id
stringlengths
3
8
content
stringlengths
100
981k
33785
from django.conf.urls import url from django.conf.urls import patterns from django.views.generic import TemplateView view = TemplateView.as_view(template_name='dummy.html') urlpatterns = patterns('', url(r'^nl/foo/', view, name='not-translated'), )
33786
from rest_framework import serializers from .models import Subscriber class SubscriberSerializer(serializers.ModelSerializer): class Meta: model = Subscriber fields = ( 'email', )
33788
import collections try: stringtype = basestring # python 2 except: stringtype = str # python 3 def coerce_to_list(x): if isinstance(x, stringtype): return x.replace(',', ' ').split() return x or [] def namedtuple(name, args=None, optional=None): args = coerce_to_list(args) optional = coerce_to_list(optional) x = collections.namedtuple(name, args + optional) if hasattr(x.__new__, 'func_defaults'): # python 2 x.__new__.func_defaults = tuple([None] * len(optional)) elif hasattr(x.__new__, '__defaults__'): # python 3 x.__new__.__defaults__ = tuple([None] * len(optional)) else: raise Exception('???') return x def optional(fn): def opt(x): if x is not None: return fn(x) return opt
33793
from twitchchatbot.lib.commands.parsing import commands import json def addcom(user, args): # Concatenate a list of strings down to a single, space delimited string. queueEvent = {} if len(args) < 2: queueEvent['msg'] = "Proper usage: !addcom <cmd> <Text to send>" else: commandHead = "!" + args[0] commands[commandHead] = { 'limit' : 10, 'userbadge' : 'moderator', 'last_used' : 0 } del args[0] commands[commandHead]['return'] = " ".join(args) with open("commands.json", "w") as f: json.dump(commands, f, indent=1) queueEvent['msg'] = "%s has added the %s command!" %( \ user, commandHead) return queueEvent
33795
import os import shutil import argparse import torch from torch import nn from torchvision.utils import save_image, make_grid import matplotlib.pyplot as plt import numpy as np import cv2 as cv import utils.utils as utils from utils.constants import * class GenerationMode(enum.Enum): SINGLE_IMAGE = 0, INTERPOLATION = 1, VECTOR_ARITHMETIC = 2 def postprocess_generated_img(generated_img_tensor): assert isinstance(generated_img_tensor, torch.Tensor), f'Expected PyTorch tensor but got {type(generated_img_tensor)}.' # Move the tensor from GPU to CPU, convert to numpy array, extract 0th batch, move the image channel # from 0th to 2nd position (CHW -> HWC) generated_img = np.moveaxis(generated_img_tensor.to('cpu').numpy()[0], 0, 2) # If grayscale image repeat 3 times to get RGB image (for generators trained on MNIST) if generated_img.shape[2] == 1: generated_img = np.repeat(generated_img, 3, axis=2) # Imagery is in the range [-1, 1] (generator has tanh as the output activation) move it into [0, 1] range generated_img -= np.min(generated_img) generated_img /= np.max(generated_img) return generated_img def generate_from_random_latent_vector(generator, cgan_digit=None): with torch.no_grad(): latent_vector = utils.get_gaussian_latent_batch(1, next(generator.parameters()).device) if cgan_digit is None: generated_img = postprocess_generated_img(generator(latent_vector)) else: # condition and generate the digit specified by cgan_digit ref_label = torch.tensor([cgan_digit], dtype=torch.int64) ref_label_one_hot_encoding = torch.nn.functional.one_hot(ref_label, MNIST_NUM_CLASSES).type(torch.FloatTensor).to(next(generator.parameters()).device) generated_img = postprocess_generated_img(generator(latent_vector, ref_label_one_hot_encoding)) return generated_img, latent_vector.to('cpu').numpy()[0] def generate_from_specified_numpy_latent_vector(generator, latent_vector): assert isinstance(latent_vector, np.ndarray), f'Expected latent vector to be numpy array but got {type(latent_vector)}.' with torch.no_grad(): latent_vector_tensor = torch.unsqueeze(torch.tensor(latent_vector, device=next(generator.parameters()).device), dim=0) return postprocess_generated_img(generator(latent_vector_tensor)) def linear_interpolation(t, p0, p1): return p0 + t * (p1 - p0) def spherical_interpolation(t, p0, p1): """ Spherical interpolation (slerp) formula: https://en.wikipedia.org/wiki/Slerp Found inspiration here: https://github.com/soumith/ganhacks but I didn't get any improvement using it compared to linear interpolation. Args: t (float): has [0, 1] range p0 (numpy array): First n-dimensional vector p1 (numpy array): Second n-dimensional vector Result: Returns spherically interpolated vector. """ if t <= 0: return p0 elif t >= 1: return p1 elif np.allclose(p0, p1): return p0 # Convert p0 and p1 to unit vectors and find the angle between them (omega) omega = np.arccos(np.dot(p0 / np.linalg.norm(p0), p1 / np.linalg.norm(p1))) sin_omega = np.sin(omega) # syntactic sugar return np.sin((1.0 - t) * omega) / sin_omega * p0 + np.sin(t * omega) / sin_omega * p1 def display_vector_arithmetic_results(imgs_to_display): fig = plt.figure(figsize=(6, 6)) title_fontsize = 'x-small' num_display_imgs = 7 titles = ['happy women', 'happy woman (avg)', 'neutral women', 'neutral woman (avg)', 'neutral men', 'neutral man (avg)', 'result - happy man'] ax = np.zeros(num_display_imgs, dtype=object) assert len(imgs_to_display) == num_display_imgs, f'Expected {num_display_imgs} got {len(imgs_to_display)} images.' gs = fig.add_gridspec(5, 4, left=0.02, right=0.98, wspace=0.05, hspace=0.3) ax[0] = fig.add_subplot(gs[0, :3]) ax[1] = fig.add_subplot(gs[0, 3]) ax[2] = fig.add_subplot(gs[1, :3]) ax[3] = fig.add_subplot(gs[1, 3]) ax[4] = fig.add_subplot(gs[2, :3]) ax[5] = fig.add_subplot(gs[2, 3]) ax[6] = fig.add_subplot(gs[3:, 1:3]) for i in range(num_display_imgs): ax[i].imshow(cv.resize(imgs_to_display[i], (0, 0), fx=3, fy=3, interpolation=cv.INTER_NEAREST)) ax[i].set_title(titles[i], fontsize=title_fontsize) ax[i].tick_params(which='both', bottom=False, left=False, labelleft=False, labelbottom=False) plt.show() def generate_new_images(model_name, cgan_digit=None, generation_mode=True, slerp=True, a=None, b=None, should_display=True): """ Generate imagery using pre-trained generator (using vanilla_generator_000000.pth by default) Args: model_name (str): model name you want to use (default lookup location is BINARIES_PATH). cgan_digit (int): if specified generate that exact digit. generation_mode (enum): generate a single image from a random vector, interpolate between the 2 chosen latent vectors, or perform arithmetic over latent vectors (note: not every mode is supported for every model type) slerp (bool): if True use spherical interpolation otherwise use linear interpolation. a, b (numpy arrays): latent vectors, if set to None you'll be prompted to choose images you like, and use corresponding latent vectors instead. should_display (bool): Display the generated images before saving them. """ model_path = os.path.join(BINARIES_PATH, model_name) assert os.path.exists(model_path), f'Could not find the model {model_path}. You first need to train your generator.' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Prepare the correct (vanilla, cGAN, DCGAN, ...) model, load the weights and put the model into evaluation mode model_state = torch.load(model_path) gan_type = model_state["gan_type"] print(f'Found {gan_type} GAN!') _, generator = utils.get_gan(device, gan_type) generator.load_state_dict(model_state["state_dict"], strict=True) generator.eval() # Generate a single image, save it and potentially display it if generation_mode == GenerationMode.SINGLE_IMAGE: generated_imgs_path = os.path.join(DATA_DIR_PATH, 'generated_imagery') os.makedirs(generated_imgs_path, exist_ok=True) generated_img, _ = generate_from_random_latent_vector(generator, cgan_digit if gan_type == GANType.CGAN.name else None) utils.save_and_maybe_display_image(generated_imgs_path, generated_img, should_display=should_display) # Pick 2 images you like between which you'd like to interpolate (by typing 'y' into console) elif generation_mode == GenerationMode.INTERPOLATION: assert gan_type == GANType.VANILLA.name or gan_type ==GANType.DCGAN.name, f'Got {gan_type} but only VANILLA/DCGAN are supported for the interpolation mode.' interpolation_name = "spherical" if slerp else "linear" interpolation_fn = spherical_interpolation if slerp else linear_interpolation grid_interpolated_imgs_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery') # combined results dir decomposed_interpolated_imgs_path = os.path.join(grid_interpolated_imgs_path, f'tmp_{gan_type}_{interpolation_name}_dump') # dump separate results if os.path.exists(decomposed_interpolated_imgs_path): shutil.rmtree(decomposed_interpolated_imgs_path) os.makedirs(grid_interpolated_imgs_path, exist_ok=True) os.makedirs(decomposed_interpolated_imgs_path, exist_ok=True) latent_vector_a, latent_vector_b = [None, None] # If a and b were not specified loop until the user picked the 2 images he/she likes. found_good_vectors_flag = False if a is None or b is None: while not found_good_vectors_flag: generated_img, latent_vector = generate_from_random_latent_vector(generator) plt.imshow(generated_img); plt.title('Do you like this image?'); plt.show() user_input = input("Do you like this generated image? [y for yes]:") if user_input == 'y': if latent_vector_a is None: latent_vector_a = latent_vector print('Saved the first latent vector.') elif latent_vector_b is None: latent_vector_b = latent_vector print('Saved the second latent vector.') found_good_vectors_flag = True else: print('Well lets generate a new one!') continue else: print('Skipping latent vectors selection section and using cached ones.') latent_vector_a, latent_vector_b = [a, b] # Cache latent vectors if a is None or b is None: np.save(os.path.join(grid_interpolated_imgs_path, 'a.npy'), latent_vector_a) np.save(os.path.join(grid_interpolated_imgs_path, 'b.npy'), latent_vector_b) print(f'Lets do some {interpolation_name} interpolation!') interpolation_resolution = 47 # number of images between the vectors a and b num_interpolated_imgs = interpolation_resolution + 2 # + 2 so that we include a and b generated_imgs = [] for i in range(num_interpolated_imgs): t = i / (num_interpolated_imgs - 1) # goes from 0. to 1. current_latent_vector = interpolation_fn(t, latent_vector_a, latent_vector_b) generated_img = generate_from_specified_numpy_latent_vector(generator, current_latent_vector) print(f'Generated image [{i+1}/{num_interpolated_imgs}].') utils.save_and_maybe_display_image(decomposed_interpolated_imgs_path, generated_img, should_display=should_display) # Move from channel last to channel first (CHW->HWC), PyTorch's save_image function expects BCHW format generated_imgs.append(torch.tensor(np.moveaxis(generated_img, 2, 0))) interpolated_block_img = torch.stack(generated_imgs) interpolated_block_img = nn.Upsample(scale_factor=2.5, mode='nearest')(interpolated_block_img) save_image(interpolated_block_img, os.path.join(grid_interpolated_imgs_path, utils.get_available_file_name(grid_interpolated_imgs_path)), nrow=int(np.sqrt(num_interpolated_imgs))) elif generation_mode == GenerationMode.VECTOR_ARITHMETIC: assert gan_type == GANType.DCGAN.name, f'Got {gan_type} but only DCGAN is supported for arithmetic mode.' # Generate num_options face images and create a grid image from them num_options = 100 generated_imgs = [] latent_vectors = [] padding = 2 for i in range(num_options): generated_img, latent_vector = generate_from_random_latent_vector(generator) generated_imgs.append(torch.tensor(np.moveaxis(generated_img, 2, 0))) # make_grid expects CHW format latent_vectors.append(latent_vector) stacked_tensor_imgs = torch.stack(generated_imgs) final_tensor_img = make_grid(stacked_tensor_imgs, nrow=int(np.sqrt(num_options)), padding=padding) display_img = np.moveaxis(final_tensor_img.numpy(), 0, 2) # For storing latent vectors num_of_vectors_per_category = 3 happy_woman_latent_vectors = [] neutral_woman_latent_vectors = [] neutral_man_latent_vectors = [] # Make it easy - by clicking on the plot you pick the image. def onclick(event): if event.dblclick: pass else: # single click if event.button == 1: # left click x_coord = event.xdata y_coord = event.ydata column = int(x_coord / (64 + padding)) row = int(y_coord / (64 + padding)) # Store latent vector corresponding to the image that the user clicked on. if len(happy_woman_latent_vectors) < num_of_vectors_per_category: happy_woman_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(happy_woman_latent_vectors)}. happy woman.') elif len(neutral_woman_latent_vectors) < num_of_vectors_per_category: neutral_woman_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(neutral_woman_latent_vectors)}. neutral woman.') elif len(neutral_man_latent_vectors) < num_of_vectors_per_category: neutral_man_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(neutral_man_latent_vectors)}. neutral man.') else: plt.close() plt.figure(figsize=(10, 10)) plt.imshow(display_img) # This is just an example you could also pick 3 neutral woman images with sunglasses, etc. plt.title('Click on 3 happy women, 3 neutral women and \n 3 neutral men images (order matters!)') cid = plt.gcf().canvas.mpl_connect('button_press_event', onclick) plt.show() plt.gcf().canvas.mpl_disconnect(cid) print('Done choosing images.') # Calculate the average latent vector for every category (happy woman, neutral woman, neutral man) happy_woman_avg_latent_vector = np.mean(np.array(happy_woman_latent_vectors), axis=0) neutral_woman_avg_latent_vector = np.mean(np.array(neutral_woman_latent_vectors), axis=0) neutral_man_avg_latent_vector = np.mean(np.array(neutral_man_latent_vectors), axis=0) # By subtracting neutral woman from the happy woman we capture the "vector of smiling". Adding that vector # to a neutral man we get a happy man's latent vector! Our latent space has amazingly beautiful structure! happy_man_latent_vector = neutral_man_avg_latent_vector + (happy_woman_avg_latent_vector - neutral_woman_avg_latent_vector) # Generate images from these latent vectors happy_women_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in happy_woman_latent_vectors]) neutral_women_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in neutral_woman_latent_vectors]) neutral_men_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in neutral_man_latent_vectors]) happy_woman_avg_img = generate_from_specified_numpy_latent_vector(generator, happy_woman_avg_latent_vector) neutral_woman_avg_img = generate_from_specified_numpy_latent_vector(generator, neutral_woman_avg_latent_vector) neutral_man_avg_img = generate_from_specified_numpy_latent_vector(generator, neutral_man_avg_latent_vector) happy_man_img = generate_from_specified_numpy_latent_vector(generator, happy_man_latent_vector) display_vector_arithmetic_results([happy_women_imgs, happy_woman_avg_img, neutral_women_imgs, neutral_woman_avg_img, neutral_men_imgs, neutral_man_avg_img, happy_man_img]) else: raise Exception(f'Generation mode not yet supported.') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, help="Pre-trained generator model name", default=r'VANILLA_000000.pth') parser.add_argument("--cgan_digit", type=int, help="Used only for cGAN - generate specified digit", default=3) parser.add_argument("--generation_mode", type=bool, help="Pick between 3 generation modes", default=GenerationMode.SINGLE_IMAGE) parser.add_argument("--slerp", type=bool, help="Should use spherical interpolation (default No)", default=False) parser.add_argument("--should_display", type=bool, help="Display intermediate results", default=True) args = parser.parse_args() # The first time you start generation in the interpolation mode it will cache a and b # which you'll choose the first time you run the it. a_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery', 'a.npy') b_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery', 'b.npy') latent_vector_a = np.load(a_path) if os.path.exists(a_path) else None latent_vector_b = np.load(b_path) if os.path.exists(b_path) else None generate_new_images( args.model_name, args.cgan_digit, generation_mode=args.generation_mode, slerp=args.slerp, a=latent_vector_a, b=latent_vector_b, should_display=args.should_display)
33810
from .._common import * from yo_fluq import * Queryable = lambda *args, **kwargs: FlupFactory.QueryableFactory(*args, **kwargs) T = TypeVar('T') TOut = TypeVar('TOut') TKey = TypeVar('TKey') TValue = TypeVar('TValue') TFactory = TypeVar('TFactory')
33814
import numpy as np def CalcEnergy(m_amu,Px_au,Py_au,Pz_au): amu2au = 1836.15 return 27.2*(Px_au**2 + Py_au**2 + Pz_au**2)/(2*amu2au*m_amu)
33877
import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class MetamodelRegression(PostHocUQ): """ Extracts confidence scores from black-box regression models using a meta-model [2]_ . References: .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype' :param mdltype: string with name (must be supprted) :param config: dict with args passed in the instantiation call :return: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'gbr': mdl = GradientBoostingRegressor(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \"%s\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance :param model: string, class, or instance. Class and instance must have certain methods callable. :param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., 'gbr'), (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(MetamodelRegression).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbr' self.meta_model_default = 'gbr' self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model :param y: ground truth for the base model :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert(len(meta_train_data)==2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta = self.base_model.predict(X_meta) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # used base input and output as meta input X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta) # train meta model to predict abs diff self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta)) return self def _process_pretrained_model(self, X, y_hat): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat: [nsamples,] :return: array with new features [nsamples, newdim] """ y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_meta_prime]) return X_meta_in def predict(self, X): """ Generate prediction and uncertainty bounds for data X. :param X: input features :return: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_hat = self.base_model.predict(X) y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_prime]) z_hat = self.meta_model.predict(X_meta_in) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_hat, y_hat - z_hat, y_hat + z_hat) return res
33900
from typing import Tuple class BaseTimer: """ A timer controls the time passed into the the render function. This can be used in creative ways to control the current time such as basing it on current location in an audio file. All methods must be implemented. """ @property def is_paused(self) -> bool: """bool: The pause state of the timer""" raise NotImplementedError() @property def is_running(self) -> bool: """bool: Is the timer currently running?""" raise NotImplementedError() @property def time(self) -> float: """Get or set the current time. This can be used to jump around in the timeline. Returns: float: The current time in seconds """ raise NotImplementedError() @time.setter def time(self, value: float): raise NotImplementedError() def next_frame(self) -> Tuple[float, float]: """Get timer information for the next frame. Returns: Tuple[float, float]: The frametime and current time """ raise NotImplementedError() def start(self): """Start the timer initially or resume after pause""" raise NotImplementedError() def pause(self): """Pause the timer""" raise NotImplementedError() def toggle_pause(self): """Toggle pause state""" raise NotImplementedError() def stop(self) -> Tuple[float, float]: """ Stop the timer. Should only be called once when stopping the timer. Returns: Tuple[float, float]> Current position in the timer, actual running duration """ raise NotImplementedError()
33920
def coding_problem_41(flights_db, starting_airport): """ Given an unordered list of flights taken by someone, each represented as (origin, destination) pairs, and a starting airport, compute the person's itinerary. If no such itinerary exists, return null. If there are multiple possible itineraries, return the lexicographically smallest one. All flights must be used in the itinerary. Examples: >>> coding_problem_41([('SFO', 'HKO'), ('YYZ', 'SFO'), ('YUL', 'YYZ'), ('HKO', 'ORD')], 'YUL') ['YUL', 'YYZ', 'SFO', 'HKO', 'ORD'] >>> coding_problem_41([('SFO', 'COM'), ('COM', 'YYZ')], 'COM') # returns None >>> coding_problem_41([('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'A')], 'A') ['A', 'B', 'C', 'A', 'C'] The itinerary ['A', 'C', 'A', 'B', 'C'] is also a valid however the first one is lexicographically smaller. """ pass if __name__ == '__main__': import doctest doctest.testmod(verbose=True)
33931
import numpy as np class NumpyDynamic: def __init__(self, dtype, array_size=(100,)): self.data = np.zeros(array_size, dtype) self.array_size = list(array_size) self.size = 0 def add(self, x): if self.size == self.array_size[0]: self.array_size[0] *= 2 newdata = np.zeros(self.array_size, self.data.dtype) newdata[:self.size] = self.data self.data = newdata self.data[self.size] = x self.size += 1 def finalize(self): return self.data[:self.size]
33937
import os import random from sklearn.metrics import mean_squared_error as mse from core.composer.chain import Chain from core.composer.composer import ComposerRequirements, DummyChainTypeEnum, DummyComposer from core.models.data import OutputData from core.models.model import * from core.repository.dataset_types import NumericalDataTypesEnum, CategoricalDataTypesEnum from core.repository.model_types_repository import ( ModelMetaInfoTemplate, ModelTypesRepository ) from core.repository.quality_metrics_repository import MetricsRepository, RegressionMetricsEnum from core.repository.task_types import MachineLearningTasksEnum from core.utils import project_root random.seed(1) np.random.seed(1) import matplotlib.pyplot as plt def compare_plot(predicted: OutputData, dataset_to_validate: InputData): fig, ax = plt.subplots() plt.plot(dataset_to_validate.target, linewidth=1, label="Observed") plt.plot(predicted.predict, linewidth=1, label="Predicted") ax.legend() plt.show() def calculate_validation_metric(chain: Chain, dataset_to_validate: InputData) -> float: # the execution of the obtained composite models predicted = chain.predict(dataset_to_validate) # plot results compare_plot(predicted, dataset_to_validate) # the quality assessment for the simulation results roc_auc_value = mse(y_true=dataset_to_validate.target, y_pred=predicted.predict, squared=False) return roc_auc_value # the dataset was obtained from NEMO model simulation # specify problem type problem_class = MachineLearningTasksEnum.auto_regression # a dataset that will be used as a train and test set during composition file_path_train = 'cases/data/ts/metocean_data_train.csv' full_path_train = os.path.join(str(project_root()), file_path_train) dataset_to_compose = InputData.from_csv(full_path_train, task_type=problem_class) # a dataset for a final validation of the composed model file_path_test = 'cases/data/ts/metocean_data_test.csv' full_path_test = os.path.join(str(project_root()), file_path_test) dataset_to_validate = InputData.from_csv(full_path_test, task_type=problem_class) # the search of the models provided by the framework that can be used as nodes in a chain for the selected task models_repo = ModelTypesRepository() available_model_types, _ = models_repo.search_models( desired_metainfo=ModelMetaInfoTemplate(input_type=NumericalDataTypesEnum.table, output_type=CategoricalDataTypesEnum.vector, task_type=problem_class, can_be_initial=True, can_be_secondary=True)) # the choice of the metric for the chain quality assessment during composition metric_function = MetricsRepository().metric_by_id(RegressionMetricsEnum.RMSE) # the choice and initialisation single_composer_requirements = ComposerRequirements(primary=[ModelTypesIdsEnum.ar], secondary=[]) chain_single = DummyComposer( DummyChainTypeEnum.flat).compose_chain(data=dataset_to_compose, initial_chain=None, composer_requirements=single_composer_requirements, metrics=metric_function) train_prediction = chain_single.fit(input_data=dataset_to_compose, verbose=True) print("Composition finished") compare_plot(train_prediction, dataset_to_compose) # the quality assessment for the obtained composite models rmse_on_valid_single = calculate_validation_metric(chain_single, dataset_to_validate) print(f'Static RMSE is {round(rmse_on_valid_single, 3)}')
33953
import socket import struct import json import time import os import platform from optparse import OptionParser import sys import xml.etree.ElementTree as ET import config from device_config import BASE_CONST MCAST_GRP = '192.168.3.11' MCAST_PORT = 8427 DEFAULT_DCID_XML = '/Applications/Shure Update Utility.app/Contents/Resources/DCIDMap.xml' deviceList = {} discovered = [] # https://stackoverflow.com/questions/603852/multicast-in-python def discover(): dcid_restore_from_file(config.app_dir('dcid.json')) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) #mac fix sock.bind((MCAST_GRP, MCAST_PORT)) # use MCAST_GRP instead of '' to listen only # to MCAST_GRP, not all groups on MCAST_PORT mreq = struct.pack("4sl", socket.inet_aton(MCAST_GRP), socket.INADDR_ANY) sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) while True: data, (ip, _) = sock.recvfrom(1024) data = data.decode('UTF-8', errors="ignore") try: process_discovery_packet(ip, data) except: pass def process_discovery_packet(ip, data): dcid = dcid_find(data) device = dcid_get(dcid) rx_type, channels = dcid_model_lookup(device['model']) if __name__ == '__main__': print('RX: {} at: {} DCID: {} BAND: {} CHANNELS: {}'.format(rx_type, ip, dcid, device['band'], channels)) add_rx_to_dlist(ip, rx_type, channels) def dcid_find(data): dcid = '' data = data.split(',') for i in data: i = i.strip('()') if 'cd:' in i: i = i.split('cd:')[-1] dcid = i return dcid def dcid_get(dcid): return deviceList[dcid] def dcid_model_lookup(name): for (type_k, type_v) in BASE_CONST.items(): for (model_k, model_v) in type_v['DCID_MODEL'].items(): if name == model_k: # print('Type: {} DCID_MODEL: {} Channels: {}'.format(type_k, model_k, model_v)) return (type_k, model_v) return None def add_rx_to_dlist(ip, rx_type, channels): rx = next((x for x in discovered if x['ip'] == ip), None) if rx: rx['timestamp'] = time.time() else: discovered.append({ 'ip' : ip, 'type': rx_type, 'channels': channels, 'timestamp': time.time() }) discovered.sort(key=lambda x: x['ip']) def time_filterd_discovered_list(): out = [] for i in discovered: if (time.time() - i['timestamp']) < 30: out.append(i) return out def DCID_Parse(file): tree = ET.parse(file) root = tree.getroot() devices = root.findall('./MapEntry') for device in devices: model = device.find('Key').text model_name = device.find('ModelName').text dcid = [] for dccid in device.find('DCIDList').iter('DCID'): try: band = dccid.attrib['band'] except: band = '' dev = {'model': model,'model_name':model_name, 'band':band } deviceList[dccid.text] = dev def dcid_save_to_file(file): with open(file, 'w') as f: json.dump(deviceList, f, indent=2, separators=(',', ': '), sort_keys=True) f.write('\n') def dcid_restore_from_file(file): global deviceList with open(file,'r') as f: deviceList = json.load(f) def updateDCIDmap(inputFile, outputFile): DCID_Parse(inputFile) dcid_save_to_file(outputFile) def DCIDMapCheck(): if platform.system() == 'Darwin' and os.path.isfile(DEFAULT_DCID_XML): return DEFAULT_DCID_XML return None def main(): usage = "usage: %prog [options] arg" parser = OptionParser(usage) parser.add_option("-i", "--input", dest="input_file", help="DCID input file") parser.add_option("-o", "--output", dest="output_file", help="output file") parser.add_option("-c", "--convert", default=False, action="store_true", dest="convert", help="Generate dcid.json from input DCIDMap.xml file") parser.add_option("-d", "--discover", default=True, action="store_true", dest="discover", help="Discover Shure devices on the network") (options, args) = parser.parse_args() if options.convert: if not options.output_file: print("use -o to specify a DCID output file destination") sys.exit() if options.input_file: p = options.input_file elif DCIDMapCheck(): p = DCIDMapCheck() else: print("Specify an input DCIDMap.xml file with -i or install Wireless Workbench") sys.exit() if p: updateDCIDmap(p, options.output_file) print("Converting {} to {}".format(p, options.output_file)) sys.exit() if options.discover: print("lets discover some stuff") discover() if __name__ == '__main__': main()
33954
import fastai from neptune.new.integrations.fastai import NeptuneCallback from fastai.vision.all import * import neptune.new as neptune run = neptune.init( project="common/fastai-integration", api_token="<PASSWORD>", tags="basic" ) path = untar_data(URLs.MNIST_TINY) dls = ImageDataLoaders.from_csv(path) # Log all training phases of the learner learn = cnn_learner(dls, resnet18, cbs=[NeptuneCallback(run=run, base_namespace="experiment")]) learn.fit_one_cycle(2) learn.fit_one_cycle(1) run.stop()
33979
import time def f(): [ # Must be split over multiple lines to see the error. # https://github.com/benfred/py-spy/pull/208 time.sleep(1) for _ in range(1000) ] f()
34007
import asyncio from aiohttp import web from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from multiprocessing import Queue, Process import os from time import sleep async def handle(request): index = open("index.html", 'rb') content = index.read() return web.Response(body=content, content_type='text/html') tick = asyncio.Condition() async def wshandler(request): ws = web.WebSocketResponse() await ws.prepare(request) recv_task = None tick_task = None while 1: if not recv_task: recv_task = asyncio.ensure_future(ws.receive()) if not tick_task: await tick.acquire() tick_task = asyncio.ensure_future(tick.wait()) done, pending = await asyncio.wait( [recv_task, tick_task], return_when=asyncio.FIRST_COMPLETED) if recv_task in done: msg = recv_task.result() if msg.tp == web.MsgType.text: print("Got message %s" % msg.data) ws.send_str("Pressed key code: {}".format(msg.data)) elif msg.tp == web.MsgType.close or\ msg.tp == web.MsgType.error: break recv_task = None if tick_task in done: ws.send_str("game loop ticks") tick.release() tick_task = None return ws def game_loop(asyncio_loop): # coroutine to run in main thread async def notify(): await tick.acquire() tick.notify_all() tick.release() queue = Queue() # function to run in a different process def worker(): while 1: print("doing heavy calculation in process {}".format(os.getpid())) sleep(1) queue.put("calculation result") Process(target=worker).start() while 1: # blocks this thread but not main thread with event loop result = queue.get() print("getting {} in process {}".format(result, os.getpid())) task = asyncio.run_coroutine_threadsafe(notify(), asyncio_loop) task.result() asyncio_loop = asyncio.get_event_loop() executor = ThreadPoolExecutor(max_workers=1) asyncio_loop.run_in_executor(executor, game_loop, asyncio_loop) app = web.Application() app.router.add_route('GET', '/connect', wshandler) app.router.add_route('GET', '/', handle) web.run_app(app)
34012
api_output_for_empty_months = """"Usage Data Extract", "", "AccountOwnerId","Account Name","ServiceAdministratorId","SubscriptionId","SubscriptionGuid","Subscription Name","Date","Month","Day","Year","Product","Meter ID","Meter Category","Meter Sub-Category","Meter Region","Meter Name","Consumed Quantity","ResourceRate","ExtendedCost","Resource Location","Consumed Service","Instance ID","ServiceInfo1","ServiceInfo2","AdditionalInfo","Tags","Store Service Identifier","Department Name","Cost Center","Unit Of Measure","Resource Group",' """ sample_data = [{u'AccountName': u'Platform', u'AccountOwnerId': u'donald.duck', u'AdditionalInfo': u'', u'ConsumedQuantity': 23.0, u'ConsumedService': u'Virtual Network', u'CostCenter': u'1234', u'Date': u'03/01/2017', u'Day': 1, u'DepartmentName': u'Engineering', u'ExtendedCost': 0.499222332425423563466, u'InstanceId': u'platform-vnet', u'MeterCategory': u'Virtual Network', u'MeterId': u'c90286c8-adf0-438e-a257-4468387df385', u'MeterName': u'Hours', u'MeterRegion': u'All', u'MeterSubCategory': u'Gateway Hour', u'Month': 3, u'Product': u'Windows Azure Compute 100 Hrs Virtual Network', u'ResourceGroup': u'', u'ResourceLocation': u'All', u'ResourceRate': 0.0304347826086957, u'ServiceAdministratorId': u'', u'ServiceInfo1': u'', u'ServiceInfo2': u'', u'StoreServiceIdentifier': u'', u'SubscriptionGuid': u'abc3455ac-3feg-2b3c5-abe4-ec1111111e6', u'SubscriptionId': 23467313421, u'SubscriptionName': u'Production', u'Tags': u'', u'UnitOfMeasure': u'Hours', u'Year': 2017}, {u'AccountName': u'Platform', u'AccountOwnerId': u'donald.duck', u'AdditionalInfo': u'', u'ConsumedQuantity': 0.064076, u'ConsumedService': u'Microsoft.Storage', u'CostCenter': u'1234', u'Date': u'03/01/2017', u'Day': 1, u'DepartmentName': u'Engineering', u'ExtendedCost': 0.50000011123124314235234522345, u'InstanceId': u'/subscriptions/abc3455ac-3feg-2b3c5-abe4-ec1111111e6/resourceGroups/my-group/providers/Microsoft.Storage/storageAccounts/ss7q3264domxo', u'MeterCategory': u'Windows Azure Storage', u'MeterId': u'd23a5753-ff85-4ddf-af28-8cc5cf2d3882', u'MeterName': u'Standard IO - Page Blob/Disk (GB)', u'MeterRegion': u'All Regions', u'MeterSubCategory': u'Locally Redundant', u'Month': 3, u'Product': u'Locally Redundant Storage Standard IO - Page Blob/Disk', u'ResourceGroup': u'my-group', u'ResourceLocation': u'euwest', u'ResourceRate': 0.0377320156152495, u'ServiceAdministratorId': u'', u'ServiceInfo1': u'', u'ServiceInfo2': u'', u'StoreServiceIdentifier': u'', u'SubscriptionGuid': u'abc3455ac-3feg-2b3c5-abe4-ec1111111e6', u'SubscriptionId': 23467313421, u'SubscriptionName': u'Production', u'Tags': None, u'UnitOfMeasure': u'GB', u'Year': 2017}]
34015
import numpy as np import numpy.linalg as LA from .solve_R1 import problem_R1, Classo_R1, pathlasso_R1 from .solve_R2 import problem_R2, Classo_R2, pathlasso_R2 from .solve_R3 import problem_R3, Classo_R3, pathlasso_R3 from .solve_R4 import problem_R4, Classo_R4, pathlasso_R4 from .path_alg import solve_path, pathalgo_general, h_lambdamax """ Classo and pathlasso are the main functions, they can call every algorithm acording to the method and formulation required """ # can be 'Path-Alg', 'P-PDS' , 'PF-PDS' or 'DR' def Classo( matrix, lam, typ="R1", meth="DR", rho=1.345, get_lambdamax=False, true_lam=False, e=None, rho_classification=-1.0, w=None, intercept=False, return_sigm=True, ): if w is not None: matrices = (matrix[0] / w, matrix[1] / w, matrix[2]) else: matrices = matrix X, C, y = matrices if typ == "R3": if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if meth not in ["Path-Alg", "DR"]: meth = "DR" if e is None or e == len(matrices[0]) / 2: r = 1.0 pb = problem_R3(matrices, meth) e = len(matrices[0]) / 2 else: r = np.sqrt(2 * e / len(matrices[0])) pb = problem_R3((matrices[0] * r, matrices[1], matrices[2] * r), meth) lambdamax = pb.lambdamax if true_lam: beta, s = Classo_R3(pb, lam / lambdamax) else: beta, s = Classo_R3(pb, lam) if intercept: betaO = ybar - np.vdot(Xbar, beta) beta = np.array([betaO] + list(beta)) elif typ == "R4": if meth not in ["Path-Alg", "DR"]: meth = "DR" if e is None or e == len(matrices[0]): r = 1.0 pb = problem_R4(matrices, meth, rho, intercept=intercept) e = len(matrices[0]) else: r = np.sqrt(e / len(matrices[0])) pb = problem_R4( (matrices[0] * r, matrices[1], matrices[2] * r), meth, rho / r, intercept=intercept, ) lambdamax = pb.lambdamax if true_lam: beta, s = Classo_R4(pb, lam / lambdamax) else: beta, s = Classo_R4(pb, lam) elif typ == "R2": if meth not in ["Path-Alg", "P-PDS", "PF-PDS", "DR"]: meth = "ODE" pb = problem_R2(matrices, meth, rho, intercept=intercept) lambdamax = pb.lambdamax if true_lam: beta = Classo_R2(pb, lam / lambdamax) else: beta = Classo_R2(pb, lam) elif typ == "C2": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax( matrices, rho_classification, typ="C2", intercept=intercept ) if true_lam: out = solve_path( matrices, lam / lambdamax, False, rho_classification, "C2", intercept=intercept, ) else: out = solve_path( matrices, lam, False, rho_classification, "C2", intercept=intercept ) if intercept: beta0, beta = out[0][-1], out[1][-1] beta = np.array([beta0] + list(beta)) else: beta = out[0][-1] elif typ == "C1": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax(matrices, 0, typ="C1", intercept=intercept) if true_lam: out = solve_path( matrices, lam / lambdamax, False, 0, "C1", intercept=intercept ) else: out = solve_path(matrices, lam, False, 0, "C1", intercept=intercept) if intercept: beta0, beta = out[0][-1], out[1][-1] beta = np.array([beta0] + list(beta)) else: beta = out[0][-1] else: # LS if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if meth not in ["Path-Alg", "P-PDS", "PF-PDS", "DR"]: meth = "DR" pb = problem_R1(matrices, meth) lambdamax = pb.lambdamax if true_lam: beta = Classo_R1(pb, lam / lambdamax) else: beta = Classo_R1(pb, lam) if intercept: betaO = ybar - np.vdot(Xbar, beta) beta = np.array([betaO] + list(beta)) if w is not None: if intercept: beta[1:] = beta[1:] / w else: beta = beta / w if typ in ["R3", "R4"] and return_sigm: if get_lambdamax: return (lambdamax, beta, s) else: return (beta, s) if get_lambdamax: return (lambdamax, beta) else: return beta def pathlasso( matrix, lambdas=False, n_active=0, lamin=1e-2, typ="R1", meth="Path-Alg", rho=1.345, true_lam=False, e=None, return_sigm=False, rho_classification=-1.0, w=None, intercept=False, ): Nactive = n_active if Nactive == 0: Nactive = False if type(lambdas) is bool: lambdas = lamin ** (np.linspace(0.0, 1, 100)) if lambdas[0] < lambdas[-1]: lambdass = [ lambdas[i] for i in range(len(lambdas) - 1, -1, -1) ] # reverse the list if needed else: lambdass = [lambdas[i] for i in range(len(lambdas))] if w is not None: matrices = (matrix[0] / w, matrix[1] / w, matrix[2]) else: matrices = matrix X, C, y = matrices if typ == "R2": pb = problem_R2(matrices, meth, rho, intercept=intercept) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathlasso_R2(pb, lambdass, n_active=Nactive) elif typ == "R3": if intercept: # here we use the fact that for R1 and R3, the intercept is simple beta0 = ybar-Xbar .vdot(beta) so by changing the X to X-Xbar and y to y-ybar we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if e is None or e == len(matrices[0]) / 2: r = 1.0 pb = problem_R3(matrices, meth) else: r = np.sqrt(2 * e / len(matrices[0])) pb = problem_R3((matrices[0] * r, matrices[1], matrices[2] * r), meth) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA, S = pathlasso_R3(pb, lambdass, n_active=Nactive) S = np.array(S) / r ** 2 BETA = np.array(BETA) if intercept: BETA = np.array([[ybar - Xbar.dot(beta)] + list(beta) for beta in BETA]) elif typ == "R4": if e is None or e == len(matrices[0]): r = 1.0 pb = problem_R4(matrices, meth, rho, intercept=intercept) else: r = np.sqrt(e / len(matrices[0])) pb = problem_R4( (matrices[0] * r, matrices[1], matrices[2] * r), meth, rho / r, intercept=intercept, ) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA, S = pathlasso_R4(pb, lambdass, n_active=Nactive) S = np.array(S) / r ** 2 BETA = np.array(BETA) elif typ == "C2": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax( matrices, rho_classification, typ="C2", intercept=intercept ) if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathalgo_general( matrices, lambdass, "C2", n_active=Nactive, rho=rho_classification, intercept=intercept, ) elif typ == "C1": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax(matrices, 0, typ="C1", intercept=intercept) if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathalgo_general( matrices, lambdass, "C1", n_active=Nactive, intercept=intercept ) else: # R1 if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) pb = problem_R1(matrices, meth) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathlasso_R1(pb, lambdass, n_active=n_active) if intercept: BETA = np.array([[ybar - Xbar.dot(beta)] + list(beta) for beta in BETA]) real_path = [lam * lambdamax for lam in lambdass] if w is not None: if intercept: ww = np.array([1] + list(w)) else: ww = w BETA = np.array([beta / ww for beta in BETA]) if typ in ["R3", "R4"] and return_sigm: return (np.array(BETA), real_path, S) return (np.array(BETA), real_path)
34022
from tensorpy import image_base classifications = image_base.classify_folder_images('./images') print("*** Displaying Image Classification Results as a list: ***") for classification in classifications: print(classification)
34023
import argparse import torch from torch.utils.data import DataLoader import sys, os sys.path.insert(0, os.path.join( os.path.dirname(os.path.realpath(__file__)), "../../")) from deep_audio_features.dataloading.dataloading import FeatureExtractorDataset from deep_audio_features.models.cnn import load_cnn from deep_audio_features.lib.training import test from deep_audio_features.utils.model_editing import drop_layers import deep_audio_features.bin.config import numpy def test_model(modelpath, ifile, layers_dropped, test_segmentation=False, verbose=True): """Loads a model and predicts each classes probability Arguments: modelpath {str} : A path where the model was stored. ifile {str} : A path of a given wav file, which will be tested. test_segmentation {bool}: If True extracts segment level predictions of a sequence verbose {bool}: If True prints the predictions Returns: y_pred {np.array} : An array with the probability of each class that the model predicts. posteriors {np.array}: An array containing the unormalized posteriors of each class. """ device = "cuda" if torch.cuda.is_available() else "cpu" # Restore model model, hop_length, window_length = load_cnn(modelpath) model = model.to(device) class_names = model.classes_mapping max_seq_length = model.max_sequence_length zero_pad = model.zero_pad spec_size = model.spec_size fuse = model.fuse # Apply layer drop model = drop_layers(model, layers_dropped) model.max_sequence_length = max_seq_length # print('Model:\n{}'.format(model)) # Move to device model.to(device) # Create test set test_set = FeatureExtractorDataset(X=[ifile], # Random class -- does not matter at all y=[0], fe_method="MEL_SPECTROGRAM", oversampling=False, max_sequence_length=max_seq_length, zero_pad=zero_pad, forced_size=spec_size, fuse=fuse, show_hist=False, test_segmentation=test_segmentation, hop_length=hop_length, window_length=window_length) # Create test dataloader test_loader = DataLoader(dataset=test_set, batch_size=1, num_workers=4, drop_last=False, shuffle=False) # Forward a sample posteriors, y_pred, _ = test(model=model, dataloader=test_loader, cnn=True, classifier=True if layers_dropped == 0 else False) if verbose: print("--> Unormalized posteriors:\n {}\n".format(posteriors)) print("--> Predictions:\n {}".format([class_names[yy] for yy in y_pred])) return y_pred, numpy.array(posteriors) if __name__ == '__main__': # Read arguments -- model parser = argparse.ArgumentParser() parser.add_argument('-m', '--model', required=True, type=str, help='Model') parser.add_argument('-i', '--input', required=True, type=str, help='Input file for testing') parser.add_argument('-s', '--segmentation', required=False, action='store_true', help='Return segment predictions') parser.add_argument('-L', '--layers', required=False, default=0, help='Number of final layers to cut. Default is 0.') args = parser.parse_args() # Get arguments model = args.model ifile = args.input layers_dropped = int(args.layers) segmentation = args.segmentation # Test the model d, p = test_model(modelpath=model, ifile=ifile, layers_dropped=layers_dropped, test_segmentation=segmentation)
34070
from jmap.account.imap.imap_utf7 import imap_utf7_decode, imap_utf7_encode KNOWN_SPECIALS = set('\\HasChildren \\HasNoChildren \\NoSelect \\NoInferiors \\UnMarked \\Subscribed'.lower().split()) # special use or name magic ROLE_MAP = { 'inbox': 'inbox', 'drafts': 'drafts', 'draft': 'drafts', 'draft messages': 'drafts', 'bulk': 'junk', 'bulk mail': 'junk', 'junk': 'junk', 'junk mail': 'junk', 'spam mail': 'junk', 'spam messages': 'junk', 'archive': 'archive', 'sent': 'sent', 'sent items': 'sent', 'sent messages': 'sent', 'deleted messages': 'trash', 'trash': 'trash', '\\inbox': 'inbox', '\\trash': 'trash', '\\sent': 'sent', '\\junk': 'junk', '\\spam': 'junk', '\\archive': 'archive', '\\drafts': 'drafts', '\\all': 'all', } class ImapMailbox(dict): __slots__ = ('db',) def __missing__(self, key): return getattr(self, key)() def name(self): try: parentname, name = self['imapname'].rsplit(self['sep'], maxsplit=1) except ValueError: name = self['imapname'] self['name'] = imap_utf7_decode(name.encode()) return self['name'] def parentId(self): try: parentname, name = self['imapname'].rsplit(self['sep'], maxsplit=1) self['parentId'] = self.db.byimapname[parentname]['id'] except ValueError: self['parentId'] = None return self['parentId'] def role(self): for f in self['flags']: if f not in KNOWN_SPECIALS: self['role'] = ROLE_MAP.get(f, None) break else: self['role'] = ROLE_MAP.get(self['imapname'].lower(), None) return self['role'] def sortOrder(self): return 2 if self['role'] else (1 if self['role'] == 'inbox' else 3) def isSubscribed(self): return '\\subscribed' in self['flags'] def totalEmails(self): return 0 def unreadEmails(self): return 0 def totalThreads(self): return self['totalEmails'] def unreadThreads(self): return self['unreadEmails'] def myRights(self): can_select = '\\noselect' not in self['flags'] self['myRights'] = { 'mayReadItems': can_select, 'mayAddItems': can_select, 'mayRemoveItems': can_select, 'maySetSeen': can_select, 'maySetKeywords': can_select, 'mayCreateChild': True, 'mayRename': False if self['role'] else True, 'mayDelete': False if self['role'] else True, 'maySubmit': can_select, } return self['myRights'] def imapname(self): encname = imap_utf7_encode(self['name']).decode() if self['parentId']: parent = self.db.mailboxes[self['parentId']] self['imapname'] = parent['imapname'] + parent['sep'] + encname else: self['imapname'] = encname return self['imapname'] def created(self): return self['uidvalidity'] def updated(self): return self['uidvalidity'] * self['uidnext'] def deleted(self): return None
34091
import jittor as jt from jittor import nn from jittor import Module from jittor import init from jittor.contrib import concat from model.backbone import resnet50, resnet101 from model.backbone import res2net101 Backbone_List = ['resnet50', 'resnet101', 'res2net101'] class DeepLab(Module): def __init__(self, output_stride=16, num_classes=2, backbone = 'resnet101'): super(DeepLab, self).__init__() if not backbone in Backbone_List: print('Invalid Backbone! Initialized to resnet101') backbone = 'resnet101' if backbone == 'resnet50': self.backbone = resnet50(output_stride=output_stride) elif backbone == 'res2net101': self.backbone = res2net101(output_stride=output_stride) else: self.backbone = resnet101(output_stride=output_stride) self.backbone_name = backbone self.aspp = ASPP(output_stride) self.decoder = Decoder(num_classes) def execute(self, input): low_level_feat, _, _, x = self.backbone(input) x = self.aspp(x) x = self.decoder(x, low_level_feat) x = nn.resize(x, size=(input.shape[2], input.shape[3]), mode='bilinear') return x def get_backbone(self): return self.backbone def get_head(self): return [self.aspp, self.decoder] def get_loss(self, target, pred, ignore_index=None): loss_pred = nn.cross_entropy_loss(pred, target, ignore_index=ignore_index) return loss_pred def update_params(self, loss, optimizer): optimizer.zero_grad() loss.backward() optimizer.step() class Decoder(nn.Module): def __init__(self, num_classes): super(Decoder, self).__init__() low_level_inplanes = 256 # mobilenet = 24 resnet / res2net = 256 xception = 128 self.conv1 = nn.Conv(low_level_inplanes, 48, 1, bias=False) self.bn1 = nn.BatchNorm(48) self.relu = nn.ReLU() self.last_conv = nn.Sequential(nn.Conv(304, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm(256), nn.ReLU(), nn.Dropout(0.5), nn.Conv(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm(256), nn.ReLU(), nn.Dropout(0.1), nn.Conv(256, num_classes, kernel_size=1, stride=1)) def execute(self, x, low_level_feat): low_level_feat = self.conv1(low_level_feat) low_level_feat = self.bn1(low_level_feat) low_level_feat = self.relu(low_level_feat) #print (low_level_feat.shape) x = nn.resize(x, size=(low_level_feat.shape[2], low_level_feat.shape[3]) , mode='bilinear') x = concat((x, low_level_feat), dim=1) x = self.last_conv(x) return x class Single_ASPPModule(Module): def __init__(self, inplanes, planes, kernel_size, padding, dilation): super(Single_ASPPModule, self).__init__() self.atrous_conv = nn.Conv(inplanes, planes, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False) self.bn = nn.BatchNorm(planes) self.relu = nn.ReLU() def execute(self, x): x = self.atrous_conv(x) x = self.bn(x) x = self.relu(x) return x class ASPP(Module): def __init__(self, output_stride): super(ASPP, self).__init__() inplanes = 2048 # mobilnet = 320 resnet = 2048 if output_stride == 16: dilations = [1, 6, 12, 18] elif output_stride == 8: dilations = [1, 12, 24, 36] else: raise NotImplementedError self.aspp1 = Single_ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0]) self.aspp2 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1]) self.aspp3 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2]) self.aspp4 = Single_ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3]) self.global_avg_pool = nn.Sequential(GlobalPooling(), nn.Conv(inplanes, 256, 1, stride=1, bias=False), nn.BatchNorm(256), nn.ReLU()) self.conv1 = nn.Conv(1280, 256, 1, bias=False) self.bn1 = nn.BatchNorm(256) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) def execute(self, x): x1 = self.aspp1(x) x2 = self.aspp2(x) x3 = self.aspp3(x) x4 = self.aspp4(x) x5 = self.global_avg_pool(x) x5 = x5.broadcast((1,1,x4.shape[2],x4.shape[3])) x = concat((x1, x2, x3, x4, x5), dim=1) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.dropout(x) return x class GlobalPooling (Module): def __init__(self): super(GlobalPooling, self).__init__() def execute (self, x): return jt.mean(x, dims=[2,3], keepdims=1) def main(): model = DeepLab(backbone = 'resnet101') x = jt.ones([2, 3, 512, 512]) y = model(x) print (y.shape) _ = y.data # Find total parameters and trainable parameters total_params = sum(p.numel() for p in model.parameters()) print(f'{total_params:,} total parameters.') total_trainable_params = sum( p.numel() for p in model.parameters() if p.requires_grad) print(f'{total_trainable_params:,} training parameters.') ''' DeepLab 59,572,610 total parameters. 59,462,946 training parameters. ''' if __name__ == '__main__': main()
34159
import pytest from teos.extended_appointment import ExtendedAppointment @pytest.fixture def ext_appointment_data(generate_dummy_appointment): return generate_dummy_appointment().to_dict() # Parent methods are not tested. def test_init_ext_appointment(ext_appointment_data): # The appointment has no checks whatsoever, since the inspector is the one taking care or that, and the only one # creating appointments. ext_appointment = ExtendedAppointment( ext_appointment_data["locator"], ext_appointment_data["encrypted_blob"], ext_appointment_data["to_self_delay"], ext_appointment_data["user_id"], ext_appointment_data["user_signature"], ext_appointment_data["start_block"], ) assert ( ext_appointment_data["locator"] == ext_appointment.locator and ext_appointment_data["to_self_delay"] == ext_appointment.to_self_delay and ext_appointment_data["encrypted_blob"] == ext_appointment.encrypted_blob and ext_appointment_data["user_id"] == ext_appointment.user_id and ext_appointment_data["user_signature"] == ext_appointment.user_signature and ext_appointment_data["start_block"] == ext_appointment.start_block ) def test_get_summary(ext_appointment_data): assert ExtendedAppointment.from_dict(ext_appointment_data).get_summary() == { "locator": ext_appointment_data["locator"], "user_id": ext_appointment_data["user_id"], } def test_from_dict(ext_appointment_data): # The appointment should be build if we don't miss any field ext_appointment = ExtendedAppointment.from_dict(ext_appointment_data) assert isinstance(ext_appointment, ExtendedAppointment) # Otherwise it should fail for key in ext_appointment_data.keys(): prev_val = ext_appointment_data[key] ext_appointment_data[key] = None with pytest.raises(ValueError, match="Wrong appointment data"): ExtendedAppointment.from_dict(ext_appointment_data) ext_appointment_data[key] = prev_val
34201
import copy import datetime import os import random import traceback import numpy as np import torch from torch.utils.data import DataLoader from torchvision.utils import save_image from inference.inference_utils import get_trange, get_tqdm def init_random_seed(value=0): random.seed(value) np.random.seed(value) torch.manual_seed(value) torch.cuda.manual_seed(value) torch.backends.cudnn.deterministic = True def copy_data_to_device(data, device): if torch.is_tensor(data): return data.to(device) elif isinstance(data, (list, tuple)): return [copy_data_to_device(elem, device) for elem in data] elif isinstance(data, dict): return {name: copy_data_to_device(value, device) for name, value in data.items()} raise ValueError('Unexpected data type {}'.format(type(data))) def sum_dicts(current, new): if current is None: return new result = dict(current) for name, new_value in new.items(): result[name] = result.get(name, 0) + new_value return result def norm_dict(current, n): if n == 0: return current return {name: value / (n + 1e-6) for name, value in current.items()} def train_eval_loop(model, train_dataset, val_dataset, criterion, lr=1e-4, epoch_n=10, batch_size=32, device='cuda', early_stopping_patience=10, l2_reg_alpha=0, max_batches_per_epoch_train=10000, max_batches_per_epoch_val=1000, data_loader_ctor=DataLoader, optimizer_ctor=None, lr_scheduler_ctor=None, shuffle_train=True, dataloader_workers_n=0, clip_grad=10, save_vis_images_path=None, save_vis_images_freq=100, save_models_path=None, save_models_freq=10): device = torch.device(device) model.to(device) if optimizer_ctor is None: optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_reg_alpha) else: optimizer = optimizer_ctor(model.parameters(), lr=lr) if lr_scheduler_ctor is not None: lr_scheduler = lr_scheduler_ctor(optimizer) else: lr_scheduler = None train_dataloader = data_loader_ctor(train_dataset, batch_size=batch_size, shuffle=shuffle_train, num_workers=dataloader_workers_n) val_dataloader = data_loader_ctor(val_dataset, batch_size=batch_size, shuffle=False, num_workers=dataloader_workers_n) best_val_loss = float('inf') best_val_metrics = None best_epoch_i = 0 best_model = copy.deepcopy(model) for epoch_i in get_trange(epoch_n, desc='Epochs'): try: epoch_start = datetime.datetime.now() print('Epoch {}'.format(epoch_i)) model.train() mean_train_loss = 0 mean_train_metrics = None train_batches_n = 0 for batch_i, (batch_x, batch_y) in get_tqdm(enumerate(train_dataloader), desc=f'Epoch {epoch_i}', total=max_batches_per_epoch_train, leave=True): if batch_i > max_batches_per_epoch_train: break batch_x = copy_data_to_device(batch_x, device) batch_y = copy_data_to_device(batch_y, device) pred = model(batch_x) loss, metrics, vis_img = criterion(pred, batch_y) model.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) optimizer.step() mean_train_loss += float(loss) mean_train_metrics = sum_dicts(mean_train_metrics, metrics) if vis_img is not None and save_vis_images_path is not None and batch_i % save_vis_images_freq == 0: save_image(vis_img, os.path.join(save_vis_images_path, 'epoch{:04d}_iter{:06d}_train.jpg'.format(epoch_i, batch_i)), nrow=batch_y['images'].shape[0], normalize=True, range=(-1, 1)) train_batches_n += 1 mean_train_loss /= train_batches_n mean_train_metrics = norm_dict(mean_train_metrics, train_batches_n) print('Epoch: {} iterations, {:0.2f} sec'.format(train_batches_n, (datetime.datetime.now() - epoch_start).total_seconds())) print('Mean train loss', mean_train_loss, mean_train_metrics) if save_models_path is not None and epoch_i % save_models_freq == 0: torch.save(model, os.path.join(save_models_path, 'model_epoch_{:04d}.pth'.format(epoch_i))) model.eval() mean_val_loss = 0 mean_val_metrics = None val_batches_n = 0 with torch.no_grad(): for batch_i, (batch_x, batch_y) in enumerate(val_dataloader): if batch_i > max_batches_per_epoch_val: break batch_x = copy_data_to_device(batch_x, device) batch_y = copy_data_to_device(batch_y, device) pred = model(batch_x) loss, metrics, vis_img = criterion(pred, batch_y) mean_val_loss += float(loss) mean_val_metrics = sum_dicts(mean_val_metrics, metrics) if vis_img is not None and save_vis_images_path is not None and batch_i % save_vis_images_freq == 0: save_image(vis_img, os.path.join(save_vis_images_path, 'epoch{:04d}_iter{:06d}_val.jpg'.format(epoch_i, batch_i)), nrow=batch_y['images'].shape[0], normalize=True, range=(-1, 1)) val_batches_n += 1 mean_val_loss /= val_batches_n + 1e-6 mean_val_metrics = norm_dict(mean_val_metrics, val_batches_n) print('Mean validation loss', mean_val_loss, mean_val_metrics) if mean_val_loss < best_val_loss: best_epoch_i = epoch_i best_val_loss = mean_val_loss best_val_metrics = mean_val_metrics best_model = copy.deepcopy(model) print('New best model!') if save_models_path is not None: torch.save(best_model, os.path.join(save_models_path, 'best_model.pth')) elif epoch_i - best_epoch_i > early_stopping_patience: print('Model has not improved during the last {} epochs, stopping training early'.format( early_stopping_patience)) break if lr_scheduler is not None: lr_scheduler.step(mean_val_loss) print() except KeyboardInterrupt: print('Interrupted by user') break except Exception as ex: print('Fatal error during training: {}\n{}'.format(ex, traceback.format_exc())) break return best_val_loss, best_val_metrics, best_model def predict_with_model(model, dataset, device='cuda', batch_size=32, num_workers=0, return_labels=False): """ :param model: torch.nn.Module - trained model :param dataset: torch.utils.data.Dataset - data to apply model :param device: cuda/cpu :param batch_size: :return: numpy.array dimensionality len(dataset) x * """ results_by_batch = [] device = torch.device(device) model.to(device) model.eval() dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) labels = [] with torch.no_grad(): import tqdm for batch_x, batch_y in tqdm.tqdm_notebook(dataloader, total=len(dataset)/batch_size): batch_x = copy_data_to_device(batch_x, device) if return_labels: labels.append(batch_y.numpy()) batch_pred = model(batch_x) results_by_batch.append(batch_pred.detach().cpu().numpy()) if return_labels: return np.concatenate(results_by_batch, 0), np.concatenate(labels, 0) else: return np.concatenate(results_by_batch, 0)
34221
import relstorage.storage import ZODB.Connection # Monkey patches, ook def _ex_cursor(self, name=None): if self._stale_error is not None: raise self._stale_error with self._lock: self._before_load() return self._load_conn.cursor(name) relstorage.storage.RelStorage.ex_cursor = _ex_cursor def _ex_connect(self): return self._adapter.connmanager.open() relstorage.storage.RelStorage.ex_connect = _ex_connect def _ex_get(self, oid, ghost_pickle): """Return the persistent object with oid 'oid'.""" if self.opened is None: raise ConnectionStateError("The database connection is closed") obj = self._cache.get(oid, None) if obj is not None: return obj obj = self._added.get(oid, None) if obj is not None: return obj obj = self._pre_cache.get(oid, None) if obj is not None: return obj obj = self._reader.getGhost(ghost_pickle) # New code # Avoid infiniate loop if obj tries to load its state before # it is added to the cache and it's state refers to it. # (This will typically be the case for non-ghostifyable objects, # like persistent caches.) self._pre_cache[oid] = obj self._cache.new_ghost(oid, obj) self._pre_cache.pop(oid) return obj ZODB.Connection.Connection.ex_get = _ex_get
34225
import copy import sys from . import compat from .compat import urlencode, parse_qs class Request(compat.Request): def __init__(self, url, parameters=None, headers=None): self.parameters = parameters if parameters is None: data = None else: if sys.version_info >= (3, 0): data = urlencode(parameters).encode('utf-8') else: byte_parameters = dict( (k.encode('utf-8'), v.encode('utf-8')) for k, v in parameters.items()) data = urlencode(byte_parameters) assert isinstance(data, bytes) if headers is None: headers = {} compat.Request.__init__(self, url, data, headers) def copy(self): return copy.copy(self) @property def url(self): return self.get_full_url()
34246
from ._unselected import Unselected from plotly.graph_objs.scattermapbox import unselected from ._textfont import Textfont from ._stream import Stream from ._selected import Selected from plotly.graph_objs.scattermapbox import selected from ._marker import Marker from plotly.graph_objs.scattermapbox import marker from ._line import Line from ._hoverlabel import Hoverlabel from plotly.graph_objs.scattermapbox import hoverlabel
34256
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('extras', '0060_customlink_button_class'), ] operations = [ migrations.AddField( model_name='customfield', name='created', field=models.DateField(auto_now_add=True, null=True), ), migrations.AddField( model_name='customfield', name='last_updated', field=models.DateTimeField(auto_now=True, null=True), ), migrations.AddField( model_name='customlink', name='created', field=models.DateField(auto_now_add=True, null=True), ), migrations.AddField( model_name='customlink', name='last_updated', field=models.DateTimeField(auto_now=True, null=True), ), migrations.AddField( model_name='exporttemplate', name='created', field=models.DateField(auto_now_add=True, null=True), ), migrations.AddField( model_name='exporttemplate', name='last_updated', field=models.DateTimeField(auto_now=True, null=True), ), migrations.AddField( model_name='webhook', name='created', field=models.DateField(auto_now_add=True, null=True), ), migrations.AddField( model_name='webhook', name='last_updated', field=models.DateTimeField(auto_now=True, null=True), ), ]
34302
def handler(event, context): return { "statusCode": 302, "headers": { "Location": "https://www.nhsx.nhs.uk/covid-19-response/data-and-covid-19/national-covid-19-chest-imaging-database-nccid/" }, }
34308
import sys import cv2 from keras.models import load_model from matplotlib import pyplot as plt import time model = load_model("models/model.h5") def find_faces(image): face_cascade = cv2.CascadeClassifier('data/haarcascade_frontalface_default.xml') face_rects = face_cascade.detectMultiScale( image, scaleFactor = 1.1, minNeighbors = 22 ) return face_rects def load_image(filepath): image = cv2.imread(filepath) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image, gray_image def predict(gray_image): face_rects = find_faces(gray_image) for face_rect in face_rects: x, y, w, h = face_rect face = gray_image[y:y+h, x:x+w] face = cv2.resize(face, (48, 48)).reshape((1, 48, 48, 1)) predicted_emotions = model.predict(face)[0] best_emotion = 'happiness' if predicted_emotions[1] > predicted_emotions[0] else 'neutral' # Create a json serializable result yield dict( border = dict( x = float(x), y = float(y), width = float(w), height = float(h), ), prediction = {'happiness': float(predicted_emotions[0]), 'neutral': float(predicted_emotions[1])}, emotion = best_emotion ) def put_text(image, rect, text): x, y, w, h = rect font = cv2.FONT_HERSHEY_SIMPLEX font_scale = h / 30.0 font_thickness = int(round(font_scale * 1.5)) text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness) center_text_x = x + (w // 2) center_text_y = y + (h // 2) text_w, text_h = text_size lower_left_text_x = center_text_x - (text_w // 2) lower_left_text_y = center_text_y + (text_h // 2) cv2.putText( image, text, (lower_left_text_x, lower_left_text_y), font, font_scale, (0, 255, 0), font_thickness ) def draw_face_info(image, face_info): x = int(face_info['border']['x']) y = int(face_info['border']['y']) w = int(face_info['border']['width']) h = int(face_info['border']['height']) emotion = face_info['emotion'] cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) put_text(image, (x, y, w, h // 5), emotion) def show_image(image, title='Result'): plt.subplot(111), plt.imshow(image), plt.title(title) plt.show() if __name__ == '__main__': # start time start_time = time.time() image, gray_image = load_image(sys.argv[1]) for face_info in predict(gray_image): print(face_info) draw_face_info(image, face_info) # end time end_time = time.time() show_image(image) response_time = end_time - start_time print(response_time)
34330
import statistics import hpbandster.core.result as hpres # smallest value is best -> reverse_loss = True # largest value is best -> reverse_loss = False REVERSE_LOSS = True EXP_LOSS = 1 OUTLIER_PERC_WORST = 0.1 OUTLIER_PERC_BEST = 0.0 def analyze_bohb(log_dir): # load the example run from the log files result = hpres.logged_results_to_HBS_result(log_dir) # get all executed runs all_runs = result.get_all_runs() if __name__ == '__main__': # load the example run from the log files result = hpres.logged_results_to_HBS_result('../results/GTNC_evaluate_cmc_subopt_2021-01-21-09_5') # get all executed runs all_runs = result.get_all_runs() t_arr = [] for dat in result.data.values(): for time_stamp in dat.time_stamps.values(): ts = time_stamp['started'] te = time_stamp['finished'] if te-ts > 60: t_arr.append(te-ts) print(statistics.mean(t_arr))
34380
from wireless_msgs.msg import Connection from .translator import Translator, TableTranslatorMixin class ConnectionTranslator(Translator, TableTranslatorMixin): messageType = Connection geomType = Translator.GeomTypes.NoGeometry @staticmethod def translate(msg): # Some forks of wireless_msgs/Connection have a header. try: seq = msg.header.seq stamp = msg.header.stamp.to_sec() except AttributeError: seq = None stamp = None return [{ 'type': 'Feature', 'properties': { 'bitrate': msg.bitrate, 'txpower': msg.txpower, 'link_quality_raw': msg.link_quality_raw, 'link_quality': msg.link_quality, 'signal_level': msg.signal_level, 'noise_level': msg.noise_level, 'essid': msg.essid, 'bssid': msg.bssid, 'frequency': msg.frequency, 'seq': seq, 'stamp': stamp } }]
34439
from .request_context import RequestContext from .tracker import ContextTracker from .request import DjangoRequest, FlaskRequest
34475
import pyaf.Bench.TS_datasets as tsds import pyaf.Bench.YahooStocks as ys import warnings symbol_lists = tsds.get_yahoo_symbol_lists(); y_keys = sorted(symbol_lists.keys()) print(y_keys) k = "nysecomp" tester = ys.cYahoo_Tester(tsds.load_yahoo_stock_prices(k) , "YAHOO_STOCKS_" + k); with warnings.catch_warnings(): warnings.simplefilter("error") tester.testSignals('VRS')
34492
from ray.rllib.contrib.bandits.envs.discrete import LinearDiscreteEnv, \ WheelBanditEnv from ray.rllib.contrib.bandits.envs.parametric import ParametricItemRecoEnv __all__ = ["LinearDiscreteEnv", "WheelBanditEnv", "ParametricItemRecoEnv"]
34497
import string import warnings import re from . import util import spacy class FileParser(object): def __init__(self, file_parser='txt', xml_node_path=None, fparser=None): if file_parser not in ['txt', 'xml', 'defined']: msg = 'file_parser should be txt, xml or defined, not "{file_parser}"' raise ValueError(msg.format(file_parser=file_parser)) if file_parser == 'defined' and fparser is None: msg = 'Please define you own file_parser.' raise ValueError(msg) self.file_parser = file_parser self.xml_node_path = xml_node_path self.fparser = fparser def xml_parser(self, file_path, xml_node_path): for paragraph in util.search_all_specific_nodes_in_xml_known_node_path(file_path, xml_node_path): for sent in util.tokenize_informal_paragraph_into_sentences(paragraph): yield str.strip(sent) def txt_parser(self, file_path): with open(file_path, 'r', encoding='utf-8') as file: for line in file: yield str.strip(line) def __call__(self, file_path): if self.file_parser == 'txt': for sent in self.txt_parser(file_path): yield sent if self.file_parser == 'xml': for sent in self.xml_parser(file_path, self.xml_node_path): yield sent if self.file_parser == 'defined': for sent in self.fparser(file_path): yield sent class WordPreprocessor(object): # default: config file. def __init__(self, remove_stop_words, remove_numbers, replace_digits_to_zeros, remove_punctuations, stem_word, lowercase, wpreprocessor): self.remove_stop_words = remove_stop_words self.remove_numbers = remove_numbers self.replace_digits_to_zeros = replace_digits_to_zeros self.remove_punctuations = remove_punctuations self.stem_word = stem_word self.lowercase = lowercase self.wpreprocessor = wpreprocessor punctuations = set(string.punctuation) punctuations.update({'“', '”', '—'}) # English punctuations.update({'...', '«', '»'}) # French self.puncs = punctuations def apply(self, word, spacy_loader=None): # Removing if self.remove_numbers and word.isnumeric(): return '' if self.replace_digits_to_zeros: word = re.sub('\d', '0', word) if self.remove_punctuations: if all(c in self.puncs for c in word): return '' # Remove combinations of punctuations and digits if self.remove_numbers and self.remove_punctuations: if all(j.isdigit() or j in self.puncs for j in word): return '' # remove stop words if self.remove_stop_words and spacy_loader.vocab[word].is_stop: # print(word, 'is stop words') return '' # Stem word if self.stem_word: word = util.stem_word(word) # Make all words in lowercase if self.lowercase: word = word.lower() # customized word preprocessor if self.wpreprocessor is not None: if not callable(self.wpreprocessor): msg = 'wpreprocessor should be callable' warnings.warn(msg) else: word = self.wpreprocessor(word) if not isinstance(word, str): msg = 'The output of wpreprocessor should be string' raise ValueError(msg) return word def __call__(self, word): return self.apply(word) class Tokenizer(object): @staticmethod def mytok(s): """ An example of user customized tokenizer. :return: list of tokens """ # TODO NOW spacy.load here is a really stupid idea, cause each time apply has been called spacy.load need to run. TOO SLOW!!! tk = spacy.load('en') return [token.text for token in tk(s)] def __init__(self, word_tokenizer='Treebank', wtokenizer=None): self.word_tokenizer = None if word_tokenizer not in ['Treebank', 'PunktWord', 'WordPunct', 'spacy', '']: msg = 'word_tokenizer "{word_tokenizer}" should be Treebank, PunktWord, WordPunct or empty' raise ValueError(msg.format(word_tokenizer=word_tokenizer)) if word_tokenizer == 'spacy': self.tokenizer = None self.word_tokenizer = 'spacy' elif word_tokenizer == 'Treebank': from nltk.tokenize import TreebankWordTokenizer self.tokenizer = TreebankWordTokenizer().tokenize elif word_tokenizer == 'PunktWord': # PunktTokenizer splits on punctuation, but keeps it with the word. => [‘this’, “‘s”, ‘a’, ‘test’] from nltk.tokenize import PunktWordTokenizer self.tokenizer = PunktWordTokenizer().tokenize elif word_tokenizer == 'WordPunct': # WordPunctTokenizer splits all punctuations into separate tokens. => [‘This’, “‘”, ‘s’, ‘a’, ‘test’] from nltk.tokenize import WordPunctTokenizer self.tokenizer = WordPunctTokenizer().tokenize else: if wtokenizer is None: self.tokenizer = None else: if not callable(wtokenizer): msg = 'wtokenizer should be callable' warnings.warn(msg) self.tokenizer = None else: self.tokenizer = wtokenizer def apply(self, text, spacy_loader=None): if self.word_tokenizer == 'spacy': return [token.text for token in spacy_loader(text)] if self.tokenizer is not None: return self.tokenizer(text) else: return [text] def __call__(self, text): return self.apply(text)
34500
import logging import time from tests.common.helpers.assertions import pytest_assert logger = logging.getLogger(__name__) def join_master(duthost, master_vip): """ Joins DUT to Kubernetes master Args: duthost: DUT host object master_vip: VIP of high availability Kubernetes master If join fails, test will fail at the assertion to check_connected """ logger.info("Joining DUT to Kubernetes master") dut_join_cmds = ['sudo config kube server disable on', 'sudo config kube server ip {}'.format(master_vip), 'sudo config kube server disable off'] duthost.shell_cmds(cmds=dut_join_cmds) pytest_assert(poll_for_status_change(duthost, True),"DUT failed to successfully join Kubernetes master") def make_vip_unreachable(duthost, master_vip): """ Makes Kubernetes master VIP unreachable from SONiC DUT by configuring iptables rules. Cleans preexisting iptables rules for VIP. Args: duthost: DUT host object master_vip: VIP of high availability Kubernetes master """ logger.info("Making Kubernetes master VIP unreachable from DUT") clean_vip_iptables_rules(duthost, master_vip) duthost.shell('sudo iptables -A INPUT -s {} -j DROP'.format(master_vip)) duthost.shell('sudo iptables -A OUTPUT -d {} -j DROP'.format(master_vip)) def make_vip_reachable(duthost, master_vip): """ Makes Kubernetes master VIP reachable from SONiC DUT by removing any iptables rules associated with the VIP. Args: duthost: DUT host object master_vip: VIP of high availability Kubernetes master """ logger.info("Making Kubernetes master VIP reachable from DUT") clean_vip_iptables_rules(duthost, master_vip) def clean_vip_iptables_rules(duthost, master_vip): """ Removes all iptables rules associated with the VIP. Args: duthost: DUT host object master_vip: VIP of high availability Kubernetes master """ iptables_rules = duthost.shell('sudo iptables -S | grep {} || true'.format(master_vip))["stdout_lines"] logger.info('iptables rules: {}'.format(iptables_rules)) for line in iptables_rules: if line: duthost.shell('sudo iptables -D {}'.format(line[2:])) def check_connected(duthost): """ Checks if the DUT already shows status 'connected' to Kubernetes master Args: duthost: DUT host object Returns: True if connected, False if not connected """ kube_server_status = duthost.shell('show kube server')["stdout_lines"] logger.info("Kube server status: {}".format(kube_server_status)) for line in kube_server_status: if line.startswith("KUBERNETES_MASTER SERVER connected"): return line.endswith("true") logger.info("Kubernetes server check_connected failed to check server status") def poll_for_status_change(duthost, exp_status, poll_wait_secs=5, min_wait_time=20, max_wait_time=120): """ Polls to see if kube server connected status updates as expected Args: duthost: DUT host object exp_status: expected server connected status once processes are synced poll_wait_secs: seconds between each server connected status poll. Default: 5 seconds min_wait_time: seconds before starting poll of server connected status. Default: 20 seconds max_wait_time: maximum amount of time to spend polling for status change. Default: 120 seconds Returns: True if server connected status updates as expected by max_wait_time False if server connected status fails to update as expected by max_wait_time """ time.sleep(min_wait_time) timeout_wait_secs = max_wait_time - min_wait_time while (timeout_wait_secs > 0): if (check_connected(duthost) == exp_status): logging.info("Time taken to update Kube server status: {} seconds".format(timeout_wait_secs)) return True time.sleep(poll_wait_secs) timeout_wait_secs -= poll_wait_secs return False
34548
import os import os.path as osp import pickle import time import numpy as np from multiprocessing import Pool from ..utils import get_bbox_dim from .misc import read_img_info, change_cls_order, get_classes def load_imgs(img_dir, ann_dir=None, classes=None, nproc=10, def_bbox_type='poly'): assert def_bbox_type in ['hbb', 'obb', 'poly', None] assert osp.isdir(img_dir), f'The {img_dir} is not an existing dir!' if ann_dir is not None: print('ann_dir is no use in load_imgs function') print('Starting loading images information') start_time = time.time() imgpaths = [osp.join(img_dir, imgfile) for imgfile in os.listdir(img_dir)] if nproc > 1: pool = Pool(nproc) infos = pool.map(read_img_info, imgpaths) pool.close() else: infos = list(map(read_img_info, imgpaths)) if def_bbox_type is not None: for info in infos: if info is None: continue bbox_dim = get_bbox_dim(def_bbox_type) bboxes = np.zeros((0, bbox_dim), dtype=np.float32) labels = np.zeros((0, ), dtype=np.int64) info['ann'] = dict(bboxes=bboxes, labels=labels) classes = () if classes is None else classes end_time = time.time() print(f'Finishing loading images, get {len(infos)} iamges,', f'using {end_time-start_time:.3f}s.') return infos, classes def load_pkl(ann_dir, img_dir=None, classes=None, nproc=10): assert osp.isfile(ann_dir), f'The {ann_dir} is not an existing pkl file!' assert img_dir is None or osp.isdir(img_dir), f'The {img_dir} is not an existing dir!' print('Starting loading pkl information') start_time = time.time() data = pickle.load(open(ann_dir, 'rb')) old_classes, contents = data['cls'], data['content'] if img_dir is not None: imgpaths = [osp.join(img_dir, content['filename']) for content in contents] if nproc > 1: pool = Pool(nproc) infos = pool.map(read_img_info, imgpaths) pool.close() else: infos = list(map(read_img_info, imgpaths)) for info, content in zip(infos, contents): content.update(info) if classes is None: classes = old_classes else: classes = get_classes(classes) change_cls_order(contents, old_classes, classes) end_time = time.time() print(f'Finishing loading pkl, get {len(contents)} iamges,', f'using {end_time-start_time:.3f}s.') return contents, classes def save_pkl(save_dir, contents, classes): assert save_dir.endswith('.pkl') filepath = osp.split(save_dir)[0] if not osp.exists(filepath): os.makedirs(filepath) data = dict(cls=classes, content=contents) pickle.dump(data, open(save_dir, 'wb'))
34558
from unittest import TestCase from pylibsrtp import Error, Policy, Session RTP = ( b"\x80\x08\x00\x00" # version, packet type, sequence number b"\x00\x00\x00\x00" # timestamp b"\x00\x00\x30\x39" # ssrc: 12345 ) + (b"\xd4" * 160) RTCP = ( b"\x80\xc8\x00\x06\xf3\xcb\x20\x01\x83\xab\x03\xa1\xeb\x02\x0b\x3a" b"\x00\x00\x94\x20\x00\x00\x00\x9e\x00\x00\x9b\x88" ) # Set key to predetermined value KEY = ( b"\<KEY>" b"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" b"\x10\x11\x12\x13\x14\x15\x16\x17" b"\x18\x19\x1a\x1b\x1c\x1d" ) class PolicyTest(TestCase): def test_allow_repeat_tx(self): policy = Policy() self.assertEqual(policy.allow_repeat_tx, False) policy.allow_repeat_tx = True self.assertEqual(policy.allow_repeat_tx, True) policy.allow_repeat_tx = False self.assertEqual(policy.allow_repeat_tx, False) policy.allow_repeat_tx = 1 self.assertEqual(policy.allow_repeat_tx, True) policy.allow_repeat_tx = 0 self.assertEqual(policy.allow_repeat_tx, False) def test_key(self): policy = Policy() self.assertEqual(policy.key, None) policy.key = KEY self.assertEqual(policy.key, KEY) policy.key = None self.assertEqual(policy.key, None) with self.assertRaises(TypeError) as cm: policy.key = 1234 self.assertEqual(policy.key, None) self.assertEqual(str(cm.exception), "key must be bytes") def test_ssrc_type(self): policy = Policy() self.assertEqual(policy.ssrc_type, Policy.SSRC_UNDEFINED) policy.ssrc_type = Policy.SSRC_ANY_INBOUND self.assertEqual(policy.ssrc_type, Policy.SSRC_ANY_INBOUND) def test_ssrc_value(self): policy = Policy() self.assertEqual(policy.ssrc_value, 0) policy.ssrc_value = 12345 self.assertEqual(policy.ssrc_value, 12345) def test_window_size(self): policy = Policy() self.assertEqual(policy.window_size, 0) policy.window_size = 1024 self.assertEqual(policy.window_size, 1024) class SessionTest(TestCase): def test_no_key(self): policy = Policy(ssrc_type=Policy.SSRC_ANY_OUTBOUND) with self.assertRaises(Error) as cm: Session(policy=policy) self.assertEqual(str(cm.exception), "unsupported parameter") def test_add_remove_stream(self): # protect RTP tx_session = Session( policy=Policy(key=KEY, ssrc_type=Policy.SSRC_SPECIFIC, ssrc_value=12345) ) protected = tx_session.protect(RTP) self.assertEqual(len(protected), 182) # add stream and unprotect RTP rx_session = Session() rx_session.add_stream( Policy(key=KEY, ssrc_type=Policy.SSRC_SPECIFIC, ssrc_value=12345) ) unprotected = rx_session.unprotect(protected) self.assertEqual(len(unprotected), 172) self.assertEqual(unprotected, RTP) # remove stream rx_session.remove_stream(12345) # try removing stream again with self.assertRaises(Error) as cm: rx_session.remove_stream(12345) self.assertEqual(str(cm.exception), "no appropriate context found") def test_rtp_any_ssrc(self): # protect RTP tx_session = Session(policy=Policy(key=KEY, ssrc_type=Policy.SSRC_ANY_OUTBOUND)) protected = tx_session.protect(RTP) self.assertEqual(len(protected), 182) # bad type with self.assertRaises(TypeError) as cm: tx_session.protect(4567) self.assertEqual(str(cm.exception), "packet must be bytes") # bad length with self.assertRaises(ValueError) as cm: tx_session.protect(b"0" * 1500) self.assertEqual(str(cm.exception), "packet is too long") # unprotect RTP rx_session = Session(policy=Policy(key=KEY, ssrc_type=Policy.SSRC_ANY_INBOUND)) unprotected = rx_session.unprotect(protected) self.assertEqual(len(unprotected), 172) self.assertEqual(unprotected, RTP) def test_rtcp_any_ssrc(self): # protect RCTP tx_session = Session(policy=Policy(key=KEY, ssrc_type=Policy.SSRC_ANY_OUTBOUND)) protected = tx_session.protect_rtcp(RTCP) self.assertEqual(len(protected), 42) # bad type with self.assertRaises(TypeError) as cm: tx_session.protect_rtcp(4567) self.assertEqual(str(cm.exception), "packet must be bytes") # bad length with self.assertRaises(ValueError) as cm: tx_session.protect_rtcp(b"0" * 1500) self.assertEqual(str(cm.exception), "packet is too long") # unprotect RTCP rx_session = Session(policy=Policy(key=KEY, ssrc_type=Policy.SSRC_ANY_INBOUND)) unprotected = rx_session.unprotect_rtcp(protected) self.assertEqual(len(unprotected), 28) self.assertEqual(unprotected, RTCP) def test_rtp_specific_ssrc(self): # protect RTP tx_session = Session( policy=Policy(key=KEY, ssrc_type=Policy.SSRC_SPECIFIC, ssrc_value=12345) ) protected = tx_session.protect(RTP) self.assertEqual(len(protected), 182) # unprotect RTP rx_session = Session( policy=Policy(key=KEY, ssrc_type=Policy.SSRC_SPECIFIC, ssrc_value=12345) ) unprotected = rx_session.unprotect(protected) self.assertEqual(len(unprotected), 172) self.assertEqual(unprotected, RTP)
34575
import json import logging from typing import Tuple import requests from django.conf import settings from django.core.files.uploadedfile import InMemoryUploadedFile from django.views.generic import FormView, TemplateView from .forms import CodeSchoolForm logger = logging.getLogger(__name__) class IndexView(TemplateView): template_name = 'frontend/index.html' class CodeschoolFormView(FormView): form_class = CodeSchoolForm template_name = 'frontend/codeschool-form.html' success_url = f'https://github.com/{settings.GITHUB_REPO}/issues' def form_valid(self, form): form.save() handle_submission(form.cleaned_data) return super().form_valid(form) def form_invalid(self, form): return super().form_invalid(form) class BotMessagesView(TemplateView): template_name = 'frontend/messages.html' def get_logo_and_users(logo: InMemoryUploadedFile) -> Tuple[str, str]: school_logo = logo.name.replace(' ', '_') if settings.DEBUG or settings.PRE_PROD: users = '@wimo7083 @AllenAnthes,' else: users = '@wimo7083 @jhampton @kylemh' logo_url = f'{settings.MEDIA_URL}logos/{school_logo}' return logo_url, users def handle_submission(form: dict): repo_path = settings.GITHUB_REPO url = f"https://api.github.com/repos/{repo_path}/issues" headers = {"Authorization": f"Bearer {settings.GITHUB_JWT}"} params = make_params(**form) res = requests.post(url, headers=headers, data=json.dumps(params)) logger.info(f'response from github API call {res}') def make_params(logo, name, url, address1, city, state, zipcode, country, rep_name, rep_email, recaptcha='', address2=None, fulltime=False, hardware=False, has_online=False, only_online=False, accredited=False, housing=False, mooc=False): logo_url, notify_users = get_logo_and_users(logo) return ({ 'title': f'New Code School Request: {name}', 'body': ( f"Name: {name}\n" f"Website: {url}\n" f"Full Time: {fulltime}\n" f"Hardware Included: {hardware}\n" f"Has Online: {has_online}\n" f"Only Online: {only_online}\n" f"VA Accredited: {accredited}\n" f"Housing Included: {housing}\n" f"MOOC Only: {mooc}\n" f"Address: {address1} {address2}\n" f"City: {city}\n" f"State: {state}\n" f"Country: {country}\n" f"Zip: {zipcode}\n\n" f"Representative Name: {rep_name}\n" f"Representative Email: {rep_email}\n" f"logo: ![school-logo]({logo_url})\n" 'This code school is ready to be added/updated:\n' f"{notify_users}\n" "Please close this issue once you've added/updated the code school." ) })
34599
import calendar import datetime import re import sys from dateutil.relativedelta import relativedelta import gam from gam.var import * from gam import controlflow from gam import display from gam import gapi from gam import utils from gam.gapi.directory import orgunits as gapi_directory_orgunits def build(): return gam.buildGAPIObject('reports') REPORT_CHOICE_MAP = { 'access': 'access_transparency', 'accesstransparency': 'access_transparency', 'calendars': 'calendar', 'customers': 'customer', 'doc': 'drive', 'docs': 'drive', 'domain': 'customer', 'enterprisegroups': 'groups_enterprise', 'google+': 'gplus', 'group': 'groups', 'groupsenterprise': 'groups_enterprise', 'hangoutsmeet': 'meet', 'logins': 'login', 'oauthtoken': 'token', 'tokens': 'token', 'usage': 'usage', 'usageparameters': 'usageparameters', 'users': 'user', 'useraccounts': 'user_accounts', } def showUsageParameters(): rep = build() throw_reasons = [ gapi.errors.ErrorReason.INVALID, gapi.errors.ErrorReason.BAD_REQUEST ] todrive = False if len(sys.argv) == 3: controlflow.missing_argument_exit('user or customer', 'report usageparameters') report = sys.argv[3].lower() titles = ['parameter'] if report == 'customer': endpoint = rep.customerUsageReports() kwargs = {} elif report == 'user': endpoint = rep.userUsageReport() kwargs = {'userKey': gam._get_admin_email()} else: controlflow.expected_argument_exit('usageparameters', ['user', 'customer'], report) customerId = GC_Values[GC_CUSTOMER_ID] if customerId == MY_CUSTOMER: customerId = None tryDate = datetime.date.today().strftime(YYYYMMDD_FORMAT) all_parameters = set() i = 4 while i < len(sys.argv): myarg = sys.argv[i].lower().replace('_', '') if myarg == 'todrive': todrive = True i += 1 else: controlflow.invalid_argument_exit(sys.argv[i], 'gam report usageparameters') fullDataRequired = ['all'] while True: try: result = gapi.call(endpoint, 'get', throw_reasons=throw_reasons, date=tryDate, customerId=customerId, fields='warnings,usageReports(parameters(name))', **kwargs) warnings = result.get('warnings', []) usage = result.get('usageReports') has_reports = bool(usage) fullData, tryDate = _check_full_data_available( warnings, tryDate, fullDataRequired, has_reports) if fullData < 0: print('No usage parameters available.') sys.exit(1) if has_reports: for parameter in usage[0]['parameters']: name = parameter.get('name') if name: all_parameters.add(name) if fullData == 1: break except gapi.errors.GapiInvalidError as e: tryDate = _adjust_date(str(e)) csvRows = [] for parameter in sorted(all_parameters): csvRows.append({'parameter': parameter}) display.write_csv_file(csvRows, titles, f'{report.capitalize()} Report Usage Parameters', todrive) REPORTS_PARAMETERS_SIMPLE_TYPES = [ 'intValue', 'boolValue', 'datetimeValue', 'stringValue' ] def showUsage(): rep = build() throw_reasons = [ gapi.errors.ErrorReason.INVALID, gapi.errors.ErrorReason.BAD_REQUEST ] todrive = False if len(sys.argv) == 3: controlflow.missing_argument_exit('user or customer', 'report usage') report = sys.argv[3].lower() titles = ['date'] if report == 'customer': endpoint = rep.customerUsageReports() kwargs = [{}] elif report == 'user': endpoint = rep.userUsageReport() kwargs = [{'userKey': 'all'}] titles.append('user') else: controlflow.expected_argument_exit('usage', ['user', 'customer'], report) customerId = GC_Values[GC_CUSTOMER_ID] if customerId == MY_CUSTOMER: customerId = None parameters = [] start_date = end_date = orgUnitId = None skip_day_numbers = [] skip_dates = set() one_day = datetime.timedelta(days=1) i = 4 while i < len(sys.argv): myarg = sys.argv[i].lower().replace('_', '') if myarg == 'startdate': start_date = utils.get_yyyymmdd(sys.argv[i + 1], returnDateTime=True) i += 2 elif myarg == 'enddate': end_date = utils.get_yyyymmdd(sys.argv[i + 1], returnDateTime=True) i += 2 elif myarg == 'todrive': todrive = True i += 1 elif myarg in ['fields', 'parameters']: parameters = sys.argv[i + 1].split(',') i += 2 elif myarg == 'skipdates': for skip in sys.argv[i + 1].split(','): if skip.find(':') == -1: skip_dates.add(utils.get_yyyymmdd(skip, returnDateTime=True)) else: skip_start, skip_end = skip.split(':', 1) skip_start = utils.get_yyyymmdd(skip_start, returnDateTime=True) skip_end = utils.get_yyyymmdd(skip_end, returnDateTime=True) while skip_start <= skip_end: skip_dates.add(skip_start) skip_start += one_day i += 2 elif myarg == 'skipdaysofweek': skipdaynames = sys.argv[i + 1].split(',') dow = [d.lower() for d in calendar.day_abbr] skip_day_numbers = [dow.index(d) for d in skipdaynames if d in dow] i += 2 elif report == 'user' and myarg in ['orgunit', 'org', 'ou']: _, orgUnitId = gapi_directory_orgunits.getOrgUnitId(sys.argv[i + 1]) i += 2 elif report == 'user' and myarg in usergroup_types: users = gam.getUsersToModify(myarg, sys.argv[i + 1]) kwargs = [{'userKey': user} for user in users] i += 2 else: controlflow.invalid_argument_exit(sys.argv[i], f'gam report usage {report}') if parameters: titles.extend(parameters) parameters = ','.join(parameters) else: parameters = None if not end_date: end_date = datetime.datetime.now() if not start_date: start_date = end_date + relativedelta(months=-1) if orgUnitId: for kw in kwargs: kw['orgUnitID'] = orgUnitId usage_on_date = start_date start_date = usage_on_date.strftime(YYYYMMDD_FORMAT) usage_end_date = end_date end_date = end_date.strftime(YYYYMMDD_FORMAT) start_use_date = end_use_date = None csvRows = [] while usage_on_date <= usage_end_date: if usage_on_date.weekday() in skip_day_numbers or \ usage_on_date in skip_dates: usage_on_date += one_day continue use_date = usage_on_date.strftime(YYYYMMDD_FORMAT) usage_on_date += one_day try: for kwarg in kwargs: try: usage = gapi.get_all_pages(endpoint, 'get', 'usageReports', throw_reasons=throw_reasons, customerId=customerId, date=use_date, parameters=parameters, **kwarg) except gapi.errors.GapiBadRequestError: continue for entity in usage: row = {'date': use_date} if 'userEmail' in entity['entity']: row['user'] = entity['entity']['userEmail'] for item in entity.get('parameters', []): if 'name' not in item: continue name = item['name'] if name == 'cros:device_version_distribution': for cros_ver in item['msgValue']: v = cros_ver['version_number'] column_name = f'cros:num_devices_chrome_{v}' if column_name not in titles: titles.append(column_name) row[column_name] = cros_ver['num_devices'] else: if not name in titles: titles.append(name) for ptype in REPORTS_PARAMETERS_SIMPLE_TYPES: if ptype in item: row[name] = item[ptype] break else: row[name] = '' if not start_use_date: start_use_date = use_date end_use_date = use_date csvRows.append(row) except gapi.errors.GapiInvalidError as e: display.print_warning(str(e)) break if start_use_date: report_name = f'{report.capitalize()} Usage Report - {start_use_date}:{end_use_date}' else: report_name = f'{report.capitalize()} Usage Report - {start_date}:{end_date} - No Data' display.write_csv_file(csvRows, titles, report_name, todrive) def showReport(): rep = build() throw_reasons = [gapi.errors.ErrorReason.INVALID] report = sys.argv[2].lower() report = REPORT_CHOICE_MAP.get(report.replace('_', ''), report) if report == 'usage': showUsage() return if report == 'usageparameters': showUsageParameters() return valid_apps = gapi.get_enum_values_minus_unspecified( rep._rootDesc['resources']['activities']['methods']['list'] ['parameters']['applicationName']['enum']) + ['customer', 'user'] if report not in valid_apps: controlflow.expected_argument_exit('report', ', '.join(sorted(valid_apps)), report) customerId = GC_Values[GC_CUSTOMER_ID] if customerId == MY_CUSTOMER: customerId = None filters = parameters = actorIpAddress = groupIdFilter = startTime = endTime = eventName = orgUnitId = None tryDate = datetime.date.today().strftime(YYYYMMDD_FORMAT) to_drive = False userKey = 'all' fullDataRequired = None i = 3 while i < len(sys.argv): myarg = sys.argv[i].lower() if myarg == 'date': tryDate = utils.get_yyyymmdd(sys.argv[i + 1]) i += 2 elif myarg in ['orgunit', 'org', 'ou']: _, orgUnitId = gapi_directory_orgunits.getOrgUnitId(sys.argv[i + 1]) i += 2 elif myarg == 'fulldatarequired': fullDataRequired = [] fdr = sys.argv[i + 1].lower() if fdr and fdr == 'all': fullDataRequired = 'all' else: fullDataRequired = fdr.replace(',', ' ').split() i += 2 elif myarg == 'start': startTime = utils.get_time_or_delta_from_now(sys.argv[i + 1]) i += 2 elif myarg == 'end': endTime = utils.get_time_or_delta_from_now(sys.argv[i + 1]) i += 2 elif myarg == 'event': eventName = sys.argv[i + 1] i += 2 elif myarg == 'user': userKey = sys.argv[i + 1].lower() if userKey != 'all': userKey = gam.normalizeEmailAddressOrUID(sys.argv[i + 1]) i += 2 elif myarg in ['filter', 'filters']: filters = sys.argv[i + 1] i += 2 elif myarg in ['fields', 'parameters']: parameters = sys.argv[i + 1] i += 2 elif myarg == 'ip': actorIpAddress = sys.argv[i + 1] i += 2 elif myarg == 'groupidfilter': groupIdFilter = sys.argv[i + 1] i += 2 elif myarg == 'todrive': to_drive = True i += 1 else: controlflow.invalid_argument_exit(sys.argv[i], 'gam report') if report == 'user': while True: try: one_page = gapi.call(rep.userUsageReport(), 'get', throw_reasons=throw_reasons, date=tryDate, userKey=userKey, customerId=customerId, orgUnitID=orgUnitId, fields='warnings,usageReports', maxResults=1) warnings = one_page.get('warnings', []) has_reports = bool(one_page.get('usageReports')) fullData, tryDate = _check_full_data_available( warnings, tryDate, fullDataRequired, has_reports) if fullData < 0: print('No user report available.') sys.exit(1) if fullData == 0: continue page_message = gapi.got_total_items_msg('Users', '...\n') usage = gapi.get_all_pages(rep.userUsageReport(), 'get', 'usageReports', page_message=page_message, throw_reasons=throw_reasons, date=tryDate, userKey=userKey, customerId=customerId, orgUnitID=orgUnitId, filters=filters, parameters=parameters) break except gapi.errors.GapiInvalidError as e: tryDate = _adjust_date(str(e)) if not usage: print('No user report available.') sys.exit(1) titles = ['email', 'date'] csvRows = [] for user_report in usage: if 'entity' not in user_report: continue row = {'email': user_report['entity']['userEmail'], 'date': tryDate} for item in user_report.get('parameters', []): if 'name' not in item: continue name = item['name'] if not name in titles: titles.append(name) for ptype in REPORTS_PARAMETERS_SIMPLE_TYPES: if ptype in item: row[name] = item[ptype] break else: row[name] = '' csvRows.append(row) display.write_csv_file(csvRows, titles, f'User Reports - {tryDate}', to_drive) elif report == 'customer': while True: try: first_page = gapi.call(rep.customerUsageReports(), 'get', throw_reasons=throw_reasons, customerId=customerId, date=tryDate, fields='warnings,usageReports') warnings = first_page.get('warnings', []) has_reports = bool(first_page.get('usageReports')) fullData, tryDate = _check_full_data_available( warnings, tryDate, fullDataRequired, has_reports) if fullData < 0: print('No customer report available.') sys.exit(1) if fullData == 0: continue usage = gapi.get_all_pages(rep.customerUsageReports(), 'get', 'usageReports', throw_reasons=throw_reasons, customerId=customerId, date=tryDate, parameters=parameters) break except gapi.errors.GapiInvalidError as e: tryDate = _adjust_date(str(e)) if not usage: print('No customer report available.') sys.exit(1) titles = ['name', 'value', 'client_id'] csvRows = [] auth_apps = list() for item in usage[0]['parameters']: if 'name' not in item: continue name = item['name'] if 'intValue' in item: value = item['intValue'] elif 'msgValue' in item: if name == 'accounts:authorized_apps': for subitem in item['msgValue']: app = {} for an_item in subitem: if an_item == 'client_name': app['name'] = 'App: ' + \ subitem[an_item].replace('\n', '\\n') elif an_item == 'num_users': app['value'] = f'{subitem[an_item]} users' elif an_item == 'client_id': app['client_id'] = subitem[an_item] auth_apps.append(app) continue values = [] for subitem in item['msgValue']: if 'count' in subitem: mycount = myvalue = None for key, value in list(subitem.items()): if key == 'count': mycount = value else: myvalue = value if mycount and myvalue: values.append(f'{myvalue}:{mycount}') value = ' '.join(values) elif 'version_number' in subitem \ and 'num_devices' in subitem: values.append(f'{subitem["version_number"]}:' f'{subitem["num_devices"]}') else: continue value = ' '.join(sorted(values, reverse=True)) csvRows.append({'name': name, 'value': value}) for app in auth_apps: # put apps at bottom csvRows.append(app) display.write_csv_file(csvRows, titles, f'Customer Report - {tryDate}', todrive=to_drive) else: page_message = gapi.got_total_items_msg('Activities', '...\n') activities = gapi.get_all_pages(rep.activities(), 'list', 'items', page_message=page_message, applicationName=report, userKey=userKey, customerId=customerId, actorIpAddress=actorIpAddress, startTime=startTime, endTime=endTime, eventName=eventName, filters=filters, orgUnitID=orgUnitId, groupIdFilter=groupIdFilter) if activities: titles = ['name'] csvRows = [] for activity in activities: events = activity['events'] del activity['events'] activity_row = utils.flatten_json(activity) purge_parameters = True for event in events: for item in event.get('parameters', []): if set(item) == {'value', 'name'}: event[item['name']] = item['value'] elif set(item) == {'intValue', 'name'}: if item['name'] in ['start_time', 'end_time']: val = item.get('intValue') if val is not None: val = int(val) if val >= 62135683200: event[item['name']] = \ datetime.datetime.fromtimestamp( val-62135683200).isoformat() else: event[item['name']] = item['intValue'] elif set(item) == {'boolValue', 'name'}: event[item['name']] = item['boolValue'] elif set(item) == {'multiValue', 'name'}: event[item['name']] = ' '.join(item['multiValue']) elif item['name'] == 'scope_data': parts = {} for message in item['multiMessageValue']: for mess in message['parameter']: value = mess.get( 'value', ' '.join(mess.get('multiValue', []))) parts[mess['name']] = parts.get( mess['name'], []) + [value] for part, v in parts.items(): if part == 'scope_name': part = 'scope' event[part] = ' '.join(v) else: purge_parameters = False if purge_parameters: event.pop('parameters', None) row = utils.flatten_json(event) row.update(activity_row) for item in row: if item not in titles: titles.append(item) csvRows.append(row) display.sort_csv_titles([ 'name', ], titles) display.write_csv_file(csvRows, titles, f'{report.capitalize()} Activity Report', to_drive) def _adjust_date(errMsg): match_date = re.match( 'Data for dates later than (.*) is not yet ' 'available. Please check back later', errMsg) if not match_date: match_date = re.match('Start date can not be later than (.*)', errMsg) if not match_date: controlflow.system_error_exit(4, errMsg) return str(match_date.group(1)) def _check_full_data_available(warnings, tryDate, fullDataRequired, has_reports): one_day = datetime.timedelta(days=1) tryDateTime = datetime.datetime.strptime(tryDate, YYYYMMDD_FORMAT) # move to day before if we don't have at least one usageReport if not has_reports: tryDateTime -= one_day return (0, tryDateTime.strftime(YYYYMMDD_FORMAT)) for warning in warnings: if warning['code'] == 'PARTIAL_DATA_AVAILABLE': for app in warning['data']: if app['key'] == 'application' and \ app['value'] != 'docs' and \ fullDataRequired is not None and \ (fullDataRequired == 'all' or app['value'] in fullDataRequired): tryDateTime -= one_day return (0, tryDateTime.strftime(YYYYMMDD_FORMAT)) elif warning['code'] == 'DATA_NOT_AVAILABLE': for app in warning['data']: if app['key'] == 'application' and \ app['value'] != 'docs' and \ (not fullDataRequired or app['value'] in fullDataRequired): return (-1, tryDate) return (1, tryDate)
34606
import pandas as pd X_train = pd.read_csv("X_train.csv") df_y = pd.read_csv("y_train.csv") y_train = df_y["y"] X_test = pd.read_csv("X_test.csv")
34642
import uuid from datetime import datetime, timedelta from controllers import zfsController import jwt import pam import render JWT_SECRET = "<KEY>" JWT_ALGORITHM = "HS256" JWT_EXP_DELTA_SECONDS = 4300 async def index(request): return render.json({'error': 'nothing to see here...'}, 200) async def auth(request): try: data = await request.json() user = data['username'] password = data['password'] if pam.authenticate(user, password): payload = { 'user': user, 'session_id': str(uuid.uuid4()), 'exp': datetime.utcnow() + timedelta(seconds=JWT_EXP_DELTA_SECONDS) } jwt_token = jwt.encode(payload, JWT_SECRET, JWT_ALGORITHM) return await render.json({'token': jwt_token.decode('utf-8')}, 200) else: return None except Exception as e: return await render.json({'error': str(e)}, 200) async def check_token(request): try: jwt_token = request.headers.get('Authorization', None) payload = jwt.decode(jwt_token, JWT_SECRET, algorithms=[JWT_ALGORITHM]) return payload['session_id'] except (jwt.DecodeError, jwt.ExpiredSignatureError): return False async def create_pool(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.create_pool(data['name'], data['raid'], data['devices']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 200) else: return await render.json({'error': 'Invalid or expired token'}, 403) async def delete_pool(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.delete_pool(data['name']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 200) else: return await render.json({'error': 'Invalid or expired token'}, 403) async def check_status(request): check = await check_token(request) if check: try: res = await zfsController.get_status() return await render.json({'msg': res}, 200) except Exception as e: print(str(e)) async def get_storage_info(request): check = await check_token(request) if check: try: res = await zfsController.get_disk_info() return await render.json(res, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 500) async def get_io_status(request): check = await check_token(request) if check: try: res = await zfsController.get_IO_stats() return await render.json({'msg': res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 500) async def add_disk(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.add_new_disk(data['pool'], data['device']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 500) else: return await render.json({'error': 'Invalid or expired token'}, 403) async def add_spare_disk(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.add_spare_disk(data['pool'], data['device']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 200) else: return await render.json({'error': 'Invalid or expired token'}, 403) async def replace_disk(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.replace_disk(data['pool'], data['old_device'], data['new_device']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 200) else: return await render.json({'error': 'Invalid or expired token'}, 403) async def set_mountpoint(request): check = await check_token(request) if check: try: data = await request.json() res = await zfsController.set_mountpoint(data['mountpoint'], data['pool']) return await render.json({"success": res}, 200) except Exception as e: print(str(e)) return await render.raw({'error': str(e)}, 200) else: return await render.json({'error': 'Invalid or expired token'}, 403)
34724
import abc #inteface Component creamos la funcion buscador que es la que buscara alguna PaginaWeb en el SitioWeb class ISitioWebComponent(metaclass=abc.ABCMeta): @abc.abstractmethod def buscador(self): pass # Concrete Component class SitioWebConcreteComponent(ISitioWebComponent): def __init__(self, dominio: str,categoria: str, paginas: list): self._dominio = dominio self._categoria = categoria self._paginas = paginas def __str__(self): return f""" El dominio del sitio es: {self._dominio} La categoria del sitio es: {self._categoria} Las paginas del sitio son: {self._paginas} """ def buscador(self): return f"Pagina no buscada" # Base Decorator class SitioWebDecorator(ISitioWebComponent, metaclass=abc.ABCMeta): def __init__(self,sitio_web: ISitioWebComponent): self._sitio_web = sitio_web @abc.abstractmethod def buscador(self): pass # Concrete Decorator: A class BuscadorConcreteDecorator(SitioWebDecorator): # La logica del buscador es recibir un objeto de la clase PaginaWeb luego utiliza la url que es unica de cada pagina # llama a la url de la pagina pedida por atributo y la compara con la url de las paginas que estan dentro del SitioWeb # si encuentra que la url de la pagina es igual a la url de las paginas en el sitio regresa un string con los datos de # la pagina junto con un mensaje diciendo que existe y si no encuentra la pagina regresa un mensaje de error def buscador(self,pagina : object): i = 0 for pag in self._sitio_web._paginas: if(pagina._url == self._sitio_web._paginas[i]._url): return f"La pagina: {self._sitio_web._paginas[i]}\nsi Existe" i = i+1 return f"ERROR-HTTP 404 page Not found" #clase PaginaWeb la misma del Ejercicio_1 class PaginaWeb(object): def __init__(self,url: str, ruta: str, formato: str,contenido: str,titulo: str,slug: str,metatags: list): self._url = url self._ruta = ruta self._formato = formato self._contenido = contenido self._titulo = titulo self._slug = slug self._metatags = metatags def __str__(self): return f""" El url de la pagina es: {self._url} La ruta del archivo es:{self._ruta} El formato del archivo es: {self._formato} El contenido de la pagina es: {self._contenido} El titulo de la pagina es: {self._titulo} El slug de la pagina es: {self._slug} Los meta-tags de la pagina son: {self._metatags} """ def main(): #llenamos los objetos de PaginaWeb y SitioWeb pagina1 = PaginaWeb("https://www.youtube.com/watch?v=dQw4w9WgXcQ", "C://User/youtube/user", "HTML", "<body> <p> hola soy una pagina de youtube 1 </p></body>", "<h1>Youtube 1</h1>", "youtube-1", ['<meta name = "description" content = "this is the description">', '<meta http-equiv = "refresh" content = "100"']) pagina2 = PaginaWeb("https://www.youtube.com/watch?v=r1lEc1w92RE", "C://User/youtube/user", "HTML", "<body> <p> hola soy una pagina de youtube 2 </p></body>", "<h1>Youtube 2</h1>", "youtube-2", ['<meta name = "description" content = "this is the description">', '<meta http-equiv = "refresh" content = "100"']) pagina3 = PaginaWeb("https://www.youtube.com/watch?v=8OJf0-r7sZ0", "C://User/youtube/user", "HTML", "<body> <p> hola soy una pagina de youtube 3 </p></body>", "<h1>Youtube 3</h1>", "youtube-3", ['<meta name = "description" content = "this is the description">', '<meta http-equiv = "refresh" content = "100"']) sitio = SitioWebConcreteComponent("www.youtube.com","Entretenimiento",[pagina1,pagina2]) #Creamos un objeto del decorador y le mandamos nuestro SitioWeb buscar = BuscadorConcreteDecorator(sitio) #Luego llamamos a la funcion buscador junto con una pagina e introducimos el return de Buscador # a una variable y la imprimimos resultado = buscar.buscador(pagina2) print(resultado) if __name__ == '__main__': main()
34745
from leapp.actors import Actor from leapp.models import InstalledRedHatSignedRPM from leapp.libraries.common.rpms import has_package from leapp.reporting import Report, create_report from leapp import reporting from leapp.tags import ChecksPhaseTag, IPUWorkflowTag class CheckAcpid(Actor): """ Check if acpid is installed. If yes, write information about non-compatible changes. """ name = 'checkacpid' consumes = (InstalledRedHatSignedRPM,) produces = (Report,) tags = (ChecksPhaseTag, IPUWorkflowTag) def process(self): if has_package(InstalledRedHatSignedRPM, 'acpid'): create_report([ reporting.Title('Acpid incompatible changes in the next major version'), reporting.Summary('The option -d (debug) no longer implies -f (foreground).'), reporting.Severity(reporting.Severity.LOW), reporting.Remediation( hint='You must now use both options (\'-df\') for the same behavior. Please update ' 'your scripts to be compatible with the changes.'), reporting.Tags([reporting.Tags.KERNEL, reporting.Tags.SERVICES]), reporting.RelatedResource('package', 'acpid') ])
34747
import os.path import scipy.io as sio import numpy as np # for algebraic operations, matrices import keras.models from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout # , Layer, Flatten # from keras.layers import containers from keras.models import model_from_json,Model from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier from hyperas.distributions import choice, uniform, conditional from hyperopt import Trials, STATUS_OK from sklearn.metrics import confusion_matrix from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D as pool2 from keras.callbacks import EarlyStopping,ModelCheckpoint # from keras.layers.convolutional import ZeroPadding2D as zero2d from keras.regularizers import l2 # , activity_l2 # from theano import functionfrom keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input from keras.optimizers import SGD from keras.layers.merge import concatenate from keras.layers import Input,add from keras.layers.advanced_activations import PReLU,ELU from keras.layers.pooling import GlobalAveragePooling2D #temp/Inception-ResNet for 180180 def create180180Model(patchSize): seed=5 np.random.seed(seed) input=Input(shape=(1,patchSize[0, 0], patchSize[0, 1])) out1=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='valid',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(input) out2=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='valid',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out1) out2=pool2(pool_size=(2,2),data_format='channels_first')(out2) out3=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out2) out4=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out3) out4=add([out2,out4]) out4=pool2(pool_size=(2,2),data_format='channels_first')(out4) out_3=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out4) out_4=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_3) out5_1=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_2=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_2=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_2) out5_3=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_3=Conv2D(filters=128,kernel_size=(5,5),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_3) out5_4=pool2(pool_size=(3,3),strides=(1,1),padding='same',data_format='channels_first')(out_4) out5_4=Conv2D(filters=128,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_4) out5=concatenate(inputs=[out5_1,out5_2,out5_3],axis=1) out7=Conv2D(filters=288,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out5) out7=add([out5, out7]) out7=pool2(pool_size=(2,2),data_format='channels_first')(out7) sout7=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out7) out8=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out7) out9=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out8) out9=add([sout7, out9]) out9=pool2(pool_size=(2,2),data_format='channels_first')(out9) out10=Flatten()(out9) out11=Dense(units=11, kernel_initializer='normal', kernel_regularizer='l2', activation='softmax')(out10) cnn = Model(inputs=input,outputs=out11) return cnn def fTrain(X_train, y_train, X_test, y_test, sOutPath, patchSize, batchSizes=None, learningRates=None, iEpochs=None): # grid search on batch_sizes and learning rates # parse inputs batchSizes = 64 if batchSizes is None else batchSizes learningRates = 0.01 if learningRates is None else learningRates iEpochs = 300 if iEpochs is None else iEpochs for iBatch in batchSizes: for iLearn in learningRates: fTrainInner(X_train, y_train, X_test, y_test, sOutPath, patchSize, iBatch, iLearn, iEpochs) def fTrainInner(X_train, y_train, X_test, y_test, sOutPath, patchSize, batchSize=None, learningRate=None, iEpochs=None): # parse inputs batchSize = 64 if batchSize is None else batchSize learningRate = 0.01 if learningRate is None else learningRate iEpochs = 300 if iEpochs is None else iEpochs print('Training CNN InceptionNet') print('with lr = ' + str(learningRate) + ' , batchSize = ' + str(batchSize)) # save names _, sPath = os.path.splitdrive(sOutPath) sPath, sFilename = os.path.split(sPath) sFilename, sExt = os.path.splitext(sFilename) model_name = sPath + '/' + sFilename + str(patchSize[0, 0]) + str(patchSize[0, 1]) + '_lr_' + str( learningRate) + '_bs_' + str(batchSize) weight_name = model_name + '_weights.h5' model_json = model_name + '_json' model_all = model_name + '_model.h5' model_mat = model_name + '.mat' if (os.path.isfile(model_mat)): # no training if output file exists return # create model if (patchSize[0,0]!=180 & patchSize[0,1]!=180): print('NO model for patch size ' + patchSize[0, 0] + patchSize[0, 0]) else: cnn = create180180Model(patchSize) # opti = SGD(lr=learningRate, momentum=1e-8, decay=0.1, nesterov=True);#Adag(lr=0.01, epsilon=1e-06) opti = keras.optimizers.Adam(lr=learningRate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) callbacks = [EarlyStopping(monitor='val_loss', patience=20, verbose=1), ModelCheckpoint(filepath=model_name+'bestweights.hdf5',monitor='val_acc',verbose=0,save_best_only=True,save_weights_only=False)] #callbacks = [ModelCheckpoint(filepath=model_name+'bestweights.hdf5',monitor='val_acc',verbose=0,save_best_only=True,save_weights_only=False)] cnn.compile(loss='categorical_crossentropy', optimizer=opti, metrics=['accuracy']) cnn.summary() result = cnn.fit(X_train, y_train, validation_data=[X_test, y_test], epochs=iEpochs, batch_size=batchSize, callbacks=callbacks, verbose=1) score_test, acc_test = cnn.evaluate(X_test, y_test, batch_size=batchSize ) prob_test = cnn.predict(X_test, batchSize, 0) y_pred=np.argmax(prob_test,axis=1) y_test=np.argmax(y_test,axis=1) confusion_mat=confusion_matrix(y_test,y_pred) # save model json_string = cnn.to_json() open(model_json, 'w').write(json_string) # wei = cnn.get_weights() cnn.save_weights(weight_name, overwrite=True) # cnn.save(model_all) # keras > v0.7 # matlab acc = result.history['acc'] loss = result.history['loss'] val_acc = result.history['val_acc'] val_loss = result.history['val_loss'] print('Saving results: ' + model_name) sio.savemat(model_name, {'model_settings': model_json, 'model': model_all, 'weights': weight_name, 'acc': acc, 'loss': loss, 'val_acc': val_acc, 'val_loss': val_loss, 'score_test': score_test, 'acc_test': acc_test, 'prob_test': prob_test, 'confusion_mat':confusion_mat}) def fPredict(X_test, y_test, model_name, sOutPath, patchSize, batchSize): weight_name = model_name[0] #model_json = model_name[1] + '_json' #model_all = model_name[0] + '.hdf5' _, sPath = os.path.splitdrive(sOutPath) sPath, sFilename = os.path.split(sOutPath) #sFilename, sExt = os.path.splitext(sFilename) #f = h5py.File(weight_name, 'r+') #del f['optimizer_weights'] #f.close() model=load_model(weight_name) opti = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) callbacks = [EarlyStopping(monitor='val_loss', patience=10, verbose=1)] #model.compile(loss='categorical_crossentropy', optimizer=opti, metrics=['accuracy']) #model.load_weights(weight_name) model.summary(); score_test, acc_test = model.evaluate(X_test, y_test, batch_size=batchSize) prob_pre = model.predict(X_test, batchSize, 0) y_pred=np.argmax(prob_pre,axis=1) y_test=np.argmax(y_test,axis=1) confusion_mat=confusion_matrix(y_test,y_pred) # modelSave = model_name[:-5] + '_pred.mat' modelSave = sOutPath + '/' + sFilename + '_result.mat' sio.savemat(modelSave, {'prob_pre': prob_pre, 'score_test': score_test, 'acc_test': acc_test, 'confusion_mat':confusion_mat})
34749
from twarc import Twarc2, expansions import json # Replace your bearer token below client = Twarc2(bearer_token="<PASSWORD>") def main(): # The followers function gets followers for specified user followers = client.followers(user="twitterdev") for page in followers: result = expansions.flatten(page) for user in result: # Here we are printing the full Tweet object JSON to the console print(json.dumps(user)) if __name__ == "__main__": main()
34760
import re class AlphabetPosition: alphabet = { 'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9, 'j': 10, 'k': 11, 'l': 12, 'm': 13, 'n': 14, 'o': 15, 'p': 16, 'q': 17, 'r': 18, 's': 19, 't': 20, 'u': 21, 'v': 22, 'w': 23, 'x': 24, 'y': 25, 'z': 26, } def find_position(self, sentence: str): # Convert all letters to lowercase sentence = sentence.lower() # Remove all spaces and split sentence to list of chars sentence = sentence.replace(" ", "") # Extract only letters characters = ''.join(re.findall("[a-zA-Z]+", sentence)) # Make string into list of characters characters = list(characters) # Initiate an empty list to save all positions of the characters in positions = [] # Iterate through each character and find its position in the alphabet. # once found replace the character with it's relevant position number for character in characters: positions.append(self.alphabet.get(character)) # Convert list of integers to single string return ' '.join(map(str, positions))
34762
from utils import (load_data, data_to_series_features, apply_weight, is_minimum) from algorithm import (initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population) from sklearn.metrics import mean_squared_error, mean_absolute_error from tensorflow.keras import optimizers from tensorflow.keras.models import clone_model import argparse import math import numpy as np from model import make_model from copy import copy from sklearn.model_selection import train_test_split def parse_arguments(): # argument parsing parser = argparse.ArgumentParser(description="Specify Params for Experimental Setting") parser.add_argument('--iterations', type=int, default=20, help="Specify the number of evolution iterations") parser.add_argument('--batch_size', type=int, default=256, help="Specify batch size") parser.add_argument('--initial_epochs', type=int, default=100, help="Specify the number of epochs for initial training") parser.add_argument('--num_epochs', type=int, default=20, help="Specify the number of epochs for competitive search") parser.add_argument('--log_step', type=int, default=100, help="Specify log step size for training") parser.add_argument('--learning_rate', type=float, default=1e-3, help="Learning rate") parser.add_argument('--data', type=str, default='pollution.csv', help="Path to the dataset") parser.add_argument('--pop_size', type=int, default=36) parser.add_argument('--code_length', type=int, default=6) parser.add_argument('--n_select', type=int, default=6) parser.add_argument('--time_steps', type=int, default=18) parser.add_argument('--n_hidden', type=int, default=128) parser.add_argument('--n_output', type=int, default=1) parser.add_argument('--max_grad_norm', type=float, default=1.0) return parser.parse_args() def main(): args = parse_arguments() data, y_scaler = load_data(args.data) args.n_features = np.size(data, axis=-1) X, y = data_to_series_features(data, args.time_steps) train_X, X, train_y, y = train_test_split(X, y, test_size=0.3) valid_X, test_X, valid_y, test_y = train_test_split(X, y, test_size=0.5) optimizer = optimizers.Adam(learning_rate=args.learning_rate, clipnorm=args.max_grad_norm) best_model = make_model(args) best_weight = [1.0] * args.time_steps best_model.compile(loss='mse', optimizer=optimizer) print("Initial training before competitive random search") best_model.fit(apply_weight(train_X, best_weight), train_y, epochs=args.initial_epochs, validation_data=(apply_weight(valid_X, best_weight), valid_y), shuffle=True) print("\nInitial training is done. Start competitive random search.\n") pop, weights = initialize_weights(args.pop_size, args.time_steps, args.code_length) key_to_rmse = {} for iteration in range(args.iterations): for enum, (indiv, weight) in enumerate(zip(pop, weights)): print('iteration: [%d/%d] indiv_no: [%d/%d]' % (iteration + 1, args.iterations, enum + 1, args.pop_size)) key = individual_to_key(indiv) if key not in key_to_rmse.keys(): model = make_model(args) model.compile(loss='mse', optimizer=optimizer) model.set_weights(best_model.get_weights()) model.fit(apply_weight(train_X, weight), train_y, epochs=args.num_epochs, validation_data=(apply_weight(valid_X, weight), valid_y), shuffle=True) pred_y = model.predict(apply_weight(valid_X, weight)) inv_pred_y = y_scaler.inverse_transform(pred_y) inv_valid_y = y_scaler.inverse_transform(np.expand_dims(valid_y, axis=1)) rmse = math.sqrt(mean_squared_error(inv_valid_y, inv_pred_y)) mae = mean_absolute_error(inv_valid_y, inv_pred_y) print("RMSE: %.4f, MAE: %.4f" % (rmse, mae)) if is_minimum(rmse, key_to_rmse): best_model.set_weights(model.get_weights()) best_weight = copy(weight) key_to_rmse[key] = rmse pop_selected, fitness_selected = select(pop, args.n_select, key_to_rmse) pop = reconstruct_population(pop_selected, args.pop_size) weights = pop_to_weights(pop, args.time_steps, args.code_length) print('test evaluation:') pred_y = best_model.predict(apply_weight(test_X, best_weight)) inv_pred_y = y_scaler.inverse_transform(pred_y) inv_test_y = y_scaler.inverse_transform(np.expand_dims(test_y, axis=1)) rmse = math.sqrt(mean_squared_error(inv_test_y, inv_pred_y)) mae = mean_absolute_error(inv_test_y, inv_pred_y) print("RMSE: %.4f, MAE: %.4f" % (rmse, mae)) if __name__ == '__main__': main()
34789
from java.lang import String from org.myrobotlab.service import Speech from org.myrobotlab.service import Sphinx from org.myrobotlab.service import Runtime # create mouth arduino and servo ear = Runtime.createAndStart("ear","Sphinx") arduino = Runtime.createAndStart("arduino","Arduino") arduino.connect("COM4") servo = Runtime.createAndStart("servo","Servo") servo.attach(arduino, 10) # start listening for the words we are interested in ear.startListening("go forward|go backwards|stop") # set up a message route from the ear --to--> python method "heard" ear.addListener("recognized", python.name, "heard", String().getClass()); # this method is invoked when something is # recognized by the ear - in this case we # have the mouth "talk back" the word it recognized def heard(phrase): print("I heard ", phrase) if phrase == "go forward": servo.moveTo(170) elif phrase == "go backwards": servo.moveTo(10) elif phrase == "stop": servo.moveTo(90)
34793
import numpy as np import dace as dc M, N = (dc.symbol(s, dtype=dc.int64) for s in ('M', 'N')) @dc.program def flip(A: dc.float64[M]): B = np.ndarray((M, ), dtype=np.float64) for i in dc.map[0:M]: B[i] = A[M - 1 - i] return B @dc.program def kernel(r: dc.float64[N]): y = np.empty_like(r) alpha = -r[0] beta = 1.0 y[0] = -r[0] for k in range(1, N): beta *= 1.0 - alpha * alpha alpha = -(r[k] + np.dot(flip(r[:k]), y[:k])) / beta y[:k] += alpha * flip(y[:k]) y[k] = alpha return y
34794
import starry import numpy as np import matplotlib.pyplot as plt import pytest @pytest.mark.parametrize("ydeg,nw", [[0, None], [0, 10], [1, None], [1, 10]]) def test_system(ydeg, nw): # Oblate map map = starry.Map(udeg=2, ydeg=ydeg, oblate=True, nw=nw) map[1] = 0.5 map[2] = 0.25 map.omega = 0.5 map.beta = 1.23 map.tpole = 8000 map.f = 1 - 2 / (map.omega ** 2 + 2) map.obl = 30 # Compute system flux star = starry.Primary(map, r=1.5) planet = starry.Secondary(starry.Map(amp=0, nw=nw), porb=1.0, r=0.1, m=0) sys = starry.System(star, planet) t = np.linspace(-0.1, 0.1, 1000) flux_sys = sys.flux(t, integrated=True) # Compute map flux manually x, y, z = sys.position(t) xo = x[1] / star._r yo = y[1] / star._r flux_map = map.flux(xo=xo, yo=yo, ro=planet._r / star._r, integrated=True) # Check that they agree assert np.allclose(flux_map, flux_sys)
34807
from electrum_gui.common.provider.chains.bch.provider import BCHProvider from electrum_gui.common.provider.chains.btc.clients.blockbook import BlockBook
34821
from __future__ import unicode_literals from django.apps import AppConfig class ImageConfig(AppConfig): name = 'image'
34858
from rest_framework import viewsets, permissions, serializers from rest_framework.response import Response from iaso.models import MatchingAlgorithm from .common import HasPermission class AlgorithmsSerializer(serializers.ModelSerializer): class Meta: model = MatchingAlgorithm fields = ["id", "name", "description", "created_at"] read_only_fields = ["created_at"] class AlgorithmsViewSet(viewsets.ModelViewSet): """Algorithms API This API is restricted to authenticated users having the "menupermissions.iaso_links" permission GET /api/algorithms/ """ permission_classes = [permissions.IsAuthenticated] serializer_class = AlgorithmsSerializer http_method_names = ["get", "post", "put", "head", "options", "trace", "delete"] def get_queryset(self): algos = MatchingAlgorithm.objects.all() return algos.order_by("id")
34896
import unittest import numpy as np import prml.nn as nn class TestGaussian(unittest.TestCase): def test_gaussian_draw_forward(self): mu = nn.array(0) sigma = nn.softplus(nn.array(-1)) gaussian = nn.Gaussian(mu, sigma) sample = [] for _ in range(1000): sample.append(gaussian.draw().value) self.assertTrue(np.allclose(np.mean(sample), 0, rtol=0.1, atol=0.1), np.mean(sample)) self.assertTrue(np.allclose(np.std(sample), gaussian.std.value, 0.1, 0.1)) def test_gaussian_draw_backward(self): mu = nn.array(0) s = nn.array(2) optimizer = nn.optimizer.Gradient({0: mu, 1: s}, 0.01) prior = nn.Gaussian(1, 1) for _ in range(1000): mu.cleargrad() s.cleargrad() gaussian = nn.Gaussian(mu, nn.softplus(s)) gaussian.draw() loss = nn.loss.kl_divergence(gaussian, prior).sum() optimizer.minimize(loss) self.assertTrue(np.allclose(gaussian.mean.value, 1, 0.1, 0.1)) self.assertTrue(np.allclose(gaussian.std.value, 1, 0.1, 0.1)) if __name__ == "__main__": unittest.main()
34952
import gevent from gevent.queue import Queue, Empty from gevent_subprocess import Popen, PIPE from gsh.plugin import BaseExecutor, BaseInnerExecutor class SshExecutor(BaseExecutor): def __init__(self, args, kwargs): self.ssh_opts = kwargs.get("ssh_opts", []) super(SshExecutor, self).__init__(args, kwargs) class Executor(BaseInnerExecutor): def __init__(self, *args, **kwargs): self.names = {} self._output_queue = Queue() super(SshExecutor.Executor, self).__init__(*args, **kwargs) @staticmethod def _stream_fd(fd, queue): for line in iter(fd.readline, b""): queue.put_nowait((fd, line)) def _consume(self, queue): while True: try: output = queue.get() except Empty: continue # None is explicitly sent to shutdown the consumer if output is None: return fd, line = output self.update(self.hostname, self.names[fd], line) def run(self): _proc = Popen( ["ssh", "-no", "PasswordAuthentication=no"] + self.parent.ssh_opts + [self.hostname] + self.command, stdout=PIPE, stderr=PIPE ) self.names = { _proc.stdout: "stdout", _proc.stderr: "stderr", } out_worker = gevent.spawn(self._stream_fd, _proc.stdout, self._output_queue) err_worker = gevent.spawn(self._stream_fd, _proc.stderr, self._output_queue) waiter = gevent.spawn(_proc.wait) consumer = gevent.spawn(self._consume, self._output_queue) gevent.joinall([out_worker, err_worker, waiter], timeout=self.timeout) # If we've made it here and the process hasn't completed we've timed out. if _proc.poll() is None: self._output_queue.put_nowait( (_proc.stderr, "GSH: command timed out after %s second(s).\n" % self.timeout)) _proc.kill() rc = _proc.wait() self._output_queue.put_nowait(None) consumer.join() return rc
35028
import torch import torch.nn as nn from ..utils.torch import pack_forward from .pooling import GatherLastLayer class CharEncoder(nn.Module): FORWARD_BACKWARD_AGGREGATION_METHODS = ["cat", "linear_sum"] def __init__( self, char_embedding_dim, hidden_size, char_fw_bw_agg_method="cat", bidirectional=True, train_char_embeddings=True, use_cuda=True, ): if char_fw_bw_agg_method not in self.FORWARD_BACKWARD_AGGREGATION_METHODS: raise ValueError( f"{char_fw_bw_agg_method} not recognized, try with one of " f"{self.FORWARD_BACKWARD_AGGREGATION_METHODS}" ) super(CharEncoder, self).__init__() self.char_embedding_dim = char_embedding_dim self.n_layers = 1 self.char_hidden_dim = hidden_size self.bidirectional = bidirectional self.num_dirs = 2 if bidirectional else 1 self.hidden_x_dirs = self.num_dirs * self.char_hidden_dim self.use_cuda = use_cuda self.char_lstm = nn.LSTM( self.char_embedding_dim, self.char_hidden_dim, self.n_layers, bidirectional=self.bidirectional, dropout=0.0, ) self.gather_last = GatherLastLayer( self.char_hidden_dim, bidirectional=self.bidirectional ) self.char_fw_bw_agg_method = char_fw_bw_agg_method if self.char_fw_bw_agg_method == "cat": self.out_dim = self.hidden_x_dirs elif self.char_fw_bw_agg_method == "linear_sum": self.out_dim = self.char_hidden_dim self.linear_layer = nn.Linear( self.hidden_x_dirs, self.char_hidden_dim ) def forward(self, char_batch, word_lengths): """char_batch: (batch_size, seq_len, word_len, char_emb_dim) word_lengths: (batch_size, seq_len)""" (batch_size, seq_len, word_len, char_emb_dim) = char_batch.size() # (batch_size * seq_len, word_len, char_emb_dim) char_batch = char_batch.view(batch_size * seq_len, word_len, char_emb_dim) # (batch_size, seq_len) -> (batch_size * seq_len) word_lengths = word_lengths.view(batch_size * seq_len) # (batch_size * seq_len, word_len, hidden_x_dirs) word_lvl_repr = pack_forward(self.char_lstm, char_batch, word_lengths) # (batch_size * seq_len, hidden_x_dirs) word_lvl_repr = self.gather_last(word_lvl_repr, lengths=word_lengths) # last dimension of gather_last will always correspond to concatenated # last hidden states of lstm if bidirectional # (batch_size, seq_len, hidden_x_dirs) word_lvl_repr = word_lvl_repr.view( batch_size, seq_len, self.hidden_x_dirs ) # We store this tensor for future introspection self.concat_fw_bw_reprs = word_lvl_repr.clone() if self.char_fw_bw_agg_method == "linear_sum": # Based on the paper: http://www.anthology.aclweb.org/D/D16/D16-1209.pdf # Line below is W*word_lvl_repr + b which is equivalent to # [W_f; W_b] * [h_f;h_b] + b which in turn is equivalent to # W_f * h_f + W_b * h_b + b word_lvl_repr = self.linear_layer(word_lvl_repr) return word_lvl_repr class LinearAggregationLayer(nn.Module): def __init__(self, in_dim): """ Simply concatenate the provided tensors on their last dimension which needs to have the same size, along with their element-wise multiplication and difference Taken from the paper: "Learning Natural Language Inference using Bidirectional LSTM model and Inner-Attention" https://arxiv.org/abs/1605.09090 """ super(LinearAggregationLayer, self).__init__() self.in_dim = in_dim self.out_dim = 4 * in_dim def forward(self, input_1, input_2): """ :param : input_1 Size is (*, hidden_size) :param input_2: Size is (*, hidden_size) :return: Merged vectors, size is (*, 4*hidden size) """ assert input_1.size(-1) == input_2.size(-1) mult_combined_vec = torch.mul(input_1, input_2) diff_combined_vec = torch.abs(input_1 - input_2) # cosine_sim = simple_columnwise_cosine_similarity(input_1, input_2) # cosine_sim = cosine_sim.unsqueeze(1) # euclidean_dist = distance(input_1, input_2, 2) combined_vec = torch.cat( (input_1, input_2, mult_combined_vec, diff_combined_vec), input_1.dim() - 1, ) return combined_vec
35050
import sys if len(sys.argv) < 2: print('Need the dataset name!') exit(0) for split in ['train', 'valid', 'test']: with open('data/'+sys.argv[1]+'/'+split+'.txt', 'r') as f1, open( 'data/'+sys.argv[1]+'_pos_only/'+split+'.txt', 'r') as f2, open( 'data/'+sys.argv[1]+'_pos/'+split+'.txt', 'w') as fout: for i, (line, pline) in enumerate(zip(f1,f2)): if line.strip().split(' ')[0] == '': # empty lines in wiki fout.write(line) continue line = line.strip().split(' ') pline = pline.strip().split(' ') line = [w+'_'+p for w, p in zip(line, pline)] fout.write(' '.join(line)+' \n')
35060
from collections import OrderedDict, defaultdict from contextlib import contextmanager from datetime import datetime import torch.cuda from ..viz.plot import plot_timeline def time(name=None, sync=False): return Task(name=name, sync=sync, log=True) class Task: __slots__ = ('name', 'start_time', 'end_time', 'meta', 'sync', 'log') def __init__(self, name=None, start=None, end=None, meta=None, sync=False, log=False): self.name = name self.start_time = start self.end_time = end self.meta = meta or {} self.sync = sync self.log = log def start(self, time=None, meta=None, sync=None): if meta: self.meta.update(meta) sync = sync if sync is not None else self.sync if sync and torch.cuda.is_available(): torch.cuda.synchronize() self.start_time = time or datetime.now() if self.log: print(f'starting {self.name or id(self)}') def end(self, time=None, meta=None, sync=None): sync = sync if sync is not None else self.sync if sync and torch.cuda.is_available(): torch.cuda.synchronize() self.end_time = time or datetime.now() if self.log: print(f'completed {self.name or id(self)} in {self.seconds:.9g} seconds') if meta: self.meta.update(meta) @classmethod def begin(cls, name=None, meta=None, sync=None): t = cls(name=name, meta=meta, sync=sync) t.start() return t @property def seconds(self): if self.start_time is None or self.end_time is None: return None return (self.end_time - self.start_time).total_seconds() def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.end() def __repr__(self): return f"Task({self.name or id(self)}, seconds={self.seconds:.9g}, sync={self.sync})" class Timer: def __init__(self, name=None, log=False): self.tasks = [] self.name = name self.log = log self.active_tasks = {} def start(self, name, sync=True, **meta): task = self.task(name, sync=sync, **meta) if self.log: print('Started', name) if task in self.active_tasks: raise ValueError(f'Nesting tasks is not allowed, "{name}" was already started and not finished') self.active_tasks[name] = task def end(self, name, sync=True, **meta): task = self.active_tasks.pop(name) if not task: raise ValueError(f"{name} is not an active task so can't be ended") task.end(sync=sync, meta=meta) if self.log: print('Ended', task.name, ', took', task.seconds, 'seconds') def task(self, name, sync=True, **meta): task = Task.begin(name=name, meta=meta, sync=sync) self.tasks.append(task) return task def __enter__(self): self.start(self.name) return self def __exit__(self, exc_type, exc_val, exc_tb): self.end(self.name) def plot(self): plot_timeline(self.tasks)
35084
class Colors: END = '\033[0m' ERROR = '\033[91m[ERROR] ' INFO = '\033[94m[INFO] ' WARN = '\033[93m[WARN] ' def get_color(msg_type): if msg_type == 'ERROR': return Colors.ERROR elif msg_type == 'INFO': return Colors.INFO elif msg_type == 'WARN': return Colors.WARN else: return Colors.END def get_msg(msg, msg_type=None): color = get_color(msg_type) msg = ''.join([color, msg, Colors.END]) return msg def print_msg(msg, msg_type=None): msg = get_msg(msg, msg_type) print(msg)
35094
from __future__ import division """ critical properties of diffBragg objects which should be logged for reproducibility """ # TODO : implement a savestate and getstate for these objects # attrs of diffBragg() instances DIFFBRAGG_ATTRS = [ 'Amatrix', 'Bmatrix', 'Ncells_abc', 'Ncells_abc_aniso', 'Ncells_def', 'Npix_to_allocate', 'Omatrix', 'Umatrix', 'beamsize_mm', 'compute_curvatures', 'default_F', 'detector_thick_mm', 'detector_thickstep_mm', 'detector_thicksteps', 'detector_twotheta_deg', 'device_Id', 'diffuse_gamma', 'diffuse_sigma', 'exposure_s', 'fluence', 'flux', 'has_anisotropic_mosaic_spread', 'interpolate', 'isotropic_ncells', 'lambda_coefficients', 'mosaic_domains', 'mosaic_spread_deg', 'no_Nabc_scale', 'nopolar', 'only_diffuse', 'only_save_omega_kahn', 'oversample', 'oversample_omega', 'phi_deg', 'phistep_deg', 'phisteps', 'point_pixel', 'polar_vector', 'polarization', 'spindle_axis', 'spot_scale', 'twotheta_axis', 'unit_cell_Adeg', 'unit_cell_tuple', 'use_diffuse', 'use_lambda_coefficients'] # properties of nanoBragg_crystal.NBcryst instances NB_CRYST_ATTRS = [ 'anisotropic_mos_spread_deg', 'isotropic_ncells', 'miller_is_complex', 'mos_spread_deg', 'n_mos_domains', 'symbol', 'xtal_shape'] # properties of nanoBragg_beam.NBbeam instances NB_BEAM_ATTRS = [ 'divergence', 'polarization_fraction', 'size_mm', 'number_of_sources', 'unit_s0']
35095
from allennlp.data.fields import Field def test_eq_with_inheritance(): class SubField(Field): __slots__ = ["a"] def __init__(self, a): self.a = a class SubSubField(SubField): __slots__ = ["b"] def __init__(self, a, b): super().__init__(a) self.b = b class SubSubSubField(SubSubField): __slots__ = ["c"] def __init__(self, a, b, c): super().__init__(a, b) self.c = c assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) assert SubSubField(1, 2) == SubSubField(1, 2) assert SubSubField(1, 2) != SubSubField(1, 1) assert SubSubField(1, 2) != SubSubField(2, 2) assert SubSubSubField(1, 2, 3) == SubSubSubField(1, 2, 3) assert SubSubSubField(1, 2, 3) != SubSubSubField(0, 2, 3) def test_eq_with_inheritance_for_non_slots_field(): class SubField(Field): def __init__(self, a): self.a = a assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) def test_eq_with_inheritance_for_mixed_field(): class SubField(Field): __slots__ = ["a"] def __init__(self, a): self.a = a class SubSubField(SubField): def __init__(self, a, b): super().__init__(a) self.b = b assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) assert SubSubField(1, 2) == SubSubField(1, 2) assert SubSubField(1, 2) != SubSubField(1, 1) assert SubSubField(1, 2) != SubSubField(2, 2)
35124
from ..helpers import IFPTestCase from intficpy.things import Thing, Container, Liquid class TestDropVerb(IFPTestCase): def test_verb_func_drops_item(self): item = Thing(self.game, self._get_unique_noun()) item.invItem = True self.me.addThing(item) self.assertIn(item.ix, self.me.contains) self.assertEqual(len(self.me.contains[item.ix]), 1) self.assertIn(item, self.me.contains[item.ix]) self.game.turnMain(f"drop {item.verbose_name}") self.assertItemNotIn( item, self.me.contains, "Dropped item, but item still in inventory" ) def test_drop_item_not_in_inv(self): item = Thing(self.game, "shoe") item.invItem = True self.start_room.addThing(item) self.assertFalse(self.me.containsItem(item)) self.game.turnMain(f"drop {item.verbose_name}") self.assertIn("You are not holding", self.app.print_stack.pop()) def test_drop_liquid_in_container(self): cup = Container(self.game, "cup") water = Liquid(self.game, "water", "water") water.moveTo(cup) cup.moveTo(self.me) self.game.turnMain("drop water") self.assertIn("You drop the cup", self.app.print_stack.pop()) self.assertFalse(self.game.me.containsItem(cup)) self.assertTrue(cup.containsItem(water)) def test_drop_composite_child(self): machine = Thing(self.game, "machine") wheel = Thing(self.game, "wheel") machine.addComposite(wheel) machine.moveTo(self.me) self.game.turnMain("drop wheel") self.assertIn("wheel is attached to the machine", self.app.print_stack.pop()) self.assertTrue(self.me.containsItem(wheel))
35160
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from enum import Enum class Type(Enum): STRING = 'string' NUMBER = 'number' BOOLEAN = 'boolean' DATE = 'date' DATETIME = 'datetime' TIMEOFDAY = 'timeofday'
35205
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import time from datetime import timedelta import os # Importing a helper module for the functions of the Inception model. import inception import cifar10 from cifar10 import num_classes from inception import transfer_values_cache #Importing the color map for plotting each class with different color. import matplotlib.cm as color_map from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import confusion_matrix cifar10.data_path = "data/CIFAR-10/" cifar10.maybe_download_and_extract() class_names = cifar10.load_class_names() print(class_names) print('Loading the training set...') training_images, training_cls_integers, trainig_one_hot_labels = cifar10.load_training_data() print('Loading the test set...') testing_images, testing_cls_integers, testing_one_hot_labels = cifar10.load_test_data() print("-Number of images in the training set:\t\t{}".format(len(training_images))) print("-Number of images in the testing set:\t\t{}".format(len(testing_images))) def plot_imgs(imgs, true_class, predicted_class=None): assert len(imgs) == len(true_class) # Creating a placeholders for 9 subplots fig, axes = plt.subplots(3, 3) # Adjustting spacing. if predicted_class is None: hspace = 0.3 else: hspace = 0.6 fig.subplots_adjust(hspace=hspace, wspace=0.3) for i, ax in enumerate(axes.flat): # There may be less than 9 images, ensure it doesn't crash. if i < len(imgs): # Plot image. ax.imshow(imgs[i], interpolation='nearest') # Get the actual name of the true class from the class_names array true_class_name = class_names[true_class[i]] # Showing labels for the predicted and true classes if predicted_class is None: xlabel = "True: {0}".format(true_class_name) else: # Name of the predicted class. predicted_class_name = class_names[predicted_class[i]] xlabel = "True: {0}\nPred: {1}".format(true_class_name, predicted_class_name) ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) plt.show() # get the first 9 images in the test set imgs = testing_images[0:9] # Get the integer representation of the true class. true_class = testing_cls_integers[0:9] # Plotting the images plot_imgs(imgs=imgs, true_class=true_class) print('Downloading the pretrained inception v3 model') inception.maybe_download() # Loading the inception model so that we can inialized it with the pretrained weights and customize for our model inception_model = inception.Inception() file_path_train = os.path.join(cifar10.data_path, 'inception_cifar10_train.pkl') file_path_test = os.path.join(cifar10.data_path, 'inception_cifar10_test.pkl') print("Processing Inception transfer-values for the training images of Cifar-10 ...") # First we need to scale the imgs to fit the Inception model requirements as it requires all pixels to be from 0 to 255, # while our training examples of the CIFAR-10 pixels are between 0.0 and 1.0 imgs_scaled = training_images * 255.0 # Checking if the transfer-values for our training images are already calculated and loading them, if not calcaulate and save them. transfer_values_training = transfer_values_cache(cache_path=file_path_train, images=imgs_scaled, model=inception_model) print("Processing Inception transfer-values for the testing images of Cifar-10 ...") # First we need to scale the imgs to fit the Inception model requirements as it requires all pixels to be from 0 to 255, # while our training examples of the CIFAR-10 pixels are between 0.0 and 1.0 imgs_scaled = testing_images * 255.0 # Checking if the transfer-values for our training images are already calculated and loading them, if not calcaulate and save them. transfer_values_testing = transfer_values_cache(cache_path=file_path_test, images=imgs_scaled, model=inception_model) print('Shape of the training set transfer values...') print(transfer_values_training.shape) print('Shape of the testing set transfer values...') print(transfer_values_testing.shape) def plot_transferValues(ind): print("Original input image:") # Plot the image at index ind of the test set. plt.imshow(testing_images[ind], interpolation='nearest') plt.show() print("Transfer values using Inception model:") # Visualize the transfer values as an image. transferValues_img = transfer_values_testing[ind] transferValues_img = transferValues_img.reshape((32, 64)) # Plotting the transfer values image. plt.imshow(transferValues_img, interpolation='nearest', cmap='Reds') plt.show() plot_transferValues(ind=15) pca_obj = PCA(n_components=2) subset_transferValues = transfer_values_training[0:3000] cls_integers = testing_cls_integers[0:3000] print('Shape of a subset form the transfer values...') print(subset_transferValues.shape) reduced_transferValues = pca_obj.fit_transform(subset_transferValues) print('Shape of the reduced version of the transfer values...') print(reduced_transferValues.shape) def plot_reduced_transferValues(transferValues, cls_integers): # Create a color-map with a different color for each class. c_map = color_map.rainbow(np.linspace(0.0, 1.0, num_classes)) # Getting the color for each sample. colors = c_map[cls_integers] # Getting the x and y values. x_val = transferValues[:, 0] y_val = transferValues[:, 1] # Plot the transfer values in a scatter plot plt.scatter(x_val, y_val, color=colors) plt.show() plot_reduced_transferValues(reduced_transferValues, cls_integers) pca_obj = PCA(n_components=50) transferValues_50d = pca_obj.fit_transform(subset_transferValues) tsne_obj = TSNE(n_components=2) reduced_transferValues = tsne_obj.fit_transform(transferValues_50d) print('Shape of the reduced version of the transfer values using t-SNE method...') print(reduced_transferValues.shape) plot_reduced_transferValues(reduced_transferValues, cls_integers) transferValues_arrLength = inception_model.transfer_len input_values = tf.placeholder(tf.float32, shape=[None, transferValues_arrLength], name='input_values') y_actual = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_actual') y_actual_cls = tf.argmax(y_actual, axis=1) def new_weights(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) def new_biases(length): return tf.Variable(tf.constant(0.05, shape=[length])) def new_fc_layer(input, # The previous layer. num_inputs, # Num. inputs from prev. layer. num_outputs, # Num. outputs. use_relu=True): # Use Rectified Linear Unit (ReLU)? # Create new weights and biases. weights = new_weights(shape=[num_inputs, num_outputs]) biases = new_biases(length=num_outputs) # Calculate the layer as the matrix multiplication of # the input and weights, and then add the bias-values. layer = tf.matmul(input, weights) + biases # Use ReLU? if use_relu: layer = tf.nn.relu(layer) return layer # First fully-connected layer. layer_fc1 = new_fc_layer(input=input_values, num_inputs=2048, num_outputs=1024, use_relu=True) # Second fully-connected layer. layer_fc2 = new_fc_layer(input=layer_fc1, num_inputs=1024, num_outputs=num_classes, use_relu=False) # Predicted class-label. y_predicted = tf.nn.softmax(layer_fc2) # Cross-entropy for the classification of each image. cross_entropy = \ tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_actual) # Loss aka. cost-measure. # This is the scalar value that must be minimized. loss = tf.reduce_mean(cross_entropy) step = tf.Variable(initial_value=0, name='step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss, step) y_predicted_cls = tf.argmax(y_predicted, axis=1) correct_prediction = tf.equal(y_predicted_cls, y_actual_cls) model_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) session = tf.Session() session.run(tf.global_variables_initializer()) training_batch_size = 32 def select_random_batch(): # Number of images (transfer-values) in the training-set. num_imgs = len(transfer_values_training) # Create a random index. ind = np.random.choice(num_imgs, size=training_batch_size, replace=False) # Use the random index to select random x and y-values. # We use the transfer-values instead of images as x-values. x_batch = transfer_values_training[ind] y_batch = trainig_one_hot_labels[ind] return x_batch, y_batch def optimize(num_iterations): for i in range(num_iterations): # Selectin a random batch of images for training # where the transfer values of the images will be stored in input_batch # and the actual labels of those batch of images will be stored in y_actual_batch input_batch, y_actual_batch = select_random_batch() # storing the batch in a dict with the proper names # such as the input placeholder variables that we define above. feed_dict = {input_values: input_batch, y_actual: y_actual_batch} # Now we call the optimizer of this batch of images # TensorFlow will automatically feed the values of the dict we created above # to the model input placeholder variables that we defined above. i_global, _ = session.run([step, optimizer], feed_dict=feed_dict) # print the accuracy every 100 steps. if (i_global % 100 == 0) or (i == num_iterations - 1): # Calculate the accuracy on the training-batch. batch_accuracy = session.run(model_accuracy, feed_dict=feed_dict) msg = "Step: {0:>6}, Training Accuracy: {1:>6.1%}" print(msg.format(i_global, batch_accuracy)) def plot_errors(cls_predicted, cls_correct): # cls_predicted is an array of the predicted class-number for # all images in the test-set. # cls_correct is an array with boolean values to indicate # whether is the model predicted the correct class or not. # Negate the boolean array. incorrect = (cls_correct == False) # Get the images from the test-set that have been # incorrectly classified. incorrectly_classified_images = testing_images[incorrect] # Get the predicted classes for those images. cls_predicted = cls_predicted[incorrect] # Get the true classes for those images. true_class = testing_cls_integers[incorrect] n = min(9, len(incorrectly_classified_images)) # Plot the first n images. plot_imgs(imgs=incorrectly_classified_images[0:n], true_class=true_class[0:n], predicted_class=cls_predicted[0:n]) def plot_confusionMatrix(cls_predicted): # cls_predicted array of all the predicted # classes numbers in the test. # Call the confucion matrix of sklearn cm = confusion_matrix(y_true=testing_cls_integers, y_pred=cls_predicted) # Printing the confusion matrix for i in range(num_classes): # Append the class-name to each line. class_name = "({}) {}".format(i, class_names[i]) print(cm[i, :], class_name) # labeling each column of the confusion matrix with the class number cls_numbers = [" ({0})".format(i) for i in range(num_classes)] print("".join(cls_numbers)) # Split the data-set in batches of this size to limit RAM usage. batch_size = 128 def predict_class(transferValues, labels, cls_true): # Number of images. num_imgs = len(transferValues) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_predicted = np.zeros(shape=num_imgs, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_imgs: # The ending index for the next batch is denoted j. j = min(i + batch_size, num_imgs) # Create a feed-dict with the images and labels # between index i and j. feed_dict = {input_values: transferValues[i:j], y_actual: labels[i:j]} # Calculate the predicted class using TensorFlow. cls_predicted[i:j] = session.run(y_predicted_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Create a boolean array whether each image is correctly classified. correct = [a == p for a, p in zip(cls_true, cls_predicted)] print(type(correct)) return correct, cls_predicted def predict_class_test(): return predict_class(transferValues = transfer_values_testing, labels = trainig_one_hot_labels, cls_true = training_cls_integers) def classification_accuracy(correct): # When averaging a boolean array, False means 0 and True means 1. # So we are calculating: number of True / len(correct) which is # the same as the classification accuracy. # Return the classification accuracy # and the number of correct classifications. return np.mean(correct), np.sum(correct) def test_accuracy(show_example_errors=False, show_confusion_matrix=False): # For all the images in the test-set, # calculate the predicted classes and whether they are correct. correct, cls_pred = predict_class_test() print(type(correct)) # Classification accuracypredict_class_test and the number of correct classifications. accuracy, num_correct = classification_accuracy(correct) # Number of images being classified. num_images = len(correct) # Print the accuracy. msg = "Test set accuracy: {0:.1%} ({1} / {2})" print(msg.format(accuracy, num_correct, num_images)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_errors(cls_predicted=cls_pred, cls_correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusionMatrix(cls_predicted=cls_pred) test_accuracy(show_example_errors=True, show_confusion_matrix=True) optimize(num_iterations=1000) test_accuracy(show_example_errors=True, show_confusion_matrix=True)
35230
from demo.components.server import server from chips.api.api import * def application(chip): eth = Component("application.c") eth( chip, inputs = { "eth_in" : chip.inputs["input_eth_rx"], "am_in" : chip.inputs["input_radio_am"], "fm_in" : chip.inputs["input_radio_fm"], "rs232_rx":chip.inputs["input_rs232_rx"], }, outputs = { "eth_out" : chip.outputs["output_eth_tx"], "audio_out" : chip.outputs["output_audio"], "frequency_out" : chip.outputs["output_radio_frequency"], "samples_out" : chip.outputs["output_radio_average_samples"], "rs232_tx":chip.outputs["output_rs232_tx"], }, )
35287
import keras import pandas as pd import urllib2 from bs4 import BeautifulSoup from pprint import pprint from matplotlib import pyplot as plt import sys sys.path.append('/Users/BenJohnson/projects/what-is-this/wit/') from wit import * pd.set_option('display.max_rows', 50) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 120) np.set_printoptions(linewidth=100) # -- # Config + Init num_features = 75 # Character # max_len = 100 # Character max_len = 350 formatter = KerasFormatter(num_features, max_len) # -- # Load and format data in_store = pd.HDFStore( '/Users/BenJohnson/projects/what-is-this/qpr/gun_leaves_20151118_v2.h5', complevel = 9, complib = 'bzip2' ) source = in_store.keys()[3] df = in_store[source] in_store.close() # Subset to frequent paths chash = df.groupby('hash').apply(lambda x: len(x.obj.unique())) keep = list(chash[chash > 100].index) df = df[df.hash.apply(lambda x: x in keep)] df['content'] = df.obj.apply(lambda x: BeautifulSoup(x).text.encode('utf8')) # -- # Make all pairs train = make_triplet_train(df, N = 600) pd.crosstab(train.doc, train.hash) trn, _ = formatter.format(train, ['content'], 'hash') # Test set of all unique points unq = df.copy() del unq['id'] unq = unq.drop_duplicates() awl, _ = formatter.format(unq, ['content'], 'hash') # -- # Defining model recurrent_size = 32 dense_size = 5 model = Sequential() model.add(Embedding(num_features, recurrent_size)) model.add(LSTM(recurrent_size)) model.add(Dense(dense_size)) model.add(Activation('unit_norm')) model.compile(loss = 'triplet_euclidean', optimizer = 'adam') # -- # Training model # Shuffles while maintaining groups ms = modsel(train.shape[0], N = 3) _ = model.fit( trn['x'][0][ms], trn['x'][0][ms], nb_epoch = 1, batch_size = 3 * 250, shuffle = False ) preds = model.predict(awl['x'][0], verbose = True) colors = awl['y'].argmax(1) plt.scatter(preds[:,0], preds[:,1], c = colors) plt.show() # -- # Clustering results # # Could do better -- actually may want some kind of metric for "projection overlap" from sklearn.cluster import DBSCAN db = DBSCAN(eps = .1, min_samples = 50).fit(preds) res = unq.hash.groupby(db.labels_).apply(lambda x: x.value_counts()).reset_index() res.columns = ('cluster', 'hash', 'cnt') res = res.sort('hash') good_res = res[(res.cnt > 50) & (res.cluster > -1)] good_res sorted(res.hash.unique()) sorted(good_res.hash.unique()) eqv = list(good_res.groupby('cluster').hash.apply(lambda x: list(x))) eqv = map(eval, np.unique(map(str, eqv))) print_eqv(eqv, df)
35307
import config as cfg import cv2 import numpy as np from keras.models import load_model from keras.preprocessing.image import img_to_array from keras import backend as K import tensorflow as tf import keras ''' esto es necesario para que no haya errores a la hora de exponer el servicio con flask info --> https://github.com/tensorflow/tensorflow/issues/28287#issuecomment-495005162 ''' from keras.backend import set_session sess = tf.Session() graph = tf.get_default_graph() set_session(sess) model_emotions = load_model(cfg.path_model) class predict_emotions(): ''' def __init__(self): # cargo modelo de deteccion de emociones global graph self.graph = tf.get_default_graph() self.model_emotions = load_model(cfg.path_model) ''' def preprocess_img(self,face_image,rgb=True,w=48,h=48): face_image = cv2.resize(face_image, (w,h)) if rgb == False: face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY) face_image = face_image.astype("float") / 255.0 face_image= img_to_array(face_image) face_image = np.expand_dims(face_image, axis=0) return face_image def get_emotion(self,img,boxes_face): emotions = [] if len(boxes_face)!=0: for box in boxes_face: y0,x0,y1,x1 = box face_image = img[x0:x1,y0:y1] # preprocesar data face_image = self.preprocess_img(face_image ,cfg.rgb, cfg.w, cfg.h) # predecir imagen global sess global graph with graph.as_default(): set_session(sess) prediction = model_emotions.predict(face_image) emotion = cfg.labels[prediction.argmax()] emotions.append(emotion) else: emotions = [] boxes_face = [] return boxes_face,emotions
35314
from dps.hyper import run_experiment from dps.utils import copy_update from dps.tf.updater import DummyUpdater from silot.run import basic_config, alg_configs, env_configs import argparse parser = argparse.ArgumentParser() parser.add_argument('--max-digits', type=int, choices=[6, 12], required=True) args, _ = parser.parse_known_args() readme = "Running SILOT experiment on moving_mnist." run_kwargs = dict( max_hosts=1, ppn=6, cpp=2, gpu_set="0,1", pmem=10000, project="rpp-bengioy", wall_time="96hours", cleanup_time="5mins", slack_time="5mins", n_repeats=6, copy_locally=True, config=dict(render_step=1000000) ) durations = dict( long=copy_update(run_kwargs), short=dict( wall_time="180mins", gpu_set="0", ppn=4, n_repeats=4, distributions=None, config=dict(max_steps=3000, render_step=500, eval_step=100, display_step=100, stage_steps=600, curriculum=[dict()]), ), build=dict( ppn=1, cpp=1, gpu_set="0", wall_time="180mins", n_repeats=1, distributions=None, config=dict( do_train=False, get_updater=DummyUpdater, render_hook=None, curriculum=[dict()] + [dict(max_digits=i, n_train=100, n_val=1000) for i in range(1, 13)] ) ), ) config = basic_config.copy() config.update(env_configs['moving_mnist']) config.update(alg_configs['silot'], max_digits=args.max_digits) config.update(final_count_prior_log_odds=0.0125, stage_steps=40000) run_experiment( "moving_mnist_silot", config, "silot on moving_mnist.", name_variables="max_digits", durations=durations )
35358
from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.by import By from selenium import webdriver import requests def login(): driver = webdriver.Chrome() driver.implicitly_wait(20) driver.get("https://tixcraft.com/login") WebDriverWait(driver, 600).until( EC.visibility_of_element_located((By.XPATH, "//*[@class='user-name']")) ) cookies = driver.get_cookies() driver.quit() return cookies def user_verify(driver, url): driver.get(url) url = driver.current_url while "ticket/verify" in url: try: url = driver.current_url WebDriverWait(driver, 2).until(EC.alert_is_present()) alert = driver.switch_to_alert() alert.accept() except: pass return url def session_to_driver(session): cookies = session.cookies.get_dict() driver = webdriver.Chrome() driver.get("https://tixcraft.com") for name, value in cookies.items(): cookie = {"name": name, "value": value} driver.add_cookie(cookie) return driver def driver_to_session(driver): cookies = driver.get_cookies() session = requests.Session() for cookie in cookies: session.cookies.set(cookie["name"], cookie["value"]) return session
35377
import numpy as np import torch import torch.nn as nn from collections import OrderedDict def tf2th(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): import re layer_keys = sorted(state_dict.keys()) for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): if not stage_with_dcn: continue for old_key in layer_keys: pattern = ".*block{}.*conv2.*".format(ix) r = re.match(pattern, old_key) if r is None: continue for param in ["weight", "bias"]: if old_key.find(param) is -1: continue if 'unit01' in old_key: continue new_key = old_key.replace( "conv2.{}".format(param), "conv2.conv.{}".format(param) ) print("pattern: {}, old_key: {}, new_key: {}".format( pattern, old_key, new_key )) # Calculate SD conv weight w = state_dict[old_key] v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) w = (w - m) / torch.sqrt(v + 1e-10) state_dict[new_key] = w del state_dict[old_key] return state_dict def load_big_format(cfg, f): model = OrderedDict() weights = np.load(f) cmap = {'a':1, 'b':2, 'c':3} for key, val in weights.items(): old_key = key.replace('resnet/', '') if 'root_block' in old_key: new_key = 'root.conv.weight' elif '/proj/standardized_conv2d/kernel' in old_key: key_pattern = old_key.replace('/proj/standardized_conv2d/kernel', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.downsample.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) elif '/standardized_conv2d/kernel' in old_key: key_pattern = old_key.replace('/standardized_conv2d/kernel', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) elif '/group_norm/gamma' in old_key: key_pattern = old_key.replace('/group_norm/gamma', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.gn{}.weight'.format(bname,uname,cmap[cidx]) elif '/group_norm/beta' in old_key: key_pattern = old_key.replace('/group_norm/beta', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.gn{}.bias'.format(bname,uname,cmap[cidx]) else: print('Unknown key {}'.format(old_key)) continue print('Map {} -> {}'.format(key, new_key)) model[new_key] = tf2th(val) model = _rename_conv_weights_for_deformable_conv_layers(model, cfg) return dict(model=model)
35398
from .watch_time import time_str import fitlog class Logger: def __init__(self , fil_path = None): self.log_fil = open(fil_path , "w" , encoding = "utf-8") def nolog(self , cont = ""): pass def log_print(self , cont = ""): self.log_fil.write(cont + "\n") self.log_fil.flush() print (cont) fitlog.add_to_line(cont) def log_print_w_time(self , cont = ""): self.log_print(str(cont) + " | " + time_str())
35421
from generator.actions import Actions import random import string import struct import numpy as np import math import datetime as dt import ctypes def kaprica_mixin(self): if hasattr(self, 'xlat_seed'): return def xlat_seed(seed): def hash_string(seed): H = 0x314abc86 for c in seed: H = (H * 37) & 0xffffffff H ^= ord(c) H = ((H << 13) ^ (H >> 19)) & 0xffffffff return H def hash_iterate(H): H = (H * 3) & 0xffffffff H = ((H << 13) ^ (H >> 19) ^ (H >> 21)) & 0xffffffff return H xmap = list(xrange(256)) xmap_inv = list(xrange(256)) state = hash_string(seed) for i in xrange(255, 0, -1): j = state % i state = hash_iterate(state) xmap[i], xmap[j] = xmap[j], xmap[i] for i in xrange(256): xmap_inv[xmap[i]] = i self.xlat_map = xmap self.xlat_map_inv = xmap_inv self.xlat_seed = xlat_seed self.xlat_map = None self.xlat_map_inv = None def xlat_string(s, inverse=False): if inverse: return ''.join([chr(self.xlat_map_inv[ord(c)]) for c in s]) return ''.join([chr(self.xlat_map[ord(c)]) for c in s]) self.xlat_string = xlat_string def read(delim=None, length=None, expect=None): if self.xlat_map: if delim: delim = self.xlat_string(delim) if expect: expect = self.xlat_string(expect) return self._original_read(delim=delim, length=length, expect=expect) self._original_read = self.read self.read = read def write(s): if self.xlat_map: if s: s = self.xlat_string(s) return self._original_write(s) self._original_write = self.write self.write = write def random_word(max_size=10, min_size=2): if random.randint(0,4): characters = string.letters + string.digits else: characters = string.letters max_size = max_size if max_size >= min_size else min_size max_size = random.randint(min_size, max_size) return ("".join(random.choice(characters) for c in range(max_size))).lower() def random_text(max_words=10, min_words=3): max_words = max_words if max_words >= min_words else min_words text = '' for x in xrange(random.randint(min_words, max_words)): text += random_word() + ' ' return text class Cs10Fun(Actions): def _read(self, data): self.read(length=len(data), expect=data) def _read_array(self, array=None): if not array: array = self._cur_array if not len(array): self._read("Empty Array\n") else: self._read("Array data\n") temp_list = [] for val in array: temp_list.append("%d, " % val) temp_list[-1] = temp_list[-1][:-2] self._read("[" + ''.join(temp_list) + ']\n') def start(self): #self.delay(100) kaprica_mixin(self) self.xlat_seed('2e0715f1709c') self.write(self.magic_page[:4]) self.read(length=0x1000, expect=self.magic_page) self._cur_array = [] self._read("Welcome to CS10Fun!\n") self._read("Today's lesson is on sorting! We're going to cover 4 types of sorts.\n") self._read("Before we begin, create an array of ints\n") self.menu() self.enter_array() def menu(self): self._read("Main Menu\n") self._read("1. Enter Array\n") self._read("2. Multiply Array\n") self._read("3. Try Insertion Sort\n") self._read("4. Try Selection Sort\n") self._read("5. Try Heap Sort\n") self._read("6. Try Merge Sort\n") self._read("7. Reprint Array\n") self._read("0. Exit\n") self._read(" -----\n") self._read("Current Number of items in array = %d\n" % len(self._cur_array)) #self._read_array() self._read(" -----\n") self._read("Make a selection\n") def enter_array(self): self.write('1\n') self._read("Enter a list of numbers to sort. End the list with ';;'\n") self._cur_array = [] for x in xrange(random.randint(1,100)): self._cur_array.append(random.randint(-1000000000, 1000000000)) self.write(','.join([str(x) for x in self._cur_array]) + ',;;\n') self._read("New Array\n") self._read("Number of items in array = %d\n" % len(self._cur_array)) self._read_array() def multiply_array(self): self.write('2\n') if len(self._cur_array) > 10000: self._read("Array is too long. Can't multiply any more\n") elif len(self._cur_array): self._read("Quick Grow! Enter a list multiplier. End number with ';'\n") multiplier = random.randint(1,3) while multiplier * len(self._cur_array) > 1024 and multiplier * len(self._cur_array) <= 1048: multiplier = random.randint(1,3) self.write("%d;\n" % multiplier) self._cur_array *= multiplier self._read("Multiplied Array\n") self._read("Number of items in array = %d\n" % len(self._cur_array)) self._read_array() def insert_sort(self): self.write('3\n') self._read_array(sorted(self._cur_array)) #self.read(expect='Insertion sort takes [\d]+ operations\n', expect_format='pcre', delim='\n') self.read(delim='\n') def selection_sort(self): self.write('4\n') self._read_array(sorted(self._cur_array)) #self.read(expect='Selection sort takes [\d]+ operations\n', expect_format='pcre', delim='\n') self.read(delim='\n') def heap_sort(self): self.write('5\n') self._read_array(sorted(self._cur_array)) #self.read(expect='Heap sort takes [\d]+ operations\n', expect_format='pcre', delim='\n') self.read(delim='\n') def merge_sort(self): self.write('6\n') self._read_array(sorted(self._cur_array)) #self.read(expect='Merge sort takes [\d]+ operations\n', expect_format='pcre', delim='\n') self.read(delim='\n') def reprint_array(self): self.write('7\n') self._read("Current Array\n") self._read("Number of items in array = %d\n" % len(self._cur_array)) self._read_array() def exit(self): self.write('0\n') self._read("Thanks for joining us\n") self._read("See you next time\n")
35442
from gamegym.game import Game, Situation from gamegym.utils import get_rng from gamegym.distribution import Explicit from gamegym.value_learning.valuestore import LinearValueStore import numpy as np import pytest from scipy.sparse import csr_matrix def test_init(): LinearValueStore(shape=(3, 3)) LinearValueStore(np.zeros((4, 3))) LinearValueStore(np.zeros((4, 3)), shape=(4, 3)) with pytest.raises(Exception): LinearValueStore((3, 3)) with pytest.raises(Exception): LinearValueStore(np.zeros((4, 3)), shape=(4, 4)) def test_value_update(): a = np.ones((4, )) vs = LinearValueStore(a) f = [0, 2, -1, 3] assert vs.get(f) == pytest.approx(4.0) assert vs.get(np.array(f)) == pytest.approx(4.0) #assert vs.get(csr_matrix(f)) == pytest.approx(4.0) vs.update(f, -0.5) assert vs.values == pytest.approx([1, 0, 1.5, -0.5]) assert vs.get(f) == pytest.approx(-3.0) def test_norm(): vs = LinearValueStore(shape=(2, 3), fix_mean=1.0)
35501
import os import reader import json # todo: get this logger from elsewhere from celery.utils.log import get_task_logger log = get_task_logger(__name__) defaultFieldMappings = [ ### SET (['info','protocol'], 'getReplayProtocolVersion'), (['info','bytes'], 'getReplayFileByteSize'), (['info','gameloops'], 'getMatchLengthGameloops'), (['info','seconds'], 'getMatchLengthSeconds'), (['info','start_timestamp'], 'getMatchUTCTimestamp'), (['info','speed'], 'getMatchSpeed'), (['info','match_type'], 'getMatchType'), (['info','hero_selelection_mode'], 'getHeroSelectionMode'), (['map','name'], 'getMapName'), (['map',{'m_mapSizeX':'width', 'm_mapSizeY':'height'}], 'getGameDescription'), (['team', [], 'levels'], 'getTeamLevels'), #(['players', [], 'talents'], 'getTalents'), #(['players', [], 'talents', [], {'name':'name'}], 'getTalents'), #(['players', [], {'m_teamId': 'team', 'm_name': 'name', 'm_toonId': 'toon_id'}], 'getPlayers'), (['raw','players'], 'getPlayers'), (['raw','details'], 'getReplayDetails'), (['raw','init_data'], 'getReplayInitData'), #(['raw','translated_attributes_events'], 'getTranslatedReplayAttributesEvents'), #(['players', [], 'hero'], 'getPlayersHeroChoiceArray'), ] named_field_mappings = { 'RawReplayDetails': [(['raw','details'], 'getReplayDetails')], 'RawReplayInitData': [(['raw','init_data'], 'getReplayInitData')], 'RawReplayTrackerEvents': [(['raw','tracker_events'], 'getReplayTrackerEvents')], 'RawReplayAttributesEvents': [(['raw','attributes_events'], 'getReplayAttributesEvents')], 'RawReplayGameEvents': [(['raw','game_events'], 'getReplayGameEvents')], 'RawReplayMessageEvents': [(['raw','message_events'], 'getReplayMessageEvents')], 'RawTalentSelectionGameEvents': [(['raw','selections'], 'getTalentSelectionGameEvents')], } class StormReplayAnalyzer: @staticmethod def getAllFieldMappingNames(): return named_field_mappings.keys() @staticmethod def getFieldMappingForNames(names): fieldMapping = [] for name in names: fieldMapping = fieldMapping + named_field_mappings.get(name, []) return fieldMapping def __init__(self, reader): self.reader = reader def analyze(self, fieldMappings=None): if fieldMappings is None: fieldMappings = defaultFieldMappings retval = {} for field in fieldMappings: value = getattr(self, field[1])() worklist = [(retval, field[0], value)] while len(worklist) > 0: workItem = worklist.pop() obj = workItem[0] keyPath = workItem[1] value = workItem[2] key = keyPath[0] isArray = isinstance(key, (int, long)) if isArray and key >= len(obj): obj.extend([None]*(key + 1 - len(obj))) if len(keyPath) == 1: obj[key] = value elif isinstance(keyPath[1], basestring): if isArray: if obj[key] is None: obj[key] = {} obj = obj[key] else: obj = obj.setdefault(key, {}) worklist.append( (obj, keyPath[1:], value) ) elif isinstance(keyPath[1], list): if isArray: if obj[key] is None: obj[key] = [] obj = obj[key] else: obj = obj.setdefault(key, []) for index, element in enumerate(value): worklist.append( (obj, [index] + keyPath[2:], element) ) elif isinstance(keyPath[1], dict): if isArray: if obj[key] is None: obj[key] = {} obj = obj[key] else: obj = obj.setdefault(key, {}) for dictKey in value: if 0 == len(keyPath[1]): keyToWrite = dictKey elif keyPath[1].has_key(dictKey): keyToWrite = keyPath[1][dictKey] else: continue worklist.append( (obj, [keyToWrite] + keyPath[2:], value[dictKey]) ) else: raise Exception('Key of invalid type: %s' % str(key)) return retval def getReplayFileByteSize(self): return self.reader.getReplayFileByteSize() def getTalentSelectionGameEvents(self): events = [] for event in self.reader.getReplayGameEvents(): if (event['_event'] != 'NNet.Game.SHeroTalentTreeSelectedEvent'): continue events.append(event) return events def getReplayProtocolVersion(self): return self.reader.getReplayProtocolVersion() def getReplayInitData(self): return self.reader.getReplayInitData() def getReplayAttributesEvents(self): return self.reader.getReplayAttributesEvents() def getReplayDetails(self): return self.reader.getReplayDetails() def getReplayTrackerEvents(self): return self.reader.getReplayTrackerEvents() def getReplayGameEvents(self): return self.reader.getReplayGameEvents() def getReplayMessageEvents(self): return self.reader.getReplayMessageEvents() def getTranslatedReplayAttributesEvents(self): talentsReader = self.getTalentsReader() return talentsReader.translate_replay_attributes_events(self.getReplayAttributesEvents()) def getGameDescription(self): initData = self.getReplayInitData() return initData['m_syncLobbyState']['m_gameDescription'] def getGameSpeed(self): try: return self.gameSpeed except AttributeError: self.gameSpeed = 0 return self.gameSpeed def getTalentsReader(self): try: return self.talentsReader except AttributeError: replayVersion = self.reader.getReplayProtocolVersion() try: self.talentsReader = __import__('stormreplay.talents%s' % replayVersion, fromlist=['talents']) except ImportError: raise Exception('Unsupported StormReplay build number for talents: %i' % replayVersion) return self.talentsReader def getTalents(self): try: return self.talents except AttributeError: self.talents = [[] for _ in xrange(10)] talentsReader = self.getTalentsReader() generator = talentsReader.decode_game_events_talent_choices(self.reader.getReplayGameEvents(), self.getPlayersHeroChoiceArray()) for choice in generator: self.talents[choice['_userid']].append({ 'seconds': self.gameloopToSeconds(choice['_gameloop']), 'level': choice['m_level'], 'name': choice['m_talentName'], 'description': choice['m_talentDescription'], 'index': choice['m_talentIndex'], }) return self.talents def getTeamTalentTierTimes(self): try: return self.teamTalentTierTimes except AttributeError: teamTalentTierLevel = [[], []] teamTalentTiersFirstPick = [[], []] teamTalentTiersLastPick = [[], []] players = self.getPlayers() for playerIndex, playerTalentPicks in enumerate(self.getTalents()): player = players[playerIndex] for talentTierIndex, talentPick in enumerate(playerTalentPicks): talentPickTime = talentPick['seconds'] teamIndex = player['m_teamId'] tiersFirstPick = teamTalentTiersFirstPick[teamIndex] if (talentTierIndex >= len(tiersFirstPick)): tiersFirstPick.append(talentPickTime) elif (talentPickTime < tiersFirstPick[talentTierIndex]): tiersFirstPick[talentTierIndex] = talentPickTime tiersLastPick = teamTalentTiersLastPick[teamIndex] if (talentTierIndex >= len(tiersLastPick)): tiersLastPick.append(talentPickTime) elif (talentPickTime > tiersLastPick[talentTierIndex]): tiersLastPick[talentTierIndex] = talentPickTime if (talentTierIndex >= len(teamTalentTierLevel[teamIndex])): teamTalentTierLevel[teamIndex].append(talentPick['level']) else: teamTalentTierLevel[teamIndex][talentTierIndex] = talentPick['level'] self.teamTalentTierTimes = [[], []] for teamIndex in xrange(2): for talentTierIndex, level in enumerate(teamTalentTierLevel[teamIndex]): self.teamTalentTierTimes[teamIndex].append({ 'earliest': teamTalentTiersFirstPick[teamIndex][talentTierIndex], 'latest': teamTalentTiersLastPick[teamIndex][talentTierIndex], 'level': level, }) return self.teamTalentTierTimes def getTeamLevels(self): try: return self.teamLevels except AttributeError: teamTalentTierTimes = self.getTeamTalentTierTimes() self.teamLevels = [[], []] for teamIndex in xrange(2): talentTierTimes = teamTalentTierTimes[teamIndex] levelTimes = [0] * talentTierTimes[-1]['level'] for firstTier, nextTier in zip(talentTierTimes, talentTierTimes[1:]): levelRange = nextTier['level'] - firstTier['level'] for level in xrange(firstTier['level'], nextTier['level']+1): levelIndex = level-1 lerp = float(level - firstTier['level']) / levelRange time = lerp * (nextTier['earliest'] - firstTier['earliest']) + firstTier['earliest'] levelTimes[levelIndex] = time levelToTalentTierInfo = {} for tierInfo in talentTierTimes: levelToTalentTierInfo[str(tierInfo['level'])] = tierInfo for levelIndex, time in enumerate(levelTimes): level = levelIndex + 1 levelInfo = { 'level': levelIndex + 1, 'seconds': time, 'is_talent_tier': False, } if levelToTalentTierInfo.has_key(str(level)): tierInfo = levelToTalentTierInfo[str(level)] levelInfo['is_talent_tier'] = True levelInfo['earliest_talent_picked_time'] = tierInfo['earliest'] levelInfo['latest_talent_picked_time'] = tierInfo['latest'] self.teamLevels[teamIndex].append(levelInfo) return self.teamLevels def getMapName(self): try: return self.mapName except AttributeError: self.mapName = self.reader.getReplayDetails()['m_title']['utf8'] return self.mapName def getPlayersHeroChoiceArray(self): try: return self.playersHeroArray except AttributeError: self.playersHeroArray = [None] * 10 for i, player in enumerate(self.getPlayerSpawnInfo()): self.playersHeroArray[i] = player['hero'] return self.playersHeroArray # returns array indexed by user ID def getPlayers(self): try: return self.players except AttributeError: self.players = [None] * 10 for i, player in enumerate(self.getReplayDetails()['m_playerList']): #TODO: confirm that m_workingSetSlotId == i always toon = player['m_toon'] player['m_toonId'] = "%i-%s-%i-%i" % (toon['m_region'], toon['m_programId'], toon['m_realm'], toon['m_id']) player['m_name'] = player['m_name']['utf8'] player['m_controlPlayerId'] = i+1 self.players[i] = player return self.players # returns array indexed by user ID def getPlayerSpawnInfo(self): try: return self.playerSpawnInfo except AttributeError: self.playerSpawnInfo = [None] * 10 playerIdToUserId = {} for event in self.getReplayTrackerEvents(): if event['_event'] == 'NNet.Replay.Tracker.SPlayerSetupEvent': playerIdToUserId[event['m_playerId']] = event['m_userId'] elif event['_event'] == 'NNet.Replay.Tracker.SUnitBornEvent' and (int(event['_gameloop']) > 0): playerId = event['m_controlPlayerId'] if (playerIdToUserId.has_key(playerId)): playerIndex = playerIdToUserId[playerId] # always playerId-1 so far, but this is safer self.playerSpawnInfo[playerIndex] = { 'hero': event['m_unitTypeName']['utf8'], 'unit_tag': event['m_unitTag'] } del playerIdToUserId[playerId] if len(playerIdToUserId) == 0: break return self.playerSpawnInfo def getMatchSpeed(self): attributes = self.getTranslatedReplayAttributesEvents() return attributes[16]['m_gameSpeed'] def getMatchType(self): attributes = self.getTranslatedReplayAttributesEvents() return attributes[16]['m_gameType'] def getHeroSelectionMode(self): attributes = self.getTranslatedReplayAttributesEvents() return attributes[16]['m_heroSelectionMode'] def getMatchUTCTimestamp(self): try: return self.utcTimestamp except AttributeError: self.utcTimestamp = (self.getReplayDetails()['m_timeUTC'] / 10000000) - 11644473600 return self.utcTimestamp def getMatchLengthGameloops(self): lastEvent = self.getReplayTrackerEvents()[-1] return lastEvent['_gameloop'] def getMatchLengthSeconds(self): return self.gameloopToSeconds(self.getMatchLengthGameloops()) def gameloopToSeconds(self, gameloop): return gameloop / 16.0 def gameloopToTimestamp(self, gameloop): return self.getMatchUTCTimestamp() + _gameloop / 16.0 def getChat(self): try: return self.chat except AttributeError: self.chat = [] for messageEvent in self.getReplayMessageEvents(): if (messageEvent['_event'] != 'NNet.Game.SChatMessage'): continue userId = messageEvent['_userid']['m_userId'] chatData = { 't': self.gameloopToTimestamp(messageEvent['_gameloop']), 'user': userId, 'msg': messageEvent['m_string']['utf8'], } self.chat.append(chatData) return self.chat
35520
from typing import Any from starlette.datastructures import State class DefaultState: state = State() def get(self,key:str, value: Any = None) -> Any: if hasattr(self.state, key): return getattr(self.state, key) else: if not value: raise Exception('state don`t %s attribute' %key) else: return value def set(self, key:str, value: Any) -> None: if hasattr(self.state, key): raise Exception('state don`t %s attribute' %key) else: setattr(self.state, key, value) def update(self, key:str, value: Any) -> None: if hasattr(self.state, key): setattr(self.state, key, value) default_state = DefaultState()
35566
import os, sys, inspect, logging, time lib_folder = os.path.join(os.path.split(inspect.getfile( inspect.currentframe() ))[0], '..') lib_load = os.path.realpath(os.path.abspath(lib_folder)) if lib_load not in sys.path: sys.path.insert(0, lib_load) import capablerobot_usbhub hub = capablerobot_usbhub.USBHub() ## Input enabled here on the output so that reading the output's current state works hub.gpio.configure(ios=[0], output=True, input=True) hub.gpio.configure(ios=[1], input=True, pull_down=True) while True: hub.gpio.io0 = True print("IO {} {}".format(*hub.gpio.io)) time.sleep(1) hub.gpio.io0 = False print("IO {} {}".format(*hub.gpio.io)) time.sleep(1)
35585
from django import template register = template.Library() @register.filter def is_bbb_mod(room, user): return room.is_moderator(user)
35600
import os import sys import neuron import json from pprint import pprint from neuron import h import matplotlib.pyplot as plt import numpy as np import h5py ## Runs the 5 cell iclamp simulation but in NEURON for each individual cell # $ python pure_nrn.py <gid> neuron.load_mechanisms('../components/mechanisms') h.load_file('stdgui.hoc') h.load_file('import3d.hoc') cells_table = { # gid = [model id, cre line, morph file] 0: [472363762, 'Scnn1a', 'Scnn1a_473845048_m.swc'], 1: [473863510, 'Rorb', 'Rorb_325404214_m.swc'], 2: [473863035, 'Nr5a1', 'Nr5a1_471087815_m.swc'], 3: [472912177, 'PV1', 'Pvalb_470522102_m.swc'], 4: [473862421, 'PV2', 'Pvalb_469628681_m.swc'] } def run_simulation(gid, morphologies_dir='../components/morphologies', plot_results=True): swc_file = os.path.join(morphologies_dir, cells_table[gid][2]) model_file = 'model_gid{}_{}_{}.json'.format(gid, cells_table[gid][0], cells_table[gid][1]) params_dict = json.load(open(model_file, 'r')) # pprint(params_dict) # load the cell nrn_swc = h.Import3d_SWC_read() nrn_swc.input(str(swc_file)) imprt = h.Import3d_GUI(nrn_swc, 0) h("objref this") imprt.instantiate(h.this) # Cut the axon h("soma[0] area(0.5)") for sec in h.allsec(): sec.nseg = 1 + 2 * int(sec.L / 40.0) if sec.name()[:4] == "axon": h.delete_section(sec=sec) h('create axon[2]') for sec in h.axon: sec.L = 30 sec.diam = 1 sec.nseg = 1 + 2 * int(sec.L / 40.0) h.axon[0].connect(h.soma[0], 0.5, 0.0) h.axon[1].connect(h.axon[0], 1.0, 0.0) h.define_shape() # set model params h("access soma") for sec in h.allsec(): sec_name = sec.name().split('[')[0] # special case for passive channels rev. potential sec.insert('pas') for seg in sec: if sec_name not in params_dict['e_pas']: continue seg.pas.e = params_dict['e_pas'][sec_name] # insert mechanisms (if req.) and set density for prop in params_dict[sec_name]: if 'mechanism' in prop: sec.insert(prop['mechanism']) setattr(sec, prop['name'], prop['value']) # simulation properties h.stdinit() h.tstop = 4000.0 h.dt = 0.1 h.steps_per_ms = 1/h.dt h.celsius = 34.0 h.v_init = -80.0 # stimuli is an increasing series of 3 step currents cclamp1 = h.IClamp(h.soma[0](0.5)) cclamp1.delay = 500.0 cclamp1.dur = 500.0 cclamp1.amp = 0.1500 cclamp2 = h.IClamp(h.soma[0](0.5)) cclamp2.delay = 1500.0 cclamp2.dur = 500.0 cclamp2.amp = 0.1750 cclamp3 = h.IClamp(h.soma[0](0.5)) cclamp3.delay = 2500.0 cclamp3.dur = 500.0 cclamp3.amp = 0.2000 # run simulation v_vec = h.Vector() v_vec.record(h.soma[0](0.5)._ref_v) h.startsw() h.run(h.tstop) voltages = [v for v in v_vec] cell_var_name = 'cellvar_gid{}_{}_{}.h5'.format(gid, cells_table[gid][0], cells_table[gid][1]) with h5py.File(cell_var_name, 'w') as h5: # fake a mapping table just for convience h5.create_dataset('/mapping/gids', data=[gid], dtype=np.uint16) h5.create_dataset('/mapping/element_pos', data=[0.5], dtype=np.float) h5.create_dataset('/mapping/element_id', data=[0], dtype=np.uint16) h5.create_dataset('/mapping/index_pointer', data=[0], dtype=np.uint16) h5.create_dataset('/v/data', data=voltages, dtype=np.float64) if plot_results: times = np.linspace(0.0, h.tstop, len(voltages)) plt.plot(times, voltages) plt.show() if __name__ == '__main__': if __file__ != sys.argv[-1]: run_simulation(sys.argv[-1]) else: for gid in range(5): run_simulation(gid, plot_results=False)
35609
import init_file as variables import cj_function_lib as cj from datetime import datetime fert_table = cj.extract_table_from_mdb(variables.QSWAT_MDB, "fert", variables.path + "\\fert.tmp~") fert = "" for fert_line in fert_table: fert += cj.trailing_spaces(4, fert_line.split(",")[1], 0) + cj.string_trailing_spaces(9, fert_line.split(",")[2]) + cj.trailing_spaces(8, fert_line.split(",")[3], 3) + cj.trailing_spaces(8, fert_line.split(",")[4], 3) + cj.trailing_spaces(8, fert_line.split(",")[5], 3) + cj.trailing_spaces(8, fert_line.split(",")[6], 3) + cj.trailing_spaces(8, fert_line.split(",")[7], 3) + cj.trailing_spaces(4, fert_line.split(",")[8], 2) + "E+00" + cj.trailing_spaces(4, fert_line.split(",")[9], 2)+ "E+00" + cj.trailing_spaces(8, fert_line.split(",")[10], 3) + "\n" fileName = "fert.dat" cj.write_to(variables.DefaultSimDir + "TxtInOut\\" + fileName, fert) #print fileName
35631
import codecs import collections import io import os import re import struct from .instruction import Instruction from .opcode import Opcodes from .registers import Registers from .section import Section from .symbol import Symbol def p32(v): return struct.pack('<I', v) def unescape_str_to_bytes(x): return codecs.escape_decode(x.encode('utf8'))[0] class QueueReader(object): def __init__(self, *files): self.fq = list(files) def add_file(self, f): self.fq.append(f) def insert_file(self, f, idx=0): self.fq.insert(idx, f) def readline(self): while len(self.fq) > 0: r = self.fq[0].readline() if not r: self.fq.pop(0) continue return r return '' class Parser(object): def __init__(self, fin): self.sections = None self.section_bodies = {} self.entry = None if type(fin) is str: fin = io.StringIO(fin) self.reader = QueueReader(fin) self.parse() def parse(self): sections = collections.OrderedDict() current_section = None lineno = 0 while True: lineno += 1 raw = self.reader.readline() if not raw: break line = raw.split(';')[0].strip() if not line: continue elif line.startswith('.sect'): args = line.split(maxsplit=1)[1].split(' ') name = args[0].upper() if len(args) > 1: addr = int(args[1], 16) else: if name == 'TEXT': addr = 0x4000 else: addr = 0x6000 new_sect = Section(addr) sections[name] = new_sect current_section = new_sect elif line.startswith('.include'): filename = line.split(maxsplit=1)[1].strip() if filename.startswith('zstdlib/'): filename = os.path.join(os.path.dirname(__file__), '../../..', filename) self.reader.insert_file(open(filename)) elif line.startswith('.entry'): entry = line.split()[1] return self.try_parse_imm(entry) elif line.startswith('.align'): current_section.align(self._parse_int(line.split()[1])) elif line.startswith('.db'): data = line[3:].split(',') bytes_data = bytes(int(i.strip(), 16) for i in data) current_section.write(bytes_data) elif line.startswith('.zero'): data = line[5:].strip() if data.startswith('0x'): n = int(data, 16) else: n = int(data) current_section.write(b'\0' * n) elif line.startswith('.str'): data = line[4:].strip() bytes_data = unescape_str_to_bytes(data[1:-1]) current_section.write(bytes_data + b'\0\0') elif line[-1] == ':': label_name = line[:-1] current_section.label(label_name) else: for ins in self.parse_instruction(line): current_section.write(ins) self.sections = sections def resolve_label(self, name): for section in self.sections.values(): addr = section.labels.get(name, None) if addr: return addr def get_entry(self): if type(self.entry) is Symbol: return self.entry.resolve(self.resolve_label) elif self.entry is not None: return self.entry elif self.resolve_label('start'): return self.resolve_label('start') else: return 0x4000 def build(self): sections = [] bodies = [] for name, section in self.sections.items(): buff = io.BytesIO() ip = section.addr for data in section.container: if type(data) is Instruction: ins = data if type(ins.imm) is Symbol: sym = ins.imm buff.write(ins.compose(sym.resolve(self.resolve_label, ip))) else: buff.write(ins.compose()) ip += 4 elif type(data) is Symbol: val = data.resolve(self.resolve_label, ip) buff.write(p32(val)) ip += 4 elif type(data) is bytes: buff.write(data) ip += len(data) body = buff.getvalue() self.section_bodies[name] = body bodies.append(body) sections.append(struct.pack('<HH', section.addr, # section_addr len(body), # section_size )) header = struct.pack('<ccHHH', b'Z', b'z', # magic 0, # file_ver self.get_entry(), # entry len(bodies), # section_count ) return header + b''.join(sections) + b''.join(bodies) def parse_instruction(self, line): try: ins_name, args = line.split(maxsplit=1) args = [ i.strip() for i in args.split(',') ] except: ins_name = line args = [] if ins_name.upper() == 'JMP': is_jmp = True ins_name = 'ADDI' args = ['IP', 'IP', args[0]] else: is_jmp = False if len(args) > 0: if ins_name[0].upper() == 'J' or ins_name.upper() == 'CALL' or is_jmp: rel = True else: rel = False imm = self.try_parse_imm(args[-1], rel=rel) if imm is None: if rel: raise ValueError('jump instruction must have target\nline: %r' % line) regs = args else: regs = args[:-1] yield Instruction(ins_name, *regs, imm=imm) else: yield Instruction(ins_name, *args) def try_parse_imm(self, val, rel=False): if val[0] == '$': if '+' in val: name, offset = val[1:].split('+') offset = self._parse_int(offset) return Symbol(name, offset, is_relative=rel) else: return Symbol(val[1:], is_relative=rel) try: return self._parse_int(val) except: pass def _parse_int(self, s): s = s.strip() if s[:2] == '0x': return int(s, 16) elif s[0] == '#': return int(s[1:], 10) else: return int (s)
35647
from decimal import Decimal import simplejson as json import requests from .converter import RatesNotAvailableError, DecimalFloatMismatchError class BtcConverter(object): """ Get bit coin rates and convertion """ def __init__(self, force_decimal=False): self._force_decimal = force_decimal def _decode_rates(self, response, use_decimal=False): if self._force_decimal or use_decimal: decoded_data = json.loads(response.text, use_decimal=True) else: decoded_data = response.json() return decoded_data def get_latest_price(self, currency): """ Get Lates price of one bitcoin to valid Currency 1BTC => X USD """ url = 'https://api.coindesk.com/v1/bpi/currentprice/{}.json'.format(currency) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi').get(currency, {}).get('rate_float', None) if self._force_decimal: return Decimal(price) return price return None def get_previous_price(self, currency, date_obj): """ Get Price for one bit coin on given date """ start = date_obj.strftime('%Y-%m-%d') end = date_obj.strftime('%Y-%m-%d') url = ( 'https://api.coindesk.com/v1/bpi/historical/close.json' '?start={}&end={}&currency={}'.format( start, end, currency ) ) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi', {}).get(start, None) if self._force_decimal: return Decimal(price) return price raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given date") def get_previous_price_list(self, currency, start_date, end_date): """ Get List of prices between two dates """ start = start_date.strftime('%Y-%m-%d') end = end_date.strftime('%Y-%m-%d') url = ( 'https://api.coindesk.com/v1/bpi/historical/close.json' '?start={}&end={}&currency={}'.format( start, end, currency ) ) response = requests.get(url) if response.status_code == 200: data = self._decode_rates(response) price_dict = data.get('bpi', {}) return price_dict return {} def convert_to_btc(self, amount, currency): """ Convert X amount to Bit Coins """ if isinstance(amount, Decimal): use_decimal = True else: use_decimal = self._force_decimal url = 'https://api.coindesk.com/v1/bpi/currentprice/{}.json'.format(currency) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi').get(currency, {}).get('rate_float', None) if price: if use_decimal: price = Decimal(price) try: converted_btc = amount/price return converted_btc except TypeError: raise DecimalFloatMismatchError("convert_to_btc requires amount parameter is of type Decimal when force_decimal=True") raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given date") def convert_btc_to_cur(self, coins, currency): """ Convert X bit coins to valid currency amount """ if isinstance(coins, Decimal): use_decimal = True else: use_decimal = self._force_decimal url = 'https://api.coindesk.com/v1/bpi/currentprice/{}.json'.format(currency) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi').get(currency, {}).get('rate_float', None) if price: if use_decimal: price = Decimal(price) try: converted_amount = coins * price return converted_amount except TypeError: raise DecimalFloatMismatchError("convert_btc_to_cur requires coins parameter is of type Decimal when force_decimal=True") raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given date") def convert_to_btc_on(self, amount, currency, date_obj): """ Convert X amount to BTC based on given date rate """ if isinstance(amount, Decimal): use_decimal = True else: use_decimal = self._force_decimal start = date_obj.strftime('%Y-%m-%d') end = date_obj.strftime('%Y-%m-%d') url = ( 'https://api.coindesk.com/v1/bpi/historical/close.json' '?start={}&end={}&currency={}'.format( start, end, currency ) ) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi', {}).get(start, None) if price: if use_decimal: price = Decimal(price) try: converted_btc = amount/price return converted_btc except TypeError: raise DecimalFloatMismatchError("convert_to_btc_on requires amount parameter is of type Decimal when force_decimal=True") raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given Date") def convert_btc_to_cur_on(self, coins, currency, date_obj): """ Convert X BTC to valid currency amount based on given date """ if isinstance(coins, Decimal): use_decimal = True else: use_decimal = self._force_decimal start = date_obj.strftime('%Y-%m-%d') end = date_obj.strftime('%Y-%m-%d') url = ( 'https://api.coindesk.com/v1/bpi/historical/close.json' '?start={}&end={}&currency={}'.format( start, end, currency ) ) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi', {}).get(start, None) if price: if use_decimal: price = Decimal(price) try: converted_btc = coins*price return converted_btc except TypeError: raise DecimalFloatMismatchError("convert_btc_to_cur_on requires amount parameter is of type Decimal when force_decimal=True") raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given Date") def get_symbol(self): """ Here is Unicode symbol for bitcoin """ return "\u0E3F" _Btc_Converter = BtcConverter() get_btc_symbol = _Btc_Converter.get_symbol convert_btc_to_cur_on = _Btc_Converter.convert_btc_to_cur_on convert_to_btc_on = _Btc_Converter.convert_to_btc_on convert_btc_to_cur = _Btc_Converter.convert_btc_to_cur convert_to_btc = _Btc_Converter.convert_to_btc get_latest_price = _Btc_Converter.get_latest_price get_previous_price = _Btc_Converter.get_previous_price get_previous_price_list = _Btc_Converter.get_previous_price_list
35670
from django.utils.translation import ugettext_lazy as _ from mayan.apps.authentication.link_conditions import condition_user_is_authenticated from mayan.apps.navigation.classes import Link, Separator, Text from mayan.apps.navigation.utils import factory_condition_queryset_access from .icons import ( icon_current_user_details, icon_group_create, icon_group_delete_single, icon_group_delete_multiple, icon_group_edit, icon_group_list, icon_group_setup, icon_group_user_list, icon_user_create, icon_user_edit, icon_user_group_list, icon_user_list, icon_user_delete_single, icon_user_delete_multiple, icon_user_set_options, icon_user_setup ) from .link_conditions import condition_user_is_not_superuser from .permissions import ( permission_group_create, permission_group_delete, permission_group_edit, permission_group_view, permission_user_create, permission_user_delete, permission_user_edit, permission_user_view ) from .utils import get_user_label_text # Current user link_current_user_details = Link( args='request.user.id', condition=condition_user_is_authenticated, icon=icon_current_user_details, text=_('User details'), view='user_management:user_details' ) # Group link_group_create = Link( icon=icon_group_create, permissions=(permission_group_create,), text=_('Create new group'), view='user_management:group_create' ) link_group_delete_single = Link( args='object.id', icon=icon_group_delete_single, permissions=(permission_group_delete,), tags='dangerous', text=_('Delete'), view='user_management:group_delete_single' ) link_group_delete_multiple = Link( icon=icon_group_delete_multiple, tags='dangerous', text=_('Delete'), view='user_management:group_delete_multiple' ) link_group_edit = Link( args='object.id', icon=icon_group_edit, permissions=(permission_group_edit,), text=_('Edit'), view='user_management:group_edit' ) link_group_list = Link( condition=factory_condition_queryset_access( app_label='auth', model_name='Group', object_permission=permission_group_view, ), icon=icon_group_list, text=_('Groups'), view='user_management:group_list' ) link_group_user_list = Link( args='object.id', icon=icon_group_user_list, permissions=(permission_group_edit,), text=_('Users'), view='user_management:group_members' ) link_group_setup = Link( condition=factory_condition_queryset_access( app_label='auth', model_name='Group', callback=condition_user_is_not_superuser, object_permission=permission_group_view, view_permission=permission_group_create ), icon=icon_group_setup, text=_('Groups'), view='user_management:group_list' ) # User link_user_create = Link( condition=condition_user_is_authenticated, icon=icon_user_create, permissions=(permission_user_create,), text=_('Create new user'), view='user_management:user_create' ) link_user_delete_single = Link( args='object.id', condition=condition_user_is_authenticated, icon=icon_user_delete_single, permissions=(permission_user_delete,), tags='dangerous', text=_('Delete'), view='user_management:user_delete_single' ) link_user_delete_multiple = Link( icon=icon_user_delete_multiple, tags='dangerous', text=_('Delete'), view='user_management:user_delete_multiple' ) link_user_edit = Link( args='object.id', condition=condition_user_is_authenticated, icon=icon_user_edit, permissions=(permission_user_edit,), text=_('Edit'), view='user_management:user_edit' ) link_user_group_list = Link( args='object.id', condition=condition_user_is_authenticated, icon=icon_user_group_list, permissions=(permission_user_edit,), text=_('Groups'), view='user_management:user_groups' ) link_user_list = Link( icon=icon_user_list, text=_('Users'), condition=factory_condition_queryset_access( app_label='auth', model_name='User', callback=condition_user_is_authenticated, object_permission=permission_user_view, view_permission=permission_user_create ), view='user_management:user_list' ) link_user_set_options = Link( args='object.id', condition=condition_user_is_authenticated, icon=icon_user_set_options, permissions=(permission_user_edit,), text=_('User options'), view='user_management:user_options' ) link_user_setup = Link( condition=factory_condition_queryset_access( app_label='auth', model_name='User', object_permission=permission_user_view, view_permission=permission_user_create, ), icon=icon_user_setup, text=_('Users'), view='user_management:user_list' ) separator_user_label = Separator() text_user_label = Text( html_extra_classes='menu-user-name', text=get_user_label_text )
35683
import inspect try: from unittest import mock except ImportError: import mock import pytest from selenium.webdriver.common.by import By from selenium.webdriver.remote.webdriver import WebDriver, WebElement from selenium.common.exceptions import NoSuchElementException from page_objects import PageObject, PageElement, MultiPageElement @pytest.fixture() def webdriver(): return mock.Mock(spec=WebDriver) class TestConstructor: def test_page_element(self): elem = PageElement(css='foo') assert elem.locator == (By.CSS_SELECTOR, 'foo') def test_multi_page_element(self): elem = MultiPageElement(id_='bar') assert elem.locator == (By.ID, 'bar') def test_page_element_bad_args(self): with pytest.raises(ValueError): PageElement() with pytest.raises(ValueError): PageElement(id_='foo', xpath='bar') class TestGet: def test_get_descriptors(self, webdriver): class TestPage(PageObject): test_elem1 = PageElement(css='foo') test_elem2 = PageElement(id_='bar') webdriver.find_element.side_effect = ["XXX", "YYY"] page = TestPage(webdriver=webdriver) assert page.test_elem1 == "XXX" assert page.test_elem2 == "YYY" assert webdriver.find_element.mock_calls == [ mock.call(By.CSS_SELECTOR, 'foo'), mock.call(By.ID, 'bar'), ] def test_get_element_with_context(self, webdriver): class TestPage(PageObject): test_elem = PageElement(css='bar', context=True) page = TestPage(webdriver=webdriver) elem = mock.Mock(spec=WebElement, name="My Elem") res = page.test_elem(elem) assert elem.find_element.called_once_with(By.CSS_SELECTOR, 'bar') assert res == elem.find_element.return_value def test_get_not_found(self, webdriver): class TestPage(PageObject): test_elem = PageElement(css='bar') page = TestPage(webdriver=webdriver) webdriver.find_element.side_effect = NoSuchElementException assert page.test_elem is None def test_get_unattached(self): assert PageElement(css='bar').__get__(None, None) is None def test_get_multi(self, webdriver): class TestPage(PageObject): test_elems = MultiPageElement(css='foo') webdriver.find_elements.return_value = ["XXX", "YYY"] page = TestPage(webdriver=webdriver) assert page.test_elems == ["XXX", "YYY"] assert webdriver.find_elements.called_once_with(By.CSS_SELECTOR, 'foo') def test_get_multi_not_found(self, webdriver): class TestPage(PageObject): test_elems = MultiPageElement(css='foo') webdriver.find_elements.side_effect = NoSuchElementException page = TestPage(webdriver=webdriver) assert page.test_elems == [] class TestSet: def test_set_descriptors(self, webdriver): class TestPage(PageObject): test_elem1 = PageElement(css='foo') page = TestPage(webdriver=webdriver) elem = mock.Mock(spec=WebElement, name="My Elem") webdriver.find_element.return_value = elem page.test_elem1 = "XXX" assert webdriver.find_elements.called_once_with(By.CSS_SELECTOR, 'foo') elem.send_keys.assert_called_once_with('XXX') def test_cannot_set_with_context(self, webdriver): class TestPage(PageObject): test_elem = PageElement(css='foo', context=True) page = TestPage(webdriver=webdriver) with pytest.raises(ValueError) as e: page.test_elem = 'xxx' assert "doesn't support elements with context" in e.value.args[0] def test_cannot_set_not_found(self, webdriver): class TestPage(PageObject): test_elem = PageElement(css='foo') page = TestPage(webdriver=webdriver) webdriver.find_element.side_effect = NoSuchElementException with pytest.raises(ValueError) as e: page.test_elem = 'xxx' assert "element not found" in e.value.args[0] def test_set_multi(self, webdriver): class TestPage(PageObject): test_elems = MultiPageElement(css='foo') page = TestPage(webdriver=webdriver) elem1 = mock.Mock(spec=WebElement) elem2 = mock.Mock(spec=WebElement) webdriver.find_elements.return_value = [elem1, elem2] page.test_elems = "XXX" assert webdriver.find_elements.called_once_with(By.CSS_SELECTOR, 'foo') elem1.send_keys.assert_called_once_with('XXX') elem2.send_keys.assert_called_once_with('XXX') def test_cannot_set_multi_with_context(self, webdriver): class TestPage(PageObject): test_elem = MultiPageElement(css='foo', context=True) page = TestPage(webdriver=webdriver) with pytest.raises(ValueError) as e: page.test_elem = 'xxx' assert "doesn't support elements with context" in e.value.args[0] def test_cannot_set_multi_not_found(self, webdriver): class TestPage(PageObject): test_elem = MultiPageElement(css='foo') page = TestPage(webdriver=webdriver) webdriver.find_elements.side_effect = NoSuchElementException with pytest.raises(ValueError) as e: page.test_elem = 'xxx' assert "no elements found" in e.value.args[0] class TestRootURI: class TestPage(PageObject): pass def test_from_constructor(self, webdriver): page = self.TestPage(webdriver=webdriver, root_uri="http://example.com") assert page.root_uri == 'http://example.com' def test_from_webdriver(self): webdriver = mock.Mock(spec=WebDriver, root_uri="http://example.com/foo") page = self.TestPage(webdriver=webdriver) assert page.root_uri == 'http://example.com/foo' def test_get(self, webdriver): page = self.TestPage(webdriver=webdriver, root_uri="http://example.com") page.get('/foo/bar') assert webdriver.get.called_once_with("http://example.com/foo/bar") def test_get_no_root(self, webdriver): page = self.TestPage(webdriver=webdriver) page.get('/foo/bar') assert webdriver.get.called_once_with("/foo/bar")
35739
from metaflow import FlowSpec, step class ForeachFlow(FlowSpec): @step def start(self): self.creatures = ['bird', 'mouse', 'dog'] self.next(self.analyze_creatures, foreach='creatures') @step def analyze_creatures(self): print("Analyzing", self.input) self.creature = self.input self.score = len(self.creature) self.next(self.join) @step def join(self, inputs): self.best = max(inputs, key=lambda x: x.score).creature self.next(self.end) @step def end(self): print(self.best, 'won!') if __name__ == '__main__': ForeachFlow()
35745
from dataclasses import dataclass, field from itertools import chain from typing import Optional from talon import Context, Module, actions, app, cron, ui # XXX(nriley) actions are being returned out of order; that's a problem if we want to pop up a menu mod = Module() mod.list("notification_actions", desc="Notification actions") mod.list("notification_apps", desc="Notification apps") notification_debug = mod.setting( "notification_debug", type=bool, default=False, desc="Display macOS notification debugging information.", ) try: from rich.console import Console console = Console(color_system="truecolor", soft_wrap=True) def debug_print(obj: any, *args): """Pretty prints the object""" if not notification_debug.get(): return if args: console.out(obj, *args) else: console.print(obj) except ImportError: def debug_print(obj: any, *args): if not notification_debug.get(): return print(obj, *args) @mod.action_class class Actions: def notification_action(index: int, action: str) -> bool: """Perform the specified action on the notification (stack) at the specified index""" return False def notification_app_action(app_name: str, action: str) -> bool: """Perform the specified action on the first notification (stack) for the specified app""" return False def notifications_update(): """Update notification list to reflect what is currently onscreen""" # (poll? not try to keep up? not sure what else to do) def notification_center(): """Display or hide Notification Center""" @dataclass(frozen=True) class Notification: identifier: int subrole: str = field(default=None, compare=False) app_name: str = field(default=None, compare=False) stacking_identifier: str = field(default=None, compare=False) title: str = field(default=None, compare=False) subtitle: str = field(default=None, compare=False) body: str = field(default=None, compare=False) # action values are named "Name:<name>\nTarget:0x0\nSelector:(null)"; keys are speakable actions: dict[str, str] = field(default=None, compare=False) @staticmethod def group_identifier(group): identifier = getattr(group, "AXIdentifier", None) if identifier is None or not str.isdigit(identifier): return None return int(identifier) @staticmethod def from_group(group, identifier): group_actions = group.actions if "AXScrollToVisible" in group_actions: del group_actions["AXScrollToVisible"] # not useful # XXX(nriley) create_spoken_forms_from_list doesn't handle apostrophes correctly # https://github.com/knausj85/knausj_talon/issues/780 group_actions = { name.lower().replace("’", "'"): action for action, name in group_actions.items() } title = body = subtitle = None try: title = group.children.find_one(AXIdentifier="title").AXValue except ui.UIErr: pass try: body = group.children.find_one(AXIdentifier="body").AXValue except ui.UIErr: pass try: subtitle = group.children.find_one(AXIdentifier="subtitle").AXValue except ui.UIErr: pass return Notification( identifier=identifier, subrole=group.AXSubrole, app_name=group.AXDescription, stacking_identifier=group.AXStackingIdentifier, title=title, subtitle=subtitle, body=body, actions=group_actions, ) @staticmethod def notifications_in_window(window): notifications = [] for group in window.children.find(AXRole="AXGroup"): if not (identifier := Notification.group_identifier(group)): continue notification = Notification.from_group(group, identifier) notifications.append(notification) return notifications MONITOR = None ctx = Context() ctx.matches = r""" os: mac """ ctx.lists["user.notification_actions"] = {} ctx.lists["user.notification_apps"] = {} @ctx.action_class("user") class UserActions: def notification_action(index: int, action: str) -> bool: return MONITOR.perform_action(action, index=index) def notification_app_action(app_name: str, action: str) -> bool: return MONITOR.perform_action(action, app_name=app_name) def notifications_update(): MONITOR.update_notifications() def notification_center(): cc = ui.apps(bundle="com.apple.controlcenter")[0] cc.element.children.find_one(AXRole="AXMenuBar", max_depth=0).children.find_one( AXRole="AXMenuBarItem", AXSubrole="AXMenuExtra", AXIdentifier="com.apple.menuextra.clock", max_depth=0, ).perform("AXPress") class NotificationMonitor: __slots__ = ( "pid", "notifications", ) def __init__(self, app: ui.App): self.pid = app.pid self.notifications = [] ui.register("win_open", self.win_open) ui.register("win_close", self.win_close) ui.register("app_close", self.app_closed) self.update_notifications() def win_open(self, window): if not window.app.pid == self.pid: return notifications = Notification.notifications_in_window(window) self.update_notifications(adding=notifications) def notification_groups(self): ncui = ui.apps(pid=self.pid)[0] for window in ncui.windows(): for group in window.children.find(AXRole="AXGroup"): if not (identifier := Notification.group_identifier(group)): continue yield identifier, group def perform_action( self, action: str, index: Optional[int] = None, app_name: str = None ): self.update_notifications() cron.after("500ms", self.update_notifications) notification = None if index is not None: if index < 0 or index > len(self.notifications) - 1: app.notify(f"Unable to locate notification #{index + 1}", "Try again?") return False notification = self.notifications[index] elif app_name is not None: try: notification = next( notification for notification in self.notifications if notification.app_name == app_name ) except StopIteration: app.notify( f"Unable to locate notification for {app_name}", "Try again?" ) return False for identifier, group in self.notification_groups(): if identifier != notification.identifier: continue if action not in notification.actions: # allow closing a notification stack like an individual notification if action == "close" and "clear all" in notification.actions: action = "clear all" else: app.notify(f"No such action “{action}”", "Try again?") return False group.perform(notification.actions[action]) return True app.notify("Unable to locate notification", "Try again?") return False def update_notifications(self, adding=[]): if adding: self.notifications += adding notifications = {} for identifier, group in self.notification_groups(): y = group.AXPosition.y try: notifications[y] = self.notifications[ self.notifications.index(Notification(identifier=identifier)) ] except ValueError: notifications[y] = Notification.from_group(group, identifier) self.notifications = list(notifications.values()) if notifications: debug_print(notifications) notification_actions = set() notification_apps = set() for notification in self.notifications: notification_actions.update(notification.actions.keys()) notification_apps.add(notification.app_name) notification_actions = list(notification_actions) # XXX(nriley) create_spoken_forms_from_list doesn't handle apostrophes correctly # https://github.com/knausj85/knausj_talon/issues/780 apostrophe_words = { word.replace("'", " "): word for word in chain.from_iterable( action.split() for action in notification_actions ) if "'" in word } words_to_exclude = [word.split(" ")[0] for word in apostrophe_words] notification_actions = actions.user.create_spoken_forms_from_list( notification_actions, words_to_exclude=words_to_exclude ) if apostrophe_words: notification_actions = { spoken_form.replace(mangled_word, word): action for mangled_word, word in apostrophe_words.items() for spoken_form, action in notification_actions.items() if "apostrophe" not in spoken_form } if notification_actions: debug_print("actions", notification_actions) if "close" not in notification_actions and "clear all" in notification_actions: # allow closing a notification stack like an individual notification notification_actions["close"] = "clear all" ctx.lists["user.notification_actions"] = notification_actions # XXX(nriley) use app name overrides from knausj? notification_apps = actions.user.create_spoken_forms_from_list( notification_apps ) ctx.lists["user.notification_apps"] = notification_apps if notification_apps: debug_print("apps", notification_apps) def win_close(self, window): if not window.app.pid == self.pid: return self.update_notifications() def app_closed(self, app): if app.pid == self.pid: ui.unregister("app_close", self.app_closed) def app_launched(app): global MONITOR if not app.bundle == "com.apple.notificationcenterui": return MONITOR = NotificationMonitor(app) def monitor(): global MONITOR apps = ui.apps(bundle="com.apple.notificationcenterui") if apps: MONITOR = NotificationMonitor(apps[0]) ui.register("app_launch", app_launched) app.register("ready", monitor)
35753
import os import time from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from transformers import PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer from transformers.data.datasets import GlueDataset from transformers.data.datasets import GlueDataTrainingArguments from transformers.data.processors.glue import glue_convert_examples_to_features from transformers.data.processors.utils import InputFeatures from loguru import logger from ..processors.seq_clf import seq_clf_output_modes, seq_clf_processors, seq_clf_tasks_num_labels class Split(Enum): train = 'train' dev = 'dev' test = 'test' class SeqClfDataset(GlueDataset): """ Why this class even exists? `class GlueDataset(Dataset)` has a constructor `def __init__()` with `processor = glue_processors[args.task_name]()`, however I want to expand `glue_processors` with protein clf task names. The line `processor = glue_processors[args.task_name]()` in parent class doesn't accomodate this. """ args: GlueDataTrainingArguments output_mode: str features: List[InputFeatures] def __init__( self, args: GlueDataTrainingArguments, tokenizer: PreTrainedTokenizer, limit_length: Optional[int] = None, mode: Union[str, Split] = Split.train, cache_dir: Optional[str] = None, ): self.args = args self.processor = seq_clf_processors[args.task_name]() self.output_mode = seq_clf_output_modes[args.task_name] if isinstance(mode, str): try: mode = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file cached_features_file = os.path.join( cache_dir if cache_dir is not None else args.data_dir, 'cached_{}_{}_{}_{}'.format( mode.value, tokenizer.__class__.__name__, str(args.max_seq_length), args.task_name, ), ) label_list = self.processor.get_labels() if args.task_name in ['mnli', 'mnli-mm'] and tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] self.label_list = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + '.lock' with FileLock(lock_path): if os.path.exists(cached_features_file) and not args.overwrite_cache: start = time.time() self.features = torch.load(cached_features_file) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]', time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}') if mode == Split.dev: examples = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: examples = self.processor.get_test_examples(args.data_dir) else: examples = self.processor.get_train_examples(args.data_dir) if limit_length is not None: examples = examples[:limit_length] # Load a data file into a list of ``InputFeatures`` self.features = glue_convert_examples_to_features( examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=self.output_mode, ) start = time.time() torch.save(self.features, cached_features_file) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( 'Saving features into cached file %s [took %.3f s]', cached_features_file, time.time() - start ) def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] def get_labels(self): return self.label_list
35771
import os import ipaddress import numpy as np import pandas as pd import datetime import boto3 import gzip import json from signal_processing import signalProcess BUCKET_NAME = os.environ.get("BUCKET_NAME", None) VPC_FLOW_LOGS_PATH = os.environ.get("VPC_FLOW_LOGS_PATH", None) FINDINGS_PATH = os.environ.get("FINDINGS_PATH", None) TMP_DOWNLOAD_DIR = "/tmp/s3_download" FLOW_COLUMNS = [ "date", "version", "account-id", "interface-id", "srcaddr", "dstaddr", "srcport", "dstport", "protocol", "packets", "bytes", "start", "end", "action", "log-status", ] def cloud_sniper_beaconing_detection(event, context): bucket_name = BUCKET_NAME vpc_flow_logs_path = VPC_FLOW_LOGS_PATH findings_path = FINDINGS_PATH df = load_data(bucket_name, vpc_flow_logs_path) print(f"Number of raw records: {len(df.index)}") version = df.version.iloc[0] # constant account_id = df["account-id"].iloc[0] # constant df = filter_format_data(df) print(f"Number of records after filtering missing data: {len(df.index)}") df = sort_data(df) print(f"Number of records after filtering by time: {len(df.index)}") df = filter_useless_data(df) print(f"Number of records after filtering by port: {len(df.index)}") df = filter_unfrequent_data(df) print(f"Number of records after filtering unfrequent: {len(df.index)}") res = find_beacons(df) new_fields = { "hits": "", "cloud.provider": "aws", "event.type": "beaconing", "cloud.account.name": "", "interface.vpc.id": "", "protocol": "", "version": version, "cloud.account.id": account_id, } list(map(lambda x: x.update(new_fields), res)) print(f"Result: {res}") save_results(bucket_name, findings_path, res) return res def load_data(s3_bucket, s3_vpc_flow_logs_path): s3 = boto3.resource('s3') bucket = s3.Bucket(name=s3_bucket) prefix = s3_vpc_flow_logs_path if prefix.startswith("/"): prefix = prefix[1:] if not prefix.endswith("/"): prefix += "/" if not os.path.exists(TMP_DOWNLOAD_DIR): os.mkdir(TMP_DOWNLOAD_DIR) for i, s3_file_obj in enumerate(bucket.objects.filter(Prefix=prefix)): if s3_file_obj.key.endswith(".log.gz"): extension = "log.gz" elif s3_file_obj.key.endswith(".log"): extension = "log" else: continue bucket.download_file(s3_file_obj.key, TMP_DOWNLOAD_DIR + "/%06d" % i + "." + extension) data = [] for fname in sorted(os.listdir(TMP_DOWNLOAD_DIR)): if fname.endswith(".log.gz"): open_ = gzip.open decode = True elif fname.endswith(".log"): open_ = open decode = False else: continue with open_(os.path.join(TMP_DOWNLOAD_DIR, fname), 'r') as fd: first_line = True for line in fd: if first_line: first_line = False continue if decode: line = line.decode("utf-8").strip().split(" ") else: line = line.strip().split(" ") data.append(line) if data and (len(data[0]) == len(FLOW_COLUMNS)): df = pd.DataFrame(data, columns=FLOW_COLUMNS) df.drop(['date'], axis=1, inplace=True) else: df = pd.DataFrame(data, columns=FLOW_COLUMNS[1:]) return df def filter_format_data(df): df = df[df.srcaddr != "-"] df = df[df.dstaddr != "-"] df.drop(["version", "srcport"], axis=1, inplace=True) df = df.replace("-", np.nan) df = df.replace("-", np.nan) df[["dstport", "protocol", "packets", "bytes", "start", "end"]] = \ df[["dstport", "protocol", "packets", "bytes", "start", "end"]] \ .apply(pd.to_numeric) return df def sort_data(df): df['datetime'] = pd.to_datetime(df.start, unit='s') # TODO: should we process just the last hours? df = df.set_index('datetime') df.sort_index(inplace=True) return df.reset_index(level=0) def filter_useless_data(df): # Requirements # * srcIP should be private # * dstport < 1024 and != 123 if df.empty: return df df = df[df.srcaddr.map(lambda x: ipaddress.ip_address(x).is_private)] df = df[df.dstport <= 1024] df = df[df.dstport != 123] return df def filter_unfrequent_data(df): # remove communications if there were less than 6 snippets selection = df.groupby(["srcaddr", "dstaddr", "dstport"]) df = selection.filter(lambda x: len(x) >= 6) df = df.reset_index(level=0) return df def find_beacons(df): res = [] time_fmt = "%Y-%m-%dT%H:%M:%S.%f" groups = df.groupby(["srcaddr", "dstaddr", "dstport"]) data_in = { "data": {}, "time": {} } for (srcaddr, dstaddr, port), traffic in groups: k = (srcaddr, dstaddr, port) data_in["data"][k] = traffic.bytes data_in["time"][k] = traffic.datetime lrner = signalProcess(data_in, options_in=None) output = lrner.getPrimaryPeriods() for (srcaddr, dstaddr, port) in output["powers"]: if output["powers"][(srcaddr, dstaddr, port)][0] is not None: print(data_in["time"][k]) k = (srcaddr, dstaddr, port) start_time = data_in["time"][k].iloc[0].strftime(time_fmt)[:-3] + 'Z' end_time = data_in["time"][k].iloc[-1].strftime(time_fmt)[:-3] + 'Z' res.append({ "source.ip": srcaddr, "destination.ip": dstaddr, "destination.port": int(port), "timestamp": start_time, "event.end": end_time, "event.start": start_time }) return res def save_results(bucket_name, findings_path, res): now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") s3_resource = boto3.resource('s3') bucket = s3_resource.Bucket(name=bucket_name) if findings_path.startswith("/"): findings_path = findings_path[1:] if findings_path.endswith("/"): findings_path = findings_path[:-1] (bucket.Object(key=f"{findings_path}/beaconing_detection_{now}.json") .put(Body=bytes(json.dumps(res).encode('UTF-8')))) if __name__ == "__main__": print(json.dumps(cloud_sniper_beaconing_detection(None, None), indent=4))
35772
import argparse import json parser = argparse.ArgumentParser() parser.add_argument("--text", type=str, help="path to original text file") parser.add_argument("--train", type=str, help="path to original training data file") parser.add_argument("--valid", type=str, help="path to original validation data file") parser.add_argument("--converted_text", type=str, default="Qdesc.txt", help="path to converted text file") parser.add_argument("--converted_train", type=str, default="train.txt", help="path to converted training file") parser.add_argument("--converted_valid", type=str, default="valid.txt", help="path to converted validation file") if __name__=='__main__': args = parser.parse_args() Qid={} #Entity to id (line number in the description file) Pid={} #Relation to id def getNum(s): return int(s[1:]) with open(args.text, "r") as fin: with open(args.converted_text, "w") as fout: lines = fin.readlines() Cnt=0 for idx, line in enumerate(lines): data = line.split('\t') assert len(data) >= 2 assert data[0].startswith('Q') desc = '\t'.join(data[1:]).strip() if getNum(data[0])>1000: continue fout.write(desc+"\n") Qid[data[0]] = Cnt#idx Cnt+=1 def convert_triples(inFile, outFile): with open(inFile, "r") as fin: with open(outFile, "w") as fout: lines = fin.readlines() for line in lines: data = line.strip().split('\t') assert len(data) == 3 if getNum(data[0])>1000 or getNum(data[2]) > 1000: continue if data[1] not in Pid: Pid[data[1]] = len(Pid) fout.write("%d %d %d\n"%(Qid[data[0]], Pid[data[1]], Qid[data[2]])) convert_triples(args.train, args.converted_train) convert_triples(args.valid, args.converted_valid)
35806
import re, logging from django import forms from django.forms import ModelForm from django.utils.translation import ugettext as _ from django.contrib.localflavor.us.forms import USStateSelect,\ USPhoneNumberField from models import Preference, ShippingWeight, ShippingPrice, ShippingItem, TaxState, DnsShop, EmailNotification from preferences.models import ShopPolicies from auth.models import User from users.models import Profile class GeneralPreferenceForm(ModelForm): email = forms.EmailField(required=False) phone = USPhoneNumberField(required=False) class Meta: model = Preference fields = ['name_store', 'email', 'phone'] class ProfileForm(ModelForm): state = forms.CharField(widget=USStateSelect) class Meta: model = Profile fields = ['street_address', 'zip', 'city', 'state', 'country', ] def clean_zip(self): zip = self.cleaned_data.get("zip", "") if zip.strip() == "": raise forms.ValidationError("Zip is a required field.") if not (re.match("[0-9]{5}(-[0-9]{4})?$", zip)): raise forms.ValidationError("Invalid Zip code. Valid formats are XXXXX or XXXXX-XXXX") return zip def clean_country(self): country = self.cleaned_data.get("country", "") if country.strip() == "": raise forms.ValidationError("Country is a required field.") return country def clean_street_address(self): street = self.cleaned_data.get("street_address", "") if street.strip() == "": raise forms.ValidationError("Street is a required field.") return street def clean_city(self): city = self.cleaned_data.get("city", "") if city.strip() == "": raise forms.ValidationError("City is a required field.") return city class TaxesPreferenceForm(ModelForm): class Meta: model = Preference fields = ['taxes_same_state_store', 'taxes_to_shipping_fees'] class TaxStateForm(ModelForm): #state = forms.CharField(widget=USStateSelect) tax = forms.DecimalField(help_text=_("Enter a state tax rate number (between 1 and 100)")) class Meta: model = TaxState exclude = ['shop'] def __init__(self, shop, *args, ** kwargs): self.shop = shop super(TaxStateForm, self).__init__(*args, ** kwargs) def clean_state(self): state = self.cleaned_data['state'] try: TaxState.objects.get(shop=self.shop, state=state) except TaxState.DoesNotExist: return state raise forms.ValidationError(_("A tax for state %s already exists." % state)) def clean_tax(self): tax = self.cleaned_data['tax'] if tax < 0: raise forms.ValidationError(_("A tax has to be more or equal 0%")) elif tax > 100: raise forms.ValidationError(_("A tax has to be less than 100%")) return tax class TaxStateEditForm(ModelForm): class Meta: model = TaxState exclude = ['shop', 'state'] def __init__(self, shop, *args, ** kwargs): self.shop = shop super(TaxStateEditForm, self).__init__(*args, ** kwargs) def clean_tax(self): tax = self.cleaned_data['tax'] if tax < 0: raise forms.ValidationError(_("A tax has to be more or equal 0%")) elif tax > 100: raise forms.ValidationError(_("A tax has to be less than 100%")) return tax class AuctionsPreferenceForm(ModelForm): class Meta: model = Preference fields = ['allow_sessions', 'allow_open_auctions', 'default_days', 'open_auto_extend', 'session_auto_extend'] class DnsShopForm(ModelForm): class Meta: model = DnsShop exclude = ['shop'] def clean_dns(self): dns = self.cleaned_data['dns'] try: DnsShop.objects.get(dns=dns) except DnsShop.DoesNotExist: return dns raise forms.ValidationError(_("A shop with that dns already exists.")) class ShippingWeightForm(ModelForm): class Meta: model = ShippingWeight exclude = ['shop'] class ShippingPriceForm(ModelForm): class Meta: model = ShippingPrice exclude = ['shop'] class ShippingItemForm(ModelForm): class Meta: model = ShippingItem exclude = ['shop'] class EmailNotificationForm(ModelForm): class Meta: model = EmailNotification fields = ['subject', 'body'] class ShopPoliciesForm(ModelForm): class Meta: model = ShopPolicies fields = ['refund_policy', 'privacy_policy', 'terms_of_service'] class MarketingForm(ModelForm): class Meta: model = Preference fields = ['google_analytics_account_number'] def clean_google_analytics_account_number(self): google_analytics_account_number = self.cleaned_data['google_analytics_account_number'] if re.match(r"^\w{2}\-\d{4,8}\-\d$", google_analytics_account_number) is None: raise forms.ValidationError('Invalid analitycs account number') return google_analytics_account_number class UsernameChangeForm(forms.ModelForm): username = forms.RegexField(label=_("Username"), max_length=30, regex=r'^\w+$', help_text = _("Required. 30 characters or fewer. Alphanumeric characters only (letters, digits and underscores)."), error_message = _("This value must contain only letters, numbers and underscores.")) class Meta: model = User fields = ['username']
35826
import asyncio import json import os from datetime import datetime, timedelta import aiohttp import tweepy from dateutil.parser import parse from fpl import FPL, utils from pymongo import MongoClient from constants import lineup_markers, twitter_usernames dirname = os.path.dirname(os.path.realpath(__file__)) client = MongoClient() database = client.team_news def short_name_converter(team_id): """Converts a team's ID to their short name.""" short_name_map = { 1: "ARS", 2: "AVL", 3: "BHA", 4: "BUR", 5: "CHE", 6: "CRY", 7: "EVE", 8: "FUL", 9: "LEI", 10: "LEE", 11: "LIV", 12: "MCI", 13: "MUN", 14: "NEW", 15: "SHU", 16: "SOU", 17: "TOT", 18: "WBA", 19: "WHU", 20: "WOL", None: None } return short_name_map[team_id] async def get_current_fixtures(): async with aiohttp.ClientSession() as session: fpl = FPL(session) current_gameweek = await utils.get_current_gameweek(session) fixtures = await fpl.get_fixtures_by_gameweek(current_gameweek) min_range = timedelta(minutes=2) return [fixture for fixture in fixtures if fixture.team_news_time.replace(tzinfo=None) - min_range < datetime.now() < fixture.team_news_time.replace(tzinfo=None) + min_range] def is_new_lineup(fixture_id, team_id): if database.lineup.count_documents({"fixture_id": fixture_id, "team_id": team_id}) < 1: return True return False def add_lineup_to_database(fixture_id, team_id, url): self.database.lineup.update_one( {"fixture_id": fixture_id}, {"$set": {"fixture_id": fixture_id, "team_id": team_id, "url": url}}, upsert=True ) def lineup_handler(team_id, team_short_name, opponent_id): team_name = twitter_usernames[team_short_name] for status in api.user_timeline(screen_name=team_name, tweet_mode="extended", count=3): status_split = status.full_text.lower().replace("-", " ").split() for marker in lineup_markers: if marker in list(zip(split_status, split_status[1:])): if "media" not in status.entities: continue media = status.entities["media"][0] media_url = media["media_url_https"] if is_new_lineup(fixture.id, team_id): add_lineup_to_database(fixture.id, team_id, media_url) return async def main(config): auth = tweepy.OAuthHandler(config["CONSUMER_API_KEY"], config["CONSUMER_API_SECRET_KEY"]) auth.set_access_token(config["ACCESS_TOKEN"], config["ACCESS_TOKEN_SECRET"]) api = tweepy.API(auth) current_fixtures = await get_current_fixtures() images_urls = [] for fixture in current_fixtures: team_h_short = short_name_converter(fixture.team_h) team_a_short = short_name_converter(fixture.team_a) lineup_handler(fixture.team_h, team_h_short, fixture.team_a) lineup_handler(fixture.team_a, team_a_short, fixture.team_h) if __name__ == "__main__": with open(f"{dirname}/../twitter_config.json") as file: config = json.loads(file.read()) try: asyncio.run(main(config)) except AttributeError: loop = asyncio.get_event_loop() loop.run_until_complete(main(config)) loop.close()
35891
from submission import Submission class JulesSubmission(Submission): def run(self, s): # :param s: input in string format # :return: solution flag # your solution code goes here def find_for_row(row): for fi in range(len(row)): for si in range(fi + 1, len(row)): if row[fi] > row[si] and row[fi] % row[si] == 0: return int(row[fi] / row[si]) elif row[si] % row[fi] == 0: return int(row[si] / row[fi]) row_list = [[int(x) for x in row.split()] for row in s.split('\n')] return str(sum([find_for_row(row) for row in row_list]))
35895
from gazette.spiders.base.fecam import FecamGazetteSpider class ScChapecoSpider(FecamGazetteSpider): name = "sc_chapeco" FECAM_QUERY = "cod_entidade:71" TERRITORY_ID = "4204202"
35926
from collections import defaultdict from ...account.models import Address, CustomerEvent, User from ..core.dataloaders import DataLoader class AddressByIdLoader(DataLoader): context_key = "address_by_id" def batch_load(self, keys): address_map = Address.objects.in_bulk(keys) return [address_map.get(address_id) for address_id in keys] class UserByUserIdLoader(DataLoader): context_key = "user_by_id" def batch_load(self, keys): user_map = User.objects.in_bulk(keys) return [user_map.get(user_id) for user_id in keys] class CustomerEventsByUserLoader(DataLoader): context_key = "customer_events_by_user" def batch_load(self, keys): events = CustomerEvent.objects.filter(user_id__in=keys) events_by_user_map = defaultdict(list) for event in events: events_by_user_map[event.user_id].append(event) return [events_by_user_map.get(user_id, []) for user_id in keys]
36002
import os from djangular import utils from django.test import SimpleTestCase class SiteAndPathUtilsTest(SimpleTestCase): site_utils = utils.SiteAndPathUtils() def test_djangular_root(self): current_dir = os.path.dirname(os.path.abspath(__file__)) djangular_dir = os.path.dirname(current_dir) self.assertEqual(djangular_dir, self.site_utils.get_djangular_root())
36005
from encoded.searches.mixins import CartAggsToFacetsMixin from snosearch.responses import BasicQueryResponseWithFacets from snosearch.responses import BasicMatrixResponseWithFacets class CartQueryResponseWithFacets(CartAggsToFacetsMixin, BasicQueryResponseWithFacets): ''' Like BasicQueryResponseWithFacets but uses CartAggsToFacetsMixin instead of AggsToFacetsMixin. ''' def __init__(self, results, query_builder, *args, **kwargs): super().__init__(results, query_builder, *args, **kwargs) class CartMatrixResponseWithFacets(CartAggsToFacetsMixin, BasicMatrixResponseWithFacets): ''' Like BasicMatrixResponseWithFacets but uses CartAggsToFacetsMixin instead of AggsToFacetsMixin. ''' def __init__(self, results, query_builder, *args, **kwargs): super().__init__(results, query_builder, *args, **kwargs)
36023
import teek def on_click(): print("You clicked me!") window = teek.Window() button = teek.Button(window, "Click me", command=on_click) button.pack() window.on_delete_window.connect(teek.quit) teek.run()
36039
class Node: def __init__(self, value): self.value = value self.next = None # Have no idea how to do this # import sys # sys.path.insert(0, '../../data_structures') # import node def intersection(l1: Node, l2: Node) -> Node: l1_end, len1 = get_tail(l1) l2_end, len2 = get_tail(l2) if l1_end != l2_end: return None if len1 > len2: l1 = move_head(l1, len1 - len2) else: l2 = move_head(l2, len2 - len1) while l1 != l2: l1 = l1.next l2 = l2.next print(l1.value, l2.value) return l1 def move_head(head: Node, pos: int) -> Node: current = head while pos > 0: current = current.next pos -= 1 return current def get_tail(head: Node) -> (Node, int): current = head length = 0 while not current.next == None: current = current.next length += 1 return (current, length) inter = Node('c') inter.next = Node('a') inter.next.next = Node('r') l1 = Node('r') l1.next = Node('a') l1.next.next = Node('c') l1.next.next.next = Node('e') l1.next.next.next.next = inter l2 = Node('r') l2.next = Node('e') l2.next.next = Node('d') l2.next.next.next = inter res = intersection(l1, l2) print(res.value)
36048
import os from .abstract_command import AbstractCommand from ..services.state_utils import StateUtils from ..services.state import StateHolder from ..services.command_handler import CommandHandler from ..services.console_logger import ColorPrint class Start(AbstractCommand): command = ["start", "up"] args = ["[<project/plan>]"] args_descriptions = {"[<project/plan>]": "Name of the project in the catalog and/or name of the project's plan"} description = "Run: 'poco start nginx/default' or 'poco up nginx/default' to start nginx project (docker, helm " \ "or kubernetes) with the default plan." run_command = "start" need_checkout = True def prepare_states(self): StateUtils.calculate_name_and_work_dir() StateUtils.prepare("compose_handler") def resolve_dependencies(self): if StateHolder.catalog_element is not None and not StateUtils.check_variable('repository'): ColorPrint.exit_after_print_messages(message="Repository not found for: " + str(StateHolder.name)) self.check_poco_file() def execute(self): if self.need_checkout: StateHolder.compose_handler.run_checkouts() CommandHandler().run(self.run_command) if hasattr(self, "end_message"): ColorPrint.print_info(getattr(self, "end_message")) @staticmethod def check_poco_file(): if not StateUtils.check_variable('poco_file'): poco_file = str(StateHolder.repository.target_dir if StateHolder.repository is not None else os.getcwd()) + '/poco.yml' ColorPrint.print_error(message="Poco file not found: " + poco_file) ColorPrint.exit_after_print_messages(message="Use 'poco init " + StateHolder.name + "', that will generate a default poco file for you", msg_type="warn")