'pyrsistent._pmap.PMap'>" assert ( response.headers["X-Data-Data-Data-Items-Type"] == "<class 'pvectorc.PVector'>" ) assert ( response.headers["X-Data-Data-Str-Items-Type"] == "<class 'pvectorc.PVector'>" ) assert response.headers["X-Data-UID-Type"] == "<class 'uuid.UUID'>" assert await response.json() == TEST_NESTED_OBJECT @pytest.mark.parametrize( "schema_path, loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) async def test_setup_openapi_schema_and_spec( aiohttp_client, schema_path, loader ): schema = loader(schema_path.read_bytes()) spec = create_spec(schema) app = setup_openapi( web.Application(), operations, schema=schema, spec=spec, server_url="/api/", ) client = await aiohttp_client(app) response = await client.get("/api/hello") assert response.status == 200 assert await response.json() == { "message": "Hello, world!", "email": "<EMAIL>", } @pytest.mark.parametrize( "schema_path, loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) async def test_setup_openapi_schema_and_path_ignore_invalid_schema_path( aiohttp_client, schema_path, loader ): schema = loader(schema_path.read_bytes()) spec = create_spec(schema) setup_openapi( web.Application(), INVALID_OPENAPI_JSON_PATH, operations, schema=schema, spec=spec, server_url="/api/", ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_invalid_operation(schema_path): with pytest.raises(OperationError): setup_openapi( web.Application(), schema_path, invalid_operations, server_url="/api", ) def test_setup_openapi_invalid_path(): with pytest.raises(ConfigurationError): setup_openapi( web.Application(), ROOT_PATH / "does-not-exist.yaml", operations ) def test_setup_openapi_invalid_file(): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), ROOT_PATH / "settings.py", operations) @pytest.mark.parametrize( "schema_path", (INVALID_OPENAPI_JSON_PATH, INVALID_OPENAPI_YAML_PATH) ) def test_setup_openapi_invalid_spec(schema_path): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), schema_path, operations) @pytest.mark.parametrize( "schema_path, level, url, expected_status", ( (OPENAPI_JSON_PATH, "test", "/api/hello", 200), (OPENAPI_JSON_PATH, "test", "/dev-api/hello", 404), (OPENAPI_YAML_PATH, "test", "/api/hello", 200), (OPENAPI_YAML_PATH, "test", "/dev-api/hello", 404), (OPENAPI_JSON_PATH, "dev", "/api/hello", 404), (OPENAPI_JSON_PATH, "dev", "/dev-api/hello", 200), (OPENAPI_YAML_PATH, "dev", "/api/hello", 404), (OPENAPI_YAML_PATH, "dev", "/dev-api/hello", 200), ), ) async def test_setup_openapi_server_url_from_settings( monkeypatch, aiohttp_client, schema_path, level, url, expected_status ): monkeypatch.setenv("LEVEL", level) app = setup_openapi( setup_settings_from_environ(web.Application(), BaseSettings), schema_path, operations, ) client = await aiohttp_client(app) response = await client.get(url) assert response.status == expected_status @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_server_url_invalid_level(monkeypatch, schema_path): monkeypatch.setenv("LEVEL", "prod") with pytest.raises(ConfigurationError): setup_openapi( setup_settings_from_environ(web.Application(), BaseSettings), schema_path, operations, ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_server_url_does_not_set(schema_path): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), schema_path, operations) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_upload_image(aiohttp_client, schema_path): blank_png = (Path(__file__).parent / "data" / "blank.png").read_bytes() app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) response = await client.post( "/api/upload-image", data=blank_png, headers={"Content-Type": "image/png"}, ) assert response.status == 201 assert await response.read() == blank_png @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_upload_text(aiohttp_client, schema_path): text = "Hello, world! And other things..." app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) response = await client.post( "/api/upload-text", data=text.encode("utf-8"), headers={"Content-Type": "text/plain"}, ) assert response.status == 201 assert await response.text() == text @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_binary_response(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/download.zip") assert response.status == 200 assert response.content_type == "application/zip" content = io.BytesIO(await response.read()) with zipfile.ZipFile(content) as handler: with handler.open("hello.txt") as item: assert item.read() == b"Hello, world!" @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_empty_response(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/empty") assert response.status == 204 @pytest.mark.parametrize( "schema_path, is_validate_response, expected_status", ( (OPENAPI_JSON_PATH, False, 200), (OPENAPI_JSON_PATH, True, 422), (OPENAPI_YAML_PATH, False, 200), (OPENAPI_JSON_PATH, True, 422), ), ) async def test_validate_response( aiohttp_client, schema_path, is_validate_response, expected_status ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=is_validate_response, ) client = await aiohttp_client(app) response = await client.get("/api/invalid-response") assert response.status == expected_status @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_response_error(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/invalid-response") assert response.status == 422 assert await response.json() == { "detail": [ {"loc": ["response", "uid"], "message": "Field required"}, {"loc": ["response", "type"], "message": "Field required"}, {"loc": ["response", "data"], "message": "Field required"}, {"loc": ["response", "any_data"], "message": "Field required"}, ] }
43714
import gensim import sys import glob import codecs from nltk.tokenize import RegexpTokenizer import glob import sys class CorpusReader(): """ Reads corpus from gzip file. """ def __init__(self, files): if isinstance(files, str): self.files = [files] else: self.files = files self.tokenizer = RegexpTokenizer(r'\w+') def __iter__(self): """ Generator that returns a list of tokens for each sentence. :return: list of tokens """ for f in self.files: print "Processing ", f for line in open(f, "r"): try: yield self.tokenizer.tokenize(line.decode("utf-8")) except: pass print "Starting W2V training..." files = glob.glob(sys.argv[1]) outfile_name = sys.argv[2] dataset = CorpusReader(files) model = gensim.models.Word2Vec(dataset, size=500, window=5, min_count=3, negative=5, workers=15) model.save(outfile_name)
43792
from bokeh.models.sources import ColumnDataSource from bokeh.transform import cumsum from functools import partial from typing import List, Type from jira_analysis.chart.base import Axis, IChart, Chart from jira_analysis.defect_rate.issue import Issue from .plot.donut import DefectRateDonut def generate_defect_chart( issues: List[Issue], chart_class: Type[IChart] = Chart ) -> None: chart = chart_class( label=None, x=Axis(label="", values=None, size=600), y=Axis(label="", values=None, size=300), tooltips="@value: @defect_rate{0.1f}%", ) DefectRateDonut( issues=issues, data_source=ColumnDataSource, no_defects_transform=partial(cumsum, include_zero=True), defects_transform=cumsum, ).draw(chart) chart.render()
43799
import soundfile as sf import torch import torch.nn.functional as F from fairseq.data import Dictionary from bol.utils.helper_functions import move_to_cuda def get_feature(filepath): def postprocess(feats, sample_rate): if feats.dim == 2: feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) return feats wav, sample_rate = sf.read(filepath) feats = torch.from_numpy(wav).float() feats = postprocess(feats, sample_rate) return feats def post_process(sentence: str, symbol: str): if symbol == "sentencepiece": sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() elif symbol == "wordpiece": sentence = sentence.replace(" ", "").replace("_", " ").strip() elif symbol == "letter": sentence = sentence.replace(" ", "").replace("|", " ").strip() elif symbol == "_EOW": sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() elif symbol is not None and symbol != "none": sentence = (sentence + " ").replace(symbol, "").rstrip() return sentence def get_results_for_single_file( wav_path, dict_path, generator, model, use_cuda=False, half=None ): sample = dict() net_input = dict() target_dict = Dictionary.load(dict_path) feature = get_feature(wav_path) model.eval() if half: net_input["source"] = feature.unsqueeze(0).half() else: net_input["source"] = feature.unsqueeze(0) padding_mask = ( torch.BoolTensor(net_input["source"].size(1)).fill_(False).unsqueeze(0) ) net_input["padding_mask"] = padding_mask sample["net_input"] = net_input sample = move_to_cuda(sample) if use_cuda else sample with torch.no_grad(): hypo = generator.generate(model, sample, prefix_tokens=None) hyp_pieces = target_dict.string(hypo[0][0]["tokens"].int().cpu()) text = post_process(hyp_pieces, "letter") return text
43844
from datetime import datetime from getopt import GetoptError, getopt from socket import AF_INET, SOCK_STREAM, socket as Socket from sys import stderr from typing import List, NoReturn from ..io import DVRIPClient from ..message import EPOCH from . import EX_USAGE, guard, prog_connect def usage() -> NoReturn: print('Usage: {} log [-s START] [-e END]'.format(prog_connect()), file=stderr) exit(EX_USAGE) def run(host: str, serv: int, username: str, password: str, args: List[str] ) -> None: try: opts, args = getopt(args, 's:e:') except GetoptError: usage() if args: usage() start = EPOCH end = datetime.now() for opt, arg in opts: if opt == '-s': from dateparser import parse # type: ignore start = parse(arg) if start is None: usage() if opt == '-e': from dateparser import parse # type: ignore end = parse(arg) if end is None: usage() conn = DVRIPClient(Socket(AF_INET, SOCK_STREAM)) conn.connect((host, serv), username, password) try: for entry in conn.log(start=start, end=end): print('{:>8} {} {:>12} {}' .format(entry.number, entry.time.isoformat(), entry.type.name.lower(), entry.data)) finally: conn.logout() def main() -> None: from sys import argv from . import host, serv, username, password if host() is None: usage() guard(run, host(), serv(), username(), password(), argv[1:])
43858
import torch.utils.data as data import os import numpy as np import cv2 #/mnt/lustre/share/dingmingyu/new_list_lane.txt class MyDataset(data.Dataset): def __init__(self, file, dir_path, new_width, new_height, label_width, label_height): imgs = [] fw = open(file, 'r') lines = fw.readlines() for line in lines: words = line.strip().split() imgs.append((words[0], words[1])) self.imgs = imgs self.dir_path = dir_path self.height = new_height self.width = new_width self.label_height = label_height self.label_width = label_width def __getitem__(self, index): path, label = self.imgs[index] path = os.path.join(self.dir_path, path) img = cv2.imread(path).astype(np.float32) img = img[:,:,:3] img = cv2.resize(img, (self.width, self.height)) img -= [104, 117, 123] img = img.transpose(2, 0, 1) gt = cv2.imread(label,-1) gt = cv2.resize(gt, (self.label_width, self.label_height), interpolation = cv2.INTER_NEAREST) if len(gt.shape) == 3: gt = gt[:,:,0] gt_num_list = list(np.unique(gt)) gt_num_list.remove(0) target_ins = np.zeros((4, gt.shape[0],gt.shape[1])).astype('uint8') for index, ins in enumerate(gt_num_list): target_ins[index,:,:] += (gt==ins) return img, target_ins, len(gt_num_list) def __len__(self): return len(self.imgs)
43859
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="workdown", version="0.0.4", author="<NAME>", author_email="<EMAIL>", description="Write Markdown and have it published and hosted on Cloudflare Workers", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/eldridgea/workdown", packages=setuptools.find_packages(), install_requires=['markdown'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', entry_points={ 'console_scripts': [ 'workdown = workdown.workdown:main' ] }, )
43873
from ChipseqReport import * import xml.etree.ElementTree import Glam2 def computeMastCurve(evalues): '''compute a MAST curve. see http://www.nature.com/nbt/journal/v26/n12/extref/nbt.1508-S1.pdf returns a tuple of arrays (evalues, with_motifs, explained ) ''' if len(evalues) == 0: raise ValueError("no data") mi, ma = math.floor(min(evalues)), math.ceil(max(evalues)) if mi == ma: raise ValueError("not enough data") hist, bin_edges = numpy.histogram(evalues, bins=numpy.arange(mi, ma, 1.0)) with_motifs = numpy.cumsum(hist) explained = numpy.array(with_motifs) for x, evalue in enumerate(bin_edges[:-1]): explained[x] -= evalue explained[explained < 0] = 0 return bin_edges[:-1], with_motifs, explained def getFDR(samples, control, num_bins=1000): '''return the score cutoff at a certain FDR threshold using scores and control scores. Note that this method assumes that a higher score is a better result. The FDR is defined as fdr = expected number of false positives (FP) / number of positives (P) Given a certain score threshold s , the following will be used as approximations: FP: the number of controls with a score of less than or equal to s. These are all assumed to be false positives. Both samples and control should contain rougly equal number of entries, but FP is scaled to be equivalent to P. P: the number of samples with a score of less than or equal to s. These are a mixture of both true and false positives. returns the score cutoff at FDR threshold. ''' if len(samples) == 0 or len(control) == 0: return None, None mi1, ma1 = min(samples), max(samples) mi2, ma2 = min(control), max(control) mi, ma = min(mi1, mi2), max(ma1, ma2) hist_samples, bin_edges_samples = numpy.histogram( samples, range=(mi, ma), bins=num_bins) hist_control, bin_edges_control = numpy.histogram( control, range=(mi, ma), bins=num_bins) hist_samples = hist_samples[::-1].cumsum() hist_control = hist_control[::-1].cumsum() bin_edges = bin_edges_samples[::-1] # correct for unequal size in the two sets correction = float(len(samples)) / len(control) fdrs = [] m = 0 for s, p, fp in zip(bin_edges[:-1], hist_samples, hist_control): if p != 0: fdr = min(1.0, correction * float(fp) / p) m = max(m, fdr) fdrs.append(m) return bin_edges[:-1][::-1], fdrs[::-1] def getMastEvalueCutoff(evalues, control_evalues, fdr=0.1): '''return the E-Value cutoff at a certain FDR threshold using the control tracks. returns the evalue cutoff at FDR threshold. ''' bin_edges, fdrs = getFDR( [-x for x in evalues], [-x for x in control_evalues]) for bin, f in zip(bin_edges, fdrs): if f < fdr: return -bin return 0 def getGlamScoreCutoff(scores, controls, fdr=0.1): '''return the score cutoff at a certain FDR threshold using the control tracks. 1000 is returned as a score cutoff <infinity> if the fdr can not be obtained. returns the score cutoff at FDR threshold. ''' bin_edges, fdrs = getFDR(scores, controls) for bin, f in zip(bin_edges, fdrs): if f < fdr: return bin return 1000 ########################################################################## ########################################################################## ########################################################################## # Base class for mast analysis ########################################################################## class Mast(DefaultTracker): pattern = "(.*)_mast$" def getSlices(self, subset=None): if subset: return subset if MOTIFS: return MOTIFS return self.getValues("SELECT DISTINCT motif FROM motif_info") ########################################################################## ########################################################################## ########################################################################## ## ########################################################################## class MastFDR(Mast): """return arrays of glam2scan scores """ mPattern = "_mast$" def __call__(self, track, slice=None): evalues = self.getValues( "SELECT -evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) control_evalues = self.getValues( "SELECT -min_evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) bin_edges, fdrs = getFDR(evalues, control_evalues) if bin_edges is None: return odict() bin_edges = [-x for x in bin_edges] print(len(bin_edges), len(fdrs)) return odict((("score", bin_edges), ("fdr", fdrs))) ########################################################################## ########################################################################## ########################################################################## # Annotation of bases with SNPs ########################################################################## class MastSummary(Mast): """return summary of mast results. Return for each track the number of intervals in total, the number of intervals submitted to mast, The evalue used as a MAST curve cutoff, the number and % explained using the Mast cutoff. """ mEvalueCutoff = 1 mFDR = 0.1 def __call__(self, track, slice=None): data = [] nintervals = self.getValue( "SELECT COUNT(*) FROM %(track)s_intervals" % locals()) data.append(("nintervals", nintervals)) data.append(("nmast", self.getValue( "SELECT COUNT(*) FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()))) evalues = self.getValues( "SELECT evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) if len(evalues) <= 1: return odict() try: bin_edges, with_motifs, explained = computeMastCurve(evalues) except ValueError as msg: return odict((("msg", msg),)) if len(explained) == 0: return odict((("msg", "no data"), )) am = numpy.argmax(explained) evalue = bin_edges[am] intervals_and_peakvals = \ self.get(""" SELECT peakval, evalue FROM %(track)s_mast AS m, %(track)s_intervals AS i WHERE i.interval_id = m.id AND motif = '%(slice)s' ORDER BY peakval""" % locals()) intervals_with_motifs = len( [x for x in intervals_and_peakvals if x[1] <= evalue]) ntop = nintervals / 4 top25_with_motifs = len( [x for x in intervals_and_peakvals[-ntop:] if x[1] <= evalue]) bottom25_with_motifs = len( [x for x in intervals_and_peakvals[:ntop] if x[1] <= evalue]) data.append(("MC-Evalue", bin_edges[am])) data.append(("MC-explained", explained[am])) data.append( ("MC-explained / %", "%5.2f" % (100.0 * explained[am] / nintervals))) data.append(("MC-with-motif", intervals_with_motifs)) data.append(("MC-with-motif / %", "%5.2f" % (100.0 * intervals_with_motifs / nintervals))) data.append(("MC-top25-with-motif", top25_with_motifs)) if ntop == 0: ntop = 1 data.append(("MC-top25-with-motif / %", "%5.2f" % (100.0 * top25_with_motifs / ntop))) data.append(("MC-bottom25-with-motif", bottom25_with_motifs)) data.append(("MC-bottom25-with-motif / %", "%5.2f" % (100.0 * bottom25_with_motifs / ntop))) # use control intervals to compute FDR control_evalues = self.getValues( "SELECT min_evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) evalue_cutoff = getMastEvalueCutoff( evalues, control_evalues, self.mFDR) nexplained = len([x for x in evalues if x <= evalue_cutoff]) data.append(("FDR-Evalue", evalue_cutoff)) data.append(("FDR-explained", nexplained)) data.append( ("FDR-explained / %", "%5.2f" % (100.0 * nexplained / nintervals))) # use a pre-defined E-value threshold threshold = self.mEvalueCutoff data.append(("Evalue", self.mEvalueCutoff)) n = self.getValue( "SELECT COUNT(*) FROM %(track)s_mast WHERE motif = '%(slice)s' AND evalue <= %(threshold)f" % locals()) data.append(("threshold-explained", n)) data.append( ("threshold-explained / %", "%5.2f" % (100.0 * n / nintervals))) # use no threshold (nmatches > 1) n = self.getValue( "SELECT COUNT(*) FROM %(track)s_mast WHERE motif = '%(slice)s' AND nmatches > 0" % locals()) data.append(("nmatches-explained", n)) data.append( ("nmatches-explained / %", "%5.2f" % (100.0 * n / nintervals))) intervals_and_peakvals = \ self.get(""" SELECT peakval, nmatches FROM %(track)s_mast AS m, %(track)s_intervals AS i WHERE i.interval_id = m.id AND motif = '%(slice)s' ORDER BY peakval""" % locals()) intervals_with_motifs = len( [x for x in intervals_and_peakvals if x[1] > 0]) ntop = nintervals / 4 top25_with_motifs = len( [x for x in intervals_and_peakvals[-ntop:] if x[1] > 0]) bottom25_with_motifs = len( [x for x in intervals_and_peakvals[:ntop] if x[1] > 0]) if ntop == 0: ntop = 1 data.append(("nmatches-top25-with-motif", top25_with_motifs)) data.append(("nmatches-top25-with-motif / %", "%5.2f" % (100.0 * top25_with_motifs / ntop))) data.append(("nmatches-bottom25-with-motif", bottom25_with_motifs)) data.append(("nmatches-bottom25-with-motif / %", "%5.2f" % (100.0 * bottom25_with_motifs / ntop))) return odict(data) class MastNumberOfMotifs(Mast): '''number of motifs matching within intervals.''' def __call__(self, track, slice=None): data = self.getValues( "SELECT nmatches FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) return odict((("nmatches", data), )) class MastAllCorrelations(Mast): '''correlating all measures.''' def __call__(self, track, slice=None): field = "length" data = self.get("""SELECT m.evalue, m.nmatches, i.length, i.peakval, i.avgval FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' ORDER BY i.%(field)s DESC""" % locals()) return odict(list(zip(("evalue", "nmatches", "length", "peakval", "avgval"), list(zip(*data))))) class MastPairwiseCorrelation(Mast): '''base class for correlating two measures.''' def __call__(self, track, slice=None): field1 = self.mField1 field2 = self.mField2 data = self.get("""SELECT %(field1)s as a, %(field2)s AS b FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s'""" % locals()) return odict(list(zip((field1, field2), list(zip(*data))))) class MastEvalueVersusLength(MastPairwiseCorrelation): '''correlate evalue with interval length.''' mField1 = "evalue" mField2 = "i.length" class MastEvalueVersusNumberOfMatches(MastPairwiseCorrelation): '''correlate evalue with number of motifs found.''' mField1 = "evalue" mField2 = "nmatches" class MastEvalueVersusPeakVal(MastPairwiseCorrelation): '''correlate evalue with peak value.''' mField2 = "evalue" mField1 = "peakval" class MastNMatchesVersusPeakVal(MastPairwiseCorrelation): '''correlate evalue with peak value.''' mField2 = "nmatches" mField1 = "peakval" class MastPeakValPerNMatches(MastPairwiseCorrelation): '''correlate evalue with peak value.''' mField1 = "nmatches" mField2 = "peakval" def __call__(self, track, slice=None): data = MastPairwiseCorrelation.__call__(self, track, slice) n = odict() for x in sorted(data["nmatches"]): n[x] = [] for nmatches, peakval in sorted( zip(data["nmatches"], data["peakval"])): n[nmatches].append(peakval) return odict(n) class MastMotifLocation(Mast): '''plot median position of motifs versus the peak location.''' def __call__(self, track, slice=None): data = self.getValues( """SELECT (i.peakcenter - (m.start + (m.end - m.start) / 2)) / ((CAST(i.length AS FLOAT) - (m.end - m.start)) / 2) FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' AND m.nmatches = 1""" % locals()) return odict((("distance", data),)) class MastMotifLocationMiddle(Mast): '''plot median position of motifs versus the center of the interval.''' def __call__(self, track, slice=None): # difference between # middle of interval: i.start + i.length / 2 # middle of motif: m.start + (m.end - m.start) / 2 # divide by (intervalsize - motifsize) / 2 # # only take single matches (multiple matches need not be centered) data = self.getValues( """SELECT ((i.start + i.length / 2) - (m.start + (m.end - m.start) / 2)) / ((CAST(i.length AS FLOAT) - (m.end - m.start))/2) FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' AND m.nmatches = 1""" % locals()) return odict((("distance", data),)) class MastControlLocationMiddle(Mast): '''plot median position of controls versus the center of the interval.''' def __call__(self, track, slice=None): data1 = self.getValues( """SELECT ( (m.r_length / 2) - (m.r_start + (m.r_end - m.r_start) / 2) ) / ((CAST( m.r_length as float) - (m.r_end - m.r_start))/2) FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' AND m.r_nmatches = 1""" % locals()) data2 = self.getValues( """SELECT ( (m.l_length / 2) - (m.l_start + (m.l_end - m.l_start) / 2) ) / ((CAST( m.l_length as float) - (m.l_end - m.l_start))/2) FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' AND m.l_nmatches = 1""" % locals()) return odict((("distance", data1 + data2),)) class MastCurve(Mast): """Summary stats of mast results. """ mPattern = "_mast$" def __call__(self, track, slice=None): evalues = self.getValues( "SELECT evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) if len(evalues) == 0: return odict() try: bin_edges, with_motifs, explained = computeMastCurve(evalues) except ValueError as msg: return odict() data = odict() data["with_motifs"] = odict( (("evalue", bin_edges), ("with_motifs", with_motifs))) data["explained"] = odict( (("evalue", bin_edges), ("explained", explained))) return data class MastROC(Mast): '''return a ROC curve. The ROC tests various peak parameters whether they are good descriptors of a motif. True/false positives are identified by the presence/absence of a motif. The presence is tested using the E-value of a motif. ''' mPattern = "_mast$" mFields = ("peakval", "avgval", "length") def __call__(self, track, slice=None): data = [] # obtain evalue distribution evalues = self.getValues( "SELECT evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) if len(evalues) == 0: return odict() try: bin_edges, with_motifs, explained = computeMastCurve(evalues) except ValueError as msg: return odict() # determine the e-value cutoff as the maximum of "explained" cutoff = bin_edges[numpy.argmax(explained)] # retrieve values of interest together with e-value result = odict() for field in self.mFields: values = self.get("""SELECT i.%(field)s, m.evalue FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' ORDER BY i.%(field)s DESC""" % locals()) try: roc = Stats.computeROC( [(x[0], x[1] <= cutoff) for x in values]) except ValueError as msg: # ignore results where there are no positives among values. continue result[field] = odict(list(zip(("FPR", "TPR"), list(zip(*roc))))) return result class MastROCNMatches(Mast): '''return a ROC curve. The ROC tests various peak parameters whether they are good descriptors of a motif. True/false positives are identified by the presence/absence of a motif using the field nmatches ''' mPattern = "_mast$" mFields = ("peakval", "avgval", "length") def __call__(self, track, slice=None): data = [] # retrieve values of interest together with e-value result = odict() for field in self.mFields: values = self.get( """SELECT i.%(field)s, m.nmatches FROM %(track)s_mast as m, %(track)s_intervals as i WHERE i.interval_id = m.id AND motif = '%(slice)s' ORDER BY i.%(field)s DESC""" % locals()) try: roc = Stats.computeROC([(x[0], x[1] > 0) for x in values]) except ValueError as msg: # ignore results where there are no positives among values. continue result[field] = odict(list(zip(("FPR", "TPR"), list(zip(*roc))))) return result class MastAUC(MastROC): '''return AUC for a ROC curve. The ROC tests various peak parameters whether they are good descriptors of a motif. True/false positives are identified by the presence/absence of a motif. ''' mPattern = "_mast$" mFields = ("peakval", "avgval", "length") def __call__(self, track, slice=None): data = MastROC.__call__(self, track, slice) for k, d in data.items(): data[k] = Stats.getAreaUnderCurve(d['FPR'], d['TPR']) return data class MastEvalues(Mast): """return arrays of mast evalues. """ mPattern = "_mast$" def __call__(self, track, slice=None): return odict((("evalue", self.getValues("SELECT evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals())), ("evalue - control", self.getValues("SELECT min_evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals())))) class MastPeakValWithMotif(Mast): '''return for each peakval the proportion of intervals that have a motif. This tracker uses the nmatches indicator as cutoff. ''' def __call__(self, track, slice=None): # obtain evalue distribution data = self.get(''' SELECT i.peakval, m.nmatches FROM %(track)s_intervals AS i, %(track)s_mast AS m WHERE m.id = i.interval_id \ AND m.motif = '%(slice)s' ORDER BY i.peakval DESC''' % locals()) result = Stats.getSensitivityRecall( [(int(x[0]), x[1] > 0) for x in data]) return odict(list(zip(("peakval", "proportion with motif", "recall"), list(zip(*result))))) class MastPeakValWithMotifEvalue(Mast): '''return for each peakval the proportion of intervals that have a motif. This class uses the ROC Evalue as cutoff. ''' def __call__(self, track, slice=None): # obtain evalue distribution evalues = self.getValues( "SELECT evalue FROM %(track)s_mast WHERE motif = '%(slice)s'" % locals()) if len(evalues) == 0: return odict() try: bin_edges, with_motifs, explained = computeMastCurve(evalues) except ValueError as msg: return odict() # determine the e-value cutoff as the maximum of "explained" cutoff = bin_edges[numpy.argmax(explained)] data = self.get(''' SELECT i.peakval, m.evalue FROM %(track)s_intervals AS i, %(track)s_mast AS m WHERE m.id = i.interval_id \ AND m.motif = '%(slice)s' ORDER BY i.peakval DESC''' % locals()) result = Stats.getSensitivityRecall( [(int(x[0]), x[1] < cutoff) for x in data]) return odict(list(zip(("peakval", "proportion with motif", "recall"), list(zip(*result))))) class MemeInputSequenceComposition(DefaultTracker): '''distribution of sequence composition in sequences submitted to motif searches.''' pattern = "(.*)_motifseq_stats" slices = ('nA', 'nAT', 'nC', 'nG', 'nGC', 'nN', 'nT', 'nUnk', 'pA', 'pAT', 'pC', 'pG', 'pGC', 'pN', 'pT') def __call__(self, track, slice): return self.getValues('''SELECT %(slice)s FROM %(track)s_motifseq_stats''') class MemeRuns(DefaultTracker): def getTracks(self): return self.getValues("SELECT DISTINCT motif FROM motif_info") def __call__(self, track, slice=None): resultsdir = os.path.abspath( os.path.join(EXPORTDIR, "meme", "%s.meme" % track)) if not os.path.exists(resultsdir): return None data = [] tree = xml.etree.ElementTree.ElementTree() tree.parse(os.path.join(resultsdir, "meme.xml")) model = tree.find("model") data.append(("nsequences", int(model.find("num_sequences").text))) data.append(("nbases", int(model.find("num_positions").text))) motifs = tree.find("motifs") nmotifs = 0 for motif in motifs.getiterator("motif"): nmotifs += 1 data.append(("nmotifs", nmotifs)) data.append( ("link", "`meme_%s <%s/meme.html>`_" % (track, resultsdir))) return odict(data) class MemeResults(DefaultTracker): tracks = list(EXPERIMENTS) def __call__(self, track, slice=None): resultsdir = os.path.abspath( os.path.join(EXPORTDIR, "meme", "%s.meme" % track.asFile())) if not os.path.exists(resultsdir): return [] tree = xml.etree.ElementTree.ElementTree() tree.parse(os.path.join(resultsdir, "meme.xml")) model = tree.find("model") # data.append( ("nsequences", int(model.find( "num_sequences" ).text) ) ) # data.append( ("nbases", int(model.find( "num_positions" ).text) ) ) motifs = tree.find("motifs") nmotif = 0 result = odict() for motif in motifs.getiterator("motif"): nmotif += 1 result[str(nmotif)] = odict(( ("width", motif.get("width")), ("evalue", motif.get("e_value")), ("information content", motif.get("ic")), ("sites", motif.get("sites")), ("link", "`meme_%s_%i <%s/meme.html#summary%i>`_" % (track, nmotif, resultsdir, nmotif)))) return result class TomTomResults(DefaultTracker): pattern = "(.*)_tomtom$" def __call__(self, track, slice=None): data = self.get("""SELECT query_id, target_id, optimal_offset,pvalue,qvalue,overlap,query_consensus, target_consensus, orientation FROM %(track)s_tomtom""" % locals()) headers = ("query_id", "target_id", "optimal_offset", "pvalue", "qvalue", "overlap", "query_consensus", "target_consensus", "orientation") result = odict() for x, y in enumerate(data): result[str(x)] = odict(list(zip(headers, y))) return result class AnnotationsMatrix(DefaultTracker): def getSlices(self, subset=None): if subset: return subset return [] def __call__(self, track, slice=None): result = odict() rows = ("intergenic", "intronic", "upstream", "downstream", "utr", "cds", "other") statement = self.getStatement(slice) data = self.get(statement % locals()) levels = sorted(list(set([x[7] for x in data]))) for row in rows: m = odict() for l in levels: m[l] = 0 result[row] = m map_level2col = dict([(y, x) for x, y in enumerate(levels)]) for intergenic, intronic, upstream, downstream, utr, coding, ambiguous, level in data: col = level for x, v in enumerate((intergenic, intronic, upstream, downstream, utr, coding, ambiguous)): if v: row = rows[x] break else: row = rows[-1] result[row][col] += 1 return result class AnnotationsMotifs(AnnotationsMatrix): '''return a matrix with intervals stratified by motif presence and location of the interval. ''' mPattern = "_mast$" def getStatement(self, slice=None): statement = ''' SELECT a.is_intergenic, a.is_intronic, a.is_upstream, a.is_downstream, a.is_utr, a.is_cds, a.is_ambiguous, CASE WHEN m.nmatches > 0 THEN motif || '+' ELSE motif || '-' END FROM %(track)s_intervals AS i, %(track)s_annotations AS a ON a.gene_id = i.interval_id, %(track)s_mast AS m ON m.id = i.interval_id''' if slice is not None: statement += " AND motif = '%(slice)s'" return statement class AnnotationsPeakVal(AnnotationsMatrix): '''return a matrix with intervals stratified by peakval and location of the interval. ''' mPattern = "_annotations$" def getStatement(self, slice=None): statement = ''' SELECT a.is_intergenic, a.is_intronic, a.is_upstream, a.is_downstream, a.is_utr, a.is_cds, a.is_ambiguous, peakval FROM %(track)s_intervals AS i, %(track)s_annotations AS a ON a.gene_id = i.interval_id''' return statement class AnnotationsPeakValData(DefaultTracker): '''return peakval for intervals falling into various regions.''' def getSlices(self, subset=None): if subset: return subset return ("intergenic", "intronic", "upstream", "downstream", "utr", "cds", "other") def __call__(self, track, slice=None): if slice == "other": slice = "ambiguous" statement = ''' SELECT peakval FROM %(track)s_intervals AS i, %(track)s_annotations AS a ON a.gene_id = i.interval_id AND a.is_%(slice)s ''' % locals() return odict((("peakval", self.getValues(statement)),)) ########################################################################## ########################################################################## ########################################################################## ########################################################################## ########################################################################## ########################################################################## # Base class for glam analysis ########################################################################## class Glam(DefaultTracker): pattern = "(.*)_glam$" def getSlices(self, subset=None): if subset: return subset return MOTIFS class GlamScores(Glam): """return arrays of glam2scan scores """ mPattern = "_glam$" def __call__(self, track, slice=None): return odict((("score", self.getValues("SELECT score FROM %(track)s_glam WHERE motif = '%(slice)s'" % locals())), ("score - control", self.getValues("SELECT max_controls FROM %(track)s_glam WHERE motif = '%(slice)s' AND max_controls != '' " % locals())))) ########################################################################## ########################################################################## ########################################################################## ## ########################################################################## def getGlamFDR(samples, control, num_bins=100): '''return the score cutoff at a certain FDR threshold using scores and control scores. The FDR is defined as fdr = expected number of false positives (FP) / number of positives (P) Given a certain score threshold s , the following will be used as approximations: FP: the number of controls with a score of less than or equal to s. These are all assumed to be false positives. P: the number of samples with a score of less than or equal to s. These are a mixture of both true and false positives. Both samples and control should contain rougly equal number of entries. returns the score cutoff at FDR threshold. ''' if len(samples) == 0 or len(control) == 0: return None, None mi1, ma1 = min(samples), max(samples) mi2, ma2 = min(control), max(control) mi, ma = min(mi1, mi2), max(ma1, ma2) hist_samples, bin_edges_samples = numpy.histogram( samples, range=(mi, ma), bins=num_bins) hist_control, bin_edges_control = numpy.histogram( control, range=(mi, ma), bins=num_bins) hist_samples = hist_samples[::-1].cumsum() hist_control = hist_control[::-1].cumsum() bin_edges = bin_edges_samples[::-1] # correct for unequal size in the two sets correction = float(len(samples)) / len(control) fdrs = [] m = 0 for s, p, fp in zip(bin_edges[:-1], hist_samples, hist_control): fdr = min(1.0, correction * float(fp) / p) m = max(m, fdr) fdrs.append(m) return bin_edges[:-1], fdrs class GlamFDR(Glam): """return arrays of glam2scan scores """ mPattern = "_glam$" def __call__(self, track, slice=None): scores = self.getValues( "SELECT score FROM %(track)s_glam WHERE motif = '%(slice)s'" % locals()) control_scores = self.getValues( "SELECT max_controls FROM %(track)s_glam WHERE motif = '%(slice)s' and max_controls is not null" % locals()) bin_edges, fdrs = getFDR(scores, control_scores) if bin_edges is None: return odict() return odict((("score", bin_edges), ("fdr", fdrs))) ########################################################################## ########################################################################## ########################################################################## # Annotation of bases with SNPs ########################################################################## class GlamSummary(Glam): """return summary of glam results. Return for each track the number of intervals in total, the number of intervals submitted to mast, ... """ mEvalueCutoff = 1 mFDR = 0.2 def __call__(self, track, slice=None): data = [] nintervals = self.getValue( "SELECT COUNT(*) FROM %(track)s_intervals" % locals()) data.append(("nintervals", nintervals)) data.append(("nglam", self.getValue( "SELECT COUNT(*) FROM %(track)s_glam WHERE motif = '%(slice)s' AND score is not null" % locals()))) scores = self.getValues( "SELECT score FROM %(track)s_glam WHERE motif = '%(slice)s'" % locals()) if len(scores) == 0: return odict() control_scores = self.getValues( "SELECT max_controls FROM %(track)s_glam WHERE motif = '%(slice)s' AND max_controls is not null" % locals()) score_cutoff = getGlamScoreCutoff(scores, control_scores, self.mFDR) nexplained = len([x for x in scores if x >= score_cutoff]) data.append(("FDR-Score", score_cutoff)) data.append(("FDR-explained", nexplained)) data.append( ("FDR-explained / %", "%5.2f" % (100.0 * nexplained / nintervals))) return odict(data) ########################################################################## ########################################################################## ########################################################################## # Glam 2 results ########################################################################## class Glam2Results(DefaultTracker): '''return a table with information about the glam2 results.''' mPattern = "_glam$" def __call__(self, track, slice=None): resultsdir = os.path.join(EXPORTDIR, "%s.glam2" % track) if not os.path.exists(resultsdir): return None data = [] glam2 = Glam2.parse(open(os.path.join(resultsdir, "glam2.txt"))) result = odict() for x, m in enumerate(glam2.motifs): result[str(x)] = odict((("score", m.score), ("columns", m.columns), ("sequences", m.sequences), ("link", "`glam2_%s <%s/glam2.html>`_" % (track, resultsdir)))) return result
43874
import unittest from django.apps import apps from tethys_config.apps import TethysPortalConfig class TethysConfigAppsTest(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_TethysPortalConfig(self): app_config = apps.get_app_config('tethys_config') name = app_config.name verbose_name = app_config.verbose_name self.assertEqual('tethys_config', name) self.assertEqual('Tethys Portal', verbose_name) self.assertTrue(isinstance(app_config, TethysPortalConfig))
43910
import fileinput as fin # funcs: def findValWithFormat(line): lines.append(line) taken = line.split(" ") raw_val = taken[-1] val = raw_val.split("/")[-1] val = val[0:-2] if 'us' in val: val = float(val[0:val.find('us')]) val = val/1000 else: val = float(val[0:val.find('ms')]) return val def getCellNum(line): cell_num = line[line.find(rnn_cell_string):line.find(rnn_cell_string) + len(rnn_cell_string) + 1] return cell_num def profRNNCell(line, rnncell_prof): cell_num = getCellNum(line) val = findValWithFormat(line) rnncell_prof[cell_num] += val # variables: lines = [] module_rnncell = "CustomRNNCell2" module_grad = 'gradients' num_rnn_layer = 7 rnn_cell_string = "cell_" module_rnn = 'rnn' module_conv1 = 'conv1' module_conv2 = 'conv2' module_softmax = 'softmax_linear' module_ctc = ['ctc_loss', 'CTCLoss'] module_bn = 'bn2' rnn_cells = [rnn_cell_string+str(i) for i in range(num_rnn_layer)] rnncell_f_prof = dict.fromkeys(rnn_cells) rnncell_b_prof = dict.fromkeys(rnn_cells) # prf estimator: for el in rnncell_f_prof: rnncell_f_prof[el] = 0.0 for el in rnncell_b_prof: rnncell_b_prof[el] = 0.0 overall_cost = 0.0 profs ={\ 'rnn_trans_f_prof': 0.0, \ 'rnn_trans_b_prof': 0.0, \ 'rnn_reshape_f_prof': 0.0, \ 'rnn_reshape_b_prof': 0.0, \ 'rnn_ReverseSequence_f_prof': 0.0, \ 'rnn_ReverseSequence_b_prof': 0.0, \ 'conv1_f_prof': 0.0, \ 'conv1_b_prof': 0.0, \ 'bn1_f_prof': 0.0, \ 'bn1_b_prof': 0.0, \ 'relu1_f_prof': 0.0, \ 'relu1_b_prof': 0.0, \ 'conv2_f_prof': 0.0, \ 'conv2_b_prof': 0.0, \ 'bn2_f_prof': 0.0, \ 'bn2_b_prof': 0.0, \ 'relu2_f_prof': 0.0, \ 'relu2_b_prof': 0.0, \ 'softmax_f_prof': 0.0, \ 'softmax_b_prof': 0.0, \ 'ctc_f_prof': 0.0, \ 'ctc_b_prof': 0.0 \ } with open('timing_memory.log', 'r') as f: for line in f: if len(line) > 3: if ((line[3] != ' ') or 'Adam/update_' in line) and ('flops' not in line): # flops is not considered # conv1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv1_b_prof'] += val # BN1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn1_b_prof'] += val # Relu1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu1_b_prof'] += val # conv2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv2_b_prof'] += val # BN2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn2_b_prof'] += val # Relu2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu2_b_prof'] += val #rnn transpose if (module_grad not in line) and (module_rnn in line) and ('transpose' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_trans_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('transpose' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_trans_b_prof'] += val #rnn reshape if (module_grad not in line) and (module_rnn in line) and ('rnn/Reshape' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_reshape_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('rnn/Reshape' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_reshape_b_prof'] += val #rnn reshape if (module_grad not in line) and (module_rnn in line) and ('ReverseSequence' in line): val = findValWithFormat(line) profs['rnn_ReverseSequence_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('ReverseSequence' in line): val = findValWithFormat(line) profs['rnn_ReverseSequence_b_prof'] += val # rnn forward profiling by cell if (module_grad not in line) and (module_rnncell in line): profRNNCell(line, rnncell_f_prof) # rnn backward profiling by cell if (module_grad in line) and (module_rnncell in line): profRNNCell(line, rnncell_b_prof) # softmax if (module_grad not in line) and (module_softmax in line): val = findValWithFormat(line) profs['softmax_f_prof'] += val if (module_grad in line) and (module_softmax in line): val = findValWithFormat(line) profs['softmax_b_prof'] += val # ctc for c in module_ctc: if (c in line) and (module_grad not in line): val = findValWithFormat(line) profs['ctc_f_prof'] += val if (c in line) and (module_grad in line): val = findValWithFormat(line) profs['ctc_b_prof'] +=val for key, val in dict.iteritems(rnncell_f_prof): overall_cost += val print "(RNN forward by cell) " + str(key) + ": " + str(val) + "ms" for key, val in dict.iteritems(rnncell_b_prof): overall_cost += val print "(RNN backward by cell) " + str(key) + ": " + str(val) + "ms" # Profiling result for k in dict.fromkeys(profs): overall_cost += profs[k] print k + ": " + str(profs[k]) + "ms" print "overall: " + str(overall_cost) + "ms" prf_file1 = open('prf1.txt', 'w') for k in dict.fromkeys(profs): prf_file1.write("%s:%f\n" % (k, profs[k])) prf_file1.close() # write including modules prf_file2 = open('prf2.txt', 'w') for el in lines: prf_file2.write("%s\n" % el) prf_file2.close()
43945
from overrides import overrides from allennlp.data import Instance from allennlp.common.util import JsonDict from allennlp.predictors.predictor import Predictor @Predictor.register('nfh_classification') class NfhDetectorPredictor(Predictor): """"Predictor wrapper for the NfhDetector""" @overrides def _json_to_instance(self, json_dict: JsonDict) -> Instance: # def _json_to_instance(self, json_dict: JsonDict) -> JsonDict: sentence = json_dict['tokens'] anchor_span = json_dict['anchors_indices'] label = json_dict['label'] if 'label' in json_dict else None instance = self._dataset_reader.text_to_instance(tokens=sentence, anchors_indices=anchor_span, head=label) # span_d = self._setting_output_span_indices(1, # ['YEAR', 'AGE', 'CURRENCY', 'PEOPLE', 'TIME', 'OTHER']) # label_dict = {v: k for k, v in span_d.items()} #return {'instance': instance, 'label_dict': label_dict} return instance def _setting_output_span_indices(self, span_len, additional_classes): """ creating a dictionary from the labels (year, age, etc. and spans indices) to integers :param span_len: the maximum possible span length :param additional_classes: the `Implicit' classes described in the paper (year, age etc.) :return: the mapping dictionary """ span_dic = {} counter = 0 for c in additional_classes: span_dic[c] = counter counter += 1 # 10000 is a random large number for i in range(10000): for j in range(1, span_len + 1): s = str(i) + ':' + str(i + j) span_dic[s] = counter counter += 1 return dict(span_dic)
43947
import numpy as np from unityagents import UnityEnvironment """UnityEnv is a wrapper around UnityEnvironment The main purpose for this Env is to establish a common interface which most environments expose """ class UnityEnv: def __init__(self, env_path, train_mode = True ): self.brain = None self.brain_name = None self.train_mode = train_mode self.env = self.create_unity_env(env_path) #env details self.action_space = self.brain.vector_action_space_size self.observation_space = self.brain.vector_observation_space_size print(f'Action space {self.action_space}') print(f'State space {self.observation_space}') #backwards compatibility self.action_dim = self.action_space #self.observation_space = self.env.observation_space self.state_dim = int(np.prod(self.observation_space)) def extract_env_details(self, env_info): next_state = env_info.vector_observations # get the next state reward = env_info.rewards # get the reward done = env_info.local_done # see if episode has finished return next_state, reward, done def create_unity_env(self, env_path): env = UnityEnvironment(file_name=env_path) self.brain_name = env.brain_names[0] self.brain = env.brains[self.brain_name] return env def reset(self): env_info = self.env.reset(train_mode=self.train_mode)[self.brain_name] return self.extract_env_details(env_info)[0] def step(self, actions): actions = np.clip(actions, -1, 1) # torch.clamp(actions, min=-1, max=1) self.env.step(actions)[self.brain_name] env_info = self.env.step(actions)[self.brain_name] next_states, rewards, dones = self.extract_env_details(env_info) return next_states, rewards, np.array(dones) # return next_state, reward, np.array([done])
43949
import torch from torch import nn import pdb, os from shapely.geometry import * from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist import time import matplotlib.pyplot as plt import numpy as np from scipy.signal import argrelextrema import random import string all_types = [[1,2,3,4],[1,2,4,3],[1,3,2,4],[1,3,4,2],[1,4,2,3],[1,4,3,2],\ [2,1,3,4],[2,1,4,3],[2,3,1,4],[2,3,4,1],[2,4,1,3],[2,4,3,1],\ [3,1,2,4],[3,1,4,2],[3,2,1,4],[3,2,4,1],[3,4,1,2],[3,4,2,1],\ [4,1,2,3],[4,1,3,2],[4,2,1,3],[4,2,3,1],[4,3,1,2],[4,3,2,1]] class kePostProcessor(nn.Module): def __init__(self, keer=None, cfg=None): super(kePostProcessor, self).__init__() self.keer = keer self.cfg = cfg def forward(self, ft_x, ft_y, mty, boxes): ke_prob_x = ft_x ke_prob_y = ft_y mty_prob = mty boxes_per_image = [box.bbox.size(0) for box in boxes] ke_prob_x = ke_prob_x.split(boxes_per_image, dim=0) ke_prob_y = ke_prob_y.split(boxes_per_image, dim=0) mty_prob = mty_prob.split(boxes_per_image, dim=0) results = [] for prob_x, prob_y, prob_mty, box in zip(ke_prob_x, ke_prob_y, mty_prob, boxes): bbox = BoxList(box.bbox, box.size, mode='xyxy') for field in box.fields(): bbox.add_field(field, box.get_field(field)) if self.keer: prob_x, rescores_x = self.keer(prob_x, box) prob_y, rescores_y = self.keer(prob_y, box) rescores = (rescores_x+rescores_y)*0.5 if self.cfg.MODEL.ROI_KE_HEAD.RESCORING: bbox.add_field('scores', rescores) prob = torch.cat((prob_x,prob_y), dim = -2) prob = prob[..., :1] prob = textKES(prob, box.size) bbox.add_field('ke', prob) bbox.add_field('mty', prob_mty) results.append(bbox) return results # TODO remove and use only the keer import numpy as np import cv2 def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def kes_decode(kes): # BDN decode for ix, i in enumerate(kes): mnd = i[0, 0] nkes = i.shape[1]-2 kes[ix][0, 1:5] = kes[ix][0, 1:5]*2 - mnd return kes def heatmaps_to_kes(maps, rois, scores, cfg): """Extract predicted ke locations from heatmaps. Output has shape (#rois, 4, #kes) with the 4 rows corresponding to (x, y, logit, prob) for each ke. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous ke coordinate. We maintain # consistency with kes_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) resol = cfg.MODEL.ROI_KE_HEAD.RESOLUTION # cfg.mo... 56 if maps.shape[-2:] == (1, resol): xory_mode = 0 # x mode elif maps.shape[-2:] == (resol, 1): xory_mode = 1 # y mode else: assert(0), 'invalid mode.' # print("maps", maps.shape, maps[0,0], maps[0,1]) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = 0 # cfg num_kes = int(cfg.MODEL.ROI_KE_HEAD.NUM_KES/2)+2 d_preds = np.zeros( (len(rois), 2, num_kes), dtype=np.float32) d_scores = np.zeros(scores.shape, dtype=np.float32) assert(len(rois) == maps.shape[0]), 'shape mismatch {}, {}, {}, {}'.format(str(len(rois)), \ str(rois.shape), \ str(maps.shape[0]), \ str(maps.shape)) normal = 0 innormal = 0 for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height np.set_printoptions(suppress=True) # print(i, "stop", maps.shape, np.around(maps[i][0, :, :], decimals=2)) if not xory_mode: roi_map = cv2.resize( maps[i], (roi_map_width, 1), interpolation=cv2.INTER_CUBIC) else: roi_map = cv2.resize( maps[i], (1, roi_map_height), interpolation=cv2.INTER_CUBIC) # print(roi_map.shape, np.around(roi_map[0, :, :], decimals=2)) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) # kescore visulize. map_vis = np.transpose(maps[i], [2, 0, 1]) map_vis = scores_to_probs(map_vis.copy()) sum_score = [] if cfg.MODEL.ROI_KE_HEAD.RESCORING: for k in range(num_kes): if map_vis[k].shape[0] == 1: x = np.arange(0, len(map_vis[k][0]), 1) y = map_vis[k][0] else: x = np.arange(0, len(map_vis[k][:, 0]), 1) y = map_vis[k][:, 0] top = y.max() atop = y.argmax() # lf2&1 lf2 = max(atop-2, 0) lf1 = max(atop-1, 0) rt2 = min(atop+2, 55) rt1 = min(atop+1, 55) sum_score.append(top+y[lf2]+y[lf1]+y[rt1]+y[rt2]) kes_score_mean = sum(sum_score)*1.0/len(sum_score) gama = cfg.MODEL.ROI_KE_HEAD.RESCORING_GAMA final_score = (scores[i]*(2.0-gama)+gama*kes_score_mean)*0.5 # rescore d_scores[i] = final_score else: d_scores[i] = scores[i] w = roi_map.shape[2] for k in range(num_kes): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction if not xory_mode: d_preds[i, 0, k] = x + offset_x[i] d_preds[i, 1, k] = roi_map_probs[k, y_int, x_int] else: d_preds[i, 0, k] = y + offset_y[i] d_preds[i, 1, k] = roi_map_probs[k, y_int, x_int] out_kes_d = kes_decode(d_preds) return np.transpose(out_kes_d, [0, 2, 1]), d_scores from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.ke import textKES class KEer(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, padding=0, cfg =None): self.padding = padding self.cfg =cfg def compute_flow_field_cpu(self, boxes): im_w, im_h = boxes.size boxes_data = boxes.bbox num_boxes = len(boxes_data) device = boxes_data.device TO_REMOVE = 1 boxes_data = boxes_data.int() box_widths = boxes_data[:, 2] - boxes_data[:, 0] + TO_REMOVE box_heights = boxes_data[:, 3] - boxes_data[:, 1] + TO_REMOVE box_widths.clamp_(min=1) box_heights.clamp_(min=1) boxes_data = boxes_data.tolist() box_widths = box_widths.tolist() box_heights = box_heights.tolist() flow_field = torch.full((num_boxes, im_h, im_w, 2), -2) # TODO maybe optimize to make it GPU-friendly with advanced indexing # or dedicated kernel for i in range(num_boxes): w = box_widths[i] h = box_heights[i] if w < 2 or h < 2: continue x = torch.linspace(-1, 1, w) y = torch.linspace(-1, 1, h) # meshogrid x = x[None, :].expand(h, w) y = y[:, None].expand(h, w) b = boxes_data[i] x_0 = max(b[0], 0) x_1 = min(b[2] + 0, im_w) y_0 = max(b[1], 0) y_1 = min(b[3] + 0, im_h) flow_field[i, y_0:y_1, x_0:x_1, 0] = x[(y_0 - b[1]):(y_1 - b[1]),(x_0 - b[0]):(x_1 - b[0])] flow_field[i, y_0:y_1, x_0:x_1, 1] = y[(y_0 - b[1]):(y_1 - b[1]),(x_0 - b[0]):(x_1 - b[0])] return flow_field.to(device) def compute_flow_field(self, boxes): return self.compute_flow_field_cpu(boxes) # TODO make it work better for batches def forward_single_image(self, masks, boxes): boxes = boxes.convert('xyxy') if self.padding: boxes = BoxList(boxes.bbox.clone(), boxes.size, boxes.mode) masks, scale = expand_masks(masks, self.padding) boxes.bbox = expand_boxes(boxes.bbox, scale) flow_field = self.compute_flow_field(boxes) result = torch.nn.functional.grid_sample(masks, flow_field) return result def to_points(self, masks): height, width = masks.shape[-2:] m = masks.view(masks.shape[:2] + (-1,)) scores, pos = m.max(-1) x_int = pos % width y_int = (pos - x_int) // width result = torch.stack([x_int.float(), y_int.float(), torch.ones_like(x_int, dtype=torch.float32)], dim=2) return result def __call__(self, masks, boxes): # TODO do this properly if isinstance(boxes, BoxList): boxes = [boxes] if isinstance(masks, list): masks = torch.stack(masks, dim=0) assert(len(masks.size()) == 4) scores = boxes[0].get_field("scores") result, rescores = heatmaps_to_kes(masks.detach().cpu().numpy(), boxes[0].bbox.cpu().numpy(), scores.cpu().numpy(), self.cfg) return torch.from_numpy(result).to(masks.device), torch.from_numpy(rescores).to(masks.device) def make_roi_ke_post_processor(cfg): if cfg.MODEL.ROI_KE_HEAD.POSTPROCESS_KES: keer = KEer(padding=0, cfg=cfg) else: keer = None ke_post_processor = kePostProcessor(keer,cfg) return ke_post_processor
43950
import streamlit as st import numpy as np import matplotlib.pyplot as plt perc_heads = st.number_input(label='Chance of Coins Landing on Heads', min_value=0.0, max_value=1.0, value=.5) graph_title = st.text_input(label='Graph Title') binom_dist = np.random.binomial(1, perc_heads, 1000) list_of_means = [] for i in range(0, 1000): list_of_means.append(np.random.choice(binom_dist, 100, replace=True).mean()) fig, ax = plt.subplots() plt.hist(list_of_means, range=[0,1]) plt.title(graph_title) st.pyplot(fig)
43953
import sys import emailprotectionslib.dmarc as dmarc from MaltegoTransform import * mt = MaltegoTransform() mt.parseArguments(sys.argv) domain = mt.getValue() mt = MaltegoTransform() try: dmarc_record = dmarc.DmarcRecord.from_domain(domain) #print spf_record mt.addEntity("maltego.Phrase","DMARC Record: "+str(dmarc_record)) except: mt.addUIMessage("Exception Occured",messageType="PartialError") mt.returnOutput()
44005
import tkinter as tk class ScrolledFrame(tk.Frame): def __init__(self, parent, vertical=True, horizontal=False): super().__init__(parent) # canvas for inner frame self._canvas = tk.Canvas(self) self._canvas.grid(row=0, column=0, sticky='news') # changed # create right scrollbar and connect to canvas Y self._vertical_bar = tk.Scrollbar(self, orient='vertical', command=self._canvas.yview) if vertical: self._vertical_bar.grid(row=0, column=1, sticky='ns') self._canvas.configure(yscrollcommand=self._vertical_bar.set) # create bottom scrollbar and connect to canvas X self._horizontal_bar = tk.Scrollbar(self, orient='horizontal', command=self._canvas.xview) if horizontal: self._horizontal_bar.grid(row=1, column=0, sticky='we') self._canvas.configure(xscrollcommand=self._horizontal_bar.set) # inner frame for widgets self.inner = tk.Frame(self._canvas) self._window = self._canvas.create_window((0, 0), window=self.inner, anchor='nw') # autoresize inner frame self.columnconfigure(0, weight=1) # changed self.rowconfigure(0, weight=1) # changed # resize when configure changed self.inner.bind('<Configure>', self.resize) # resize inner frame to canvas size self.resize_width = False self.resize_height = False self._canvas.bind('<Configure>', self.inner_resize) def resize(self, event=None): self._canvas.configure(scrollregion=self._canvas.bbox('all')) def inner_resize(self, event): # resize inner frame to canvas size if self.resize_width: self._canvas.itemconfig(self._window, width=event.width) if self.resize_height: self._canvas.itemconfig(self._window, height=event.height)
44012
import os import sys import unittest from test.support import run_unittest, import_module # Skip tests if we don't have threading. import_module('threading') # Skip tests if we don't have concurrent.futures. import_module('concurrent.futures') def suite(): tests = unittest.TestSuite() loader = unittest.TestLoader() for fn in os.listdir(os.path.dirname(__file__)): if fn.startswith("test") and fn.endswith(".py"): mod_name = 'test.test_asyncio.' + fn[:-3] try: __import__(mod_name) except unittest.SkipTest: pass else: mod = sys.modules[mod_name] tests.addTests(loader.loadTestsFromModule(mod)) return tests def test_main(): run_unittest(suite())
44029
import ipaddress from collections import defaultdict from autonetkit.design.utils import filters from autonetkit.design.utils.general import group_by from autonetkit.network_model.types import LAYER3_DEVICES def assign_loopbacks(topology): """ @param topology: """ layer3_nodes = [n for n in topology.nodes() if n.type in LAYER3_DEVICES] loopback_block = ipaddress.IPv4Network("172.16.0.0/16") loopback_subnets = loopback_block.subnets(new_prefix=24) grouped_l3 = group_by(layer3_nodes, "asn") allocated_loopbacks = defaultdict(list) for asn, nodes in grouped_l3.items(): # can repeat the loopbacks in each asn subnet = next(loopback_subnets) allocated_loopbacks[asn].append(subnet) host_ips = subnet.hosts() for node in nodes: host_ip = next(host_ips) lo0 = node.loopback_zero() lo0.set("ip", host_ip) # also map onto node for debugging/vis topology.set("loopbacks_by_asn", allocated_loopbacks) def assign_bc_subnets(topology): """ @param topology: """ # the network to use to address end hosts and for inter-domain connections allocated_blocks = defaultdict(list) global_advertise_network = ipaddress.IPv4Network("10.0.0.0/8") global_subnets = global_advertise_network.subnets(new_prefix=16) bc_nodes = filters.broadcast_domains(topology) grouped_bc = group_by(bc_nodes, "asn") for asn, nodes in grouped_bc.items(): asn_block = next(global_subnets) allocated_blocks[asn].append(asn_block) # quick method: allocate a /24 to each broadcast domain # Note: this could be significantly optimised in the future # Note: could allocate different block to internal infrastructure too external_blocks = asn_block.subnets(new_prefix=24) for bc in nodes: bc_block = next(external_blocks) bc.set("network", bc_block) topology.set("infrastructure_by_asn", allocated_blocks)
44041
from django import VERSION if VERSION < (1, 6): # Before django 1.6, Django was not able to find tests in tests/tests.py from .tests import *
44051
import discord from discord.ext import commands class UserBlacklisted(commands.CommandError): """ An exception when the user is blacklisted from the bot """ pass
44082
from django.core.files.uploadedfile import SimpleUploadedFile from easy_tenants import tenant_context_disabled from easy_tenants.storage import TenantFileSystemStorage def test_default_storage(tenant_ctx, settings): tenant_id = str(tenant_ctx.id) s = TenantFileSystemStorage() file = SimpleUploadedFile("test.txt", b"any content") s.save("test.txt", file) assert s.exists("test.txt") assert s.path("test.txt") == f"{settings.MEDIA_ROOT}/{tenant_id}/test.txt" assert s.url("test.txt") == f"{settings.MEDIA_URL}{tenant_id}/test.txt" def test_default_storage_without_tenant(settings): with tenant_context_disabled(): s = TenantFileSystemStorage() file = SimpleUploadedFile("test.txt", b"any content") s.save("test.txt", file) assert s.exists("test.txt") assert s.path("test.txt") == f"{settings.MEDIA_ROOT}/test.txt" assert s.url("test.txt") == f"{settings.MEDIA_URL}test.txt" def test_custom_base_location(tenant_ctx, settings): location = f"{settings.MEDIA_ROOT}/2" s = TenantFileSystemStorage(location=location, base_url="custom_url") file = SimpleUploadedFile("test.txt", b"any content") s.save("test.txt", file) assert s.exists("test.txt") assert s.path("test.txt") == f"{location}/test.txt" assert s.url("test.txt") == "custom_url/test.txt"
44105
import os import sys import imp import argparse import time import math import numpy as np from utils import utils from utils.imageprocessing import preprocess from utils.dataset import Dataset from network import Network from evaluation.lfw import LFWTest def main(args): paths = [ r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0002.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0003.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\a-000013.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0002.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', r'F:\data\face-recognition\lfw\lfw-112-mxnet\Abdoulaye_Wade\Abdoulaye_Wade_0003.jpg', r'F:\data\face-recognition\realsense\data-labeled-clean-strict2-112-mxnet\rgb\001-chenkai\rgb_2.jpg', ] print('%d images to load.' % len(paths)) assert(len(paths)>0) # Load model files and config file network = Network() network.load_model(args.model_dir) # network.config.preprocess_train = [] # network.config.preprocess_test = [] images = preprocess(paths, network.config, False) import cv2 # images = np.array([cv2.resize(img, (96, 96)) for img in images]) # images = (images - 128.) / 128. # images = images[..., ::-1] print(images.shape) # print(images[0,:5,:5,0]) # Run forward pass to calculate embeddings mu, sigma_sq = network.extract_feature(images, args.batch_size, verbose=True) print(mu.shape, sigma_sq.shape) print('sigma_sq', np.max(sigma_sq), np.min(sigma_sq), np.mean(sigma_sq), np.exp(np.mean(np.log(sigma_sq)))) log_sigma_sq = np.log(sigma_sq) print('log_sigma_sq', np.max(log_sigma_sq), np.min(log_sigma_sq), np.mean(log_sigma_sq)) # print('sigma_sq', sigma_sq) feat_pfe = np.concatenate([mu, sigma_sq], axis=1) score = utils.pair_cosin_score(mu[::2], mu[1::2]) print(score) score = utils.pair_MLS_score(feat_pfe[::2], feat_pfe[1::2]) print(score) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--model_dir", help="The path to the pre-trained model directory", type=str, default=r'D:\chenkai\Probabilistic-Face-Embeddings-master\log\resface64_relu_msarcface_am_PFE/20191229-172304-iter15') parser.add_argument("--batch_size", help="Number of images per mini batch", type=int, default=128) args = parser.parse_args() main(args)
44144
from collections import namedtuple from turtle import fd, heading, lt, pd, position, pu, rt, setheading, setposition # pylint: disable=no-name-in-module from pudzu.utils import weighted_choice class LSystem: Rule = namedtuple("Rule", "predecessor successor weight", defaults=(1.0,)) def __init__(self, axiom, rules, angle=4): self.axiom = axiom self.angle = 360 / angle self.rules = {} self.weights = {} for rule in rules: pr = self.Rule(*rule) self.rules.setdefault(pr.predecessor, []).append(pr.successor) self.weights.setdefault(pr.predecessor, []).append(pr.weight) def expand(self, iterations): state = self.axiom for _ in range(iterations): state = "".join([weighted_choice(self.rules.get(c, [c]), self.weights.get(c, [1])) for c in state]) return state def plot(self, screen, iterations, size, reset=True, tracer=(0, 0)): if reset: screen.clearscreen() screen.tracer(*tracer) stack = [] for c in self.expand(iterations): if c == "F": fd(size) elif c == "G": pu() fd(size) pd() elif c == "+": rt(self.angle) elif c == "-": lt(self.angle) elif c == "[": stack.append((position(), heading())) elif c == "]": p, h = stack.pop() pu() setposition(p) setheading(h) pd() screen.update() Koch = LSystem("F--F--F", [("F", "F+F--F+F")], 6) Dragon = LSystem("FX", [("F", ""), ("Y", "+FX--FY+"), ("X", "-FX++FY-")], 8) Plant07 = LSystem("Z", [("Z", "ZFX[+Z][-Z]"), ("X", "X[-FFF][+FFF]FX")], 14) Plant08 = LSystem("SLFFF", [("S", "[+++Z][---Z]TS"), ("Z", "+H[-Z]L"), ("H", "-Z[+H]L"), ("T", "TL"), ("L", "[-FFF][+FFF]F")], 20) Sierpinski = LSystem("AF", [("A", "BF+AF+BF"), ("B", "AF-BF-AF"), ("F", "")], 6) Barnsley = LSystem("X", [("X", "F+[[X]-X]-F[-FX]+X"), ("F", "FF")], 14.4) RandomWalk = LSystem("F", [("F", "FF"), ("F", "F+F"), ("F", "F++F"), ("F", "F-F")], 4)
44155
from starling_sim.basemodel.output.kpis import KPI import logging import pandas as pd class KpiOutput: def __init__(self, population_names, kpi_list, kpi_name=None): # name of the kpi, will compose the kpi filename : <kpi_name>.csv if kpi_name is None: if isinstance(population_names, list): self.name = "_&_".join(population_names) + "_kpi" else: self.name = population_names + "_kpi" else: self.name = kpi_name # population of agent to evaluate self.population_names = population_names self.populations = None # list of kpi to evaluate the given agents self.kpi_list = kpi_list # output file self.filename = None self.folder = None def setup(self, filename, folder, simulation_model): """ Setup method called during simulation setup. Sets the values of out file and folder, and call setup for KPIs. :param filename: .csv file :param folder: :param simulation_model: :return: """ self.filename = filename self.folder = folder for kpi in self.kpi_list: kpi.setup(simulation_model) if isinstance(self.population_names, list): self.populations = [simulation_model.agentPopulation[population_name] for population_name in self.population_names] else: self.populations = [simulation_model.agentPopulation[self.population_names]] def agent_kpi_dict(self, agent): """ Computes the KPIs for the given agent by calling their update method for all its trace :param agent: :return: """ indicators_dict = dict() # get agent trace events = agent.trace.eventList # evaluate all indicators in a single pass for event in events: for kpi in self.kpi_list: kpi.update(event, agent) # merge all completed indicators for kpi in self.kpi_list: indicators_dict.update(kpi.indicator_dict) # raising a warning with sphinx # indicators_dict = {**indicators_dict, **kpi.indicator_dict} # reset kpi values kpi.new_indicator_dict() # return complete indicator dict return indicators_dict def write_kpi_table(self): """ Write the KPI of the population in the csv file obtained from out file attributes The KPIs evaluated are defined by the kpi_list attribute """ # first row is always agent's id, then we add the kpi_list keys header_list = [KPI.KEY_ID] for kpi in self.kpi_list: header_list += kpi.keys path = self.folder + self.filename kpi_table = pd.DataFrame() # compute the kpi table for each population dict for population in self.populations: kpi_table = pd.concat([kpi_table, self.compute_population_kpi_table(population)]) # do not generate a kpi output if the kpi table is empty if kpi_table.empty: return # generate kpi output logging.info("Generating KPI output in file " + path) try: # write the dataframe into a csv file kpi_table.to_csv(path, sep=";", index=False, columns=header_list) except KeyError as e: logging.warning("Could not generate kpi output {}, " "error occurred : {}".format(path, e)) def compute_population_kpi_table(self, population): """ Compute a kpi table for the given population dict. :param population: population dict {id: agent} :return: DataFrame containing the KPI values """ df_output = pd.DataFrame() for agent in population.values(): # create kpi dict for the agent agent_indicators = self.agent_kpi_dict(agent) # build a dataframe from the dict if isinstance(agent_indicators[KPI.KEY_ID], list): df = pd.DataFrame(agent_indicators) else: df = pd.DataFrame(agent_indicators, index=[0]) # append the dataframe to the total output df_output = pd.concat([df_output, df]) return df_output
44156
import torch from torch import nn as nn from torch.nn import functional as F from torch.autograd import Variable from model.tensorized_layers.graphsage import BatchedGraphSAGE class DiffPoolAssignment(nn.Module): def __init__(self, nfeat, nnext): super().__init__() self.assign_mat = BatchedGraphSAGE(nfeat, nnext, use_bn=True) def forward(self, x, adj, log=False): s_l_init = self.assign_mat(x, adj) s_l = F.softmax(s_l_init, dim=-1) return s_l
44157
import os import pyblish.api from openpype.lib import OpenPypeMongoConnection class IntegrateContextToLog(pyblish.api.ContextPlugin): """ Adds context information to log document for displaying in front end""" label = "Integrate Context to Log" order = pyblish.api.IntegratorOrder - 0.1 hosts = ["webpublisher"] def process(self, context): self.log.info("Integrate Context to Log") mongo_client = OpenPypeMongoConnection.get_mongo_client() database_name = os.environ["OPENPYPE_DATABASE_NAME"] dbcon = mongo_client[database_name]["webpublishes"] for instance in context: self.log.info("ctx_path: {}".format(instance.data.get("ctx_path"))) self.log.info("batch_id: {}".format(instance.data.get("batch_id"))) if instance.data.get("ctx_path") and instance.data.get("batch_id"): self.log.info("Updating log record") dbcon.update_one( { "batch_id": instance.data.get("batch_id"), "status": "in_progress" }, {"$set": { "path": instance.data.get("ctx_path") }} ) return
44182
from .model_action import ModelAction class HVACTemplate(ModelAction): # this shows the ip to si conversion rate # if unit is 'ip', then multiply this rate. # for window it is the U-value # convert U-value IP to SI # The conversion will change w/ft2 to w/m2 if ip shows NUM_HVAC = 14 def __init__(self, unit="si"): ModelAction.__init__(self, 'hvac_template', unit) self._measure_name = 'HVAC' self._default_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] # DOAS + VRF as default self._data = 10 self._lower_limit = 0 self._upper_limit = HVACTemplate.NUM_HVAC - 1 self._measure_help = ''' measure name: HVAC Unit: not required Minimum: 0 Maximum: 13 Type: categorical This measure will change the HVAC system in the idf file The HVAC system types are: 0. sys1: PTAC 1. sys2: PTHP 2. sys3: PSZ-AC 3. sys4: PSZ-HP 4. sys5: Packaged VAV with Reheat 5. sys6: Packaged VAV with PFP Boxes 6. sys7: VAV with Reheat 7. sys8: VAV with PFP Boxes 8. sys9: Warm air furnace, gas fired 9. sys10: Warm air furnace, electric 10. doasvrf: DOAS with variable refrigerant flow 11. doasfancoil: DOAS with Fan coils 12. doaswshp: DOAS with water source heat pump (ground as condenser) 13. doascbcb: DOAS with active cool beam + convective baseboard 14. vavfourpipebeam: VAV system with four pipe beam ''' def _unit_convert_ratio(self): return 1.0
44209
import matplotlib.pyplot as plt import numpy as np def plot_convolution(f, g): fig, (ax1, ax2, ax3) = plt.subplots(3, 1) ax1.set_yticklabels([]) ax1.set_xticklabels([]) ax1.plot(f, color='blue', label='f') ax1.legend() ax2.set_yticklabels([]) ax2.set_xticklabels([]) ax2.plot(g, color='red', label='g') ax2.legend() filtered = np.convolve(f, g, "same") / sum(g) ax3.set_yticklabels([]) ax3.set_xticklabels([]) ax3.plot(filtered, color='green', label='f * g') ax3.legend() plt.show() def plot_convolution_step_by_step(f, g): fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1) ax1.set_yticklabels([]) ax1.set_xticklabels([]) ax1.plot(f, color='blue', label='f') ax1.plot(np.roll(g, -10000), color='red', label='g') ax2.set_yticklabels([]) ax2.set_xticklabels([]) ax2.plot(f, color='blue', label='f') ax2.plot(np.roll(g, -5000), color='red', label='g') ax3.set_yticklabels([]) ax3.set_xticklabels([]) ax3.plot(f, color='blue', label='f') ax3.plot(g, color='red', label='g') ax4.set_yticklabels([]) ax4.set_xticklabels([]) ax4.plot(f, color='blue', label='f') ax4.plot(np.roll(g, 5000), color='red', label='g') ax5.set_yticklabels([]) ax5.set_xticklabels([]) ax5.plot(f, color='blue', label='f') ax5.plot(np.roll(g, 10000), color='red', label='g') plt.show() signal = np.zeros(30000) signal[10000:20000] = 1 kernel = np.zeros(30000) kernel[10000:20000] = np.linspace(1, 0, 10000) plot_convolution(signal, kernel) plot_convolution_step_by_step(signal, kernel)
44224
import logging import math import torch import torch.nn as nn from vedastr.models.bodies import build_sequence_decoder from vedastr.models.utils import build_torch_nn from vedastr.models.weight_init import init_weights from .registry import HEADS logger = logging.getLogger() @HEADS.register_module class TransformerHead(nn.Module): def __init__( self, decoder, generator, embedding, num_steps, pad_id, src_from, src_mask_from=None, ): super(TransformerHead, self).__init__() self.decoder = build_sequence_decoder(decoder) self.generator = build_torch_nn(generator) self.embedding = build_torch_nn(embedding) self.num_steps = num_steps self.pad_id = pad_id self.src_from = src_from self.src_mask_from = src_mask_from logger.info('TransformerHead init weights') init_weights(self.modules()) def pad_mask(self, text): pad_mask = (text == self.pad_id) pad_mask[:, 0] = False pad_mask = pad_mask.unsqueeze(1) return pad_mask def order_mask(self, text): t = text.size(1) order_mask = torch.triu(torch.ones(t, t), diagonal=1).bool() order_mask = order_mask.unsqueeze(0).to(text.device) return order_mask def text_embedding(self, texts): tgt = self.embedding(texts) tgt *= math.sqrt(tgt.size(2)) return tgt def forward(self, feats, texts): src = feats[self.src_from] if self.src_mask_from: src_mask = feats[self.src_mask_from] else: src_mask = None if self.training: tgt = self.text_embedding(texts) tgt_mask = (self.pad_mask(texts) | self.order_mask(texts)) out = self.decoder(tgt, src, tgt_mask, src_mask) out = self.generator(out) else: out = None for _ in range(self.num_steps): tgt = self.text_embedding(texts) tgt_mask = self.order_mask(texts) out = self.decoder(tgt, src, tgt_mask, src_mask) out = self.generator(out) next_text = torch.argmax(out[:, -1:, :], dim=-1) texts = torch.cat([texts, next_text], dim=-1) return out
44233
from django.db import models __all__ = ('PostSaveImageField',) class PostSaveImageField(models.ImageField): def __init__(self, *args, **kwargs): kwargs['null'] = True kwargs['blank'] = True super(PostSaveImageField, self).__init__(*args, **kwargs) def contribute_to_class(self, cls, name): super(PostSaveImageField, self).contribute_to_class(cls, name) models.signals.post_save.connect(self.save_file, sender=cls) def save_file(self, sender, instance, created, **kwargs): file = super(PostSaveImageField, self).pre_save(instance, created) if file: instance.__class__.objects \ .filter(pk=instance.pk).update(**{self.attname: file.name}) def pre_save(self, model_instance, add): pass
44236
import sys import soundcard import numpy import pytest skip_if_not_linux = pytest.mark.skipif(sys.platform != 'linux', reason='Only implemented for PulseAudio so far') ones = numpy.ones(1024) signal = numpy.concatenate([[ones], [-ones]]).T def test_speakers(): for speaker in soundcard.all_speakers(): assert isinstance(speaker.name, str) assert hasattr(speaker, 'id') assert isinstance(speaker.channels, int) assert speaker.channels > 0 def test_microphones(): for microphone in soundcard.all_microphones(): assert isinstance(microphone.name, str) assert hasattr(microphone, 'id') assert isinstance(microphone.channels, int) assert microphone.channels > 0 def test_default_playback(): soundcard.default_speaker().play(signal, 44100, channels=2) def test_default_record(): recording = soundcard.default_microphone().record(1024, 44100) assert len(recording == 1024) def test_default_blockless_record(): recording = soundcard.default_microphone().record(None, 44100) @skip_if_not_linux def test_name(): # The default is the application name, so when run from pytest, # it’s “pytest” or “_jb_pytest_runner.py” or so. assert 'pytest' in soundcard.get_name() soundcard.set_name('testapp') assert soundcard.get_name() == 'testapp' @skip_if_not_linux @pytest.mark.parametrize("argv,progname", [ (["./script.py"], "script.py"), # chmod +x script.py; ./script.py (["path/to/script.py"], "script.py"), # python path/to/script.py or # python -m path.to.script (["module/__main__.py"], "module"), # python -m module (["-m", "module.submodule"], "module.submodule"), # rare unresolved case (["-c", "import soundcard; soundcard.foo()"], "import soundcard; soundcard.fo..."), ]) def test_infer_name(monkeypatch, argv, progname): infer = soundcard.pulseaudio._PulseAudio._infer_program_name monkeypatch.setattr(sys, "argv", argv) assert infer() == progname @pytest.fixture def loopback_speaker(): import sys if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_speaker('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_speaker('Soundflower64') elif sys.platform == 'linux': # pacmd load-module module-null-sink channels=6 rate=48000 return soundcard.get_speaker('Null') else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_player(loopback_speaker): with loopback_speaker.player(48000, channels=2, blocksize=512) as player: yield player @pytest.fixture def loopback_microphone(): if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_microphone('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_microphone('Soundflower64') elif sys.platform == 'linux': return soundcard.get_microphone('Null', include_loopback=True) else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_recorder(loopback_microphone): with loopback_microphone.recorder(48000, channels=2, blocksize=512) as recorder: yield recorder def test_loopback_playback(loopback_player, loopback_recorder): loopback_player.play(signal) recording = loopback_recorder.record(1024*10) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal) def test_loopback_reverse_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[1, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_reverse_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[1, 0], blocksize=512) as loopback_player: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_mono_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[0], blocksize=512) as loopback_player: loopback_player.play(signal[:,0]) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 if sys.platform == 'linux': # unmapped channels on linux are filled with the mean of other channels assert right.mean() < left.mean() else: assert abs(right.mean()) < 0.01 # something like zero assert (left > 0.5).sum() == len(signal) def test_loopback_mono_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 1 or recording.shape[1] == 1 assert recording.mean() > 0 assert (recording > 0.5).sum() == len(signal) def test_loopback_multichannel_channelmap(loopback_speaker, loopback_microphone): with loopback_speaker.player(48000, channels=[2, 0], blocksize=512) as loopback_player: with loopback_microphone.recorder(48000, channels=[2, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal)
44280
from pycoin.networks.bitcoinish import create_bitcoinish_network network = create_bitcoinish_network( network_name="Monacoin", symbol="MONA", subnet_name="mainnet", wif_prefix_hex="b0", sec_prefix="MONASEC:", address_prefix_hex="32", pay_to_script_prefix_hex="37", bip32_prv_prefix_hex="0488ade4", bip32_pub_prefix_hex="0488b21e", bech32_hrp="mona", magic_header_hex="fbc0b6db", default_port=9401, dns_bootstrap=["dnsseed.monacoin.org"])
44299
import sublime def pkg_settings(): # NOTE: The sublime.load_settings(...) call has to be deferred to this function, # rather than just being called immediately and assigning a module-level variable, # because of: https://www.sublimetext.com/docs/3/api_reference.html#plugin_lifecycle return sublime.load_settings("Git blame.sublime-settings") PKG_SETTINGS_KEY_CUSTOMBLAMEFLAGS = "custom_blame_flags" PKG_SETTINGS_KEY_INLINE_BLAME_ENABLED = "inline_blame_enabled" PKG_SETTINGS_KEY_INLINE_BLAME_DELAY = "inline_blame_delay"
44308
import torch from torch import nn, Tensor from typing import Tuple from ..components import ResidualRNN __all__ = ['Encoder', 'RNNEncoder', 'GRUEncoder'] class Encoder(nn.Module): def __init__(self, input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token=0, drop_rate=0.1): super(Encoder, self).__init__() self._hidden_size = hidden_size self._input_size = input_size self._embedding_dim = embedding_dim self._num_layers = num_layers self._bidirectional = bidirectional self._device = device self._embedding = nn.Embedding(input_size, self._embedding_dim, padding_idx=pad_token) self._dropout = nn.Dropout(drop_rate) def forward(self, input: Tensor, states: Tuple[Tensor, ...]) -> Tuple[Tensor, Tuple[Tensor, ...]]: """ :param input: (seq_len, batch_size, input_dim) :param states: internal states of the RNN, each having dimension (num_layers * num_directions, batch_size, hidden_size) :return: output: (seq_len, batch, num_directions * hidden_size) states: states at final time step, each having dimension (num_layers * num_directions, batch_size, hidden_size) """ raise NotImplementedError def init_hidden(self, batch_size: int) -> Tuple[Tensor, ...]: """ Initialize the first zero hidden state :param batch_size: :return: Initial internal states, each of dim (num_layers * num_directions, batch_size, hidden_size) """ raise NotImplementedError class RNNEncoder(Encoder): def __init__( self, rnn, input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token=0, drop_rate=0.1 ): super(RNNEncoder, self).__init__( input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token, drop_rate ) self.rnn = rnn def forward(self, input: Tensor, states: Tuple[Tensor, ...]) -> Tuple[Tensor, Tuple[Tensor, ...]]: embedded = self._dropout(self._embedding(input)) output, hidden = self.rnn(embedded, states) return output, hidden class GRUEncoder(RNNEncoder): def __init__( self, input_size, hidden_size, embedding_dim, device, bias=False, num_layers=1, dropout=0, bidirectional=False, pad_token=0, drop_rate=0.1 ): super(GRUEncoder, self).__init__( nn.GRU( embedding_dim, hidden_size, bias=bias, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional ), input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token, drop_rate ) def init_hidden(self, batch_size: int) -> Tuple[Tensor, ...]: """ Initialize the first zero hidden state :param batch_size: :return: Initial hidden state, of dimensision (num_layers * num_directions, batch_size, hidden_size) """ first_dim = self._num_layers if self._bidirectional: first_dim *= 2 return (torch.zeros(first_dim, batch_size, self._hidden_size, device=self._device),) class LSTMEncoder(RNNEncoder): def __init__( self, input_size, hidden_size, embedding_dim, device, bias=False, num_layers=1, dropout=0, bidirectional=False, pad_token=0, drop_rate=0.1 ): super(LSTMEncoder, self).__init__( nn.LSTM( embedding_dim, hidden_size, bias=bias, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional ), input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token, drop_rate ) def init_hidden(self, batch_size: int) -> Tuple[Tensor, ...]: """ Initialize the first zero hidden state :param batch_size: :return: Initial hidden state and cell state, each of dim (num_layers * num_directions, batch_size, hidden_size) """ first_dim = self._num_layers if self._bidirectional: first_dim *= 2 return ( torch.zeros(first_dim, batch_size, self._hidden_size, device=self._device), torch.zeros(first_dim, batch_size, self._hidden_size, device=self._device) ) class ResidualRNNEncoder(RNNEncoder): def __init__( self, base_rnn, input_size, hidden_size, embedding_dim, device, bias=False, num_layers=1, dropout=0, bidirectional=False, pad_token=0, drop_rate=0.1 ): super(ResidualRNNEncoder, self).__init__( ResidualRNN( base_rnn=base_rnn, input_size=embedding_dim, bias=bias, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional ), input_size, hidden_size, embedding_dim, num_layers, bidirectional, device, pad_token, drop_rate ) # class ResidualGRUEncoder(RNNEncoder, GRUEncoder): # def __init__( # self, input_size, hidden_size, embedding_dim, device, bias=False, # num_layers=1, dropout=0, bidirectional=False, pad_token=0, drop_rate=0.1 # ): # super(ResidualGRUEncoder, self).__init__( # nn.GRU, input_size, hidden_size, embedding_dim, num_layers, bidirectional, # device, bias, num_layers, dropout, bidirectional, pad_token, drop_rate # ) # # class GRUEncoder(Encoder): # def __init__( # self, input_size, hidden_size, embedding_dim, device, bias=False, # num_layers=1, dropout=0, bidirectional=False, pad_token=0, drop_rate=0.1): # super(GRUEncoder, self).__init__( # input_size, hidden_size, embedding_dim, # num_layers, bidirectional, device, pad_token, drop_rate) # self._gru = nn.GRU( # embedding_dim, hidden_size, # bias=bias, num_layers=num_layers, # dropout=dropout, # bidirectional=bidirectional # ) # # self._gru = ResidualRNN( # # nn.GRU, input_size=hidden_size, # # bias=bias, num_layers=num_layers, # # dropout=dropout, # # ) # self.to(device) # # def forward(self, input: Tensor, hidden: Tensor) -> Tuple[Tensor, Tensor]: # embedded = self._dropout(self._embedding(input)) # output, hidden = self._gru(embedded, hidden) # return output, hidden #
44309
import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np class LabelSmoothingCrossEntropy(torch.nn.Module): def __init__(self): super(LabelSmoothingCrossEntropy, self).__init__() def forward(self, x, target, smoothing=0.1): confidence = 1. - smoothing logprobs = F.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = confidence * nll_loss + smoothing * smooth_loss return loss.mean() class ConfidenceLabelSmoothingCrossEntropy(torch.nn.Module): def __init__(self): super(ConfidenceLabelSmoothingCrossEntropy, self).__init__() # self.confidence = [0.7425, 0.9325, 0.965, 0.5395, 0.86025, 0.754, 0.66475, 0.618, 0.7925, 0.6525, 0.5415, # 0.5705, 0.6525, 0.59625, 0.6145, 0.62125, 0.7755, 0.866, 0.83425, 0.64125, 0.986, 0.82225, # 0.70525, 0.5625, 0.5145, 0.5275, 0.57775, 0.918, 0.9175, 0.69575, 0.6555, 0.867, 0.945, # 0.5155, 0.593, 0.976, 0.963, 0.591, 0.749, 0.5575, 0.52625, 0.6125, 0.83725, 0.97225, # 0.93725, 0.6415, 0.61225, 0.584, 0.69175, 0.60825, 0.63575, 0.756, 0.61375, 0.53575] self.confidence = [0.713, 0.953, 0.947, 0.514, 0.933, 0.725, 0.6025, 0.5855, 0.821, 0.6175, 0.547, 0.5605, 0.7, 0.609, 0.5785, 0.638, 0.8005, 0.824, 0.834, 0.5155, 0.9775, 0.8615, 0.6305, 0.549, 0.517, 0.5915, 0.5285, 0.923, 0.855, 0.751, 0.675, 0.773, 0.9805, 0.53, 0.5255, 0.9685, 0.9535, 0.5515, 0.8795, 0.497, 0.529, 0.5335, 0.8645, 0.9595, 0.9245, 0.5265, 0.452, 0.6415, 0.696, 0.617, 0.683, 0.7255, 0.5995, 0.5815, 0.772, 0.912, 0.983, 0.565, 0.7875, 0.783, 0.727, 0.6505, 0.764, 0.6875, 0.536, 0.5805, 0.605, 0.5835, 0.6505, 0.6045, 0.7505, 0.908, 0.8345, 0.767, 0.9945, 0.783, 0.78, 0.576, 0.512, 0.4635, 0.627, 0.913, 0.98, 0.6405, 0.636, 0.961, 0.9095, 0.501, 0.6605, 0.9835, 0.9725, 0.6305, 0.6185, 0.618, 0.5235, 0.6915, 0.81, 0.985, 0.95, 0.7565, 0.7725, 0.5265, 0.6875, 0.5995, 0.5885, 0.7865, 0.628, 0.49, 0.985, 0.95, 0.7565, 0.7725, 0.5265, 0.6875, 0.5995, 0.5885, 0.7865, 0.628, 0.49 ] def forward(self, x, target, sid): confidencemat = torch.zeros_like(target,dtype=torch.float32) for i in range(len(target)): confidencemat[i] = self.confidence[sid[i]] smoothing = 1 - confidencemat logprobs = F.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = torch.mul(confidencemat,nll_loss) + torch.mul(smoothing,smooth_loss) return loss.mean() class CroppedLoss: def __init__(self, loss_function): self.loss_function = loss_function def __call__(self, preds, targets): avg_preds = torch.mean(preds, dim=2) avg_preds = avg_preds.squeeze(dim=1) return self.loss_function(avg_preds, targets) def train_crop(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch=1): criterion = torch.nn.NLLLoss() lossfn = CroppedLoss(criterion) model.train() for batch_idx, datas in enumerate(train_loader): data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) optimizer.zero_grad() output = model(data) output = model.embedding_net(data) loss = lossfn(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) scheduler.step() def eval_crop(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) outputs = [] for i in range(2): outputs.append(model(data[:, :, :, i * 125:i * 125 + 1000])) result = torch.cat([outputs[0], outputs[1][:, :, model.out_size - 125:model.out_size]], dim=2) y_preds_per_trial = result.mean(dim=2) test_loss.append(F.nll_loss(y_preds_per_trial, target, reduction='sum').item()) # sum up batch loss pred = y_preds_per_trial.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) class MAE_loss(torch.nn.Module): def __init__(self, device): super(MAE_loss, self).__init__() self.device = device self.loss_function = torch.nn.L1Loss() def __call__(self, preds, targets): y_onehot = torch.FloatTensor(targets.size(0), 2).to(self.device) y_onehot.zero_() y_onehot.scatter_(1, targets.unsqueeze(1), 1) return self.loss_function(preds, y_onehot) class MAE_loss(torch.nn.Module): def __init__(self, device): super(MAE_loss, self).__init__() self.device = device self.loss_function = torch.nn.L1Loss() def __call__(self, preds, targets): y_onehot = torch.FloatTensor(targets.size(0), 2).to(self.device) y_onehot.zero_() y_onehot.scatter_(1, targets.unsqueeze(1), 1) return self.loss_function(preds, y_onehot) import utils import time def train(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion # lossfn = LabelSmoothingCrossEntropy() # lossfn = ConfidenceLabelSmoothingCrossEntropy() correct = [] start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) t2 = time.time() t_data.append(t2 - t3) # print(t2) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def train_mtl(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion # lossfn = LabelSmoothingCrossEntropy() # lossfn = ConfidenceLabelSmoothingCrossEntropy() correct = [] start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target, subjid = datas[0].to(device), datas[1].to(device, dtype=torch.int64), datas[2].to(device, dtype=torch.int64) t2 = time.time() t_data.append(t2 - t3) # print(t2) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, 2*subjid+target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def train_gpu(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch=1): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion correct = [] import time start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target = datas[0], datas[1] t2 = time.time() t_data.append(t2 - t3) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") scheduler.step(losses.avg) print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def eval(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) test_loss.append(F.cross_entropy(output, target, reduction='sum').item()) # sum up batch loss pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) from sklearn.metrics import roc_curve from sklearn.metrics import auc def eval_cali(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) test_loss.append(F.cross_entropy(output, target, reduction='sum').item()) # sum up batch loss pred = F.softmax(output, dim=1) fpr, tpr, thresholds = roc_curve(target.cpu(), pred.cpu()[:,0]) AUC = auc(fpr, tpr) correct.append(AUC) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) def vote(output, target, topk=(1,)): """ Computes the precision@k for the specified values of k """ maxk = max(topk) batch_size = target.size(0) output = F.log_softmax(output, dim=1) _, pred = output.topk(maxk, 1, True, True) # pred = pred.t() # one-hot case if target.ndimension() > 1: target = target.max(1)[1] modevalue = torch.mode(pred%2)[0] return modevalue def eval_mtl(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target, subjid = datas[0].to(device), datas[1].to(device, dtype=torch.int64), datas[2].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) pred = vote(output, subjid*2+target, (1,5)) test_loss.append(F.cross_entropy(output, subjid*2+target, reduction='sum').item()) # sum up batch loss # pred_0 = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability # pred = pred_0%2 correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) def eval_ensemble(models, device, test_loader): for model in models: model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = [] for model in models: output.append(model(data.unsqueeze(dim=1)).unsqueeze(dim=2)) temp = torch.cat(output, dim=2) temp2 = temp.mean(dim=2) test_loss.append(F.cross_entropy(temp2, target, reduction='sum').item()) # sum up batch loss pred = F.log_softmax(temp2, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset)
44312
import matplotlib import numpy as np import time # matplotlib.use('Agg') import matplotlib.pyplot as plt VOC_BBOX_LABEL_NAMES = ( 'fly', 'bike', 'bird', 'boat', 'pin', 'bus', 'c', 'cat', 'chair', 'cow', 'table', 'dog', 'horse', 'moto', 'p', 'plant', 'shep', 'sofa', 'train', 'tv', ) def vis_img(img, ax=None): """Visualize a color image. Args: img (~numpy.ndarray): An array of shape :math:`(3, height, width)`. This is in RGB format and the range of its value is :math:`[0, 255]`. ax (matplotlib.axes.Axis): The visualization is displayed on this axis. If this is :obj:`None` (default), a new axis is created. Returns: ~matploblib.axes.Axes: Returns the Axes object with the plot for further tweaking. """ if ax is None: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # CHW ==> HWC img = img.transpose((1, 2, 0)) ax.imshow(img.astype(np.uint8)) return ax def vis_bbox(img, bbox, label=None, score=None, ax=None): """ Visualize bounding boxes inside image. :param img: :param bbox: :param label: :param score: :param ax: :return: """ label_names = list(VOC_BBOX_LABEL_NAMES) + ['bg'] if label is not None and not len(bbox) == len(label): raise ValueError('The length of label must be same as that of bbox') if score is not None and not len(bbox) == len(score): raise ValueError('The length of score must be same as that of bbox') # Returns newly instantiated matplotlib.axes.Axes object if ax is None ax = vis_img(img, ax=ax) # If there is no bounding box to display, visualize the image and exit. if len(bbox) == 0: return ax for i, bb in enumerate(bbox): xy = (bb[1], bb[0]) height = bb[2] - bb[0] width = bb[3] - bb[1] ax.add_patch(plt.Rectangle( xy, width, height, fill=False, edgecolor='red', linewidth=2)) caption = list() if label is not None and label_names is not None: lb = label[i] if not (-1 <= lb < len(label_names)): raise ValueError('No corresponding name is given') caption.append(label_names[lb]) if score is not None: sc = score[i] caption.append('{:.2f}'.format(sc)) if len(caption) > 0: ax.text(bb[1], bb[0], ':'.join(caption), style='italic', color='white', bbox={'facecolor': (0.8, 0.2, 0.2), 'alpha': 0.9, 'pad': 1.5}) return ax def fig2data(fig): """ brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig: a matplotlib figure @return a numpy 3D array of RGBA values """ # draw the renderer fig.canvas.draw() # Get the RGBA buffer from the figure w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode buf = np.roll(buf, 3, axis=2) return buf.reshape((h, w, 4)) def fig4vis(fig): """ convert figure to ndarray """ ax = fig.get_figure() img_data = fig2data(ax).astype(np.int32) plt.close() # HWC ==> CHW return img_data[:, :, :3].transpose((2, 0, 1)) / 255. def visdom_bbox(*args, **kwargs): fig = vis_bbox(*args, **kwargs) data = fig4vis(fig) return data
44332
from .abc import ABCTokenGenerator, Token from .consistent import ConsistentTokenGenerator from .single import SingleTokenGenerator from .util import get_token_generator
44383
from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('libretto', '0009_auto_20150423_2042'), ] operations = [ migrations.AlterModelOptions( name='pupitre', options={'ordering': ('-soliste', 'partie'), 'verbose_name': 'pupitre', 'verbose_name_plural': 'pupitres'}, ), migrations.AlterField( model_name='elementdeprogramme', name='autre', field=models.CharField(max_length=500, blank=True), preserve_default=True, ), migrations.AlterField( model_name='engagement', name='individus', field=models.ManyToManyField(related_name='engagements', to='libretto.Individu'), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='circonstance', field=models.CharField(max_length=500, verbose_name='circonstance', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='debut_date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='debut_heure_approx', field=models.CharField(help_text='Ne remplir que si l\u2019heure est impr\xe9cise.', max_length=30, verbose_name='heure (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='debut_lieu_approx', field=models.CharField(help_text='Ne remplir que si le lieu (ou institution) est impr\xe9cis(e).', max_length=50, verbose_name='lieu (approximatif)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='fin_date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='fin_heure_approx', field=models.CharField(help_text='Ne remplir que si l\u2019heure est impr\xe9cise.', max_length=30, verbose_name='heure (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='evenement', name='fin_lieu_approx', field=models.CharField(help_text='Ne remplir que si le lieu (ou institution) est impr\xe9cis(e).', max_length=50, verbose_name='lieu (approximatif)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='individu', name='deces_date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='individu', name='deces_lieu_approx', field=models.CharField(help_text='Ne remplir que si le lieu (ou institution) est impr\xe9cis(e).', max_length=50, verbose_name='lieu (approximatif)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='individu', name='naissance_date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='individu', name='naissance_lieu_approx', field=models.CharField(help_text='Ne remplir que si le lieu (ou institution) est impr\xe9cis(e).', max_length=50, verbose_name='lieu (approximatif)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='oeuvre', name='creation_date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='oeuvre', name='creation_heure_approx', field=models.CharField(help_text='Ne remplir que si l\u2019heure est impr\xe9cise.', max_length=30, verbose_name='heure (approximative)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='oeuvre', name='creation_lieu_approx', field=models.CharField(help_text='Ne remplir que si le lieu (ou institution) est impr\xe9cis(e).', max_length=50, verbose_name='lieu (approximatif)', blank=True), preserve_default=True, ), migrations.AlterField( model_name='partie', name='professions', field=models.ManyToManyField(related_name='parties', to='libretto.Profession', blank=True, help_text='La ou les profession(s) capable(s) de jouer ce r\xf4le ou cet instrument.', null=True, verbose_name='occupations'), preserve_default=True, ), migrations.AlterField( model_name='personnel', name='engagements', field=models.ManyToManyField(related_name='personnels', to='libretto.Engagement'), preserve_default=True, ), migrations.AlterField( model_name='pupitre', name='quantite_max', field=models.IntegerField(default=1, verbose_name='quantit\xe9 maximale'), preserve_default=True, ), migrations.AlterField( model_name='pupitre', name='quantite_min', field=models.IntegerField(default=1, verbose_name='quantit\xe9 minimale'), preserve_default=True, ), migrations.AlterField( model_name='source', name='date_approx', field=models.CharField(help_text='Ne remplir que si la date est impr\xe9cise.', max_length=60, verbose_name='date (approximative)', blank=True), preserve_default=True, ), ]
44404
from system import System from src.basic.sessions.cmd_session import CmdSession class CmdSystem(System): def __init__(self): super(CmdSystem, self).__init__() @classmethod def name(cls): return 'cmd' def new_session(self, agent, kb): return CmdSession(agent, kb)
44412
import re from typing import List from .consts import * # =================== # # INTERNALS FUNCTIONS # # =================== # def my_re_escape(text): escape_char = r"[]" returned_text = "" for c in text: if c in escape_char: returned_text += "\\" returned_text += c return returned_text ESCAPED_CSI = my_re_escape(CSI) def remove_attributes_from_sgr(sgr_string: str, attributes: List[str]) -> str: """ Remove unwanted attributes in an SRG sequence. SRG sequence start always with '\033[' and end with 'm'. Not all attributes have the same number of parameters. If all the attributes are removed return an empty string (without CSI and 'm') Args: sgr_string: SRG string attributes: attributes to remove Returns: SRG string without unwanted attributes """ # TODO: replace remove by a set to optimize lookup # Remove the CSI in the beginning and the 'm' at the end params = sgr_string[2:-1].split(";") keep: List[str] = [] # list of params to keep, to return in the end # Since we are going to jump some iterations we can't use # for loop, but we will use while loop. i = 0 while True: if i >= len(params): break param = params[i] # 38 48 58 are the only attributes that take more than one parameter # https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_parameters if param not in ["38", "48", "58"]: if param not in attributes: keep.append(param) else: second_param = params[i + 1] # if second param is 2 => the attribute take 5 param if second_param == "2": params_to_keep = params[i : i + 5] i = i + 4 # if second param is 5 => the attribute take 3 param elif second_param == "5": params_to_keep = params[i : i + 3] i = i + 2 else: # FIXME: How to handle errors? if the attribute is wrong? params_to_keep = [] if param not in attributes: keep.extend(params_to_keep) i += 1 # If keep is empty return an empty string without CSI and 'm' if keep: return f"{CSI}{';'.join(keep)}m" else: return "" def repl_remove_attributes_from_sgr(matchobj, remove: List[str]) -> str: """Addapted remove_sequence_from_text function to be used with regex""" return remove_attributes_from_sgr(matchobj.group(0), remove) re_sgr = re.compile( fr""" {ESCAPED_CSI} \d* (?: ;\d* )* m """, re.VERBOSE, ) def remove_attributes_from_string(string, remove: List[str]) -> str: """Remove unwanted attributes form a string""" return re_sgr.sub(lambda x: repl_remove_attributes_from_sgr(x, remove), string) # ======================== # # REMOVE GRAPHIC FUNCTIONS # # ======================== # def rmgraphics(string: str) -> str: """Remove all graphics attributes (all SGR)""" return re_sgr.sub("", string) def rmcolor(text: str) -> str: """Remove all color attributes from a string""" # remove all attributes from 30 to 39 # 30-37 => 8colors # 38 => 24 bits colors # 39 => reset colors remove = [str(i) for i in range(30, 40)] return remove_attributes_from_string(text, remove) def rmbackground(text: str) -> str: """Remove all color attributes from a string""" # remove all attributes from 40 to 49 # 40-47 => 8colors background # 48 => 24 bits colors background # 49 => reset background colors attributes = [str(i) for i in range(40, 50)] return remove_attributes_from_string(text, attributes) def rmstyle(text: str) -> str: # TODO: change list to set # TODO: test rmstyle # TODO: make the list outside of the function to optimize (not calculate the list each time) attributes = [ N_UNDERLINE, N_DOUBLE_UNDERLINE, N_RESET_UNDERLINE, N_ITALIC, N_RESET_ITALIC, N_CROSS, N_RESET_CROSS, N_BLINK, N_RESET_BLINK, N_BOLD, N_DIM, N_RESET_BOLD_AND_DIM, ] return remove_attributes_from_string(text, attributes) def rmunderline(text): attributes = [N_UNDERLINE, N_DOUBLE_UNDERLINE, N_RESET_UNDERLINE] return remove_attributes_from_string(text, attributes) def rmitalic(text): attributes = [N_ITALIC, N_RESET_ITALIC] return remove_attributes_from_string(text, attributes) def rmcross(text): attributes = [N_CROSS, N_RESET_CROSS] return remove_attributes_from_string(text, attributes) def rmblink(text): attributes = [N_BLINK, N_RESET_BLINK] return remove_attributes_from_string(text, attributes) def rmbold_and_dim(text): attributes = [N_BOLD, N_DIM, N_RESET_BOLD_AND_DIM] return remove_attributes_from_string(text, attributes)
44458
import torch import torch.nn.functional as F from ..models.progressive import ProGANGenerator, ProGANDiscriminator from ..modules.gan_loss import ImprovedWGANLoss from ..modules.instance_refiner import InstanceRefiner from tools.utils import to_cuda from models import load_network, save_network, print_network class SegModel(torch.nn.Module): def __init__(self, opt, is_train=True, is_main=True, logger=None): super().__init__() self.opt = opt self.is_main = is_main self.netG, self.netD = self.initialize_networks(is_train) if is_train: self.opt_g, self.opt_d = self.create_optimizers(self.opt) self.gan_loss = ImprovedWGANLoss(self.netD) self.logger = logger if self.is_main else None self.ins_refiner = InstanceRefiner(self.opt) def forward(self, data, fake_data={}, interpolate=False, alpha=None, mode='', log=False, hard=True, global_iteration=None): z, real_seg, real_cond = self.preprocess_input(data) _, fake_seg, _ = self.preprocess_input(fake_data, is_fake=True) if mode == 'generator': g_loss, fake_seg = self.compute_generator_loss(real_cond, z, interpolate, alpha, hard, log, global_iteration) fake_seg = self.postprocess_output(fake_seg) return g_loss, fake_seg elif mode == 'discriminator': d_loss = self.compute_discriminator_loss(real_cond, real_seg, fake_seg, interpolate, alpha, log, global_iteration) return d_loss elif mode == 'inference': fake_seg = self.generate_fake(real_cond, z, interpolate, alpha, hard, log, global_iteration) fake_seg = self.postprocess_output(fake_seg) return fake_seg else: raise ValueError(f"mode '{mode}' is invalid") def postprocess_output(self, seg): if self.opt.dim != self.opt.seg_dim: size = (int(self.opt.dim), int(self.opt.aspect_ratio * self.opt.dim)) mode = 'bilinear' if self.opt.discretization == "none" or self.opt.bilimax else 'nearest' seg = {k: self.resize(v, size, mode=mode) for k, v in seg.items()} if self.opt.bilimax: index = seg["sem_seg"].max(1, keepdim=True)[1] seg["sem_seg"] = torch.zeros_like(seg["sem_seg"]).scatter_(1, index, 1.0) return seg def resize(self, t, size, mode='nearest'): if size is not None and not 0 in t.size(): return torch.nn.functional.interpolate(t, size=size, mode=mode) else: return t def preprocess_input(self, data, is_fake=False): size = (int(self.opt.seg_dim), int(self.opt.aspect_ratio * self.opt.seg_dim)) if self.opt.dim != self.opt.seg_dim else None data["z_seg"] = to_cuda(data, "z_seg") data["sem_seg"] = to_cuda(data, "sem_seg") data["ins_center"] = to_cuda(data, "ins_center") data["ins_offset"] = to_cuda(data, "ins_offset") data["ins_edge"] = to_cuda(data, "ins_edge") data["ins_density"] = to_cuda(data, "ins_density") data["sem_cond"] = to_cuda(data, "sem_cond") data["ins_cond"] = to_cuda(data, "ins_cond") if is_fake: data["sem_seg"] = data["sem_seg"].detach() data["ins_center"] = data["ins_center"].detach() data["ins_offset"] = data["ins_offset"].detach() data["ins_edge"] = data["ins_edge"].detach() data["ins_density"] = data["ins_density"].detach() z = data["z_seg"] seg = {'sem_seg': self.resize(data["sem_seg"], size), 'ins_center': self.resize(data["ins_center"], size), 'ins_offset': self.resize(data["ins_offset"], size), 'ins_edge': self.resize(data["ins_edge"], size), 'ins_density': self.resize(data["ins_density"], size)} cond = {'sem_cond': data["sem_cond"], 'ins_cond': data["ins_cond"]} return z, seg, cond def initialize_networks(self, is_train): if self.opt.model == 'progressive': netG = ProGANGenerator(self.opt).cuda() netD = ProGANDiscriminator(self.opt).cuda() if is_train else None else: raise ValueError if self.is_main: netG = load_network(netG, "seg_g", self.opt) print_network(netG) if is_train: netD = load_network(netD, "seg_d", self.opt) print_network(netD) netG.res = self.opt.seg_dim if netD: netD.res = self.opt.seg_dim return netG, netD def save_model(self, global_iteration, latest): save_network(self.netG, "seg_g", global_iteration, self.opt, latest=latest) save_network(self.netD, "seg_d", global_iteration, self.opt, latest=latest) def create_optimizers(self, opt): if opt.optimizer == "adam": opt_g = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) opt_d = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) else: raise NotImplementedError return opt_g, opt_d def compute_generator_loss(self, real_cond, z, interpolate, alpha, hard, log, global_iteration): if interpolate: fake_segs = self.netG.interpolate(z, alpha, cond=real_cond) else: fake_segs = self.netG(z, cond=real_cond) if not "inter" in self.opt.cond_mode: fake_segs = [fake_segs[-1]] x_fake_segs = [self.to_discrete(fake_seg) for fake_seg in fake_segs] sem_for_dis = real_cond["sem_cond"] if "original_cgan" in self.opt.cond_mode else None if interpolate: score = self.netD.interpolate(x_fake_segs[-1], alpha, sem_cond=sem_for_dis) else: score = self.netD(x_fake_segs[-1], sem_cond=sem_for_dis) loss_gen = self.gan_loss.generator_loss_logits(score).sum() loss = loss_gen spread = torch.tensor([]) fake_sem_mask = torch.tensor([]) fake_ins_cond = torch.tensor([]) pseudo_center_mask = torch.tensor([]) fake_raw_filtered_sem_seg = torch.tensor([]) real_sem_cond = torch.tensor([]) real_ins_cond = torch.tensor([]) pseudo_ins_center = torch.tensor([]) pseudo_ins_offset = torch.tensor([]) entropy = torch.tensor([]) fake_sem_cond = torch.tensor([]) fake_center_mask = torch.tensor([]) loss_sem_entropy = [] loss_sem_recover = [] loss_sem_d_recover = [] loss_ins_recover = [] loss_pseudo_center = [] loss_pseudo_offset = [] loss_sem_spread = [] loss_ova = [] for fake_seg, x_fake_seg in zip(fake_segs, x_fake_segs): logprob = torch.log(fake_seg["sem_seg"] + 0.00001) entropy = -torch.sum(torch.mul(fake_seg["sem_seg"], logprob), dim=1, keepdim=True) loss_sem_entropy.append(torch.mean(entropy)) if self.opt.cond_seg: cond_loss = 0 if self.opt.cond_seg in ["semantic", "panoptic"]: real_sem_cond = real_cond["sem_cond"] fake_sem_cond = torch.mean(fake_seg["sem_seg"], dim=(2, 3)) index = fake_seg["sem_seg"].max(1, keepdim=True)[1] d_fake_sem_seg = torch.zeros_like(fake_seg["sem_seg"]).scatter_(1, index, 1.0) d_fake_sem_cond = torch.mean(d_fake_sem_seg, dim=(2, 3)) logprob_cond = torch.log(fake_sem_cond + 0.00001) d_logprob_cond = torch.log(d_fake_sem_cond + 0.00001) loss_sem_recover.append(F.kl_div(logprob_cond, real_sem_cond, reduction='batchmean')) loss_sem_d_recover.append(F.kl_div(d_logprob_cond, real_sem_cond, reduction='batchmean')) if 'sem_recover' in self.opt.cond_mode: cond_loss += loss_sem_recover[-1] if self.opt.cond_seg in ["instance", "panoptic"] and "density" in self.opt.instance_type: real_ins_cond = real_cond["ins_cond"] fake_ins_cond = torch.sum(fake_seg["ins_density"], dim=(2, 3)) loss_ins_recover.append(F.l1_loss(fake_ins_cond, real_ins_cond)) if 'ins_recover' in self.opt.cond_mode: cond_loss += loss_ins_recover[-1] if 'sem_assisted' in self.opt.cond_mode: fake_sem_mask = fake_seg["sem_mask"] spread = torch.sum(fake_sem_mask, dim=1) loss_sem_spread.append(torch.mean((spread - 1) ** 2)) if len(self.opt.ova_idx) > 0: ova = 0 for idx in self.opt.ova_idx: other_idx = [i for i in range(self.opt.num_semantics) if i != idx] ova += torch.mean(torch.sum(fake_sem_mask[:, other_idx], dim=1) * fake_sem_mask[:, idx]) loss_ova.append(ova) cond_loss += ova * self.opt.lambda_ova if 'spread' in self.opt.cond_mode: cond_loss += loss_sem_spread[-1] if 'entropy' in self.opt.cond_mode: cond_loss += loss_sem_entropy[-1] loss += cond_loss if self.opt.pseudo_supervision: with torch.no_grad(): pseudo = self.ins_refiner.batch_transform(fake_seg["ins_center"], x_fake_seg["ins_offset"], x_fake_seg["sem_seg"]) pseudo_ins_center, pseudo_ins_offset = pseudo loss_pseudo_center.append(F.mse_loss(fake_seg["ins_center"], pseudo_ins_center)) loss_pseudo_offset.append(F.mse_loss(x_fake_seg["ins_offset"], pseudo_ins_offset)) loss_pseudo = loss_pseudo_center[-1] + loss_pseudo_offset[-1] loss += loss_pseudo if self.logger: # log scalars every step self.logger.log_scalar("seg_generator/sem_entropy", loss_sem_entropy, global_iteration) self.logger.log_scalar("seg_generator/gen", loss_gen, global_iteration) self.logger.log_scalar("seg_generator/sem_cond_recover", loss_sem_recover, global_iteration) self.logger.log_scalar("seg_generator/sem_cond_true_recover", loss_sem_d_recover, global_iteration) self.logger.log_scalar("seg_generator/sem_ins_recover", loss_ins_recover, global_iteration) self.logger.log_scalar("seg_generator/sem_cond_spread", loss_sem_spread, global_iteration) self.logger.log_scalar("seg_generator/ins_pseudo_center", loss_pseudo_center, global_iteration) self.logger.log_scalar("seg_generator/ins_pseudo_offset", loss_pseudo_offset, global_iteration) self.logger.log_scalar("seg_generator/one_versus_all", loss_ova, global_iteration) # log images every few steps if log: fake_seg = fake_segs[-1] x_fake_seg = x_fake_segs[-1] with torch.no_grad(): fake_raw_sem_seg = fake_seg["raw_sem_seg"] if fake_raw_sem_seg.size(0) > 0: fake_raw_filtered_sem_seg = torch.zeros(fake_raw_sem_seg[:16].cpu().shape) fake_raw_filtered_sem_seg[real_sem_cond[:16].cpu()>0] = fake_raw_sem_seg[:16].cpu()[real_sem_cond[:16].cpu()>0] if fake_seg["ins_center"].size(0) > 0: fake_center_mask = self.ins_refiner.get_peak_mask(fake_seg["ins_center"][:16]) if pseudo_ins_center.size(0) > 0 and pseudo_center_mask.size(0) == 0: pseudo_center_mask = self.ins_refiner.get_peak_mask(pseudo_ins_center[:16]) self.logger.log_semantic_seg("seg_generator/fake", fake_seg["sem_seg"][:16].cpu(), 4, global_iteration) self.logger.log_semantic_seg("seg_generator/fake_gumbel", x_fake_seg["sem_seg"][:16].cpu(), 4, global_iteration) self.logger.log_cond_distrib("seg_generator/semantic_distrib", real_sem_cond[:16].cpu(), fake_sem_cond[:16].cpu(), 4, 4, global_iteration) self.logger.log_img("seg_generator/entropy", entropy[:16].cpu(), 4, global_iteration) self.logger.log_spread("seg_generator/spread", spread[:16].cpu(), 4, global_iteration) self.logger.log_semantic_mask("seg_generator/semantic_mask", fake_sem_mask[:1].cpu(), real_sem_cond[:1].cpu(), 16, 4, global_iteration) self.logger.log_semantic_seg("seg_generator/fake_raw", fake_raw_sem_seg[:16].cpu(), 4, global_iteration) self.logger.log_semantic_seg("seg_generator/fake_raw_filtered", fake_raw_filtered_sem_seg[:16].cpu(), 4, global_iteration) self.logger.log_ins_center("seg_generator/fake_ins_center", fake_seg["ins_center"][:16].cpu(), 4, global_iteration) self.logger.log_ins_center("seg_generator/pseudo_ins_center_gumbel", pseudo_ins_center[:16].cpu(), 4, global_iteration) self.logger.log_img("seg_generator/fake_center_mask", fake_center_mask[:16].cpu(), 4, global_iteration) self.logger.log_img("seg_generator/pseudo_center_mask_gumbel", pseudo_center_mask[:16].cpu(), 4, global_iteration) self.logger.log_instance("seg_generator/fake_instance_gumbel", x_fake_seg["sem_seg"][:16].cpu(), fake_center_mask[:16].cpu(), x_fake_seg["ins_offset"][:16].cpu(), 4, global_iteration) self.logger.log_instance("seg_generator/pseudo_instance_gumbel", x_fake_seg["sem_seg"][:16].cpu(), pseudo_center_mask[:16].cpu(), pseudo_ins_offset[:16].cpu(), 4, global_iteration) self.logger.log_ins_offset("seg_generator/fake_ins_offset_gumbel", x_fake_seg["sem_seg"][:16].cpu(), x_fake_seg["ins_offset"][:16].cpu(), 4, global_iteration) self.logger.log_ins_offset("seg_generator/pseudo_ins_offset_gumbel", x_fake_seg["sem_seg"][:16].cpu(), pseudo_ins_offset[:16].cpu(), 4, global_iteration) self.logger.log_img("seg_generator/fake_ins_edge", fake_seg["ins_edge"][:16].cpu(), 4, global_iteration) self.logger.log_ins_density("seg_generator/fake_ins_density", fake_seg["ins_density"][:16].cpu(), 4, global_iteration) self.logger.log_cond_distrib("seg_generator/instance_distrib", real_ins_cond[:16].cpu(), fake_ins_cond[:16].cpu(), 4, 4, global_iteration) if hard: return loss, x_fake_segs[-1] else: return loss, fake_segs[-1] def compute_discriminator_loss(self, real_cond, real_seg, fake_seg, interpolate, alpha, log, global_iteration): sem_for_dis_real = torch.mean(real_seg["sem_seg"], dim=(2, 3)) if "original_cgan" in self.opt.cond_mode else None sem_for_dis_fake = real_cond["sem_cond"] if "original_cgan" in self.opt.cond_mode else None if interpolate: real_score = self.netD.interpolate(real_seg, alpha, sem_cond=sem_for_dis_real) fake_score = self.netD.interpolate(fake_seg, alpha, sem_cond=sem_for_dis_fake) forward = lambda x: self.netD.interpolate(x, alpha, sem_cond=sem_for_dis_real) else: real_score = self.netD(real_seg, sem_cond=sem_for_dis_real) fake_score = self.netD(fake_seg, sem_cond=sem_for_dis_fake) forward = lambda x: self.netD(x, sem_cond=sem_for_dis_real) if self.opt.panoptic: real = torch.cat([real_seg["sem_seg"], real_seg["ins_center"], real_seg["ins_offset"], real_seg["ins_edge"], real_seg["ins_density"]], dim=1) fake = torch.cat([fake_seg["sem_seg"], fake_seg["ins_center"], fake_seg["ins_offset"], fake_seg["ins_edge"], fake_seg["ins_density"]], dim=1) else: real = real_seg["sem_seg"] fake = fake_seg["sem_seg"] loss = self.gan_loss.discriminator_loss_logits(real, fake, real_score, fake_score, forward=forward) if self.logger: # log scalars every step self.logger.log_scalar("seg_generator/dis", loss, global_iteration) # log images every few step if log: real_center_mask = torch.Tensor([]) if self.opt.panoptic: with torch.no_grad(): real_center_mask = self.ins_refiner.get_peak_mask(real_seg["ins_center"]) self.logger.log_semantic_seg("seg_generator/real", real_seg["sem_seg"][:16].cpu(), 4, global_iteration) self.logger.log_ins_center("seg_generator/real_ins_center", real_seg["ins_center"][:16].cpu(), 4, global_iteration) self.logger.log_ins_offset("seg_generator/real_ins_offset", real_seg["sem_seg"][:16].cpu(), real_seg["ins_offset"][:16].cpu(), 4, global_iteration) self.logger.log_instance("seg_generator/real_instance", real_seg["sem_seg"][:16].cpu(), real_center_mask[:16].cpu(), real_seg["ins_offset"][:16].cpu(), 4, global_iteration) self.logger.log_img("seg_generator/real_ins_edge", real_seg["ins_edge"][:16].cpu(), 4, global_iteration) self.logger.log_ins_density("seg_generator/real_ins_density", real_seg["ins_density"][:16].cpu(), 4, global_iteration) return loss def generate_fake(self, real_cond, z, interpolate, alpha, hard, log, global_iteration): with torch.no_grad(): if interpolate: fake_seg = self.netG.interpolate(z, alpha, cond=real_cond)[-1] else: fake_seg = self.netG(z, cond=real_cond)[-1] x_fake_seg = self.to_discrete(fake_seg) fake_sem_cond = torch.mean(x_fake_seg["sem_seg"], dim=(2, 3)) if self.opt.cond_seg in ["semantic", "panoptic"]: real_sem_cond = real_cond["sem_cond"] else: real_sem_cond = torch.Tensor([]) if log and self.logger: self.logger.log_semantic_seg("seg_generator/fake", fake_seg["sem_seg"][:16].cpu(), 4, global_iteration) self.logger.log_cond_distrib("seg_generator/semantic_distrib", real_sem_cond[:16].cpu(), fake_sem_cond[:16].cpu(), 4, 4, global_iteration) if hard: return x_fake_seg else: return fake_seg def to_discrete(self, fake_seg): fake_sem_seg = fake_seg["sem_seg"] if self.opt.discretization == "gumbel": x_fake_sem_seg = self.gumbel_sampler(fake_sem_seg) elif self.opt.discretization == "max": x_fake_sem_seg = self.max_sampler(fake_sem_seg) elif self.opt.discretization == "none": x_fake_sem_seg = self.none_sampler(fake_sem_seg) else: raise ValueError fake_ins_center, fake_ins_offset = fake_seg["ins_center"], fake_seg["ins_offset"] fake_ins_edge = fake_seg["ins_edge"] fake_ins_density = fake_seg["ins_density"] x_fake_ins_offset = self.ins_refiner.filter_offset(fake_ins_offset, x_fake_sem_seg) x_fake_ins_density = self.ins_refiner.filter_density(fake_ins_density, x_fake_sem_seg) x_fake_seg = {"sem_seg": x_fake_sem_seg, "ins_center": fake_ins_center, "ins_offset": x_fake_ins_offset, "ins_edge": fake_ins_edge, "ins_density": x_fake_ins_density} if self.opt.store_masks: x_fake_seg["sem_mask"] = fake_seg["sem_mask"] return x_fake_seg def max_sampler(self, fake, hard=True, dim=1): y_soft = fake if hard: # straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(fake).scatter_(dim, index, 1.0) return (y_hard - y_soft).detach() + y_soft else: # reparametrization trick. return y_soft def gumbel_sampler(self, fake, hard=True, dim=1): logits = torch.log(fake + 0.00001) if torch.isnan(logits.max()).data: print(fake.min(), fake.max()) gumbels = -(torch.empty_like(logits).exponential_()).log() # ~Gumbel(0, 1) gumbels = (logits + gumbels) / self.opt.t # ~Gumbel(logits, tau) y_soft = gumbels.softmax(dim) if hard: # straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits).scatter_(dim, index, 1.0) return (y_hard - y_soft).detach() + y_soft else: # reparametrization trick. return y_soft def none_sampler(self, fake, hard=True, dim=1): return fake
44465
from chroma_core.lib.storage_plugin.api import attributes from chroma_core.lib.storage_plugin.api.identifiers import GlobalId, ScopedId from chroma_core.lib.storage_plugin.api.plugin import Plugin from chroma_core.lib.storage_plugin.api import resources from chroma_core.lib.storage_plugin.api import relations version = 1 class Controller(resources.ScannableResource): class Meta: identifier = GlobalId("address") address = attributes.String() class Lun(resources.LogicalDrive): class Meta: identifier = ScopedId("lun_id") lun_id = attributes.String() class Presentation(resources.Resource): lun_id = attributes.String() path = attributes.String() host_id = attributes.Integer() class Meta: identifier = ScopedId("lun_id", "host_id") relations = [ relations.Provide(provide_to=resources.DeviceNode, attributes=["host_id", "path"]), relations.Subscribe(subscribe_to=Lun, attributes=["lun_id"]), ] class TestPlugin(Plugin): pass
44469
from .functions import * from .sources import * from .sinks import * from .transfers import * from .discrete import * from .linalg import * from .displays import * from .connections import * url = "https://petercorke.github.io/bdsim/" + __package__
44502
import torchvision __all__ = ["plot_compare"] def plot_compare(sr, hr, baseline, filename): """ Plot Super-Resolution and High-Resolution image comparison """ sr, hr, baseline = sr.squeeze(), hr.squeeze(), baseline.squeeze() grid = torchvision.utils.make_grid([hr, baseline, sr]) torchvision.utils.save_image(grid, filename)
44505
import numbers import xnmt.tensor_tools as tt import xnmt.modelparts.decoders as decoders import xnmt.transducers.recurrent as recurrent import xnmt.transducers.base as transducers_base import xnmt.expression_seqs as expr_seq import xnmt.vocabs as vocabs class SimultaneousState(decoders.AutoRegressiveDecoderState): """ The read/write state used to determine the state of the SimultaneousTranslator. """ def __init__(self, model, encoder_state: recurrent.UniLSTMState, context_state: decoders.AutoRegressiveDecoderState, output_embed: tt.Tensor, to_read:int = 0, to_write:int = 0, prev_written_word: numbers.Integral = None, reset_attender:bool = True): super().__init__(None, None) self.model = model self.encoder_state = encoder_state self.context_state = context_state self.output_embed = output_embed self.has_been_read = to_read self.has_been_written = to_write self.prev_written_word = prev_written_word self.reset_attender = reset_attender def read(self, src): src_embed = self.model.src_embedder.embed(src[self.has_been_read]) next_encoder_state = self.encoder_state.add_input(src_embed) return SimultaneousState(self.model, next_encoder_state, self.context_state, self.output_embed, self.has_been_read+1, self.has_been_written, self.prev_written_word, True) def calc_context(self, src_encoding): # Generating h_t based on RNN(h_{t-1}, embed(e_{t-1})) if self.prev_written_word is None: final_transducer_state = [transducers_base.FinalTransducerState(h, c) \ for h, c in zip(self.encoder_state.h(), self.encoder_state.c())] context_state = self.model.decoder.initial_state(final_transducer_state, vocabs.Vocab.SS) else: context_state = self.model.decoder.add_input(self.context_state, self.prev_written_word) # Reset attender if there is a read action reset_attender = self.reset_attender if reset_attender: self.model.attender.init_sent(expr_seq.ExpressionSequence(expr_list=src_encoding)) reset_attender = False # Calc context for decoding context_state.context = self.model.attender.calc_context(context_state.rnn_state.output()) return SimultaneousState(self.model, self.encoder_state, context_state, self.output_embed, self.has_been_read, self.has_been_written, self.prev_written_word, reset_attender) def write(self, next_word): return SimultaneousState(self.model, self.encoder_state, self.context_state, self.model.decoder.embedder.embed(next_word), self.has_been_read, self.has_been_written+1, next_word, self.reset_attender) # These states are used for decoding def as_vector(self): return self.context_state.as_vector() @property def rnn_state(self): return self.context_state.rnn_state @property def context(self): return self.context_state.context @context.setter def context(self, value): self.context_state.context = value
44512
TEST_TEMP_RAW = 529191 TEST_TEMP_CMP = 24.7894877676 TEST_PRES_RAW = 326816 TEST_PRES_CMP = 1006.61517564 TEST_ALT_CMP = 57.3174 def test_temperature(): from tools import SMBusFakeDevice from bmp280 import BMP280 from calibration import BMP280Calibration dev = SMBusFakeDevice(1) # Load the fake temperature into the virtual registers dev.regs[0xfc] = (TEST_TEMP_RAW & 0x0000F) << 4 dev.regs[0xfb] = (TEST_TEMP_RAW & 0x00FF0) >> 4 dev.regs[0xfa] = (TEST_TEMP_RAW & 0xFF000) >> 12 bmp280 = BMP280(i2c_dev=dev) bmp280.setup() # Replace the loaded calibration with our known values bmp280.calibration = BMP280Calibration() assert round(bmp280.get_temperature(), 4) == round(TEST_TEMP_CMP, 4) def test_temperature_forced(): from tools import SMBusFakeDevice from bmp280 import BMP280 from calibration import BMP280Calibration dev = SMBusFakeDevice(1) # Load the fake temperature into the virtual registers dev.regs[0xfc] = (TEST_TEMP_RAW & 0x0000F) << 4 dev.regs[0xfb] = (TEST_TEMP_RAW & 0x00FF0) >> 4 dev.regs[0xfa] = (TEST_TEMP_RAW & 0xFF000) >> 12 bmp280 = BMP280(i2c_dev=dev) bmp280.setup(mode="forced") # Replace the loaded calibration with our known values bmp280.calibration = BMP280Calibration() assert round(bmp280.get_temperature(), 4) == round(TEST_TEMP_CMP, 4) def test_pressure(): from tools import SMBusFakeDevice from bmp280 import BMP280 from calibration import BMP280Calibration dev = SMBusFakeDevice(1) # Load the fake temperature values into the virtual registers # Pressure is temperature compensated!!! dev.regs[0xfc] = (TEST_TEMP_RAW & 0x0000F) << 4 dev.regs[0xfb] = (TEST_TEMP_RAW & 0x00FF0) >> 4 dev.regs[0xfa] = (TEST_TEMP_RAW & 0xFF000) >> 12 # Load the fake pressure values dev.regs[0xf9] = (TEST_PRES_RAW & 0x0000F) << 4 dev.regs[0xf8] = (TEST_PRES_RAW & 0x00FF0) >> 4 dev.regs[0xf7] = (TEST_PRES_RAW & 0xFF000) >> 12 bmp280 = BMP280(i2c_dev=dev) bmp280.setup() # Replace the loaded calibration with our known values bmp280.calibration = BMP280Calibration() assert round(bmp280.get_pressure(), 4) == round(TEST_PRES_CMP, 4) def test_altitude(): from tools import SMBusFakeDevice from bmp280 import BMP280 from calibration import BMP280Calibration dev = SMBusFakeDevice(1) # Load the fake temperature values into the virtual registers # Pressure is temperature compensated!!! dev.regs[0xfc] = (TEST_TEMP_RAW & 0x0000F) << 4 dev.regs[0xfb] = (TEST_TEMP_RAW & 0x00FF0) >> 4 dev.regs[0xfa] = (TEST_TEMP_RAW & 0xFF000) >> 12 # Load the fake pressure values dev.regs[0xf9] = (TEST_PRES_RAW & 0x0000F) << 4 dev.regs[0xf8] = (TEST_PRES_RAW & 0x00FF0) >> 4 dev.regs[0xf7] = (TEST_PRES_RAW & 0xFF000) >> 12 bmp280 = BMP280(i2c_dev=dev) bmp280.setup() # Replace the loaded calibration with our known values bmp280.calibration = BMP280Calibration() assert round(bmp280.get_altitude(), 4) == round(TEST_ALT_CMP, 4)
44555
import sys sys.path.insert(0, '../') from mocap.settings import get_amass_validation_files, get_amass_test_files from mocap.math.amass_fk import rotmat2euclidean, exp2euclidean from mocap.visualization.sequence import SequenceVisualizer from mocap.math.mirror_smpl import mirror_p3d from mocap.datasets.dataset import Limb from mocap.datasets.combined import Combined from mocap.datasets.framerate import AdaptFramerate import mocap.datasets.h36m as H36M import numpy as np import numpy.linalg as la from mocap.datasets.amass import AMASS_SMPL3d, AMASS_QUAT, AMASS_EXP data_loc = '/mnt/Data/datasets/amass' val = get_amass_validation_files() test = get_amass_test_files() ds = AMASS_SMPL3d(val, data_loc=data_loc) print(ds.get_joints_for_limb(Limb.LEFT_LEG)) ds = AdaptFramerate(Combined(ds), target_framerate=50) print(ds.get_joints_for_limb(Limb.LEFT_LEG)) ds_h36m = Combined(H36M.H36M_FixedSkeleton(actors=['S5'], actions=['walking'], remove_global_Rt=True)) seq3d = ds[0] seq3d_h36m = ds_h36m[0] seq3d = seq3d[0:200].reshape((200, 14, 3)) seq3d_h36m = seq3d_h36m[0:200].reshape((200, 14, 3)) a = np.array([[[0.4, 0, 0]]]) b = np.array([[[-0.4, 0, 0]]]) seq3d += a seq3d_h36m += b vis_dir = '../output/' vis = SequenceVisualizer(vis_dir, 'vis_amass_vs_h36m', to_file=True, mark_origin=False) vis.plot(seq1=seq3d, seq2=seq3d_h36m, parallel=True, create_video=True, noaxis=False, plot_jid=False, )
44558
from django.test import TestCase from review.models import Review class TestReviewModel(TestCase): ''' Test suite for review modules. ''' def setUp(self): ''' Set up test data for the review model. ''' Review.objects.create( feedback='Test review', riderReview='Test review content', ) def tearDown(self): ''' Clean up test data for the review model. ''' Review.objects.all().delete() def test_review_feedback(self): ''' Test review model for feedback. ''' review = Review.objects.get(feedback='Test review') self.assertEqual(review.feedback, 'Test review') def test_review_rider_review(self): ''' Test review model for rider review. ''' review = Review.objects.get(riderReview='Test review content') self.assertEqual(review.riderReview, 'Test review content') def test_review_verbose_name_plural(self): ''' Test review model for verbose name plural. ''' self.assertEqual(str(Review._meta.verbose_name_plural), 'Customer feedback')
44560
from openprocurement.tender.core.procedure.serializers.base import ListSerializer from openprocurement.tender.core.procedure.serializers.document import ConfidentialDocumentSerializer from openprocurement.tender.core.procedure.serializers.parameter import ParameterSerializer from openprocurement.tender.esco.procedure.serializers.lot_value import LotValueSerializer from openprocurement.tender.esco.procedure.serializers.value import ValueSerializer from openprocurement.tender.openeu.procedure.serializers import BidSerializer as BaseBidSerializer class BidSerializer(BaseBidSerializer): serializers = { "value": ValueSerializer, "lotValues": ListSerializer(LotValueSerializer), "documents": ListSerializer(ConfidentialDocumentSerializer), "parameters": ListSerializer(ParameterSerializer), }
44675
import networkx as nx class Hierarchy: def __init__(self, tree, column): self.tree = tree self.column = column def _leaves_below(self, node): leaves = sum(([vv for vv in v if self.tree.out_degree(vv) == 0] for k, v in nx.dfs_successors(self.tree, node).items()), []) return sorted(leaves) or [node] def __call__(self, *nodes): """Return process IDs below the given nodes in the tree""" s = set() for node in nodes: if self.tree.in_degree(node) == 0: return None # all s.update(self._leaves_below(node)) if len(s) == 1: query = '{} == "{}"'.format(self.column, s.pop()) else: query = '{} in {}'.format(self.column, repr(sorted(s))) return query
44688
import orderedset def find_cycle(nodes, successors): path = orderedset.orderedset() visited = set() def visit(node): # If the node is already in the current path, we have found a cycle. if not path.add(node): return (path, node) # If we have otherwise already visited this node, we don't need to visit # it again. if node in visited: item = path.pop() assert item == node return visited.add(node) # Otherwise, visit all the successors. for succ in successors(node): cycle = visit(succ) if cycle is not None: return cycle item = path.pop() assert item == node return None for node in nodes: cycle = visit(node) if cycle is not None: return cycle else: assert not path.items return None
44757
from typing import Callable, AsyncGenerator, Generator import asyncio import httpx import pytest from asgi_lifespan import LifespanManager from fastapi import FastAPI from fastapi.testclient import TestClient TestClientGenerator = Callable[[FastAPI], AsyncGenerator[httpx.AsyncClient, None]] @pytest.fixture(scope="session") def event_loop(): loop = asyncio.get_event_loop() yield loop loop.close() @pytest.fixture async def client( request: pytest.FixtureRequest, ) -> AsyncGenerator[httpx.AsyncClient, None]: marker = request.node.get_closest_marker("fastapi") if marker is None: raise ValueError("client fixture: the marker fastapi must be provided") try: app = marker.kwargs["app"] except KeyError: raise ValueError( "client fixture: keyword argument app must be provided in the marker" ) if not isinstance(app, FastAPI): raise ValueError("client fixture: app must be a FastAPI instance") dependency_overrides = marker.kwargs.get("dependency_overrides") if dependency_overrides: if not isinstance(dependency_overrides, dict): raise ValueError( "client fixture: dependency_overrides must be a dictionary" ) app.dependency_overrides = dependency_overrides run_lifespan_events = marker.kwargs.get("run_lifespan_events", True) if not isinstance(run_lifespan_events, bool): raise ValueError("client fixture: run_lifespan_events must be a bool") test_client_generator = httpx.AsyncClient(app=app, base_url="http://app.io") if run_lifespan_events: async with LifespanManager(app): async with test_client_generator as test_client: yield test_client else: async with test_client_generator as test_client: yield test_client @pytest.fixture def websocket_client( request: pytest.FixtureRequest, event_loop: asyncio.AbstractEventLoop, ) -> Generator[TestClient, None, None]: asyncio.set_event_loop(event_loop) marker = request.node.get_closest_marker("fastapi") if marker is None: raise ValueError("client fixture: the marker fastapi must be provided") try: app = marker.kwargs["app"] except KeyError: raise ValueError( "client fixture: keyword argument app must be provided in the marker" ) if not isinstance(app, FastAPI): raise ValueError("client fixture: app must be a FastAPI instance") dependency_overrides = marker.kwargs.get("dependency_overrides") if dependency_overrides: if not isinstance(dependency_overrides, dict): raise ValueError( "client fixture: dependency_overrides must be a dictionary" ) app.dependency_overrides = dependency_overrides with TestClient(app) as test_client: yield test_client
44767
from data_types.user import User class PullRequestReview: """ GitHub Pull Request Review https://developer.github.com/v3/pulls/reviews/ Attributes: id: Review id body: Review body text html_url: Public URL for issue on github.com state: approved|commented|changes_requested user: Review author User object submitted_at: Submitted time pull_request_url: If issue linked in pull request, stores its public URL """ def __init__(self, data): # Internal GitHub id self.id = data.get('id', 0) # Who create self.user = None if 'user' in data: self.user = User(data['user']) # Body self.body = data.get('body', '') # Dates self.submitted_at = data.get('submitted_at', '') self.html_url = data.get('html_url', '') # Review result self.state = data.get('state', '') # Linked pull request self.pull_request_url = '' if 'pull_request' in data: self.pull_request_url = data['pull_request'].get('html_url', '')
44811
from .base_dataset import BaseDataset from .baseline_dataset import BaselineDataset from .refinement_dataset import RefinementDataset __all__ = [ 'BaseDataset', 'BaselineDataset', 'RefinementDataset' ]
44814
import aiohttp import asyncio import json import logging import requests from typing import cast, Iterable, List, Optional from electrumsv.constants import TxFlags logging.basicConfig(level=logging.DEBUG) class TxStateWSClient: def __init__(self, host: str="127.0.0.1", port: int=9999, wallet_name: str="worker1.sqlite", wallet_password: str="<PASSWORD>", account: int=1) -> None: self.host = host self.port = port self.url = f'http://{self.host}:{self.port}/v1/regtest/dapp/' \ f'wallets/{wallet_name}/{account}/txs/websocket/text-events' self.wallet_name = wallet_name self.wallet_password = <PASSWORD> self.account = account self.session = aiohttp.ClientSession() self._ws: Optional[aiohttp.client.ClientWebSocketResponse] = None self.msg_queue = asyncio.Queue() self.logger = logging.getLogger("tx-state-ws-client") async def __aenter__(self): # Normally the RESTAPI pulls the password out of the body, but `ws_connect` cannot be # passed a data/json parameter even if it's method is changed to POST. self._ws = await self.session.ws_connect(self.url, headers={ "X-Wallet-Password": self.wallet_password }) return self async def __aexit__(self, exc_type, exc_val, exc_tb): await cast(aiohttp.client.ClientWebSocketResponse, self._ws).close() await self.session.close() async def send_str(self, msg: str): await cast(aiohttp.client.ClientWebSocketResponse, self._ws).send_str(msg) async def _receive_msgs(self): try: async for msg in cast(aiohttp.client.ClientWebSocketResponse, self._ws): if json.loads(msg.data).get('code'): self.logger.debug(f'Error message received from server: {msg.data}') continue self.logger.debug(f'Message received from server: {msg.data}') self.msg_queue.put_nowait(msg.data) await asyncio.sleep(0) if msg.type in (aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.ERROR): break finally: self.msg_queue.put_nowait(None) # poison pill async def block_until_mempool(self, txids: Iterable[str]) -> None: self._receive_msg_task = asyncio.create_task(self._receive_msgs()) subs = json.dumps({ "txids": list(txids) }) txids_set = set(txids) await self.send_str(subs) while True: msg = await self.msg_queue.get() if not msg: # poison pill break msg = json.loads(msg) txid = msg.get("txid") if not txid: continue tx_flags = msg.get("tx_flags") if msg.get("txid") in txids_set and \ (tx_flags & TxFlags.STATE_CLEARED) == TxFlags.STATE_CLEARED or \ (tx_flags & TxFlags.STATE_SETTLED) == TxFlags.STATE_SETTLED: txids_set.remove(txid) if len(txids_set) == 0: break async def block_until_confirmed(self, txids: List[str]) -> None: self._receive_msg_task = asyncio.create_task(self._receive_msgs()) subs = json.dumps({ "txids": list(txids) }) txids_set = set(txids) await self.send_str(subs) while True: msg = await self.msg_queue.get() if not msg: # poison pill break self.logger.debug(msg) msg = json.loads(msg) txid = msg.get("txid") if not txid: continue tx_flags = msg.get("tx_flags") if msg.get("txid") in txids_set and \ (tx_flags & TxFlags.STATE_SETTLED == TxFlags.STATE_SETTLED): txids_set.remove(txid) if len(txids_set) == 0: break if __name__ == "__main__": logger = logging.getLogger("main") logger_urllib3 = logging.getLogger("urllib3") logger_urllib3.setLevel(logging.WARNING) async def wait_for_mempool(txids): async with TxStateWSClient() as ws_client: await ws_client.block_until_mempool(txids) async def wait_for_confirmation(txids): async with TxStateWSClient() as ws_client: await ws_client.block_until_confirmed(txids) result1 = requests.post(f'http://127.0.0.1:9999/v1/regtest/dapp/wallets/' f'worker1.sqlite/load_wallet') result2 = requests.post(f'http://127.0.0.1:9999/v1/regtest/dapp/wallets/' f'worker1.sqlite/1/topup_account') if result2.status_code != 200: raise requests.exceptions.HTTPError(result2.text) txids = [result2.json()["txid"]] logger.info("mine a block to observe the websocket receiving the push notification and " "unblocking the thread") asyncio.run(wait_for_confirmation(txids))
44821
from opendatatools.common import RestAgent, md5 from progressbar import ProgressBar import json import pandas as pd import io import hashlib import time index_map = { 'Barclay_Hedge_Fund_Index' : 'ghsndx', 'Convertible_Arbitrage_Index' : 'ghsca', 'Distressed_Securities_Index' : 'ghsds', 'Emerging_Markets_Index' : 'ghsem', 'Equity_Long_Bias_Index' : 'ghselb', 'Equity_Long_Short_Index' : 'ghsels', 'Equity_Market_Neutral_Index' : 'ghsemn', 'European_Equities_Index' : 'ghsee', 'Event_Driven_Index' : 'ghsed', 'Fixed_Income_Arbitrage_Index' : 'ghsfia', 'Fund_of_Funds_Index' : 'ghsfof', 'Global_Macro_Index' : 'ghsmc', 'Healthcare_&_Biotechnology_Index': 'ghsbio', 'Merger_Arbitrage_Index' : 'ghsma', 'Multi_Strategy_Index' : 'ghsms', 'Pacific_Rim_Equities_Index' : 'ghspre', 'Technology_Index' : 'ghstec', } class SimuAgent(RestAgent): def __init__(self): RestAgent.__init__(self) self.user_info = None self.df_fundlist = None self.cookies = None def login(self, username, password): url = 'https://passport.simuwang.com/index.php?m=Passport&c=auth&a=login&type=login&name=%s&pass=%s&reme=1&rn=1' % (username, password) self.add_headers({'Referer': 'https://dc.simuwang.com/'}) response = self.do_request(url) if response is None: return None, '登录失败' jsonobj = json.loads(response) suc = jsonobj['suc'] msg = jsonobj['msg'] if suc != 1: return None, msg self.cookies = self.get_cookies() self.user_info = jsonobj['data'] return self.user_info, msg def prepare_cookies(self, url): response = self.do_request(url, None) if response is not None: cookies = self.get_cookies() return cookies else: return None def _get_rz_token(self, time): mk = time * 158995555893 mtoken = md5(md5(str(mk))) + '.' + str(time) return mtoken def _get_fund_list_page(self, page_no): url = 'https://dc.simuwang.com/ranking/get?page=%s&condition=fund_type:1,6,4,3,8,2;ret:9;rating_year:1;istiered:0;company_type:1;sort_name:profit_col2;sort_asc:desc;keyword:' % page_no response = self.do_request(url) if response is None: return None, '获取数据失败', None jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['msg'] if code != 1000: return None, msg, None df = pd.DataFrame(jsonobj['data']) pageinfo = jsonobj['pager'] return df, '', pageinfo def load_data(self): page_no = 1 df_list = [] df, msg, pageinfo = self._get_fund_list_page(page_no) if df is None: return None, msg df_list.append(df) page_count = pageinfo['pagecount'] process_bar = ProgressBar().start(max_value=page_count) page_no = page_no + 1 while page_no <= page_count: df, msg, pageinfo = self._get_fund_list_page(page_no) if df is None: return None, msg df_list.append(df) process_bar.update(page_no) page_no = page_no + 1 self.df_fundlist = pd.concat(df_list) return self.df_fundlist, '' def get_fund_list(self): if self.df_fundlist is None: return None, '请先加载数据 load_data' return self.df_fundlist, '' def _get_sign(self, url, params): str = url for k,v in params.items(): str = str + k + params[k] sha1 = hashlib.sha1() sha1.update(str.encode('utf8')) sign = sha1.hexdigest() return sign def _get_token(self, fund_id): sign = self._get_sign('https://dc.simuwang.com/Api/getToken', {'id' : fund_id}) url = 'https://dc.simuwang.com/Api/getToken?id=%s&sign=%s' % (fund_id, sign) self.add_headers({'Referer': 'https://dc.simuwang.com/'}) response = self.do_request(url) if response is None: return None, '获取数据失败' jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['message'] if code != 1000 : return code, msg self.cookies.update(self.get_cookies()) salt = jsonobj['data'] muid = self.user_info['userid'] #str = 'id%smuid%spage%s%s' % (fund_id, muid, page_no, salt) str = '%s%s' % (fund_id, salt) sha1 = hashlib.sha1() sha1.update(str.encode('utf8')) token = sha1.hexdigest() return token, '' def _get_fund_nav_page(self, fund_id, page_no): muid = self.user_info['userid'] token, msg = self._get_token(fund_id) if token is None: return None, '获取token失败: ' + msg, '' url = 'https://dc.simuwang.com/fund/getNavList.html' self.add_headers({'Referer': 'https://dc.simuwang.com/product/%s.html' % fund_id}) data = { 'id' : fund_id, 'muid' : muid, 'page' : str(page_no), 'token': token, } response = self.do_request(url, param=data, cookies=self.cookies, encoding="utf8") if response is None: return None, '获取数据失败', '' jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['msg'] if code != 1000 : return code, msg, '' df = pd.DataFrame(jsonobj['data']) pageinfo = jsonobj['pager'] return df, '', pageinfo def _bit_encrypt(self, str, key): cryText = '' keyLen = len(key) strLen = len(str) for i in range(strLen): k = i % keyLen cryText = cryText + chr(ord(str[i]) - k) return cryText def _bit_encrypt2(self, str, key): cryText = '' keyLen = len(key) strLen = len(str) for i in range(strLen): k = i % keyLen cryText = cryText + chr(ord(str[i]) ^ ord(key[k])) return cryText def _decrypt_data(self, str, func, key): # return self._bit_encrypt(str, 'cd0a8bee4c6b2f8a91ad5538dde2eb34') # return self._bit_encrypt(str, '937ab03370497f2b4e8d0599ad25c44c') # return self._bit_encrypt(str, '083975ce19392492bbccff21a52f1ace') return func(str, key) def _get_decrypt_info(self, fund_id): url = 'https://dc.simuwang.com/product/%s.html' % fund_id response = self.do_request(url, param=None, cookies=self.cookies, encoding="utf8") if response is None: return None, '获取数据失败', '' if "String.fromCharCode(str.charCodeAt(i) - k)" in response: decrypt_func = self._bit_encrypt else: decrypt_func = self._bit_encrypt2 if response.find("return xOrEncrypt(str, ")> 0: tag = "return xOrEncrypt(str, " else: tag = "return bitEncrypt(str, " pos = response.index(tag) + len(tag) + 1 key = response[pos:pos+32] return decrypt_func, key def get_fund_nav(self, fund_id, time_elapse = 0): if self.user_info is None: return None, '请先登录' page_no = 1 df_list = [] df, msg, pageinfo = self._get_fund_nav_page(fund_id, page_no) if df is None: return None, msg df_list.append(df) page_count = pageinfo['pagecount'] page_no = page_no + 1 while page_no <= page_count: try_times = 1 while try_times <= 3: df, msg, pageinfo = self._get_fund_nav_page(fund_id, page_no) if df is None: if try_times > 3: return None, msg else: try_times = try_times + 1 continue else: df_list.append(df) break page_no = page_no + 1 if time_elapse > 0: time.sleep(time_elapse) df_nav = pd.concat(df_list) df_nav.drop('c', axis=1, inplace=True) df_nav.rename(columns={'d': 'date', 'n': 'nav', 'cn' : 'accu_nav', 'cnw' : 'accu_nav_w'}, inplace=True) # 这个网站搞了太多的小坑 func, key = self._get_decrypt_info(fund_id) df_nav['nav'] = df_nav['nav'].apply(lambda x : self._decrypt_data(x, func, key)) df_nav['accu_nav'] = df_nav['accu_nav'].apply(lambda x : self._decrypt_data(x, func, key)) df_nav['accu_nav_w'] = df_nav['accu_nav_w'].apply(lambda x : self._decrypt_data(x, func, key)) #df_nav['nav'] = df_nav['nav'] - df_nav.index * 0.01 - 0.01 #df_nav['accu_nav'] = df_nav['accu_nav'].apply(lambda x: float(x) - 0.01) #df_nav['accu_nav_w'] = df_nav['accu_nav_w'].apply(lambda x: float(x) - 0.02) return df_nav, '' class BarclayAgent(RestAgent): def __init__(self): RestAgent.__init__(self) self.add_headers({'Referer': 'https://www.barclayhedge.com/research/indices/ghs/Equity_Long_Short_Index.html'}) self.add_headers({'Content - Type': 'application / x - www - form - urlencoded'}) def get_data(self, index): prog_cod = index_map[index] url = "https://www.barclayhedge.com/cgi-bin/barclay_stats/ghsndx.cgi" param = { 'dump': 'excel', 'prog_cod': prog_cod, } response = self.do_request(url, param=param, method='POST', type='binary') if response is not None: excel = pd.ExcelFile(io.BytesIO(response)) df = excel.parse('Sheet1').dropna(how='all').copy().reset_index().drop(0) df.columns = ['year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'YTD'] df = df.set_index('year') return df, '' return None, "获取数据失败"
44826
import networkx as nx import matplotlib.pyplot as plt from nxviz import GeoPlot G = nx.read_gpickle("divvy.pkl") print(list(G.nodes(data=True))[0]) G_new = G.copy() for n1, n2, d in G.edges(data=True): if d["count"] < 200: G_new.remove_edge(n1, n2) g = GeoPlot( G_new, node_lat="latitude", node_lon="longitude", node_color="dpcapacity", node_size=0.005, ) g.draw() plt.show()
44838
import numpy as np import pandas as pd import torch import src.configuration as C import src.dataset as dataset import src.models as models import src.utils as utils from pathlib import Path from fastprogress import progress_bar if __name__ == "__main__": args = utils.get_sed_parser().parse_args() config = utils.load_config(args.config) global_params = config["globals"] output_dir = Path(global_params["output_dir"]) output_dir.mkdir(exist_ok=True, parents=True) utils.set_seed(global_params["seed"]) device = C.get_device(global_params["device"]) df, datadir = C.get_metadata(config) splitter = C.get_split(config) for i, (_, val_idx) in enumerate(splitter.split(df, y=df["ebird_code"])): if i not in global_params["folds"]: continue val_df = df.loc[val_idx, :].reset_index(drop=True) loader = C.get_sed_inference_loader(val_df, datadir, config) model = models.get_model_for_inference(config, global_params["weights"][i]) if not torch.cuda.is_available(): device = torch.device("cpu") else: device = torch.device("cuda") model.to(device) model.eval() estimated_event_list = [] for batch in progress_bar(loader): waveform = batch["waveform"] ebird_code = batch["ebird_code"][0] wav_name = batch["wav_name"][0] target = batch["targets"].detach().cpu().numpy()[0] global_time = 0.0 if waveform.ndim == 3: waveform = waveform.squeeze(0) batch_size = 32 whole_size = waveform.size(0) if whole_size % batch_size == 0: n_iter = whole_size // batch_size else: n_iter = whole_size // batch_size + 1 for index in range(n_iter): iter_batch = waveform[index * batch_size:(index + 1) * batch_size] if iter_batch.ndim == 1: iter_batch = iter_batch.unsqueeze(0) iter_batch = iter_batch.to(device) with torch.no_grad(): prediction = model(iter_batch) framewise_output = prediction["framewise_output"].detach( ).cpu().numpy() thresholded = framewise_output >= args.threshold target_indices = np.argwhere(target).reshape(-1) for short_clip in thresholded: for target_idx in target_indices: if short_clip[:, target_idx].mean() == 0: pass else: detected = np.argwhere( short_clip[:, target_idx]).reshape(-1) head_idx = 0 tail_idx = 0 while True: if (tail_idx + 1 == len(detected)) or ( detected[tail_idx + 1] - detected[tail_idx] != 1): onset = 0.01 * detected[head_idx] + global_time offset = 0.01 * detected[tail_idx] + global_time estimated_event = { "filename": wav_name, "ebird_code": dataset.INV_BIRD_CODE[target_idx], "onset": onset, "offset": offset } estimated_event_list.append(estimated_event) head_idx = tail_idx + 1 tail_idx = tail_idx + 1 if head_idx > len(detected): break else: tail_idx = tail_idx + 1 global_time += 5.0 estimated_event_df = pd.DataFrame(estimated_event_list) save_filename = global_params["save_path"].replace(".csv", "") save_filename += f"_th{args.threshold}" + ".csv" save_path = output_dir / save_filename if save_path.exists(): event_level_labels = pd.read_csv(save_path) estimated_event_df = pd.concat( [event_level_labels, estimated_event_df], axis=0, sort=False).reset_index(drop=True) estimated_event_df.to_csv(save_path, index=False) else: estimated_event_df.to_csv(save_path, index=False)
44870
import torch import torch.nn as nn from torch.nn import init from torchvision import models from torch.autograd import Variable from resnet import resnet50, resnet18 import torch.nn.functional as F import math from attention import IWPA, AVG, MAX, GEM class Normalize(nn.Module): def __init__(self, power=2): super(Normalize, self).__init__() self.power = power def forward(self, x): norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power) out = x.div(norm) return out # ##################################################################### def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal_(m.weight.data, a=0, mode='fan_out') init.zeros_(m.bias.data) elif classname.find('BatchNorm1d') != -1: init.normal_(m.weight.data, 1.0, 0.01) init.zeros_(m.bias.data) def weights_init_classifier(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: init.normal_(m.weight.data, 0, 0.001) if m.bias: init.zeros_(m.bias.data) # Defines the new fc layer and classification layer # |--Linear--|--bn--|--relu--|--Linear--| class FeatureBlock(nn.Module): def __init__(self, input_dim, low_dim, dropout=0.5, relu=True): super(FeatureBlock, self).__init__() feat_block = [] feat_block += [nn.Linear(input_dim, low_dim)] feat_block += [nn.BatchNorm1d(low_dim)] feat_block = nn.Sequential(*feat_block) feat_block.apply(weights_init_kaiming) self.feat_block = feat_block def forward(self, x): x = self.feat_block(x) return x class ClassBlock(nn.Module): def __init__(self, input_dim, class_num, dropout=0.5, relu=True): super(ClassBlock, self).__init__() classifier = [] if relu: classifier += [nn.LeakyReLU(0.1)] if dropout: classifier += [nn.Dropout(p=dropout)] classifier += [nn.Linear(input_dim, class_num)] classifier = nn.Sequential(*classifier) classifier.apply(weights_init_classifier) self.classifier = classifier def forward(self, x): x = self.classifier(x) return x class visible_module(nn.Module): def __init__(self, arch='resnet50'): super(visible_module, self).__init__() model_v = resnet50(pretrained=True, last_conv_stride=1, last_conv_dilation=1) # avg pooling to global pooling self.visible = model_v def forward(self, x): x = self.visible.conv1(x) x = self.visible.bn1(x) x = self.visible.relu(x) x = self.visible.maxpool(x) x = self.visible.layer1(x) return x class thermal_module(nn.Module): def __init__(self, arch='resnet50'): super(thermal_module, self).__init__() model_t = resnet50(pretrained=True, last_conv_stride=1, last_conv_dilation=1) # avg pooling to global pooling self.thermal = model_t def forward(self, x): x = self.thermal.conv1(x) x = self.thermal.bn1(x) x = self.thermal.relu(x) x = self.thermal.maxpool(x) x = self.thermal.layer1(x) return x class base_resnet(nn.Module): def __init__(self, arch='resnet50'): super(base_resnet, self).__init__() model_base = resnet50(pretrained=True, last_conv_stride=1, last_conv_dilation=1) # avg pooling to global pooling model_base.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.base = model_base def forward(self, x): #x = self.base.layer1(x) x = self.base.layer2(x) x = self.base.layer3(x) x = self.base.layer4(x) return x class embed_net(nn.Module): def __init__(self, class_num, drop=0.2, part = 3, arch='resnet50', cpool = 'no', bpool = 'avg', fuse = 'sum'): super(embed_net, self).__init__() self.thermal_module = thermal_module(arch=arch) self.visible_module = visible_module(arch=arch) self.base_resnet = base_resnet(arch=arch) pool_dim = 2048 pool_dim_att = 2048 if fuse == "sum" else 4096 self.dropout = drop self.part = part self.cpool = cpool self.bpool = bpool self.fuse = fuse self.l2norm = Normalize(2) self.bottleneck = nn.BatchNorm1d(pool_dim) self.bottleneck.bias.requires_grad_(False) # no shift self.classifier = nn.Linear(pool_dim, class_num, bias=False) self.bottleneck.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) if self.cpool == 'wpa': self.classifier_att = nn.Linear(pool_dim_att, class_num, bias=False) self.classifier_att.apply(weights_init_classifier) self.cpool_layer = IWPA(pool_dim, part,fuse) if self.cpool == 'avg': self.classifier_att = nn.Linear(pool_dim_att, class_num, bias=False) self.classifier_att.apply(weights_init_classifier) self.cpool_layer = AVG(pool_dim,fuse) if self.cpool == 'max': self.classifier_att = nn.Linear(pool_dim_att, class_num, bias=False) self.classifier_att.apply(weights_init_classifier) self.cpool_layer = MAX(pool_dim,fuse) if self.cpool == 'gem': self.classifier_att = nn.Linear(pool_dim_att, class_num, bias=False) self.classifier_att.apply(weights_init_classifier) self.cpool_layer = GEM(pool_dim,fuse) def forward(self, x1, x2, modal=0): # domain specific block if modal == 0: x1 = self.visible_module(x1) x2 = self.thermal_module(x2) x = torch.cat((x1, x2), 0) elif modal == 1: x = self.visible_module(x1) elif modal == 2: x = self.thermal_module(x2) # shared four blocks x = self.base_resnet(x) if self.bpool == 'gem': b, c, _, _ = x.shape x_pool = x.view(b, c, -1) p = 3.0 x_pool = (torch.mean(x_pool**p, dim=-1) + 1e-12)**(1/p) elif self.bpool == 'avg': x_pool = F.adaptive_avg_pool2d(x,1) x_pool = x_pool.view(x_pool.size(0), x_pool.size(1)) elif self.bpool == 'max': x_pool = F.adaptive_max_pool2d(x,1) x_pool = x_pool.view(x_pool.size(0), x_pool.size(1)) else: print("wrong backbone pooling!!!") exit() feat = self.bottleneck(x_pool) if self.cpool != 'no': # intra-modality weighted part attention if self.cpool == 'wpa': feat_att, feat_att_bn = self.cpool_layer(x, feat, 1, self.part) if self.cpool in ['avg', 'max', 'gem']: feat_att, feat_att_bn = self.cpool_layer(x, feat) if self.training: return x_pool, self.classifier(feat), feat_att_bn, self.classifier_att(feat_att_bn) else: return self.l2norm(feat), self.l2norm(feat_att_bn) else: if self.training: return x_pool, self.classifier(feat) else: return self.l2norm(feat)
44891
import logging import collections import json import time import string import random logger = logging.getLogger(__name__) from schematics.types import BaseType from schematics.exceptions import ValidationError from nymms.utils import parse_time import arrow class TimestampType(BaseType): def to_native(self, value, context=None): if isinstance(value, arrow.arrow.Arrow): return value try: return parse_time(value) except ValueError: return arrow.get(value) def to_primitive(self, value, context=None): return value.isoformat() def _mock(self, context=None): year = 86400 * 365 return arrow.get(time.time() + (random.randrange(-1 * 20 * year, 200 * year))) class JSONType(BaseType): def to_native(self, value, context=None): if isinstance(value, basestring): return json.loads(value) return value def to_primitive(self, value, context=None): return json.dumps(value) def _mock(self, context=None): return dict( [(random.choice(string.ascii_letters), random.choice(string.printable)) for i in range(random.randrange(4, 10))]) StateObject = collections.namedtuple('StateObject', ['name', 'code']) STATE_OK = StateObject('ok', 0) STATE_WARNING = STATE_WARN = StateObject('warning', 1) STATE_CRITICAL = STATE_CRIT = StateObject('critical', 2) STATE_UNKNOWN = StateObject('unknown', 3) STATES = collections.OrderedDict([ ('ok', STATE_OK), ('warning', STATE_WARNING), ('critical', STATE_CRITICAL), ('unknown', STATE_UNKNOWN)]) class StateType(BaseType): def __init__(self, *args, **kwargs): super(StateType, self).__init__(*args, choices=STATES.values(), **kwargs) def to_native(self, value, context=None): if isinstance(value, StateObject): return value try: int_value = int(value) try: return STATES.values()[int_value] except IndexError: return STATE_UNKNOWN except ValueError: try: return STATES[value.lower()] except KeyError: raise ValidationError(self.messages['choices'].format( unicode(self.choices))) def to_primitive(self, value, context=None): return value.code class StateNameType(StateType): def to_primitive(self, value, context=None): return value.name StateTypeObject = collections.namedtuple('StateTypeObject', ['name', 'code']) STATE_TYPE_SOFT = StateTypeObject('soft', 0) STATE_TYPE_HARD = StateTypeObject('hard', 1) STATE_TYPES = collections.OrderedDict([ ('soft', STATE_TYPE_SOFT), ('hard', STATE_TYPE_HARD)]) class StateTypeType(BaseType): def __init__(self, *args, **kwargs): super(StateTypeType, self).__init__(*args, choices=STATE_TYPES.values(), **kwargs) def to_native(self, value, context=None): if isinstance(value, StateTypeObject): return value try: return STATE_TYPES.values()[int(value)] except ValueError: try: return STATE_TYPES[value.lower()] except KeyError: raise ValidationError(self.messages['choices'].format( unicode(self.choices))) def to_primitive(self, value, context=None): return value.code class StateTypeNameType(StateTypeType): def to_primitive(self, value, context=None): return value.name
44906
from .kfold import PurgedKFold, CPKFold, generate_signals from .score import cv_score from .pipeline import Pipeline from .hyper import clf_hyper_fit from .distribution import LogUniformGen, log_uniform from .utils import evaluate
44907
import tensorflow as tf def touch(fname: str, times=None, create_dirs: bool = False): import os if create_dirs: base_dir = os.path.dirname(fname) if not os.path.exists(base_dir): os.makedirs(base_dir) with open(fname, 'a'): os.utime(fname, times) def touch_dir(base_dir: str) -> None: import os if not os.path.exists(base_dir): os.makedirs(base_dir) def now_int(): from datetime import datetime epoch = datetime.utcfromtimestamp(0) return (datetime.now() - epoch).total_seconds() def bias_variable(shape, name=None): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, name=name) def entry_stop_gradients(target, mask): mask_h = tf.logical_not(mask) mask = tf.cast(mask, dtype=target.dtype) mask_h = tf.cast(mask_h, dtype=target.dtype) return tf.stop_gradient(mask_h * target) + mask * target # Adapeted from # https://gist.github.com/kukuruza/03731dc494603ceab0c5#gistcomment-1879326 def on_grid(kernel, grid_side, pad=1): """Visualize conv. features as an image (mostly for the 1st layer). Place kernel into a grid, with some paddings between adjacent filters. Args: kernel: tensor of shape [Y, X, NumChannels, NumKernels] grid_side: side of the grid. Require: NumKernels == grid_side**2 pad: number of black pixels around each filter (between them) Returns: An image Tensor with shape [(Y+2*pad)*grid_side, (X+2*pad)*grid_side, NumChannels, 1]. """ x_min = tf.reduce_min(kernel) x_max = tf.reduce_max(kernel) kernel1 = (kernel - x_min) / (x_max - x_min) # pad X and Y x1 = tf.pad( kernel1, tf.constant([[pad, pad], [pad, pad], [0, 0], [0, 0]]), mode='CONSTANT') # X and Y dimensions, w.r.t. padding Y = kernel1.get_shape()[0] + 2 * pad X = kernel1.get_shape()[1] + 2 * pad channels = kernel1.get_shape()[2] # put NumKernels to the 1st dimension x2 = tf.transpose(x1, (3, 0, 1, 2)) # organize grid on Y axis x3 = tf.reshape(x2, tf.stack( values=[grid_side, Y * grid_side, X, channels], axis=0)) # 3 # switch X and Y axes x4 = tf.transpose(x3, (0, 2, 1, 3)) # organize grid on X axis x5 = tf.reshape(x4, tf.stack( values=[1, X * grid_side, Y * grid_side, channels], axis=0)) # 3 # back to normal order (not combining with the next step for clarity) x6 = tf.transpose(x5, (2, 1, 3, 0)) # to tf.image_summary order [batch_size, height, width, channels], # where in this case batch_size == 1 x7 = tf.transpose(x6, (3, 0, 1, 2)) # scale to [0, 255] and convert to uint8 return tf.image.convert_image_dtype(x7, dtype=tf.uint8) def get_last_output(output, sequence_length, name): """Get the last value of the returned output of an RNN. http://disq.us/p/1gjkgdr output: [batch x number of steps x ... ] Output of the dynamic lstm. sequence_length: [batch] Length of each of the sequence. """ rng = tf.range(0, tf.shape(sequence_length)[0]) indexes = tf.stack([rng, sequence_length - 1], 1) return tf.gather_nd(output, indexes, name)
44958
class Solution: def maxRotateFunction(self, nums: List[int]) -> int: sums = sum(nums) index = 0 res = 0 for ele in nums: res += index*ele index += 1 ans = res for i in range(1,len(nums)): res = res + sums - (len(nums))*nums[len(nums) - i] ans = max(res,ans) return ans
44962
import os import re import shutil from ._base import DanubeCloudCommand, CommandOption, CommandError, lcd class Command(DanubeCloudCommand): help = 'Generate documentation files displayed in GUI.' DOC_REPO = 'https://github.com/erigones/esdc-docs.git' DOC_TMP_DIR = '/var/tmp/esdc-docs' options = ( CommandOption('--api', '--api-only', action='store_true', dest='api_only', default=False, help='Generate only the API documentation.'), CommandOption('--user-guide', '--user-guide-only', action='store_true', dest='user_guide_only', default=False, help='Generate only the User Guide.'), ) def gendoc_api(self): """Generate api documentation""" with lcd(self.PROJECT_DIR): doc_dir = self._path(self.PROJECT_DIR, 'doc', 'api') doc_dst = self._path(self.PROJECT_DIR, 'api', 'static', 'api', 'doc') bin_dst = self._path(self.PROJECT_DIR, 'api', 'static', 'api', 'bin') # Build sphinx docs with lcd(doc_dir): self.local('make esdc-clean; make esdc ESDOCDIR="%s"' % doc_dst) # Create es script suitable for download es_src = self._path(self.PROJECT_DIR, 'bin', 'es') es_dst = self._path(bin_dst, 'es') es_current = os.path.join(self.settings.PROJECT_DIR, 'var', 'www', 'static', 'api', 'bin', 'es') api_url = "API_URL = '%s'" % (self.settings.SITE_LINK + '/api') if os.path.isfile(es_current): with open(es_current, 'r') as es0: for line in es0: if line.startswith("API_URL = '"): api_url = line break with open(es_src) as es1: with os.fdopen(os.open(es_dst, os.O_WRONLY | os.O_CREAT | os.O_TRUNC, 0o644), 'w') as es2: es2.write(es1.read().replace("API_URL = 'http://127.0.0.1:8000/api'", api_url)) # Copy es_bash_completion.sh to download location es_bc_src = self._path(doc_dir, 'es_bash_completion.sh') self.local('cp %s %s' % (es_bc_src, bin_dst)) self.display('API documentation built successfully.', color='green') def gendoc_user_guide(self, fallback_branch='master'): """Generate user guide""" doc_dst = self._path(self.PROJECT_DIR, 'gui', 'static', 'user-guide') with lcd(self.PROJECT_DIR): try: branch = self.get_git_version()[0] # Git tag or branch name except CommandError: self.display('Could not determine our branch or tag', color='yellow') branch = fallback_branch self.display('Falling back to "%s" branch' % branch, color='yellow') else: self.display('We are on branch "%s"' % branch) if self._path_exists(self.DOC_TMP_DIR, 'user-guide', 'conf.py'): existing_repo = True self.display('%s already exists in %s' % (self.DOC_REPO, self.DOC_TMP_DIR), color='yellow') with lcd(self.DOC_TMP_DIR): self.local('git fetch') self.display('%s has been successfully updated.' % self.DOC_REPO, color='green') else: if self._path_exists(self.DOC_TMP_DIR): self.display('Removing stale %s', self.DOC_TMP_DIR, color='yellow') shutil.rmtree(self.DOC_TMP_DIR) existing_repo = False self.local('git clone %s %s' % (self.DOC_REPO, self.DOC_TMP_DIR)) self.display('%s has been successfully cloned.' % self.DOC_TMP_DIR, color='green') with lcd(self.DOC_TMP_DIR): if self.local('git checkout %s' % branch, raise_on_error=False) != 0: self.display('Could not checkout esdc-docs branch "%s"' % branch, color='yellow') branch = fallback_branch self.display('Falling back to "%s" branch' % branch, color='yellow') self.local('git checkout %s' % branch) self.display('Checked out esdc-docs branch "%s"' % branch, color='green') # If the branch is no a tag name, then we need to merge/pull if existing_repo and not re.search('^v[0-9]', branch): self.local('git merge --ff-only origin/%s' % branch) self.display('Merged esdc-docs branch "%s"' % branch, color='green') # Build sphinx docs with lcd(self._path(self.DOC_TMP_DIR, 'user-guide')): self.local('make esdc-clean; make esdc ESDOCDIR="%s"' % doc_dst) self.display('User guide built successfully.', color='green') def handle(self, api_only=False, user_guide_only=False, **options): if api_only and user_guide_only: pass elif api_only: self.gendoc_api() return elif user_guide_only: self.gendoc_user_guide() return self.gendoc_api() self.display('\n\n', stderr=True) self.gendoc_user_guide()
44966
import json import os from eg import config from eg import substitute from eg import util from mock import Mock from mock import patch PATH_UNSQUEEZED_FILE = os.path.join( 'test', 'assets', 'pwd_unsqueezed.md' ) PATH_SQUEEZED_FILE = os.path.join( 'test', 'assets', 'pwd_squeezed.md' ) def _create_config( examples_dir=None, custom_dir=None, color_config=None, use_color=True, pager_cmd=None, editor_cmd=None, squeeze=False, subs=None ): """ Create a config.Config object with default values for expediency in testing. """ return config.Config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, editor_cmd=editor_cmd, squeeze=squeeze, subs=subs ) @patch('os.walk') def test_get_file_paths_for_program_with_single(mock_walk): program = 'cp' examples_dir = '/Users/tyrion' program_file = program + util.EXAMPLE_FILE_SUFFIX expected = ['/Users/tyrion/cp.md'] mock_walk.return_value = [ [examples_dir, [], [program_file, 'cp.txt', 'other_file.md']], ] actual = util.get_file_paths_for_program(program, examples_dir) assert actual == expected mock_walk.assert_called_once_with(examples_dir) @patch('os.walk') def test_get_file_paths_for_program_with_nested(mock_walk): program = 'cp' examples_dir = '/Users/tyrion' program_file = 'cp.md' mock_walk.return_value = [ [ examples_dir, ['dirA', 'dirB'], [program_file, 'cp.txt', 'other_file.md'], ], [ examples_dir + '/dirA', ['dirA-child'], [program_file, 'bad.md'], ], [ examples_dir + '/dirA/dirA-child', [], ['bad.md', program_file, 'wtf.md'], ], [ examples_dir + '/dirB', [], ['foo.md', program_file], ], ] expected = [ '/Users/tyrion/cp.md', '/Users/tyrion/dirA/cp.md', '/Users/tyrion/dirA/dirA-child/cp.md', '/Users/tyrion/dirB/cp.md', ] actual = util.get_file_paths_for_program(program, examples_dir) assert actual == expected mock_walk.assert_called_once_with(examples_dir) @patch('os.walk') def test_get_file_paths_for_program_with_none(mock_walk): expected = [] mock_walk.return_value = [] actual = util.get_file_paths_for_program('cp', '/Users/tyrion') assert actual == expected mock_walk.assert_called_once_with('/Users/tyrion') @patch('os.walk') def test_get_file_paths_for_program_with_no_dir(mock_walk): assert util.get_file_paths_for_program('cp', None) == [] @patch('eg.util.page_string') @patch('eg.util.get_formatted_contents') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_resolved_program') def test_handle_program_no_entries( mock_resolve_program, mock_get_contents, mock_format, mock_page_string, ): """ We should do the right thing if there are no entries for a given program. """ program = 'cp' test_config = _create_config() mock_resolve_program.return_value = program util.handle_program(program, test_config) mock_resolve_program.assert_called_once_with( program, test_config ) # We should have aborted and not called any of the # other methods. assert mock_get_contents.call_count == 0 assert mock_format.call_count == 0 assert mock_page_string.call_count == 0 @patch('eg.util.get_resolved_program') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_file_paths_for_program') @patch('eg.util.get_formatted_contents') @patch('eg.util.page_string') def test_handle_program_finds_paths_and_calls_open_pager_no_alias( mock_page, mock_format, mock_get_paths, mock_get_contents, mock_resolve, ): """ If there are entries for the program, handle_program needs to get the paths, get the contents, format the contents, and page the resulting string. """ program = 'mv' examples_dir = 'test-eg-dir' custom_dir = 'test-custom-dir' color_config = None use_color = False pager_cmd = 'foo bar' squeeze = False subs = ['foo', 'bar'] file_contents = 'I am the contents of mv.md.' formatted_contents = 'and I am the formatted contents of mv.md.' test_config = _create_config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, squeeze=squeeze, subs=subs ) default_paths = ['test-eg-dir/mv.md', 'test-eg-dir/foo/mv.md'] custom_paths = ['test-custom-dir/mv.md', 'test-custom-dir/bar.md'] def return_correct_path(*args, **kwargs): program_param = args[0] dir_param = args[1] if program_param != program: raise NameError('expected ' + program + ', got ' + program_param) if dir_param == examples_dir: return default_paths elif dir_param == custom_dir: return custom_paths else: raise NameError( 'got ' + dir_param + ', expected ' + examples_dir + ' or ' + custom_dir) mock_format.return_value = formatted_contents mock_get_paths.side_effect=return_correct_path mock_get_contents.return_value = file_contents mock_resolve.return_value = program util.handle_program(program, test_config) mock_resolve.assert_called_once_with( program, test_config ) mock_get_paths.assert_any_call( program, examples_dir ) mock_get_paths.assert_any_call( program, custom_dir, ) mock_get_contents.assert_called_once_with( custom_paths[0], custom_paths[1], default_paths[0], default_paths[1], ) mock_format.assert_called_once_with( file_contents, use_color=test_config.use_color, color_config=test_config.color_config, squeeze=test_config.squeeze, subs=test_config.subs ) mock_page.assert_called_once_with( formatted_contents, test_config.pager_cmd ) @patch('eg.util.get_resolved_program') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_file_paths_for_program') @patch('eg.util.get_formatted_contents') @patch('eg.util.page_string') def test_handle_program_finds_paths_and_calls_open_pager_with_alias( mock_page, mock_format, mock_get_paths, mock_get_contents, mock_resolve, ): """ If there are entries for the program, handle_program needs to get the paths, get the contents, format the contents, and page the resulting string. """ alias_for_program = 'link' resolved_program = 'ln' examples_dir = 'test-eg-dir' custom_dir = 'test-custom-dir' color_config = None use_color = False pager_cmd = 'foo bar' squeeze = False subs = ['foo', 'bar'] file_contents = 'I am the contents of ln.md.' formatted_contents = 'and I am the formatted contents of ln.md.' test_config = _create_config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, squeeze=squeeze, subs=subs ) default_paths = ['test-eg-dir/ln.md'] custom_paths = ['test-custom-dir/ln.md'] def return_correct_path(*args, **kwargs): program_param = args[0] dir_param = args[1] if program_param != resolved_program: raise NameError( 'expected ' + resolved_program + ', got ' + program_param ) if dir_param == examples_dir: return default_paths elif dir_param == custom_dir: return custom_paths else: raise NameError( 'got ' + dir_param + ', expected ' + examples_dir + ' or ' + custom_dir) mock_format.return_value = formatted_contents mock_get_paths.side_effect = return_correct_path mock_get_contents.return_value = file_contents mock_resolve.return_value = resolved_program util.handle_program( alias_for_program, test_config ) mock_resolve.assert_called_once_with( alias_for_program, test_config ) mock_get_paths.assert_any_call( resolved_program, examples_dir ) mock_get_paths.assert_any_call( resolved_program, custom_dir, ) mock_get_contents.assert_called_once_with( custom_paths[0], default_paths[0] ) mock_format.assert_called_once_with( file_contents, use_color=test_config.use_color, color_config=test_config.color_config, squeeze=test_config.squeeze, subs=test_config.subs ) mock_page.assert_called_once_with( formatted_contents, test_config.pager_cmd ) def test_get_list_of_all_supported_commands(tmpdir): dir_example = tmpdir.mkdir('examples') dir_custom = tmpdir.mkdir('custom') config = _create_config( examples_dir=str(dir_example), custom_dir=str(dir_custom), ) expected = [ 'a-only-default', 'b-both *', 'c-only-custom +', 'd-only-custom-nested +', 'e-only-default-nested', 'f-default-custom-nested', 'g-both-different-levels *', 't-a-only-default-alias -> a-only-default', 'u-b-both-alias -> b-both *', 'v-c-only-custom-alias -> c-only-custom +' ] aliases = { 't-a-only-default-alias': 'a-only-default', 'u-b-both-alias': 'b-both', 'v-c-only-custom-alias': 'c-only-custom' } # Make the directory structure we expect. dir_example_nested = dir_example.mkdir('default-nested') dir_custom_nested = dir_custom.mkdir('custom-nested') dir_example.join('a-only-default.md').write('foo') dir_example.join('b-both.md').write('foo') dir_custom.join('b-both.md').write('foo') dir_custom.join('c-only-custom.md').write('foo') dir_custom_nested.join('d-only-custom-nested.md').write('foo') dir_example_nested.join('e-only-default-nested.md').write('foo') dir_example_nested.join('f-default-custom-nested.md').write('foo') dir_example.join('g-both-different-levels.md').write('foo') dir_custom_nested.join('g-both-different-levels.md').write('foo') # Use the 'with' context manager rather than the @decorator, because the # tmpdir fixture doesn't play nice with the decorator. with patch('eg.util.get_alias_dict') as mock_get_alias: mock_get_alias.return_value = aliases actual = util.get_list_of_all_supported_commands(config) assert actual == expected mock_get_alias.assert_called_once_with(config) def test_list_supported_programs_fails_gracefully_if_no_dirs(): test_config = _create_config() actual = util.get_list_of_all_supported_commands(test_config) target = [] assert actual == target def test_calls_pipepager_if_not_less(): """ We're special casing less a bit, as it is the default value, so if a custom command has been set that is NOT less, we should call pipepager straight away. """ _helper_assert_about_pager('page me plz', 'cat', False) def test_calls_fallback_pager_if_none(): """ If pager_cmd is None, we should just use the fallback pager. """ _helper_assert_about_pager('page me plz', None, True) def test_calls_pipepager_if_less(): """ We should call pipepager if we ask to use less and less is installed on the machine. """ _helper_assert_about_pager('a fancy value to page', 'less -R', False) def test_calls_fallback_if_cmd_is_flag_string(): """ We are using a flag string to indicate if we should use the fallback pager. """ _helper_assert_about_pager( 'page via fallback', util.FLAG_FALLBACK, True ) @patch('pydoc.pager') @patch('pydoc.pipepager') def _helper_assert_about_pager( str_to_page, pager_cmd, use_fallback, pipepager, default_pager, ): """ Help with asserting about pager. str_to_page: what you're paging pager_cmd: the string you're passing to pipepager (or None) use_default: false if we should actually use pydoc.pipepager, true if we instead are going to fallback to pydoc.pager """ util.page_string(str_to_page, pager_cmd) if use_fallback: default_pager.assert_called_once_with(str_to_page) assert pipepager.call_count == 0 else: assert default_pager.call_count == 0 pipepager.assert_called_once_with( str_to_page, cmd=pager_cmd ) @patch('eg.util.pydoc.pipepager', side_effect=KeyboardInterrupt) def test_page_string_excepts_keyboard_interrupt_if_not_less(pipepager_mock): """ Do not fail when user hits ctrl-c while in pager. """ try: util.page_string('page me plz', 'cat') except KeyboardInterrupt: raise AssertionError('Should not have got this far') pipepager_mock.assert_called_once_with('page me plz', cmd='cat') @patch('eg.util.pydoc.pager', side_effect=KeyboardInterrupt) def test_page_string_excepts_keyboard_interrupt_if_none(pager_mock): """ Do not fail when user hits ctrl-c while in pipepager. """ try: util.page_string('page me plz', None) except KeyboardInterrupt: raise AssertionError('Should not have got this far') pager_mock.assert_called_once_with('page me plz') def test_get_contents_from_files_handles_none(): """ Empty string if no files. """ _helper_assert_file_contents( [], '' ) def test_get_contents_from_files_handles_one(): file_infos = [ { 'path': 'test/path', 'contents': 'contents of file' } ] combined_contents = 'contents of file' _helper_assert_file_contents( file_infos, combined_contents ) def test_get_contents_from_files_handles_multiple(): file_infos = [ { 'path': 'path/1', 'contents': 'foo\n' }, { 'path': 'path/2/foo', 'contents': 'bar\n' }, { 'path': 'another/path', 'contents': 'baz' } ] combined_contents = 'foo\nbar\nbaz' _helper_assert_file_contents( file_infos, combined_contents ) @patch('eg.util._get_contents_of_file') def _helper_assert_file_contents( file_infos, target_contents, get_contents_mock, ): """ Helper method to assert things about the get_contents_from_files method. Does not actually hit the disk. file_infos: array of { path, contents } dicts representing files. Array so that we can assert proper order calling target_contents: the final combined contents that should be returned by the get_contents_from_files method. """ # This method will be used by the mock framework to return the right file # contents based on the file name. def return_file_contents(*args, **kwargs): for file_info in file_infos: if file_info['path'] == args[0]: return file_info['contents'] raise TypeError('did not find path in test obj') get_contents_mock.side_effect = return_file_contents paths = [el['path'] for el in file_infos] actual = util.get_contents_from_files(*paths) assert actual == target_contents @patch('eg.util.get_colorized_contents') @patch('eg.util.get_squeezed_contents') @patch('eg.util.get_substituted_contents') def _helper_assert_formatted_contents( starting_contents, use_color, color_config, squeeze, subs, colorized_contents, squeezed_contents, subbed_contents, formatted_result, sub_method, squeeze_method, color_method, ): """ Helper method to assist in asserting things about the get_formatted_contents method. starting_contents: the starting string that we are working with use_color: True if we should use color color_config: the color config to be passed to get_colorized_contents squeeze: True if we should squeeze subs: the list of Substitutions that we should pass to get_substituted_contents colored_contents: the result of get_colorized_contents squeezed_contents: the result of get_squeezed_contents subbed_contents: the result of subbed_contents formatted_result: the final, formatted string that should be returned """ sub_method.return_value = subbed_contents squeeze_method.return_value = squeezed_contents color_method.return_value = colorized_contents actual = util.get_formatted_contents( starting_contents, use_color, color_config, squeeze, subs ) # We'll update the contents as they get formatted to make sure # we pass the right thing to the various methods. contents_thus_far = starting_contents if use_color: color_method.assert_called_once_with( contents_thus_far, color_config ) contents_thus_far = colorized_contents else: assert color_method.call_count == 0 if squeeze: squeeze_method.assert_called_once_with(contents_thus_far) contents_thus_far = squeezed_contents else: assert squeeze_method.call_count == 0 if subs: sub_method.assert_called_once_with( contents_thus_far, subs ) contents_thus_far = subbed_contents else: assert sub_method.call_count == 0 assert actual == formatted_result def test_get_formatted_contents_does_not_format_methods_if_all_falsey(): """ We should invoke none of the formatter methods if the flags are false and subs is not truthy. """ starting_contents = 'this is where we start' _helper_assert_formatted_contents( starting_contents, False, 'some color config', False, None, 'this was colored', 'this was squeezed', 'these contents were subbed', starting_contents ) def test_get_formatted_contents_calls_colorize_if_use_color(): """ Colorize the contents if use_color = True. """ starting_contents = 'this is where we start' colorized_contents = 'COLORIZED: this is where we start' _helper_assert_formatted_contents( starting_contents, True, 'some color config', False, None, colorized_contents, 'this was squeezed', 'these contents were subbed', colorized_contents ) def test_get_formatted_contents_squeezes(): """If squeeze, we need to squeeze.""" starting_contents = 'this is where we start' squeezed_contents = 'this is the result of a squeezing' _helper_assert_formatted_contents( starting_contents, False, 'some color config', True, None, 'this was colored', squeezed_contents, 'these contents were subbed', squeezed_contents ) def test_get_formatted_contents_subsitutes(): """If subs is truthy, get_substituted contents should be called.""" starting_contents = 'this is where we start' subbed_contents = 'substituted like a teacher' _helper_assert_formatted_contents( starting_contents, False, 'some color config', False, ['truthy', 'list'], 'this was colored', 'this was squeezed', subbed_contents, subbed_contents ) def test_perform_all_formatting(): """ When use_color, squeeze, and subs are all truthy, all the formatting should be applied in that order. """ starting_contents = 'the starting point for grand formatting' subbed_contents = 'subbed is the last thing called so should be the result' _helper_assert_formatted_contents( starting_contents, True, 'some color config', True, ['truthy', 'list'], 'this was colored', 'this was squeezed', subbed_contents, subbed_contents ) def _get_file_as_string(path): """Get the contents of the file as a string.""" with open(path, 'r') as f: data = f.read() return data def test_get_squeezed_contents_correctly_squeezes(): """ Our squeeze method should follow our convention, which is to remove the blank line between a description and an example, to keep two blank lines between sections, and otherwise have only single blank lines. """ unsqueezed = _get_file_as_string(PATH_UNSQUEEZED_FILE) # the target squeezed output is a reference implementation in # pwd_squeezed.md. target = _get_file_as_string(PATH_SQUEEZED_FILE) actual = util.get_squeezed_contents(unsqueezed) assert actual == target def test_get_substituted_contents_handles_empty_subs(): """Nothing should be formatted if there are no substitutions.""" raw_contents = 'this should not be subbed' actual = util.get_substituted_contents(raw_contents, []) assert actual == raw_contents def test_get_substituted_contents_substitutes_calls_correct_methods(): """ The get_substituted_contents method calls things in the correct order. """ sub_one = Mock(auto_spec=substitute.Substitution) sub_one_result = 'result of sub one' sub_one.apply_and_get_result.return_value = sub_one_result sub_two = Mock(auto_spec=substitute.Substitution) sub_two_result = 'result of sub two' sub_two.apply_and_get_result.return_value = sub_two_result starting_contents = 'the string we should be substituting into' target = sub_two_result subs = [sub_one, sub_two] actual = util.get_substituted_contents(starting_contents, subs) sub_one.apply_and_get_result.assert_called_once_with(starting_contents) sub_two.apply_and_get_result.assert_called_once_with(sub_one_result) assert actual == target def test_get_substituted_contents_substitutes_correctly(): """ Basic test to make sure Substitutions can get applied correctly. """ sub_one = substitute.Substitution('foo', 'bar', False) sub_two = substitute.Substitution('bar\n\n', 'baz\n', True) start = 'foo\n\n something else\n\n bar\n\n' target = 'baz\n something else\n\n baz\n' subs = [sub_one, sub_two] actual = util.get_substituted_contents(start, subs) assert actual == target @patch('eg.color.EgColorizer') def test_get_colorized_contents_calls_methods(patched_colorizer_class): """ We should call the correct methods on the EgColorizer objects when we color a file. """ raw_contents = 'these are uncolored contents' colored_contents = 'COLORED: ' + raw_contents color_config = 'some color config' # The actual instance created by these calls is stored at return_value. colorizer_instance = patched_colorizer_class.return_value colorizer_instance.colorize_text.return_value = colored_contents actual = util.get_colorized_contents(raw_contents, color_config) assert actual == colored_contents colorizer_instance.colorize_text.assert_called_once_with(raw_contents) @patch('eg.util.get_alias_dict') def _helper_assert_get_resolved_program( program, resolved_program, config_obj, alias_dict, mock_dict, ): """ program: the program to resolved for as an alias resolved_program: the result of the resolution. config_obj: the config_obj to use toe resolve the alias path alias_dict: the dict of aliases to be returned """ mock_dict.return_value = alias_dict actual = util.get_resolved_program(program, config_obj) assert actual == resolved_program mock_dict.assert_called_once_with(config_obj) def test_get_resolved_program_no_alias(): """ A program that is not an alias should return itself. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = 'a config' _helper_assert_get_resolved_program('link', 'ln', config_obj, alias_dict) def test_get_resolved_program_is_alias(): """ A program that is an alias should return the resolved value. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = 'some new config' _helper_assert_get_resolved_program('cp', 'cp', config_obj, alias_dict) def test_get_alias_dict_returns_contents_of_correct_file(): """ get_alias_dict should read data from the file at the default path. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = _create_config( examples_dir='path/to/examples/dir', ) alias_file_path = 'path/to/alias/file' alias_dict_str = json.dumps(alias_dict) _helper_assert_get_alias_dict( alias_dict_str, alias_dict, config_obj, alias_file_path, True ) def test_get_alias_dict_fails_gracefully_if_not_file(): """ Since users can specify a directory for examples that might not contain the aliases file, we want to fail gracefully if the file doesn't exist. """ contents_of_alias_dict_file = 'should never be reached' config_obj = _create_config( examples_dir='path/to/examples/dir', ) alias_file_path = 'path/to/the/alias/file' _helper_assert_get_alias_dict( contents_of_alias_dict_file, {}, config_obj, alias_file_path, False ) @patch('eg.util._get_contents_of_file') @patch('eg.util._get_alias_file_path') @patch('os.path.isfile') def _helper_assert_get_alias_dict( contents_of_alias_dict_file, target_alias_dict, config_obj, alias_file_path, alias_file_path_is_file, mock_is_file, mock_get_alias_file_path, mock_get_contents, ): """ contents_of_alias_dict_file: the string contents of the file storing the dictionary of aliases target_alias_dict: the target result of get_alias_dict config_obj: the Config object alias_file_path: the path to be returned by _get_alias_file_path alias_file_path_is_file: True if the alias path is a file, else False """ mock_is_file.return_value = alias_file_path_is_file mock_get_alias_file_path.return_value = alias_file_path mock_get_contents.return_value = contents_of_alias_dict_file actual = util.get_alias_dict(config_obj) assert actual == target_alias_dict mock_get_alias_file_path.assert_called_once_with(config_obj) mock_is_file.assert_called_once_with(alias_file_path) if alias_file_path_is_file: mock_get_contents.assert_called_once_with(alias_file_path) else: assert mock_get_contents.call_count == 0 @patch('os.path.join') def test_get_alias_file_path(mock_join): """ _get_alias_file_path should just join the example dir and the alias file name, to make sure we look in the right place for the file. """ config_obj = _create_config( examples_dir='handy/dandy/examples/dir', ) join_result = 'joined path' mock_join.return_value = join_result actual = util._get_alias_file_path(config_obj) assert actual == join_result mock_join.assert_called_once_with( config_obj.examples_dir, util.ALIAS_FILE_NAME ) def test_is_example_file_true_if_has_suffix(): """ Should be true if ends in EXAMPLE_FILE_SUFFIX. """ file_name = 'find.md' actual = util._is_example_file(file_name) assert actual == True def test_is_example_file_true_if_not_suffix(): """ Should be false if the file does not end in EXAMPLE_FILE_SUFFIX. """ file_name = 'aliases.json' actual = util._is_example_file(file_name) assert actual == False def test_can_parse_alias_file(): """ Make sure aliases.json file can be parsed. This is to make sure an edit doesn't accidentally corrupt it. """ # We'll have to hardcode this. alias_file_path = os.path.join( config.DEFAULT_EXAMPLES_DIR, util.ALIAS_FILE_NAME ) alias_file_contents = util._get_contents_of_file(alias_file_path) alias_dict = json.loads(alias_file_contents) # We'll check that link goes to ln, as we know that one will be present. assert alias_dict['link'] == 'ln' @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_correct_with_custom_dir( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): """ We should resolve aliases, get the custom file path, and call subprocess. """ program = 'du' resolved_program = 'alias for du' config = _create_config(custom_dir='path/to/custom', editor_cmd='nano') paths = ['path/to/custom/du.md', 'foo.md'] mock_get_program.return_value = resolved_program mock_get_paths.return_value = paths mock_exists.return_value = True util.edit_custom_examples(program, config) mock_get_program.assert_called_once_with(program, config) mock_get_paths.assert_called_once_with(resolved_program, config.custom_dir) mock_call.assert_called_once_with([config.editor_cmd, paths[0]]) assert mock_inform.call_count == 0 @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_creates_file_if_none_exist( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): program = 'du' resolved_program = 'alias-for-du' config = _create_config(custom_dir='path/to/custom', editor_cmd='nano') paths = [] mock_get_program.return_value = resolved_program mock_get_paths.return_value = paths mock_exists.return_value = True util.edit_custom_examples(program, config) mock_get_program.assert_called_once_with(program, config) mock_get_paths.assert_called_once_with(resolved_program, config.custom_dir) mock_call.assert_called_once_with( [config.editor_cmd, 'path/to/custom/alias-for-du.md']) assert mock_inform.call_count == 0 @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_informs_if_no_custom_dir( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): """ We should inform the user if they are trying to edit with no custom dir. This should be true if it is not set and if the path does not exist. """ program = 'awk' # First with no custom dir set. config = _create_config(editor_cmd='vi -e') mock_exists.return_value = True util.edit_custom_examples(program, config) assert mock_inform.call_count == 1 # And now with it set but a nonexistent path. config = _create_config(custom_dir='/path/to/custom', editor_cmd='vi -e') mock_exists.return_value = False util.edit_custom_examples(program, config) assert mock_inform.call_count == 2 assert mock_call.call_count == 0 assert mock_get_paths.call_count == 0 assert mock_get_program.call_count == 0
44968
def format_card(card_num): """ Formats card numbers to remove any spaces, unnecessary characters, etc Input: Card number, integer or string Output: Correctly formatted card number, string """ import re card_num = str(card_num) # Regex to remove any nondigit characters return re.sub(r"\D", "", card_num) def validate_card(card_num): """ Check if credit card is valid using the Luhn algorithm Input: Card number, integer or string Output: Valid?, boolean """ double = 0 total = 0 digits = str(card_num) for i in range(len(digits) - 1, -1, -1): for c in str((double + 1) * int(digits[i])): total += int(c) double = (double + 1) % 2 return (total % 10) == 0
45026
import typing as t __all__ = ["Cell", "ListObject", ] class Cell(t.NamedTuple): """Field data representation for html template""" value: t.Any url: t.Tuple[str, t.Dict[str, t.Union[str, int]]] is_safe: bool = False class ListObject(t.NamedTuple): rows: t.List[t.List[Cell]] has_next: bool has_prev: bool count: t.Optional[int] active_page: t.Optional[int] per_page: int next_id: t.Optional[int]
45039
import FWCore.ParameterSet.Config as cms BtagPerformanceESProducer_TTBARWPBTAGCSVL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGCSVM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGCSVT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHEMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHEMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHET = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHET'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHETtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHETwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHEL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHEL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHELtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHELwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHEMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHEMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHET = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHET'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHETtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHETwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPTwp_v8_offline') )
45057
from datetime import datetime, timezone from ..exceptions import * class Orders(object): def __init__(self, session, trading_types): super(Orders, self).__init__() self._session = session self._trading_types = trading_types def generateOrderObject(self, legacy_contract_id, issuer, quantity, order_type, trading_type, instrument_type, price=None): """ **Generate Order Object** - legacy_contract_id (string): (required) - issuer (string): (required) - quantity (int): (required) - order_type (enum): (required) - trading_type (enum): (required) - instrument_type (required) - price (float): (optional) """ if trading_type == self._trading_types.Limited and not price: raise OrderFormatError("If trading type is Limited, the price argument is required") order_object = { "algoTradingTypeId": trading_type.value, "capitalOrderTypeId": order_type.value, "instrumentType": instrument_type.value, "issueId": issuer, "quantity": quantity, "hash": self.__generateHash(legacy_contract_id, issuer, quantity, instrument_type) } if price: order_object["price"] = price return order_object def __generateHash(self, legacy_contract_id, issuer, quantity, instrument_type): Now = datetime.now(timezone.utc) Now = Now.replace(tzinfo=None) Millis = int((Now - datetime(year=1970, day=1, month=1)).total_seconds() * 1000) TickerName = issuer.replace(" ", "") return f"{str(Millis)}{legacy_contract_id}{TickerName}{str(quantity)}{str(instrument_type.value)}" def submitOrder(self, legacy_contract_id, duration, order): """ **Submit one order** https://homebroker-api.gbm.com/GBMP/api/Operation/RegisterCapitalOrder - legacy_contract_id (string): (required) - duration (int): (required) - order (object): (required) """ metadata = { 'tags': ['order', 'generate order'], 'operation': 'submitOrder' } resource = "https://homebroker-api.gbm.com/GBMP/api/Operation/RegisterCapitalOrder" payload = { "contractId": legacy_contract_id, "duration": duration, "algoTradingTypeId": order.get("algoTradingTypeId"), "orders": [order] } return self._session.post(metadata, resource, payload) def getOrders(self, legacy_contract_id): """ **Get submitted Orders** https://homebroker-api.gbm.com/GBMP/api/Operation/GetBlotterOrders - legacy_contract_id (string): (required) """ metadata = { 'tags': ['Get Orders'], 'operation': 'getOrders' } resource = "https://homebroker-api.gbm.com/GBMP/api/Operation/GetBlotterOrders" payload = { "contractId": legacy_contract_id, "accountId": legacy_contract_id, "instrumentTypes": [0, 2], "processDate": datetime.utcnow().strftime('%Y-%m-%dT06:00:00.000Z') } return self._session.post(metadata, resource, payload)
45073
import hou import husdoutputprocessors.base as base import os class StagingDirOutputProcessor(base.OutputProcessorBase): """Output all USD Rop file nodes into the Staging Directory Ignore any folders and paths set in the Configured Layers and USD Rop node, just take the filename and save into a single directory. """ theParameters = None parameter_prefix = "stagingdiroutputprocessor_" stagingdir_parm_name = parameter_prefix + "stagingDir" def __init__(self): self.staging_dir = None def displayName(self): return 'StagingDir Output Processor' def parameters(self): if not self.theParameters: parameters = hou.ParmTemplateGroup() rootdirparm = hou.StringParmTemplate( self.stagingdir_parm_name, 'Staging Directory', 1, string_type=hou.stringParmType.FileReference, file_type=hou.fileType.Directory ) parameters.append(rootdirparm) self.theParameters = parameters.asDialogScript() return self.theParameters def beginSave(self, config_node, t): # Use the Root Directory parameter if it is set. root_dir_parm = config_node.parm(self.stagingdir_parm_name) if root_dir_parm: self.staging_dir = root_dir_parm.evalAtTime(t) if not self.staging_dir: out_file_parm = config_node.parm('lopoutput') if out_file_parm: self.staging_dir = out_file_parm.evalAtTime(t) if self.staging_dir: (self.staging_dir, filename) = os.path.split(self.staging_dir) def endSave(self): self.staging_dir = None def processAsset(self, asset_path, asset_path_for_save, referencing_layer_path, asset_is_layer, for_save): """ Args: asset_path (str): The incoming file path you want to alter or not. asset_path_for_save (bool): Whether the current path is a referenced path in the USD file. When True, return the path you want inside USD file. referencing_layer_path (str): ??? asset_is_layer (bool): Whether this asset is a USD layer file. If this is False, the asset is something else (for example, a texture or volume file). for_save (bool): Whether the asset path is for a file to be saved out. If so, then return actual written filepath. Returns: The refactored asset path. """ # Treat save paths as being relative to the output path. if for_save and self.staging_dir: # Whenever we're processing a Save Path make sure to # resolve it to the Staging Directory filename = os.path.basename(asset_path) return os.path.join(self.staging_dir, filename) return asset_path output_processor = StagingDirOutputProcessor() def usdOutputProcessor(): return output_processor
45074
def useless_print(content): '''Print the argument recieved''' print(content) if __name__ == "__main__": import sys useless_print(sys.argv[1])
45090
from flask import Blueprint order_api_blueprint = Blueprint('order_api', __name__) from . import routes
45112
def version(): """Function takes no aruguments and returns a STR value of the current version of the library. This value should match the value in the setup.py :param None :return str value of the current version of the library :rtype str >>> version() 1.0.33 """ print ('1.0.34')
45120
import boto3 import os import uuid from urllib.parse import unquote_plus from PIL import Image s3_client = boto3.client('s3') def resize_image(picture_file_path, crop_dimensions=None): # get the profile pics store ready image = Image.open(picture_file_path) if crop_dimensions: image = image.crop(crop_dimensions) widthGet = os.environ.get('RESIZE_WIDTH') heightGet = os.environ.get('RESIZE_HEIGHT') width = int(widthGet) height = int(heightGet) image = image.resize((width, height)) # save and convert to jpg here cropped_filename = os.path.join(os.path.dirname(picture_file_path), "{}_cropped.jpg".format(picture_file_path)) thumbnail_filename = os.path.join(os.path.dirname(picture_file_path), "{}_thumbnail.jpg".format(picture_file_path)) image.save(cropped_filename) thumbnailWidthGet = os.environ.get('THUMBNAIL_WIDTH') thumbnailHeightGet = os.environ.get('THUMBNAIL_HEIGHT') thumbnailWidth = int(thumbnailWidthGet) thumbnailHeight = int(thumbnailHeightGet) image = image.resize((thumbnailWidth, thumbnailHeight)) image.save(thumbnail_filename) return (cropped_filename, thumbnail_filename) def handler(event, context): amplify_storage_bucket_name = os.environ.get('STORAGE_PLATELETSTORAGE_BUCKETNAME') print(os.environ) for record in event['Records']: bucket = record['s3']['bucket']['name'] key = unquote_plus(record['s3']['object']['key']) tmpkey = key.replace('/', '') download_path = '/tmp/{}{}'.format(uuid.uuid4(), tmpkey) print('Downloading {} from bucket {} to {}'.format(key, bucket, download_path)) s3_client.download_file(bucket, key, download_path) (newImage, thumbnail) = resize_image(download_path) base_key = key.split('.')[0] s3_client.upload_file(newImage, amplify_storage_bucket_name, key) s3_client.upload_file(thumbnail, amplify_storage_bucket_name, "{}_thumbnail.jpg".format(base_key)) s3_client.delete_object(Bucket=bucket, Key=key)
45126
from git import Repo import subprocess import os, shutil # I use this later to lazily generate an error with a message class CustomError(Exception): pass repo_path = "../../" r = Repo(repo_path) repo_heads = r.heads # or it's alias: r.branches repo_heads_names = [h.name for h in repo_heads] #kokkos_src = '/Users/bird/kokkos/' #kokkos_install = '/Users/bird/kokkos/build/install' #cabana_install = '/Users/bird/Cabana/build/build/install' # not a typo, it's in a dumb path #platforms = ["Serial", "CPU", "GPU", "UVM"] platforms = ["Serial", "CPU", "GPU"] #platforms = ["CPU", "GPU"] #platforms = ["GPU"] #platforms = ["CPU"] CXX = "g++" #arch = 'Volta70' arch = 'Kepler35' subprocess.check_call(['./timing_lib.sh']) this_build_dir = 'build' kokkos_dirs = {} cabana_dirs = {} home_dir = os.environ['HOME'] # Build Dependencies # TODO: make this configurable kokkos_root = os.path.join(home_dir,'kokkos') cabana_root = os.path.join(home_dir,'Cabana') # Check we can find Kokkos and Cabana if not os.path.isdir(kokkos_root): raise CustomError("Can't find kokkos") if not os.path.isdir(cabana_root): raise CustomError("Can't find Cabana") # Copy Kokkos and Cabana to be inside this dir def copy_and_overwrite(from_path, to_path): if os.path.exists(to_path): shutil.rmtree(to_path) shutil.copytree(from_path, to_path) def copy_if_safe(from_path, to_path): if not os.path.isdir(to_path): shutil.copytree(from_path, to_path) # only copy if they don't exist already kokkos_new = os.path.join(this_build_dir,'kokkos') copy_if_safe(kokkos_root, kokkos_new) cabana_new = os.path.join(this_build_dir,'cabana') copy_if_safe(cabana_root, cabana_new) # Build Dependencies for plat in platforms: install_dir = "build-" + plat # Do Build print("build_kokkos.sh " + CXX + " " + kokkos_new + " " + install_dir + " " + plat + " " + arch) subprocess.check_call(['./build_kokkos.sh', CXX, kokkos_new, install_dir, plat, arch]) print("./build_cabana.sh " + " " + CXX + " " + os.path.join(kokkos_new,install_dir,'install') + " " + cabana_new + " " + install_dir + " " + plat) subprocess.check_call(['./build_cabana.sh', CXX, os.path.join(kokkos_new,install_dir,'install'), cabana_new, install_dir, plat]) # Save dirs, relative to root cabana_dirs[plat] = install_dir kokkos_dirs[plat] = install_dir # Iterate over *local* git branches for branch in repo_heads_names: print("Working on branch " + branch) for plat in platforms: print(plat) # TODO: throughout these scripts we assume ./instal is the install dir! abstract it. cabana_install = os.path.join( cabana_dirs[plat], 'install') kokkos_install = os.path.join( kokkos_dirs[plat], 'install') # For each repo, check it out into a new folder and build it #clone_path = './' + branch clone_path = os.path.join('./', this_build_dir, branch) print("!!!! WORKING ON " + clone_path) # look to see if the folder already exists: if not os.path.isdir(clone_path): # if it does... delete it (!) #print("Deleting " + clone_path) # We need to delete where it will build only one platforms worth, # or hoist the clone #shutil.rmtree(clone_path + build??) # OR if it does... skip #continue # clone it cloned = Repo.clone_from( repo_path, clone_path, branch=branch ) pwd = os.getcwd() kokkos_full_path = os.path.join(pwd, kokkos_new, kokkos_install) cabana_full_path = os.path.join(pwd, cabana_new, cabana_install) print("kk full path " + kokkos_full_path) print("./build_and_run.sh " + clone_path + " g++ " + kokkos_full_path + " " + cabana_full_path + " " + plat) subprocess.check_call(['./build_and_run.sh', clone_path, "g++", kokkos_full_path, cabana_full_path, plat])
45133
import json from django.core.management.base import BaseCommand, CommandError from users.models import User class Command(BaseCommand): help = "Exports a user information as a set of environment variables" def add_arguments(self, parser): parser.add_argument("user_id", type=int) def handle(self, *args, **options): user_id = options["user_id"] user = User.objects.get(id=user_id).bot_user() if not user: raise CommandError('User "%s" does not exist' % user_id) print( f""" # user ID {user.id} for user {user.name} USER_BINANCE_API_KEY="{user.binance_api_key}" USER_BINANCE_SECRET_KEY="{user.binance_secret_key}" USER_EXTERNAL_PORTFOLIO='{json.dumps(user.external_portfolio)}' USER_PREFERENCES='{json.dumps(user.preferences)}' """ )
45171
import torch import torchvision from torchvision import transforms def load_mnist_dataset(train_batch_size, test_batch_size=1): train_set = torchvision.datasets.MNIST(".", train=True, transform=transforms.Compose([transforms.ToTensor()]), download=True) test_set = torchvision.datasets.MNIST(".", train=False, transform=transforms.Compose([transforms.ToTensor()]), download=True) train_loader = torch.utils.data.DataLoader(train_set, batch_size=train_batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=test_batch_size, shuffle=False) return train_loader, test_loader
45176
from __future__ import absolute_import, print_function, unicode_literals import os import shutil import stat import sys import tempfile from io import StringIO, open from subprocess import list2cmdline from textwrap import dedent import ksconf.ext.six as six from ksconf.__main__ import cli from ksconf.conf.parser import (GLOBAL_STANZA, PARSECONF_MID, parse_conf, parse_conf_stream, write_conf) from ksconf.util.file import file_hash from ksconf.vc.git import git_cmd # Some unittest fixup for various python versions import tests.compat as _ # noqa del _ # What to export __all__ = [ "static_data", "ksconf_cli", "TestWorkDir", "FakeStdin", "GLOBAL_STANZA", "parse_conf", "parse_string", "write_conf", "_debug_file", ] def _debug_file(flag, fn): # pragma: no cover """ Dump file contents with a message string to the output. For quick'n'dirty unittest debugging only """ with open(fn) as fp: content = fp.read() length = len(content) hash = file_hash(fn) print("\n{flag} {fn} len={length} hash={hash} \n{content}".format(**vars())) del flag, hash, length def static_data(path): """ Get paths to files under the 'tests/data/*' location """ # Assume "/" for path separation for simplicity; but ultimately OS independent parts = path.split("/") return os.path.abspath(os.path.join(os.path.dirname(__file__), "data", *parts)) def parse_string(text, profile=None, **kwargs): text = dedent(text) f = StringIO(text) if profile: return parse_conf(f, profile) else: return parse_conf_stream(f, **kwargs) ''' # Let's try to avoid launching external processes (makes coverage more difficult, and so on) def ksconf_exec(args): args = list(args) args.insert(0, "ksconf.py") from subprocess import call args = list(args) if True: # Coverage enabled args = ["coverage", "run", "-a" ] + args rc = call(args) return KsconfOutput(rc, ...) ''' class _KsconfCli(): """ CLI Wrapper context management class for unit testing; USAGE: Use the ksconf_cli() singleton in a context (with) Unfortunately, we have to redirect stdout/stderr while this runs, not very clean, but we try to make it as safe as possible. tmpfile: os.tmpfile, or StringIO? """ class KsconfOutput(object): """ Container for the results from a KsconfCli call.""" __slots__ = ("returncode", "stdout", "stderr") def __init__(self, *args): self.returncode, self.stdout, self.stderr = args def get_conf(self, profile=None, **kwargs): """ Parse stdout as a .conf file""" f = StringIO(self.stdout) if profile: return parse_conf(f, profile) else: return parse_conf_stream(f, **kwargs) @staticmethod def _as_string(stream): stream.seek(0) return stream.read() def __call__(self, *args): # In later versions of Python (3.4), something like this could be considered: # from contextlib import redirect_stdout self._last_args = args _stdout, _stderr = (sys.stdout, sys.stderr) try: # Capture all output written to stdout/stderr temp_stdout = sys.stdout = StringIO() temp_stderr = sys.stderr = StringIO() try: rc = cli(args, _unittest=True) except SystemExit as e: # pragma: no cover if hasattr(e, "code"): # PY3 rc = e.code else: rc = e.message finally: # This next step MUST be done! (sys.stdout, sys.stderr) = _stdout, _stderr stdout = self._as_string(temp_stdout) stderr = self._as_string(temp_stderr) output = self.KsconfOutput(rc, stdout, stderr) self._last_output = output return output def __enter__(self): self._last_args = None self._last_output = None return self def __exit__(self, exc_type, exc_val, exc_tb): # Don't worry with coverage here. It gets plenty of testing DURING unittest development ;-) if exc_type is not None: # pragma: no cover sys.stderr.write("Exception while running: ksconf {0}\n". format(list2cmdline(self._last_args))) ko = self._last_output if ko: if ko.stdout: sys.stderr.write("STDOUT:\n{0}\n".format(ko.stdout)) if ko.stderr: sys.stderr.write("STDERR:\n{0}\n".format(ko.stderr)) # Re-raise exception return False ksconf_cli = _KsconfCli() class FakeStdin(object): def __init__(self, content): if isinstance(content, six.string_types): content = StringIO(content) self.stream = content def __enter__(self): self._real_stdin = sys.stdin sys.stdin = self.stream return self def __exit__(self, exc_type, exc_val, exc_tb): # Don't worry with coverage here. It gets plenty of testing DURING unittest development ;-) sys.stdin = self._real_stdin if exc_type is not None: # pragma: no cover # Re-raise exception return False class TestWorkDir(object): """ Create a temporary working directory to create app-like structures and other supporting file system artifacts necessary for many CLI tests. Cleanup is done automatically. Can also be used as context manager (``with``) to temporarily change the directory and restore the working directory upon completion. """ encoding = "utf-8" def __init__(self, git_repo=False): if git_repo: self._path = tempfile.mkdtemp("-ksconftest-git") self.git("init") else: self._path = tempfile.mkdtemp("-ksconftest") self.git_repo = git_repo self._working_dir = None def __del__(self): self.clean() def __enter__(self): self._working_dir = os.getcwd() os.chdir(self._path) def __exit__(self, exc_type, exc_val, exc_tb): os.chdir(self._working_dir) self._working_dir = None def clean(self, force=False): """ Explicitly clean/wipe the working directory. """ if not hasattr(self, "_path"): return if "KSCONF_KEEP_TEST_FILES" in os.environ and not force: # pragma: no cover return # Remove read-only file handler (e.g. clean .git/objects/xx/* files on Windows) def del_rw(action, name, exc): # pragma: no cover (infrequently used) # https://stackoverflow.com/a/21263493/315892 # Not checking for file vs dir, ... os.chmod(name, stat.S_IWRITE) os.remove(name) del action, exc shutil.rmtree(self._path, onerror=del_rw) # Prevent the class from being used further del self._path def git(self, *args): o = git_cmd(args, cwd=self._path) if o.returncode != 0: # pragma: no cover # Because, if we're using ksconf_cli, then we may be redirecting these... stderr = sys.__stderr__ stderr.write("Git command 'git {0}' failed with exit code {1}\n{2}\n" .format(" ".join(args), o.returncode, o.stderr)) raise RuntimeError("Failed git command (return code {0})".format(o.returncode)) def get_path(self, rel_path): # Always using unix/URL style paths internally. But we want this to be OS agnostic rel_parts = rel_path.split("/") return os.path.join(self._path, *rel_parts) def makedir(self, rel_path, path=None): if path is None: path = self.get_path(rel_path) if not os.path.isdir(path): os.makedirs(path) return path def write_file(self, rel_path, content): path = self.get_path(rel_path) self.makedir(None, path=os.path.dirname(path)) kw = {} if isinstance(content, bytes): kw["mode"] = "wb" else: kw["mode"] = "w" kw["encoding"] = self.encoding content = dedent(content) with open(path, **kw) as stream: stream.write(content) return path def read_file(self, rel_path, as_bytes=False): path = self.get_path(rel_path) kw = {} if as_bytes: kw["mode"] = "rb" else: kw["mode"] = "r" kw["encoding"] = self.encoding with open(path, **kw) as stream: content = stream.read() return content def remove_file(self, rel_path): path = self.get_path(rel_path) os.unlink(path) def write_conf(self, rel_path, conf): path = self.get_path(rel_path) self.makedir(None, path=os.path.dirname(path)) write_conf(path, conf) return path def read_conf(self, rel_path, profile=PARSECONF_MID): path = self.get_path(rel_path) return parse_conf(path, profile=profile) def copy_static(self, static, rel_path): src = static_data(static) with open(src, "rb") as stream: content = stream.read() return self.write_file(rel_path, content)
45184
from django.db import models # from django.contrib.auth.models import User from apps.users.models import CustomUser # 引入Enum类型 from enum import Enum from enumfields import EnumIntegerField class BillType(Enum): OUTGO = 0 # 账目类型.支出 INCOME = 1 # 账目类型.收入 class Categorys(models.Model): """ 账目明细分类表 """ is_default = models.BooleanField('是否默认分类', default=False) # True:默认存在分类 False:用户自定义分类 user = models.ForeignKey(CustomUser, verbose_name='自定义分类所属用户', blank=True, null=True, on_delete=models.CASCADE) bill_type = EnumIntegerField(BillType, verbose_name='账目类型', default=BillType.OUTGO) name = models.CharField('分类名称', max_length=20, unique=True) parent = models.ForeignKey('self', verbose_name='父级分类', blank=True, null=True, on_delete=models.CASCADE) modify_time = models.DateTimeField('修改时间', auto_now=True) create_time = models.DateTimeField('创建时间', auto_now_add=True) class Meta: db_table = "categorys" ordering = ['-modify_time']
45189
from common import * os.chdir(EXTERNAL_DIR) PKGS = env('PKGS', 'all') ninja_template = read_file(f'{SCRIPT_DIR}/install_deps_{OS_LOWER_CASE}.ninja.in') write_file(f'install_deps_{OS_LOWER_CASE}.ninja', ninja_template.format(**ENV_PARAMS)) for key, val in ENV_PARAMS.items(): print(f'{key} = {val}') shell(f'ninja -v -j 1 -f install_deps_{OS_LOWER_CASE}.ninja {PKGS}')
45208
from RecoEgamma.EgammaElectronProducers.gsfElectrons_cfi import ecalDrivenGsfElectrons lowPtGsfElectronsPreRegression = ecalDrivenGsfElectrons.clone(gsfElectronCoresTag = "lowPtGsfElectronCores") from Configuration.Eras.Modifier_fastSim_cff import fastSim fastSim.toModify(lowPtGsfElectronsPreRegression,ctfTracksTag = "generalTracksBeforeMixing")
45275
explanations = { 'gamma': ''' Proportion of tree modifications that should use mutrel-informed choice for node to move, rather than uniform choice ''', 'zeta': ''' Proportion of tree modifications that should use mutrel-informed choice for destination to move node to, rather than uniform choice ''', 'iota': ''' Probability of initializing with mutrel-informed tree rather than fully branching tree when beginning chain ''' } defaults = { 'gamma': 0.7, 'zeta': 0.7, 'iota': 0.7, } assert set(explanations.keys()) == set(defaults.keys())
45292
import pytest import numpy as np from csgo.analytics.distance import ( bombsite_distance, point_distance, polygon_area, area_distance, ) from csgo.analytics.coords import Encoder class TestCSGOAnalytics: """Class to test CSGO analytics""" def test_bombsite_distance(self): """Test bombsite distance function.""" assert bombsite_distance([0, 0, 0]) == 35 assert bombsite_distance([0, 0, 0], bombsite="B") == 38 assert bombsite_distance([0, 0, 0], bombsite="A", map="de_inferno") == 30 def test_point_distance(self): """Test point distance function""" assert point_distance([0, 0], [1, 1], type="euclidean") == 1.4142135623730951 assert point_distance([0, 0], [1, 1], type="manhattan") == 2 assert point_distance([0, 0], [1, 1], type="canberra") == 2.0 assert point_distance([-1, 5], [2, 1], type="cosine") == 0.7368825942078912 assert point_distance([0, 0, 0], [100, 100, 100]) == 4 assert point_distance([0, 0, 0], [100, 100, 100], map="de_vertigo") == 1 def test_polygon_area(self): """Test polygon area function""" assert polygon_area([0, 1, 2], [0, 1, 0]) == 1.0 def test_bombsite_invalid_map(self): """ Test bombsite function with an invalid map. """ with pytest.raises(ValueError): bombsite_distance([0, 0, 0], map="dust2") def test_point_invalid_map(self): """ Test point distance function with an invalid map. """ with pytest.raises(ValueError): point_distance([0, 0, 0], [1, 1, 1], map="dust2") def test_area_invalid_map(self): """ Test area distance function with an invalid map. """ with pytest.raises(ValueError): area_distance(26, 42, map="dust2") def test_area_dist(self): """ Tests that area distance returns correct value. """ assert area_distance(26, 42, map="de_mirage") == 26 def test_place_encode(self): """ Tests that place encoding works for correct values """ e = Encoder() assert np.sum(e.encode("place", "TSpawn")) == 1 assert np.sum(e.encode("place", "TSpawnnn")) == 0 assert np.sum(e.encode("map", "de_dust2")) == 1 assert np.sum(e.encode("map", "de_dust0")) == 0
45316
import logging logger = logging.getLogger(__name__) # Pump rate in mL/s (4.3 L/min) _PUMP_RATE_ML_PER_SEC = 4300.0 / 60.0 # Default amount of water to add to the plant (in mL) when pump manager detects # low soil moisture. DEFAULT_PUMP_AMOUNT = 200 class Pump(object): """Wrapper for a Seaflo 12V water pump.""" def __init__(self, pi_io, clock, pump_pin): """Creates a new Pump wrapper. Args: pi_io: Raspberry Pi I/O interface. clock: A clock interface. pump_pin: Raspberry Pi pin to which the pump is connected. """ self._pi_io = pi_io self._clock = clock self._pump_pin = pump_pin def pump_water(self, amount_ml): """Pumps the specified amount of water. Args: amount_ml: Amount of water to pump (in mL). Raises: ValueError: The amount of water to be pumped is invalid. """ if amount_ml == 0.0: return elif amount_ml < 0.0: raise ValueError('Cannot pump a negative amount of water') else: logger.info('turning pump on (with GPIO pin %d)', self._pump_pin) self._pi_io.turn_pin_on(self._pump_pin) wait_time_seconds = amount_ml / _PUMP_RATE_ML_PER_SEC self._clock.wait(wait_time_seconds) logger.info('turning pump off (with GPIO pin %d)', self._pump_pin) self._pi_io.turn_pin_off(self._pump_pin) logger.info('pumped %.f mL of water', amount_ml) return class PumpManager(object): """Pump Manager manages the water pump.""" def __init__(self, pump, pump_scheduler, moisture_threshold, pump_amount, timer): """Creates a PumpManager object, which manages a water pump. Args: pump: A pump instance, which supports water pumping. pump_scheduler: A pump scheduler instance that controls the time periods in which the pump can be run. moisture_threshold: Soil moisture threshold. If soil moisture is below this value, manager pumps water on pump_if_needed calls. pump_amount: Amount (in mL) to pump every time the water pump runs. timer: A timer that counts down until the next forced pump. When this timer expires, the pump manager runs the pump once, regardless of the moisture level. """ self._pump = pump self._pump_scheduler = pump_scheduler self._moisture_threshold = moisture_threshold self._pump_amount = pump_amount self._timer = timer def pump_if_needed(self, moisture): """Run the water pump if there is a need to run it. Args: moisture: Soil moisture level Returns: The amount of water pumped, in mL. """ if self._should_pump(moisture): self._pump.pump_water(self._pump_amount) self._timer.reset() return self._pump_amount return 0 def _should_pump(self, moisture): """Returns True if the pump should be run.""" if not self._pump_scheduler.is_running_pump_allowed(): return False return (moisture < self._moisture_threshold) or self._timer.expired() class PumpScheduler(object): """Controls when the pump is allowed to run.""" def __init__(self, local_clock, sleep_windows): """Creates new PumpScheduler instance. Args: local_clock: A local clock interface sleep_windows: A list of 2-tuples, each representing a sleep window. Tuple items are datetime.time objects. """ self._local_clock = local_clock self._sleep_windows = sleep_windows def is_running_pump_allowed(self): """Returns True if OK to run pump, otherwise False. Pump is not allowed to run from the start of a sleep window (inclusive) to the end of a sleep window (exclusive). """ current_time = self._local_clock.now().time() for sleep_time, wake_time in self._sleep_windows: # Check if sleep window wraps midnight. if wake_time < sleep_time: if current_time >= sleep_time or current_time < wake_time: return False else: if sleep_time <= current_time < wake_time: return False return True
45327
import datetime import app.helpers.helpers from app.controllers.api import record as record_api from app.helpers import helpers class TestRecord: def get_record(self, records, type_): for record in records: if record["type"] == type_: return record def test_list_no_Record(self, client): """Test if db contains no record.""" headers = {"X-Api-Key": "123"} res = client.get("/api/domain/list", headers=headers) json_data = res.get_json() assert json_data["code"] == 404 def test_add_record(self, client, mocker): """Test adding record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Add a record - Query the db to assure it's created """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} res = client.post("/api/domain/add", data=data, headers=headers) create_domain_data = res.get_json() # add record data = { "zone": "company.com", "owner": "host", "rtype": "A", "rdata": "1.1.1.1", "ttl": 7200, } res = client.post("/api/record/add", data=data, headers=headers) add_record_data = res.get_json() # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() assert create_domain_data["code"] == 201 assert create_domain_data["data"]["zone"] == "company.com" assert add_record_data["code"] == 201 assert add_record_data["data"]["owner"] == "host" assert add_record_data["data"]["rdata"] == "1.1.1.1" assert list_record_data["code"] == 200 assert list_record_data["data"][0]["zone"] == "company.com" assert list_record_data["data"][0]["user"]["email"] == "<EMAIL>" def test_edit_record(self, client, mocker): """Test editing record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Add a record - Edit a record - Query the db to assure it's edited """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() # edit record records = list_record_data["data"][0]["records"] cname_record = self.get_record(records, "CNAME") cname_record_id = cname_record["id"] data = { "zone": "company.com", "owner": "www_edit", "rtype": "CNAME", "rdata": "company_edited.com", "ttl": 3600, } res = client.put( f"/api/record/edit/{cname_record_id}", data=data, headers=headers ) edit_record_data = res.get_json() # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() records = list_record_data["data"][0]["records"] edited_record_data = self.get_record(records, "CNAME") assert edit_record_data["code"] == 200 assert edit_record_data["data"]["owner"] == "www_edit" assert list_record_data["code"] == 200 assert edited_record_data["rdata"] == "company_edited.com" def test_edit_record_no_ttl_change(self, client, mocker): """Test editing record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Edit a record with the same TTL """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() # edit record records = list_record_data["data"][0]["records"] cname_record = self.get_record(records, "CNAME") cname_record_id = cname_record["id"] data = { "zone": "company.com", "owner": "www", "rtype": "CNAME", "rdata": "company.com.", "ttl": "3600", } res = client.put( f"/api/record/edit/{cname_record_id}", data=data, headers=headers ) edit_record_data = res.get_json() assert edit_record_data["code"] == 409 assert edit_record_data["message"] == "The record already exists" def test_edit_record_with_ttl_change(self, client, mocker): """Test editing record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Edit a record with the different TTL - Query the db to assure it's edited """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() # edit record records = list_record_data["data"][0]["records"] cname_record = self.get_record(records, "CNAME") cname_record_id = cname_record["id"] data = { "zone": "company.com", "owner": "www", "rtype": "CNAME", "rdata": "company.com.", "ttl": "300", } res = client.put( f"/api/record/edit/{cname_record_id}", data=data, headers=headers ) edit_record_data = res.get_json() # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() records = list_record_data["data"][0]["records"] edited_record_data = self.get_record(records, "CNAME") assert edit_record_data["code"] == 200 assert edit_record_data["data"]["ttl"] == "300" assert list_record_data["code"] == 200 assert edited_record_data["ttl"] == "300" def test_delete_record(self, client, mocker): """Test deleting record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - List the default records - Delete one of the record - Query the db to assure it's deleted """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() # edit record records = list_record_data["data"][0]["records"] cname_record = self.get_record(records, "CNAME") cname_record_id = cname_record["id"] delete_res = client.delete( f"/api/record/delete/{cname_record_id}", headers=headers ) # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() records = list_record_data["data"][0]["records"] assert delete_res.status_code == 204 # it must be 3 after deletion assert len(records) == 3 def test_edit_record_no_ttl_change_MX(self, client, mocker): """Test editing record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Add MX record - Edit a record with the same TTL """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # add record data = { "zone": "company.com", "owner": "mx1", "rtype": "MX", "rdata": "10 mail.example.com.", "ttl": 7200, } res = client.post("/api/record/add", data=data, headers=headers) json_data = res.get_json() record_id = json_data["data"]["id"] # edit record data = { "zone": "company.com", "owner": "mx1", "rtype": "MX", "rdata": "10 mail.example.com.", "ttl": 7200, } res = client.put(f"/api/record/edit/{record_id}", data=data, headers=headers) edit_record_data = res.get_json() assert edit_record_data["code"] == 409 assert edit_record_data["message"] == "The record already exists" def test_edit_record_with_ttl_change_MX(self, client, mocker): """Test editing record from its endpoint. - Create a User - Create a domain (with default SOA,NS,CNAME created) - Add MX record - Edit a record with the different TTL - Query the db to assure it's edited """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # add record data = { "zone": "company.com", "owner": "mx1", "rtype": "MX", "rdata": "10 mail.example.com.", "ttl": 7200, } res = client.post("/api/record/add", data=data, headers=headers) json_data = res.get_json() record_id = json_data["data"]["id"] # edit record data = { "zone": "company.com", "owner": "mx1", "rtype": "MX", "rdata": "10 mail.example.com.", "ttl": 14400, } res = client.put(f"/api/record/edit/{record_id}", data=data, headers=headers) edit_record_data = res.get_json() # list record res = client.get("/api/domain/list", headers=headers) list_record_data = res.get_json() records = list_record_data["data"][0]["records"] edited_record_data = self.get_record(records, "MX") assert edit_record_data["code"] == 200 assert edit_record_data["data"]["ttl"] == "14400" assert list_record_data["code"] == 200 assert edited_record_data["ttl"] == "14400" def test_edit_record_respect_zone_limit(self, client, monkeypatch, mocker): """Test edit record respecting zone limit of 99 - Create a User - Create a domain (with default SOA, NS, CNAME created) - Add TXT record - Edit a record with the different TXT value until it reaches a limit - Edit a record with tomorrows date """ mocker.patch("app.helpers.producer.kafka_producer") mocker.patch("app.helpers.producer.send") headers = {"X-Api-Key": "123"} # create user data = {"email": "<EMAIL>"} post_res = client.post("/api/user/add", data=data, headers=headers) json_data = post_res.get_json() user_id = json_data["data"]["id"] # add domain data = {"zone": "company.com", "user_id": user_id} client.post("/api/domain/add", data=data, headers=headers) # add record data = { "zone": "company.com", "owner": "txt1", "rtype": "TXT", "rdata": "0", "ttl": 7200, } res = client.post("/api/record/add", data=data, headers=headers) json_data = res.get_json() record_id = json_data["data"]["id"] increment_serial = 0 # 50 times for edit record is enough to make serial > 99 # record edit increment serial twice at time while increment_serial < 50: data = { "zone": "company.com", "owner": "txt1", "rtype": "TXT", "rdata": f"{increment_serial}", "ttl": 7200, } res = client.put( f"/api/record/edit/{record_id}", data=data, headers=headers ) edit_record_data = res.get_json() increment_serial += 1 assert edit_record_data["code"] == 429 assert edit_record_data["message"] == "Zone Change Limit Reached" # ensure correct serial serial_resource = record_api.get_serial_resource("company.com") today_date = helpers.soa_time_set() assert serial_resource["serial_counter"] == "98" assert serial_resource["serial_date"] == today_date assert serial_resource["serial"] == f"{today_date}98" # # if user waits until tomorrow # def fake_soa_time_set(): tomorrow_date = datetime.datetime.now() + datetime.timedelta(days=1) return tomorrow_date.strftime("%Y%m%d") monkeypatch.setattr(app.helpers.helpers, "soa_time_set", fake_soa_time_set) data = { "zone": "company.com", "owner": "txt1", "rtype": "TXT", "rdata": "random text", "ttl": 7200, } res = client.put(f"/api/record/edit/{record_id}", data=data, headers=headers) edit_record_data = res.get_json() assert edit_record_data["code"] == 200 # ensure correct serial serial_resource = record_api.get_serial_resource("company.com") today_date = helpers.soa_time_set() assert serial_resource["serial_counter"] == "03" assert serial_resource["serial_date"] == today_date assert serial_resource["serial"] == f"{today_date}03"
45333
import subprocess import os def download_task_model(task): m_path = os.path.join('/home/ubuntu/s3', "model_log_final", task, "logs/model.permanent-ckpt") dirs, fname = os.path.split(m_path) dst_dir = dirs.replace('/home/ubuntu/s3', "s3://taskonomy-unpacked-oregon") tmp_path = "/home/ubuntu/temp/{}".format(task) subprocess.call('mkdir -p {}'.format(tmp_path), shell=True) tmp_fname = os.path.join(tmp_path, fname) aws_cp_command = "aws s3 cp {}.data-00000-of-00001 {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) aws_cp_command = "aws s3 cp {}.meta {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) aws_cp_command = "aws s3 cp {}.index {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) list_of_tasks = 'autoencoder curvature denoise edge2d edge3d \ keypoint2d keypoint3d colorization jigsaw \ reshade rgb2depth rgb2mist rgb2sfnorm \ room_layout segment25d segment2d vanishing_point_well_defined \ segmentsemantic_rb class_1000 class_places impainting_whole' list_of_tasks = 'impainting_whole' list_of_tasks = list_of_tasks.split() for t in list_of_tasks: download_task_model(t)