id
stringlengths
3
8
content
stringlengths
100
981k
36089
from maya import cmds import copy # TODO: Find a way to have different naming for different production. # Maybe handle it in the rig directly? class BaseName(object): """ This class handle the naming of object. Store a name as a list of 'tokens' When resolved, the tokens are joinned using a 'separator' (normally an underscore) Also some specific properties exists: - Side: Generally L/R token - Prefix: Always the first token - Suffix: Always the last token You can resolve a BaseName instance from a string. >>> name = BaseName('l_eye_jnt') >>> name.resolve() 'l_eye_jnt' You can build a BaseName instance manually. >>> name = BaseName(tokens=('eye',), suffix='jnt', side=BaseName.SIDE_L) >>> name.resolve() 'l_eye_jnt' You can add tokens at any time. >>> name.add_tokens('upp') >>> name.resolve() 'l_eye_upp_jnt' You can override a BaseName public properties. >>> name = BaseName() >>> name.tokens = ('eye',) >>> name.resolve() 'eye' >>> name.suffix = 'jnt' >>> name.resolve() 'eye_jnt' >>> name.side = name.SIDE_L >>> name.resolve() 'l_eye_jnt' """ separator = '_' type_anm = 'anm' type_anm_grp = 'anm_grp' type_jnt = 'jnt' type_rig = 'rig' type_rig_grp = 'data_grp' root_anm_name = 'anms' root_geo_name = 'geos' root_jnt_name = 'jnts' root_rig_name = 'data' root_backup_name = 'backup' layer_anm_name = 'layer_anm' layer_rig_name = 'layer_rig' layer_geo_name = 'layer_geo' SIDE_L = 'l' SIDE_R = 'r' def __init__(self, name=None, tokens=None, prefix=None, suffix=None, side=None): self.tokens = [] self.prefix = None self.suffix = None self.side = None if name: tokens = self.build_from_string(name) # Apply manual overrides if tokens: self.tokens = tokens if prefix: self.prefix = prefix if suffix: self.suffix = suffix if side: self.side = side def copy(self): """ Return a copy of the name object. """ inst = self.__class__() inst.tokens = copy.copy(self.tokens) inst.prefix = self.prefix inst.suffix = self.suffix return inst def rebuild(self, name): return self.__class__(name, prefix=self.prefix, suffix=self.suffix) def get_basename(self): """ Each name have one single token that represent it's part. ex: L_LegUpp_Ik_Ctrl -> LegUpp By default it is the first non-side token in the name. return: The part name. """ for token in self.tokens: if not self.get_side_from_token(token): return token def remove_extra_tokens(self): """ Remove any tokens that is not the base token or a side token. :return: """ basename = self.get_basename() found_base_token = False new_tokens = [] for token in self.tokens: if self.get_side_from_token(token): new_tokens.append(token) elif not found_base_token and token == basename: new_tokens.append(token) self.tokens = new_tokens def build_from_string(self, name): raw_tokens = self._get_tokens(name) self.tokens = [] #self.prefix = None #self.suffix = None self.side = None self.add_tokens(*raw_tokens) def _get_tokens(self, val): return val.split(self.separator) def _join_tokens(self, tokens): return self.separator.join(tokens) def add_tokens(self, *args): for arg in args: for token in arg.split(self.separator): side = self.get_side_from_token(token) if side: self.side = side else: self.tokens.append(token) def add_suffix(self, suffix): self.tokens.append(suffix) def add_prefix(self, prefix): self.tokens.insert(0, prefix) def get_unique_name(self, name): if cmds.objExists(name): i = 1 while cmds.objExists(name + str(i)): i += 1 return name + str(i) return name @classmethod def get_side_from_token(cls, token): token_lower = token.lower() if token_lower == cls.SIDE_L.lower(): return cls.SIDE_L if token_lower == cls.SIDE_R.lower(): return cls.SIDE_R def get_tokens(self): """ :return: All token without the side tokens. """ return [token for token in self.tokens if not self.get_side_from_token(token)] def resolve(self, *args): tokens = [] if self.prefix: tokens.append(self.prefix) if self.side: tokens.append(self.side) tokens.extend(self.tokens) tokens.extend(args) if self.suffix: tokens.append(self.suffix) name = self._join_tokens(tokens) # If we have name conflicts, we WILL want to crash. ''' # Prevent maya from crashing by guarantying that the name is unique. if cmds.objExists(name): name_old = name name = self.get_unique_name(name) cmds.warning("Name {0} already exist, using {1} instead.".format( name_old, name )) ''' return name def rename(self, obj, *args): name = self.resolve(*args) obj.rename(name) def __repr__(self): return self.resolve()
36094
from datetime import datetime import traceback import boto3 from botocore.exceptions import ClientError from ...config import config from ...log import log class Submitter(): def __init__(self, event): self.event = event def find_instance(self, instance_id, mac_address): # pylint: disable=R0201 # Instance IDs are unique to the region, not the account, so we have to check them all report_region = config.get('aws', 'region') ec2instance = None ec2_client = boto3.client("ec2") regions = [region["RegionName"] for region in ec2_client.describe_regions()["Regions"]] for region in regions: ec2 = boto3.resource("ec2", region_name=region) try: ec2instance = ec2.Instance(instance_id) found = False # Confirm the mac address matches for iface in ec2instance.network_interfaces: det_mac = mac_address.lower().replace(":", "").replace("-", "") ins_mac = iface.mac_address.lower().replace(":", "").replace("-", "") if det_mac == ins_mac: found = True if found: # pylint: disable=R1723 return region, ec2instance except ClientError: continue except Exception: # pylint: disable=W0703 trace = traceback.format_exc() log.exception(str(trace)) continue return report_region, ec2instance @staticmethod def send_to_securityhub(manifest): client = boto3.client('securityhub', region_name=config.get('aws', 'region')) check_response = {} found = False try: check_response = client.get_findings(Filters={'Id': [{'Value': manifest["Id"], 'Comparison': 'EQUALS'}]}) for _ in check_response["Findings"]: found = True except ClientError: pass import_response = False if not found: try: import_response = client.batch_import_findings(Findings=[manifest]) except ClientError as err: # Boto3 issue communicating with SH, throw the error in the log log.exception(str(err)) return import_response def submit(self): log.info("Processing detection: %s", self.event.detect_description) det_region = config.get('aws', 'region') send = False try: if self.event.instance_id: det_region, instance = self.find_instance(self.event.instance_id, self.event.device_details["mac_address"]) if instance is None: log.warning("Instance %s with MAC address %s not found in regions searched. Alert not processed.", self.event.instance_id, self.event.device_details["mac_address"]) return try: for _ in instance.network_interfaces: # Only send alerts for instances we can find send = True except ClientError: # Not our instance i_id = self.event.instance_id mac = self.event.device_details["mac_address"] log.info("Instance %s with MAC address %s not found in regions searched. Alert not processed.", i_id, mac) except AttributeError: # Instance ID was not provided by the detection log.info("Instance ID not provided by detection. Alert not processed.") if send: sh_payload = self.create_payload(det_region) response = self.send_to_securityhub(sh_payload) if not response: log.info("Detection already submitted to Security Hub. Alert not processed.") else: if response["SuccessCount"] > 0: submit_msg = f"Detection submitted to Security Hub. (Request ID: {response['ResponseMetadata']['RequestId']})" log.info(submit_msg) def create_payload(self, instance_region): region = config.get('aws', 'region') try: account_id = boto3.client("sts").get_caller_identity().get('Account') except KeyError: # Failed to get endpoint_resolver the first time, try it again account_id = boto3.client("sts").get_caller_identity().get('Account') severity_product = self.event.severity_value severity_normalized = severity_product * 20 payload = { "SchemaVersion": "2018-10-08", "ProductArn": "arn:aws:securityhub:{}:517716713836:product/crowdstrike/crowdstrike-falcon".format(region), "AwsAccountId": account_id, "SourceUrl": self.event.falcon_link, "GeneratorId": "Falcon Host", "CreatedAt": datetime.utcfromtimestamp(float(self.event.event_create_time) / 1000.).isoformat() + 'Z', "UpdatedAt": ((datetime.utcfromtimestamp(datetime.timestamp(datetime.now()))).isoformat() + 'Z'), "RecordState": "ACTIVE", "Severity": {"Product": severity_product, "Normalized": severity_normalized} } # Instance ID based detail try: payload["Id"] = f"{self.event.instance_id}{self.event.event_id}" payload["Title"] = "Falcon Alert. Instance: %s" % self.event.instance_id payload["Resources"] = [{"Type": "AwsEc2Instnace", "Id": self.event.instance_id, "Region": instance_region}] except AttributeError: payload["Id"] = f"UnknownInstanceID:{self.event.event_id}" payload["Title"] = "Falcon Alert" payload["Resources"] = [{"Type": "Other", "Id": f"UnknownInstanceId:{self.event.event_id}", "Region": region }] # Description aws_id = "" if self.event.cloud_provider_account_id: aws_id = f"| AWS Account for alerting instance: {self.event.cloud_provider_account_id}" payload["Description"] = f"{self.event.detect_description} {aws_id}" # TTPs try: payload["Types"] = ["Namespace: TTPs", "Category: %s" % self.event.original_event["event"]["Tactic"], "Classifier: %s" % self.event.original_event["event"]["Technique"] ] except KeyError: payload.pop("Types", None) # Running process detail try: payload["Process"] = {} payload["Process"]["Name"] = self.event.original_event["event"]["FileName"] payload["Process"]["Path"] = self.event.original_event["event"]["FilePath"] except KeyError: payload.pop("Process", None) # Network detail try: payload['Network'] = self.network_payload() except KeyError: pass return payload def network_payload(self): net = {} net['Direction'] = \ "IN" if self.event.original_event['event']['NetworkAccesses'][0]['ConnectionDirection'] == 0 else 'OUT' net['Protocol'] = self.event.original_event['event']['NetworkAccesses'][0]['Protocol'] net['SourceIpV4'] = self.event.original_event['event']['NetworkAccesses'][0]['LocalAddress'] net['SourcePort'] = self.event.original_event['event']['NetworkAccesses'][0]['LocalPort'] net['DestinationIpV4'] = self.event.original_event['event']['NetworkAccesses'][0]['RemoteAddress'] net['DestinationPort'] = self.event.original_event['event']['NetworkAccesses'][0]['RemotePort'] return net class Runtime(): def __init__(self): log.info("AWS Backend is enabled.") def is_relevant(self, falcon_event): # pylint: disable=R0201 return falcon_event.cloud_provider == 'AWS_EC2' def process(self, falcon_event): # pylint: disable=R0201 Submitter(falcon_event).submit() __all__ = ['Runtime']
36117
from zhixuewang.urls import BASE_URL class Url: INFO_URL = f"{BASE_URL}/container/container/student/account/" CHANGE_PASSWORD_URL = f"{BASE_URL}/portalcenter/home/updatePassword/" TEST_URL = f"{BASE_URL}/container/container/teacher/teacherAccountNew" GET_EXAM_URL = f"{BASE_URL}/classreport/class/classReportList/" GET_AcademicTermTeachingCycle_URL = f"{BASE_URL}/classreport/class/getAcademicTermTeachingCycle/" GET_REPORT_URL = f"{BASE_URL}/exportpaper/class/getExportStudentInfo" GET_MARKING_PROGRESS_URL = f"{BASE_URL}/marking/marking/markingProgressDetail" GET_EXAM_DETAIL_URL = f"{BASE_URL}/scanmuster/cloudRec/scanrecognition" GET_EXAM_SCHOOLS_URL = f"{BASE_URL}/exam/marking/schoolClass" GET_EXAM_SUBJECTS_URL = f"{BASE_URL}/configure/class/getSubjectsIncludeSubAndGroup" #后必须接上paperId # ORIGINAL_PAPER_URL = f"{BASE_URL}/classreport/class/student/checksheet/?userId=" ORIGINAL_PAPER_URL = f"{BASE_URL}/classreport/class/student/checksheet/"
36151
import pytest from ssz.sedes import Bitvector def test_bitvector_instantiation_bound(): with pytest.raises(ValueError): bit_count = 0 Bitvector(bit_count)
36168
import unittest import acpc_python_client as acpc from tools.constants import Action from weak_agents.action_tilted_agent import create_agent_strategy, create_agent_strategy_from_trained_strategy, TiltType from tools.io_util import read_strategy_from_file from evaluation.exploitability import Exploitability from tools.game_utils import is_strategies_equal, is_correct_strategy KUHN_POKER_GAME_FILE_PATH = 'games/kuhn.limit.2p.game' LEDUC_POKER_GAME_FILE_PATH = 'games/leduc.limit.2p.game' class WeakAgentsTests(unittest.TestCase): def test_kuhn_action_tilted_agent_not_crashing(self): strategy = create_agent_strategy( KUHN_POKER_GAME_FILE_PATH, Action.RAISE, TiltType.ADD, 0.2, cfr_iterations=20, cfr_weight_delay=2, show_progress=False) self.assertTrue(is_correct_strategy(strategy)) def test_leduc_add_action_tilted_agent_not_crashing(self): strategy = create_agent_strategy( LEDUC_POKER_GAME_FILE_PATH, Action.FOLD, TiltType.ADD, 0.1, cfr_iterations=5, cfr_weight_delay=2, show_progress=False) self.assertTrue(is_correct_strategy(strategy)) def test_leduc_multiply_action_tilted_agent_not_crashing(self): strategy = create_agent_strategy( LEDUC_POKER_GAME_FILE_PATH, Action.FOLD, TiltType.MULTIPLY, 0.1, cfr_iterations=5, cfr_weight_delay=2, show_progress=False) self.assertTrue(is_correct_strategy(strategy)) def test_kuhn_action_tilted_agent(self): kuhn_equilibrium, _ = read_strategy_from_file( KUHN_POKER_GAME_FILE_PATH, 'strategies/kuhn.limit.2p-equilibrium.strategy') game = acpc.read_game_file(KUHN_POKER_GAME_FILE_PATH) exploitability = Exploitability(game) tilted_agent_strategy = create_agent_strategy_from_trained_strategy( KUHN_POKER_GAME_FILE_PATH, kuhn_equilibrium, Action.RAISE, TiltType.ADD, 0.2) self.assertTrue(is_correct_strategy(tilted_agent_strategy)) self.assertTrue(not is_strategies_equal(kuhn_equilibrium, tilted_agent_strategy)) equilibrium_exploitability = exploitability.evaluate(kuhn_equilibrium) raise_add_tilted_exploitability = exploitability.evaluate(tilted_agent_strategy) self.assertTrue(raise_add_tilted_exploitability > equilibrium_exploitability) def test_kuhn_action_minus_tilted_agent(self): kuhn_equilibrium, _ = read_strategy_from_file( KUHN_POKER_GAME_FILE_PATH, 'strategies/kuhn.limit.2p-equilibrium.strategy') game = acpc.read_game_file(KUHN_POKER_GAME_FILE_PATH) exploitability = Exploitability(game) tilted_agent_strategy = create_agent_strategy_from_trained_strategy( KUHN_POKER_GAME_FILE_PATH, kuhn_equilibrium, Action.CALL, TiltType.ADD, -0.5) self.assertTrue(is_correct_strategy(tilted_agent_strategy)) self.assertTrue(not is_strategies_equal(kuhn_equilibrium, tilted_agent_strategy)) equilibrium_exploitability = exploitability.evaluate(kuhn_equilibrium) raise_add_tilted_exploitability = exploitability.evaluate(tilted_agent_strategy) self.assertTrue(raise_add_tilted_exploitability > equilibrium_exploitability)
36170
import functools import operator from collections.abc import Iterable from typing import overload, Union, TypeVar T = TypeVar('T') S = TypeVar('S') # <1> @overload def sum(it: Iterable[T]) -> Union[T, int]: ... # <2> @overload def sum(it: Iterable[T], /, start: S) -> Union[T, S]: ... # <3> def sum(it, /, start=0): # <4> return functools.reduce(operator.add, it, start)
36225
from camper.db import BarcampSchema, Barcamp import datetime def test_get_empty_registration_form(barcamps, barcamp): barcamps.save(barcamp) barcamp = barcamps.by_slug("barcamp") assert barcamp.registration_form == [] def test_add_to_registration_form(barcamps, barcamp): barcamps.save(barcamp) field = { 'name' : 'fullname', 'title' : 'Your full name, please', 'fieldtype' : 'textfield', 'description' : 'enter your full name here', 'required' : False, } barcamp = barcamps.by_slug("barcamp") barcamp.registration_form.append(field) barcamp.save() barcamp = barcamps.by_slug("barcamp") assert len(barcamp.registration_form) == 1 def test_save_registration_data(barcamps, barcamp): barcamps.save(barcamp) # create the field field = { 'name' : 'fullname', 'title' : 'Your full name, please', 'fieldtype' : 'textfield', 'description' : 'enter your full name here', 'required' : False, } barcamp = barcamps.by_slug("barcamp") barcamp.registration_form.append(field) barcamp.save() barcamp = barcamps.by_slug("barcamp") # use the field assert len(barcamp.registration_form) == 1
36230
from pathlib import Path from unittest.mock import call import pytest from dbt_sugar.core.clients.dbt import DbtProfile from dbt_sugar.core.config.config import DbtSugarConfig from dbt_sugar.core.flags import FlagParser from dbt_sugar.core.main import parser from dbt_sugar.core.task.audit import AuditTask from dbt_sugar.core.task.base import COLUMN_NOT_DOCUMENTED FIXTURE_DIR = Path(__file__).resolve().parent def __init_descriptions(datafiles): flag_parser = FlagParser(parser) config_filepath = Path(FIXTURE_DIR).joinpath("sugar_config.yml") flag_parser.consume_cli_arguments( test_cli_args=[ "audit", "--config-path", str(config_filepath), ] ) sugar_config = DbtSugarConfig(flag_parser) sugar_config.load_config() profile = DbtProfile( flags=flag_parser, profile_name="dbt_sugar_test", target_name=str(), profiles_dir=Path(datafiles), ) profile.read_profile() audit_task = AuditTask(flag_parser, FIXTURE_DIR, sugar_config=sugar_config, dbt_profile=profile) audit_task.dbt_definitions = {"columnA": "descriptionA", "columnB": "descriptionB"} audit_task.repository_path = Path("tests/test_dbt_project/") return audit_task @pytest.mark.parametrize( "dbt_definitions, result", [ pytest.param( {"columnA": "descriptionA", "columnB": "descriptionB"}, "100.0", id="all_columns_documented", ), pytest.param( {"columnA": COLUMN_NOT_DOCUMENTED, "columnB": COLUMN_NOT_DOCUMENTED}, "0.0", id="none_columns_documented", ), pytest.param( {"columnA": "descriptionA", "columnB": COLUMN_NOT_DOCUMENTED}, "50.0", id="half_columns_documented", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_get_project_total_test_coverage(datafiles, dbt_definitions, result): audit_task = __init_descriptions(datafiles) audit_task.dbt_definitions = dbt_definitions assert audit_task.get_project_total_test_coverage() == result @pytest.mark.parametrize( "failures, total, result", [ pytest.param( 0, 0, "0.0", id="calculate_failures_with_0_failures_and_total", ), pytest.param( 8, 10, "20.0", id="calculate_failures", ), pytest.param( 0, 10, "100.0", id="calculate_failures_with_0_failures", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_calculate_coverage_percentage(datafiles, failures, total, result): audit_task = __init_descriptions(datafiles) assert audit_task.calculate_coverage_percentage(misses=failures, total=total) == result @pytest.mark.parametrize( "data, total, result", [ pytest.param( [], "0.0", {}, id="check_results_with_data_being_empty", ), pytest.param( ["column_A"], "10.0", {"column_A": "", "": "", "Total": "10.0"}, id="check_results_with_one_data_element", ), pytest.param( ["column_A", "column_B"], "10.0", {"column_A": "", "column_B": "", "": "", "Total": "10.0"}, id="check_results_with_more_than_one_data_element", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_print_nicely_the_data(datafiles, data, total, result): audit_task = __init_descriptions(datafiles) assert audit_task.print_nicely_the_data(data=data, total=total) == result @pytest.mark.parametrize( "dbt_tests, model_name, call_input", [ pytest.param( { "dim_company": [ {"name": "id", "tests": []}, {"name": "name", "tests": []}, {"name": "age", "tests": []}, {"name": "address", "tests": ["not_null"]}, {"name": "salary", "tests": ["unique"]}, ], "stg_customers": [{"name": "customer_id", "tests": ["unique", "not_null"]}], }, "dim_company", [ call( columns=["Untested Columns", "% coverage"], data={"age": "", "id": "", "name": "", "": "", "Total": "40.0"}, title="Test Coverage", ) ], id="check_test_coverage_calculation", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_get_model_test_coverage(datafiles, mocker, dbt_tests, model_name, call_input): create_table = mocker.patch("dbt_sugar.core.task.audit.AuditTask.create_table") audit_task = __init_descriptions(datafiles) audit_task.model_name = model_name audit_task.dbt_tests = dbt_tests audit_task.get_model_test_coverage() create_table.assert_has_calls(call_input) @pytest.mark.parametrize( "dbt_tests, call_input", [ pytest.param( { "dim_company": [ {"name": "id", "tests": []}, {"name": "name", "tests": []}, {"name": "age", "tests": []}, {"name": "address", "tests": ["not_null"]}, {"name": "salary", "tests": ["unique"]}, ], "stg_customers": [{"name": "customer_id", "tests": ["unique", "not_null"]}], }, [ call( columns=["Model Name", "% coverage"], data={"dim_company": "40.0", "stg_customers": "100.0", "": "", "Total": "50.0"}, title="Test Coverage", ) ], id="check_test_coverage_calculation", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_get_project_test_coverage(datafiles, mocker, dbt_tests, call_input): create_table = mocker.patch("dbt_sugar.core.task.audit.AuditTask.create_table") audit_task = __init_descriptions(datafiles) audit_task.dbt_tests = dbt_tests audit_task.get_project_test_coverage() create_table.assert_has_calls(call_input) @pytest.mark.parametrize( "model_content, model_name, call_input", [ pytest.param( { "version": 2, "models": [ { "name": "dim_company", "description": "aa.", "columns": [ {"name": "id", "description": "No description for this column."}, {"name": "name", "description": "No description for this column."}, {"name": "age", "description": "No description for this column."}, { "name": "address", "description": "No description for this column.", "tests": ["not_null"], }, {"name": "salary", "description": "hey.", "tests": ["unique"]}, ], } ], }, "dim_company", [ call( columns=["Undocumented Columns", "% coverage"], data={"id": "", "name": "", "age": "", "address": "", "": "", "Total": "20.0"}, title="Documentation Coverage", ) ], id="check_column_description_coverage_calculation", ), ], ) @pytest.mark.datafiles(FIXTURE_DIR) def test_get_model_column_description_coverage( datafiles, mocker, model_content, model_name, call_input ): audit_task = __init_descriptions(datafiles) audit_task.get_model_column_description_coverage() create_table = mocker.patch("dbt_sugar.core.task.audit.AuditTask.create_table") audit_task = __init_descriptions(datafiles) audit_task.model_content = model_content audit_task.model_name = model_name audit_task.get_model_column_description_coverage() create_table.assert_has_calls(call_input)
36265
import logging from flask import Response, make_response, request from microraiden import HTTPHeaders as header from flask_restful.utils import unpack from microraiden.channel_manager import ( ChannelManager, ) from microraiden.exceptions import ( NoOpenChannel, InvalidBalanceProof, InvalidBalanceAmount, InsufficientConfirmations ) import microraiden.constants as constants from microraiden.proxy.resources.request_data import RequestData from functools import wraps from eth_utils import is_address log = logging.getLogger(__name__) class Paywall(object): def __init__(self, channel_manager, light_client_proxy=None ): super().__init__() assert isinstance(channel_manager, ChannelManager) assert is_address(channel_manager.channel_manager_contract.address) assert is_address(channel_manager.receiver) self.contract_address = channel_manager.channel_manager_contract.address self.receiver_address = channel_manager.receiver self.channel_manager = channel_manager self.light_client_proxy = light_client_proxy def access(self, resource, method, *args, **kwargs): if self.channel_manager.node_online() is False: return "Ethereum node is not responding", 502 if self.channel_manager.get_eth_balance() < constants.PROXY_BALANCE_LIMIT: return "Channel manager ETH balance is below limit", 502 try: data = RequestData(request.headers, request.cookies) except ValueError as e: return str(e), 409 accepts_html = ( 'text/html' in request.accept_mimetypes and request.accept_mimetypes.best != '*/*' ) headers = {} price = resource.price() # payment required if price > 0: paywall, headers = self.paywall_check(price, data) if paywall and accepts_html is True: reply_data = resource.get_paywall(request.path) return self.reply_webui(reply_data, headers) elif paywall: return make_response('', 402, headers) # all ok, return actual content resp = method(request.path, *args, **kwargs) # merge headers, resource headers take precedence headers_lower = {key.lower(): value for key, value in headers.items()} lower_to_case = {key.lower(): key for key in headers} if isinstance(resp, Response): resource_headers = (key for key, value in resp.headers) else: data, code, resource_headers = unpack(resp) for key in resource_headers: key_lower = key.lower() if key_lower in headers_lower: headers.pop(lower_to_case[key_lower]) if isinstance(resp, Response): resp.headers.extend(headers) return resp else: headers.update(resource_headers) return make_response(str(data), code, resource_headers) def paywall_check(self, price, data): """Check if the resource can be sent to the client. Returns (is_paywalled: Bool, http_headers: dict) """ headers = self.generate_headers(price) if not data.balance_signature: return True, headers # try to get an existing channel try: channel = self.channel_manager.verify_balance_proof( data.sender_address, data.open_block_number, data.balance, data.balance_signature) except InsufficientConfirmations as e: log.debug('Refused payment: Insufficient confirmations (sender=%s, block=%d)' % (data.sender_address, data.open_block_number)) headers.update({header.INSUF_CONFS: "1"}) return True, headers except NoOpenChannel as e: log.debug('Refused payment: Channel does not exist (sender=%s, block=%d)' % (data.sender_address, data.open_block_number)) headers.update({header.NONEXISTING_CHANNEL: "1"}) return True, headers except InvalidBalanceAmount as e: log.debug('Refused payment: Invalid balance amount: %s (sender=%s, block=%d)' % (str(e), data.sender_address, data.open_block_number)) headers.update({header.INVALID_PROOF: 1}) return True, headers except InvalidBalanceProof as e: log.debug('Refused payment: Invalid balance proof: %s (sender=%s, block=%d)' % (str(e), data.sender_address, data.open_block_number)) headers.update({header.INVALID_PROOF: 1}) return True, headers # set headers to reflect channel state assert channel.sender is not None assert channel.balance >= 0 headers.update( { header.SENDER_ADDRESS: channel.sender, header.SENDER_BALANCE: channel.balance }) if channel.last_signature is not None: headers.update({header.BALANCE_SIGNATURE: channel.last_signature}) amount_sent = data.balance - channel.balance if amount_sent != 0 and amount_sent != price: headers[header.INVALID_AMOUNT] = 1 # if difference is 0, it will be handled by channel manager return True, headers # set the headers to reflect actual state of a channel try: self.channel_manager.register_payment( channel.sender, data.open_block_number, data.balance, data.balance_signature) except (InvalidBalanceAmount, InvalidBalanceProof): # balance sent to the proxy is less than in the previous proof return True, headers # all ok, return premium content return False, headers # when are these generated? def generate_headers(self, price: int): assert price > 0 """Generate basic headers that are sent back for every request""" headers = { header.GATEWAY_PATH: constants.API_PATH, header.RECEIVER_ADDRESS: self.receiver_address, header.CONTRACT_ADDRESS: self.contract_address, header.TOKEN_ADDRESS: self.channel_manager.get_token_address(), header.PRICE: price, 'Content-Type': 'application/json' } return headers def reply_webui(self, reply_data='', headers: dict={}): headers.update({ "Content-Type": "text/html", }) reply = make_response(reply_data, 402, headers) for k, v in headers.items(): if k.startswith('RDN-'): reply.set_cookie(k, str(v)) return reply def paywall_decorator(func): """Method decorator for Flask's Resource object. It magically makes every method paywalled. Example: class MyPaywalledResource(Resource): method_decorators = [paywall_decorator] """ @wraps(func) def wrapper(*args, **kwargs): self = func.__self__ # get instance of the bound method return self.paywall.access( self, func, *args, **kwargs ) return wrapper
36272
from scipy import linalg from sklearn.decomposition import PCA from scipy.optimize import linear_sum_assignment as linear_assignment import numpy as np """ A function that takes a list of clusters, and a list of centroids for each cluster, and outputs the N max closest images in each cluster to its centroids """ def closest_to_centroid(clusters,centroids,nb_closest=20): output = [[] for i in range(len(centroids))] #print(clusters) for i in range(len(centroids)): centroid = centroids[i] cluster = clusters[i] try : cluste_temp = [x.cpu() if x.is_cuda else x for x in cluster] except : cluste_temp = cluster cluster = [list(x) for x in cluste_temp] nb_components = 7 if len(cluster)>10 else len(cluster) - 1 pca = PCA(n_components=nb_components) #args.sty_dim) if len(cluster) > nb_closest : cluster = pca.fit_transform(cluster) centroid = centroid.reshape(1, -1) centroid = pca.transform(centroid) distances = [linalg.norm(x-centroid) for x in cluster] duplicate_distances = distances distances.sort() if len(distances)>=nb_closest : distances = distances[:nb_closest] output[i] = [True if x in distances else False for x in duplicate_distances] return output def cluster_acc(y_true, y_pred): """ Calculate clustering accuracy. Require scikit-learn installed # Arguments y: true labels, numpy.array with shape `(n_samples,)` y_pred: predicted labels, numpy.array with shape `(n_samples,)` # Return accuracy, in [0,1] """ y_true = y_true.astype(np.int64) assert y_pred.size == y_true.size D = max(y_pred.max(), y_true.max()) + 1 w = np.zeros((D, D), dtype=np.int64) for i in range(y_pred.size): w[y_pred[i], y_true[i]] += 1 ind = linear_assignment(w.max() - w) indi = list(ind[0]) indj = list(ind[1]) the_sum = sum([w[i, j] for i, j in zip(indi,indj)]) return the_sum * 1.0 / y_pred.size
36278
import copy import time from datetime import datetime import binascii import graphviz import random from .models.enums.start_location import StartLocation from .models.enums.goal import Goal from .models.enums.statue_req import StatueReq from .models.enums.entrance_shuffle import EntranceShuffle from .models.enums.enemizer import Enemizer from .models.enums.logic import Logic from .models.randomizer_data import RandomizerData MAX_INVENTORY = 15 PROGRESS_ADJ = [1.5, 1.25, 1, 0.75] # Required items are more likely to be placed in easier modes MAX_CYCLES = 100 INACCESSIBLE = 9999 class World: # Assigns item to location def fill_item(self, item, location=-1,test=False,override_restrictions=False,print_log=False): if location == -1: return False elif self.item_locations[location][2]: if print_log: print("ERROR: Attempted to place an item in a full location") return False elif item in self.item_locations[location][4] and not override_restrictions: if print_log: print("ERROR: Attempt to place item in a restricted location:",[self.item_pool[item][3],self.item_locations[location][9]]) return False elif test: return True self.item_pool[item][0] -= 1 self.item_locations[location][2] = True self.item_locations[location][3] = item if print_log: print(" ",self.item_pool[item][3],"->",self.item_locations[location][9]) if self.is_accessible(self.item_locations[location][0]): self.items_collected.append(item) if location in self.open_locations[0]: self.open_locations[0].remove(location) elif location in self.open_locations[1]: self.open_locations[1].remove(location) self.placement_log.append([item, location]) #if self.item_locations[location][1] == 2: # self.check_logic() return True # Removes an assigned item and returns it to item pool def unfill_item(self, location=-1, print_log=False): if location == -1: return -1 elif not self.item_locations[location][2]: return -1 item = self.item_locations[location][3] self.item_locations[location][2] = False self.item_locations[location][3] = 0 self.item_pool[item][0] += 1 if print_log: print(" ",self.item_pool[item][3],"<-",self.item_locations[location][9],"removed") if self.is_accessible(self.item_locations[location][0]): if item in self.items_collected: self.items_collected.remove(item) type = self.item_pool[item][1] if location not in self.open_locations[type-1]: self.open_locations[type-1].append(location) for x in self.placement_log: if x[1] == location: self.placement_log.remove(x) return item # Converts item pool into list of unique items, returns list def list_item_pool(self, type=0, items=[], progress_type=0): item_list = [] for x in self.item_pool: if not items or x in items: if not type or type == self.item_pool[x][1]: if not progress_type or progress_type == self.item_pool[x][5]: i = 0 while i < self.item_pool[x][0]: item_list.append(x) i += 1 return item_list # Returns a list of unfilled item locations def list_item_locations(self): locations = [] for x in self.item_locations: locations.append(x) return locations # Returns list of graph edges def list_logic(self): edges = [] for x in self.logic: edges.append(x) return edges # Checks if one list is contained inside another list def is_sublist(self, list, sublist): if sublist == []: return True elif sublist == list: return True elif len(sublist) > len(list): return False l = list[:] for x in sublist: if x in l: l.remove(x) else: return False return True # Returns lists of accessible item, ability, and statue locations def find_open_locations(self): # Accessible open location for items, abilities, and Mystic Statues locations = [[], [], [], []] for x in self.item_locations: region = self.item_locations[x][0] type = self.item_locations[x][1] if self.graph[region][0] and not self.item_locations[x][2]: locations[type - 1].append(x) self.open_locations[0] = locations[0][:] self.open_locations[1] = locations[1][:] return locations # Returns graph node of an item location def location_node(self, location_id=-1,print_log=False): if location_id not in self.item_locations: if print_log: print("ERROR: Invalid item location", location_id) return False else: return self.item_locations[location_id][0] # Returns whether an item location is already filled with an item def is_filled(self, location_id=-1,print_log=False): if location_id not in self.item_locations: if print_log: print("ERROR: Invalid item location", location_id) return False else: return self.item_locations[location_id][2] # Zeroes out accessible flags for all world regions def is_accessible(self, node_id=-1): if node_id not in self.graph: return False elif self.graph[node_id][0]: return True else: return False # Zeroes out accessible flags for all world regions def unsolve(self,reset_graph=False): for x in self.graph: self.graph[x][0] = False if reset_graph: self.graph[x][4] = 0 self.graph[x][8].clear() self.graph[x][9].clear() self.graph[x][10] = self.graph[x][1][:] for x in self.logic: if self.logic[x][0] == 1: self.logic[x][0] = 0 return True # Resets collected items and other traversal data def reset_progress(self,reset_graph=False): self.visited.clear() self.items_collected.clear() self.item_destinations.clear() self.open_locations = [[],[]] self.open_edges = [] self.unsolve(reset_graph) return True # Finds every accessible node in the graph # Collects items into self.items_collected, edges into self.open_edges def traverse(self,to_visit=[],test=False,print_log=False): if print_log: print(" Beginning traversal...") visited = [] new_items = [] if not to_visit: to_visit.append(0) while to_visit: node = to_visit.pop(0) visited.append(node) if print_log: print(" Visiting:",self.graph[node][5]) # If we haven't been here yet... if not self.graph[node][0]: # Get the newly-accessible items and record open item/ability locations new_items += self.visit_node(node,test,print_log) # Queue up newly-accessible places to visit for x in self.graph[node][10]: if x != node and not self.is_accessible(x) and x not in to_visit+visited: to_visit.insert(0,x) if print_log: print(" -Discovered:",self.graph[x][5]) # If we've run out of places to visit, check if logic has opened up any new nodes if not to_visit: open_edges = self.get_open_edges(visited) bad_edges = [] if print_log: print(" Ran out of places - updating logic:") for edge in open_edges: dest = self.logic[edge][2] if self.check_edge(edge,[],False) and dest not in to_visit: self.logic[edge][0] = 1 to_visit.append(dest) if print_log: print(" -Discovered:",self.graph[dest][5]) else: bad_edges.append(edge) if not test: self.open_edges = bad_edges return [visited,new_items] # Return list of logic edges that originate in an accessible node and end in an inaccessible node def get_open_edges(self,nodes=[]): test_edges = self.open_edges[:] open_edges = [] for x in nodes: if not self.is_accessible(x): test_edges += self.graph[x][12] for edge in test_edges: origin = self.logic[edge][1] dest = self.logic[edge][2] if self.logic[edge][0] >= 0 and not self.is_accessible(dest) and dest not in nodes: open_edges.append(edge) return open_edges # Visit a node, update graph info, return new items collected def visit_node(self,node,test=False,print_log=False): if not test and not self.graph[node][0]: self.graph[node][0] = True self.visited.append(node) self.item_destinations += self.graph[node][6] self.open_edges += self.graph[node][12] return self.collect_items(node,test,print_log) # Collect all items in given node def collect_items(self,node=-1,test=False,print_log=False): if node not in self.graph: return False items_found = [] for location in self.graph[node][11]: if self.item_locations[location][2]: items_found.append(self.item_locations[location][3]) if not test: self.items_collected.append(self.item_locations[location][3]) if print_log: print(" -Collected:",self.item_pool[self.item_locations[location][3]][3]) elif self.item_locations[location][1] == 1 and not test: self.open_locations[0].append(location) if print_log: print(" -Discovered:",self.item_locations[location][9]) elif self.item_locations[location][1] == 2 and not test: self.open_locations[1].append(location) if print_log: print(" -Discovered:",self.item_locations[location][9]) return items_found # Returns full list of accessible locations def accessible_locations(self, item_locations): accessible = [] for x in item_locations: region = self.item_locations[x][0] if self.is_accessible(region): accessible.append(x) return accessible # Returns full list of inaccessible locations def inaccessible_locations(self, item_locations): inaccessible = [] for x in item_locations: region = self.item_locations[x][0] if not self.is_accessible(region): inaccessible.append(x) return inaccessible # Fill a list of items randomly in a list of locations def random_fill(self, items=[], item_locations=[], accessible=True, print_log=False): if not items: return True elif not item_locations: return False to_place = items[:] to_fill = item_locations[:] while to_place: item = to_place.pop(0) item_type = self.item_pool[item][1] placed = False i = 0 for dest in to_fill: if not placed: region = self.item_locations[dest][0] location_type = self.item_locations[dest][1] filled = self.item_locations[dest][2] restrictions = self.item_locations[dest][4] if not filled and item_type == location_type and item not in restrictions: if not accessible or region != INACCESSIBLE: if self.fill_item(item, dest, False, False, print_log): to_fill.remove(dest) placed = True return True # Place list of items into random accessible locations def forward_fill(self, items=[], item_locations=[], test=False, override_restrictions=False, print_log=False): if not items: return True elif not item_locations: if print_log: print("ERROR: No item locations given") return False to_place = items[:] to_fill =[[],[],[]] for loc in item_locations: if not self.item_locations[loc][2] and self.is_accessible(self.item_locations[loc][0]): loc_type = self.item_locations[loc][1] to_fill[loc_type-1].append(loc) quarantine = [[],[],[]] filled_locations = [] while to_place: item = to_place.pop(0) item_type = self.item_pool[item][1] filled = False while not filled and to_fill[item_type-1]: location = to_fill[item_type-1].pop(0) if self.fill_item(item,location,test,override_restrictions,print_log): filled = True filled_locations.append(location) to_fill[item_type-1] += quarantine[item_type-1] else: quarantine[item_type-1].append(location) items.append(item) if not filled: if print_log: print("ERROR: Not enough room to place items") return False return True # Convert a prerequisite to a list of items needed to fulfill it def items_needed(self, edge=0): if not edge: return [] prereq = [] for req in self.logic[edge][4]: item = req[0] ct = req[1] i = 0 while i < ct: prereq.append(item) i += 1 if not self.items_collected: return prereq prereq_new = [] items_new = self.items_collected[:] while prereq: x = prereq.pop(0) if x in items_new: items_new.remove(x) else: prereq_new.append(x) return prereq_new # Returns list of item combinations that grant progression # Returns progression list in the following categories: [[available],[not enough room],[too many inventory items]] def progression_list(self,open_edges=[]): if not open_edges: open_edges = self.get_open_edges() all_items = self.list_item_pool(1) #open_locations = self.find_open_locations() open_locations = len(self.open_locations[0]) prereq_list = [[],[],[]] # [[available],[not enough room],[too many inventory items]] ds_list = [] for edge in open_edges: prereq = self.items_needed(edge) if prereq and prereq not in prereq_list[0] and self.is_sublist(all_items, prereq): if prereq not in prereq_list[1] and not self.forward_fill(prereq,self.open_locations[0],True,self.logic_mode == "Chaos"): prereq_list[1].append(prereq) elif prereq not in prereq_list[2]: dest = self.logic[edge][2] traverse_result = self.traverse([dest],True) new_nodes = traverse_result[0] start_items_temp = self.items_collected[:] + prereq + traverse_result[1] item_destinations_temp = self.item_destinations[:] for x in new_nodes: item_destinations_temp += self.graph[x][6] inv_temp = self.get_inventory(start_items_temp,item_destinations_temp) if len(inv_temp) <= MAX_INVENTORY: if self.entrance_shuffle == "None" or self.check_ds_access(dest,False,start_items_temp): prereq_list[0].append(prereq) else: ds_list.append(prereq) else: prereq_list[2].append(prereq) if prereq_list == [[],[],[]]: prereq_list[0] += ds_list return prereq_list # Find and clear non-progression item to make room for progression item def make_room(self, progression_result, print_log=False): # For inventory bottlenecks, remove one inventory item and try again if not progression_result[1] and progression_result[2]: return self.remove_nonprog(1,0,True,print_log) success = False for node in self.visited: if not success: for x in self.graph[node][11]: if self.is_filled(x) and self.item_pool[self.item_locations[x][3]][5]>1: if self.unfill_item(x,print_log): success = True return success #### THIS IS OLD, OBSELETE CODE # non_prog_locations = [[],[]] # open_locations = len(self.open_locations[0]) # open_abilities = len(self.open_locations[1]) # unfilled = [] # min_prereqs = [] # min_item_ct = 0 # min_ability_ct = 0 # progression_list = progression_result[1][:] # while progression_list: # prereq = progression_list.pop(0) # items_needed = -open_locations # abilities_needed = -open_abilities # for x in prereq: # if self.item_pool[x][1] == 1: # items_needed += 1 # elif self.item_pool[x][1] == 2: # abilities_needed += 1 # items_needed = max(0,items_needed) # abilities_needed = max(0,abilities_needed) # if not min_prereqs or min_item_ct+min_ability_ct > items_needed + abilities_needed: # min_prereqs = [prereq] # min_item_ct = items_needed # min_ability_ct = abilities_needed # elif min_prereqs and min_item_ct == items_needed and min_ability_ct == abilities_needed: # min_prereqs.append(prereq) # # if not self.remove_nonprog(min_item_ct,min_ability_ct,False,print_log): # if print_log: # print("ERROR: Could not make room") # return False # # return min_prereqs # Remove an accessible non-progression item to make room for a progression item def remove_nonprog(self,item_ct=0,ability_ct=0,inv=False,print_log=False): junk_locations = [[],[]] quest_locations = [[],[]] for location in self.item_locations: if self.item_locations[location][2] and self.is_accessible(self.item_locations[location][0]): item = self.item_locations[location][3] type = self.item_pool[item][1] prog_type = self.item_pool[item][5] inv_type = self.item_pool[item][4] if type <= 2: if prog_type == 2: quest_locations[type-1].append(location) elif prog_type == 3: if not inv or inv_type: junk_locations[type-1].append(location) random.shuffle(junk_locations[0]) random.shuffle(junk_locations[1]) random.shuffle(quest_locations[0]) random.shuffle(quest_locations[1]) quest = False type = 1 locations = junk_locations[0] count = item_ct done = False items_removed = [] while not done: if not count and type == 1: type == 2 count = ability_ct quest = False locations = junk_locations[1] if not count and type == 2: done = True else: if not locations and not quest: quest = True locations = quest_locations[type-1] if not locations: if print_log: print("ERROR: Not enough room") return False location = locations.pop(0) items_removed.append(self.unfill_item(location)) count -= 1 if print_log: print(" Removed these items:",items_removed) return items_removed # Converts a progression list into a normalized Monte Carlo distribution def monte_carlo(self, progression_ls=[], start_items=[]): if not progression_ls: return [] progression = progression_ls[:] items = self.list_item_pool(1) abilities = self.list_item_pool(2) all_items = items + abilities sum_items = len(items) sum_abilities = len(abilities) probability = [] monte_carlo = [] sum_prob = 0 sum_edges = 0 probabilities = [] idx = 0 while progression: current_prereq = progression.pop(0) prereqs = current_prereq[:] probability = 1.0 i = 0 j = 0 while prereqs: item = prereqs.pop(0) if item in all_items: if self.item_pool[item][1] == 1: probability *= float(self.item_pool[item][0]) / float((sum_items - i)) i += 1 elif self.item_pool[item][1] == 2: probability *= float(self.item_pool[item][0]) / float((sum_abilities - j)) j += 1 if item in self.required_items: probability *= PROGRESS_ADJ[self.difficulty] probabilities.append([probability, idx]) sum_prob += probability sum_edges += 1 idx += 1 prob_adj = 100.0 / sum_prob rolling_sum = 0.0 for x in probabilities: x[0] = x[0] * prob_adj + rolling_sum rolling_sum = x[0] # print probabilities return probabilities # Returns a list of map lists, by boss def get_maps(self): maps = [[], [], [], [], [], [], []] for map in self.maps: boss = self.maps[map][1] maps[boss].append(map) maps.pop(0) return maps # Randomize map-clearing rewards def map_rewards(self): maps = self.get_maps() # print maps for area in maps: random.shuffle(area) boss_rewards = 4 # Total rewards by type, by level (HP/STR/DEF) if "Z3 Mode" in self.variant: rewards_tier1 = [1] * 6 # Expert: 6 HP rewards_tier2 = [1] * 6 # Advanced: 12 HP rewards_tier3 = [1] * 6 # Intermediate: 18 HP rewards_tier4 = [] # Beginner: 18 HP else: # Remove all HP upgrades rewards_tier1 = [1,1,1,1,1,1] # Expert: 6/0/0 rewards_tier2 = [1,1,2,2,3,3] # Advanced: 8/2/2 rewards_tier3 = [1,1,2,2,3,3] # Intermediate: 10/4/4 rewards_tier4 = [2,2,2,3,3,3] # Beginner: 10/7/7 # Remove HP upgrades in OHKO if "OHKO" in self.variant: for n, i in enumerate(rewards_tier1): if i == 1: rewards_tier1[n] = 0 for n, i in enumerate(rewards_tier2): if i == 1: rewards_tier2[n] = 0 for n, i in enumerate(rewards_tier3): if i == 1: rewards_tier3[n] = 0 for n, i in enumerate(rewards_tier4): if i == 1: rewards_tier4[n] = 0 random.shuffle(rewards_tier1) random.shuffle(rewards_tier2) random.shuffle(rewards_tier3) random.shuffle(rewards_tier4) # Allocate rewards to maps for area in maps: random.shuffle(area) self.maps[area[0]][2] = [rewards_tier1.pop(0),1] self.maps[area[1]][2] = [rewards_tier2.pop(0),2] self.maps[area[2]][2] = [rewards_tier3.pop(0),3] if rewards_tier4: self.maps[area[3]][2] = [rewards_tier4.pop(0),4] else: self.maps[area[3]][2] = [0,4] # Place Mystic Statues in World def fill_statues(self, locations=[148, 149, 150, 151, 152, 153]): if self.statue_req == StatueReq.PLAYER_CHOICE.value: return self.random_fill([106]*6, locations) return self.random_fill([100, 101, 102, 103, 104, 105], locations) def lock_dark_spaces(self,print_log=False): nodes = [] for edge in self.logic: if self.logic[edge][0] >-1 and self.logic[edge][3]: nodes.append(self.logic[edge][1]) for node in nodes: if not self.check_ds_access(node, True): if print_log: print("ERROR: No Dark Space could be accessed ") return False else: found_locked_ds = False nodes_to_check = self.graph[node][9][:] random.shuffle(nodes_to_check) while not found_locked_ds and nodes_to_check: ds_node = nodes_to_check.pop(0) ds_loc = self.ds_locations[self.ds_nodes.index(ds_node)] if self.item_locations[ds_loc][2] and not self.item_locations[ds_loc][3]: found_locked_ds = True #if print_log: # print(" -Found:",self.item_locations[ds_loc][9]) if not found_locked_ds: self.item_locations[ds_loc][2] = True if self.item_locations[ds_loc][3]: self.unfill_item(ds_loc) if print_log: print(" -Locked:",self.item_locations[ds_loc][9]) return True # Determine an exit's direction (e.g. outside to inside) def is_exit_coupled(self,exit,print_log=False): if exit not in self.exits: return False if self.exits[exit][0]: sister_exit = self.exits[exit][0] if self.exits[sister_exit][0] == exit: return sister_exit else: if print_log: print("WARNING: Exits linked incorrectly",exit,sister_exit) return sister_exit return False # Determine an exit's direction (e.g. outside to inside) def exit_direction(self,exit): if exit not in self.exits: return False origin = self.exits[exit][3] dest = self.exits[exit][4] if self.graph[origin][2] == 2: o_type = 2 else: o_type = 1 if self.graph[dest][2] == 2: d_type = 2 else: d_type = 1 # return (o_type,d_type) if o_type == 2 and d_type == 2: return (1,1) else: return d_type # Get lists of unmatched origin/destination exits # def get_remaining_exits(self): # exits_remaining = [[],[]] # for exit in self.exits: # if self.exits[exit][1] == -1: # exits_remaining[0].append(exit) # if self.exits[exit][2] == -1: # exits_remaining[1].append(exit) # return exits_remaining # Link one exit to another def link_exits(self, origin_exit, dest_exit, print_log=False, check_connections=True, update_graph=True): if origin_exit not in self.exits: if print_log: print("ERROR: Invalid origin (link)", origin_exit) return False if dest_exit not in self.exits: if print_log: print("ERROR: Invalid destination (link)", dest_exit) return False if print_log and self.exits[origin_exit][1] != -1 and origin_exit > 21: print("WARNING: Origin already linked", origin_exit) if print_log and self.exits[dest_exit][2] != -1 and dest_exit > 21: print("WARNING: Destination already linked", dest_exit) self.exits[origin_exit][1] = dest_exit self.exits[dest_exit][2] = origin_exit self.exit_log.append([origin_exit,dest_exit]) if print_log: print(" Linked",self.exits[origin_exit][10], "-", self.exits[dest_exit][10]) if update_graph and self.exits[origin_exit][5]: origin = self.exits[origin_exit][3] dest = self.exits[dest_exit][4] if dest not in self.graph[origin][1]: self.graph[origin][1].append(dest) self.new_connection(origin,dest) if (origin_exit <= 21 or self.entrance_shuffle != "Uncoupled") and check_connections and self.is_exit_coupled(origin_exit) and self.is_exit_coupled(dest_exit): new_origin = self.exits[dest_exit][0] new_dest = self.exits[origin_exit][0] if new_origin <= 21: # Boss exits if self.exits[new_origin][5] or new_origin in self.exits_detailed: self.link_exits(new_origin, new_dest, print_log, False, update_graph) else: if self.exits[new_origin][1] != -1 or self.exits[new_dest][2] != -1: if print_log: print("WARNING: Return exit already linked:",new_origin,new_dest) else: self.link_exits(new_origin, new_dest, print_log, False, update_graph) return True # Unlinks two previously linked exits def unlink_exits(self, origin_exit, dest_exit, print_log=False, check_connections=True, update_graph=True): if origin_exit not in self.exits: if print_log: print("ERROR: Invalid origin (unlink)", origin_exit) return False if dest_exit not in self.exits: if print_log: print("ERROR: Invalid destination (unlink)", dest_exit) return False if print_log and (self.exits[origin_exit][1] != dest_exit or self.exits[dest_exit][2] != origin_exit): if print_log: print("WARNING: Attempted to unlink exits that are not correctly linked:", origin_exit, dest_exit) self.exits[origin_exit][1] = -1 self.exits[dest_exit][2] = -1 for x in self.exit_log: if x[0] == origin_exit: self.exit_log.remove(x) if print_log: print(" Unlinked",self.exits[origin_exit][10], "-", self.exits[dest_exit][10]) if update_graph and self.exits[origin_exit][5]: origin = self.exits[origin_exit][3] dest = self.exits[dest_exit][4] if dest in self.graph[origin][1]: self.graph[origin][1].remove(dest) if dest in self.graph[origin][10]: self.graph[origin][10].remove(dest) if self.entrance_shuffle != "Uncoupled" and check_connections and self.is_exit_coupled(origin_exit) and self.is_exit_coupled(dest_exit): new_origin = self.exits[dest_exit][0] new_dest = self.exits[origin_exit][0] self.unlink_exits(new_origin, new_dest, print_log, False, update_graph) if check_connections and update_graph: self.update_graph(True,True,True,print_log) return True def print_exit_log(self,exit_log=[]): for origin,dest in exit_log: print(self.exits[origin][10],"-",self.exits[dest][10]) # Returns lists of origin exits and destination exits that open up new nodes def get_open_exits(self,check_progression=False): open_exits = [[],[]] for node in self.graph: if not check_progression or self.is_accessible(node): for exit in self.graph[node][14]: if self.exits[exit][1] == -1: open_exits[0].append(exit) if not check_progression or not self.is_accessible(node): for exit in self.graph[node][15]: if self.exits[exit][2] == -1: open_exits[1].append(exit) return open_exits # Takes a list of origin and destination exits, returns a suitable match def find_exit(self,origin_exits_ls=[],dest_exits_ls=[],print_log=False,check_direction=False,check_progression=False,check_ds_access=False,test=False): if not origin_exits_ls: if print_log: print("ERROR: No accessible exits available") return False elif not dest_exits_ls: if print_log: print("ERROR: No destination exits available") return False origin_exits = origin_exits_ls[:] dest_exits = dest_exits_ls[:] done = False quarantine_o = [] while not done and origin_exits: origin_exit = 0 while not origin_exit and origin_exits: origin_exit = origin_exits.pop(0) origin = self.exits[origin_exit][3] sister_exit = self.exits[origin_exit][0] if self.exits[origin_exit][1] != -1 or (check_progression and not self.is_accessible(origin)): origin_exit = 0 if not origin_exit: if print_log: print("ERROR: No accessible exits available") return False direction = self.exit_direction(origin_exit) dest_exit = 0 quarantine_d = [] while not done and dest_exits: try_link = False while not dest_exit and dest_exits: dest_exit = dest_exits.pop(0) dest = self.exits[dest_exit][4] if self.exits[dest_exit][2] != -1 or (check_progression and self.is_accessible(dest)): dest_exit = 0 if not dest_exit: if print_log: print("ERROR: No destination exits available") return False direction_new = self.exit_direction(dest_exit) if dest_exit != sister_exit and (not check_direction or direction_new == direction): try_link = True if self.link_exits(origin_exit,dest_exit,print_log,self.entrance_shuffle != "Uncoupled",True): if True: # or not check_ds_access or self.check_ds_access(dest): done = True origin_final = origin_exit dest_final = dest_exit if not done: quarantine_d.append(dest_exit) if try_link: self.unlink_exits(origin_exit,dest_exit,print_log,True,True) dest_exit = 0 if not done: quarantine_o.append(origin_exit) dest_exits += quarantine_d quarantine_d.clear() if not done: if print_log: print("ERROR: No suitable links could be found - in quarantine:",quarantine_o) return False # Clean up O/D lists origin_exits += quarantine_o for exit in origin_exits: if self.exits[exit][1] != -1: origin_exits.remove(exit) for exit in dest_exits: if self.exits[exit][2] != -1: dest_exits.remove(exit) return [origin_final,dest_final,origin_exits,dest_exits] # Check if you can access one node from another def check_access(self,origin=-1,dest=-1,check_mutual=False,print_log=False): if origin not in self.graph or dest not in self.graph: return False if self.graph[origin][7] or self.graph[dest][7]: return False success = False if origin == dest or dest in self.graph[origin][10]: success = True to_visit = self.graph[origin][10][:] visited = [origin] while not success and to_visit: node = to_visit.pop(0) visited.append(node) if not self.graph[node][7] and dest in self.graph[node][10]: success = True else: for x in self.graph[node][10]: if x not in to_visit+visited: to_visit.append(x) if not check_mutual or not success: return success return self.check_access(dest,origin,False,print_log) # Build islands, i.e. mutually-accessible nodes def build_islands(self,print_log=False): islands = [] visited = [] start_island = [] for node in self.graph: if node not in visited and self.graph[node][2]: to_visit = [node] new_nodes = [] origin_exits = [] dest_exits = [] origin_logic = [] dest_logic = [] is_start = False is_island = False while to_visit: x = to_visit.pop(0) visited.append(x) new_nodes.append(x) if 0 in self.graph[x][8]: is_start = True for exit in self.graph[x][14]: if self.exits[exit][1] == -1: origin_exits.append(exit) for exit in self.graph[x][15]: if self.exits[exit][2] == -1: dest_exits.append(exit) for edge in self.graph[x][12]: if self.logic[edge][0] == 0: origin_logic.append(edge) for edge in self.graph[x][13]: if self.logic[edge][0] == 0: dest_logic.append(edge) for y in self.graph[x][10]: if y not in visited+to_visit: if self.check_access(x,y,True,print_log): to_visit.append(y) island = [new_nodes,origin_exits,dest_exits,origin_logic,dest_logic] if is_start: start_island = island else: islands.append(island) return [start_island,islands] # Entrance randomizer def shuffle_exits(self,print_log=False): # Map passages and internal dungeon exits to graph and list all available exits one_way_exits = [] for x in self.exits: if self.is_exit_coupled(x) and (not self.exits[x][3] or not self.exits[x][4]): # Map missing O/D data for coupled exits xprime = self.exits[x][0] self.exits[x][3] = self.exits[xprime][4] self.exits[x][4] = self.exits[xprime][3] if not self.exits[x][1] and (self.exits[x][5] or self.exits[x][6]) and not self.exits[x][7] and (not self.exits[x][8] or self.exits[x][9]): self.exits[x][1] = -1 # Mark exit for shuffling self.exits[x][2] = -1 if not self.is_exit_coupled(x): one_way_exits.append(x) self.graph[self.exits[x][3]][14].append(x) self.graph[self.exits[x][4]][15].append(x) # Preserve Mu key door link self.link_exits(310,310,print_log) # Set aside Jeweler's final exit in RJH seeds if self.goal == "Red Jewel Hunt": self.link_exits(720,720,print_log) # If in Coupled mode, map one_way exits first exit_log = [] if self.entrance_shuffle == "Coupled": one_way_dest = one_way_exits[:] random.shuffle(one_way_dest) while one_way_exits: exit1 = one_way_exits.pop() exit2 = one_way_dest.pop() self.link_exits(exit1, exit2, print_log, False) exit_log.append([exit1,exit2]) if print_log: print( "One-way exits mapped") # Assume all items and abilities all_items = self.list_item_pool(1) + self.list_item_pool(2) self.items_collected = all_items self.update_graph(True,True,True,print_log) if print_log: print(" Graph updated. Beginning exit shuffle...") # for x in self.graph: # print(x,self.graph[x]) # Build world skeleton with islands self.unsolve() island_result = self.build_islands() start_island = island_result[0] islands = island_result[1] islands_built = [] traverse_result = self.traverse() visited = traverse_result[0] origin_exits = [] for node in visited: origin_exits += self.graph[node][14] if print_log: # i = 0 # for x in islands: # i += 1 # print("Island",i,x[1],x[2]) # for y in x[0]: # print("-",self.graph[y][5]) print(" Assembling islands...") random.shuffle(islands) check_direction = True check_progression = True quarantine = [] while islands: island = islands.pop(0) nodes_new = island[0] origin_exits_new = island[1] dest_exits_new = island[2] # if print_log: # for y in nodes_new: # print("-",self.graph[y][5]) if not dest_exits_new or not origin_exits_new or self.is_accessible(nodes_new[0]): if print_log and False: print(" NOT ELIGIBLE") else: if (check_progression and not origin_exits_new) or (self.entrance_shuffle == "Coupled" and (len(origin_exits_new) < 2 or len(dest_exits_new) < 2)): quarantine.append(island) # if print_log: # print(" REJECTED") else: # if print_log: # print(" ATTEMPTING...") random.shuffle(origin_exits) random.shuffle(dest_exits_new) result = self.find_exit(origin_exits,dest_exits_new,print_log,check_direction,True) if not result: quarantine.append(island) else: traverse_result = self.traverse(island[0]) visited += traverse_result[0] progression_result = self.get_open_exits() origin_exits = progression_result[0] check_direction = True if not islands: if check_direction: check_direction = False islands += quarantine quarantine.clear() elif check_progression: check_progression = False check_direction = True islands += quarantine quarantine.clear() if print_log: print(" Island construction complete") # Check island Dark Space access, map exits accordingly self.reset_progress() #self.initialize_ds() self.update_graph(True,True,True) island_result = self.build_islands() islands = island_result[1] islands_no_ds = [] for island in islands: if self.is_accessible(island[0][0]) and not self.check_ds_access(island[0][0]): islands_no_ds.append(island) if islands_no_ds: if print_log: print("Islands with no DS access:") i = 0 for x in islands_no_ds: i += 1 print("Island",x) for y in x[0]: print("-",self.graph[y][5]) dest_exits_ds = [] for node in self.graph: if node not in visited and self.check_ds_access(node): for exit in self.graph[node][15]: if self.exits[exit][2] == -1: dest_exits_ds.append(exit) while islands_no_ds: island = islands_no_ds.pop(0) result = self.find_exit(island[1],dest_exits_ds,print_log,check_direction) if not result: if print_log: print("ERROR: Could not find Dark Space access") return False else: dest_exits_ds = result[3] if print_log: print(" Dark Space access check successful") # Clean up the rest of the exits self.reset_progress() self.update_graph(True,True,True) self.traverse() check_progression = True check_direction = True while origin_exits: progression_result = self.get_open_exits(check_progression) origin_exits = progression_result[0] dest_exits = progression_result[1] random.shuffle(origin_exits) random.shuffle(dest_exits) if origin_exits: result = self.find_exit(origin_exits,dest_exits,print_log,check_direction,check_progression,True,False) if result: origin_exit = result[0] dest_exit = result[1] dest = self.exits[dest_exit][4] self.traverse([dest]) elif check_direction: check_direction = False elif check_progression: check_progression = False check_direction = True if print_log: print(" Finished mapping progression exits") else: if print_log: print("WARNING: This shouldn't happen") origin_exits = [] # Quality check for missing exits origin_exits = [] dest_exits = [] for exit in self.exits: if self.exits[exit][1] == -1: if print_log: print("How'd we miss this one??", self.exits[exit][10]) origin_exits.append(exit) if self.exits[exit][2] == -1: if print_log: print("This one too??", self.exits[exit][10]) dest_exits.append(exit) while origin_exits: origin_exit = origin_exits.pop(0) if not dest_exits: if print_log: print("ERROR: Entrance rando failed") return False dest_exit = dest_exits.pop(0) self.link_exits(origin_exit,dest_exit,print_log,self.entrance_shuffle != "Uncoupled") # Wrap it up # self.reset_progress() # self.update_graph(True,True,True) if print_log: print("Entrance rando successful!") return True def initialize_ds(self): # Clear DS access data from graph for x in self.graph: self.graph[x][4] = 0 self.graph[x][9].clear() # Find nodes that contain Dark Spaces pyramid_ds_id = 130 # Special case for Pyramid DS self.ds_locations = [pyramid_ds_id] self.ds_nodes = [self.item_locations[pyramid_ds_id][0]] self.freedan_locations = self.ds_locations[:] self.freedan_nodes = self.ds_nodes[:] for x in self.item_locations: if self.item_locations[x][1] == 2: self.ds_locations.append(x) self.ds_nodes.append(self.item_locations[x][0]) if not self.is_sublist(self.item_locations[x][4], [64, 65, 66]) and self.item_locations[x][3] not in [61,62,63,64,65,66]: self.freedan_locations.append(x) self.freedan_nodes.append(self.item_locations[x][0]) return True # Translates logic and exits to world graph def update_graph(self,update_logic=True,update_ds=True,update_exits=False,print_log=False): if print_log: print("Updating graph...") if update_exits: for exit in self.exits: if exit > 21 or self.exits[exit][5] or exit in self.exits_detailed: # Check if exit has been shuffled if self.exits[exit][1] > 0: new_exit = self.exits[exit][1] elif self.exits[exit][1] == 0: new_exit = exit else: new_exit = -1 # Get exit origin if new_exit > 0: origin = self.exits[exit][3] if not origin and self.is_exit_coupled(exit): sister_exit = self.exits[exit][0] origin = self.exits[sister_exit][4] self.exits[exit][3] = origin # Get (new) exit destination if self.exits[new_exit][2] == 0 or self.exits[new_exit][2] == exit: dest = self.exits[new_exit][4] if not dest and self.is_exit_coupled(new_exit): sister_exit = self.exits[new_exit][0] dest = self.exits[sister_exit][3] self.exits[new_exit][4] = dest # Translate link into world graph if origin and dest and (dest not in self.graph[origin][1]): self.graph[origin][1].append(dest) if print_log: print(" Exits updated") # Update logic edges (except those requiring Freedan access) if update_logic: for edge in self.logic: if not self.logic[edge][3]: self.check_edge(edge) if print_log: print(" Logic updated (item/abilities)") for node in self.graph: for x in self.graph[node][1]: if x not in self.graph[node][10]: self.graph[node][10].append(x) for y in self.graph[node][10]: if node not in self.graph[y][8]: self.graph[y][8].append(node) for z in self.graph[node][8]: if node not in self.graph[z][10]: self.graph[z][10].append(node) if print_log: print(" Graph updated") if update_ds: # Map DS access to nodes self.initialize_ds() self.update_ds_access(self.ds_nodes,1) for node in self.freedan_nodes: self.update_ds_access([node],2,[node]) if print_log: print(" DS access updated") # Update logic requiring Freedan access if update_logic: for edge in self.logic: if self.logic[edge][3]: self.check_edge(edge) if print_log: print(" Logic updated (DS access)") #for x in self.graph: # print(x,self.graph[x][11],self.graph[x][5]) #print(x,self.graph[x][4],self.graph[x][9],self.graph[x][5]) return True # Check whether a node's DS access data needs to be updated def consider_ds_node(self,node,access_mode=1,ds_nodes=[]): if access_mode == 2: if not self.graph[node][2] or self.graph[node][7]: return False success = False for x in ds_nodes: if x not in self.graph[node][9]: success = True return success if not self.graph[node][4]: return True return False # Check if a node has Dark Space access def check_ds_access(self, start_node=-1, need_freedan=False, items=[]): if start_node not in self.graph: return False if not self.graph[start_node][2] or self.graph[start_node][4] == 2 or (self.graph[start_node][4] == 1 and not need_freedan): return True elif not items: return False else: to_visit = [start_node] visited = [] ds_access = False while not ds_access and to_visit: node = to_visit.pop(0) visited.append(node) if self.check_ds_access(node,need_freedan): return True else: for edge in self.graph[node][12]: dest = self.logic[edge][2] if dest not in visited+to_visit and not self.logic[edge][0] and self.check_edge(edge,items,False): to_visit.append(dest) return False # graph_copy = copy.deepcopy(self.graph) # self.update_graph(False,True,False) # result = self.check_ds_access(start_node, need_freedan) # self.graph = graph_copy # graph_copy = None # return result # Update a node's DS access data - recursive for all backwards-accessible nodes def update_ds_access(self,nodes=[],access_mode=1,ds_nodes=[]): if not nodes: return True to_visit = [] for node in nodes: if self.graph[node][4] < access_mode: self.graph[node][4] = access_mode for ds_node in ds_nodes: if ds_node not in self.graph[node][9]: self.graph[node][9].append(ds_node) for x in self.graph[node][8]: if self.consider_ds_node(x,access_mode,ds_nodes): to_visit.append(x) return self.update_ds_access(to_visit,access_mode,ds_nodes) # Check a logic edge to see if prerequisites have been met def check_edge(self, edge, items=[], update_graph=True, print_log=False): success = False if edge not in self.logic: if print_log: print("WARNING: Not a valid logic ID:",edge) return False elif self.logic[edge][0] == -1: return False elif self.logic[edge][0] > 0: success = True req_items = [] for req in self.logic[edge][4]: i = 0 while i < req[1]: req_items.append(req[0]) i += 1 if self.is_sublist(self.items_collected+items, req_items) and (not self.logic[edge][3] or self.check_ds_access(self.logic[edge][1],True)): success = True if success and update_graph: self.open_edge(edge) return success # Open a logic edge and translate results to graph def open_edge(self, edge=-1, test=False, print_log=False): if edge not in self.logic: return False if self.logic[edge][0] == -1: if print_log: print("WARNING: Tried to open an edge that is restricted") return False if not self.logic[edge][0] and not test: self.logic[edge][0] = 1 origin = self.logic[edge][1] dest = self.logic[edge][2] return self.new_connection(origin,dest,test) # Map a new connection (i.e. exit, logic) to graph def new_connection(self, origin, dest, test=False, print_log=False): if not test: # To/from data if dest not in self.graph[origin][10]: self.graph[origin][10].append(dest) if origin not in self.graph[dest][8]: self.graph[dest][8].append(origin) # Dark Space access data if self.graph[dest][4] > self.graph[origin][4]: self.update_ds_access([origin],self.graph[dest][4],self.graph[dest][9]) # Return list of newly-accessible nodes if self.is_accessible(origin) and not self.is_accessible(dest): traverse_result = self.traverse([dest],test,print_log) return traverse_result[0] return [] # to_visit = [dest] # while to_visit: # node = to_visit.pop(0) # new_nodes.append(node) # if not test: # self.visit_node(node,test,print_log) # for x in self.graph[node][10]: # if x != node and x not in to_visit+new_nodes and not self.is_accessible(x): # to_visit.append(x) # return new_nodes def restrict_edge(self, edge=-1): try: self.logic[edge][0] = -1 return True except: return False def unrestrict_edge(self, edge=-1): try: self.logic[edge][0] = 0 if self.logic[edge][0] != 1 else self.logic[edge][0] return True except: return False # Initialize World parameters def initialize(self,print_log=False): # Manage required items if 1 in self.dungeons_req: self.required_items += [3, 4, 7, 8] if 2 in self.dungeons_req: self.required_items += [14] if 3 in self.dungeons_req: self.required_items += [18, 19] if 5 in self.dungeons_req: self.required_items += [38, 30, 31, 32, 33, 34, 35] if 6 in self.dungeons_req: self.required_items += [39] if self.kara == 1: self.required_items += [2, 9, 23] elif self.kara == 2: self.required_items += [11, 12, 15] elif self.kara == 4: self.required_items += [26] elif self.kara == 5: self.required_items += [28, 66] # Update inventory space logic if 3 in self.dungeons_req: self.item_pool[19][4] = True if 5 in self.dungeons_req: self.item_pool[30][4] = True self.item_pool[31][4] = True self.item_pool[32][4] = True self.item_pool[33][4] = True self.item_pool[34][4] = True self.item_pool[35][4] = True self.item_pool[38][4] = True # Solid Arm can only be required in Extreme if self.difficulty < 3: self.exits[21][4] = self.exits[21][3] # Allow glitches ********************* if "Allow Glitches" in self.variant: self.graph[0][1].append(601) self.graph[61][1].append(62) # Moon Tribe: No ability required self.graph[181][1].append(182) # Sky Garden: Ramp glitch self.graph[181][1].append(184) self.graph[182][1].append(185) self.graph[222][1].append(221) # Mu: Golem skip self.logic[268][4][1][1] = 0 # Ankor Wat: Earthquaker not required self.logic[273][4][0][1] = 0 # Ankor Wat: Glasses not required self.logic[274][4][0][1] = 0 self.item_locations[124][2] = False # Ankor Wat: Dropdown DS has abilities self.graph[410][1].append(411) # Pyramid: No ability required self.item_locations[142][2] = False # Pyramid: Bottom DS can have abilities if not self.fluteless: self.graph[182][1].append(183) # Sky Garden: cage glitch self.item_locations[94][2] = False # Great Wall: Slider glitch self.graph[294][1].append(295) # Early Firebird if self.firebird: self.graph[0][1].append(602) self.unrestrict_edge(405) # Zelda 3 Mode if "Z3 Mode" in self.variant: # Update item pool self.item_pool[1][0] = 29 # Red Jewels self.item_pool[50][0] = 5 # HP upgrades self.item_pool[51][0] = 2 # DEF upgrades self.item_pool[52][0] = 3 # STR upgrades self.item_pool[55][0] = 12 # HP Pieces # Open Mode if "Open Mode" in self.variant: # Update graph logic self.logic[30][0] = 2 # Lola's Letter self.logic[31][0] = 2 self.logic[32][0] = 2 self.logic[33][0] = 2 # Memory Melody self.logic[36][0] = 2 # Teapot self.logic[38][0] = 2 # Will self.logic[39][0] = 2 self.logic[40][0] = 2 # Roast # Remove travel items from pool self.item_pool[10][0] = 0 # Large Roast self.item_pool[13][0] = 0 # Memory Melody self.item_pool[24][0] = 0 # Will self.item_pool[25][0] = 0 # Teapot self.item_pool[37][0] = 0 # Lola's Letter self.item_pool[6][0] += 4 # Herbs self.item_pool[0][0] += 1 # Nothing # Chaos mode -- MAY NOT NEED THIS ANYMORE # if self.logic_mode == "Chaos": # # Add "Inaccessible" node to graph # self.graph[INACCESSIBLE] = [False, [], 0, [0,0,0,b"\x00"], 0, "Inaccessible", [], False, [], [], [], [], [], [], [], []] # # # Towns can have Freedan abilities # for x in self.item_locations: # if self.item_locations[x][4] == [64, 65, 66]: # self.item_locations[x][4].clear() # # Several locked Dark Spaces can have abilities # ds_unlock = [74, 94, 124, 142] # # if 1 not in self.dungeons_req: # First DS in Inca # ds_unlock.append(29) # if self.kara != 1: # DS in Underground Tunnel # ds_unlock.append(19) # if self.kara != 5: # DS in Ankor Wat garden # ds_unlock.append(122) # # for x in ds_unlock: # self.item_locations[x][2] = False # Red Jewel Hunts change the graph if self.goal == "Red Jewel Hunt": self.logic[24][2] = 492 self.logic[25][2] = 492 self.logic[26][2] = 492 self.logic[27][2] = 492 del self.logic[406] del self.logic[407] # Change graph logic depending on Kara's location if self.kara == 1: self.unrestrict_edge(400) self.graph[49][6].append(20) elif self.kara == 2: self.unrestrict_edge(401) self.graph[150][6].append(20) # Change "Sam" to "Samlet" self.location_text[45] = b"\x63\x80\x8c\x8b\x84\xa4" elif self.kara == 3: self.unrestrict_edge(402) self.graph[270][6].append(20) elif self.kara == 4: self.unrestrict_edge(403) self.graph[345][6].append(20) elif self.kara == 5: self.unrestrict_edge(404) self.graph[391][6].append(20) # Change logic based on which dungeons are required for x in self.statues: self.logic[406][4][x][1] = 1 # Change item pool for "player choice" statue requirement variant if self.statue_req == StatueReq.PLAYER_CHOICE.value: self.item_pool[100][0] = 0 self.item_pool[101][0] = 0 self.item_pool[102][0] = 0 self.item_pool[103][0] = 0 self.item_pool[104][0] = 0 self.item_pool[105][0] = 0 self.item_pool[106][0] = 6 # Incorporate item locations and logic edges into world graph for x in self.item_locations: self.graph[self.item_locations[x][0]][11].append(x) for y in self.logic: if self.logic[y][0] != -1: self.graph[self.logic[y][1]][12].append(y) self.graph[self.logic[y][2]][13].append(y) # Random start location if self.start_mode != "South Cape": self.start_loc = self.random_start() if print_log: print("Start location:",self.item_locations[self.start_loc][9]) if self.start_loc == 19: # Open Lily's door when starting in Underground Tunnel self.logic[62][0] = 2 # elif self.start_loc == 30: # Inca ramp can hardlock you -- NEW FIX MAKES THIS OBSELETE # self.graph[83][1].append(82) elif self.start_loc == 47: # Diamond Mine behind fences self.graph[131][1].append(130) if self.start_mode != "South Cape" or self.entrance_shuffle != "None": self.graph[0][1].remove(22) self.graph[0][1].append(self.item_locations[self.start_loc][0]) # TEMP - grant Psycho Dash at start for fluteless seeds if self.fluteless: self.fill_item(61,self.start_loc,False,True,print_log) # Boss Shuffle if "Boss Shuffle" in self.variant: boss_entrance_idx = [1,4,7,10,13,16,19] boss_exit_idx = [3,6,9,12,15,18,21] dungeon = 0 if print_log: print("Boss order: ",self.boss_order) while dungeon < 7: boss = self.boss_order[dungeon] entrance_old = boss_entrance_idx[dungeon] entrance_new = boss_entrance_idx[boss-1] exit_old = boss_exit_idx[boss-1] exit_new = boss_exit_idx[dungeon] self.link_exits(entrance_old,entrance_new,print_log) if self.exits[exit_old][5] or exit_old in self.exits_detailed: self.link_exits(exit_old,exit_new,print_log) dungeon += 1 # Overworld shuffle if "Overworld Shuffle" in self.variant: if not self.shuffle_overworld(print_log): if print_log: print("ERROR: Overworld shuffle failed") return False # Shuffle exits if self.entrance_shuffle != "None": if not self.shuffle_exits(print_log): if print_log: print("ERROR: Entrance rando failed") return False self.reset_progress(True) #self.initialize_ds() self.update_graph(True,True,True) # Initialize Dark Space information if self.logic_mode == "Completable": if not self.lock_dark_spaces(print_log): if print_log: print("ERROR: Could not lock Dark Spaces") return False return True # Update item placement logic after abilities are placed def check_logic(self,location=0): abilities = [61, 62, 63, 64, 65, 66] inaccessible_ls = [] # Check for abilities in critical Dark Spaces if self.item_locations[19][3] in abilities: # Underground Tunnel inaccessible_ls += [17, 18] self.restrict_edge(63) if self.item_locations[29][3] in abilities: # Inca Ruins inaccessible_ls += [26, 27, 30, 31, 32] self.restrict_edge(94) if (self.item_locations[46][3] in abilities and # Diamond Mine self.item_locations[47][3] in abilities and self.item_locations[48][3] in abilities): self.restrict_edge(118) if (self.item_locations[58][3] in abilities and # Sky Garden self.item_locations[59][3] in abilities and self.item_locations[60][3] in abilities): self.restrict_edge(131) self.restrict_edge(132) self.restrict_edge(144) self.restrict_edge(147) self.restrict_edge(148) self.restrict_edge(149) self.restrict_edge(150) self.restrict_edge(151) if self.item_locations[94][3] in abilities: # Great Wall self.graph[700] = [False, [], 0, [3,15,0,b"\x00"], 0, "Great Wall - Behind Spin", [], False, [], [], [], [], [], [], [], []] self.logic[700] = [0, 296, 700, False, [[63, 1]]] self.item_locations[93][0] = 700 self.logic[222][3] = True if self.item_locations[93][3] in abilities: inaccessible_ls += [95] self.restrict_edge(223) self.restrict_edge(224) if self.item_locations[122][3] in abilities: # Ankor Wat inaccessible_ls += [117, 118, 119, 120, 121] self.restrict_edge(267) self.restrict_edge(268) self.restrict_edge(269) self.restrict_edge(270) self.restrict_edge(271) self.restrict_edge(272) if self.item_locations[142][3] in abilities: # Pyramid inaccessible_ls += [133,134,136,139,140] self.restrict_edge(300) self.restrict_edge(301) self.restrict_edge(302) self.restrict_edge(303) self.restrict_edge(304) self.restrict_edge(306) self.restrict_edge(307) self.restrict_edge(313) # Change graph node for inaccessible_ls locations for x in inaccessible_ls: if x in self.graph[self.item_locations[x][0]][11]: self.graph[self.item_locations[x][0]][11].remove(x) self.item_locations[x][0] = INACCESSIBLE # Simulate inventory def get_inventory(self,start_items=[],item_destinations=[],new_nodes=[]): if not start_items: start_items = self.items_collected[:] if not item_destinations: item_destinations = self.item_destinations[:] inventory_temp = [] for item in start_items: if self.item_pool[item][4]: inventory_temp.append(item) # negative_inventory = [] # for node in self.graph: # if self.is_accessible(node) or node in new_nodes: # negative_inventory += self.graph[node][6] inventory = [] while inventory_temp: item = inventory_temp.pop(0) if item in item_destinations: item_destinations.remove(item) else: inventory.append(item) return inventory # Return list of accessible nodes def list_accessible_nodes(self): accessible = [] for x in self.graph: if self.is_accessible(x): accessible.append(x) return accessible def print_accessible_nodes(self): print("Accessible nodes:") for x in self.graph: if self.is_accessible(x): print("",self.graph[x][5]) def print_inaccessible_nodes(self): print("Inccessible nodes:") for x in self.graph: if not self.is_accessible(x): print("",self.graph[x][5]) # Takes a random seed and builds out a randomized world def randomize(self, seed_adj=0, print_log=False): random.seed(self.seed + seed_adj) if self.race_mode: for i in range(random.randint(100, 1000)): _ = random.randint(0, 10000) if self.race_mode: for i in range(random.randint(100, 1000)): _ = random.randint(0,10000) if not self.initialize(print_log): if print_log: print("ERROR: Could not initialize world") return False if print_log: print("Initialization complete") # Initialize and shuffle location list item_locations = self.list_item_locations() random.shuffle(item_locations) # Fill the Mystic Statues and room-clear rewards self.fill_statues() self.map_rewards() # Forward fill progression items with Monte Carlo method # Continue to place progression items until goal is reached done = False goal = False cycle = 0 place_abilities = True self.items_collected = self.list_item_pool(1) # Assume all items for ability placement if print_log: print("Beginning ability placement...") while not done: cycle += 1 if print_log: print(" Cycle",cycle) if cycle > MAX_CYCLES: if print_log: print("ERROR: Max cycles exceeded") return False self.traverse() if place_abilities: to_place = self.list_item_pool(2) if not to_place: done = True else: random.shuffle(to_place) progress = False while not progress and to_place: ability = to_place.pop(0) progress = self.forward_fill([ability],item_locations,False,self.logic_mode == "Chaos",print_log) if progress: self.check_logic() else: if print_log: print("ERROR: Could not place any abilities") return False if done: place_abilities = False done = False if print_log: print(" Finished placing abilities") print("Beginning item placement...") # Randomly place non-progression items self.traverse() non_prog_items = self.list_item_pool(0, [], 2) + self.list_item_pool(0, [], 3) for item in non_prog_items: if item in self.items_collected: self.items_collected.remove(item) self.forward_fill(non_prog_items, item_locations, False, self.logic_mode == "Chaos", print_log) # List and shuffle remaining key items item_list = self.list_item_pool() #random.shuffle(item_list) # Reset graph, prepare for item placement self.reset_progress(True) self.update_graph() else: if len(self.get_inventory()) > MAX_INVENTORY: goal = False if print_log: print("WARNING: Inventory capacity exceeded") else: goal = self.is_accessible(492) # Get list of new progression options #if print_log: # print("Open edges:",self.open_edges) # print("Open locations:",self.open_locations) progression_result = self.progression_list() if print_log: print("Progression options: {") print(" ",progression_result[0]) print(" ",progression_result[1]) print(" ",progression_result[2],"}") progression_list = progression_result[0] is_progression = (progression_result != [[],[],[]]) done = goal and (self.logic_mode != "Completable" or not is_progression) if not done: if not is_progression: if print_log: print("ERROR: Couldn't progress any further") self.print_graph() return False progress = False key = random.uniform(0,100) while not progress and progression_list: progression_mc = self.monte_carlo(progression_list) idx = 0 for x in progression_mc: if key <= x[0] and not idx: idx = x[1] items = progression_list.pop(idx) if self.forward_fill(items, item_locations, False, self.logic_mode == "Chaos", print_log): progress = True # if print_log: # print(" Placed progression items successfully") if not progress: if print_log: print(" No suitable progression found, attempting to make room...") if not self.make_room(progression_result,print_log): if print_log: print("ERROR: Could not find progression") self.print_graph() return False if print_log: print("Placing junk items...") junk_items = self.list_item_pool() #random.shuffle(junk_items) self.random_fill(junk_items, item_locations, False, print_log) if print_log: print("Item placement complete, beginning final traversal...") self.reset_progress(True) self.update_graph() self.traverse([],False,print_log) if print_log: locked_ds = [19,29,122] for x in locked_ds: if self.item_locations[x][3] in [61, 62, 63, 64, 65, 66]: print("WARNING:",self.item_locations[x][9],"has an ability") if self.logic_mode == "Completable" and self.goal != "Red Jewel Hunt": completed = True for node in self.graph: if not self.graph[node][0] and node <600: if print_log: print("Can't reach ",self.graph[node][5]) completed = False else: completed = self.graph[492][0] if not completed: if print_log: self.print_graph() print("ERROR: Seed failed, trying again...") print("") return False if print_log: print("Writing hints...") placement_log = self.placement_log[:] random.shuffle(placement_log) self.in_game_spoilers(placement_log) if print_log: print("Randomization complete!") return True def print_graph(self): print("Open edges:",self.open_edges) print("Open locations:",self.open_locations) for node in self.graph: print(node,self.graph[node]) # Prepares dataset to give in-game spoilers def in_game_spoilers(self, placement_log=[]): for x in placement_log: item = x[0] location = x[1] if location not in self.free_locations and location in self.location_text: if item in self.required_items or item in self.good_items or location in self.trolly_locations: spoiler_str = b"\xd3" + self.location_text[location] + b"\xac\x87\x80\xa3\xcb" spoiler_str += self.item_text_short[item] + b"\xc0" # No in-game spoilers in Expert mode if self.difficulty >= 3: spoiler_str = b"\xd3\x8d\x88\x82\x84\xac\xa4\xa2\xa9\xac\x83\x8e\x83\x8e\x8d\x86\x8e\x4f\xc0" self.spoilers.append(spoiler_str) # print item, location # Prints item and ability locations def generate_spoiler(self, version=""): if self.kara == 1: kara_txt = "Edward's Castle" elif self.kara == 2: kara_txt = "Diamond Mine" elif self.kara == 3: kara_txt = "Angel Dungeon" elif self.kara == 4: kara_txt = "Mt. Kress" elif self.kara == 5: kara_txt = "Ankor Wat" if self.difficulty == 0: difficulty_txt = "Easy" elif self.difficulty == 1: difficulty_txt = "Normal" elif self.difficulty == 2: difficulty_txt = "Hard" elif self.difficulty == 3: difficulty_txt = "Extreme" spoiler = dict() spoiler["version"] = version spoiler["seed"] = str(self.seed) spoiler["date"] = str(datetime.utcfromtimestamp(time.time())) spoiler["goal"] = str(self.goal) spoiler["entrance_shuffle"] = str(self.entrance_shuffle) spoiler["start_location"] = self.item_locations[self.start_loc][9].strip() spoiler["logic"] = str(self.logic_mode) spoiler["difficulty"] = str(difficulty_txt) if self.statue_req == StatueReq.PLAYER_CHOICE.value: spoiler["statues_required"] = self.statues_required else: spoiler["statues_required"] = self.statues spoiler["boss_order"] = self.boss_order spoiler["kara_location"] = kara_txt spoiler["jeweler_amounts"] = self.gem spoiler["inca_tiles"] = self.incatile spoiler["hieroglyph_order"] = self.hieroglyphs items = [] for x in self.item_locations: if x < 500: item = self.item_locations[x][3] location_name = self.item_locations[x][9].strip() item_name = self.item_pool[item][3] items.append({"location": location_name, "name": item_name}) spoiler["items"] = items if "Overworld Shuffle" in self.variant: overworld_links = [] for continent_id, continent_data in self.overworld_menus.items(): continent_name = continent_data[7] region_name = self.overworld_menus[continent_data[0]][8] overworld_links.append({"region": region_name, "continent": continent_name}) spoiler["overworld_entrances"] = overworld_links if self.entrance_shuffle != "None": exit_links = [] for exit in self.exits: exit_name = self.exits[exit][10] linked_exit = self.exits[exit][1] if not linked_exit: exit_linked_name = exit_name else: exit_linked_name = self.exits[linked_exit][10] exit_links.append({"entrance": exit_name, "exit": exit_linked_name}) spoiler["exit_links"] = exit_links self.spoiler = spoiler #self.complete_graph_visualization() def complete_graph_visualization(self,print_log=False): self.graph_viz = graphviz.Digraph(graph_attr=[('concentrate','true'), ('rankdir', 'TB')], strict=True) graph = self.graph_viz areas = dict() area_names = ["Overworld", "South Cape", "Edward's Castle", "Itory Village", "Moon Tribe", "Inca Ruins", "Diamond Coast", "Freejia", "Diamond Mine", "Neil's Cottage", "Nazca Plain", "Seaside Palace", "Mu", "Angel Village", "Watermia", "Great Wall", "Euro", "Mt. Kress", "Native's Village", "Ankor Wat", "Dao", "Pyramid", "Babel", "Jeweler's Mansion"] graph.attr('node', shape='box') for area_id in range(len(area_names)): areas[area_id] = list() for area_id in range(1,len(area_names)): node_name = f"area_{area_id}" node_content = area_names[area_id] #areas[0].append((node_name, node_content)) for region_id, region_data in self.graph.items(): area = region_data[3][1] node_name = f"region_{region_id}" node_content = region_data[5] areas[area].append((node_name, node_content)) for area_id, area_nodes in areas.items(): for node_id, node_content in area_nodes: graph.node(node_id, node_content) #with graph.subgraph(name=f"cluster_{area_id}") as c: # c.attr(label=area_names[area_id], # color="black") # for node_id, node_content in area_nodes: # if area_id != 0: # c.node(node_id, node_content) # else: # graph.node(node_id,node_content) for region_id, region_data in self.graph.items(): start_area = region_data[3][1] node_name = f"region_{region_id}" area_name = f"area_{start_area}" for accessible_region_id in region_data[1]: end_area = self.graph[accessible_region_id][3][1] end_area_name = f"area_{end_area}" accessible_node_name = f"region_{accessible_region_id}" graph.edge(node_name, accessible_node_name) #if start_area != 0 and end_area != 0: # if start_area != end_area: # graph.edge(area_name, end_area_name) # else: # graph.edge(node_name, accessible_node_name) #elif start_area != 0: # graph.edge(area_name, accessible_node_name) #elif end_area != 0: # graph.edge(node_name, end_area_name) #else: # graph.edge(node_name, accessible_node_name) for _, logic_data in self.logic.items(): needed_items = logic_data[2] enough_items = True for item_id, quantity in needed_items: existing_quantity = 0 if item_id not in self.item_pool: if print_log: print("Missing info about item:", item_id) else: existing_quantity = self.item_pool[item_id][0] for _, location_data in self.item_locations.items(): if location_data[2] and item_id == location_data[3]: existing_quantity += 1 if existing_quantity < quantity: enough_items = False break if not enough_items: continue start_name = f"region_{logic_data[0]}" dest_name = f"region_{logic_data[1]}" start_area = self.graph[logic_data[0]][3][1] end_area = self.graph[logic_data[1]][3][1] area_name = f"area_{start_area}" end_area_name = f"area_{end_area}" graph.edge(start_name, dest_name) #if start_area != 0 and end_area != 0: # if start_area != end_area: # graph.edge(area_name, end_area_name) # else: # graph.edge(start_name, dest_name) #elif start_area != 0: # graph.edge(area_name, dest_name) #elif end_area != 0: # graph.edge(start_name, end_area_name) #else: # graph.edge(start_name, dest_name) per_region_item_node = dict() item_location_color_map = { 1: "yellow", 2: "blue", 3: "green", 4: "white" } graph.attr('node', shape='plaintext') for itemloc_id, itemloc_data in self.item_locations.items(): # Add Item_location_nodes location_region = itemloc_data[0] region_node_name = f"region_{location_region}" region_item_node_name = f"region_itemnode_{location_region}" if (itemloc_data[1] != 2 or itemloc_data[3] != 0) and itemloc_data[1] != 4: if region_item_node_name not in per_region_item_node: per_region_item_node[region_item_node_name] = [] graph.edge(region_node_name, f"{region_item_node_name}") per_region_item_node[region_item_node_name].append((itemloc_id)) for region_item_node_name, locations_id in per_region_item_node.items(): node_content = "<<table border='0' cellborder='1' cellspacing='0'>" for itemloc_id in locations_id: itemloc_data = self.item_locations[itemloc_id] item_name = self.item_pool[itemloc_data[3]][3] location_name = itemloc_data[9] if ":" in location_name: location_name = ":".join(location_name.split(':')[1:]) location_type = itemloc_data[1] node_content += f"""<tr> <td ALIGN='left' bgcolor='{item_location_color_map[location_type]}'>{location_name.strip()}</td> <td align='center'>{item_name}</td> </tr>""" node_content += "</table>>" graph.node(region_item_node_name, node_content) def print_enemy_locations(self, filepath, offset=0): f = open(filepath, "r+b") rom = f.read() for enemy in self.enemies: print(self.enemies[enemy][3]) done = False addr = int("c8200", 16) + offset while not done: addr = rom.find(self.enemies[enemy][1], addr + 1) if addr < 0 or addr > int("ce5e4", 16) + offset: done = True else: f.seek(addr) # f.write(b"\x55\x87\x8a\x05") print(" ", addr, hex(addr), binascii.hexlify(f.read(4))) f.close # Prints item and ability locations def print_spoiler(self): if self.kara == 1: kara_txt = "Edward's Castle" elif self.kara == 2: kara_txt = "Diamond Mine" elif self.kara == 3: kara_txt = "Angel Dungeon" elif self.kara == 4: kara_txt = "Mt. Kress" elif self.kara == 5: kara_txt = "Ankor Wat" print("") print("Seed > ", self.seed) print("Statues Required > ", self.statues) print("Kara Location > ", kara_txt) print("Jeweler Reward Amounts > ", self.gem) print("Inca Tile (column, row) > ", self.incatile) print("Hieroglyph Order > ", self.hieroglyphs) print("") for x in self.item_locations: item = self.item_locations[x][3] location_name = self.item_locations[x][9] item_name = self.item_pool[item][3] print(location_name, " > ", item_name) # Modifies game ROM to reflect the current state of the World def write_to_rom(self, f, rom_offset=0, print_log=False): # Room-clearing rewards idx_tier2 = 0 idx_tier3 = 0 idx_tier4 = 0 for map in self.maps: reward_tier = self.maps[map][2][1] if reward_tier > 0: reward = self.maps[map][2][0] f.seek(int("1aade", 16) + map + rom_offset) f.write(binascii.unhexlify(format(reward,"02x"))) # Populate player level logic if reward_tier == 2: f.seek(int("f4a7", 16) + 4*idx_tier2 + rom_offset) f.write(binascii.unhexlify(format(map,"02x"))+b"\x03") idx_tier2 += 1 elif reward_tier == 3: f.seek(int("f4bf", 16) + 4*idx_tier3 + rom_offset) f.write(binascii.unhexlify(format(map,"02x"))+b"\x03") idx_tier3 += 1 elif reward_tier == 4: f.seek(int("f4d7", 16) + 4*idx_tier4 + rom_offset) f.write(binascii.unhexlify(format(map,"02x"))+b"\x03") idx_tier4 += 1 #print("maps done") # Items and abilities for x in self.item_locations: type = self.item_locations[x][1] # Write items to ROM if type == 1: item = self.item_locations[x][3] # print "Writing item ", item item_addr = self.item_locations[x][5] item_code = self.item_pool[item][2] text1_addr = self.item_locations[x][6] text2_addr = self.item_locations[x][7] text3_addr = self.item_locations[x][8] if item in self.item_text_long: text_long = self.item_text_long[item] else: text_long = "" if item in self.item_text_short: text_short = self.item_text_short[item] else: text_short = "" # Write item code to memory if item_code and item_addr: f.seek(int(item_addr, 16) + rom_offset) f.write(item_code) # Write item text, if appropriate if text1_addr and text_long: f.seek(int(text1_addr, 16) + rom_offset) f.write(text_long) # f.write(b"\xd3") # f.write(text_short) f.write(b"\xc9\x0a\xc0") # Write "inventory full" item text, if appropriate if text2_addr and text_long: f.seek(int(text2_addr, 16) + rom_offset) # f.write(b"\xd3") # f.write(text_short) f.write(text_long) f.write(b"\xcb\x45\x65\x4b\x4b\x4f\xc9\x0a\xc0") # Just says "FULL!" # Write jeweler inventory text, if apprpriate if text3_addr and text_short: f.seek(int(text3_addr, 16) + rom_offset) f.write(text_short) # Write abilities to ROM elif type == 2: # Check if filled ability = self.item_locations[x][3] ability_addr = self.item_locations[x][5] map = self.item_locations[x][8] # Change Dark Space type in event table if ability in [61, 62, 63, 64, 65, 66]: f.seek(int(ability_addr, 16) + rom_offset) f.write(b"\x05") # Update ability text table if ability == 61: # Psycho Dash # f.seek(int("8eb5a",16)+2*i+rom_offset) f.seek(int("8eb5a", 16) + rom_offset) f.write(map) if ability == 62: # Psycho Slide f.seek(int("8eb5c", 16) + rom_offset) f.write(map) if ability == 63: # Spin Dash f.seek(int("8eb5e", 16) + rom_offset) f.write(map) if ability == 64: # Dark Friar f.seek(int("8eb60", 16) + rom_offset) f.write(map) if ability == 65: # Aura Barrier f.seek(int("8eb62", 16) + rom_offset) f.write(map) if ability == 66: # Earthquaker f.seek(int("8eb64", 16) + rom_offset) f.write(map) #print("items/abilities done") # Special code for 2-item event in Dao item1 = self.item_locations[125][3] item2 = self.item_locations[126][3] f.seek(int("8fde0", 16) + rom_offset) f.write(b"\xd3" + self.item_text_short[item1] + b"\xcb") f.write(self.item_text_short[item2] + b"\xc9\x0a\xcf\xce") # Write in-game spoilers i = 0 for addr in self.spoiler_addresses: f.seek(int(self.spoiler_addresses[addr], 16) + rom_offset) if i < len(self.spoilers): f.write(self.spoilers[i]) i += 1 #print("spoilers done") # Enemizer if self.enemizer != "None": # "Fix" Ankor Wat Gorgons so they don't fall from the ceiling f.seek(int("bb825", 16) + rom_offset) f.write(b"\x00\x00\x00\x02\x27\x0F\x02\xC1\x4C\xA0\xB8\x6B") # Run enemizer self.enemize(f, rom_offset) # self.parse_maps(f,rom_offset) # Random start location if self.start_mode != "South Cape" or self.entrance_shuffle != "None": # print self.start_loc map_str = self.item_locations[self.start_loc][8] + self.item_locations[self.start_loc][7] # Change game start location f.seek(int("be517", 16) + rom_offset) f.write(map_str) # Change Dark Space warp location f.seek(int("8dbea", 16) + rom_offset) f.write(map_str) # Change Dark Space warp text map_name = self.location_text[self.start_loc] f.seek(int("8de1f", 16) + rom_offset) f.write(map_name + b"\x0D\xCB\xAC\x4D\x8E\xCB\xAC\x69\x84\xA3\xCA") #print("random start done") # Overworld shuffle if "Overworld Shuffle" in self.variant: ow_patch_data = [] for entry in self.overworld_menus: # Prepare ROM edits new_entry = self.overworld_menus[entry][0] f.seek(int(self.overworld_menus[new_entry][4], 16) + rom_offset) ow_patch_data.append([self.overworld_menus[entry][4], f.read(8)]) f.seek(int(self.overworld_menus[new_entry][6], 16) + rom_offset) ow_patch_data.append([self.overworld_menus[entry][6], f.read(11)]) ow_patch_data.append([self.overworld_menus[new_entry][5], self.overworld_menus[entry][1]]) for x in ow_patch_data: f.seek(int(x[0], 16) + rom_offset) f.write(x[1]) #print("overworld shuffle done") # Entrance shuffle er_patch_data = [] for exit in self.exits: #self.exits[exit][0] = exit #TESTING ONLY # Prepare ROM edits new_exit = self.exits[exit][1] if new_exit and self.exits[exit][5]: # and exit != new_exit: try: if self.exits[new_exit][6]: new_data = self.exits[new_exit][6] else: f.seek(int(self.exits[new_exit][5], 16) + rom_offset) new_data = f.read(8) er_patch_data.append([self.exits[exit][5], new_data]) except: if print_log: print("ERROR: exit data invalid",exit,new_exit) for exit in self.exits_detailed: new_exit = self.exits[exit][1] if new_exit: map_str = self.exits[new_exit][6] map_id = map_str[0:1] xcoord = int.to_bytes(int.from_bytes(map_str[1:3], byteorder="little") // 16, 2, byteorder='little') ycoord = int.to_bytes(int.from_bytes(map_str[3:5], byteorder="little") // 16, 2, byteorder='little') facedir = map_str[5:6] camera = map_str[6:8] # print(map_id,xcoord,ycoord,facedir,camera) er_patch_data.append([self.exits_detailed[exit][0], map_id]) er_patch_data.append([self.exits_detailed[exit][1], xcoord]) er_patch_data.append([self.exits_detailed[exit][2], ycoord]) if self.exits_detailed[exit][3] != "": er_patch_data.append([self.exits_detailed[exit][3], facedir]) er_patch_data.append([self.exits_detailed[exit][4], camera]) for x in er_patch_data: try: f.seek(int(x[0], 16) + rom_offset) f.write(x[1]) except: if print_log: print("ERROR: Not a valid address", x) #print("entrance shuffle done") # Check for additional switches that need to be set switch_str = [] if self.start_loc == 19: # Open Lily's door when starting in Underground Tunnel switch_str.append(b"\x02\xcd\x13\x01") # elif self.start_loc == 30: # Inca ramp can hardlock you -- NEW FIX MAKES THIS OBSELETE # switch_str.append(b"\x02\xcd\x0c\x01") elif self.start_loc == 47: # Diamond Mine behind fences switch_str.append(b"\x02\xcd\x34\x01\x02\xcd\x35\x01\x02\xcd\x36\x01") if "Open Mode" in self.variant: switch_str.append(b"\x02\xcc\x11\x02\xcc\x14\x02\xcc\x1f\x02\xcc\x2a\x02\xcc\x41") if self.enemizer != "None" and self.enemizer != "Limited": switch_str.append(b"\x02\xcc\xa0\x02\xcc\xa1") f.seek(int("1ffb0", 16) + rom_offset) for x in switch_str: f.write(x) f.write(b"\x6b") #print("switches done") # Swapped exits # for exit in self.exits: # if self.exits[exit][1] > 0: # to_exit = self.exits[exit][1] # map_str = self.exits[to_exit][9] # if self.exits[exit][8] != "": # f.seek(int(self.exits[exit][8], 16) + rom_offset) # f.write(map_str) # else: # map_id = map_str[0:1] # xcoord = int.to_bytes(int.from_bytes(map_str[1:3], byteorder="little") // 16, 2, byteorder='little') # ycoord = int.to_bytes(int.from_bytes(map_str[3:5], byteorder="little") // 16, 2, byteorder='little') # facedir = map_str[5:6] # camera = map_str[6:8] # # print(map_id,xcoord,ycoord,facedir,camera) # # f.seek(int(self.exits_detailed[exit][0], 16) + rom_offset) # f.write(map_id) # f.seek(int(self.exits_detailed[exit][1], 16) + rom_offset) # f.write(xcoord) # f.seek(int(self.exits_detailed[exit][2], 16) + rom_offset) # f.write(ycoord) # if self.exits_detailed[exit][3] != "": # f.seek(int(self.exits_detailed[exit][3], 16) + rom_offset) # f.write(facedir) # f.seek(int(self.exits_detailed[exit][4], 16) + rom_offset) # f.write(camera) # print "ROM successfully created" # Print parsed list of map headers def parse_maps(self, f, rom_offset=0): f.seek(int("d8000", 16) + rom_offset) header_lengths = { b"\x02": 1, b"\x03": 7, b"\x04": 6, b"\x05": 7, b"\x06": 4, b"\x0e": 3, b"\x10": 6, b"\x11": 5, b"\x13": 2, b"\x14": 1, b"\x15": 1, b"\x17": 5 } done = False addr = 0 map_dataset = {} anchor_dataset = {} while not done: map_id = f.read(2) print(binascii.hexlify(map_id)) map_headers = [] anchor_headers = [] map_done = False anchor = False while not map_done: map_header = f.read(1) if map_header == b"\x14": anchor = True anchor_id = f.read(1) map_header += anchor_id map_headers.append(map_header) print(binascii.hexlify(map_header)) elif map_header == b"\x00": map_done = True print(binascii.hexlify(map_header)) print("") else: header_len = header_lengths[map_header] map_header += f.read(header_len) map_headers.append(map_header) print(binascii.hexlify(map_header)) if anchor: anchor_headers.append(map_header) anchor_dataset[map_id] = map_headers if anchor_headers: anchor_dataset[anchor_id] = anchor_headers if f.tell() >= int("daffe", 16) + rom_offset: done = True # print map_headers print(anchor_headers) # Pick random start location def random_start(self,print_log=False): locations = [] for loc in self.item_locations: if (self.start_mode == "Forced Unsafe" and self.item_locations[loc][6] == "Unsafe") or ( self.start_mode != "Forced Unsafe" and self.item_locations[loc][6] == "Safe") or ( self.item_locations[loc][6] == self.start_mode): locations.append(loc) if not locations: if print_log: print("ERROR: Something is fishy with start locations") return -1 else: # print locations # return 93 # TESTING! return locations[random.randint(0, len(locations) - 1)] # Shuffle travel destinations def shuffle_overworld(self,print_log=False): new_continents = [[],[],[],[],[]] # Ensure each continent has at least one travel location destination_list = [1,6,12,14,16,18] random.shuffle(destination_list) for continent in new_continents: continent.append(destination_list.pop(0)) # Randomly assign the rest of the locations destination_list += [2,3,4,5,7,8,9,10,11,13,15,17,19] random.shuffle(destination_list) new_continents[0] += destination_list[:4] new_continents[1] += destination_list[4:8] new_continents[2] += destination_list[8:10] new_continents[3] += destination_list[10:13] new_continents[4] += destination_list[-1:] for continent in new_continents: random.shuffle(continent) self.overworld_menus[1][0] = new_continents[0][0] self.overworld_menus[2][0] = new_continents[0][1] self.overworld_menus[3][0] = new_continents[0][2] self.overworld_menus[4][0] = new_continents[0][3] self.overworld_menus[5][0] = new_continents[0][4] self.overworld_menus[6][0] = new_continents[1][0] self.overworld_menus[7][0] = new_continents[1][1] self.overworld_menus[8][0] = new_continents[1][2] self.overworld_menus[9][0] = new_continents[1][3] self.overworld_menus[10][0] = new_continents[1][4] self.overworld_menus[11][0] = new_continents[2][0] self.overworld_menus[12][0] = new_continents[2][1] self.overworld_menus[13][0] = new_continents[2][2] self.overworld_menus[14][0] = new_continents[3][0] self.overworld_menus[15][0] = new_continents[3][1] self.overworld_menus[16][0] = new_continents[3][2] self.overworld_menus[17][0] = new_continents[3][3] self.overworld_menus[18][0] = new_continents[4][0] self.overworld_menus[19][0] = new_continents[4][1] self.graph[10][1].clear() self.graph[11][1].clear() self.graph[12][1].clear() self.graph[13][1].clear() self.graph[14][1].clear() self.graph[10][10].clear() self.graph[11][10].clear() self.graph[12][10].clear() self.graph[13][10].clear() self.graph[14][10].clear() # Add new overworld to the graph for entry in self.overworld_menus: new_entry = self.overworld_menus[entry][0] self.graph[self.overworld_menus[entry][2]][1].append(self.overworld_menus[new_entry][3]) self.graph[self.overworld_menus[new_entry][3]][1].remove(self.overworld_menus[new_entry][2]) self.graph[self.overworld_menus[new_entry][3]][1].append(self.overworld_menus[entry][2]) return True # Shuffle enemies in ROM def enemize(self, f, rom_offset=0): f.seek(0) rom = f.read() # test_enemy = 13 # TESTING! # test_set = self.enemies[test_enemy][0] complex_enemies = [4, 15, 53, 62, 88] # Enemies with many sprites, or are no fun max_complex = 5 # Get list of enemysets enemysets = [] for set in self.enemysets: enemysets.append(set) f.seek(0) rom = f.read() # Shuffle enemy stats in Insane if self.enemizer == "Insane": insane_enemies = [] insane_templates = [] for enemy in self.enemies: if self.enemies[enemy][5] and enemy != 102: # Special exception for Zombies insane_enemies.append(enemy) insane_templates.append(self.enemies[enemy][2]) random.shuffle(insane_templates) insane_dictionary = {} i = 0 for enemy in insane_enemies: insane_dictionary[enemy] = insane_templates[i] i += 1 # Randomize enemy spritesets for map in self.maps: complex_ct = 0 oldset = self.maps[map][0] # Determine new enemyset for map if self.enemizer == "Limited": sets = [oldset] elif not self.maps[map][7]: sets = enemysets[:] else: sets = self.maps[map][7][:] random.shuffle(sets) newset = sets[0] # if 10 in sets: # TESTING! # newset = 10 # newset = test_set # TESTING! # Gather enemies from old and new sets old_enemies = [] new_enemies = [] for enemy in self.enemies: if self.enemies[enemy][0] == oldset: old_enemies.append(enemy) if self.enemies[enemy][0] == newset and self.enemies[enemy][5]: new_enemies.append(enemy) # Update map header to reflect new enemyset if self.maps[map][3]: self.map_patches.append([self.maps[map][3],self.enemysets[newset][0],self.maps[map][4]]) # Randomize each enemy in map addr_start = self.maps[map][5] addr_end = self.maps[map][6] for enemy in old_enemies: # print self.enemies[enemy][3] done = False addr = int(addr_start, 16) + rom_offset while not done: addr = rom.find(self.enemies[enemy][1] + self.enemies[enemy][2], addr + 1) if addr < 0 or addr > int(addr_end, 16) + rom_offset: done = True else: # Pick an enemy from new set enemytype = self.enemies[enemy][3] walkable = self.enemies[enemy][4] new_enemies_tmp = new_enemies[:] # Get X/Y for special placement exceptions f.seek(addr - 3) xcoord = binascii.hexlify(f.read(1)) ycoord = binascii.hexlify(f.read(1)) # 4-Ways cannot be on a #$XF x-coord if newset == 1 and 13 in new_enemies_tmp: if xcoord[1] == 102: new_enemies_tmp.remove(13) # Zip Flies can't be too close to map origin elif newset == 10 and 103 in new_enemies_tmp: if int(xcoord, 16) <= 4 or int(ycoord, 16) <= 4: new_enemies_tmp.remove(103) random.shuffle(new_enemies_tmp) i = 0 found_enemy = False # if 13 in new_enemies_tmp: # TESTING! # new_enemy = 13 # found_enemy = True while not found_enemy: new_enemy = new_enemies_tmp[i] new_enemytype = self.enemies[new_enemy][3] new_walkable = self.enemies[new_enemy][4] if walkable or new_enemytype == 3 or walkable == new_walkable or i == len(new_enemies_tmp) - 1: found_enemy = True # Limit number of complex enemies per map if new_enemy in complex_enemies: complex_ct += 1 if complex_ct >= max_complex: for enemy_tmp in new_enemies: if enemy_tmp in complex_enemies: new_enemies.remove(enemy_tmp) i -= 1 i += 1 f.seek(addr - 1) # f.write(b"\x00" + self.enemies[test_enemy][1] + self.enemies[test_enemy][2]) # TESTING! f.write(b"\x00" + self.enemies[new_enemy][1]) if self.enemizer == "Balanced" and enemy == 102: f.write(b"\x47") elif map != 27 and self.enemizer != "Balanced": # Moon Tribe cave enemies retain same template if self.enemizer == "Insane" and new_enemy != 102: # Again, zombie exception f.write(insane_dictionary[new_enemy]) else: f.write(self.enemies[new_enemy][2]) # Disable all non-enemy sprites if self.enemizer != "Limited": for sprite in self.nonenemy_sprites: f.seek(int(self.nonenemy_sprites[sprite][1], 16) + rom_offset + 3) f.write(b"\x02\xe0") # Build world def __init__(self, settings: RandomizerData, statues_required=6, statues=[1,2,3,4,5,6], statue_req=StatueReq.GAME_CHOICE.value, kara=3, gem=[3,5,8,12,20,30,50], incatile=[9,5], hieroglyphs=[1,2,3,4,5,6], boss_order=[1,2,3,4,5,6,7]): self.seed = settings.seed self.race_mode = settings.race_mode self.fluteless = settings.fluteless self.statues = statues self.statues_required = statues_required self.statue_req = statue_req self.boss_order = boss_order self.dungeons_req = [] for x in self.statues: self.dungeons_req.append(self.boss_order[x-1]) gaia_coinflip = random.randint(0, 1) if settings.goal.value == Goal.RED_JEWEL_HUNT.value: self.goal = "Red Jewel Hunt" elif settings.goal.value == Goal.APO_GAIA.value or (settings.goal.value == Goal.RANDOM_GAIA.value and gaia_coinflip): self.goal = "Apocalypse Gaia" else: self.goal = "Dark Gaia" if settings.logic.value == Logic.COMPLETABLE.value: self.logic_mode = "Completable" elif settings.logic.value == Logic.BEATABLE.value: self.logic_mode = "Beatable" else: self.logic_mode = "Chaos" if settings.entrance_shuffle.value == EntranceShuffle.NONE.value: self.entrance_shuffle = "None" elif settings.entrance_shuffle.value == EntranceShuffle.COUPLED.value: self.entrance_shuffle = "Coupled" elif settings.entrance_shuffle.value == EntranceShuffle.UNCOUPLED.value: self.entrance_shuffle = "Uncoupled" if settings.start_location.value == StartLocation.SOUTH_CAPE.value: self.start_mode = "South Cape" elif settings.start_location.value == StartLocation.SAFE.value: self.start_mode = "Safe" elif settings.start_location.value == StartLocation.UNSAFE.value: self.start_mode = "Unsafe" else: self.start_mode = "Forced Unsafe" if settings.enemizer.value == Enemizer.NONE.value: self.enemizer = "None" elif settings.enemizer.value == Enemizer.BALANCED.value: self.enemizer = "Balanced" elif settings.enemizer.value == Enemizer.LIMITED.value: self.enemizer = "Limited" elif settings.enemizer.value == Enemizer.FULL.value: self.enemizer = "Full" else: self.enemizer = "Insane" if settings.ohko: self.variant = ["OHKO"] elif settings.red_jewel_madness: self.variant = ["RJM"] else: self.variant = [] if settings.allow_glitches: self.variant.append("Allow Glitches") if settings.boss_shuffle: self.variant.append("Boss Shuffle") if settings.overworld_shuffle: self.variant.append("Overworld Shuffle") if settings.open_mode: self.variant.append("Open Mode") if settings.z3: self.variant.append("Z3 Mode") self.firebird = settings.firebird self.start_loc = 10 # self.level = settings.level.value self.difficulty = settings.difficulty.value self.kara = kara self.gem = gem self.incatile = incatile self.hieroglyphs = hieroglyphs self.placement_log = [] self.exit_log = [] self.spoilers = [] self.required_items = [20, 36] self.good_items = [10, 13, 24, 25, 37, 62, 63, 64] self.trolly_locations = [32, 45, 64, 65, 102, 108, 121, 128, 136, 147] self.free_locations = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 24, 33, 34, 35, 36, 37, 38, 39] self.map_patches = [] self.visited = [] self.items_collected = [] self.item_destinations = [] self.open_locations = [[],[]] self.open_edges = [] self.graph_viz = None # Initialize item pool, considers special attacks as "items" # Format = { ID: [Quantity, Type code (1=item, 2=ability, 3=statue,4=other), # ROM Code, Name, TakesInventorySpace, # ProgressionType (1=unlocks new locations,2=quest item,3=no progression)] } self.item_pool = { # Items 0: [2, 1, b"\x00", "Nothing", False, 3], 1: [45, 1, b"\x01", "Red Jewel", False, 1], 2: [1, 1, b"\x02", "Prison Key", True, 1], 3: [1, 1, b"\x03", "Inca Statue A", True, 1], 4: [1, 1, b"\x04", "Inca Statue B", True, 1], 5: [0, 1, b"\x05", "Inca Melody", True, 3], 6: [12, 1, b"\x06", "Herb", False, 3], 7: [1, 1, b"\x07", "Diamond Block", True, 1], 8: [1, 1, b"\x08", "Wind Melody", True, 1], 9: [1, 1, b"\x09", "Lola's Melody", True, 1], 10: [1, 1, b"\x0a", "Large Roast", True, 1], 11: [1, 1, b"\x0b", "Mine Key A", True, 1], 12: [1, 1, b"\x0c", "Mine Key B", True, 1], 13: [1, 1, b"\x0d", "Memory Melody", True, 1], 14: [4, 1, b"\x0e", "Crystal Ball", True, 2], 15: [1, 1, b"\x0f", "Elevator Key", True, 1], 16: [1, 1, b"\x10", "Mu Palace Key", True, 1], 17: [1, 1, b"\x11", "Purification Stone", True, 1], 18: [2, 1, b"\x12", "Statue of Hope", True, 1], 19: [2, 1, b"\x13", "Rama Statue", False, 2], 20: [1, 1, b"\x14", "Magic Dust", True, 2], 21: [0, 1, b"\x15", "Blue Journal", False, 3], 22: [1, 1, b"\x16", "Lance's Letter", False, 3], 23: [1, 1, b"\x17", "Necklace Stones", True, 1], 24: [1, 1, b"\x18", "Will", True, 1], 25: [1, 1, b"\x19", "Teapot", True, 1], 26: [3, 1, b"\x1a", "Mushroom Drops", True, 1], 27: [0, 1, b"\x1b", "Bag of Gold", False, 3], 28: [1, 1, b"\x1c", "Black Glasses", False, 1], 29: [1, 1, b"\x1d", "Gorgon Flower", True, 1], 30: [1, 1, b"\x1e", "Hieroglyph", False, 2], 31: [1, 1, b"\x1f", "Hieroglyph", False, 2], 32: [1, 1, b"\x20", "Hieroglyph", False, 2], 33: [1, 1, b"\x21", "Hieroglyph", False, 2], 34: [1, 1, b"\x22", "Hieroglyph", False, 2], 35: [1, 1, b"\x23", "Hieroglyph", False, 2], 36: [1, 1, b"\x24", "Aura", True, 1], 37: [1, 1, b"\x25", "Lola's Letter", False, 1], 38: [1, 1, b"\x26", "Father's Journal", False, 2], 39: [1, 1, b"\x27", "Crystal Ring", False, 1], 40: [1, 1, b"\x28", "Apple", True, 1], 41: [1, 1, b"\x2e", "2 Red Jewels", False, 1], 42: [1, 1, b"\x2f", "3 Red Jewels", False, 1], # Status Upgrades 50: [3, 1, b"\x87", "HP Upgrade", False, 3], 51: [1, 1, b"\x89", "DEF Upgrade", False, 3], 52: [2, 1, b"\x88", "STR Upgrade", False, 3], 53: [1, 1, b"\x8a", "Psycho Dash Upgrade", False, 3], 54: [2, 1, b"\x8b", "Dark Friar Upgrade", False, 3], 55: [0, 1, b"\x8c", "Heart Piece", False, 3], # Abilities 60: [0, 2, "", "Nothing", False, 3], 61: [1, 2, "", "Psycho Dash", False, 1], 62: [1, 2, "", "Psycho Slider", False, 1], 63: [1, 2, "", "Spin Dash", False, 1], 64: [1, 2, "", "Dark Friar", False, 1], 65: [1, 2, "", "Aura Barrier", False, 1], 66: [1, 2, "", "Earthquaker", False, 1], 67: [0, 2, "", "Firebird", False, 1], # Mystic Statues 100: [1, 3, "", "Mystic Statue 1", False, 2], 101: [1, 3, "", "Mystic Statue 2", False, 2], 102: [1, 3, "", "Mystic Statue 3", False, 2], 103: [1, 3, "", "Mystic Statue 4", False, 2], 104: [1, 3, "", "Mystic Statue 5", False, 2], 105: [1, 3, "", "Mystic Statue 6", False, 2], 106: [0, 3, "", "Mystic Statue", False, 2], # Event Switches 500: [0, 4, "", "Kara Released", False, 1], 501: [0, 4, "", "Itory: Got Lilly", False, 1], 502: [0, 4, "", "Moon Tribe: Healed Spirits", False, 1], 503: [0, 4, "", "Inca: Beat Castoth", False, 1], 504: [0, 4, "", "Freejia: Found Laborer", False, 1], 505: [0, 4, "", "Neil's: Memory Restored", False, 1], 506: [0, 4, "", "Sky Garden: Map 82 NW Switch", False, 1], 507: [0, 4, "", "Sky Garden: Map 82 NE Switch", False, 1], 508: [0, 4, "", "Sky Garden: Map 82 NW Switch", False, 1], 509: [0, 4, "", "Sky Garden: Map 84 Switch", False, 1], 510: [0, 4, "", "Seaside: Fountain Purified", False, 1], 511: [0, 4, "", "Mu: Water Lowered 1", False, 1], 512: [0, 4, "", "Mu: Water Lowered 2", False, 1], 513: [0, 4, "", "Angel: Puzzle Complete", False, 1], 514: [0, 4, "", "Mt Kress: Drops Used 1", False, 1], 515: [0, 4, "", "Mt Kress: Drops Used 2", False, 1], 516: [0, 4, "", "Mt Kress: Drops Used 3", False, 1], 517: [0, 4, "", "Pyramid: Hieroglyphs Placed", False, 1], 518: [0, 4, "", "Babel: Castoth Defeated", False, 1], 519: [0, 4, "", "Babel: Viper Defeated", False, 1], 520: [0, 4, "", "Babel: Vampires Defeated", False, 1], 521: [0, 4, "", "Babel: Sand Fanger Defeated", False, 1], 522: [0, 4, "", "Babel: Mummy Queen Defeated", False, 1], 523: [0, 4, "", "Mansion: Solid Arm Defeated", False, 1], # Misc 600: [0, 4, "", "Freedan Access", False, 1], 601: [0, 4, "", "Glitches", False, 1], 602: [0, 4, "", "Early Firebird", False, 1] } # Define Item/Ability/Statue locations # Format: { ID: [Region, Type (1=item,2=ability,3=statue,4=other), Filled Flag, # Filled Item, Restricted Items, Item Addr, Text Addr, Text2 Addr, # Special (map# or inventory addr), Name, Swapped Flag]} # (For random start, [6]=Type, [7]=XY_spawn_data) self.item_locations = { # Jeweler 0: [2, 1, False, 0, [], "8d019", "8d19d", "", "8d260", "Jeweler Reward 1 "], 1: [3, 1, False, 0, [], "8d028", "8d1ba", "", "8d274", "Jeweler Reward 2 "], 2: [4, 1, False, 0, [], "8d037", "8d1d7", "", "8d288", "Jeweler Reward 3 "], 3: [5, 1, False, 0, [], "8d04a", "8d1f4", "", "8d29c", "Jeweler Reward 4 "], 4: [6, 1, False, 0, [], "8d059", "8d211", "", "8d2b0", "Jeweler Reward 5 "], 5: [7, 1, False, 0, [], "8d069", "8d2ea", "", "8d2c4", "Jeweler Reward 6 "], # South Cape 6: [21, 1, False, 0, [], "F51D", "F52D", "F543", "", "South Cape: Bell Tower "], 7: [20, 1, False, 0, [], "4846e", "48479", "", "", "South Cape: Fisherman "], # text2 was 0c6a1 8: [26, 1, False, 0, [], "F59D", "F5AD", "F5C3", "", "South Cape: Lance's House "], 9: [23, 1, False, 0, [], "499e4", "49be5", "", "", "South Cape: Lola "], 10: [21, 2, False, 0, [64, 65, 66], "c830a", "Safe", b"\xE0\x00\x70\x00\x83\x00\x43", b"\x01", "South Cape: Dark Space "], # Edward's 11: [30, 1, False, 0, [], "4c214", "4c299", "", "", "Edward's Castle: Hidden Guard "], 12: [30, 1, False, 0, [], "4d0ef", "4d141", "", "", "Edward's Castle: Basement "], 13: [32, 1, False, 0, [], "4d32f", "4d4b1", "", "", "Edward's Prison: Hamlet "], # text 4d5f4? 14: [32, 2, False, 0, [64, 65, 66], "c8637", "", "", b"\x0b", "Edward's Prison: Dark Space "], # Underground Tunnel 15: [42, 1, False, 0, [], "1AFA9", "", "", "", "Underground Tunnel: Spike's Chest "], 16: [44, 1, False, 0, [], "1AFAE", "", "", "", "Underground Tunnel: Small Room Chest"], 17: [48, 1, False, 0, [], "1AFB3", "", "", "", "Underground Tunnel: Ribber's Chest "], 18: [49, 1, False, 0, [], "F61D", "F62D", "F643", "", "Underground Tunnel: Barrels "], 19: [47, 2, False, 0, [], "c8aa2", "Unsafe", b"\xA0\x00\xD0\x04\x83\x00\x74", b"\x12", "Underground Tunnel: Dark Space "], # Always open # Itory 20: [51, 1, False, 0, [], "F69D", "F6AD", "F6C3", "", "Itory Village: Logs "], 21: [58, 1, False, 0, [], "4f375", "4f38d", "4f3a8", "", "Itory Village: Cave "], 22: [51, 2, False, 0, [64, 65, 66], "c8b34", "Safe", b"\x30\x04\x90\x00\x83\x00\x35", b"\x15", "Itory Village: Dark Space "], # Moon Tribe 23: [62, 1, False, 0, [], "4fae1", "4faf9", "4fb16", "", "Moon Tribe: Cave "], # Inca 24: [71, 1, False, 0, [], "1AFB8", "", "", "", "Inca Ruins: Diamond-Block Chest "], 25: [92, 1, False, 0, [], "1AFC2", "", "", "", "Inca Ruins: Broken Statues Chest "], 26: [83, 1, False, 0, [], "1AFBD", "", "", "", "Inca Ruins: Stone Lord Chest "], 27: [93, 1, False, 0, [], "1AFC6", "", "", "", "Inca Ruins: Slugger Chest "], 28: [76, 1, False, 0, [], "9c5bd", "9c614", "9c637", "", "Inca Ruins: Singing Statue "], 29: [96, 2, False, 0, [], "c9302", "Unsafe", b"\x10\x01\x90\x00\x83\x00\x32", b"\x28", "Inca Ruins: Dark Space 1 "], # Always open 30: [93, 2, False, 0, [], "c923b", "Unsafe", b"\xC0\x01\x50\x01\x83\x00\x32", b"\x26", "Inca Ruins: Dark Space 2 "], 31: [77, 2, False, 0, [], "c8db8", "", "", b"\x1e", "Inca Ruins: Final Dark Space "], # Gold Ship 32: [100, 1, False, 0, [], "5965e", "5966e", "", "", "Gold Ship: Seth "], # Diamond Coast 33: [102, 1, False, 0, [], "F71D", "F72D", "F743", "", "Diamond Coast: Jar "], # Freejia 34: [121, 1, False, 0, [], "F79D", "F7AD", "F7C3", "", "Freejia: Hotel "], 35: [110, 1, False, 0, [], "5b6d8", "5b6e8", "", "", "Freejia: Creepy Guy "], 36: [110, 1, False, 0, [], "5cf9e", "5cfae", "5cfc4", "", "Freejia: Trash Can 1 "], 37: [110, 1, False, 0, [], "5cf3d", "5cf49", "", "", "Freejia: Trash Can 2 "], # text2 was 5cf5b 38: [115, 1, False, 0, [], "5b8b7", "5b962", "5b9ee", "", "Freejia: Snitch "], # text1 was @5b94d 39: [125, 2, False, 0, [64, 65, 66], "c96ce", "Safe", b"\x40\x00\xa0\x00\x83\x00\x11", b"\x34", "Freejia: Dark Space "], # Diamond Mine 40: [134, 1, False, 0, [], "1AFD0", "", "", "", "Diamond Mine: Chest "], 41: [137, 1, False, 0, [], "5d7e4", "5d819", "5d830", "", "Diamond Mine: Trapped Laborer "], 42: [143, 1, False, 0, [], "aa777", "aa85c", "", "", "Diamond Mine: Laborer w/Elevator Key"], # text1 was aa811 43: [148, 1, False, 0, [], "5d4d2", "5d4eb", "5d506", "", "Diamond Mine: Morgue "], 44: [149, 1, False, 0, [], "aa757", "aa7ef", "", "", "Diamond Mine: Laborer w/Mine Key "], # text1 was aa7b4 45: [150, 1, False, 0, [], "5d2b0", "5d2da", "", "", "Diamond Mine: Sam "], 46: [136, 2, False, 0, [], "c9a87", "Unsafe", b"\xb0\x01\x70\x01\x83\x00\x32", b"\x40", "Diamond Mine: Appearing Dark Space "], # Always open 47: [131, 2, False, 0, [], "c98b0", "Unsafe", b"\xd0\x00\xc0\x00\x83\x00\x61", b"\x3d", "Diamond Mine: Dark Space at Wall "], 48: [142, 2, False, 0, [], "c9b49", "", "", b"\x42", "Diamond Mine: Dark Space behind Wall"], # Sky Garden 49: [172, 1, False, 0, [], "1AFDD", "", "", "", "Sky Garden: (NE) Platform Chest "], 50: [173, 1, False, 0, [], "1AFD9", "", "", "", "Sky Garden: (NE) Blue Cyber Chest "], 51: [174, 1, False, 0, [], "1AFD5", "", "", "", "Sky Garden: (NE) Statue Chest "], 52: [180, 1, False, 0, [], "1AFE2", "", "", "", "Sky Garden: (SE) Dark Side Chest "], 53: [185, 1, False, 0, [], "1AFE7", "", "", "", "Sky Garden: (SW) Ramp Chest "], 54: [186, 1, False, 0, [], "1AFEC", "", "", "", "Sky Garden: (SW) Dark Side Chest "], 55: [194, 1, False, 0, [], "1AFF1", "", "", "", "Sky Garden: (NW) Top Chest "], 56: [194, 1, False, 0, [], "1AFF5", "", "", "", "Sky Garden: (NW) Bottom Chest "], 57: [170, 2, False, 0, [64, 65, 66], "c9d63", "Safe", b"\x90\x00\x70\x00\x83\x00\x22", b"\x4c", "Sky Garden: Dark Space (Foyer) "], 58: [169, 2, False, 0, [], "ca505", "Unsafe", b"\x70\x00\xa0\x00\x83\x00\x11", b"\x56", "Sky Garden: Dark Space (SE) "], # in the room 59: [183, 2, False, 0, [], "ca173", "", "", b"\x51", "Sky Garden: Dark Space (SW) "], 60: [195, 2, False, 0, [], "ca422", "Unsafe", b"\x20\x00\x70\x00\x83\x00\x44", b"\x54", "Sky Garden: Dark Space (NW) "], # Seaside Palace 61: [202, 1, False, 0, [], "1AFFF", "", "", "", "Seaside Palace: Side Room Chest "], 62: [200, 1, False, 0, [], "1AFFA", "", "", "", "Seaside Palace: First Area Chest "], 63: [205, 1, False, 0, [], "1B004", "", "", "", "Seaside Palace: Second Area Chest "], 64: [206, 1, False, 0, [], "68af7", "68ea9", "68f02", "", "Seaside Palace: Buffy "], 65: [208, 1, False, 0, [], "6922d", "6939e", "693b7", "", "Seaside Palace: Coffin "], # text1 was 69377 66: [200, 2, False, 0, [64, 65, 66], "ca574", "Safe", b"\xf0\x02\x90\x00\x83\x00\x64", b"\x5a", "Seaside Palace: Dark Space "], # Mu 67: [217, 1, False, 0, [], "1B012", "", "", "", "Mu: Empty Chest 1 "], 68: [220, 1, False, 0, [], "1B01B", "", "", "", "Mu: Empty Chest 2 "], 69: [225, 1, False, 0, [], "698be", "698d2", "", "", "Mu: Hope Statue 1 "], 70: [236, 1, False, 0, [], "69966", "69975", "", "", "Mu: Hope Statue 2 "], 71: [215, 1, False, 0, [], "1B00D", "", "", "", "Mu: Chest s/o Hope Room 2 "], 72: [214, 1, False, 0, [], "1B009", "", "", "", "Mu: Rama Chest N "], 73: [219, 1, False, 0, [], "1B016", "", "", "", "Mu: Rama Chest E "], 74: [218, 2, False, 0, [], "ca92d", "", "", b"\x60", "Mu: Open Dark Space "], # Always open 75: [228, 2, False, 0, [], "caa99", "", "", b"\x62", "Mu: Slider Dark Space "], # Angel Village 76: [254, 1, False, 0, [], "F81D", "F82D", "F843", "", "Angel Village: Dance Hall "], 77: [255, 2, False, 0, [64, 65, 66], "caf67", "Safe", b"\x90\x01\xb0\x00\x83\x01\x12", b"\x6c", "Angel Village: Dark Space "], # Angel Dungeon 78: [265, 1, False, 0, [], "1B020", "", "", "", "Angel Dungeon: Slider Chest "], 79: [271, 1, False, 0, [], "F89D", "F8AD", "F8C3", "", "Angel Dungeon: Ishtar's Room "], 80: [274, 1, False, 0, [], "1B02A", "", "", "", "Angel Dungeon: Puzzle Chest 1 "], 81: [274, 1, False, 0, [], "1B02E", "", "", "", "Angel Dungeon: Puzzle Chest 2 "], 82: [273, 1, False, 0, [], "1B025", "", "", "", "Angel Dungeon: Ishtar's Chest "], # Watermia 83: [280, 1, False, 0, [], "F91D", "F92D", "F943", "", "Watermia: West Jar "], 85: [286, 1, False, 0, [], "7ad21", "7aede", "", "", "Watermia: Lance "], # text2 was 7afa7 86: [283, 1, False, 0, [], "F99D", "F9AD", "F9C3", "", "Watermia: Gambling House "], 87: [280, 1, False, 0, [], "79248", "79288", "792a1", "", "Watermia: Russian Glass "], 88: [282, 2, False, 0, [64, 65, 66], "cb644", "Safe", b"\x40\x00\xa0\x00\x83\x00\x11", b"\x7c", "Watermia: Dark Space "], # Great Wall 89: [290, 1, False, 0, [], "7b5c5", "7b5d1", "", "", "Great Wall: Necklace 1 "], 90: [292, 1, False, 0, [], "7b625", "7b631", "", "", "Great Wall: Necklace 2 "], 91: [292, 1, False, 0, [], "1B033", "", "", "", "Great Wall: Chest 1 "], 92: [294, 1, False, 0, [], "1B038", "", "", "", "Great Wall: Chest 2 "], 93: [295, 2, False, 0, [], "cbb11", "Unsafe", b"\x60\x00\xc0\x02\x83\x20\x38", b"\x85", "Great Wall: Archer Dark Space "], 94: [297, 2, False, 0, [], "cbb80", "Unsafe", b"\x50\x01\x80\x04\x83\x00\x63", b"\x86", "Great Wall: Platform Dark Space "], # Always open 95: [300, 2, False, 0, [], "cbc60", "", "", b"\x88", "Great Wall: Appearing Dark Space "], # Euro 96: [310, 1, False, 0, [], "FA1D", "FA2D", "FA43", "", "Euro: Alley "], 97: [310, 1, False, 0, [], "7c0b3", "7c0f3", "", "", "Euro: Apple Vendor "], 98: [320, 1, False, 0, [], "7e51f", "7e534", "7e54a", "", "Euro: Hidden House "], 99: [323, 1, False, 0, [], "7cd12", "7cd39", "7cd9b", "", "Euro: Store Item 1 "], 100: [323, 1, False, 0, [], "7cdf9", "7ce28", "7ce3e", "", "Euro: Store Item 2 "], # text2 was 7cedd 101: [321, 1, False, 0, [], "FA9D", "FAAD", "FAC3", "", "Euro: Shrine "], 102: [315, 1, False, 0, [], "7df58", "7e10a", "", "", "Euro: Ann "], 103: [325, 2, False, 0, [64, 65, 66], "cc0b0", "Safe", b"\xb0\x00\xb0\x00\x83\x00\x11", b"\x99", "Euro: Dark Space "], # Mt Temple 104: [336, 1, False, 0, [], "1B03D", "", "", "", "Mt. Temple: Red Jewel Chest "], 105: [338, 1, False, 0, [], "1B042", "", "", "", "Mt. Temple: Drops Chest 1 "], 106: [342, 1, False, 0, [], "1B047", "", "", "", "Mt. Temple: Drops Chest 2 "], 107: [343, 1, False, 0, [], "1B04C", "", "", "", "Mt. Temple: Drops Chest 3 "], 108: [345, 1, False, 0, [], "1B051", "", "", "", "Mt. Temple: Final Chest "], 109: [332, 2, False, 0, [], "cc24f", "Unsafe", b"\xf0\x01\x10\x03\x83\x00\x44", b"\xa1", "Mt. Temple: Dark Space 1 "], 110: [337, 2, False, 0, [], "cc419", "Unsafe", b"\xc0\x07\xc0\x00\x83\x00\x28", b"\xa3", "Mt. Temple: Dark Space 2 "], 111: [343, 2, False, 0, [], "cc7b8", "", "", b"\xa7", "Mt. Temple: Dark Space 3 "], # Natives' 112: [353, 1, False, 0, [], "FB1D", "FB2D", "FB43", "", "Natives' Village: Statue Room "], 113: [354, 1, False, 0, [], "893af", "8942a", "", "", "Natives' Village: Statue "], 114: [350, 2, False, 0, [64, 65, 66], "cca37", "Safe", b"\xc0\x01\x50\x00\x83\x00\x22", b"\xac", "Natives' Village: Dark Space "], # Ankor Wat 115: [361, 1, False, 0, [], "1B056", "", "", "", "Ankor Wat: Ramp Chest "], 116: [370, 1, False, 0, [], "1B05B", "", "", "", "Ankor Wat: Flyover Chest "], 117: [378, 1, False, 0, [], "1B060", "", "", "", "Ankor Wat: U-Turn Chest "], 118: [382, 1, False, 0, [], "1B065", "", "", "", "Ankor Wat: Drop Down Chest "], 119: [389, 1, False, 0, [], "1B06A", "", "", "", "Ankor Wat: Forgotten Chest "], 120: [380, 1, False, 0, [], "89fa3", "89fbb", "", "", "Ankor Wat: Glasses Location "], # slow text @89fdc 121: [391, 1, False, 0, [], "89adc", "89af1", "89b07", "", "Ankor Wat: Spirit "], # item was 89b0d, text was 89e2e 122: [372, 2, False, 0, [], "cce92", "Unsafe", b"\x20\x04\x30\x03\x83\x00\x46", b"\xb6", "Ankor Wat: Garden Dark Space "], # Always open 123: [377, 2, False, 0, [], "cd0a2", "", "", b"\xb8", "Ankor Wat: Earthquaker Dark Space "], 124: [383, 2, False, 0, [], "cd1a7", "Unsafe", b"\xb0\x02\xc0\x01\x83\x00\x33", b"\xbb", "Ankor Wat: Drop Down Dark Space "], # Always open # Dao 125: [400, 1, False, 0, [], "8b1b0", "", "", "", "Dao: Entrance Item 1 "], 126: [400, 1, False, 0, [], "8b1b5", "", "", "", "Dao: Entrance Item 2 "], 127: [400, 1, False, 0, [], "FB9D", "FBAD", "FBC3", "", "Dao: East Grass "], 128: [403, 1, False, 0, [], "8b016", "8b073", "8b090", "", "Dao: Snake Game "], 129: [400, 2, False, 0, [64, 65, 66], "cd3d0", "Safe", b"\x20\x00\x80\x00\x83\x00\x23", b"\xc3", "Dao: Dark Space "], # Pyramid 130: [411, 1, False, 0, [], "8dcb7", "8e66c", "8e800", "", "Pyramid: Dark Space Top "], # text2 was 8e800 131: [412, 1, False, 0, [], "FC1D", "FC2D", "FC43", "", "Pyramid: Hidden Platform "], 132: [442, 1, False, 0, [], "8c7b2", "8c7c9", "", "", "Pyramid: Hieroglyph 1 "], 133: [422, 1, False, 0, [], "1B06F", "", "", "", "Pyramid: Room 2 Chest "], 134: [443, 1, False, 0, [], "8c879", "8c88c", "", "", "Pyramid: Hieroglyph 2 "], 135: [432, 1, False, 0, [], "1B079", "", "", "", "Pyramid: Room 3 Chest "], 136: [444, 1, False, 0, [], "8c921", "8c934", "", "", "Pyramid: Hieroglyph 3 "], 137: [439, 1, False, 0, [], "1B07E", "", "", "", "Pyramid: Room 4 Chest "], 138: [445, 1, False, 0, [], "8c9c9", "8c9dc", "", "", "Pyramid: Hieroglyph 4 "], 139: [428, 1, False, 0, [], "1B074", "", "", "", "Pyramid: Room 5 Chest "], 140: [446, 1, False, 0, [], "8ca71", "8ca84", "", "", "Pyramid: Hieroglyph 5 "], 141: [447, 1, False, 0, [], "8cb19", "8cb2c", "", "", "Pyramid: Hieroglyph 6 "], 142: [413, 2, True, 0, [], "cd570", "Unsafe", b"\xc0\x01\x90\x03\x83\x00\x44", b"\xcc", "Pyramid: Dark Space Bottom "], # Always open # Babel 143: [461, 1, False, 0, [], "FC9D", "FCAD", "FCC3", "", "Babel: Pillow "], 144: [461, 1, False, 0, [], "99a4f", "99ae4", "99afe", "", "Babel: Force Field "], # item was 99a61 145: [461, 2, False, 0, [64, 65, 66], "ce09b", "Forced Unsafe", b"\x90\x07\xb0\x01\x83\x10\x28", b"\xdf", "Babel: Dark Space Bottom "], 146: [472, 2, False, 0, [64, 65, 66], "ce159", "Safe", b"\xb0\x02\xb0\x01\x83\x10\x23", b"\xe3", "Babel: Dark Space Top "], # Jeweler's Mansion 147: [480, 1, False, 0, [], "1B083", "", "", "", "Jeweler's Mansion: Chest "], # Mystic Statues 148: [101, 3, False, 0, [101, 102, 103, 104, 105], "", "", "", "", "Castoth Prize "], 149: [198, 3, False, 0, [100, 102, 103, 104, 105], "", "", "", "", "Viper Prize "], 150: [244, 3, False, 0, [100, 101, 103, 104, 105], "", "", "", "", "Vampires Prize "], 151: [302, 3, False, 0, [100, 101, 102, 104, 105], "", "", "", "", "Sand Fanger Prize "], 152: [448, 3, False, 0, [100, 101, 102, 103, 105], "", "", "", "", "Mummy Queen Prize "], 153: [479, 3, False, 0, [100, 101, 102, 103, 104], "", "", "", "", "Babel Prize "], # Event Switches 500: [500, 4, True, 500, [], "", "", "", "", "Kara "], 501: [501, 4, True, 501, [], "", "", "", "", "Lilly "], 502: [502, 4, True, 502, [], "", "", "", "", "Moon Tribe: Spirits Healed "], 503: [503, 4, True, 503, [], "", "", "", "", "Inca: Castoth defeated "], 504: [504, 4, True, 504, [], "", "", "", "", "Freejia: Found Laborer "], 505: [505, 4, True, 505, [], "", "", "", "", "Neil's Memory Restored "], 506: [506, 4, True, 506, [], "", "", "", "", "Sky Garden: Map 82 NW Switch "], 507: [507, 4, True, 507, [], "", "", "", "", "Sky Garden: Map 82 NE Switch "], 508: [508, 4, True, 508, [], "", "", "", "", "Sky Garden: Map 82 SE Switch "], 509: [509, 4, True, 509, [], "", "", "", "", "Sky Garden: Map 84 Switch "], 510: [510, 4, True, 510, [], "", "", "", "", "Seaside: Fountain Purified "], 511: [511, 4, True, 511, [], "", "", "", "", "Mu: Water Lowered 1 "], 512: [512, 4, True, 512, [], "", "", "", "", "Mu: Water Lowered 2 "], 513: [513, 4, True, 513, [], "", "", "", "", "Angel: Puzzle Complete "], 514: [514, 4, True, 514, [], "", "", "", "", "Mt Kress: Drops used 1 "], 515: [515, 4, True, 515, [], "", "", "", "", "Mt Kress: Drops used 2 "], 516: [516, 4, True, 516, [], "", "", "", "", "Mt Kress: Drops used 3 "], 517: [517, 4, True, 517, [], "", "", "", "", "Pyramid: Hieroglyphs placed "], 518: [518, 4, True, 518, [], "", "", "", "", "Babel: Castoth defeated "], 519: [519, 4, True, 519, [], "", "", "", "", "Babel: Viper defeated "], 520: [520, 4, True, 520, [], "", "", "", "", "Babel: Vampires defeated "], 521: [521, 4, True, 521, [], "", "", "", "", "Babel: Sand Fanger defeated "], 522: [522, 4, True, 522, [], "", "", "", "", "Babel: Mummy Queen defeated "], 523: [523, 4, True, 523, [], "", "", "", "", "Mansion: Solid Arm defeated "], # Misc 600: [600, 4, True, 600, [], "", "", "", "", "Freedan Access "], 601: [601, 4, True, 601, [], "", "", "", "", "Glitches "], 602: [602, 4, True, 602, [], "", "", "", "", "Early Firebird "], 603: [491, 4, True, 67, [], "", "", "", "", "Firebird "] } # World graph # Format: { Region ID: # Traversed_flag, [AccessibleRegions], type(0=other/misc,1=exterior,2=interior), [continentID,areaID,layer,MapID], # 4: DS_access (0=no_access,1=any_DS,2=form_change_DS), # 5: RegionName, # 6: [ItemsToRemove], # 7: ForceFormChange, # 8: [AccessibleFromNodes], # 9: [Accessible_DS_nodes], # 10: [Accessible_Nodes_w_Logic], # 11: [item_locations], # 12: [origin_logic], # 13: [dest_logic], # 14: [origin_exits], # 15: [dest_exits] } self.graph = { # Game Start 0: [False, [22], 0, [0,0,0,b"\x00"], 0, "Game Start", [], True, [], [], [], [], [], [], [], []], # Jeweler 1: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Access", [], False, [], [], [], [], [], [], [], []], 2: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 1", [], False, [], [], [], [], [], [], [], []], 3: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 2", [], False, [], [], [], [], [], [], [], []], 4: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 3", [], False, [], [], [], [], [], [], [], []], 5: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 4", [], False, [], [], [], [], [], [], [], []], 6: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 5", [], False, [], [], [], [], [], [], [], []], 7: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 6", [], False, [], [], [], [], [], [], [], []], 8: [False, [], 0, [0,0,0,b"\x00"], 0, "Jeweler Reward 7", [], False, [], [], [], [], [], [], [], []], # Overworld Menus 10: [False, [20,30,50,60,63], 0, [1,0,0,b"\x00"], 0, "Overworld: SW Continent", [], True, [], [], [], [], [], [], [], []], 11: [False, [102,110,133,160,162], 0, [2,0,0,b"\x00"], 0, "Overworld: SE Continent", [], True, [], [], [], [], [], [], [], []], 12: [False, [250,280,290], 0, [3,0,0,b"\x00"], 0, "Overworld: NE Continent", [], True, [], [], [], [], [], [], [], []], 13: [False, [310,330,350,360], 0, [4,0,0,b"\x00"], 0, "Overworld: N Continent", [], True, [], [], [], [], [], [], [], []], 14: [False, [400,410], 0, [5,0,0,b"\x00"], 0, "Overworld: NW Continent", [], True, [], [], [], [], [], [], [], []], # Passage Menus 15: [False, [], 0, [0,0,0,b"\x00"], 0, "Passage: Seth", [], True, [], [], [], [], [], [], [], []], 16: [False, [], 0, [0,0,0,b"\x00"], 0, "Passage: Moon Tribe", [], True, [], [], [], [], [], [], [], []], 17: [False, [], 0, [0,0,0,b"\x00"], 0, "Passage: Neil", [], True, [], [], [], [], [], [], [], []], # South Cape 20: [False, [1,10], 1, [1,1,0,b"\x00"], 0, "South Cape: Main Area", [], False, [], [], [], [], [], [], [], []], 21: [False, [20], 1, [1,1,0,b"\x00"], 0, "South Cape: School Roof", [], False, [], [], [], [], [], [], [], []], 22: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: School", [], False, [], [], [], [], [], [], [], []], 23: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: Will's House", [], False, [], [], [], [], [], [], [], []], 24: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: East House", [], False, [], [], [], [], [], [], [], []], 25: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: Seth's House", [], False, [], [], [], [], [], [], [], []], 26: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: Lance's House", [], False, [], [], [], [], [], [], [], []], 27: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: Erik's House", [], False, [], [], [], [], [], [], [], []], 28: [False, [], 2, [1,1,0,b"\x00"], 0, "South Cape: Seaside Cave", [], False, [], [], [], [], [], [], [], []], # Edward's / Prison 30: [False, [10], 1, [1,2,0,b"\x00"], 0, "Edward's Castle: Main Area", [], False, [], [], [], [], [], [], [], []], 31: [False, [30], 1, [1,2,0,b"\x00"], 0, "Edward's Castle: Behind Guard", [], False, [], [], [], [], [], [], [], []], 32: [False, [], 2, [1,2,0,b"\x00"], 0, "Edward's Prison: Will's Cell", [2], False, [], [], [], [], [], [], [], []], 33: [False, [], 2, [1,2,0,b"\x00"], 0, "Edward's Prison: Prison Main", [2], False, [], [], [], [], [], [], [], []], # Underground Tunnel 40: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 12", [], False, [], [], [], [], [], [], [], []], 41: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 13", [], False, [], [], [], [], [], [], [], []], 42: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 14", [], False, [], [], [], [], [], [], [], []], 43: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 15", [], False, [], [], [], [], [], [], [], []], 44: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 16", [], False, [], [], [], [], [], [], [], []], 45: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 17 (entrance)", [], False, [], [], [], [], [], [], [], []], 46: [False, [45], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 17 (exit open)", [], False, [], [], [], [], [], [], [], []], 47: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 18 (before bridge)", [], False, [], [], [], [], [], [], [], []], 48: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Map 18 (after bridge)", [], False, [], [], [], [], [], [], [], []], 49: [False, [], 2, [1,2,0,b"\x00"], 0, "Underground Tunnel: Exit", [], True, [], [], [], [], [], [], [], []], # Itory 50: [False, [10], 1, [1,3,0,b"\x00"], 0, "Itory: Entrance", [9], False, [], [], [], [], [], [], [], []], 51: [False, [50], 1, [1,3,0,b"\x00"], 0, "Itory: Main Area", [], False, [], [], [], [], [], [], [], []], 52: [False, [], 1, [1,3,0,b"\x00"], 0, "Itory: Lilly's Back Porch", [], False, [], [], [], [], [], [], [], []], 53: [False, [], 2, [1,3,0,b"\x00"], 0, "Itory: West House", [], False, [], [], [], [], [], [], [], []], 54: [False, [], 2, [1,3,0,b"\x00"], 0, "Itory: North House", [], False, [], [], [], [], [], [], [], []], 55: [False, [], 2, [1,3,0,b"\x00"], 0, "Itory: Lilly's House", [23], False, [], [], [], [], [], [], [], []], 56: [False, [], 2, [1,3,0,b"\x00"], 0, "Itory: Cave", [], False, [], [], [], [], [], [], [], []], 57: [False, [56], 2, [1,3,0,b"\x00"], 0, "Itory: Cave (behind false wall)", [], False, [], [], [], [], [], [], [], []], 58: [False, [], 2, [1,3,0,b"\x00"], 0, "Itory: Cave (secret room)", [], False, [], [], [], [], [], [], [], []], 59: [False, [55,501], 0, [1,3,0,b"\x00"], 0, "Itory: Got Lilly", [], False, [], [], [], [], [], [], [], []], # Moon Tribe / Inca Entrance 60: [False, [10], 1, [1,4,0,b"\x00"], 0, "Moon Tribe: Main Area", [25], False, [], [], [], [], [], [], [], []], 61: [False, [], 2, [1,4,0,b"\x00"], 0, "Moon Tribe: Cave", [], False, [], [], [], [], [], [], [], []], 62: [False, [61], 2, [1,4,0,b"\x00"], 0, "Moon Tribe: Cave (Pedestal)", [], False, [], [], [], [], [], [], [], []], 63: [False, [10], 1, [1,5,0,b"\x00"], 0, "Inca: Entrance", [], False, [], [], [], [], [], [], [], []], 64: [False, [60,502], 0, [1,4,0,b"\x00"], 0, "Moon Tribe: Spirits Awake", [], False, [], [], [], [], [], [], [], []], # Inca Ruins 70: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (NE)", [], False, [], [], [], [], [], [], [], []], 71: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (NW)", [], False, [], [], [], [], [], [], [], []], 72: [False, [70,73], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (N)", [], False, [], [], [], [], [], [], [], []], 73: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (center)", [], False, [], [], [], [], [], [], [], []], 74: [False, [72], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (SW)", [], False, [], [], [], [], [], [], [], []], 75: [False, [72,99], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (SE)", [], False, [], [], [], [], [], [], [], []], 76: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (statue head)", [], False, [], [], [], [], [], [], [], []], 77: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 30 (first area)", [3, 4], False, [], [], [], [], [], [], [], []], 78: [False, [77], 2, [1,5,0,b"\x00"], 0, "Inca: Map 30 (second area)", [], False, [], [], [], [], [], [], [], []], 79: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 31", [], False, [], [], [], [], [], [], [], []], 80: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 32 (entrance)", [], False, [], [], [], [], [], [], [], []], 81: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 32 (behind statue)", [], False, [], [], [], [], [], [], [], []], 82: [False, [83], 2, [1,5,0,b"\x00"], 0, "Inca: Map 33 (entrance)", [], False, [], [], [], [], [], [], [], []], 83: [False, [82], 2, [1,5,0,b"\x00"], 0, "Inca: Map 33 (over ramp)", [], False, [], [], [], [], [], [], [], []], # Need to prevent softlocks here 84: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 34", [], False, [], [], [], [], [], [], [], []], 85: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 35 (entrance)", [], False, [], [], [], [], [], [], [], []], 86: [False, [85], 2, [1,5,0,b"\x00"], 0, "Inca: Map 35 (over ramp)", [], False, [], [], [], [], [], [], [], []], 87: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 36 (main)", [8], False, [], [], [], [], [], [], [], []], 88: [False, [87], 2, [1,5,0,b"\x00"], 0, "Inca: Map 36 (exit opened)", [], False, [], [], [], [], [], [], [], []], 89: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 37 (main area)", [7], False, [], [], [], [], [], [], [], []], 90: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 37 (tile bridge)", [], False, [], [], [], [], [], [], [], []], # Check for potential softlock? 91: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 38 (south section)", [], False, [], [], [], [], [], [], [], []], 92: [False, [91], 2, [1,5,0,b"\x00"], 0, "Inca: Map 38 (behind statues)", [], False, [], [], [], [], [], [], [], []], 93: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 38 (north section)", [], False, [], [], [], [], [], [], [], []], 94: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 39", [], False, [], [], [], [], [], [], [], []], 95: [False, [96], 2, [1,5,0,b"\x00"], 0, "Inca: Map 40 (entrance)", [], False, [], [], [], [], [], [], [], []], 96: [False, [95], 2, [1,5,0,b"\x00"], 0, "Inca: Map 40 (past tiles)", [], False, [], [], [], [], [], [], [], []], 97: [False, [98,503], 2, [1,5,0,b"\x00"], 0, "Inca: Boss Room", [], True, [], [], [], [], [], [], [], []], # might need to add an exit for this 98: [False, [97], 2, [1,5,0,b"\x00"], 0, "Inca: Behind Boss Room", [], False, [], [], [], [], [], [], [], []], 99: [False, [], 2, [1,5,0,b"\x00"], 0, "Inca: Map 29 (SE door)", [], False, [], [], [], [], [], [], [], []], # Gold Ship / Diamond Coast 100: [False, [104], 1, [1,5,0,b"\x00"], 0, "Gold Ship: Deck", [], False, [], [], [], [], [], [], [], []], 101: [False, [], 2, [1,5,0,b"\x00"], 0, "Gold Ship: Interior", [], False, [], [], [], [], [], [], [], []], 102: [False, [11], 1, [2,6,0,b"\x00"], 0, "Diamond Coast: Main Area", [], False, [], [], [], [], [], [], [], []], 103: [False, [], 2, [2,6,0,b"\x00"], 0, "Diamond Coast: House", [], False, [], [], [], [], [], [], [], []], 104: [False, [], 0, [1,5,0,b"\x00"], 0, "Gold Ship: Crow's Nest Passage", [], False, [], [], [], [], [], [], [], []], # Freejia 110: [False, [11], 1, [2,7,0,b"\x00"], 0, "Freejia: Main Area", [], False, [], [], [], [], [], [], [], []], 111: [False, [1, 110], 1, [2,7,0,b"\x00"], 0, "Freejia: 2-story House Roof", [], False, [], [], [], [], [], [], [], []], 112: [False, [], 1, [2,7,0,b"\x00"], 0, "Freejia: Laborer House Roof", [], False, [], [], [], [], [], [], [], []], 113: [False, [110, 114], 1, [2,7,0,b"\x00"], 0, "Freejia: Labor Trade Roof", [], False, [], [], [], [], [], [], [], []], 114: [False, [110, 112], 1, [2,7,0,b"\x00"], 0, "Freejia: Back Alley", [], False, [], [], [], [], [], [], [], []], 115: [False, [110], 0, [2,7,0,b"\x00"], 0, "Freejia: Slaver", [], False, [], [], [], [], [], [], [], []], 116: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: West House", [], False, [], [], [], [], [], [], [], []], 117: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: 2-story House", [], False, [], [], [], [], [], [], [], []], 118: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Lovers' House", [], False, [], [], [], [], [], [], [], []], 119: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Hotel (common area)", [], False, [], [], [], [], [], [], [], []], 120: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Hotel (west room)", [], False, [], [], [], [], [], [], [], []], 121: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Hotel (east room)", [], False, [], [], [], [], [], [], [], []], 122: [False, [504], 2, [2,7,0,b"\x00"], 0, "Freejia: Laborer House", [], False, [], [], [], [], [], [], [], []], 123: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Messy House", [], False, [], [], [], [], [], [], [], []], 124: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Erik House", [], False, [], [], [], [], [], [], [], []], 125: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Dark Space House", [], False, [], [], [], [], [], [], [], []], 126: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Labor Trade House", [], False, [], [], [], [], [], [], [], []], 127: [False, [], 2, [2,7,0,b"\x00"], 0, "Freejia: Labor Market", [], False, [], [], [], [], [], [], [], []], # Diamond Mine 130: [False, [131], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 61 (entrance)", [], False, [], [], [], [], [], [], [], []], 131: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 61 (behind barriers)", [], False, [], [], [], [], [], [], [], []], 132: [False, [131], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 61 (false wall)", [], False, [], [], [], [], [], [], [], []], 133: [False, [11], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 62", [], False, [], [], [], [], [], [], [], []], 134: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 63 (main)", [], False, [], [], [], [], [], [], [], []], 135: [False, [134], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 63 (elevator)", [], False, [], [], [], [], [], [], [], []], 136: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 64 (main)", [], False, [], [], [], [], [], [], [], []], 137: [False, [136], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 64 (trapped laborer)", [], False, [], [], [], [], [], [], [], []], 138: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 65 (main)", [], False, [], [], [], [], [], [], [], []], 139: [False, [138], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 65 (behind ramp)", [], False, [], [], [], [], [], [], [], []], 140: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 66 (elevator 1)", [], False, [], [], [], [], [], [], [], []], 141: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 66 (elevator 2)", [], False, [], [], [], [], [], [], [], []], 142: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 66 (Dark Space)", [], False, [], [], [], [], [], [], [], []], 143: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 66 (laborer)", [], False, [], [], [], [], [], [], [], []], 144: [False, [145], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 67 (entrance)", [], False, [], [], [], [], [], [], [], []], 145: [False, [144], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 67 (exit)", [], False, [], [], [], [], [], [], [], []], # potential softlock? 146: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 68 (main)", [], False, [], [], [], [], [], [], [], []], 147: [False, [146], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 68 (door open)", [], False, [], [], [], [], [], [], [], []], 148: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 69", [], False, [], [], [], [], [], [], [], []], 149: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 70", [], False, [], [], [], [], [], [], [], []], 150: [False, [], 2, [2,8,0,b"\x00"], 0, "Diamond Mine: Map 71", [], False, [], [], [], [], [], [], [], []], # Neil's Cottage / Nazca 160: [False, [11], 2, [2,9,0,b"\x00"], 0, "Neil's Cottage", [13], False, [], [], [], [], [], [], [], []], 161: [False, [17,160,505], 2, [2,9,0,b"\x00"], 0, "Neil's Cottage: Neil", [], False, [], [], [], [], [], [], [], []], 162: [False, [11], 1, [2,10,0,b"\x00"], 0, "Nazca Plain", [], False, [], [], [], [], [], [], [], []], # Sky Garden 167: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (SE)", [], False, [], [], [], [], [], [], [], []], 168: [False, [181], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (north)", [], False, [], [], [], [], [], [], [], []], 169: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 86 (DS Room)", [], False, [], [], [], [], [], [], [], []], 170: [False, [], 1, [2,10,0,b"\x00"], 0, "Sky Garden: Foyer", [14, 14, 14, 14], False, [], [], [], [], [], [], [], []], 171: [False, [], 1, [2,10,0,b"\x00"], 0, "Sky Garden: Boss Entrance", [], False, [], [], [], [], [], [], [], []], 172: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 77 (main)", [], False, [], [], [], [], [], [], [], []], 173: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 77 (SW)", [], False, [], [], [], [], [], [], [], []], 174: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 77 (SE)", [], False, [], [], [], [], [], [], [], []], 175: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 78", [], False, [], [], [], [], [], [], [], []], 176: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 79 (main)", [], False, [], [], [], [], [], [], [], []], 177: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 79 (center)", [], False, [], [], [], [], [], [], [], []], 178: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 79 (behind barrier)", [], False, [], [], [], [], [], [], [], []], 179: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 80 (north)", [], False, [], [], [], [], [], [], [], []], 180: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 80 (south)", [], False, [], [], [], [], [], [], [], []], 181: [False, [168], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (main)", [], False, [], [], [], [], [], [], [], []], 182: [False, [181], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (west)", [], False, [], [], [], [], [], [], [], []], 183: [False, [182], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (Dark Space cage)", [], False, [], [], [], [], [], [], [], []], 184: [False, [182], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (SE platform)", [], False, [], [], [], [], [], [], [], []], 185: [False, [182], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 81 (SW platform)", [], False, [], [], [], [], [], [], [], []], 186: [False, [506], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 82 (north)", [], False, [], [], [], [], [], [], [], []], # deal with switches 187: [False, [508], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 82 (south)", [], False, [], [], [], [], [], [], [], []], 188: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 82 (NE)", [], False, [], [], [], [], [], [], [], []], 189: [False, [188,507], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 82 (switch cage)", [], False, [], [], [], [], [], [], [], []], 190: [False, [191], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (NE)", [], False, [], [], [], [], [], [], [], []], 191: [False, [190, 192], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (NW)", [], False, [], [], [], [], [], [], [], []], 192: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (center)", [], False, [], [], [], [], [], [], [], []], 193: [False, [194], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (SW)", [], False, [], [], [], [], [], [], [], []], 194: [False, [167], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 83 (chests)", [], False, [], [], [], [], [], [], [], []], 195: [False, [196], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 84 (main)", [], False, [], [], [], [], [], [], [], []], 196: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 84 (NE)", [], False, [], [], [], [], [], [], [], []], 197: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 84 (behind statue)", [], False, [], [], [], [], [], [], [], []], 198: [False, [], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Boss Room", [], True, [], [], [], [], [], [], [], []], 199: [False, [197,509], 2, [2,10,0,b"\x00"], 0, "Sky Garden: Map 84 (statue)", [], False, [], [], [], [], [], [], [], []], # Seaside Palace 200: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 1", [16], False, [], [], [], [], [], [], [], []], 201: [False, [200], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 1 (door unlocked)", [], False, [], [], [], [], [], [], [], []], 202: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 1 NE Room", [], False, [], [], [], [], [], [], [], []], 203: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 1 NW Room", [], False, [], [], [], [], [], [], [], []], 204: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 1 SE Room", [], False, [], [], [], [], [], [], [], []], 205: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 2", [], False, [], [], [], [], [], [], [], []], 206: [False, [200], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Buffy", [], False, [], [], [], [], [], [], [], []], 207: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Area 2 SW Room", [], False, [], [], [], [], [], [], [], []], 208: [False, [205], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Coffin", [], False, [], [], [], [], [], [], [], []], 209: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Fountain", [17], False, [], [], [], [], [], [], [], []], 210: [False, [], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Mu Passage", [16], False, [], [], [], [], [], [], [], []], 211: [False, [210], 2, [3,11,0,b"\x00"], 0, "Seaside Palace: Mu Passage (door unlocked)", [], False, [], [], [], [], [], [], [], []], # Mu 212: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 95 (top)", [], False, [], [], [], [], [], [], [], []], 213: [False, [212], 2, [3,12,1,b"\x00"], 0, "Mu: Map 95 (middle E)", [], False, [], [], [], [], [], [], [], []], 214: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 95 (middle W)", [], False, [], [], [], [], [], [], [], []], 215: [False, [213], 2, [3,12,2,b"\x00"], 0, "Mu: Map 95 (bottom E)", [], False, [], [], [], [], [], [], [], []], 216: [False, [214], 2, [3,12,2,b"\x00"], 0, "Mu: Map 95 (bottom W)", [], False, [], [], [], [], [], [], [], []], 217: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 96 (top)", [], False, [], [], [], [], [], [], [], []], 218: [False, [217], 2, [3,12,1,b"\x00"], 0, "Mu: Map 96 (middle)", [], False, [], [], [], [], [], [], [], []], 219: [False, [], 2, [3,12,2,b"\x00"], 0, "Mu: Map 96 (bottom)", [], False, [], [], [], [], [], [], [], []], 220: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 97 (top main)", [], False, [], [], [], [], [], [], [], []], 221: [False, [222, 223], 2, [3,12,0,b"\x00"], 0, "Mu: Map 97 (top island)", [], False, [], [], [], [], [], [], [], []], 222: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 97 (middle NE)", [], False, [], [], [], [], [], [], [], []], 223: [False, [221], 2, [3,12,1,b"\x00"], 0, "Mu: Map 97 (middle SW)", [], False, [], [], [], [], [], [], [], []], 224: [False, [], 2, [3,12,2,b"\x00"], 0, "Mu: Map 97 (bottom)", [], False, [], [], [], [], [], [], [], []], 225: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 98 (top S)", [], False, [], [], [], [], [], [], [], []], 226: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 98 (top N)", [], False, [], [], [], [], [], [], [], []], 227: [False, [226], 2, [3,12,1,b"\x00"], 0, "Mu: Map 98 (middle E)", [], False, [], [], [], [], [], [], [], []], 228: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 98 (middle W)", [], False, [], [], [], [], [], [], [], []], 229: [False, [227], 2, [3,12,2,b"\x00"], 0, "Mu: Map 98 (bottom E)", [], False, [], [], [], [], [], [], [], []], 230: [False, [228], 2, [3,12,2,b"\x00"], 0, "Mu: Map 98 (bottom W)", [], False, [], [], [], [], [], [], [], []], 231: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 99 (Room of Hope 1)", [18], False, [], [], [], [], [], [], [], []], 232: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 99 (Room of Hope 2)", [18], False, [], [], [], [], [], [], [], []], 233: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 100 (middle E)", [], False, [], [], [], [], [], [], [], []], 234: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 100 (middle W)", [], False, [], [], [], [], [], [], [], []], 235: [False, [], 2, [3,12,2,b"\x00"], 0, "Mu: Map 100 (bottom)", [], False, [], [], [], [], [], [], [], []], 236: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 101 (top)", [], False, [], [], [], [], [], [], [], []], 237: [False, [], 2, [3,12,1,b"\x00"], 0, "Mu: Map 101 (middle W)", [], False, [], [], [], [], [], [], [], []], 238: [False, [236], 2, [3,12,1,b"\x00"], 0, "Mu: Map 101 (middle E)", [], False, [], [], [], [], [], [], [], []], 239: [False, [], 2, [3,12,2,b"\x00"], 0, "Mu: Map 101 (bottom)", [], False, [], [], [], [], [], [], [], []], 240: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 102 (pedestals)", [19, 19], False, [], [], [], [], [], [], [], []], 241: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 102 (statues placed)", [], False, [], [], [], [], [], [], [], []], # might need an exit for this 242: [False, [], 2, [3,12,0,b"\x00"], 0, "Mu: Map 102 (statue get)", [], False, [], [], [], [], [], [], [], []], 243: [False, [244], 2, [3,12,0,b"\x00"], 0, "Mu: Boss Room (entryway)", [], False, [], [], [], [], [], [], [], []], # Might need to add an exit for this? 244: [False, [242,243], 2, [3,12,0,b"\x00"], 0, "Mu: Boss Room (main)", [], True, [], [], [], [], [], [], [], []], 245: [False, [212], 2, [3,12,0,b"\x00"], 0, "Mu: Map 95 (top, Slider exit)", [], False, [], [], [], [], [], [], [], []], 246: [False, [226], 2, [3,12,0,b"\x00"], 0, "Mu: Map 98 (top, Slider exit)", [], False, [], [], [], [], [], [], [], []], 247: [False, [231,511], 0, [3,12,0,b"\x00"], 0, "Mu: Water lowered 1", [], False, [], [], [], [], [], [], [], []], 248: [False, [232,512], 0, [3,12,0,b"\x00"], 0, "Mu: Water lowered 2", [], False, [], [], [], [], [], [], [], []], # Angel Village 250: [False, [12], 1, [3,13,0,b"\x00"], 0, "Angel Village: Outside", [], True, [], [], [], [], [], [], [], []], 251: [False, [1], 2, [3,13,0,b"\x00"], 0, "Angel Village: Underground", [], False, [], [], [], [], [], [], [], []], 252: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Village: Room 1", [], False, [], [], [], [], [], [], [], []], 253: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Village: Room 2", [], False, [], [], [], [], [], [], [], []], 254: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Village: Dance Hall", [], False, [], [], [], [], [], [], [], []], 255: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Village: DS Room", [], False, [], [], [], [], [], [], [], []], #256: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Village: Room 3", [], False, [], [], [], [], [], [], [], []], # Angel Dungeon 260: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 109", [], False, [], [], [], [], [], [], [], []], 261: [False, [278], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 110 (main)", [], False, [], [], [], [], [], [], [], []], 262: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 111", [], False, [], [], [], [], [], [], [], []], 263: [False, [279], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 112 (main)", [], False, [], [], [], [], [], [], [], []], 264: [False, [263], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 112 (slider)", [], False, [], [], [], [], [], [], [], []], 265: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 112 (alcove)", [], False, [], [], [], [], [], [], [], []], 266: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 113", [], False, [], [], [], [], [], [], [], []], 267: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 114 (main)", [], False, [], [], [], [], [], [], [], []], 268: [False, [267], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 114 (slider exit)", [], False, [], [], [], [], [], [], [], []], 269: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 115 (main)", [], False, [], [], [], [], [], [], [], []], 270: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 116 (portrait room)", [], False, [], [], [], [], [], [], [], []], 271: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 116 (side room)", [], False, [], [], [], [], [], [], [], []], 272: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 116 (Ishtar's room)", [], False, [], [], [], [], [], [], [], []], 273: [False, [272], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 116 (Ishtar's chest)", [], False, [], [], [], [], [], [], [], []], 274: [False, [513], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Puzzle Room", [], False, [], [], [], [], [], [], [], []], 275: [False, [265], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 112 (alcove slider)", [], False, [], [], [], [], [], [], [], []], 276: [False, [277], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 115 (slider exit)", [], False, [], [], [], [], [], [], [], []], 277: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 115 (foyer)", [], False, [], [], [], [], [], [], [], []], 278: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 110 (past Draco)", [], False, [], [], [], [], [], [], [], []], 279: [False, [], 2, [3,13,0,b"\x00"], 0, "Angel Dungeon: Map 112 (past Draco)", [], False, [], [], [], [], [], [], [], []], # Watermia 280: [False, [12], 1, [3,14,0,b"\x00"], 0, "Watermia: Main Area", [24], False, [], [], [], [], [], [], [], []], #281: [False, [15,280], 0, [3,14,0,b"\x00"], 0, "Watermia: Bridge Man", [], False, [], [], [], [], [], [], [], []], 282: [False, [], 2, [3,14,0,b"\x00"], 0, "Watermia: DS House", [], False, [], [], [], [], [], [], [], []], 283: [False, [1], 2, [3,14,0,b"\x00"], 0, "Watermia: Gambling House", [], False, [], [], [], [], [], [], [], []], 284: [False, [], 2, [3,14,0,b"\x00"], 0, "Watermia: West House", [], False, [], [], [], [], [], [], [], []], 285: [False, [], 2, [3,14,0,b"\x00"], 0, "Watermia: East House", [], False, [], [], [], [], [], [], [], []], 286: [False, [], 2, [3,14,0,b"\x00"], 0, "Watermia: Lance's House", [], False, [], [], [], [], [], [], [], []], 287: [False, [], 2, [3,14,0,b"\x00"], 0, "Watermia: NW House", [], False, [], [], [], [], [], [], [], []], 288: [False, [280], 0, [3,14,0,b"\x00"], 0, "Watermia: Stablemaster", [], True, [], [], [], [], [], [], [], []], # Great Wall 290: [False, [12], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 130", [], False, [], [], [], [], [], [], [], []], 291: [False, [292], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 131 (NW)", [], False, [], [], [], [], [], [], [], []], 292: [False, [293], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 131 (S)", [], False, [], [], [], [], [], [], [], []], 293: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 131 (NE)", [], False, [], [], [], [], [], [], [], []], 294: [False, [296], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 133 (W)", [], False, [], [], [], [], [], [], [], []], 295: [False, [296], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 133 (center)", [], False, [], [], [], [], [], [], [], []], 296: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 133 (E)", [], False, [], [], [], [], [], [], [], []], 297: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 134", [], False, [], [], [], [], [], [], [], []], 298: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 135 (W)", [], False, [], [], [], [], [], [], [], []], 299: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 135 (E)", [], False, [], [], [], [], [], [], [], []], 300: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 136 (W)", [], False, [], [], [], [], [], [], [], []], 301: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Map 136 (E)", [], False, [], [], [], [], [], [], [], []], 302: [False, [303], 2, [3,15,0,b"\x00"], 0, "Great Wall: Boss Room (entrance)", [], False, [], [], [], [], [], [], [], []], 303: [False, [], 2, [3,15,0,b"\x00"], 0, "Great Wall: Boss Room (exit)", [], False, [], [], [], [], [], [], [], []], # Euro 310: [False, [13], 1, [4,16,0,b"\x00"], 0, "Euro: Main Area", [24], False, [], [], [], [], [], [], [], []], 311: [False, [310], 0, [4,16,0,b"\x00"], 0, "Euro: Stablemaster", [], True, [], [], [], [], [], [], [], []], 312: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Rolek Company", [], False, [], [], [], [], [], [], [], []], 313: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: West House", [], False, [], [], [], [], [], [], [], []], 314: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Rolek Mansion", [40], False, [], [], [], [], [], [], [], []], 315: [False, [314], 0, [4,16,0,b"\x00"], 0, "Euro: Ann", [], False, [], [], [], [], [], [], [], []], 316: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Guest Room", [], False, [], [], [], [], [], [], [], []], 317: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Central House", [], False, [], [], [], [], [], [], [], []], 318: [False, [1], 2, [4,16,0,b"\x00"], 0, "Euro: Jeweler House", [], False, [], [], [], [], [], [], [], []], 319: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Twins House", [], False, [], [], [], [], [], [], [], []], 320: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Hidden House", [], False, [], [], [], [], [], [], [], []], 321: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Shrine", [], False, [], [], [], [], [], [], [], []], 322: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Explorer's House", [], False, [], [], [], [], [], [], [], []], 323: [False, [324], 2, [4,16,0,b"\x00"], 0, "Euro: Store Entrance", [], False, [], [], [], [], [], [], [], []], 324: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Store Exit", [], False, [], [], [], [], [], [], [], []], 325: [False, [], 2, [4,16,0,b"\x00"], 0, "Euro: Dark Space House", [], False, [], [], [], [], [], [], [], []], # Mt. Kress 330: [False, [13], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 160", [], False, [], [], [], [], [], [], [], []], 331: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 161 (E)", [], False, [], [], [], [], [], [], [], []], 332: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 161 (W)", [], False, [], [], [], [], [], [], [], []], 333: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 162 (main)", [26], False, [], [], [], [], [], [], [], []], 334: [False, [333], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 162 (S)", [], False, [], [], [], [], [], [], [], []], 335: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 162 (NW)", [], False, [], [], [], [], [], [], [], []], 336: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 162 (SE)", [], False, [], [], [], [], [], [], [], []], 337: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 163", [], False, [], [], [], [], [], [], [], []], 338: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 164", [], False, [], [], [], [], [], [], [], []], 339: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 165 (S)", [26], False, [], [], [], [], [], [], [], []], 340: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 165 (NE)", [26], False, [], [], [], [], [], [], [], []], 341: [False, [338], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 165 (NW)", [], False, [], [], [], [], [], [], [], []], 342: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 166", [], False, [], [], [], [], [], [], [], []], 343: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 167", [], False, [], [], [], [], [], [], [], []], 344: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 168", [], False, [], [], [], [], [], [], [], []], 345: [False, [], 2, [4,17,0,b"\x00"], 0, "Mt. Kress: Map 169", [], False, [], [], [], [], [], [], [], []], # Natives' Village 350: [False, [13], 1, [4,18,0,b"\x00"], 0, "Natives' Village: Main Area", [10], False, [], [], [], [], [], [], [], []], 351: [False, [350], 0, [4,18,0,b"\x00"], 0, "Natives' Village: Child Guide", [], True, [], [], [], [], [], [], [], []], 352: [False, [], 2, [4,18,0,b"\x00"], 0, "Natives' Village: West House", [], False, [], [], [], [], [], [], [], []], 353: [False, [], 2, [4,18,0,b"\x00"], 0, "Natives' Village: House w/Statues", [29], False, [], [], [], [], [], [], [], []], 354: [False, [353], 0, [4,18,0,b"\x00"], 0, "Natives' Village: Statues Awake", [], False, [], [], [], [], [], [], [], []], # Ankor Wat 360: [False, [13], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 176", [], False, [], [], [], [], [], [], [], []], 361: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 177 (E)", [], False, [], [], [], [], [], [], [], []], 362: [False, [361], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 177 (W)", [], False, [], [], [], [], [], [], [], []], 363: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 178 (S)", [], False, [], [], [], [], [], [], [], []], 364: [False, [363], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 178 (center)", [], False, [], [], [], [], [], [], [], []], 365: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 178 (N)", [], False, [], [], [], [], [], [], [], []], 366: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 179 (E)", [], False, [], [], [], [], [], [], [], []], 367: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 179 (W)", [], False, [], [], [], [], [], [], [], []], 368: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 180", [], False, [], [], [], [], [], [], [], []], 369: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 181 (N)", [], False, [], [], [], [], [], [], [], []], 370: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 181 (center)", [], False, [], [], [], [], [], [], [], []], 371: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 181 (S)", [], False, [], [], [], [], [], [], [], []], 372: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 182", [], False, [], [], [], [], [], [], [], []], 373: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 183 (S)", [], False, [], [], [], [], [], [], [], []], 374: [False, [373], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 183 (NW)", [], False, [], [], [], [], [], [], [], []], 375: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 183 (NE)", [], False, [], [], [], [], [], [], [], []], 376: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 184 (S)", [], False, [], [], [], [], [], [], [], []], 377: [False, [376], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 184 (N)", [], False, [], [], [], [], [], [], [], []], 378: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 185", [], False, [], [], [], [], [], [], [], []], 379: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 186 (main)", [], False, [], [], [], [], [], [], [], []], 380: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 186 (NE)", [], False, [], [], [], [], [], [], [], []], 381: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 187 (main)", [], False, [], [], [], [], [], [], [], []], 382: [False, [381], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 187 (chest)", [], False, [], [], [], [], [], [], [], []], 383: [False, [381], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 187 (Dark Space)", [], False, [], [], [], [], [], [], [], []], 384: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 188 (N bright)", [], False, [], [], [], [], [], [], [], []], 385: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 188 (S bright)", [], False, [], [], [], [], [], [], [], []], 386: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 189 (floor S)", [], False, [], [], [], [], [], [], [], []], 387: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 189 (floor N)", [], False, [], [], [], [], [], [], [], []], 388: [False, [386], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 189 (platform)", [], False, [], [], [], [], [], [], [], []], 389: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 190 (E)", [], False, [], [], [], [], [], [], [], []], 390: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 190 (W)", [], False, [], [], [], [], [], [], [], []], 391: [False, [], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 191", [], False, [], [], [], [], [], [], [], []], 392: [False, [384], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 188 (N)", [], False, [], [], [], [], [], [], [], []], 393: [False, [385], 2, [4,19,0,b"\x00"], 0, "Ankor Wat: Map 188 (S)", [], False, [], [], [], [], [], [], [], []], # Dao 400: [False, [1,14], 1, [5,20,0,b"\x00"], 0, "Dao: Main Area", [], False, [], [], [], [], [], [], [], []], 401: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: NW House", [], False, [], [], [], [], [], [], [], []], 402: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: Neil's House", [], False, [], [], [], [], [], [], [], []], 403: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: Snake Game", [], False, [], [], [], [], [], [], [], []], 404: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: SW House", [], False, [], [], [], [], [], [], [], []], 405: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: S House", [], False, [], [], [], [], [], [], [], []], 406: [False, [], 2, [5,20,0,b"\x00"], 0, "Dao: SE House", [], False, [], [], [], [], [], [], [], []], # Pyramid 410: [False, [14], 2, [5,21,0,b"\x00"], 0, "Pyramid: Entrance (main)", [], False, [], [], [], [], [], [], [], []], 411: [False, [410], 2, [5,21,0,b"\x00"], 0, "Pyramid: Entrance (behind orbs)", [], False, [], [], [], [], [], [], [], []], 412: [False, [413], 2, [5,21,0,b"\x00"], 0, "Pyramid: Entrance (hidden platform)", [], False, [], [], [], [], [], [], [], []], 413: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Entrance (bottom)", [], False, [], [], [], [], [], [], [], []], 414: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Entrance (boss entrance)", [], False, [], [], [], [], [], [], [], []], 415: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph room", [30, 31, 32, 33, 34, 35, 38], False, [], [], [], [], [], [], [], []], 416: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 206 (E)", [], False, [], [], [], [], [], [], [], []], 417: [False, [416], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 206 (W)", [], False, [], [], [], [], [], [], [], []], 418: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 207 (NE)", [], False, [], [], [], [], [], [], [], []], 419: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 207 (SW)", [], False, [], [], [], [], [], [], [], []], 420: [False, [421], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 208 (N)", [], False, [], [], [], [], [], [], [], []], 421: [False, [420], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 208 (S)", [], False, [], [], [], [], [], [], [], []], 422: [False, [423], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 209 (W)", [], False, [], [], [], [], [], [], [], []], 423: [False, [422,411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 209 (E)", [], False, [], [], [], [], [], [], [], []], 424: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 210", [], False, [], [], [], [], [], [], [], []], 425: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 211", [], False, [], [], [], [], [], [], [], []], 426: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 212 (N)", [], False, [], [], [], [], [], [], [], []], 427: [False, [426], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 212 (center)", [], False, [], [], [], [], [], [], [], []], 428: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 212 (SE)", [], False, [], [], [], [], [], [], [], []], 429: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 212 (SW)", [], False, [], [], [], [], [], [], [], []], 430: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 213", [], False, [], [], [], [], [], [], [], []], 431: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 214 (NW)", [], False, [], [], [], [], [], [], [], []], 432: [False, [431], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 214 (NE)", [], False, [], [], [], [], [], [], [], []], 433: [False, [431,434], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 214 (SE)", [], False, [], [], [], [], [], [], [], []], 434: [False, [433], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 214 (SW)", [], False, [], [], [], [], [], [], [], []], 435: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 215 (main)", [], False, [], [], [], [], [], [], [], []], 436: [False, [437], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 216 (N)", [], False, [], [], [], [], [], [], [], []], 437: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 216 (S)", [], False, [], [], [], [], [], [], [], []], 438: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 217 (W)", [], False, [], [], [], [], [], [], [], []], 439: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 217 (E)", [], False, [], [], [], [], [], [], [], []], 440: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 219 (W)", [], False, [], [], [], [], [], [], [], []], 441: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 219 (E)", [], False, [], [], [], [], [], [], [], []], 442: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 1", [], False, [], [], [], [], [], [], [], []], 443: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 2", [], False, [], [], [], [], [], [], [], []], 444: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 3", [], False, [], [], [], [], [], [], [], []], 445: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 4", [], False, [], [], [], [], [], [], [], []], 446: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 5", [], False, [], [], [], [], [], [], [], []], 447: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyph 6", [], False, [], [], [], [], [], [], [], []], 448: [False, [], 2, [5,21,0,b"\x00"], 0, "Pyramid: Boss Room", [], True, [], [], [], [], [], [], [], []], 449: [False, [415,517], 0, [5,21,0,b"\x00"], 0, "Pyramid: Hieroglyphs Placed", [], False, [], [], [], [], [], [], [], []], 450: [False, [411], 2, [5,21,0,b"\x00"], 0, "Pyramid: Map 215 (past Killer 6)", [], False, [], [], [], [], [], [], [], []], # Babel 460: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Foyer", [], False, [], [], [], [], [], [], [], []], 461: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Map 223 (bottom)", [], False, [], [], [], [], [], [], [], []], 462: [False, [461], 2, [6,22,0,b"\x00"], 0, "Babel: Map 223 (top)", [], False, [], [], [], [], [], [], [], []], 463: [False, [518,519],2, [6,22,0,b"\x00"], 0, "Babel: Map 224 (bottom)", [], False, [], [], [], [], [], [], [], []], 464: [False, [520,521],2, [6,22,0,b"\x00"], 0, "Babel: Map 224 (top)", [], False, [], [], [], [], [], [], [], []], 465: [False, [466], 2, [6,22,0,b"\x00"], 0, "Babel: Map 225 (SW)", [], False, [], [], [], [], [], [], [], []], 466: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Map 225 (NW)", [], False, [], [], [], [], [], [], [], []], 467: [False, [468], 2, [6,22,0,b"\x00"], 0, "Babel: Map 225 (SE)", [], False, [], [], [], [], [], [], [], []], 468: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Map 225 (NE)", [], False, [], [], [], [], [], [], [], []], 469: [False, [470], 2, [6,22,0,b"\x00"], 0, "Babel: Map 226 (bottom)", [], False, [], [], [], [], [], [], [], []], 470: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Map 226 (top)", [], False, [], [], [], [], [], [], [], []], 471: [False, [522], 2, [6,22,0,b"\x00"], 0, "Babel: Map 227 (bottom)", [], False, [], [], [], [], [], [], [], []], 472: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Map 227 (top)", [], False, [], [], [], [], [], [], [], []], 473: [False, [], 2, [6,22,0,b"\x00"], 0, "Babel: Olman's Room", [], False, [], [], [], [], [], [], [], []], 474: [False, [], 0, [6,22,0,b"\x00"], 0, "Babel: Castoth", [], False, [], [], [], [], [], [], [], []], 475: [False, [], 0, [6,22,0,b"\x00"], 0, "Babel: Viper", [], False, [], [], [], [], [], [], [], []], 476: [False, [], 0, [6,22,0,b"\x00"], 0, "Babel: Vampires", [], False, [], [], [], [], [], [], [], []], 477: [False, [], 0, [6,22,0,b"\x00"], 0, "Babel: Sand Fanger", [], False, [], [], [], [], [], [], [], []], 478: [False, [], 0, [6,22,0,b"\x00"], 0, "Babel: Mummy Queen", [], False, [], [], [], [], [], [], [], []], 479: [False, [473], 0, [6,22,0,b"\x00"], 0, "Babel: Statue Get", [], False, [], [], [], [], [], [], [], []], # Jeweler's Mansion 480: [False, [], 2, [6,23,0,b"\x00"], 0, "Jeweler's Mansion: Main", [], False, [], [], [], [], [], [], [], []], 481: [False, [], 2, [6,23,0,b"\x00"], 0, "Jeweler's Mansion: Behind Psycho Slider", [], False, [], [], [], [], [], [], [], []], 482: [False, [523], 2, [6,23,0,b"\x00"], 0, "Jeweler's Mansion: Solid Arm", [], False, [], [], [], [], [], [], [], []], # Game End 490: [False, [500], 0, [0,0,0,b"\x00"], 0, "<NAME>", [], False, [], [], [], [], [], [], [], []], 491: [False, [], 0, [0,0,0,b"\x00"], 0, "Firebird", [], False, [], [], [], [], [], [], [], []], 492: [False, [491], 0, [0,0,0,b"\x00"], 0, "Dark Gaia/End Game", [], False, [], [], [], [], [], [], [], []], # Event Switches 500: [False, [], 0, [0,0,0,b"\x00"], 0, "Kara ", [], False, [], [], [], [], [], [], [], []], 501: [False, [], 0, [0,0,0,b"\x00"], 0, "Lilly ", [], False, [], [], [], [], [], [], [], []], 502: [False, [], 0, [0,0,0,b"\x00"], 0, "Moon Tribe: Spirits Healed ", [], False, [], [], [], [], [], [], [], []], 503: [False, [], 0, [0,0,0,b"\x00"], 0, "Inca: Castoth defeated ", [], False, [], [], [], [], [], [], [], []], 504: [False, [], 0, [0,0,0,b"\x00"], 0, "Freejia: Found Laborer ", [], False, [], [], [], [], [], [], [], []], 505: [False, [], 0, [0,0,0,b"\x00"], 0, "Neil's Memory Restored ", [], False, [], [], [], [], [], [], [], []], 506: [False, [], 0, [0,0,0,b"\x00"], 0, "Sky Garden: Map 82 NW Switch ", [], False, [], [], [], [], [], [], [], []], 507: [False, [], 0, [0,0,0,b"\x00"], 0, "Sky Garden: Map 82 NE Switch ", [], False, [], [], [], [], [], [], [], []], 508: [False, [], 0, [0,0,0,b"\x00"], 0, "Sky Garden: Map 82 SE Switch ", [], False, [], [], [], [], [], [], [], []], 509: [False, [], 0, [0,0,0,b"\x00"], 0, "Sky Garden: Map 84 Switch ", [], False, [], [], [], [], [], [], [], []], 510: [False, [], 0, [0,0,0,b"\x00"], 0, "Seaside: Fountain Purified ", [], False, [], [], [], [], [], [], [], []], 511: [False, [], 0, [0,0,0,b"\x00"], 0, "Mu: Water Lowered 1 ", [], False, [], [], [], [], [], [], [], []], 512: [False, [], 0, [0,0,0,b"\x00"], 0, "Mu: Water Lowered 2 ", [], False, [], [], [], [], [], [], [], []], 513: [False, [], 0, [0,0,0,b"\x00"], 0, "Angel: Puzzle Complete ", [], False, [], [], [], [], [], [], [], []], 514: [False, [333,335], 0, [0,0,0,b"\x00"], 0, "Mt Kress: Drops used 1 ", [], False, [], [], [], [], [], [], [], []], 515: [False, [339,340], 0, [0,0,0,b"\x00"], 0, "Mt Kress: Drops used 2 ", [], False, [], [], [], [], [], [], [], []], 516: [False, [340,341], 0, [0,0,0,b"\x00"], 0, "Mt Kress: Drops used 3 ", [], False, [], [], [], [], [], [], [], []], 517: [False, [], 0, [0,0,0,b"\x00"], 0, "Pyramid: Hieroglyphs placed ", [], False, [], [], [], [], [], [], [], []], 518: [False, [], 0, [0,0,0,b"\x00"], 0, "Babel: Castoth defeated ", [], False, [], [], [], [], [], [], [], []], 519: [False, [], 0, [0,0,0,b"\x00"], 0, "Babel: Viper defeated ", [], False, [], [], [], [], [], [], [], []], 520: [False, [], 0, [0,0,0,b"\x00"], 0, "Babel: Vampires defeated ", [], False, [], [], [], [], [], [], [], []], 521: [False, [], 0, [0,0,0,b"\x00"], 0, "Babel: Sand Fanger defeated ", [], False, [], [], [], [], [], [], [], []], 522: [False, [], 0, [0,0,0,b"\x00"], 0, "Babel: Mummy Queen defeated ", [], False, [], [], [], [], [], [], [], []], 523: [False, [], 0, [0,0,0,b"\x00"], 0, "Mansion: Solid Arm defeated ", [], False, [], [], [], [], [], [], [], []], # Misc 600: [False, [], 0, [0,0,0,b"\x00"], 0, "Freedan Access ", [], False, [], [], [], [], [], [], [], []], 601: [False, [], 0, [0,0,0,b"\x00"], 0, "Glitches ", [], False, [], [], [], [], [], [], [], []], 602: [False, [], 0, [0,0,0,b"\x00"], 0, "Early Firebird ", [], False, [], [], [], [], [], [], [], []], INACCESSIBLE: [False, [], 0, [0,0,0,b"\x00"], 0, "Inaccessible", [], False, [], [], [], [], [], [], [], []] } # Define logical paths in dynamic graph # Format: { ID: [Status(-1=restricted,0=locked,1=unlocked,2=forced_open), StartRegion, DestRegion, NeedFreedan, [[item1, qty1],[item2,qty2]...]]} self.logic = { # Jeweler Rewards 0: [0, 1, 2, False, [[1, gem[0]]]], # Jeweler Reward 1 1: [0, 1, 2, False, [[1, gem[0] - 2], [41, 1]]], 2: [0, 1, 2, False, [[1, gem[0] - 3], [42, 1]]], 3: [0, 1, 2, False, [[1, gem[0] - 5], [41, 1], [42, 1]]], 4: [0, 2, 3, False, [[1, gem[1]]]], # Jeweler Reward 2 5: [0, 2, 3, False, [[1, gem[1] - 2], [41, 1]]], 6: [0, 2, 3, False, [[1, gem[1] - 3], [42, 1]]], 7: [0, 2, 3, False, [[1, gem[1] - 5], [41, 1], [42, 1]]], 8: [0, 3, 4, False, [[1, gem[2]]]], # Jeweler Reward 3 9: [0, 3, 4, False, [[1, gem[2] - 2], [41, 1]]], 10: [0, 3, 4, False, [[1, gem[2] - 3], [42, 1]]], 11: [0, 3, 4, False, [[1, gem[2] - 5], [41, 1], [42, 1]]], 12: [0, 4, 5, False, [[1, gem[3]]]], # Jeweler Reward 4 13: [0, 4, 5, False, [[1, gem[3] - 2], [41, 1]]], 14: [0, 4, 5, False, [[1, gem[3] - 3], [42, 1]]], 15: [0, 4, 5, False, [[1, gem[3] - 5], [41, 1], [42, 1]]], 16: [0, 5, 6, False, [[1, gem[4]]]], # Jeweler Reward 5 17: [0, 5, 6, False, [[1, gem[4] - 2], [41, 1]]], 18: [0, 5, 6, False, [[1, gem[4] - 3], [42, 1]]], 19: [0, 5, 6, False, [[1, gem[4] - 5], [41, 1], [42, 1]]], 20: [0, 6, 7, False, [[1, gem[5]]]], # Jeweler Reward 6 21: [0, 6, 7, False, [[1, gem[5] - 2], [41, 1]]], 22: [0, 6, 7, False, [[1, gem[5] - 3], [42, 1]]], 23: [0, 6, 7, False, [[1, gem[5] - 5], [41, 1], [42, 1]]], 24: [0, 7, 8, False, [[1, gem[6]]]], # Jeweler Reward 7 (Mansion) 25: [0, 7, 8, False, [[1, gem[6] - 2], [41, 1]]], 26: [0, 7, 8, False, [[1, gem[6] - 3], [42, 1]]], 27: [0, 7, 8, False, [[1, gem[6] - 5], [41, 1], [42, 1]]], # Inter-Continental Travel 30: [0, 28, 15, False, [[37, 1]]], # South Cape: Erik w/ Lola's Letter 31: [0, 102, 15, False, [[37, 1]]], # Coast: Turbo w/ Lola's Letter 32: [0, 280, 15, False, [[37, 1]]], # Watermia: Bridgeman w/ Lola's Letter 33: [0, 160, 161, False, [[13, 1]]], # Neil's: Neil w/ Memory Melody 34: [0, 314, 17, False, [[505, 1]]], # Euro: Neil w/ Memory restored 35: [0, 402, 17, False, [[505, 1]]], # Dao: Neil w/ Memory restored 36: [0, 60, 64, False, [[25, 1]]], # Moon Tribe healed w/ Teapot 37: [0, 170, 16, False, [[502, 1]]], # Sky Garden: Spirits w/ spirits healed 38: [0, 280, 288, False, [[24, 1]]], # Watermia: Stablemaster w/ Will 39: [0, 310, 311, False, [[24, 1]]], # Euro: Stablemaster w/ Will 40: [0, 350, 351, False, [[10, 1]]], # Natives': Child Guide w/ Large Roast # Edward's / Tunnel 60: [0, 32, 33, False, [[2, 1]]], # Escape cell w/Prison Key 61: [0, 33, 32, False, [[2, 1]]], # Enter cell w/Prison Key 62: [0, 45, 46, False, [[501, 1]]], # Progression w/ Lilly 63: [0, 47, 48, True, []], # Activate Bridge w/ Freedan # Itory 70: [0, 50, 51, False, [[9, 1]]], # Town appears w/ Lola's Melody 71: [0, 55, 59, False, [[23, 1]]], # Get Lilly w/ Necklace 72: [0, 56, 57, False, [[61, 1]]], # Cave w/ Psycho Dash 73: [0, 56, 57, False, [[62, 1]]], # Cave w/ Psycho Slide 74: [0, 56, 57, False, [[63, 1]]], # Cave w/ Spin Dash # Moon Tribe 80: [0, 61, 62, False, [[61, 1]]], # Cave challenge w/ Psycho Dash 81: [0, 61, 62, False, [[62, 1]]], # Cave challenge w/ Psycho Slide 82: [0, 61, 62, False, [[63, 1]]], # Cave challenge w/ Spin Dash # Inca / Gold Ship / Freejia 89: [0, 72, 99, False, [[601, 1]]], # Map 29 progression w/ glitches 90: [0, 77, 78, False, [[3, 1], [4, 1]]], # Map 30 progression w/ Inca Statues 91: [0, 80, 81, False, [[61, 1]]], # Map 32 progression w/ Psycho Dash 92: [0, 80, 81, False, [[62, 1]]], # Map 32 progression w/ Psycho Slider 93: [0, 80, 81, False, [[63, 1]]], # Map 32 progression w/ Spin Dash 94: [0, 85, 86, True, []], # Map 35 progression w/ Freedan 95: [0, 87, 88, False, [[8, 1]]], # Map 36 progression w/ Wind Melody 96: [0, 89, 90, False, [[7, 1]]], # Map 37 progression w/ Diamond Block 97: [0, 91, 92, False, [[61, 1]]], # Map 38 progression w/ Psycho Dash 98: [0, 91, 92, False, [[62, 1]]], # Map 38 progression w/ Psycho Slider 99: [0, 91, 92, False, [[63, 1]]], # Map 38 progression w/ Spin Dash #100: [0, 100, 104, False, [[100, 1]]], # Gold Ship progression w/ Statue 1 101: [0, 110, 115, False, [[504, 1]]], # Freejia: Slaver item w/ Laborer Found # Diamond Mine 110: [0, 131, 132, False, [[61, 1]]], # Map 61 false wall w/ Psycho Dash 111: [0, 131, 132, False, [[62, 1]]], # Map 61 false wall w/ Psycho Slider 112: [0, 131, 132, False, [[63, 1]]], # Map 61 false wall w/ Spin Dash 113: [0, 134, 135, False, [[15, 1]]], # Map 63 progression w/ Elevator Key 114: [0, 136, 137, False, [[61, 1]]], # Map 64 trapped laborer w/ Psycho Dash 115: [0, 136, 137, False, [[62, 1]]], # Map 64 trapped laborer w/ Psycho Slider 116: [0, 136, 137, False, [[63, 1]]], # Map 64 trapped laborer w/ Spin Dash 117: [0, 138, 139, False, [[63, 1]]], # Map 65 progression w/ Spin Dash 118: [0, 138, 139, True, [[64, 1]]], # Map 65 progression w/ Dark Friar 119: [0, 146, 147, False, [[11, 1], [12, 1]]], # Map 68 progression w/ mine keys # Sky Garden 130: [0, 170, 171, False, [[14, 4]]], # Boss access w/ Crystal Balls 131: [0, 177, 178, True, [[64, 1]]], # Map 79 progression w/ Dark Friar 132: [0, 177, 178, True, [[67, 1]]], # Map 79 progression w/ Firebird 133: [0, 168, 182, False, [[506, 1]]], # Map 81 progression w/ switch 1 134: [0, 182, 183, False, [[507, 1]]], # Map 81 progression w/ switch 2 135: [0, 182, 184, False, [[61, 1]]], # Map 81 progression w/ Psycho Dash 136: [0, 182, 184, False, [[62, 1]]], # Map 81 progression w/ Psycho Dash 137: [0, 182, 184, False, [[63, 1]]], # Map 81 progression w/ Psycho Dash 138: [0, 184, 185, False, [[508, 1], [61, 1]]], # Map 81 progression w/ switch 3 & Psycho Dash 139: [0, 184, 185, False, [[508, 1], [62, 1]]], # Map 81 progression w/ switch 3 & Psycho Slider 140: [0, 184, 185, False, [[508, 1], [63, 1]]], # Map 81 progression w/ switch 3 & Spin Dash 141: [0, 181, 182, False, [[63, 1]]], # Map 81 progression w/ Spin Dash 142: [0, 181, 184, False, [[63, 1]]], # Map 81 progression w/ Spin Dash 143: [0, 182, 185, False, [[63, 1]]], # Map 81 progression w/ Spin Dash 144: [0, 188, 189, True, []], # Map 82 progression w/ Freedan 145: [0, 188, 189, False, [[601, 1]]], # Map 82 progression w/ Glitches 146: [0, 192, 190, False, [[63, 1]]], # Map 83 progression w/ Spin Dash 147: [0, 195, 199, True, [[64, 1]]], # Map 84 progression w/ Dark Friar 148: [0, 195, 199, True, [[67, 1]]], # Map 84 progression w/ Firebird 149: [0, 195, 199, True, [[65, 1]]], # Map 84 progression w/ Aura Barrier 150: [0, 197, 199, True, [[64, 1]]], # Map 84 progression w/ Dark Friar 151: [0, 197, 199, True, [[67, 1]]], # Map 84 progression w/ Firebird 152: [0, 170, 16, False, [[502, 1]]], # Moon Tribe passage w/ spirits healed # Seaside Palace 160: [0, 205, 208, False, [[501, 1]]], # Coffin access w/ Lilly 161: [0, 209, 510, False, [[17, 1]]], # Purify fountain w/stone 162: [0, 200, 206, False, [[510, 1]]], # Buffy access w/ purified fountain 163: [0, 200, 201, False, [[16, 1]]], # Seaside to Mu w/ Mu key 164: [0, 210, 211, False, [[16, 1]]], # Mu to Seaside w/ Mu key # Mu 170: [0, 212, 245, False, [[62, 1]]], # Map 95 progression w/ Psycho Slider 171: [0, 212, 213, False, [[511, 1]]], # Map 95 progression w/ water lowered 1 172: [0, 213, 215, False, [[512, 1]]], # Map 95 progression w/ water lowered 2 173: [0, 214, 216, False, [[512, 1]]], # Map 95 progression w/ water lowered 2 174: [0, 217, 218, False, [[511, 1]]], # Map 96 progression w/ water lowered 1 175: [0, 222, 221, True, [[511, 1], [64, 1]]], # Map 97 progression w/ water lowered 1 & Friar 176: [0, 222, 221, True, [[511, 1], [67, 1]]], # Map 97 progression w/ water lowered 1 & Firebird 177: [0, 222, 221, False, [[511, 1], [601, 1]]], # Map 97 progression w/ water lowered 1 & glitches 178: [0, 226, 227, False, [[511, 1]]], # Map 98 progression w/ water lowered 1 179: [0, 227, 229, False, [[512, 1]]], # Map 98 progression w/ water lowered 2 180: [0, 228, 230, False, [[512, 1]]], # Map 98 progression w/ water lowered 2 181: [0, 229, 230, False, [[62, 1]]], # Map 98 progression w/ Psycho Slider 182: [0, 230, 229, False, [[62, 1]]], # Map 98 progression w/ Psycho Slider 183: [0, 226, 246, False, [[62, 1]]], # Map 98 progression w/ Psycho Slider 184: [0, 237, 238, False, [[62, 1]]], # Map 101 progression w/ Psycho Slider 185: [0, 240, 241, False, [[19, 2]]], # Map 102 progression w/ Rama Statues 186: [0, 231, 247, False, [[18, 1]]], # Water lowered 1 w/ Hope Statue 187: [0, 232, 248, False, [[18, 2]]], # Water lowered 2 w/ Hope Statues # Angel Dungeon 210: [0, 263, 264, False, [[62, 1]]], # Map 112 progression w/ Psycho Slider 211: [0, 265, 275, False, [[62, 1]]], # Map 112 backwards progression w/ Psycho Slider 212: [0, 267, 268, False, [[62, 1]]], # Map 114 progression w/ Psycho Slider 213: [0, 277, 276, False, [[62, 1]]], # Map 114 backwards progression w/ Psycho Slider 214: [0, 272, 273, False, [[513, 1]]], # Ishtar's chest w/ puzzle complete # Great Wall 220: [0, 294, 295, False, [[601, 1]]], # Map 133 progression w/ glitches 221: [0, 296, 295, False, [[63, 1]]], # Map 133 progression w/ Spin Dash 222: [0, 296, 295, True, []], # Map 133 progression w/ Freedan 223: [0, 298, 299, True, [[64, 1]]], # Map 135 progression w/ Friar 224: [0, 298, 299, True, [[67, 1]]], # Map 135 progression w/ Firebird 225: [0, 299, 298, False, [[64, 1], [54, 2]]], # Map 135 progression w/ Friar III 227: [0, 300, 301, False, [[63, 1]]], # Map 136 progression w/ Spin Dash 228: [0, 295, 294, False, [[63, 1]]], # Map 133 progression w/ Spin Dash # Euro 230: [0, 314, 315, False, [[40, 1]]], # Ann item w/ Apple # Mt. Temple 240: [0, 331, 332, False, [[63, 1]]], # Map 161 progression w/ Spin Dash 241: [0, 332, 331, False, [[63, 1]]], # Map 161 backwards progression w/ Spin Dash 242: [0, 333, 514, False, [[26, 1]]], # Map 162 progression w/ Mushroom drops 1 243: [0, 335, 514, False, [[26, 1]]], # Map 162 progression w/ Mushroom drops 1 -- IS THIS TRUE? 244: [0, 339, 515, False, [[26, 2]]], # Map 162 progression w/ Mushroom drops 2 245: [0, 340, 515, False, [[26, 2]]], # Map 162 progression w/ Mushroom drops 2 -- IS THIS TRUE? 246: [0, 340, 516, False, [[26, 3]]], # Map 162 progression w/ Mushroom drops 3 247: [0, 341, 516, False, [[26, 3]]], # Map 162 progression w/ Mushroom drops 3 -- IS THIS TRUE? # Natives' 250: [0, 353, 354, False, [[29, 1]]], # Statues awake w/ Gorgon Flower # Ankor Wat 260: [-1, 361, 362, True, [[64, 1]]], # Map 177 progression w/ Friar 261: [0, 363, 364, False, [[63, 1]]], # Map 178 progression w/ Spin Dash 262: [0, 364, 365, False, [[62, 1]]], # Map 178 progression w/ Psycho Slider 263: [0, 365, 364, False, [[62, 1]]], # Map 178 progression w/ Psycho Slider 264: [0, 367, 366, False, [[63, 1]]], # Map 179 progression w/ Spin Dash 265: [0, 369, 370, False, [[62, 1]]], # Map 181 progression w/ Psycho Slider 266: [0, 370, 371, False, [[63, 1]]], # Map 181 progression w/ Spin Dash 267: [0, 373, 374, True, [[66, 1]]], # Map 183 progression w/ Earthquaker 268: [0, 373, 374, True, [[64, 1], [54, 2]]], # Map 183 progression w/ upgraded Friar 269: [0, 373, 374, True, [[64, 1], [601, 1]]], # Map 183 progression w/ Friar and glitches 270: [0, 373, 374, True, [[67, 1]]], # Map 183 progression w/ Firebird -- IS THIS TRUE? 271: [0, 376, 377, True, [[64, 1]]], # Map 184 progression w/ Friar 272: [0, 376, 377, True, [[36, 1]]], # Map 184 progression w/ Shadow 273: [0, 384, 392, False, [[28, 1]]], # Map 188 progression w/ Black Glasses 274: [0, 385, 393, False, [[28, 1]]], # Map 188 progression w/ Black Glasses 275: [0, 384, 392, False, [[601, 1]]], # Map 188 progression w/ glitches 276: [0, 385, 393, False, [[601, 1]]], # Map 188 progression w/ glitches 277: [0, 392, 393, False, [[62, 1]]], # Map 188 progression w/ Slider 278: [0, 393, 392, False, [[62, 1]]], # Map 188 progression w/ Slider 279: [0, 386, 387, False, [[62, 1]]], # Map 188 progression w/ Psycho Slider 280: [0, 387, 386, False, [[62, 1]]], # Map 188 progression w/ Psycho Slider # Pyramid 290: [0, 410, 411, False, [[62, 1]]], # Map 204 progression w/ Slider 291: [0, 410, 411, False, [[63, 1]]], # Map 204 progression w/ Spin 292: [0, 410, 411, False, [[601, 1]]], # Map 204 progression w/ glitches 293: [0, 411, 412, False, [[36, 1]]], # Map 204 progression w/ Aura 294: [0, 411, 413, False, [[36, 1]]], # Map 204 progression w/ Aura 295: [0, 415, 449, False, [[30, 1], [31, 1], [32, 1], [33, 1], [34, 1], [35, 1], [38, 1]]], # Boss door open w/ Hieroglyphs 296: [0, 416, 417, False, [[63, 1]]], # Map 206 progression w/ Spin Dash 297: [0, 417, 416, False, [[63, 1]]], # Map 206 progression w/ Spin Dash 298: [0, 418, 419, False, [[63, 1]]], # Map 206 progression w/ Spin Dash 299: [0, 419, 418, False, [[63, 1]]], # Map 206 progression w/ Spin Dash 300: [0, 426, 427, True, [[36, 1]]], # Map 212 progression w/ Aura 301: [0, 426, 427, True, [[66, 1]]], # Map 212 progression w/ Earthquaker 302: [0, 427, 428, True, [[36, 1]]], # Map 212 progression w/ Aura 303: [0, 427, 429, True, [[36, 1]]], # Map 212 progression w/ Aura 304: [0, 427, 429, True, [[66, 1]]], # Map 212 progression w/ Earthquaker 305: [0, 431, 432, False, [[63, 1]]], # Map 214 progression w/ Spin Dash 306: [0, 431, 434, True, [[36, 1]]], # Map 214 progression w/ Aura 307: [0, 431, 433, True, [[64, 1]]], # Map 214 progression w/ Friar 308: [0, 438, 439, False, [[63, 1]]], # Map 217 progression w/ Spin Dash 309: [0, 439, 438, False, [[63, 1]]], # Map 217 progression w/ Spin Dash 310: [0, 440, 441, False, [[63, 1]]], # Map 219 progression w/ Spin Dash 311: [0, 441, 440, False, [[63, 1]]], # Map 219 progression w/ Spin Dash 312: [0, 435, 450, False, [[6, 6], [50, 2], [51, 1], [52, 1]]], # Killer 6 w/ herbs and upgrades 313: [0, 435, 450, True, [[64, 1], [54, 1]]], # Killer 6 w/ Friar II 314: [0, 411, 414, False, [[517, 1]]], # Pyramid to boss w/hieroglyphs placed # Babel / Mansion 320: [0, 461, 462, False, [[36, 1], [39, 1]]], # Map 219 progression w/ Aura and Ring 321: [0, 473, 479, False, [[522, 1]]], # Olman statue w/ Mummy Queen 2 322: [0, 473, 479, False, [[523, 1]]], # Olman statue w/ Solid Arm 323: [0, 480, 481, False, [[62, 1]]], # Mansion progression w/ Slider # Endgame / Misc 400: [-1, 49, 490, False, [[20, 1]]], # Rescue Kara from Edward's w/ Magic Dust 401: [-1, 150, 490, False, [[20, 1]]], # Rescue Kara from Mine w/ Magic Dust 402: [-1, 270, 490, False, [[20, 1]]], # Rescue Kara from Angel w/ Magic Dust 403: [-1, 345, 490, False, [[20, 1]]], # Rescue Kara from Mt. Temple w/ Magic Dust 404: [-1, 391, 490, False, [[20, 1]]], # Rescue Kara from Ankor Wat w/ Magic Dust 405: [0, 490, 491, False, [[36, 1], [39, 1], [602, 1]]], # Early Firebird w/ Kara, Aura and Ring 406: [0, 490, 492, False, [[36, 1], [100, 0], [101, 0], [102, 0], [103, 0], [104, 0], [105, 0]]], # Beat Game w/Mystic Statues and Aura 407: [0, 490, 492, False, [[36, 1], [106, self.statues_required]]] # Beat Game w/Mystic Statues and Aura (player choice variant) } # Define addresses for in-game spoiler text self.spoiler_addresses = { 0: "4caf5", # Edward's Castle guard, top floor (4c947) 1: "4e9ff", # Itory elder (4e929) 2: "58ac0", # Gold Ship queen (589ff) 3: "5ad6b", # Man at Diamond Coast (5ab5c) # 4: "5bfde", # Freejia laborer (5bfaa) 5: "69167", # Seaside Palace empty coffin (68feb) 6: "6dc97", # Ishtar's apprentice (6dc50) 7: "79c81", # Watermia, Kara's journal (79bf5) 8: "7d892", # Euro: Erasquez (7d79e) 9: "89b2a", # Ankor Wat, spirit (89abf) 10: "8ad0c", # Dao: girl with note (8acc5) 11: "99b8f" # Babel: spirit (99b2e) } # Define location text for in-game format self.location_text = { 0: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 1: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 2: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 3: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 4: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 5: b"\x64\x87\x84\xac\x49\x84\xa7\x84\x8b\x84\xa2", # "the Jeweler" 6: b"\x63\x8e\xa5\xa4\x87\xac\x42\x80\xa0\x84", # "South Cape" 7: b"\x63\x8e\xa5\xa4\x87\xac\x42\x80\xa0\x84", # "South Cape" 8: b"\x63\x8e\xa5\xa4\x87\xac\x42\x80\xa0\x84", # "South Cape" 9: b"\x63\x8e\xa5\xa4\x87\xac\x42\x80\xa0\x84", # "South Cape" 10: b"\x63\x8e\xa5\xa4\x87\xac\x42\x80\xa0\x84", # "South Cape" 11: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x42\x80\xa3\xa4\x8b\x84", # "Edward's Castle" 12: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x42\x80\xa3\xa4\x8b\x84", # "Edward's Castle" 13: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x60\xa2\x88\xa3\x8e\x8d", # "Edward's Prison" 14: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x60\xa2\x88\xa3\x8e\x8d", # "Edward's Prison" 15: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x64\xa5\x8d\x8d\x84\x8b", # "Edward's Tunnel" 16: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x64\xa5\x8d\x8d\x84\x8b", # "Edward's Tunnel" 17: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x64\xa5\x8d\x8d\x84\x8b", # "Edward's Tunnel" 18: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x64\xa5\x8d\x8d\x84\x8b", # "Edward's Tunnel" 19: b"\x44\x83\xa7\x80\xa2\x83\x0e\xa3\xac\x64\xa5\x8d\x8d\x84\x8b", # "Edward's Tunnel" 20: b"\x48\xa4\x8e\xa2\xa9", # "Itory" 21: b"\x48\xa4\x8e\xa2\xa9", # "Itory" 22: b"\x48\xa4\x8e\xa2\xa9", # "Itory" 23: b"\x4c\x8e\x8e\x8d\xac\x64\xa2\x88\x81\x84", # "Moon Tribe" 24: b"\x48\x8d\x82\x80", # "Inca" 25: b"\x48\x8d\x82\x80", # "Inca" 26: b"\x48\x8d\x82\x80", # "Inca" 27: b"\x48\x8d\x82\x80", # "Inca" 28: b"\x63\x88\x8d\x86\x88\x8d\x86\xac\xa3\xa4\x80\xa4\xa5\x84", # "Singing Statue" 29: b"\x48\x8d\x82\x80", # "Inca" 30: b"\x48\x8d\x82\x80", # "Inca" 31: b"\x48\x8d\x82\x80", # "Inca" 32: b"\x46\x8e\x8b\x83\xac\x63\x87\x88\xa0", # "Gold Ship" 33: b"\xd6\x0e\x42\x8e\x80\xa3\xa4", # "Diamond Coast" 34: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 35: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 36: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 37: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 38: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 39: b"\x45\xa2\x84\x84\x89\x88\x80", # "Freejia" 40: b"\xd6\x0e\x4c\x88\x8d\x84", # "Diamond Mine" 41: b"\x4b\x80\x81\x8e\xa2\x84\xa2", # "Laborer" 42: b"\x4b\x80\x81\x8e\xa2\x84\xa2", # "Laborer" 43: b"\xd6\x0e\x4c\x88\x8d\x84", # "Diamond Mine" 44: b"\x4b\x80\x81\x8e\xa2\x84\xa2", # "Laborer" 45: b"\x63\x80\x8c", # "Sam" 46: b"\xd6\x0e\x4c\x88\x8d\x84", # "Diamond Mine" 47: b"\xd6\x0e\x4c\x88\x8d\x84", # "Diamond Mine" 48: b"\xd6\x0e\x4c\x88\x8d\x84", # "Diamond Mine" 49: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 50: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 51: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 52: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 53: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 54: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 55: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 56: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 57: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 58: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 59: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 60: b"\x63\x8a\xa9\xac\x46\x80\xa2\x83\x84\x8d", # "Sky Garden" 61: b"\xd7\x32\xd7\x93", # "Seaside Palace" 62: b"\xd7\x32\xd7\x93", # "Seaside Palace" 63: b"\xd7\x32\xd7\x93", # "Seaside Palace" 64: b"\x41\xa5\x85\x85\xa9", # "Buffy" 65: b"\x42\x8e\x85\x85\x88\x8d", # "Coffin" 66: b"\xd7\x32\xd7\x93", # "Seaside Palace" 67: b"\x4c\xa5", # "Mu" 68: b"\x4c\xa5", # "Mu" 69: b"\x4c\xa5", # "Mu" 70: b"\x4c\xa5", # "Mu" 71: b"\x4c\xa5", # "Mu" 72: b"\x4c\xa5", # "Mu" 73: b"\x4c\xa5", # "Mu" 74: b"\x4c\xa5", # "Mu" 75: b"\x4c\xa5", # "Mu" 76: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 77: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 78: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 79: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 80: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 81: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 82: b"\xd6\x01\x66\x88\x8b\x8b\x80\x86\x84", # "Angel Village" 83: b"\x67\x80\xa4\x84\xa2\x8c\x88\x80", # "Watermia" 84: b"\x67\x80\xa4\x84\xa2\x8c\x88\x80", # "Watermia" 85: b"\x4b\x80\x8d\x82\x84", # "Lance" 86: b"\x67\x80\xa4\x84\xa2\x8c\x88\x80", # "Watermia" 87: b"\x67\x80\xa4\x84\xa2\x8c\x88\x80", # "Watermia" 88: b"\x67\x80\xa4\x84\xa2\x8c\x88\x80", # "Watermia" 89: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 90: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 91: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 92: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 93: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 94: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 95: b"\xd6\x16\x67\x80\x8b\x8b", # "Great Wall" 96: b"\x44\xa5\xa2\x8e", # "Euro" 97: b"\x44\xa5\xa2\x8e", # "Euro" 98: b"\x44\xa5\xa2\x8e", # "Euro" 99: b"\x44\xa5\xa2\x8e", # "Euro" 100: b"\x44\xa5\xa2\x8e", # "Euro" 101: b"\x44\xa5\xa2\x8e", # "Euro" 102: b"\x40\x8d\x8d", # "Ann" 103: b"\x44\xa5\xa2\x8e", # "Euro" 104: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 105: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 106: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 107: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 108: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3\xac\x6e\x84\x8d\x83\x6f", # "Mt. Kress (end)" 109: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 110: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 111: b"\x4c\xa4\x2a\xac\x4a\xa2\x84\xa3\xa3", # "Mt. Kress" 112: b"\xd7\x21\x66\x88\x8b\x8b\x80\x86\x84", # "Native Village" 113: b"\x63\xa4\x80\xa4\xa5\x84", # "Statue" 114: b"\xd7\x21\x66\x88\x8b\x8b\x80\x86\x84", # "Native Village" 115: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 116: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 117: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 118: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 119: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 120: b"\x63\x87\xa2\xa5\x81\x81\x84\xa2", # "Shrubber" 121: b"\x63\xa0\x88\xa2\x88\xa4", # "Spirit" 122: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 123: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 124: b"\x40\x8d\x8a\x8e\xa2\xac\x67\x80\xa4", # "Ankor Wat" 125: b"\x43\x80\x8e", # "Dao" 126: b"\x43\x80\x8e", # "Dao" 127: b"\x43\x80\x8e", # "Dao" 128: b"\x63\x8d\x80\x8a\x84\xac\x86\x80\x8c\x84", # "Snake Game" 129: b"\x43\x80\x8e", # "Dao" 130: b"\x46\x80\x88\x80", # "Gaia" 131: b"\xd6\x3f", # "Pyramid" 132: b"\xd6\x3f", # "Pyramid" 133: b"\xd6\x3f", # "Pyramid" 134: b"\xd6\x3f", # "Pyramid" 135: b"\xd6\x3f", # "Pyramid" 136: b"\x4a\x88\x8b\x8b\x84\xa2\xac\x26", # "Killer 6" 137: b"\xd6\x3f", # "Pyramid" 138: b"\xd6\x3f", # "Pyramid" 139: b"\xd6\x3f", # "Pyramid" 140: b"\xd6\x3f", # "Pyramid" 141: b"\xd6\x3f", # "Pyramid" 142: b"\xd6\x3f", # "Pyramid" 143: b"\x41\x80\x81\x84\x8b", # "Babel" 144: b"\x41\x80\x81\x84\x8b", # "Babel" 145: b"\x41\x80\x81\x84\x8b", # "Babel" 146: b"\x41\x80\x81\x84\x8b", # "Babel" 147: b"\x49\x84\xa7\x84\x8b\x84\xa2\x0e\xa3\xac\x4c\x80\x8d\xa3\x88\x8e\x8d", # "Jeweler's Mansion" 148: "", # "Castoth" 149: "", # "Viper" 150: "", # "Vampires" 151: "", # "<NAME>" 152: "", # "Mummy Queen" 153: "" # "Olman" } # Define long item text for in-game format self.item_text_long = { 0: b"\xd3\xd6\x1d\x8d\x8e\xa4\x87\x88\x8d\x86\x4f\xac\xac\xac\xac\xac\xac\xac\xac", 1: b"\xd3\xd6\x1d\x80\xac\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\x4f\xac\xac\xac\xac", 2: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x60\xa2\x88\xa3\x8e\x8d\xac\x4a\x84\xa9\x4f\xac", 3: b"\xd3\xd6\x1d\x48\x8d\x82\x80\xac\x63\xa4\x80\xa4\xa5\x84\xac\x40\x4f\xac\xac", 4: b"\xd3\xd6\x1d\x48\x8d\x82\x80\xac\x63\xa4\x80\xa4\xa5\x84\xac\x41\x4f\xac\xac", 5: "", 6: b"\xd3\xd6\x1d\x80\x8d\xac\x87\x84\xa2\x81\x4f\xac\xac\xac\xac\xac\xac\xac\xac", 7: b"\xd3\x64\x87\x84\xac\x43\x88\x80\x8c\x8e\x8d\x83\xac\x41\x8b\x8e\x82\x8a\x4f", 8: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x67\x88\x8d\x83\xac\x4c\x84\x8b\x8e\x83\xa9\x4f", 9: b"\xd3\xd6\x1d\x4b\x8e\x8b\x80\x0e\xa3\xac\x4c\x84\x8b\x8e\x83\xa9\x4f\xac\xac", 10: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x4b\x80\xa2\x86\x84\xac\x62\x8e\x80\xa3\xa4\x4f", 11: b"\xd3\xd6\x1d\x4c\x88\x8d\x84\xac\x4a\x84\xa9\xac\x40\x4f\xac\xac\xac\xac\xac", 12: b"\xd3\xd6\x1d\x4c\x88\x8d\x84\xac\x4a\x84\xa9\xac\x41\x4f\xac\xac\xac\xac\xac", 13: b"\xd3\x64\x87\x84\xac\x4c\x84\x8c\x8e\xa2\xa9\xac\x4c\x84\x8b\x8e\x83\xa9\x4f", 14: b"\xd3\xd6\x1d\x80\xac\x42\xa2\xa9\xa3\xa4\x80\x8b\xac\x41\x80\x8b\x8b\x4f\xac", 15: b"\xd3\x64\x87\x84\xac\x44\x8b\x84\xa6\x80\xa4\x8e\xa2\xac\x4a\x84\xa9\x4f\xac", 16: b"\xd3\x64\x87\x84\xac\x4c\xa5\xac\x60\x80\x8b\x80\x82\x84\xac\x4a\x84\xa9\x4f", 17: b"\xd3\x64\x87\x84\xac\x60\xa5\xa2\x88\xa4\xa9\xac\x63\xa4\x8e\x8d\x84\x4f\xac", 18: b"\xd3\x40\xac\x63\xa4\x80\xa4\xa5\x84\xac\x8e\x85\xac\x47\x8e\xa0\x84\x4f\xac", 19: b"\xd3\xd6\x1d\x80\xac\x62\x80\x8c\x80\xac\x63\xa4\x80\xa4\xa5\x84\x4f\xac\xac", 20: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x4c\x80\x86\x88\x82\xac\x43\xa5\xa3\xa4\x4f\xac", 21: "", 22: b"\xd3\xd6\x1d\x4b\x80\x8d\x82\x84\x0e\xa3\xac\x4b\x84\xa4\xa4\x84\xa2\x4f\xac", 23: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x4d\x84\x82\x8a\x8b\x80\x82\x84\x4f\xac\xac\xac", 24: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x67\x88\x8b\x8b\x4f\xac\xac\xac\xac\xac\xac\xac", 25: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x64\x84\x80\xa0\x8e\xa4\x4f\xac\xac\xac\xac\xac", 26: b"\xd3\xd6\x1d\x4c\xa5\xa3\x87\xa2\x8e\x8e\x8c\xac\x43\xa2\x8e\xa0\xa3\x4f\xac", 27: "", 28: b"\xd3\x64\x87\x84\xac\x41\x8b\x80\x82\x8a\xac\x46\x8b\x80\xa3\xa3\x84\xa3\x4f", 29: b"\xd3\x64\x87\x84\xac\x46\x8e\xa2\x86\x8e\x8d\xac\x45\x8b\x8e\xa7\x84\xa2\x4f", 30: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 31: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 32: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 33: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 34: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 35: b"\xd3\x40\xac\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\x64\x88\x8b\x84\x4f", 36: b"\xd3\xd6\x1d\xa4\x87\x84\xac\x40\xa5\xa2\x80\x4f\xac\xac\xac\xac\xac\xac\xac", 37: b"\xd3\xd6\x1d\x4b\x8e\x8b\x80\x0e\xa3\xac\x4b\x84\xa4\xa4\x84\xa2\x4f\xac\xac", 38: b"\xd3\xd6\x1d\x45\x80\xa4\x87\x84\xa2\x0e\xa3\xac\x49\x8e\xa5\xa2\x8d\x80\x8b", 39: b"\xd3\x64\x87\x84\xac\x42\xa2\xa9\xa3\xa4\x80\x8b\xac\x62\x88\x8d\x86\x4f\xac", 40: b"\xd3\xd6\x1d\x80\x8d\xac\x40\xa0\xa0\x8b\x84\x4f\xac\xac\xac\xac\xac\xac\xac", 41: b"\xd3\xd6\x1d\x22\xac\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\xa3\x4f\xac\xac\xac", 42: b"\xd3\xd6\x1d\x23\xac\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\xa3\x4f\xac\xac\xac", 50: b"\xd3\xd6\x1d\x80\x8d\xac\x47\x60\xac\xa5\xa0\x86\xa2\x80\x83\x84\x4f\xac\xac", 51: b"\xd3\xd6\x1d\x80\xac\x43\x44\x45\xac\xa5\xa0\x86\xa2\x80\x83\x84\x4f\xac\xac", 52: b"\xd3\xd6\x1d\x80\xac\x63\x64\x62\xac\xa5\xa0\x86\xa2\x80\x83\x84\x4f\xac\xac", 53: b"\xd3\xd6\x3c\x43\x80\xa3\x87\xac\x88\xa3\xac\x88\x8c\xa0\xa2\x8e\xa6\x84\x83", 54: b"\xd3\x45\xa2\x88\x80\xa2\xac\x88\xa3\xac\x88\x8c\xa0\xa2\x8e\xa6\x84\x83\x4f", 55: b"\xd3\xd6\x1d\x80\xac\x47\x84\x80\xa2\xa4\xac\x60\x88\x84\x82\x84\x4f\xac\xac" } # Define short item text for in-game format # Currently only used in Jeweler's inventory self.item_text_short = { 0: b"\x4d\x8e\xa4\x87\x88\x8d\x86\xac\xac\xac\xac\xac\xac", 1: b"\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\xac\xac\xac\xac", 2: b"\x60\xa2\x88\xa3\x8e\x8d\xac\x4a\x84\xa9\xac\xac\xac", 3: b"\x48\x8d\x82\x80\xac\x63\xa4\x80\xa4\xa5\x84\xac\x40", 4: b"\x48\x8d\x82\x80\xac\x63\xa4\x80\xa4\xa5\x84\xac\x41", 5: "", 6: b"\x47\x84\xa2\x81\xac\xac\xac\xac\xac\xac\xac\xac\xac", 7: b"\x43\x88\x80\x8c\x8e\x8d\x83\xac\x41\x8b\x8e\x82\x8a", 8: b"\x67\x88\x8d\x83\xac\x4c\x84\x8b\x8e\x83\xa9\xac\xac", 9: b"\x4b\x8e\x8b\x80\x0e\xa3\xac\x4c\x84\x8b\x8e\x83\xa9", 10: b"\x4b\x80\xa2\x86\x84\xac\x62\x8e\x80\xa3\xa4\xac\xac", 11: b"\x4c\x88\x8d\x84\xac\x4a\x84\xa9\xac\x40\xac\xac\xac", 12: b"\x4c\x88\x8d\x84\xac\x4a\x84\xa9\xac\x41\xac\xac\xac", 13: b"\x4c\x84\x8c\x8e\xa2\xa9\xac\x4c\x84\x8b\x8e\x83\xa9", 14: b"\x42\xa2\xa9\xa3\xa4\x80\x8b\xac\x41\x80\x8b\x8b\xac", 15: b"\x44\x8b\x84\xa6\x80\xa4\x8e\xa2\xac\x4a\x84\xa9\xac", 16: b"\x4c\xa5\xac\x60\x80\x8b\x80\x82\x84\xac\x4a\x84\xa9", 17: b"\x60\xa5\xa2\x88\xa4\xa9\xac\x63\xa4\x8e\x8d\x84\xac", 18: b"\x47\x8e\xa0\x84\xac\x63\xa4\x80\xa4\xa5\x84\xac\xac", 19: b"\x62\x80\x8c\x80\xac\x63\xa4\x80\xa4\xa5\x84\xac\xac", 20: b"\x4c\x80\x86\x88\x82\xac\x43\xa5\xa3\xa4\xac\xac\xac", 21: "", 22: b"\x4b\x80\x8d\x82\x84\xac\x4b\x84\xa4\xa4\x84\xa2\xac", 23: b"\x4d\x84\x82\x8a\x8b\x80\x82\x84\xac\xac\xac\xac\xac", 24: b"\x67\x88\x8b\x8b\xac\xac\xac\xac\xac\xac\xac\xac\xac", 25: b"\x64\x84\x80\xa0\x8e\xa4\xac\xac\xac\xac\xac\xac\xac", 26: b"\x63\x87\xa2\x8e\x8e\x8c\xac\x43\xa2\x8e\xa0\xa3\xac", 27: "", 28: b"\x41\x8b\x80\x82\x8a\xac\x46\x8b\x80\xa3\xa3\x84\xa3", 29: b"\x46\x8e\xa2\x86\x8e\x8d\xac\x45\x8b\x8e\xa7\x84\xa2", 30: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 31: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 32: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 33: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 34: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 35: b"\x47\x88\x84\xa2\x8e\x86\x8b\xa9\xa0\x87\xac\xac\xac", 36: b"\x40\xa5\xa2\x80\xac\xac\xac\xac\xac\xac\xac\xac\xac", 37: b"\x4b\x8e\x8b\x80\x0e\xa3\xac\x4b\x84\xa4\xa4\x84\xa2", 38: b"\x49\x8e\xa5\xa2\x8d\x80\x8b\xac\xac\xac\xac\xac\xac", 39: b"\x42\xa2\xa9\xa3\xa4\x80\x8b\xac\x62\x88\x8d\x86\xac", 40: b"\x40\xa0\xa0\x8b\x84\xac\xac\xac\xac\xac\xac\xac\xac", 41: b"\x22\xac\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\xa3\xac", 42: b"\x23\xac\x62\x84\x83\xac\x49\x84\xa7\x84\x8b\xa3\xac", 50: b"\x47\x60\xac\x65\xa0\x86\xa2\x80\x83\x84\xac\xac\xac", 51: b"\x43\x44\x45\xac\x65\xa0\x86\xa2\x80\x83\x84\xac\xac", 52: b"\x63\x64\x62\xac\x65\xa0\x86\xa2\x80\x83\x84\xac\xac", 53: b"\x43\x80\xa3\x87\xac\x65\xa0\x86\xa2\x80\x83\x84\xac", 54: b"\x45\xa2\x88\x80\xa2\xac\x65\xa0\x86\xa2\x80\x83\x84", 55: b"\x47\x84\x80\xa2\xa4\xac\x60\x88\x84\x82\x84\xac\xac", 61: b"\xd6\x3c\x43\x80\xa3\x87", 62: b"\xd6\x3c\x63\x8b\x88\x83\x84\xa2", 63: b"\xd7\x31\x43\x80\xa3\x87", 64: b"\xd6\x0c\x45\xa2\x88\x80\xa2", 65: b"\xd6\x03\x41\x80\xa2\xa2\x88\x84\xa2", 66: b"\x44\x80\xa2\xa4\x87\xa1\xa5\x80\x8a\x84\xa2" } # Database of enemy groups and spritesets # FORMAT: { ID: [ROM_Loction, HeaderCode, HeaderData, Name]} self.enemysets = { 0: [b"\x03\x00\x10\x10\xEC\x59\xCD\x01\x04\x00\x60\xA0\x8C\x75\xDE\x10\xD0\x21\x00\x47\xED\x9F", "Underground Tunnel"], 1: [b"\x03\x00\x10\x10\xBC\x33\xC2\x01\x04\x00\x60\xA0\x0C\x77\xDE\x10\x2A\x0F\x00\xE6\x08\xD5", "Inca Ruins (Mud Monster and Larva)"], 2: [b"\x03\x00\x10\x10\x23\x4D\xC2\x01\x04\x00\x60\xA0\xCC\x77\xDE\x10\x36\x23\x00\x24\x45\xCC", "Inca Ruins (Statues)"], 3: [b"\x03\x00\x10\x10\x16\x5C\xCC\x01\x04\x00\x60\xA0\xCC\x7A\xDE\x10\x30\x29\x00\xBE\x2F\xCB", "Diamond Mine"], 4: [b"\x03\x00\x10\x10\x62\x3D\xCF\x01\x04\x00\x60\xA0\x4C\x7C\xDE\x10\x54\x1D\x00\xEF\xEE\x9E", "Sky Garden (top)"], 5: [b"\x03\x00\x10\x10\x62\x3D\xCF\x01\x04\x00\x60\xA0\x0C\x7D\xDE\x10\x54\x1D\x00\xEF\xEE\x9E", "Sky Garden (bottom)"], 6: [b"\x03\x00\x10\x10\x2D\x2E\xCC\x01\x04\x00\x60\xA0\x00\x00\xDF\x10\x16\x1C\x00\x41\x36\xD1", "Mu"], 7: [b"\x03\x00\x10\x10\xD1\x14\xCF\x01\x04\x00\x60\xA0\x40\x02\xDF\x10\x7F\x0F\x00\x2C\x2B\xD5", "Angel Dungeon"], 8: [b"\x03\x00\x10\x10\x6D\x13\xD0\x01\x04\x00\x60\xA0\x40\x05\xDF\x10\xFF\x16\x00\xF7\xF3\x99", "Great Wall"], 9: [b"\x03\x00\x10\x10\x00\x00\xD0\x01\x04\x00\x60\xA0\x40\x08\xDF\x10\x70\x0E\x00\x5C\x4D\xD8", "Mt. Kress"], 10: [b"\x03\x00\x10\x10\xEA\x15\xCE\x01\x04\x00\x70\x90\x53\x55\xDE\x10\xD5\x14\x00\x08\x73\xCC", "Ankor Wat (outside)"], 11: [b"\x03\x00\x10\x10\x81\x6A\xC1\x01\x04\x00\x70\x90\x13\x57\xDE\x10\x57\x10\x00\x5F\x39\xD4", "Ankor Wat (inside)"], 12: [b"\x03\x00\x10\x10\x0d\x18\xcb\x01\x04\x00\x60\x90\x80\x0a\xdf\x10\xfb\x13\x00\x0e\x67\xd1", "Pyramid"], 13: [b"\x03\x00\x10\x10\x16\x5C\xCC\x01\x04\x00\x60\xA0\xC0\x0C\xDF\x10\x30\x29\x00\xBE\x2F\xCB", "Jeweler's Mansion"] } # Enemy map database # FORMAT: { ID: [EnemySet, RewardBoss(0 for no reward), Reward[type, tier], SearchHeader, # SpritesetOffset,EventAddrLow,EventAddrHigh,RestrictedEnemysets]} # ROM address for room reward table is mapID + $1aade self.maps = { # For now, no one can have enemyset 10 (Ankor Wat outside) # Underground Tunnel 12: [0, 1, [0,0], b"\x0C\x00\x02\x05\x03", 4, "c867a", "c86ac", []], 13: [0, 1, [0,0], b"\x0D\x00\x02\x03\x03", 4, "c86ac", "c875c", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], 14: [0, 1, [0,0], b"\x0E\x00\x02\x03\x03", 4, "c875c", "c8847", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], # Weird 4way issues 15: [0, 1, [0,0], b"\x0F\x00\x02\x03\x03", 4, "c8847", "c8935", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 18: [0, 1, [0,0], b"\x12\x00\x02\x03\x03", 4, "c8986", "c8aa9", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], # Spike balls # Inca Ruins 27: [1, 0, [0,0], b"\x1B\x00\x02\x05\x03", 4, "c8c33", "c8c87", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], # Moon Tribe cave 29: [1, 1, [0,0], b"\x1D\x00\x02\x0F\x03", 4, "c8cc4", "c8d85", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 32: [1, 1, [0,0], b"\x20\x00\x02\x08\x03", 4, "c8e16", "c8e75", []], # Broken statue 33: [2, 1, [0,0], b"\x21\x00\x02\x08\x03", 4, "c8e75", "c8f57", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], # Floor switch 34: [2, 1, [0,0], b"\x22\x00\x02\x08\x03", 4, "c8f57", "c9029", []], # Floor switch 35: [2, 1, [0,0], b"\x23\x00\x02\x0A\x03", 4, "c9029", "c90d5", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], 37: [1, 1, [0,0], b"\x25\x00\x02\x08\x03", 4, "c90f3", "c91a0", [1]], # Diamond block 38: [1, 1, [0,0], b"\x26\x00\x02\x08\x03", 4, "c91a0", "c9242", []], # Broken statues 39: [1, 1, [0,0], b"\x27\x00\x02\x0A\x03", 4, "c9242", "c92f2", []], 40: [1, 1, [0,0], b"\x28\x00\x02\x08\x03", 4, "c92f2", "c935f", [1]], # Falling blocks # Diamond Mine 61: [3, 2, [0,0], b"\x3D\x00\x02\x08\x03", 4, "c9836", "c98b7", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 62: [3, 2, [0,0], b"\x3E\x00\x02\x08\x03", 4, "c98b7", "c991a", []], 63: [3, 2, [0,0], b"\x3F\x00\x02\x05\x03", 4, "c991a", "c9a41", []], 64: [3, 2, [0,0], b"\x40\x00\x02\x08\x03", 4, "c9a41", "c9a95", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], # Trapped laborer (??) 65: [3, 2, [0,0], b"\x41\x00\x02\x00\x03", 4, "c9a95", "c9b39", [0, 2, 3, 4, 5, 11]], # Stationary Grundit 69: [3, 2, [0,0], b"\x45\x00\x02\x08\x03", 4, "c9ba1", "c9bf4", []], 70: [3, 2, [0,0], b"\x46\x00\x02\x08\x03", 4, "c9bf4", "c9c5c", [3, 13]], # Sky Garden 77: [4, 2, [0,0], b"\x4D\x00\x02\x12\x03", 4, "c9db3", "c9e92", []], 78: [5, 2, [0,0], b"\x4E\x00\x02\x10\x03", 4, "c9e92", "c9f53", []], 79: [4, 2, [0,0], b"\x4F\x00\x02\x12\x03", 4, "c9f53", "ca01a", [4, 5]], 80: [5, 2, [0,0], b"\x50\x00\x02\x10\x03", 4, "ca01a", "ca0cb", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 81: [4, 2, [0,0], b"\x51\x00\x02\x12\x03", 4, "ca0cb", "ca192", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 82: [5, 2, [0,0], b"\x52\x00\x02\x10\x03", 4, "ca192", "ca247", [4, 5]], 83: [4, 2, [0,0], b"\x53\x00\x02\x12\x03", 4, "ca247", "ca335", [4, 5]], 84: [5, 2, [0,0], b"\x54\x00\x02\x12\x03", 4, "ca335", "ca43b", [4, 5]], # Mu # 92: [6,0,0,b"\x5C\x00\x02\x15\x03",4,[]], # Seaside Palace 95: [6, 3, [0,0], b"\x5F\x00\x02\x14\x03", 4, "ca71b", "ca7ed", [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]], 96: [6, 3, [0,0], b"\x60\x00\x02\x14\x03", 4, "ca7ed", "ca934", [6]], 97: [6, 3, [0,0], b"\x61\x00\x02\x14\x03", 4, "ca934", "caa7b", [6]], 98: [6, 3, [0,0], b"\x62\x00\x02\x14\x03", 4, "caa7b", "cab28", []], 100: [6, 3, [0,0], b"\x64\x00\x02\x14\x03", 4, "cab4b", "cabd4", []], 101: [6, 3, [0,0], b"\x65\x00\x02\x14\x03", 4, "cabd4", "cacc3", [6]], # Angel Dungeon 109: [7, 3, [0,0], b"\x6D\x00\x02\x16\x03", 4, "caf6e", "cb04b", [7, 8, 9, 10]], # Add 10's back in once flies are fixed 110: [7, 3, [0,0], b"\x6E\x00\x02\x18\x03", 4, "cb04b", "cb13e", [7, 8, 9, 10]], 111: [7, 3, [0,0], b"\x6F\x00\x02\x1B\x03", 4, "cb13e", "cb1ae", [7, 8, 9, 10]], 112: [7, 3, [0,0], b"\x70\x00\x02\x16\x03", 4, "cb1ae", "cb258", [7, 8, 9, 10]], 113: [7, 3, [0,0], b"\x71\x00\x02\x18\x03", 4, "cb258", "cb29e", [7, 8, 9, 10]], 114: [7, 3, [0,0], b"\x72\x00\x02\x18\x03", 4, "cb29e", "cb355", [7, 8, 9, 10]], # Great Wall 130: [8, 4, [0,0], b"\x82\x00\x02\x1D\x03", 4, "cb6c1", "cb845", [8, 9, 10]], # Add 10's back in once flies are fixed 131: [8, 4, [0,0], b"\x83\x00\x02\x1D\x03", 4, "cb845", "cb966", [7, 8, 9, 10]], 133: [8, 4, [0,0], b"\x85\x00\x02\x1D\x03", 4, "cb97d", "cbb18", [8, 9, 10]], 134: [8, 4, [0,0], b"\x86\x00\x02\x1D\x03", 4, "cbb18", "cbb87", [7, 8, 9, 10]], 135: [8, 4, [0,0], b"\x87\x00\x02\x1D\x03", 4, "cbb87", "cbc3b", [8]], 136: [8, 4, [0,0], b"\x88\x00\x02\x1D\x03", 4, "cbc3b", "cbd0a", [7, 8, 9]], # Mt Temple 160: [9, 4, [0,0], b"\xA0\x00\x02\x20\x03", 4, "cc18c", "cc21c", []], 161: [9, 4, [0,0], b"\xA1\x00\x02\x20\x03", 4, "cc21c", "cc335", [7, 8, 9, 10]], 162: [9, 4, [0,0], b"\xA2\x00\x02\x20\x03", 4, "cc335", "cc3df", [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13]], # Drops 163: [9, 4, [0,0], b"\xA3\x00\x02\x20\x03", 4, "cc3df", "cc4f7", []], 164: [9, 4, [0,0], b"\xA4\x00\x02\x20\x03", 4, "cc4f7", "cc5f8", [0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13]], 165: [9, 4, [0,0], b"\xA5\x00\x02\x20\x03", 4, "cc5f8", "cc703", [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13]], # Drops 166: [9, 4, [0,0], b"\xA6\x00\x02\x20\x03", 4, "cc703", "cc7a1", []], 167: [9, 4, [0,0], b"\xA7\x00\x02\x20\x03", 4, "cc7a1", "cc9a3", [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13]], 168: [9, 4, [0,0], b"\xA8\x00\x02\x20\x03", 4, "cc9a3", "cca02", [7, 8, 9, 10]], # <NAME> 176: [10, 6, [0,0], b"\xB0\x00\x02\x2C\x03", 4, "ccb1b", "ccbd8", []], 177: [11, 6, [0,0], b"\xB1\x00\x02\x08\x03", 4, "ccbd8", "ccca5", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13]], 178: [11, 6, [0,0], b"\xB2\x00\x02\x08\x03", 4, "ccca5", "ccd26", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 13]], 179: [11, 6, [0,0], b"\xB3\x00\x02\x08\x03", 4, "ccd26", "ccd83", []], 180: [11, 6, [0,0], b"\xB4\x00\x02\x08\x03", 4, "ccd83", "ccdd7", [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 13]], 181: [11, 6, [0,0], b"\xB5\x00\x02\x08\x03", 4, "ccdd7", "cce7b", []], 182: [10, 6, [0,0], b"\xB6\x00\x02\x2C\x03", 4, "cce7b", "cd005", [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13]], 183: [11, 6, [0,0], b"\xB7\x00\x02\x08\x03", 4, "cd005", "cd092", []], # Earthquaker Golem 184: [11, 6, [0,0], b"\xB8\x00\x02\x08\x03", 4, "cd092", "cd0df", [0, 1, 3, 4, 5, 7, 8, 9, 11, 13]], 185: [11, 6, [0,0], b"\xB9\x00\x02\x08\x03", 4, "cd0df", "cd137", []], 186: [10, 6, [0,0], b"\xBA\x00\x02\x2C\x03", 4, "cd137", "cd197", []], 187: [11, 6, [0,0], b"\xBB\x00\x02\x08\x03", 4, "cd197", "cd1f4", []], 188: [11, 6, [0,0], b"\xBC\x00\x02\x24\x03", 4, "cd1f4", "cd29a", []], 189: [11, 6, [0,0], b"\xBD\x00\x02\x08\x03", 4, "cd29a", "cd339", []], 190: [11, 6, [0,0], b"\xBE\x00\x02\x08\x03", 4, "cd339", "cd392", []], # Pyramid 204: [12, 5, [0,0], b"\xCC\x00\x02\x08\x03", 4, "cd539", "cd58c", []], 206: [12, 5, [0,0], b"\xCE\x00\x02\x08\x03", 4, "cd5c6", "cd650", []], 207: [12, 5, [0,0], b"\xCF\x00\x02\x08\x03", 4, "cd650", "cd6f3", []], 208: [12, 5, [0,0], b"\xD0\x00\x02\x08\x03", 4, "cd6f3", "cd752", []], 209: [12, 5, [0,0], b"\xD1\x00\x02\x08\x03", 4, "cd752", "cd81b", []], 210: [12, 5, [0,0], b"\xD2\x00\x02\x08\x03", 4, "cd81b", "cd8f1", []], 211: [12, 5, [0,0], b"\xD3\x00\x02\x08\x03", 4, "cd8f1", "cd9a1", []], 212: [12, 5, [0,0], b"\xD4\x00\x02\x08\x03", 4, "cd9a1", "cda80", []], 213: [12, 5, [0,0], b"\xD5\x00\x02\x08\x03", 4, "cda80", "cdb4b", []], 214: [12, 5, [0,0], b"\xD6\x00\x02\x26\x03", 4, "cdb4b", "cdc1e", []], 215: [12, 5, [0,0], b"\xD7\x00\x02\x28\x03", 4, "cdc1e", "cdcfd", [0, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13]], 216: [12, 5, [0,0], b"\xD8\x00\x02\x08\x03", 4, "cdcfd", "cde4f", [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13]], 217: [12, 5, [0,0], b"\xD9\x00\x02\x26\x03", 4, "cde4f", "cdf3c", []], 219: [12, 5, [0,0], b"\xDB\x00\x02\x26\x03", 4, "cdf76", "ce010", [0, 4, 5, 8, 9, 11, 12]], #Spike elevators # Jeweler's Mansion 233: [13, 0, [0,0], b"\xE9\x00\x02\x22\x03", 4, "ce224", "ce3a6", [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13]] } # Database of enemy types # FORMAT: { ID: [Enemyset, Event addr, VanillaTemplate, # Type(1=stationary,2=walking,3=flying),OnWalkableTile,CanBeRandom,Name]} self.enemies = { # Underground Tunnel 0: [0, b"\x55\x87\x8a", b"\x05", 2, True, True, "Bat"], # a8755 1: [0, b"\x6c\x82\x8a", b"\x01", 2, True, True, "Ribber"], 2: [0, b"\x00\x80\x8a", b"\x02", 1, False, True, "Canal Worm"], 3: [0, b"\xf7\x85\x8a", b"\x03", 2, True, False, "King Bat"], 4: [0, b"\x76\x84\x8a", b"\x10", 2, True, True, "Skull Chaser"], 5: [0, b"\xff\x86\x8a", b"\x04", 2, True, False, "Bat Minion 1"], 6: [0, b"\x9a\x86\x8a", b"\x04", 2, True, False, "Bat Minion 2"], 7: [0, b"\x69\x86\x8a", b"\x04", 2, True, False, "Bat Minion 3"], 8: [0, b"\xcb\x86\x8a", b"\x04", 2, True, False, "Bat Minion 4"], # Inca Ruins 10: [1, b"\xb7\x8d\x8a", b"\x0b", 2, True, True, "Slugger"], 11: [1, b"\xb6\x8e\x8a", b"\x0b", 2, True, False, "Scuttlebug"], 12: [1, b"\x1b\x8b\x8a", b"\x0a", 2, True, True, "Mudpit"], 13: [1, b"\x70\x8c\x8a", b"\x0c", 1, True, True, "Four Way"], 14: [2, b"\xee\x97\x8a", b"\x0f", 2, True, True, "Splop"], 15: [2, b"\xbc\x98\x8a", b"\x0e", 3, False, True, "Whirligig"], 16: [2, b"\xc2\x95\x8a", b"\x0d", 2, True, False, "Stone Lord R"], # shoots fire 17: [2, b"\xb3\x95\x8a", b"\x0d", 2, True, True, "Stone Lord D"], # shoots fire 18: [2, b"\xb8\x95\x8a", b"\x0d", 2, True, False, "Stone Lord U"], # shoots fire 19: [2, b"\xbd\x95\x8a", b"\x0d", 2, True, False, "Stone Lord L"], # shoots fire 20: [2, b"\x70\x90\x8a", b"\x0d", 2, True, False, "Stone Guard R"], # throws spears 21: [2, b"\x6b\x90\x8a", b"\x0d", 2, True, False, "Stone Guard L"], # throws spears 22: [2, b"\x61\x90\x8a", b"\x0d", 2, True, True, "Stone Guard D"], # throws spears 23: [2, b"\xc3\x99\x8a", b"\x0e", 1, False, False, "Whirligig (stationary)"], # Diamond Mine 30: [3, b"\xca\xaa\x8a", b"\x18", 2, True, True, "Flayzer 1"], 31: [3, b"\x54\xaa\x8a", b"\x18", 2, True, False, "Flayzer 2"], 32: [3, b"\x8a\xaa\x8a", b"\x18", 2, True, False, "Flayzer 3"], 33: [3, b"\x03\xb1\x8a", b"\x19", 2, True, True, "Eye Stalker"], 34: [3, b"\xb3\xb0\x8a", b"\x19", 2, True, False, "Eye Stalker (stone)"], 35: [3, b"\xf5\xaf\x8a", b"\x1a", 1, True, True, "Grundit"], # 36: [3,b"\xf5\xa4\x8a",b"\x1a","Grundit (stationary)"], # Can't randomize this guy # Sky Garden 40: [4, b"\xb0\xb4\x8a", b"\x1d", 2, True, True, "Blue Cyber"], 41: [4, b"\x20\xc5\x8a", b"\x1b", 2, True, True, "Dynapede 1"], 42: [4, b"\x33\xc5\x8a", b"\x1b", 2, True, False, "Dynapede 2"], 43: [5, b"\xb0\xb8\x8a", b"\x1e", 2, True, True, "Red Cyber"], 44: [5, b"\x16\xc8\x8a", b"\x1c", 2, True, True, "Nitropede"], # Mu 50: [6, b"\xcc\xe6\x8a", b"\x2b", 2, True, True, "Slipper"], 51: [6, b"\x5c\xe4\x8a", b"\x2a", 2, True, True, "Skuddle"], 52: [6, b"\x9e\xdd\x8a", b"\x28", 2, True, True, "Cyclops"], 53: [6, b"\x6e\xe2\x8a", b"\x29", 3, True, True, "Flasher"], 54: [6, b"\x07\xde\x8a", b"\x28", 2, True, False, "Cyclops (asleep)"], 55: [6, b"\xf4\xe6\x8a", b"\x2b", 2, True, True, "Slipper (falling)"], # Angel Dungeon 60: [7, b"\x9f\xee\x8a", b"\x2d", 3, False, True, "Dive Bat"], 61: [7, b"\x51\xea\x8a", b"\x2c", 2, True, True, "Steelbones"], 62: [7, b"\x33\xef\x8a", b"\x2e", 1, True, True, "Draco"], # False for now... 63: [7, b"\xc7\xf0\x8a", b"\x2e", 1, True, True, "Ramskull"], # Great Wall 70: [8, b"\x55\x91\x8b", b"\x33", 2, True, True, "Archer 1"], 71: [8, b"\xfe\x8e\x8b", b"\x33", 2, True, False, "Archer Statue"], 72: [8, b"\xbe\x8d\x8b", b"\x34", 2, True, True, "Eyesore"], 73: [8, b"\x70\x8c\x8b", b"\x35", 3, False, True, "Fire Bug 1"], 74: [8, b"\x70\x8c\x8b", b"\x33", 3, False, False, "Fire Bug 2"], 75: [8, b"\x23\x94\x8b", b"\x32", 2, True, True, "Asp"], 76: [8, b"\x65\x91\x8b", b"\x33", 2, True, False, "Archer 2"], 77: [8, b"\x77\x91\x8b", b"\x33", 2, True, False, "Archer 3"], 78: [8, b"\x72\x8f\x8b", b"\x46", 2, True, False, "Archer Statue (switch) 1"], 79: [8, b"\x4f\x8f\x8b", b"\x33", 2, True, False, "Archer Statue (switch) 2"], # Mt. Kress 80: [9, b"\xac\x9b\x8b", b"\x3e", 3, True, True, "Skulker (N/S)"], 81: [9, b"\x4e\x9c\x8b", b"\x3e", 3, True, True, "Skulker (E/W)"], 82: [9, b"\x44\x9c\x8b", b"\x3e", 3, True, False, "Skulker (E/W)"], 83: [9, b"\xa2\x9b\x8b", b"\x3e", 3, True, False, "Skulker (E/W)"], 84: [9, b"\x8b\x9e\x8b", b"\x3d", 3, False, True, "Yorrick (E/W)"], 85: [9, b"\x53\x9f\x8b", b"\x3d", 3, False, False, "Yorrick (E/W)"], 86: [9, b"\x0f\x9d\x8b", b"\x3d", 3, False, True, "Yorrick (N/S)"], 87: [9, b"\xcd\x9d\x8b", b"\x3d", 3, False, False, "Yorrick (N/S)"], 88: [9, b"\x3b\x98\x8b", b"\x3f", 3, False, True, "Fire Sprite"], 89: [9, b"\xcf\xa0\x8b", b"\x3c", 2, True, True, "Acid Splasher"], 90: [9, b"\xa1\xa0\x8b", b"\x3c", 2, True, False, "Acid Splasher (stationary E)"], 91: [9, b"\x75\xa0\x8b", b"\x3c", 2, True, False, "Acid Splasher (stationary W)"], 92: [9, b"\x49\xa0\x8b", b"\x3c", 2, True, False, "Acid Splasher (stationary S)"], 93: [9, b"\x1d\xa0\x8b", b"\x3c", 2, True, False, "Acid Splasher (stationary N)"], # Ankor Wat 100: [10, b"\xd7\xb1\x8b", b"\x49", 2, True, True, "Shrubber"], 101: [10, b"\xb4\xb1\x8b", b"\x49", 2, True, False, "Shrubber 2"], 102: [10, b"\x75\xb2\x8b", b"\x46", 2, True, True, "Zombie"], 103: [10, b"\x4f\xaf\x8b", b"\x4a", 3, True, True, "Zip Fly"], # False for now... 104: [11, b"\x8d\xbd\x8b", b"\x42", 3, True, True, "Goldcap"], 105: [11, b"\x25\xb8\x8b", b"\x45", 2, True, True, "Gorgon"], 106: [11, b"\x17\xb8\x8b", b"\x45", 2, True, False, "Gorgon (jump down)"], 107: [11, b"\xbb\xbf\x8b", b"\x43", 2, True, False, "Frenzie"], 108: [11, b"\xd0\xbf\x8b", b"\x43", 2, True, True, "Frenzie 2"], 109: [11, b"\x66\xbb\x8b", b"\x44", 1, False, True, "Wall Walker"], 110: [11, b"\x66\xbb\x8b", b"\x3a", 1, False, False, "Wall Walker 2"], 111: [11, b"\x5c\xbb\x8b", b"\x44", 1, False, False, "Wall Walker 3"], 112: [11, b"\x5c\xbb\x8b", b"\x3a", 1, False, False, "Wall Walker 4"], 113: [11, b"\xaf\x99\x88", b"\x45", 2, True, False, "Gorgon (block)"], # Pyramid 120: [12, b"\x5f\xc6\x8b", b"\x4f", 1, True, True, "Mystic Ball (stationary)"], 121: [12, b"\xfc\xc5\x8b", b"\x4f", 2, True, True, "Mystic Ball"], 122: [12, b"\xa3\xc5\x8b", b"\x4f", 2, True, True, "Mystic Ball"], 123: [12, b"\x9d\xc3\x8b", b"\x4e", 2, True, True, "Tuts"], 124: [12, b"\x98\xc7\x8b", b"\x51", 1, True, True, "Blaster"], 125: [12, b"\x84\xc1\x8b", b"\x4c", 2, True, False, "Haunt (stationary)"], 126: [12, b"\xa7\xc1\x8b", b"\x4c", 2, True, True, "Haunt"], # Babel Tower # 130: [14,b"\xd7\x99\x8a",b"\x5a","Castoth (boss)"], # 131: [14,b"\xd5\xd0\x8a",b"\x5b","Viper (boss)"], # 132: [14,b"\x50\xf1\x8a",b"\x5c","Vampire (boss)"], # 133: [14,b"\x9c\xf1\x8a",b"\x5c","Vampire (boss)"], # 134: [14,b"\x00\x80\x8b",b"\x5d","Sand Fanger (boss)"], # 135: [14,b"\x1a\xa6\x8b",b"\x5e","Mummy Queen (boss)"], # Jeweler's Mansion 140: [13, b"\xca\xaa\x8a", b"\x61", 2, True, True, "Flayzer"], 141: [13, b"\xf5\xaf\x8a", b"\x63", 1, True, True, "Grundit"], 142: [13, b"\xd8\xb0\x8a", b"\x62", 2, True, False, "Eye Stalker 1"], 143: [13, b"\x03\xb1\x8a", b"\x62", 2, True, True, "Eye Stalker 2"] # Bosses # 24: [15,b"\x03\x9b\x8a",b"\x14","Castoth (boss)"], # 45: [15,b"\x6f\xd1\x8a",b"\x27","Viper (boss)"], # 55: [15,b"\xf7\xf1\x8a",b"\x2f","Vampire (boss)"], # 56: [15,b"\xc8\xf3\x8a",b"\x30","Vampire (boss)"], # 79: [15,b"\x5c\x81\x8b",b"\x36","Sand Fanger (boss)"], # 128: [15,b"\xb6\xa6\x8b",b"\x50","Mummy Queen (boss)"], # 143: [15,b"\x09\xf7\x88",b"\x5f","Solid Arm (boss)"], # 140: [15,b"\xaa\xee\x8c",b"\x54","Dark Gaia"] } # Database of non-enemy sprites to disable in enemizer # FORMAT: { ID: [Enemyset, Event addr, Name]} self.nonenemy_sprites = { # Underground Tunnel 0: [0, "a8835", "Movable statue"], 1: [0, "a87ce", "Falling spear 1"], 2: [0, "a87c3", "Falling spear 2"], 3: [0, "a8aae", "Spike ball 1"], 4: [0, "a8a0f", "Spike ball 2"], 5: [0, "a8a7d", "Spike ball 3"], 6: [0, "a8a46", "Spike ball 4"], 7: [0, "a89de", "Spike ball 5"], # Inca Ruins 10: [1, "9c26f", "Skeleton 1"], 11: [1, "9c798", "Skeleton 2"], # 12: [1,"9c89d","Skeleton 3"], # Spriteset already restricted for this room 13: [1, "9c8f7", "Skeleton 4"], 14: [1, "a8896", "Broken statue (chest)"], 15: [1, "a88de", "Broken statue (blockade)"], # Diamond Mine 20: [3, "5d6a8", "Elevator sign"], 21: [3, "aa4f5", "Elevator platform 1"], 22: [3, "aa50c", "Elevator platform 2"], 23: [3, "aa4e2", "Elevator platform 3"], # Sky Garden 30: [4, "5f8c0", "Broken statue"], 31: [4, "ac0fe", "Sword statue 1"], # 32: [4,"ac150","Sword statue 2"], 33: [4, "ac3b3", "Sword statue 3"], # 34: [4,"ac409","Sword statue 4"], 35: [4, "accd4", "Fire snake (top)"], 36: [5, "accf1", "Fire snake (bottom)"], # Mu 40: [6, "69ce9", "Floor spikes 1"], 41: [6, "69d1f", "Floor spikes 2"], 42: [6, "ae943", "Fire snake"], # 43: [6,"69d4d","Donut"], # Angel 50: [7, "6d56f", "Flame 1"], 51: [7, "6d57e", "Flame 2"], 52: [7, "6d58f", "Flame 3"], # Great Wall 60: [8, "b8c30", "Wall spike 1"], 61: [8, "b8bf8", "Wall spike 2"], 62: [8, "7bd17", "Wall spike 3"], 63: [8, "7bd46", "Wall spike 4"], 64: [8, "7bd75", "Wall spike 5"], 65: [8, "7bce8", "Wall spike 5"], # Mt Kress (nothing) # Ankor Wat 80: [11, "89f2c", "Floating crystal"], 81: [11, "89ffc", "Skeleton 1"], 82: [11, "8a25e", "Skeleton 2"] # Pyramid # 90: [12,"8b6a2","Warp point"], # 91: [12,"8cd6c","Warp point"], # Jeweler's Mansion (nothing) } # Database of overworld menus # FORMAT: { ID: [ShuffleID (0=no shuffle), Menu_ID, FromRegion, ToRegion, ROM_EntranceData, ROM_TextLoc, MenuText, ContinentName, AreaName]} self.overworld_menus = { # SW Continent "\x01" 1: [0, b"\x01", 10, 20, "3b95b", "0cafd", "3b590", "SW Continent", "South Cape"], 2: [0, b"\x01", 10, 30, "3b96b", "0cb26", "3b5a9", "SW Continent", "Edward's"], 3: [0, b"\x01", 10, 50, "3b97b", "0cb5b", "3b5b5", "SW Continent", "Itory"], 4: [0, b"\x01", 10, 60, "3b98b", "4f453", "3b5c2", "SW Continent", "Moon Tribe"], 5: [0, b"\x01", 10, 63, "3b99b", "0cb74", "3b59c", "SW Continent", "Inca"], # SE Continent "\x07" 6: [0, b"\x07", 11, 102, "3b9ab", "5aab7", "3b5ef", "SE Continent", "Diamond Coast"], 7: [0, b"\x07", 11, 110, "3b9bb", "0cba3", "3b5e3", "SE Continent", "Freejia"], 8: [0, b"\x07", 11, 133, "3b9cb", "0cbbc", "3b608", "SE Continent", "Diamond Mine"], 9: [0, b"\x07", 11, 160, "3b9db", "5e31e", "3b615", "SE Continent", "Neil's"], 10: [0, b"\x07", 11, 162, "3b9eb", "5e812", "3b5fc", "SE Continent", "Nazca"], # NE Continent "\x0a" 11: [0, b"\x0a", 12, 250, "3ba1b", "0cbeb", "3b642", "NE Continent", "Angel Village"], 12: [0, b"\x0a", 12, 280, "3ba2b", "0cc30", "3b636", "NE Continent", "Watermia"], 13: [0, b"\x0a", 12, 290, "3ba3b", "0cc49", "3b64f", "NE Continent", "Great Wall"], # N Continent "\x0f" 14: [0, b"\x0f", 13, 310, "3ba4b", "0cc8e", "3b660", "N Continent", "Euro"], 15: [0, b"\x0f", 13, 330, "3ba5b", "0cca7", "3b66c", "N Continent", "Mt. Temple"], 16: [0, b"\x0f", 13, 350, "3ba6b", "0ccec", "3b679", "N Continent", "Native's Village"], 17: [0, b"\x0f", 13, 360, "3ba7b", "0cd05", "3b685", "N Continent", "Ankor Wat"], # NW Continent Overworld "\x16" 18: [0, b"\x16", 14, 400, "3ba8b", "0cd24", "3b696", "NW Continent", "Dao"], 19: [0, b"\x16", 14, 410, "3ba9b", "0cd55", "3b6a3", "NW Continent", "Pyramid"] } # Database of special map exits that don't conform to the typical "02 26" format, IDs correspond to self.exits # FORMAT: { ID: [MapAddr, Xaddr, Yaddr, FaceDirAddr, CameraAddr]} self.exits_detailed = { 15: ["8ce31", "8ce37", "8ce40", "", "8ce49"] # Mummy Queen exit } # Database of map exits # FORMAT: { ID: [CoupleID (0 if one-way), ShuffleTo (0 if no shuffle), ShuffleFrom (0 if no shuffle), FromRegion, ToRegion, # ROM_Location, DestString,BossFlag, DungeonFlag, DungeonEntranceFlag, Name]} self.exits = { # Bosses 1: [ 2, 0, 0, 78, 97, "18872", b"\x29\x78\x00\xC0\x00\x00\x00\x11", True, True, False, "Castoth entrance (in)"], 2: [ 1, 0, 0, 0, 0, "189e4", b"\x1E\x68\x00\x00\x01\x03\x00\x24", True, True, False, "Castoth entrance (out)"], 3: [ 0, 0, 0, 104, 102, "584cc", b"\x30\x48\x00\x10\x01\x83\x00\x21", True, True, False, "Diamond Coast passage (Gold Ship)"], 4: [ 5, 0, 0, 171, 198, "18e20", b"\x55\x70\x00\xE0\x01\x00\x00\x22", True, True, False, "Viper entrance (in)"], 5: [ 4, 0, 0, 0, 0, "19006", b"\x4C\xF8\x00\x30\x00\x03\x00\x22", True, True, False, "Viper entrance (out)"], 6: [ 0, 0, 0, 198, 200, "acece", b"\x5A\x90\x00\x70\x00\x83\x00\x14", True, True, False, "Seaside Palace passage (Viper)"], 7: [ 8, 0, 0, 241, 243, "69c62", b"\x67\x78\x01\xd0\x01\x80\x01\x22", True, True, False, "Vampires entrance (in)"], 8: [ 7, 0, 0, 0, 0, "193f8", b"\x65\xb8\x00\x80\x02\x03\x00\x44", True, True, False, "Vampires entrance (out)"], 9: [ 0, 0, 0, 242, 212, "193ea", b"\x5f\x80\x00\x50\x00\x83\x00\x44", True, True, False, "Vampires exit"], 10: [11, 0, 0, 301, 302, "19c2a", b"\x8A\x50\x00\x90\x00\x87\x00\x33", True, True, False, "Sand Fanger entrance (in)"], 11: [10, 0, 0, 0, 0, "19c78", b"\x88\xE0\x03\x90\x00\x06\x00\x14", True, True, False, "Sand Fanger entrance (out)"], 12: [ 0, 0, 0, 303, 290, "19c84", b"\x82\x10\x00\x90\x00\x87\x00\x18", True, True, False, "Sand Fanger exit"], 13: [14, 0, 0, 414, 448, "8cdcf", b"\xDD\xF8\x00\xB0\x01\x00\x00\x22", True, True, False, "Mummy Queen entrance (in)"], 14: [13, 0, 0, 0, 0, "", b"\xCC\xF8\x01\x20\x01\x03\x00\x44", True, True, False, "Mummy Queen entrance (out)"], # fake 15: [ 0, 0, 0, 448, 415, "", b"\xCD\x70\x00\x90\x00\x83\x00\x11", True, True, False, "Mummy Queen exit"], # This one's dumb, see exits_detailed 16: [17, 0, 0, 470, 471, "1a8c2", b"\xE3\xD8\x00\x90\x03\x83\x30\x44", True, True, False, "Babel entrance (in)"], 17: [16, 0, 0, 0, 0, "1a8d0", b"\xE2\xD0\x00\xE0\x00\x03\x00\x84", True, True, False, "Babel entrance (out)"], 18: [ 0, 0, 0, 472, 400, "9804a", b"\xC3\x10\x02\x90\x00\x83\x00\x23", True, True, False, "Dao passage (Babel)"], 19: [20, 0, 0, 481, 482, "1a94e", b"\xEA\x78\x00\xC0\x00\x00\x00\x11", True, True, False, "Solid Arm entrance (in)"], 20: [19, 0, 0, 0, 0, "", b"\xE9\x78\x03\x90\x00\x03\x00\x44", True, True, False, "Solid Arm entrance (out)"], # fake 21: [ 0, 0, 0, 472, 400, "", b"\xC3\x10\x02\x90\x00\x83\x00\x23", True, True, False, "Dao passage (Solid Arm)"], # fake # 21: [ 0, 0, 0, 482, 472, "", b"\xE3\x80\x02\xB0\x01\x80\x10\x23", True, True, False, "Babel passage (Solid Arm)"], # This one stays, @98115 # Passage Menus 22: [0, 0, 0, 15, 28, "", b"", False, False, False, "Seth: Passage 1 (South Cape)"], 23: [0, 0, 0, 15, 102, "", b"", False, False, False, "Seth: Passage 2 (Diamond Coast)"], 24: [0, 0, 0, 15, 280, "", b"", False, False, False, "Seth: Passage 3 (Watermia)"], 25: [0, 0, 0, 16, 60, "", b"", False, False, False, "Moon Tribe: Passage 1 (Moon Tribe)"], 26: [0, 0, 0, 16, 200, "", b"", False, False, False, "Moon Tribe: Passage 2 (Seaside Palace)"], 27: [0, 0, 0, 17, 161, "", b"", False, False, False, "Neil: Passage 1 (Neil's)"], 28: [0, 0, 0, 17, 314, "", b"", False, False, False, "Neil: Passage 2 (Euro)"], 29: [0, 0, 0, 17, 402, "", b"", False, False, False, "Neil: Passage 3 (Dao)"], 30: [0, 0, 0, 17, 460, "", b"", False, False, False, "Neil: Passage 4 (Babel)"], # South Cape 31: [32, 0, 0, 20, 22, "18444", b"", False, False, False, "South Cape: School main (in)"], # Duplicate exit at 18438? 32: [31, 0, 0, 0, 0, "1856c", b"", False, False, False, "South Cape: School main (out)"], 33: [34, 0, 0, 21, 22, "18498", b"", False, False, False, "South Cape: School roof (in)"], 34: [33, 0, 0, 0, 0, "18560", b"", False, False, False, "South Cape: School roof (out)"], 35: [36, 0, 0, 20, 23, "18474", b"", False, False, False, "South Cape: Will's House (in)"], 36: [35, 0, 0, 0, 0, "1852a", b"", False, False, False, "South Cape: Will's House (out)"], 37: [38, 0, 0, 20, 24, "18480", b"", False, False, False, "South Cape: East House (in)"], 38: [37, 0, 0, 0, 0, "18552", b"", False, False, False, "South Cape: East House (out)"], 39: [40, 0, 0, 20, 27, "1845c", b"", False, False, False, "South Cape: Erik's House main (in)"], 40: [39, 0, 0, 0, 0, "184e8", b"", False, False, False, "South Cape: Erik's House main (out)"], 41: [42, 0, 0, 20, 27, "184a4", b"", False, False, False, "South Cape: Erik's House roof (in)"], 42: [41, 0, 0, 0, 0, "184f4", b"", False, False, False, "South Cape: Erik's House roof (out)"], 43: [44, 0, 0, 20, 26, "18450", b"", False, False, False, "South Cape: Lance's House (in)"], 44: [43, 0, 0, 0, 0, "184c0", b"", False, False, False, "South Cape: Lance's House (out)"], 45: [46, 0, 0, 20, 25, "18468", b"", False, False, False, "South Cape: Seth's House (in)"], 46: [45, 0, 0, 0, 0, "1851c", b"", False, False, False, "South Cape: Seth's House (out)"], 47: [48, 0, 0, 20, 28, "1848c", b"", False, False, False, "South Cape: Seaside Cave (in)"], 48: [47, 0, 0, 0, 0, "4be6a", b"", False, False, False, "South Cape: Seaside Cave (out)"], # Edward's / Prison 50: [51, 0, 0, 31, 49, "1857c", b"", False, True, True, "Tunnel back entrance (in)"], 51: [50, 0, 0, 0, 0, "186f4", b"", False, True, True, "Tunnel back entrance (out)"], 52: [53, 0, 0, 33, 40, "1860c", b"\x0C\x58\x00\x50\x00\x83\x00\x12", False, True, True, "Tunnel entrance (in)"], # set checkpoint 53: [52, 0, 0, 0, 0, "18626", b"", False, True, True, "Tunnel entrance (out)"], 54: [ 0, 0, 0, 30, 32, "4c755", b"", False, False, False, "Prison entrance (king)"], #55: [54, 0, 0, 0, 2, "", b"\x0a\xe0\x01\x60\x01\x03\x20\x34", False, False, False, "Prison exit (king), fake"], # Tunnel 60: [61, 0, 0, 40, 41, "18632", b"", False, True, False, "Tunnel: Map 12 to Map 13"], 61: [60, 0, 0, 0, 0, "18640", b"", False, True, False, "Tunnel: Map 13 to Map 12"], 62: [63, 0, 0, 41, 42, "1864c", b"", False, True, False, "Tunnel: Map 13 to Map 14"], 63: [62, 0, 0, 0, 0, "1865a", b"", False, True, False, "Tunnel: Map 14 to Map 13"], 64: [65, 0, 0, 42, 43, "18666", b"", False, True, False, "Tunnel: Map 14 to Map 15"], 65: [64, 0, 0, 0, 0, "18680", b"", False, True, False, "Tunnel: Map 15 to Map 14"], 66: [67, 0, 0, 43, 44, "1868c", b"", False, True, False, "Tunnel: Map 15 to Map 16"], 67: [66, 0, 0, 0, 0, "1869a", b"", False, True, False, "Tunnel: Map 16 to Map 15"], 68: [69, 0, 0, 43, 45, "18674", b"", False, True, False, "Tunnel: Map 15 to Map 17"], 69: [68, 0, 0, 0, 0, "186a8", b"", False, True, False, "Tunnel: Map 17 to Map 15"], 70: [71, 0, 0, 46, 47, "186b4", b"", False, True, False, "Tunnel: Map 17 to Map 18"], 71: [70, 0, 0, 0, 0, "186c2", b"", False, True, False, "Tunnel: Map 18 to Map 17"], 72: [73, 0, 0, 48, 49, "186ce", b"", False, True, False, "Tunnel: Map 18 to Map 19"], 73: [72, 0, 0, 0, 0, "186e8", b"", False, True, False, "Tunnel: Map 19 to Map 18"], # Itory 80: [81, 0, 0, 51, 53, "18704", b"", False, False, False, "Itory: West House (in)"], 81: [80, 0, 0, 0, 0, "1874e", b"", False, False, False, "Itory: West House (out)"], 82: [83, 0, 0, 51, 54, "18728", b"", False, False, False, "Itory: North House (in)"], 83: [82, 0, 0, 0, 0, "18776", b"", False, False, False, "Itory: North House (out)"], 84: [85, 0, 0, 51, 55, "18710", b"", False, False, False, "Itory: Lilly Front Door (in)"], 85: [84, 0, 0, 0, 0, "1875c", b"", False, False, False, "Itory: Lilly Front Door (out)"], 86: [87, 0, 0, 52, 55, "1871c", b"", False, False, False, "Itory: Lilly Back Door (in)"], 87: [86, 0, 0, 0, 0, "18768", b"", False, False, False, "Itory: Lilly Back Door (out)"], 88: [89, 0, 0, 51, 56, "18734", b"", False, False, False, "Itory Cave (in)"], 89: [88, 0, 0, 0, 0, "18784", b"", False, False, False, "Itory Cave (out)"], 90: [91, 0, 0, 57, 58, "18790", b"", False, False, False, "Itory Cave Hidden Room (in)"], # always linked? 91: [90, 0, 0, 0, 0, "1879c", b"", False, False, False, "Itory Cave Hidden Room (out)"], # Moon Tribe 100: [101, 0, 0, 60, 61, "187b6", b"", False, False, False, "Moon Tribe Cave (in)"], 101: [100, 0, 0, 0, 0, "187c4", b"", False, False, False, "Moon Tribe Cave (out)"], 102: [ 0, 0, 0, 64, 170, "9d1ea", b"", False, True, True, "Moon Tribe: Sky Garden passage"], # Inca 110: [111, 0, 0, 63, 70, "187d2", b"", False, True, True, "Inca Ruins entrance (in)"], 111: [110, 0, 0, 0, 0, "187e0", b"", False, True, True, "Inca Ruins entrance (out)"], #114: [ 0, 0, 0, 65, 102, "", b"", False, False, True, "Inca: Diamond Coast passage"], # Inca Ruins 120: [121, 0, 0, 70, 89, "", b"", False, True, False, "Inca: Map 29 to Map 37 (E)"], 121: [120, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 37 to Map 29 (E)"], 122: [123, 0, 0, 89, 94, "", b"", False, True, False, "Inca: Map 37 to Map 39"], 123: [122, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 39 to Map 37"], 124: [125, 0, 0, 94, 71, "", b"", False, True, False, "Inca: Map 39 to Map 29"], 125: [124, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 29 to Map 39"], 126: [127, 0, 0, 90, 72, "", b"", False, True, False, "Inca: Map 37 to Map 29 (W)"], 127: [126, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 29 to Map 37 (W)"], 128: [129, 0, 0, 72, 91, "", b"", False, True, False, "Inca: Map 29 to Map 38"], 129: [128, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 38 to Map 29"], 130: [131, 0, 0, 73, 80, "", b"", False, True, False, "Inca: Map 29 to Map 32"], 131: [130, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 32 to Map 29"], 132: [133, 0, 0, 81, 85, "", b"", False, True, False, "Inca: Map 32 to Map 35"], 133: [132, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 35 to Map 32"], 134: [135, 0, 0, 85, 74, "", b"", False, True, False, "Inca: Map 35 to Map 29"], 135: [134, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 35 to Map 29"], 136: [137, 0, 0, 74, 79, "", b"", False, True, False, "Inca: Map 29 to Map 31"], 137: [136, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 31 to Map 29"], 138: [139, 0, 0, 79, 95, "", b"", False, True, False, "Inca: Map 31 to Map 40"], 139: [138, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 40 to Map 31"], 140: [141, 0, 0, 96, 76, "", b"", False, True, False, "Inca: Map 40 to Map 29"], 141: [140, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 29 to Map 40"], 142: [143, 0, 0, 86, 82, "", b"", False, True, False, "Inca: Map 35 to Map 33"], 143: [142, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 33 to Map 35"], 144: [145, 0, 0, 83, 75, "", b"", False, True, False, "Inca: Map 33 to Map 29"], 145: [144, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 29 to Map 33"], 146: [147, 0, 0, 99, 84, "", b"", False, True, False, "Inca: Map 29 to Map 34"], # Special case to allow for Z-ladder glitch 147: [146, 0, 0, 84, 75, "", b"", False, True, False, "Inca: Map 34 to Map 29"], 148: [149, 0, 0, 84, 93, "", b"", False, True, False, "Inca: Map 34 to Map 38"], 149: [148, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 38 to Map 34"], 150: [151, 0, 0, 84, 87, "", b"", False, True, False, "Inca: Map 34 to Map 36"], 151: [150, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 36 to Map 34"], 152: [153, 0, 0, 88, 77, "", b"", False, True, False, "Inca: Map 36 to Map 30"], 153: [152, 0, 0, 0, 0, "", b"", False, True, False, "Inca: Map 30 to Map 36"], 154: [ 0, 0, 0, 98, 100, "", b"", False, True, False, "Gold Ship entrance"], # Gold Ship 160: [161, 0, 0, 100, 101, "", b"", False, False, False, "Gold Ship Interior (in)"], 161: [160, 0, 0, 0, 0, "", b"", False, False, False, "Gold Ship Interior (out)"], # Diamond Coast 172: [173, 0, 0, 102, 103, "18aa0", b"", False, False, False, "Coast House (in)"], 173: [172, 0, 0, 0, 0, "18aae", b"", False, False, False, "Coast House (out)"], # Freejia 182: [183, 0, 0, 110, 116, "18aec", b"", False, False, False, "Freejia: West House (in)"], 183: [182, 0, 0, 0, 0, "18b9c", b"", False, False, False, "Freejia: West House (out)"], 184: [185, 0, 0, 110, 117, "18af8", b"", False, False, False, "Freejia: 2-story House (in)"], 185: [184, 0, 0, 0, 0, "18bc4", b"", False, False, False, "Freejia: 2-story House (out)"], 186: [187, 0, 0, 111, 117, "18b04", b"", False, False, False, "Freejia: 2-story Roof (in)"], 187: [186, 0, 0, 0, 0, "18bd0", b"", False, False, False, "Freejia: 2-story Roof (out)"], 188: [189, 0, 0, 110, 118, "18b10", b"", False, False, False, "Freejia: Lovers' House (in)"], 189: [188, 0, 0, 0, 0, "18bf8", b"", False, False, False, "Freejia: Lovers' House (out)"], 190: [191, 0, 0, 110, 119, "18b1c", b"", False, False, False, "Freejia: Hotel (in)"], 191: [190, 0, 0, 0, 0, "18c20", b"", False, False, False, "Freejia: Hotel (out)"], 192: [193, 0, 0, 119, 120, "18c2c", b"", False, False, False, "Freejia: Hotel West Room (in)"], 193: [192, 0, 0, 0, 0, "18c44", b"", False, False, False, "Freejia: Hotel West Room (out)"], 194: [195, 0, 0, 119, 121, "18c38", b"", False, False, False, "Freejia: Hotel East Room (in)"], 195: [194, 0, 0, 0, 0, "18c50", b"", False, False, False, "Freejia: Hotel East Room (out)"], 196: [197, 0, 0, 110, 122, "18b28", b"", False, False, False, "Freejia: Laborer House (in)"], # might take this out? 197: [196, 0, 0, 0, 0, "18c84", b"", False, False, False, "Freejia: Laborer House (out)"], 198: [199, 0, 0, 112, 122, "18b34", b"", False, False, False, "Freejia: Laborer Roof (in)"], 199: [198, 0, 0, 0, 0, "18c78", b"", False, False, False, "Freejia: Laborer Roof (out)"], 200: [201, 0, 0, 110, 123, "18b40", b"", False, False, False, "Freejia: Messy House (in)"], 201: [200, 0, 0, 0, 0, "18c92", b"", False, False, False, "Freejia: Messy House (out)"], 202: [203, 0, 0, 110, 124, "18abc", b"", False, False, False, "Freejia: Erik House (in)"], 203: [202, 0, 0, 0, 0, "18b5a", b"", False, False, False, "Freejia: Erik House (out)"], 204: [205, 0, 0, 110, 125, "18ac8", b"", False, False, False, "Freejia: Dark Space House (in)"], 205: [204, 0, 0, 0, 0, "18b68", b"", False, False, False, "Freejia: Dark Space House (out)"], 206: [207, 0, 0, 110, 126, "18ad4", b"", False, False, False, "Freejia: Labor Trade House (in)"], 207: [206, 0, 0, 0, 0, "18b82", b"", False, False, False, "Freejia: Labor Trade House (out)"], 208: [209, 0, 0, 113, 126, "18ae0", b"", False, False, False, "Freejia: Labor Trade Roof (in)"], 209: [208, 0, 0, 0, 0, "18b8e", b"", False, False, False, "Freejia: Labor Trade Roof (out)"], 210: [211, 0, 0, 114, 127, "18b4c", b"", False, False, False, "Freejia: Labor Market (in)"], 211: [210, 0, 0, 0, 0, "18ca0", b"", False, False, False, "Freejia: Labor Market (out)"], # Diamond Mine 222: [223, 0, 0, 133, 134, "", b"", False, True, False, "Diamond Mine: Map 62 to Map 63"], 223: [222, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 63 to Map 62"], 224: [225, 0, 0, 135, 140, "", b"", False, True, False, "Diamond Mine: Map 63 to Map 66"], 225: [224, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 63"], 226: [227, 0, 0, 134, 136, "", b"", False, True, False, "Diamond Mine: Map 63 to Map 64"], 227: [226, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 64 to Map 63"], 228: [229, 0, 0, 136, 138, "", b"", False, True, False, "Diamond Mine: Map 64 to Map 65"], 229: [228, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 65 to Map 64"], 230: [231, 0, 0, 139, 143, "", b"", False, True, False, "Diamond Mine: Map 65 to Map 66"], 231: [230, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 65"], 232: [233, 0, 0, 138, 130, "", b"", False, True, False, "Diamond Mine: Map 65 to Map 61"], 233: [232, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 61 to Map 65"], 234: [235, 0, 0, 132, 142, "", b"", False, True, False, "Diamond Mine: Map 61 to Map 66"], 235: [234, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 61"], 236: [237, 0, 0, 140, 144, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 67 (1)"], 237: [236, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 67 to Map 66 (1)"], 238: [239, 0, 0, 145, 141, "", b"", False, True, False, "Diamond Mine: Map 67 to Map 66 (2)"], 239: [238, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 67 (2)"], 240: [241, 0, 0, 141, 146, "", b"", False, True, False, "Diamond Mine: Map 66 to Map 68"], 241: [240, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 68 to Map 66"], 242: [243, 0, 0, 146, 148, "", b"", False, True, False, "Diamond Mine: Map 68 to Map 69"], 243: [242, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 69 to Map 68"], 244: [245, 0, 0, 146, 149, "", b"", False, True, False, "Diamond Mine: Map 68 to Map 70"], 245: [244, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 70 to Map 68"], 246: [247, 0, 0, 147, 150, "", b"", False, True, False, "Diamond Mine: Map 68 to Map 71"], 247: [246, 0, 0, 0, 0, "", b"", False, True, False, "Diamond Mine: Map 71 to Map 68"], # Nazca 260: [261, 0, 0, 162, 170, "5e6a2", b"\x4C\x68\x01\x40\x00\x83\x00\x22", False, True, True, "Nazca: Sky Garden entrance"], 261: [260, 0, 0, 0, 0, "5f429", b"\x4B\xe0\x01\xc0\x02\x03\x00\x44", False, True, True, "Nazca: Sky Garden exit"], # Sky Garden #270: [ 0, 0, 0, 171, 16, "", b"", False, True, True, "Moon Tribe: Sky Garden passage"], 273: [274, 0, 0, 170, 172, "", b"", False, True, False, "Sky Garden: Map 76 to Map 77"], 274: [273, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 77 to Map 76"], 275: [276, 0, 0, 170, 176, "", b"", False, True, False, "Sky Garden: Map 76 to Map 79"], 276: [275, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 79 to Map 76"], 277: [278, 0, 0, 170, 181, "", b"", False, True, False, "Sky Garden: Map 76 to Map 81"], 278: [277, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 81 to Map 76"], 279: [280, 0, 0, 170, 190, "", b"", False, True, False, "Sky Garden: Map 76 to Map 83"], 280: [279, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 83 to Map 76"], 281: [282, 0, 0, 172, 175, "", b"", False, True, False, "Sky Garden: Map 77 to Map 78 (E)"], # Room 1 282: [281, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 78 to Map 77 (W)"], 283: [284, 0, 0, 175, 173, "", b"", False, True, False, "Sky Garden: Map 78 to Map 77 (SE)"], 284: [283, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 77 to Map 78 (SW)"], 285: [286, 0, 0, 175, 174, "", b"", False, True, False, "Sky Garden: Map 78 to Map 77 (SW)"], 286: [285, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 77 to Map 78 (SE)"], 287: [288, 0, 0, 176, 169, "", b"", False, True, False, "Sky Garden: Map 79 to Map 86"], # Room 2 288: [287, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 86 to Map 79"], 289: [290, 0, 0, 176, 179, "", b"", False, True, False, "Sky Garden: Map 79 to Map 80 (NE)"], 290: [289, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 80 to Map 79 (NW)"], 291: [292, 0, 0, 179, 177, "", b"", False, True, False, "Sky Garden: Map 80 to Map 79 (N)"], 292: [291, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 79 to Map 80 (N)"], 293: [294, 0, 0, 178, 180, "", b"", False, True, False, "Sky Garden: Map 79 to Map 80 (S)"], 294: [293, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 80 to Map 79 (S)"], 295: [296, 0, 0, 168, 186, "", b"", False, True, False, "Sky Garden: Map 81 to Map 82 (NE)"], # Room 3 296: [295, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 82 to Map 81 (NW)"], 297: [298, 0, 0, 182, 188, "", b"", False, True, False, "Sky Garden: Map 81 to Map 82 (NW)"], 298: [297, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 82 to Map 81 (NE)"], 299: [300, 0, 0, 184, 187, "", b"", False, True, False, "Sky Garden: Map 81 to Map 82 (SE)"], 300: [299, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 82 to Map 81 (SW)"], 301: [302, 0, 0, 191, 196, "", b"", False, True, False, "Sky Garden: Map 83 to Map 84 (NW)"], # Room 4 302: [301, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 84 to Map 83 (NE)"], 303: [304, 0, 0, 192, 195, "", b"", False, True, False, "Sky Garden: Map 83 to Map 84 (C)"], 304: [303, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 84 to Map 83 (C)"], 305: [306, 0, 0, 197, 193, "", b"", False, True, False, "Sky Garden: Map 84 to Map 83 (SE)"], 306: [305, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 83 to Map 84 (SW)"], 307: [308, 0, 0, 167, 195, "", b"", False, True, False, "Sky Garden: Map 83 to Map 84 (E)"], 308: [307, 0, 0, 0, 0, "", b"", False, True, False, "Sky Garden: Map 84 to Map 83 (W)"], # Seaside Palace 310: [311, 0, 0, 211, 201, "69759", b"", False, False, False, "Seaside entrance"], # ALWAYS LINKED 311: [310, 0, 0, 0, 0, "1906a", b"", False, False, False, "Seaside exit"], 312: [313, 0, 0, 200, 202, "19046", b"", False, False, False, "Seaside: Area 1 NE Room (in)"], 313: [312, 0, 0, 0, 0, "19114", b"", False, False, False, "Seaside: Area 1 NE Room (out)"], 314: [315, 0, 0, 200, 203, "19052", b"", False, False, False, "Seaside: Area 1 NW Room (in)"], 315: [314, 0, 0, 0, 0, "19120", b"", False, False, False, "Seaside: Area 1 NW Room (out)"], 316: [317, 0, 0, 200, 204, "1905e", b"", False, False, False, "Seaside: Area 1 SE Room (in)"], 317: [316, 0, 0, 0, 0, "1912c", b"", False, False, False, "Seaside: Area 1 SE Room (out)"], 318: [319, 0, 0, 200, 205, "1903a", b"", False, False, False, "Seaside: Area 2 entrance"], 319: [318, 0, 0, 0, 0, "19146", b"", False, False, False, "Seaside: Area 2 exit"], 320: [321, 0, 0, 205, 207, "1915e", b"", False, False, False, "Seaside: Area 2 SW Room (in)"], 321: [320, 0, 0, 0, 0, "19138", b"", False, False, False, "Seaside: Area 2 SW Room (out)"], 322: [323, 0, 0, 205, 209, "19152", b"", False, False, False, "Seaside: Fountain (in)"], 323: [322, 0, 0, 0, 0, "191d4", b"", False, False, False, "Seaside: Fountain (out)"], # Mu 330: [331, 0, 0, 210, 212, "191ee", b"", False, True, True, "Mu entrance"], 331: [330, 0, 0, 0, 0, "191fc", b"", False, True, True, "Mu exit"], 332: [333, 0, 0, 212, 217, "", b"", False, True, False, "Mu: Map 95 to Map 96"], 333: [332, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 96 to Map 95"], 334: [335, 0, 0, 217, 220, "", b"", False, True, False, "Mu: Map 96 to Map 97 (top)"], 335: [334, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 97 to Map 96 (top)"], 336: [337, 0, 0, 220, 231, "", b"", False, True, False, "Mu: Map 97 to Map 99"], 337: [336, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 99 to Map 97"], 338: [339, 0, 0, 220, 225, "", b"", False, True, False, "Mu: Map 97 to Map 98 (top)"], 339: [338, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 98 to Map 97 (top)"], 340: [341, 0, 0, 218, 222, "", b"", False, True, False, "Mu: Map 96 to Map 97 (middle)"], 341: [340, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 97 to Map 96 (middle)"], 342: [343, 0, 0, 223, 227, "", b"", False, True, False, "Mu: Map 97 to Map 98 (middle)"], 343: [342, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 98 to Map 97 (middle)"], # 344: [345, 0, 0, 000, 000, "", b"", False, True, False, "Mu: Map 95 to Map 98 (middle)"], # 345: [344, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 98 to Map 95 (middle)"], 346: [347, 0, 0, 227, 233, "", b"", False, True, False, "Mu: Map 98 to Map 100 (middle E)"], 347: [346, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 100 to Map 98 (middle E)"], 348: [349, 0, 0, 233, 237, "", b"", False, True, False, "Mu: Map 100 to Map 101 (middle N)"], 349: [348, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 101 to Map 100 (middle N)"], 350: [351, 0, 0, 237, 234, "", b"", False, True, False, "Mu: Map 101 to Map 100 (middle S)"], 351: [350, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 100 to Map 101 (middle S)"], 352: [353, 0, 0, 234, 228, "", b"", False, True, False, "Mu: Map 100 to Map 98 (middle W)"], 353: [352, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 98 to Map 100 (middle W)"], 354: [355, 0, 0, 213, 232, "", b"", False, True, False, "Mu: Map 95 to Map 99"], 355: [354, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 99 to Map 95"], 356: [357, 0, 0, 245, 246, "", b"", False, True, False, "Mu: Map 95 to Map 98 (top)"], 357: [356, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 98 to Map 95 (top)"], 358: [359, 0, 0, 229, 224, "", b"", False, True, False, "Mu: Map 98 to Map 97 (bottom)"], 359: [358, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 97 to Map 98 (bottom)"], 360: [361, 0, 0, 224, 219, "", b"", False, True, False, "Mu: Map 97 to Map 96 (bottom)"], 361: [360, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 96 to Map 97 (bottom)"], 362: [363, 0, 0, 230, 216, "", b"", False, True, False, "Mu: Map 98 to Map 95 (bottom)"], 363: [362, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 95 to Map 98 (bottom)"], 364: [365, 0, 0, 230, 235, "", b"", False, True, False, "Mu: Map 98 to Map 100 (bottom)"], 365: [364, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 100 to Map 98 (bottom)"], 366: [367, 0, 0, 235, 239, "", b"", False, True, False, "Mu: Map 100 to Map 101 (bottom)"], 367: [366, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 101 to Map 100 (bottom)"], 368: [369, 0, 0, 239, 240, "", b"", False, True, False, "Mu: Map 101 to Map 102"], 369: [368, 0, 0, 0, 0, "", b"", False, True, False, "Mu: Map 102 to Map 101"], # Angel Village 382: [383, 0, 0, 250, 210, "1941e", b"", False, False, False, "Angel: Mu Passage (in)"], 383: [382, 0, 0, 0, 0, "191e2", b"", False, False, False, "Angel: Mu Passage (out)"], #custom 384: [385, 0, 0, 250, 251, "1942a", b"", False, False, False, "Angel: Underground entrance (in)"], 385: [384, 0, 0, 0, 0, "19446", b"", False, False, False, "Angel: Underground entrance (out)"], 386: [387, 0, 0, 251, 252, "19452", b"", False, False, False, "Angel: Room 1 (in)"], 387: [386, 0, 0, 0, 0, "194de", b"", False, False, False, "Angel: Room 1 (out)"], 388: [389, 0, 0, 251, 253, "19476", b"", False, False, False, "Angel: Room 2 (in)"], 389: [388, 0, 0, 0, 0, "19502", b"", False, False, False, "Angel: Room 2 (out)"], 390: [391, 0, 0, 251, 254, "1945e", b"", False, False, False, "Angel: Dance Hall (in)"], 391: [390, 0, 0, 0, 0, "1950e", b"", False, False, False, "Angel: Dance Hall (out)"], 392: [393, 0, 0, 251, 255, "1946a", b"", False, False, False, "Angel: DS Room (in)"], 393: [392, 0, 0, 0, 0, "194f6", b"", False, False, False, "Angel: DS Room (out)"], # Angel Dungeon 400: [401, 0, 0, 251, 260, "19482", b"", False, True, True, "Angel Dungeon entrance"], 401: [400, 0, 0, 0, 0, "19534", b"", False, True, True, "Angel Dungeon exit"], 402: [403, 0, 0, 260, 261, "19528", b"", False, True, False, "Angel Dungeon: Map 109 to Map 110"], 403: [402, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Map 110 to Map 109"], 404: [405, 0, 0, 278, 262, "", b"", False, True, False, "Angel Dungeon: Map 110 to Map 111"], 405: [404, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Map 111 to Map 110"], 406: [407, 0, 0, 262, 263, "", b"", False, True, False, "Angel Dungeon: Map 111 to Map 112"], 407: [406, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Map 112 to Map 111"], 408: [409, 0, 0, 264, 265, "", b"", False, True, False, "Angel Dungeon: Map 112 to Chest"], 409: [408, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Chest to Map 112"], 410: [411, 0, 0, 279, 266, "", b"", False, True, False, "Angel Dungeon: Map 112 to Map 113"], 411: [410, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Map 113 to Map 112"], 412: [413, 0, 0, 266, 267, "", b"", False, True, False, "Angel Dungeon: Map 113 to Map 114"], 413: [412, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Map 114 to Map 113"], 414: [415, 0, 0, 268, 276, "", b"", False, True, False, "Angel Dungeon: Map 114 to Ishtar Foyer"], 415: [414, 0, 0, 0, 0, "", b"", False, True, False, "Angel Dungeon: Ishtar Foyer to Map 114"], # Ishtar's Studio 420: [421, 0, 0, 277, 269, "196b6", b"", False, False, False, "Ishtar entrance"], 421: [420, 0, 0, 0, 0, "196c2", b"", False, False, False, "Ishtar exit"], 422: [423, 0, 0, 269, 270, "196ce", b"", False, False, False, "Ishtar: Portrait room (in)"], 423: [422, 0, 0, 0, 0, "196f4", b"", False, False, False, "Ishtar: Portrait room (out)"], 424: [425, 0, 0, 269, 271, "196da", b"", False, False, False, "Ishtar: Side room (in)"], 425: [424, 0, 0, 0, 0, "19700", b"", False, False, False, "Ishtar: Side room (out)"], 426: [427, 0, 0, 269, 272, "196e6", b"", False, False, False, "Ishtar: Ishtar's room (in)"], 427: [426, 0, 0, 0, 0, "1970c", b"", False, False, False, "Ishtar: Ishtar's room (out)"], 428: [429, 0, 0, 272, 274, "19718", b"", False, False, False, "Ishtar: Puzzle room (in)"], 429: [428, 0, 0, 0, 0, "197e6", b"", False, False, False, "Ishtar: Puzzle room (out)"], # Watermia 440: [441, 0, 0, 280, 286, "197f4", b"", False, False, False, "Watermia: Lance House (in)"], 441: [440, 0, 0, 0, 0, "1983e", b"", False, False, False, "Watermia: Lance House (out)"], 442: [443, 0, 0, 280, 282, "19818", b"", False, False, False, "Watermia: DS House (in)"], 443: [442, 0, 0, 0, 0, "19868", b"", False, False, False, "Watermia: DS House (out)"], 444: [445, 0, 0, 280, 283, "1980c", b"", False, False, False, "Watermia: Gambling House (in)"], 445: [444, 0, 0, 0, 0, "1985a", b"", False, False, False, "Watermia: Gambling House (out)"], 446: [447, 0, 0, 280, 284, "19824", b"", False, False, False, "Watermia: West House (in)"], 447: [446, 0, 0, 0, 0, "19882", b"", False, False, False, "Watermia: West House (out)"], 448: [449, 0, 0, 280, 285, "19830", b"", False, False, False, "Watermia: East House (in)"], 449: [448, 0, 0, 0, 0, "19890", b"", False, False, False, "Watermia: East House (out)"], 450: [451, 0, 0, 280, 287, "19800", b"", False, False, False, "Watermia: NW House (in)"], 451: [450, 0, 0, 0, 0, "1984c", b"", False, False, False, "Watermia: NW House (out)"], 452: [453, 0, 0, 288, 311, "", b"", False, False, True, "Watermia: Euro passage"], 453: [452, 0, 0, 0, 0, "", b"", False, False, True, "Euro: Watermia passage"], # Great Wall 462: [463, 0, 0, 290, 291, "", b"", False, True, False, "Great Wall: Map 130 to Map 131"], 463: [462, 0, 0, 0, 0, "", b"", False, True, False, "Great Wall: Map 131 to Map 130"], 464: [465, 0, 0, 293, 294, "", b"", False, True, False, "Great Wall: Map 131 to Map 133"], 465: [464, 0, 0, 0, 0, "", b"", False, True, False, "Great Wall: Map 133 to Map 131"], 466: [467, 0, 0, 296, 297, "", b"", False, True, False, "Great Wall: Map 133 to Map 134"], 467: [466, 0, 0, 0, 0, "", b"", False, True, False, "Great Wall: Map 134 to Map 133"], 468: [469, 0, 0, 297, 298, "", b"", False, True, False, "Great Wall: Map 134 to Map 135"], 469: [468, 0, 0, 0, 0, "", b"", False, True, False, "Great Wall: Map 135 to Map 134"], 470: [471, 0, 0, 299, 300, "", b"", False, True, False, "Great Wall: Map 135 to Map 136"], 471: [470, 0, 0, 0, 0, "", b"", False, True, False, "Great Wall: Map 136 to Map 135"], # Euro 482: [483, 0, 0, 310, 312, "19cd2", b"", False, False, False, "Euro: Rolek Company (in)"], 483: [482, 0, 0, 0, 0, "19d74", b"", False, False, False, "Euro: Rolek Company (out)"], 484: [485, 0, 0, 310, 313, "19d0e", b"", False, False, False, "Euro: West House (in)"], 485: [484, 0, 0, 0, 0, "19e12", b"", False, False, False, "Euro: West House (out)"], 486: [487, 0, 0, 310, 314, "19cde", b"", False, False, False, "Euro: Rolek Mansion West (in)"], 487: [486, 0, 0, 0, 0, "19d9c", b"", False, False, False, "Euro: Rolek Mansion West (out)"], 488: [489, 0, 0, 310, 314, "19cea", b"", False, False, False, "Euro: Rolek Mansion East (in)"], 489: [488, 0, 0, 0, 0, "19da8", b"", False, False, False, "Euro: Rolek Mansion East (out)"], 490: [491, 0, 0, 310, 317, "19d26", b"", False, False, False, "Euro: Central House (in)"], 491: [490, 0, 0, 0, 0, "19e54", b"", False, False, False, "Euro: Central House (out)"], 492: [493, 0, 0, 310, 318, "19d32", b"", False, False, False, "Euro: Jeweler House (in)"], 493: [492, 0, 0, 0, 0, "19e62", b"", False, False, False, "Euro: Jeweler House (out)"], 494: [495, 0, 0, 310, 319, "19d3e", b"", False, False, False, "Euro: Twins House (in)"], 495: [494, 0, 0, 0, 0, "19e70", b"", False, False, False, "Euro: Twins House (out)"], 496: [497, 0, 0, 310, 320, "19cc6", b"", False, False, False, "Euro: Hidden House (in)"], 497: [496, 0, 0, 0, 0, "19d66", b"", False, False, False, "Euro: Hidden House (out)"], 498: [499, 0, 0, 310, 321, "19d4a", b"", False, False, False, "Euro: Shrine (in)"], 499: [498, 0, 0, 0, 0, "19e7e", b"", False, False, False, "Euro: Shrine (out)"], 500: [501, 0, 0, 310, 322, "19cba", b"", False, False, False, "Euro: Explorer's House (in)"], 501: [500, 0, 0, 0, 0, "19d58", b"", False, False, False, "Euro: Explorer's House (out)"], 502: [ 0, 0, 0, 310, 323, "19cf6", b"", False, False, False, "Euro: Store Entrance (in)"], #503: [502, 0, 0, 0, 0, "", b"", False, False, False, "Euro: Store Entrance (out)"], #this doesn't exist! 504: [505, 0, 0, 310, 324, "19d02", b"", False, False, False, "Euro: Store Exit (in)"], 505: [504, 0, 0, 0, 0, "19e04", b"", False, False, False, "Euro: Store Exit (out)"], 506: [507, 0, 0, 314, 316, "19db4", b"", False, False, False, "Euro: Guest Room (in)"], 507: [506, 0, 0, 0, 0, "19df6", b"", False, False, False, "Euro: Guest Room (out)"], 508: [509, 0, 0, 310, 325, "19d1a", b"", False, False, False, "Euro: Dark Space House (in)"], 509: [508, 0, 0, 0, 0, "19e20", b"", False, False, False, "Euro: Dark Space House (out)"], # Mt. Kress 522: [523, 0, 0, 330, 331, "", b"", False, True, False, "Mt. Kress: Map 160 to Map 161"], 523: [522, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 161 to Map 160"], 524: [525, 0, 0, 332, 333, "", b"", False, True, False, "Mt. Kress: Map 161 to Map 162 (W)"], 525: [524, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 161 (W)"], 526: [527, 0, 0, 332, 334, "", b"", False, True, False, "Mt. Kress: Map 161 to Map 162 (E)"], 527: [526, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 161 (E)"], 528: [529, 0, 0, 333, 337, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 163 (N)"], 529: [528, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 163 to Map 162 (N)"], 530: [531, 0, 0, 337, 336, "", b"", False, True, False, "Mt. Kress: Map 163 to Map 162 (S)"], 531: [530, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 163 (S)"], 532: [533, 0, 0, 333, 338, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 164"], 533: [532, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 164 to Map 162"], 534: [535, 0, 0, 335, 339, "", b"", False, True, False, "Mt. Kress: Map 162 to Map 165"], 535: [534, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 165 to Map 162"], 536: [537, 0, 0, 339, 342, "", b"", False, True, False, "Mt. Kress: Map 165 to Map 166"], 537: [536, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 166 to Map 165"], 538: [539, 0, 0, 340, 343, "", b"", False, True, False, "Mt. Kress: Map 165 to Map 167"], 539: [538, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 167 to Map 165"], 540: [541, 0, 0, 341, 344, "", b"", False, True, False, "Mt. Kress: Map 165 to Map 168"], 541: [540, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 168 to Map 165"], 542: [543, 0, 0, 344, 345, "", b"", False, True, False, "Mt. Kress: Map 168 to Map 169"], 543: [542, 0, 0, 0, 0, "", b"", False, True, False, "Mt. Kress: Map 169 to Map 168"], # Native's Village 552: [553, 0, 0, 350, 352, "19fe6", b"", False, False, False, "Native's Village: West House (in)"], 553: [552, 0, 0, 0, 0, "1a00c", b"", False, False, False, "Native's Village: West House (out)"], 554: [555, 0, 0, 350, 353, "19ff2", b"", False, False, False, "Native's Village: House w/Statues (in)"], 555: [554, 0, 0, 0, 0, "1a01a", b"", False, False, False, "Native's Village: House w/Statues (out)"], 556: [557, 0, 0, 351, 400, "", b"", False, False, True, "Native's Village: Dao Passage"], 557: [556, 0, 0, 0, 0, "", b"", False, False, True, "Dao: Natives' Passage"], # Ankor Wat 562: [563, 0, 0, 360, 361, "1a028", b"", False, True, False, "Ankor Wat: Map 176 to Map 177"], 563: [562, 0, 0, 0, 0, "1a036", b"", False, True, False, "Ankor Wat: Map 177 to Map 176"], 564: [565, 0, 0, 361, 363, "", b"", False, True, False, "Ankor Wat: Map 177 to Map 178"], 565: [564, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 178 to Map 177"], 566: [567, 0, 0, 365, 366, "", b"", False, True, False, "Ankor Wat: Map 178 to Map 179"], 567: [566, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 179 to Map 178"], 568: [569, 0, 0, 368, 367, "", b"", False, True, False, "Ankor Wat: Map 180 to Map 179"], 569: [568, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 179 to Map 180"], 570: [571, 0, 0, 367, 369, "", b"", False, True, False, "Ankor Wat: Map 179 to Map 181"], 571: [570, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 181 to Map 179"], 572: [573, 0, 0, 371, 362, "", b"", False, True, False, "Ankor Wat: Map 181 to Map 177"], 573: [572, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 177 to Map 181"], 574: [575, 0, 0, 362, 372, "", b"", False, True, False, "Ankor Wat: Map 177 to Map 182"], # Garden 575: [574, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 182 to Map 177"], 576: [577, 0, 0, 372, 373, "", b"", False, True, False, "Ankor Wat: Map 182 to Map 183"], 577: [576, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 183 to Map 182"], 578: [579, 0, 0, 373, 376, "", b"", False, True, False, "Ankor Wat: Map 183 to Map 184"], 579: [578, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 184 to Map 183"], 580: [581, 0, 0, 374, 378, "", b"", False, True, False, "Ankor Wat: Map 183 to Map 185 (W)"], 581: [580, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 185 to Map 183 (W)"], 582: [583, 0, 0, 378, 375, "", b"", False, True, False, "Ankor Wat: Map 185 to Map 183 (E)"], 583: [582, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 183 to Map 185 (E)"], 584: [585, 0, 0, 375, 379, "", b"", False, True, False, "Ankor Wat: Map 183 to Map 186"], 585: [584, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 186 to Map 183"], 586: [587, 0, 0, 379, 381, "", b"", False, True, False, "Ankor Wat: Map 186 to Map 187 (W)"], 587: [586, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 187 to Map 186 (W)"], 588: [589, 0, 0, 381, 380, "", b"", False, True, False, "Ankor Wat: Map 187 to Map 186 (E)"], 589: [588, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 186 to Map 187 (E)"], 590: [591, 0, 0, 381, 384, "", b"", False, True, False, "Ankor Wat: Map 187 to Map 188"], 591: [590, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 187"], 592: [593, 0, 0, 393, 386, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 189"], 593: [592, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 189 to Map 188"], 594: [595, 0, 0, 387, 389, "", b"", False, True, False, "Ankor Wat: Map 189 to Map 190 (E)"], 595: [594, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 190 to Map 189 (E)"], 596: [596, 0, 0, 388, 390, "", b"", False, True, False, "Ankor Wat: Map 189 to Map 190 (W)"], 597: [597, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 190 to Map 189 (W)"], 598: [599, 0, 0, 390, 391, "", b"", False, True, False, "Ankor Wat: Map 190 to Map 191"], 599: [598, 0, 0, 0, 0, "", b"", False, True, False, "Ankor Wat: Map 191 to Map 190"], 600: [ 0, 0, 0, 366, 368, "", b"", False, True, False, "Ankor Wat: Map 179 to Map 180 (drop)"], 601: [ 0, 0, 0, 392, 381, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 187 NW-L (drop)"], 602: [ 0, 0, 0, 392, 381, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 187 NW-R (drop)"], 603: [ 0, 0, 0, 392, 383, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 187 NE (drop)"], 604: [ 0, 0, 0, 393, 382, "", b"", False, True, False, "Ankor Wat: Map 188 to Map 187 SW (drop)"], 605: [ 0, 0, 0, 389, 388, "", b"", False, True, False, "Ankor Wat: Map 190 to Map 189 (drop)"], # Dao 612: [613, 0, 0, 400, 401, "1a27c", b"", False, False, False, "Dao: NW House (in)"], 613: [612, 0, 0, 0, 0, "1a2d2", b"", False, False, False, "Dao: NW House (out)"], 614: [615, 0, 0, 400, 402, "1a288", b"", False, False, False, "Dao: Neil's House (in)"], 615: [614, 0, 0, 0, 0, "1a30a", b"", False, False, False, "Dao: Neil's House (out)"], 616: [617, 0, 0, 400, 403, "1a294", b"", False, False, False, "Dao: Snake Game House (in)"], 617: [616, 0, 0, 0, 0, "1a2ee", b"", False, False, False, "Dao: Snake Game House (out)"], 618: [619, 0, 0, 400, 404, "1a2a0", b"", False, False, False, "Dao: SW House (in)"], 619: [618, 0, 0, 0, 0, "1a2fc", b"", False, False, False, "Dao: SW House (out)"], 620: [621, 0, 0, 400, 405, "1a2ac", b"", False, False, False, "Dao: S House (in)"], 621: [620, 0, 0, 0, 0, "1a2e0", b"", False, False, False, "Dao: S House (out)"], 622: [623, 0, 0, 400, 406, "1a2b8", b"", False, False, False, "Dao: SE House (in)"], 623: [622, 0, 0, 0, 0, "1a318", b"", False, False, False, "Dao: SE House (out)"], # Pyramid 634: [635, 0, 0, 411, 415, "", b"", False, True, False, "Pyramid: Map 204 to Map 205"], 635: [634, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 205 to Map 204"], 636: [637, 0, 0, 413, 416, "", b"", False, True, False, "Pyramid: Map 204 to Map 206"], # Room 1 637: [636, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 206 to Map 204"], 638: [639, 0, 0, 417, 418, "", b"", False, True, False, "Pyramid: Map 206 to Map 207"], 639: [638, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 207 to Map 206"], 640: [641, 0, 0, 419, 442, "", b"", False, True, False, "Pyramid: Map 207 to Map 218"], 641: [640, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 207"], 642: [643, 0, 0, 413, 420, "", b"", False, True, False, "Pyramid: Map 204 to Map 208"], # Room 2 643: [642, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 208 to Map 204"], 644: [645, 0, 0, 421, 422, "", b"", False, True, False, "Pyramid: Map 208 to Map 209"], 645: [644, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 209 to Map 208"], 646: [647, 0, 0, 423, 443, "", b"", False, True, False, "Pyramid: Map 209 to Map 218"], 647: [646, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 209"], 648: [649, 0, 0, 413, 431, "", b"", False, True, False, "Pyramid: Map 204 to Map 214"], # Room 3 649: [648, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 214 to Map 204"], 650: [651, 0, 0, 434, 435, "", b"", False, True, False, "Pyramid: Map 214 to Map 215"], 651: [650, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 214 to Map 215"], 652: [653, 0, 0, 435, 444, "", b"", False, True, False, "Pyramid: Map 215 to Map 218"], 653: [652, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 215"], 654: [655, 0, 0, 413, 436, "", b"", False, True, False, "Pyramid: Map 204 to Map 216"], # Room 4 655: [654, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 216 to Map 204"], 656: [657, 0, 0, 437, 438, "", b"", False, True, False, "Pyramid: Map 216 to Map 217"], 657: [656, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 217 to Map 216"], 658: [659, 0, 0, 439, 440, "", b"", False, True, False, "Pyramid: Map 217 to Map 219"], 659: [658, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 219 to Map 217"], 660: [661, 0, 0, 441, 445, "", b"", False, True, False, "Pyramid: Map 219 to Map 218"], 661: [660, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 219"], 662: [663, 0, 0, 413, 426, "", b"", False, True, False, "Pyramid: Map 204 to Map 212"], # Room 5 663: [662, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 212 to Map 204"], 664: [665, 0, 0, 429, 430, "", b"", False, True, False, "Pyramid: Map 212 to Map 213"], 665: [664, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 213 to Map 212"], 666: [667, 0, 0, 430, 446, "", b"", False, True, False, "Pyramid: Map 213 to Map 218"], 667: [666, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 213"], 668: [669, 0, 0, 413, 424, "", b"", False, True, False, "Pyramid: Map 204 to Map 210"], # Room 6 669: [668, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 210 to Map 204"], 670: [671, 0, 0, 424, 425, "", b"", False, True, False, "Pyramid: Map 210 to Map 211"], 671: [670, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 211 to Map 210"], 672: [673, 0, 0, 425, 447, "", b"", False, True, False, "Pyramid: Map 211 to Map 218"], 673: [672, 0, 0, 0, 0, "", b"", False, True, False, "Pyramid: Map 218 to Map 211"], # Babel 682: [683, 0, 0, 460, 461, "", b"", False, True, False, "Babel: Map 222 to Map 223"], 683: [682, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 223 to Map 222"], 684: [685, 0, 0, 462, 463, "", b"", False, True, False, "Babel: Map 223 to Map 224"], 685: [684, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 224 to Map 223"], 686: [687, 0, 0, 463, 474, "", b"", False, True, False, "Babel: Map 224 to Map 242"], # Castoth 687: [686, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 242 to Map 224"], 688: [689, 0, 0, 463, 475, "", b"", False, True, False, "Babel: Map 224 to Map 243"], # Viper 689: [688, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 243 to Map 224"], 690: [691, 0, 0, 463, 465, "", b"", False, True, False, "Babel: Map 224 to Map 225 (bottom)"], 691: [690, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 225 to Map 224 (bottom)"], 692: [693, 0, 0, 466, 464, "", b"", False, True, False, "Babel: Map 225 to Map 224 (top)"], 693: [692, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 224 to Map 225 (top)"], 694: [695, 0, 0, 464, 476, "", b"", False, True, False, "Babel: Map 224 to Map 244"], # Vampires 695: [694, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 244 to Map 224"], 696: [697, 0, 0, 464, 477, "", b"", False, True, False, "Babel: Map 224 to Map 245"], # Sand Fanger 697: [696, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 245 to Map 224"], 698: [699, 0, 0, 464, 469, "", b"", False, True, False, "Babel: Map 224 to Map 226"], 699: [698, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 226 to Map 224"], #700: [701, 0, 0, 470, 471, "", b"", False, True, False, "Babel: Map 226 to Map 227"], #DUPLICATE W/BOSS EXITS #701: [700, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 227 to Map 226"], 702: [703, 0, 0, 471, 478, "", b"", False, True, False, "Babel: Map 227 to Map 246"], # Mummy Queen 703: [702, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 246 to Map 227"], 704: [705, 0, 0, 471, 467, "", b"", False, True, False, "Babel: Map 227 to Map 225 (bottom)"], 705: [704, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 225 to Map 227 (bottom)"], 706: [707, 0, 0, 468, 472, "", b"", False, True, False, "Babel: Map 225 to Map 227 (top)"], 707: [706, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 227 to Map 225 (top)"], 708: [709, 0, 0, 472, 473, "", b"", False, True, False, "Babel: Map 227 to Map 222"], 709: [708, 0, 0, 0, 0, "", b"", False, True, False, "Babel: Map 222 to Map 227"], # Jeweler's Mansion 720: [721, 0, 0, 8, 480, "8d32a", b"", False, True, True, "Mansion entrance"], 721: [720, 0, 0, 480, 400, "8fcb4", b"", False, True, True, "Mansion exit"] }
36289
from logging import warning from api import gitlab from utilities import validate, types gitlab = gitlab.GitLab(types.Arguments().url) def get_all(projects): snippets = {} for project in projects: for key, value in project.items(): details = gitlab.get_project_snippets(key) if validate.api_result(details): warning("[*] Found %s snippets for project %s", len(details), value) for item in details: snippets.update({item['id']: item['web_url']}) return snippets def sniff_secrets(snippets): if len(snippets) == 0: return [] secrets = [] raw_data = {} for snippet_id, snippet_url in snippets.items(): raw_content = gitlab.get_snippet_raw(snippet_id) raw_data.update({snippet_url: raw_content}) if len(raw_data) > 0: monitor = types.SecretsMonitor() found_secrets = monitor.sniff_secrets(raw_data) for secret in found_secrets: secrets.append(secret) return secrets
36295
import os import aiohttp import asyncio import json import time import datetime import logging import gidgethub import requests from gidgethub import aiohttp as gh_aiohttp import sys import pandas as pd sys.path.append("..") from utils.auth import get_jwt, get_installation, get_installation_access_token from utils.test_auth_ipipe import xlyOpenApiRequest from utils.readConfig import ReadConfig logging.basicConfig( level=logging.INFO, filename='../logs/regularMark.log', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) localConfig = ReadConfig(path='../conf/config.ini') class MarkTimeoutCI(object): def __init__(self, user, repo, gh): self.pr_url = 'https://api.github.com/repos/%s/%s/pulls?per_page=100&page=1&q=addClass' % ( user, repo) self.gh = gh self.user = user self.repo = repo self.mark_url = 'https://xly.bce.baidu.com/open-api/ipipe/rest/v1/job-builds/{}/mark' self.rerun_url = 'http://www.cipaddlepaddle.cn:8081/%s/%s/{}/{}' % ( user, repo) self.comment_url = 'https://api.github.com/repos/%s/%s/issues/{}/comments' % ( user, repo) def getNextUrl(self, link): """遍历所有的PR""" next_str = None for i in link.split(','): if 'rel="next"' in i: next_str = i break if next_str != None: start_index = next_str.index('<') end_index = next_str.index('>') url = next_str[start_index + 1:end_index] else: url = None return url async def getBeforeSevenDaysPRList(self): """ 1. 获取距离现在7天-30天创建的PR列表:只获取,不做处理 2. 30天之前的暂不处理: 默认认为GitHub已经设它们为code conflicts. 如有需要,后续在处理。 return : [{PR, commit, status_url}] """ today = datetime.date.today() seven_Days_ago = str(today - datetime.timedelta(days=7)) month_Days_ago = str(today - datetime.timedelta(days=30)) overduelist = [] while (self.pr_url != None): (code, header, body) = await self.gh._request( "GET", self.pr_url, {'accept': 'application/vnd.github.antiope-preview+json'}) res = json.loads(body.decode('utf8')) for item in res: if item['created_at'] < seven_Days_ago and item[ 'created_at'] > month_Days_ago: item_dic = {} item_dic['PR'] = item['number'] item_dic['commit'] = item['head']['sha'] item_dic['status_url'] = item['statuses_url'] overduelist.append(item_dic) self.pr_url = self.getNextUrl(header['link']) print("before %s's PRs: %s" % (seven_Days_ago, overduelist)) logger.info("before %s's PRs: %s" % (seven_Days_ago, overduelist)) return overduelist async def getCIstatus(self): """ 获取符合条件的PR的CI列表: 1. 获取PR最新的commit url 2. 获取1的commit的最近的CI(去除一些GitHub的脏数据(eg. pending状态的)) 3. 判断最近的CI是否是7天之前的,只要有一条CI是7天之前的就需要标记 4. 只标记成功的CI为失败 """ PRList = await self.getBeforeSevenDaysPRList() today = datetime.date.today() seven_Days_ago = str(today - datetime.timedelta(days=7)) CI_STATUS_LIST = [] for item in PRList: commit_ci_status = {} commit_ci_status['PR'] = item['PR'] commit_ci_status['commit'] = item['commit'] status_url = item['status_url'] res = requests.get(status_url, headers={'authorization': "token xxx"}, timeout=15).json() commit_ci_status['CI'] = [] if_before_seven_day = [] #标记是否所有的CI都是7天之前的 for ci in res: already_exit = False if ci['context'] != 'license/cla': for i in commit_ci_status['CI']: if ci['context'] == i['ciName'] and i['time'] > ci[ 'created_at']: #删除一些脏数据 github api already_exit = True break if already_exit == False: item_dic = {} item_dic['time'] = ci['created_at'] item_dic['ciName'] = ci['context'] item_dic['status'] = ci['state'] item_dic['markId'] = ci['target_url'].split('/')[-1] commit_ci_status['CI'].append(item_dic) if item_dic['time'] > seven_Days_ago: #最新的一次CI不是7天之前的 if_before_seven_day.append(False) else: if_before_seven_day.append(True) #True 是7天之前的 if True in if_before_seven_day: #只要有一个CI是七天之前的就必须标记 print('%s is 7 ago..........' % item['PR']) CI_STATUS_LIST.append(commit_ci_status) else: print('%s not 7 ago' % item['PR']) logger.info("need to mark ci list: %s" % CI_STATUS_LIST) return CI_STATUS_LIST async def markCIFailed(self): """ mark success/pending ci to failed """ CIStatusList = await self.getCIstatus() REQUIRED_CI = localConfig.cf.get('%s/%s' % (self.user, self.repo), 'REQUIRED_CI') DATA = {"data": "FAIL", "message": "Paddle-bot", "type": "MARK"} json_str = json.dumps(DATA) headers = { "Content-Type": "application/json", "IPIPE-UID": "Paddle-bot" } for item in CIStatusList: PR = item['PR'] commit = item['commit'] ci_list = item['CI'] mark_ci_list = [] for ci in ci_list: if ci['ciName'] in REQUIRED_CI and ci[ 'status'] in ['success', 'pending']: markId = ci['markId'] mark_url = self.mark_url.format(markId) res = xlyOpenApiRequest().post_method( mark_url, json_str, headers=headers) if res.status_code == 200 or res.status_code == 201: mark_ci_list.append(ci['ciName']) print('%s_%s_%s mark success!' % (PR, commit, ci['ciName'])) logger.info('%s_%s_%s mark success!' % (PR, commit, ci['ciName'])) else: print('%s_%s_%s mark failed!' % (PR, commit, ci['ciName'])) logger.error('%s_%s_%s mark failed!' % (PR, commit, ci['ciName'])) if len(mark_ci_list) > 0: marked = self.queryIfHasMark(PR, commit) if marked == False: self.inform(item) else: print('%s_%s has marked!!!!' % (PR, commit)) logger.info('%s_%s has marked!!!!' % (PR, commit)) data = { 'TIME': time.strftime("%Y%m%d %H:%M:%S", time.localtime()), 'PR': PR, 'COMMITID': commit, 'CINAME': mark_ci_list } self.save_markci_job(data) def queryIfHasMark(self, PR, commitid): """marked 是否已经标记过""" marked = True df = pd.read_csv('../buildLog/mark_timeout_ci.csv') queryKey = df[(df['PR'] == PR) & (df['COMMITID'] == commitid)] if queryKey.empty: marked = False return marked def create_markci_csv(self, filename): """创建存储文件""" df = pd.DataFrame(columns=['TIME', 'PR', 'COMMITID', 'CINAME']) df.to_csv(filename) def save_markci_job(self, data): """将kill的任务存到""" filename = '../buildLog/mark_timeout_ci.csv' if os.path.exists(filename) == False: self.create_markci_csv(filename) write_data = pd.DataFrame(data) write_data.to_csv(filename, mode='a', header=False) async def inform(self, item): """Paddle-bot发出评论""" #POST /repos/:owner/:repo/issues/:issue_number/comments rerun_ci_link = self.rerun_url.format(item['PR'], item['commit']) comment_url = self.comment_url.format(item['PR']) shortId = item['commit'][0:7] message = "Sorry to inform you that %s's CIs have passed for more than 7 days. To prevent PR conflicts, you need to re-run all CIs manually. " % shortId await self.gh.post(comment_url, data={"body": message}) async def main(user, repo): async with aiohttp.ClientSession() as session: app_id = os.getenv("GH_APP_ID") jwt = get_jwt(app_id) gh = gh_aiohttp.GitHubAPI(session, user) try: installation = await get_installation(gh, jwt, user) except ValueError as ve: print(ve) else: access_token = await get_installation_access_token( gh, jwt=jwt, installation_id=installation["id"]) # treat access_token as if a personal access token gh = gh_aiohttp.GitHubAPI( session, user, oauth_token=access_token["token"]) markCIObject = MarkTimeoutCI(user, repo, gh) await markCIObject.markCIFailed() loop = asyncio.get_event_loop() loop.run_until_complete(main('PaddlePaddle', 'Paddle'))
36298
from .abstract import AbstractAgentBasedModel import keras.backend as K import numpy as np from tensorflow import TensorShape from keras.layers import Dense, Reshape class TrajectorySamplerNetwork(AbstractAgentBasedModel): ''' Supervised model. Takes in a set of trajectories from the current state; learns a distribution that will regenerate these given some source of noise. Essentially, our goal is to minimize the average error between the whole set of trajectories and our samples. ''' def __init__(self): pass def AddSamplerLayer(x, num_samples, traj_length, feature_size, activation=None): ''' Size of x must be reasonable. This turns the dense input into something reasonable. Parameters: x: input tensor num_samples: number of trajectories to generate traj_length: how many points we want to sample in each trajectory feature_size: dimensionality of each trajectory point activation: optional activation function to add ''' x = Dense(num_samples * traj_length * feature_size)(x) if activation is not None: x = activation(x) x = Reshape((num_samples, traj_length, feature_size))(x) return x class TrajectorySamplerLoss(object): def __init__(self, num_samples, traj_length, feature_size, acc_cost=None): self.num_samples = num_samples self.traj_length = traj_length self.feature_size = feature_size self.acc_cost = acc_cost self.__name__ = "trajectory_sampler_loss" def __call__(self, target, pred): ''' Pred must be of size: [batch_size=None, num_samples, traj_length, feature_size] Targets must be of size: [batch_size=None, traj_length, feature_size] You can use the tools in "split" to generate this sort of data (for targets). The actual loss function is just the L2 norm between each point. ''' # NOTE: cannot tile here, because target and pred have to be the same # size. THAKS A LOT, KERAS. # Tile each example point by the total number of samples # target = K.tile(target, TensorShape([1,self.num_samples,1,1])) # Compute L2 norm... x = K.square(target - pred) # sum along each output dimension for each point x = K.sum(x,axis=-1,keepdims=False) # square root and sum along each trajectory x = K.sum(K.sqrt(x),axis=2,keepdims=False) # mean across each sample #x = K.min(x,axis=1,keepdims=False) x = K.mean(x,axis=1,keepdims=False) #+ K.min(x,axis=1,keepdims=False) if self.acc_cost is not None: # Take the L2 norm of the acceleration output and add it to the # loss. # NOTE: we may end up computing this elsewhere to avoid extra # penalties and stuff like that. #cost = K.sum(K.square(acc)) return x + cost else: return x
36305
import numpy as np from rampwf.utils import BaseGenerativeRegressor class GenerativeRegressor(BaseGenerativeRegressor): def __init__(self, max_dists, target_dim): self.decomposition = 'autoregressive' def fit(self, X_array, y_array): pass def predict(self, X_array): # constant prediction with value equal to 10 n_samples = X_array.shape[0] types = ['norm'] means = np.full(shape=(n_samples, 1), fill_value=10) sigmas = np.zeros((n_samples, 1)) params = np.concatenate((means, sigmas), axis=1) weights = np.ones((n_samples, 1)) return weights, types, params
36342
import cv2 as cv # opencv import copy # for deepcopy on images import numpy as np # numpy from random import randint # for random values import threading # for deamon processing from pathlib import Path # for directory information import os # for directory information from constants import constants # constants class PlantDetector: """Dynamically apply detection algorithms to source images All images are sourced from and follow naming standard from the KOMATSUNA dataset http://limu.ait.kyushu-u.ac.jp/~agri/komatsuna/ METHODS __init__(self, src='multi_plant', labels='multi_label') [void] prepares the images and labels for display initializes windows and trackbars runs background subtraction on plant group images on_low_H_thresh_trackbar(self, val) on_high_H_thresh_trackbar(self, val) on_low_S_thresh_trackbar(self, val) on_high_S_thresh_trackbar(self, val) on_low_V_thresh_trackbar(self, val) on_high_V_thresh_trackbar(self, val) HSV trackbar triggers prepare_plant_collection(self, src, labelsrc) returns [plants, plant_groups, labels] constructor helper function for loading plant images parse(self, auto_inc=False, mode=0) [void] main function dynamically applies HSV inRange filters watershed algorithm to the currently displayed image based on selected HSV trackbar values six modes are displayable: mode: window1 + window2 0 : original (fallback) + original 1 : HSV filter range + original 2 : bare watershed masks + labels 3 : watershed masks w/ bg + original 4 : sequential bg sub + original 5 : seq bg sub w/ watersh + original additionally, the user is allowed control key | function m | next image n | prev image s | save selected image in the selected mode z | save all images in selected mode esc | exit the program d | dynamically calculate dice f | show dice data based on saved images 1-5 | select the respective mode parse is also used for saving all images parse is run for all images in the given mode either in parrallel or in place save_one(self, mode, image, filename) [void] saves the image in the appropriate mode folder with filename HSV_filtering_and_watershed(self, input_im) [mask, input_im, im_threshold] image is filtered through HSV inRange according to trackbar values image is prepared (threshold) for watershed algorithm watershed algorithm is applied markers are applied to image dicify_wrapper(self, image_id) [void] runs dice summary in background dicify_summary(self, image_id) [void] prints summary of dice values for image, plant, dateset note: based on saved images dicify_one(self, image_id) [dice] returns the dice value for the given image_id based on saved segmentation and label images dicify_one_dynamic(self, mask, image_id) [dice] returns dice value for the given image_id based on given mask (current) and saved label image dicify_plant(self, plant_id) [mean, min, max] returns mean, min and max dice values for images in plant group dicify_all(self) [mean, min, max] returns mean, min and max dice values for images in dataset and for each plant """ def __init__(self, src='multi_plant', labels='multi_label'): self.c = constants() self.window1 = self.c.window.window1 self.window2 = self.c.window.window2 cv.namedWindow(self.window1) cv.namedWindow(self.window2) cv.moveWindow(self.window2, 550, 90) cv.createTrackbar( self.c.HSV.low_H_name, self.window1, self.c.HSV.low_H, self.c.HSV.max_value_H, self.on_low_H_thresh_trackbar) cv.createTrackbar( self.c.HSV.high_H_name, self.window1, self.c.HSV.high_H, self.c.HSV.max_value_H, self.on_high_H_thresh_trackbar) cv.createTrackbar( self.c.HSV.low_S_name, self.window1, self.c.HSV.low_S, self.c.HSV.max_value, self.on_low_S_thresh_trackbar) cv.createTrackbar( self.c.HSV.high_S_name, self.window1, self.c.HSV.high_S, self.c.HSV.max_value, self.on_high_S_thresh_trackbar) cv.createTrackbar( self.c.HSV.low_V_name, self.window1, self.c.HSV.low_V, self.c.HSV.max_value, self.on_low_V_thresh_trackbar) cv.createTrackbar( self.c.HSV.high_V_name, self.window1, self.c.HSV.high_V, self.c.HSV.max_value, self.on_high_V_thresh_trackbar) self.plants, self.plant_groups, self.labels = self.prepare_plant_collection(src, labels) # source https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html for key in self.plant_groups: if self.c.bgsub.mod == 'MOG2': backSub = cv.createBackgroundSubtractorMOG2(history=60, detectShadows=True) elif self.c.bgsub.mod == 'KNN': backSub = cv.createBackgroundSubtractorKNN() fgMask = None for i, image in enumerate(self.plant_groups[key]): fgMask = backSub.apply(image) self.plant_groups[key][i] = fgMask def on_low_H_thresh_trackbar(self, val): self.c.HSV.low_H = val self.c.HSV.low_H = min(self.c.HSV.high_H-1, self.c.HSV.low_H) cv.setTrackbarPos( self.c.HSV.low_H_name, self.window1, self.c.HSV.low_H) def on_high_H_thresh_trackbar(self, val): self.c.HSV.high_H = val self.c.HSV.high_H = max(self.c.HSV.high_H, self.c.HSV.low_H+1) cv.setTrackbarPos( self.c.HSV.high_H_name, self.window1, self.c.HSV.high_H) def on_low_S_thresh_trackbar(self, val): self.c.HSV.low_S = val self.c.HSV.low_S = min(self.c.HSV.high_S-1, self.c.HSV.low_S) cv.setTrackbarPos( self.c.HSV.low_S_name, self.window1, self.c.HSV.low_S) def on_high_S_thresh_trackbar(self, val): self.c.HSV.high_S = val self.c.HSV.high_S = max(self.c.HSV.high_S, self.c.HSV.low_S+1) cv.setTrackbarPos( self.c.HSV.high_S_name, self.window1, self.c.HSV.high_S) def on_low_V_thresh_trackbar(self, val): self.c.HSV.low_V = val self.c.HSV.low_V = min(self.c.HSV.high_V-1, self.c.HSV.low_V) cv.setTrackbarPos( self.c.HSV.low_V_name, self.window1, self.c.HSV.low_V) def on_high_V_thresh_trackbar(self, val): self.c.HSV.high_V = val self.c.HSV.high_V = max(self.c.HSV.high_V, self.c.HSV.low_V+1) cv.setTrackbarPos( self.c.HSV.high_V_name, self.window1, self.c.HSV.high_V) def prepare_plant_collection(self, src, labelsrc): plants = [] plant_groups = dict() files = os.listdir(src) files.sort() for fl in files: input_im = cv.imread(src + '/' + fl, cv.IMREAD_COLOR) if (input_im is None): exit() plants.append({ 'p': input_im, 'n': fl }) group_id = f'{fl.split("_")[1]}{fl.split("_")[2]}' if group_id not in plant_groups: plant_groups[group_id] = [] plant_groups[group_id].append(input_im) labels = [] files = os.listdir(labelsrc) files.sort() for fl in files: input_im = cv.imread(labelsrc + '/' + fl) if (input_im is None): exit() labels.append(input_im) return plants, plant_groups, labels def parse(self, auto_inc=False, mode=0): key = 0 i = 0 l_tog = False while key != self.c.cntr.exit_k: if auto_inc and i == len(self.plants): break image = copy.deepcopy(self.plants[i]['p']) group_id = f'{self.plants[i]["n"].split("_")[1]}{self.plants[i]["n"].split("_")[2]}' mask, markers, im_threshold = self.HSV_filtering_and_watershed(image) _, bgfgSegMarkers, _ = self.HSV_filtering_and_watershed( cv.cvtColor(self.plant_groups[group_id][i % 60], cv.COLOR_GRAY2BGR) ) if mode == 5: alt = bgfgSegMarkers text = f'Watershed new areas w/ fg/bg segm. {self.plants[i]["n"]}' tcol = (255, 255, 255) elif mode == 4: alt = copy.deepcopy(self.plant_groups[group_id][i % 60]) text = f'FG/BG segmentation {self.plants[i]["n"]}' tcol = (255, 255, 255) elif mode == 3: alt = markers text = f'Watershed algorithm areas w/ bg {self.plants[i]["n"]}' tcol = (0, 0, 0) elif mode == 2: alt = mask text = f'Watershed algorithm areas bare {self.plants[i]["n"]}' tcol = (255, 255, 255) elif mode == 1: alt = im_threshold text = f'HSV inRange threshold {self.plants[i]["n"]}' tcol = (255, 255, 255) else: alt = copy.deepcopy(self.plants[i]['p']) text = f'Original {self.plants[i]["n"]}' tcol = (0, 0, 0) if self.c.asth.text: cv.putText(alt, text, (0, 20), self.c.asth.font, .5, tcol, 1) cv.imshow(self.window1, alt) if l_tog: cv.imshow(self.window2, self.labels[i]) else: cv.imshow(self.window2, self.plants[i]['p']) key = cv.waitKey(10) if key == self.c.cntr.prev_k and i > 0: i -= 1 if key == self.c.cntr.next_k and i < len(self.plants) - 1: i += 1 if key == self.c.cntr.save or auto_inc: self.save_one(mode, alt, self.plants[i]["n"]) if key == self.c.cntr.save_all: self.parse(True, mode) if key == self.c.cntr.dice: print(self.dicify_one_dynamic(mask, self.plants[i]['n'])) if key == self.c.cntr.dice_more: self.dicify_wrapper(self.plants[i]['n']) if key == self.c.cntr.m1_k: mode = 1 l_tog = False elif key == self.c.cntr.m2_k: mode = 2 l_tog = True elif key == self.<KEY>: mode = 3 l_tog = False elif key == self.<KEY>: mode = 4 l_tog = False elif key == self.<KEY>: mode = 5 l_tog = False if auto_inc: i += 1 def save_one(self, mode, image, filename): Path(f'formatted/{self.c.cntr.modes[mode]}').mkdir(parents=True, exist_ok=True) cv.imwrite(f'formatted/{self.c.cntr.modes[mode]}/{filename}', image) def HSV_filtering_and_watershed(self, input_im): im_threshold = cv.inRange( cv.cvtColor(input_im, cv.COLOR_BGR2HSV), (self.c.HSV.low_H, self.c.HSV.low_S, self.c.HSV.low_V), (self.c.HSV.high_H, self.c.HSV.high_S, self.c.HSV.high_V) ) # source https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html kernel = np.ones((3, 3), np.uint8) opening = cv.morphologyEx(im_threshold, cv.MORPH_OPEN, kernel, iterations=5) sure_bg = cv.dilate(opening, kernel, iterations=7) dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5) _, sure_fg = cv.threshold(dist_transform, 0.3*dist_transform.max(), 255, 0) sure_fg = np.uint8(sure_fg) unknown = cv.subtract(sure_bg, sure_fg) _, markers = cv.connectedComponents(sure_fg) markers = markers + 1 markers[unknown == 255] = 0 markers = cv.watershed(input_im, markers) input_im[markers == -1] = [255, 0, 0] for i in range(2, markers.max() + 1): input_im[markers == i] = [ randint(0, 255), randint(0, 255), randint(0, 255) ] if self.c.xtra.disco else [ (40 + i * 40) % 255, (i * 40) % 255, (50 + i * 40) % 255 ] mask = copy.deepcopy(input_im) mask[markers < 2] = [0, 0, 0] return mask, input_im, im_threshold def dicify_wrapper(self, image_id): thread = threading.Thread(target=self.dicify_summary, args=(image_id,), daemon=True) thread.start() def dicify_summary(self, image_id): print(self.dicify_all()) def dicify_one(self, image_id): # Source: https://github.com/Kornelos/CV_MINI_1/blob/master/process_plants.py img = cv.imread(f'multi_label/label_{image_id.split("_", 1)[1]}') img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) _, gt = cv.threshold(img, 1, 255, cv.THRESH_BINARY) img = cv.imread(f'formatted/ws_mask/{image_id}') img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) _, rt = cv.threshold(img, 1, 255, cv.THRESH_BINARY) k = 255 dice = np.sum(rt[gt == k]) * 2.0 / (np.sum(rt[rt == k]) + np.sum(gt[gt == k])) return dice def dicify_one_dynamic(self, mask, image_id): img = cv.imread(f'multi_label/label_{image_id.split("_", 1)[1]}') img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) _, gt = cv.threshold(img, 1, 255, cv.THRESH_BINARY) img = cv.cvtColor(mask, cv.COLOR_BGR2GRAY) _, rt = cv.threshold(img, 1, 255, cv.THRESH_BINARY) k = 255 dice = np.sum(rt[gt == k]) * 2.0 / (np.sum(rt[rt == k]) + np.sum(gt[gt == k])) return dice def dicify_plant(self, plant_id): vals = [] for im_data in [ t for t in self.plants if t['n'].split('_')[2] == plant_id ]: vals.append(self.dicify_one(im_data['n'])) return [np.mean(vals), min(vals), max(vals)] def dicify_all(self): means = [] mins = [] maxs = [] summ = "id | mean | min | max" for i in range(0, 5): plant = self.dicify_plant(f'0{str(i)}') means.append(plant[0]) mins.append(plant[1]) maxs.append(plant[2]) summ += f'\n0{str(i)} | {round(plant[0], 3)} | {round(plant[1], 3)} | {round(plant[2], 3)}' summ += f'\nsm | {round(np.mean(means), 3)} | {round(min(mins), 3)} | {round(max(maxs), 3)}' return summ # Main plDt = PlantDetector() plDt.parse()
36349
from pathlib import Path import click import cligj import geojson import mercantile from shapely.geometry import asShape, box from shapely.ops import split @click.command() @cligj.features_in_arg @click.option( '-z', '--min-zoom', type=int, required=True, help='Min zoom level to create tiles for', ) @click.option( '-Z', '--max-zoom', type=int, required=True, help='Max zoom level to create tiles for (inclusive)', ) @click.option( '-d', '--tile-dir', type=click.Path(file_okay=False, dir_okay=True, writable=True)) @click.option( '--allowed-geom-type', type=str, required=False, multiple=True, default=[], help='Geometry types to keep in exported GeoJSON features.') def cut_geojson(features, min_zoom, max_zoom, tile_dir, allowed_geom_type): """Cut GeoJSON features into xyz tiles """ geometry_types = [ 'Point', 'MultiPoint', 'LineString', 'MultiLineString', 'Polygon', 'MultiPolygon'] if not all(t in geometry_types for t in allowed_geom_type): raise ValueError(f'allowed_geom_type must be one of: {geometry_types}') tile_dir = Path(tile_dir) for feature in features: geometry = asShape(feature['geometry']) tiles = find_tiles(geometry, min_zoom, max_zoom) for tile in tiles: clipped_geometries = clip_geometry_to_tile(geometry, tile) new_features = [] for clipped_geometry in clipped_geometries: if allowed_geom_type: geom_type = clipped_geometry.type if geom_type not in allowed_geom_type: print(f'Skipping feature of type: {geom_type}') continue new_features.append( geojson.Feature( geometry=clipped_geometry, properties=feature['properties'])) # Write feature to tile_dir this_tile_dir = (tile_dir / str(tile.z) / str(tile.x)) this_tile_dir.mkdir(parents=True, exist_ok=True) with open(this_tile_dir / f'{str(tile.y)}.geojson', 'a') as f: for new_feature in new_features: f.write(geojson.dumps(new_feature, separators=(',', ':'))) f.write('\n') def find_tiles(geometry, min_zoom, max_zoom): assert min_zoom <= max_zoom, 'min zoom must be <= max zoom' selected_tiles = [] bound_tiles = mercantile.tiles( *geometry.bounds, zooms=range(min_zoom, max_zoom + 1)) for tile in bound_tiles: if box(*mercantile.bounds(tile)).intersects(geometry): selected_tiles.append(tile) return selected_tiles def clip_geometry_to_tile(geometry, tile): tile_geom = box(*mercantile.bounds(tile)) # Geometry collection of split objects split_gc = split(geometry, tile_geom) return [g for g in split_gc if tile_geom.contains(g)] if __name__ == '__main__': cut_geojson()
36368
from .uniswap_v2_deltas import * from .uniswap_v2_events import * from .uniswap_v2_metadata import * from .uniswap_v2_spec import * from .uniswap_v2_state import *
36371
from __future__ import annotations import ast import pytest from flake8_pie import Flake8PieCheck from flake8_pie.pie804_no_unnecessary_dict_kwargs import PIE804 from flake8_pie.tests.utils import Error, ex, to_errors EXAMPLES = [ ex( code=""" foo(**{"bar": True}) """, errors=[PIE804(lineno=2, col_offset=6)], ), ex( code=""" foo(**{"r2d2": True}) """, errors=[PIE804(lineno=2, col_offset=6)], ), ex( code=""" Foo.objects.create(**{"bar": True}) """, errors=[PIE804(lineno=2, col_offset=21)], ), ex( code=""" Foo.objects.create(**{"_id": some_id}) """, errors=[PIE804(lineno=2, col_offset=21)], ), ex( code=""" Foo.objects.create(**{**bar}) """, errors=[PIE804(lineno=2, col_offset=21)], ), ex( code=""" foo(**{**data, "foo": "buzz"}) foo(**buzz) foo(**{"bar-foo": True}) foo(**{"bar foo": True}) foo(**{"1foo": True}) foo(**{buzz: True}) foo(**{"": True}) foo(**{f"buzz__{bar}": True}) """, errors=[], ), ] @pytest.mark.parametrize("code,errors", EXAMPLES) def test_examples(code: str, errors: list[Error]) -> None: expr = ast.parse(code) assert to_errors(Flake8PieCheck(expr, filename="foo.py").run()) == errors
36376
import pyClarion.base as clb import pyClarion.numdicts as nd import unittest import unittest.mock as mock class TestProcess(unittest.TestCase): @mock.patch.object(clb.Process, "_serves", clb.ConstructType.chunks) def test_check_inputs_accepts_good_input_structure(self): process = clb.Process( expected=[clb.buffer("wm"), clb.terminus("selection")] ) inputs = { clb.buffer("wm"): nd.NumDict(default=0), clb.terminus("selection"): nd.NumDict(default=0), clb.terminus("selection2"): nd.NumDict(default=0) } process.check_inputs(inputs) @mock.patch.object(clb.Process, "_serves", clb.ConstructType.chunks) def test_check_inputs_rejects_incomplete_input(self): process = clb.Process( expected=[clb.chunks("in"), clb.terminus("selection")] ) with self.assertRaises(RuntimeError): inputs = { # clb.buffer("wm"): nd.NumDict(default=0), clb.terminus("selection"): nd.NumDict(default=0), clb.terminus("selection2"): nd.NumDict(default=0) } process.check_inputs(inputs) class TestWrappedProcess(unittest.TestCase): pass
36391
from .pycrunchbase import ( CrunchBase, ) from .resource import ( Acquisition, Address, Category, Degree, FundingRound, Fund, Image, Investment, IPO, Job, Location, News, Organization, Page, PageItem, Person, Product, Relationship, StockExchange, Video, Website, ) __version__ = "0.3.9" __all__ = [ 'Acquisition', 'Address', 'Category', 'Degree', 'FundingRound', 'Fund', 'Image', 'Investment', 'IPO', 'Job', 'Location', 'News', 'Organization', 'Page', 'PageItem', 'Person', 'Product', 'Relationship', 'StockExchange', 'Video', 'Website', 'CrunchBase' ]
36422
from django.views.generic import DeleteView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib import messages from django.urls import reverse from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404 from schedule.models import Calendar from schedule.views import CreateEventView, EditEventView, EventMixin from apps.events.forms import CustomEventForm class CustomCreateEventView(CreateEventView): form_class = CustomEventForm template_name = 'event/edit.html' def get_context_data(self, **kwargs): context = super(CustomCreateEventView, self).get_context_data(**kwargs) calendar = get_object_or_404(Calendar, slug=self.kwargs.get('calendar_slug')) extra_context = { "calendar": calendar, } context.update(extra_context) return context def form_valid(self, form): super(CustomCreateEventView, self).form_valid(form) messages.error(self.request, 'Event created successfully.') return HttpResponseRedirect( reverse('calendar_details', kwargs={'calendar_slug': self.kwargs.get('calendar_slug')}) ) class CustomUpdateEventView(EditEventView): form_class = CustomEventForm template_name = 'event/edit.html' def get_context_data(self, **kwargs): context = super(CustomUpdateEventView, self).get_context_data(**kwargs) calendar = get_object_or_404(Calendar, slug=self.kwargs.get('calendar_slug')) extra_context = { "calendar": calendar, } context.update(extra_context) return context def form_valid(self, form): super(CustomUpdateEventView, self).form_valid(form) messages.error(self.request, 'Event edited successfully.') return HttpResponseRedirect( reverse('calendar_details', kwargs={'calendar_slug': self.kwargs.get('calendar_slug')}) ) class CustomDeleteEventView(LoginRequiredMixin, EventMixin, DeleteView): """Delete Event""" template_name = 'event/delete.html' def get_success_url(self): return reverse('calendar_details', args=[self.kwargs.get('calendar_slug')]) def get_context_data(self, **kwargs): context = super(CustomDeleteEventView, self).get_context_data(**kwargs) calendar = get_object_or_404(Calendar, slug=self.kwargs.get('calendar_slug')) context.update( { 'event': self.object, 'calendar': calendar } ) return context
36423
import dill import glob import csv import os from os.path import basename, join from joblib import Parallel, delayed domain_path = '/datasets/amazon-data/new-julian/domains' domain_subdirectory = 'only-overall-lemma-and-label-sampling-1-3-5' domain_files = glob.glob(join(domain_path, 'only-overall-lemma-and-label/*.csv')) all_stars_count = {} output_csv = join(domain_path, domain_subdirectory) try: os.makedirs(output_csv) except OSError: if not os.path.isdir(output_csv): raise def stars(domain_file): stars_count = [0, 0, 0, 0, 0] stars_used = [1, 3, 5] with open(domain_file, 'r') as f: for line in f: l = line.replace('\r\n', '').split(',') stars_count[int(l[0]) - 1] += 1 f_name = '{}.csv'.format(basename(domain_file).split('.')[0]) min_count = min(stars_count) print '\nDomain: {}\nStars count: {}\nMin star count: {}\n'.format(f_name, stars_count, min_count) stars_count = [0, 0, 0, 0, 0] with open(domain_file, 'r') as f: with open(join(output_csv, f_name), 'w') as csv_file: sent_writer = csv.writer(csv_file, delimiter=',', quotechar=' ', quoting=csv.QUOTE_MINIMAL) for line in f: l = line.replace('\r\n', '').split(',') star_label = int(l[0]) idx = star_label - 1 stars_count[idx] += 1 if stars_count[idx] <= min_count and star_label in stars_used: sent_writer.writerow(l) return {f_name: {'distribution': stars_count, 'star_threshold': min_count, 'skip_stars': stars_used} } results = Parallel(n_jobs=-1)(delayed(stars)(i) for i in domain_files) with open(join(domain_path, domain_subdirectory, 'results.pkl'), 'w') as f: dill.dump(results, f)
36452
import torch from torch import nn import torch.optim as optim import torch.multiprocessing as mp import numpy as np import time class MPManager(object): def __init__(self, num_workers): """ manage a single-instruction-multiple-data (SIMD) scheme :param int num_workers: The number of processors to run. """ mp.set_start_method('spawn') # Counting the current batch size self.num_workers = num_workers # A pool of processes self.pool = mp.Pool(processes=num_workers) def run(self, function, arguments): """ :param function : the instruction :param arguments : list of things processors loop over can be anything the function works on, e.g. model + data """ output_and_grads = self.pool.map(function, arguments) return output_and_grads
36462
import csv def save_minimal_pairs(output_filename, to_output, write_header=True): if isinstance(output_filename, str): outf = open(output_filename, mode='w', encoding='utf-8-sig', newline='') needs_closed = True else: outf = output_filename needs_closed = False writer = csv.writer(outf, delimiter='\t') if write_header: writer.writerow(['FIRST_SEGMENT', 'SECOND_SEGMENT', 'FIRST_WORD', 'FIRST_WORD_TRANSCRIPTION', 'SECOND_WORD', 'SECOND_WORD_TRANSCRIPTION']) for _, _, ret_dict in to_output: for seg_pair, word_pair_set in ret_dict.items(): for word_pair in word_pair_set: writer.writerow([seg_pair[0], seg_pair[1], word_pair[0][0], word_pair[0][1], word_pair[1][0], word_pair[1][1]]) if needs_closed: outf.close()
36492
c = get_config() #Export all the notebooks in the current directory to the sphinx_howto format. c.NbConvertApp.notebooks = ['*.ipynb'] c.NbConvertApp.export_format = 'latex' c.NbConvertApp.postprocessor_class = 'PDF' c.Exporter.template_file = 'custom_article.tplx'
36510
from polyphony import testbench class C: def __init__(self, x): self.x = x class D: def __init__(self, c): self.c = c def alias02(x): c0 = C(x) c1 = C(x*x) d = D(c0) result0 = d.c.x == x d.c = c1 result1 = d.c.x == x*x c1.x = 0 result2 = d.c.x == 0 d.c = c0 result3 = d.c.x == x return result0 and result1 and result2 and result3 @testbench def test(): assert alias02(1) assert alias02(2) assert alias02(3) test()
36515
import json import requests from rotkehlchen.assets.asset import Asset from rotkehlchen.constants.timing import DEFAULT_TIMEOUT_TUPLE from rotkehlchen.errors.misc import RemoteError from rotkehlchen.errors.serialization import DeserializationError from rotkehlchen.history.deserialization import deserialize_price from rotkehlchen.types import Price PRICE_API_URL = 'https://bisq.markets/api/ticker?market={symbol}_BTC' def get_bisq_market_price(asset: Asset) -> Price: """ Get price for pair at bisq marketplace. Price is returned against BTC. Can raise: - RemoteError: If the market doesn't exists or request fails - DeserializationError: If the data returned is not a valid price """ url = PRICE_API_URL.format(symbol=asset.symbol) try: response = requests.get(url, timeout=DEFAULT_TIMEOUT_TUPLE) except requests.exceptions.RequestException as e: raise RemoteError(f'bisq.markets request {url} failed due to {str(e)}') from e try: data = response.json() except json.decoder.JSONDecodeError as e: raise RemoteError( f'Failed to read json response from bisq.markets. {response.text}. {str(e)}', ) from e if 'error' in data: raise RemoteError(f'Request data from bisq.markets {url} is not valid {data["error"]}') try: price = data['last'] except KeyError as e: raise DeserializationError( f'Response from bisq.markets didnt contain expected key "last". {data}', ) from e return deserialize_price(price)
36547
from sklearn.metrics import mean_squared_error, log_loss from keras.models import Model from keras.models import load_model from keras.layers import Input, Dense from keras.layers.recurrent import SimpleRNN from keras.layers.merge import multiply, concatenate, add from keras import backend as K from keras import initializers from keras.callbacks import EarlyStopping from keras.layers.wrappers import TimeDistributed from keras.callbacks import Callback from keras import optimizers import pandas as pd import numpy as np from keras.constraints import max_norm, non_neg, unit_norm np.random.seed(42) from math import sqrt import os import sys from collections import defaultdict class DeepAFM: def __init__(self): pass def custom_bce(self, y_true, y_pred): b = K.not_equal(y_true, -K.ones_like(y_true)) b = K.cast(b, dtype='float32') ans = K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1) * K.mean(b, axis=-1) ans = K.cast(ans, dtype='float32') return K.sum(ans) def custom_activation(self, x): if self.activation.split('-')[0] == "custom": a = float(self.activation.split('-')[1]) return 1.0 / ( 1 + K.exp(-a*x) ) elif self.activation.split('-')[0] == "rounded": K.minimum(K.maximum(K.round(K.sigmoid(x)), 0), 1) def custom_init(self, shape, dtype=None): return K.cast_to_floatx(self.Q_jk_initialize) def custom_random(self, shape, dtype=None): if self.random_init == "normal": return K.random_normal(shape, 0.5, 0.05, dtype=dtype, seed=22) else: return K.random_uniform(shape, 0, 1, dtype=dtype, seed=22) def f(self, x): def custom_init(shape, dtype=None): return K.cast_to_floatx(np.reshape(x, shape)) return custom_init def build(self, dafm_type="dafm-afm", optimizer="rmsprop", learning_rate=0.01, activation="linear", Q_jk_initialize=0, section="", section_count=0, model1="", stateful=False, theta_student="False", student_count=0, binary="False"): skills = np.shape(Q_jk_initialize)[1] steps = np.shape(Q_jk_initialize)[0] self.activation = activation if '-' in self.activation: activation = self.custom_activation if dafm_type.split("_")[-1] == "different": skills = int( float(dafm_type.split("_")[-2])*skills ) dafm_type = dafm_type.split('_')[0] if dafm_type.split("_")[0] == "round-fine-tuned": try: self.round_threshold = float(dafm_type.split("_")[-1]) dafm_type = dafm_type.split("_")[0] except: pass q_jk_size = skills if '^' in dafm_type: q_jk_size = skills skills = int (float(dafm_type.split('^')[-1]) * skills) dafm_type = dafm_type.split('^')[0] self.dafm_type = dafm_type if dafm_type == "random-uniform" or dafm_type == "random-normal": qtrainable, finetuning, randomize = True, False, True self.random_init = dafm_type.split('-')[-1] elif dafm_type == "dafm-afm": qtrainable, finetuning, randomize = False, False, False elif dafm_type == "fine-tuned": qtrainable, finetuning, randomize = True, True, False elif dafm_type == "kcinitialize": qtrainable, finetuning, randomize = True, False, False elif dafm_type== "round-fine-tuned": # if not self.round_threshold == -1: # rounded_Qjk = np.abs(Q_jk1 - Q_jk_initialize) # Q_jk1[rounded_Qjk <= self.round_threshold] = Q_jk_initialize[rounded_Qjk <= self.round_threshold] # Q_jk1[rounded_Qjk > self.round_threshold] = np.ones(np.shape(Q_jk_initialize[rounded_Qjk > self.round_threshold])) - Q_jk_initialize[rounded_Qjk > self.round_threshold] # else: Q_jk1 = model1.get_layer("Q_jk").get_weights()[0] Q_jk1 = np.minimum(np.ones(np.shape(Q_jk1)), np.maximum(np.round(Q_jk1), np.zeros(np.shape(Q_jk1)))) model1.get_layer("Q_jk").set_weights([Q_jk1]) return model1 elif dafm_type == "qjk-dense": qtrainable, finetuning, randomize = False, False, False activation_dense = activation elif dafm_type == "random-qjk-dense-normal" or dafm_type == "random-qjk-dense-uniform": qtrainable, finetuning, randomize = False, False, True self.random_init = dafm_type.split('-')[-1] activation_dense = activation else: print ("No Valid Model Found") sys.exit() if section == "onehot": section_input = Input(batch_shape=(None, None, section_count), name='section_input') if not theta_student=="False": student_input = Input(batch_shape=(None, None, student_count), name='student_input') virtual_input1 = Input(batch_shape=(None, None, 1), name='virtual_input1') if finetuning: B_k = TimeDistributed(Dense(skills, activation='linear', kernel_initializer=self.f(model1.get_layer("B_k").get_weights()[0]), use_bias=False), name="B_k")(virtual_input1) T_k = TimeDistributed(Dense(skills, activation='linear', kernel_initializer=self.f(model1.get_layer("T_k").get_weights()[0]), use_bias=False), name="T_k")(virtual_input1) bias_layer = TimeDistributed(Dense(1, activation='linear', use_bias=False, kernel_initializer=self.f(model1.get_layer("bias").get_weights()[0]), trainable=True), name="bias")(virtual_input1) else: B_k = TimeDistributed(Dense(skills, activation='linear', use_bias=False, trainable=True), name="B_k")(virtual_input1) T_k = TimeDistributed(Dense(skills, activation='linear', use_bias=False, trainable=True), name="T_k")(virtual_input1) bias_layer = TimeDistributed(Dense(1, activation='linear', use_bias=False, kernel_initializer=initializers.Zeros(), trainable=True), name="bias")(virtual_input1) step_input = Input(batch_shape=(None, None, steps), name='step_input') if randomize: if binary=="False": Q_jk = TimeDistributed(Dense(q_jk_size, use_bias=False, activation=activation, kernel_initializer=self.custom_random), trainable=qtrainable ,name="Q_jk")(step_input) else: Q_jk = TimeDistributed(BinaryDense(q_jk_size, use_bias=False, activation=activation, kernel_initializer=self.custom_random),trainable=qtrainable, name="Q_jk")(step_input) else: if binary=="False": Q_jk = TimeDistributed(Dense(skills, activation=activation, kernel_initializer=self.f(Q_jk_initialize), use_bias=False,trainable=qtrainable), trainable=qtrainable, name="Q_jk")(step_input) else: Q_jk = TimeDistributed(BinaryDense(skills, activation=activation, kernel_initializer=self.f(Q_jk_initialize),trainable=qtrainable, use_bias=False), name="Q_jk", trainable=qtrainable)(step_input) if dafm_type == "random-qjk-dense-normal" or dafm_type == "random-qjk-dense-uniform": if binary =="False": Q_jk = TimeDistributed(Dense(skills, activation=activation_dense, use_bias=False, kernel_initializer=self.custom_random, trainable=True), name="Q_jk_dense")(Q_jk) else: Q_jk = TimeDistributed(BinaryDense(skills, activation=activation_dense, use_bias=False, kernel_initializer=self.custom_random, trainable=True), name="Q_jk_dense")(Q_jk) elif dafm_type == "qjk-dense": if binary =='False': Q_jk = TimeDistributed(Dense(skills, activation=activation_dense, use_bias=False, kernel_initializer=initializers.Identity(), trainable=True), name="Q_jk_dense")(Q_jk) else: Q_jk = TimeDistributed(BinaryDense(skills, activation=activation_dense, use_bias=False, kernel_initializer=initializers.Identity(), trainable=True), name="Q_jk_dense")(Q_jk) else: pass Qjk_mul_Bk = multiply([Q_jk, B_k]) sum_Qjk_Bk = TimeDistributed(Dense(1, activation='linear', trainable=False, kernel_initializer=initializers.Ones(), use_bias=False), trainable=False,name="sum_Qjk_Bk")(Qjk_mul_Bk) P_k = SimpleRNN(skills, kernel_initializer=initializers.Identity(), recurrent_initializer=initializers.Identity() , use_bias=False, trainable=False, activation='linear', return_sequences=True, name="P_k")(Q_jk) Qjk_mul_Pk_mul_Tk = multiply([Q_jk, P_k, T_k]) sum_Qjk_Pk_Tk = TimeDistributed(Dense(1, activation='linear', trainable=False, kernel_initializer=initializers.Ones(), use_bias=False),trainable=False, name="sum_Qjk_Pk_Tk")(Qjk_mul_Pk_mul_Tk) Concatenate = concatenate([bias_layer, sum_Qjk_Bk, sum_Qjk_Pk_Tk]) if not (theta_student=="False"): if finetuning: theta = TimeDistributed(Dense(1, activation="linear", use_bias=False, kernel_initializer=self.f(model1.get_layer("theta").get_weights()[0])), name='theta')(student_input) else: theta = TimeDistributed(Dense(1, activation="linear", use_bias=False), name='theta')(student_input) Concatenate = concatenate([Concatenate, theta]) if section == "onehot": if finetuning: S_k = TimeDistributed(Dense(1, activation="linear", use_bias=False, kernel_initializer=self.f(model1.get_layer("S_k").get_weights()[0])), name='S_k')(section_input) else: S_k = TimeDistributed(Dense(1, activation="linear", use_bias=False), name='S_k')(section_input) Concatenate = concatenate([Concatenate, S_k]) output = TimeDistributed(Dense(1, activation="sigmoid", trainable=False, kernel_initializer=initializers.Ones(), use_bias=False), trainable=False, name="output")(Concatenate) if section == "onehot" and not (theta_student=="False"): model = Model(inputs=[virtual_input1, step_input, section_input, student_input], outputs=output) elif section == "onehot" and theta_student=="False": model = Model(inputs=[virtual_input1, step_input, section_input], outputs=output) elif not (section == "onehot") and not (theta_student=="False"): model = Model(inputs=[virtual_input1, step_input, student_input], outputs=output) else: model = Model(inputs=[virtual_input1, step_input], outputs=output) d_optimizer = {"rmsprop":optimizers.RMSprop(lr=learning_rate), "adam":optimizers.Adam(lr=learning_rate), "adagrad":optimizers.Adagrad(lr=learning_rate) } model.compile( optimizer = d_optimizer[optimizer], loss = self.custom_bce) return model def fit(self, x_train, y_train, x_train_section, x_train_student, x_test, y_test, x_test_section, x_test_student, model, epochs=5, batch_size=32, loaded=False, validation=True): loss_epoch = {"epoch":[], "loss":[], "val_loss":[], 'patience':[]} print ("Max Epochs", epochs) if self.dafm_type == "round-fine-tuned" or loaded: best_model = model patience, epoch = 0 , 1 prev_best_val_loss = np.inf counter = 0 virtual_input1 = np.ones([np.shape(x_train)[0], np.shape(x_train)[1], 1]) virtual_input1_test = np.ones([np.shape(x_test)[0], np.shape(x_test)[1], 1]) if not validation: earlyStopping = EarlyStopping(monitor='loss', patience=2) if len(x_train_student) == 0: if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train], y_train, batch_size=batch_size, epochs=epochs, callbacks=[earlyStopping], verbose=1, shuffle=True) else: history_callback = model.fit([virtual_input1, x_train, x_train_section], y_train, batch_size=batch_size, epochs=epochs, callbacks=[earlyStopping], verbose=1, shuffle=True) else: if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train, x_train_student], y_train, batch_size=batch_size, epochs=epochs , callbacks=[earlyStopping], verbose=1, shuffle=True) else: history_callback = model.fit([virtual_input1, x_train, x_train_section, x_train_student], y_train, batch_size=batch_size, epochs=epochs, callbacks=[earlyStopping], verbose=1, shuffle=True) # print ("Epoch Number:", counter, "Patience:", 0, "val loss:", current_val_loss) loss_epoch["loss"].extend(history_callback.history["loss"]) loss_epoch["val_loss"].extend(history_callback.history["loss"]) loss_epoch["epoch"].extend(list(range(epochs))) loss_epoch["patience"].extend(list(range(epochs))) best_model = model epoch = epochs else: while (patience <=5 and epoch <= epochs and (not self.dafm_type == "round-fine-tuned") and (loaded == False)): permutation = np.random.permutation(x_train.shape[0]) x_train = x_train[permutation] y_train = y_train[permutation] counter += 1 if len(x_train_student) == 0: if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train], y_train, batch_size=batch_size, epochs=1, validation_data=([virtual_input1_test, x_test], y_test), verbose=0, shuffle=True) else: x_train_section = x_train_section[permutation] history_callback = model.fit([virtual_input1, x_train, x_train_section], y_train, batch_size=batch_size, epochs=1, validation_data=([virtual_input1_test, x_test, x_test_section], y_test), verbose=0, shuffle=True) else: x_train_student = x_train_student[permutation] if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train, x_train_student], y_train, batch_size=batch_size, epochs=1, validation_data=([virtual_input1_test, x_test, x_test_student], y_test), verbose=0, shuffle=True) else: x_train_section = x_train_section[permutation] history_callback = model.fit([virtual_input1, x_train, x_train_section, x_train_student], y_train, batch_size=batch_size, epochs=1, validation_data=([virtual_input1_test, x_test, x_test_section, x_test_student], y_test), verbose=0, shuffle=True) current_val_loss = history_callback.history["val_loss"][0] print ("Epoch Number:", counter, "Patience:", patience, "val loss:", current_val_loss) loss_epoch["val_loss"].append(history_callback.history["val_loss"][0]) loss_epoch["loss"].append(history_callback.history["loss"][0]) loss_epoch["epoch"].append(counter) loss_epoch["patience"].append(patience) if (prev_best_val_loss - current_val_loss) > 0: best_model = model epoch += patience + 1 patience = 0 prev_best_val_loss = current_val_loss else: patience += 1 if len(x_train_student)==0: if len(x_train_section)==0: x = self.bce_loss(y_train, best_model.predict([virtual_input1, x_train]), x_train) else: x = self.bce_loss(y_train, best_model.predict([virtual_input1, x_train, x_train_section]), x_train) else: if len(x_train_section)==0: x = self.bce_loss(y_train, best_model.predict([virtual_input1, x_train, x_train_student]), x_train) else: x = self.bce_loss(y_train, best_model.predict([virtual_input1, x_train, x_train_section, x_train_student]), x_train) L, N = -np.sum(x), len(x) model_param = best_model.count_params() print ("PARAM", model_param) AIC = 2 * model_param - 2 * L BIC = model_param * np.log(N) - 2 * L B_k = best_model.get_layer("B_k").get_weights()[0] T_k = best_model.get_layer("T_k").get_weights()[0] return best_model, AIC, BIC, epoch, loss_epoch def fit_batches(self, dafmdata_obj, model, max_epochs=30, earlyStop="val_loss", loaded=False): print ("Max Epochs", max_epochs) loss_epoch = {"epoch":[], "loss":[], earlyStop:[], 'patience':[]} patience, epoch = 0, 1 prev_best_val_loss = np.inf counter = 0 if self.dafm_type == "round-fine-tuned" or loaded: best_model = model while (patience <= 2 and epoch <= max_epochs and loaded==False and (not self.dafm_type == "round-fine-tuned")): counter += 1 current_val_loss = 0 total_loss, total_train_samples = 0, 0 train = dafmdata_obj.data_generator1("train") test = dafmdata_obj.data_generator1("test") bc = 0 for x_train, y_train, x_train_section, x_train_student, batch_size in train: permutation = np.random.permutation(x_train.shape[0]) x_train = x_train[permutation] y_train = y_train[permutation] virtual_input1 = np.ones([np.shape(x_train)[0], np.shape(x_train)[1], 1]) print ("Batch Number:", bc, np.shape(x_train)) if len(x_train_student)==0: if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train], y_train, batch_size=batch_size, epochs=1, verbose=0) else: x_train_section = x_train_section[permutation] history_callback = model.fit([virtual_input1, x_train, x_train_section], y_train, batch_size=batch_size, epochs=1, verbose=1) else: x_train_student = x_train_student[permutation] if len(x_train_section) == 0: history_callback = model.fit([virtual_input1, x_train, x_train_student], y_train, batch_size=batch_size, epochs=1, verbose=0) else: x_train_section = x_train_section[permutation] history_callback = model.fit([virtual_input1, x_train, x_train_section, x_train_student], y_train, batch_size=batch_size, epochs=1, verbose=1) total_loss += history_callback.history["loss"][0] * len(x_train) total_train_samples += len(x_train) bc += 1 if earlyStop == "rmse": current_avg_rmse = self.predict_batches(dafmdata_obj, model) loss_epoch["rmse"].append(current_avg_rmse) else: current_avg_rmse = np.mean(self.bce_loss_batches(dafmdata_obj, model, utype="test")) loss_epoch["val_loss"].append(current_avg_rmse) loss_epoch["loss"].append(float(total_loss)/float(total_train_samples)) loss_epoch["epoch"].append(counter) loss_epoch["patience"].append(patience) print ("Epoch Number:", counter, "Patience:", patience, earlyStop, current_avg_rmse, "Loss:", loss_epoch["loss"][-1]) if (prev_best_val_loss - current_avg_rmse) > 0: best_model = model epoch += patience + 1 patience = 0 prev_best_val_loss = current_avg_rmse else: patience += 1 x = self.bce_loss_batches(dafmdata_obj, best_model, utype="train") L, N = -np.sum(x), len(x) model_param = best_model.count_params() AIC = 2 * model_param - 2 * L BIC = model_param * np.log(N) - 2 * L return best_model, AIC, BIC, epoch, loss_epoch def L(self, y_true, y_pred, x_train): mask_matrix = np.sum(x_train, axis=2).flatten() num_users, max_responses = np.shape(x_train)[0], np.shape(x_train)[1] y_pred = y_pred.flatten() y_true = y_true.flatten() rmse = [] SSR = 0 response = 0 L = 0 N = 0 c = 0 for user in range(num_users): for i in range(user * max_responses, (user + 1) * max_responses): if mask_matrix[i] == 0 or y_true[i] == -1: break if y_pred[i] < 1 and y_pred[i] > 0: L += ( y_true[i] * np.log(y_pred[i]) + (1 - y_true[i]) * np.log(1 - y_pred[i]) ) else: c += 1 eps = 1e-4 if y_pred[i] == y_true[i]: pass else: y_pred[i] = max(eps, min(1 - eps, y_pred[i])) L += ( y_true[i] * np.log(y_pred[i]) + (1 - y_true[i]) * np.log(1 - y_pred[i]) ) response += 1 N += 1 return L, N def L_batches(self, dafmdata_obj, model): L = 0 N = 0 train_generator = dafmdata_obj.data_generator1("train") for x_train, y_train, x_train_section, x_train_student, batch_size in train_generator: virtual_input1 = np.ones([np.shape(x_train)[0], np.shape(x_train)[1], 1]) if len(x_train_student)==0: if len(x_train_section) == 0: l, x= self.L(y_train, model.predict([virtual_input1, x_train]), x_train) L += l else: l, x= self.L(y_train, model.predict([virtual_input1, x_train, x_train_section]), x_train) L += l else: if len(x_train_section) == 0: l, x= self.L(y_train, model.predict([virtual_input1, x_train, x_train_student]), x_train) L += l else: l, x= self.L(y_train, model.predict([virtual_input1, x_train, x_train_section, x_train_student]), x_train) L += l N += len(x_train) return L, N def predict(self, x_test, y_test, x_test_section, x_test_student, model, batch_size=32): virtual_input_test = np.ones([np.shape(x_test)[0], np.shape(x_test)[1], 1]) if len(x_test_student)==0: if len(x_test_section)==0: y_pred = model.predict([virtual_input_test, x_test], batch_size=batch_size) else: y_pred = model.predict([virtual_input_test, x_test, x_test_section] , batch_size=batch_size) else: if len(x_test_section)==0: y_pred = model.predict([virtual_input_test, x_test, x_test_student], batch_size=batch_size) else: y_pred = model.predict([virtual_input_test, x_test, x_test_section, x_test_student] , batch_size=batch_size) rmse = self.rmse_masking(y_test, y_pred, x_test) return rmse def prediction(self, x_test, x_test_section, x_test_student, model, batch_size=32): virtual_input_test = np.ones([np.shape(x_test)[0], np.shape(x_test)[1], 1]) if len(x_test_student)==0: if len(x_test_section)==0: y_pred = model.predict([virtual_input_test, x_test], batch_size=batch_size) else: y_pred = model.predict([virtual_input_test, x_test, x_test_section] , batch_size=batch_size) else: if len(x_test_section)==0: y_pred = model.predict([virtual_input_test, x_test, x_test_student], batch_size=batch_size) else: y_pred = model.predict([virtual_input_test, x_test, x_test_section, x_test_student], batch_size=batch_size) return y_pred def predict_batches(self, dafmdata_obj, model): test_generator = dafmdata_obj.data_generator1("test") avg_rmse = 0 t_users = 0 for x_test, y_test, x_test_section, x_test_student, batch_size in test_generator: avg_rmse = avg_rmse + len(x_test)*self.predict(x_test, y_test, x_test_section, x_test_student, model, batch_size) t_users = t_users + len(x_test) return avg_rmse/float(t_users) def bce_loss_batches(self, dafmdata_obj, model, utype="train"): ll = [] test_generator = dafmdata_obj.data_generator1(utype) for x_test, y_test, x_test_section, x_test_student, batch_size in test_generator: virtual_input_test = np.ones([np.shape(x_test)[0], np.shape(x_test)[1], 1]) if len(x_test_student) == 0: if len(x_test_section) == 0: ll.extend(self.bce_loss(y_test, model.predict([virtual_input_test, x_test], batch_size=batch_size), x_test)) else: ll.extend(self.bce_loss(y_test, model.predict([virtual_input_test, x_test, x_test_section], batch_size=batch_size), x_test)) else: if len(x_test_section) == 0: ll.extend(self.bce_loss(y_test, model.predict([virtual_input_test, x_test, x_test_student], batch_size=batch_size), x_test)) else: ll.extend(self.bce_loss(y_test, model.predict([virtual_input_test, x_test, x_test_section, x_test_student], batch_size=batch_size), x_test)) return ll def bce_loss(self, y_true, y_pred, x_test): mask_matrix = np.sum(x_test, axis=2).flatten() num_users, max_responses = np.shape(x_test)[0], np.shape(x_test)[1] y_pred = y_pred.flatten() y_true = y_true.flatten() ll = [] response = 0 for user in range(num_users): log_loss = [] for i in range(user * max_responses, (user + 1) * max_responses): if mask_matrix[i] == 0 or y_true[i] == -1: break response += 1 eps = 1e-7 y_pred[i] = max(eps, min(1 - eps, y_pred[i])) log_loss.append( -( y_true[i] * np.log(y_pred[i]) + (1 - y_true[i]) * np.log(1 - y_pred[i]) ) ) ll.extend(log_loss) return ll def rmse_masking(self, y_true, y_pred, x_test): mask_matrix = np.sum(x_test, axis=2).flatten() num_users, max_responses = np.shape(x_test)[0], np.shape(x_test)[1] y_pred = y_pred.flatten() y_true = y_true.flatten() rmse = [] for user in range(num_users): diff_sq, response = 0, 0 for i in range(user * max_responses, (user + 1) * max_responses): if mask_matrix[i] == 0 or y_true[i] == -1: continue # continue for response level evaluation diff_sq += (y_true[i] - y_pred[i]) ** 2 response += 1 rmse.append(sqrt(diff_sq/float(response))) return np.mean(rmse) if __name__ == "__main__": x_train = [ [ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 0, 0] ], [ [1, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0] ], [ [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1] ], [ [1, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0] ] ] x_test = [ [ [ 1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1] ] ] y_test = [ [ [-1], [-1], [-1], [-1] ] ] y_train = [ [ [0], [0], [1], [-1] ], [ [1], [0], [1], [-1] ], [ [0], [0], [0], [0] ], [ [0], [1], [0], [0] ] ] Q_jk_initialize = np.random.rand(3,2) Q_jk_initialize = np.array([[1, 0], [0, 1], [1, 1]]) obj = DAFM(np.array(x_train), np.array(y_train), np.array(x_test), np.array(y_test), Q_jk_initialize, skills=2, steps=3) model = obj.build(qtrainable=False, finetuning=False, loaded=False, dftype="") obj.predict(np.array(x_test), np.array(y_test), model)
36549
import zengl from defaults import defaults from grid import grid_pipeline from window import Window window = Window(1280, 720) ctx = zengl.context() image = ctx.image(window.size, 'rgba8unorm', samples=4) depth = ctx.image(window.size, 'depth24plus', samples=4) image.clear_value = (0.2, 0.2, 0.2, 1.0) ctx.includes['defaults'] = defaults grid = grid_pipeline(ctx, [image, depth]) pipeline = ctx.pipeline( vertex_shader=''' #version 330 #include "defaults" vec3 vertices[24] = vec3[]( vec3(0.000000, 1.000000, -0.500000), vec3(0.000000, 1.000000, 0.500000), vec3(0.500000, 0.866025, -0.500000), vec3(0.500000, 0.866025, 0.500000), vec3(0.866025, 0.500000, -0.500000), vec3(0.866025, 0.500000, 0.500000), vec3(1.000000, -0.000000, -0.500000), vec3(1.000000, -0.000000, 0.500000), vec3(0.866025, -0.500000, -0.500000), vec3(0.866025, -0.500000, 0.500000), vec3(0.500000, -0.866025, -0.500000), vec3(0.500000, -0.866025, 0.500000), vec3(-0.000000, -1.000000, -0.500000), vec3(-0.000000, -1.000000, 0.500000), vec3(-0.500000, -0.866025, -0.500000), vec3(-0.500000, -0.866025, 0.500000), vec3(-0.866025, -0.500000, -0.500000), vec3(-0.866025, -0.500000, 0.500000), vec3(-1.000000, 0.000000, -0.500000), vec3(-1.000000, 0.000000, 0.500000), vec3(-0.866025, 0.500000, -0.500000), vec3(-0.866025, 0.500000, 0.500000), vec3(-0.500000, 0.866025, -0.500000), vec3(-0.500000, 0.866025, 0.500000) ); vec3 normals[14] = vec3[]( vec3(-0.0000, 1.0000, -0.0000), vec3(0.5000, 0.8660, -0.0000), vec3(0.8660, 0.5000, -0.0000), vec3(1.0000, -0.0000, -0.0000), vec3(0.8660, -0.5000, -0.0000), vec3(0.5000, -0.8660, -0.0000), vec3(-0.0000, -1.0000, -0.0000), vec3(-0.5000, -0.8660, -0.0000), vec3(-0.8660, -0.5000, -0.0000), vec3(-1.0000, -0.0000, -0.0000), vec3(-0.8660, 0.5000, -0.0000), vec3(-0.0000, -0.0000, 1.0000), vec3(-0.5000, 0.8660, -0.0000), vec3(-0.0000, -0.0000, -1.0000) ); vec2 texcoords[50] = vec2[]( vec2(1.000000, 0.500000), vec2(0.000000, 0.500000), vec2(0.750000, 0.490000), vec2(1.000000, 1.000000), vec2(0.250000, 0.490000), vec2(0.000000, 1.000000), vec2(0.916667, 0.500000), vec2(0.870000, 0.457846), vec2(0.916667, 1.000000), vec2(0.370000, 0.457846), vec2(0.833333, 0.500000), vec2(0.957846, 0.370000), vec2(0.833333, 1.000000), vec2(0.457846, 0.370000), vec2(0.750000, 0.500000), vec2(0.990000, 0.250000), vec2(0.750000, 1.000000), vec2(0.490000, 0.250000), vec2(0.666667, 0.500000), vec2(0.957846, 0.130000), vec2(0.666667, 1.000000), vec2(0.457846, 0.130000), vec2(0.583333, 0.500000), vec2(0.870000, 0.042154), vec2(0.583333, 1.000000), vec2(0.370000, 0.042154), vec2(0.500000, 0.500000), vec2(0.750000, 0.010000), vec2(0.500000, 1.000000), vec2(0.250000, 0.010000), vec2(0.416667, 0.500000), vec2(0.630000, 0.042154), vec2(0.416667, 1.000000), vec2(0.130000, 0.042154), vec2(0.333333, 0.500000), vec2(0.542154, 0.130000), vec2(0.333333, 1.000000), vec2(0.042154, 0.130000), vec2(0.250000, 0.500000), vec2(0.510000, 0.250000), vec2(0.250000, 1.000000), vec2(0.010000, 0.250000), vec2(0.166667, 0.500000), vec2(0.542154, 0.370000), vec2(0.042154, 0.370000), vec2(0.166667, 1.000000), vec2(0.083333, 0.500000), vec2(0.630000, 0.457846), vec2(0.130000, 0.457846), vec2(0.083333, 1.000000) ); int vertex_indices[132] = int[]( 1, 2, 0, 3, 4, 2, 5, 6, 4, 7, 8, 6, 9, 10, 8, 11, 12, 10, 13, 14, 12, 15, 16, 14, 17, 18, 16, 19, 20, 18, 21, 13, 5, 21, 22, 20, 23, 0, 22, 6, 14, 22, 1, 3, 2, 3, 5, 4, 5, 7, 6, 7, 9, 8, 9, 11, 10, 11, 13, 12, 13, 15, 14, 15, 17, 16, 17, 19, 18, 19, 21, 20, 5, 3, 1, 1, 23, 21, 21, 19, 17, 17, 15, 13, 13, 11, 9, 9, 7, 5, 5, 1, 21, 21, 17, 13, 13, 9, 5, 21, 23, 22, 23, 1, 0, 22, 0, 2, 2, 4, 6, 6, 8, 10, 10, 12, 14, 14, 16, 18, 18, 20, 22, 22, 2, 6, 6, 10, 14, 14, 18, 22 ); int normal_indices[132] = int[]( 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 11, 11, 11, 10, 12, 10, 12, 0, 12, 13, 13, 13, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 12, 12, 12, 0, 0, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 ); int texcoord_indices[132] = int[]( 3, 6, 0, 8, 10, 6, 12, 14, 10, 16, 18, 14, 20, 22, 18, 24, 26, 22, 28, 30, 26, 32, 34, 30, 36, 38, 34, 40, 42, 38, 44, 29, 13, 45, 46, 42, 49, 1, 46, 15, 31, 47, 3, 8, 6, 8, 12, 10, 12, 16, 14, 16, 20, 18, 20, 24, 22, 24, 28, 26, 28, 32, 30, 32, 36, 34, 36, 40, 38, 40, 45, 42, 13, 9, 4, 4, 48, 44, 44, 41, 37, 37, 33, 29, 29, 25, 21, 21, 17, 13, 13, 4, 44, 44, 37, 29, 29, 21, 13, 45, 49, 46, 49, 5, 1, 47, 2, 7, 7, 11, 15, 15, 19, 23, 23, 27, 31, 31, 35, 39, 39, 43, 47, 47, 7, 15, 15, 23, 31, 31, 39, 47 ); out vec3 v_vertex; out vec3 v_normal; out vec2 v_texcoord; void main() { v_vertex = vertices[vertex_indices[gl_VertexID]]; v_normal = normals[normal_indices[gl_VertexID]]; v_texcoord = texcoords[texcoord_indices[gl_VertexID]]; gl_Position = mvp * vec4(v_vertex, 1.0); } ''', fragment_shader=''' #version 330 #include "defaults" in vec3 v_normal; layout (location = 0) out vec4 out_color; void main() { float lum = dot(normalize(light.xyz), normalize(v_normal)) * 0.7 + 0.3; out_color = vec4(lum, lum, lum, 1.0); } ''', framebuffer=[image, depth], topology='triangles', cull_face='back', vertex_count=132, ) while window.update(): image.clear() depth.clear() grid.render() pipeline.render() image.blit()
36554
import behave @behave.when(u"I list triggers") def step_impl(context): context.trigger_list = context.service.triggers.list() @behave.then(u'I receive a Trigger list of "{count}" objects') def step_impl(context, count): assert context.trigger_list.items_count == int(count) if int(count) > 0: for page in context.trigger_list: for trigger in page: assert isinstance(trigger, context.dl.entities.Trigger) or \ isinstance(trigger, context.dl.entities.trigger.CronTrigger)
36568
import os from flask import current_app from flask import _app_ctx_stack as stack class ConfigWriter(object): def __init__(self, app=None, consul=None, vault=None): self.app = app self.consul = consul self.vault = vault if app is not None: self.init_app(app, consul, vault) def init_app(self, app, consul, vault): self.consul = consul self.vault = vault self.consul_prefix = app.config.get('CONSUL_PREFIX', 'cabotage') self.vault_prefix = app.config.get('VAULT_PREFIX', 'secret/cabotage') app.teardown_appcontext(self.teardown) def teardown(self, exception): pass def write_configuration(self, org_slug, project_slug, app_slug, configuration): version = configuration.version_id + 1 if configuration.version_id else 1 if configuration.secret: if self.vault is None: raise RuntimeError('No Vault extension configured!') config_key_name = (f'{self.vault_prefix}/automation' f'/{org_slug}/{project_slug}-{app_slug}/configuration/' f'{configuration.name}/{version}') build_key_name = (f'{self.vault_prefix}/buildtime' f'/{org_slug}/{project_slug}-{app_slug}/configuration/' f'{configuration.name}/{version}') storage = 'vault' self.vault.vault_connection.write( config_key_name, **{configuration.name: configuration.value}, ) if configuration.buildtime: self.vault.vault_connection.write( build_key_name, **{configuration.name: configuration.value}, ) else: if self.consul is None: raise RuntimeError('No Consul extension configured!') config_key_name = (f'{self.consul_prefix}' f'/{org_slug}/{project_slug}-{app_slug}/configuration/' f'{configuration.name}/{version}/{configuration.name}') build_key_name = config_key_name storage = 'consul' self.consul.consul_connection.kv.put(config_key_name, configuration.value) config_key_name = '/'.join(config_key_name.split('/')[:-1]) return { 'config_key_slug': f'{storage}:{config_key_name}', 'build_key_slug': f'{storage}:{build_key_name}', } def read(self, key_slug, build=False, secret=False): if secret: return self.vault.vault_connection.read(key_slug) return self.consul.consul_connection.read(key_slug)
36603
import discord import slash_util class SampleCog(slash_util.Cog): @slash_util.slash_command(guild_id=123) async def pog(self, ctx: slash_util.Context): await ctx.send("pog", ephemeral=True) @slash_util.message_command(guild_id=123) async def quote(self, ctx: slash_util.Context, message: discord.Message): # the `message` parameter is REQURIED for message commands await ctx.send(f"> {message.clean_content}\n- {message.author}") @slash_util.user_command(guild_id=123) async def bonk(self, ctx: slash_util.Context, user: discord.Member): await ctx.send(f"{ctx.author} bonks {user} :hammer:") def setup(bot): bot.add_cog(SampleCog(bot))
36652
import numpy as np import pytest from sklearn.dummy import DummyRegressor from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from hcrystalball.metrics import get_scorer from hcrystalball.model_selection import FinerTimeSplit from hcrystalball.model_selection import get_best_not_failing_model from hcrystalball.model_selection import select_model from hcrystalball.wrappers import ExponentialSmoothingWrapper from hcrystalball.wrappers import get_sklearn_wrapper @pytest.mark.parametrize( "train_data, grid_search, parallel_over_dict", [("two_regions", "", {"Region": "region_0"}), ("two_regions", "", None)], indirect=["train_data", "grid_search"], ) def test_select_model(train_data, grid_search, parallel_over_dict): _train_data = train_data if parallel_over_dict: col, value = list(parallel_over_dict.items())[0] _train_data = train_data[train_data[col] == value].drop(columns="Region") partition_columns = ["Region", "Product"] results = select_model( _train_data, target_col_name="Quantity", partition_columns=partition_columns, parallel_over_dict=parallel_over_dict, grid_search=grid_search, country_code_column="Holidays_code", ) if parallel_over_dict: partitions = ( train_data.loc[train_data[col] == value, partition_columns] .drop_duplicates() .to_dict(orient="records") ) else: partitions = train_data[partition_columns].drop_duplicates().to_dict(orient="records") assert len(results) == len(partitions) for result in results: assert result.best_model_name == "good_dummy" assert result.partition in partitions @pytest.mark.parametrize( "X_y_optional, negative_data, best_model_name, rank, expected_error", [ ("", False, "ExponentialSmoothingWrapper", 1, None), ("", True, "SklearnWrapper", 2, None), ("", True, "", 2, ValueError), ], indirect=["X_y_optional"], ) def test_get_best_not_failing_model(X_y_optional, negative_data, best_model_name, rank, expected_error): X, y = X_y_optional # data contains 0 y[y < 1] = 1 if negative_data: y[-1] = -1 models = [ ExponentialSmoothingWrapper(freq="D", seasonal="mul"), get_sklearn_wrapper(DummyRegressor, strategy="constant", constant=-1000), ] models = models if expected_error is None else models[:1] grid_search = GridSearchCV( estimator=Pipeline([("model", "passthrough")]), param_grid=[{"model": models}], scoring=get_scorer("neg_mean_absolute_error"), cv=FinerTimeSplit(n_splits=1, horizon=5), refit=False, error_score=np.nan, ) grid_search.fit(X, y) if expected_error: with pytest.raises(expected_error): get_best_not_failing_model(grid_search, X, y) else: best_param_rank = get_best_not_failing_model(grid_search, X, y) assert isinstance(best_param_rank, dict) assert best_param_rank["params"]["model"].__class__.__name__ == best_model_name assert best_param_rank["rank"] == rank
36659
import os, pickle import os.path as osp import numpy as np import cv2 import scipy.ndimage as nd import init_path from lib.dataset.get_dataset import get_dataset from lib.network.sgan import SGAN import torch from torch.utils.data import DataLoader import argparse from ipdb import set_trace import matplotlib.pyplot as plt from lib.utils import pyutils classes=['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--cfg_file", default=None, type=str) args = parser.parse_args() args = pyutils.read_yaml2cls(args.cfg_file) return args # mean pixel : in B-G-R channel order mean_pixel = np.array([104.008, 116.669, 122.675]) def preprocess(image, size): """ pre-process images with Opencv format""" image = np.array(image) H, W, _ = image.shape image = nd.zoom(image.astype('float32'), (size / H, size / W, 1.0), order=1) image = image - mean_pixel image = image.transpose([2, 0, 1]) image = np.expand_dims(image, axis=0) return torch.from_numpy(image) def generate_seed_with_ignore(localization): """ This function generate seed ignoring all the conflicts :param localization: (41, 41, 21) binary value :return: """ h, w, c = localization.shape assert (h == 41) & (w == 41) & (c == 21) # set_trace() # find conflict index sum_loc = np.sum(localization, axis=2) conflict_ind = np.where(sum_loc > 1) # set conflict position to 0 localization[conflict_ind[0], conflict_ind[1], :] = 0 # generate seed ind = np.where(localization) mask = np.ones(shape=(h, w), dtype=np.int) * 21 mask[ind[0], ind[1]] = ind[2] return mask def generate_seed_wo_ignore(localization, train_boat=False): """ This function generate seed with priority strategy :param localization: :return: """ h, w, c = localization.shape assert (h == 41) & (w == 41) & (c == 21) # generate background seed mask = np.ones((h, w), dtype=np.int) * 21 bg_ind = np.where(localization[:, :, 0]) mask[bg_ind[0], bg_ind[1]] = 0 # generate foreground seed in the order of their area area = np.sum(localization, axis=(0, 1)) cls_order = np.argsort(area)[::-1] # area in descending order for cls in cls_order: if area[cls] == 0: break ind = np.where(localization[:, :, cls]) mask[ind[0], ind[1]] = cls if train_boat: train_boat_ind = np.where(((mask == 4) | (mask == 19)) & (localization[:, :, 0] == 1)) mask[train_boat_ind] = 0 return mask def get_localization_cues_sec(att_maps, saliency, im_label, cam_thresh): """get localization cues with method in SEC paper perform hard thresholding for each foreground class Parameters ---------- att_maps: [41, 41, 20] saliency: [H, W] im_label: list of foreground classes cam_thresh: hard threshold to extract foreground class cues Return ------ seg_mask: [41, 41] """ h, w = att_maps.shape[:2] im_h, im_w = saliency.shape[:2] localization1 = np.zeros(shape=(h, w, 21)) for idx in im_label: # idx: aero=1 heat_map = att_maps[:, :, idx - 1] localization1[:, :, idx] = heat_map > cam_thresh * np.max(heat_map) # bg_cue = saliency.astype(np.float32) # bg_cue = bg_cue / 255 bg_cue = nd.zoom(saliency, (h / im_h, h / im_w), order=1) localization1[:, :, 0] = bg_cue < 0.06 # handle conflict seed if args.ignore_conflict: seg_mask = generate_seed_with_ignore(localization1) else: seg_mask = generate_seed_wo_ignore(localization1, train_boat=True) return seg_mask def get_localization_cues_dcsp(att_maps, saliency, im_label, bg_thresh): """get localization cues with method in DCSP paper compute harmonic mean for each foreground class Parameters ---------- att_maps: [41, 41, 20] saliency: [H, W] im_label: list of foreground classes cam_thresh: hard threshold to extract foreground class cues Return ------ seg_mask: [41, 41] """ h, w = att_maps.shape[:2] im_h, im_w = saliency.shape[:2] re_sal = nd.zoom(saliency, (h / im_h, w / im_w), order=1) localization1 = np.zeros(shape=(h, w, 20)) for idx in im_label: # idx: aero=1 localization1[:, :, idx - 1] = 2 / ((1 / (att_maps[:, :, idx - 1] + 1e-7)) + (1 / (re_sal + 1e-7))) hm_max = np.max(localization1, axis=2) seg_mask = np.argmax(localization1, axis=2) + 1 seg_mask[hm_max < bg_thresh] = 0 return seg_mask def filter_weight_dict(weight_dict, model_dict): # filter the parameters that exist in the pretrained model pretrained_dict = dict() for k, v in weight_dict.items(): # keep compatable with the previous version of network definition if "conv" in k and "backbone" not in k: k = "backbone." + k if k in model_dict: pretrained_dict[k] = v model_dict.update(pretrained_dict) return model_dict if __name__ == '__main__': args = parse_args() device = torch.device("cuda:0") # input and output im_tags = pickle.load(open(args.cue_file, "rb")) if not osp.exists(args.res_path): os.mkdir(args.res_path) _, test_dataset = get_dataset(args.dataset_name, args) batch_size = 8 test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=8) # load net and trained weights model = SGAN(backbone_name=args.backbone) weight_dict = torch.load(osp.join(args.save_model_path, args.cfg_name, "model_iter_" + str(args.max_iter) + ".pth")) model_dict = filter_weight_dict(weight_dict, model.state_dict()) model.load_state_dict(model_dict) model = model.to(device) model.eval() save_path = osp.join(args.res_path, args.cfg_name + args.test_cfg) if not osp.exists(save_path): os.makedirs(save_path) # compute class activation map with torch.no_grad(): for num, pack in enumerate(test_loader): names, imgs, labels = pack[0], pack[1].to(device, dtype=torch.float32), \ pack[2].numpy() fg_sim = pack[3].to(device, dtype=torch.float32) bg_sim = pack[4].to(device, dtype=torch.float32) sizes = pack[6].to("cpu").numpy() if args.combine_seedseg: _, segs, cams = model.forward_cam(imgs, fg_sim, bg_sim) cams = cams + segs # cams = segs else: _, _, cams = model.forward_cam(imgs, fg_sim, bg_sim) np_cams = np.transpose(cams.cpu().numpy(), (0, 2, 3, 1)) _, h, w, c = np_cams.shape for k, name in enumerate(names): # get output cam im_label = im_tags[name] im_h, im_w = sizes[k] np_cam = np_cams[k] # get saliency bg_cue = cv2.imread(osp.join(args.dataset_root, "sal", args.sdnet_path, name + ".png"), cv2.IMREAD_GRAYSCALE) bg_cue = bg_cue.astype(np.float32) bg_cue = bg_cue / 255 seg_mask = get_localization_cues_sec(np_cam, bg_cue, im_label, args.cam_thresh) # save mask write_mask = nd.zoom(seg_mask, (im_h / h, im_w / w), order=0) cv2.imwrite(osp.join(save_path, name + ".png"), write_mask)
36682
class Solution: def divisorGame(self, N: int) -> bool: return True if N % 2 == 0 else False
36745
import sys import signal from clint.textui import colored, puts from downloader import Downloader from extractor import Extractor signal.signal(signal.SIGINT, lambda x, y: sys.exit(0)) def main(): downloader = Downloader() extractor = Extractor() url = "https://pornhub.com" puts(colored.green("getting video keys.")) main_page = downloader.get(url) view_keys = extractor.get_viewkeys(main_page) puts(colored.green("starting to download videos.")) for key in view_keys: puts(colored.green("getting video information.")) absolute_url = "https://pornhub.com/view_video.php?viewkey=" + key page = downloader.get(absolute_url) info = extractor.get_video_info(page) if info is None: continue hd_quality = info['mediaDefinitions'][0] puts(colored.green("downloading video %s." % info['video_title'])) downloader.save_file(hd_quality["videoUrl"], info['video_title'] + ".mp4") if __name__ == "__main__": main()
36769
from .. import DomainAdaptationDataset, SimpleDataset SolV4folders = [ "/fast-2/datasets/Solv4_strings_wav/audio/Cello", "/fast-2/datasets/Solv4_strings_wav/audio/Contrabass", "/fast-2/datasets/Solv4_strings_wav/audio/Violin", "/fast-2/datasets/Solv4_strings_wav/audio/Viola" ] def Solv4Strings_DomainAdaptation(out_database_location, preprocess_function): return DomainAdaptationDataset(out_database_location, SolV4folders, preprocess_function, "*.wav", 1e11) def Solv4Strings_Simple(out_database_location, preprocess_function): return SimpleDataset(out_database_location, SolV4folders, preprocess_function, "*.wav", 1e11)
36782
import pp def test_mzi(): netlist = """ instances: CP1: component: mmi1x2 settings: width_mmi: 4.5 length_mmi: 10 CP2: component: mmi1x2 settings: width_mmi: 4.5 length_mmi: 5 arm_top: component: mzi_arm arm_bot: component: mzi_arm placements: arm_bot: mirror: [0,0,0,10] ports: W0: CP1,W0 E0: CP2,W0 connections: arm_bot,W0: CP1,E0 arm_top,W0: CP1,E1 CP2,E0: arm_bot,E0 CP2,E1: arm_top,E0 """ return pp.component_from_yaml(netlist) if __name__ == "__main__": c = test_mzi() pp.show(c) pp.plotgds(c)
36809
from typing import List, Literal, Optional, Sequence from pydantic import Field, root_validator, validator from pydantic.main import BaseModel from weaverbird.pipeline.steps.utils.base import BaseStep from weaverbird.pipeline.steps.utils.render_variables import StepWithVariablesMixin from weaverbird.pipeline.steps.utils.validation import validate_unique_columns from weaverbird.pipeline.types import ColumnName, PopulatedWithFieldnames, TemplatedVariable AggregateFn = Literal[ 'avg', 'sum', 'min', 'max', 'count', 'count distinct', 'first', 'last', 'count distinct including empty', ] class Aggregation(BaseModel): class Config(PopulatedWithFieldnames): ... new_columns: List[ColumnName] = Field(alias='newcolumns') agg_function: AggregateFn = Field(alias='aggfunction') columns: List[ColumnName] @validator('columns', pre=True) def validate_unique_columns(cls, value): return validate_unique_columns(value) @root_validator(pre=True) def handle_legacy_syntax(cls, values): if 'column' in values: values['columns'] = [values.pop('column')] if 'newcolumn' in values: values['new_columns'] = [values.pop('newcolumn')] return values class AggregateStep(BaseStep): name = Field('aggregate', const=True) on: List[ColumnName] = [] aggregations: Sequence[Aggregation] keep_original_granularity: Optional[bool] = Field( default=False, alias='keepOriginalGranularity' ) class Config(PopulatedWithFieldnames): ... class AggregationWithVariables(Aggregation): class Config(PopulatedWithFieldnames): ... new_columns: List[TemplatedVariable] = Field(alias='newcolumns') agg_function: TemplatedVariable = Field(alias='aggfunction') columns: List[TemplatedVariable] class AggregateStepWithVariables(AggregateStep, StepWithVariablesMixin): aggregations: Sequence[AggregationWithVariables]
36845
track = dict( author_username='alexisbcook', course_name='Data Cleaning', course_url='https://www.kaggle.com/learn/data-cleaning', course_forum_url='https://www.kaggle.com/learn-forum/172650' ) lessons = [ {'topic': topic_name} for topic_name in ['Handling missing values', #1 'Scaling and normalization', #2 'Parsing dates', #3 'Character encodings', #4 'Inconsistent data entry'] #5 ] notebooks = [ dict( filename='tut1.ipynb', lesson_idx=0, type='tutorial', dataset_sources=['maxhorowitz/nflplaybyplay2009to2016'], ), dict( filename='ex1.ipynb', lesson_idx=0, type='exercise', dataset_sources=['aparnashastry/building-permit-applications-data'], scriptid=10824396 ), dict( filename='tut2.ipynb', lesson_idx=1, type='tutorial', ), dict( filename='ex2.ipynb', lesson_idx=1, type='exercise', dataset_sources=['kemical/kickstarter-projects'], scriptid=10824404 ), dict( filename='tut3.ipynb', lesson_idx=2, type='tutorial', dataset_sources=['nasa/landslide-events'] ), dict( filename='ex3.ipynb', lesson_idx=2, type='exercise', dataset_sources=['usgs/earthquake-database', 'smithsonian/volcanic-eruptions'], scriptid=10824403 ), dict( filename='tut4.ipynb', lesson_idx=3, type='tutorial', dataset_sources=['kemical/kickstarter-projects'] ), dict( filename='ex4.ipynb', lesson_idx=3, type='exercise', dataset_sources=['kwullum/fatal-police-shootings-in-the-us'], scriptid=10824401 ), dict( filename='tut5.ipynb', lesson_idx=4, type='tutorial', dataset_sources=['alexisbcook/pakistan-intellectual-capital'] ), dict( filename='ex5.ipynb', lesson_idx=4, type='exercise', dataset_sources=['alexisbcook/pakistan-intellectual-capital'], scriptid=10824407 ), ]
36950
import json try: import cPickle as pickle except: import pickle def save_json(data, file_path): with open(file_path, "w") as f: json.dump(data, f) def save_json_pretty(data, file_path): """save formatted json, use this one for some json config files""" with open(file_path, "w") as f: f.write(json.dumps(data, indent=4, sort_keys=True)) def load_json(file_path): with open(file_path, "r") as f: return json.load(f) def save_pickle(data, data_path, highest=False): protocol = 2 if highest else 0 with open(data_path, "w") as f: pickle.dump(data, f, protocol=protocol) def load_pickle(pickle_file): try: with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) except UnicodeDecodeError as e: with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f, encoding='latin1') except Exception as e: print('Unable to load data ', pickle_file, ':', e) raise return pickle_data def flat_list_of_lists(l): """flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]""" return [item for sublist in l for item in sublist] def merge_dicts(list_dicts): merged_dict = list_dicts[0].copy() for i in range(1, len(list_dicts)): merged_dict.update(list_dicts[i]) return merged_dict
36982
class Solution: def singleNumber(self, nums): """ :type nums: List[int] :rtype: int """ k = 0 for n in nums: k ^= n return k
36987
import tkinter as tk import tkinter.ttk as ttk from .pixel_canvas import PixelCanvas class DemoWindow(ttk.Frame): def __init__(self, master, model_wrapper, canvas_size=50, window_size=28, refresh_period=50, test_image=None, **kw): ttk.Frame.__init__(self, master=master, **kw) self.master = master self.model_wrapper = model_wrapper self.canvas_size = canvas_size self.window_size = window_size self.refresh_period = refresh_period self._create_interface() if test_image is not None: self.cnv_orig.set_image(test_image) self.columnconfigure(0, weight=410, minsize=215) self.columnconfigure(1, weight=410, minsize=210) self.columnconfigure(2, weight=140, minsize=65) self.rowconfigure(0, weight=0, minsize=50) self.rowconfigure(1, weight=1, minsize=220) self.rowconfigure(2, weight=0, minsize=0) self.master.after(50, lambda: master.focus_force()) self.master.after(100, self._reconstruct_image) def _create_interface(self): self.frm_controls = ttk.Frame(self, padding=(10, 15, 10, 10)) self.frm_controls.grid(row=0, column=0, columnspan=3, sticky=(tk.N, tk.S, tk.W, tk.E)) self.lbl_draw_mode = ttk.Label(self.frm_controls, text="Drawing Mode:") self.lbl_line_width = ttk.Label(self.frm_controls, text="Line Width:") self.lbl_refresh_rate = ttk.Label(self.frm_controls, text="Refresh (ms):") self.var_draw_mode = tk.IntVar(value=1) self.rad_draw = ttk.Radiobutton(self.frm_controls, text="Draw", variable=self.var_draw_mode, value=1) self.rad_erase = ttk.Radiobutton(self.frm_controls, text="Erase", variable=self.var_draw_mode, value=0) self.btn_clear = ttk.Button( self.frm_controls, text="Clear Image", command=lambda: self.cnv_orig.clear_image() ) self.var_width = tk.StringVar(self.frm_controls) self.spn_width = tk.Spinbox( self.frm_controls, values=(1, 2, 3, 4, 5), width=10, state="readonly", textvariable=self.var_width ) self.var_rate = tk.StringVar(self.frm_controls) self.spn_rate = tk.Spinbox( self.frm_controls, values=(10, 20, 50, 100, 200, 500, 1000), width=10, state="readonly", textvariable=self.var_rate ) self.var_bbox = tk.IntVar(value=1) self.cbx_bbox = ttk.Checkbutton(self.frm_controls, text="Bounding Boxes", variable=self.var_bbox) self.lbl_draw_mode.grid(row=0, column=0, columnspan=2, sticky=(tk.N, tk.W)) self.lbl_line_width.grid(row=0, column=3, sticky=(tk.N, tk.W)) self.lbl_refresh_rate.grid(row=0, column=4, sticky=(tk.N, tk.W)) self.rad_draw.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.rad_erase.grid(row=1, column=1, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.btn_clear.grid(row=1, column=2, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.spn_width.grid(row=1, column=3, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.spn_rate.grid(row=1, column=4, sticky=(tk.N, tk.S, tk.W, tk.E), padx=(0, 20)) self.cbx_bbox.grid(row=1, column=5, sticky=(tk.N, tk.S, tk.W, tk.E)) self.var_draw_mode.trace("w", lambda *_: self._set_draw_mode(self.var_draw_mode.get() == 1)) self.var_width.trace("w", lambda *_: self.cnv_orig.set_line_width(int(self.var_width.get()))) self.var_rate.trace("w", lambda *_: self._set_refresh_period(int(self.var_rate.get()))) self.var_bbox.trace("w", lambda *_: self._set_bbox_visibility(self.var_bbox.get() == 1)) self.frm_canvas_orig = ttk.Frame(self, padding=(10, 10, 5, 10)) self.frm_canvas_orig.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_orig.columnconfigure(0, weight=1, minsize=200) self.frm_canvas_orig.rowconfigure(0, weight=0, minsize=20) self.frm_canvas_orig.rowconfigure(1, weight=1, minsize=200) self.lbl_orig = ttk.Label(self.frm_canvas_orig, text="Original Image (draw here):") self.cnv_orig = PixelCanvas( self.frm_canvas_orig, self.canvas_size, self.canvas_size, drawable=True, highlightthickness=0, borderwidth=0, width=400, height=400 ) self.lbl_orig.grid(row=0, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_orig.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_rec = ttk.Frame(self, padding=(5, 10, 5, 10)) self.frm_canvas_rec.grid(row=1, column=1, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_rec.columnconfigure(0, weight=1, minsize=200) self.frm_canvas_rec.rowconfigure(0, weight=0, minsize=20) self.frm_canvas_rec.rowconfigure(1, weight=1, minsize=200) self.lbl_rec = ttk.Label(self.frm_canvas_rec, text="Reconstructed Image:") self.cnv_rec = PixelCanvas( self.frm_canvas_rec, self.canvas_size, self.canvas_size, drawable=False, highlightthickness=0, borderwidth=0, width=400, height=400 ) self.lbl_rec.grid(row=0, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_rec.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_windows = ttk.Frame(self, padding=(0, 0, 0, 0)) self.frm_windows.grid(row=1, column=2, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_windows.columnconfigure(0, weight=1) self.frm_canvas_win, self.lbl_win, self.cnv_win = [], [], [] for i in range(3): self.frm_windows.rowconfigure(i, weight=1) frm_canvas_win = ttk.Frame( self.frm_windows, padding=(5, 10 if i == 0 else 0, 10, 10 if i == 2 else 0) ) frm_canvas_win.grid(row=i, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) frm_canvas_win.columnconfigure(0, weight=1, minsize=50) frm_canvas_win.rowconfigure(0, weight=0, minsize=20) frm_canvas_win.rowconfigure(1, weight=1, minsize=50) lbl_win = ttk.Label( frm_canvas_win, text="VAE Rec. #{0}:".format(i+1) ) cnv_win = PixelCanvas( frm_canvas_win, self.window_size, self.window_size, drawable=False, highlightthickness=0, borderwidth=0, width=120, height=120 ) lbl_win.grid(row=0, column=0, sticky=(tk.S, tk.W)) cnv_win.grid(row=1, column=0, sticky=(tk.N, tk.S, tk.W, tk.E)) self.frm_canvas_win.append(frm_canvas_win) self.lbl_win.append(lbl_win) self.cnv_win.append(cnv_win) self.lbl_status = ttk.Label(self, borderwidth=1, relief="sunken", padding=(5, 2)) self.lbl_status.grid(row=2, column=0, columnspan=3, sticky=(tk.N, tk.S, tk.W, tk.E)) self.cnv_orig.bind("<Button-2>", lambda *_: self.cnv_orig.clear_image()) self.cnv_orig.bind("<Button-3>", lambda *_: self.cnv_orig.clear_image()) self.var_draw_mode.set(1) self.var_width.set("3") self.var_rate.set("50") self.var_bbox.set(1) def _reconstruct_image(self): dig, pos, rec, win, lat, loss = self.model_wrapper.infer( [self.cnv_orig.get_image()] ) self.cnv_rec.set_image(rec[0]) self.cnv_rec.set_bbox_positions(pos[0]) self.cnv_orig.set_bbox_positions(pos[0]) for i in range(len(self.cnv_win)): if i < len(win[0]): self.cnv_win[i].set_image(win[0][i]) self.cnv_win[i].set_bbox_positions( [[0.0, -2.0, -2.0]] * i + [[0.99, 0.0, 0.0]] ) else: self.cnv_win[i].clear_image() self.cnv_win[i].set_bbox_positions([]) self.lbl_status.configure( text="Reconstruction loss (negative log-likelihood): {0:.3f}".format( abs(loss[0]) ) ) self.master.after(self.refresh_period, self._reconstruct_image) def _set_refresh_period(self, value): self.refresh_period = value def _set_bbox_visibility(self, visible): self.cnv_orig.set_bbox_visibility(visible) self.cnv_rec.set_bbox_visibility(visible) def _set_draw_mode(self, draw): self.cnv_orig.set_erasing_mode(not draw) self.cnv_orig.config(cursor=("cross" if draw else "icon"))
37009
import os try: from xdebug.unittesting import XdebugDeferrableTestCase except: from SublimeTextXdebug.xdebug.unittesting import XdebugDeferrableTestCase class TestBreakpointStep(XdebugDeferrableTestCase): breakpoint_step_file = 'breakpoint_step.php' breakpoint_step_file_local_path = os.path.join(XdebugDeferrableTestCase.local_path, breakpoint_step_file) def test_step_into(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 11) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 11'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = <uninitialized>') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:11, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_into'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = <uninitialized>') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:4, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_into'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = (string) Hi') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:5, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) def test_step_out(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 5) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 5'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = (string) Hi') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:5, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_out'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = (string) Hello Stranger!') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:12, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) def test_step_over(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 11) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 11'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = <uninitialized>') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:11, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_over'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = (string) Hello Stranger!') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:12, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file))
37014
from unittest import TestCase from parameterized import parameterized from tests.test_utils import mock_request_handler from web.web_auth_utils import remove_webpack_suffixes, is_allowed_during_login class WebpackSuffixesTest(TestCase): def test_remove_webpack_suffixes_when_css(self): normalized = remove_webpack_suffixes('js/chunk-login-vendors.59040343.css') self.assertEqual('js/chunk-login-vendors.css', normalized) def test_remove_webpack_suffixes_when_js(self): normalized = remove_webpack_suffixes('js/login.be16f278.js') self.assertEqual('js/login.js', normalized) def test_remove_webpack_suffixes_when_js_map(self): normalized = remove_webpack_suffixes('js/login.be16f278.js.map') self.assertEqual('js/login.js.map', normalized) def test_remove_webpack_suffixes_when_favicon(self): normalized = remove_webpack_suffixes('favicon.123.ico') self.assertEqual('favicon.123.ico', normalized) def test_remove_webpack_suffixes_when_no_suffixes(self): normalized = remove_webpack_suffixes('css/chunk-login-vendors.css') self.assertEqual('css/chunk-login-vendors.css', normalized) def test_remove_webpack_suffixes_when_no_extension(self): normalized = remove_webpack_suffixes('data/some_file') self.assertEqual('data/some_file', normalized) class LoginResourcesTest(TestCase): @parameterized.expand([ ('/favicon.ico'), ('login.html'), ('/js/login.be16f278.js'), ('/js/login.be16f278.js.map'), ('/js/chunk-login-vendors.18e22e7f.js'), ('/js/chunk-login-vendors.18e22e7f.js.map'), ('/img/titleBackground_login.a6c36d4c.jpg'), ('/css/login.8e74be0f.css'), ('/fonts/roboto-latin-400.60fa3c06.woff'), ('/fonts/roboto-latin-400.479970ff.woff2'), ('/fonts/roboto-latin-500.020c97dc.woff2'), ('/fonts/roboto-latin-500.87284894.woff') ]) def test_is_allowed_during_login_when_allowed(self, resource): request_handler = mock_request_handler(method='GET') allowed = is_allowed_during_login(resource, 'login.html', request_handler) self.assertTrue(allowed, 'Resource ' + resource + ' should be allowed, but was not') def test_is_allowed_during_login_when_prohibited(self): request_handler = mock_request_handler(method='GET') resource = 'admin.html' allowed = is_allowed_during_login(resource, 'login.html', request_handler) self.assertFalse(allowed, 'Resource ' + resource + ' should NOT be allowed, but WAS')
37061
from instauto.api.client import ApiClient from instauto.helpers.post import unlike_post client = ApiClient.initiate_from_file('.instauto.save') unlike_post(client, "media_id")
37074
from pygsti.report.table import ReportTable from ..util import BaseCase class TableInstanceTester(BaseCase): custom_headings = { 'html': 'test', 'python': 'test', 'latex': 'test' } def setUp(self): self.table = ReportTable(self.custom_headings, ['Normal'] * 4) # Four formats def test_element_accessors(self): self.table.add_row(['1.0'], ['Normal']) self.assertTrue('1.0' in self.table) self.assertEqual(len(self.table), self.table.num_rows) row_by_key = self.table.row(key=self.table.row_names[0]) row_by_idx = self.table.row(index=0) self.assertEqual(row_by_key, row_by_idx) col_by_key = self.table.col(key=self.table.col_names[0]) col_by_idx = self.table.col(index=0) self.assertEqual(col_by_key, col_by_idx) def test_to_string(self): s = str(self.table) # TODO assert correctness def test_render_HTML(self): self.table.add_row(['1.0'], ['Normal']) self.table.add_row(['1.0'], ['Normal']) render = self.table.render('html') # TODO assert correctness def test_render_LaTeX(self): self.table.add_row(['1.0'], ['Normal']) self.table.add_row(['1.0'], ['Normal']) render = self.table.render('latex') # TODO assert correctness def test_finish(self): self.table.add_row(['1.0'], ['Normal']) self.table.finish() # TODO assert correctness def test_render_raises_on_unknown_format(self): with self.assertRaises(NotImplementedError): self.table.render('foobar') def test_raise_on_invalid_accessor(self): # XXX are these neccessary? EGN: maybe not - checks invalid inputs, which maybe shouldn't need testing? with self.assertRaises(KeyError): self.table['foobar'] with self.assertRaises(KeyError): self.table.row(key='foobar') # invalid key with self.assertRaises(ValueError): self.table.row(index=100000) # out of bounds with self.assertRaises(ValueError): self.table.row() # must specify key or index with self.assertRaises(ValueError): self.table.row(key='foobar', index=1) # cannot specify key and index with self.assertRaises(KeyError): self.table.col(key='foobar') # invalid key with self.assertRaises(ValueError): self.table.col(index=100000) # out of bounds with self.assertRaises(ValueError): self.table.col() # must specify key or index with self.assertRaises(ValueError): self.table.col(key='foobar', index=1) # cannot specify key and index class CustomHeadingTableTester(TableInstanceTester): def setUp(self): self.table = ReportTable([0.1], ['Normal'], self.custom_headings) def test_labels(self): self.table.add_row(['1.0'], ['Normal']) self.assertTrue('1.0' in self.table) rowLabels = list(self.table.keys()) self.assertEqual(rowLabels, self.table.row_names) self.assertEqual(len(rowLabels), self.table.num_rows) self.assertTrue(rowLabels[0] in self.table) row1Data = self.table[rowLabels[0]] colLabels = list(row1Data.keys()) self.assertEqual(colLabels, self.table.col_names) self.assertEqual(len(colLabels), self.table.num_cols) class CustomHeadingNoFormatTableTester(TableInstanceTester): def setUp(self): self.table = ReportTable(self.custom_headings, None)
37078
from keras.models import Model from keras.layers import Input from keras.layers.core import Activation from keras.layers.convolutional import Conv3D, Deconv3D from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization def generator(phase_train=True, params={'z_size':200, 'strides':(2,2,2), 'kernel_size':(4,4,4)}): """ Returns a Generator Model with input params and phase_train Args: phase_train (boolean): training phase or not params (dict): Dictionary with model parameters Returns: model (keras.Model): Keras Generator model """ z_size = params['z_size'] strides = params['strides'] kernel_size = params['kernel_size'] inputs = Input(shape=(1, 1, 1, z_size)) g1 = Deconv3D(filters=512, kernel_size=kernel_size, strides=(1, 1, 1), kernel_initializer='glorot_normal', bias_initializer='zeros', padding='valid')(inputs) g1 = BatchNormalization()(g1, training=phase_train) g1 = Activation(activation='relu')(g1) g2 = Deconv3D(filters=256, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(g1) g2 = BatchNormalization()(g2, training=phase_train) g2 = Activation(activation='relu')(g2) g3 = Deconv3D(filters=128, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(g2) g3 = BatchNormalization()(g3, training=phase_train) g3 = Activation(activation='relu')(g3) g4 = Deconv3D(filters=64, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(g3) g4 = BatchNormalization()(g4, training=phase_train) g4 = Activation(activation='relu')(g4) g5 = Deconv3D(filters=1, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(g4) g5 = BatchNormalization()(g5, training=phase_train) g5 = Activation(activation='sigmoid')(g5) model = Model(inputs=inputs, outputs=g5) model.summary() return model def discriminator(phase_train = True, params={'cube_len':64, 'strides':(2,2,2), 'kernel_size':(4,4,4), 'leak_value':0.2}): """ Returns a Discriminator Model with input params and phase_train Args: phase_train (boolean): training phase or not params (dict): Dictionary with model parameters Returns: model (keras.Model): Keras Discriminator model """ cube_len = params['cube_len'] strides = params['strides'] kernel_size = params['kernel_size'] leak_value = params['leak_value'] inputs = Input(shape=(cube_len, cube_len, cube_len, 1)) d1 = Conv3D(filters=64, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(inputs) d1 = BatchNormalization()(d1, training=phase_train) d1 = LeakyReLU(leak_value)(d1) d2 = Conv3D(filters=128, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(d1) d2 = BatchNormalization()(d2, training=phase_train) d2 = LeakyReLU(leak_value)(d2) d3 = Conv3D(filters=256, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(d2) d3 = BatchNormalization()(d3, training=phase_train) d3 = LeakyReLU(leak_value)(d3) d4 = Conv3D(filters=512, kernel_size=kernel_size, strides=strides, kernel_initializer='glorot_normal', bias_initializer='zeros', padding='same')(d3) d4 = BatchNormalization()(d4, training=phase_train) d4 = LeakyReLU(leak_value)(d4) d5 = Conv3D(filters=1, kernel_size=kernel_size, strides=(1, 1, 1), kernel_initializer='glorot_normal', bias_initializer='zeros', padding='valid')(d4) d5 = BatchNormalization()(d5, training=phase_train) d5 = Activation(activation='sigmoid')(d5) model = Model(inputs=inputs, outputs=d5) model.summary() return model
37102
import logging import os from typing import Generic, List, Type, Any import torch import torch.nn as nn from ..downloading.downloading_utils import from_cache from ..featurization.featurization_api import T_BatchEncoding, T_Config, PretrainedFeaturizerMixin class PretrainedModelBase(nn.Module, Generic[T_BatchEncoding, T_Config]): def __init__(self, config: T_Config): super().__init__() self.config = config def forward(self, batch: T_BatchEncoding): raise NotImplementedError @classmethod def _get_archive_dict(cls) -> dict: raise NotImplementedError @classmethod def get_config_cls(cls) -> Type[T_Config]: raise NotImplementedError @classmethod def get_featurizer_cls(cls) -> Type[PretrainedFeaturizerMixin[Any, T_BatchEncoding, T_Config]]: raise NotImplementedError @classmethod def from_pretrained(cls, pretrained_name: str, *, excluded: List[str] = None, config: T_Config = None) -> "PretrainedModelBase[T_BatchEncoding, T_Config]": archive_dict = cls._get_archive_dict() file_path = from_cache(pretrained_name, archive_dict, 'pt') if not file_path: file_path = os.path.expanduser(pretrained_name) if not os.path.exists(file_path): raise FileNotFoundError(file_path) if not config: raise AttributeError('Set \'config\' attribute when using local path to weights.') if not config: config_cls = cls.get_config_cls() config = config_cls.from_pretrained(pretrained_name) model = cls(config) model.load_weights(file_path, excluded=excluded) return model def init_weights(self, init_type: str): for p in self.parameters(): if p.dim() > 1: if init_type == 'uniform': nn.init.xavier_uniform_(p) elif init_type == 'normal': nn.init.xavier_normal_(p) else: raise NotImplementedError() def _remove_excluded(self, dictionary: dict, *, excluded: List[str] = None): excluded = excluded if excluded else [] return {k: v for k, v in dictionary.items() if all(k.split('.')[0] != p for p in excluded)} def load_weights(self, file_path: str, *, excluded: List[str] = None): state_dict = torch.load(file_path, map_location='cpu') state_dict = self._remove_excluded(state_dict, excluded=excluded) result = self.load_state_dict(state_dict, strict=False) if len(result.missing_keys) > 0: logging.info(f'Missing keys when loading: {result.missing_keys}') if len(result.unexpected_keys) > 0: logging.warning(f'Unexpected keys when loading: {result.unexpected_keys}') def save_weights(self, file_path: str, *, excluded: List[str] = None): state_dict = self.state_dict() state_dict = self._remove_excluded(state_dict, excluded=excluded) torch.save(state_dict, file_path)
37114
import pytest from django.urls import reverse class TestImageUpload: @pytest.mark.django_db def test_upload_image_not_authenticated(self, client, small_jpeg_io): upload_url = reverse("cast:api:upload_image") small_jpeg_io.seek(0) r = client.post(upload_url, {"original": small_jpeg_io}) # redirect to login assert r.status_code == 302 @pytest.mark.django_db def test_upload_image_authenticated(self, client, user, small_jpeg_io): # login r = client.login(username=user.username, password=<PASSWORD>) # upload upload_url = reverse("cast:api:upload_image") small_jpeg_io.seek(0) r = client.post(upload_url, {"original": small_jpeg_io}) assert r.status_code == 201 assert int(r.content.decode("utf-8")) > 0
37168
import logging l = logging.getLogger("archr.analyzers.datascout") from ..errors import ArchrError from . import Analyzer # Keystone engine 0.9.2 (incorrectly) defaults to radix 16. so we'd better off only using 0x-prefixed integers from now. # See the related PR: https://github.com/keystone-engine/keystone/pull/382 # and the related issue: https://github.com/keystone-engine/keystone/issues/436 class DataScoutAnalyzer(Analyzer): """ Grabs the environment and auxiliary vector from the target. """ REQUIRED_IMPLANT = "shellphish_qemu" def __init__(self, target, analyzer=None): super().__init__(target) self.env = None self.argv = None self.auxv = None self.map = None self.analyzer = analyzer def _pushstr(self, s): """ push a string onto stack """ def _cutstr(bits, little=True): w = bits // 8 # word size byte_order = -1 if little else 1 n = ["0"] + [s[i:i + w].ljust(w, "\0")[::byte_order].encode('utf-8').hex() for i in range(0, len(s), w)][::-1] return n if self.target.target_arch == 'x86_64': elems = _cutstr(64) return "".join("mov rax, 0x%s; push rax; " % word for word in elems) elif self.target.target_arch == 'i386': elems = _cutstr(32) return "".join("mov eax, 0x%s; push eax; " % word for word in elems) elif self.target.target_arch in ('mips', 'mipsel'): elems = _cutstr(32, little=self.target.target_arch != 'mips') return "".join("li $t0, 0x%s; addi $sp, $sp, -4; sw $t0, 0($sp);" % word for word in elems) elif self.target.target_arch == 'arm': elems = _cutstr(32) return "".join(f"movw r0, #0x{word} & 0xffff; movt r0, #0x{word} >> 16; push {{r0}};" for word in elems) else: raise NotImplementedError() def read_file_shellcode(self, filename): """ shellcode to read the content of a file """ if self.target.target_arch == 'x86_64': return ( self._pushstr(filename) + "mov rdi, rsp; xor rsi, rsi; xor rdx, rdx; mov rax, 2; syscall;" + # fd = open(path, O_RDONLY, 0) "mov r12, rax; sub rsp, 0x1000;" + # alloca 0x1000 "loop_head:" + "xor rax, rax; mov rdi, r12; mov rsi, rsp; mov rdx, 0x1000; syscall;" + # n = read(fd, rsp, 0x1000) "mov r13, rax;" + # save n "mov rax, 1; mov rdi, 1; mov rsi, rsp; mov rdx, r13; syscall;" + # write(1, rsp, n) "test r13, r13; jnz loop_head;" # loop untill we are done with the file ) elif self.target.target_arch == 'i386': return ( self._pushstr(filename) + "mov ebx, esp; xor ecx, ecx; xor edx, edx; mov eax, 5; int 0x80;" + # n = open(path, O_RDONLY, 0) "mov esi, eax; sub esp, 0x1000;" + # alloca 0x1000, fd = esi "loop_head:" + "mov eax, 3; mov ebx, esi; mov ecx, esp; mov edx, 0x1000; int 0x80;" + # n = read(fd, rsp, 0x1000) "mov edi, eax;"+ # save n "mov eax, 4; mov ebx, 1; mov ecx, esp; mov edx, edi; int 0x80;" + # write(1, rsp, n) "test edi, edi; jnz loop_head;" # loop untill we are done with the file ) elif self.target.target_arch in ('mips', 'mipsel'): return ( self._pushstr(filename) + "move $a0, $sp; xor $a1, $a1, $a1; xor $a2, $a2, $a2; li $v0, 0xfa5; syscall;" + # n = open(path, O_RDONLY, 0) "move $s0, $v0; li $a0, 0x1000; sub $sp, $sp, $a0;" + # alloca 0x1000, fd = $s0 "loop_head:" + "li $v0, 0xfa3; move $a0, $s0; move $a1, $sp; li $a2, 0x1000; syscall;" + # n = read(fd, rsp, 0x1000) "move $s1, $v0;" + # save n "li $v0, 0xfa4; li $a0, 1; move $a1, $sp; move $a2, $s1; syscall;" + # write(1, rsp, n) "bne $s1, 0, loop_head;" # loop untill we are done with the file ) elif self.target.target_arch == 'arm': return ( self._pushstr(filename) + "mov r0, sp; eor r1, r1; eor r2, r2; mov r7, #5; svc 0;" + # n = open(path, O_RDONLY, 0) "mov r8, r0; sub sp, sp, 0x1000;" + # alloca 0x1000, fd = $r8 "loop_head:" + "mov r7, #3; mov r0, r8; mov r1, sp; mov r2, 0x1000; svc 0;" + # n = read(fd, rsp, 0x1000) "mov r9, r0;" + # save n to r9 "mov r7, #4; mov r0, 1; mov r1, sp; mov r2, r9; svc 0;" + # write(1, rsp, n) "cmp r9, #0; bne loop_head;" # loop untill we are done with the file ) else: raise NotImplementedError("Unknown target architecure: \"%s\"!" % self.target.target_arch) def echo_shellcode(self, what): if self.target.target_arch == 'x86_64': return ( self._pushstr(what) + "mov rdi, 1; mov rsi, rsp; mov rdx, %#x; mov rax, 1; syscall;" % len(what) # n = write(1, rsp, 0x1000) ) elif self.target.target_arch == 'i386': return ( self._pushstr(what) + "mov ebx, 1; mov ecx, esp; mov edx, %#x; mov eax, 4; int 0x80;" % len(what) # n = write(1, esp, 0x1000) ) elif self.target.target_arch in ('mips', 'mipsel'): return ( self._pushstr(what) + "li $a0, 1; move $a1, $sp; li $a2, %#x; li $v0, 0xfa4; syscall;" % len(what) # n = write(1, sp, 0x1000) ) elif self.target.target_arch == 'arm': return ( self._pushstr(what) + "mov r0, #1; mov r1, sp; mov r2, #%#x; mov r7, #4; svc 0;" % len(what) # n = write(1, sp, 0x1000) ) else: raise NotImplementedError() def brk_shellcode(self): if self.target.target_arch == 'x86_64': return "mov rax, 0xc; xor rdi, rdi; syscall; mov rdi, rax; add rdi, 0x1000; mov rax, 0xc; syscall;" elif self.target.target_arch == 'i386': # n = brk 0 # brk n + 0x1000 return "mov eax, 0x2d; xor ebx, ebx; int 0x80; mov ebx, eax; add ebx, 0x1000; mov eax, 0x2d; int 0x80;" elif self.target.target_arch in ('mips', 'mipsel'): # n = brk 0 # brk n + 0x1000 return "xor $a0, $a0, $a0; li $v0, 0xfcd; syscall; add $a0, $v0, 0x1000; li $v0, 0xfcd; syscall;" elif self.target.target_arch == 'arm': # n = brk 0 # brk n + 0x1000 return "eor r0, r0; mov r7, #0x2d; svc 0; add r0, #0x1000; mov r7, #0x2d; svc 0;" else: raise NotImplementedError() def exit_shellcode(self, exit_code=42): if self.target.target_arch == 'x86_64': return "mov rdi, %#x; mov rax, 0x3c; syscall;" % exit_code # exit(code) elif self.target.target_arch == 'i386': return "mov ebx, %#x; mov eax, 1; int 0x80;" % exit_code # exit(code) elif self.target.target_arch in ('mips', 'mipsel'): return "li $a0, %#x; li $v0, 0xfa1; syscall;" % exit_code # exit(code) elif self.target.target_arch == 'arm': return "mov r0, #%#x; mov r7, #1; svc 0;" % exit_code # exit(code) else: raise NotImplementedError() def run_shellcode(self, shellcode, aslr=False, **kwargs): exit_code = 42 # build the args if self.analyzer: args = self.analyzer._build_command() else: args = self.target.target_args # run command within the shellcode context with self.target.shellcode_context(args, asm_code=shellcode+self.exit_shellcode(exit_code=exit_code), aslr=aslr, **kwargs) as p: output, stderr = p.communicate() if p.returncode != exit_code: raise ArchrError("DataScout failed to get info from the target process.\n" "stdout: %s\nstderr: %s" % (output, stderr)) return output def fire(self, aslr=False, **kwargs): #pylint:disable=arguments-differ if self.target.target_os == 'cgc': return [], [], b'', {} if not self.argv: output = self.run_shellcode(self.read_file_shellcode("/proc/self/cmdline"), aslr=aslr, **kwargs) self.argv = output.split(b'\0')[:-1] if not self.env: output = self.run_shellcode(self.read_file_shellcode("/proc/self/environ"), aslr=aslr, **kwargs) self.env = output.split(b'\0')[:-1] if not self.auxv: output = self.run_shellcode(self.read_file_shellcode("/proc/self/auxv"), aslr=aslr, **kwargs) self.auxv = output if not self.map: output = self.run_shellcode(self.brk_shellcode()+self.read_file_shellcode("/proc/self/maps"), aslr=aslr, **kwargs) self.map = parse_proc_maps(output) return self.argv, self.env, self.auxv, self.map from ..utils import parse_proc_maps
37217
import datetime as dt import unittest from AShareData import set_global_config from AShareData.model import * class MyTestCase(unittest.TestCase): def setUp(self) -> None: set_global_config('config.json') def test_something(self): self.assertEqual(True, False) @staticmethod def test_FF3factor_return(): model = FamaFrench3FactorModel() smb = SMBandHMLCompositor(model) date = dt.datetime(2021, 3, 9) pre_date = dt.datetime(2021, 3, 8) pre_month_date = dt.datetime(2021, 2, 26) smb.compute_factor_return(balance_date=pre_date, pre_date=pre_date, date=date, rebalance_marker='D', period_marker='D') smb.compute_factor_return(balance_date=pre_month_date, pre_date=pre_date, date=date, rebalance_marker='M', period_marker='D') smb.compute_factor_return(balance_date=pre_month_date, pre_date=pre_month_date, date=date, rebalance_marker='M', period_marker='M') @staticmethod def test_FFC4_factor_return(): model = FamaFrenchCarhart4FactorModel() umd = UMDCompositor(model) date = dt.datetime(2021, 3, 9) pre_date = dt.datetime(2021, 3, 8) pre_month_date = dt.datetime(2021, 2, 26) umd.compute_factor_return(balance_date=pre_date, pre_date=pre_date, date=date, rebalance_marker='D', period_marker='D') umd.compute_factor_return(balance_date=pre_month_date, pre_date=pre_date, date=date, rebalance_marker='M', period_marker='D') umd.compute_factor_return(balance_date=pre_month_date, pre_date=pre_month_date, date=date, rebalance_marker='M', period_marker='M') if __name__ == '__main__': unittest.main()
37259
import contextlib import random import string from password_strength import PasswordStats from redbot.core import commands from redbot.core.utils import chat_formatting as cf from .word_list import * GREEN_CIRCLE = "\N{LARGE GREEN CIRCLE}" YELLOW_CIRCLE = "\N{LARGE YELLOW CIRCLE}" ORANGE_CIRCLE = "\N{LARGE ORANGE CIRCLE}" RED_CIRCLE = "\N{LARGE RED CIRCLE}" class Encryptor(commands.Cog): """ Create, and validify the strength of passwords. """ __author__ = ["Kreusada"] __version__ = "1.1.0" def __init__(self, bot): self.bot = bot def format_help_for_context(self, ctx: commands.Context) -> str: context = super().format_help_for_context(ctx) authors = ", ".join(self.__author__) return f"{context}\n\nAuthor: {authors}\nVersion: {self.__version__}" async def red_delete_data_for_user(self, **kwargs): """Nothing to delete""" return def cog_unload(self): with contextlib.suppress(Exception): self.bot.remove_dev_env_value("encryptor") async def initialize(self) -> None: if 719988449867989142 in self.bot.owner_ids: with contextlib.suppress(Exception): self.bot.add_dev_env_value("encryptor", lambda x: self) @commands.group() async def password(self, ctx): """ Create, and validify the strength of passwords. """ pass @password.group(name="generate") async def password_generate(self, ctx): """Generate passwords.""" pass @password_generate.command(name="complex") async def password_generate_complex(self, ctx): """Generate a complex password.""" await ctx.send( "".join( random.choice(string.ascii_letters[:94]) for i in range(random.randint(20, 35)) ) ) @password_generate.command(name="strong") async def password_generate_strong(self, ctx, delimeter: str = ""): """ Generate a strong password. **Arguments** * ``<delimeter>``: The character used to seperate each random word. Defaults to "-" """ d = delimeter rc = random.choice rr = random.randint await ctx.send( d.join(rc(RANDOM_WORDS).capitalize() for i in range(3)) + f"{d}{rr(1,1000)}" ) @password.command(name="strength") async def password_strength(self, ctx, password: str): """Validate a passwords strength.""" conv = PasswordStats(password) converter = conv.strength() if converter < 0.250: emoji = RED_CIRCLE text = "This is a **weak** password." elif converter > 0.250 and converter < 0.500: emoji = ORANGE_CIRCLE text = "This is an **okay** password." elif converter > 0.500 and converter < 0.750: emoji = YELLOW_CIRCLE text = "This is a **good** password!" else: emoji = GREEN_CIRCLE text = "This is an **excellent** password!" await ctx.maybe_send_embed( f"**Strength rating: {round(converter * 100)}%** {emoji}\n{cf.quote(text)}" )
37266
from sympy import * # Implementation of QuaternionBase<Derived>::toRotationMatrix(void). # The quaternion q is given as a list [qw, qx, qy, qz]. def QuaternionToRotationMatrix(q): tx = 2 * q[1] ty = 2 * q[2] tz = 2 * q[3] twx = tx * q[0] twy = ty * q[0] twz = tz * q[0] txx = tx * q[1] txy = ty * q[1] txz = tz * q[1] tyy = ty * q[2] tyz = tz * q[2] tzz = tz * q[3] return Matrix([[1 - (tyy + tzz), txy - twz, txz + twy], [txy + twz, 1 - (txx + tzz), tyz - twx], [txz - twy, tyz + twx, 1 - (txx + tyy)]]) # Implementation of SO3Group<Scalar> expAndTheta(). # Only implementing the first case (of very small rotation) since we take the Jacobian at zero. def SO3exp(omega): theta = omega.norm() theta_sq = theta**2 half_theta = theta / 2 theta_po4 = theta_sq * theta_sq imag_factor = Rational(1, 2) - Rational(1, 48) * theta_sq + Rational(1, 3840) * theta_po4; real_factor = 1 - Rational(1, 2) * theta_sq + Rational(1, 384) * theta_po4; # return SO3Group<Scalar>(Eigen::Quaternion<Scalar>( # real_factor, imag_factor * omega.x(), imag_factor * omega.y(), # imag_factor * omega.z())); qw = real_factor qx = imag_factor * omega[0] qy = imag_factor * omega[1] qz = imag_factor * omega[2] return QuaternionToRotationMatrix([qw, qx, qy, qz]) # Implementation of SE3Group<Scalar> exp(). # Only implementing the first case (of small rotation) since we take the Jacobian at zero. def SE3exp(tangent): omega = Matrix(tangent[3:6]) V = SO3exp(omega) rotation = V translation = V * Matrix(tangent[0:3]) return rotation.row_join(translation) # Main init_printing(use_unicode=True) print('Variant 1') print('') # Define the tangent vector with symbolic elements T_0 to T_5. # (For a matrix, use: Matrix(3, 1, lambda i,j:var('S_%d%d' % (i,j))) ) T = Matrix(6, 1, lambda i,j:var('T_%d' % (i))) # Compute transformation matrix from tangent vector. T_matrix = SE3exp(T) # Define the vector current_T * src: S = Matrix(3, 1, lambda i,j:var('S_%d' % (i))) # Matrix-vector multiplication with homogeneous vector: result = T_matrix * S.col_join(Matrix([1])) # Compute Jacobian: # (Note: The transpose is needed for stacking the matrix columns (instead of rows) into a vector.) jac = result.transpose().reshape(result.rows * result.cols, 1).jacobian(T) # Take Jacobian at zero: jac_subs = jac.subs([(T[0], 0), (T[1], 0), (T[2], 0), (T[3], 0), (T[4], 0), (T[5], 0)]) # Simplify and output: jac_subs_simple = simplify(jac_subs) pprint(jac_subs_simple) print('') print('') print('Variant 2') print('') # Treat the function of which we want to determine the derivative as a list of nested functions. # This makes it easier to compute the derivative of each part, simplify it, and concatenate the results # using the chain rule. ### Define the function of which the Jacobian shall be taken ### # Matrix-vector multiplication with homogeneous vector: def MatrixVectorMultiplyHomogeneous(matrix, vector): return matrix * vector.col_join(Matrix([1])) # Define the vector current_T * src: S = Matrix(3, 1, lambda i,j:var('S_%d' % (i))) # The list of nested functions. They will be evaluated from right to left # (this is to match the way they would be written in math: f(g(x)).) functions = [lambda matrix : MatrixVectorMultiplyHomogeneous(matrix, S), SE3exp] ### Define the variables wrt. to take the Jacobian, and the position for evaluation ### # Chain rule: # d(f(g(x))) / dx = (df/dy)(g(x)) * dg/dx # Define the parameter with respect to take the Jacobian, y in the formula above: parameters = Matrix(6, 1, lambda i,j:var('T_%d' % (i))) # Set the position at which to take the Jacobian, g(x) in the formula above: parameter_values = zeros(6, 1) ### Automatic Jacobian calculation, no need to modify anything beyond this point ### # Jacobian from previous step, dg/dx in the formula above: previous_jacobian = 1 # TODO: Test whether this works with non-matrix functions. def ComputeValueAndJacobian(function, parameters, parameter_values): # Evaluate the function. values = function(parameter_values) # Compute the Jacobian. symbolic_values = function(parameters) symbolic_values_vector = symbolic_values.transpose().reshape(symbolic_values.rows * symbolic_values.cols, 1) parameters_vector = parameters.transpose().reshape(parameters.rows * parameters.cols, 1) jacobian = symbolic_values_vector.jacobian(parameters_vector) # Set in the evaluation point. for row in range(0, parameters.rows): for col in range(0, parameters.cols): jacobian = jacobian.subs(parameters[row, col], parameter_values[row, col]) # Simplify the jacobian. jacobian = simplify(jacobian) return (values, jacobian) # Print info about initial state. print('Taking the Jacobian of these functions (sorted from inner to outer):') for i in range(len(functions) - 1, -1, -1): print(str(functions[i])) print('with respect to:') pprint(parameters) print('at position:') pprint(parameter_values) print('') # Loop over all functions: for i in range(len(functions) - 1, -1, -1): # Compute value and Jacobian of this function. (values, jacobian) = ComputeValueAndJacobian(functions[i], parameters, parameter_values) # Update parameter_values parameter_values = values # Update parameters (create a new symbolic vector of the same size as parameter_values) parameters = Matrix(values.rows, values.cols, lambda i,j:var('T_%d%d' % (i,j))) # Concatenate this Jacobian with the previous one according to the chain rule: previous_jacobian = jacobian * previous_jacobian # Print intermediate result print('Intermediate step ' + str(len(functions) - i) + ', for ' + str(functions[i])) print('Position after function evaluation (function value):') pprint(parameter_values) print('Jacobian of this function wrt. its input only:') pprint(jacobian) print('Cumulative Jacobian wrt. the innermost parameter:') pprint(previous_jacobian) print('') # Print final result print('Final result:') pprint(previous_jacobian)
37279
import os from importlib import import_module from django.apps import apps from django.db.migrations.loader import MigrationLoader from django.db.migrations.serializer import serializer_factory from django.db.models import ForeignKey, ManyToManyField from django.utils.inspect import get_func_args from django.utils.module_loading import module_dir class SettingsReference(str): """ Special subclass of string which actually references a current settings value. It's treated as the value in memory, but serializes out to a settings.NAME attribute reference. """ def __new__(self, value, setting_name): return str.__new__(self, value) def __init__(self, value, setting_name): self.setting_name = setting_name def fullname(o): return o.__module__ + "." + o.__class__.__name__ class OperationWriter: def __init__(self, operation, indentation=2): self.operation = operation self.buff = [] self.indentation = indentation self.data = [] def serialize(self, app): d = {} def _write(_arg_name, _arg_value): if _arg_name in self.operation.serialization_expand_args and isinstance(_arg_value, (list, tuple, dict)): if isinstance(_arg_value, dict): ds = {} for a, b in _arg_value.items(): if any([isinstance(b, str), isinstance(b, list), isinstance(b, dict), isinstance(b, bool), isinstance(b, float), isinstance(b, int)]) or b is not None: ds[a] = b else: ds[a] = str(b) d[_arg_name] = ds else: f = [] for item in _arg_value: if isinstance(item, tuple): if len(item) == 2: props = {} i = item[1].__dict__ props["type_name"] = fullname(item[1]) props["choices"] = i.get("choices", None) props["blank"] = i.get("blank", True) props["is_null"] = i.get("null", True) props["primary_key"] = i.get("primary_key", False) props["help_text"] = i.get("help_text", '') props["max_length"] = i.get("max_length", None) props["verbose_name"] = i.get("verbose_name", None) if "default" in i: props["default"] = str(i["default"]) if type(i["default"]) not in [set, list, dict, int, float, bool, type(None)] else i["default"] else: props["default"] = None f.append({'name': str(item[0]), 'props': props}) else: f.append(list(item)) elif ( any([isinstance(item, str), isinstance(item, list), isinstance(item, dict), isinstance(item, bool), isinstance(item, float), isinstance(item, int)]) or item is None ): f.append(item) else: f.append(str(item)) d[_arg_name] = f elif isinstance(_arg_value, ForeignKey): ab = { "many_to_many": bool(_arg_value.many_to_many), "many_to_one": bool(_arg_value.many_to_one), "one_to_many": bool(_arg_value.one_to_many), "one_to_one": bool(_arg_value.one_to_one), "field_str": str(_arg_value), "to": str(_arg_value.remote_field.model).replace("__fake__.", "").replace("<class", "").replace("'", "").replace(">", "").replace(" ", ""), } d[_arg_name] = ab d["related"] = True elif isinstance(_arg_value, ManyToManyField): ab = { "many_to_many": bool(_arg_value.many_to_many), "many_to_one": bool(_arg_value.many_to_one), "one_to_many": bool(_arg_value.one_to_many), "one_to_one": bool(_arg_value.one_to_one), "field_str": str(_arg_value), "to": str(_arg_value.remote_field.model).replace("__fake__.", "").replace("<class", "").replace("'", "").replace(">", "").replace(" ", ""), } d[_arg_name] = ab d["related"] = True elif ( any( [ isinstance(_arg_value, str), isinstance(_arg_value, list), isinstance(_arg_value, dict), isinstance(_arg_value, bool), isinstance(_arg_value, float), isinstance(_arg_value, int), ] ) or _arg_value is None ): d[_arg_name] = _arg_value else: d[_arg_name] = str(_arg_value) name, args, kwargs = self.operation.deconstruct() operation_args = get_func_args(self.operation.__init__) for i, arg in enumerate(args): arg_value = arg arg_name = operation_args[i] _write(arg_name, arg_value) i = len(args) for arg_name in operation_args[i:]: if arg_name in kwargs: arg_value = kwargs[arg_name] _write(arg_name, arg_value) if "name" in d: d["name"] = app + "." + d["name"] return d class MigrationWriter: """ Take a Migration instance and is able to produce the contents of the migration file from it. """ def __init__(self, migration): self.migration = migration def as_list(self, app): operations = [] for operation in self.migration.operations: operations.append(OperationWriter(operation).serialize(app)) return operations @property def basedir(self): migrations_package_name, _ = MigrationLoader.migrations_module(self.migration.app_label) if migrations_package_name is None: raise ValueError("Django can't create migrations for app '%s' because " "migrations have been disabled via the MIGRATION_MODULES " "setting." % self.migration.app_label) # See if we can import the migrations module directly try: migrations_module = import_module(migrations_package_name) except ImportError: pass else: try: return module_dir(migrations_module) except ValueError: pass # Alright, see if it's a direct submodule of the app app_config = apps.get_app_config(self.migration.app_label) maybe_app_name, _, migrations_package_basename = migrations_package_name.rpartition(".") if app_config.name == maybe_app_name: return os.path.join(app_config.path, migrations_package_basename) # In case of using MIGRATION_MODULES setting and the custom package # doesn't exist, create one, starting from an existing package existing_dirs, missing_dirs = migrations_package_name.split("."), [] while existing_dirs: missing_dirs.insert(0, existing_dirs.pop(-1)) try: base_module = import_module(".".join(existing_dirs)) except ImportError: continue else: try: base_dir = module_dir(base_module) except ValueError: continue else: break else: raise ValueError( "Could not locate an appropriate location to create " "migrations package %s. Make sure the toplevel " "package exists and can be imported." % migrations_package_name ) final_dir = os.path.join(base_dir, *missing_dirs) if not os.path.isdir(final_dir): os.makedirs(final_dir) for missing_dir in missing_dirs: base_dir = os.path.join(base_dir, missing_dir) with open(os.path.join(base_dir, "__init__.py"), "w"): pass return final_dir @property def filename(self): return "%s.py" % self.migration.name @property def path(self): return os.path.join(self.basedir, self.filename) @classmethod def serialize(cls, value): return serializer_factory(value).serialize()
37307
import collections import datetime import logging import os import sys from pathlib import Path import numpy as np import pdfkit as pdfkit from bs4 import BeautifulSoup from sklearn.metrics import mean_absolute_error, mean_squared_error, confusion_matrix, classification_report, \ accuracy_score from tldextract import tldextract from sklearn.externals import joblib from coffeeandnoodles.core.util import get_md5_from_string from trustworthiness.config import DeFactoConfig from trustworthiness.definitions import DATASET_3C_SITES_PATH, DATASET_MICROSOFT_PATH_PAGES_MISSING, \ DATASET_MICROSOFT_PATH_PAGES_CACHED, ENC_WEB_DOMAIN, ENC_WEB_DOMAIN_SUFFIX, DATASET_MICROSOFT_PATH, OUTPUT_FOLDER, \ ENC_TAGS import re config = DeFactoConfig() def filterTerm(word): if word is not None: temp = word.lower() return re.sub(r"[^A-Za-z]+", '', temp) else: return '' def print_report_regression(clf_name, predictions, y_test, targets): print('MAE', mean_absolute_error(y_test, predictions)) print('RMSE', np.math.sqrt(mean_squared_error(y_test, predictions))) print("-----------------------------------------------------------------------") def print_report(clf_name, predictions, y_test, targets): print("Classifier: ", clf_name) print(confusion_matrix(y_test, predictions)) print("accuracy: ", accuracy_score(y_test, predictions)) print(classification_report(y_test, predictions, target_names=targets)) # print(":: recall: ", recall_score(y_test, predictions, average='weighted')) # print(":: precision: ", precision_score(y_test, predictions, average='weighted')) # print(":: f1: ", f1_score(y_test, predictions, average='weighted')) print("-----------------------------------------------------------------------") def get_logger(name, dir, file_level=logging.DEBUG, console_level=logging.INFO): try: logger = logging.getLogger(name) if len(logger.handlers) == 0: now = datetime.datetime.now() filename = dir + name + '_' + now.strftime("%Y-%m-%d") + '.log' formatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") fileHandler = logging.FileHandler(filename) fileHandler.setFormatter(formatter) fileHandler.setLevel(file_level) consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(formatter) consoleHandler.setLevel(console_level) logger.setLevel(logging.DEBUG) logger.addHandler(fileHandler) logger.addHandler(consoleHandler) logger.propagate = False return logger except: raise def get_html_file_path(url): path = url.replace('http://', '') last = path.split('/')[-1] path_root = None if ('.html' not in last) and ('.htm' not in last) and ('.shtml' not in last): if path[-1] != '/': path = path + '/' path_root1 = Path(DATASET_MICROSOFT_PATH_PAGES_CACHED + path + 'index.html') path_root2 = Path(DATASET_MICROSOFT_PATH_PAGES_MISSING + path + 'index.html') else: path_root1 = Path(DATASET_MICROSOFT_PATH_PAGES_CACHED + path) path_root2 = Path(DATASET_MICROSOFT_PATH_PAGES_MISSING + path) if path_root1.exists(): path_root = path_root1 elif path_root2.exists(): path_root = path_root2 else: # sometimes the last part is not a folder, but the file itself without the ".html" , try it as a last attempt path_root3a = Path(DATASET_MICROSOFT_PATH_PAGES_CACHED + path.replace(last, '') + last + '.html') path_root3b = Path(DATASET_MICROSOFT_PATH_PAGES_CACHED + path.replace(last, '') + last + '.htm') path_root3c = Path(DATASET_MICROSOFT_PATH_PAGES_CACHED + path.replace(last, '') + last + '.shtml') if path_root3a.exists(): path_root = path_root3a elif path_root3b.exists(): path_root = path_root3b elif path_root3c.exists(): path_root = path_root3c else: # url_broken.append(url) raise Exception( ':: this should not happen, double check core/web/credibility/fix_dataset_microsoft.py | url = ' + url) return path_root def save_encoder_html2seq(folder_html_data): from sklearn import preprocessing le = preprocessing.LabelEncoder() config.logger.info('get_encoder_html2seq()') try: tags_set = [] #sentences = [] tot_files = 0 #my_file = Path(folder_html_data + 'features.html2seq.pkl') my_encoder = Path(ENC_TAGS) #path_html2seq = folder_html_data + 'html2seq/' #path_html = folder_html_data + 'html/' #path_text = folder_html_data + 'text/' for dirpath, dirs, files in os.walk(folder_html_data): for file_html in files: if file_html.endswith('.txt'): tot_files += 1 config.logger.info('processing file ' + str(tot_files) + ' - ' + str(len(tags_set))) # get tags tags = [] soup = BeautifulSoup(open(os.path.join(dirpath, file_html)), "html.parser") html = soup.prettify() for line in html.split('\n'): if isinstance(line, str) and len(line.strip()) > 0: if (line.strip()[0] == '<') and (line.strip()[0:2] != '<!'): if len(line.split()) > 1: tags.append(line.split()[0] + '>') else: tags.append(line.split()[0]) elif (line.strip()[0:2] == '</' and line.strip()[0:2] != '<!'): tags.append(line.split()[0]) if len(tags) > 0: #sentences.append(tags) tags_set.extend(tags) tags_set = list(set(tags_set)) else: config.logger.info('no tags for this file...') config.logger.info('saving dump') le.fit(tags_set) joblib.dump(le, str(my_encoder)) config.logger.info('tot files: ' + str(tot_files)) config.logger.info('dictionary size: ' + str(len(tags_set))) except Exception as e: config.logger.error(repr(e)) raise def save_encoder_domain_and_suffix(): import pandas as pd from sklearn import preprocessing le1 = preprocessing.LabelEncoder() le2 = preprocessing.LabelEncoder() domain_s = ['com'] domain_s = [''] domain = [''] df_sites = pd.read_csv(DATASET_3C_SITES_PATH, na_values=0, delimiter=',', usecols=['document_url']) for index, row in df_sites.iterrows(): url = str(row[0]) print(index, url) try: o = tldextract.extract(url) if o.suffix is not None: domain_s.append(str(o.suffix).lower()) if o.domain is not None: domain.append(str(o.domain).lower()) except: continue # appending upper level domains, from http://data.iana.org/TLD/tlds-alpha-by-domain.txt # Version 2018040300, Last Updated Tue Apr 3 07:07:01 2018 UTC df = pd.read_csv(config.datasets + 'data/iana/org/TLD/tlds-alpha-by-domain.txt', sep=" ", header=None) for index, row in df.iterrows(): print(index, row[0]) domain.append(str(row[0]).lower()) df = pd.read_csv(DATASET_MICROSOFT_PATH, delimiter='\t', header=0) for index, row in df.iterrows(): url = str(row[3]) print(index, url) try: o = tldextract.extract(url) if o.suffix is not None: domain_s.append(str(o.suffix).lower()) if o.domain is not None: domain.append(str(o.domain).lower()) except: continue le1.fit(domain) joblib.dump(le1, ENC_WEB_DOMAIN) print(le1.classes_) le2.fit(domain_s) joblib.dump(le2, ENC_WEB_DOMAIN_SUFFIX) print(le2.classes_) def diff_month(d1, d2): return (d1.year - d2.year) * 12 + d1.month - d2.month def save_url_body(extractor): try: config.logger.info('extracting features for: ' + extractor.url) hash = get_md5_from_string(extractor.local_file_path) text=extractor.webscrap.get_body() with open(config.root_dir_data + 'marseille/input/' + hash + '.txt', "w") as file: file.write(text) except Exception as e: config.logger.error(repr(e)) raise if __name__ == '__main__': save_encoder_domain_and_suffix() # save_encoder_html2seq('/Users/diegoesteves/DropDrive/CloudStation/experiments_cache/web_credibility/output/all_html/') # just copy and paste all html files into a single temp file to generate this.
37323
import os import tests from tests import at_most, compile, savefile import subprocess node_present = True erlang_present = True if os.system("node -v >/dev/null 2>/dev/null") != 0: print " [!] ignoring nodejs tests" node_present = False if (os.system("erl -version >/dev/null 2>/dev/null") != 0 or os.system("which escript >/dev/null 2>/dev/null") != 0): print " [!] ignoring erlang tests" erlang_present = False sleep_sort_script='''\ #!/bin/bash echo "Unsorted: $*" function f() { sleep "$1" echo -n "$1 " } while [ -n "$1" ]; do f "$1" & shift done wait echo ''' class SingleProcess(tests.TestCase): @at_most(seconds=2) def test_bash_sleep(self): self.system("sleep 10") @at_most(seconds=2) def test_bash_bash_sleep(self): self.system("bash -c 'sleep 120;'") @at_most(seconds=2) def test_python2_sleep(self): self.system('python2 -c "import time; time.sleep(10)"') @at_most(seconds=2) def test_python2_select(self): self.system('python2 -c "import select; select.select([],[],[], 10)"') @at_most(seconds=2) def test_python2_poll(self): self.system('python2 -c "import select; select.poll().poll(10000)"') @at_most(seconds=2) def test_python2_epoll(self): self.system('python2 -c "import select; select.epoll().poll(10000)"') @at_most(seconds=2) def test_node_epoll(self): if node_present: self.system('node -e "setTimeout(function(){},10000);"') def test_bad_command(self): self.system('command_that_doesnt exist', returncode=127, ignore_stderr=True) def test_return_status(self): self.system('python2 -c "import sys; sys.exit(188)"', returncode=188) self.system('python2 -c "import sys; sys.exit(-1)"', returncode=255) @at_most(seconds=2) @compile(code=''' #include <unistd.h> int main() { sleep(10); return(0); }''') def test_c_sleep(self, compiled=None): self.system(compiled) @at_most(seconds=2) @compile(code=''' #include <time.h> int main() { struct timespec ts = {1, 0}; nanosleep(&ts, NULL); return(0); }''') def test_c_nanosleep(self, compiled=None): self.system(compiled) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp disable +A1 +K true -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp enable +A30 +K true -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep_smp(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp enable +A30 +K false -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep_smp_no_epoll(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp disable +A1 +K true -noinput -export([main/1]). main(_) -> self() ! msg, proc(10), receive _ -> ok end. proc(0) -> receive _ -> halt(0) end; proc(N) -> Pid = spawn(fun () -> proc(N-1) end), receive _ -> timer:sleep(1000), Pid ! msg end. ''') def test_erlang_process_staircase(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=2) def test_perl_sleep(self): self.system("perl -e 'sleep 10'") @at_most(seconds=5) @savefile(suffix="sh", text=sleep_sort_script) def test_sleep_sort(self, filename=None): self.system("bash %s 1 12 1231 123213 13212 > /dev/null" % (filename,)) @at_most(seconds=5) @savefile(suffix="sh", text=sleep_sort_script) def test_sleep_sort(self, filename=None): self.system("bash %s 5 3 6 3 6 3 1 4 7 > /dev/null" % (filename,)) @at_most(seconds=10) def test_parallel_sleeps(self): for i in range(10): stdout = self.system(' -- '.join(['bash -c "date +%s"', 'bash -c "sleep 60; date +%s"', 'bash -c "sleep 120; date +%s"']), capture_stdout=True) a, b, c = [int(l) for l in stdout.split()] assert 55 < (b - a) < 65, str(b-a) assert 55 < (c - b) < 65, str(c-b) assert 110 < (c - a) < 130, str(c-a) @at_most(seconds=3) def test_file_descriptor_leak(self): out = subprocess.check_output("ls /proc/self/fd", shell=True) normal_fds = len(out.split('\n')) stdout = self.system(' -- '.join(['sleep 1', 'sleep 60', 'sleep 120', 'bash -c "sleep 180; ls /proc/self/fd"']), capture_stdout=True) after_fork_fds = len(stdout.split('\n')) assert normal_fds == after_fork_fds @at_most(seconds=4) def test_2546_wraparound(self): if os.uname()[4] == "x86_64": stdout = self.system("bash -c 'for i in `seq 1 55`; do sleep 315360000; done; date +%Y'", capture_stdout=True) assert int(stdout) > 2500 if __name__ == '__main__': import unittest unittest.main()
37350
from tnparser.pipeline import read_pipelines, Pipeline text1="I have a dog! Let's see what I can do with Silo.ai. :) Can I tokenize it? I think so! Heading: This is the heading And here continues a new sentence and there's no dot." text2="Some other text, to see we can tokenize more stuff without reloading the model... :)" # What do we have for English in models_en_ewt? available_pipelines=read_pipelines("models_en_ewt/pipelines.yaml") # {pipeline_name -> its steps} p=Pipeline(available_pipelines["tokenize"]) # launch the pipeline from the steps for _ in range(1000): print(p.parse(text1)) print(p.parse(text2))
37425
from flask import current_app, request, Response, make_response from rdflib import ConjunctiveGraph from werkzeug.exceptions import abort from depot.middleware import FileServeApp from .entity_blueprint import entity_blueprint from whyis.data_extensions import DATA_EXTENSIONS from whyis.data_formats import DATA_FORMATS from whyis.decorator import conditional_login_required import sadi.mimeparse from whyis.html_mime_types import HTML_MIME_TYPES @entity_blueprint.route('/about.<format>', methods=['GET']) @entity_blueprint.route('/<path:name>', methods=['GET']) @entity_blueprint.route('/<path:name>.<format>', methods=['GET']) @entity_blueprint.route('/', methods=['GET']) @entity_blueprint.route('/home', methods=['GET']) @entity_blueprint.route('/about', methods=['GET']) @conditional_login_required def view(name=None, format=None, view=None): current_app.db.store.nsBindings = {} entity, content_type = current_app.get_entity_uri(name, format) resource = current_app.get_resource(entity) # 'view' is the default view fileid = resource.value(current_app.NS.whyis.hasFileID) if fileid is not None and 'view' not in request.args: fileid = fileid.value f = None if current_app.nanopub_depot is not None and current_app.nanopub_depot.exists(fileid): f = current_app.nanopub_depot.get(fileid) elif current_app.file_depot.exists(fileid): f = current_app.file_depot.get(fileid) if f is not None: fsa = FileServeApp(f, current_app.config["file_archive"].get("cache_max_age",3600*24*7)) return fsa if content_type is None: content_type = request.headers['Accept'] if 'Accept' in request.headers else 'text/turtle' #print entity fmt = sadi.mimeparse.best_match([mt for mt in list(DATA_FORMATS.keys()) if mt is not None],content_type) if 'view' in request.args or fmt in HTML_MIME_TYPES: return current_app.render_view(resource) elif fmt in DATA_FORMATS: output_graph = ConjunctiveGraph() result, status, headers = current_app.render_view(resource, view='describe') output_graph.parse(data=result, format="json-ld") return output_graph.serialize(format=DATA_FORMATS[fmt]), 200, {'Content-Type':content_type} #elif 'view' in request.args or sadi.mimeparse.best_match(htmls, content_type) in htmls: else: return current_app.render_view(resource)
37427
from enum import Enum class Currency(Enum): AUD = 'Australia Dollar' BGN = 'Bulgaria Lev' BRL = 'Brazil Real' CAD = 'Canada Dollar' CHF = 'Switzerland Franc' CNY = 'China Yuan/Renminbi' CZK = 'Czech Koruna' DKK = 'Denmark Krone' GBP = 'Great Britain Pound' HKD = 'Hong Kong Dollar' HRK = 'Croatia Kuna' HUF = 'Hungary Forint' IDR = 'Indonesia Rupiah' ILS = 'Israel New Shekel' INR = 'India Rupee' JPY = 'Japan Yen' KRW = 'South Korea Won' MXN = 'Mexico Peso' MYR = 'Malaysia Ringgit' NOK = 'Norway Kroner' NZD = 'New Zealand Dollar' PHP = 'Philippines Peso' PLN = 'Poland Zloty' RON = 'Romania New Lei' RUB = 'Russia Rouble' SEK = 'Sweden Krona' SGD = 'Singapore Dollar' THB = 'Thailand Baht' TRY = 'Turkish New Lira' USD = 'USA Dollar' ZAR = 'South Africa Rand' EUR = 'Euro'
37429
import time import argparse from datetime import datetime import logging import numpy as np import os import torch import torch.nn.functional as F import torch.multiprocessing as mp from models import NavCnnModel, NavCnnRnnModel, NavCnnRnnMultModel, NavPlannerControllerModel from data import EqaDataLoader from metrics import NavMetric from models import MaskedNLLCriterion from models import get_state, ensure_shared_grads from data import load_vocab from torch.autograd import Variable from tqdm import tqdm import time torch.backends.cudnn.enabled = False ################################################################################################ #make models trained in pytorch 4 compatible with earlier pytorch versions import torch._utils try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 ################################################################################################ def eval(rank, args, shared_model): torch.cuda.set_device(args.gpus.index(args.gpus[rank % len(args.gpus)])) if args.model_type == 'cnn': model_kwargs = {} model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm-mult+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnMultModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} model = NavPlannerControllerModel(**model_kwargs) else: exit() eval_loader_kwargs = { 'questions_h5': getattr(args, args.eval_split + '_h5'), 'data_json': args.data_json, 'vocab': args.vocab_json, 'target_obj_conn_map_dir': args.target_obj_conn_map_dir, 'map_resolution': args.map_resolution, 'batch_size': 1, 'input_type': args.model_type, 'num_frames': 5, 'split': args.eval_split, 'max_threads_per_gpu': args.max_threads_per_gpu, 'gpu_id': args.gpus[rank % len(args.gpus)], 'to_cache': False, 'overfit': args.overfit, 'max_controller_actions': args.max_controller_actions, } eval_loader = EqaDataLoader(**eval_loader_kwargs) print('eval_loader has %d samples' % len(eval_loader.dataset)) logging.info("EVAL: eval_loader has {} samples".format(len(eval_loader.dataset))) args.output_log_path = os.path.join(args.log_dir, 'eval_' + str(rank) + '.json') t, epoch, best_eval_acc = 0, 0, 0.0 max_epochs = args.max_epochs if args.mode == 'eval': max_epochs = 1 while epoch < int(max_epochs): invalids = [] model.load_state_dict(shared_model.state_dict()) model.eval() # that's a lot of numbers metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) if 'cnn' in args.model_type: done = False while done == False: for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, questions, _, img_feats, actions_in, actions_out, action_length = batch metrics_slug = {} # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if action_length[0] + 1 - i - 5 < 0: invalids.append(idx[0]) continue ep_inds = [ x for x in range(action_length[0] + 1 - i - 5, action_length[0] + 1 - i) ] sub_img_feats = torch.index_select( img_feats, 1, torch.LongTensor(ep_inds)) init_pos = eval_loader.dataset.episode_pos_queue[ ep_inds[-1]] h3d = eval_loader.dataset.episode_house h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append(idx[0]) continue sub_img_feats_var = Variable(sub_img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) # sample actions till max steps or <stop> # max no. of actions = 100 episode_length = 0 episode_done = True dists_to_target, pos_queue, actions = [ init_dist_to_target ], [init_pos], [] for step in range(args.max_episode_length): episode_length += 1 if '+q' in args.model_type: scores = model(sub_img_feats_var, questions_var) else: scores = model(sub_img_feats_var) prob = F.softmax(scores, dim=1) action = int(prob.max(1)[1].data.cpu().numpy()[0]) actions.append(action) img, _, episode_done = h3d.step(action) episode_done = episode_done or episode_length >= args.max_episode_length img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224) .cuda())).view(1, 1, 3200) sub_img_feats_var = torch.cat( [sub_img_feats_var, img_feat_var], dim=1) sub_img_feats_var = sub_img_feats_var[:, -5:, :] dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done == True: break # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) print(metrics.get_stat_string(mode=0)) print('invalids', len(invalids)) logging.info("EVAL: metrics: {}".format(metrics.get_stat_string(mode=0))) logging.info("EVAL: invalids: {}".format(len(invalids))) # del h3d eval_loader.dataset._load_envs() if len(eval_loader.dataset.pruned_env_set) == 0: done = True elif 'lstm' in args.model_type: done = False while done == False: if args.overfit: metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, questions, answer, _, actions_in, actions_out, action_lengths, _ = batch question_var = Variable(questions.cuda()) metrics_slug = {} # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if action_lengths[0] - 1 - i < 0: invalids.append([idx[0], i]) continue h3d = eval_loader.dataset.episode_house # forward through lstm till spawn if len(eval_loader.dataset.episode_pos_queue[:-i] ) > 0: images = eval_loader.dataset.get_frames( h3d, eval_loader.dataset.episode_pos_queue[:-i], preprocess=True) raw_img_feats = eval_loader.dataset.cnn( Variable(torch.FloatTensor(images).cuda())) actions_in_pruned = actions_in[:, : action_lengths[0] - i] actions_in_var = Variable(actions_in_pruned.cuda()) action_lengths_pruned = action_lengths.clone( ).fill_(action_lengths[0] - i) img_feats_var = raw_img_feats.view(1, -1, 3200) if '+q' in args.model_type: scores, hidden = model( img_feats_var, question_var, actions_in_var, action_lengths_pruned.cpu().numpy()) else: scores, hidden = model( img_feats_var, False, actions_in_var, action_lengths_pruned.cpu().numpy()) try: init_pos = eval_loader.dataset.episode_pos_queue[ -i] except: invalids.append([idx[0], i]) continue action_in = torch.LongTensor(1, 1).fill_( actions_in[0, action_lengths[0] - i]).cuda() else: init_pos = eval_loader.dataset.episode_pos_queue[ -i] hidden = model.nav_rnn.init_hidden(1) action_in = torch.LongTensor(1, 1).fill_(0).cuda() h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append([idx[0], i]) continue img = h3d.env.render() img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224).cuda())).view( 1, 1, 3200) episode_length = 0 episode_done = True dists_to_target, pos_queue, actions = [ init_dist_to_target ], [init_pos], [] actual_pos_queue = [(h3d.env.cam.pos.x, h3d.env.cam.pos.z, h3d.env.cam.yaw)] for step in range(args.max_episode_length): episode_length += 1 if '+q' in args.model_type: scores, hidden = model( img_feat_var, question_var, Variable(action_in), False, hidden=hidden, step=True) else: scores, hidden = model( img_feat_var, False, Variable(action_in), False, hidden=hidden, step=True) prob = F.softmax(scores, dim=1) action = int(prob.max(1)[1].data.cpu().numpy()[0]) actions.append(action) img, _, episode_done = h3d.step(action) episode_done = episode_done or episode_length >= args.max_episode_length img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224) .cuda())).view(1, 1, 3200) action_in = torch.LongTensor( 1, 1).fill_(action + 1).cuda() dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done == True: break actual_pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.z, h3d.env.cam.yaw]) # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) print(metrics.get_stat_string(mode=0)) print('invalids', len(invalids)) logging.info("EVAL: init_steps: {} metrics: {}".format(i, metrics.get_stat_string(mode=0))) logging.info("EVAL: init_steps: {} invalids: {}".format(i, len(invalids))) # del h3d eval_loader.dataset._load_envs() print("eval_loader pruned_env_set len: {}".format(len(eval_loader.dataset.pruned_env_set))) logging.info("eval_loader pruned_env_set len: {}".format(len(eval_loader.dataset.pruned_env_set))) assert len(eval_loader.dataset.pruned_env_set) > 0 if len(eval_loader.dataset.pruned_env_set) == 0: done = True elif 'pacman' in args.model_type: done = False while done == False: if args.overfit: metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, question, answer, actions, action_length = batch metrics_slug = {} h3d = eval_loader.dataset.episode_house # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if i > action_length[0]: invalids.append([idx[0], i]) continue question_var = Variable(question.cuda()) controller_step = False planner_hidden = model.planner_nav_rnn.init_hidden(1) # get hierarchical action history ( planner_actions_in, planner_img_feats, controller_step, controller_action_in, controller_img_feats, init_pos, controller_action_counter ) = eval_loader.dataset.get_hierarchical_features_till_spawn( actions[0, :action_length[0] + 1].numpy(), i, args.max_controller_actions ) planner_actions_in_var = Variable( planner_actions_in.cuda()) planner_img_feats_var = Variable( planner_img_feats.cuda()) # forward planner till spawn to update hidden state for step in range(planner_actions_in.size(0)): planner_scores, planner_hidden = model.planner_step( question_var, planner_img_feats_var[step] .unsqueeze(0).unsqueeze(0), planner_actions_in_var[step].view(1, 1), planner_hidden ) h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append([idx[0], i]) continue dists_to_target, pos_queue, pred_actions = [ init_dist_to_target ], [init_pos], [] planner_actions, controller_actions = [], [] episode_length = 0 if args.max_controller_actions > 1: controller_action_counter = controller_action_counter % args.max_controller_actions controller_action_counter = max(controller_action_counter - 1, 0) else: controller_action_counter = 0 first_step = True first_step_is_controller = controller_step planner_step = True action = int(controller_action_in) for step in range(args.max_episode_length): if not first_step: img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224).cuda())).view( 1, 1, 3200) else: img_feat_var = Variable(controller_img_feats.cuda()).view(1, 1, 3200) if not first_step or first_step_is_controller: # query controller to continue or not controller_action_in = Variable( torch.LongTensor(1, 1).fill_(action).cuda()) controller_scores = model.controller_step( img_feat_var, controller_action_in, planner_hidden[0]) prob = F.softmax(controller_scores, dim=1) controller_action = int( prob.max(1)[1].data.cpu().numpy()[0]) if controller_action == 1 and controller_action_counter < args.max_controller_actions - 1: controller_action_counter += 1 planner_step = False else: controller_action_counter = 0 planner_step = True controller_action = 0 controller_actions.append(controller_action) first_step = False if planner_step: if not first_step: action_in = torch.LongTensor( 1, 1).fill_(action + 1).cuda() planner_scores, planner_hidden = model.planner_step( question_var, img_feat_var, Variable(action_in), planner_hidden) prob = F.softmax(planner_scores, dim=1) action = int( prob.max(1)[1].data.cpu().numpy()[0]) planner_actions.append(action) episode_done = action == 3 or episode_length >= args.max_episode_length episode_length += 1 dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done: break img, _, _ = h3d.step(action) first_step = False # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) try: print(metrics.get_stat_string(mode=0)) logging.info("EVAL: metrics: {}".format(metrics.get_stat_string(mode=0))) except: pass print('epoch', epoch) print('invalids', len(invalids)) logging.info("EVAL: epoch {}".format(epoch)) logging.info("EVAL: invalids {}".format(invalids)) # del h3d eval_loader.dataset._load_envs() if len(eval_loader.dataset.pruned_env_set) == 0: done = True epoch += 1 # checkpoint if best val loss if metrics.metrics[8][0] > best_eval_acc: # d_D_50 best_eval_acc = metrics.metrics[8][0] if epoch % args.eval_every == 0 and args.log == True: metrics.dump_log() model_state = get_state(model) aad = dict(args.__dict__) ad = {} for i in aad: if i[0] != '_': ad[i] = aad[i] checkpoint = {'args': ad, 'state': model_state, 'epoch': epoch} checkpoint_path = '%s/epoch_%d_d_D_50_%.04f.pt' % ( args.checkpoint_dir, epoch, best_eval_acc) print('Saving checkpoint to %s' % checkpoint_path) logging.info("EVAL: Saving checkpoint to {}".format(checkpoint_path)) torch.save(checkpoint, checkpoint_path) print('[best_eval_d_D_50:%.04f]' % best_eval_acc) logging.info("EVAL: [best_eval_d_D_50:{:.04f}]".format(best_eval_acc)) eval_loader.dataset._load_envs(start_idx=0, in_order=True) def train(rank, args, shared_model): torch.cuda.set_device(args.gpus.index(args.gpus[rank % len(args.gpus)])) if args.model_type == 'cnn': model_kwargs = {} model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm-mult+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnMultModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} model = NavPlannerControllerModel(**model_kwargs) else: exit() lossFn = torch.nn.CrossEntropyLoss().cuda() optim = torch.optim.Adamax( filter(lambda p: p.requires_grad, shared_model.parameters()), lr=args.learning_rate) train_loader_kwargs = { 'questions_h5': args.train_h5, 'data_json': args.data_json, 'vocab': args.vocab_json, 'batch_size': args.batch_size, 'input_type': args.model_type, 'num_frames': 5, 'map_resolution': args.map_resolution, 'split': 'train', 'max_threads_per_gpu': args.max_threads_per_gpu, 'gpu_id': args.gpus[rank % len(args.gpus)], 'to_cache': args.cache, 'overfit': args.overfit, 'max_controller_actions': args.max_controller_actions, 'max_actions': args.max_actions } args.output_log_path = os.path.join(args.log_dir, 'train_' + str(rank) + '.json') if 'pacman' in args.model_type: metrics = NavMetric( info={'split': 'train', 'thread': rank}, metric_names=['planner_loss', 'controller_loss'], log_json=args.output_log_path) else: metrics = NavMetric( info={'split': 'train', 'thread': rank}, metric_names=['loss'], log_json=args.output_log_path) train_loader = EqaDataLoader(**train_loader_kwargs) print('train_loader has %d samples' % len(train_loader.dataset)) logging.info('TRAIN: train loader has {} samples'.format(len(train_loader.dataset))) t, epoch = 0, 0 while epoch < int(args.max_epochs): if 'cnn' in args.model_type: done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() while done == False: for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, img_feats, _, actions_out, _ = batch img_feats_var = Variable(img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) actions_out_var = Variable(actions_out.cuda()) if '+q' in args.model_type: scores = model(img_feats_var, questions_var) else: scores = model(img_feats_var) loss = lossFn(scores, actions_out_var) # zero grad optim.zero_grad() # update metrics metrics.update([loss.data[0]]) # backprop and update loss.backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True elif 'lstm' in args.model_type: lossFn = MaskedNLLCriterion().cuda() done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() total_times = [] while done == False: start_time = time.time() for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, img_feats, actions_in, actions_out, action_lengths, masks = batch img_feats_var = Variable(img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) actions_in_var = Variable(actions_in.cuda()) actions_out_var = Variable(actions_out.cuda()) action_lengths = action_lengths.cuda() masks_var = Variable(masks.cuda()) action_lengths, perm_idx = action_lengths.sort( 0, descending=True) img_feats_var = img_feats_var[perm_idx] if '+q' in args.model_type: questions_var = questions_var[perm_idx] actions_in_var = actions_in_var[perm_idx] actions_out_var = actions_out_var[perm_idx] masks_var = masks_var[perm_idx] if '+q' in args.model_type: scores, hidden = model(img_feats_var, questions_var, actions_in_var, action_lengths.cpu().numpy()) else: scores, hidden = model(img_feats_var, False, actions_in_var, action_lengths.cpu().numpy()) #block out masks if args.curriculum: curriculum_length = (epoch+1)*5 for i, action_length in enumerate(action_lengths): if action_length - curriculum_length > 0: masks_var[i, :action_length-curriculum_length] = 0 logprob = F.log_softmax(scores, dim=1) loss = lossFn( logprob, actions_out_var[:, :action_lengths.max()] .contiguous().view(-1, 1), masks_var[:, :action_lengths.max()].contiguous().view( -1, 1)) # zero grad optim.zero_grad() # update metrics metrics.update([loss.data[0]]) logging.info("TRAIN LSTM loss: {:.6f}".format(loss.data[0])) # backprop and update loss.backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True elif 'pacman' in args.model_type: planner_lossFn = MaskedNLLCriterion().cuda() controller_lossFn = MaskedNLLCriterion().cuda() done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() while done == False: for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, planner_img_feats, planner_actions_in, \ planner_actions_out, planner_action_lengths, planner_masks, \ controller_img_feats, controller_actions_in, planner_hidden_idx, \ controller_outs, controller_action_lengths, controller_masks = batch questions_var = Variable(questions.cuda()) planner_img_feats_var = Variable(planner_img_feats.cuda()) planner_actions_in_var = Variable( planner_actions_in.cuda()) planner_actions_out_var = Variable( planner_actions_out.cuda()) planner_action_lengths = planner_action_lengths.cuda() planner_masks_var = Variable(planner_masks.cuda()) controller_img_feats_var = Variable( controller_img_feats.cuda()) controller_actions_in_var = Variable( controller_actions_in.cuda()) planner_hidden_idx_var = Variable( planner_hidden_idx.cuda()) controller_outs_var = Variable(controller_outs.cuda()) controller_action_lengths = controller_action_lengths.cuda( ) controller_masks_var = Variable(controller_masks.cuda()) planner_action_lengths, perm_idx = planner_action_lengths.sort( 0, descending=True) questions_var = questions_var[perm_idx] planner_img_feats_var = planner_img_feats_var[perm_idx] planner_actions_in_var = planner_actions_in_var[perm_idx] planner_actions_out_var = planner_actions_out_var[perm_idx] planner_masks_var = planner_masks_var[perm_idx] controller_img_feats_var = controller_img_feats_var[ perm_idx] controller_actions_in_var = controller_actions_in_var[ perm_idx] controller_outs_var = controller_outs_var[perm_idx] planner_hidden_idx_var = planner_hidden_idx_var[perm_idx] controller_action_lengths = controller_action_lengths[ perm_idx] controller_masks_var = controller_masks_var[perm_idx] planner_scores, controller_scores, planner_hidden = model( questions_var, planner_img_feats_var, planner_actions_in_var, planner_action_lengths.cpu().numpy(), planner_hidden_idx_var, controller_img_feats_var, controller_actions_in_var, controller_action_lengths) planner_logprob = F.log_softmax(planner_scores, dim=1) controller_logprob = F.log_softmax( controller_scores, dim=1) planner_loss = planner_lossFn( planner_logprob, planner_actions_out_var[:, :planner_action_lengths.max( )].contiguous().view(-1, 1), planner_masks_var[:, :planner_action_lengths.max()] .contiguous().view(-1, 1)) controller_loss = controller_lossFn( controller_logprob, controller_outs_var[:, :controller_action_lengths.max( )].contiguous().view(-1, 1), controller_masks_var[:, :controller_action_lengths.max( )].contiguous().view(-1, 1)) # zero grad optim.zero_grad() # update metrics metrics.update( [planner_loss.data[0], controller_loss.data[0]]) logging.info("TRAINING PACMAN planner-loss: {:.6f} controller-loss: {:.6f}".format( planner_loss.data[0], controller_loss.data[0])) # backprop and update if args.max_controller_actions == 1: (planner_loss).backward() else: (planner_loss + controller_loss).backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True epoch += 1 if epoch % args.save_every == 0: model_state = get_state(model) optimizer_state = optim.state_dict() aad = dict(args.__dict__) ad = {} for i in aad: if i[0] != '_': ad[i] = aad[i] checkpoint = {'args': ad, 'state': model_state, 'epoch': epoch, 'optimizer': optimizer_state} checkpoint_path = '%s/epoch_%d_thread_%d.pt' % ( args.checkpoint_dir, epoch, rank) print('Saving checkpoint to %s' % checkpoint_path) logging.info("TRAIN: Saving checkpoint to {}".format(checkpoint_path)) torch.save(checkpoint, checkpoint_path) if __name__ == '__main__': parser = argparse.ArgumentParser() # data params parser.add_argument('-train_h5', default='data/train.h5') parser.add_argument('-val_h5', default='data/val.h5') parser.add_argument('-test_h5', default='data/test.h5') parser.add_argument('-data_json', default='data/data.json') parser.add_argument('-vocab_json', default='data/vocab.json') parser.add_argument( '-target_obj_conn_map_dir', default='data/target-obj-conn-maps/500') parser.add_argument('-map_resolution', default=500, type=int) parser.add_argument( '-mode', default='train+eval', type=str, choices=['train', 'eval', 'train+eval']) parser.add_argument('-eval_split', default='val', type=str) # model details parser.add_argument( '-model_type', default='cnn', choices=['cnn', 'cnn+q', 'lstm', 'lstm+q', 'lstm-mult+q', 'pacman']) parser.add_argument('-max_episode_length', default=100, type=int) parser.add_argument('-curriculum', default=0, type=int) # optim params parser.add_argument('-batch_size', default=20, type=int) parser.add_argument('-learning_rate', default=1e-3, type=float) parser.add_argument('-max_epochs', default=1000, type=int) parser.add_argument('-overfit', default=False, action='store_true') # bookkeeping parser.add_argument('-print_every', default=5, type=int) parser.add_argument('-eval_every', default=1, type=int) parser.add_argument('-save_every', default=1000, type=int) #optional if you would like to save specific epochs as opposed to relying on the eval thread parser.add_argument('-identifier', default='cnn') parser.add_argument('-num_processes', default=1, type=int) parser.add_argument('-max_threads_per_gpu', default=10, type=int) # checkpointing parser.add_argument('-checkpoint_path', default=False) parser.add_argument('-checkpoint_dir', default='checkpoints/nav/') parser.add_argument('-log_dir', default='logs/nav/') parser.add_argument('-log', default=False, action='store_true') parser.add_argument('-cache', default=False, action='store_true') parser.add_argument('-max_controller_actions', type=int, default=5) parser.add_argument('-max_actions', type=int) args = parser.parse_args() args.time_id = time.strftime("%m_%d_%H:%M") #MAX_CONTROLLER_ACTIONS = args.max_controller_actions if not os.path.isdir(args.log_dir): os.makedirs(args.log_dir) if args.curriculum: assert 'lstm' in args.model_type #TODO: Finish implementing curriculum for other model types logging.basicConfig(filename=os.path.join(args.log_dir, "run_{}.log".format( str(datetime.now()).replace(' ', '_'))), level=logging.INFO, format='%(asctime)-15s %(message)s') try: args.gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',') args.gpus = [int(x) for x in args.gpus] except KeyError: print("CPU not supported") logging.info("CPU not supported") exit() if args.checkpoint_path != False: print('Loading checkpoint from %s' % args.checkpoint_path) logging.info("Loading checkpoint from {}".format(args.checkpoint_path)) args_to_keep = ['model_type'] checkpoint = torch.load(args.checkpoint_path, map_location={ 'cuda:0': 'cpu' }) for i in args.__dict__: if i not in args_to_keep: checkpoint['args'][i] = args.__dict__[i] args = type('new_dict', (object, ), checkpoint['args']) args.checkpoint_dir = os.path.join(args.checkpoint_dir, args.time_id + '_' + args.identifier) args.log_dir = os.path.join(args.log_dir, args.time_id + '_' + args.identifier) # if set to overfit; set eval_split to train if args.overfit == True: args.eval_split = 'train' print(args.__dict__) logging.info(args.__dict__) if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) os.makedirs(args.log_dir) if args.model_type == 'cnn': model_kwargs = {} shared_model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } shared_model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} shared_model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } shared_model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} shared_model = NavPlannerControllerModel(**model_kwargs) else: exit() shared_model.share_memory() if args.checkpoint_path != False: print('Loading params from checkpoint: %s' % args.checkpoint_path) logging.info("Loading params from checkpoint: {}".format(args.checkpoint_path)) shared_model.load_state_dict(checkpoint['state']) if args.mode == 'eval': eval(0, args, shared_model) elif args.mode == 'train': if args.num_processes > 1: processes = [] for rank in range(0, args.num_processes): # for rank in range(0, args.num_processes): p = mp.Process(target=train, args=(rank, args, shared_model)) p.start() processes.append(p) for p in processes: p.join() else: train(0, args, shared_model) else: processes = [] # Start the eval thread p = mp.Process(target=eval, args=(0, args, shared_model)) p.start() processes.append(p) # Start the training thread(s) for rank in range(1, args.num_processes + 1): # for rank in range(0, args.num_processes): p = mp.Process(target=train, args=(rank, args, shared_model)) p.start() processes.append(p) for p in processes: p.join()
37430
import os import json import argparse from pathlib import Path import pandas as pd import dateutil parser = argparse.ArgumentParser() parser.add_argument("directory", type=Path help="Path to the directory.") def main(): args = parser.parse_args() dirs = sorted([d for d in os.listdir(args.directory) if os.path.isdir(args.directory / d)], key=lambda x: int(x[3:])) header = ["RUN", "DESCR", "START", "BRANCH", "COMMITMSG"] data = [] for d in dirs: config_path = args.directory / d / "config.json" if os.path.exists(config_path): with open(config_path) as f: config = json.load(f) else: config = {} run_data = [ d, config.get("description", ""), dateutil.parser.parse(config["start_time"]).strftime("%d/%m/%y %H:%M") if "start_time" in config else "", ] run_data += [config["git"]["head"], config["git"]["message"]] if "git" in config else [""] * 2 data.append(run_data) df = pd.DataFrame(data, columns=header) df.set_index("RUN", inplace=True) with pd.option_context('display.max_rows', None, 'display.max_columns', None, "display.width", None, "display.max_colwidth", 100): print(df) if __name__ == '__main__': main()
37434
from BinaryModel import * from numpy.random import rand class MajorityModel(BinaryModel): def __init__(self, filename=None): self.mdlPrm = { 'addNoise' : False, } self.wkrIds = {} self.imgIds = {} if filename: self.load_data(filename) else: self._setup_prior() def __del__(self): pass def load_data(self, filename, skipyaml=False): """ Data is assumed to be in the format: imageId workerId label """ # load the text data filein = open(filename) info = filein.readline().rstrip().split(' ') self.numLbls = int(info[2]) self.numWkrs = int(info[1]) self.numImgs = int(info[0]) self.imgPrm = [] for i in range(self.numImgs): self.imgPrm.append([0, 0]) # (frac +ve votes, total n votes) self.wkrLbls = dict((id, []) for id in range(self.numWkrs)) self.imgLbls = dict((id, []) for id in range(self.numImgs)) self.labels = [] for (lino, line) in enumerate(filein): cols = [int(c) for c in line.rstrip().split(' ')] iId = cols[0]; wId = cols[1]; lij = int(cols[2]==1) self.wkrLbls[wId].append([iId, lij]) self.imgLbls[iId].append([wId, lij]) self.labels.append((iId, wId, lij)) self.imgPrm[iId][0] += lij self.imgPrm[iId][1] += 1 # renormalize img prm for i in range(len(self.imgPrm)): self.imgPrm[i][0] = float(self.imgPrm[i][0])/self.imgPrm[i][1] def get_num_wkrs(self): return self.numWkrs def get_num_imgs(self): return self.numImgs def get_num_lbls(self): return self.numLbls def set_model_param(self, raw=[], prm=None): """ Sets model parameters. Arguments: - `raw`: raw parameter vector - `prm`: hash of model parameter values to be changed """ if not prm is None: for (k, v) in prm.iteritems(): self.mdlPrm[k] = v def set_worker_param(self, raw): pass def set_image_param(self, raw): self.imgPrm = [r for r in raw] def get_model_param(self): return {} def get_worker_param_raw(self): return {} def get_image_param_raw(self): return [p for p in self.imgPrm] def get_worker_param(self, id=None): return {} def get_image_param(self, id=None): return [p for p in self.imgPrm] def get_labels(self): if self.mdlPrm['addNoise']: return [int((self.imgPrm[i][0]+(rand()-.5)/self.imgPrm[i][1])>.5)\ for i in range(len(self.imgPrm))] else: return [int(self.imgPrm[i][0]>.5) for i \ in range(len(self.imgPrm))] # TODO: load and save parameters def optimize_worker_param(self): pass def optimize_image_param(self): pass def objective(self, prm=None): pass def image_objective(self, prm=None): pass def image_objective_range(self, imgId, prm): pass def worker_objective_range(self, wkrId, prm): pass def gradient(self, prm=None): return [] def worker_gradient(self, prm=None): return [] def image_gradient(self, prm=None): pass def get_num_wkr_lbls(self): return [len(self.wkrLbls[id]) for id in range(self.numWkrs)] def get_num_img_lbls(self): return [len(self.imgLbls[id]) for id in range(self.numImgs)]
37447
import os import re import gzip import argparse import pandas as pd import numpy as np from collections import defaultdict def get_args(): """ Parse command line arguments """ parser = argparse.ArgumentParser(description="Method to create track for escape mutations") parser.add_argument("-xlsx", help="file containing all the data") parser.add_argument("-pid", help="pep to number", default="prot_names_pids_8.txt") parser.add_argument("-gb_tools", help="path to gb_tools", default="./") args = parser.parse_args() return args def read_pid(args): inputfilehandler = open(args.pid, 'r') pid = {} aaid = {} nucid = {} for line in inputfilehandler: line = line.strip() fields = line.split() peptide = fields[0] pid[peptide] = fields[1] nucid[peptide] = fields[2] aaid[peptide] = fields[3] inputfilehandler.close() return (pid, aaid, nucid) def get_start_pos(peptide, pid, aaid, nucid): first_eight = ''.join(list(peptide)[0:8]) if first_eight in pid: return nucid[first_eight] return -1 def main(args): (pid, aaid, nucid) = read_pid(args) cd8_epitopes = pd.read_excel(args.xlsx, skiprows=0, header=0, index_col=None) print (cd8_epitopes.columns) outfiletag = 'escape_mutations' beddetailfilename = outfiletag+'.beddetail' bedfilename = outfiletag+'.bed' bbfilename = outfiletag+'.bb' #print (cd8_epitopes['Probable Infection Location']) #print (cd8_epitopes['Gene']) #print (cd8_epitopes['Position of Mutation']) #print (cd8_epitopes['AA Change']) #print (cd8_epitopes['Codon Change']) #print (cd8_epitopes['Wildtype Sequence']) #print (cd8_epitopes['Mutant Sequence 1']) #print (cd8_epitopes['Mutant Sequence 2']) wt_mt = defaultdict(list) mutations = [] beddetailfilehandler = open(beddetailfilename, 'w') for i in range(0, len(cd8_epitopes['Position of Mutation'])): chrom = "NC_045512v2" reserved = 0 score = 1000 strand = '+' pom = cd8_epitopes['Position of Mutation'][i] gene = cd8_epitopes['Gene'][i] pil = cd8_epitopes['Probable Infection Location'][i] aa_change = cd8_epitopes['AA Change'][i] c_change = cd8_epitopes['Codon Change'][i] if gene+'_'+c_change+'_'+aa_change not in mutations: mutations.append(gene+'_'+c_change+'_'+aa_change) if ';' not in cd8_epitopes['Wildtype Sequence'][i]: chromStart = get_start_pos(cd8_epitopes['Wildtype Sequence'][i], pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(cd8_epitopes['Wildtype Sequence'][i]))*3+int(chromStart)) thickStart = str(chromStart) thickEnd = str(chromEnd) wt_pep = cd8_epitopes['Wildtype Sequence'][i] mt_pep = cd8_epitopes['Mutant Sequence 1'][i] if wt_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt_pep in wt_mt[wt_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt_pep+"\n") else: wt_pep = cd8_epitopes['Wildtype Sequence'][i] wt1_pep = wt_pep.split(';')[0] wt2_pep = wt_pep.split(';')[1] mt1_pep = cd8_epitopes['Mutant Sequence 1'][i] mt2_pep = cd8_epitopes['Mutant Sequence 2'][i] chromStart = get_start_pos(wt1_pep, pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(wt1_pep))*3+int(chromStart)) thickStart = chromStart thickEnd = chromEnd if wt1_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt1_pep in wt_mt[wt1_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt1_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt1_pep+"\n") chromStart = get_start_pos(wt2_pep, pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(wt2_pep))*3+int(chromStart)) thickStart = chromStart thickEnd = chromEnd if wt2_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt2_pep in wt_mt[wt2_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt2_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt2_pep+"\n") beddetailfilehandler.close() print (len(mutations)) # use gbtools to convert from beddetail to bed and bigbed os.system(f"bedSort {beddetailfilename} {bedfilename}") os.system(f"bedToBigBed {bedfilename} wuhCor1.sizes {bbfilename} -tab -type=bed9+ -as=escape_mutants.as") if __name__ == "__main__": main(get_args())
37452
from django.conf import settings DRFSO2_PROPRIETARY_BACKEND_NAME = getattr(settings, 'DRFSO2_PROPRIETARY_BACKEND_NAME', "Django") DRFSO2_URL_NAMESPACE = getattr(settings, 'DRFSO2_URL_NAMESPACE', "")
37453
from twisted.plugin import IPlugin from twisted.words.protocols import irc from txircd.config import ConfigValidationError from txircd.module_interface import Command, ICommand, IModuleData, ModuleData from txircd.modules.xlinebase import XLineBase from txircd.utils import durationToSeconds, ircLower, now from zope.interface import implements from fnmatch import fnmatchcase class GLine(ModuleData, XLineBase): implements(IPlugin, IModuleData) name = "GLine" core = True lineType = "G" def actions(self): return [ ("register", 10, self.checkLines), ("changeident", 10, self.checkIdentChange), ("changehost", 10, self.checkHostChange), ("commandpermission-GLINE", 10, self.restrictToOper), ("statsruntype-glines", 10, self.generateInfo), ("burst", 10, self.burstLines) ] def userCommands(self): return [ ("GLINE", 1, UserGLine(self)) ] def serverCommands(self): return [ ("ADDLINE", 1, ServerAddGLine(self)), ("DELLINE", 1, ServerDelGLine(self)) ] def load(self): self.initializeLineStorage() def verifyConfig(self, config): if "client_ban_msg" in config and not isinstance(config["client_ban_msg"], basestring): raise ConfigValidationError("client_ban_msg", "value must be a string") def checkUserMatch(self, user, mask, data): banMask = self.normalizeMask(mask) userMask = ircLower("{}@{}".format(user.ident, user.host())) if fnmatchcase(userMask, banMask): return True userMask = ircLower("{}@{}".format(user.ident, user.realHost)) if fnmatchcase(userMask, banMask): return True userMask = ircLower("{}@{}".format(user.ident, user.ip)) if fnmatchcase(userMask, banMask): return True return False def killUser(self, user, reason): self.ircd.log.info("Matched user {user.uuid} ({user.ident}@{user.host()}) against a g:line: {reason}", user=user, reason=reason) user.sendMessage(irc.ERR_YOUREBANNEDCREEP, self.ircd.config.get("client_ban_msg", "You're banned! Email <EMAIL> for assistance.")) user.disconnect("G:Lined: {}".format(reason)) def checkLines(self, user): banReason = self.matchUser(user) if banReason is not None: self.killUser(user, banReason) return False return True def checkIdentChange(self, user, oldIdent, fromServer): self.checkLines(user) def checkHostChange(self, user, hostType, oldHost, fromServer): if user.uuid[:3] == self.ircd.serverID: self.checkLines(user) def restrictToOper(self, user, data): if not self.ircd.runActionUntilValue("userhasoperpermission", user, "command-gline", users=[user]): user.sendMessage(irc.ERR_NOPRIVILEGES, "Permission denied - You do not have the correct operator privileges") return False return None class UserGLine(Command): implements(ICommand) def __init__(self, module): self.module = module def parseParams(self, user, params, prefix, tags): if len(params) < 1 or len(params) == 2: user.sendSingleError("GLineParams", irc.ERR_NEEDMOREPARAMS, "GLINE", "Not enough parameters") return None banmask = params[0] if banmask in self.module.ircd.userNicks: targetUser = self.module.ircd.users[self.module.ircd.userNicks[banmask]] banmask = "{}@{}".format(targetUser.ident, targetUser.realHost) else: if "@" not in banmask: banmask = "*@{}".format(banmask) if len(params) == 1: return { "mask": banmask } return { "mask": banmask, "duration": durationToSeconds(params[1]), "reason": " ".join(params[2:]) } def execute(self, user, data): banmask = data["mask"] if "reason" in data: if not self.module.addLine(banmask, now(), data["duration"], user.hostmask(), data["reason"]): user.sendMessage("NOTICE", "*** G:Line for {} is already set.".format(banmask)) return True badUsers = [] for checkUser in self.module.ircd.users.itervalues(): reason = self.module.matchUser(checkUser) if reason is not None: badUsers.append((checkUser, reason)) for badUser in badUsers: self.module.killUser(*badUser) if data["duration"] > 0: user.sendMessage("NOTICE", "*** Timed g:line for {} has been set, to expire in {} seconds.".format(banmask, data["duration"])) else: user.sendMessage("NOTICE", "*** Permanent g:line for {} has been set.".format(banmask)) return True if not self.module.delLine(banmask): user.sendMessage("NOTICE", "*** G:Line for {} doesn't exist.".format(banmask)) return True user.sendMessage("NOTICE", "*** G:Line for {} has been removed.".format(banmask)) return True class ServerAddGLine(Command): implements(ICommand) def __init__(self, module): self.module = module def parseParams(self, server, params, prefix, tags): return self.module.handleServerAddParams(server, params, prefix, tags) def execute(self, server, data): if self.module.executeServerAddCommand(server, data): badUsers = [] for user in self.module.ircd.users.itervalues(): reason = self.module.matchUser(user) if reason is not None: badUsers.append((user, reason)) for user in badUsers: self.module.killUser(*user) return True return None class ServerDelGLine(Command): implements(ICommand) def __init__(self, module): self.module = module def parseParams(self, server, params, prefix, tags): return self.module.handleServerDelParams(server, params, prefix, tags) def execute(self, server, data): return self.module.executeServerDelCommand(server, data) glineModule = GLine()
37457
load( "//tensorflow/core/platform:rules_cc.bzl", "cc_library", ) def poplar_cc_library(**kwargs): """ Wrapper for inserting poplar specific build options. """ if not "copts" in kwargs: kwargs["copts"] = [] copts = kwargs["copts"] copts.append("-Werror=return-type") cc_library(**kwargs)
37473
from datetime import datetime, date from marqeta.response_models.result import Result from marqeta.response_models.kyc_question import KycQuestion from marqeta.response_models import datetime_object import json import re class KycResponse(object): def __init__(self, json_response): self.json_response = json_response def __str__(self): return json.dumps(self.json_response, default=self.json_serial) @staticmethod def json_serial(o): if isinstance(o, datetime) or isinstance(o, date): return o.__str__() @property def created_time(self): if 'created_time' in self.json_response: return datetime_object('created_time', self.json_response) @property def last_modified_time(self): if 'last_modified_time' in self.json_response: return datetime_object('last_modified_time', self.json_response) @property def token(self): return self.json_response.get('token', None) @property def user_token(self): return self.json_response.get('user_token', None) @property def business_token(self): return self.json_response.get('business_token', None) @property def result(self): if 'result' in self.json_response: return Result(self.json_response['result']) @property def manual_override(self): return self.json_response.get('manual_override', None) @property def notes(self): return self.json_response.get('notes', None) @property def questions(self): if 'questions' in self.json_response: return [KycQuestion(val) for val in self.json_response['questions']] @property def reference_id(self): return self.json_response.get('reference_id', None) def __repr__(self): return '<Marqeta.response_models.kyc_response.KycResponse>' + self.__str__()
37485
a = input("Enter the string:") b = a.find("@") c = a.find("#") print("The original string is:",a) print("The substring between @ and # is:",a[b+1:c])
37496
import thoonk from thoonk.feeds import SortedFeed import unittest from ConfigParser import ConfigParser class TestLeaf(unittest.TestCase): def setUp(self): conf = ConfigParser() conf.read('test.cfg') if conf.sections() == ['Test']: self.ps = thoonk.Thoonk(host=conf.get('Test', 'host'), port=conf.getint('Test', 'port'), db=conf.getint('Test', 'db')) self.ps.redis.flushdb() else: print 'No test configuration found in test.cfg' exit() def test_10_basic_sorted_feed(self): """Test basic sorted feed publish and retrieve.""" l = self.ps.sorted_feed("sortedfeed") self.assertEqual(l.__class__, SortedFeed) l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") r = l.get_ids() v = l.get_items() items = {'1': 'hi', '2': 'bye', '3': 'thanks', '4': "you're welcome"} self.assertEqual(r, ['1', '2', '3', '4'], "Sorted feed results did not match publish: %s." % r) self.assertEqual(v, items, "Sorted feed items don't match: %s" % v) def test_20_sorted_feed_before(self): """Test addding an item before another item""" l = self.ps.sorted_feed("sortedfeed") l.publish("hi") l.publish("bye") l.publish_before('2', 'foo') r = l.get_ids() self.assertEqual(r, ['1', '3', '2'], "Sorted feed results did not match: %s." % r) def test_30_sorted_feed_after(self): """Test adding an item after another item""" l = self.ps.sorted_feed("sortedfeed") l.publish("hi") l.publish("bye") l.publish_after('1', 'foo') r = l.get_ids() self.assertEqual(r, ['1', '3', '2'], "Sorted feed results did not match: %s." % r) def test_40_sorted_feed_prepend(self): """Test addding an item to the front of the sorted feed""" l = self.ps.sorted_feed("sortedfeed") l.publish("hi") l.publish("bye") l.prepend('bar') r = l.get_ids() self.assertEqual(r, ['3', '1', '2'], "Sorted feed results don't match: %s" % r) def test_50_sorted_feed_edit(self): """Test editing an item in a sorted feed""" l = self.ps.sorted_feed("sortedfeed") l.publish("hi") l.publish("bye") l.edit('1', 'bar') r = l.get_ids() v = l.get_item('1') vs = l.get_items() items = {'1': 'bar', '2': 'bye'} self.assertEqual(r, ['1', '2'], "Sorted feed results don't match: %s" % r) self.assertEqual(v, 'bar', "Items don't match: %s" % v) self.assertEqual(vs, items, "Sorted feed items don't match: %s" % vs) def test_60_sorted_feed_retract(self): """Test retracting an item from a sorted feed""" l = self.ps.sorted_feed("sortedfeed") l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") l.retract('3') r = l.get_ids() self.assertEqual(r, ['1', '2', '4'], "Sorted feed results don't match: %s" % r) def test_70_sorted_feed_move_first(self): """Test moving items around in the feed.""" l = self.ps.sorted_feed('sortedfeed') l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") l.move_first('4') r = l.get_ids() self.assertEqual(r, ['4', '1', '2', '3'], "Sorted feed results don't match: %s" % r) def test_71_sorted_feed_move_last(self): """Test moving items around in the feed.""" l = self.ps.sorted_feed('sortedfeed') l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") l.move_last('2') r = l.get_ids() self.assertEqual(r, ['1', '3', '4', '2'], "Sorted feed results don't match: %s" % r) def test_72_sorted_feed_move_before(self): """Test moving items around in the feed.""" l = self.ps.sorted_feed('sortedfeed') l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") l.move_before('1', '2') r = l.get_ids() self.assertEqual(r, ['2', '1', '3', '4'], "Sorted feed results don't match: %s" % r) def test_73_sorted_feed_move_after(self): """Test moving items around in the feed.""" l = self.ps.sorted_feed('sortedfeed') l.publish("hi") l.publish("bye") l.publish("thanks") l.publish("you're welcome") l.move_after('1', '4') r = l.get_ids() self.assertEqual(r, ['1', '4', '2', '3'], "Sorted feed results don't match: %s" % r) suite = unittest.TestLoader().loadTestsFromTestCase(TestLeaf)
37499
from unittest.mock import MagicMock import google.protobuf.text_format as text_format import numpy as np from banditpylib.bandits import CvarReward from banditpylib.data_pb2 import Actions, Context from .ts import ThompsonSampling class TestThompsonSampling: """Test thompson sampling policy""" def test_simple_run(self): revenues = np.array([0, 0.7, 0.8, 0.9, 1.0]) horizon = 100 reward = CvarReward(0.7) learner = ThompsonSampling(revenues=revenues, horizon=horizon, reward=reward) # Test warm start learner.reset() assert learner.actions(Context()).SerializeToString() == text_format.Parse( """ arm_pulls { arm { set { id: 1 } } times: 1 } """, Actions()).SerializeToString() learner.reset() # pylint: disable=protected-access learner._ThompsonSampling__within_warm_start = MagicMock( return_value=False) mock_preference_params = np.array([1, 1, 1, 1, 1]) learner._ThompsonSampling__correlated_sampling = MagicMock( return_value=mock_preference_params) assert learner.actions(Context()).SerializeToString() == text_format.Parse( """ arm_pulls { arm { set { id: 1 id: 2 id: 3 id: 4 } } times: 1 } """, Actions()).SerializeToString()
37500
from maru import pymorphy from maru.lemmatizer.abstract import ILemmatizer from maru.tag import Tag from maru.types import Word class PymorphyLemmatizer(ILemmatizer): def lemmatize(self, word: Word, tag: Tag) -> Word: best_parse = max( pymorphy.analyze(word), key=lambda parse: ( tag.pos is pymorphy.get_part_of_speech(parse), tag.case is pymorphy.get_case(parse), tag.gender is pymorphy.get_gender(parse), ), ) return best_parse.normal_form
37502
import os import xcffib from xcffib.testing import XvfbTest from xcffib.xproto import Atom, ConfigWindow, EventMask, GetPropertyType conn = xcffib.connect(os.environ['DISPLAY']) xproto = xcffib.xproto.xprotoExtension(conn) def arrange(layout, windowids): for lay, winid in zip(layout, windowids): xproto.ConfigureWindow(winid, ConfigWindow.X | ConfigWindow.Y | ConfigWindow.Width | ConfigWindow.Height, lay) conn.flush() def move(winid, x, y, sync=True): xproto.ConfigureWindow(winid, ConfigWindow.X | ConfigWindow.Y, [x, y]) if sync: conn.flush()
37515
import subprocess __all__ = ['view_env', 'create_env', 'remove_env'] def view_env(): """Get virtual environment info.""" cmd = f"conda info -e" s = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).communicate()[0] s = s.decode('utf-8').strip().split('\n')[2:] s = [i.split(' ') for i in s] return {i[0]:i[-1] for i in s} def create_env(name, version): """Create virtual environment. Args: name: virtual environment. version: python version. Return: log info. """ cmd = 'conda update -n base -c defaults conda' subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).communicate()[0] s = view_env() if name in s: return 'Virtual environment already exists.' cmd = f"conda create -n {name} python={version} -y" subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).communicate()[0] s = view_env() if name in s: return 'Virtual environment successfully created.' return 'Virtual environment failed created.' def remove_env(name): """Remove virtual environment. Args: name: virtual environment. Return: log info. """ s = view_env() if name not in s: return 'Virtual environment not exists.' cmd = f'conda remove -n {name} --all' subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).communicate()[0] s = view_env() if name not in s: return 'Virtual environment successfully removed.' return 'Virtual environment failed removed.'
37526
import asyncio import math import networkx as nx import ccxt.async_support as ccxt import datetime import logging from .logging_utils import FormatForLogAdapter __all__ = [ 'FeesNotAvailable', 'create_exchange_graph', 'load_exchange_graph', ] adapter = FormatForLogAdapter(logging.getLogger('peregrinearb.utils.single_exchange')) class FeesNotAvailable(Exception): pass def create_exchange_graph(exchange: ccxt.Exchange): """ Returns a simple graph representing exchange. Each edge represents a market. exchange.load_markets() must have been called. Will throw a ccxt error if it has not. """ graph = nx.Graph() for market_name in exchange.symbols: try: base_currency, quote_currency = market_name.split('/') # if ccxt returns a market in incorrect format (e.g FX_BTC_JPY on BitFlyer) except ValueError: continue graph.add_edge(base_currency, quote_currency, market_name=market_name) return graph async def load_exchange_graph(exchange, name=True, fees=True, suppress=None, depth=False, tickers=None) -> nx.DiGraph: """ Returns a networkx DiGraph populated with the current ask and bid prices for each market in graph (represented by edges). If depth, also adds an attribute 'depth' to each edge which represents the current volume of orders available at the price represented by the 'weight' attribute of each edge. """ if suppress is None: suppress = ['markets'] if name: exchange = getattr(ccxt, exchange)() if tickers is None: adapter.info('Fetching tickers') tickers = await exchange.fetch_tickers() adapter.info('Fetched tickers') market_count = len(tickers) adapter.info('Loading exchange graph', marketCount=market_count) adapter.debug('Initializing empty graph with exchange_name and timestamp attributes') graph = nx.DiGraph() # todo: get exchange's server time? graph.graph['exchange_name'] = exchange.id graph.graph['datetime'] = datetime.datetime.now(tz=datetime.timezone.utc) adapter.debug('Initialized empty graph with exchange_name and timestamp attributes') async def add_edges(): tasks = [_add_weighted_edge_to_graph(exchange, market_name, graph, log=True, fees=fees, suppress=suppress, ticker=ticker, depth=depth, ) for market_name, ticker in tickers.items()] await asyncio.wait(tasks) if fees: for i in range(20): try: adapter.info('Loading fees', iteration=i) # must load markets to get fees await exchange.load_markets() except (ccxt.DDoSProtection, ccxt.RequestTimeout) as e: if i == 19: adapter.warning('Rate limited on final iteration, raising error', iteration=i) raise e adapter.warning('Rate limited when loading markets', iteration=i) await asyncio.sleep(0.1) except ccxt.ExchangeNotAvailable as e: if i == 19: adapter.warning('Cannot load markets due to ExchangeNotAvailable error, ' 'graph will not be loaded.', iteration=i) raise e adapter.warning('Received ExchangeNotAvailable error when loading markets', iteration=i) else: break adapter.info('Loaded fees', iteration=i, marketCount=market_count) currency_count = len(exchange.currencies) adapter.info('Adding data to graph', marketCount=market_count, currencyCount=currency_count) await add_edges() adapter.info('Added data to graph', marketCount=market_count, currencyCount=currency_count) else: adapter.info('Adding data to graph', marketCount=market_count) await add_edges() adapter.info('Added data to graph', marketCount=market_count) adapter.debug('Closing connection') await exchange.close() adapter.debug('Closed connection') adapter.info('Loaded exchange graph') return graph async def _add_weighted_edge_to_graph(exchange: ccxt.Exchange, market_name: str, graph: nx.DiGraph, log=True, fees=False, suppress=None, ticker=None, depth=False, ): """ todo: add global variable to bid_volume/ ask_volume to see if all tickers (for a given exchange) have value == None Returns a Networkx DiGraph populated with the current ask and bid prices for each market in graph (represented by edges). :param exchange: A ccxt Exchange object :param market_name: A string representing a cryptocurrency market formatted like so: '{base_currency}/{quote_currency}' :param graph: A Networkx DiGraph upon :param log: If the edge weights given to the graph should be the negative logarithm of the ask and bid prices. This is necessary to calculate arbitrage opportunities. :param fees: If fees should be taken into account for prices. :param suppress: A list or set which tells which types of warnings to not throw. Accepted elements are 'markets'. :param ticker: A dictionary representing a market as returned by ccxt's Exchange's fetch_ticker method :param depth: If True, also adds an attribute 'depth' to each edge which represents the current volume of orders available at the price represented by the 'weight' attribute of each edge. """ adapter.debug('Adding edge to graph', market=market_name) if ticker is None: try: adapter.info('Fetching ticker', market=market_name) ticker = await exchange.fetch_ticker(market_name) adapter.info('Fetched ticker', market=market_name) # any error is solely because of fetch_ticker except: if 'markets' not in suppress: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return if fees: if 'taker' in exchange.markets[market_name]: # we always take the taker side because arbitrage depends on filling orders # sell_fee_dict = exchange.calculate_fee(market_name, 'limit', 'sell', 0, 0, 'taker') # buy_fee_dict = exchange.calculate_fee(market_name, 'limit', 'buy', 0, 0, 'taker') fee = exchange.markets[market_name]['taker'] else: if 'fees' not in suppress: adapter.warning("The fees for {} have not yet been implemented into ccxt's uniform API." .format(exchange)) raise FeesNotAvailable('Fees are not available for {} on {}'.format(market_name, exchange.id)) else: fee = 0.002 else: fee = 0 fee_scalar = 1 - fee try: bid_rate = ticker['bid'] ask_rate = ticker['ask'] if depth: bid_volume = ticker['bidVolume'] ask_volume = ticker['askVolume'] if bid_volume is None: adapter.warning('Market is unavailable because its bid volume was given as None. ' 'It will not be included in the graph.', market=market_name) return if ask_volume is None: adapter.warning('Market is unavailable because its ask volume was given as None. ' 'It will not be included in the graph.', market=market_name) return # ask and bid == None if this market is non existent. except TypeError: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return # Exchanges give asks and bids as either 0 or None when they do not exist. # todo: should we account for exchanges upon which an ask exists but a bid does not (and vice versa)? Would this # cause bugs? if ask_rate == 0 or bid_rate == 0 or ask_rate is None or bid_rate is None: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return try: base_currency, quote_currency = market_name.split('/') # if ccxt returns a market in incorrect format (e.g FX_BTC_JPY on BitFlyer) except ValueError: if 'markets' not in suppress: adapter.warning('Market is unavailable at this time due to incorrect formatting. ' 'It will not be included in the graph.', market=market_name) return if log: if depth: graph.add_edge(base_currency, quote_currency, weight=-math.log(fee_scalar * bid_rate), depth=-math.log(bid_volume), market_name=market_name, trade_type='SELL', fee=fee, volume=bid_volume, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=-math.log(fee_scalar * 1 / ask_rate), depth=-math.log(ask_volume * ask_rate), market_name=market_name, trade_type='BUY', fee=fee, volume=ask_volume, no_fee_rate=ask_rate) else: graph.add_edge(base_currency, quote_currency, weight=-math.log(fee_scalar * bid_rate), market_name=market_name, trade_type='SELL', fee=fee, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=-math.log(fee_scalar * 1 / ask_rate), market_name=market_name, trade_type='BUY', fee=fee, no_fee_rate=ask_rate) else: if depth: graph.add_edge(base_currency, quote_currency, weight=fee_scalar * bid_rate, depth=bid_volume, market_name=market_name, trade_type='SELL', fee=fee, volume=bid_volume, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=fee_scalar * 1 / ask_rate, depth=ask_volume, market_name=market_name, trade_type='BUY', fee=fee, volume=ask_volume, no_fee_rate=ask_rate) else: graph.add_edge(base_currency, quote_currency, weight=fee_scalar * bid_rate, market_name=market_name, trade_type='SELL', fee=fee, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=fee_scalar * 1 / ask_rate, market_name=market_name, trade_type='BUY', fee=fee, no_fee_rate=ask_rate) adapter.debug('Added edge to graph', market=market_name)
37546
import json from .fragment_doc import fragment_srt, fragment_syosetu, has_unbalanced_quotes, extract_kana_kanji EXTRACT_KANA_KANJI_CASES = [ ['asdf.!ä', ''], ['あいうえお', 'あいうえお'], ['asdこfdれ', 'これ'], ['「ああ、畜生」foo', 'ああ畜生'], ] for [text, target] in EXTRACT_KANA_KANJI_CASES: if extract_kana_kanji(text) != target: print('FAIL EXTRACT KANA+KANJI') print(text) QUOTE_BALANCE_CASES = [ ['あいうえお', False], ['あい「うえお', True], ['「あいうえお', True], ['「あいうえお」', False], ['あい「うえ」お', False], ['「あい」う「えお」', False], ['「あいう「えお」」', False], ['「あい「うえ」お', True], ['あい「うえ」お」', True], ] for [text, target] in QUOTE_BALANCE_CASES: if has_unbalanced_quotes(text) != target: print('FAIL QUOTE BALANCE') print(text) FRAG_CASES = [ ['S', ''' 1 00:02:17,440 --> 00:02:20,375 Senator, we're making our final approach into Coruscant. 2 00:02:20,476 --> 00:02:22,501 Very good, Lieutenant. ''', [ {'text': "Senator, we're making our final approach into Coruscant.", 'loc': 't:137.440-140.375'}, {'text': 'Very good, Lieutenant.', 'loc': 't:140.476-142.501'}, ] ], # no anchor novel ['N', '<div><p>食べる</p></div>', [{'text': "食べる"}]], # anchor novel ['N', '<div><p id="L123">食べる</p></div>', [{'text': '食べる', 'loc': 'a:L123'}]], # no splitting ['N', '<div><p>それでは、行ってまいります</p></div>', [ {'text': 'それでは、行ってまいります'}, ] ], # simple splitting ['N', '<div><p>そのせいだろうか。あの日に見た空の青を、よく覚えている。</p></div>', [ {'text': 'そのせいだろうか。'}, {'text': 'あの日に見た空の青を、よく覚えている。'}, ] ], # strip leading dashes ['N', '<div><p>――ああ、そうだったのですか。</p></div>', [ {'text': 'ああ、そうだったのですか。'}, ] ], # strip leading ellipses ['N', '<div><p>……そうか?</p></div>', [ {'text': 'そうか?'}, ] ], # strip matching quotes ['N', '<div><p>「ああ、畜生」</p></div>', [ {'text': 'ああ、畜生'}, ] ], # strip just leading open quote ['N', '<div><p>「あっ、大丈夫です!</p></div>', [ {'text': 'あっ、大丈夫です!'}, ] ], # strip just trailing close quote ['N', '<div><p>王宮に神父がいるかっ」</p></div>', [ {'text': '王宮に神父がいるかっ'}, ] ], # combo ['N', '<div><p>「……うん」</p></div>', [ {'text': 'うん'}, ] ], # don't strip trailing ellipses ['N', '<div><p>「……血……血が……………」</p></div>', [ {'text': '血……血が……………'}, ] ], # ignore fragments that start with close quote ['N', '<div><p>」と見開いた。</p></div>', []], # handle other quotes ['N', '<div><p>『モルツ、少し休憩する』</p></div>', [ {'text': 'モルツ、少し休憩する'}, ] ], # remove leading speaker label ['N', '<div><p>【ポルペオ】「なんだ、その目は?</p></div>', [ {'text': 'なんだ、その目は?'}, ] ], # remove drama-style speaker label ['N', '<div><p>(平次)おい 大変だ。</p></div>', [ {'text': 'おい 大変だ。'}, ] ], # TODO: can we get rid of the leading dash? # ['N', '<div><p id="L75">─ 〝城内〟に命ず。騎士団による警備を撤去せよ。</p></div>', # [ # {'text': '〝城内〟に命ず。', 'loc': 'a:L75'}, # {'text': '騎士団による警備を撤去せよ。', 'loc': 'a:L75'} # ] # ], ] for [kind, text, expected_result] in FRAG_CASES: if kind == 'S': result = fragment_srt(text, None) elif kind == 'N': result = fragment_syosetu(text, None) else: assert False # this is hacky, but should be OK if json.dumps(result, sort_keys=True) != json.dumps(expected_result, sort_keys=True): print('FAIL') print('TEXT-----------------') print(text) print('TARGET RESULT--------') print(repr(expected_result)) print('ACTUAL RESULT--------') print(repr(result)) print()
37607
import sys; from queue import Queue from multiprocessing.managers import BaseManager import etl; import json import extends; import time; authkey= "etlpy".encode('utf-8') timeout=1; rpc_port=8888 class ETLJob: def __init__(self,project,jobname,config,id): self.project= project; self.jobname=jobname; self.config=config; self.id= id; class JobResult: def __init__(self,name,count,id): self.name=name; self.count=count; self.id=id; class Master: def __init__(self,project,jobname): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue() self.project= project; self.jobname=jobname; self.maxprocess= 10; def get_dispatched_job_queue(self): return self.dispatched_job_queue def get_finished_job_queue(self): return self.finished_job_queue def start(self,skip=0): # 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue) BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue) # 监听端口和启动服务 manager = BaseManager(address=('0.0.0.0', rpc_port), authkey=authkey) manager.start() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() job_id = 0 module= self.project.modules[self.jobname]; proj=json.loads(json.dumps(etl.convert_dict(self.project,self.project.__defaultdict__), ensure_ascii=False)) while True: for task in etl.parallel_map(module): job_id = job_id + 1 if job_id<skip: continue job = ETLJob(proj, self.jobname, task, job_id); print('Dispatch job: %s' % job.id) dispatched_jobs.put(job) while not dispatched_jobs.empty(): job = finished_jobs.get(60) print('Finished Job: %s, Count: %s' % (job.id, job.count)) key=input('press any key to repeat,c to cancel') if key=='c': manager.shutdown() break #manager.shutdown() class Slave: def __init__(self): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue() def start(self,execute= True,serverip='127.0.0.1',port=8888): # 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue') BaseManager.register('get_finished_job_queue') server = serverip; print('Connect to server %s...' % server) manager = BaseManager(address=(server, port), authkey=authkey) manager.connect() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() # 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业 while True: if dispatched_jobs.empty(): time.sleep(1) print('queue is empty,wait 1 sec...') continue; job = dispatched_jobs.get(timeout=timeout) print('Run job: %s ' % job.id) project=job.project; project= etl.LoadProject_dict(project); module= project.modules[job.jobname]; count=0 try: generator= etl.parallel_reduce(module,[ job.config],execute) for r in generator: count+=1; except Exception as e: print(e) print('finish job,id %s, count %s'%(job.id,count)) resultjob= JobResult(job.jobname,count,job.id) finished_jobs.put(resultjob) if __name__ == '__main__': ip='127.0.0.1' port=8888; argv=sys.argv; if len(argv)>1: ip=argv[1]; if len(argv)>2: port=int(argv[2]); slave= Slave(); slave.start(True,ip,port);
37614
from blackboard import BlackBoardContent, BlackBoardClient, BlackBoardAttachment, BlackBoardEndPoints, \ BlackBoardCourse, BlackBoardInstitute import os import re import requests import datetime import xmltodict import argparse import sys import json import getpass import main def test(): args = main.handle_arguments(True) # Institute Data print("Dumping Institute Properties...") institute_data = dict() institute_vars = vars(args.institute) for item in institute_vars: institute_data[item] = institute_vars[item] print("Dumped Institute Properties...") # Client Data client_data = dict() client = BlackBoardClient(username=args.username, password=<PASSWORD>, site=args.site, save_location=args.location, institute=args.institute) attempt = client.login() print(f"Client Login {'Successful' if attempt[0] else 'Failure'}...\nDumping Client Properties...") client_data["public_api_available"] = client.public_endpoint_available() client_data["login_endpoint"] = attempt[1].url client_data["login_status_code"] = attempt[1].status_code client_data["login_response"] = attempt[1].text client_data["successful_login"] = attempt[0] client_vars = vars(client) for item in client_vars: if item not in ('_BlackBoardClient__password', 'session', 'institute', 'api_version', 'thread_pool'): client_data[item] = client_vars[item] print("Dumped Client Properties...") # Get Parent Course Data course_data = { 'endpoint': '', 'status_code': '', 'response': '', 'courses': [] } def get_courses(): """ Get all Available Course Information for the Client and Record Details """ courses_request = client.send_get_request(BlackBoardEndPoints.get_user_courses(client.user_id)) courses = courses_request.json() course_data['endpoint'] = courses_request.url course_data['status_code'] = courses_request.status_code course_data['response'] = courses if "results" in courses: for course in courses["results"]: try: course_request = client.send_get_request(BlackBoardEndPoints.get_course(course["courseId"])) course = course_request.json() bbcourse = BlackBoardCourse(client, course) course_vars = vars(bbcourse) course_sub_data = dict() course_sub_data["course_endpoint"] = course_request.url course_sub_data['status_code'] = course_request.status_code for item in course_vars: course_sub_data[item] = str(course_vars[item]) course_data['courses'].append(course_sub_data) except Exception as e: course_data['courses'].append({'error': str(e)}) print("Getting Course Data...") get_courses() print("Completed Course Data...") dumps = { 'institute': institute_data, 'client': client_data, 'courses': course_data, } print("Preparing to Dump Debug...") with open(os.path.abspath(os.path.join(client.base_path, "dump.json")), 'w+') as file: print(f"Writing File: \"{file.name}\"...") json.dump(dumps, file) print("Done...") if __name__ == "__main__": test()
37627
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors class MapColorControl(): def __init__(self, colour_scheme, map_normalization,data): self.colors = plt.get_cmap(colour_scheme)(range(256))[:,:3] self.data = data if self.data.min() <= 0: self.data = self.data + abs(self.data.min()) + 1 if map_normalization == "Linear": self.normNorm = colors.Normalize(vmin=self.data.min(),vmax=self.data.max()) elif map_normalization == "Logarithmic": self.normNorm = colors.LogNorm(vmin=self.data.min(),vmax=self.data.max()) elif map_normalization == "Power-law": self.normNorm = colors.PowerNorm(gamma=2,vmin=self.data.min(),vmax=self.data.max()) def get_map_data(self): datum = np.round(self.normNorm(self.data) * 255) return self.map(datum) def map(self,infos): datum = [] for index in infos: datum.append(colors.rgb2hex(self.colors[int(index)])) return datum class MapControl(): def __init__(self,max_value,min_value,map_normalization,data): self.data = data if self.data.min() <=0: self.data = self.data + abs(self.data.min()) +1 if map_normalization == "Linear": self.normNorm = colors.Normalize(vmin=self.data.min(),vmax=self.data.max()) elif map_normalization == "Logarithmic": self.normNorm = colors.LogNorm(vmin=self.data.min(),vmax=self.data.max()) elif map_normalization == "Power-law": self.normNorm = colors.PowerNorm(gamma=2,vmin=self.data.min(),vmax=self.data.max()) self.maxValue = max_value self.minValue = min_value def get_map_data(self,is_round): if is_round: datum = np.round(self.normNorm(self.data) * (self.maxValue-self.minValue) + self.minValue,5) else: datum = np.round(self.normNorm(self.data) * (self.maxValue - self.minValue) + self.minValue) return list(datum)
37628
from django.conf.urls import patterns, url from lattice.views import (lattices) from lattice.views import (saveLatticeInfo, saveLattice) from lattice.views import (saveModel) from lattice.views import (lattice_home, lattice_content_home, lattice_content_search, lattice_content_list, lattice_content_model_list, lattice_content_details, lattice_content_model_details) from lattice.views import (lattice_modal, saveLatticeHelper, saveLatticeTypeHelper, saveLatticeStatusHelper, saveModelHelper, saveModelStatusHelper) urlpatterns = patterns( '', # return raw data not thru html ui url(r'^lattice/$', lattices, name='lattices'), url(r'^lattice/savelatticeinfo/$', saveLatticeInfo, name='saveLatticeInfo'), url(r'^lattice/savelattice$', saveLattice, name='saveLattice'), url(r'^lattice/savemodel$', saveModel, name='saveModel'), url(r'^lattice/web/$', lattice_home, name='lattice_home'), url(r'^lattice/web/index.html$', lattice_home, name='lattice_home'), url(r'^lattice/web/content.html$', lattice_content_home, name='lattice_content_home'), url(r'^lattice/web/search.html$', lattice_content_search, name='lattice_content_search'), url(r'^lattice/web/list.html$', lattice_content_list, name='lattice_content_list'), url(r'^lattice/web/model_list.html$', lattice_content_model_list, name='lattice_content_model_list'), url(r'^lattice/web/details.html$', lattice_content_details, name='lattice_content_details'), url(r'^lattice/web/model_details.html$', lattice_content_model_details, name='lattice_content_model_details'), url(r'^lattice/web/modal/', lattice_modal, name='lattice_modal'), url(r'^lattice/savelatticetype$', saveLatticeTypeHelper, name='saveLatticTypeeHelper'), url(r'^lattice/upload$', saveLatticeHelper, name='saveLatticeHelper'), url(r'^lattice/savestatus$', saveLatticeStatusHelper, name='saveLatticeStatusHelper'), url(r'^model/upload$', saveModelHelper, name='saveModelHelper'), url(r'^model/savestatus$', saveModelStatusHelper, name='saveModelStatusHelper'), )
37633
import unittest import torch from parameterized import parameterized from torecsys.losses import * device = 'cuda:0' if torch.cuda.is_available() else 'cpu' class AdaptiveHingeLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32,), (16, 16,), (32, 4,), ]) def test_forward(self, batch_size: int, num_neg: int): criterion = AdaptiveHingeLoss() criterion = criterion.to(device) pos_out = torch.rand(batch_size, 1) neg_out = torch.rand(batch_size, num_neg) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(pos_out, neg_out, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class BayesianPersonalizedRankingLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32,), (16, 16,), (32, 4,), ]) def test_forward(self, batch_size: int, num_neg: int): criterion = BayesianPersonalizedRankingLoss(reduction='sum') criterion = criterion.to(device) pos_out = torch.rand(batch_size, 1) neg_out = torch.rand(batch_size, num_neg) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(pos_out, neg_out, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class HingeLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32,), (16, 16,), (32, 4,), ]) def test_forward(self, batch_size: int, num_neg: int): criterion = HingeLoss() criterion = criterion.to(device) pos_out = torch.rand(batch_size, 1) neg_out = torch.rand(batch_size, num_neg) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(pos_out, neg_out, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class ListnetLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32,), (16, 16,), (32, 4,), ]) def test_forward(self, batch_size: int, length: int): criterion = ListnetLoss() criterion = criterion.to(device) y_hat = torch.rand(batch_size, length) y_true = torch.rand(batch_size, length) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(y_hat, y_true, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class PointwiseLogisticLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32,), (16, 16,), (32, 4,), ]) def test_forward(self, batch_size: int, num_neg: int): criterion = PointwiseLogisticLoss() criterion = criterion.to(device) pos_out = torch.rand(batch_size, 1) neg_out = torch.rand(batch_size, num_neg) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(pos_out, neg_out, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class SkipGramLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32, 32,), (16, 64, 16,), (32, 128, 4,), ]) def test_forward(self, batch_size: int, embed_size: int, num_neg: int): criterion = SkipGramLoss() criterion = criterion.to(device) content_inp = torch.rand(batch_size, 1, embed_size) pos_inp = torch.rand(batch_size, 1, embed_size) neg_inp = torch.rand(batch_size, num_neg, embed_size) loss = criterion(content_inp, pos_inp, neg_inp) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') class TripletLossTestCase(unittest.TestCase): @parameterized.expand([ (4, 32, 32,), (16, 64, 16,), (32, 128, 4,), ]) def test_forward(self, batch_size: int, embed_size: int, num_neg: int): criterion = TripletLoss(margin=1.0, reduction='sum') criterion = criterion.to(device) pos_out = torch.rand(batch_size, 1) neg_out = torch.rand(batch_size, num_neg) mask = torch.randint(0, 1, (batch_size,)) mask = mask == 1 loss = criterion(pos_out, neg_out, mask) self.assertEqual(loss.size(), torch.Size([])) print(f'Loss Size: {loss.size()}; Loss: {loss.item()}') if __name__ == '__main__': unittest.main()
37636
import os from sqlite3 import dbapi2 as sqlite3 class GarageDb: def __init__(self, instance_path, resource_path): self.db_file = os.path.join(instance_path, 'history.db') self.init_file = os.path.join(resource_path, 'schema.sql') # Run init script to ensure database structure conn = self.get_connection() with open(self.init_file, mode='r') as f: conn.cursor().executescript(f.read()) conn.commit() conn.close() def get_connection(self): rv = sqlite3.connect(self.db_file) rv.row_factory = sqlite3.Row return rv def record_event(self, user_agent: str, login: str, event: str, description: str): conn = self.get_connection() conn.execute('insert into entries (UserAgent, Login, Event, Description) values (?, ?, ?, ?)', [user_agent, login, event, description]) conn.commit() conn.close() def read_history(self): conn = self.get_connection() cur = conn.execute('select datetime(timestamp, \'localtime\') as timestamp, event, description from entries order by timestamp desc') records = cur.fetchmany(500) conn.close() return records def read_full_history(self): conn = self.get_connection() cur = conn.execute('select datetime(timestamp, \'localtime\') as timestamp, event, description from entries order by timestamp desc') records = cur.fetchall() conn.close() return records
37645
from flask_restful import Resource from flask import request class Shutdown(Resource): def get(self): shutdown = request.environ.get('werkzeug.server.shutdown') if shutdown is None: raise RuntimeError('Not running with the Werkzeug Server') shutdown() return 'Server shutting down'
37675
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.labour import labour def test_labour(): """Test module labour.py by downloading labour.csv and testing shape of extracted data has 569 rows and 4 columns """ test_path = tempfile.mkdtemp() x_train, metadata = labour(test_path) try: assert x_train.shape == (569, 4) except: shutil.rmtree(test_path) raise()
37703
from hwt.synthesizer.unit import Unit from hwt.interfaces.std import VectSignal from hwt.hdl.types.struct import HStruct from hwt.interfaces.utils import addClkRstn class PrivateSignalsOfStructType(Unit): def _declr(self): addClkRstn(self) self.a = VectSignal(8) self.b = VectSignal(8)._m() self.c = VectSignal(8) self.d = VectSignal(8)._m() def _impl(self): t = self.a._dtype tmp_t = \ HStruct( (t, "a0"), (t, "a1"), (t[2], "a2_3"), (HStruct( (t, "a4"), (t[2], "a5_6"), ), "a4_5_6" ), ) tmp = self._sig("tmp", tmp_t) self.connect_tmp_chain(tmp, self.a, self.b) tmp_reg = self._reg("tmp_reg", tmp_t, def_val={ "a0": 0, "a1": 1, "a2_3": [2, 3], "a4_5_6": { "a4": 4, "a5_6": [5, 6], } }) self.connect_tmp_chain(tmp_reg, self.c, self.d) def connect_tmp_chain(self, tmp, a_in, a_out): # a connected to b using chain of tmp signals from tmp sig tmp.a0(a_in) tmp.a1(tmp.a0) tmp.a2_3[0](tmp.a1) tmp.a2_3[1](tmp.a2_3[0]) tmp.a4_5_6.a4(tmp.a2_3[1]) tmp.a4_5_6.a5_6[0](tmp.a4_5_6.a4) tmp.a4_5_6.a5_6[1](tmp.a4_5_6.a5_6[0]) a_out(tmp.a4_5_6.a5_6[1]) if __name__ == "__main__": from hwt.synthesizer.utils import to_rtl_str u = PrivateSignalsOfStructType() print(to_rtl_str(u))
37711
from _carmcmc import * from carma_pack import CarmaModel, CarmaSample, Car1Sample, power_spectrum, carma_variance, \ carma_process, get_ar_roots from samplers import MCMCSample
37712
from django.conf.urls import url from .views import tracon2022_afterparty_participants_view, tracon2022_afterparty_summary_view urlpatterns = [ url( r'^events/(?P<event_slug>tracon2022)/labour/surveys/kaatoilmo/results.xlsx$', tracon2022_afterparty_participants_view, name='tracon2022_afterparty_participants_view', ), url( r'^events/(?P<event_slug>tracon2022)/labour/surveys/kaatoilmo/summary/?$', tracon2022_afterparty_summary_view, name='tracon2022_afterparty_summary_view', ), ]
37739
from __future__ import unicode_literals import os, sys, subprocess, ast from nbconvert.preprocessors import Preprocessor from holoviews.core import Dimensioned, Store from holoviews.ipython.preprocessors import OptsMagicProcessor, OutputMagicProcessor from holoviews.ipython.preprocessors import StripMagicsProcessor from holoviews.util.command import export_to_python import tempfile import matplotlib.pyplot as plt plt.switch_backend('agg') def comment_out_magics(source): """ Utility used to make sure AST parser does not choke on unrecognized magics. """ filtered = [] for line in source.splitlines(): if line.strip().startswith('%'): filtered.append('# ' + line) else: filtered.append(line) return '\n'.join(filtered) def wrap_cell_expression(source, template='{expr}'): """ If a cell ends in an expression that could be displaying a HoloViews object (as determined using the AST), wrap it with a given prefix and suffix string. If the cell doesn't end in an expression, return the source unchanged. """ cell_output_types = (ast.IfExp, ast.BoolOp, ast.BinOp, ast.Call, ast.Name, ast.Attribute) try: node = ast.parse(comment_out_magics(source)) except SyntaxError: return source filtered = source.splitlines() if node.body != []: last_expr = node.body[-1] if not isinstance(last_expr, ast.Expr): pass # Not an expression elif isinstance(last_expr.value, cell_output_types): # CAREFUL WITH UTF8! expr_end_slice = filtered[last_expr.lineno-1][:last_expr.col_offset] expr_start_slice = filtered[last_expr.lineno-1][last_expr.col_offset:] start = '\n'.join(filtered[:last_expr.lineno-1] + ([expr_end_slice] if expr_end_slice else [])) ending = '\n'.join(([expr_start_slice] if expr_start_slice else []) + filtered[last_expr.lineno:]) if ending.strip().endswith(';'): return source # BUG!! Adds newline for 'foo'; <expr> return start + '\n' + template.format(expr=ending) return source def strip_specific_magics(source, magic): """ Given the source of a cell, filter out specific cell and line magics. """ filtered=[] for line in source.splitlines(): if line.startswith(f'%{magic}'): filtered.append(line.lstrip(f'%{magic}').strip(' ')) if line.startswith(f'%%{magic}'): filtered.append(line.lstrip(f'%%{magic}').strip(' ')) else: filtered.append(line) return '\n'.join(filtered) class StripTimeMagicsProcessor(Preprocessor): """ Preprocessor to convert notebooks to Python source strips out just time magics while keeping the rest of the cell. """ def preprocess_cell(self, cell, resources, index): if cell['cell_type'] == 'code': cell['source'] = strip_specific_magics(cell['source'], 'time') return cell, resources def __call__(self, nb, resources): return self.preprocess(nb,resources) def strip_trailing_semicolons(source, function): """ Give the source of a cell, filter out lines that contain a specified function call and end in a semicolon. """ filtered=[] for line in source.splitlines(): if line.endswith(f'{function}();'): filtered.append(line[:-1]) else: filtered.append(line) return '\n'.join(filtered) class StripServableSemicolonsProcessor(Preprocessor): """ Preprocessor to convert notebooks to Python source strips out just semicolons that come after the servable function call. """ def preprocess_cell(self, cell, resources, index): if cell['cell_type'] == 'code': cell['source'] = strip_trailing_semicolons(cell['source'], 'servable') return cell, resources def __call__(self, nb, resources): return self.preprocess(nb,resources) def thumbnail(obj, basename): import os if isinstance(obj, Dimensioned) and not os.path.isfile(basename+'.png'): Store.renderers[Store.current_backend].save(obj, basename, fmt='png') elif 'panel' in sys.modules: from panel.viewable import Viewable if isinstance(obj, Viewable) and not os.path.isfile(basename+'.png'): obj.save(basename+'.png') return obj class ThumbnailProcessor(Preprocessor): def __init__(self, basename, **kwargs): self.basename = basename super(ThumbnailProcessor, self).__init__(**kwargs) def preprocess_cell(self, cell, resources, index): if cell['cell_type'] == 'code': template = 'from nbsite.gallery.thumbnailer import thumbnail;thumbnail({{expr}}, {basename!r})' cell['source'] = wrap_cell_expression(cell['source'], template.format( basename=self.basename)) return cell, resources def __call__(self, nb, resources): return self.preprocess(nb,resources) def execute(code, cwd, env): with tempfile.NamedTemporaryFile('wb', delete=True) as f: f.write(code) f.flush() proc = subprocess.Popen(['python', f.name], cwd=cwd, env=env) proc.wait() return proc.returncode def notebook_thumbnail(filename, subpath): basename = os.path.splitext(os.path.basename(filename))[0] dir_path = os.path.abspath(os.path.join(subpath, 'thumbnails')) absdirpath= os.path.abspath(os.path.join('.', dir_path)) if not os.path.exists(absdirpath): os.makedirs(absdirpath) preprocessors = [OptsMagicProcessor(), OutputMagicProcessor(), StripTimeMagicsProcessor(), StripServableSemicolonsProcessor(), StripMagicsProcessor(), ThumbnailProcessor(os.path.abspath(os.path.join(dir_path, basename)))] return export_to_python(filename, preprocessors) if __name__ == '__main__': files = [] abspath = os.path.abspath(sys.argv[1]) split_path = abspath.split(os.path.sep) if os.path.isdir(abspath): if 'examples' not in split_path: print('Can only thumbnail notebooks in examples/') sys.exit() subpath = os.path.sep.join(split_path[split_path.index('examples')+1:]) files = [os.path.join(abspath, f) for f in os.listdir(abspath) if f.endswith('.ipynb')] elif os.path.isfile(abspath): subpath = os.path.sep.join(split_path[split_path.index('examples')+1:-1]) files=[abspath] else: print('Path {path} does not exist'.format(path=abspath)) for f in files: print('Generating thumbnail for file {filename}'.format(filename=f)) code = notebook_thumbnail(f, subpath) try: retcode = execute(code.encode('utf8'), cwd=os.path.split(f)[0], env={}) except Exception as e: print('Failed to generate thumbnail for {filename}'.format(filename=f)) print(str(e))
37770
import qcodes as qc from qdev_wrappers.sweep_functions import _do_measurement, _do_measurement_single, \ _select_plottables def measure(meas_param, do_plots=True): """ Function which measures the specified parameter and optionally plots the results. Args: meas_param: parameter to measure do_plots: Default True: If False no plots are produced. Data is still saved and can be displayed with show_num. Returns: data (qcodes dataset) plot: QT plot """ measurement = qc.Measure(meas_param) meas_params = _select_plottables(meas_param) plot, data = _do_measurement_single( measurement, meas_params, do_plots=do_plots) return data, plot def sweep1d(meas_param, sweep_param, start, stop, step, delay=0.01, do_plots=True): """ Function which does a 1 dimensional sweep and optionally plots the results. Args: meas_param: parameter which we want the value of at each point sweep_param: parameter to be swept in outer loop (default on y axis) start: starting value for sweep_param1 stop: final value for sweep_param1 step: value to step sweep_param1 by delay (default 0.01): mimimum time to spend on each point do_plots: Default True: If False no plots are produced. Data is still saved and can be displayed with show_num. Returns: data (qcodes dataset) plot: QT plot """ loop = qc.Loop(sweep_param.sweep( start, stop, step), delay).each(meas_param) set_params = ((sweep_param, start, stop),) meas_params = _select_plottables(meas_param) plot, data = _do_measurement(loop, set_params, meas_params, do_plots=do_plots) return data, plot def sweep2d(meas_param, sweep_param1, start1, stop1, step1, sweep_param2, start2, stop2, step2, delay=0.01, do_plots=True): """ Function which does a 2 dimensional sweep and optionally plots the results. Args: meas_param: parameter which we want the value of at each point sweep_param1: parameter to be swept in outer loop (default on y axis) start1: starting value for sweep_param1 stop1: final value for sweep_param1 step1: value to step sweep_param1 by sweep_param2: parameter to be swept in inner loop (default on x axis) start2: starting value for sweep_param2 stop2: final value for sweep_param2 step2: value to step sweep_param2 by delay (default 0.01): mimimum time to spend on each point do_plots: Default True: If False no plots are produced. Data is still saved and can be displayed with show_num. Returns: data (qcodes dataset) plot: QT plot """ innerloop = qc.Loop(sweep_param2.sweep( start2, stop2, step2), delay).each(meas_param) outerloop = qc.Loop(sweep_param1.sweep( start1, stop1, step1), delay).each(innerloop) set_params = ((sweep_param1, start1, stop1), (sweep_param2, start2, stop2)) meas_params = _select_plottables(meas_param) plot, data = _do_measurement(outerloop, set_params, meas_params, do_plots=do_plots) return data, plot
37782
import json import os import sys import time from os import path as osp from pathlib import Path from shutil import copyfile import numpy as np import torch from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader from tqdm import tqdm from model_temporal import LSTMSeqNetwork, BilinearLSTMSeqNetwork, TCNSeqNetwork from utils import load_config, MSEAverageMeter from data_glob_speed import GlobSpeedSequence, SequenceToSequenceDataset, SenseINSSequence from transformations import ComposeTransform, RandomHoriRotateSeq from metric import compute_absolute_trajectory_error, compute_relative_trajectory_error def WriteList(path, name, folders): with open(path+"/"+name, 'w') as f: for folder in folders: f.writelines(folder+"\n") f.close() def GetFolderName(path): names = os.listdir(path+"/") folders=[] for name in names: if os.path.isdir(os.path.join(os.path.abspath(path), name)): folders.append(name) folders.sort() return folders ''' Temporal models with loss functions in global coordinate frame Configurations - Model types TCN - type=tcn LSTM_simple - type=lstm, lstm_bilinear ''' torch.multiprocessing.set_sharing_strategy('file_system') _nano_to_sec = 1e09 _input_channel, _output_channel = 6, 3 # _input_channel, _output_channel = 6, 2 device = 'cpu' class GlobalPosLoss(torch.nn.Module): def __init__(self, mode='full', history=None): """ Calculate position loss in global coordinate frame Target :- Global Velocity Prediction :- Global Velocity """ super(GlobalPosLoss, self).__init__() self.mse_loss = torch.nn.MSELoss(reduction='none') assert mode in ['full', 'part'] self.mode = mode if self.mode == 'part': assert history is not None self.history = history elif self.mode == 'full': self.history = 1 def forward(self, pred, targ): gt_pos = torch.cumsum(targ[:, 1:, ], 1) pred_pos = torch.cumsum(pred[:, 1:, ], 1) if self.mode == 'part': gt_pos = gt_pos[:, self.history:, :] - gt_pos[:, :-self.history, :] pred_pos = pred_pos[:, self.history:, :] - pred_pos[:, :-self.history, :] loss = self.mse_loss(pred_pos, gt_pos) return torch.mean(loss) def write_config(args, **kwargs): if args.out_dir: with open(osp.join(args.out_dir, 'config.json'), 'w') as f: values = vars(args) values['file'] = "pytorch_global_position" if kwargs: values['kwargs'] = kwargs json.dump(values, f, sort_keys=True) def get_dataset(root_dir, data_list, args, **kwargs): input_format, output_format = [0, 3, 6], [0, _output_channel] mode = kwargs.get('mode', 'train') random_shift, shuffle, transforms, grv_only = 0, False, [], False if mode == 'train': random_shift = args.step_size // 2 shuffle = True transforms.append(RandomHoriRotateSeq(input_format, output_format)) elif mode == 'val': shuffle = True elif mode == 'test': shuffle = False grv_only = True transforms = ComposeTransform(transforms) if args.dataset == 'ronin': seq_type = GlobSpeedSequence elif args.dataset == 'ridi': from data_ridi import RIDIGlobSpeedSequence seq_type = RIDIGlobSpeedSequence elif args.dataset == 'sense': seq_type = SenseINSSequence dataset = SequenceToSequenceDataset(seq_type, root_dir, data_list, args.cache_path, args.step_size, args.window_size, random_shift=random_shift, transform=transforms, shuffle=shuffle, grv_only=grv_only, args=args, **kwargs) return dataset def get_dataset_from_list(root_dir, list_path, args, **kwargs): with open(list_path) as f: data_list = [s.strip().split(',')[0] for s in f.readlines() if len(s) > 0 and s[0] != '#'] return get_dataset(root_dir, data_list, args, **kwargs) def get_model(args, **kwargs): config = {} if kwargs.get('dropout'): config['dropout'] = kwargs.get('dropout') if args.type == 'tcn': network = TCNSeqNetwork(_input_channel, _output_channel, args.kernel_size, layer_channels=args.channels, **config) print("TCN Network. Receptive field: {} ".format(network.get_receptive_field())) elif args.type == 'lstm_bi': print("Bilinear LSTM Network") network = BilinearLSTMSeqNetwork(_input_channel, _output_channel, args.batch_size, device, lstm_layers=args.layers, lstm_size=args.layer_size, **config).to(device) else: print("Simple LSTM Network") network = LSTMSeqNetwork(_input_channel, _output_channel, args.batch_size, device, lstm_layers=args.layers, lstm_size=args.layer_size, **config).to(device) pytorch_total_params = sum(p.numel() for p in network.parameters() if p.requires_grad) print('Network constructed. trainable parameters: {}'.format(pytorch_total_params)) return network def get_loss_function(history, args, **kwargs): if args.type == 'tcn': config = {'mode': 'part', 'history': history} else: config = {'mode': 'full'} criterion = GlobalPosLoss(**config) return criterion def format_string(*argv, sep=' '): result = '' for val in argv: if isinstance(val, (tuple, list, np.ndarray)): for v in val: result += format_string(v, sep=sep) + sep else: result += str(val) + sep return result[:-1] def train(args, **kwargs): # Loading data start_t = time.time() train_dataset = get_dataset_from_list(args.root_dir, args.train_list, args, mode='train', **kwargs) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True) end_t = time.time() print('Training set loaded. Time usage: {:.3f}s'.format(end_t - start_t)) val_dataset, val_loader = None, None if args.val_list is not None: val_dataset = get_dataset_from_list(args.validation_dir, args.val_list, args, mode='val', **kwargs) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True) print('Validation set loaded') global device device = torch.device(args.device if torch.cuda.is_available() else 'cpu') if args.out_dir: if not osp.isdir(args.out_dir): os.makedirs(args.out_dir) if not osp.isdir(osp.join(args.out_dir, 'checkpoints')): os.makedirs(osp.join(args.out_dir, 'checkpoints')) if not osp.isdir(osp.join(args.out_dir, 'logs')): os.makedirs(osp.join(args.out_dir, 'logs')) write_config(args, **kwargs) print('\nNumber of train samples: {}'.format(len(train_dataset))) train_mini_batches = len(train_loader) if val_dataset: print('Number of val samples: {}'.format(len(val_dataset))) val_mini_batches = len(val_loader) network = get_model(args, **kwargs).to(device) history = network.get_receptive_field() if args.type == 'tcn' else args.window_size // 2 criterion = get_loss_function(history, args, **kwargs) optimizer = torch.optim.Adam(network.parameters(), args.lr) scheduler = ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.75, verbose=True, eps=1e-12) quiet_mode = kwargs.get('quiet', False) use_scheduler = kwargs.get('use_scheduler', False) log_file = None if args.out_dir: log_file = osp.join(args.out_dir, 'logs', 'log.txt') if osp.exists(log_file): if args.continue_from is None: os.remove(log_file) else: copyfile(log_file, osp.join(args.out_dir, 'logs', 'log_old.txt')) start_epoch = 0 if args.continue_from is not None and osp.exists(args.continue_from): with open(osp.join(str(Path(args.continue_from).parents[1]), 'config.json'), 'r') as f: model_data = json.load(f) if device.type == 'cpu': checkpoints = torch.load(args.continue_from, map_location=lambda storage, location: storage) else: checkpoints = torch.load(args.continue_from, map_location={model_data['device']: args.device}) start_epoch = checkpoints.get('epoch', 0) network.load_state_dict(checkpoints.get('model_state_dict')) optimizer.load_state_dict(checkpoints.get('optimizer_state_dict')) if kwargs.get('force_lr', False): for param_group in optimizer.param_groups: param_group['lr'] = args.lr step = 0 best_val_loss = np.inf train_errs = np.zeros(args.epochs) print("Starting from epoch {}".format(start_epoch )) try: for epoch in range(start_epoch, args.epochs): log_line = '' network.train() train_vel = MSEAverageMeter(3, [2], _output_channel) train_loss = 0 start_t = time.time() for bid, batch in tqdm(enumerate(train_loader)): feat, targ, _, _ = batch feat, targ = feat.to(device), targ.to(device) optimizer.zero_grad() predicted = network(feat) train_vel.add(predicted.cpu().detach().numpy(), targ.cpu().detach().numpy()) loss = criterion(predicted, targ) train_loss += loss.cpu().detach().numpy() loss.backward() optimizer.step() step += 1 train_errs[epoch] = train_loss / train_mini_batches end_t = time.time() if not quiet_mode: print('-' * 25) print('Epoch {}, time usage: {:.3f}s, loss: {}, val_loss {}/{:.6f}'.format( epoch, end_t - start_t, train_errs[epoch], train_vel.get_channel_avg(), train_vel.get_total_avg())) print('Learning rate: {}'.format(optimizer.param_groups[0]['lr'])) log_line = format_string(log_line, epoch, optimizer.param_groups[0]['lr'], train_errs[epoch], *train_vel.get_channel_avg()) saved_model = False if val_loader: network.eval() val_vel = MSEAverageMeter(3, [2], _output_channel) val_loss = 0 for bid, batch in tqdm(enumerate(val_loader)): feat, targ, _, _ = batch feat, targ = feat.to(device), targ.to(device) optimizer.zero_grad() pred = network(feat) val_vel.add(pred.cpu().detach().numpy(), targ.cpu().detach().numpy()) val_loss += criterion(pred, targ).cpu().detach().numpy() val_loss = val_loss / val_mini_batches log_line = format_string(log_line, val_loss, *val_vel.get_channel_avg()) if not quiet_mode: print('Validation loss: {} val_loss: {}/{:.6f}'.format(val_loss, val_vel.get_channel_avg(), val_vel.get_total_avg())) if val_loss < best_val_loss: best_val_loss = val_loss saved_model = True if args.out_dir: model_path = osp.join(args.out_dir, 'checkpoints', 'checkpoint_%d.pt' % epoch) torch.save({'model_state_dict': network.state_dict(), 'epoch': epoch, 'loss': train_errs[epoch], 'optimizer_state_dict': optimizer.state_dict()}, model_path) print('Best Validation Model saved to ', model_path) scheduler.step(val_loss) if args.out_dir and not saved_model and (epoch + 1) % args.save_interval == 0: # save even with validation model_path = osp.join(args.out_dir, 'checkpoints', 'icheckpoint_%d.pt' % epoch) torch.save({'model_state_dict': network.state_dict(), 'epoch': epoch, 'loss': train_errs[epoch], 'optimizer_state_dict': optimizer.state_dict()}, model_path) print('Model saved to ', model_path) if log_file: log_line += '\n' with open(log_file, 'a') as f: f.write(log_line) if np.isnan(train_loss): print("Invalid value. Stopping training.") break except KeyboardInterrupt: print('-' * 60) print('Early terminate') print('Training completed') if args.out_dir: model_path = osp.join(args.out_dir, 'checkpoints', 'checkpoint_latest.pt') torch.save({'model_state_dict': network.state_dict(), 'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict()}, model_path) def recon_traj_with_preds_global(dataset, preds, ind=None, seq_id=0, type='preds', **kwargs): ind = ind if ind is not None else np.array([i[1] for i in dataset.index_map if i[0] == seq_id], dtype=np.int) if type == 'gt': # pos = dataset.gt_pos[seq_id][:, :2] pos = dataset.gt_pos[seq_id][:, :3] else: ts = dataset.ts[seq_id] # Compute the global velocity from local velocity. dts = np.mean(ts[ind[1:]] - ts[ind[:-1]]) pos = preds * dts # pos[0, :] = dataset.gt_pos[seq_id][0, :2] pos[0, :] = dataset.gt_pos[seq_id][0, :3] pos = np.cumsum(pos, axis=0) veloc = preds ori = dataset.orientations[seq_id] return pos, veloc, ori def test(args, **kwargs): global device, _output_channel import matplotlib.pyplot as plt device = torch.device(args.device if torch.cuda.is_available() else 'cpu') if args.test_path is not None: if args.test_path[-1] == '/': args.test_path = args.test_path[:-1] root_dir = osp.split(args.test_path)[0] test_data_list = [osp.split(args.test_path)[1]] elif args.test_list is not None: root_dir = args.root_dir if args.root_dir else osp.split(args.test_list)[0] with open(args.test_list) as f: test_data_list = [s.strip().split(',')[0] for s in f.readlines() if len(s) > 0 and s[0] != '#'] else: raise ValueError('Either test_path or test_list must be specified.') # Load the first sequence to update the input and output size _ = get_dataset(root_dir, [test_data_list[0]], args, mode='test') if args.out_dir and not osp.exists(args.out_dir): os.makedirs(args.out_dir) with open(osp.join(str(Path(args.model_path).parents[1]), 'config.json'), 'r') as f: model_data = json.load(f) if device.type == 'cpu': checkpoint = torch.load(args.model_path, map_location=lambda storage, location: storage) else: checkpoint = torch.load(args.model_path, map_location={model_data['device']: args.device}) network = get_model(args, **kwargs) network.load_state_dict(checkpoint.get('model_state_dict')) network.eval().to(device) print('Model {} loaded to device {}.'.format(args.model_path, device)) log_file = None if args.test_list and args.out_dir: log_file = osp.join(args.out_dir, osp.split(args.test_list)[-1].split('.')[0] + '_log.txt') with open(log_file, 'w') as f: f.write(args.model_path + '\n') f.write('Seq traj_len velocity ate rte\n') losses_vel = MSEAverageMeter(2, [1], _output_channel) ate_all, rte_all = [], [] pred_per_min = 200 * 60 seq_dataset = get_dataset(root_dir, test_data_list, args, mode='test', **kwargs) for idx, data in enumerate(test_data_list): assert data == osp.split(seq_dataset.data_path[idx])[1] feat, vel = seq_dataset.get_test_seq(idx) feat = torch.Tensor(feat).to(device) preds = np.squeeze(network(feat).cpu().detach().numpy())[-vel.shape[0]:, :_output_channel] ind = np.arange(vel.shape[0]) val_losses = np.mean((vel - preds) ** 2, axis=0) losses_vel.add(vel, preds) print('Reconstructing trajectory') pos_pred, gv_pred, _ = recon_traj_with_preds_global(seq_dataset, preds, ind=ind, type='pred', seq_id=idx) pos_gt, gv_gt, _ = recon_traj_with_preds_global(seq_dataset, vel, ind=ind, type='gt', seq_id=idx) if args.out_dir is not None and osp.isdir(args.out_dir): np.save(osp.join(args.out_dir, '{}_{}.npy'.format(data, args.type)), np.concatenate([pos_pred, pos_gt], axis=1)) ate = compute_absolute_trajectory_error(pos_pred, pos_gt) if pos_pred.shape[0] < pred_per_min: ratio = pred_per_min / pos_pred.shape[0] rte = compute_relative_trajectory_error(pos_pred, pos_gt, delta=pos_pred.shape[0] - 1) * ratio else: rte = compute_relative_trajectory_error(pos_pred, pos_gt, delta=pred_per_min) pos_cum_error = np.linalg.norm(pos_pred - pos_gt, axis=1) ate_all.append(ate) rte_all.append(rte) print('Sequence {}, Velocity loss {} / {}, ATE: {}, RTE:{}'.format(data, val_losses, np.mean(val_losses), ate, rte)) log_line = format_string(data, np.mean(val_losses), ate, rte) if not args.fast_test: kp = preds.shape[1] if kp == 2: targ_names = ['vx', 'vy'] elif kp == 3: targ_names = ['vx', 'vy', 'vz'] plt.figure('{}'.format(data), figsize=(16, 9)) plt.subplot2grid((kp, 2), (0, 0), rowspan=kp - 1) plt.plot(pos_pred[:, 0], pos_pred[:, 1]) plt.plot(pos_gt[:, 0], pos_gt[:, 1]) plt.title(data) plt.axis('equal') plt.legend(['Predicted', 'Ground truth']) plt.subplot2grid((kp, 2), (kp - 1, 0)) plt.plot(pos_cum_error) plt.legend(['ATE:{:.3f}, RTE:{:.3f}'.format(ate_all[-1], rte_all[-1])]) for i in range(kp): plt.subplot2grid((kp, 2), (i, 1)) plt.plot(ind, preds[:, i]) plt.plot(ind, vel[:, i]) plt.legend(['Predicted', 'Ground truth']) plt.title('{}, error: {:.6f}'.format(targ_names[i], val_losses[i])) plt.tight_layout() if args.show_plot: plt.show() if args.out_dir is not None and osp.isdir(args.out_dir): plt.savefig(osp.join(args.out_dir, '{}_{}.png'.format(data, args.type))) if log_file is not None: with open(log_file, 'a') as f: log_line += '\n' f.write(log_line) plt.close('all') ate_all = np.array(ate_all) rte_all = np.array(rte_all) measure = format_string('ATE', 'RTE', sep='\t') values = format_string(np.mean(ate_all), np.mean(rte_all), sep='\t') print(measure, '\n', values) if log_file is not None: with open(log_file, 'a') as f: f.write(measure + '\n') f.write(values) if __name__ == '__main__': """ Run file with individual arguments or/and config file. If argument appears in both config file and args, args is given precedence. """ default_config_file = osp.abspath(osp.join(osp.abspath(__file__), '../../config/temporal_model_defaults.json')) import argparse parser = argparse.ArgumentParser(description="Run seq2seq model in train/test mode [required]. Optional " "configurations can be specified as --key [value..] pairs", add_help=True) parser.add_argument('--config', type=str, help='Configuration file [Default: {}]'.format(default_config_file), default=default_config_file) # common parser.add_argument('--type', type=str, choices=['tcn', 'lstm', 'lstm_bi'], help='Model type', default='lstm') parser.add_argument('--root_dir', type=str, default="/data/INSData/ins_data_test/IDOL_SenseINS/building1/train_debug", help='Path to data directory') parser.add_argument('--validation_dir', type=str, default="/data/INSData/ins_data_test/IDOL_SenseINS/building1/train_debug") # parser.add_argument('--root_dir', type=str, # default="/home/SENSETIME/xurunsen/project/ronin/RONIN/train_debug", # help='Path to data directory') # parser.add_argument('--validation_dir', type=str, # default="/home/SENSETIME/xurunsen/project/ronin/RONIN/train_debug") parser.add_argument('--cache_path', type=str, default=None) parser.add_argument('--feature_sigma', type=float, help='Gaussian for smoothing features') parser.add_argument('--target_sigma', type=float, help='Gaussian for smoothing target') parser.add_argument('--window_size', type=int) parser.add_argument('--step_size', type=int) parser.add_argument('--batch_size', type=int) parser.add_argument('--num_workers', type=int) parser.add_argument('--out_dir', type=str, default='../output/ronin_lstm/idol/2021.05.14/train_debug') parser.add_argument('--device', type=str, help='Cuda device (e.g:- cuda:0) or cpu') parser.add_argument('--dataset', type=str, choices=['ronin', 'ridi', 'sense'], default='sense') parser.add_argument('--imu_freq', type=int, default=200) # tcn tcn_cmd = parser.add_argument_group('tcn', 'configuration for TCN') tcn_cmd.add_argument('--kernel_size', type=int) tcn_cmd.add_argument('--channels', type=str, help='Channel sizes for TCN layers (comma separated)') # lstm lstm_cmd = parser.add_argument_group('lstm', 'configuration for LSTM') lstm_cmd.add_argument('--layers', type=int) lstm_cmd.add_argument('--layer_size', type=int) mode = parser.add_subparsers(title='mode', dest='mode', help='Operation: [train] train model, [test] evaluate model') mode.required = False # train train_cmd = mode.add_parser('train') train_cmd.add_argument('--train_list', type=str) train_cmd.add_argument('--val_list', type=str) train_cmd.add_argument('--continue_from', type=str, default=None) train_cmd.add_argument('--epochs', type=int) train_cmd.add_argument('--save_interval', type=int) train_cmd.add_argument('--lr', '--learning_rate', type=float) # test test_cmd = mode.add_parser('test') test_cmd.add_argument('--test_path', type=str, default=None) test_cmd.add_argument('--test_list', type=str, default=None) test_cmd.add_argument('--model_path', type=str, default='/home/SENSETIME/xurunsen/project/ronin/output/ronin_lstm/idol/2021.05.14/train_debug/checkpoints/checkpoint_714.pt') test_cmd.add_argument('--fast_test', action='store_true') test_cmd.add_argument('--show_plot', action='store_true') ''' Extra arguments Set True: use_scheduler, quite (no output on stdout), force_lr (force lr when a model is loaded from continue_from) float: dropout, max_ori_error (err. threshold for priority grv in degrees) max_velocity_norm (filter outliers in training) ''' args, unknown_args = parser.parse_known_args() np.set_printoptions(formatter={'all': lambda x: '{:.6f}'.format(x)}) args, kwargs = load_config(default_config_file, args, unknown_args) print(args, kwargs) # add by runsen # write list if args.mode == "train": if args.train_list is None: WriteList(args.root_dir, "train_list.txt", GetFolderName(args.root_dir)) args.train_list = args.root_dir + "/train_list.txt" if args.validation_dir is not None: WriteList(args.validation_dir, "validation_list.txt", GetFolderName(args.validation_dir)) args.val_list = args.validation_dir + "/validation_list.txt" elif args.mode == "test": if args.test_list is None: WriteList(args.root_dir, "test_list.txt", GetFolderName(args.root_dir)) args.test_list = args.root_dir + "/test_list.txt" if args.mode == 'train': train(args, **kwargs) elif args.mode == 'test': if not args.model_path: raise ValueError("Model path required") args.batch_size = 1 test(args, **kwargs)
37821
from templeplus.pymod import PythonModifier from toee import * import tpdp import char_class_utils import d20_action_utils ################################################### def GetConditionName(): return "Duelist" print "Registering " + GetConditionName() classEnum = stat_level_duelist preciseStrikeEnum = 2400 ################################################### #### standard callbacks - BAB and Save values def OnGetToHitBonusBase(attachee, args, evt_obj): classLvl = attachee.stat_level_get(classEnum) babvalue = game.get_bab_for_class(classEnum, classLvl) evt_obj.bonus_list.add(babvalue, 0, 137) # untyped, description: "Class" return 0 def OnGetSaveThrowFort(attachee, args, evt_obj): value = char_class_utils.SavingThrowLevel(classEnum, attachee, D20_Save_Fortitude) evt_obj.bonus_list.add(value, 0, 137) return 0 def OnGetSaveThrowReflex(attachee, args, evt_obj): value = char_class_utils.SavingThrowLevel(classEnum, attachee, D20_Save_Reflex) evt_obj.bonus_list.add(value, 0, 137) return 0 def OnGetSaveThrowWill(attachee, args, evt_obj): value = char_class_utils.SavingThrowLevel(classEnum, attachee, D20_Save_Will) evt_obj.bonus_list.add(value, 0, 137) return 0 def IsArmorless( obj ): armor = obj.item_worn_at(5) if armor != OBJ_HANDLE_NULL: armorFlags = armor.obj_get_int(obj_f_armor_flags) if armorFlags != ARMOR_TYPE_NONE: return 0 shield = obj.item_worn_at(11) if shield != OBJ_HANDLE_NULL: return 0 return 1 def IsRangedWeapon( weap ): weapFlags = weap.obj_get_int(obj_f_weapon_flags) if (weapFlags & OWF_RANGED_WEAPON) == 0: return 0 return 1 def CannyDefenseAcBonus(attachee, args, evt_obj): if not IsArmorless(attachee): return 0 weap = attachee.item_worn_at(3) if weap == OBJ_HANDLE_NULL or IsRangedWeapon(weap): weap = attachee.item_worn_at(4) if weap == OBJ_HANDLE_NULL or IsRangedWeapon(weap): return 0 duelistLvl = attachee.stat_level_get(classEnum) intScore = attachee.stat_level_get(stat_intelligence) intBonus = (intScore - 10)/2 if intBonus <= 0: return if duelistLvl < intBonus: intBonus = duelistLvl evt_obj.bonus_list.modify(intBonus , 3, 104) # Dexterity bonus, ~Class~[TAG_LEVEL_BONUSES] return 0 def ImprovedReactionInitBonus(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 2: return 0 bonVal = 2 if duelistLvl >= 8: bonVal = 4 evt_obj.bonus_list.add(bonVal, 0, 137 ) # adds untyped bonus to initiative return 0 def EnhancedMobility(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 3: return 0 if not IsArmorless(attachee): return 0 if evt_obj.attack_packet.get_flags() & D20CAF_AOO_MOVEMENT: evt_obj.bonus_list.add(4, 8, 137 ) # adds +4 dodge bonus return 0 def GraceReflexBonus(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 4: return 0 if not IsArmorless(attachee): return 0 evt_obj.bonus_list.add(2, 34, 137) # Competence bonus return 0 # def PreciseStrikeRadial(attachee, args, evt_obj): # duelistLvl = attachee.stat_level_get(classEnum) # if (duelistLvl < 5): # return 0 ## add radial menu action Precise Strike # radialAction = tpdp.RadialMenuEntryPythonAction(-1, D20A_PYTHON_ACTION, preciseStrikeEnum, 0, "TAG_INTERFACE_HELP") # radialParentId = radialAction.add_child_to_standard(attachee, tpdp.RadialMenuStandardNode.Class) # return 0 # def OnPreciseStrikeCheck(attachee, args, evt_obj): # if (not IsUsingLightOrOneHandedPiercing(attachee)): # evt_obj.return_val = AEC_WRONG_WEAPON_TYPE # return 0 # tgt = evt_obj.d20a.target # stdChk = ActionCheckTargetStdAtk(attachee, tgt) # if (stdChk != AEC_OK): # evt_obj.return_val = stdChk # return 0 # def OnPreciseStrikePerform(attachee, args, evt_obj): # print "I performed!" # return 0 preciseStrikeString = "Precise Strike" def PreciseStrikeDamageBonus(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 5: return 0 # check if attacking with one weapon and without a shield if (attachee.item_worn_at(4) != OBJ_HANDLE_NULL and attachee.item_worn_at(3) != OBJ_HANDLE_NULL) or attachee.item_worn_at(11) != OBJ_HANDLE_NULL: return 0 # check if light or one handed piercing if not IsUsingLightOrOneHandedPiercing(attachee): return 0 tgt = evt_obj.attack_packet.target if tgt == OBJ_HANDLE_NULL: # shouldn't happen but better be safe return 0 if tgt.d20_query(Q_Critter_Is_Immune_Critical_Hits): return 0 damage_dice = dice_new('1d6') if duelistLvl >= 10: damage_dice.number = 2 evt_obj.damage_packet.add_dice(damage_dice, -1, 127 ) return 0 def ElaborateParry(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 7: return 0 if not attachee.d20_query(Q_FightingDefensively): # this also covers Total Defense return 0 evt_obj.bonus_list.add(duelistLvl , 8, 137) # Dodge bonus, ~Class~[TAG_LEVEL_BONUSES] return 0 def IsUsingLightOrOneHandedPiercing( obj ): weap = obj.item_worn_at(3) offhand = obj.item_worn_at(4) if weap == OBJ_HANDLE_NULL and offhand == OBJ_HANDLE_NULL: return 0 if weap == OBJ_HANDLE_NULL: weap = offhand offhand = OBJ_HANDLE_NULL if IsWeaponLightOrOneHandedPiercing(obj, weap): return 1 # check the offhand if offhand != OBJ_HANDLE_NULL: if IsWeaponLightOrOneHandedPiercing(obj, offhand): return 1 return 0 def IsWeaponLightOrOneHandedPiercing( obj, weap): # truth table # nor. | enlarged | return # 0 x 1 assume un-enlarged state # 1 0 1 shouldn't be possible... unless it's actually reduce person (I don't really care about that) # 1 1 is_piercing # 1 2 is_piercing # 2 x 0 # 3 x 0 normalWieldType = obj.get_wield_type(weap, 1) # "normal" means weapon is not enlarged if normalWieldType >= 2: # two handed or unwieldable return 0 if normalWieldType == 0: return 1 # otherwise if the weapon is also enlarged; wieldType = obj.get_wield_type(weap, 0) if wieldType == 0: return 1 # weapon is not light, but is one handed - check if piercing attackType = weap.obj_get_int(obj_f_weapon_attacktype) if attackType == D20DT_PIERCING: # should be strictly piercing from what I understand (supposed to be rapier-like) return 1 return 0 def DuelistDeflectArrows(attachee, args, evt_obj): duelistLvl = attachee.stat_level_get(classEnum) if duelistLvl < 9: return 0 offendingWeapon = evt_obj.attack_packet.get_weapon_used() if offendingWeapon == OBJ_HANDLE_NULL: return 0 if not (evt_obj.attack_packet.get_flags() & D20CAF_RANGED): return 0 # check if attacker visible attacker = evt_obj.attack_packet.attacker if attacker == OBJ_HANDLE_NULL: return 0 if attacker.d20_query(Q_Critter_Is_Invisible) and not attachee.d20_query(Q_Critter_Can_See_Invisible): return 0 if attachee.d20_query(Q_Critter_Is_Blinded): return 0 # check flatfooted if attachee.d20_query(Q_Flatfooted): return 0 # check light weapon or one handed piercing if not IsUsingLightOrOneHandedPiercing(attachee): return 0 atkflags = evt_obj.attack_packet.get_flags() atkflags |= D20CAF_DEFLECT_ARROWS atkflags &= ~(D20CAF_HIT | D20CAF_CRITICAL) evt_obj.attack_packet.set_flags(atkflags) return 0 classSpecObj = PythonModifier(GetConditionName(), 0) classSpecObj.AddHook(ET_OnToHitBonusBase, EK_NONE, OnGetToHitBonusBase, ()) classSpecObj.AddHook(ET_OnSaveThrowLevel, EK_SAVE_FORTITUDE, OnGetSaveThrowFort, ()) classSpecObj.AddHook(ET_OnSaveThrowLevel, EK_SAVE_REFLEX, OnGetSaveThrowReflex, ()) classSpecObj.AddHook(ET_OnSaveThrowLevel, EK_SAVE_WILL, OnGetSaveThrowWill, ()) classSpecObj.AddHook(ET_OnGetAC, EK_NONE, CannyDefenseAcBonus, ()) classSpecObj.AddHook(ET_OnGetAC, EK_NONE, EnhancedMobility, ()) classSpecObj.AddHook(ET_OnGetAC, EK_NONE, ElaborateParry, ()) classSpecObj.AddHook(ET_OnGetInitiativeMod, EK_NONE, ImprovedReactionInitBonus, ()) classSpecObj.AddHook(ET_OnSaveThrowLevel, EK_SAVE_REFLEX, GraceReflexBonus, ()) classSpecObj.AddHook(ET_OnDealingDamage, EK_NONE, PreciseStrikeDamageBonus, ()) classSpecObj.AddHook(ET_OnDeflectArrows, EK_NONE, DuelistDeflectArrows, ())
37839
import math import os import tempfile from contextlib import contextmanager from soap import logger from soap.common.cache import cached from soap.expression import operators, OutputVariableTuple from soap.semantics.error import IntegerInterval, ErrorSemantics flopoco_command_map = { 'IntAdder': ('{wi}', ), 'IntMultiplier': ('{wi}', '{wi}', '{wi}', '1', '1', '0'), 'FPAdder': ('{we}', '{wf}'), 'FPMultiplier': ('{we}', '{wf}', '{wf}'), 'FPSquarer': ('{we}', '{wf}', '{wf}'), 'FPDiv': ('{we}', '{wf}'), 'FPPow': ('{we}', '{wf}'), 'FPExp': ('{we}', '{wf}'), 'FPLog': ('{we}', '{wf}', '0'), } flopoco_operators = tuple(flopoco_command_map) operators_map = { operators.ADD_OP: ['FPAdder', 'IntAdder'], operators.SUBTRACT_OP: ['FPAdder', 'IntAdder'], operators.MULTIPLY_OP: ['FPMultiplier', 'IntMultiplier'], operators.DIVIDE_OP: 'FPDiv', operators.LESS_OP: ['FPAdder', 'IntAdder'], operators.LESS_EQUAL_OP: ['FPAdder', 'IntAdder'], operators.GREATER_OP: ['FPAdder', 'IntAdder'], operators.GREATER_EQUAL_OP: ['FPAdder', 'IntAdder'], operators.EQUAL_OP: ['FPAdder', 'IntAdder'], operators.NOT_EQUAL_OP: ['FPAdder', 'IntAdder'], operators.TERNARY_SELECT_OP: 'Multiplexer', operators.FIXPOINT_OP: 'Null', operators.UNARY_SUBTRACT_OP: 'OneLUT', } we_min, we_max = 5, 15 we_range = list(range(we_min, we_max + 1)) wf_min, wf_max = 10, 112 wf_range = list(range(wf_min, wf_max + 1)) wi_min, wi_max = 1, 100 wi_range = list(range(wi_min, wi_max + 1)) directory = os.path.dirname(__file__) default_file = os.path.join(directory, 'luts.pkl') template_file = os.path.join(directory, 'template.vhdl') device_name = 'Virtex6' device_model = 'xc6vlx760' @contextmanager def cd(d): import sh p = os.path.abspath(os.curdir) if d: sh.mkdir('-p', d) sh.cd(d) try: yield except Exception: raise finally: sh.cd(p) def flopoco_key(fop, we=-1, wf=-1, wi=-1): try: format_tuple = flopoco_command_map[fop] except KeyError: raise ValueError('Unrecognised operator {}'.format(fop)) args = [fop] args += [a.format(we=we, wf=wf, wi=wi) for a in format_tuple] return tuple(args) def flopoco(key, file_name=None, dir_name=None): import sh file_name = file_name or tempfile.mktemp(suffix='.vhdl', dir='') cmd = ('-target=' + device_name, '-outputfile=' + file_name) + key logger.debug('flopoco: {!r}'.format(cmd)) dir_name = dir_name or tempfile.mktemp(suffix='/') with cd(dir_name): sh.flopoco(*cmd) try: with open(file_name) as fh: if not fh.read(): raise IOError() except (IOError, FileNotFoundError): logger.error('Flopoco failed to generate file ' + file_name) raise return file_name, dir_name def get_luts(file_name): from bs4 import BeautifulSoup with open(file_name, 'r') as f: f = BeautifulSoup(f.read()) app = f.document.application util = app.find('section', stringid='XST_DEVICE_UTILIZATION_SUMMARY') luts = util.find('item', stringid='XST_NUMBER_OF_SLICE_LUTS') if luts: return int(luts.get('value')) logger.warning('{} requires no LUTs'.format(file_name)) return 0 def xilinx(file_name, dir_name=None): import sh file_base = os.path.split(file_name)[1] file_base = os.path.splitext(file_base)[0] synth_name = file_base + '.ngc' cmd = ['run', '-p', device_model] cmd += ['-ifn', file_name, '-ifmt', 'VHDL'] cmd += ['-ofn', synth_name, '-ofmt', 'NGC'] logger.debug('xst: {!r}'.format(cmd)) dir_name = dir_name or tempfile.mktemp(suffix='/') with cd(dir_name): out_file_name = file_base + '.out.log' err_file_name = file_base + '.err.log' sh.xst(sh.echo(*cmd), _out=out_file_name, _err=err_file_name) return get_luts(file_base + '.ngc_xst.xrpt') _FILTER_OPERATORS = operators.TRADITIONAL_OPERATORS + [ operators.TERNARY_SELECT_OP ] @cached def _datatype_exponent(op, label): if isinstance(label, OutputVariableTuple): exponent = 0 for l in label: label_datatype, label_exponent = _datatype_exponent(op, l) exponent += label_exponent return None, exponent if op == operators.FIXPOINT_OP: return None, 0 if op not in _FILTER_OPERATORS: return None, None bound = label.bound datatype = type(bound) if datatype is IntegerInterval: if bound.is_top(): return datatype, flopoco.wi_max if bound.is_bottom(): return datatype, flopoco.wi_min bound_max = max(abs(bound.min), abs(bound.max), 1) width_max = int(math.ceil(math.log(bound_max + 1, 2)) + 1) return datatype, width_max if datatype is ErrorSemantics: bound = bound.v if bound.is_top(): return datatype, flopoco.we_max if bound.is_bottom(): return datatype, flopoco.we_min bound_max = max(abs(bound.min), abs(bound.max), 1) try: exp_max = math.floor(math.log(bound_max, 2)) except OverflowError: return datatype, flopoco.we_max try: exponent = int(math.ceil(math.log(exp_max + 1, 2) + 1)) return datatype, max(exponent, flopoco.we_min) except ValueError: return datatype, flopoco.we_min raise TypeError('Unrecognized type of bound {!r}'.format(bound))
37928
import os.path as osp import os import pylab as plt import gc import argparse from utils import read_image parser = argparse.ArgumentParser(description='Plot rank-5 results of S-ReID, SP-ReID and SSP-ReID') parser.add_argument('-d', '--dataset', type=str, default='market1501') # Architecture parser.add_argument('-a', '--arch', type=str, default='resnet50') parser.add_argument('--save-dir', type=str, default='log/tmp') args = parser.parse_args() def plot(images, save_name): num_figs = len(images) fig = plt.figure(figsize = (30, 20)) for i, img in enumerate(images): a = fig.add_subplot(num_figs, 1, i + 1) plt.imshow(img) plt.axis('off') fig.savefig(save_name, bbox_inches='tight') fig.clf() plt.close() del a gc.collect() def combine_fig(file_name, salience_dir, parsing_dir, salience_parsing_dir, save_dir): salience_file = osp.join(salience_dir, file_name) parsing_file = osp.join(parsing_dir, file_name) salience_parsing_file = osp.join(salience_parsing_dir, file_name) save_file = osp.join(save_dir, file_name) images = [read_image(salience_file), read_image(parsing_file), read_image(salience_parsing_file)] plot(images, save_file) def main(): dataset = args.dataset model = args.arch salience_dir = osp.join('log/', '{}-salience-{}/-1'.format(model, dataset)) parsing_dir = osp.join('log/', '{}-parsing-{}/-1'.format(model, dataset)) salience_parsing_dir = osp.join('log/', '{}-salience-parsing-{}/-1'.format(model, dataset)) save_dir = osp.join(args.save_dir, '{}-improvement-{}'.format(model, dataset)) if not os.path.exists(save_dir): os.makedirs(save_dir) list_figs = os.listdir(salience_dir) for img_name in list_figs: combine_fig(img_name, salience_dir, parsing_dir, salience_parsing_dir, save_dir) if __name__ == '__main__': main()
37933
import unittest from unittest.mock import MagicMock from datetime import timedelta from osgar.bus import Bus from osgar.node import Node class NodeTest(unittest.TestCase): def test_usage(self): empty_config = {} bus = Bus(logger=MagicMock()) node = Node(config=empty_config, bus=bus.handle('mynode')) node.start() node.request_stop() node.join() def test_update(self): empty_config = {} bus = Bus(logger=MagicMock()) node = Node(config=empty_config, bus=bus.handle('mynode')) tester = bus.handle('tester') tester.register('vel') bus.connect('tester.vel', 'mynode.vel') dt = tester.publish('vel', 3) node.update() self.assertEqual(node.time, dt) self.assertEqual(node.vel, 3) node2 = Node(config=empty_config, bus=bus.handle('mynode2')) self.assertNotIn('vel', dir(node2)) # vim: expandtab sw=4 ts=4
37946
import os import json import pickle import collections import numpy as np from s2and.consts import CONFIG DATA_DIR = CONFIG["main_data_dir"] OUTPUT_DIR = os.path.join(DATA_DIR, "s2and_mini") if not os.path.exists(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) # excluding MEDLINE because it has no clusters DATASETS = [ "aminer", "arnetminer", "inspire", "kisti", "pubmed", "qian", "zbmath", ] BIG_BLOCK_CUTOFF = 500 TOP_BLOCKS_TO_KEEP = 1000 # load all of the artifacts of each dataset clusters_all = [] signatures_all = [] X_all = [] keys_all = [] papers_all = [] for dataset in DATASETS: print() print(f"Loading data from {dataset}...") for file_name in os.listdir(os.path.join(DATA_DIR, dataset)): file_name = os.path.join(DATA_DIR, dataset, file_name) if "specter" in file_name: with open(file_name, "rb") as _pickle_file: X, keys = pickle.load(_pickle_file) X_all.append(X) keys_all.append(keys) elif "cluster" in file_name: with open(file_name) as _json_file: clusters = json.load(_json_file) new_clusters = {} for cluster_id, v in clusters.items(): new_cluster_id = f"{dataset}_{cluster_id}" new_v = { "cluster_id": new_cluster_id, "signature_ids": [f"{dataset}_{i}" for i in v["signature_ids"]], "model_version": v["model_version"], } new_clusters[new_cluster_id] = new_v clusters_all.append(new_clusters) elif "paper" in file_name: with open(file_name) as _json_file: papers = json.load(_json_file) papers_all.append(papers) elif "signature" in file_name: with open(file_name) as _json_file: signatures = json.load(_json_file) new_signatures = {} for signature_id, v in signatures.items(): new_signature_id = f"{dataset}_{signature_id}" new_v = { "author_id": v["author_id"], # maybe this needs to be prepended by dataset? "paper_id": v["paper_id"], "signature_id": new_signature_id, "author_info": v["author_info"], } new_signatures[new_signature_id] = new_v signatures_all.append(new_signatures) else: print(f"WARNING: Ignoring {file_name} in {dataset}") print("Finished loading data. Filtering...") # the goal is speed so we'll remove the largest blocks # also only keep top 1000 blocks max # aminer has 32k, inspire has 15k, and kisti has 7k blocks for dataset, s, c, p, X, k in zip(DATASETS, signatures_all, clusters_all, papers_all, X_all, keys_all): blocks = [] for v in s.values(): blocks.append(v["author_info"]["block"]) vc = collections.Counter(blocks) blocks_to_keep = set([k for k, v in sorted(vc.items()) if v <= BIG_BLOCK_CUTOFF][:TOP_BLOCKS_TO_KEEP]) s_filtered = {k: v for k, v in s.items() if v["author_info"]["block"] in blocks_to_keep} # filter the clusters too c_filtered = {k: v for k, v in c.items() if np.all([i in s_filtered for i in v["signature_ids"]])} # go back through the clusters and find the signatures we'll actually need # need to do this because sometimes the block name is just... corrupted # e.g. "g miller" for most signatures but "g mller" for one... signature_keys_to_keep = set() for v in c_filtered.values(): signature_keys_to_keep.update(v["signature_ids"]) s_filtered = {k: v for k, v in s.items() if k in signature_keys_to_keep} # we don't need all the papers anymore. just the ones in signatures # also the references of those paper_ids = set([v["paper_id"] for v in s_filtered.values()]) ref_paper_ids = set() for v in p.values(): if v["references"] is not None: ref_paper_ids.update(v["references"]) p_filtered = {k: v for k, v in p.items() if int(k) in paper_ids or int(k) in ref_paper_ids} # filter down the specters to those in papers only since we don't use specters for references keys_filtered_flag = np.array([i in paper_ids for i in k.astype(int)]) k_filtered = k[keys_filtered_flag] X_filtered = X[keys_filtered_flag, :] # save all of the data data_output_dir = os.path.join(DATA_DIR, "s2and_mini", dataset) if not os.path.exists(data_output_dir): os.mkdir(data_output_dir) with open(os.path.join(data_output_dir, f"{dataset}_clusters.json"), "w") as _json_file: json.dump(c_filtered, _json_file) with open(os.path.join(data_output_dir, f"{dataset}_signatures.json"), "w") as _json_file: json.dump(s_filtered, _json_file) with open(os.path.join(data_output_dir, f"{dataset}_papers.json"), "w") as _json_file: json.dump(p_filtered, _json_file) with open(os.path.join(data_output_dir, f"{dataset}_specter.pickle"), "wb") as _pickle_file: pickle.dump((X_filtered, k_filtered), _pickle_file)
37983
from .eval_card import EvaluationCard from .evaluator import Evaluator from .lookup import LookupTable
37985
import re from email_validator import validate_email, EmailSyntaxError from virtool.users.utils import PERMISSIONS RE_HEX_COLOR = re.compile("^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$") def strip(value: str) -> str: """ Strip flanking whitespace from the passed string. Used to coerce values in Cerberus validators. :param value: the string to strip :return: the stripped string """ return value.strip() def is_permission_dict(field: str, value: dict, error: callable): """ Checks that all keys included in permissions dictionary are valid permissions. If invalid key is found, error message is updated to "keys must be valid permissions" :param field: permissions field to check :param value: permissions dictionary value :param error: points to the calling validator’s _error method """ if any(key not in PERMISSIONS for key in value): error(field, "keys must be valid permissions") def has_unique_segment_names(field: str, value: list, error: callable): """ Checks that no duplicate names are used for segment names in list If duplicate names are found, error message is updated to "list contains duplicate names" :param field: field to check :param value: list value :param error: points to the calling validator’s _error method """ if len({seg["name"] for seg in value}) != len(value): error(field, "list contains duplicate names") def is_valid_hex_color(field: str, value: str, error: callable): """ Checks that color is a valid Hexadecimal color, performs check using regex format comparison If color is an invalid Hexadecimal color, error message is updated to "This is not a valid Hexadecimal color" :param field: color field to check :param value: color string value :param error: points to the calling validator’s _error method """ if not RE_HEX_COLOR.match(value): error(field, "This is not a valid Hexadecimal color") def is_valid_email(field: str, value: str, error: callable): """ Checks that email is a valid email according to email_validator.validate_email If email is invalid, error message is updated to "Not a valid email" :param field: email field to check :param value: email string value :param error: points to the calling validator’s _error method """ try: validate_email(value) except EmailSyntaxError: error(field, "Not a valid email")
37995
import os import subprocess from pretty_print import Print_C class Runner: run_kases = 3 def __init__(self, scheme, testcases): self.scheme = scheme self.testcases = testcases self.bin_file_template = f"build/test_results/{{testcase}}/bin/{scheme}" self.myout_template = f"build/output/{{testcase}}/{scheme}.out" self.runner_log = f"build/log/run_log/{{testcase}}/{scheme}_{{kase}}.out" for testcase in testcases: self.__generate_path(testcase) def __generate_path(self, testcase): myout_path = f"build/output/{testcase}/" runner_log_path = f"build/log/run_log/{testcase}/" if not os.path.exists(myout_path): os.makedirs(myout_path) if not os.path.exists(runner_log_path): os.makedirs(runner_log_path) def run_single_test(self, testcase, kase): bin = self.bin_file_template.format(testcase=testcase) stdin = f"testcases/{testcase}.in" myout = self.myout_template.format(testcase=testcase) log = self.runner_log.format(testcase=testcase, kase=kase) myout_file = open(myout, "a+") log_file = open(log, "a+") null_file = open(os.devnull, "w") Print_C.print_procedure(f"Running {self.scheme}_{testcase} [kase: {kase}]") if os.path.exists(stdin): stdin_file = open(stdin, "r") if kase == 0: p = subprocess.run(f"{bin}".split(), stdin=stdin_file, stdout=myout_file, stderr=log_file, bufsize=1) subprocess.run(f"echo".split(), stdout=myout_file, bufsize=1) subprocess.run(f"echo {p.returncode}".split(), stdout=myout_file, bufsize=1) else: p = subprocess.run(f"{bin}".split(), stdin=stdin_file, stdout=null_file, stderr=log_file, bufsize=1) stdin_file.close() else: if kase == 0: p = subprocess.run(f"{bin}".split(), stdout=myout_file, stderr=log_file, bufsize=1) subprocess.run(f"echo".split(), stdout=myout_file, bufsize=1) subprocess.run(f"echo {p.returncode}".split(), stdout=myout_file, bufsize=1) else: p = subprocess.run(f"{bin}".split(), stdout=null_file, stderr=log_file, bufsize=1) myout_file.close() log_file.close() def run_all_tests(self): for kase in range(Runner.run_kases): Print_C.print_subheader(f"[Running KASE {kase}]") for testcase in self.testcases: self.run_single_test(testcase=testcase, kase=kase)
38022
import datetime from django.db import models from django.contrib.auth.models import User from django.contrib.sessions.models import Session class Guest(models.Model): """ A temporary user. Fields: ``user`` - The temporary user. ``last_used`` - The last time we noted this user doing something. All users with a record in this model are temporary and should be deleted after GUEST_DELETE_TIME. """ user = models.ForeignKey(User,on_delete=models.CASCADE) last_used = models.DateTimeField(User) @classmethod def create_guest(self, user): guest = Guest(user=user, last_used=datetime.datetime.now()) return guest