id
stringlengths
3
8
content
stringlengths
100
981k
31603
from os import environ from pathlib import Path from appdirs import user_cache_dir from ._version import version as __version__ # noqa: F401 from .bridge import Transform # noqa: F401 from .core import combine # noqa: F401 from .geodesic import BBox, line, panel, wedge # noqa: F401 from .geometry import get_coastlines # noqa: F401 from .geoplotter import GeoBackgroundPlotter, GeoMultiPlotter, GeoPlotter # noqa: F401 from .log import get_logger # Configure the top-level logger. logger = get_logger(__name__) # https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html _cache_dir = Path(environ.get("XDG_CACHE_HOME", user_cache_dir())) / __package__ #: GeoVista configuration dictionary. config = dict(cache_dir=_cache_dir) try: from .siteconfig import update_config as _update_config _update_config(config) del _update_config except ImportError: pass try: from geovista_config import update_config as _update_config _update_config(config) del _update_config except ImportError: pass del _cache_dir
31611
class ControlStyles(Enum,IComparable,IFormattable,IConvertible): """ Specifies the style and behavior of a control. enum (flags) ControlStyles,values: AllPaintingInWmPaint (8192),CacheText (16384),ContainerControl (1),DoubleBuffer (65536),EnableNotifyMessage (32768),FixedHeight (64),FixedWidth (32),Opaque (4),OptimizedDoubleBuffer (131072),ResizeRedraw (16),Selectable (512),StandardClick (256),StandardDoubleClick (4096),SupportsTransparentBackColor (2048),UserMouse (1024),UserPaint (2),UseTextForAccessibility (262144) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass AllPaintingInWmPaint=None CacheText=None ContainerControl=None DoubleBuffer=None EnableNotifyMessage=None FixedHeight=None FixedWidth=None Opaque=None OptimizedDoubleBuffer=None ResizeRedraw=None Selectable=None StandardClick=None StandardDoubleClick=None SupportsTransparentBackColor=None UserMouse=None UserPaint=None UseTextForAccessibility=None value__=None
31617
from Crypto.Hash import HMAC, SHA256 import base64 def hmac256Calculation(keyHmac, data): h = HMAC.new(keyHmac.encode("ascii"), digestmod=SHA256) h.update(data.encode("ascii")) return h.digest() def base64Encoding(input): dataBase64 = base64.b64encode(input) dataBase64P = dataBase64.decode("UTF-8") return dataBase64P print("HMAC 256 calculation") hmac256KeyString = "hmac256ForAesEncryption" plaintext = "The quick brown fox jumps over the lazy dog" print ("hmac256Key: " + hmac256KeyString) print("plaintext: " + plaintext) hmac256 = hmac256Calculation(hmac256KeyString, plaintext) hmacBase64 = base64Encoding(hmac256) print ("hmac256 length: " + str(len(hmac256)) + " (Base64) data: " + base64Encoding(hmac256))
31645
from django.shortcuts import render,redirect,HttpResponse from repository import models def trouble_list(request): # user_info = request.session.get('user_info') # {id:'',} current_user_id = 1 result = models.Trouble.objects.filter(user_id=current_user_id).order_by('status').\ only('title','status','ctime','processer') return render(request,'backend_trouble_list.html',{'result': result}) from django.forms import Form from django.forms import fields from django.forms import widgets class TroubleMaker(Form): title = fields.CharField( max_length=32, widget=widgets.TextInput(attrs={'class': 'form-control'}) ) detail = fields.CharField( widget=widgets.Textarea(attrs={'id':'detail','class':'kind-content'}) ) import datetime def trouble_create(request): if request.method == 'GET': form = TroubleMaker() else: form = TroubleMaker(request.POST) if form.is_valid(): # title,content # form.cleaned_data dic = {} dic['user_id'] = 1 # session中获取 dic['ctime'] = datetime.datetime.now() dic['status'] = 1 dic.update(form.cleaned_data) models.Trouble.objects.create(**dic) return redirect('/backend/trouble-list.html') return render(request, 'backend_trouble_create.html',{'form':form}) def trouble_edit(request,nid): if request.method == "GET": obj = models.Trouble.objects.filter(id=nid, status=1).only('id', 'title', 'detail').first() if not obj: return HttpResponse('已处理中的保单章无法修改..') # initial 仅初始化 form = TroubleMaker(initial={'title': obj.title,'detail': obj.detail}) # 执行error会进行验证 return render(request,'backend_trouble_edit.html',{'form':form,'nid':nid}) else: form = TroubleMaker(data=request.POST) if form.is_valid(): # 受响应的行数 v = models.Trouble.objects.filter(id=nid, status=1).update(**form.cleaned_data) if not v: return HttpResponse('已经被处理') else: return redirect('/backend/trouble-list.html') return render(request, 'backend_trouble_edit.html', {'form': form, 'nid': nid}) def trouble_kill_list(request): from django.db.models import Q current_user_id = 1 result = models.Trouble.objects.filter(Q(processer_id=current_user_id)|Q(status=1)).order_by('status') return render(request,'backend_trouble_kill_list.html',{'result':result}) class TroubleKill(Form): solution = fields.CharField( widget=widgets.Textarea(attrs={'id':'solution','class':'kind-content'}) ) def trouble_kill(request,nid): current_user_id = 1 if request.method == 'GET': ret = models.Trouble.objects.filter(id=nid, processer=current_user_id).count() # 以前未强盗 if not ret: v = models.Trouble.objects.filter(id=nid,status=1).update(processer=current_user_id,status=2) if not v: return HttpResponse('手速太慢...') obj = models.Trouble.objects.filter(id=nid).first() form = TroubleKill(initial={'title': obj.title,'solution': obj.solution}) return render(request,'backend_trouble_kill.html',{'obj':obj,'form': form,'nid':nid}) else: ret = models.Trouble.objects.filter(id=nid, processer=current_user_id,status=2).count() if not ret: return HttpResponse('去你妈的') form = TroubleKill(request.POST) if form.is_valid(): dic = {} dic['status'] = 3 dic['solution'] = form.cleaned_data['solution'] dic['ptime'] = datetime.datetime.now() models.Trouble.objects.filter(id=nid, processer=current_user_id,status=2).update(**dic) return redirect('/backend/trouble-kill-list.html') obj = models.Trouble.objects.filter(id=nid).first() return render(request, 'backend_trouble_kill.html', {'obj': obj, 'form': form, 'nid': nid}) def trouble_report(request): return render(request,'backend_trouble_report.html') def trouble_json_report(request): # 数据库中获取数据 user_list = models.UserInfo.objects.filter() response = [] for user in user_list: from django.db import connection, connections cursor = connection.cursor() cursor.execute("""select strftime('%%s',strftime("%%Y-%%m-01",ctime)) * 1000,count(id) from repository_trouble where processer_id = %s group by strftime("%%Y-%%m",ctime)""", [user.nid,]) result = cursor.fetchall() print(user.username,result) temp = { 'name': user.username, 'data':result } response.append(temp) import json return HttpResponse(json.dumps(response))
31648
from datetime import datetime from typing import Optional from src.utils.config import config from tortoise import fields from tortoise.models import Model defaule_nickname: str = config.get('default').get('nickname') class BotInfo(Model): '''QQ机器人表''' bot_id = fields.IntField(pk=True) '''机器人QQ号''' owner_id = fields.IntField(null=True) '''管理员账号''' nickname = fields.CharField(max_length=255, default=defaule_nickname) '''机器人昵称''' last_sign = fields.DatetimeField(null=True) '''上次登录时间''' last_left = fields.DatetimeField(null=True) '''上次离线时间''' online = fields.BooleanField(default=True) '''当前在线情况''' class Meta: table = "bot_info" table_description = "管理QQ机器人账号信息" @classmethod async def bot_connect(cls, bot_id): ''' :说明 机器人链接 :参数 * bot_id:机器人QQ号 ''' record, _ = await cls.get_or_create(bot_id=bot_id) now_time = datetime.now() record.last_sign = now_time record.online = True await record.save(update_fields=["last_sign", "online"]) @classmethod async def bot_disconnect(cls, bot_id): ''' :说明 机器人断开链接 :参数 * bot_id:机器人QQ号 ''' record = await cls.get_or_none(bot_id=bot_id) if record is not None: now_time = datetime.now() record.last_left = now_time record.online = False await record.save(update_fields=["last_left", "online"]) @classmethod async def set_owner(cls, bot_id, owner_id) -> bool: ''' :说明 设置机器人管理员 :参数 * bot_id:机器人QQ号 * owner_id:管理员QQ号 :返回 * bool:是否成功 ''' record = await cls.get_or_none(bot_id=bot_id) if record is None: return False record.owner_id = owner_id await record.save(update_fields=["owner_id"]) return True @classmethod async def get_owner(cls, bot_id) -> Optional[int]: ''' :说明 获取机器人管理员 :参数 * bot_id:机器人QQ :返回 * int:管理员QQ * None ''' record = await cls.get_or_none(bot_id=bot_id) owner_id = None if record is not None: owner_id = record.owner_id return owner_id @classmethod async def clean_owner(cls, bot_id) -> bool: ''' :说明 清除管理员 :参数 * bot_id:机器人QQ :返回 * bool:是否清除成功 ''' record = await cls.get_or_none(bot_id=bot_id) if record is None: return False record.owner_id = None await record.save(update_fields=["owner_id"]) return True @classmethod async def get_online(cls, bot_id) -> Optional[bool]: ''' :说明 获取机器人在线状态 :参数 * bot_id:机器人QQ :返回 * bool:是否在线 * None:不存在 ''' record = await cls.get_or_none(bot_id=bot_id) return None if record is None else record.online @classmethod async def set_nickname(cls, bot_id: int, nickname: str) -> bool: ''' :说明 设置昵称 :参数 * bot_id:机器人QQ * nickname:昵称 ''' record = await cls.get_or_none(bot_id=bot_id) if record is None: return False record.nickname = nickname await record.save(update_fields=["nickname"]) return True @classmethod async def get_nickname(cls, bot_id: int) -> Optional[str]: ''' :说明 获取昵称 :参数 * bot_id:机器人QQ :返回 * str:昵称 ''' record = await cls.get_or_none(bot_id=bot_id) return None if record is None else record.nickname @classmethod async def detele_bot(cls, bot_id) -> bool: ''' :说明 删除机器人 :参数 * bot_id:机器人QQ :返回 * bool:删除是否成功,失败则数据不存在 ''' record = await cls.get_or_none(bot_id=bot_id) if record is not None: await record.delete() return True return False @classmethod async def get_disconnect_bot(cls) -> list[dict]: ''' 获取离线bot列表,dict["bot_id", "last_left"] ''' record_list = await cls.filter(online=False).values("bot_id", "last_left") return record_list @classmethod async def get_all_bot(cls) -> list[dict]: ''' 获取所有数据 ''' record_list = await cls.all().values("bot_id", "owner_id", "nickname", "last_sign", "last_left", "online") return record_list
31671
import datetime import json import logging import operator import os from collections import defaultdict from datetime import date import vk_api import vk_api.exceptions from vk_api import execute #from .TimeActivityAnalysis import VKOnlineGraph from .VKFilesUtils import check_and_create_path, DIR_PREFIX class VKActivityAnalysis: """ Модуль, связанный с исследованием активности пользователей """ def __init__(self, vk_session): """ Конструктор :param vk_session: объект сессии класса VK """ self.api = vk_session.get_api() self.tools = vk_api.VkTools(vk_session) self.logger = logging.getLogger("ActivityAnalysis") # функция получения лайков по 25 штук vk_get_all_likes_info = vk_api.execute.VkFunction( args=('user_id', 'owner_id', 'item_ids', 'type'), code=''' var item_ids = %(item_ids)s; var result = []; var i = 0; while(i <= 25 && item_ids.length > i){ var params = {"user_id":%(user_id)s, "owner_id": %(owner_id)s, "item_id": item_ids[i], "type": %(type)s }; result = result + [API.likes.isLiked(params) + {"owner_id": params["owner_id"], "user_id": params["user_id"], "type": params["type"], "item_id": params["item_id"]} ]; i = i+1; } return {result: result, count: item_ids.length}; ''') # функция получения общих друзей по 25 друзей проверяет vk_get_all_common_friends = vk_api.execute.VkFunction( args=('source_uid', 'target_uids'), code=''' var source_uid = %(source_uid)s; var target_uids = %(target_uids)s; var result = []; var i = 0; while(i <= 25 && target_uids.length > i*100){ var sliced = 0; if ( (i+1)*100 > target_uids.length) { sliced = target_uids.slice(i*100,target_uids.length); } else { sliced = target_uids.slice(i*100,(i+1)*100); } var params = {"source_uid":%(source_uid)s, "target_uids": sliced, }; result = result + API.friends.getMutual(params); i = i+1; } return {result:result}; ''') def is_online(self, uid): """ Проверяет онлайн пользователя :param uid: id пользователя """ resp = self.api.users.get(user_id=uid, fields='online') self.logger.debug("is_online: " + str(uid) + '; ' + str(resp)) if len(resp) > 0 and 'online' in resp[0]: return resp[0]['online'] else: return None def likes_iter(self, uid, friend_uid, count, method, max_count, values, type='post', limit=100): """ Генератор инфомации о лайках :param uid: id пользователя которого проверяем :param friend_uid: id друга пользователя :param count: количество ??? TODO: че я тут написал, фигня какая-то :param method: метод VKApi :param max_count: Максимальное количество элментов, которое можно загрузить 1м методом за раз :param values: Параметры метода :param type: Тип записей (пост, фото) :param limit: максимальное количство записей """ self.logger.debug("likes_iter: " + str(uid) + '; ' + str(friend_uid)) item_ids = [] entries = [] iterations = count // 25 tail = count % 25 iterations_count = 0 for key, entry in enumerate(self.tools.get_all_iter(method, max_count, values=values, limit=limit) ): if key > limit: break if iterations_count < iterations: if key != 0 and key % 25 != 0: item_ids += [entry['id']] entries += [entry] else: for i, like_info in enumerate(self.vk_get_all_likes_info(self.api, user_id=uid, owner_id=friend_uid, item_ids=item_ids, type=type).get('result')): entries[i].update(like_info) yield entries[i] item_ids = [] entries = [] iterations_count += 1 else: if key % 25 != tail - 1: item_ids += [entry['id']] entries += [entry] else: for i, like_info in enumerate(self.vk_get_all_likes_info(self.api, user_id=uid, owner_id=friend_uid, item_ids=item_ids, type=type).get('result')): entries[i].update(like_info) yield entries[i] item_ids = [] entries = [] def likes_friend_photos(self, uid, friend_uid, limit=100): """ Генератор лайков на фотографиях :param uid: id пользователя, которого проверяем :param friend_uid: id друга :param limit: максимальное количество загруженных записей """ self.logger.debug("likes_friend_photos: " + str(uid) + '; ' + str(friend_uid)) count = self.api.photos.getAll(owner_id=friend_uid, count=1)['count'] values = {'owner_id': friend_uid, 'extended': 1, 'no_service_albums': 0} for like_info in self.likes_iter(uid=uid, friend_uid=friend_uid, count=count, method='photos.getAll', max_count=200, values=values, type='photo', limit=limit): yield like_info def likes_friend_wall(self, uid, friend_uid, limit=100): """ Генератор лайков на стене TODO: может, совместить фото и стену? А то код почти одинковый :param uid: id пользователя, которого проверяем :param friend_uid: id друга :param limit: максимально число записей для загрузки """ self.logger.debug("likes_friend_wall: " + str(uid) + '; ' + str(friend_uid)) count = self.api.wall.get(owner_id=friend_uid, count=1)['count'] values = {'owner_id': friend_uid, 'filter': 'all'} for like_info in self.likes_iter(uid=uid, friend_uid=friend_uid, count=count, method='wall.get', max_count=100, values=values, type='post', limit=limit): yield like_info def likes_group_wall(self, uid, group_id, limit=100): """ Генератор лайков на стене СООБЩЕСТВА :param uid: id пользователя :param group_id: id группы :param limit: максимальное число записей для обработки """ self.logger.debug("likes_group_wall: " + str(uid) + '; ' + str(group_id)) return self.likes_friend_wall(uid, -abs(group_id), limit) def friends_common_iter(self, uid, friends_ids): """ Генератор информации об общих друзьях :param uid: id пользователя, которого проверяем :param friends_ids: массив id друзей """ self.logger.debug("friends_common_iter: " + str(uid) + '; ' + str(friends_ids)) steps = len(friends_ids) // 2500 + 1 for i in range(steps): commmon_friends = self.vk_get_all_common_friends(self.api, source_uid=uid, target_uids=friends_ids[ i * 2500: min( (i + 1) * 2500, len(friends_ids) ) ]).get('result') if not commmon_friends: continue for friend in commmon_friends: yield friend def friends_all_ids(self, uid, friends_full=None): """ Получить id всех АКТИВНЫХ (не собачек) друзей пользователя :param uid: id пользователя :param friends_full: массив полной информации о друзьях """ self.logger.debug("friends_all_ids: " + str(uid)) if friends_full is None: friends_full = self.friends_all_full(uid=uid) return [el['id'] for el in friends_full] def friends_all_full(self, uid, friends_full=None): """ Получает подробную информацию по всем АКТИВНЫМ (не собачкам) друзьям пользователя :param uid: id пользователя :param friends_full: массив полной информации о друзьях """ self.logger.debug("friends_all_full: " + str(uid)) if friends_full is not None: return friends_full # TODO: надо посмотреть, есть ли битовая маска scop'а друзей scope = 'nickname, domain, sex, bdate, city, country, timezone, photo_50, photo_100, photo_200_orig, has_mobile, contacts, education, online, relation, last_seen, status, can_write_private_message, can_see_all_posts, can_post, universities'; return [el for el in self.tools.get_all('friends.get', 5000, values={'user_id': uid, 'fields': scope})['items'] if 'deactivated' not in el] def common_city_score(self, uid, friends_full=None, result_type='first'): """ Возвращает очки за общий город. Если пользователь совпадает городом с другом, то +3 очка Если количество людей с таким городом максимально, то +3 очка первым 10%, +2 -- првым 20% :param uid: id пользователя, которого проверяем :param friends_full: массив полной информации о друзьях :param result_type: Тип позвращаемого результата. 'count' - все результаты :type result_type: any('first', 'count') :return: все результаты или первые 20% """ self.logger.debug("common_city_score: " + str(uid)) res = {} friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) for friend in friends_full: if 'city' in friend: if friend['city']['title'] in res: res[friend['city']['title']] += 1 else: res.update({friend['city']['title']: 1}) res = sorted(res.items(), key=operator.itemgetter(1), reverse=True) if result_type == 'count': return dict(res) first_10p = {city[0]: 3 for city in res[:int(len(res) * 0.1)]} first_30p = {city[0]: 2 for city in res[int(len(res) * 0.1):int(len(res) * 0.3)]} first_10p.update(first_30p) return first_10p def score_common_age(self, uid, friends_full=None, result_type='first'): """ Очки за общий возраст :param uid: id пользователя :param friends_full: массив полной информации о друзьях :param result_type: Тип позвращаемого результата. 'count' - все результаты :type result_type: any('first', 'count') :return: все результаты или первые 20% """ self.logger.debug("score_common_age: " + str(uid)) res = defaultdict(lambda: 0) friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) for friend in friends_full: if 'bdate' in friend: bdate = friend['bdate'].split('.') if len(bdate) > 2: res[int(bdate[2])] += 1 res = sorted(res.items(), key=operator.itemgetter(1), reverse=True) if result_type == 'count': return dict(res) first_10p = {city[0]: 3 for city in res[:int(len(res) * 0.1)]} first_30p = {city[0]: 2 for city in res[int(len(res) * 0.1):int(len(res) * 0.3)]} first_10p.update(first_30p) if len(first_10p) == 0: first_10p = {res[0][0]: 1} return first_10p def search_user_by_age(self, user_info, group_id, age=(1, 100)): """ Вычислить год рождения пользователя через группу :param user_info: информация о пользователе, которого проверяем :param group_id: id любой группы у пользователя :param age: диапазон предполагаемых возрастов :return: точный год рождения, который указал пользователь """ info = self.api.users.search(q=user_info['first_name'] + ' ' + user_info['last_name'], group_id=group_id, age_from=age[0], age_to=age[1], count=1000)['items'] for user in info: if user['id'] == user_info['id']: if age[0] == age[1]: return date.today().year - age[0] return self.search_user_by_age(user_info=user_info, group_id=group_id, age=(age[0], (age[1] - age[0]) // 2 + age[0])) if age[0] == age[1]: return date.today().year - age[0] - 1 return self.search_user_by_age(user_info=user_info, group_id=group_id, age=(age[1], (age[1] - age[0]) * 2 + age[0])) def user_age(self, uid, friends_full=None): """ Вычислить предполагаемый возраст пользователя 2мя способами: -максимальное кол-во по друзьям (для <25 лет вполне точный рез-т) -по поиску в группе (точный результат указанного пользователем) :param uid: id пользователя, которого проверяем :param friends_full: массив полной информации о друзьях :return: словарь с результатами """ res = {'user_defined': -1, 'friends_predicted': -1} user_info = self.api.users.get(user_ids=uid, fields='bdate')[0] if 'bdate' in user_info: bdate = user_info['bdate'].split('.') if len(bdate) > 2: res['user_defined'] = bdate[2] else: user_group = self.api.groups.get(user_id=uid, count=1)['items'] if 0 in user_group: user_group = user_group[0] res['user_defined'] = self.search_user_by_age(user_info=user_info, group_id=user_group) else: user_group = self.api.groups.get(user_id=uid, count=1)['items'] if 0 in user_group: user_group = user_group[0] res['user_defined'] = self.search_user_by_age(user_info=user_info, group_id=user_group) common_age = int(list(self.score_common_age(uid=uid).items())[0][0]) res['friends_predicted'] = common_age return res def check_friends_online(self, uid): """ Проверяет онлайн всех друзей пользователя :param uid: id пользователя, которого проверяем :return: результат friends.getOnline """ return self.api.friends.getOnline(user_id=uid) def likes_friends(self, uid, limit_entries=100, friends_full=None): """ Генератор информации о лайках у друзей на фото и стене :param uid: id пользователя, которого проверяем :param limit_entries: максимальное кол-во записей на каждом друге :param friends_full: массив полной информации о друзьях """ friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) friends = self.friends_all_ids(uid=uid, friends_full=friends_full) count = len(friends) for i, friend in enumerate(friends, 1): for like in self.likes_friend_wall(uid=uid, friend_uid=friend, limit=limit_entries): if like['liked'] or like['copied']: r = like r.update({"count": count, "current": i, "name": friends_full[i-1]['first_name'] + ' ' + friends_full[i-1]['last_name']}) yield r for like in self.likes_friend_photos(uid=uid, friend_uid=friend, limit=limit_entries): if like['liked'] or like['copied']: r = like r.update({"count": count, "current": i, "name": friends_full[i-1]['first_name'] + ' ' + friends_full[i-1]['last_name']}) yield r yield {"count": len(friends), "current": i, "inf": 0} def likes_groups(self, uid, limit=100, groups=None): """ Генератор информации о лайках в сообществах :param uid: id пользователя, которого проверяем :param limit: максимальное число записей с каждой группы :param groups: массив id групп """ # TODO: здесь бы хорошо убрать повторное использование кода из likes_friends if groups is None: groups = self.tools.get_all('users.getSubscriptions', 200, values={"extended": 1, "user_id": uid}) for i, group in enumerate(groups['items'], 1): try: for like in self.likes_group_wall(uid=uid, group_id=group['id'], limit=limit): if like['liked'] or like['copied']: r = like r.update({"count": groups['count'], "current": i, "name": groups['items'][i-1]['name']}) yield r except vk_api.exceptions.ApiError as error: # TODO: обработать это по-нормальному if error.code == 13: self.logger.error("Size is too big, skipping group_id=" + str(group['id'])) elif error.code == 15: self.logger.warning("Wall is disabled, skipping group_id=" + str(group['id'])) else: raise error except vk_api.exceptions.ApiHttpError as error: # TODO: не понятная фигня, надо разобраться self.logger.error("Server 500 error, skipping group_id=" + str(group['id'])) yield {"count": groups['count'], "current": i, "inf": 0} def likes_friends_and_groups(self, uid, limit=100, friends_need=False, groups_need=False, friends_full=None, groups=None): """ Генератор информации о лайках в группах и сообществах :param uid: id пользователя, которого проверяем :param limit: количество записей, которые нужно загружать на каждом элементе :param friends_need: необходима проверка у друзй :param groups_need: необходима проверка у групп :param friends_full: массив полной информации о друзьях :param groups: массив подписок :return: """ friends_full = self.friends_all_full(uid, friends_full) if groups is None: # TODO: subsriptions может содержать людей, надо доработать, возможны баги groups = self.tools.get_all('users.getSubscriptions', 200, values={"extended": 1, "user_id": uid}) friends_count = friends_need*len(friends_full) groups_count = groups_need*groups['count'] count = friends_count + groups_need*groups['count'] if friends_need: for like in self.likes_friends(uid=uid, limit_entries=limit, friends_full=friends_full): r = like r.update({"count": count}) yield r if groups_need: for like in self.likes_groups(uid=uid, limit=limit, groups=groups): r = like r.update({"count": count, "current": like['current'] + friends_count}) yield r def score_likes_friends(self, uid, limit=100, friends_full=None): """ Возвращает баллы за лайки друзьям :param uid: id пользователя, которого проверяем :param limit: количество записей загружаемых на каждой странице :param friends_full: массив полной информации о друзтях """ score = 0 for post_info in self.likes_friends(uid=uid, limit_entries=limit, friends_full=friends_full): if 'liked' in post_info: if post_info['liked'] == 1: score += 1 if 'copied' in post_info: if post_info['copied'] == 1: score += 10 if 'inf' in post_info: temp = score score = 0 yield 'likes_friends', post_info['current']-1, temp def score_likes_self(self, uid, limit=100, friends_full=None): """ Возвращает очки за лайки друзей у пользователя на странице :param uid: id пользователя, которого проверяем :param limit: максимальное число записей :param friends_full: массив полной информации о друзьях """ friends = self.friends_all_ids(uid=uid, friends_full=friends_full) res = [0]*len(friends) for key, post in enumerate(self.tools.get_all_iter(method='wall.get', max_count=100, values={'owner_id': uid}, limit=limit)): if key > limit: break post_likes = self.tools.get_all(method='likes.getList', max_count=100, values={'type': 'post', 'skip_own':1, 'owner_id': uid, 'item_id': post['id']})['items'] post_reposts = self.tools.get_all(method='likes.getList', max_count=100, values={'type': 'post', 'skip_own': 1, 'owner_id': uid, 'filter': 'copies', 'item_id': post['id']})['items'] for user in post_likes: if user in friends: res[friends.index(user)] += 1 for user in post_reposts: if user in friends: if user in friends: res[friends.index(user)] += 10 for key, photo in enumerate(self.tools.get_all_iter(method='photos.getAll', max_count=200, values={'owner_id': uid, 'extended': 1, 'no_service_albums': 0})): if key>limit: break photo_likes = self.tools.get_all(method='likes.getList', max_count=100, values={'type': 'photo', 'skip_own':1, 'owner_id': uid, 'item_id': photo['id']})['items'] for user in photo_likes: if user in friends: if user in friends: res[friends.index(user)] += 1 for i, friend in enumerate(res): yield 'likes_self', i, friend def score_mutual_friends(self, uid, friends_full=None): """ Возвращает очки за общих друзей :param uid: id пользователя, которого проверяем :param friends_full: массив полной информации о друзьях """ res = [] friends = self.friends_all_ids(uid=uid, friends_full=friends_full) for mutual in self.friends_common_iter(uid=uid, friends_ids=friends): res.append(mutual['common_count']) res_sorted = sorted(list(set(res))) count = len(res_sorted) for i, friend in enumerate(res): yield 'friends', i, res_sorted.index(friend)*10//count def score_all_common_age(self, uid, friends_full=None): """ Возвращает очки за общий возраст :param uid: id пользователя, которого проверяем :param friends_full: массив полной информации о друзьях """ friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) user_age = self.user_age(uid=uid, friends_full=friends_full) def get_user_real_age(age): if age[0] == age[1]: return age[0],1,2 elif age[0] == -1: return age[1],2,3 elif age[1] == -1: return age[0],2,3 else: return (int(age[0])+int(age[1]))//2, -1, abs(int(age[0])-int(age[1])) user_real_age = get_user_real_age((user_age['user_defined'], user_age['friends_predicted'])) for i, friend in enumerate(friends_full): score = 0 if 'bdate' in friend: date = friend['bdate'].split('.') if len(date)>2: if int(date[2]) - user_real_age[1] <= user_real_age[0] <= int(date[2]) + user_real_age[1]: score = 3 elif int(date[2]) - user_real_age[2] <= user_real_age[0] <= int(date[2]) + user_real_age[2]: score = 1 yield 'age', i, score def score_all_common_city(self, uid, friends_full=None): """ Возвращает очки за общий город :param uid: id пользователя, которого проверяем :param friends_full: массив полной информации о друзьях """ friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) common_city_score = self.common_city_score(uid=uid, friends_full=friends_full, result_type='first') user = self.api.users.get(user_id=uid,fields='city')[0] user_city = '' if 'city' in user: user_city = user['city']['title'] for i, friend in enumerate(friends_full): score = 0 if 'city' in friend: friend_city = friend['city']['title'] if friend_city in common_city_score: score = common_city_score[friend_city] score += (friend_city==user_city)*3 yield 'city', i, score def score_all(self, uid, limit=100, likes_friends_need=False, likes_self_need=False, common_friends_need=False, common_age_need=False, common_city_need=False, friends_full=None): """ Генератор информации о круге общения :param uid: id пользователя, которого проверяем :param limit: максимальное количество загружаемых каждый раз записей :param likes_friends_need: необходимо проверять лайки друзьям :param likes_self_need: необходимо проверять лайки друзей :param common_friends_need: проверять общих друзей :param common_age_need: проверять общий возраст :param common_city_need: проверять общий город :param friends_full: массив полной информации о друзьях """ friends_full = self.friends_all_full(uid=uid, friends_full=friends_full) if common_age_need: for element in self.score_all_common_age(uid=uid, friends_full=friends_full): yield element if common_city_need: for element in self.score_all_common_city(uid=uid, friends_full=friends_full): yield element if common_friends_need: for element in self.score_mutual_friends(uid=uid, friends_full=friends_full): yield element if likes_self_need: for element in self.score_likes_self(uid=uid, limit=limit, friends_full=friends_full): yield element if likes_friends_need: for element in self.score_likes_friends(uid=uid, limit=limit, friends_full=friends_full): yield element
31707
import numpy as np from nlpaug.model.audio import Audio class Normalization(Audio): def manipulate(self, data, method, start_pos, end_pos): aug_data = data.copy() if method == 'minmax': new_data = self._min_max(aug_data[start_pos:end_pos]) elif method == 'max': new_data = self._max(aug_data[start_pos:end_pos]) elif method == 'standard': new_data = self._standard(aug_data[start_pos:end_pos]) aug_data[start_pos:end_pos] = new_data return aug_data def get_support_methods(self): return ['minmax', 'max', 'standard'] def _standard(self, data): return (data - np.mean(data)) / np.std(data) def _max(self, data): return data / np.amax(np.abs(data)) def _min_max(self, data): lower = np.amin(np.abs(data)) return (data - lower) / (np.amax(np.abs(data)) - lower)
31708
from __future__ import print_function, division import numpy as np weights = np.transpose(np.load('w0.npy')) print(weights.shape) feature_names = ["" for i in range(125)] prev = 0 prev_name = '' for line in open('feature_names.txt'): if line.startswith('#'): continue words = line.split() index = int(words[0]) feature_name = words[1][:-1] feature_type = words[2] if prev_name != '': for i in range(prev, index + 1): if prev + 1 < index: feature_names[i] = prev_name + '_' + str(i - prev) else: feature_names[i] = prev_name prev = index prev_name = feature_name feature_names[-1] = prev_name print(feature_names, len(feature_names)) sorted_indices = np.argsort(np.absolute(weights), axis=1) print(sorted_indices[:, 120:124])
31762
try: import ujson as json except ModuleNotFoundError: # https://github.com/python/mypy/issues/1153 (mypy bug with try/except conditional imports) import json # type: ignore try: import msgpack except ModuleNotFoundError: pass class Serializer: pass class StringSerializer(Serializer): def serialize(self, item): return str(item).encode("utf-8") def deserialize(self, data): return data.decode("utf-8") class JsonSerializer(Serializer): def serialize(self, item): return json.dumps(item).encode("utf-8") def deserialize(self, data): return json.loads(data.decode("utf-8")) class MsgpackSerializer(Serializer): def serialize(self, item): result = msgpack.packb(item, use_bin_type=True) return result def deserialize(self, data): return msgpack.unpackb(data, raw=False)
31766
import numpy as np from numpy.testing import assert_allclose from robogym.envs.rearrange.common.utils import ( get_mesh_bounding_box, make_block, make_blocks_and_targets, ) from robogym.envs.rearrange.simulation.composer import RandomMeshComposer from robogym.mujoco.mujoco_xml import MujocoXML def _get_default_xml(): xml_source = """ <mujoco> <asset> <material name="block_mat" specular="0" shininess="0.5" reflectance="0" rgba="1 0 0 1"></material> </asset> </mujoco> """ xml = MujocoXML.from_string(xml_source) return xml def test_mesh_composer(): for path in [ None, RandomMeshComposer.GEOM_ASSET_PATH, RandomMeshComposer.GEOM_ASSET_PATH, ]: composer = RandomMeshComposer(mesh_path=path) for num_geoms in range(1, 6): xml = _get_default_xml() composer.reset() xml.append(composer.sample("object0", num_geoms, object_size=0.05)) sim = xml.build() assert len(sim.model.geom_names) == num_geoms pos, size = get_mesh_bounding_box(sim, "object0") assert np.isclose(np.max(size), 0.05) pos2, size2 = composer.get_bounding_box(sim, "object0") assert np.allclose(pos, pos2) assert np.allclose(size, size2) def test_block_object(): xml = _get_default_xml() xml.append(make_block("object0", object_size=np.ones(3) * 0.05)) sim = xml.build() assert len(sim.model.geom_size) == 1 assert_allclose(sim.model.geom_size, 0.05) def test_blocks_and_targets(): xml = _get_default_xml() for obj_xml, target_xml in make_blocks_and_targets(num_objects=5, block_size=0.05): xml.append(obj_xml) xml.append(target_xml) sim = xml.build() assert len(sim.model.geom_size) == 10 assert_allclose(sim.model.geom_size, 0.05)
31784
import logging import pytest from selenium.webdriver.remote.remote_connection import LOGGER from stere.areas import Area, Areas LOGGER.setLevel(logging.WARNING) def test_areas_append_wrong_type(): """Ensure a TypeError is raised when non-Area objects are appended to an Areas. """ a = Areas() with pytest.raises(TypeError) as e: a.append('1') assert str(e.value) == ( '1 is not an Area. Only Area objects can be inside Areas.' ) def test_areas_append(): """Ensure Area objects can be appended to an Areas.""" a = Areas() area = Area() a.append(area) assert 1 == len(a) def test_areas_remove(): """Ensure Areas.remove() behaves like list.remove().""" a = Areas() area = Area() a.append(area) a.remove(area) assert 0 == len(a) def test_areas_len(): """Ensure Areas reports length correctly.""" a = Areas(['1', '2', '3']) assert 3 == len(a) def test_areas_containing_type(test_page): """Ensure Areas.containing() returns an Areas object.""" test_page.navigate() found_areas = test_page.repeating_area.areas.containing( 'link', 'Repeating Link 2', ) assert isinstance(found_areas, Areas) def test_areas_containing(test_page): """Ensure Areas.containing() returns valid results.""" test_page.navigate() found_areas = test_page.repeating_area.areas.containing( 'link', 'Repeating Link 2', ) assert found_areas[0].text.value == 'Repeating Area 2' def test_areas_containing_nested_attr(test_page): """Ensure Areas.containing() handles dot attrs.""" test_page.navigate() found_areas = test_page.repeating_area.areas.containing( 'nested.ax', 'AX1', ) assert found_areas[0].nested.ax.value == 'AX1' def test_areas_containing_invalid_field_name(test_page): test_page.navigate() with pytest.raises(AttributeError) as e: test_page.repeating_area.areas.containing( 'lunk', 'Repeating Link 2') assert str(e.value) == "'Area' object has no attribute 'lunk'" def test_areas_containing_nested_attr_invalid_field_name(test_page): test_page.navigate() with pytest.raises(AttributeError) as e: test_page.repeating_area.areas.containing( 'nested.cx', 'CX1') assert str(e.value) == "'Area' object has no attribute 'cx'" def test_areas_contain(test_page): """Ensure Areas.contain() returns True when a result is found.""" test_page.navigate() assert test_page.repeating_area.areas.contain("link", "Repeating Link 1") def test_areas_contain_not_found(test_page): """Ensure Areas.contain() returns False when a result is not found.""" test_page.navigate() assert not test_page.repeating_area.areas.contain( "link", "Repeating Link 666", )
31810
class ATMOS(object): ''' class ATMOS - attributes: - self defined - methods: - None ''' def __init__(self,info): self.info = info for key in info.keys(): setattr(self, key, info[key]) def __repr__(self): return 'Instance of class ATMOS'
31904
import re from .utils import validator regex = ( r'^[A-Z]{2}[0-9]{2}[A-Z0-9]{13,30}$' ) pattern = re.compile(regex) def char_value(char): """A=10, B=11, ..., Z=35 """ if char.isdigit(): return int(char) else: return 10 + ord(char) - ord('A') def modcheck(value): """Check if the value string passes the mod97-test. """ # move country code and check numbers to end rearranged = value[4:] + value[:4] # convert letters to numbers converted = [char_value(char) for char in rearranged] # interpret as integer integerized = int(''.join([str(i) for i in converted])) return (integerized % 97 == 1) @validator def iban(value): """ Return whether or not given value is a valid IBAN code. If the value is a valid IBAN this function returns ``True``, otherwise :class:`~validators.utils.ValidationFailure`. Examples:: >>> iban('DE29100500001061045672') True >>> iban('123456') ValidationFailure(func=iban, ...) .. versionadded:: 0.8 :param value: IBAN string to validate """ return pattern.match(value) and modcheck(value)
31969
import math def get_dist_bins(num_bins, interval=0.5): bins = [(interval * i, interval * (i + 1)) for i in range(num_bins - 1)] bins.append((bins[-1][1], float('Inf'))) return bins def get_dihedral_bins(num_bins, rad=False): first_bin = -180 bin_width = 2 * 180 / num_bins bins = [(first_bin + bin_width * i, first_bin + bin_width * (i + 1)) for i in range(num_bins)] if rad: bins = deg_bins_to_rad(bins) return bins def get_planar_bins(num_bins, rad=False): first_bin = 0 bin_width = 180 / num_bins bins = [(first_bin + bin_width * i, first_bin + bin_width * (i + 1)) for i in range(num_bins)] if rad: bins = deg_bins_to_rad(bins) return bins def deg_bins_to_rad(bins): return [(v[0] * math.pi / 180, v[1] * math.pi / 180) for v in bins] def get_bin_values(bins): bin_values = [t[0] for t in bins] bin_width = (bin_values[2] - bin_values[1]) / 2 bin_values = [v + bin_width for v in bin_values] bin_values[0] = bin_values[1] - 2 * bin_width return bin_values
31999
import logging from fastapi import APIRouter from starlette import status from api.endpoints.dependencies.tenant_security import get_from_context from api.endpoints.models.v1.tenant import TenantGetResponse from api.services.v1 import tenant_service router = APIRouter() logger = logging.getLogger(__name__) @router.post( "/make-issuer", status_code=status.HTTP_200_OK, response_model=TenantGetResponse ) async def initialize_issuer() -> TenantGetResponse: """ If the innkeeper has authorized your tenant to become an issuer, initialize here to write a endorsed public did the configured Hyperledger-Indy service """ wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") item = await tenant_service.make_issuer( tenant_id, wallet_id, ) links = [] # TODO: determine useful links for /make-issuer return TenantGetResponse(item=item, links=links)
32062
import SpiceInterface import TestUtilities # create the test utility object test_utilities_obj = TestUtilities.TestUtilities() test_utilities_obj.netlist_generation('bandgap_opamp_test_op.sch', 'rundir') # create the spice interface spice_interface_obj = SpiceInterface.SpiceInterface(netlist_path="rundir/bandgap_opamp_test_op.spice") spice_interface_obj.config['simulator']['shared'] = True # add the op save parameters devices = ['xbmr.XMcurr', 'xbmr.XMcurr1', 'xbmr.XM2', 'xbmr.XM3'] spice_interface_obj.insert_op_save(devices, ['vsat_marg']) # run the simulation spice_interface_obj.run_simulation() # analyse the results spice_interface_obj.plot_op_save(devices, ['vsat_marg'], 'temp-sweep') ['xbmr.XMcurr', 'xbmr.XMcurr1', 'xbmr.XM2', 'xbmr.XM3']
32101
class GraphLearner: """Base class for causal discovery methods. Subclasses implement different discovery methods. All discovery methods are in the package "dowhy.causal_discoverers" """ def __init__(self, data, library_class, *args, **kwargs): self._data = data self._labels = list(self._data.columns) self._adjacency_matrix = None self._graph_dot = None def learn_graph(self): ''' Discover causal graph and the graph in DOT format. ''' raise NotImplementedError
32135
import pdfkit import boto3 s3 = boto3.client('s3') def lambda_handler(event, context): pdfkit.from_url('http://google.com', '/tmp/out.pdf') with open('/tmp/out.pdf', 'rb') as f: response = s3.put_object( Bucket='temp-awseabsgddev', Key='juni/google.pdf', Body=f.read() ) return {'response': response}
32142
class Solution: def canThreePartsEqualSum(self, A: List[int]) -> bool: # Since all the three parts are equal, if we sum all element of arrary it should be a multiplication of 3 # so the sum of each part must be equal to sum of all element divided by 3 quotient, remainder = divmod(sum(A), 3) if remainder != 0: return False subarray = 0 partitions = 0 for num in A: subarray += num if subarray == quotient: partitions += 1 subarray = 0 # Check if it consist at least 3 partitions return partitions >= 3
32144
import os import sys sys.path.append('.') import argparse import numpy as np import os.path as osp from multiprocessing import Process, Pool from glob import glob from tqdm import tqdm import tensorflow as tf from PIL import Image from lib.core.config import INSTA_DIR, INSTA_IMG_DIR def process_single_record(fname, outdir, split): sess = tf.Session() #print(fname) record_name = fname.split('/')[-1] for vid_idx, serialized_ex in enumerate(tf.python_io.tf_record_iterator(fname)): #print(vid_idx) os.makedirs(osp.join(outdir, split, record_name, str(vid_idx)), exist_ok=True) example = tf.train.Example() example.ParseFromString(serialized_ex) N = int(example.features.feature['meta/N'].int64_list.value[0]) images_data = example.features.feature[ 'image/encoded'].bytes_list.value for i in range(N): image = np.expand_dims(sess.run(tf.image.decode_jpeg(images_data[i], channels=3)), axis=0) #video.append(image) image = Image.fromarray(np.squeeze(image, axis=0)) image.save(osp.join(outdir, split, record_name, str(vid_idx), str(i)+".jpg")) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--inp_dir', type=str, help='tfrecords file path', default=INSTA_DIR) parser.add_argument('--n', type=int, help='total num of workers') parser.add_argument('--i', type=int, help='current index of worker (from 0 to n-1)') parser.add_argument('--split', type=str, help='train or test') parser.add_argument('--out_dir', type=str, help='output images path', default=INSTA_IMG_DIR) args = parser.parse_args() fpaths = glob(f'{args.inp_dir}/{args.split}/*.tfrecord') fpaths = sorted(fpaths) total = len(fpaths) fpaths = fpaths[args.i*total//args.n : (args.i+1)*total//args.n] #print(fpaths) #print(len(fpaths)) os.makedirs(args.out_dir, exist_ok=True) for idx, fp in enumerate(fpaths): process_single_record(fp, args.out_dir, args.split)
32150
STATE_CITY = "fluids_state_city" OBS_QLIDAR = "fluids_obs_qlidar" OBS_GRID = "fluids_obs_grid" OBS_BIRDSEYE = "fluids_obs_birdseye" OBS_NONE = "fluids_obs_none" BACKGROUND_CSP = "fluids_background_csp" BACKGROUND_NULL = "fluids_background_null" REWARD_PATH = "fluids_reward_path" REWARD_NONE = "fluids_reward_none" RIGHT = "RIGHT" LEFT = "LEFT" STRAIGHT = "STRAIGHT" RED = (0xf6, 0x11, 0x46) YELLOW = (0xfc, 0xef, 0x5e), GREEN = (0, 0xc6, 0x44)
32173
import numpy as np from JacobiPolynomials import * import math # 1D - LINE #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi1D(C,x): p = np.zeros(C+2) for i in range(0,C+2): p[i] = JacobiPolynomials(i,x,0,0)[-1]*np.sqrt((2.*i+1.)/2.) return p # 2D - TRI #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi2D(C,x): """ Computes the orthogonal base of 2D polynomials of degree less or equal to C+1 at the point x=(r,s) in [-1,1]^2 (i.e. on the reference quad) """ N = int( (C+2.)*(C+3.)/2. ) p = np.zeros(N) r = x[0]; s = x[1] # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # counter for the polynomials order # Loop on degree for nDeg in range(0,C+2): # Loop by increasing i for i in range(0,nDeg+1): if i==0: p_i = 1.; q_i = 1. else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; q_i = q_i*(1.-s)/2. # Value for j j = nDeg-i if j==0: p_j = 1. else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1] # factor = np.sqrt( (2.*i+1.)*(i+j+1.)/2. ) factor = math.sqrt( (2.*i+1.)*(i+j+1.)/2. ) p[ncount] = ( p_i*q_i*p_j )*factor ncount += 1 return p def NormalisedJacobiTri(C,x): """ Computes the orthogonal base of 2D polynomials of degree less or equal to n at the point x=(xi,eta) in the reference triangle """ xi = x[0]; eta = x[1] if eta==1: r = -1.; s=1.; else: r = 2.*(1+xi)/(1.-eta)-1. s = eta return NormalisedJacobi2D(C,np.array([r,s])) def GradNormalisedJacobiTri(C,x,EvalOpt=0): """ Computes the orthogonal base of 2D polynomials of degree less or equal to n at the point x=(xi,eta) in the reference triangle """ N = int((C+2.)*(C+3.)/2.) p = np.zeros(N); dp_dxi = np.zeros(N) dp_deta = np.zeros(N) r = x[0]; s = x[1] # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if EvalOpt==1: if s==1: s=0.99999999999999 xi = (1.+r)*(1.-s)/2.-1 eta = s dr_dxi = 2./(1.-eta) dr_deta = 2.*(1.+xi)/(1.-eta)**2 # Derivative of s is not needed because s=eta # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1; q_i = 1; dp_i = 0; dq_i = 0 else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; dp_i = JacobiPolynomials(i-1,r,1.,1.)[-1]*(i+1.)/2. q_i = q_i*(1.-s)/2.; dq_i = 1.*q_i*(-i)/(1-s) # Value for j j = nDeg-i if j==0: p_j = 1; dp_j = 0 else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; dp_j = JacobiPolynomials(j-1,s,2.*i+2.,1.)[-1]*(j+2.*i+2.)/2. factor = math.sqrt( (2.*i+1.)*(i+j+1.)/2. ) # Normalized polynomial p[ncount] = ( p_i*q_i*p_j )*factor # Derivatives with respect to (r,s) dp_dr = ( (dp_i)*q_i*p_j )*factor dp_ds = ( p_i*(dq_i*p_j+q_i*dp_j) )*factor # Derivatives with respect to (xi,eta) dp_dxi[ncount] = dp_dr*dr_dxi dp_deta[ncount] = dp_dr*dr_deta + dp_ds ncount += 1 return p,dp_dxi,dp_deta # 3D - TET #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi3D(C,x): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ N = int((C+2)*(C+3)*(C+4)/6.) p = np.zeros(N) r = x[0]; s = x[1]; t = x[2] # Ordering: 1st incresing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1; q_i = 1 else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; q_i = q_i*(1.-s)/2. # Loop increasing j for j in range(0,nDeg-i+1): if j==0: p_j = 1; q_j = ((1.-t)/2.)**i else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; q_j = q_j*(1.-t)/2. # Value for k k = nDeg-(i+j) if k==0: p_k = 1. else: p_k = JacobiPolynomials(k,t,2.*(i+j)+2.,0.)[-1] factor = math.sqrt( (2.*i+1.)*(i+j+1.)*(2.*(i+j+k)+3.)/4. ) p[ncount] = ( p_i*q_i*p_j*q_j*p_k )*factor ncount += 1 return p def NormalisedJacobiTet(C,x): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ xi = x[0]; eta = x[1]; zeta = x[2] if (eta+zeta)==0: r = -1; s=1 elif zeta==1: r = -1; s=1 # or s=-1 (check that nothing changes) else: r = -2.*(1+xi)/(eta+zeta)-1.; s = 2.*(1+eta)/(1-zeta)-1.; t = zeta return NormalisedJacobi3D(C,[r,s,t]) # return NormalisedJacobi3D_Native(C,[r,s,t]) def GradNormalisedJacobiTet(C,x,EvalOpt=0): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ N = int((C+2)*(C+3)*(C+4)/6.) p = np.zeros(N) dp_dxi = np.zeros(N) dp_deta = np.zeros(N) dp_dzeta = np.zeros(N) r = x[0]; s = x[1]; t = x[2] # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if EvalOpt==1: if t==1.: t=0.999999999999 if np.isclose(s,1.): s=0.999999999999 if np.isclose(s,1.): s=0.99999999999999 eta = (1./2.)*(s-s*t-1.-t) xi = -(1./2.)*(r+1)*(eta+t)-1. zeta = 1.0*t # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if eta == 0. and zeta == 0.: eta = 1.0e-14 zeta = 1e-14 eta_zeta = eta+zeta if np.isclose(eta_zeta,0.): eta_zeta = 0.000000001 dr_dxi = -2./eta_zeta dr_deta = 2.*(1.+xi)/eta_zeta**2 dr_dzeta = dr_deta ds_deta = 2./(1.-zeta) ds_dzeta = 2.*(1.+eta)/(1.-zeta)**2 # Derivative of t is not needed because t=zeta #-------------------------------------------------------- # if np.allclose(eta+zeta,0): # dr_dxi = -2./(0.001)**2 # dr_deta = 2.*(1.+xi)/(0.001)**2 # else: # dr_dxi = -2./(eta+zeta) # dr_deta = 2.*(1.+xi)/(eta+zeta)**2 # dr_dzeta = dr_deta # if np.allclose(eta+zeta,0): # ds_deta = 2./(0.001) # ds_dzeta = 2.*(1.+eta)/(0.001)**2 # else: # ds_deta = 2./(1.-zeta) # ds_dzeta = 2.*(1.+eta)/(1.-zeta)**2 #-------------------------------------------------------- # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1.; q_i = 1.; dp_i = 0.; dq_i = 0. else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; dp_i = JacobiPolynomials(i-1,r,1.,1.)[-1]*(i+1.)/2. q_i = q_i*(1.-s)/2.; dq_i = q_i*(-i)/(1.-s) # Loop increasing j for j in range(0,nDeg-i+1): if j==0: p_j = 1; q_j = ((1.-t)/2.)**i; dp_j = 0; dq_j = q_j*(-(i+j))/(1.-t); else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; dp_j = JacobiPolynomials(j-1,s,2.*i+2.,1.)[-1]*(j+2.*i+2.)/2. q_j = q_j*(1.-t)/2.; dq_j = q_j*(-(i+j))/(1.-t) # Value for k k = nDeg-(i+j); if k==0: p_k = 1.; dp_k = 0.; else: p_k = JacobiPolynomials(k,t,2.*(i+j)+2.,0.)[-1]; dp_k = JacobiPolynomials(k-1,t,2.*(i+j)+3.,1.)[-1]*(k+2.*i+2.*j+3.)/2. factor = math.sqrt( (2.*i+1.)*(i+j+1.)*(2.*(i+j+k)+3.)/4. ) # Normalized polynomial p[ncount] = ( p_i*q_i*p_j*q_j*p_k )*factor # Derivatives with respect to (r,s,t) dp_dr = ( (dp_i)*q_i*p_j*q_j*p_k )*factor dp_ds = ( p_i*(dq_i*p_j+q_i*dp_j)*q_j*p_k )*factor dp_dt = ( p_i*q_i*p_j*(dq_j*p_k+q_j*dp_k) )*factor # Derivatives with respect to (xi,eta,zeta) dp_dxi[ncount] = dp_dr*dr_dxi dp_deta[ncount] = dp_dr*dr_deta + dp_ds*ds_deta dp_dzeta[ncount] = dp_dr*dr_dzeta + dp_ds*ds_dzeta + dp_dt ncount += 1 return p,dp_dxi,dp_deta,dp_dzeta
32192
from conans import ConanFile, tools class HapplyConan(ConanFile): name = "happly" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/nmwsharp/happly" topics = ("conan", "happly", "ply", "3D") license = "MIT" description = "A C++ header-only parser for the PLY file format. Parse .ply happily!" settings = "compiler" no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" def validate(self): if self.settings.compiler.cppstd: tools.check_min_cppstd(self, 11) def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def package(self): self.copy("LICENSE", src=self._source_subfolder, dst="licenses") self.copy("happly.h", src=self._source_subfolder, dst="include") def package_id(self): self.info.header_only()
32206
import pytest import stweet as st from tests.test_util import get_temp_test_file_name, get_tweets_to_tweet_output_test, \ two_lists_assert_equal def test_csv_serialization(): csv_filename = get_temp_test_file_name('csv') tweets_collector = st.CollectorTweetOutput() get_tweets_to_tweet_output_test([ st.CsvTweetOutput(csv_filename), tweets_collector ]) tweets_from_csv = st.read_tweets_from_csv_file(csv_filename) two_lists_assert_equal(tweets_from_csv, tweets_collector.get_raw_list()) def test_file_json_lines_serialization(): jl_filename = get_temp_test_file_name('jl') tweets_collector = st.CollectorTweetOutput() get_tweets_to_tweet_output_test([ st.JsonLineFileTweetOutput(jl_filename), tweets_collector ]) tweets_from_jl = st.read_tweets_from_json_lines_file(jl_filename) two_lists_assert_equal(tweets_from_jl, tweets_collector.get_raw_list())
32311
import os os.system("pip install tqsdk -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install numba -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install janus -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install redis -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install aioredis -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install schedule -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install pyqt5 -i https://pypi.tuna.tsinghua.edu.cn/simple") os.system("pip install PyQt5-tools -i http://pypi.douban.com/simple --trusted-host=pypi.douban.com")
32322
from opyoid.bindings.binding import Binding from opyoid.bindings.binding_to_provider_adapter import BindingToProviderAdapter from opyoid.bindings.registered_binding import RegisteredBinding from opyoid.injection_context import InjectionContext from opyoid.provider import Provider from opyoid.utils import InjectedT from .from_instance_provider import FromInstanceProvider from .instance_binding import InstanceBinding class InstanceBindingToProviderAdapter(BindingToProviderAdapter[InstanceBinding]): """Creates a Provider from an InstanceBinding.""" def accept(self, binding: Binding[InjectedT], context: InjectionContext[InjectedT]) -> bool: return isinstance(binding, InstanceBinding) def create(self, binding: RegisteredBinding[InstanceBinding[InjectedT]], context: InjectionContext[InjectedT]) -> Provider[InjectedT]: return FromInstanceProvider(binding.raw_binding.bound_instance)
32359
from abc import ABCMeta, abstractmethod from functools import partial from typing import Tuple, Union import numexpr import numpy as np from scipy import sparse, special from tabmat import MatrixBase, StandardizedMatrix from ._functions import ( binomial_logit_eta_mu_deviance, binomial_logit_rowwise_gradient_hessian, gamma_deviance, gamma_log_eta_mu_deviance, gamma_log_likelihood, gamma_log_rowwise_gradient_hessian, normal_deviance, normal_identity_eta_mu_deviance, normal_identity_rowwise_gradient_hessian, normal_log_likelihood, poisson_deviance, poisson_log_eta_mu_deviance, poisson_log_likelihood, poisson_log_rowwise_gradient_hessian, tweedie_deviance, tweedie_log_eta_mu_deviance, tweedie_log_likelihood, tweedie_log_rowwise_gradient_hessian, ) from ._link import IdentityLink, Link, LogitLink, LogLink from ._util import _safe_lin_pred, _safe_sandwich_dot class ExponentialDispersionModel(metaclass=ABCMeta): r"""Base class for reproductive Exponential Dispersion Models (EDM). The PDF of :math:`Y \sim \mathrm{EDM}(\mu, \phi)` is given by .. math:: p(y \mid \theta, \phi) &= c(y, \phi) \exp((\theta y - A(\theta)_ / \phi) \\ &= \tilde{c}(y, \phi) \exp(-d(y, \mu) / (2\phi)) with mean :math:`\mathrm{E}(Y) = A'(\theta) = \mu`, variance :math:`\mathrm{var}(Y) = \phi \cdot v(\mu)`, unit variance :math:`v(\mu)` and unit deviance :math:`d(y, \mu)`. Properties ---------- lower_bound upper_bound include_lower_bound include_upper_bound Methods ------- in_y_range unit_variance unit_variance_derivative variance variance_derivative unit_deviance unit_deviance_derivative deviance deviance_derivative starting_mu _mu_deviance_derivative eta_mu_deviance gradient_hessian References ---------- https://en.wikipedia.org/wiki/Exponential_dispersion_model. """ @property @abstractmethod def lower_bound(self) -> float: """Get the lower bound of values for the EDM.""" pass @property @abstractmethod def upper_bound(self) -> float: """Get the upper bound of values for the EDM.""" pass @property def include_lower_bound(self) -> bool: """Return whether ``lower_bound`` is allowed as a value of ``y``.""" pass @property def include_upper_bound(self) -> bool: """Return whether ``upper_bound`` is allowed as a value of ``y``.""" pass def in_y_range(self, x) -> np.ndarray: """Return ``True`` if ``x`` is in the valid range of the EDM. Parameters ---------- x : array-like, shape (n_samples,) Target values. Returns ------- np.ndarray """ if self.include_lower_bound: if self.include_upper_bound: return np.logical_and( np.greater_equal(x, self.lower_bound), np.less_equal(x, self.upper_bound), ) else: return np.logical_and( np.greater_equal(x, self.lower_bound), np.less(x, self.upper_bound) ) else: if self.include_upper_bound: return np.logical_and( np.greater(x, self.lower_bound), np.less_equal(x, self.upper_bound) ) else: return np.logical_and( np.greater(x, self.lower_bound), np.less(x, self.upper_bound) ) @abstractmethod def unit_variance(self, mu): r"""Compute the unit variance function. The unit variance :math:`v(\mu)` determines the variance as a function of the mean :math:`\mu` by :math:`\mathrm{var}(y_i) = (\phi / s_i) \times v(\mu_i)`. It can also be derived from the unit deviance :math:`d(y, \mu)` as .. math:: v(\mu) = \frac{2}{\frac{\partial^2 d(y, \mu)}{\partial\mu^2}}\big|_{y=\mu}. See also :func:`variance`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. """ pass @abstractmethod def unit_variance_derivative(self, mu): r"""Compute the derivative of the unit variance with respect to ``mu``. Return :math:`v'(\mu)`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. """ pass def variance(self, mu: np.ndarray, dispersion=1, sample_weight=1) -> np.ndarray: r"""Compute the variance function. The variance of :math:`Y_i \sim \mathrm{EDM}(\mu_i, \phi / s_i)` is :math:`\mathrm{var}(Y_i) = (\phi / s_i) * v(\mu_i)`, with unit variance :math:`v(\mu)` and weights :math:`s_i`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. dispersion : float, optional (default=1) Dispersion parameter :math:`\phi`. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return self.unit_variance(mu) * dispersion / sample_weight def variance_derivative(self, mu, dispersion=1, sample_weight=1): r"""Compute the derivative of the variance with respect to ``mu``. The derivative of the variance is equal to :math:`(\phi / s_i) * v'(\mu_i)`, where :math:`v(\mu)` is the unit variance and :math:`s_i` are weights. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. dispersion : float, optional (default=1) Dispersion parameter :math:`\phi`. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return self.unit_variance_derivative(mu) * dispersion / sample_weight @abstractmethod def unit_deviance(self, y, mu): r"""Compute the unit deviance. In terms of the log likelihood :math:`L`, the unit deviance is :math:`-2\phi\times [L(y, \mu, \phi) - L(y, y, \phi)].` Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. """ pass def unit_deviance_derivative(self, y, mu): r"""Compute the derivative of the unit deviance with respect to ``mu``. The derivative of the unit deviance is given by :math:`-2 \times (y - \mu) / v(\mu)`, where :math:`v(\mu)` is the unit variance. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. Returns ------- array-like, shape (n_samples,) """ return -2 * (y - mu) / self.unit_variance(mu) def deviance(self, y, mu, sample_weight=1): r"""Compute the deviance. The deviance is a weighted sum of the unit deviances, :math:`\sum_i s_i \times d(y_i, \mu_i)`, where :math:`d(y, \mu)` is the unit deviance and :math:`s` are weights. In terms of the log likelihood, it is :math:`-2\phi \times [L(y, \mu, \phi / s) - L(y, y, \phi / s)]`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inversely proportional. Returns ------- float """ if sample_weight is None: return np.sum(self.unit_deviance(y, mu)) else: return np.sum(self.unit_deviance(y, mu) * sample_weight) def deviance_derivative(self, y, mu, sample_weight=1): r"""Compute the derivative of the deviance with respect to ``mu``. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,) (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return sample_weight * self.unit_deviance_derivative(y, mu) def _mu_deviance_derivative( self, coef: np.ndarray, X, y: np.ndarray, sample_weight: np.ndarray, link: Link, offset: np.ndarray = None, ) -> Tuple[np.ndarray, np.ndarray]: """Compute ``mu`` and the derivative of the deviance \ with respect to coefficients.""" lin_pred = _safe_lin_pred(X, coef, offset) mu = link.inverse(lin_pred) d1 = link.inverse_derivative(lin_pred) temp = d1 * self.deviance_derivative(y, mu, sample_weight) if coef.size == X.shape[1] + 1: devp = np.concatenate(([temp.sum()], temp @ X)) else: devp = temp @ X # same as X.T @ temp return mu, devp def eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, ): """ Compute ``eta``, ``mu`` and the deviance. Compute: * the linear predictor, ``eta``, as ``cur_eta + factor * X_dot_d``; * the link-function-transformed prediction, ``mu``; * the deviance. Returns ------- numpy.ndarray, shape (X.shape[0],) The linear predictor, ``eta``. numpy.ndarray, shape (X.shape[0],) The link-function-transformed prediction, ``mu``. float The deviance. """ # eta_out and mu_out are filled inside self._eta_mu_deviance, # avoiding allocating new arrays for every line search loop eta_out = np.empty_like(cur_eta) mu_out = np.empty_like(cur_eta) deviance = self._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) return eta_out, mu_out, deviance def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): """ Update ``eta`` and ``mu`` and compute the deviance. This is a default implementation that should work for all valid distributions and link functions. To implement a custom optimized version for a specific distribution and link function, please override this function in the subclass. Returns ------- float """ eta_out[:] = cur_eta + factor * X_dot_d mu_out[:] = link.inverse(eta_out) return self.deviance(y, mu_out, sample_weight=sample_weight) def rowwise_gradient_hessian( self, link: Link, coef: np.ndarray, dispersion, X: Union[MatrixBase, StandardizedMatrix], y: np.ndarray, sample_weight: np.ndarray, eta: np.ndarray, mu: np.ndarray, offset: np.ndarray = None, ): """ Compute the gradient and negative Hessian of the log likelihood row-wise. Returns ------- numpy.ndarray, shape (X.shape[0],) The gradient of the log likelihood, row-wise. numpy.ndarray, shape (X.shape[0],) The negative Hessian of the log likelihood, row-wise. """ gradient_rows = np.empty_like(mu) hessian_rows = np.empty_like(mu) self._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) # To form the full Hessian matrix from the IRLS sample_weight: # hessian_matrix = _safe_sandwich_dot(X, hessian_rows, intercept=intercept) return gradient_rows, hessian_rows def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): """ Update ``gradient_rows`` and ``hessian_rows`` in place. This is a default implementation that should work for all valid distributions and link functions. To implement a custom optimized version for a specific distribution and link function, please override this function in the subclass. """ # FOR TWEEDIE: sigma_inv = weights / (mu ** p) during optimization bc phi = 1 sigma_inv = get_one_over_variance(self, link, mu, eta, 1.0, sample_weight) d1 = link.inverse_derivative(eta) # = h'(eta) # Alternatively: # h'(eta) = h'(g(mu)) = 1/g'(mu), note that h is inverse of g # d1 = 1./link.derivative(mu) d1_sigma_inv = d1 * sigma_inv gradient_rows[:] = d1_sigma_inv * (y - mu) hessian_rows[:] = d1 * d1_sigma_inv def _fisher_information( self, link, X, y, mu, sample_weight, dispersion, fit_intercept ): """Compute the expected information matrix. Parameters ---------- link : Link A link function (i.e. an instance of :class:`~glum._link.Link`). X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ W = (link.inverse_derivative(link.link(mu)) ** 2) * get_one_over_variance( self, link, mu, link.inverse(mu), dispersion, sample_weight ) return _safe_sandwich_dot(X, W, intercept=fit_intercept) def _observed_information( self, link, X, y, mu, sample_weight, dispersion, fit_intercept ): """Compute the observed information matrix. Parameters ---------- X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ linpred = link.link(mu) W = ( -link.inverse_derivative2(linpred) * (y - mu) + (link.inverse_derivative(linpred) ** 2) * ( 1 + (y - mu) * self.unit_variance_derivative(mu) / self.unit_variance(mu) ) ) * get_one_over_variance(self, link, mu, linpred, dispersion, sample_weight) return _safe_sandwich_dot(X, W, intercept=fit_intercept) def _score_matrix(self, link, X, y, mu, sample_weight, dispersion, fit_intercept): """Compute the score. Parameters ---------- X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ linpred = link.link(mu) W = ( get_one_over_variance(self, link, mu, linpred, dispersion, sample_weight) * link.inverse_derivative(linpred) * (y - mu) ).reshape(-1, 1) if fit_intercept: if sparse.issparse(X): return sparse.hstack((W, X.multiply(W))) else: return np.hstack((W, np.multiply(X, W))) else: if sparse.issparse(X): return X.multiply(W) else: return np.multiply(X, W) def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": pearson_residuals = ((y - mu) ** 2) / self.unit_variance(mu) if sample_weight is None: numerator = pearson_residuals.sum() else: numerator = np.dot(pearson_residuals, sample_weight) elif method == "deviance": numerator = self.deviance(y, mu, sample_weight) else: raise NotImplementedError(f"Method {method} hasn't been implemented.") if sample_weight is None: return numerator / (len(y) - ddof) else: return numerator / (sample_weight.sum() - ddof) class TweedieDistribution(ExponentialDispersionModel): r"""A class for the Tweedie distribution. A Tweedie distribution with mean :math:`\mu = \mathrm{E}(Y)` is uniquely defined by its mean-variance relationship :math:`\mathrm{var}(Y) \propto \mu^{\mathrm{power}}`. Special cases are: ====== ================ Power Distribution ====== ================ 0 Normal 1 Poisson (1, 2) Compound Poisson 2 Gamma 3 Inverse Gaussian ====== ================ Parameters ---------- power : float, optional (default=0) The variance power of the `unit_variance` :math:`v(\mu) = \mu^{\mathrm{power}}`. For :math:`0 < \mathrm{power} < 1`, no distribution exists. """ upper_bound = np.Inf include_upper_bound = False def __init__(self, power=0): # validate power and set _upper_bound, _include_upper_bound attrs self.power = power @property def lower_bound(self) -> Union[float, int]: """Return the lowest value of ``y`` allowed.""" if self.power <= 0: return -np.Inf if self.power >= 1: return 0 raise ValueError @property def include_lower_bound(self) -> bool: """Return whether ``lower_bound`` is allowed as a value of ``y``.""" if self.power <= 0: return False if (self.power >= 1) and (self.power < 2): return True if self.power >= 2: return False raise ValueError @property def power(self) -> float: """Return the Tweedie power parameter.""" return self._power @power.setter def power(self, power): if not isinstance(power, (int, float)): raise TypeError(f"power must be an int or float, input was {power}") if (power > 0) and (power < 1): raise ValueError("For 0<power<1, no distribution exists.") # Prevents upcasting when working with 32-bit data self._power = power if isinstance(power, int) else np.float32(power) def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Compute the unit variance of a Tweedie distribution ``v(mu) = mu^power``. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. Returns ------- numpy.ndarray, shape (n_samples,) """ p = self.power # noqa: F841 return numexpr.evaluate("mu ** p") def unit_variance_derivative(self, mu: np.ndarray) -> np.ndarray: r"""Compute the derivative of the unit variance of a Tweedie distribution. Equation: :math:`v(\mu) = p \times \mu^{(p-1)}`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. Returns ------- numpy.ndarray, shape (n_samples,) """ p = self.power # noqa: F841 return numexpr.evaluate("p * mu ** (p - 1)") def deviance(self, y, mu, sample_weight=None) -> float: """Compute the deviance. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. """ p = self.power y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) sample_weight = np.ones_like(y) if sample_weight is None else sample_weight # NOTE: the dispersion parameter is only necessary to convey # type information on account of a bug in Cython if p == 0: return normal_deviance(y, sample_weight, mu, dispersion=1.0) if p == 1: return poisson_deviance(y, sample_weight, mu, dispersion=1.0) elif p == 2: return gamma_deviance(y, sample_weight, mu, dispersion=1.0) else: return tweedie_deviance(y, sample_weight, mu, p=float(p)) def unit_deviance(self, y, mu): """Get the deviance of each observation.""" p = self.power if p == 0: # Normal distribution return (y - mu) ** 2 if p == 1: # Poisson distribution return 2 * (special.xlogy(y, y / mu) - y + mu) elif p == 2: # Gamma distribution return 2 * (np.log(mu / y) + y / mu - 1) else: mu1mp = mu ** (1 - p) return 2 * ( (np.maximum(y, 0) ** (2 - p)) / ((1 - p) * (2 - p)) - y * mu1mp / (1 - p) + mu * mu1mp / (2 - p) ) def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): f = None if self.power == 0 and isinstance(link, IdentityLink): f = normal_identity_rowwise_gradient_hessian elif self.power == 1 and isinstance(link, LogLink): f = poisson_log_rowwise_gradient_hessian elif self.power == 2 and isinstance(link, LogLink): f = gamma_log_rowwise_gradient_hessian elif 1 < self.power < 2 and isinstance(link, LogLink): f = partial(tweedie_log_rowwise_gradient_hessian, p=self.power) if f is not None: return f(y, sample_weight, eta, mu, gradient_rows, hessian_rows) return super()._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): f = None if self.power == 0 and isinstance(link, IdentityLink): f = normal_identity_eta_mu_deviance elif self.power == 1 and isinstance(link, LogLink): f = poisson_log_eta_mu_deviance elif self.power == 2 and isinstance(link, LogLink): f = gamma_log_eta_mu_deviance elif 1 < self.power < 2 and isinstance(link, LogLink): f = partial(tweedie_log_eta_mu_deviance, p=self.power) if f is not None: return f(cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out, factor) return super()._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) def log_likelihood(self, y, mu, sample_weight=None, dispersion=None) -> float: r"""Compute the log likelihood. For ``1 < power < 2``, we use the series approximation by Dunn and Smyth (2005) to compute the normalization term. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. dispersion : float, optional (default=None) Dispersion parameter :math:`\phi`. Estimated if ``None``. """ p = self.power y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) sample_weight = np.ones_like(y) if sample_weight is None else sample_weight if (p != 1) and (dispersion is None): dispersion = self.dispersion(y, mu, sample_weight) if p == 0: return normal_log_likelihood(y, sample_weight, mu, float(dispersion)) if p == 1: # NOTE: the dispersion parameter is only necessary to convey # type information on account of a bug in Cython return poisson_log_likelihood(y, sample_weight, mu, 1.0) elif p == 2: return gamma_log_likelihood(y, sample_weight, mu, float(dispersion)) elif p < 2: return tweedie_log_likelihood( y, sample_weight, mu, float(p), float(dispersion) ) else: raise NotImplementedError def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ p = self.power # noqa: F841 y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": formula = "((y - mu) ** 2) / (mu ** p)" if sample_weight is None: return numexpr.evaluate(formula).sum() / (len(y) - ddof) else: formula = f"sample_weight * {formula}" return numexpr.evaluate(formula).sum() / (sample_weight.sum() - ddof) return super().dispersion( y, mu, sample_weight=sample_weight, ddof=ddof, method=method ) class NormalDistribution(TweedieDistribution): """Class for the Normal (a.k.a. Gaussian) distribution.""" def __init__(self): super().__init__(power=0) class PoissonDistribution(TweedieDistribution): """Class for the scaled Poisson distribution.""" def __init__(self): super().__init__(power=1) class GammaDistribution(TweedieDistribution): """Class for the Gamma distribution.""" def __init__(self): super().__init__(power=2) class InverseGaussianDistribution(TweedieDistribution): """Class for the scaled Inverse Gaussian distribution.""" def __init__(self): super().__init__(power=3) class GeneralizedHyperbolicSecant(ExponentialDispersionModel): """A class for the Generalized Hyperbolic Secant (GHS) distribution. The GHS distribution is for targets ``y`` in ``(-∞, +∞)``. """ lower_bound = -np.Inf upper_bound = np.Inf include_lower_bound = False include_upper_bound = False def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Get the unit-level expected variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 1 + mu**2 def unit_variance_derivative(self, mu: np.ndarray) -> np.ndarray: """Get the derivative of the unit variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 2 * mu def unit_deviance(self, y: np.ndarray, mu: np.ndarray) -> np.ndarray: """Get the unit-level deviance. See superclass documentation. Parameters ---------- y : array-like mu : array-like Returns ------- array-like """ return 2 * y * (np.arctan(y) - np.arctan(mu)) + np.log( (1 + mu**2) / (1 + y**2) ) class BinomialDistribution(ExponentialDispersionModel): """A class for the Binomial distribution. The Binomial distribution is for targets ``y`` in ``[0, 1]``. """ lower_bound = 0 upper_bound = 1 include_lower_bound = True include_upper_bound = True def __init__(self): return def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Get the unit-level expected variance. See superclass documentation. Parameters ---------- mu : array-like Returns ------- array-like """ return mu * (1 - mu) def unit_variance_derivative(self, mu): """Get the derivative of the unit variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 1 - 2 * mu def unit_deviance(self, y: np.ndarray, mu: np.ndarray) -> np.ndarray: """Get the unit-level deviance. See superclass documentation. Parameters ---------- y : array-like mu : array-like Returns ------- array-like """ # see Wooldridge and Papke (1996) for the fractional case return -2 * (special.xlogy(y, mu) + special.xlogy(1 - y, 1 - mu)) def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): if isinstance(link, LogitLink): return binomial_logit_rowwise_gradient_hessian( y, sample_weight, eta, mu, gradient_rows, hessian_rows ) return super()._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): if isinstance(link, LogitLink): return binomial_logit_eta_mu_deviance( cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out, factor ) return super()._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) def log_likelihood(self, y, mu, sample_weight=None, dispersion=1) -> float: """Compute the log likelihood. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. dispersion : float, optional (default=1) Ignored. """ ll = special.xlogy(y, mu) + special.xlogy(1 - y, 1 - mu) return np.sum(ll) if sample_weight is None else np.dot(ll, sample_weight) def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": formula = "((y - mu) ** 2) / (mu * (1 - mu))" if sample_weight is None: return numexpr.evaluate(formula).sum() / (len(y) - ddof) else: formula = f"sample_weight * {formula}" return numexpr.evaluate(formula).sum() / (sample_weight.sum() - ddof) return super().dispersion( y, mu, sample_weight=sample_weight, ddof=ddof, method=method ) def guess_intercept( y: np.ndarray, sample_weight: np.ndarray, link: Link, distribution: ExponentialDispersionModel, eta: Union[np.ndarray, float] = None, ): """ Say we want to find the scalar `b` that minimizes ``LL(eta + b)``, with \ ``eta`` fixed. An exact solution exists for Tweedie distributions with a log link and for the normal distribution with identity link. An exact solution also exists for the case of logit with no offset. If the distribution and corresponding link are something else, we use the Tweedie or normal solution, depending on the link function. """ avg_y = np.average(y, weights=sample_weight) if isinstance(link, IdentityLink): # This is only correct for normal. For other distributions, answer is unknown, # but assume that we want sum(y) = sum(mu) if eta is None: return avg_y avg_eta = eta if np.isscalar(eta) else np.average(eta, weights=sample_weight) return avg_y - avg_eta elif isinstance(link, LogLink): # This is only correct for Tweedie log_avg_y = np.log(avg_y) assert np.isfinite(log_avg_y).all() if eta is None: return log_avg_y mu = np.exp(eta) if isinstance(distribution, TweedieDistribution): p = distribution.power else: p = 1 # Like Poisson if np.isscalar(mu): first = np.log(y.dot(sample_weight) * mu ** (1 - p)) second = np.log(sample_weight.sum() * mu ** (2 - p)) else: first = np.log((y * mu ** (1 - p)).dot(sample_weight)) second = np.log((mu ** (2 - p)).dot(sample_weight)) return first - second elif isinstance(link, LogitLink): log_odds = np.log(avg_y) - np.log(np.average(1 - y, weights=sample_weight)) if eta is None: return log_odds avg_eta = eta if np.isscalar(eta) else np.average(eta, weights=sample_weight) return log_odds - avg_eta else: return link.link(y.dot(sample_weight)) def get_one_over_variance( distribution: ExponentialDispersionModel, link: Link, mu: np.ndarray, eta: np.ndarray, dispersion, sample_weight: np.ndarray, ): """ Get one over the variance. For Tweedie: ``sigma_inv = sample_weight / (mu ** p)`` during optimization, because ``phi = 1``. For Binomial with Logit link: Simplifies to ``variance = phi / ( sample_weight * (exp(eta) + 2 + exp(-eta)))``. More numerically accurate. """ if isinstance(distribution, BinomialDistribution) and isinstance(link, LogitLink): max_float_for_exp = np.log(np.finfo(eta.dtype).max / 10) if np.any(np.abs(eta) > max_float_for_exp): eta = np.clip(eta, -max_float_for_exp, max_float_for_exp) # type: ignore return sample_weight * (np.exp(eta) + 2 + np.exp(-eta)) / dispersion return 1.0 / distribution.variance( mu, dispersion=dispersion, sample_weight=sample_weight ) def _as_float_arrays(*args): """Convert to a float array, passing ``None`` through, and broadcast.""" never_broadcast = {} # type: ignore maybe_broadcast = {} always_broadcast = {} for ix, arg in enumerate(args): if isinstance(arg, (int, float)): maybe_broadcast[ix] = np.array([arg], dtype="float") elif arg is None: never_broadcast[ix] = None else: always_broadcast[ix] = np.asanyarray(arg, dtype="float") if always_broadcast and maybe_broadcast: to_broadcast = {**always_broadcast, **maybe_broadcast} _broadcast = np.broadcast_arrays(*to_broadcast.values()) broadcast = dict(zip(to_broadcast.keys(), _broadcast)) elif always_broadcast: _broadcast = np.broadcast_arrays(*always_broadcast.values()) broadcast = dict(zip(always_broadcast.keys(), _broadcast)) else: broadcast = maybe_broadcast # possibly `{}` out = {**never_broadcast, **broadcast} return [out[ix] for ix in range(len(args))]
32370
from app.factory import create_app, celery_app app = create_app(config_name="DEVELOPMENT") app.app_context().push() if __name__ == "__main__": app.run()
32392
import json def get_qtypes(dataset_name, part): """Return list of question-types for a particular TriviaQA-CP dataset""" if dataset_name not in {"location", "person"}: raise ValueError("Unknown dataset %s" % dataset_name) if part not in {"train", "dev", "test"}: raise ValueError("Unknown part %s" % part) is_biased = part in {"train", "dev"} is_location = dataset_name == "location" if is_biased and is_location: return ["person", "other"] elif not is_biased and is_location: return ["location"] elif is_biased and not is_location: return ["location", "other"] elif not is_biased and not is_location: return ["person"] else: raise RuntimeError() def load_triviaqa_cp(filename, dataset_name, part, expected_version=None): """Load a TriviaQA-CP dataset :param filename: The TriviaQA-CP train or dev json file, must be the train file if if `part`=="train" and the dev file otherwise :param dataset_name: dataset to load, must be in ["person", "location"] :param part: which part, must be in ["test", "dev", "train"[ :param expected_version: Optional version to require the data to match :return: List of question in dictionary form """ target_qtypes = get_qtypes(dataset_name, part) with open(filename, "r") as f: data = json.load(f) if expected_version is not None: if expected_version != data["Version"]: raise ValueError("Expected version %s, but data was version %s" % ( expected_version, data["Version"])) if part == "train": if data["Split"] != "Train": raise ValueError("Expected train file, but split is %s" % data["Split"]) else: if data["Split"] != "Dev": raise ValueError("Expected dev file, but split is %s" % data["Split"]) out = [] for question in data["Data"]: if question["QuestionType"] in target_qtypes: out.append(question) return out
32395
from cssdbpy import Connection from time import time import md5 if __name__ == '__main__': conn = Connection('127.0.0.1', 8888) for i in xrange(0, 10000): md5word = md5.new('word{}'.format(i)).hexdigest() create = conn.execute('hset','words', md5word, int(time())) value = conn.execute('hget','words', md5word) exists = conn.execute('hexists','words', md5word) delete = conn.execute('hdel','words', md5word) print md5word, value, create, exists, delete print conn.execute('hscan', 'words', '', '', 100) conn.execute('hclear','words')
32397
import datetime import pytz from tws_async import * stocks = [ Stock('TSLA'), Stock('AAPL'), Stock('GOOG'), Stock('INTC', primaryExchange='NASDAQ') ] forexs = [ Forex('EURUSD'), Forex('GBPUSD'), Forex('USDJPY') ] endDate = datetime.date.today() startDate = endDate - datetime.timedelta(days=7) histReqs = [] for date in util.dateRange(startDate, endDate): histReqs += [HistRequest(stock, date) for stock in stocks] histReqs += [HistRequest(forex, date, whatToShow='MIDPOINT', durationStr='30 D', barSizeSetting='1 day') for forex in forexs] timezone = datetime.timezone.utc # timezone = pytz.timezone('Europe/Amsterdam') # timezone = pytz.timezone('US/Eastern') util.logToConsole() tws = HistRequester() tws.connect('127.0.0.1', 7497, clientId=1) task = tws.download(histReqs, rootDir='data', timezone=timezone) tws.run(task)
32403
import numpy as np def mean_or_nan(xs): """Return its mean a non-empty sequence, numpy.nan for a empty one.""" return np.mean(xs) if xs else np.nan
32414
import pytest from playwright.sync_api import Page from pages.main_page.main_page import MainPage from test.test_base import * import logging import re logger = logging.getLogger("test") @pytest.mark.only_browser("chromium") def test_find_element_list(page: Page): main_page = MainPage(base_url, page) main_page.delete_cookies() main_page.open() # Wait articles and page to be loaded main_page.loader().should_be_visible() main_page.loader().should_be_hidden() assert main_page.register_button().is_visible() pattern = re.compile(".*") # Check articles assert main_page.articles().size() == 10 assert main_page.articles().get(1).is_visible() assert pattern.match(main_page.articles().get(1).title().inner_text()) assert pattern.match(main_page.articles().get(1).body().inner_text()) logger.info(main_page.articles().get(2).title().inner_text()) # Check nav panel assert main_page.nav_bar().is_visible() assert main_page.nav_bar().login_button().is_visible() logger.info(main_page.nav_bar().login_button().inner_text()) logger.info(main_page.nav_bar().register_button().inner_text()) # articles = page.querySelectorAll(".article-preview") # assert len(articles) == 10 # texts = page.evalOnSelectorAll(".article-preview h1", ''' # (elems, min) => { # return elems.map(function(el) { # return el.textContent //.toUpperCase() # }); //.join(", "); # }''') # assert len(texts) == 10 # assert not texts == [] # assert articles[0].querySelector("h1").innerText() == "Python Playwright Demo" # assert articles[0].querySelector("p").innerText() == "Playwright Demo"
32444
import sys import os import timeit # use local python package rather than the system install sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../python")) from bitboost import BitBoostRegressor import numpy as np import sklearn.metrics nfeatures = 5 nexamples = 10000 data = np.random.choice(np.array([0.0, 1.0, 2.0], dtype=BitBoostRegressor.numt), size=(nexamples * 2, nfeatures)) target = (1.22 * (data[:, 0] > 1.0) + 0.65 * (data[:, 1] > 1.0) + 0.94 * (data[:, 2] != 2.0) + 0.13 * (data[:, 3] == 1.0)).astype(BitBoostRegressor.numt) dtrain, ytrain = data[0:nexamples, :], target[0:nexamples] dtest, ytest = data[nexamples:, :], target[nexamples:] bit = BitBoostRegressor() bit.objective = "l2" bit.discr_nbits = 4 bit.max_tree_depth = 5 bit.learning_rate = 0.5 bit.niterations = 50 bit.categorical_features = list(range(nfeatures)) bit.fit(dtrain, ytrain) train_pred = bit.predict(dtrain) test_pred = bit.predict(dtest) train_acc = sklearn.metrics.mean_absolute_error(ytrain, train_pred) test_acc = sklearn.metrics.mean_absolute_error(ytest, test_pred) print(f"bit train accuracy: {train_acc}") print(f"bit test accuracy: {test_acc}")
32446
import unittest import os import logging import time import re import splunklib.client as client import splunklib.results as results from splunklib.binding import HTTPError from . import dltk_api from . import splunk_api from . import dltk_environment level_prog = re.compile(r'level=\"([^\"]*)\"') msg_prog = re.compile(r'msg=\"((?:\n|.)*)\"') def run_job(algorithm_name): environment_name = dltk_environment.get_name() # raise Exception("| savedsearch job:deploy:%s:%s | %s" % ( # algorithm_name, # environment_name, # 'rex field=_raw "level=\\"(?<level>[^\\"]*)\\", msg=\\"(?<msg>[^[\\"|\\\\"]*)\\"" | table level msg', # )) for event in splunk_api.search("| savedsearch job:deploy:%s:%s | %s" % ( algorithm_name, environment_name, #'rex field=_raw "level=\\"(?<level>[^\\"]*)\\", msg=\\"(?<msg>.*)\\"" | table _raw level msg', #'rex field=_raw "level=\\"(?<level>[^\\"]*)\\", msg=\\"(?<msg>(?:\\n|.)*)\\"" | table _raw level msg', 'table _raw', )): raw = event["_raw"] if "level" not in event: m = level_prog.search(raw) if m: event["level"] = m.group(1) if "msg" not in event: m = msg_prog.search(raw) if m: event["msg"] = m.group(1) if "level" in event: level = event["level"] else: #logging.error("missing 'level' field in deploy result: %s" % (event)) raise Exception("missing 'level' field in deploy result: %s" % raw) # continue msg = event["msg"] if level == "DEBUG": log = logging.debug elif level == "WARNING": log = logging.warning elif level == "ERROR": log = logging.error elif level == "INFO": log = logging.info else: log = logging.warning msg = "UNEXPECTED LEVEL (%s): %s" % (level, msg) log(" %s" % msg) def list_deployments(algorithm_name): return dltk_api.call( "GET", "deployments", data={ "algorithm": algorithm_name, } ) def get_deployment(algorithm_name, environment_name, raise_if_not_exists=True): deployments = dltk_api.call( "GET", "deployments", data={ "algorithm": algorithm_name, "environment": environment_name, } ) if not len(deployments): if raise_if_not_exists: raise Exception("could not find deployment") return None return deployments[0] def deploy(algorithm_name, params={}): undeploy(algorithm_name) splunk = splunk_api.connect() environment_name = dltk_environment.get_name() dltk_api.call("POST", "deployments", data={ **{ "algorithm": algorithm_name, "environment": environment_name, "enable_schedule": False, }, **params, }, return_entries=False) try: while True: deployment = get_deployment(algorithm_name, environment_name, raise_if_not_exists=False) if deployment: deployment = get_deployment(algorithm_name, environment_name) status = deployment["status"] if status == "deploying": logging.info("still deploying...") run_job(algorithm_name) continue if status == "deployed": break status_message = deployment["status_message"] raise Exception("unexpected deployment status: %s: %s" % (status, status_message)) logging.info("successfully deployed algo \"%s\"" % algorithm_name) except: logging.warning("error deploying '%s' to '%s' -> undeploying ..." % (algorithm_name, environment_name)) # while True: # import time # time.sleep(10) undeploy(algorithm_name) logging.warning("finished undeploying") raise def undeploy(algorithm_name): splunk = splunk_api.connect() environment_name = dltk_environment.get_name() while True: try: dltk_api.call("DELETE", "deployments", data={ "algorithm": algorithm_name, "environment": environment_name, "enable_schedule": False, }, return_entries=False) except HTTPError as e: logging.error("error calling API: %s" % e) if e.status == 404: break raise run_job(algorithm_name)
32490
from factory import Faker from .network_node import NetworkNodeFactory from ..constants.network import ACCOUNT_FILE_HASH_LENGTH, BLOCK_IDENTIFIER_LENGTH, MAX_POINT_VALUE, MIN_POINT_VALUE from ..models.network_validator import NetworkValidator class NetworkValidatorFactory(NetworkNodeFactory): daily_confirmation_rate = Faker('pyint', max_value=MAX_POINT_VALUE, min_value=MIN_POINT_VALUE) root_account_file = Faker('url') root_account_file_hash = Faker('text', max_nb_chars=ACCOUNT_FILE_HASH_LENGTH) seed_block_identifier = Faker('text', max_nb_chars=BLOCK_IDENTIFIER_LENGTH) class Meta: model = NetworkValidator abstract = True
32491
from menu.models import Menu from products.models import Product, Category def get_dashboard_data_summary(): cardapios = Menu.objects.all() produtos = Product.objects.all() categorias = Category.objects.all() return {'total_cardapios': len(cardapios), 'total_produtos': len(produtos), 'total_categorias': len(categorias)}
32548
import torch from torch.nn import Module, Parameter from torch.autograd import Function class Forward_Warp_Python: @staticmethod def forward(im0, flow, interpolation_mode): im1 = torch.zeros_like(im0) B = im0.shape[0] H = im0.shape[2] W = im0.shape[3] if interpolation_mode == 0: for b in range(B): for h in range(H): for w in range(W): x = w + flow[b, h, w, 0] y = h + flow[b, h, w, 1] nw = (int(torch.floor(x)), int(torch.floor(y))) ne = (nw[0]+1, nw[1]) sw = (nw[0], nw[1]+1) se = (nw[0]+1, nw[1]+1) p = im0[b, :, h, w] if nw[0] >= 0 and se[0] < W and nw[1] >= 0 and se[1] < H: nw_k = (se[0]-x)*(se[1]-y) ne_k = (x-sw[0])*(sw[1]-y) sw_k = (ne[0]-x)*(y-ne[1]) se_k = (x-nw[0])*(y-nw[1]) im1[b, :, nw[1], nw[0]] += nw_k*p im1[b, :, ne[1], ne[0]] += ne_k*p im1[b, :, sw[1], sw[0]] += sw_k*p im1[b, :, se[1], se[0]] += se_k*p else: round_flow = torch.round(flow) for b in range(B): for h in range(H): for w in range(W): x = w + int(round_flow[b, h, w, 0]) y = h + int(round_flow[b, h, w, 1]) if x >= 0 and x < W and y >= 0 and y < H: im1[b, :, y, x] = im0[b, :, h, w] return im1 @staticmethod def backward(grad_output, im0, flow, interpolation_mode): B = grad_output.shape[0] C = grad_output.shape[1] H = grad_output.shape[2] W = grad_output.shape[3] im0_grad = torch.zeros_like(grad_output) flow_grad = torch.empty([B, H, W, 2]) if interpolation_mode == 0: for b in range(B): for h in range(H): for w in range(W): x = w + flow[b, h, w, 0] y = h + flow[b, h, w, 1] x_f = int(torch.floor(x)) y_f = int(torch.floor(y)) x_c = x_f+1 y_c = y_f+1 nw = (x_f, y_f) ne = (x_c, y_f) sw = (x_f, y_c) se = (x_c, y_c) p = im0[b, :, h, w] if nw[0] >= 0 and se[0] < W and nw[1] >= 0 and se[1] < H: nw_k = (se[0]-x)*(se[1]-y) ne_k = (x-sw[0])*(sw[1]-y) sw_k = (ne[0]-x)*(y-ne[1]) se_k = (x-nw[0])*(y-nw[1]) nw_grad = grad_output[b, :, nw[1], nw[0]] ne_grad = grad_output[b, :, ne[1], ne[0]] sw_grad = grad_output[b, :, sw[1], sw[0]] se_grad = grad_output[b, :, se[1], se[0]] im0_grad[b, :, h, w] += nw_k*nw_grad im0_grad[b, :, h, w] += ne_k*ne_grad im0_grad[b, :, h, w] += sw_k*sw_grad im0_grad[b, :, h, w] += se_k*se_grad flow_grad_x = torch.zeros(C) flow_grad_y = torch.zeros(C) flow_grad_x -= (y_c-y)*p*nw_grad flow_grad_y -= (x_c-x)*p*nw_grad flow_grad_x += (y_c-y)*p*ne_grad flow_grad_y -= (x-x_f)*p*ne_grad flow_grad_x -= (y-y_f)*p*sw_grad flow_grad_y += (x_c-x)*p*sw_grad flow_grad_x += (y-y_f)*p*se_grad flow_grad_y += (x-x_f)*p*se_grad flow_grad[b, h, w, 0] = torch.sum(flow_grad_x) flow_grad[b, h, w, 1] = torch.sum(flow_grad_y) else: round_flow = torch.round(flow) for b in range(B): for h in range(H): for w in range(W): x = w + int(round_flow[b, h, w, 0]) y = h + int(round_flow[b, h, w, 1]) if x >= 0 and x < W and y >= 0 and y < H: im0_grad[b, :, h, w] = grad_output[b, :, y, x] return im0_grad, flow_grad
32549
import itertools import Partitioning class Algorithm( object ): def __init__( self, linv, variant, init, repart, contwith, before, after, updates ): self.linv = linv self.variant = variant if init: #assert( len(init) == 1 ) self.init = init[0] else: self.init = None self.repart = repart self.contwith = contwith self.before = before self.after = after self.updates = updates # To be filled up for code generation self.name = None self.partition = None self.partition_size = None self.guard = None self.repartition = None self.repartition_size = None self.basic_repart = None self.cont_with = None def prepare_for_code_generation( self ): self.set_name() self.set_partition() self.set_partition_size() self.set_guard() self.set_repartition() self.set_repartition_size() self.set_basic_repart() self.set_cont_with() def set_name( self ): self.name = "%s_blk_var%d" % (self.linv.operation.name, self.variant) def set_partition( self ): self.partition = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: # [FIX] linv_operands? for op in self.linv.linv_operands: # [FIX] linv_operands? #part_size = self.linv.pme.part_shape[ op.get_name() ] part_size = self.linv.linv_operands_part_shape[ op.get_name() ] #part_flat = list(itertools.chain( *self.linv.pme.partitionings[ op.get_name() ] )) part_flat = list(itertools.chain( *self.linv.linv_operands_basic_part[ op.get_name() ] )) trav = traversals[op.get_name()] if part_size == (1, 1): continue elif part_size == (1, 2): if trav == (0, 1): part_quad = "L" else: # (0, -1) part_quad = "R" elif part_size == (2, 1): if trav == (1, 0): part_quad = "T" else: # (-1, 0) part_quad = "B" elif part_size == (2, 2): if trav == (1, 1): part_quad = "TL" elif trav == (1, -1): part_quad = "TR" elif trav == (-1, 1): part_quad = "BL" else: #(-1, -1): part_quad = "BR" else: raise Exception self.partition[ op.get_name() ] = (part_size, part_flat, part_quad) def set_partition_size( self ): self.partition_size = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: for op in self.linv.linv_operands: name = op.get_name() traversal = traversals[op.get_name()] if traversal == (0, 0): continue elif traversal in ( (0, 1), (0, -1) ): # L|R (the specific quadrant can be retrieved from self.partition) self.partition_size[ name ] = ( op.size[0], 0 ) elif traversal in ( (1, 0), (-1, 0) ): # T/B self.partition_size[ name ] = ( 0, op.size[1] ) elif traversal in ( (1, 1), (1, -1), (-1, 1), (-1, -1) ): # 2x2 self.partition_size[ name ] = ( 0, 0 ) else: print( name, traversal ) raise Exception def set_guard( self ): self.guard = [] traversals = self.linv.traversals[0][0] #guard_dims = [bd[0] for bd in self.linv.linv_bound_dimensions[1:]] guard_dims = [] #for bd in self.linv.linv_bound_dimensions[1:]: for bd in self.linv.operation.bound_dimensions[1:]: for d in bd: op_name, dim = d.split("_") op = [ o for o in self.linv.operation.operands if o.name == op_name ][0] if op.st_info[1] != op: continue if dim == "r": idx = 0 else: idx = 1 if ( traversals[op_name][idx] == 0 ): continue self.guard.append( (op.get_size()[idx], guard(op, traversals[op_name])) ) break def set_repartition( self ): self.repartition = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: for op in self.linv.linv_operands: part_size = self.linv.linv_operands_part_shape[ op.get_name() ] #part_size = self.linv.pme.part_shape[ op.get_name() ] repart = self.repart[ op.get_name() ] traversal = traversals[op.get_name()] if part_size == (1, 1): continue elif part_size == (1, 2): repart_size = (1, 3) if traversal == (0, 1): # ( 0 || 1 | 2 ) repart_quadrant = "R" else: # ( 0 | 1 || 2 ) repart_quadrant = "L" elif part_size == (2, 1): repart_size = (3, 1) if traversal == (1, 0): # ( 0 // 1 / 2 ) repart_quadrant = "B" else: # ( 0 / 1 // 2 ) repart_quadrant = "T" elif part_size == (2, 2): repart_size = (3, 3) if traversal == (1, 1): # BR becomes 2x2 repart_quadrant = "BR" elif traversal == (1, -1): # BL becomes 2x2 repart_quadrant = "BL" elif traversal == (-1, 1): # TR becomes 2x2 repart_quadrant = "TR" else: #if traversal == (-1, -1): # TL becomes 2x2 repart_quadrant = "TL" else: raise Exception repart_flat = list(flatten_repart(repart)) self.repartition[ op.get_name() ] = (repart_size, repart_flat, repart_quadrant) def set_repartition_size( self ): self.repartition_size = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: for op in self.linv.linv_operands: name = op.get_name() traversal = traversals[op.get_name()] if traversal == (0, 0): continue elif traversal in ( (0, 1), (0, -1) ): # Quadrant is 1 self.repartition_size[ name ] = ( "1", op.size[0], "bs" ) elif traversal in ( (1, 0), (-1, 0) ): # Quadrant is 1 self.repartition_size[ name ] = ( "1", "bs", op.size[1] ) elif traversal in ( (1, 1), (1, -1), (-1, 1), (-1, -1) ): # Quadrant is 11 self.repartition_size[ name ] = ( "11", "bs", "bs" ) else: print( name, traversal ) raise Exception def set_basic_repart( self ): self.basic_repart = dict() traversals = self.linv.traversals[0][0] for op in self.linv.linv_operands: part_size = self.linv.linv_operands_part_shape[ op.get_name() ] if part_size == (1, 1): repart_size = (1, 1) elif part_size == (1, 2): repart_size = (1, 3) elif part_size == (2, 1): repart_size = (3, 1) elif part_size == (2, 2): repart_size = (3, 3) else: raise Exception self.basic_repart[ op.get_name() ] = Partitioning.repartition_shape( op, repart_size ) def set_repartition_size( self ): self.repartition_size = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: for op in self.linv.linv_operands: name = op.get_name() traversal = traversals[op.get_name()] if traversal == (0, 0): continue def set_cont_with( self ): self.cont_with = dict() traversals = self.linv.traversals[0][0] #for op in self.linv.operation.operands: for op in self.linv.linv_operands: part_size = self.linv.linv_operands_part_shape[ op.get_name() ] #part_size = self.linv.pme.part_shape[ op.get_name() ] traversal = traversals[op.get_name()] if part_size == (1, 1): continue elif part_size == (1, 2): if traversal == (0, 1): # ( 0 | 1 || 2 ) 1 appended to L cont_with_quadrant = "L" else: # ( 0 || 1 | 2 ) 1 appended to R cont_with_quadrant = "R" elif part_size == (2, 1): if traversal == (1, 0): # ( 0 / 1 // 2 ) 1 appended to T cont_with_quadrant = "T" else: # ( 0 // 1 / 2 ) 1 appended to B cont_with_quadrant = "B" elif part_size == (2, 2): if traversal == (1, 1): # TL grows cont_with_quadrant = "TL" elif traversal == (1, -1): # TR grows cont_with_quadrant = "TR" elif traversal == (-1, 1): # BL grows cont_with_quadrant = "BL" else: #if traversal == (-1, -1): # BR grows cont_with_quadrant = "BR" else: raise Exception self.cont_with[ op.get_name() ] = cont_with_quadrant def guard( op, traversal ): name = op.get_name() #op = [ o for o in self.operations.operands if o.name == op_name ][0] if traversal == (0, 1): # L -> R return ("L", op) elif traversal == (0, -1): # R -> L return ("R", op) elif traversal == (1, 0): # T -> B return ("T", op) elif traversal == (-1, 0): # B -> T return ("B", op) elif traversal == (1, 1): # TL -> BR return ("TL", op) elif traversal == (1, -1): # TR -> BL return ("TR", op) elif traversal == (-1, 1): # BL -> TR return ("BL", op) elif traversal == (-1, -1): # BR -> TL return ("BR", op) else: print( op_name, traversal ) raise Exception # Flattens a matrix of matrices resulting from a repartitioning def flatten_repart( repart ): r, c = 0, 0 chained = [] for row in repart: for cell in row: _r = r _c = c for _row in cell: _c = c for _cell in _row: chained.append( (_r, _c, _cell) ) _c += 1 _r += 1 c += len( cell.children[0] ) r = len( cell.children ) c = 0 chained.sort() for _, _, quadrant in chained: yield quadrant
32603
from .defines import MsgLv, UnknownFieldValue, ValidateResult, get_msg_level from .validators import SpecValidator def _wrap_error_with_field_info(failure): if get_msg_level() == MsgLv.VAGUE: return RuntimeError(f'field: {failure.field} not well-formatted') if isinstance(failure.value, UnknownFieldValue): return LookupError(f'field: {failure.field} missing') msg = f'field: {failure.field}, reason: {failure.error}' return type(failure.error)(msg) def _flatten_results(failures, errors=None): if type(errors) != list: raise RuntimeError(f'{errors} not a list') if type(failures) == tuple: _flatten_results(failures[1], errors) elif type(failures) == list: for item in failures: _flatten_results(item, errors) elif isinstance(failures, ValidateResult): if issubclass(type(failures.error), Exception): error = _wrap_error_with_field_info(failures) errors.append(error) return _flatten_results(failures.error, errors) def _find_most_significant_error(failures): errors = [] _flatten_results(failures, errors) # Build error list by error types err_map = {} for err in errors: if isinstance(err, ValueError): err_key = 'ValueError' elif isinstance(err, PermissionError): err_key = 'PermissionError' elif isinstance(err, TypeError): err_key = 'TypeError' elif isinstance(err, LookupError): err_key = 'LookupError' else: err_key = 'RuntimeError' err_map.setdefault(err_key, []).append(err) # Severity, PermissionError > LookupError > TypeError > ValueError > RuntimeError. errors = ( err_map.get('PermissionError', []) or err_map.get('LookupError', []) or err_map.get('TypeError', []) or err_map.get('ValueError', []) or err_map.get('RuntimeError', []) ) # TODO: For better information, we can raise an error with all error messages at one shot main_error = errors[0] return main_error def validate_data_spec(data, spec, **kwargs): # SPEC validator as the root validator ok, failures = SpecValidator.validate(data, {SpecValidator.name: spec}, None) nothrow = kwargs.get('nothrow', False) if not ok and not nothrow: error = _find_most_significant_error(failures) raise error return ok
32604
import sys __all__ = ['IntegerTypes', 'StringTypes'] if sys.version_info < (3,): IntegerTypes = (int, long) StringTypes = (str, unicode) long = long import __builtin__ as builtins else: IntegerTypes = (int,) StringTypes = (str,) long = int import builtins
32615
try: import tensorflow except ModuleNotFoundError: pkg_name = 'tensorflow' import os import sys import subprocess from cellacdc import myutils cancel = myutils.install_package_msg(pkg_name) if cancel: raise ModuleNotFoundError( f'User aborted {pkg_name} installation' ) subprocess.check_call( [sys.executable, '-m', 'pip', 'install', 'tensorflow'] ) # numba requires numpy<1.22 but tensorflow might install higher # so install numpy less than 1.22 if needed import numpy np_version = numpy.__version__.split('.') np_major, np_minor = [int(v) for v in np_version][:2] if np_major >= 1 and np_minor >= 22: subprocess.check_call( [sys.executable, '-m', 'pip', 'install', '--upgrade', 'numpy<1.22'] )
32616
import aioredis import trafaret as t import yaml from aiohttp import web CONFIG_TRAFARET = t.Dict( { t.Key('redis'): t.Dict( { 'port': t.Int(), 'host': t.String(), 'db': t.Int(), 'minsize': t.Int(), 'maxsize': t.Int(), } ), 'host': t.IP, 'port': t.Int(), } ) def load_config(fname): with open(fname, 'rt') as f: data = yaml.load(f) return CONFIG_TRAFARET.check(data) async def init_redis(conf, loop): pool = await aioredis.create_redis_pool( (conf['host'], conf['port']), minsize=conf['minsize'], maxsize=conf['maxsize'], loop=loop, ) return pool CHARS = "abcdefghijkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789" def encode(num, alphabet=CHARS): if num == 0: return alphabet[0] arr = [] base = len(alphabet) while num: num, rem = divmod(num, base) arr.append(alphabet[rem]) arr.reverse() return ''.join(arr) ShortifyRequest = t.Dict({t.Key('url'): t.URL}) def fetch_url(data): try: data = ShortifyRequest(data) except t.DataError: raise web.HTTPBadRequest('URL is not valid') return data['url']
32633
import sys from antlr4 import * from ChatParser import ChatParser from ChatListener import ChatListener from antlr4.error.ErrorListener import * import io class ChatErrorListener(ErrorListener): def __init__(self, output): self.output = output self._symbol = '' def syntaxError(self, recognizer, offendingSymbol, line, column, msg, e): self.output.write(msg) if offendingSymbol is not None: self._symbol = offendingSymbol.text else: self._symbol = recognizer.getTokenErrorDisplay(offendingSymbol); @property def symbol(self): return self._symbol
32634
from django.urls import path from . import views urlpatterns = [ path("", views.home, name="home"), path("faq/", views.faq, name="faq"), path("plagiarism_policy/", views.plagiarism_policy, name="plagiarism_policy"), path("privacy_policy/", views.privacy_policy, name="privacy_policy"), path("post_login/", views.index, name="post_login"), path("save_partnership_contact_form/", views.save_partnership_contact_form, name="save_partnership_contact_form"), path("500/", views.test_500), path("404/", views.test_404), ]
32648
from utils import * import torch import sys import numpy as np import time import torchvision from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as datasets def validate_pgd(val_loader, model, criterion, K, step, configs, logger, save_image=False, HE=False): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() eps = configs.ADV.clip_eps model.eval() end = time.time() logger.info(pad_str(' PGD eps: {}, K: {}, step: {} '.format(eps, K, step))) if HE == True: is_HE = '_HE' else: is_HE = '' if configs.pretrained: is_HE = '_pretrained' for i, (input, target) in enumerate(val_loader): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) #save original images if save_image == True and i < 2: original_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(original_images_save[o, :, :, :], 'saved_images/original_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) randn = torch.FloatTensor(input.size()).uniform_(-eps, eps).cuda() input += randn input.clamp_(0, 1.0) orig_input = input.clone() for _ in range(K): invar = Variable(input, requires_grad=True) in1 = invar - mean in1.div_(std) output = model(in1) ascend_loss = criterion(output, target) ascend_grad = torch.autograd.grad(ascend_loss, invar)[0] pert = fgsm(ascend_grad, step) # Apply purturbation input += pert.data input = torch.max(orig_input-eps, input) input = torch.min(orig_input+eps, input) input.clamp_(0, 1.0) #save adv images if save_image == True and i < 2: adv_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(adv_images_save[o, :, :, :], 'saved_images/adv_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) #save scaled perturbation perturbation = input - orig_input perturbation.clamp_(-eps,eps) scaled_perturbation = (perturbation.clone() + eps) / (2 * eps) scaled_perturbation.clamp_(0, 1.0) if save_image == True and i < 2: for o in range(input.size(0)): torchvision.utils.save_image(scaled_perturbation[o, :, :, :], 'saved_images/scaled_perturbation'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) input.sub_(mean).div_(std) with torch.no_grad(): # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('PGD Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' PGD Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate(val_loader, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate_ImagetNet_C(val_loader_name, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # switch to evaluate mode model.eval() fil_index = ['/1','/2','/3','/4','/5'] avg_return = 0 for f in fil_index: valdir = os.path.join(configs.data, val_loader_name+f) print(' File: ', valdir) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(configs.DATA.img_size), transforms.CenterCrop(configs.DATA.crop_size), transforms.ToTensor(), ])), batch_size=configs.DATA.batch_size, shuffle=False, num_workers=configs.DATA.workers, pin_memory=True) # Initiate the meters top1 = AverageMeter() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) # measure accuracy and record loss prec1,_ = accuracy(output, target, topk=(1,2)) top1.update(prec1[0], input.size(0)) # if i % configs.TRAIN.print_freq == 0: # print('PGD Test: [{0}/{1}]\t' # 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( # i, len(val_loader),top1=top1)) # print('Time: ', time.time() - end) # sys.stdout.flush() print('Prec: ',top1.avg.cpu().item()) avg_return += top1.avg.cpu().item() print('Avergae Classification Accuracy is: ', avg_return / 5.) return
32661
from tool.runners.python import SubmissionPy class DavidSubmission(SubmissionPy): def bucket_key(self, w, i): return w[:i] + w[i+1:] def run(self, s): words = s.split("\n") n = len(words[0]) buckets = [set() for i in range(n)] for w in words: for i in range(n): k = self.bucket_key(w, i) if k in buckets[i]: return k buckets[i].add(k)
32666
import pytest @pytest.mark.parametrize("cli_options", [ ('-k', 'notestdeselect',), ]) def test_autoexecute_yml_keywords_skipped(testdir, cli_options): yml_file = testdir.makefile(".yml", """ --- markers: - marker1 - marker2 --- - provider: python type: assert expression: "1" """) assert yml_file.basename.startswith('test_') assert yml_file.basename.endswith('.yml') result = testdir.runpytest(*cli_options) result.assert_outcomes(passed=0, failed=0, error=0) # Deselected, not skipped. See #3427 # result.assert_outcomes(skipped=1)
32670
import solana_rpc as rpc def get_apr_from_rewards(rewards_data): result = [] if rewards_data is not None: if 'epochRewards' in rewards_data: epoch_rewards = rewards_data['epochRewards'] for reward in epoch_rewards: result.append({ 'percent_change': reward['percentChange'], 'apr': reward['apr'] }) return result def calc_single_apy(apr, percent_change): epoch_count = apr / percent_change result = ((1 + percent_change / 100) ** epoch_count - 1) * 100 return result def calc_apy_list_from_apr(apr_per_epoch): l_apy = [] for item in apr_per_epoch: apy = calc_single_apy(item['apr'], item['percent_change']) l_apy.append(apy) return l_apy def process(validators): data = [] for validator in validators: rewards_data = rpc.load_stake_account_rewards(validator['stake_account']) apr_per_epoch = get_apr_from_rewards(rewards_data) apy_per_epoch = calc_apy_list_from_apr(apr_per_epoch) data.append(apy_per_epoch) return data
32675
import re class Solution: def helper(self, expression: str) -> List[str]: s = re.search("\{([^}{]+)\}", expression) if not s: return {expression} g = s.group(1) result = set() for c in g.split(','): result |= self.helper(expression.replace('{' + g + '}', c, 1)) return result def braceExpansionII(self, expression: str) -> List[str]: return sorted(list(self.helper(expression)))
32680
from unittest.mock import patch from dependent import parameter_dependent @patch('math.sqrt') def test_negative(mock_sqrt): assert parameter_dependent(-1) == 0 mock_sqrt.assert_not_called() @patch('math.sqrt') def test_zero(mock_sqrt): mock_sqrt.return_value = 0 assert parameter_dependent(0) == 0 mock_sqrt.assert_called_once_with(0) @patch('math.sqrt') def test_twenty_five(mock_sqrt): mock_sqrt.return_value = 5 assert parameter_dependent(25) == 5 mock_sqrt.assert_called_with(25) @patch('math.sqrt') def test_hundred(mock_sqrt): mock_sqrt.return_value = 10 assert parameter_dependent(100) == 10 mock_sqrt.assert_called_with(100) @patch('math.sqrt') def test_hundred_and_one(mock_sqrt): assert parameter_dependent(101) == 10 mock_sqrt.assert_not_called()
32683
import os _lab_components = """from api2db.ingest import * CACHE=True # Caches API data so that only a single API call is made if True def import_target(): return None def pre_process(): return None def data_features(): return None def post_process(): return None if __name__ == "__main__": api_form = ApiForm(name="lab", pre_process=pre_process(), data_features=data_features(), post_process=post_process() ) api_form.experiment(CACHE, import_target) """ def mlab(): """ This shell command is used for creation of a lab. Labs offer an easier way to design an ApiForm. Given a project directory :: project_dir-----/ | apis-----/ | |- __init__.py | |- FooCollector.py | |- BarCollector.py | AUTH-----/ | |- bigquery_auth_template.json | |- omnisci_auth_template.json | |- sql_auth_template.json | CACHE/ | STORE/ | helpers.py | main.py **Shell Command:** ``path/to/project_dir> mlab`` :: project_dir-----/ | apis-------/ | |- __init__.py | |- FooCollector.py | |- BarCollector.py | AUTH-------/ | |- bigquery_auth_template.json | |- omnisci_auth_template.json | |- sql_auth_template.json | CACHE/ | STORE/ | laboratory-/ | |- lab.py EDIT THIS FILE! | helpers.py | main.py Returns: None """ lab_dir_path = os.path.join(os.getcwd(), "laboratory") if not os.path.isdir(lab_dir_path): os.makedirs(lab_dir_path) with open(os.path.join(lab_dir_path, "lab.py"), "w") as f: for line in _lab_components: f.write(line) print("Lab has been created. Edit the file found in laboratory/lab.py") else: print("Lab already exists!")
32711
from .client import Client class Stats(Client): def __init__(self, api_key='YourApiKeyToken'): Client.__init__(self, address='', api_key=api_key) self.url_dict[self.MODULE] = 'stats' def get_total_ether_supply(self): self.url_dict[self.ACTION] = 'ethsupply' self.build_url() req = self.connect() return req['result'] def get_ether_last_price(self): self.url_dict[self.ACTION] = 'ethprice' self.build_url() req = self.connect() return req['result']
32719
import MiniNero import ed25519 import binascii import PaperWallet import cherrypy import os import time import bitmonerod import SimpleXMR2 import SimpleServer message = "send0d000114545737471em2WCg9QKxRxbo6S3xKF2K4UDvdu6hMc" message = "send0d0114545747771em2WCg9QKxRxbo6S3xKF2K4UDvdu6hMc" sec = raw_input("sec?") print(SimpleServer.Signature(message, sec))
32730
import datetime import remi import core.globals connected_clients = {} # Dict with key=session id of App Instance and value=ws_client.client_address of App Instance connected_clients['number'] = 0 # Special Dict Field for amount of active connections client_route_url_to_view = {} # Dict to store URL extensions related to session. This is used to switch a view based on url def handle_connections(AppInst=None): # Take care of the connection. It is only alive if the websocket still is active. # Check, if there is a new websocket connection for this App session (= Instance) if AppInst.connection_established == False and len(AppInst.websockets) == 1: for session_id, app_inst in remi.server.clients.items(): if session_id == AppInst.session: for ws_client in app_inst.websockets: AppInst.logger.info(f'New Session with ID <{AppInst.session}> from host {ws_client.client_address}') # Host Information for direct connection connected_clients[AppInst.session] = ws_client.client_address AppInst.logger.info(f'Session <{AppInst.session}> host headers: {ws_client.headers}') connected_clients['number'] = connected_clients['number'] + 1 AppInst.logger.info(f'Connected clients ({connected_clients["number"]} in total): {connected_clients}') AppInst.connect_time = datetime.datetime.now() AppInst.connection_established = True # Set Flag. This can be used by other threads as end signal. # Check, if the websocket connection is still alive. REMI removes the Websocket from the List if dead. if len(remi.server.clients[AppInst.session].websockets) == 0 and AppInst.connection_established == True: AppInst.disconnect_time = datetime.datetime.now() # Store the disconnect time connection_duration = f'{(AppInst.disconnect_time - AppInst.connect_time).seconds} sec' AppInst.logger.info(f'Session <{AppInst.session}> from host {connected_clients[AppInst.session]} has disconnected. Connection duration: {connection_duration}') AppInst.connection_established = False # Set Flag. This can be used by other threads as end signal. del connected_clients[AppInst.session] connected_clients['number'] = connected_clients['number'] - 1 AppInst.logger.info(f'Still connected clients: {connected_clients}')
32756
from diofant.utilities.decorator import no_attrs_in_subclass __all__ = () def test_no_attrs_in_subclass(): class A: x = 'test' A.x = no_attrs_in_subclass(A, A.x) class B(A): pass assert hasattr(A, 'x') is True assert hasattr(B, 'x') is False
32763
from ckan_cloud_operator import kubectl def get(what, *args, required=True, namespace=None, get_cmd=None, **kwargs): return kubectl.get(what, *args, required=required, namespace=namespace, get_cmd=get_cmd, **kwargs)
32773
import os import tarfile import time import pickle import numpy as np from Bio.Seq import Seq from scipy.special import expit from scipy.special import logit import torch import torch.nn.functional as F """ Get directories for model and seengenes """ module_dir = os.path.dirname(os.path.realpath(__file__)) model_dir = os.path.join(module_dir, "balrog_models") """ Print what the program is doing.""" verbose = True """ Use kmer prefilter to increase gene sensitivity. May not play nice with very high GC genomes.""" protein_kmer_filter = False """ Nucleotide to amino acid translation table. 11 for most bacteria/archaea. 4 for Mycoplasma/Spiroplasma.""" translation_table = 11 # translation_table = 4 """ Batch size for the temporal convolutional network used to score genes. Small batches and big batches slow down the model. Very big batches may crash the GPU. """ gene_batch_size = 200 TIS_batch_size = 1000 """ All following are internal parameters. Change at your own risk.""" weight_gene_prob = 0.9746869839852076 weight_TIS_prob = 0.25380288790532707 score_threshold = 0.47256101519707244 weight_ATG = 0.84249804151264 weight_GTG = 0.7083689705744909 weight_TTG = 0.7512400826652517 unidirectional_penalty_per_base = 3.895921717182765 # 3' 5' overlap convergent_penalty_per_base = 4.603432608883688 # 3' 3' overlap divergent_penalty_per_base = 3.3830814940689975 # 5' 5' overlap k_seengene = 10 multimer_threshold = 2 nuc_encode = {"A": 0, "T": 1, "G": 2, "C": 3, "N": 0, "M": 0, "R": 0, "Y": 0, "W": 0, "K": 0} start_enc = {"ATG": 0, "GTG": 1, "TTG": 2} aa_table = {"L": 1, "V": 2, "I": 3, "M": 4, "C": 5, "A": 6, "G": 7, "S": 8, "T": 9, "P": 10, "F": 11, "Y": 12, "W": 13, "E": 14, "D": 15, "N": 16, "Q": 17, "K": 18, "R": 19, "H": 20, "*": 0, "X": 0} # generate ORF sequences from coordinates # @profile def generate_sequence(graph_vector, nodelist, node_coords, overlap): sequence = "" for i in range(0, len(nodelist)): id = nodelist[i] coords = node_coords[i] # calculate strand based on value of node (if negative, strand is false) strand = True if id >= 0 else False if strand: unitig_seq = graph_vector[abs(id) - 1].seq else: unitig_seq = str(Seq(graph_vector[abs(id) - 1].seq).reverse_complement()) if len(sequence) == 0: substring = unitig_seq[coords[0]:(coords[1] + 1)] else: if coords[1] >= overlap: substring = unitig_seq[overlap:(coords[1] + 1)] sequence += substring return sequence #@profile def tokenize_aa_seq(aa_seq): """ Convert amino acid letters to integers.""" tokenized = torch.tensor([aa_table[aa] for aa in aa_seq]) return tokenized #@profile def get_ORF_info(ORF_vector, graph, overlap): ORF_seq_list = [] TIS_seqs = [] # iterate over list of ORFs for ORFNodeVector in ORF_vector: # need to determine ORF sequences from paths ORF_nodelist = ORFNodeVector[0] ORF_node_coords = ORFNodeVector[1] TIS_nodelist = ORFNodeVector[3] TIS_node_coords = ORFNodeVector[4] # generate ORF_seq, as well as upstream and downstream TIS seq ORF_seq = graph.generate_sequence(ORF_nodelist, ORF_node_coords, overlap) upstream_TIS_seq = graph.generate_sequence(TIS_nodelist, TIS_node_coords, overlap) downstream_TIS_seq = ORF_seq[0:19] # generate Seq class for translation seq = Seq(ORF_seq) # translate once per frame, then slice. Note, do not include start or stop codons aa = str(seq[3:-3].translate(table=translation_table, to_stop=False)) ORF_seq_list.append(aa) TIS_seqs.append((upstream_TIS_seq, downstream_TIS_seq)) # convert amino acids into integers ORF_seq_enc = [tokenize_aa_seq(x) for x in ORF_seq_list] return ORF_seq_enc, TIS_seqs #@profile def predict(model, X): model.eval() with torch.no_grad(): if torch.cuda.device_count() > 0: X_enc = F.one_hot(X, 21).permute(0, 2, 1).float().cuda() probs = expit(model(X_enc).cpu()) del X_enc torch.cuda.empty_cache() else: X_enc = F.one_hot(X, 21).permute(0, 2, 1).float() probs = expit(model(X_enc).cpu()) return probs #@profile def predict_tis(model_tis, X): model_tis.eval() with torch.no_grad(): if torch.cuda.device_count() > 0: X_enc = F.one_hot(X, 4).permute(0, 2, 1).float().cuda() else: X_enc = F.one_hot(X, 4).permute(0, 2, 1).float() probs = expit(model_tis(X_enc).cpu()) return probs #@profile def kmerize(seq, k): kmerset = set() for i in range(len(seq) - k + 1): kmer = tuple(seq[i: i + k].tolist()) kmerset.add(kmer) return kmerset def load_kmer_model(): # check if directory exists. If not, unzip file if not os.path.exists(model_dir): tar = tarfile.open(model_dir + ".tar.gz", mode="r:gz") tar.extractall(module_dir) tar.close() """Load k-mer filters""" genexa_kmer_path = os.path.join(model_dir, "10mer_thresh2_minusARF_all.pkl") with open(genexa_kmer_path, "rb") as f: aa_kmer_set = pickle.load(f) return aa_kmer_set def load_gene_models(): # check if directory exists. If not, unzip file if not os.path.exists(model_dir): tar = tarfile.open(model_dir + ".tar.gz", mode="r:gz") tar.extractall(module_dir) tar.close() torch.hub.set_dir(model_dir) # print("Loading convolutional model...") if torch.cuda.device_count() > 0: # print("GPU detected...") model = torch.hub.load(model_dir, "geneTCN", source='local').cuda() model_tis = torch.hub.load(model_dir, "tisTCN", source='local').cuda() time.sleep(0.5) else: # print("No GPU detected, using CPU...") model = torch.hub.load(model_dir, "geneTCN", source='local') model_tis = torch.hub.load(model_dir, "tisTCN", source='local') time.sleep(0.5) return (model, model_tis) #@profile def score_genes(ORF_vector, graph_vector, minimum_ORF_score, overlap, model, model_tis, aa_kmer_set): # get sequences and coordinates of ORFs # print("Finding and translating open reading frames...") ORF_seq_enc, TIS_seqs = get_ORF_info(ORF_vector, graph_vector, overlap) # seengene check if protein_kmer_filter: seengene = [] for s in ORF_seq_enc: kmerset = kmerize(s, k_seengene) # s = [x in aa_kmer_set for x in kmerset] s = np.isin(list(kmerset), aa_kmer_set) seen = np.count_nonzero(s) >= multimer_threshold seengene.append(seen) # score # print("Scoring ORFs with temporal convolutional network...") # sort by length to minimize impact of batch padding ORF_lengths = np.asarray([len(x) for x in ORF_seq_enc]) length_idx = np.argsort(ORF_lengths) ORF_seq_sorted = [ORF_seq_enc[i] for i in length_idx] # pad to allow creation of batch matrix prob_list = [] for i in range(0, len(ORF_seq_sorted), gene_batch_size): batch = ORF_seq_sorted[i:i + gene_batch_size] seq_lengths = torch.LongTensor(list(map(len, batch))) seq_tensor = torch.zeros((len(batch), seq_lengths.max())).long() for idx, (seq, seqlen) in enumerate(zip(batch, seq_lengths)): seq_tensor[idx, :seqlen] = torch.LongTensor(seq) pred_all = predict(model, seq_tensor) pred = [] for j, length in enumerate(seq_lengths): subseq = pred_all[j, 0, 0:int(length)] predprob = float(expit(torch.mean(logit(subseq)))) pred.append(predprob) prob_list.extend(pred) prob_arr = np.asarray(prob_list, dtype=float) # unsort unsort_idx = np.argsort(length_idx) ORF_prob = prob_arr[unsort_idx] # recombine ORFs idx = 0 ORF_gene_score = [None] * len(ORF_seq_enc) for k, coord in enumerate(ORF_gene_score): ORF_gene_score[k] = float(ORF_prob[idx]) idx += 1 # print("Scoring translation initiation sites...") # extract nucleotide sequence surrounding potential start codons ORF_TIS_seq_flat = [] ORF_TIS_seq_idx = [] ORF_TIS_prob = [None] * len(TIS_seqs) ORF_start_codon = [None] * len(ORF_seq_enc) for i, TIS in enumerate(TIS_seqs): # unpack tuple. Note, downsteam includes start codon, which needs to be removed upstream, downstream = TIS if len(upstream) == 16: TIS_seq = torch.tensor([nuc_encode[c] for c in (upstream + downstream[3:])[::-1]], dtype=int) # model scores 3' to 5' direction ORF_TIS_seq_flat.append(TIS_seq) ORF_TIS_seq_idx.append(i) else: ORF_TIS_prob[i] = 0.5 # encode start codon start_codon = start_enc[downstream[0:3]] ORF_start_codon[i] = start_codon # batch score TIS TIS_prob_list = [] for i in range(0, len(ORF_TIS_seq_flat), TIS_batch_size): batch = ORF_TIS_seq_flat[i:i + TIS_batch_size] TIS_stacked = torch.stack(batch) pred = predict_tis(model_tis, TIS_stacked) TIS_prob_list.extend(pred) y_pred_TIS = np.asarray(TIS_prob_list, dtype=float) # reindex batched scores for i, prob in enumerate(y_pred_TIS): idx = ORF_TIS_seq_idx[i] ORF_TIS_prob[idx] = float(prob) # combine all info into single score for each ORF if protein_kmer_filter: ORF_score_flat = [] for i, geneprob in enumerate(ORF_gene_score): if not geneprob: ORF_score_flat.append(None) continue seengene_idx = 0 # calculate length by multiplying number of amino acids by 3, then adding 6 for start and stop length = (len(ORF_seq_enc[i]) * 3) + 6 TIS_prob = ORF_TIS_prob[i] start_codon = ORF_start_codon[i] ATG = start_codon == 0 GTG = start_codon == 1 TTG = start_codon == 2 combprob = geneprob * weight_gene_prob \ + TIS_prob * weight_TIS_prob \ + ATG * weight_ATG \ + GTG * weight_GTG \ + TTG * weight_TTG maxprob = weight_gene_prob + weight_TIS_prob + max(weight_ATG, weight_TTG, weight_GTG) probthresh = score_threshold * maxprob score = (combprob - probthresh) * length + 1e6 * seengene[seengene_idx] seengene_idx += 1 ORF_score_flat.append(score) else: ORF_score_flat = [] for i, geneprob in enumerate(ORF_gene_score): if not geneprob: ORF_score_flat.append(None) continue # calculate length by multiplying number of amino acids by 3, then adding 6 for start and stop length = len(ORF_seq_enc[i]) * 3 TIS_prob = ORF_TIS_prob[i] start_codon = ORF_start_codon[i] ATG = start_codon == 0 GTG = start_codon == 1 TTG = start_codon == 2 combprob = geneprob * weight_gene_prob \ + TIS_prob * weight_TIS_prob \ + ATG * weight_ATG \ + GTG * weight_GTG \ + TTG * weight_TTG maxprob = weight_gene_prob + weight_TIS_prob + max(weight_ATG, weight_TTG, weight_GTG) probthresh = score_threshold * maxprob score = (combprob - probthresh) * length ORF_score_flat.append(score) # update initial dictionary, removing low scoring ORFs and create score mapping score within a tuple ORF_score_dict = {} for i, score in enumerate(ORF_score_flat): # if score greater than minimum, add to the ORF_score_dict if score >= minimum_ORF_score: ORF_score_dict[i] = score return ORF_score_dict
32787
import inspect from unittest.mock import Mock from _pytest.monkeypatch import MonkeyPatch from rasa.core.policies.ted_policy import TEDPolicy from rasa.engine.training import fingerprinting from rasa.nlu.classifiers.diet_classifier import DIETClassifier from rasa.nlu.selectors.response_selector import ResponseSelector from tests.engine.training.test_components import FingerprintableText def test_fingerprint_stays_same(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( TEDPolicy, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 == key2 def test_fingerprint_changes_due_to_class(): key1 = fingerprinting.calculate_fingerprint_key( DIETClassifier, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_config(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_inputs(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("bye")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_changed_source(monkeypatch: MonkeyPatch): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) get_source_mock = Mock(return_value="other implementation") monkeypatch.setattr(inspect, inspect.getsource.__name__, get_source_mock) key2 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) assert key1 != key2 get_source_mock.assert_called_once_with(TEDPolicy)
32818
import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from .build import MODEL_REGISTRY @MODEL_REGISTRY.register() class CNNRNN(nn.Module): def __init__(self, cfg): super().__init__() input_dim = 512 hidden_dim = 128 num_layers = 1 self.cnn = models.resnet50(pretrained=True) out_features = self.cnn.fc.in_features self.fc1 = nn.Linear(out_features, input_dim) self.fc2 = nn.Linear(hidden_dim, 1) self.rnn = nn.RNN(input_dim, hidden_dim, num_layers, batch_first=True) def forward(self, vid, lengths): B, T, *a = vid.shape vid = vid.permute(0, 1, 4, 2, 3) outs = [] def hook(module, input, output): outs.append(input) self.cnn.fc.register_forward_hook(hook) for t in range(T): # print(t) frame = vid[:, t, :, :, :] out = self.cnn(frame) if outs[0][0].ndim == 2: outs = [ten[0].unsqueeze(0) for ten in outs] else: outs = [ten[0] for ten in outs] outs = torch.cat(outs, dim=1) outs = self.fc1(outs) packed_seq = pack_padded_sequence(outs, lengths, batch_first=True, enforce_sorted=False) out, hn = self.rnn(packed_seq) padded_seq, lengths = pad_packed_sequence(out, batch_first=True) out = self.fc2(padded_seq) return out
32820
from os import environ as env import json import utils import utils.aws as aws import utils.handlers as handlers def put_record_to_logstream(event: utils.LambdaEvent) -> str: """Put a record of source Lambda execution in LogWatch Logs.""" log_group_name = env["REPORT_LOG_GROUP_NAME"] utils.Log.info("Fetching requestPayload and responsePayload") req, res = event["requestPayload"], event["responsePayload"] utils.Log.info("Fetching requestPayload content") sns_payload = req["Records"][0]["Sns"] message_id = sns_payload["MessageId"] message = json.loads(sns_payload["Message"]) url, title = message["url"], message["title"] try: body = json.loads(res["body"]) except json.JSONDecodeError as error: raise utils.HandledError("Failed decoding payload: %s" % error) name, timestamp = body["name"], body["timestamp"] if res["statusCode"] != 200: raise utils.HandledError("Source lambda '%s' failed with status code %d, " "ignoring report" % (name, res["statusCode"])) return aws.send_event_to_logstream(log_group=log_group_name, log_stream=name, message={ "url": url, "MessageId": message_id, "title": title, "timestamp": timestamp, }) def handler(event, context) -> utils.Response: """Lambda entry point.""" return handlers.EventHandler( name="send_report", event=utils.LambdaEvent(event), context=utils.LambdaContext(context), action=put_record_to_logstream, ).response
32823
import os from bc import Imitator import numpy as np from dataset import Example, Dataset import utils #from ale_wrapper import ALEInterfaceWrapper from evaluator import Evaluator from pdb import set_trace import matplotlib.pyplot as plt #try bmh plt.style.use('bmh') def smooth(losses, run=10): new_losses = [] for i in range(len(losses)): new_losses.append(np.mean(losses[max(0, i - 10):i+1])) return new_losses def plot(losses, checkpoint_dir, env_name): print("Plotting losses to ", os.path.join(checkpoint_dir, env_name + "_loss.png")) p=plt.plot(smooth(losses, 25)) plt.xlabel("Update") plt.ylabel("Loss") plt.legend(loc='lower center') plt.savefig(os.path.join(checkpoint_dir, env_name + "loss.png")) def train(env_name, minimal_action_set, learning_rate, alpha, l2_penalty, minibatch_size, hist_len, discount, checkpoint_dir, updates, dataset, validation_dataset, num_eval_episodes, epsilon_greedy, extra_info): import tracemalloc # create DQN agent agent = Imitator(list(minimal_action_set), learning_rate, alpha, checkpoint_dir, hist_len, l2_penalty) print("Beginning training...") log_frequency = 500 log_num = log_frequency update = 1 running_loss = 0. best_v_loss = np.float('inf') count = 0 while update < updates: # snapshot = tracemalloc.take_snapshot() # top_stats = snapshot.statistics('lineno') # import gc # for obj in gc.get_objects(): # try: # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # print(type(obj), obj.size()) # except: # pass # # print("[ Top 10 ]") # for stat in top_stats[:10]: # print(stat) if update > log_num: print(str(update) + " updates completed. Loss {}".format(running_loss / log_frequency)) log_num += log_frequency running_loss = 0 #run validation loss test v_loss = agent.validate(validation_dataset, 10) print("Validation accuracy = {}".format(v_loss / validation_dataset.size)) if v_loss > best_v_loss: count += 1 if count > 5: print("validation not improing for {} steps. Stopping to prevent overfitting".format(count)) break else: best_v_loss = v_loss print("updating best vloss", best_v_loss) count = 0 l = agent.train(dataset, minibatch_size) running_loss += l update += 1 print("Training completed.") agent.checkpoint_network(env_name, extra_info) #Plot losses #Evaluation print("beginning evaluation") evaluator = Evaluator(env_name, num_eval_episodes, checkpoint_dir, epsilon_greedy) evaluator.evaluate(agent) return agent def train_transitions(env_name, minimal_action_set, learning_rate, alpha, l2_penalty, minibatch_size, hist_len, discount, checkpoint_dir, updates, dataset, num_eval_episodes): # create DQN agent agent = Imitator(list(minimal_action_set), learning_rate, alpha, checkpoint_dir, hist_len, l2_penalty) print("Beginning training...") log_frequency = 1000 log_num = log_frequency update = 1 running_loss = 0. while update < updates: if update > log_num: print(str(update) + " updates completed. Loss {}".format(running_loss / log_frequency)) log_num += log_frequency running_loss = 0 l = agent.train(dataset, minibatch_size) running_loss += l update += 1 print("Training completed.") agent.checkpoint_network(env_name + "_transitions") #calculate accuacy #Evaluation #evaluator = Evaluator(env_name, num_eval_episodes) #evaluator.evaluate(agent) return agent if __name__ == '__main__': train()
32824
from IPython import get_ipython from IPython.display import display def is_ipynb(): return type(get_ipython()).__module__.startswith('ipykernel.')
32857
import pytest @pytest.mark.order(4) def test_four(): pass @pytest.mark.order(3) def test_three(): pass
32868
import math import random from typing import Tuple import cv2 import numpy as np def np_free_form_mask( max_vertex: int, max_length: int, max_brush_width: int, max_angle: int, height: int, width: int ) -> np.ndarray: mask = np.zeros((height, width), np.float32) num_vertex = random.randint(0, max_vertex) start_y = random.randint(0, height - 1) start_x = random.randint(0, width - 1) brush_width = 0 for i in range(num_vertex): angle = random.random() * max_angle angle = math.radians(angle) if i % 2 == 0: angle = 2 * math.pi - angle length = random.randint(0, max_length) brush_width = random.randint(10, max_brush_width) // 2 * 2 next_y = start_y + length * np.cos(angle) next_x = start_x + length * np.sin(angle) next_y = np.maximum(np.minimum(next_y, height - 1), 0).astype(np.int) next_x = np.maximum(np.minimum(next_x, width - 1), 0).astype(np.int) cv2.line(mask, (start_y, start_x), (next_y, next_x), 1, brush_width) cv2.circle(mask, (start_y, start_x), brush_width // 2, 2) start_y, start_x = next_y, next_x cv2.circle(mask, (start_y, start_x), brush_width // 2, 2) return mask def generate_stroke_mask( image_size: Tuple[int, int], parts: int = 7, max_vertex: int = 25, max_length: int = 80, max_brush_width: int = 80, max_angle: int = 360, ) -> np.ndarray: mask = np.zeros(image_size, dtype=np.float32) for _ in range(parts): mask = mask + np_free_form_mask( max_vertex, max_length, max_brush_width, max_angle, image_size[0], image_size[1] ) return np.minimum(mask, 1.0)
32892
import json from pathlib import Path from typing import Any, Dict from git import Repo from cruft.exceptions import CruftAlreadyPresent, NoCruftFound CruftState = Dict[str, Any] ####################### # Cruft related utils # ####################### def get_cruft_file(project_dir_path: Path, exists: bool = True) -> Path: cruft_file = project_dir_path / ".cruft.json" if not exists and cruft_file.is_file(): raise CruftAlreadyPresent(cruft_file) if exists and not cruft_file.is_file(): raise NoCruftFound(project_dir_path.resolve()) return cruft_file def is_project_updated(repo: Repo, current_commit: str, latest_commit: str, strict: bool) -> bool: return ( # If the latest commit exactly matches the current commit latest_commit == current_commit # Or if there have been no changes to the cookiecutter or not repo.index.diff(current_commit) # or if the strict flag is off, we allow for newer commits to count as up to date or ( repo.is_ancestor(repo.commit(latest_commit), repo.commit(current_commit)) and not strict ) ) def json_dumps(cruft_state: Dict[str, Any]) -> str: text = json.dumps(cruft_state, ensure_ascii=False, indent=2, separators=(",", ": ")) return text + "\n"
32898
import enum from django.db import models from care.facility.models import FacilityBaseModel from care.users.models import User from django.contrib.postgres.fields import JSONField class Notification(FacilityBaseModel): class EventType(enum.Enum): SYSTEM_GENERATED = 50 CUSTOM_MESSAGE = 100 EventTypeChoices = [(e.value, e.name) for e in EventType] class Medium(enum.Enum): SYSTEM = 0 SMS = 100 WHATSAPP = 200 MediumChoices = [(e.value, e.name) for e in Medium] class Event(enum.Enum): MESSAGE = 0 PATIENT_CREATED = 20 PATIENT_UPDATED = 30 PATIENT_DELETED = 40 PATIENT_CONSULTATION_CREATED = 50 PATIENT_CONSULTATION_UPDATED = 60 PATIENT_CONSULTATION_DELETED = 70 INVESTIGATION_SESSION_CREATED = 80 INVESTIGATION_UPDATED = 90 PATIENT_FILE_UPLOAD_CREATED = 100 CONSULTATION_FILE_UPLOAD_CREATED = 110 PATIENT_CONSULTATION_UPDATE_CREATED = 120 PATIENT_CONSULTATION_UPDATE_UPDATED = 130 PATIENT_CONSULTATION_ASSIGNMENT = 140 SHIFTING_UPDATED = 200 EventChoices = [(e.value, e.name) for e in Event] intended_for = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, related_name="notification_intended_for", ) medium_sent = models.IntegerField(choices=MediumChoices, default=Medium.SYSTEM.value) caused_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, related_name="notification_caused_by",) read_at = models.DateTimeField(null=True, blank=True) event_type = models.IntegerField(choices=EventTypeChoices, default=EventType.SYSTEM_GENERATED.value) event = models.IntegerField(choices=EventChoices, default=Event.MESSAGE.value) message = models.TextField(max_length=2000, null=True, default=None) caused_objects = JSONField(null=True, blank=True, default=dict)
32954
import pickle import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import pytest from oddt.scoring.models import classifiers, regressors @pytest.mark.filterwarnings('ignore:Stochastic Optimizer') @pytest.mark.parametrize('cls', [classifiers.svm(probability=True), classifiers.neuralnetwork(random_state=42)]) def test_classifiers(cls): # toy data X = np.concatenate((np.zeros((5, 2)), np.ones((5, 2)))) Y = np.concatenate((np.ones(5), np.zeros(5))) np.random.seed(42) cls.fit(X, Y) assert_array_equal(cls.predict(X), Y) assert cls.score(X, Y) == 1.0 prob = cls.predict_proba(X) assert_array_almost_equal(prob, [[0, 1]] * 5 + [[1, 0]] * 5, decimal=1) log_prob = cls.predict_log_proba(X) assert_array_almost_equal(np.log(prob), log_prob) pickled = pickle.dumps(cls) reloaded = pickle.loads(pickled) prob_reloaded = reloaded.predict_proba(X) assert_array_almost_equal(prob, prob_reloaded) @pytest.mark.parametrize('reg', [regressors.svm(C=10), regressors.randomforest(random_state=42), regressors.neuralnetwork(solver='lbfgs', random_state=42, hidden_layer_sizes=(20, 20)), regressors.mlr()]) def test_regressors(reg): X = np.vstack((np.arange(30, 10, -2, dtype='float64'), np.arange(100, 90, -1, dtype='float64'))).T Y = np.arange(10, dtype='float64') np.random.seed(42) reg.fit(X, Y) pred = reg.predict(X) assert (np.abs(pred.flatten() - Y) < 1).all() assert reg.score(X, Y) > 0.9 pickled = pickle.dumps(reg) reloaded = pickle.loads(pickled) pred_reloaded = reloaded.predict(X) assert_array_almost_equal(pred, pred_reloaded)
32991
from bitmovin_api_sdk.account.organizations.groups.groups_api import GroupsApi from bitmovin_api_sdk.account.organizations.groups.tenants.tenants_api import TenantsApi from bitmovin_api_sdk.account.organizations.groups.invitations.invitations_api import InvitationsApi from bitmovin_api_sdk.account.organizations.groups.permissions.permissions_api import PermissionsApi
32993
import numpy as np import random N = 10 def null(a, rtol=1e-5): u, s, v = np.linalg.svd(a) rank = (s > rtol*s[0]).sum() return rank, v[rank:].T.copy() def gen_data(N, noisy=False): lower = -1 upper = 1 dim = 2 X = np.random.rand(dim, N)*(upper-lower)+lower while True: Xsample = np.concatenate( (np.ones((1, dim)), np.random.rand(dim, dim)*(upper-lower)+lower)) k, w = null(Xsample.T) y = np.sign(np.dot(w.T, np.concatenate((np.ones((1, N)), X)))) if np.all(y): break return (X, y, w) def change_label(y): idx = random.sample(range(1, N), N/10) y[idx] = -y[idx] return y if __name__ == '__main__': X, y, w = gen_data(10) print(X)
33004
import logging def create_app(config=None, testing=False): from airflow.www_rbac import app as airflow_app app, appbuilder = airflow_app.create_app(config=config, testing=testing) # only now we can load view.. # this import might causes circular dependency if placed above from dbnd_airflow.airflow_override.dbnd_aiflow_webserver import ( use_databand_airflow_dagbag, ) use_databand_airflow_dagbag() logging.info("Airflow applications has been created") return app, appbuilder def cached_appbuilder(config=None, testing=False): _, appbuilder = create_app(config, testing) return appbuilder
33015
import argparse import json from easydict import EasyDict def get_args(): argparser = argparse.ArgumentParser(description=__doc__) argparser.add_argument( '-c', '--config', metavar='C', default=None, help='The Configuration file') argparser.add_argument( '-i', '--id', metavar='I', default='', help='The commit id)') argparser.add_argument( '-t', '--ts', metavar='T', default='', help='The time stamp)') argparser.add_argument( '-d', '--dir', metavar='D', default='', help='The output directory)') args = argparser.parse_args() return args def get_config_from_json(json_file): # parse the configurations from the configs json file provided with open(json_file, 'r') as config_file: config_dict = json.load(config_file) # convert the dictionary to a namespace using bunch lib config = EasyDict(config_dict) return config def process_config(args): config = get_config_from_json(args.config) config.commit_id = args.id config.time_stamp = args.ts config.directory = args.dir return config if __name__ == '__main__': config = get_config_from_json('../configs/MUTAG.json') sub_configurations = config.configurations print(sub_configurations['pooling'])
33017
from typing import List from typing import Optional from pydantic import BaseModel class WebFingerRequest(BaseModel): rel: Optional[str] = 'http://openid.net/specs/connect/1.0/issuer' resource: str class AuthorizationRequest(BaseModel): acr_values: Optional[List[str]] claims: Optional[dict] claims_locales: Optional[List[str]] client_id: str display: Optional[str] id_token_hint: Optional[str] login_hint: Optional[str] max_age: Optional[int] nonce: Optional[str] prompt: Optional[List[str]] redirect_uri: str registration: Optional[dict] request: Optional[str] request_uri: Optional[str] response_mode: Optional[str] response_type: List[str] scope: List[str] state: Optional[str] ui_locales: Optional[List[str]]
33029
from . import configure, core, draw, io, interp, retrieve, qc __all__ = ["configure", "core", "draw", "io", "interp", "qc", "retrieve"]
33074
from avatar2 import * import sys import os import logging import serial import time import argparse import pyudev import struct import ctypes from random import randint # For profiling import pstats logging.basicConfig(filename='/tmp/inception-tests.log', level=logging.INFO) # **************************************************************************** def single_step(target, nb_test): print("[*] Single step target %d times" % nb_test) for i in range(nb_test): pc = target.protocols.execution.read_pc() print(pc) target.step() print('stepped') next_pc = target.protocols.execution.read_pc() print(next_pc) # **************************************************************************** def read_full_mem(target, nb_test, raw=True, summary=True): print(" - Read the full memory") nb_test = 1 average_read = 0 for i in range(nb_test): t0 = time.time() target.read_memory(ram.address, 1, ram.size, raw=raw) t1 = time.time() average_read += t1 - t0 if summary: average_read = average_read / nb_test speed_read = ram.size / average_read / 1024 print(" -> On average raw read of %s bytes takes %.2f sec, speed: %.2f KB/sec" % (ram.size, average_read, speed_read)) # **************************************************************************** def write_full_mem(target, nb_test, raw=True, summary=True): print(" - Write the full memory") nb_test = 1 average_write = 0 buf = ctypes.create_string_buffer(ram.size) for i in range(int(ram.size / 4)): struct.pack_into(">I", buf, i * 4, randint(0, 0xffffffff)) for i in range(nb_test): t0 = time.time() target.write_memory(ram.address, 1, buf, raw=raw) t1 = time.time() average_write += t1 - t0 if summary: average_write = average_write / nb_test speed_write = ram.size / average_write / 1024 print(" -> On average raw write of %s bytes takes %.2f sec, speed: %.2f KB/sec" % (ram.size, average_write, speed_write)) # **************************************************************************** def read_write_full_mem(target, nb_test, raw=True, summary=True): print(" - Read and write the full memory") reads = [] average_read_write = 0 for i in range(nb_test): if raw: t0 = time.time() reads.append(target.read_memory(ram.address, 1, ram.size, raw=raw)) target.write_memory(ram.address, 1, reads[i], raw=raw) t1 = time.time() else: t0 = time.time() reads.append(target.read_memory(ram.address, 1, ram.size, raw=raw)) target.write_memory(ram.address, 1, reads[i], len(reads[i]), raw=raw) t1 = time.time() average_read_write += t1 - t0 if summary: average_read_write = average_read_write / nb_test speed_read_write = ram.size / average_read_write / 1024 print(" -> On average raw read&write of %s bytes takes %.2f sec, speed: %.2f KB/sec" % (ram.size, average_read_write, speed_read_write)) # Verify all reads are identical for i in range(len(reads) - 1): assert(reads[i] == reads[i+1]) #print("[!] Multiple reads produce different values !") # **************************************************************************** def random_read_write(target, nb_test, raw=True): print(" - Random read / writes of random size in the ram") for i in range(0, nb_test): size = randint(0, int(ram.size / 8)) * 8 #size = 2**4 # Reset the board and wait to reach the breakpoint target.reset() target.wait() if raw: m1 = ctypes.create_string_buffer(size) for j in range(int(size / 4)): struct.pack_into(">I", m1, j * 4, randint(0, 0xFFFFFFFF)) target.write_memory(ram.address, 1, m1, raw=True) m2 = target.read_memory(ram.address, 1, size, raw=True) n1, n2 = ([] for i in range(2)) for j in range(int(size / 4)): n1.append(struct.unpack_from(">I", m1, j)[0]) n2.append(struct.unpack_from(">I", m2, j)[0]) assert(n1 == n2) #print("i=%s m1: %s m2: %s" % (i, m1.raw, m2)) #print("[!] Multiple random reads produce different values !") else: m1 = [] for j in range(int(size / 4)): m1.append(randint(0, 0xFFFFFFFF)) target.write_memory(ram.address, 1, m1, size, raw=False) m2 = target.read_memory(ram.address, 1, size, raw=False) for j in range(int(size / 4)): assert(m1[j] == m2[j]) #print("[!] Multiple random reads produce different values !") #print("i=%s j=%s m1[j]: %s m2[j]: %s" % (i, j, m1[j], m2[j])) # **************************************************************************** def random_4bytes_read_write(target, nb_test): print(" - Random read / writes of 4 bytes in the ram") for i in range(nb_test): written_word = randint(0, 0xFFFFFFFF) address = randint(ram.address, ram.address + ram.size - 4) target.write_memory(address, 4, written_word, 1, raw=False) read_word = target.read_memory(address, 4, 1, raw=False) assert(written_word == read_word) # **************************************************************************** def read_write_registers(target, nb_test): print(" - Read / write registers") regs = ['R0', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R11', 'R12', 'SP', 'LR', 'PC', 'CPSR'] for i in range(nb_test): for j in range(17): written_reg = randint(0, 0xFFFFFFFF) saved_reg = target.read_register(regs[j]) target.write_register(regs[j], written_reg) read_reg = target.read_register(regs[j]) ''' if read_reg != written_reg: print(i) print(j) print(hex(read_reg)) print(hex(written_reg)) ''' target.write_register(regs[j], saved_reg) # **************************************************************************** def transfer_state(av, target_from, target_to, nb_test, summary=True): print(" - Transfer state") average = 0 for i in range(nb_test): t0 = time.time() av.transfer_state(target_from, target_to, synced_ranges=[ram]) t1 = time.time() average += t1 - t0 if summary: average = average / nb_test speed = ram.size / average / 1024 print(" -> On average transfer state from %s to %s of %s bytes takes %.2f sec, speed: %.2f KB/sec" % (target_from.name, target_to.name, ram.size, average, speed)) if __name__ == '__main__': # Number each test is repeated n = 2 avatar = Avatar(arch=ARMV7M, output_directory='/tmp/inception-tests') nucleo = avatar.add_target(InceptionTarget, name='nucleo') dum = avatar.add_target(DummyTarget, name='dum') #qemu = avatar.add_target(QemuTarget, gdb_port=1236) # Memory mapping of NUCLEO-L152RE rom = avatar.add_memory_range(0x08000000, 0x1000000, 'rom', file=firmware) ram = avatar.add_memory_range(0x20000000, 0x14000, 'ram') mmio = avatar.add_memory_range(0x40000000, 0x1000000, forwarded=True, forwarded_to=nucleo) ram = avatar.get_memory_range(0x20000000) avatar.init_targets() print("Targets initialized") nucleo.reset() nucleo.cont() nucleo.stop() print("Targets stopped, start tests for n = %s" % n) print("[*] Raw read / writes tests") read_full_mem(nucleo, n) write_full_mem(nucleo, n) read_write_full_mem(nucleo, n) random_read_write(nucleo, n) print("[*] !raw read / writes tests") read_full_mem(nucleo, n, raw=False, summary=False) write_full_mem(nucleo, n, raw=False, summary=False) read_write_full_mem(nucleo, n, raw=False, summary=False) random_read_write(nucleo, n, raw=False) random_4bytes_read_write(nucleo, 100 * n) print("[*] Read / Write registers") read_write_registers(nucleo, n) print("[*] Transfer state to dummy target") transfer_state(avatar, nucleo, dum, n) #Stop all threads for the profiler print("[*] Test completed") avatar.stop()
33103
import torch def magic_box(x): """DiCE operation that saves computation graph inside tensor See ``Implementation of DiCE'' section in the DiCE Paper for details Args: x (tensor): Input tensor Returns: 1 (tensor): Tensor that has computation graph saved References: https://github.com/alshedivat/lola/blob/master/lola_dice/rpg.py https://github.com/alexis-jacq/LOLA_DiCE/blob/master/ipd_DiCE.py """ return torch.exp(x - x.detach()) def get_dice_loss(logprobs, reward, value, args, i_agent, is_train): """Compute DiCE loss In our code, we use DiCE in the inner loop to be able to keep the dependency in the adapted parameters. This is required in order to compute the opponent shaping term. Args: logprobs (list): Contains log probability of all agents reward (list): Contains rewards across trajectories for specific agent value (tensor): Contains value for advantage computed via linear baseline args (argparse): Python argparse that contains arguments i_agent (int): Agent to compute DiCE loss for is_train (bool): Flag to identify whether in meta-train or not Returns: dice loss (tensor): DiCE loss with baseline reduction References: https://github.com/alshedivat/lola/blob/master/lola_dice/rpg.py https://github.com/alexis-jacq/LOLA_DiCE/blob/master/ipd_DiCE.py """ # Get discounted_reward reward = torch.stack(reward, dim=1) cum_discount = torch.cumprod(args.discount * torch.ones(*reward.size()), dim=1) / args.discount discounted_reward = reward * cum_discount # Compute stochastic nodes involved in reward dependencies if args.opponent_shaping and is_train: logprob_sum, stochastic_nodes = 0., 0. for logprob in logprobs: logprob = torch.stack(logprob, dim=1) logprob_sum += logprob stochastic_nodes += logprob dependencies = torch.cumsum(logprob_sum, dim=1) else: logprob = torch.stack(logprobs[i_agent], dim=1) dependencies = torch.cumsum(logprob, dim=1) stochastic_nodes = logprob # Get DiCE loss dice_loss = torch.mean(torch.sum(magic_box(dependencies) * discounted_reward, dim=1)) # Apply variance_reduction if value is provided baseline_term = 0. if value is not None: discounted_value = value.detach() * cum_discount baseline_term = torch.mean(torch.sum((1 - magic_box(stochastic_nodes)) * discounted_value, dim=1)) return -(dice_loss + baseline_term)
33140
from openem.models import ImageModel from openem.models import Preprocessor import cv2 import numpy as np import tensorflow as tf from collections import namedtuple import csv Detection=namedtuple('Detection', ['location', 'confidence', 'species', 'frame', 'video_id']) # Bring in SSD detector to top-level from openem.Detect.SSD import SSDDetector class IO: def from_csv(filepath_like): detections=[] with open(filepath_like, 'r') as csv_file: reader = csv.DictReader(csv_file) last_idx = -1 for row in reader: location=np.array([float(row['x']), float(row['y']), float(row['w']), float(row['h'])]) item = Detection(location=location, confidence=float(row['detection_conf']), species=int(float(row['detection_species'])), frame=int(row['frame']), video_id=row['video_id']) frame_num = int(float(row['frame'])) if last_idx == frame_num: detections[last_idx].append(item) else: # Add empties for _ in range(frame_num-1-last_idx): detections.append([]) detections.append([item]) last_idx = frame_num return detections
33144
import pytest grblas = pytest.importorskip("grblas") from metagraph.tests.util import default_plugin_resolver from . import RoundTripper from metagraph.plugins.numpy.types import NumpyMatrixType from metagraph.plugins.graphblas.types import GrblasMatrixType import numpy as np def test_matrix_roundtrip_dense_square(default_plugin_resolver): rt = RoundTripper(default_plugin_resolver) mat = np.array([[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3]]) rt.verify_round_trip(mat) rt.verify_round_trip(mat.astype(int)) rt.verify_round_trip(mat.astype(bool)) def test_matrix_roundtrip_dense_rect(default_plugin_resolver): rt = RoundTripper(default_plugin_resolver) mat = np.array( [[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3], [-1.1, 2.7, 3.3]] ) rt.verify_round_trip(mat) rt.verify_round_trip(mat.astype(int)) rt.verify_round_trip(mat.astype(bool)) def test_numpy_2_grblas(default_plugin_resolver): dpr = default_plugin_resolver x = np.array([[1, 2, 3], [3, 3, 9], [3, 0, 3], [4, 2, 2]]) assert x.shape == (4, 3) # Convert numpy -> grblas.Matrix intermediate = grblas.Matrix.from_values( [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2], [1, 2, 3, 3, 3, 9, 3, 0, 3, 4, 2, 2], nrows=4, ncols=3, dtype=grblas.dtypes.INT64, ) y = dpr.translate(x, grblas.Matrix) dpr.assert_equal(y, intermediate) # Convert numpy <- grblas.Matrix x2 = dpr.translate(y, NumpyMatrixType) dpr.assert_equal(x, x2)
33166
import os import sys import torch from torch import nn from torch.nn import functional as F, init from src.utils import bernoulli_log_pdf from src.objectives.elbo import \ log_bernoulli_marginal_estimate_sets class Statistician(nn.Module): def __init__(self, c_dim, z_dim, hidden_dim_statistic=3, hidden_dim=400): super(Statistician, self).__init__() self.c_dim = c_dim self.z_dim = z_dim self.hidden_dim_statistic = hidden_dim_statistic self.hidden_dim = hidden_dim self.input_dim = 784 self.statistic_net = LinearStatisticNetwork( self.input_dim, self.c_dim, hidden_dim=self.hidden_dim_statistic) self.inference_net = LinearInferenceNetwork( self.input_dim, self.c_dim, self.z_dim, hidden_dim=self.hidden_dim) self.latent_decoder = LinearLatentDecoder( self.input_dim, self.c_dim, self.z_dim, hidden_dim=self.hidden_dim) self.observation_decoder = LinearObservationDecoder( self.input_dim, self.c_dim, self.z_dim, hidden_dim=self.hidden_dim) # initialize weights self.apply(self.weights_init) def forward(self, x): batch_size, n_samples = x.size(0), x.size(1) x = x.view(batch_size, n_samples, self.input_dim) c_mean, c_logvar = self.statistic_net(x) c = self.reparameterize_gaussian(c_mean, c_logvar) qz_mu, qz_logvar = self.inference_net(x, c) qz_mu = qz_mu.view(batch_size, -1, self.z_dim) qz_logvar = qz_logvar.view(batch_size, -1, self.z_dim) z = self.reparameterize_gaussian(qz_mu, qz_logvar) qz_params = [qz_mu, qz_logvar] cz_mu, cz_logvar = self.latent_decoder(c) pz_params = [cz_mu, cz_logvar] x_mu = self.observation_decoder(z, c) outputs = ( (c_mean, c_logvar), (qz_params, pz_params), (x, x_mu), ) return outputs def bernoulli_elbo_loss_sets(self, outputs, reduce=True): c_outputs, z_outputs, x_outputs = outputs # 1. reconstruction loss x, x_mu = x_outputs recon_loss = bernoulli_log_pdf(x, x_mu) # (n_datasets, batch_size) # a) Context divergence: this is the positive D_KL c_mu, c_logvar = c_outputs kl_c = -0.5 * (1 + c_logvar - c_mu.pow(2) - c_logvar.exp()) kl_c = torch.sum(kl_c, dim=-1) # (n_datasets) # b) Latent divergence: this is also the positive D_KL qz_params, pz_params = z_outputs # this is kl(q_z||p_z) p_mu, p_logvar = pz_params q_mu, q_logvar = qz_params # the dimensions won't line up, so you'll need to broadcast! p_mu = p_mu.unsqueeze(1).expand_as(q_mu) p_logvar = p_logvar.unsqueeze(1).expand_as(q_logvar) kl_z = 0.5 * (p_logvar - q_logvar + ((q_mu - p_mu)**2 + q_logvar.exp())/p_logvar.exp() - 1) kl_z = torch.sum(kl_z, dim=-1) # (n_datasets, batch_size) # THESE ARE ALSO UNNORMALIZED!!! ELBO = -recon_loss + kl_z # these will both be (n_datasets, batch_size) ELBO = ELBO.sum(-1) / x.size()[1] # averaging over (batch_size == self.sample_size) ELBO = ELBO + kl_c # now this is (n_datasets,) if reduce: return torch.mean(ELBO) # averaging over (n_datasets) else: return ELBO # (n_datasets) def estimate_marginal(self, x, n_samples=100): # need to compute a bunch of outputs with torch.no_grad(): elbo_list = [] for i in range(n_samples): outputs = self.forward(x) elbo = self.bernoulli_elbo_loss_sets(outputs, reduce=False) elbo_list.append(elbo) # bernoulli decoder log_p_x = log_bernoulli_marginal_estimate_sets(elbo_list) return log_p_x @staticmethod def reparameterize_gaussian(mean, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mean) @staticmethod def weights_init(m): if isinstance(m, (nn.Linear, nn.Conv2d)): init.xavier_normal(m.weight.data, gain=init.calculate_gain('relu')) init.constant(m.bias.data, 0) elif isinstance(m, nn.BatchNorm1d): pass def extract_codes(self, x): batch_size, n_samples = x.size(0), x.size(1) x = x.view(batch_size, n_samples, self.input_dim) c_mean, c_logvar = self.statistic_net(x) c = self.reparameterize_gaussian(c_mean, c_logvar) z_mu, _ = self.inference_net(x, c) return z_mu class LinearStatisticNetwork(nn.Module): def __init__(self, n_features, c_dim, hidden_dim=128): super(LinearStatisticNetwork, self).__init__() self.n_features = n_features self.hidden_dim = hidden_dim self.c_dim = c_dim self.prepool = PrePool(self.n_features, self.hidden_dim) self.postpool = PostPool(self.hidden_dim, self.c_dim) def forward(self, h): batch_size = h.size(0) e = self.prepool(h) e = e.view(batch_size, -1, self.hidden_dim) e = self.pool(e) e = self.postpool(e) return e def pool(self, e): """ average pooling WITHIN each dataset! """ e = e.mean(1).view(-1, self.hidden_dim) return e class LinearInferenceNetwork(nn.Module): def __init__(self, n_features, c_dim, z_dim, hidden_dim=128): super(LinearInferenceNetwork, self).__init__() self.n_features = n_features self.hidden_dim = hidden_dim self.c_dim = c_dim self.z_dim = z_dim self.fc_h = nn.Linear(self.n_features, self.hidden_dim) self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc1 = nn.Linear(2 * self.hidden_dim, self.hidden_dim) self.fc_params = nn.Linear(self.hidden_dim, 2 * self.z_dim) def forward(self, h, c): batch_size = h.size(0) eh = h.view(-1, self.n_features) # embed h eh = self.fc_h(eh) eh = eh.view(batch_size, -1, self.hidden_dim) ec = self.fc_c(c) ec = ec.view(batch_size, -1, self.hidden_dim).expand_as(eh) e = torch.cat([eh, ec], dim=2) e = F.elu(e.view(-1, 2 * self.hidden_dim)) e = F.elu(self.fc1(e)) e = self.fc_params(e) mean, logvar = torch.chunk(e, 2, dim=1) return mean, logvar class LinearLatentDecoder(nn.Module): def __init__(self, n_features, c_dim, z_dim, hidden_dim=128): super(LinearLatentDecoder, self).__init__() self.n_features = n_features self.hidden_dim = hidden_dim self.c_dim = c_dim self.z_dim = z_dim self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc1 = nn.Linear(self.hidden_dim, self.hidden_dim) self.fc_params = nn.Linear(self.hidden_dim, 2 * self.z_dim) def forward(self, c): batch_size = c.size(0) ec = self.fc_c(c) ec = ec.view(batch_size, -1, self.hidden_dim) e = F.elu(ec.view(-1, self.hidden_dim)) e = F.elu(self.fc1(e)) e = self.fc_params(e) mean, logvar = torch.chunk(e, 2, dim=1) return mean, logvar class LinearObservationDecoder(nn.Module): def __init__(self, n_features, c_dim, z_dim, hidden_dim=128): super(LinearObservationDecoder, self).__init__() self.n_features = n_features self.hidden_dim = hidden_dim self.c_dim = c_dim self.z_dim = z_dim self.fc_z = nn.Linear(self.z_dim, self.hidden_dim) self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc_initial = nn.Linear(2 * self.hidden_dim, 256 * 4 * 4) self.fc3 = nn.Linear(256 * 4 * 4, 784) def forward(self, z, c): batch_size = z.size(0) ez = self.fc_z(z) ez = ez.view(batch_size, -1, self.hidden_dim) ec = self.fc_c(c) ec = ec.view(batch_size, -1, self.hidden_dim).expand_as(ez) e = torch.cat([ez, ec], dim=2) e = F.elu(e) e = e.view(-1, 2 * self.hidden_dim) e = F.elu(self.fc_initial(e)) e = self.fc3(e) e = e.view(batch_size, -1, 784) e = torch.sigmoid(e) return e class PrePool(nn.Module): def __init__(self, n_features, hidden_dim): super(PrePool, self).__init__() self.n_features = n_features self.hidden_dim = hidden_dim # modules: 1 fc layer self.fc = nn.Linear(self.n_features, self.hidden_dim) def forward(self, h): # reshape and affine e = h.view(-1, self.n_features) # batch_size * sample_size e = F.elu(self.fc(e)) return e class PostPool(nn.Module): def __init__(self, hidden_dim, c_dim): super(PostPool, self).__init__() self.hidden_dim = hidden_dim self.c_dim = c_dim self.fc_params = nn.Linear(self.hidden_dim, 2 * self.c_dim) def forward(self, e): e = self.fc_params(e) mean, logvar = torch.chunk(e, 2, dim=1) return mean, logvar
33192
import numpy as np import pandas as pd from pandas.util import testing as pdt import pytest from spandex import TableFrame from spandex.io import db_to_df, df_to_db def test_tableframe(loader): table = loader.tables.sample.hf_bg for cache in [False, True]: tf = TableFrame(table, index_col='gid', cache=cache) assert isinstance(tf.index, pd.Index) num_rows = len(tf) assert num_rows > 1 assert set(tf.columns) == set(table.__table__.columns.keys()) for column_name in tf.columns: if column_name != 'gid': if cache: assert column_name not in tf._cached.keys() assert isinstance(tf[column_name], pd.Series) if cache: assert column_name in tf._cached.keys() assert isinstance(getattr(tf, column_name), pd.Series) df = tf[['objectid']] assert isinstance(df, pd.DataFrame) assert len(df) == num_rows assert set(df.columns) == set(['objectid']) assert np.issubdtype(df.objectid.dtype, int) def test_sim_export(loader): # Try importing the UrbanSim simulation framework, otherwise skip test. sim = pytest.importorskip('urbansim.sim.simulation') # Register input parcels table. parcels = loader.tables.sample.heather_farms parcels_in = TableFrame(parcels, index_col='gid') sim.add_table('parcels_in', parcels_in, copy_col=False) # Register output parcels table. @sim.table() def parcels_out(parcels_in): return pd.DataFrame(index=parcels_in.parcel_id) # Specify default table for output columns as decorator. out = sim.column('parcels_out') # Specify some output columns. @out def apn(apn='parcels_in.puid'): return apn.groupby(parcels_in.parcel_id).first().astype(str) @out def county_id(): return 13 @out def area(acr='parcels_in.parcel_acr'): return 4047. * acr.groupby(parcels_in.parcel_id).median() # Register model to export output table to database. @sim.model() def export(parcels_out): schema = loader.tables.sample df_to_db(parcels_out.to_frame(), 'parcels_out', schema=schema) # Inspect output table. column_names = ['apn', 'county_id', 'area'] parcels_out_df1 = sim.get_table('parcels_out').to_frame() assert set(parcels_out_df1.columns) == set(column_names) assert parcels_out_df1.county_id.unique() == [13] # Export table to database and import back to compare. sim.run(['export']) parcels_out_table = loader.tables.sample.parcels_out parcels_out_df2 = db_to_df(parcels_out_table, index_col='parcel_id') pdt.assert_frame_equal(parcels_out_df1[column_names], parcels_out_df2[column_names])
33200
print("linear search") si=int(input("\nEnter the size:")) data=list() for i in range(0,si): n=int(input()) data.append(n) cot=0 print("\nEnter the number you want to search:") val=int(input()) for i in range(0,len(data)): if(data[i]==val): break; else: cot=cot+1 print(cot)#linear search result=4 #binary search print("\nBinary Search") cot=0 beg=0 end=len(data) mid=(beg+end)/2 mid=int(mid) while beg<end and val!=data[mid]: if val>data[mid]: beg=mid+1 else: end=mid-1 mid=int((beg+end)/2) cot=cot+1 if 14==data[mid]: print("\nDATA FOUND") print(cot)
33206
from dataclasses import dataclass from app import crud from app.schemas import UserCreate, SlackEventHook from app.settings import REACTION_LIST, DAY_MAX_REACTION # about reaction REMOVED_REACTION = 'reaction_removed' ADDED_REACTION = 'reaction_added' APP_MENTION_REACTION = 'app_mention' # about command CREATE_USER_COMMAND = 'create_user' @dataclass class EventDto: type: str # ex: reaction_added user: str # 리액션을 한 유저(slack_id) item: dict # type, channel, ts reaction: str # 리액션(이모지) item_user: str # 리액션을 받은 유저(slack_id) event_ts: str text: str # app mention text def __init__(self, event_data): self.type = event_data.get('type') self.user = event_data.get('user') self.item = event_data.get('item') self.reaction = event_data.get('reaction') self.item_user = event_data.get('item_user') self.event_ts = event_data.get('event_ts') self.text = event_data.get('text') @dataclass class AddUserCommandDto: name: str slack_id: str avatar_url: str def __init__(self, name: str, slack_id: str, avatar_url: str): self.name = name.strip('name=') self.slack_id = slack_id.strip('slack_id=') self.avatar_url = avatar_url.strip('avatar_url=') class SlackService(object): def check_challenge(self, event: SlackEventHook, db) -> dict: # slack Enable Events if 'challenge' in event: return {"challenge": event['challenge']} # check slack event if "event" in event: event_dto = EventDto(event['event']) if event_dto.type in [ADDED_REACTION, REMOVED_REACTION]: # 다른 사람에게만 이모지 줄 수 있음 if event_dto.item_user != event_dto.user: self.assign_emoji(event_dto, db) elif event_dto.type == APP_MENTION_REACTION: self.manage_app_mention(event_dto, db) return {} def assign_emoji(self, event: EventDto, db): """ reaction process """ if event.reaction not in REACTION_LIST: return if event.type == ADDED_REACTION: user = crud.get_user(db, event.user) # 멤버에게 줄 수 있는 나의 reaction 개수 체크 if user.my_reaction > 0: crud.update_my_reaction(db, user, False) crud.update_added_reaction(db=db, type=event.reaction, item_user=event.item_user, user=event.user, is_increase=True) elif event.type == REMOVED_REACTION: user = crud.get_user(db, event.user) # 멤버에게 전달한 reaction을 삭제하는 경우 (이미 하루 최대의 reaction 개수인 경우 더이상 추가하지 않음) if user.my_reaction < DAY_MAX_REACTION: crud.update_my_reaction(db, user, True) crud.update_added_reaction(db=db, type=event.reaction, item_user=event.item_user, user=event.user, is_increase=False) def manage_app_mention(self, event: EventDto, db): """ 명령어를 분기 처리하는 함수 ex: <@ABCDEFG> --create_user --name=JAY --slack_id=ABCDEFG --avatar_url=https://blablac.com/abcd """ event_command = event.text.split('--') event_command.pop(0) # 첫번째 값은 user slack_id if not event_command: return _type = event_command.pop(0).strip(' ') if _type == CREATE_USER_COMMAND: if len(event_command) == 3: add_user_cmd_dto = AddUserCommandDto(event_command[0], event_command[1], event_command[2]) self.add_user(add_user_cmd_dto, db) def add_user(self, add_user_cmd_dto: AddUserCommandDto, db): """ user 추가 명령어 """ db_user = crud.get_user(db, item_user=add_user_cmd_dto.slack_id) if db_user: return user = UserCreate(username=add_user_cmd_dto.name, slack_id=add_user_cmd_dto.slack_id, using_emoji_count=DAY_MAX_REACTION, get_emoji_count=0, avatar_url=add_user_cmd_dto.avatar_url) crud.create_user(db=db, user=user)
33249
import os import re import yaml for root, dirs, files in os.walk("."): for file in files: njk = os.path.join(root, file) if njk.endswith(".njk"): with open(njk, "r") as file: lines = file.read().split("\n") if not(lines[0].startswith("---")): continue end = 1 while not(lines[end].startswith("---")): end += 1 meta = yaml.safe_load("\n".join(lines[1:end])) field = "ogDescription" if not(field in meta) or not("shortTitle" in meta): continue meta[field] = (meta["shortTitle"] + " is a famous and most played DOS game that now is available to play in browser. With virtual" + " mobile controls you also can play in " + meta["shortTitle"] + " on mobile. On DOS.Zone " + meta["shortTitle"] + " available to play for free without registration.") meta = yaml.dump(meta, default_flow_style=False, allow_unicode=True) lines = [lines[0]] + meta.split("\n") + lines[end:] with open(njk, "w") as file: file.write("\n".join(lines))
33285
import sys try: import uos as os except ImportError: import os if not hasattr(os, "unlink"): print("SKIP") sys.exit() # cleanup in case testfile exists try: os.unlink("testfile") except OSError: pass try: f = open("testfile", "r+b") print("Unexpectedly opened non-existing file") except OSError: print("Expected OSError") pass f = open("testfile", "w+b") f.write(b"1234567890") f.seek(0) print(f.read()) f.close() # Open with truncation f = open("testfile", "w+b") f.write(b"abcdefg") f.seek(0) print(f.read()) f.close() # Open without truncation f = open("testfile", "r+b") f.write(b"1234") f.seek(0) print(f.read()) f.close() # cleanup try: os.unlink("testfile") except OSError: pass
33364
def f(x): if x: x = 1 else: x = 'zero' y = x return y f(1)
33379
import autograd.numpy as anp import numpy as np from autograd import value_and_grad from pymoo.factory import normalize from pymoo.util.ref_dirs.energy import squared_dist from pymoo.util.ref_dirs.optimizer import Adam from pymoo.util.reference_direction import ReferenceDirectionFactory, scale_reference_directions class LayerwiseRieszEnergyReferenceDirectionFactory(ReferenceDirectionFactory): def __init__(self, n_dim, partitions, return_as_tuple=False, n_max_iter=1000, verbose=False, X=None, **kwargs): super().__init__(n_dim, **kwargs) self.scalings = None self.n_max_iter = n_max_iter self.verbose = verbose self.return_as_tuple = return_as_tuple self.X = X self.partitions = partitions def _step(self, optimizer, X, scalings): obj, grad = value_and_grad(calc_potential_energy)(scalings, X) scalings = optimizer.next(scalings, np.array(grad)) scalings = normalize(scalings, xl=0, xu=scalings.max()) return scalings, obj def _solve(self, X, scalings): # initialize the optimizer for the run optimizer = Adam() # for each iteration of gradient descent for i in range(self.n_max_iter): # execute one optimization step _scalings, _obj = self._step(optimizer, X, scalings) # evaluate how much the points have moved delta = np.abs(_scalings - scalings).sum() if self.verbose: print(i, "objective", _obj, "delta", delta) # if there was only a little delta during the last iteration -> terminate if delta < 1e-5: scalings = _scalings break # otherwise use the new points for the next iteration scalings = _scalings self.scalings = scalings return get_points(X, scalings) def do(self): X = [] scalings = [] for k, p in enumerate(self.partitions): if p > 1: val = np.linspace(0, 1, p + 1)[1:-1] _X = [] for i in range(self.n_dim): for j in range(i + 1, self.n_dim): x = np.zeros((len(val), self.n_dim)) x[:, i] = val x[:, j] = 1 - val _X.append(x) X.append(np.row_stack(_X + [np.eye(self.n_dim)])) elif p == 1: X.append(np.eye(self.n_dim)) else: X.append(np.full(self.n_dim, 1 / self.n_dim)[None, :]) scalings.append(1 - k / len(self.partitions)) scalings = np.array(scalings) X = self._solve(X, scalings) return X # --------------------------------------------------------------------------------------------------------- # Energy Functions # --------------------------------------------------------------------------------------------------------- def get_points(X, scalings): vals = [] for i in range(len(X)): vals.append(scale_reference_directions(X[i], scalings[i])) X = anp.row_stack(vals) return X def calc_potential_energy(scalings, X): X = get_points(X, scalings) i, j = anp.triu_indices(len(X), 1) D = squared_dist(X, X)[i, j] if np.any(D < 1e-12): return np.nan, np.nan return (1 / D).mean()
33406
import torch from torch import Tensor from torch.utils.data import Dataset from torchvision import io from pathlib import Path from typing import Tuple from torchvision import transforms as T class CelebAMaskHQ(Dataset): CLASSES = [ 'background', 'skin', 'nose', 'eye_g', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'l_ear', 'r_ear', 'mouth', 'u_lip', 'l_lip', 'hair', 'hat', 'ear_r', 'neck_l', 'neck', 'cloth' ] PALETTE = torch.tensor([ [0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0] ]) def __init__(self, root: str, split: str = 'train', transform = None) -> None: super().__init__() assert split in ['train', 'val', 'test'] self.root = Path(root) self.transform = transform self.n_classes = len(self.CLASSES) self.ignore_label = 255 self.resize = T.Resize((512, 512)) with open(self.root / f'{split}_list.txt') as f: self.files = f.read().splitlines() if not self.files: raise Exception(f"No images found in {root}") print(f"Found {len(self.files)} {split} images.") def __len__(self) -> int: return len(self.files) def __getitem__(self, index: int) -> Tuple[Tensor, Tensor]: img_path = self.root / 'CelebA-HQ-img' / f"{self.files[index]}.jpg" lbl_path = self.root / 'CelebAMask-HQ-label' / f"{self.files[index]}.png" image = io.read_image(str(img_path)) image = self.resize(image) label = io.read_image(str(lbl_path)) if self.transform: image, label = self.transform(image, label) return image, label.squeeze().long() if __name__ == '__main__': from semseg.utils.visualize import visualize_dataset_sample visualize_dataset_sample(CelebAMaskHQ, '/home/sithu/datasets/CelebAMask-HQ')
33459
import _config import _utils CONFIG_PATH = "config.toml" def main(): config = _config.read(CONFIG_PATH) for path_name in [x.in_ for x in config.directorios]: _utils.list_jpg_files_in_dir(path_name) if __name__ == "__main__": main()
33501
from pyfasta import Fasta def writebed(probelist, outbedfile): '''probe list format: chr\tstart\tend ''' outio = open(outbedfile, 'w') for pbnow in probelist: print(pbnow, file=outio) outio.close() def writefa(genomefile, bedfile, outfile): fastafile = Fasta(genomefile) bedio = open(bedfile, 'r') outio = open(outfile, 'w') for lin in bedio.readlines(): lin = lin.rstrip() chrnow, start, end = lin.split('\t') seqid = '>' + chrnow + ':' + start + '-' + end nowseq = fastafile[chrnow][int(start):int(end)] print(seqid, file=outio) print(nowseq, file=outio) bedio.close() outio.close() # return True
33503
import rclpy from rclpy.action import ActionClient from rclpy.node import Node from action_tutorials_interfaces.action import Fibonacci class FibonacciActionClient(Node): def __init__(self): super().__init__('fibonacci_action_client') self._action_client = ActionClient(self, Fibonacci, 'fibonacci') def send_goal(self, order): goal_msg = Fibonacci.Goal() goal_msg.order = order self._action_client.wait_for_server() return self._action_client.send_goal_async(goal_msg) def main(args=None): rclpy.init(args=args) action_client = FibonacciActionClient() future = action_client.send_goal(10) rclpy.spin_until_future_complete(action_client, future) if __name__ == '__main__': main()
33545
from winrt.windows.media.control import GlobalSystemMediaTransportControlsSessionManager from winrt.windows.storage.streams import DataReader, Buffer, InputStreamOptions async def get_current_session(): """ current_session.try_play_async() current_session.try_pause_async() current_session.try_toggle_play_pause() current_session.try_change_shuffle_active() current_session.try_skip_next() current_session.try_skip_previous() current_session.try_stop() """ sessions = await GlobalSystemMediaTransportControlsSessionManager.request_async() return sessions.get_current_session() async def get_media_info(): current_session = await get_current_session() if current_session: media_props = await current_session.try_get_media_properties_async() return { song_attr: media_props.__getattribute__(song_attr) for song_attr in dir(media_props) if song_attr[0] != '_' } async def read_stream_into_buffer(thumbnail_ref) -> bytearray: buffer = Buffer(5000000) readable_stream = await thumbnail_ref.open_read_async() readable_stream.read_async(buffer, buffer.capacity, InputStreamOptions.READ_AHEAD) buffer_reader = DataReader.from_buffer(buffer) thumbnail_buffer = buffer_reader.read_bytes(buffer.length) return bytearray(thumbnail_buffer)
33564
from collections import namedtuple import json, logging, socket, re, struct, time from typing import Tuple, Iterator from urllib.parse import urlparse, parse_qs from backend import Backend, Change from protocol import PacketType, recvall, PKT_CHANGE_TYPES, change_from_packet, packet_from_change, send_packet, recv_packet # Total number of reconnection tries RECONNECT_TRIES=5 # Delay in seconds between reconnections (initial) RECONNECT_DELAY=5 # Scale delay factor after each failure RECONNECT_DELAY_BACKOFF=1.5 HostPortInfo = namedtuple('HostPortInfo', ['host', 'port', 'addrtype']) SocketURLInfo = namedtuple('SocketURLInfo', ['target', 'proxytype', 'proxytarget']) # Network address type. class AddrType: IPv4 = 0 IPv6 = 1 NAME = 2 # Proxy type. Only SOCKS5 supported at the moment as this is sufficient for Tor. class ProxyType: DIRECT = 0 SOCKS5 = 1 def parse_host_port(path: str) -> HostPortInfo: '''Parse a host:port pair.''' if path.startswith('['): # bracketed IPv6 address eidx = path.find(']') if eidx == -1: raise ValueError('Unterminated bracketed host address.') host = path[1:eidx] addrtype = AddrType.IPv6 eidx += 1 if eidx >= len(path) or path[eidx] != ':': raise ValueError('Port number missing.') eidx += 1 else: eidx = path.find(':') if eidx == -1: raise ValueError('Port number missing.') host = path[0:eidx] if re.match('\d+\.\d+\.\d+\.\d+$', host): # matches IPv4 address format addrtype = AddrType.IPv4 else: addrtype = AddrType.NAME eidx += 1 try: port = int(path[eidx:]) except ValueError: raise ValueError('Invalid port number') return HostPortInfo(host=host, port=port, addrtype=addrtype) def parse_socket_url(destination: str) -> SocketURLInfo: '''Parse a socket: URL to extract the information contained in it.''' url = urlparse(destination) if url.scheme != 'socket': raise ValueError('Scheme for socket backend must be socket:...') target = parse_host_port(url.path) proxytype = ProxyType.DIRECT proxytarget = None # parse query parameters # reject unknown parameters (currently all of them) qs = parse_qs(url.query) for (key, values) in qs.items(): if key == 'proxy': # proxy=socks5:127.0.0.1:9050 if len(values) != 1: raise ValueError('Proxy can only have one value') (ptype, ptarget) = values[0].split(':', 1) if ptype != 'socks5': raise ValueError('Unknown proxy type ' + ptype) proxytype = ProxyType.SOCKS5 proxytarget = parse_host_port(ptarget) else: raise ValueError('Unknown query string parameter ' + key) return SocketURLInfo(target=target, proxytype=proxytype, proxytarget=proxytarget) class SocketBackend(Backend): def __init__(self, destination: str, create: bool): self.version = None self.prev_version = None self.destination = destination self.url = parse_socket_url(destination) self.connect() def connect(self): if self.url.proxytype == ProxyType.DIRECT: if self.url.target.addrtype == AddrType.IPv6: self.sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) else: # TODO NAME is assumed to be IPv4 for now self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) else: assert(self.url.proxytype == ProxyType.SOCKS5) import socks self.sock = socks.socksocket() self.sock.set_proxy(socks.SOCKS5, self.url.proxytarget.host, self.url.proxytarget.port) logging.info('Connecting to {}:{} (addrtype {}, proxytype {}, proxytarget {})...'.format( self.url.target.host, self.url.target.port, self.url.target.addrtype, self.url.proxytype, self.url.proxytarget)) self.sock.connect((self.url.target.host, self.url.target.port)) logging.info('Connected to {}'.format(self.destination)) def _send_packet(self, typ: int, payload: bytes) -> None: send_packet(self.sock, typ, payload) def _recv_packet(self) -> Tuple[int, bytes]: return recv_packet(self.sock) def initialize(self) -> bool: ''' Initialize socket backend by request current metadata from server. ''' logging.info('Initializing backend') self._request_metadata() logging.info('Initialized SocketBackend: protocol={}, version={}, prev_version={}, version_count={}'.format( self.protocol, self.version, self.prev_version, self.version_count )) return True def _request_metadata(self) -> None: self._send_packet(PacketType.REQ_METADATA, b'') (typ, payload) = self._recv_packet() assert(typ == PacketType.METADATA) self.protocol, self.version, self.prev_version, self.version_count = struct.unpack("!IIIQ", payload) def add_change(self, entry: Change) -> bool: typ, payload = packet_from_change(entry) base_version = self.version retry = 0 retry_delay = RECONNECT_DELAY need_connect = False while True: # Retry loop try: if need_connect: self.connect() # Request metadata, to know where we stand self._request_metadata() if self.version == entry.version: # If the current version at the server side matches the version of the # entry, the packet was succesfully sent and processed and the error # happened afterward. Nothing left to do. return True elif base_version == self.version: # The other acceptable option is that the current version still matches # that on the server side. Then we retry. pass else: raise Exception('Unexpected backup version {} after reconnect'.format(self.version)) self._send_packet(typ, payload) # Wait for change to be acknowledged before continuing. (typ, _) = self._recv_packet() assert(typ == PacketType.ACK) except (BrokenPipeError, OSError): pass else: break if retry == RECONNECT_TRIES: logging.error('Connection was lost while sending change (giving up after {} retries)'.format(retry)) raise IOError('Connection was lost while sending change') retry += 1 logging.warning('Connection was lost while sending change (retry {} of {}, will try again after {} seconds)'.format(retry, RECONNECT_TRIES, retry_delay)) time.sleep(retry_delay) retry_delay *= RECONNECT_DELAY_BACKOFF need_connect = True self.prev_version = self.version self.version = entry.version return True def rewind(self) -> bool: '''Rewind to previous version.''' version = struct.pack("!I", self.prev_version) self._send_packet(PacketType.REWIND, version) # Wait for change to be acknowledged before continuing. (typ, _) = self._recv_packet() assert(typ == PacketType.ACK) return True def stream_changes(self) -> Iterator[Change]: self._send_packet(PacketType.RESTORE, b'') version = -1 while True: (typ, payload) = self._recv_packet() if typ in PKT_CHANGE_TYPES: change = change_from_packet(typ, payload) version = change.version yield change elif typ == PacketType.DONE: break else: raise ValueError("Unknown entry type {}".format(typ)) if version != self.version: raise ValueError("Versions do not match up: restored version {}, backend version {}".format(version, self.version)) assert(version == self.version) def compact(self): self._send_packet(PacketType.COMPACT, b'') (typ, payload) = self._recv_packet() assert(typ == PacketType.COMPACT_RES) return json.loads(payload.decode())
33569
from ..factory import Method class setBotUpdatesStatus(Method): pending_update_count = None # type: "int32" error_message = None # type: "string"
33589
from abc import ABCMeta, abstractmethod from typing import TYPE_CHECKING if TYPE_CHECKING: from argparse import ArgumentParser, Namespace class CtlCommand(metaclass=ABCMeta): """Implements a subcommand of grouper-ctl.""" @staticmethod @abstractmethod def add_arguments(parser): # type: (ArgumentParser) -> None """Add the arguments for this command to the provided parser.""" pass @abstractmethod def run(self, args): # type: (Namespace) -> None """Run a command with some arguments.""" pass
33602
import time from time import sleep def print_elapsed_time(exit_event): start_time = time.time() while True: if exit_event.is_set(): break print(f'Running for {round(time.time() - start_time)} s', end='\r') sleep(1)
33609
import os import tensorflow as tf from BertLibrary.bert_predictor import BertPredictor from BertLibrary.bert_trainer import BertTrainer from BertLibrary.bert_evaluator import BertEvaluator from tensorflow.estimator import Estimator from tensorflow.estimator import RunConfig from BertLibrary.bert.run_classifier import * import BertLibrary.bert.modeling as modeling import BertLibrary.bert.tokenization as tokenization class BertModel: def __init__(self, model_dir, ckpt_name, do_lower_case, max_seq_len, batch_size, labels, trainable=True, keep_checkpoint_max=5, config=None): self.model_dir = model_dir self.bert_config, self.vocab_file, \ self.init_checkpoint = self.get_model_configs(model_dir, ckpt_name) self.do_lower_case = do_lower_case self.max_seq_len = max_seq_len self.batch_size = batch_size self.processer = None self.keep_checkpoint_max = keep_checkpoint_max self.labels = labels self.config = config if config else None self.predictor = None self.trainable = trainable def build(self, model_fn_args, config_args): config = self.get_config(**config_args) model_fn = self.get_model_fn(**model_fn_args) self.estimator = Estimator( model_fn=model_fn, config=config, params={'batch_size': self.batch_size}) self.tokenizer = tokenization.FullTokenizer( vocab_file=self.vocab_file, do_lower_case=self.do_lower_case) def get_model_configs(self, base_dir, ckpt_name): bert_config_file = os.path.join(base_dir, 'bert_config.json') vocab_file = os.path.join(base_dir, 'vocab.txt') init_checkpoint = os.path.join(base_dir, ckpt_name) bert_config = modeling.BertConfig.from_json_file(bert_config_file) return bert_config, vocab_file, init_checkpoint def get_config(self, ckpt_output_dir='./output', save_check_steps=1000): if not self.config: self.config = tf.ConfigProto(device_count={'GPU': 1}) self.config.gpu_options.allow_growth = True self.config.gpu_options.per_process_gpu_memory_fraction = 0.5 run_config = RunConfig( model_dir=ckpt_output_dir, session_config=self.config, keep_checkpoint_max=self.keep_checkpoint_max, save_checkpoints_steps=save_check_steps) return run_config def get_predictor(self): return BertPredictor(self.estimator, self.processer, self.config) def get_trainer(self): assert self.trainable, 'This model cannot be trained' return BertTrainer(self) def get_evaluator(self, iter_steps=1000): return BertEvaluator(self, iter_steps=iter_steps) def get_model_fn(self, *args): return NotImplementedError()
33631
import itertools import logging import netCDF4 import numpy from .. import core from ..constants import masked as cfdm_masked from ..decorators import ( _inplace_enabled, _inplace_enabled_define_and_cleanup, _manage_log_level_via_verbosity, ) from ..functions import abspath from ..mixin.container import Container from ..mixin.netcdf import NetCDFHDF5 from . import NumpyArray, abstract logger = logging.getLogger(__name__) class Data(Container, NetCDFHDF5, core.Data): """An orthogonal multidimensional array with masking and units. .. versionadded:: (cfdm) 1.7.0 """ def __init__( self, array=None, units=None, calendar=None, fill_value=None, source=None, copy=True, dtype=None, mask=None, _use_array=True, **kwargs, ): """**Initialisation** :Parameters: array: data_like, optional The array of values. {{data_like}} Ignored if the *source* parameter is set. *Parameter example:* ``array=[34.6]`` *Parameter example:* ``array=[[1, 2], [3, 4]]`` *Parameter example:* ``array=numpy.ma.arange(10).reshape(2, 1, 5)`` units: `str`, optional The physical units of the data. Ignored if the *source* parameter is set. The units may also be set after initialisation with the `set_units` method. *Parameter example:* ``units='km hr-1'`` *Parameter example:* ``units='days since 2018-12-01'`` calendar: `str`, optional The calendar for reference time units. Ignored if the *source* parameter is set. The calendar may also be set after initialisation with the `set_calendar` method. *Parameter example:* ``calendar='360_day'`` fill_value: optional The fill value of the data. By default, or if set to `None`, the `numpy` fill value appropriate to the array's data type will be used (see `numpy.ma.default_fill_value`). Ignored if the *source* parameter is set. The fill value may also be set after initialisation with the `set_fill_value` method. *Parameter example:* ``fill_value=-999.`` dtype: data-type, optional The desired data-type for the data. By default the data-type will be inferred form the *array* parameter. The data-type may also be set after initialisation with the `dtype` attribute. *Parameter example:* ``dtype=float`` *Parameter example:* ``dtype='float32'`` *Parameter example:* ``dtype=numpy.dtype('i2')`` mask: data_like, optional Apply this mask to the data given by the *array* parameter. By default, or if *mask* is `None`, no mask is applied. May be any data_like object that broadcasts to *array*. Masking will be carried out where mask elements evaluate to `True`. {{data_like}} This mask will applied in addition to any mask already defined by the *array* parameter. source: optional Initialise the array, units, calendar and fill value from those of *source*. {{init source}} copy: `bool`, optional If False then do not deep copy input parameters prior to initialisation. By default arguments are deep copied. kwargs: ignored Not used. Present to facilitate subclassing. """ if dtype is not None: if isinstance(array, abstract.Array): array = array.array elif not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = array.astype(dtype) array = NumpyArray(array) if mask is not None: if isinstance(array, abstract.Array): array = array.array elif not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = numpy.ma.array(array, mask=mask) array = NumpyArray(array) super().__init__( array=array, units=units, calendar=calendar, fill_value=fill_value, source=source, copy=copy, _use_array=_use_array, ) self._initialise_netcdf(source) def __array__(self, *dtype): """The numpy array interface. .. versionadded:: (cfdm) 1.7.0 :Parameters: dtype: optional Typecode or data-type to which the array is cast. :Returns: `numpy.ndarray` An independent numpy array of the data. **Examples:** >>> d = {{package}}.{{class}}([1, 2, 3]) >>> a = numpy.array(d) >>> print(type(a)) <class 'numpy.ndarray'> >>> a[0] = -99 >>> d <{{repr}}{{class}}(3): [1, 2, 3]> >>> b = numpy.array(d, float) >>> print(b) [1. 2. 3.] """ array = self.array if not dtype: return array else: return array.astype(dtype[0], copy=False) def __repr__(self): """Called by the `repr` built-in function. x.__repr__() <==> repr(x) """ try: shape = self.shape except AttributeError: shape = "" else: shape = str(shape) shape = shape.replace(",)", ")") return f"<{ self.__class__.__name__}{shape}: {self}>" def __format__(self, format_spec): """Interpret format specifiers for size 1 arrays. **Examples:** >>> d = {{package}}.{{class}}(9, 'metres') >>> f"{d}" '9 metres' >>> f"{d!s}" '9 metres' >>> f"{d!r}" '<{{repr}}{{class}}(): 9 metres>' >>> f"{d:.3f}" '9.000' >>> d = {{package}}.{{class}}([[9]], 'metres') >>> f"{d}" '[[9]] metres' >>> f"{d!s}" '[[9]] metres' >>> f"{d!r}" '<{{repr}}{{class}}(1, 1): [[9]] metres>' >>> f"{d:.3f}" '9.000' >>> d = {{package}}.{{class}}([9, 10], 'metres') >>> f"{d}" >>> '[9, 10] metres' >>> f"{d!s}" >>> '[9, 10] metres' >>> f"{d!r}" '<{{repr}}{{class}}(2): [9, 10] metres>' >>> f"{d:.3f}" Traceback (most recent call last): ... ValueError: Can't format Data array of size 2 with format code .3f """ if not format_spec: return super().__format__("") n = self.size if n == 1: return "{x:{f}}".format(x=self.first_element(), f=format_spec) raise ValueError( f"Can't format Data array of size {n} with " f"format code {format_spec}" ) def __getitem__(self, indices): """Return a subspace of the data defined by indices. d.__getitem__(indices) <==> d[indices] Indexing follows rules that are very similar to the numpy indexing rules, the only differences being: * An integer index i takes the i-th element but does not reduce the rank by one. * When two or more dimensions' indices are sequences of integers then these indices work independently along each dimension (similar to the way vector subscripts work in Fortran). This is the same behaviour as indexing on a Variable object of the netCDF4 package. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `__setitem__`, `_parse_indices` :Returns: `{{class}}` The subspace of the data. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d.shape (1, 10, 9) >>> d[:, :, 1].shape (1, 10, 1) >>> d[:, 0].shape (1, 1, 9) >>> d[..., 6:3:-1, 3:6].shape (1, 3, 3) >>> d[0, [2, 9], [4, 8]].shape (1, 2, 2) >>> d[0, :, -2].shape (1, 10, 1) """ indices = self._parse_indices(indices) array = self._get_Array(None) if array is None: raise ValueError("No array!!") array = array[tuple(indices)] out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out def __int__(self): """Called by the `int` built-in function. x.__int__() <==> int(x) """ if self.size != 1: raise TypeError( "only length-1 arrays can be converted to " f"Python scalars. Got {self}" ) return int(self.array) def __iter__(self): """Called when an iterator is required. x.__iter__() <==> iter(x) **Examples:** >>> d = {{package}}.{{class}}([1, 2, 3], 'metres') >>> for e in d: ... print(repr(e)) ... 1 2 3 >>> d = {{package}}.{{class}}([[1, 2], [4, 5]], 'metres') >>> for e in d: ... print(repr(e)) ... <{{repr}}Data(2): [1, 2] metres> <{{repr}}Data(2): [4, 5] metres> >>> d = {{package}}.{{class}}(34, 'metres') >>> for e in d: ... print(repr(e)) Traceback (most recent call last): ... TypeError: Iteration over 0-d Data """ ndim = self.ndim if not ndim: raise TypeError(f"Iteration over 0-d {self.__class__.__name__}") if ndim == 1: i = iter(self.array) while 1: try: yield next(i) except StopIteration: return else: # ndim > 1 for n in range(self.shape[0]): out = self[n, ...] out.squeeze(0, inplace=True) yield out def __setitem__(self, indices, value): """Assign to data elements defined by indices. d.__setitem__(indices, x) <==> d[indices]=x Indexing follows rules that are very similar to the numpy indexing rules, the only differences being: * An integer index i takes the i-th element but does not reduce the rank by one. * When two or more dimensions' indices are sequences of integers then these indices work independently along each dimension (similar to the way vector subscripts work in Fortran). This is the same behaviour as indexing on a Variable object of the netCDF4 package. **Broadcasting** The value, or values, being assigned must be broadcastable to the shape defined by the indices, using the numpy broadcasting rules. **Missing data** Data array elements may be set to missing values by assigning them to `masked`. Missing values may be unmasked by assigning them to any other value. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `__getitem__`, `_parse_indices` :Returns: `None` **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d.shape (1, 10, 9) >>> d[:, :, 1] = -10 >>> d[:, 0] = range(9) >>> d[..., 6:3:-1, 3:6] = numpy.arange(-18, -9).reshape(3, 3) >>> d[0, [2, 9], [4, 8]] = {{package}}.{{class}}([[-2, -3]]) >>> d[0, :, -2] = {{package}}.masked """ indices = self._parse_indices(indices) array = self.array if value is cfdm_masked or numpy.ma.isMA(value): # The data is not masked but the assignment is masking # elements, so turn the non-masked array into a masked # one. array = array.view(numpy.ma.MaskedArray) self._set_subspace(array, indices, numpy.asanyarray(value)) self._set_Array(array, copy=False) def __str__(self): """Called by the `str` built-in function. x.__str__() <==> str(x) """ units = self.get_units(None) calendar = self.get_calendar(None) isreftime = False if units is not None: if isinstance(units, str): isreftime = "since" in units else: units = "??" try: first = self.first_element() except Exception: out = "" if units and not isreftime: out += f" {units}" if calendar: out += f" {calendar}" return out size = self.size shape = self.shape ndim = self.ndim open_brackets = "[" * ndim close_brackets = "]" * ndim mask = [False, False, False] if size == 1: if isreftime: # Convert reference time to date-time if first is numpy.ma.masked: first = 0 mask[0] = True try: first = type(self)( numpy.ma.array(first, mask=mask[0]), units, calendar ).datetime_array except (ValueError, OverflowError): first = "??" out = f"{open_brackets}{first}{close_brackets}" else: last = self.last_element() if isreftime: if last is numpy.ma.masked: last = 0 mask[-1] = True # Convert reference times to date-times try: first, last = type(self)( numpy.ma.array( [first, last], mask=(mask[0], mask[-1]) ), units, calendar, ).datetime_array except (ValueError, OverflowError): first, last = ("??", "??") if size > 3: out = f"{open_brackets}{first}, ..., {last}{close_brackets}" elif shape[-1:] == (3,): middle = self.second_element() if isreftime: # Convert reference time to date-time if middle is numpy.ma.masked: middle = 0 mask[1] = True try: middle = type(self)( numpy.ma.array(middle, mask=mask[1]), units, calendar, ).datetime_array except (ValueError, OverflowError): middle = "??" out = ( f"{open_brackets}{first}, {middle}, {last}{close_brackets}" ) elif size == 3: out = f"{open_brackets}{first}, ..., {last}{close_brackets}" else: out = f"{open_brackets}{first}, {last}{close_brackets}" if isreftime: if calendar: out += f" {calendar}" elif units: out += f" {units}" return out # ---------------------------------------------------------------- # Private methods # ---------------------------------------------------------------- def _item(self, index): """Return an element of the data as a scalar. It is assumed, but not checked, that the given index selects exactly one element. :Parameters: index: :Returns: The selected element of the data. **Examples:** >>> d = {{package}}.{{class}}([[1, 2, 3]], 'km') >>> x = d._item((0, -1)) >>> print(x, type(x)) 3 <class 'int'> >>> x = d._item((0, 1)) >>> print(x, type(x)) 2 <class 'int'> >>> d[0, 1] = {{package}}.masked >>> d._item((slice(None), slice(1, 2))) masked """ array = self[index].array if not numpy.ma.isMA(array): return array.item() mask = array.mask if mask is numpy.ma.nomask or not mask.item(): return array.item() return numpy.ma.masked def _parse_axes(self, axes): """Parses the data axes and returns valid non-duplicate axes. :Parameters: axes: (sequence of) `int` The axes of the data. {{axes int examples}} :Returns: `tuple` **Examples:** >>> d._parse_axes(1) (1,) >>> e._parse_axes([0, 2]) (0, 2) """ if axes is None: return axes ndim = self.ndim if isinstance(axes, int): axes = (axes,) axes2 = [] for axis in axes: if 0 <= axis < ndim: axes2.append(axis) elif -ndim <= axis < 0: axes2.append(axis + ndim) else: raise ValueError(f"Invalid axis: {axis!r}") # Check for duplicate axes n = len(axes2) if n > len(set(axes2)) >= 1: raise ValueError(f"Duplicate axis: {axes2}") return tuple(axes2) def _set_Array(self, array, copy=True): """Set the array. .. seealso:: `_set_CompressedArray` :Parameters: array: `numpy` array_like or `Array`, optional The array to be inserted. :Returns: `None` **Examples:** >>> d._set_Array(a) """ if not isinstance(array, abstract.Array): if not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = NumpyArray(array) super()._set_Array(array, copy=copy) def _set_CompressedArray(self, array, copy=True): """Set the compressed array. .. versionadded:: (cfdm) 1.7.11 .. seealso:: `_set_Array` :Parameters: array: subclass of `CompressedArray` The compressed array to be inserted. :Returns: `None` **Examples:** >>> d._set_CompressedArray(a) """ self._set_Array(array, copy=copy) @classmethod def _set_subspace(cls, array, indices, value): """Set a subspace of the data array defined by indices.""" axes_with_list_indices = [ i for i, x in enumerate(indices) if not isinstance(x, slice) ] if len(axes_with_list_indices) < 2: # -------------------------------------------------------- # At most one axis has a list-of-integers index so we can # do a normal numpy assignment # -------------------------------------------------------- array[tuple(indices)] = value else: # -------------------------------------------------------- # At least two axes have list-of-integers indices so we # can't do a normal numpy assignment # -------------------------------------------------------- indices1 = indices[:] for i, x in enumerate(indices): if i in axes_with_list_indices: # This index is a list of integers y = [] args = [iter(x)] * 2 for start, stop in itertools.zip_longest(*args): if not stop: y.append(slice(start, start + 1)) else: step = stop - start stop += 1 y.append(slice(start, stop, step)) indices1[i] = y else: indices1[i] = (x,) if numpy.size(value) == 1: for i in itertools.product(*indices1): array[i] = value else: indices2 = [] ndim_difference = array.ndim - numpy.ndim(value) for i, n in enumerate(numpy.shape(value)): if n == 1: indices2.append((slice(None),)) elif i + ndim_difference in axes_with_list_indices: y = [] start = 0 while start < n: stop = start + 2 y.append(slice(start, stop)) start = stop indices2.append(y) else: indices2.append((slice(None),)) for i, j in zip( itertools.product(*indices1), itertools.product(*indices2) ): array[i] = value[j] # ---------------------------------------------------------------- # Attributes # ---------------------------------------------------------------- @property def compressed_array(self): """Returns an independent numpy array of the compressed data. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_compressed_axes`, `get_compressed_dimension`, `get_compression_type` :Returns: `numpy.ndarray` An independent numpy array of the compressed data. **Examples:** >>> a = d.compressed_array """ ca = self._get_Array(None) if not ca.get_compression_type(): raise ValueError("not compressed: can't get compressed array") return ca.compressed_array @property def datetime_array(self): """Returns an independent numpy array of datetimes. Specifically, returns an independent numpy array containing the date-time objects corresponding to times since a reference date. Only applicable for reference time units. If the calendar has not been set then the CF default calendar of 'standard' (i.e. the mixed Gregorian/Julian calendar as defined by Udunits) will be used. Conversions are carried out with the `netCDF4.num2date` function. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `array`, `datetime_as_string` :Returns: `numpy.ndarray` An independent numpy array of the date-time objects. **Examples:** >>> d = {{package}}.{{class}}([31, 62, 90], units='days since 2018-12-01') >>> a = d.datetime_array >>> print(a) [cftime.DatetimeGregorian(2019, 1, 1, 0, 0, 0, 0) cftime.DatetimeGregorian(2019, 2, 1, 0, 0, 0, 0) cftime.DatetimeGregorian(2019, 3, 1, 0, 0, 0, 0)] >>> print(a[1]) 2019-02-01 00:00:00 >>> d = {{package}}.{{class}}( ... [31, 62, 90], units='days since 2018-12-01', calendar='360_day') >>> a = d.datetime_array >>> print(a) [cftime.Datetime360Day(2019, 1, 2, 0, 0, 0, 0) cftime.Datetime360Day(2019, 2, 3, 0, 0, 0, 0) cftime.Datetime360Day(2019, 3, 1, 0, 0, 0, 0)] >>> print(a[1]) 2019-02-03 00:00:00 """ array = self.array mask = None if numpy.ma.isMA(array): # num2date has issues if the mask is nomask mask = array.mask if mask is numpy.ma.nomask or not numpy.ma.is_masked(array): mask = None array = array.view(numpy.ndarray) if mask is not None and not array.ndim: # Fix until num2date copes with scalar aarrays containing # missing data return array array = netCDF4.num2date( array, units=self.get_units(None), calendar=self.get_calendar("standard"), only_use_cftime_datetimes=True, ) if mask is None: # There is no missing data array = numpy.array(array, dtype=object) else: # There is missing data array = numpy.ma.masked_where(mask, array) if not numpy.ndim(array): array = numpy.ma.masked_all((), dtype=object) return array @property def datetime_as_string(self): """Returns an independent numpy array with datetimes as strings. Specifically, returns an independent numpy array containing string representations of times since a reference date. Only applicable for reference time units. If the calendar has not been set then the CF default calendar of "standard" (i.e. the mixed Gregorian/Julian calendar as defined by Udunits) will be used. Conversions are carried out with the `netCDF4.num2date` function. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `array`, `datetime_array` :Returns: `numpy.ndarray` An independent numpy array of the date-time strings. **Examples:** >>> d = {{package}}.{{class}}([31, 62, 90], units='days since 2018-12-01') >>> print(d.datetime_as_string) ['2019-01-01 00:00:00' '2019-02-01 00:00:00' '2019-03-01 00:00:00'] >>> d = {{package}}.{{class}}( ... [31, 62, 90], units='days since 2018-12-01', calendar='360_day') >>> print(d.datetime_as_string) ['2019-01-02 00:00:00' '2019-02-03 00:00:00' '2019-03-01 00:00:00'] """ return self.datetime_array.astype(str) @property def mask(self): """The Boolean missing data mask of the data array. The Boolean mask has True where the data array has missing data and False otherwise. :Returns: `{{class}}` The Boolean mask as data. **Examples:** >>> d = {{package}}.{{class}}(numpy.ma.array( ... [[280.0, -99, -99, -99], ... [281.0, 279.0, 278.0, 279.5]], ... mask=[[0, 1, 1, 1], [0, 0, 0, 0]] ... )) >>> d <{{repr}}Data(2, 4): [[280.0, ..., 279.5]]> >>> print(d.array) [[280.0 -- -- --] [281.0 279.0 278.0 279.5]] >>> d.mask <{{repr}}Data(2, 4): [[False, ..., False]]> >>> print(d.mask.array) [[False True True True] [False False False False]] """ return type(self)(numpy.ma.getmaskarray(self.array)) # ---------------------------------------------------------------- # Methods # ---------------------------------------------------------------- def any(self): """Test whether any data array elements evaluate to True. Performs a logical or over the data array and returns the result. Masked values are considered as False during computation. :Returns: `bool` `True` if any data array elements evaluate to True, otherwise `False`. **Examples:** >>> d = {{package}}.{{class}}([[0, 0, 0]]) >>> d.any() False >>> d[0, 0] = {{package}}.masked >>> print(d.array) [[-- 0 0]] >>> d.any() False >>> d[0, 1] = 3 >>> print(d.array) [[-- 3 0]] >>> d.any() True >>> d[...] = {{package}}.masked >>> print(d.array) [[-- -- --]] >>> d.any() False """ masked = self.array.any() if masked is numpy.ma.masked: masked = False return masked @_inplace_enabled(default=False) def apply_masking( self, fill_values=None, valid_min=None, valid_max=None, valid_range=None, inplace=False, ): """Apply masking. Masking is applied according to the values of the keyword parameters. Elements that are already masked remain so. .. versionadded:: (cfdm) 1.8.2 .. seealso:: `get_fill_value`, `mask` :Parameters: fill_values: `bool` or sequence of scalars, optional Specify values that will be set to missing data. Data elements exactly equal to any of the values are set to missing data. If True then the value returned by the `get_fill_value` method, if such a value exists, is used. Zero or more values may be provided in a sequence of scalars. *Parameter example:* Specify a fill value of 999: ``fill_values=[999]`` *Parameter example:* Specify fill values of 999 and -1.0e30: ``fill_values=[999, -1.0e30]`` *Parameter example:* Use the fill value already set for the data: ``fill_values=True`` *Parameter example:* Use no fill values: ``fill_values=False`` or ``fill_value=[]`` valid_min: number, optional A scalar specifying the minimum valid value. Data elements strictly less than this number will be set to missing data. valid_max: number, optional A scalar specifying the maximum valid value. Data elements strictly greater than this number will be set to missing data. valid_range: (number, number), optional A vector of two numbers specifying the minimum and maximum valid values, equivalent to specifying values for both *valid_min* and *valid_max* parameters. The *valid_range* parameter must not be set if either *valid_min* or *valid_max* is defined. *Parameter example:* ``valid_range=[-999, 10000]`` is equivalent to setting ``valid_min=-999, valid_max=10000`` inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with masked values. If the operation was in-place then `None` is returned. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(12).reshape(3, 4), 'm') >>> d[1, 1] = {{package}}.masked >>> print(d.array) [[0 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking().array) [[0 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(fill_values=[0]).array) [[-- 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(fill_values=[0, 11]).array) [[-- 1 2 3] [4 -- 6 7] [8 9 10 --]] >>> print(d.apply_masking(valid_min=3).array) [[-- -- -- 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(valid_max=6).array) [[0 1 2 3] [4 -- 6 --] [-- -- -- --]] >>> print(d.apply_masking(valid_range=[2, 8]).array) [[-- -- 2 3] [4 -- 6 7] [8 -- -- --]] >>> d.set_fill_value(7) >>> print(d.apply_masking(fill_values=True).array) [[0 1 2 3] [4 -- 6 --] [8 9 10 11]] >>> print(d.apply_masking(fill_values=True, ... valid_range=[2, 8]).array) [[-- -- 2 3] [4 -- 6 --] [8 -- -- --]] """ if valid_range is not None: if valid_min is not None or valid_max is not None: raise ValueError( "Can't set 'valid_range' parameter with either the " "'valid_min' nor 'valid_max' parameters" ) try: if len(valid_range) != 2: raise ValueError( "'valid_range' parameter must be a vector of " "two elements" ) except TypeError: raise ValueError( "'valid_range' parameter must be a vector of " "two elements" ) valid_min, valid_max = valid_range d = _inplace_enabled_define_and_cleanup(self) if fill_values is None: fill_values = False if isinstance(fill_values, bool): if fill_values: fill_value = self.get_fill_value(None) if fill_value is not None: fill_values = (fill_value,) else: fill_values = () else: fill_values = () else: try: _ = iter(fill_values) except TypeError: raise TypeError( "'fill_values' parameter must be a sequence or " f"of type bool. Got type {type(fill_values)}" ) else: if isinstance(fill_values, str): raise TypeError( "'fill_values' parameter must be a sequence or " f"of type bool. Got type {type(fill_values)}" ) mask = None if fill_values: array = self.array mask = array == fill_values[0] for fill_value in fill_values[1:]: mask |= array == fill_value if valid_min is not None: if mask is None: array = self.array mask = array < valid_min else: mask |= array < valid_min if valid_max is not None: if mask is None: array = self.array mask = array > valid_max else: mask |= array > valid_max if mask is not None: array = numpy.ma.where(mask, cfdm_masked, array) d._set_Array(array, copy=False) return d def copy(self, array=True): """Return a deep copy. ``d.copy()`` is equivalent to ``copy.deepcopy(d)``. :Parameters: array: `bool`, optional If False then do not copy the array. By default the array is copied. :Returns: `{{class}}` The deep copy. **Examples:** >>> e = d.copy() >>> e = d.copy(array=False) """ return super().copy(array=array) def creation_commands( self, name="data", namespace=None, indent=0, string=True ): """Return the commands that would create the data object. .. versionadded:: (cfdm) 1.8.7.0 :Parameters: name: `str` or `None`, optional Set the variable name of `Data` object that the commands create. {{namespace: `str`, optional}} {{indent: `int`, optional}} {{string: `bool`, optional}} :Returns: {{returns creation_commands}} **Examples:** >>> d = {{package}}.{{class}}([[0.0, 45.0], [45.0, 90.0]], ... units='degrees_east') >>> print(d.creation_commands()) data = {{package}}.{{class}}([[0.0, 45.0], [45.0, 90.0]], units='degrees_east', dtype='f8') >>> d = {{package}}.{{class}}(['alpha', 'beta', 'gamma', 'delta'], ... mask = [1, 0, 0, 0]) >>> d.creation_commands(name='d', namespace='', string=False) ["d = Data(['', 'beta', 'gamma', 'delta'], dtype='U5', mask=Data([True, False, False, False], dtype='b1'))"] """ namespace0 = namespace if namespace is None: namespace = self._package() + "." elif namespace and not namespace.endswith("."): namespace += "." mask = self.mask if mask.any(): if name == "mask": raise ValueError( "When the data is masked, the 'name' parameter " "can not have the value 'mask'" ) masked = True array = self.filled().array.tolist() else: masked = False array = self.array.tolist() units = self.get_units(None) if units is None: units = "" else: units = f", units={units!r}" calendar = self.get_calendar(None) if calendar is None: calendar = "" else: calendar = f", calendar={calendar!r}" fill_value = self.get_fill_value(None) if fill_value is None: fill_value = "" else: fill_value = f", fill_value={fill_value}" dtype = self.dtype.descr[0][1][1:] if masked: mask = mask.creation_commands( name="mask", namespace=namespace0, indent=0, string=True ) mask = mask.replace("mask = ", "mask=", 1) mask = f", {mask}" else: mask = "" if name is None: name = "" else: name = name + " = " out = [] out.append( f"{name}{namespace}{self.__class__.__name__}({array}{units}" f"{calendar}, dtype={dtype!r}{mask}{fill_value})" ) if string: indent = " " * indent out[0] = indent + out[0] out = ("\n" + indent).join(out) return out @_inplace_enabled(default=False) def filled(self, fill_value=None, inplace=False): """Replace masked elements with the fill value. .. versionadded:: (cfdm) 1.8.7.0 :Parameters: fill_value: scalar, optional The fill value. By default the fill returned by `get_fill_value` is used, or if this is not set then the netCDF default fill value for the data type is used (as defined by `netCDF.fillvals`). {{inplace: `bool`, optional}} :Returns: `Data` or `None` The filled data, or `None` if the operation was in-place. **Examples:** >>> d = {{package}}.{{class}}([[1, 2, 3]]) >>> print(d.filled().array) [[1 2 3]] >>> d[0, 0] = {{package}}.masked >>> print(d.filled().array) [[-9223372036854775806 2 3]] >>> d.set_fill_value(-99) >>> print(d.filled().array) [[-99 2 3]] >>> print(d.filled(1e10).array) [[10000000000 2 3]] """ d = _inplace_enabled_define_and_cleanup(self) if fill_value is None: fill_value = d.get_fill_value(None) if fill_value is None: default_fillvals = netCDF4.default_fillvals fill_value = default_fillvals.get(d.dtype.str[1:], None) if fill_value is None and d.dtype.kind in ("SU"): fill_value = default_fillvals.get("S1", None) if fill_value is None: # should not be None by this stage raise ValueError( "Can't determine fill value for " f"data type {d.dtype.str!r}" ) # pragma: no cover array = self.array if numpy.ma.isMA(array): array = array.filled(fill_value) d._set_Array(array, copy=False) return d @_inplace_enabled(default=False) def insert_dimension(self, position=0, inplace=False): """Expand the shape of the data array. Inserts a new size 1 axis, corresponding to a given position in the data array shape. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `squeeze`, `transpose` :Parameters: position: `int`, optional Specify the position that the new axis will have in the data array. By default the new axis has position 0, the slowest varying position. Negative integers counting from the last position are allowed. *Parameter example:* ``position=2`` *Parameter example:* ``position=-1`` inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with expanded axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (19, 73, 96) >>> d.insert_dimension('domainaxis3').shape (1, 96, 73, 19) >>> d.insert_dimension('domainaxis3', position=3).shape (19, 73, 96, 1) >>> d.insert_dimension('domainaxis3', position=-1, inplace=True) >>> d.shape (19, 73, 1, 96) """ d = _inplace_enabled_define_and_cleanup(self) # Parse position ndim = d.ndim if -ndim - 1 <= position < 0: position += ndim + 1 elif not 0 <= position <= ndim: raise ValueError( f"Can't insert dimension: Invalid position: {position!r}" ) array = numpy.expand_dims(self.array, position) d._set_Array(array, copy=False) # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d def get_count(self, default=ValueError()): """Return the count variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_index`, `get_list` :Parameters: default: optional Return the value of the *default* parameter if a count variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The count variable. **Examples:** >>> c = d.get_count() """ try: return self._get_Array().get_count() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no count variable" ) def get_index(self, default=ValueError()): """Return the index variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_count`, `get_list` :Parameters: default: optional Return *default* if index variable has not been set. default: optional Return the value of the *default* parameter if an index variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The index variable. **Examples:** >>> i = d.get_index() """ try: return self._get_Array().get_index() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no index variable" ) def get_list(self, default=ValueError()): """Return the list variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_count`, `get_index` :Parameters: default: optional Return the value of the *default* parameter if an index variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The list variable. **Examples:** >>> l = d.get_list() """ try: return self._get_Array().get_list() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no list variable" ) def get_compressed_dimension(self, default=ValueError()): """Returns the compressed dimension's array position. That is, returns the position of the compressed dimension in the compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `get_compressed_axes`, `get_compression_type` :Parameters: default: optional Return the value of the *default* parameter there is no compressed dimension. If set to an `Exception` instance then it will be raised instead. :Returns: `int` The position of the compressed dimension in the compressed array. **Examples:** >>> d.get_compressed_dimension() 2 """ try: return self._get_Array().get_compressed_dimension() except (AttributeError, ValueError): return self._default( default, f"{ self.__class__.__name__!r} has no compressed dimension", ) def _parse_indices(self, indices): """Parse indices of the data and return valid indices in a list. :Parameters: indices: `tuple` (not a `list`!) :Returns: `list` **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d._parse_indices((slice(None, None, None), 1, 2)) [slice(None, None, None), slice(1, 2, 1), slice(2, 3, 1)] >>> d._parse_indices((1,)) [slice(1, 2, 1), slice(None, None, None), slice(None, None, None)] """ shape = self.shape parsed_indices = [] if not isinstance(indices, tuple): indices = (indices,) # Initialise the list of parsed indices as the input indices # with any Ellipsis objects expanded length = len(indices) n = len(shape) ndim = n for index in indices: if index is Ellipsis: m = n - length + 1 parsed_indices.extend([slice(None)] * m) n -= m else: parsed_indices.append(index) n -= 1 length -= 1 len_parsed_indices = len(parsed_indices) if ndim and len_parsed_indices > ndim: raise IndexError( f"Invalid indices for data with shape {shape}: " f"{parsed_indices}" ) if len_parsed_indices < ndim: parsed_indices.extend([slice(None)] * (ndim - len_parsed_indices)) if not ndim and parsed_indices: raise IndexError( "Scalar data can only be indexed with () or Ellipsis" ) for i, (index, size) in enumerate(zip(parsed_indices, shape)): if isinstance(index, slice): continue if isinstance(index, int): # E.g. 43 -> slice(43, 44, 1) if index < 0: index += size index = slice(index, index + 1, 1) else: if getattr(getattr(index, "dtype", None), "kind", None) == "b": # E.g. index is [True, False, True] -> [0, 2] # # Convert Booleans to non-negative integers. We're # assuming that anything with a dtype attribute also # has a size attribute. if index.size != size: raise IndexError( "Invalid indices for data " f"with shape {shape}: {parsed_indices}" ) index = numpy.where(index)[0] if not numpy.ndim(index): if index < 0: index += size index = slice(index, index + 1, 1) else: len_index = len(index) if len_index == 1: # E.g. [3] -> slice(3, 4, 1) index = index[0] if index < 0: index += size index = slice(index, index + 1, 1) else: # E.g. [1, 3, 4] -> [1, 3, 4] pass parsed_indices[i] = index return parsed_indices def maximum(self, axes=None): """Return the maximum of an array or the maximum along axes. Missing data array elements are omitted from the calculation. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `minimum` :Parameters: axes: (sequence of) `int`, optional The axes over which to take the maximum. By default the maximum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` Maximum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.max() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[23]]]]> >>> print(e.array) [[[[23]]]] >>> e = d.max(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[8, ..., 23]]]]> >>> print(e.array) [[[[ 8 9 10 11]] [[20 21 22 23]]]] >>> e = d.max([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[11, 23]]]]> >>> print(e.array) [[[[11]] [[23]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't find maximum of data: {error}") array = self.array array = numpy.amax(array, axis=axes, keepdims=True) out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out def minimum(self, axes=None): """Return the minimum of an array or minimum along axes. Missing data array elements are omitted from the calculation. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `maximum` :Parameters: axes: (sequence of) `int`, optional The axes over which to take the minimum. By default the minimum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` Minimum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.min() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[0]]]]> >>> print(e.array) [[[[0]]]] >>> e = d.min(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[0, ..., 15]]]]> >>> print(e.array) [[[[ 0 1 2 3]] [[12 13 14 15]]]] >>> e = d.min([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[0, 12]]]]> >>> print(e.array) [[[[ 0]] [[12]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't find minimum of data: {error}") array = self.array array = numpy.amin(array, axis=axes, keepdims=True) out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out @_inplace_enabled(default=False) def squeeze(self, axes=None, inplace=False): """Remove size 1 axes from the data. By default all size 1 axes are removed, but particular axes may be selected with the keyword arguments. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `insert_dimension`, `transpose` :Parameters: axes: (sequence of) `int`, optional The positions of the size one axes to be removed. By default all size one axes are removed. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `Data` or `None` The data with removed data axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (1, 73, 1, 96) >>> f.squeeze().shape (73, 96) >>> d.squeeze(0).shape (73, 1, 96) >>> d.squeeze([-3, 2]).shape (73, 96) >>> d.squeeze(2, inplace=True) >>> d.shape (1, 73, 96) """ d = _inplace_enabled_define_and_cleanup(self) try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't squeeze data: {error}") shape = d.shape if axes is None: axes = tuple([i for i, n in enumerate(shape) if n == 1]) else: # Check the squeeze axes for i in axes: if shape[i] > 1: raise ValueError( "Can't squeeze data: " f"Can't remove axis of size {shape[i]}" ) if not axes: return d array = self.array array = numpy.squeeze(array, axes) d._set_Array(array, copy=False) # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d def sum(self, axes=None): """Return the sum of an array or the sum along axes. Missing data array elements are omitted from the calculation. .. seealso:: `max`, `min` :Parameters: axes: (sequence of) `int`, optional The axes over which to calculate the sum. By default the sum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` The sum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.sum() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[276]]]]> >>> print(e.array) [[[[276]]]] >>> e = d.sum(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[12, ..., 57]]]]> >>> print(e.array) [[[[12 15 18 21]] [[48 51 54 57]]]] >>> e = d.sum([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[66, 210]]]]> >>> print(e.array) [[[[ 66]] [[210]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't sum data: {error}") array = self.array array = numpy.sum(array, axis=axes, keepdims=True) d = self.copy(array=False) d._set_Array(array, copy=False) if d.shape != self.shape: # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d @_inplace_enabled(default=False) def transpose(self, axes=None, inplace=False): """Permute the axes of the data array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `insert_dimension`, `squeeze` :Parameters: axes: (sequence of) `int` The new axis order. By default the order is reversed. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with permuted data axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (19, 73, 96) >>> d.transpose().shape (96, 73, 19) >>> d.transpose([1, 0, 2]).shape (73, 19, 96) >>> d.transpose([-1, 0, 1], inplace=True) >>> d.shape (96, 19, 73) """ d = _inplace_enabled_define_and_cleanup(self) ndim = d.ndim # Parse the axes. By default, reverse the order of the axes. try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't transpose data: {error}") if axes is None: if ndim <= 1: return d axes = tuple(range(ndim - 1, -1, -1)) elif len(axes) != ndim: raise ValueError( f"Can't transpose data: Axes don't match array: {axes}" ) # Return unchanged if axes are in the same order as the data if axes == tuple(range(ndim)): return d array = self.array array = numpy.transpose(array, axes=axes) d._set_Array(array, copy=False) return d def get_compressed_axes(self): """Returns the dimensions that are compressed in the array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `get_compressed_dimension`, `get_compression_type` :Returns: `list` The dimensions of the data that are compressed to a single dimension in the underlying array. If the data are not compressed then an empty list is returned. **Examples:** >>> d.shape (2, 3, 4, 5, 6) >>> d.compressed_array.shape (2, 14, 6) >>> d.get_compressed_axes() [1, 2, 3] >>> d.get_compression_type() '' >>> d.get_compressed_axes() [] """ ca = self._get_Array(None) if ca is None: return [] return ca.get_compressed_axes() def get_compression_type(self): """Returns the type of compression applied to the array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `compression_axes`, `get_compressed_dimension` :Returns: `str` The compression type. An empty string means that no compression has been applied. **Examples:** >>> d.get_compression_type() '' >>> d.get_compression_type() 'gathered' >>> d.get_compression_type() 'ragged contiguous' """ ma = self._get_Array(None) if ma is None: return "" return ma.get_compression_type() @classmethod def empty(cls, shape, dtype=None, units=None, calendar=None): """Create a new data array without initialising the elements. Note that the mask of the returned empty data is hard. .. seealso:: `full`, `ones`, `zeros` :Parameters: shape: `int` or `tuple` of `int` The shape of the new array. dtype: `numpy.dtype` or any object convertible to `numpy.dtype` The data-type of the new array. By default the data-type is ``float``. units: `str` or `Units` The units for the empty data array. calendar: `str`, optional The calendar for reference time units. :Returns: `{{class}}` **Examples:** >>> d = {{package}}.{{class}}.empty((96, 73)) """ return cls( numpy.empty(shape=shape, dtype=dtype), units=units, calendar=calendar, ) @_manage_log_level_via_verbosity def equals( self, other, rtol=None, atol=None, verbose=None, ignore_data_type=False, ignore_fill_value=False, ignore_compression=True, ignore_type=False, _check_values=True, ): """Whether two data arrays are the same. Equality is strict by default. This means that for data arrays to be considered equal: * the units and calendar must be the same, .. * the fill value must be the same (see the *ignore_fill_value* parameter), and .. * the arrays must have same shape and data type, the same missing data mask, and be element-wise equal (see the *ignore_data_type* parameter). {{equals tolerance}} Any compression is ignored by default, with only the arrays in their uncompressed forms being compared. See the *ignore_compression* parameter. Any type of object may be tested but, in general, equality is only possible with another cell measure construct, or a subclass of one. See the *ignore_type* parameter. .. versionadded:: (cfdm) 1.7.0 :Parameters: other: The object to compare for equality. {{atol: number, optional}} {{rtol: number, optional}} ignore_fill_value: `bool`, optional If True then the fill value is omitted from the comparison. {{ignore_data_type: `bool`, optional}} {{ignore_compression: `bool`, optional}} {{ignore_type: `bool`, optional}} {{verbose: `int` or `str` or `None`, optional}} :Returns: `bool` Whether the two data arrays are equal. **Examples:** >>> d.equals(d) True >>> d.equals(d.copy()) True >>> d.equals('not a data array') False """ pp = super()._equals_preprocess( other, verbose=verbose, ignore_type=ignore_type ) if pp is True or pp is False: return pp other = pp # Check that each instance has the same shape if self.shape != other.shape: logger.info( f"{self.__class__.__name__}: Different shapes: " f"{self.shape} != {other.shape}" ) # pragma: no cover return False # Check that each instance has the same fill value if not ignore_fill_value and self.get_fill_value( None ) != other.get_fill_value(None): logger.info( f"{self.__class__.__name__}: Different fill value: " f"{self.get_fill_value(None)} != {other.get_fill_value(None)}" ) # pragma: no cover return False # Check that each instance has the same data type if not ignore_data_type and self.dtype != other.dtype: logger.info( f"{self.__class__.__name__}: Different data types: " f"{self.dtype} != {other.dtype}" ) # pragma: no cover return False # Return now if we have been asked to not check the array # values if not _check_values: return True # Check that each instance has the same units for attr in ("units", "calendar"): x = getattr(self, "get_" + attr)(None) y = getattr(other, "get_" + attr)(None) if x != y: logger.info( f"{self.__class__.__name__}: Different {attr}: " f"{x!r} != {y!r}" ) # pragma: no cover return False if not ignore_compression: # -------------------------------------------------------- # Check for equal compression types # -------------------------------------------------------- compression_type = self.get_compression_type() if compression_type != other.get_compression_type(): logger.info( f"{self.__class__.__name__}: Different compression types: " f"{compression_type} != {other.get_compression_type()}" ) # pragma: no cover return False # -------------------------------------------------------- # Check for equal compressed array values # -------------------------------------------------------- if compression_type: if not self._equals( self.compressed_array, other.compressed_array, rtol=rtol, atol=atol, ): logger.info( f"{self.__class__.__name__}: Different compressed " "array values" ) # pragma: no cover return False # ------------------------------------------------------------ # Check for equal (uncompressed) array values # ------------------------------------------------------------ if not self._equals(self.array, other.array, rtol=rtol, atol=atol): logger.info( f"{self.__class__.__name__}: Different array values " f"(atol={atol}, rtol={rtol})" ) # pragma: no cover return False # ------------------------------------------------------------ # Still here? Then the two data arrays are equal. # ------------------------------------------------------------ return True def get_filenames(self): """Return the name of the file containing the data array. :Returns: `set` The file name in normalised, absolute form. If the data is are memory then an empty `set` is returned. **Examples:** >>> f = {{package}}.example_field(0) >>> {{package}}.write(f, 'temp_file.nc') >>> g = {{package}}.read('temp_file.nc')[0] >>> d = g.data >>> d.get_filenames() {'/data/user/temp_file.nc'} >>> d[...] = -99 >>> d.get_filenames() set() """ source = self.source(None) if source is None: return set() try: filename = source.get_filename() except AttributeError: return set() else: return set((abspath(filename),)) def first_element(self): """Return the first element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `last_element`, `second_element` :Returns: The first element of the data. **Examples:** >>> d = {{package}}.{{class}}(9.0) >>> x = d.first_element() >>> print(x, type(x)) 9.0 <class 'float'> >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.first_element() >>> print(x, type(x)) 1 <class 'int'> >>> d[0, 0] = {{package}}.masked >>> y = d.first_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.first_element() >>> print(x, type(x)) foo <class 'str'> """ return self._item((slice(0, 1),) * self.ndim) @_inplace_enabled(default=False) def flatten(self, axes=None, inplace=False): """Flatten axes of the data. Any subset of the axes may be flattened. The shape of the data may change, but the size will not. The flattening is executed in row-major (C-style) order. For example, the array ``[[1, 2], [3, 4]]`` would be flattened across both dimensions to ``[1 2 3 4]``. .. versionadded:: (cfdm) 1.7.11 .. seealso:: `insert_dimension`, `squeeze`, `transpose` :Parameters: axes: (sequence of) `int`, optional Select the axes. By default all axes are flattened. No axes are flattened if *axes* is an empty sequence. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `Data` or `None` The flattened data, or `None` if the operation was in-place. **Examples** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.flatten() >>> e <{{repr}}Data(24): [0, ..., 23]> >>> print(e.array) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] >>> e = d.flatten([]) >>> e <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> e = d.flatten([1, 3]) >>> e <{{repr}}Data(1, 8, 3): [[[0, ..., 23]]]> >>> print(e.array) [[[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11] [12 16 20] [13 17 21] [14 18 22] [15 19 23]]] >>> d.flatten([0, -1], inplace=True) >>> d <{{repr}}Data(4, 2, 3): [[[0, ..., 23]]]> >>> print(d.array) [[[ 0 4 8] [12 16 20]] [[ 1 5 9] [13 17 21]] [[ 2 6 10] [14 18 22]] [[ 3 7 11] [15 19 23]]] """ d = _inplace_enabled_define_and_cleanup(self) try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't flatten data: {error}") ndim = d.ndim if ndim <= 1: return d if axes is None: # By default flatten all axes axes = tuple(range(ndim)) else: if len(axes) <= 1: return d # Note that it is important that the first axis in the # list is the left-most flattened axis axes = sorted(axes) # Save the shape before we transpose shape = list(d.shape) order = [i for i in range(ndim) if i not in axes] order[axes[0] : axes[0]] = axes d.transpose(order, inplace=True) new_shape = [n for i, n in enumerate(shape) if i not in axes] new_shape.insert(axes[0], numpy.prod([shape[i] for i in axes])) array = d.array.reshape(new_shape) out = type(self)( array, units=d.get_units(None), calendar=d.get_calendar(None), fill_value=d.get_fill_value(None), ) if inplace: d.__dict__ = out.__dict__ return out def last_element(self): """Return the last element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `first_element`, `second_element` :Returns: The last element of the data. **Examples:** >>> d = {{package}}.{{class}}(9.0) >>> x = d.last_element() >>> print(x, type(x)) 9.0 <class 'float'> >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.last_element() >>> print(x, type(x)) 4 <class 'int'> >>> d[-1, -1] = {{package}}.masked >>> y = d.last_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.last_element() >>> print(x, type(x)) bar <class 'str'> """ return self._item((slice(-1, None),) * self.ndim) def second_element(self): """Return the second element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `first_element`, `last_element` :Returns: The second element of the data. **Examples:** >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.second_element() >>> print(x, type(x)) 2 <class 'int'> >>> d[0, 1] = {{package}}.masked >>> y = d.second_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.second_element() >>> print(x, type(x)) bar <class 'str'> """ return self._item((slice(0, 1),) * (self.ndim - 1) + (slice(1, 2),)) def to_memory(self): """Bring data on disk into memory and retain it there. There is no change to data that is already in memory. :Returns: `None` **Examples:** >>> f = {{package}}.example_field(4) >>> f.data <{{repr}}Data(3, 26, 4): [[[290.0, ..., --]]] K> >>> f.data.to_memory() """ self._set_Array(self.source().to_memory()) @_inplace_enabled(default=False) def uncompress(self, inplace=False): """Uncompress the underlying array. .. versionadded:: (cfdm) 1.7.3 .. seealso:: `array`, `compressed_array`, `source` :Parameters: inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The uncompressed data, or `None` if the operation was in-place. **Examples:** >>> d.get_compression_type() 'ragged contiguous' >>> d.source() <RaggedContiguousArray(4, 9): > >>> d.uncompress(inpalce=True) >>> d.get_compression_type() '' >>> d.source() <NumpyArray(4, 9): > """ d = _inplace_enabled_define_and_cleanup(self) if d.get_compression_type(): d._set_Array(d.array, copy=False) return d def unique(self): """The unique elements of the data. The unique elements are sorted into a one dimensional array. with no missing values. .. versionadded:: (cfdm) 1.7.0 :Returns: `{{class}}` The unique elements. **Examples:** >>> d = {{package}}.{{class}}([[4, 2, 1], [1, 2, 3]], 'metre') >>> d.unique() <{{repr}}Data(4): [1, ..., 4] metre> >>> d[1, -1] = {{package}}.masked >>> d.unique() <{{repr}}Data(3): [1, 2, 4] metre> """ array = self.array array = numpy.unique(array) if numpy.ma.is_masked(array): array = array.compressed() d = self.copy(array=False) d._set_Array(array, copy=False) if d.shape != self.shape: # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d # ---------------------------------------------------------------- # Aliases # ---------------------------------------------------------------- def max(self, axes=None): """Alias for `maximum`.""" return self.maximum(axes=axes) def min(self, axes=None): """Alias for `minimum`.""" return self.minimum(axes=axes)
33658
import pytest import yaml from nequip.utils import instantiate simple_default = {"b": 1, "d": 31} class SimpleExample: def __init__(self, a, b=simple_default["b"], d=simple_default["d"]): self.a = a self.b = b self.d = d nested_default = {"d": 37} class NestedExample: def __init__(self, cls_c, a, cls_c_kwargs={}, d=nested_default["d"]): self.c_obj = cls_c(**cls_c_kwargs) self.a = a self.d = d def assert_dict(d): for k, v in d.items(): if isinstance(v, dict): assert_dict(v) elif isinstance(v, str): assert k == v @pytest.mark.parametrize("positional_args", [dict(a=3, b=4), dict(a=5), dict()]) @pytest.mark.parametrize("optional_args", [dict(a=3, b=4), dict(a=5), dict()]) @pytest.mark.parametrize("all_args", [dict(a=6, b=7), dict(a=8), dict()]) @pytest.mark.parametrize("prefix", [True, False]) def test_simple_init(positional_args, optional_args, all_args, prefix): union = {} union.update(all_args) union.update(optional_args) union.update(positional_args) if "a" not in union: return # decorate test with prefix _all_args = ( {"simple_example_" + k: v for k, v in all_args.items()} if prefix else all_args ) # check key mapping is correct km, params = instantiate( builder=SimpleExample, prefix="simple_example", positional_args=positional_args, optional_args=optional_args, all_args=_all_args, return_args_only=True, ) for t in km: for k, v in km[t].items(): assert k in locals()[t + "_args"] if prefix and t == "all": assert v == "simple_example_" + k else: assert v == k km, _ = instantiate( builder=SimpleExample, prefix="simple_example", positional_args=positional_args, all_args=params, return_args_only=True, ) assert_dict(km) # check whether it gets the priority right a1, params = instantiate( builder=SimpleExample, prefix="simple_example", positional_args=positional_args, optional_args=optional_args, all_args=_all_args, ) assert a1.a == union["a"] if "b" in union: assert a1.b == union["b"] else: assert a1.b == simple_default["b"] for k in params: if k in simple_default: assert params[k] == union.get(k, simple_default[k]) # check whether the return value is right a2 = SimpleExample(**positional_args, **params) assert a1.a == a2.a assert a1.b == a2.b def test_prefix_priority(): args = {"prefix_a": 3, "a": 4} a, params = instantiate( builder=SimpleExample, prefix="prefix", all_args=args, ) assert a.a == 3 @pytest.mark.parametrize("optional_args", [dict(a=3, b=4), dict(a=5), dict()]) @pytest.mark.parametrize("all_args", [dict(a=6, b=7), dict(a=8), dict()]) @pytest.mark.parametrize("prefix", [True, False]) def test_nested_kwargs(optional_args, all_args, prefix): union = {} union.update(all_args) union.update(optional_args) if "a" not in union: return c, params = instantiate( builder=NestedExample, prefix="prefix", positional_args={"cls_c": SimpleExample}, optional_args=optional_args, all_args=all_args, ) def test_default(): """ check the default value will not contaminate the other class """ c, params = instantiate( builder=NestedExample, prefix="prefix", positional_args={"cls_c": SimpleExample}, optional_args={"a": 11}, ) c.d = nested_default["d"] c.c_obj.d = simple_default["d"] class A: def __init__(self, cls_a, cls_a_kwargs): self.a_obj = cls_a(**cls_a_kwargs) class B: def __init__(self, cls_b, cls_b_kwargs): self.b_obj = cls_b(**cls_b_kwargs) class C: def __init__(self, cls_c, cls_c_kwargs): # noqa self.c_obj = c_cls(**c_cls_kwargs) # noqa def test_deep_nests(): all_args = {"a": 101, "b": 103, "c": 107} obj, params = instantiate( builder=NestedExample, optional_args={"cls_c": A, "cls_a": B, "cls_b": SimpleExample}, all_args=all_args, ) print(yaml.dump(params)) assert obj.c_obj.a_obj.b_obj.a == all_args["a"] assert obj.c_obj.a_obj.b_obj.b == all_args["b"] assert obj.c_obj.a_obj.b_obj.d == simple_default["d"] assert obj.d == nested_default["d"] obj = NestedExample(**params) assert obj.c_obj.a_obj.b_obj.a == all_args["a"] assert obj.c_obj.a_obj.b_obj.b == all_args["b"] assert obj.c_obj.a_obj.b_obj.d == simple_default["d"] assert obj.d == nested_default["d"] km, params = instantiate( builder=NestedExample, optional_args={"cls_c": A, "cls_a": B, "cls_b": SimpleExample}, all_args=all_args, return_args_only=True, ) print(yaml.dump(km)) # check the key mapping is unique for km, _ = instantiate( builder=NestedExample, optional_args=params, return_args_only=True ) assert_dict(km) def test_recursion_nests(): with pytest.raises(RuntimeError) as excinfo: b, params = instantiate( builder=A, positional_args={"cls_a": B}, optional_args={"cls_b": A}, ) assert "cyclic" in str(excinfo.value) print(excinfo) def test_cyclic_nests(): with pytest.raises(RuntimeError) as excinfo: c, params = instantiate( builder=A, positional_args={"cls_a": B}, optional_args={"cls_b": C}, all_args={"cls_c": A}, ) assert "cyclic" in str(excinfo.value) print(excinfo, "hello") class BadKwargs1: def __init__(self, thing_kwargs={}): pass class BadKwargs2: def __init__(self, thing="a string", thing_kwargs={}): pass def test_bad_kwargs(): with pytest.raises(KeyError): _ = instantiate(BadKwargs1) with pytest.raises(ValueError): _ = instantiate(BadKwargs2)
33692
from pathlib import Path from tkinter import Frame, Canvas, Entry, Text, Button, PhotoImage, messagebox import controller as db_controller OUTPUT_PATH = Path(__file__).parent ASSETS_PATH = OUTPUT_PATH / Path("./assets") def relative_to_assets(path: str) -> Path: return ASSETS_PATH / Path(path) def add_reservations(): AddReservations() class AddReservations(Frame): def __init__(self, parent, controller=None, *args, **kwargs): Frame.__init__(self, parent, *args, **kwargs) self.parent = parent self.data = {"g_id": "", "check_in": "", "meal": "", "r_id": ""} self.configure(bg="#FFFFFF") self.canvas = Canvas( self, bg="#FFFFFF", height=432, width=797, bd=0, highlightthickness=0, relief="ridge", ) self.canvas.place(x=0, y=0) self.entry_image_1 = PhotoImage(file=relative_to_assets("entry_1.png")) entry_bg_1 = self.canvas.create_image(137.5, 153.0, image=self.entry_image_1) self.canvas.create_text( 52.0, 128.0, anchor="nw", text="Guest Id", fill="#5E95FF", font=("Montserrat Bold", 14 * -1), ) self.entry_image_2 = PhotoImage(file=relative_to_assets("entry_2.png")) entry_bg_2 = self.canvas.create_image(141.5, 165.0, image=self.entry_image_2) entry_2 = Entry( self, bd=0, bg="#EFEFEF", highlightthickness=0, font=("Montserrat Bold", 18 * -1), foreground="#777777", ) entry_2.place(x=52.0, y=153.0, width=179.0, height=22.0) self.data["g_id"] = entry_2 self.entry_image_3 = PhotoImage(file=relative_to_assets("entry_3.png")) entry_bg_3 = self.canvas.create_image(137.5, 259.0, image=self.entry_image_3) self.canvas.create_text( 52.0, 234.0, anchor="nw", text="Is Taking Meal", fill="#5E95FF", font=("Montserrat Bold", 14 * -1), ) self.entry_image_4 = PhotoImage(file=relative_to_assets("entry_4.png")) entry_bg_4 = self.canvas.create_image(141.5, 271.0, image=self.entry_image_4) entry_4 = Entry( self, bd=0, bg="#EFEFEF", highlightthickness=0, font=("Montserrat Bold", 18 * -1), foreground="#777777", ) entry_4.place(x=52.0, y=259.0, width=179.0, height=22.0) self.data["r_id"] = entry_4 self.entry_image_5 = PhotoImage(file=relative_to_assets("entry_5.png")) entry_bg_5 = self.canvas.create_image(378.5, 153.0, image=self.entry_image_5) self.canvas.create_text( 293.0, 128.0, anchor="nw", text="Room Id", fill="#5E95FF", font=("Montserrat Bold", 14 * -1), ) self.entry_image_6 = PhotoImage(file=relative_to_assets("entry_6.png")) entry_bg_6 = self.canvas.create_image(382.5, 165.0, image=self.entry_image_6) entry_6 = Entry( self, bd=0, bg="#EFEFEF", highlightthickness=0, foreground="#777777", font=("Montserrat Bold", 18 * -1), ) entry_6.place(x=293.0, y=153.0, width=179.0, height=22.0) self.data["meal"] = entry_6 self.entry_image_7 = PhotoImage(file=relative_to_assets("entry_7.png")) entry_bg_7 = self.canvas.create_image(378.5, 259.0, image=self.entry_image_7) self.canvas.create_text( 293.0, 234.0, anchor="nw", text="Check-in Time", fill="#5E95FF", font=("Montserrat Bold", 14 * -1), ) self.entry_image_8 = PhotoImage(file=relative_to_assets("entry_8.png")) entry_bg_8 = self.canvas.create_image(382.5, 271.0, image=self.entry_image_8) entry_8 = Entry( self, bd=0, bg="#EFEFEF", highlightthickness=0, foreground="#777777", font=("Montserrat Bold", 18 * -1), ) entry_8.place(x=293.0, y=259.0, width=179.0, height=22.0) self.data["check_in"] = entry_8 self.button_image_1 = PhotoImage(file=relative_to_assets("button_1.png")) button_1 = Button( self, image=self.button_image_1, borderwidth=0, highlightthickness=0, command=self.save, relief="flat", ) button_1.place(x=164.0, y=322.0, width=190.0, height=48.0) self.canvas.create_text( 139.0, 59.0, anchor="nw", text="Add a Reservation", fill="#5E95FF", font=("Montserrat Bold", 26 * -1), ) self.canvas.create_text( 549.0, 59.0, anchor="nw", text="Operations", fill="#5E95FF", font=("Montserrat Bold", 26 * -1), ) self.canvas.create_rectangle( 515.0, 59.0, 517.0, 370.0, fill="#EFEFEF", outline="" ) self.button_image_2 = PhotoImage(file=relative_to_assets("button_2.png")) button_2 = Button( self, image=self.button_image_2, borderwidth=0, highlightthickness=0, command=lambda: self.parent.navigate("view"), relief="flat", ) button_2.place(x=547.0, y=116.0, width=209.0, height=74.0) self.button_image_3 = PhotoImage(file=relative_to_assets("button_3.png")) button_3 = Button( self, image=self.button_image_3, borderwidth=0, highlightthickness=0, command=lambda: self.parent.navigate("edit"), relief="flat", ) button_3.place(x=547.0, y=210.0, width=209.0, height=74.0) # Set default value for entry self.data["check_in"].insert(0, "now") # Save the data to the database def save(self): # check if any fields are empty for label in self.data.keys(): if self.data[label].get() == "": messagebox.showinfo("Error", "Please fill in all the fields") return # Save the reservation result = db_controller.add_reservation( *[self.data[label].get() for label in ("g_id", "meal", "r_id", "check_in")] ) if result: messagebox.showinfo("Success", "Reservation added successfully") self.parent.navigate("view") self.parent.refresh_entries() # clear all fields for label in self.data.keys(): self.data[label].delete(0, "end") else: messagebox.showerror( "Error", "Unable to add reservation. Please make sure the data is validated", )
33727
from com.huawei.iotplatform.client.dto.DeviceCommandCancelTaskRespV4 import DeviceCommandCancelTaskRespV4 from com.huawei.iotplatform.client.dto.Pagination import Pagination class QueryDeviceCmdCancelTaskOutDTO(object): pagination = Pagination() data = DeviceCommandCancelTaskRespV4() def __init__(self): pass def getPagination(self): return self.pagination def setPagination(self, pagination): self.pagination = pagination def getData(self): return self.data def setData(self, data): self.data = data