id
stringlengths
3
8
content
stringlengths
100
981k
62254
import tornado.gen from .base import BaseApiHandler from ..tasks import cel class TaskHandler(BaseApiHandler): @tornado.gen.coroutine def get(self, task_id): data = yield self.get_task_meta(task_id) result_data = {'result': data['result'], 'status': data['status']} self.finish(result_data) @staticmethod @tornado.gen.coroutine def get_task_meta(task_id): return cel.backend.get_task_meta(task_id)
62264
import mysql.connector conn = mysql.connector.connect( host="192.168.99.102", user="root", passwd="<PASSWORD>", database="user_db", port="3308" ) def find_all(): query = "SELECT * FROM users" try: cursor = conn.cursor() rows = cursor.execute(query) cursor.close() return rows except mysql.connector.Error as err: print("Something went wrong: {}".format(err)) def find_one_by_id(user_id): query = "SELECT * FROM users where id='%'" try: cursor = conn.cursor() row = cursor.execute(query, user_id) cursor.close() return row except mysql.connector.Error as err: print("Something went wrong: {}".format(err)) def find_one_by_name(name): query = "SELECT * FROM users where name='%'" try: cursor = conn.cursor() row = cursor.execute(query, name) cursor.close() return row except mysql.connector.Error as err: print("Something went wrong: {}".format(err)) users = find_all() user_1 = find_one_by_id(1) user_pete = find_one_by_name('pete') """ Something went wrong: 1146 (42S02): Table 'user_db.users' doesn't exist Something went wrong: 1146 (42S02): Table 'user_db.users' doesn't exist Something went wrong: 1146 (42S02): Table 'user_db.users' doesn't exist """
62270
import fileinput from itertools import count banks = [int(n) for n in fileinput.input()[0].split()] seen = {} for i in count(start=1): m = max(banks) idx = banks.index(m) banks[idx] = 0 for j in range(1, m + 1): banks[(idx + j) % len(banks)] += 1 t = tuple(banks) if t in seen: break seen[t] = i print "Number of redistribution cycles:", i print "Length of infinite loop cycle:", i - seen[t]
62335
import sqlite3 import json import logging from ryu.app.wsgi import ControllerBase, WSGIApplication, route from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER, DEAD_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import udp from webob import Response from asymlist import Node, AsymLList conn = sqlite3.connect('nfv.sqlite') cur = conn.cursor() flows = {} DELTA = 3000 ################## class vnf(Node): def __init__(self, vnf_id, is_bidirect=True, cur=None): super().__init__(vnf_id, is_bidirect) ### added iftype bitwise support: 1(01)-out, 2(10)-in, 3(11)-inout ### & 1 - first bit; & 2 - second bit ### Ex. bitwise iftype selection: ### 'select * from vnf where iftype & 2 != 0' ### 'select dpid, in_port, locator_addr from vnf where id=X and iftype & 1 != 0' cur.execute(''' select dpid, in_port, locator_addr, bidirectional from vnf where id=? and iftype & 2 != 0''', (self.id,)) self.dpid_in, self.port_in, self.locator_addr_in, is_bidirect = cur.fetchone() logging.debug('Locator addr: %s', self.locator_addr_in) cur.execute(''' select dpid, in_port, locator_addr from vnf where id=? and iftype & 1 != 0''', (self.id,)) self.dpid_out, self.port_out, self.locator_addr_out = cur.fetchone() if is_bidirect.lower() == "false": self.is_bidirect = False class sfc(AsymLList): def __init__(self, flow_id, nodeClass=vnf, cur=None): self.cur = cur self.cur.execute('''select * from flows where id = ? ''', (flow_id,)) self.flow_spec = cur.fetchone() if self.flow_spec is None: logging.debug('Flow %s is not defined', flow_id) raise ValueError("Flow is not known") self.flow_dict = {} self.flows = {} (self.flow_id, self.name, self.flow_dict['in_port'], self.flow_dict['eth_dst'], self.flow_dict['eth_src'], self.flow_dict['eth_type'], self.flow_dict['ip_proto'], self.flow_dict['ipv4_src'], self.flow_dict['ipv4_dst'], self.flow_dict['tcp_src'], self.flow_dict['tcp_dst'], self.flow_dict['udp_src'], self.flow_dict['udp_dst'], self.flow_dict['ipv6_src'], self.flow_dict['ipv6_dst'], self.service_id) = self.flow_spec if not self.flow_dict['eth_type']: self.flow_dict['eth_type'] = 0x0800 self.flow_id = int(flow_id) self.reverse_flow_id = self.flow_id+DELTA self.flows[self.flow_id] = self.flow_dict self.flows[self.reverse_flow_id] = sfc_app_cls.reverse_flow(self.flows[self.flow_id]) self.cur.execute('''select vnf_id from service where service_id = ? except select next_vnf_id from service where service_id = ? ''', (self.service_id, self.service_id)) vnf_id = self.cur.fetchone()[0] super().__init__(vnf_id, is_bidirect=True, nodeClass=nodeClass, cur=self.cur) self.fill() def __str__(self): return str(self.forward()) def append(self): self.cur.execute('''select next_vnf_id from service where service_id = ? and vnf_id = ? ''', (self.service_id, self.last.id)) next_vnf_id = self.cur.fetchone()[0] if next_vnf_id is None: return None logging.debug('Trying to append %s', next_vnf_id) return super().append(next_vnf_id, cur=self.cur) def fill(self): logging.debug('Filling...') while self.append(): pass return self.last def install_catching_rule(self, sfc_app_cls): logging.debug("Adding catching rule...") actions = [] flow_id = self.flow_id for flow_id in (self.flow_id, self.reverse_flow_id): for dp in sfc_app_cls.datapaths.values(): match = sfc_app_cls.create_match(dp.ofproto_parser, self.flows[flow_id]) sfc_app_cls.add_flow(dp, 1, match, actions, metadata=flow_id, goto_id=2) if self.back is None: break return Response(status=200) def delete_rule(self, sfc_app_cls, flow_match): logging.debug('Deleting rule...') flow_dict = self.flows[flow_match] for dp in sfc_app_cls.datapaths.values(): match_del = sfc_app_cls.create_match(dp.ofproto_parser, flow_dict) sfc_app_cls.del_flow(datapath=dp, match=match_del) def install_steering_rule(self, sfc_app_cls, dp_entry, in_port_entry, flow_match): logging.debug("Adding steering rule...") actions = [] dp = dp_entry parser = dp.ofproto_parser flow_dict = self.flows[flow_match] flow_dict['in_port'] = in_port_entry match = sfc_app_cls.create_match(parser, flow_dict) if flow_match < DELTA: for vnf in self.forward(): #dpid_out = vnf.dpid_out actions.append(parser.OFPActionSetField(eth_dst=vnf.locator_addr_in)) sfc_app_cls.add_flow(dp, 8, match, actions, goto_id=1) actions = [] flow_dict['in_port'] = vnf.port_out dp = sfc_app_cls.datapaths[vnf.dpid_out] match = sfc_app_cls.create_match(parser, flow_dict) else: for vnf in self.backward(): #dpid_out = vnf.dpid_out actions.append(parser.OFPActionSetField(eth_dst=vnf.locator_addr_out)) sfc_app_cls.add_flow(dp, 8, match, actions, goto_id=1) actions = [] flow_dict['in_port'] = vnf.port_out dp = sfc_app_cls.datapaths[vnf.dpid_out] match = sfc_app_cls.create_match(parser, flow_dict) ################################# class SFCController(ControllerBase): def __init__(self, req, link, data, **config): super(SFCController, self).__init__(req, link, data, **config) self.sfc_api_app = data['sfc_api_app'] @route('hello', '/{greeting}/{name}', methods=['GET']) def hello(self, req, **kwargs): greeting = kwargs['greeting'] name = kwargs['name'] message = greeting +' '+ name privet = {'message': message} body = json.dumps(privet) return Response(content_type='application/json', body=body.encode('utf-8'), status=200) @route('add-flow', '/add_flow/{flow_id}', methods=['GET']) def api_add_flow(self, req, **kwargs): sfc_ap = self.sfc_api_app flow_id = kwargs['flow_id'] logging.debug('FLOW ID: %s', flow_id) try: flows[flow_id] = sfc(flow_id, cur=cur) except ValueError: message = {'Result': 'Flow {} is not defined'.format(flow_id)} body = json.dumps(message) return Response(content_type='application/json', body=body.encode('utf-8'), status=404) except TypeError: message = {'Result': 'DB inconsistency'} body = json.dumps(message) return Response(content_type='application/json', body=body.encode('utf-8'), status=500) logging.debug('SFC: %s', str(flows[flow_id])) flows[flow_id].install_catching_rule(sfc_ap) @route('delete-flow', '/delete_flow/{flow_id}', methods=['GET']) def api_delete_flow(self, req, **kwargs): '''Deletes flow from the application and clears the corresponding rule from DPs ''' sfc_ap = self.sfc_api_app flow_id = kwargs['flow_id'] cur.execute('''select * from flows where id = ?''', (kwargs['flow_id'],)) flow_spec = cur.fetchone() flow_dict = {} if not flow_spec: return Response(status=404) (flow_id, name, flow_dict['in_port'], flow_dict['eth_dst'], flow_dict['eth_src'], flow_dict['eth_type'], flow_dict['ip_proto'], flow_dict['ipv4_src'], flow_dict['ipv4_dst'], flow_dict['tcp_src'], flow_dict['tcp_dst'], flow_dict['udp_src'], flow_dict['udp_dst'], flow_dict['ipv6_src'], flow_dict['ipv6_dst'], service_id) = flow_spec if not flow_dict['eth_type']: flow_dict['eth_type'] = 0x0800 reverse_flow_dict = sfc_app_cls.reverse_flow(flow_dict) for flow_dict in (flow_dict, reverse_flow_dict): for dp in sfc_ap.datapaths.values(): match_del = sfc_ap.create_match(dp.ofproto_parser, flow_dict) sfc_ap.del_flow(datapath=dp, match=match_del) try: del flows[str(flow_id)] logging.debug('Flow %s deleted', flow_id) except KeyError: logging.debug('Flow %s not found, but an attempt to delete it from DPs has been performed', flow_id) return Response(status=200) @route('flows', '/flows/{flow_id}', methods=['GET']) def api_show_flow(self, req, **kwargs): flow_id = kwargs['flow_id'] try: body = json.dumps({flow_id:str(flows[flow_id])}) return Response(content_type='application/json', body=body.encode('utf-8'), status=200) except KeyError: body = json.dumps({'ERROR':'Flow {} not found/not installed'.format(flow_id)}) return Response(content_type='application/json', body=body.encode('utf-8'), status=404) @route('flows_all', '/flows', methods=['GET']) def api_show_flows(self, req): logging.debug('FLOWS: {}'.format(str(flows))) body = json.dumps(str(flows)) return Response(content_type='application/json', body=body.encode('utf-8'), status=200) class sfc_app_cls(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] _CONTEXTS = {'wsgi': WSGIApplication} def __init__(self, *args, **kwargs): super(sfc_app_cls, self).__init__(*args, **kwargs) wsgi = kwargs['wsgi'] wsgi.register(SFCController, {'sfc_api_app': self}) self.datapaths = {} ######## database definition # conn = sqlite3.connect('nfv.sqlite') # cur = conn.cursor() # cur.executescript(''' # DROP TABLE IF EXISTS vnf; # CREATE TABLE vnf ( # id INTEGER NOT NULL, # name TEXT, # type_id INTEGER, # group_id INTEGER, # geo_location TEXT, # iftype INTEGER, # bidirectional BOOLEAN, # dpid INTEGER, # in_port INTEGER, # locator_addr NUMERIC # PRIMARY KEY(id,iftype) # ); # create unique index equipment_uind on vnf (name,iftype) # ''') # conn.commit() # cur.close() ######## END of database definition ######### Register/Unregister DataPathes in datapth dictionary @set_ev_cls(ofp_event.EventOFPStateChange, [MAIN_DISPATCHER, DEAD_DISPATCHER]) def _state_change_handler(self, ev): datapath = ev.datapath if ev.state == MAIN_DISPATCHER: if not datapath.id in self.datapaths: self.logger.debug('register datapath: %016x', datapath.id) self.datapaths[datapath.id] = datapath elif ev.state == DEAD_DISPATCHER: if datapath.id in self.datapaths: self.logger.debug('unregister datapath: %016x', datapath.id) del self.datapaths[datapath.id] ########## Setting default rules upon DP is connectted @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser #### Set flow to retrieve registration packet match = parser.OFPMatch(eth_type=0x0800, ip_proto=17, udp_dst=30012) actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 1, match, actions) #### Set defaults for table 1 and 2 match = parser.OFPMatch() actions = [] self.add_flow(datapath, 0, match, actions, goto_id=1) actions = [parser.OFPActionOutput(ofproto.OFPP_NORMAL, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions, table_id=1) actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions, table_id=2) ################ Packet_IN handler #################### @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto if msg.reason == ofproto.OFPR_NO_MATCH: reason = 'NO MATCH' elif msg.reason == ofproto.OFPR_ACTION: reason = 'ACTION' elif msg.reason == ofproto.OFPR_INVALID_TTL: reason = 'INVALID TTL' else: reason = 'unknown' self.logger.debug('OFPPacketIn received: ' 'buffer_id=%x total_len=%d reason=%s ' 'table_id=%d cookie=%d match=%s ', msg.buffer_id, msg.total_len, reason, msg.table_id, msg.cookie, msg.match) try: flow_match = msg.match['metadata'] if msg.match['metadata'] > DELTA: flow_id = flow_match - DELTA else: flow_id = flow_match in_port_entry = msg.match['in_port'] dp_entry = datapath ####### Deleting catching rules logging.debug('Deleting catching rules - flow:%d match:%d ...', flow_id, flow_match) flows[str(flow_id)].delete_rule(self, flow_match) ####### Installing steering rules logging.debug('Installing steering rules - flow:%d match:%d ...', flow_id, flow_match) flows[str(flow_id)].install_steering_rule(self, dp_entry, in_port_entry, flow_match) except KeyError: flow_match = None pass ####### VNF self registrtation in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) #pkt_arp = pkt.get_protocol(arp.arp) pkt_eth = pkt.get_protocol(ethernet.ethernet) #pkt_ip = pkt.get_protocol(ipv4.ipv4) pkt_udp = pkt.get_protocol(udp.udp) if pkt_udp: if pkt_udp.dst_port == 30012: reg_string = pkt.protocols[-1] reg_info = json.loads(reg_string) name = reg_info['register']['name'] vnf_id = reg_info['register']['vnf_id'] logging.debug('VNF ID from reg packet %s', vnf_id) type_id = reg_info['register']['type_id'] group_id = reg_info['register']['group_id'] geo_location = reg_info['register']['geo_location'] iftype = reg_info['register']['iftype'] bidirectional = reg_info['register']['bidirectional'] dpid = datapath.id locator_addr = pkt_eth.src logging.debug("Inserting self-registartion info into DB") cur.execute('''REPLACE INTO vnf (id, name, type_id, group_id, geo_location, iftype, bidirectional, dpid, in_port, locator_addr ) VALUES ( ?, ?, ?, ?, ?, ?, ?, ?, ?, ? )''', (vnf_id, name, type_id, group_id, geo_location, iftype, bidirectional, dpid, in_port, locator_addr) ) cur.execute('SELECT id FROM vnf WHERE name = ? AND iftype = ?', (name, iftype) ) vnf_id = cur.fetchone()[0] conn.commit() #cur.close() ############# Function definitions ############# def add_flow(self, datapath, priority, match, actions, buffer_id=None, table_id=0, metadata=None, goto_id=None): logging.debug("Add flow to DP %d", datapath.id) ofproto = datapath.ofproto parser = datapath.ofproto_parser if goto_id: #inst = [parser.OFPInstructionActions(ofproto.OFPIT_WRITE_ACTIONS, actions)] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] if metadata: inst.append(parser.OFPInstructionWriteMetadata(metadata, 0xffffffff)) inst.append(parser.OFPInstructionGotoTable(goto_id)) else: inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] #inst.append(parser.OFPInstructionWriteMetadata(1,0xffffffff)) if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst, table_id=table_id) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst, table_id=table_id) datapath.send_msg(mod) def del_flow(self, datapath, match): ''' Deletes a flow defined by match from a DP ''' logging.debug("Delele flow from DP %d", datapath.id) ofproto = datapath.ofproto parser = datapath.ofproto_parser mod = parser.OFPFlowMod(datapath=datapath, command=ofproto.OFPFC_DELETE, out_port=ofproto.OFPP_ANY, out_group=ofproto.OFPG_ANY, match=match) datapath.send_msg(mod) def create_match(self, parser, fields): '''Creates OFP match struct from the list of fields. New API.''' flow_dict = {} for k, v in fields.items(): if v is not None: flow_dict[k] = v match = parser.OFPMatch(**flow_dict) return match def reverse_flow(flow_dict): '''Creates reverse flow dict ''' reverse_flow_dict = {**flow_dict} reverse_flow_dict['eth_src'] = flow_dict['eth_dst'] reverse_flow_dict['eth_dst'] = flow_dict['eth_src'] reverse_flow_dict['ipv4_src'] = flow_dict['ipv4_dst'] reverse_flow_dict['ipv4_dst'] = flow_dict['ipv4_src'] reverse_flow_dict['tcp_src'] = flow_dict['tcp_dst'] reverse_flow_dict['tcp_dst'] = flow_dict['tcp_src'] reverse_flow_dict['udp_src'] = flow_dict['udp_dst'] reverse_flow_dict['udp_dst'] = flow_dict['udp_src'] reverse_flow_dict['ipv6_src'] = flow_dict['ipv6_dst'] reverse_flow_dict['ipv6_dst'] = flow_dict['ipv6_src'] return reverse_flow_dict
62351
import numpy from chainer import functions from chainer import testing @testing.parameterize(*(testing.product({ 'batchsize': [1, 5], 'size': [10, 20], 'dtype': [numpy.float32], 'eps': [1e-5, 1e-1], }))) @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1], }) # ChainerX tests + [ {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ] ) class TestLayerNormalization(testing.FunctionTestCase): def setUp(self): self.check_forward_options = {'atol': 1e-4, 'rtol': 1e-3} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} if self.dtype == numpy.float16: self.check_forward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} def generate_inputs(self): shape = self.batchsize, self.size size = numpy.prod(shape) // shape[0] x = numpy.random.uniform(-1, 1, shape).astype(self.dtype) gamma = numpy.random.uniform(-1, 1, size).astype(self.dtype) beta = numpy.random.uniform(-1, 1, size).astype(self.dtype) return x, gamma, beta def forward_expected(self, inputs): x, gamma, beta = inputs mean = numpy.mean(x, axis=1, keepdims=True) var = numpy.mean(numpy.square(x - mean), axis=1, keepdims=True) std = numpy.sqrt(var + self.eps) y_expected = ( numpy.expand_dims(gamma, axis=0) * (x - mean) / std + numpy.expand_dims(beta, axis=0)) return y_expected, def forward(self, inputs, device): x, gamma, beta = inputs y = functions.layer_normalization(x, gamma, beta, eps=self.eps) return y, testing.run_module(__name__, __file__)
62419
from __future__ import with_statement # ============================================================================== # GGisy (python v2.7) # # Author: <NAME> (<EMAIL>) # Bugs and errors: https://github.com/Sanrrone/GGisy/issues # # Please type "python GGisy.py -h" for usage help # # ============================================================================== __author__ = '<NAME> (<EMAIL>)' __version__ = '1.0' import sys, os, subprocess, glob, csv, collections from optparse import OptionParser from operator import itemgetter from Bio import SeqIO def main(): parser = OptionParser(usage = "Usage: python GGisy.py -r genome1.fna -q genome2.fna") parser.add_option("-r","--reference",dest="genome1",help="First genome to be used as reference", default=None) parser.add_option("-q","--query",dest="genome2",help="Second genome to be used as query against the first genome (-r)", default=None) parser.add_option("-l","--alignmentLength",dest="alignL",help="Aligment length cutoff in blast output [default: 1000]",default=1000) parser.add_option("-e","--evalue",dest="evalue",help="E-value cutoff for blastn search [default: 1e-3]",default=1e-3) parser.add_option("-i","--identity",dest="Identity",help="Identity cutoff on the blastn alignment to consider the region [default: 50]",default=50) parser.add_option("-t","--threads",dest="Threads",help="Number of threads to be used for blast [default: 4]",default=4) parser.add_option("-b","--blastout",dest="Blastout",help="Blast output file to be used instead doing it [default: none]",default=None) parser.add_option("-c","--clean",dest="clean",help="clean files after execution [default: True]",default=True) (options,args) = parser.parse_args() genome1 = str(options.genome1) genome2 = str(options.genome2) alignL= int(options.alignL) evalue= str(options.evalue) Identity= int(options.Identity) threads= str(options.Threads) #for subcallproccess must be str() blastout= options.Blastout #dont cast to str cleanf=options.clean #check variables if not genome1 or genome1 is None: print("* No genome was provided (-g1), use -h for help") sys.exit() else: if os.path.isfile(genome1) == False: print("*",genome1," doesn't exist") sys.exit() if not genome2 or genome2 is None: print("* its mandatory provide 2 genomes (-g2), use -h for help") sys.exit() else: if os.path.isfile(genome2) == False: print("* ",genome2," doesn't exist") sys.exit() if blastout != None: if os.path.isfile(blastout) == False: print("* ", blastout, "not found, check if file exist or let the program do the blast omiting this option (-b)") sys.exit() blastBIN=which("blastn") if blastBIN == None: print("No blastn was found, install it before continue (make sure is in your $PATH)") sys.exit() makeblastBIN=which("makeblastdb") if makeblastBIN == None: print("No makeblastdb was found, install it from blast+ (make sure is in your $PATH)") sys.exit() rscriptBIN=which("Rscript") if rscriptBIN == None: print("No Rscript was found, make sure is in your $PATH") sys.exit() Inputs = collections.namedtuple('Inputs', ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7', 'v8']) I = Inputs(genome1, genome2, alignL, evalue, Identity, threads, blastout, cleanf) return I def which(program): #function to check if some program exists def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def blasting(genome1, genome2, evalue, threads): #searching for blast binaries subprocess.call(["makeblastdb", "-in", genome1, "-input_type", "fasta", "-dbtype", "nucl", "-out", "ref"]) subprocess.call(["blastn", "-query", genome2, "-db", "ref", "-evalue", evalue, "-outfmt", "6", "-strand", "both", "-num_threads", threads, "-out", "tmp.tsv"]) return str("tmp.tsv") def filterBlastOutput(blastout,alignL,evalue,identity): PARSED=open("synteny.tsv",'w') #overwrite if exist with open(blastout) as tsvfile: tsvreader = csv.reader(tsvfile, delimiter="\t") for line in tsvreader: #formula line [n-1:n] toint = [int(i) for i in line[3:4]] if toint[0] >= alignL: toint = [float(i) for i in line[2:3]] if toint[0] >= float(identity): PARSED.write("\t".join(map(str, line[0:3]+line[6:10]))+"\n") PARSED.close() def parsingGenomes(genome): gname = genome.split('/')[-1] PARSED=open(str(gname+"_info.tsv"),'w') #overwrite if exist fasta_sequences = SeqIO.parse(open(genome),'fasta') for fasta in fasta_sequences: name, sequence = fasta.id, str(fasta.seq) lengthSeq= len(sequence) PARSED.write("%s\t1\t%s\n" % (name, lengthSeq)) PARSED.close return str(gname+"_info.tsv") def handleR(conn, reference, query, alignL): plotstep=open("handle.R", 'w') plotstep.write("""rm(list=ls()); library(OmicCircos) library(RColorBrewer) library(varhandle) args<-commandArgs() handlefile<-as.character(args[6]) refname<-as.character(args[7]) queryname<-as.character(args[8]) filterl<-as.numeric(args[9]) handle<-read.table(handlefile,sep = "\\t",stringsAsFactors = F,check.names = F) ref<-read.table(refname,sep = "\\t",stringsAsFactors = F,check.names = F) query<-read.table(queryname,sep = "\\t", stringsAsFactors = F,check.names = F) rownames(ref)<-ref$V1 rownames(query)<-query$V1 qryUniq<-unique(sort(handle$V1)) refUniq<-unique(sort(handle$V2)) ref<-ref[refUniq,] ref<-ref[with(ref, order(-V3, V1)), ] query<-query[qryUniq,] query<-query[with(query, order(+V3, V1)), ] data<-rbind(ref,query) refname<-unlist(strsplit(refname,"_info.tsv"))[1] queryname<-unlist(strsplit(queryname,"_info.tsv"))[1] lowId<-min(handle$V3) fhand<-handle[handle$V6<handle$V7,] rhand<-handle[handle$V6>handle$V7,] linkf<-data.frame(seg1=fhand$V1, start1=fhand$V4, end1=fhand$V5, seg2=fhand$V2, start2=fhand$V6, end2=fhand$V7, stringsAsFactors = F) linkr<-data.frame(seg1=rhand$V1, start1=rhand$V4, end1=rhand$V5, seg2=rhand$V2, start2=rhand$V6, end2=rhand$V7, stringsAsFactors = F) #fix reverse positions for(i in 1:nrow(linkr)){ contign<-linkr[i,4] contigl<-ref[contign,3] linkr[i,5]<- contigl-linkr[i,5]+1 linkr[i,6]<- contigl-linkr[i,6]+1 } data["V5"]<-data["V4"]<-1 colnames(data)<- c("chr", "start", "end","V4","V5") tocir <- segAnglePo(data, seg=data$chr) gl<-sum(data$end)+nrow(data) maxangr<-270+(350/gl)*sum(ref$V3) spacer<-maxangr/(maxangr-270)/nrow(ref) for(i in 1:nrow(ref)){ #358 is the total angles (aviable) for all tocir[i,"angle.end"]<-as.character(as.numeric(tocir[i,"angle.start"]) + (350/gl)*as.numeric(tocir[i,7])) tocir[i+1,"angle.start"]<-as.character(as.numeric(tocir[i,"angle.end"])+spacer) } tocir[i+1,"angle.start"]<-as.character(as.numeric(tocir[i+1,"angle.start"])+2.5) tocir[i+1,"angle.end"]<-as.character(as.numeric(tocir[i+1,"angle.start"]) + (350/gl)*as.numeric(tocir[i+1,7])) maxangq<-628-maxangr spacer<-628/maxangq/nrow(query) if(nrow(ref)+2>=nrow(tocir)){ i<-nrow(tocir) tocir[i,"angle.start"]<-as.character(as.numeric(tocir[i-1,"angle.end"])+spacer) tocir[i,"angle.end"]<-as.character(628) }else{ for(i in (nrow(ref)+2):nrow(tocir)-1){ #358 is the total angles (aviable) for all tocir[i,"angle.end"]<-as.character(as.numeric(tocir[i,"angle.start"]) + (350/gl)*as.numeric(tocir[i,7])) tocir[i+1,"angle.start"]<-as.character(as.numeric(tocir[i,"angle.end"])+spacer) } } refang<-as.numeric(tocir[1:nrow(ref),2]) qryang<-as.numeric(tocir[(nrow(ref)+1):(nrow(ref)+nrow(query)),2]) maxangr<-max(refang) maxangq<-max(qryang) faketocir <- tocir faketocir[,1]<-"" maxangr<-max(refang) for(i in 1:nrow(tocir)){ if(270+(maxangr-270)/2<as.numeric(tocir[i,2])){ break } } faketocir[i,1]<-refname maxangq<-max(qryang) for(i in 1:nrow(tocir)){ if(maxangr+(maxangq-maxangr)/2<as.numeric(tocir[i,2])){ break } } faketocir[i,1]<-queryname colors<-rev(colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(20)) delta<-(100-lowId)/20 scaleColors<- function(x){ cArray<-c() for(id in x){ for(i in 1:20){ if(id>=100-(delta*i)){ break } } cArray<-c(cArray,colors[i]) } return(cArray) } addalpha <- function(col, alpha=1){ if(missing(col)) stop("Please provide a vector of colours.") apply(sapply(col, col2rgb)/255, 2, function(x) rgb(x[1], x[2], x[3], alpha=alpha)) } black<-addalpha("#000000",0.7) colors<-addalpha(colors,1) try({ linkf[,"colors"]<-addalpha(scaleColors(fhand$V3),1) },silent = T) try({ linkr[,"colors"]<-addalpha(scaleColors(rhand$V3),1) },silent = T) pdf(file="synteny.pdf", width = 10, height =10) if(nrow(data)<=20){ par(mar=c(2,2,2,2)) xorigin=700 yorigin=1000 plot(c(0,2000), c(0,2000), type="n", axes=FALSE, xlab="", ylab="", main="") circos(R=450, cir=tocir, W=10,type="chr", print.chr.lab=T, scale=F,xc = xorigin,yc = yorigin, col = c(rep("dark blue",nrow(ref)),rep("#FEE496",nrow(query))),cex = 5) if(nrow(linkf)>0){ circos(R=440, cir=tocir, mapping=linkf , type="link.pg", lwd=0.5, col=linkf$colors,xc = xorigin,yc = yorigin) } if(nrow(linkr)>0){ circos(R=440, cir=tocir, mapping=linkr , type="link.pg", lwd=0.5, col=linkr$colors,xc = xorigin,yc = yorigin) newlinkr<-linkr newlinkr$start1<-newlinkr$start1+as.integer((newlinkr$end1-newlinkr$start1)/2)+1 newlinkr$start2<-newlinkr$start2+as.integer((newlinkr$end2-newlinkr$start2)/2)-1 circos(R=440, cir=tocir, W=10, mapping=newlinkr , type="link", lwd=0.6, col=black,xc = xorigin,yc = yorigin) } legend(x = 1500, y=1700, legend = c(refname,queryname), ncol = 1, cex = 0.8, bty="n", fill=c("dark blue","#FEE496"), border = c("dark blue","#FEE496"),text.width=c(0.5,0.5), title="Sequences") legend(x = 1430, y=1500, legend = c(paste("Reference: ", nrow(ref), " (", sum(ref$V3), " bp)", sep = ""), paste("Query: ",nrow(query), " (", sum(query$V3), " bp)", sep="")), ncol = 1, cex = 0.8, bty="n", fill=c("dark blue","#FEE496"), border = c("dark blue","#FEE496"),text.width=c(0.5,0.5), title=paste("Contigs align >= ", filterl, " bp", sep="")) legend(x = 1520, y=1300, legend = c("Forward","Reverse"),lty = c(0,1),merge=T,seg.len = 0.6, ncol = 1, cex = 0.8, bty="n", fill="white", border = "black",text.width=c(0.5,0.5), title="Strand Match\n(on reference)") legend(x = 1505, y=1100, legend = c("100","","","","","","","","","",(100-lowId)/2 + lowId,"","","","","","","","",lowId), ncol = 1, cex = 0.8, bty="n", fill=colors, border = colors, y.intersp = 0.5, x.intersp = 0.5,text.width=c(0.5,0.5), title="Identity percent\n") }else{ par(mar=c(2,2,2,2)) xorigin=750 yorigin=550 plot(c(0,1500), c(0,1500), type="n", axes=FALSE, xlab="", ylab="", main="") circos(R=450, cir=faketocir, W=10,type="chr", print.chr.lab=T, scale=F,xc = xorigin,yc = yorigin, col = "white") circos(R=410, cir=tocir, W=10,type="chr", print.chr.lab=F, scale=F,xc = xorigin,yc = yorigin, col = c(rep("dark blue",nrow(ref)),rep("#FEE496",nrow(query))),cex = 5) if(nrow(linkf)>0){ highlightr <- c(420, 450, tocir[1,1], 1, tocir[nrow(ref),1], tocir[nrow(ref),7], "dark blue", NA) circos(cir=tocir, mapping=highlightr, type="hl",xc = xorigin,yc = yorigin) circos(R=400, cir=tocir, mapping=linkf , type="link.pg", lwd=0.5, col=linkf$colors,xc = xorigin,yc = yorigin) } if(nrow(linkr)>0){ highlightq <- c(420, 450, query[1,1], 1, query[nrow(query),1], query[nrow(query),3], "#FEE496", NA) circos(cir=tocir, mapping=highlightq, type="hl",xc = xorigin,yc = yorigin) circos(R=400, cir=tocir, mapping=linkr , type="link.pg", lwd=0.5, col=linkr$colors,xc = xorigin,yc = yorigin) newlinkr<-linkr newlinkr$start1<-newlinkr$start1+as.integer((newlinkr$end1-newlinkr$start1)/2)+1 newlinkr$start2<-newlinkr$start2+as.integer((newlinkr$end2-newlinkr$start2)/2)-1 circos(R=400, cir=tocir, W=10, mapping=newlinkr , type="link", lwd=0.3, col=black,xc = xorigin,yc = yorigin) } legend(x = 210, y=1500, legend = c(paste("Reference: ", nrow(ref), " (", sum(ref$V3), " bp)", sep = ""), paste("Query: ",nrow(query), " (", sum(query$V3), " bp)", sep="")), ncol = 1, cex = 0.8, bty="n", fill=c("dark blue","#FEE496"), border = c("dark blue","#FEE496"),text.width=c(0.5,0.5), title=paste("Contigs align >= ", filterl, " bp", sep="")) legend(x = 270, y=1300, legend = c("Forward","Reverse"),lty = c(0,1),merge=T,seg.len = 0.6, ncol = 1, cex = 0.8, bty="n", fill="white", border = "black",text.width=c(0.5,0.5), title="Strand Match\\n(on reference)") legend(x = 990, y=1500, legend = c("100","","","","","","","","","",(100-lowId)/2 + lowId,"","","","","","","","",lowId), ncol = 1, cex = 0.8, bty="n", fill=colors, border = colors, y.intersp = 0.5, x.intersp = 0.5,text.width=c(0.5,0.5), title="Identity percent\\n") } dev.off()""") plotstep.close() subprocess.call(["Rscript", "handle.R", conn, reference, query, str(alignL), "--vanilla"]) def cleanfiles(ginfo1, ginfo2): if os.path.isfile("tmp.tsv"): os.remove("tmp.tsv") if os.path.isfile("ref.nin"): os.remove("ref.nin") if os.path.isfile("ref.nsq"): os.remove("ref.nsq") if os.path.isfile("ref.nhr"): os.remove("ref.nhr") if os.path.isfile("handle.R"): os.remove("handle.R") if os.path.isfile(ginfo1): os.remove(ginfo1) if os.path.isfile(ginfo2): os.remove(ginfo2) if __name__ == '__main__': mainV=main() blastout=mainV.v7 if blastout is None: blastout=blasting(genome1=mainV.v1, genome2=mainV.v2, evalue=mainV.v4, threads=mainV.v6) filterBlastOutput(blastout=blastout, alignL=mainV.v3, evalue=mainV.v4, identity=mainV.v5) ref=parsingGenomes(genome=mainV.v1) que=parsingGenomes(genome=mainV.v2) handleR(conn="synteny.tsv",reference=ref, query=que, alignL=mainV.v3) if mainV.v8 == True: cleanfiles(ref,que) sys.exit()
62461
from dateutil import tz from django.http.response import JsonResponse from 臺灣言語平臺.項目模型 import 平臺項目表 from 臺灣言語資料庫.資料模型 import 來源表 from 臺灣言語平臺.介面.Json失敗回應 import Json失敗回應 from django.core.exceptions import ObjectDoesNotExist _臺北時間 = tz.gettz('Asia/Taipei') _時間輸出樣式 = '%Y-%m-%d %H:%M:%S' def 轉做臺北時間字串(時間物件): return 時間物件.astimezone(_臺北時間).strftime(_時間輸出樣式) def 看資料詳細內容(request): try: 平臺項目編號 = request.GET['平臺項目編號'] except KeyError: return Json失敗回應({'錯誤': '沒有平臺項目的編號'}) try: 平臺項目 = 平臺項目表.揣編號(int(平臺項目編號)) 資料 = 平臺項目.資料() except ObjectDoesNotExist: return Json失敗回應({'錯誤': '這不是合法平臺項目的編號'}) return JsonResponse({ '收錄者': str(資料.收錄者.編號()), '來源': str(資料.來源.編號()), '收錄時間': 轉做臺北時間字串(資料.收錄時間), '種類': 資料.種類.種類, '語言腔口': 資料.語言腔口.語言腔口, '版權': 資料.版權.版權, '著作所在地': 資料.著作所在地.著作所在地, '著作年': 資料.著作年.著作年, '屬性內容': 資料.屬性內容(), '按呢講好': 平臺項目.按呢講好, '按呢無好': 平臺項目.按呢無好 }) def 看來源內容(request): try: 來源編號 = request.GET['來源編號'] except KeyError: return Json失敗回應({'錯誤': '沒有來源編號的參數'}) try: 來源 = 來源表.objects.get(pk=來源編號) except ObjectDoesNotExist: return Json失敗回應({'錯誤': '這不是合法的來源編號'}) 來源內容 = { '名': 來源.名, '屬性內容': 來源.屬性內容(), } try: 來源內容['email'] = 來源.使用者.email 來源內容['分數'] = 來源.使用者.分數 except Exception: pass return JsonResponse(來源內容) def 投票(request): try: 平臺項目編號 = request.POST['平臺項目編號'] decision = request.POST['decision'] except KeyError: return Json失敗回應({'錯誤': '沒有平臺項目的編號'}) try: rows_affect = 平臺項目表.這句講了按怎(平臺項目編號, decision) except ValueError: return Json失敗回應({'錯誤': 'decision傳錯了'}) return JsonResponse({ 'suId': 平臺項目編號, 'success': True if rows_affect == 1 else False, })
62503
from dataclasses import dataclass from typing import Dict from typing import Optional @dataclass(frozen=True) class CurrentDestinationStatus: number_of_pending_messages: Optional[int] number_of_consumers: int messages_enqueued: int messages_dequeued: int @dataclass(frozen=True) class ConsumerStatus: address_to_destination_details: Optional[str] destination_name: str session_id: Optional[int] enqueues: Optional[int] dequeues: Optional[int] dispatched: Optional[int] dispatched_queue: Optional[int] prefetch: int max_pending: Optional[int] exclusive: bool retroactive: Optional[bool] @dataclass(frozen=True) class MessageStatus: message_id: Optional[str] details: Dict persistent: Optional[bool] correlation_id: str properties: Optional[Dict] @dataclass(frozen=True) class SubscriberSetup: address_to_subscriber_details: str subscriber_id: str destination: str pending_queue_size: int dispatched_queue_size: int dispatched_counter: int enqueue_counter: int dequeue_counter: int
62519
import sklearn.datasets import sklearn.model_selection import sklearn.linear_model import numpy import compare_auc_delong_xu import unittest import scipy.stats class TestIris(unittest.TestCase): @classmethod def setUpClass(cls): data = sklearn.datasets.load_iris() x_train, x_test, y_train, cls.y_test = sklearn.model_selection.train_test_split( data.data, (data.target == 1).astype(numpy.int), test_size=0.8, random_state=42) cls.predictions = sklearn.linear_model.LogisticRegression(solver="lbfgs").fit( x_train, y_train).predict_proba(x_test)[:, 1] cls.sklearn_auc = sklearn.metrics.roc_auc_score(cls.y_test, cls.predictions) def test_variance_const(self): auc, variance = compare_auc_delong_xu.delong_roc_variance(self.y_test, self.predictions) numpy.testing.assert_allclose(self.sklearn_auc, auc) numpy.testing.assert_allclose(0.0015359814789736538, variance) class TestGauss(unittest.TestCase): x_distr = scipy.stats.norm(0.5, 1) y_distr = scipy.stats.norm(-0.5, 1) def test_variance(self): sample_size_x = 7 sample_size_y = 14 n_trials = 50000 aucs = numpy.empty(n_trials) variances = numpy.empty(n_trials) numpy.random.seed(1234235) labels = numpy.concatenate([numpy.ones(sample_size_x), numpy.zeros(sample_size_y)]) for trial in range(n_trials): scores = numpy.concatenate([ self.x_distr.rvs(sample_size_x), self.y_distr.rvs(sample_size_y)]) aucs[trial] = sklearn.metrics.roc_auc_score(labels, scores) auc_delong, variances[trial] = compare_auc_delong_xu.delong_roc_variance( labels, scores) numpy.testing.assert_allclose(aucs[trial], auc_delong) numpy.testing.assert_allclose(variances.mean(), aucs.var(), rtol=0.1)
62551
import torch import cv2 as cv import numpy as np from sklearn.neighbors import NearestNeighbors from .model_utils import spread_feature def optimize_image_mask(image_mask, sp_image, nK=4, th=1e-2): mask_pts = image_mask.reshape(-1) xyz_pts = sp_image.reshape(-1, 3) xyz_pts = xyz_pts[mask_pts > 0.5, :] Neighbors = NearestNeighbors(n_neighbors=nK + 1, algorithm='kd_tree').fit(xyz_pts) nn_dist, nn_idx = Neighbors.kneighbors(xyz_pts) # N,nK nn_dist = nn_dist[:, 1:] valid = (np.sum((nn_dist < th).astype(np.float), axis=1) == nK).astype(np.float) optimized_mask = image_mask.reshape(-1) optimized_mask[mask_pts > 0.5] = valid optimized_mask = optimized_mask.reshape(image_mask.shape[0], image_mask.shape[1]) return optimized_mask def generate_final_mask(image_learned_uv, image_mask, image_resize_factor, mask_container_low_res, final_gim): """ Post Process Algorithm to generate mask of the unwrapped chart Parameters ---------- image_learned_uv: [H,W,2] image_mask: [H,W] image_resize_factor: float mask_container_low_res: a predefined tensor with intermediate low resolution final_gim: a predefined tensor with target high resolution """ # resize (larger) rgb and uv with Bi-linear up-sampling resized_uv = cv.resize(image_learned_uv, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = cv.resize(image_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = (resized_mask > 0.5).astype(np.float) # use gradient to remove the edge discontinuous_mask_u = cv.Laplacian(image_learned_uv[..., 0], ddepth=cv.CV_32F) # small gradient map discontinuous_mask_v = cv.Laplacian(image_learned_uv[..., 1], ddepth=cv.CV_32F) # small gradient map # use the max and min in latent u and v to find the threshhold u_max = (image_learned_uv[..., 0] * image_mask).max() v_max = (image_learned_uv[..., 1] * image_mask).max() u_min = (image_learned_uv[..., 0] * image_mask + (1.0 - image_mask)).min() v_min = (image_learned_uv[..., 1] * image_mask + (1.0 - image_mask)).min() u_th = (u_max - u_min) / 30 v_th = (v_max - v_min) / 30 discontinuous_mask_u = (discontinuous_mask_u > u_th).astype(np.float) * image_mask discontinuous_mask_v = (discontinuous_mask_v > v_th).astype(np.float) * image_mask discontinuous_mask = ((discontinuous_mask_u + discontinuous_mask_v) > 0).astype(np.float) # use the mask to remove the boundary boundary_recovery_mask = (cv.Laplacian(image_mask, ddepth=cv.CV_32F) > 0.01).astype(np.float) discontinuous_mask = discontinuous_mask * (1.0 - boundary_recovery_mask) resized_discontinuous_mask = cv.resize(discontinuous_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_NEAREST) # make the small mask & texture high_res_mask = torch.from_numpy(resized_mask * (1.0 - resized_discontinuous_mask)) \ .unsqueeze(0).unsqueeze(0).cuda().float() # 1,1,R,R high_res_uv = torch.from_numpy(resized_uv).permute(2, 0, 1).unsqueeze(0).cuda().float() low_res_mask = mask_container_low_res.cuda() low_res_mask = spread_feature(low_res_mask, high_res_uv, high_res_mask, high_res_mask) # use close to remove the holes in small mask and then resize low_res_mask_closed = low_res_mask.detach().cpu().squeeze(0).squeeze(0).numpy() # R,R close_k_size = int(final_gim.shape[2] / 100) close_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (close_k_size, close_k_size)) final_mask_np = cv.resize(low_res_mask_closed, dsize=(final_gim.shape[2], final_gim.shape[2]), interpolation=cv.INTER_NEAREST) # R,R,3 final_mask_np = (final_mask_np > 0).astype(np.float) final_mask_np = cv.morphologyEx(final_mask_np, cv.MORPH_OPEN, close_kernel) return final_mask_np def generate_texture(sp_image, full_gim, image_rgb, image_mask, final_mask_np, final_res, nK=4, th=1e-2): # prepare root and query points form the image and from the high-res chart root_xyz_np = sp_image.reshape(-1, 3) # H*W,3 root_rgb_np = image_rgb.reshape(-1, 3) # H*W,3 _image_mask = image_mask.reshape(-1) # H*W root_xyz_np = root_xyz_np[_image_mask > 0.5, :] # M,2 [0,1] root_rgb_np = root_rgb_np[_image_mask > 0.5, :] # M,3 [0,1] query_xyz_np = full_gim.reshape(-1, 3) # R*R,3 _final_mask_np = final_mask_np.reshape(-1) # R*R query_xyz_np = query_xyz_np[_final_mask_np > 0.5, :] # N,3 [0,1] # finding nearest root pixel points Neighbors = NearestNeighbors(n_neighbors=nK, algorithm='kd_tree').fit(root_xyz_np) nn_dist, nn_idx = Neighbors.kneighbors(query_xyz_np) # N,nK # optimize the gim mask valid = (nn_dist[:, 0] < th).astype(np.float) optimized_final_mask_np = final_mask_np.reshape(-1).copy() optimized_final_mask_np[_final_mask_np > 0.5] = valid optimized_final_mask_np = optimized_final_mask_np.reshape(final_mask_np.shape[0], final_mask_np.shape[1]) # do interpolation based on chart distance interpolation_weight = nn_dist.copy() interpolation_weight = 1 - interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) interpolation_weight = interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) query_rgb_np = np.zeros((query_xyz_np.shape[0], 3)) for kdx in range(nK): nn_color = root_rgb_np[nn_idx[:, kdx], :] query_rgb_np += nn_color * interpolation_weight[:, kdx][..., np.newaxis] final_texture_np = np.ones((final_res ** 2, 3)) final_texture_np[_final_mask_np > 0.5, :] = query_rgb_np final_texture_np = final_texture_np.reshape(final_res, final_res, 3) return final_texture_np, optimized_final_mask_np
62561
from . import builder, config, exceptions, generator, logging import click import os import sys __all__ = [] LOG = logging.getLogger(__name__) @click.group() @click.option('-v', '--verbose', is_flag=True) def promenade(*, verbose): if _debug(): verbose = True logging.setup(verbose=verbose) @promenade.command('build-all', help='Construct all scripts') @click.option( '-o', '--output-dir', default='.', type=click.Path( exists=True, file_okay=False, dir_okay=True, resolve_path=True), required=True, help='Location to write complete cluster configuration.') @click.option('--validators', is_flag=True, help='Generate validation scripts') @click.option( '--leave-kubectl', is_flag=True, help='Leave behind kubectl on joined nodes') @click.argument('config_files', nargs=-1, type=click.File('rb')) def build_all(*, config_files, leave_kubectl, output_dir, validators): debug = _debug() try: c = config.Configuration.from_streams( debug=debug, substitute=True, allow_missing_substitutions=False, leave_kubectl=leave_kubectl, streams=config_files) b = builder.Builder(c, validators=validators) b.build_all(output_dir=output_dir) except exceptions.PromenadeException as e: e.display(debug=debug) sys.exit(e.EXIT_CODE) @promenade.command('generate-certs', help='Generate a certs for a site') @click.option( '-o', '--output-dir', type=click.Path( exists=True, file_okay=False, dir_okay=True, resolve_path=True), required=True, help='Location to write *-certificates.yaml') @click.argument('config_files', nargs=-1, type=click.File('rb')) def genereate_certs(*, config_files, output_dir): debug = _debug() try: c = config.Configuration.from_streams( debug=debug, streams=config_files, substitute=True, allow_missing_substitutions=True, validate=False) g = generator.Generator(c) g.generate(output_dir) except exceptions.PromenadeException as e: e.display(debug=debug) sys.exit(e.EXIT_CODE) def _debug(): return os.environ.get('PROMENADE_DEBUG', '').lower() in {'1', 'True'}
62579
OntCversion = '2.0.0' from ontology.interop.Ontology.Contract import Migrate # from ontology.interop.Ontology.Contract import Destroy from ontology.interop.System.Runtime import Notify from ontology.interop.System.Storage import Put, GetContext, Get KEY = "KEY" NAME = "SecondName" def Main(operation, args): # if operation == "DestroyContract": # return DestroyContract() if operation == "MigrateContract": if len(args) != 1: Notify("param error") return False return MigrateContract(args[0]) if operation == "put": return put() if operation == "get": return get() if operation == "name": return NAME # def DestroyContract(): # Destroy() # Notify(["Destory"]) # return True def MigrateContract(code): """ Note that the existing contract will be replaced by the newly migrated contract :param code: your avm code :return: """ res = Migrate(code, True, "name", "version", "author", "email", "description") assert(res) Notify(["Migrate successfully"]) return True def get(): return Get(GetContext(), KEY) def put(): Put(GetContext(), KEY, 898) return True
62607
import torch import ignite.distributed as idist from tests.ignite.distributed.utils import ( _sanity_check, _test_distrib__get_max_length, _test_distrib_all_gather, _test_distrib_all_reduce, _test_distrib_barrier, _test_distrib_broadcast, _test_sync, ) def test_no_distrib(capsys): assert idist.backend() is None if torch.cuda.is_available(): assert idist.device().type == "cuda" else: assert idist.device().type == "cpu" assert idist.get_rank() == 0 assert idist.get_world_size() == 1 assert idist.get_local_rank() == 0 assert idist.model_name() == "serial" from ignite.distributed.utils import _model, _SerialModel _sanity_check() assert isinstance(_model, _SerialModel) idist.show_config() captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "ignite.distributed.utils INFO: distributed configuration: serial" in out[-1] assert "ignite.distributed.utils INFO: backend: None" in out[-1] if torch.cuda.is_available(): assert "ignite.distributed.utils INFO: device: cuda" in out[-1] else: assert "ignite.distributed.utils INFO: device: cpu" in out[-1] assert "ignite.distributed.utils INFO: rank: 0" in out[-1] assert "ignite.distributed.utils INFO: local rank: 0" in out[-1] assert "ignite.distributed.utils INFO: world size: 1" in out[-1] def test_sync_no_dist(): from ignite.distributed.comp_models import _SerialModel _test_sync(_SerialModel) def test_idist_methods_no_dist(): assert idist.get_world_size() < 2 assert idist.backend() is None, f"{idist.backend()}" def test_idist__model_methods_no_dist(): _test_distrib__get_max_length("cpu") if torch.cuda.device_count() > 1: _test_distrib__get_max_length("cuda") def test_idist_collective_ops_no_dist(): _test_distrib_all_reduce("cpu") _test_distrib_all_gather("cpu") _test_distrib_barrier("cpu") _test_distrib_broadcast("cpu") if torch.cuda.device_count() > 1: _test_distrib_all_reduce("cuda") _test_distrib_all_gather("cuda") _test_distrib_barrier("cuda") _test_distrib_broadcast("cuda")
62624
from __future__ import print_function import argparse from collections import OrderedDict import json import os import logging from keras.callbacks import EarlyStopping from sklearn.preprocessing import normalize from sklearn.metrics import roc_curve, auc, roc_auc_score, precision_score, recall_score, f1_score, accuracy_score, average_precision_score from scipy.sparse import csr_matrix from keras.utils.io_utils import HDF5Matrix #from keras.utils.visualize_util import plot from keras.optimizers import SGD, Adam from sklearn.metrics import r2_score import numpy as np import theano.tensor as tt import pandas as pd import random import common import models from predict import obtain_predictions from eval import do_eval import h5py class Config(object): """Configuration for the training process.""" def __init__(self, params, normalize=False, whiten=True): self.model_id = common.get_next_model_id() self.norm = normalize self.whiten = whiten self.x_path = '%s_%sx%s' % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) self.y_path = '%s_%s_%s' % (params['dataset']['fact'],params['dataset']['dim'],params['dataset']['dataset']) self.dataset_settings = params['dataset'] self.training_params = params['training'] self.model_arch = params['cnn'] self.predicting_params = params['predicting'] def get_dict(self): object_dict = self.__dict__ first_key = "model_id" conf_dict = OrderedDict({first_key: object_dict[first_key]}) conf_dict.update(object_dict) return conf_dict def _squared_magnitude(x): return tt.sqr(x).sum(axis=-1) def _magnitude(x): return tt.sqrt(tt.maximum(_squared_magnitude(x), np.finfo(x.dtype).tiny)) def cosine(x, y): return tt.clip((1 - (x * y).sum(axis=-1) / (_magnitude(x) * _magnitude(y))) / 2, 0, 1) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix(( loader['data'], loader['indices'], loader['indptr']), shape = loader['shape']) def build_model(config): """Builds the cnn.""" params = config.model_arch get_model = getattr(models, 'get_model_'+str(params['architecture'])) model = get_model(params) #model = model_kenun.build_convnet_model(params) # Learning setup t_params = config.training_params sgd = SGD(lr=t_params["learning_rate"], decay=t_params["decay"], momentum=t_params["momentum"], nesterov=t_params["nesterov"]) adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08) optimizer = eval(t_params['optimizer']) metrics = ['mean_squared_error'] if config.model_arch["final_activation"] == 'softmax': metrics.append('categorical_accuracy') if t_params['loss_func'] == 'cosine': loss_func = eval(t_params['loss_func']) else: loss_func = t_params['loss_func'] model.compile(loss=loss_func, optimizer=optimizer,metrics=metrics) return model def load_data_preprocesed(params, X_path, Y_path, dataset, val_percent, test_percent, n_samples, with_metadata=False, only_metadata=False, metadata_source='rovi'): factors = np.load(common.DATASETS_DIR+'/y_train_'+Y_path+'.npy') # OJO remove S index_factors = open(common.DATASETS_DIR+'/items_index_train_'+dataset+'.tsv').read().splitlines() if not only_metadata: all_X = np.load(common.TRAINDATA_DIR+'/X_train_'+X_path+'.npy') index_train = open(common.TRAINDATA_DIR+'/index_train_%s.tsv' % (X_path)).read().splitlines() all_Y = np.zeros((len(index_train),factors.shape[1])) index_factors_inv = dict() for i,item in enumerate(index_factors): index_factors_inv[item] = i for i,item in enumerate(index_train): all_Y[i,:] = factors[index_factors_inv[item]] else: all_Y = factors if with_metadata: if 'w2v' in metadata_source: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset))[:,:int(params['cnn']['sequence_length'])] elif 'model' in metadata_source or not params['dataset']['sparse']: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset)) else: all_X_meta = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (metadata_source,dataset)).todense() all_X_in_meta = all_X = all_X_meta print(all_X.shape) print(all_Y.shape) if n_samples != 'all': n_samples = int(n_samples) all_X = all_X[:n_samples] all_Y = all_Y[:n_samples] if with_metadata: all_X_in_meta = all_X_in_meta[:n_samples] if params['training']['normalize_y'] == True: normalize(all_Y,copy=False) if params['training']["val_from_file"]: Y_val = np.load(common.DATASETS_DIR+'/y_val_'+Y_path+'.npy') Y_test = np.load(common.DATASETS_DIR+'/y_test_'+Y_path+'.npy') #!!! OJO remove S from trainS if params['dataset']['sparse']: X_val = load_sparse_csr(common.TRAINDATA_DIR+'/X_val_%s_%s.npz' % (metadata_source,dataset)).todense() X_test = load_sparse_csr(common.TRAINDATA_DIR+'/X_test_%s_%s.npz' % (metadata_source,dataset)).todense() else: X_val = np.load(common.TRAINDATA_DIR+'/X_val_%s_%s.npy' % (metadata_source,dataset)) X_test = np.load(common.TRAINDATA_DIR+'/X_test_%s_%s.npy' % (metadata_source,dataset)) X_train = all_X Y_train = all_Y else: N = all_Y.shape[0] train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) logging.debug("Training data points: %d" % N_train) logging.debug("Validation data points: %d" % N_val) logging.debug("Test data points: %d" % (N - N_train - N_val)) if not only_metadata: # Slice data X_train = all_X[:N_train] X_val = all_X[N_train:N_train + N_val] X_test = all_X[N_train + N_val:] Y_train = all_Y[:N_train] Y_val = all_Y[N_train:N_train + N_val] Y_test = all_Y[N_train + N_val:] if with_metadata: if only_metadata: X_train = all_X_in_meta[:N_train] X_val = all_X_in_meta[N_train:N_train + N_val] X_test = all_X_in_meta[N_train + N_val:] else: X_train = [X_train,all_X_in_meta[:N_train]] X_val = [X_val,all_X_in_meta[N_train:N_train + N_val]] X_test = [X_test,all_X_in_meta[N_train + N_val:]] return X_train, Y_train, X_val, Y_val, X_test, Y_test def load_data_hf5(params,val_percent, test_percent): hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%s.hdf5" % (params['dataset']['dataset'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") N = f["targets"].shape[0] f.close() train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) X_train = HDF5Matrix(hdf5_file, 'features', start=0, end=N_train) Y_train = HDF5Matrix(hdf5_file, 'targets', start=0, end=N_train) X_val = HDF5Matrix(hdf5_file, 'features', start=N_train, end=N_train+N_val) Y_val = HDF5Matrix(hdf5_file, 'targets', start=N_train, end=N_train+N_val) X_test = HDF5Matrix(hdf5_file, 'features', start=N_train+N_val, end=N) Y_test = HDF5Matrix(hdf5_file, 'targets', start=N_train+N_val, end=N) return X_train, Y_train, X_val, Y_val, X_test, Y_test, N_train def load_data_hf5_memory(params,val_percent, test_percent, y_path, id2gt, X_meta = None, val_from_file = False): if val_from_file: hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") index_train = f["index"][:] index_train = np.delete(index_train, np.where(index_train == "")) N_train = index_train.shape[0] val_hdf5_file = common.PATCHES_DIR+"/patches_val_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_val = h5py.File(val_hdf5_file,"r") X_val = f_val['features'][:] #Y_val = f_val['targets'][:] factors_val = np.load(common.DATASETS_DIR+'/y_val_'+y_path+'.npy') index_factors_val = open(common.DATASETS_DIR+'/items_index_val_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_val = dict((index,factor) for (index,factor) in zip(index_factors_val,factors_val)) index_val = [i for i in f_val['index'][:] if i in id2gt_val] X_val = np.delete(X_val, np.where(index_val == ""), axis=0) index_val = np.delete(index_val, np.where(index_val == "")) Y_val = np.asarray([id2gt_val[id] for id in index_val]) test_hdf5_file = common.PATCHES_DIR+"/patches_test_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_test = h5py.File(test_hdf5_file,"r") X_test = f_test['features'][:] #Y_test = f_test['targets'][:] factors_test = np.load(common.DATASETS_DIR+'/y_test_'+y_path+'.npy') index_factors_test = open(common.DATASETS_DIR+'/items_index_test_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_test = dict((index,factor) for (index,factor) in zip(index_factors_test,factors_test)) index_test = [i for i in f_test['index'][:] if i in id2gt_test] X_test = np.delete(X_test, np.where(index_test == ""), axis=0) index_test = np.delete(index_test, np.where(index_test == "")) Y_test = np.asarray([id2gt_test[id] for id in index_test]) else: hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") index_all = f["index"][:] N = index_all.shape[0] train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) X_val = f['features'][N_train:N_train+N_val] index_val = f['index'][N_train:N_train+N_val] X_val = np.delete(X_val, np.where(index_val == ""), axis=0) index_val = np.delete(index_val, np.where(index_val == "")) Y_val = np.asarray([id2gt[id] for id in index_val]) X_test = f['features'][N_train+N_val:N] index_test = f['index'][N_train+N_val:N] print(index_test.shape) print(X_test.shape) X_test = np.delete(X_test, np.where(index_test == ""), axis=0) index_test = np.delete(index_test, np.where(index_test == "")) print(index_test.shape) print(X_test.shape) Y_test = np.asarray([id2gt[id] for id in index_test]) print(Y_test.shape) index_train = f['index'][:N_train] index_train = np.delete(index_train, np.where(index_train == "")) N_train = index_train.shape[0] if X_meta != None: X_val = [X_val,X_meta[N_train:N_train+N_val]] X_test = [X_test,X_meta[N_train+N_val:N]] return X_val, Y_val, X_test, Y_test, N_train def batch_block_generator(params, y_path, N_train, id2gt, X_meta=None, val_from_file=False): hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") block_step = 50000 batch_size = params['training']['n_minibatch'] randomize = True with_meta = False if X_meta != None: with_meta = True while 1: for i in range(0, N_train, block_step): x_block = f['features'][i:min(N_train, i+block_step)] index_block = f['index'][i:min(N_train, i+block_step)] #y_block = f['targets'][i:min(N_train,i+block_step)] x_block = np.delete(x_block, np.where(index_block == ""), axis=0) index_block = np.delete(index_block, np.where(index_block == "")) y_block = np.asarray([id2gt[id] for id in index_block]) if params['training']['normalize_y']: normalize(y_block, copy=False) items_list = range(x_block.shape[0]) if randomize: random.shuffle(items_list) for j in range(0, len(items_list), batch_size): if j+batch_size <= x_block.shape[0]: items_in_batch = items_list[j:j+batch_size] x_batch = x_block[items_in_batch] y_batch = y_block[items_in_batch] if with_meta: x_batch = [x_batch, X_meta[items_in_batch]] yield (x_batch, y_batch) def process(params,with_predict=True,with_eval=True): logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) params['cnn']['n_out'] = int(params['dataset']['dim']) #params['cnn']['n_frames'] = int(params['dataset']['window'] * SR / float(HR)) with_metadata = params['dataset']['with_metadata'] only_metadata = params['dataset']['only_metadata'] metadata_source = params['dataset']['meta-suffix'] if with_metadata: if 'w2v' in metadata_source: X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,params['dataset']['dataset']))[:,:int(params['cnn']['sequence_length'])] params['cnn']['n_metafeatures'] = len(X_meta[0]) if 'meta-suffix2' in params['dataset']: X_meta2 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = len(X_meta2[0]) if 'meta-suffix3' in params['dataset']: X_meta3 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures4'] = len(X_meta4[0]) elif 'model' in metadata_source or not params['dataset']['sparse']: X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,params['dataset']['dataset'])) params['cnn']['n_metafeatures'] = len(X_meta[0]) if 'meta-suffix2' in params['dataset']: X_meta2 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = len(X_meta2[0]) if 'meta-suffix3' in params['dataset']: X_meta3 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures4'] = len(X_meta4[0]) else: X_meta = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (metadata_source,params['dataset']['dataset'])).todense() params['cnn']['n_metafeatures'] = X_meta.shape[1] if 'meta-suffix2' in params['dataset']: X_meta2 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = X_meta2.shape[1] if 'meta-suffix3' in params['dataset']: X_meta3 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta4[0]) print(X_meta.shape) else: X_meta = None config = Config(params) model_dir = os.path.join(common.MODELS_DIR, config.model_id) common.ensure_dir(common.MODELS_DIR) common.ensure_dir(model_dir) model_file = os.path.join(model_dir, config.model_id + common.MODEL_EXT) logging.debug("Building Network...") #model = build_model(config) model = build_model(config) print(model.summary()) #plot(model, to_file='model2.png', show_shapes=True) trained_model = config.get_dict() # Save model #plot(model, to_file=os.path.join(model_dir, config.model_id + PLOT_EXT)) common.save_model(model, model_file) logging.debug(trained_model["model_id"]) logging.debug("Loading Data...") with_generator = True if only_metadata: X_train, Y_train, X_val, Y_val, X_test, Y_test = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, metadata_source) if 'meta-suffix2' in params['dataset']: X_train2, Y_train2, X_val2, Y_val2, X_test2, Y_test2 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix2']) X_train = [X_train,X_train2] X_val = [X_val,X_val2] X_test = [X_test,X_test2] print("X_train bi", len(X_train)) if 'meta-suffix3' in params['dataset']: X_train3, Y_train3, X_val3, Y_val3, X_test3, Y_test3 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix3']) X_train.append(X_train3) X_val.append(X_val3) X_test.append(X_test3) print("X_train tri", len(X_train)) if 'meta-suffix4' in params['dataset']: X_train4, Y_train4, X_val4, Y_val4, X_test4, Y_test4 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix4']) X_train.append(X_train4) X_val.append(X_val4) X_test.append(X_test4) print("X_train four", len(X_train)) else: if with_generator: id2gt = dict() factors = np.load(common.DATASETS_DIR+'/y_train_'+config.y_path+'.npy') index_factors = open(common.DATASETS_DIR+'/items_index_train_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt = dict((index,factor) for (index,factor) in zip(index_factors,factors)) X_val, Y_val, X_test, Y_test, N_train = load_data_hf5_memory(params,config.training_params["validation"],config.training_params["test"],config.y_path,id2gt,X_meta,config.training_params["val_from_file"]) if params['dataset']['nsamples'] != 'all': N_train = min(N_train,params['dataset']['nsamples']) else: X_train, Y_train, X_val, Y_val, X_test, Y_test, N_train = load_data_hf5(params,config.training_params["validation"],config.training_params["test"]) trained_model["whiten_scaler"] = common.TRAINDATA_DIR+'/scaler_%s.pk' % config.x_path logging.debug("Training...") if config.model_arch["final_activation"] == 'softmax': monitor_metric = 'val_categorical_accuracy' else: monitor_metric = 'val_loss' early_stopping = EarlyStopping(monitor=monitor_metric, patience=4) if only_metadata: epochs = model.fit(X_train, Y_train, batch_size=config.training_params["n_minibatch"], #shuffle='batch', nb_epoch=config.training_params["n_epochs"], verbose=1, validation_data=(X_val, Y_val), callbacks=[early_stopping]) else: if with_generator: print(N_train) epochs = model.fit_generator(batch_block_generator(params,config.y_path,N_train,id2gt,X_meta,config.training_params["val_from_file"]), samples_per_epoch = N_train-(N_train % config.training_params["n_minibatch"]), nb_epoch = config.training_params["n_epochs"], verbose=1, validation_data = (X_val, Y_val), callbacks=[early_stopping]) else: epochs = model.fit(X_train, Y_train, batch_size=config.training_params["n_minibatch"], shuffle='batch', nb_epoch=config.training_params["n_epochs"], verbose=1, validation_data=(X_val, Y_val), callbacks=[early_stopping]) model.save_weights(os.path.join(model_dir, config.model_id + common.WEIGHTS_EXT)) logging.debug("Saving trained model %s in %s..." % (trained_model["model_id"], common.DEFAULT_TRAINED_MODELS_FILE)) common.save_trained_model(common.DEFAULT_TRAINED_MODELS_FILE, trained_model) logging.debug("Evaluating...") print(X_test[0].shape,X_test[1].shape) preds=model.predict(X_test) print(preds.shape) if params["dataset"]["evaluation"] in ['binary','multiclass']: y_pred = (preds > 0.5).astype('int32') acc = accuracy_score(Y_test,y_pred) prec = precision_score(Y_test,y_pred,average='macro') recall = recall_score(Y_test,y_pred,average='macro') f1 = f1_score(Y_test,y_pred,average='macro') print('Accuracy', acc) print("%.3f\t%.3f\t%.3f" % (prec,recall,f1)) if params["dataset"]["fact"] == 'class': good_classes = np.nonzero(Y_test.sum(0))[0] print(Y_test.shape,preds.shape) #roc_auc=roc_auc_score(Y_test[:,good_classes],preds[:,good_classes]) #logging.debug('ROC-AUC '+str(roc_auc)) #pr_auc = average_precision_score(Y_test[:,good_classes],preds[:,good_classes]) #print('PR-AUC',pr_auc) #r2 = roc_auc elif params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: r2s = [] for i,pred in enumerate(preds): r2 = r2_score(Y_test[i],pred) r2s.append(r2) r2 = np.asarray(r2s).mean() logging.debug('R2 avg '+str(r2)) # Batch prediction if X_test[1].shape == Y_test[1].shape: score = model.evaluate(X_test, Y_test, verbose=0) logging.debug(score) logging.debug(model.metrics_names) print(score) trained_model["loss_score"] = score[0] trained_model["mse"] = score[1] if params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: trained_model["r2"] = r2 fw=open(common.DATA_DIR+'/results/train_results.txt','a') fw.write(trained_model["model_id"]+'\n') if params["training"]["loss_func"] == 'binary_crossentropy': fw.write('ROC-AUC: '+str(roc_auc)+'\n') print('ROC-AUC: '+str(roc_auc)) fw.write('Loss: '+str(score[0])+' ('+config.training_params["loss_func"]+')\n') fw.write('MSE: '+str(score[1])+'\n') elif params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: fw.write('R2 avg: '+str(r2)+'\n') print('R2 avg: '+str(r2)) fw.write('Loss: '+str(score[0])+' ('+config.training_params["loss_func"]+')\n') fw.write('MSE: '+str(score[1])+'\n') fw.write(json.dumps(epochs.history)+"\n\n") fw.close() if with_predict: trained_models = pd.read_csv(common.DEFAULT_TRAINED_MODELS_FILE, sep='\t') model_config = trained_models[trained_models["model_id"] == trained_model["model_id"]] model_config = model_config.to_dict(orient="list") testset = open(common.DATASETS_DIR+'/items_index_test_%s.tsv' % (config.dataset_settings["dataset"])).read().splitlines() if config.training_params["val_from_file"] and not only_metadata: predictions, predictions_index = obtain_predictions(model_config, testset, trained_model["model_id"], config.predicting_params["trim_coeff"], model=model, with_metadata=with_metadata, only_metadata=only_metadata, metadata_source=metadata_source, with_patches=True) else: predictions, predictions_index = obtain_predictions(model_config, testset, trained_model["model_id"], config.predicting_params["trim_coeff"], model=model, with_metadata=with_metadata, only_metadata=only_metadata, metadata_source=metadata_source) print("Predictions created") if with_eval: do_eval(trained_model["model_id"],get_roc=True,get_map=True,get_p=True,predictions=predictions,predictions_index=predictions_index) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Evaluates the model', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--params', dest="params_file", help='JSON file with params', default=False) parser.add_argument('-pred', '--predict', dest="with_predict", help='Predict factors', action='store_true', default=False) parser.add_argument('-eval', '--eval', dest="with_eval", help='Eval factors', action='store_true', default=False) parser.add_argument('-m', '--metadata', dest="with_metadata", help='Use metadata', action='store_true', default=False) parser.add_argument('-om', '--only_metadata', dest="only_metadata", help='Use only metadata', action='store_true', default=False) parser.add_argument('-ms', '--metadata_source', dest="metadata_source", type=str, help='Suffix of metadata files', default="rovi") args = parser.parse_args() params = models.params_1 if args.params_file: params = json.load(open(args.params_file)) process(params)
62630
import os from os import path from eiffel_loop.scons.c_library import LIBRARY_INFO from eiffel_loop.package import TAR_GZ_SOFTWARE_PACKAGE from eiffel_loop.package import SOFTWARE_PATCH info = LIBRARY_INFO ('source/id3.getlib') print 'is_list', isinstance (info.configure [0], list) print 'url', info.url print info.configure print 'test_data', info.test_data pkg = TAR_GZ_SOFTWARE_PACKAGE (info.url, info.c_dev, info.extracted) patch = SOFTWARE_PATCH (info.patch_url, info.c_dev, info.extracted) patch.apply () # create links to `include' and `test_dir'
62642
import logging import struct from macholib.MachO import MachO from macholib.mach_o import * from .base_executable import * from .section import * INJECTION_SEGMENT_NAME = 'INJECT' INJECTION_SECTION_NAME = 'inject' class MachOExecutable(BaseExecutable): def __init__(self, file_path): super(MachOExecutable, self).__init__(file_path) self.helper = MachO(self.fp) if self.helper.fat: raise Exception('MachO fat binaries are not supported at this time') self.architecture = self._identify_arch() if self.architecture is None: raise Exception('Architecture is not recognized') logging.debug('Initialized {} {} with file \'{}\''.format(self.architecture, type(self).__name__, file_path)) self.pack_endianness = self.helper.headers[0].endian self.sections = [] for lc, cmd, data in self.helper.headers[0].commands: if lc.cmd in (LC_SEGMENT, LC_SEGMENT_64): for section in data: self.sections.append(section_from_macho_section(section, cmd)) self.executable_segment = [cmd for lc, cmd, _ in self.helper.headers[0].commands if lc.cmd in (LC_SEGMENT, LC_SEGMENT_64) and cmd.initprot & 0x4][0] self.libraries = [fp.rstrip('\x00') for lc, cmd, fp in self.helper.headers[0].commands if lc.cmd == LC_LOAD_DYLIB] def _identify_arch(self): if self.helper.headers[0].header.cputype == 0x7: return ARCHITECTURE.X86 elif self.helper.headers[0].header.cputype == 0x01000007: return ARCHITECTURE.X86_64 elif self.helper.headers[0].header.cputype == 0xc: return ARCHITECTURE.ARM elif self.helper.headers[0].header.cputype == 0x0100000c: return ARCHITECTURE.ARM_64 else: return None def executable_segment_vaddr(self): return self.executable_segment.vmaddr def executable_segment_size(self): return self.executable_segment.vmsize def entry_point(self): for lc, cmd, _ in self.helper.headers[0].commands: if lc.cmd == LC_MAIN: return cmd.entryoff return def _extract_symbol_table(self): ordered_symbols = [] symtab_command = self.helper.headers[0].getSymbolTableCommand() if symtab_command: self.binary.seek(symtab_command.stroff) symbol_strings = self.binary.read(symtab_command.strsize) self.binary.seek(symtab_command.symoff) for i in range(symtab_command.nsyms): if self.is_64_bit(): symbol = nlist_64.from_fileobj(self.binary, _endian_=self.pack_endianness) else: symbol = nlist.from_fileobj(self.binary, _endian_=self.pack_endianness) symbol_name = symbol_strings[symbol.n_un:].split('\x00')[0] if symbol.n_type & N_STAB == 0: is_ext = symbol.n_type & N_EXT and symbol.n_value == 0 # Ignore Apple's hack for radar bug 5614542 if not is_ext and symbol_name != 'radr://5614542': size = 0 logging.debug('Adding function {} from the symtab at vaddr {} with size {}' .format(symbol_name, hex(symbol.n_value), hex(size))) f = Function(symbol.n_value, size, symbol_name, self) self.functions[symbol.n_value] = f ordered_symbols.append(symbol_name) dysymtab_command = self.helper.headers[0].getDynamicSymbolTableCommand() if dysymtab_command: self.binary.seek(dysymtab_command.indirectsymoff) indirect_symbols = self.binary.read(dysymtab_command.nindirectsyms*4) sym_offsets = struct.unpack(self.pack_endianness + 'I'*dysymtab_command.nindirectsyms, indirect_symbols) for lc, cmd, sections in self.helper.headers[0].commands: if lc.cmd in (LC_SEGMENT, LC_SEGMENT_64) and cmd.initprot & 0x4: for section in sections: if section.flags & S_NON_LAZY_SYMBOL_POINTERS == S_NON_LAZY_SYMBOL_POINTERS \ or section.flags & S_LAZY_SYMBOL_POINTERS == S_LAZY_SYMBOL_POINTERS \ or section.flags & S_SYMBOL_STUBS == S_SYMBOL_STUBS: logging.debug('Parsing dynamic entries in {}.{}'.format(section.segname, section.sectname)) if section.flags & S_SYMBOL_STUBS: stride = section.reserved2 else: stride = (64 if self.is_64_bit() else 32) count = section.size / stride for i in range(count): addr = self.executable_segment.vmaddr + section.offset + (i * stride) idx = sym_offsets[i + section.reserved1] if idx == 0x40000000: symbol_name = "INDIRECT_SYMBOL_ABS" elif idx == 0x80000000: symbol_name = "INDIRECT_SYMBOL_LOCAL" else: symbol_name = ordered_symbols[idx] logging.debug('Adding function {} from the dynamic symtab at vaddr {} with size {}' .format(symbol_name, hex(addr), hex(stride))) f = Function(addr, stride, symbol_name, self, type=Function.DYNAMIC_FUNC) self.functions[addr] = f def iter_string_sections(self): STRING_SECTIONS = ['__const', '__cstring', '__objc_methname', '__objc_classname'] for s in self.sections: if s.name in STRING_SECTIONS: yield s def prepare_for_injection(self): # Total size of the stuff we're going to be adding in the middle of the binary offset = 72+80 if self.is_64_bit() else 56+68 # 1 segment header + 1 section header fileoff = (self.binary.len & ~0xfff) + 0x1000 vmaddr = self.function_named('__mh_execute_header').address + fileoff logging.debug('Creating new MachOSegment at vaddr {}'.format(hex(vmaddr))) new_segment = segment_command_64() if self.is_64_bit() else segment_command() new_segment._endian_ = self.pack_endianness new_segment.segname = INJECTION_SEGMENT_NAME new_segment.fileoff = fileoff new_segment.filesize = 0 new_segment.vmaddr = vmaddr new_segment.vmsize = 0x1000 new_segment.maxprot = 0x7 #RWX new_segment.initprot = 0x5 # RX new_segment.flags = 0 new_segment.nsects = 1 logging.debug('Creating new MachOSection at vaddr {}'.format(hex(vmaddr))) new_section = section_64() if self.is_64_bit() else section() new_section._endian_ = self.pack_endianness new_section.sectname = INJECTION_SECTION_NAME new_section.segname = new_segment.segname new_section.addr = new_segment.vmaddr new_section.size = 0 new_section.offset = new_segment.fileoff new_section.align = 4 new_section.flags = 0x80000400 lc = load_command() lc._endian_ = self.pack_endianness lc.cmd = LC_SEGMENT_64 if self.is_64_bit() else LC_SEGMENT lc.cmdsize = offset self.helper.headers[0].commands.append((lc, new_segment, [new_section])) self.helper.headers[0].header.ncmds += 1 self.helper.headers[0].header.sizeofcmds += offset return new_segment def inject(self, asm, update_entry=False): found = [s for lc,s,_ in self.helper.headers[0].commands if lc.cmd in (LC_SEGMENT, LC_SEGMENT_64) and s.segname == INJECTION_SEGMENT_NAME] if found: injection_vaddr = found[0].vmaddr else: logging.warning( 'prepare_for_injection() was not called before inject(). This may cause unexpected behavior') inject_seg = self.prepare_for_injection() injection_vaddr = inject_seg.vmaddr if update_entry: for lc, cmd, _ in self.helper.headers[0].commands: if lc.cmd == LC_MAIN: cmd.entryoff = injection_vaddr break self.binary.seek(0) for lc, segment, sections in self.helper.headers[0].commands: if lc.cmd in (LC_SEGMENT, LC_SEGMENT_64) and segment.segname == INJECTION_SEGMENT_NAME: injection_offset = segment.fileoff + segment.filesize segment.filesize += len(asm) if segment.filesize + len(asm) > segment.vmsize: segment.vmsize += 0x1000 for section in sections: if section.sectname == INJECTION_SECTION_NAME: section.size += len(asm) self.next_injection_vaddr = section.addr + section.size self.helper.headers[0].write(self.binary) self.binary.seek(injection_offset) self.binary.write(asm) return injection_vaddr
62658
from django.views.generic import ListView from ..professors.models import Professor class SearchView(ListView): queryset = Professor.objects.all().order_by("-first_name", "last_name") template_name = "search.html" def get_context_data(self): context = super(SearchView, self).get_context_data() context.update( {"search_term": self.request.GET.get("q", ""), "navbarSearchShow": True} ) return context def get_queryset(self): queryset = super(SearchView, self).get_queryset() search_term = self.request.GET.get("q") if search_term: return Professor.objects.filter(search_index=search_term) return queryset[:10]
62715
import unittest from kafka_influxdb.encoder import heapster_json_encoder class TestHeapsterJsonEncoder(unittest.TestCase): def setUp(self): self.encoder = heapster_json_encoder.Encoder() def testEncoder(self): msg = b'{ "MetricsName":"memory/major_page_faults","MetricsValue":{"value":56}, "MetricsTimestamp":"2017-01-19T17:26:00Z", "MetricsTags":{"container_name":"docker/9be430d3a1a28601292aebd76e15512d5471c630a7fa164d6a2a2fd9cbc19e3d"} } ' encoded_message = self.encoder.encode(msg) expected_msg = [ 'memory/major_page_faults,container_name=docker/9be430d3a1a28601292aebd76e15512d5471c630a7fa164d6a2a2fd9cbc19e3d value=56 1484846760'] self.assertEqual(encoded_message, expected_msg)
62743
from enum import Enum class MenuChoice(Enum): """ Menu choices are always a lower or upper case letter """ NONE = -1 LOWER_A = 0 LOWER_B = 1 LOWER_C = 2 LOWER_D = 3 LOWER_E = 4 LOWER_F = 5 LOWER_G = 6 LOWER_H = 7 LOWER_I = 8 LOWER_J = 9 LOWER_K = 10 LOWER_L = 11 LOWER_M = 12 LOWER_N = 13 LOWER_O = 14 LOWER_P = 15 LOWER_Q = 16 LOWER_R = 17 LOWER_S = 18 LOWER_T = 19 LOWER_U = 20 LOWER_V = 21 LOWER_W = 22 LOWER_X = 23 LOWER_Y = 24 LOWER_Z = 25 UPPER_A = 26 UPPER_B = 27 UPPER_C = 28 UPPER_D = 29 UPPER_E = 30 UPPER_F = 31 UPPER_G = 32 UPPER_H = 33 UPPER_I = 34 UPPER_J = 35 UPPER_K = 36 UPPER_L = 37 UPPER_M = 38 UPPER_N = 39 UPPER_O = 40 UPPER_P = 41 UPPER_Q = 42 UPPER_R = 43 UPPER_S = 44 UPPER_T = 45 UPPER_U = 46 UPPER_V = 47 UPPER_W = 48 UPPER_X = 49 UPPER_Y = 50 UPPER_Z = 51 ZERO = 52 ONE = 53 TWO = 54 THREE = 55 FOUR = 56 FIVE = 57 SIX = 58 SEVEN = 59 EIGHT = 60 NINE = 61 ASTERISK = 62 EXCLAMATION_POINT = 63 FORWARD_SLASH = 64 QUESTION_MARK = 65 class MenuChoiceMapping: @staticmethod def get_menu_letter_to_menu_choice(dcss_menu_chars): return {x:MenuChoice for x in dcss_menu_chars}
62753
import datetime from bitmovin import Bitmovin, Encoding, S3Output, H264CodecConfiguration, AACCodecConfiguration, H264Profile, \ StreamInput, SelectionMode, Stream, EncodingOutput, ACLEntry, ACLPermission, MuxingStream, \ S3Input, FairPlayDRM, TSMuxing, HlsManifest, AudioMedia, VariantStream from bitmovin.errors import BitmovinError API_KEY = '<YOUR_API_KEY>' S3_INPUT_ACCESSKEY = '<YOUR_S3_OUTPUT_ACCESSKEY>' S3_INPUT_SECRETKEY = '<YOUR_S3_OUTPUT_SECRETKEY>' S3_INPUT_BUCKETNAME = '<YOUR_S3_OUTPUT_BUCKETNAME>' S3_INPUT_PATH = '<YOUR_S3_INPUT_PATH>' S3_OUTPUT_ACCESSKEY = '<YOUR_S3_OUTPUT_ACCESSKEY>' S3_OUTPUT_SECRETKEY = '<YOUR_S3_OUTPUT_SECRETKEY>' S3_OUTPUT_BUCKETNAME = '<YOUR_S3_OUTPUT_BUCKETNAME>' FAIRPLAY_KEY = '<YOUR_FAIRPLAY_KEY>' FAIRPLAY_IV = '<YOUR_FAIRPLAY_IV>' FAIRPLAY_URI = '<YOUR_FAIRPLAY_LICENSING_URL>' date_component = str(datetime.datetime.now()).replace(' ', '_').replace(':', '-').split('.')[0].replace('_', '__') OUTPUT_BASE_PATH = 'your/output/base/path/{}/'.format(date_component) def main(): bitmovin = Bitmovin(api_key=API_KEY) s3_input = S3Input(access_key=S3_INPUT_ACCESSKEY, secret_key=S3_INPUT_SECRETKEY, bucket_name=S3_INPUT_BUCKETNAME, name='Sample S3 Output') s3_input = bitmovin.inputs.S3.create(s3_input).resource s3_output = S3Output(access_key=S3_OUTPUT_ACCESSKEY, secret_key=S3_OUTPUT_SECRETKEY, bucket_name=S3_OUTPUT_BUCKETNAME, name='Sample S3 Output') s3_output = bitmovin.outputs.S3.create(s3_output).resource encoding = Encoding(name='hls fairplay example encoding - {}'.format(date_component)) encoding = bitmovin.encodings.Encoding.create(encoding).resource video_codec_configuration_480p = H264CodecConfiguration(name='example_video_codec_configuration_480p', bitrate=1200000, rate=None, height=480, profile=H264Profile.HIGH) video_codec_configuration_480p = bitmovin.codecConfigurations.H264.create(video_codec_configuration_480p).resource video_codec_configuration_360p = H264CodecConfiguration(name='example_video_codec_configuration_360p', bitrate=800000, rate=None, height=360, profile=H264Profile.HIGH) video_codec_configuration_360p = bitmovin.codecConfigurations.H264.create(video_codec_configuration_360p).resource video_codec_configuration_240p = H264CodecConfiguration(name='example_video_codec_configuration_240p', bitrate=400000, rate=None, height=240, profile=H264Profile.HIGH) video_codec_configuration_240p = bitmovin.codecConfigurations.H264.create(video_codec_configuration_240p).resource audio_codec_configuration_stereo = AACCodecConfiguration(name='example_audio_codec_configuration_stereo', bitrate=128000, rate=48000) audio_codec_configuration_stereo = bitmovin.codecConfigurations.AAC.create( audio_codec_configuration_stereo).resource video_input_stream = StreamInput(input_id=s3_input.id, input_path=S3_INPUT_PATH, selection_mode=SelectionMode.AUTO) audio_input_stream_en_stereo = StreamInput(input_id=s3_input.id, input_path=S3_INPUT_PATH, selection_mode=SelectionMode.AUTO) video_stream_480p = Stream(codec_configuration_id=video_codec_configuration_480p.id, input_streams=[video_input_stream], name='Sample Stream 480p') video_stream_480p = bitmovin.encodings.Stream.create(object_=video_stream_480p, encoding_id=encoding.id).resource video_stream_360p = Stream(codec_configuration_id=video_codec_configuration_360p.id, input_streams=[video_input_stream], name='Sample Stream 360p') video_stream_360p = bitmovin.encodings.Stream.create(object_=video_stream_360p, encoding_id=encoding.id).resource video_stream_240p = Stream(codec_configuration_id=video_codec_configuration_240p.id, input_streams=[video_input_stream], name='Sample Stream 240p') video_stream_240p = bitmovin.encodings.Stream.create(object_=video_stream_240p, encoding_id=encoding.id).resource audio_stream_en_stereo = Stream(codec_configuration_id=audio_codec_configuration_stereo.id, input_streams=[audio_input_stream_en_stereo], name='Sample Audio Stream EN Stereo') audio_stream_en_stereo = bitmovin.encodings.Stream.create(object_=audio_stream_en_stereo, encoding_id=encoding.id).resource acl_entry = ACLEntry(permission=ACLPermission.PUBLIC_READ) video_muxing_stream_480p = MuxingStream(video_stream_480p.id) video_muxing_stream_360p = MuxingStream(video_stream_360p.id) video_muxing_stream_240p = MuxingStream(video_stream_240p.id) audio_muxing_stream_en_stereo = MuxingStream(audio_stream_en_stereo.id) video_muxing_480p_output = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH + 'video/hls/480p', acl=[acl_entry]) video_muxing_480p = TSMuxing(segment_length=4, segment_naming='seg_%number%.ts', streams=[video_muxing_stream_480p], name='Sample Muxing 480p') video_muxing_480p = bitmovin.encodings.Muxing.TS.create(object_=video_muxing_480p, encoding_id=encoding.id).resource fair_play_480p = FairPlayDRM(key=FAIRPLAY_KEY, iv=FAIRPLAY_IV, uri=FAIRPLAY_URI, outputs=[video_muxing_480p_output], name='FairPlay 480p') fair_play_480p = bitmovin.encodings.Muxing.TS.DRM.FairPlay.create(object_=fair_play_480p, encoding_id=encoding.id, muxing_id=video_muxing_480p.id).resource video_muxing_360p_output = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH + 'video/hls/360p', acl=[acl_entry]) video_muxing_360p = TSMuxing(segment_length=4, segment_naming='seg_%number%.ts', streams=[video_muxing_stream_360p], name='Sample Muxing 360p') video_muxing_360p = bitmovin.encodings.Muxing.TS.create(object_=video_muxing_360p, encoding_id=encoding.id).resource fair_play_360p = FairPlayDRM(key=FAIRPLAY_KEY, iv=FAIRPLAY_IV, uri=FAIRPLAY_URI, outputs=[video_muxing_360p_output], name='FairPlay 360p') fair_play_360p = bitmovin.encodings.Muxing.TS.DRM.FairPlay.create(object_=fair_play_360p, encoding_id=encoding.id, muxing_id=video_muxing_360p.id).resource video_muxing_240p_output = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH + 'video/hls/240p', acl=[acl_entry]) video_muxing_240p = TSMuxing(segment_length=4, segment_naming='seg_%number%.ts', streams=[video_muxing_stream_240p], name='Sample Muxing 240p') video_muxing_240p = bitmovin.encodings.Muxing.TS.create(object_=video_muxing_240p, encoding_id=encoding.id).resource fair_play_240p = FairPlayDRM(key=FAIRPLAY_KEY, iv=FAIRPLAY_IV, uri=FAIRPLAY_URI, outputs=[video_muxing_240p_output], name='FairPlay 240p') fair_play_240p = bitmovin.encodings.Muxing.TS.DRM.FairPlay.create(object_=fair_play_240p, encoding_id=encoding.id, muxing_id=video_muxing_240p.id).resource audio_muxing_output_en_stereo = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH + 'audio/hls/en_2_0', acl=[acl_entry]) audio_muxing_en_stereo = TSMuxing(segment_length=4, segment_naming='seg_%number%.ts', streams=[audio_muxing_stream_en_stereo], name='Sample Audio Muxing EN Stereo') audio_muxing_en_stereo = bitmovin.encodings.Muxing.TS.create(object_=audio_muxing_en_stereo, encoding_id=encoding.id).resource fair_play_audio = FairPlayDRM(key=FAIRPLAY_KEY, iv=FAIRPLAY_IV, uri=FAIRPLAY_URI, outputs=[audio_muxing_output_en_stereo], name='FairPlay Audio') fair_play_audio = bitmovin.encodings.Muxing.TS.DRM.FairPlay.create(object_=fair_play_audio, encoding_id=encoding.id, muxing_id=audio_muxing_en_stereo.id).resource bitmovin.encodings.Encoding.start(encoding_id=encoding.id) try: bitmovin.encodings.Encoding.wait_until_finished(encoding_id=encoding.id) except BitmovinError as bitmovin_error: print("Exception occurred while waiting for encoding to finish: {}".format(bitmovin_error)) # Manifest ## manifest_output = EncodingOutput(output_id=s3_output.id, output_path=OUTPUT_BASE_PATH, acl=[acl_entry]) hls_manifest = HlsManifest(manifest_name='example_manifest_hls.m3u8', outputs=[manifest_output], name='Sample HLS FairPlay Manifest') hls_manifest = bitmovin.manifests.HLS.create(hls_manifest).resource audio_media = AudioMedia(name='Sample Audio Media', group_id='audio_group', segment_path=audio_muxing_output_en_stereo.outputPath, encoding_id=encoding.id, stream_id=audio_stream_en_stereo.id, muxing_id=audio_muxing_en_stereo.id, drm_id=fair_play_audio.id, language='en', uri='audiomedia.m3u8') audio_media = bitmovin.manifests.HLS.AudioMedia.create(manifest_id=hls_manifest.id, object_=audio_media).resource variant_stream_480p = VariantStream(audio=audio_media.groupId, closed_captions='NONE', segment_path=video_muxing_480p_output.outputPath, uri='video_480p.m3u8', encoding_id=encoding.id, stream_id=video_stream_480p.id, muxing_id=video_muxing_480p.id, drm_id=fair_play_480p.id) bitmovin.manifests.HLS.VariantStream.create(manifest_id=hls_manifest.id, object_=variant_stream_480p) variant_stream_360p = VariantStream(audio=audio_media.groupId, closed_captions='NONE', segment_path=video_muxing_360p_output.outputPath, uri='video_360p.m3u8', encoding_id=encoding.id, stream_id=video_stream_360p.id, muxing_id=video_muxing_360p.id, drm_id=fair_play_360p.id) bitmovin.manifests.HLS.VariantStream.create(manifest_id=hls_manifest.id, object_=variant_stream_360p) variant_stream_240p = VariantStream(audio=audio_media.groupId, closed_captions='NONE', segment_path=video_muxing_240p_output.outputPath, uri='video_240p.m3u8', encoding_id=encoding.id, stream_id=video_stream_240p.id, muxing_id=video_muxing_240p.id, drm_id=fair_play_240p.id) bitmovin.manifests.HLS.VariantStream.create(manifest_id=hls_manifest.id, object_=variant_stream_240p) bitmovin.manifests.HLS.start(manifest_id=hls_manifest.id) try: bitmovin.manifests.HLS.wait_until_finished(manifest_id=hls_manifest.id) except BitmovinError as bitmovin_error: print("Exception occurred while waiting for HLS manifest creation to finish: {}".format(bitmovin_error)) if __name__ == '__main__': main()
62776
import click from marinetrafficapi import constants from marinetrafficapi.bind import bind_request from marinetrafficapi.vessels_positions.\ PS01_vessel_historical_track.models import VesselHistoricalPosition from marinetrafficapi.vessels_positions.\ PS01_vessel_historical_track.query_params import PS01QueryParams from marinetrafficapi.vessels_positions.\ PS02_PS06_vessel_positions.models import FleetVesselPosition from marinetrafficapi.vessels_positions.\ PS02_PS06_vessel_positions.query_params import PS02PS06QueryParams from marinetrafficapi.vessels_positions.\ PS07_single_vessel_positions.models import SingleVesselPosition from marinetrafficapi.vessels_positions.\ PS07_single_vessel_positions.query_params import PS07QueryParams class VesselPositions: """Retrieve forecasted information for any vessel. Get ETA and voyage related information using one of these APIs.""" vessel_historical_track = bind_request( api_path='/exportvesseltrack', model=VesselHistoricalPosition, query_parameters=PS01QueryParams, default_parameters={ 'v': '2', constants.ClientConst.MSG_TYPE: constants.ClientConst.SIMPLE, constants.RequestConst.PROTOCOL: constants.FormatterConst.JSONO }, description='{}: \nGet all historical positions \n' 'for one or more vessels over a period of time' .format(click.style("API CALL PS01", fg="red")) ) fleet_vessel_positions = bind_request( api_path='/exportvessels', model=FleetVesselPosition, query_parameters=PS02PS06QueryParams, default_parameters={ 'v': '8', constants.ClientConst.MSG_TYPE: constants.ClientConst.SIMPLE, constants.RequestConst.PROTOCOL: constants.FormatterConst.JSONO }, description='{}:\nGet positional information for a set of predefined vessels \n' '{}:\nMonitor vessel activity for your MarineTraffic fleet(s)\n' '{}:\nMonitor vessel activity in one or more ports of your interest\n' '{}:\nMonitor vessel activity in an area of your interest\n' '{}:\nRetrieve positions for vessels sailing in an area that \n' 'you define each time you call the service' .format(click.style("API CALL PS02", fg="red"), click.style("API CALL PS03", fg="red"), click.style("API CALL PS04", fg="red"), click.style("API CALL PS05", fg="red"), click.style("API CALL PS06", fg="red")) ) single_vessel_positions = bind_request( api_path='/exportvessel', model=SingleVesselPosition, query_parameters=PS07QueryParams, default_parameters={ 'v': '5', constants.ClientConst.MSG_TYPE: constants.ClientConst.SIMPLE, constants.RequestConst.PROTOCOL: constants.FormatterConst.JSONO }, description='{}:\nGet the latest available position or voyage \n' 'information for a particular vessel' .format(click.style("API CALL PS07", fg="red")) )
62791
from django.views.generic import TemplateView if settings.DEBUG: # enable local preview of error pages urlpatterns += patterns('', (r'^403/$', TemplateView.as_view(template_name="403.html")), (r'^404/$', TemplateView.as_view(template_name="404.html")), (r'^500/$', TemplateView.as_view(template_name="500.html")), )
62823
import pickle import pytest import numpy as np from astropy import units as u from astropy import modeling from specutils.utils import QuantityModel from ..utils.wcs_utils import refraction_index, vac_to_air, air_to_vac wavelengths = [300, 500, 1000] * u.nm data_index_refraction = { 'Griesen2006': np.array([3.07393068, 2.9434858 , 2.8925797 ]), 'Edlen1953': np.array([2.91557413, 2.78963801, 2.74148172]), 'Edlen1966': np.array([2.91554272, 2.7895973 , 2.74156098]), 'PeckReeder1972': np.array([2.91554211, 2.78960005, 2.74152561]), 'Morton2000': np.array([2.91568573, 2.78973402, 2.74169531]), 'Ciddor1996': np.array([2.91568633, 2.78973811, 2.74166131]) } def test_quantity_model(): c = modeling.models.Chebyshev1D(3) uc = QuantityModel(c, u.AA, u.km) assert uc(10*u.nm).to(u.m) == 0*u.m def test_pickle_quantity_model(tmp_path): """ Check that a QuantityModel can roundtrip through pickling, as it would if fit in a multiprocessing pool. """ c = modeling.models.Chebyshev1D(3) uc = QuantityModel(c, u.AA, u.km) pkl_file = tmp_path / "qmodel.pkl" with open(pkl_file, "wb") as f: pickle.dump(uc, f) with open(pkl_file, "rb") as f: new_model = pickle.load(f) assert new_model.input_units == uc.input_units assert new_model.return_units == uc.return_units assert type(new_model.unitless_model) == type(uc.unitless_model) assert np.all(new_model.unitless_model.parameters == uc.unitless_model.parameters) @pytest.mark.parametrize("method", data_index_refraction.keys()) def test_refraction_index(method): tmp = (refraction_index(wavelengths, method) - 1) * 1e4 assert np.isclose(tmp, data_index_refraction[method], atol=1e-7).all() @pytest.mark.parametrize("method", data_index_refraction.keys()) def test_air_to_vac(method): tmp = refraction_index(wavelengths, method) assert np.isclose(wavelengths.value * tmp, air_to_vac(wavelengths, method=method, scheme='inversion').value, rtol=1e-6).all() assert np.isclose(wavelengths.value, air_to_vac(vac_to_air(wavelengths, method=method), method=method, scheme='iteration').value, atol=1e-12).all()
62825
import logging import os from datetime import timedelta # layers import sys sys.path.append('/opt') import cv2 from common.config import LOG_LEVEL, FRAME_RESIZE_WIDTH, FRAME_RESIZE_HEIGHT, STORE_FRAMES, \ DDB_FRAME_TABLE, UTC_TIME_FMT from common.utils import upload_to_s3, put_item_ddb logger = logging.getLogger('FrameExtractor') logger.setLevel(LOG_LEVEL) S3_KEY_DATE_FMT = "%Y/%m/%d/%H/%M:%S:%f" def extract_frames(stream_id, segment_s3_key, video_chunk, video_start_datetime, s3_bucket, frame_s3_prefix, sample_fps=1): if STORE_FRAMES not in ["all", "original", "resized"]: raise ValueError(f'Invalid STORE_FRAMES option: {STORE_FRAMES} (Valid: all, original, resized)') store_original_frames = STORE_FRAMES in ["all", "original"] store_resized_frames = STORE_FRAMES in ["all", "resized"] logger.info(f'Store original sized frame? {store_original_frames}, Store resized frames? {store_resized_frames}') cap = cv2.VideoCapture(video_chunk) extracted_frames_metadata = [] try: video_metadata = extract_video_metadata(cap) hop = round(video_metadata['fps'] / sample_fps) if hop == 0: hop = 1 # if sample_fps is invalid extract every frame logger.info(f'Extracting every {hop} frame.') frame_count = 0 extracted_frames = 0 while cap.isOpened(): success, frame = cap.read() if success: if frame_count % hop == 0: # timestamp relative to start of video frame_timestamp_millis = cap.get(cv2.CAP_PROP_POS_MSEC) # absolute timestamp of the frame frame_datetime = video_start_datetime + timedelta(milliseconds=frame_timestamp_millis) segment_id = f'{stream_id}:{video_start_datetime.strftime(UTC_TIME_FMT)}' frame_metadata = {'Stream_ID': stream_id, 'DateTime': frame_datetime.strftime(UTC_TIME_FMT), 'Segment': segment_id, 'Segment_Millis': int(frame_timestamp_millis), 'Segment_Frame_Num': frame_count, 'S3_Bucket': s3_bucket} if store_original_frames: jpg = cv2.imencode(".jpg", frame)[1] # use absolute timestamps for s3 key. might be easier to reason about. frame_key = os.path.join(frame_s3_prefix, 'original', f'{frame_datetime.strftime(S3_KEY_DATE_FMT)}.jpg') # TODO: Should we also store the frame metadata in the s3 object? s3_object_metadata = {'ContentType': 'image/jpeg'} upload_to_s3(s3_bucket, frame_key, bytearray(jpg), **s3_object_metadata) frame_metadata['S3_Key'] = frame_key frame_metadata['Frame_Width'] = int(video_metadata['original_frame_width']) frame_metadata['Frame_Height'] = int(video_metadata['original_frame_height']) if store_resized_frames: resized_frame = cv2.resize(frame, (FRAME_RESIZE_WIDTH, FRAME_RESIZE_HEIGHT)) resized_jpg = cv2.imencode(".jpg", resized_frame)[1] # use absolute timestamps for s3 key. might be easier to reason about. resized_frame_key = os.path.join(frame_s3_prefix, 'resized', f'{frame_datetime.strftime(S3_KEY_DATE_FMT)}.jpg') s3_object_metadata = {'ContentType': 'image/jpeg'} upload_to_s3(s3_bucket, resized_frame_key, bytearray(resized_jpg), **s3_object_metadata) if 'S3_Key' in frame_metadata: frame_metadata['Resized_S3_Key'] = resized_frame_key else: frame_metadata['S3_Key'] = frame_key frame_metadata['Frame_Width'] = FRAME_RESIZE_WIDTH frame_metadata['Frame_Height'] = FRAME_RESIZE_HEIGHT # persist frame metadata in database put_item_ddb(DDB_FRAME_TABLE, frame_metadata) extracted_frames_metadata.append(frame_metadata) extracted_frames += 1 frame_count += 1 else: break logger.info(f'Extracted {extracted_frames} out of {frame_count} frames from {video_chunk}') return extracted_frames_metadata finally: cv2.destroyAllWindows() cap.release() def extract_video_metadata(cap): metadata = { 'original_frame_width': cap.get(cv2.CAP_PROP_FRAME_WIDTH), 'original_frame_height': cap.get(cv2.CAP_PROP_FRAME_HEIGHT), 'fourcc': cap.get(cv2.CAP_PROP_FOURCC), 'frame_count': int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 'format': cap.get(cv2.CAP_PROP_FORMAT), 'mode': cap.get(cv2.CAP_PROP_MODE), 'fps': cap.get(cv2.CAP_PROP_FPS), } logger.info(f'video metadata: {metadata}') return metadata
62855
import pytest from pymlconf import Root def test_delattribute(): root = Root(''' app: name: MyApp ''') assert hasattr(root.app, 'name') del root.app.name assert not hasattr(root.app, 'name') with pytest.raises(AttributeError): del root.app.invalidattribute
62879
from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.contrib import admin from backend.views import app_urls from server import settings admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'server.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), (r'^paypal/', include('paypal.standard.ipn.urls')), ) urlpatterns += app_urls if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
62916
import tensorflow as tf import experiment class NoTraining(experiment.Training): """This is a replacement component that skips the training process""" def __init__(self, config, config_global, logger): super(NoTraining, self).__init__(config, config_global, logger) def start(self, model, data, evaluation): self.logger.info("Skipping training") def restore_best_epoch(self, model, data, evaluation): pass def remove_checkpoints(self): pass component = NoTraining
62969
import django.dispatch file_is_ready = django.dispatch.Signal() file_upload_failed = django.dispatch.Signal() file_joining_failed = django.dispatch.Signal()
62979
from django.conf import settings from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.core.files.storage import FileSystemStorage from django.http import HttpResponseRedirect from django.urls import reverse_lazy from django.views.generic import TemplateView, UpdateView, CreateView, DeleteView, FormView from rolepermissions.mixins import HasPermissionsMixin from rolepermissions.permissions import available_perm_status from apps.Testings.models import Phase from apps.Users.models import Task from extracts import run_extract from .models import Argument, Source, Command from .forms import ArgumentForm, SourceProductForm, SourceRobotForm, SourceLibraryForm, SourceEditProductForm, \ CommandForm, SourceEditLibraryForm, PhaseForm class IndexView(TemplateView): template_name = "index.html" def get_context_data(self, **kwargs): context = super(IndexView, self).get_context_data(**kwargs) return context class HomeView(LoginRequiredMixin, TemplateView): template_name = "home.html" def get_context_data(self, **kwargs): context = super(HomeView, self).get_context_data(**kwargs) context['user_tasks'] = self.request.user.get_all_tasks()[:3] context['user_tasks2'] = self.request.user.get_all_tasks()[3:] return context class StepperView(LoginRequiredMixin, TemplateView): template_name = "stepper.html" def get_context_data(self, **kwargs): context = super(StepperView, self).get_context_data(**kwargs) return context class ArgumentsView(LoginRequiredMixin, HasPermissionsMixin, TemplateView): template_name = "arguments.html" required_permission = "read_argument" class NewArgumentView(LoginRequiredMixin, HasPermissionsMixin, CreateView): model = Argument form_class = ArgumentForm template_name = "form-snippet.html" required_permission = "create_argument" def get_success_url(self): messages.success(self.request, "Argument Created") return reverse_lazy('commands') def get_context_data(self, **kwargs): cmd = Command.objects.get(id = self.kwargs.get('cmd')) form = self.form_class(cmd = cmd) context = super(NewArgumentView, self).get_context_data(**kwargs) context['title'] = "New Argument" context['form'] = form return context class EditArgumentView(LoginRequiredMixin, HasPermissionsMixin, UpdateView): model = Argument form_class = ArgumentForm template_name = "form-snippet.html" required_permission = "update_argument" def get_success_url(self): messages.success(self.request, "Argument Edited") return reverse_lazy('commands') def get_context_data(self, **kwargs): context = super(EditArgumentView, self).get_context_data(**kwargs) context['title'] = "Edit Argument" context['delete'] = True return context def post(self, request, pk, *args, **kwargs): result = super(EditArgumentView, self).post(request, *args, **kwargs) instance = Argument.objects.get(pk = pk) include = request.POST.getlist('include[]') exclude = request.POST.getlist('exclude[]') instance.name = request.POST['name'] instance.description = request.POST['description'] instance.requirement = request.POST['requirement'].title() instance.needs_value = request.POST['needs_value'].title() instance.save() for i in instance.include.all(): instance.include.remove(i) for e in instance.exclude.all(): instance.exclude.remove(e) for i in include: instance.include.add(i) instance.save() for e in exclude: instance.exclude.add(e) instance.save() return result class DeleteArgumentView(LoginRequiredMixin, HasPermissionsMixin, DeleteView): model = Argument template_name = "delete-argument.html" required_permission = "delete_argument" def get_success_url(self): messages.success(self.request, "Argument Deleted") return reverse_lazy('commands') # - - - - - Sources - - - - - - - - - class SourceList(LoginRequiredMixin, TemplateView): template_name = "source-list.html" def get_context_data(self, **kwargs): context = super(SourceList, self).get_context_data(**kwargs) name = kwargs.get('slug') if name: title = '' category = 0 if name == 'products': title = 'Products' category = 3 if name == 'robot': title = 'Robot Framework' category = 4 if name == 'libraries': title = 'Robot Framework Libraries' category = 5 context['title'] = title context['category'] = category return context class CreateSourceView(LoginRequiredMixin, CreateView): model = Source template_name = "create-edit-source.html" def dispatch(self, request, *args, **kwargs): user = self.request.user can_create = False if user.is_superuser: can_create = True else: user_permissions = available_perm_status(user) permissions = [ 'create_robot', 'create_libraries', 'create_product' ] for perm in permissions: if perm in user_permissions and not can_create: can_create = True if can_create: return super(CreateSourceView, self).dispatch(request, *args, **kwargs) else: messages.warning(request, "You don't have permission for this action") return HttpResponseRedirect(self.get_success_url()) def get_form_class(self): name = self.kwargs.get('slug') if name == 'products': return SourceProductForm if name == 'robot': return SourceRobotForm if name == 'libraries': return SourceLibraryForm def form_valid(self, form, **kwargs): name = self.kwargs.get('slug') stepper = self.kwargs.get('stepper') _config = {} if name == 'products': form.instance.category = 3 if Source.objects.filter(name=form.data.get('name'), version=form.data.get('version')): messages.warning(self.request, 'Already exist a Product with this name and version') return self.render_to_response(self.get_context_data(form=form)) source = form.save() self.pk = source.pk if stepper != 'stepper': messages.success(self.request, 'Product {0} created'.format(source.name)) host = form.data.get('host') if not host: return HttpResponseRedirect(self.get_success_url()) if host: _config = { 'category': 3, 'source': source.pk, 'regex': form.data.get('regex'), 'path': form.data.get('path'), 'host': host, 'port': form.data.get('port'), 'username': form.data.get('username'), 'password': <PASSWORD>') } if name == 'robot': form.instance.name = 'Robot Framework' form.instance.category = 4 source = form.save() self.pk = source.pk file = form.files.get('zip_file') if file: fs = FileSystemStorage(location='{0}/zip/'.format(settings.MEDIA_ROOT)) filename = fs.save(file.name, file) uploaded_file_url = fs.url('zip/{}'.format(filename)) _config = { 'category': 4, 'source': source.pk, "zip": uploaded_file_url } if stepper != 'stepper': messages.success(self.request, 'Robot Framework Source created') if name == 'libraries': form.instance.category = 5 source = form.save() self.pk = source.pk if stepper != 'stepper': messages.success(self.request, 'Library Source created') _config = { 'category': 5, 'source': source.pk, 'url': form.data.get('url') } try: extract = run_extract.delay(_config) task = Task.objects.create( name="Extract commands from {0}".format(name), category=1, task_info="Started", task_id=extract.task_id, state=extract.state ) if stepper != 'stepper': messages.info(self.request, 'Running extract in background') self.request.user.tasks.add(task) self.request.user.save() return HttpResponseRedirect(self.get_success_url()) except Exception as error: messages.error(self.request, 'Error {0}'.format(error)) return self.render_to_response(self.get_context_data(form=form)) def get_success_url(self): stepper = self.kwargs.get('stepper') source_pk = self.pk if stepper != 'stepper': return reverse_lazy('source-list', kwargs={'slug': self.kwargs.get('slug')}) else: return reverse_lazy('successful', kwargs={'step': self.kwargs.get('slug'), 'pk': source_pk}) def get_context_data(self, **kwargs): context = super(CreateSourceView, self).get_context_data() context['slug'] = self.kwargs.get('slug') context['title'] = 'New' context['extra'] = 'After press "Create" the system extract the commands for' context['stepper'] = self.kwargs.get('stepper') return context class EditSourceView(LoginRequiredMixin, UpdateView): model = Source template_name = "create-edit-source.html" def dispatch(self, request, *args, **kwargs): user = self.request.user can_create = False if user.is_superuser: can_create = True else: user_permissions = available_perm_status(user) permissions = [ 'update_robot', 'update_libraries', 'update_product' ] for perm in permissions: if perm in user_permissions and not can_create: can_create = True if can_create: return super(EditSourceView, self).dispatch(request, *args, **kwargs) else: messages.warning(request, "You don't have permission for this action") return HttpResponseRedirect(self.get_success_url()) def get_form_class(self): _category = self.object.category if _category == 3: return SourceEditProductForm if _category == 4: return SourceRobotForm if _category == 5: return SourceEditLibraryForm def form_valid(self, form): name = self.kwargs.get('slug') source = form.save() self.pk = source.pk if name == 'products': form.instance.category = 3 if name == 'robot': form.instance.name = 'Robot Framework' form.instance.category = 4 if name == 'libraries': form.instance.category = 5 return super(EditSourceView, self).form_valid(form) def get_success_url(self): _category = self.object.category if _category == 3: slug = 'products' if _category == 4: slug = 'robot' if _category == 5: slug = 'libraries' stepper = self.kwargs.get('stepper') source_pk = self.pk if stepper != 'stepper': return reverse_lazy('source-list', kwargs={'slug': slug}) else: return reverse_lazy('successful', kwargs={'step': slug, 'pk': source_pk}) def get_context_data(self, **kwargs): context = super(EditSourceView, self).get_context_data() _category = self.object.category if _category == 3: slug = 'products' if _category == 4: slug = 'robot' if _category == 5: slug = 'libraries' context['slug'] = slug context['title'] = 'Edit' context['stepper'] = self.kwargs.get('stepper') return context class DeleteSourceView(LoginRequiredMixin, DeleteView): model = Source template_name = "delete-source.html" def get_success_url(self, slug): messages.success(self.request, 'Robot Framework Source and his commands deleted') return reverse_lazy('source-list', kwargs={'slug': slug}) def delete(self, request, *args, **kwargs): source = self.get_object() slug = '' if source.category == 3: slug = 'products' if source.category == 4: slug = 'robot' if source.category == 5: slug = 'libraries' commands = Command.objects.filter(source=source.pk) for command in commands: arguments = command.get_arguments() if command.source.count() <= 1: command.delete() source.delete() return HttpResponseRedirect(self.get_success_url(slug)) def get_context_data(self, **kwargs): context = super(DeleteSourceView, self).get_context_data() _category = self.object.category if _category == 3: slug = 'products' if _category == 4: slug = 'robot' if _category == 5: slug = 'libraries' context['slug'] = slug return context class CommandsView(LoginRequiredMixin, TemplateView): template_name = "commands.html" def get_context_data(self, **kwargs): context = super(CommandsView, self).get_context_data(**kwargs) context['stepper'] = self.kwargs.get('stepper') return context class NewCommandView(LoginRequiredMixin, FormView): model = Command template_name = 'create-edit-command.html' form_class = CommandForm def get_success_url(self): return reverse_lazy('commands') def get_context_data(self, **kwargs): context = super(NewCommandView, self).get_context_data(**kwargs) context['title'] = 'Create Command' context['ArgumentForm'] = ArgumentForm return context class EditCommandView(LoginRequiredMixin, UpdateView): model = Command form_class = CommandForm template_name = 'create-edit-command.html' success_url = reverse_lazy('commands') def get_context_data(self, **kwargs): context = super(EditCommandView, self).get_context_data(**kwargs) context['title'] = 'Edit Command' context['ArgumentForm'] = ArgumentForm return context class DeleteCommandView(LoginRequiredMixin, DeleteView): template_name = "delete-command.html" model = Command success_url = reverse_lazy("commands") class PhasesView(LoginRequiredMixin, TemplateView): template_name = "phases.html" class NewPhaseView(LoginRequiredMixin, CreateView): model = Phase form_class = PhaseForm template_name = 'create-edit-phase.html' def form_valid(self, form): form.instance.user = self.request.user source = form.save() self.pk = source.pk return super(NewPhaseView, self).form_valid(form) #def get_success_url(self): # messages.success(self.request, "Phase Created") # return reverse_lazy('phases') def get_success_url(self): stepper = self.kwargs.get('stepper') source_pk = self.pk if stepper != 'stepper': messages.success(self.request, "Phase Created") if stepper != 'stepper': return reverse_lazy('phases') else: return reverse_lazy('successful', kwargs={'step': 'phases', 'pk': source_pk}) def get_context_data(self, **kwargs): context = super(NewPhaseView, self).get_context_data(**kwargs) context['stepper'] = self.kwargs.get('stepper') return context class EditPhaseView(LoginRequiredMixin, UpdateView): model = Phase form_class = PhaseForm template_name = 'create-edit-phase.html' def form_valid(self, form): form.instance.user = self.request.user source = form.save() self.pk = source.pk return super(EditPhaseView, self).form_valid(form) def get_success_url(self): stepper = self.kwargs.get('stepper') source_pk = self.pk if stepper != 'stepper': messages.success(self.request, "Phase Edited") if stepper != 'stepper': return reverse_lazy('phases') else: return reverse_lazy('successful', kwargs={'step': 'phases', 'pk': source_pk}) def get_context_data(self, **kwargs): context = super(EditPhaseView, self).get_context_data(**kwargs) context['stepper'] = self.kwargs.get('stepper') return context class DeletePhaseView(LoginRequiredMixin, DeleteView): model = Phase template_name = "delete-phase.html" def get_success_url(self): messages.success(self.request, "Phase deleted") return reverse_lazy('phases') class SuccessfulView(LoginRequiredMixin, TemplateView): template_name = "successful.html" def get_context_data(self, **kwargs): context = super(SuccessfulView, self).get_context_data(**kwargs) context['step'] = self.kwargs.get('step') context['pk'] = self.kwargs.get('pk') return context
62985
import aiohttp import asyncio import os import sys import time import random import contextlib seaweedfs_url = 'http://127.0.0.1:9081' def random_content(): return os.urandom(random.randint(1, 10) * 1024) def random_fid(volumes): volume_id = random.choice(volumes) file_key = random.randint(0, 1 << 24) file_key_hex = '%x' % file_key cookie_hex = '00000000' return f'{volume_id},{file_key_hex}{cookie_hex}' class Reporter: def __init__(self): self.items = [] @contextlib.contextmanager def report(self): t0 = time.monotonic() yield value = time.monotonic() - t0 self.items.append(value * 1000) def summary(self, concurrency): n = len(self.items) s = sum(self.items) avg = s / n if n > 0 else 0 s_items = list(sorted(self.items)) result = [f'avg={avg:.1f}'] p_s = [0.5, 0.8, 0.9, 0.95, 0.99] if n > 0: for p in p_s: v = s_items[int(n * p)] result.append('p{}={:.1f}'.format(int(p * 100), v)) qps = (1000 / avg) * concurrency result.append(f'qps={qps:.0f}') print(' '.join(result)) self.items = [] READER_REPORTER = Reporter() WRITER_REPORTER = Reporter() async def put(session, fid: str, content: bytes): url = f'{seaweedfs_url}/{fid}' data = aiohttp.FormData() data.add_field( 'file', content, content_type='application/gzip' ) async with session.put(url, data=data) as response: result = await response.read() return response.status, result async def get(session, fid: str): url = f'{seaweedfs_url}/{fid}' async with session.get(url) as response: result = await response.read() return response.status, result async def reader_task(session, fid_s, n): fid_s = list(fid_s) random.shuffle(fid_s) for fid in fid_s: with READER_REPORTER.report(): status, r = await get(session, fid) assert status == 200, (status, r) async def writer_task(session, fid_s, n): fid_s = list(fid_s) random.shuffle(fid_s) for fid in fid_s: content = random_content() with WRITER_REPORTER.report(): status, r = await put(session, fid, content) assert status in (200, 201, 204), (status, r) async def benchmark(session, num_volume, num_fid, num_round, concurrency): volumes = list(range(20, 20 + num_volume)) fid_s_s = [] for i in range(concurrency): fid_s = [random_fid(volumes) for _ in range(num_fid // concurrency)] fid_s_s.append(fid_s) loop = asyncio.get_event_loop() for n in range(num_round): print(f'{n} ' + '-' * 60) writer_tasks = [] for i in range(concurrency): t = writer_task(session, fid_s_s[i], num_round) writer_tasks.append(loop.create_task(t)) await asyncio.gather(*writer_tasks) WRITER_REPORTER.summary(concurrency) reader_tasks = [] for i in range(concurrency): t = reader_task(session, fid_s_s[i], num_round) reader_tasks.append(loop.create_task(t)) await asyncio.gather(*reader_tasks) READER_REPORTER.summary(concurrency) async def async_main(num_volume, concurrency): print(f'num_volume={num_volume} concurrency={concurrency}') async with aiohttp.ClientSession() as session: await benchmark( session, num_fid=1000, num_round=3, num_volume=num_volume, concurrency=concurrency, ) def main(): num_volume = int(sys.argv[1]) concurrency = int(sys.argv[2]) loop = asyncio.get_event_loop() loop.run_until_complete(async_main(num_volume, concurrency)) if __name__ == "__main__": main()
63039
import pytest from metagraph.tests.util import default_plugin_resolver from . import RoundTripper from metagraph.plugins.python.types import PythonNodeSetType from metagraph.plugins.numpy.types import NumpyNodeSet, NumpyNodeMap import numpy as np def test_nodeset_roundtrip(default_plugin_resolver): rt = RoundTripper(default_plugin_resolver) ns = {2, 3, 55} rt.verify_round_trip(ns) def test_np_nodemap_2_np_nodeset(default_plugin_resolver): dpr = default_plugin_resolver x = NumpyNodeMap(np.array([00, 10, 20])) assert len(x) == 3 intermediate = NumpyNodeSet(np.array([0, 1, 2])) y = dpr.translate(x, NumpyNodeSet) dpr.assert_equal(y, intermediate) def test_np_nodeset_2_py_nodeset(default_plugin_resolver): dpr = default_plugin_resolver x = NumpyNodeSet(np.array([9, 5, 1])) assert len(x) == 3 intermediate = {5, 1, 9} y = dpr.translate(x, PythonNodeSetType) dpr.assert_equal(y, intermediate) def test_py_nodeset_2_np_nodeset(default_plugin_resolver): dpr = default_plugin_resolver x = {2, 1, 5} assert len(x) == 3 intermediate = NumpyNodeSet.from_mask( np.array([False, True, True, False, False, True]) ) y = dpr.translate(x, NumpyNodeSet) dpr.assert_equal(y, intermediate)
63068
from enum import Enum from typing import Dict, Any from jwt.algorithms import get_default_algorithms from cryptography.hazmat._types import ( _PRIVATE_KEY_TYPES, _PUBLIC_KEY_TYPES, ) # custom types PrivateKey = _PRIVATE_KEY_TYPES PublicKey = _PUBLIC_KEY_TYPES JWTClaims = Dict[str, Any] class EncryptionKeyFormat(str, Enum): """ represent the supported formats for storing encryption keys. - PEM (https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail) - SSH (RFC4716) or short format (RFC4253, section-6.6, explained here: https://coolaj86.com/articles/the-ssh-public-key-format/) - DER (https://en.wikipedia.org/wiki/X.690#DER_encoding) """ pem = 'pem' ssh = 'ssh' der = 'der' # dynamic enum because pyjwt does not define one # see: https://pyjwt.readthedocs.io/en/stable/algorithms.html for possible values JWTAlgorithm = Enum('JWTAlgorithm', [(k,k) for k in get_default_algorithms().keys()])
63073
import board import busio import digitalio import time import adafruit_requests as requests from adafruit_wiznet5k.adafruit_wiznet5k import * import adafruit_wiznet5k.adafruit_wiznet5k_socket as socket from adafruit_wiznet5k.adafruit_wiznet5k_ntp import NTP import adafruit_wiznet5k.adafruit_wiznet5k_dns as dns days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday") ##SPI0 SPI0_SCK = board.GP18 SPI0_TX = board.GP19 SPI0_RX = board.GP16 SPI0_CSn = board.GP17 ##reset W5x00_RSTn = board.GP20 print("Wiznet5k NTP Client ( DHCP)") # Setup your network configuration below # random MAC, later should change this value on your vendor ID MY_MAC = (0x00, 0x01, 0x02, 0xFF, 0xFF, 0xFF) IP_ADDRESS = (192, 168, 1, 11) SUBNET_MASK = (255, 255, 255, 0) GATEWAY_ADDRESS = (192, 168, 1, 1) DNS_SERVER = (8, 8, 8, 8) port = 5000 ntp_server_port= 123 led = digitalio.DigitalInOut(board.GP25) led.direction = digitalio.Direction.OUTPUT ethernetRst = digitalio.DigitalInOut(W5x00_RSTn) ethernetRst.direction = digitalio.Direction.OUTPUT # For Adafruit Ethernet FeatherWing cs = digitalio.DigitalInOut(SPI0_CSn) # cs = digitalio.DigitalInOut(board.D5) spi_bus = busio.SPI(SPI0_SCK, MOSI=SPI0_TX, MISO=SPI0_RX) # Reset W5500 first ethernetRst.value = False time.sleep(1) ethernetRst.value = True # Initialize ethernet interface without DHCP #eth = WIZNET5K(spi_bus, cs, is_dhcp=False, mac=MY_MAC, debug=False) # Initialize ethernet interface with DHCP eth = WIZNET5K(spi_bus, cs, is_dhcp=True, mac=MY_MAC, debug=False) print("Chip Version:", eth.chip) print("MAC Address:", [hex(i) for i in eth.mac_address]) print("My IP address is:", eth.pretty_ip(eth.ip_address)) # Initialize a socket for our server #socket.set_interface(eth) # Set network configuration #eth.ifconfig = (IP_ADDRESS, SUBNET_MASK, GATEWAY_ADDRESS, DNS_SERVER) #NTP ntpserver_ip = eth.pretty_ip(eth.get_host_by_name("time.google.com")) print("NTP : %s" % ntpserver_ip) #DNS Domain ntp = NTP(iface = eth, ntp_address =ntpserver_ip ,utc=9) cal = ntp.get_time() print("The date is %s %d/%d/%d" %(days[cal.tm_wday], cal.tm_mday,cal.tm_mon,cal.tm_year)) print("The time is %d:%02d:%02d" %(cal.tm_hour,cal.tm_min,cal.tm_sec))
63087
import torch from torch import nn, distributed as dist from torch.nn import functional as F class LabelSmoothingLoss(nn.Module): def __init__(self, ignore_index, eps=0.1, reduction="mean"): super().__init__() self.ignore_index = ignore_index self.eps = eps self.reduction = reduction def forward(self, output, target): n_class = output.shape[-1] output = F.log_softmax(output, -1) if self.ignore_index > -1: n_class -= 1 true_dist = torch.full_like(output, self.eps / n_class) true_dist.scatter_( 1, target.data.unsqueeze(1), 1 - self.eps + self.eps / n_class ) if self.ignore_index > -1: true_dist[:, self.ignore_index] = 0 padding_mat = target.data == self.ignore_index mask = torch.nonzero(padding_mat, as_tuple=False) if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) loss = F.kl_div( output, true_dist.detach(), reduction="sum" if self.reduction != "none" else "none", ) if self.reduction == "none": loss = loss.sum(1) elif self.reduction == "mean": if self.ignore_index > -1: loss = loss / (target.shape[0] - padding_mat.sum().item()) else: loss = loss / target.shape[0] return loss class MixLoss(nn.Module): def __init__(self, eps=0, reduction="mean"): super().__init__() self.eps = eps self.reduction = reduction def forward(self, output, target1, target2, interpolation): n_class = output.shape[-1] output = F.log_softmax(output, -1) true_dist = torch.full_like(output, self.eps / n_class) true1 = true_dist.scatter( 1, target1.data.unsqueeze(1), 1 - self.eps + self.eps / n_class ) true2 = true_dist.scatter( 1, target2.data.unsqueeze(1), 1 - self.eps + self.eps / n_class ) inter = torch.as_tensor(interpolation).unsqueeze(-1) true_dist = inter * true1 + (1 - inter) * true2 loss = F.kl_div( output, true_dist.detach(), reduction="sum" if self.reduction != "none" else "none", ) if self.reduction == "none": loss = loss.sum(1) elif self.reduction == "mean": loss = loss / target1.shape[0] return loss class DINOLoss(nn.Module): def __init__( self, out_dim, n_crop, warmup_teacher_temperature, teacher_temperature, warmup_teacher_epoch, n_epoch, student_temperature=0.1, center_momentum=0.9, ): super().__init__() self.student_temperature = student_temperature self.center_momentum = center_momentum self.n_crop = n_crop self.register_buffer("center", torch.zeros(1, out_dim)) self.teacher_temperature_schedule = torch.cat( ( torch.linspace( warmup_teacher_temperature, teacher_temperature, warmup_teacher_epoch, ), torch.ones(n_epoch - warmup_teacher_epoch) * teacher_temperature, ) ).tolist() def forward(self, student_output, teacher_output, epoch): student_out = student_output / self.student_temperature student_out = student_out.chunk(self.n_crop) temperature = self.teacher_temperature_schedule[epoch] teacher_out = torch.softmax((teacher_output - self.center) / temperature, -1) teacher_out = teacher_out.detach().chunk(2) total_loss = 0 n_loss_term = 0 for i_q, q in enumerate(teacher_out): for v in range(len(student_out)): if v == i_q: continue loss = torch.sum(-q * torch.log_softmax(student_out[v], -1), -1) total_loss += loss.mean() n_loss_term += 1 total_loss /= n_loss_term self.update_center(teacher_output) return total_loss @torch.no_grad() def update_center(self, teacher_out): batch_center = torch.sum(teacher_out, dim=0, keepdim=True) dist.all_reduce(batch_center) batch_center = batch_center / (len(teacher_out) * dist.get_world_size()) self.center.mul_(self.center_momentum).add_( batch_center, alpha=1 - self.center_momentum )
63088
import random import torch import time import os import numpy as np from torch.utils.data import Dataset from functools import partial from .utils import dataset_to_dataloader, max_io_workers from pytorch_transformers.tokenization_bert import BertTokenizer # the following will be shared on other datasets too if not, they should become part of the ListeningDataset # maybe make SegmentedScanDataset with only static functions and then inherit. from .utils import check_segmented_object_order, sample_scan_object, pad_samples, objects_bboxes from .utils import instance_labels_of_context, mean_rgb_unit_norm_transform from ...data_generation.nr3d import decode_stimulus_string class ListeningDataset(Dataset): def __init__(self, references, scans, vocab, max_seq_len, points_per_object, max_distractors, class_to_idx=None, object_transformation=None, visualization=False, feat2dtype=None, num_class_dim=525, evalmode=False): self.references = references self.scans = scans self.vocab = vocab self.max_seq_len = max_seq_len self.points_per_object = points_per_object self.max_distractors = max_distractors self.max_context_size = self.max_distractors + 1 # to account for the target. self.class_to_idx = class_to_idx self.visualization = visualization self.object_transformation = object_transformation self.feat2dtype = feat2dtype self.max_2d_view = 5 self.num_class_dim = num_class_dim self.evalmode = evalmode self.bert_tokenizer = BertTokenizer.from_pretrained( 'bert-base-uncased') assert self.bert_tokenizer.encode(self.bert_tokenizer.pad_token) == [0] if not check_segmented_object_order(scans): raise ValueError def __len__(self): return len(self.references) def get_reference_data(self, index): ref = self.references.loc[index] scan = self.scans[ref['scan_id']] target = scan.three_d_objects[ref['target_id']] tokens = np.array(self.vocab.encode(ref['tokens'], self.max_seq_len), dtype=np.long) is_nr3d = ref['dataset'] == 'nr3d' return scan, target, tokens, ref['tokens'], is_nr3d def prepare_distractors(self, scan, target): target_label = target.instance_label # First add all objects with the same instance-label as the target distractors = [o for o in scan.three_d_objects if (o.instance_label == target_label and (o != target))] # Then all more objects up to max-number of distractors already_included = {target_label} clutter = [o for o in scan.three_d_objects if o.instance_label not in already_included] np.random.shuffle(clutter) distractors.extend(clutter) distractors = distractors[:self.max_distractors] np.random.shuffle(distractors) return distractors def __getitem__(self, index): res = dict() scan, target, tokens, text_tokens, is_nr3d = self.get_reference_data(index) ## BERT tokenize token_inds = torch.zeros(self.max_seq_len, dtype=torch.long) indices = self.bert_tokenizer.encode( ' '.join(text_tokens), add_special_tokens=True) indices = indices[:self.max_seq_len] token_inds[:len(indices)] = torch.tensor(indices) token_num = torch.tensor(len(indices), dtype=torch.long) # Make a context of distractors context = self.prepare_distractors(scan, target) # Add target object in 'context' list target_pos = np.random.randint(len(context) + 1) context.insert(target_pos, target) # sample point/color for them samples = np.array([sample_scan_object(o, self.points_per_object) for o in context]) # mark their classes res['class_labels'] = instance_labels_of_context(context, self.max_context_size, self.class_to_idx) if self.object_transformation is not None: samples, offset = self.object_transformation(samples) res['obj_offset'] = np.zeros((self.max_context_size, offset.shape[1])).astype(np.float32) res['obj_offset'][:len(offset),:] = offset.astype(np.float32) res['context_size'] = len(samples) # take care of padding, so that a batch has same number of N-objects across scans. res['objects'] = pad_samples(samples, self.max_context_size) # Get a mask indicating which objects have the same instance-class as the target. target_class_mask = np.zeros(self.max_context_size, dtype=np.bool) target_class_mask[:len(context)] = [target.instance_label == o.instance_label for o in context] res['target_class'] = self.class_to_idx[target.instance_label] res['target_pos'] = target_pos res['target_class_mask'] = target_class_mask res['tokens'] = tokens res['token_inds'] = token_inds.numpy().astype(np.int64) res['token_num'] = token_num.numpy().astype(np.int64) res['is_nr3d'] = is_nr3d if self.visualization: distrators_pos = np.zeros((6)) # 6 is the maximum context size we used in dataset collection object_ids = np.zeros((self.max_context_size)) j = 0 for k, o in enumerate(context): if o.instance_label == target.instance_label and o.object_id != target.object_id: distrators_pos[j] = k j += 1 for k, o in enumerate(context): object_ids[k] = o.object_id res['utterance'] = self.references.loc[index]['utterance'] res['stimulus_id'] = self.references.loc[index]['stimulus_id'] res['distrators_pos'] = distrators_pos res['object_ids'] = object_ids res['target_object_id'] = target.object_id if self.evalmode: return res # load cached 2D context information if os.path.isfile('../data/scannet_frames_25k_gtobjfeat_aggregate/%s.npy'%scan.scan_id): context_2d = np.load('../data/scannet_frames_25k_gtobjfeat_aggregate/%s.npy'%scan.scan_id,allow_pickle=True,encoding='latin1') objfeat_2d = context_2d.item()['obj_feat'] bbox_2d = context_2d.item()['obj_coord'] bboxsize_2d = context_2d.item()['obj_size'] obj_depth = context_2d.item()['obj_depth'] campose_2d = context_2d.item()['camera_pose'] ins_id_2d = context_2d.item()['instance_id'] if (self.feat2dtype.replace('3D',''))=='ROI': featdim = 2048 elif (self.feat2dtype.replace('3D',''))=='clsvec': featdim = self.num_class_dim elif (self.feat2dtype.replace('3D',''))=='clsvecROI': featdim = 2048+self.num_class_dim feat_2d = np.zeros((self.max_context_size, featdim)).astype(np.float32) coords_2d = np.zeros((self.max_context_size, 4+12)).astype(np.float32) selected_2d_idx = 0 selected_context_id = [o.object_id+1 for o in context] ## backbround included in cache, so +1 ## only for creating tensor of the correct size selected_objfeat_2d = objfeat_2d[selected_context_id,selected_2d_idx,:] selected_bbox_2d = bbox_2d[selected_context_id,selected_2d_idx,:] selected_bboxsize_2d = bboxsize_2d[selected_context_id,selected_2d_idx] selected_obj_depth = obj_depth[selected_context_id,selected_2d_idx] selected_campose_2d = campose_2d[selected_context_id,selected_2d_idx,:] selected_ins_id_2d = ins_id_2d[selected_context_id,selected_2d_idx] ## Fill in randomly selected view of 2D features for ii in range(len(selected_context_id)): cxt_id = selected_context_id[ii] view_id = random.randint(0, max(0,int((ins_id_2d[cxt_id,:]!=0).astype(np.float32).sum())-1)) selected_objfeat_2d[ii,:] = objfeat_2d[cxt_id,view_id,:] selected_bbox_2d[ii,:] = bbox_2d[cxt_id,view_id,:] selected_bboxsize_2d[ii] = bboxsize_2d[cxt_id,view_id] selected_obj_depth[ii] = obj_depth[cxt_id,view_id] selected_campose_2d[ii,:] = campose_2d[cxt_id,view_id,:] if self.feat2dtype!='clsvec': feat_2d[:len(selected_context_id),:2048] = selected_objfeat_2d for ii in range(len(res['class_labels'])): if self.feat2dtype=='clsvec': feat_2d[ii,res['class_labels'][ii]] = 1. if self.feat2dtype=='clsvecROI': feat_2d[ii,2048+res['class_labels'][ii]] = 1. coords_2d[:len(selected_context_id),:] = np.concatenate([selected_bbox_2d, selected_campose_2d[:,:12]],axis=-1) coords_2d[:,0], coords_2d[:,2] = coords_2d[:,0]/1296., coords_2d[:,2]/1296. ## norm by image size coords_2d[:,1], coords_2d[:,3] = coords_2d[:,1]/968., coords_2d[:,3]/968. else: print('please prepare the cached 2d feature') exit(0) res['feat_2d'] = feat_2d res['coords_2d'] = coords_2d return res def make_data_loaders(args, referit_data, vocab, class_to_idx, scans, mean_rgb, seed=None): n_workers = args.n_workers if n_workers == -1: n_workers = max_io_workers() data_loaders = dict() is_train = referit_data['is_train'] splits = ['train', 'test'] object_transformation = partial(mean_rgb_unit_norm_transform, mean_rgb=mean_rgb, unit_norm=args.unit_sphere_norm) for split in splits: mask = is_train if split == 'train' else ~is_train d_set = referit_data[mask] d_set.reset_index(drop=True, inplace=True) max_distractors = args.max_distractors if split == 'train' else args.max_test_objects - 1 ## this is a silly small bug -> not the minus-1. # if split == test remove the utterances of unique targets if split == 'test': def multiple_targets_utterance(x): _, _, _, _, distractors_ids = decode_stimulus_string(x.stimulus_id) return len(distractors_ids) > 0 multiple_targets_mask = d_set.apply(multiple_targets_utterance, axis=1) d_set = d_set[multiple_targets_mask] d_set.reset_index(drop=True, inplace=True) print("length of dataset before removing non multiple test utterances {}".format(len(d_set))) print("removed {} utterances from the test set that don't have multiple distractors".format( np.sum(~multiple_targets_mask))) print("length of dataset after removing non multiple test utterances {}".format(len(d_set))) assert np.sum(~d_set.apply(multiple_targets_utterance, axis=1)) == 0 dataset = ListeningDataset(references=d_set, scans=scans, vocab=vocab, max_seq_len=args.max_seq_len, points_per_object=args.points_per_object, max_distractors=max_distractors, class_to_idx=class_to_idx, object_transformation=object_transformation, visualization=args.mode == 'evaluate', feat2dtype=args.feat2d, num_class_dim = 525 if '00' in args.scannet_file else 608, evalmode=(args.mode=='evaluate')) seed = seed if split == 'test': seed = args.random_seed data_loaders[split] = dataset_to_dataloader(dataset, split, args.batch_size, n_workers, pin_memory=True, seed=seed) return data_loaders
63135
from __future__ import with_statement # this is to work with python2.5 import terapyps from pyps import workspace workspace.delete("convol3x3") with terapyps.workspace("convol3x3.c", name="convol3x3", deleteOnClose=False,recoverInclude=False) as w: for f in w.fun: f.terapix_code_generation(debug=True) # w.compile(terapyps.Maker())
63144
from Treap import Treap from math import log class IKS: def __init__(self): self.treap = None self.n = [0, 0] @staticmethod def KSThresholdForPValue(pvalue, N): '''Threshold for KS Test given a p-value Args: pval (float): p-value. N (int): the size of the samples. Returns: Threshold t to compare groups 0 and 1. The null-hypothesis is discarded if KS() > t. ''' ca = (-0.5 * log(pvalue)) ** 0.5 return ca * (2.0 * N / N ** 2) @staticmethod def CAForPValue(pvalue): '''ca for KS Test given a p-value Args: pval (float): p-value. Returns: Threshold the "ca" that can be used to compute a threshold for KS(). ''' return (-0.5 * log(pvalue)) ** 0.5 def KS(self): '''Kolmogorov-Smirnov statistic. Both groups must have the same number of observations. Returns: The KS statistic D. ''' assert(self.n[0] == self.n[1]) N = self.n[0] if N == 0: return 0 return max(self.treap.max_value, -self.treap.min_value) / N def Kuiper(self): '''Kuiper statistic. Both groups must have the same number of observations. Returns: The Kuiper statistic. ''' assert(self.n[0] == self.n[1]) N = self.n[0] if N == 0: return 0 return (self.treap.max_value - self.treap.min_value) / N def Add(self, obs, group): '''Insert new observation into one of the groups. Args: obs: the value of the obseration. Tip: a tuple (actual value, random value) is recommended when there is overlap between groups or if values are not guaranteed to be mostly unique. group (int): which group the observation belongs to. Must be either 0 or 1. ''' group = 0 if group == 2 else group assert(group == 0 or group == 1) key = (obs, group) self.n[group] += 1 left, left_g, right, val = None, None, None, None left, right = Treap.SplitKeepRight(self.treap, key) left, left_g = Treap.SplitGreatest(left) val = 0 if left_g is None else left_g.value left = Treap.Merge(left, left_g) right = Treap.Merge(Treap(key, val), right) Treap.SumAll(right, 1 if group == 0 else -1) self.treap = Treap.Merge(left, right) def Remove(self, obs, group): '''Remove observation from one of the groups. Args: obs: the value of the obseration. Must be identical to a previously inserted observation (including the random element of a tuple, if this was the case). group (int): which group the observation belongs to. Must be either 0 or 1. ''' group = 0 if group == 2 else group assert(group == 0 or group == 1) key = (obs, group) self.n[group] -= 1 left, right, right_l = None, None, None left, right = Treap.SplitKeepRight(self.treap, key) right_l, right = Treap.SplitSmallest(right) if right_l is not None and right_l.key == key: Treap.SumAll(right, -1 if group == 0 else 1) else: right = Treap.Merge(right_l, right) self.treap = Treap.Merge(left, right) def Test(self, ca = 1.95): '''Test whether the reference and sliding window follow the different probability distributions according to KS Test. Args: ca: ca is a parameter used to calculate the threshold for the Kolmogorov-Smirnov statistic. The default value corresponds to a p-value of 0.001. Use IKS.CAForPValue to obtain an appropriate ca. Returns: True if we **reject** the null-hypothesis that states that both windows have the same distribution. In other words, we can consider that the windows have now different distributions. ''' ca = ca or 1.95 n = self.n[0] return self.KS() > ca * (2 * n / n ** 2) ** 0.5 IKS.AddObservation = IKS.Add IKS.RemoveObservation = IKS.Remove
63156
import sys import time from sdk import * addr_list = addresses() _pid = "id_20020" _proposer = addr_list[0] _initial_funding = (int("2") * 10 ** 9) _each_funding = (int("3") * 10 ** 9) _funding_goal_general = (int("10") * 10 ** 9) _prop = Proposal(_pid, "general", "proposal for fund", "proposal headline", _proposer, _initial_funding) if __name__ == "__main__": # create proposal _prop.send_create() time.sleep(1) encoded_pid = _prop.pid # check proposal state check_proposal_state(encoded_pid, ProposalOutcomeInProgress, ProposalStatusFunding) # 1st fund fund_proposal(encoded_pid, _each_funding, addr_list[0]) check_proposal_state(encoded_pid, ProposalOutcomeInProgress, ProposalStatusFunding) # 2nd fund fund_proposal(encoded_pid, _each_funding, addr_list[1]) check_proposal_state(encoded_pid, ProposalOutcomeInProgress, ProposalStatusFunding) # 3rd fund fund_proposal(encoded_pid, _each_funding, addr_list[2]) check_proposal_state(encoded_pid, ProposalOutcomeInProgress, ProposalStatusVoting) print bcolors.OKGREEN + "#### Test fund proposals succeed" + bcolors.ENDC print ""
63194
from torch import nn def init_weight(weight, init, init_range, init_std): if init == "uniform": nn.init.uniform_(weight, -init_range, init_range) elif init == "normal": nn.init.normal_(weight, 0.0, init_std) def init_bias(bias): nn.init.constant_(bias, 0.0) def weights_init(m, init, init_range, init_std, proj_init_std): classname = m.__class__.__name__ if classname.find("Linear") != -1: if hasattr(m, "weight") and m.weight is not None: init_weight(m.weight, init, init_range, init_std) if hasattr(m, "bias") and m.bias is not None: init_bias(m.bias) elif classname.find("Embedding") != -1: if hasattr(m, "weight"): init_weight(m.weight, init, init_range, init_std) elif classname.find("LayerNorm") != -1: if hasattr(m, "weight"): nn.init.normal_(m.weight, 1.0, init_std) if hasattr(m, "bias") and m.bias is not None: init_bias(m.bias) else: if hasattr(m, "r_emb"): init_weight(m.r_emb, init, init_range, init_std) if hasattr(m, "r_w_bias"): init_weight(m.r_w_bias, init, init_range, init_std) if hasattr(m, "r_r_bias"): init_weight(m.r_r_bias, init, init_range, init_std) if hasattr(m, "r_bias"): init_bias(m.r_bias)
63229
from .decorators import endpoint from ..definitions.types import InstrumentName from ..endpoints.annotations import LongClientExtensions from ..endpoints.annotations import LongUnits from ..endpoints.annotations import ShortClientExtensions from ..endpoints.annotations import ShortUnits from ..endpoints.position import * from ..definitions.helpers import sentinel __all__ = ['PositionInterface'] class PositionInterface(object): @endpoint(GETPositions) def list_positions(self): """ List all Positions for an Account. The Positions returned are for every instrument that has had a position during the lifetime of an the Account. Returns: status [200] :class:`~async_v20.interface.response.Response` (positions=( :class:`~async_v20.Position`, ...), lastTransactionID= :class:`~async_v20.TransactionID`) """ pass @endpoint(GETOpenPositions) def list_open_positions(self): """ List all open Positions for an Account. An open Position is a Position in an Account that currently has a Trade opened for it. Returns: status [200] :class:`~async_v20.interface.response.Response` (positions=( :class:`~async_v20.Position`, ...), lastTransactionID= :class:`~async_v20.TransactionID`) """ pass @endpoint(GETPositionsInstrument) def get_position(self, instrument: InstrumentName = sentinel): """ Get the details of a single Instrument's Position in an Account. The Position may by open or not. Args: instrument: :class:`~async_v20.InstrumentName` Name of the Instrument Returns: status [200] :class:`~async_v20.interface.response.Response` (position= :class:`~async_v20.Position`, lastTransactionID= :class:`~async_v20.TransactionID`) """ pass @endpoint(PUTPositionsInstrumentClose) def close_position(self, instrument: InstrumentName = sentinel, long_units: LongUnits = sentinel, long_client_extensions: LongClientExtensions = sentinel, short_units: ShortUnits = sentinel, short_client_extensions: ShortClientExtensions = sentinel): """ Closeout the open Position for a specific instrument in an Account. .. note:: - Either long_units or short_units **MUST** be specified. - Do **NOT** specify `ALL` for `long_units` **or** `short_units` if there are no units to close. Args: instrument: :class:`~async_v20.InstrumentName` Name of the Instrument long_units: :class:`~async_v20.endpoints.annotations.LongUnits` Indication of how much of the long Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the long position to close using a PositionCloseout MarketOrder. The units specified must always be positive. long_client_extensions: :class:`~async_v20.endpoints.annotations.LongClientExtensions` The client extensions to add to the MarketOrder used to close the long position. short_units: :class:`~async_v20.endpoints.annotations.ShortUnits` Indication of how much of the short Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the short position to close using a PositionCloseout MarketOrder. The units specified must always be positive. short_client_extensions: :class:`~async_v20.endpoints.annotations.ShortClientExtensions` The client extensions to add to the MarketOrder used to close the short position. Returns: status [200] :class:`~async_v20.interface.response.Response` (longOrderCreateTransaction= :class:`~async_v20.MarketOrderTransaction`, longOrderFillTransaction= :class:`~async_v20.OrderFillTransaction`, longOrderCancelTransaction= :class:`~async_v20.OrderCancelTransaction`, shortOrderCreateTransaction= :class:`~async_v20.MarketOrderTransaction`, shortOrderFillTransaction= :class:`~async_v20.OrderFillTransaction`, shortOrderCancelTransaction= :class:`~async_v20.OrderCancelTransaction`, relatedTransactionIDs=( :class:`~async_v20.TransactionID`, ...), lastTransactionID= :class:`~async_v20.TransactionID`) status [400] :class:`~async_v20.interface.response.Response` (longOrderRejectTransaction= :class:`~async_v20.MarketOrderRejectTransaction`, shortOrderRejectTransaction= :class:`~async_v20.MarketOrderRejectTransaction`, relatedTransactionIDs=( :class:`~async_v20.TransactionID`, ...), lastTransactionID= :class:`~async_v20.TransactionID`, errorCode= :class:`~builtins.str`, errorMessage= :class:`~builtins.str`) status [401] :class:`~async_v20.interface.response.Response` (longOrderRejectTransaction= :class:`~async_v20.MarketOrderRejectTransaction`, shortOrderRejectTransaction= :class:`~async_v20.MarketOrderRejectTransaction`, relatedTransactionIDs=( :class:`~async_v20.TransactionID`, ...), lastTransactionID= :class:`~async_v20.TransactionID`, errorCode= :class:`~builtins.str`, errorMessage= :class:`~builtins.str`) """ pass
63250
from ...utilities import db, moocdb_utils from common import * def GetForums(vars): output_items = [] resource_type_id = moocdb_utils.GetResourceTypeMap(vars)['forum'] # course_doc = vars['resource_list'][0] # discussion_topics = course_doc['metadata']['discussion_topics'] # src_forums = [{'id': discussion_topics[name]['id'], 'name': name} for name in discussion_topics.keys()] # for forum in src_forums: # output_items.append({ # 'original_id': forum['id'], # 'resource_uri': forum['id'], # 'resource_name': forum['name'], # 'resource_parent_original_id': None, # 'resource_child_number': None, # 'resource_type_id': resource_type_id, # }) output_items.append({ 'original_id': 'openedx_forum', 'resource_uri': None, 'resource_name': 'Forum', 'resource_parent_original_id': None, 'resource_child_number': None, 'resource_type_id': resource_type_id, }) return output_items
63321
print '... Importing simuvex/engines/vex/expressions/get.py ...' from angr.engines.vex.expressions.get import *
63335
import csv from site_crawler.cleaner.cleaner import Cleaner class Dataset_Builder: def __init__(self): self.cleaner = Cleaner() self.create_csv_headers() def create_csv_headers(self): csv_files = [ 'negative_sentiment', 'positive_sentiment', 'dataset_sentiment' ] for csv_file in csv_files: with open('../data/dataset/csv/' + csv_file + '.csv', 'a') as f: writer = csv.writer(f) writer.writerow(["text", "label"]) def write_tweet_txt(self, sentiment, name): file = open('../data/dataset/txt/'+name+ '.txt', 'a') line = sentiment.strip() cleaned_line = self.cleaner.clean_tweets(line) file.write(cleaned_line) file.write('\n') def write_tweet_csv(self, sentiment, name, polarity): with open('../data/dataset/csv/' + name + '.csv', 'a') as f: writer = csv.writer(f) line = sentiment.strip() cleaned_line = self.cleaner.clean_tweets(line) writer.writerow([cleaned_line,polarity, ]) pass def extract_sentiment_csv(self,csv_name): with open('../data/twitter_data/labeled_data/unlabeled_'+csv_name+'.csv', newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: # negative if row['label'] == '-1': self.write_tweet_txt(row['text'].strip(), 'negative_sentiment.txt') self.write_tweet_csv(row['text'].strip(), 'negative_sentiment','-1') self.write_tweet_csv(row['text'].strip(), 'dataset_sentiment','-1') # positive elif row['label'] == '1': self.write_tweet_txt(row['text'].strip(), 'positive_sentiment') self.write_tweet_csv(row['text'].strip(), 'positive_sentiment', '1') self.write_tweet_csv(row['text'].strip(), 'dataset_sentiment', '1') # neutral / irrelevant elif row['label'] == '0': self.write_tweet_txt(row['text'].strip(), 'neutral') if __name__ == "__main__": D_builder = Dataset_Builder() tweets_csvs = [ 'Business_KE', 'MadeItInAfrica', 'IFCAfrica', 'africareview', 'AfDB_Group', '_AfricanUnion', 'Taifa_Leo', 'BD_Africa', 'RadioCitizenFM', 'citizentvkenya', 'KTNKenya', 'K24Tv', 'StandardKenya', 'TheStarKenya', 'radiomaisha', 'KBCChannel1', 'CapitalFMKenya', 'African_Markets', 'Africafinancial', 'InvestInAfrica', 'AfricanInvestor', 'forbesafrica', 'cnbcafrica', 'BBCAfrica', 'CNNAfrica', 'allafrica', 'ReutersAfrica', 'VenturesAfrica', 'BBGAfrica', 'GhettoRadio895', 'kenyanwalstreet', 'SokoAnalyst', 'NSEKenya', 'wazua' ] for tweets_csv in tweets_csvs: D_builder.extract_sentiment_csv(tweets_csv)
63356
import os import pytest import yaml from gcasc.utils.yaml_include import YamlIncluderConstructor from .helpers import read_file, read_yaml YamlIncluderConstructor.add_to_loader_class( loader_class=yaml.FullLoader, base_dir=os.path.dirname(os.path.realpath(__file__)) + "/data", ) @pytest.fixture() def file1(): return read_yaml("yaml_include_f1.yml") @pytest.fixture() def file2(): return read_yaml("yaml_include_f2.yml") @pytest.fixture() def file_txt(): return read_file("yaml_include_txt.md") def test_files_included_into_yaml(file1, file2, file_txt): # given file = "yaml_include.yml" # when data = read_yaml(file) # then assert data["inc1"] == file1 assert data["inc2"] == [file2, file_txt]
63441
import tensorflow as tf from dltk.core.activations import leaky_relu import numpy as np def test_leaky_relu(): test_alpha = tf.constant(0.1) test_inp_1 = tf.constant(1.) test_inp_2 = tf.constant(-1.) test_relu_1 = leaky_relu(test_inp_1, test_alpha) test_relu_2 = leaky_relu(test_inp_2, test_alpha) with tf.Session() as s: out_1 = s.run(test_relu_1) assert np.isclose(out_1, 1.), \ 'Got {} but expected {}'.format(out_1, 1.) out_2 = s.run(test_relu_2) assert np.isclose(out_2, -0.1), \ 'Got {} but expected {}'.format(out_2, -0.1)
63453
def test_get_symbols(xtb_client): symbols = list(xtb_client.get_all_symbols()) assert len(symbols) > 0 def test_get_balance(xtb_client): balance = xtb_client.get_balance() assert balance.get('balance') is not None def test_ping(xtb_client): response = xtb_client.ping() assert response
63460
import argparse import penman from amrlib.evaluate.smatch_enhanced import compute_smatch from ensemble.utils import align, get_entries if __name__ == '__main__': parser = argparse.ArgumentParser(description='Graph Ensemble (Graphene)') parser.add_argument( '-g', '--gold', default='./datasets/spring_gold_bio.txt', type=str, help='Gold amr file') parser.add_argument( '-p', '--prediction', default='./datasets/graphene_bio_all.wiki.txt', type=str, help='Prediction files') args = parser.parse_args() ref_fname = args.gold print('Gold file:', ref_fname) gen_fname = args.prediction original_gold_entries, gold_entries = get_entries(ref_fname) print('Prediction file:', gen_fname) original_test_entries_1, test_entries_1 = get_entries(gen_fname) print("Align files") test = align(original_gold_entries, original_test_entries_1, test_entries_1) precision, recall, f_score = compute_smatch(test, gold_entries) print(' SMATCH -> P: %.3f, R: %.3f, F: %.3f' % (precision, recall, f_score)) test = [penman.encode(penman.decode(g)) for g in test] outputs = [] for g, p in zip(original_gold_entries, test): r = penman.decode(g) s = '# ::snt ' + r.metadata['snt'] + '\n' + '# ::id ' + r.metadata['id'] + '\n' + p outputs.append(s) output_file = args.prediction + '.aligned' with open(output_file, 'wt') as f: print('Write prediction to', output_file) f.write('\n\n'.join(map(str, outputs)))
63484
from rest_framework import serializers from openbook_categories.models import Category class GetCategoriesCategorySerializer(serializers.ModelSerializer): class Meta: model = Category fields = ( 'id', 'name', 'title', 'description', 'avatar', 'color' )
63490
def iob_ranges(words, tags): """ IOB -> Ranges """ assert len(words) == len(tags) ranges = [] def check_if_closing_range(): if i == len(tags) - 1 or tags[i + 1].split('_')[0] == 'O': ranges.append({ 'entity': ''.join(words[begin: i + 1]), 'type': temp_type, 'start': begin, 'end': i }) for i, tag in enumerate(tags): if tag.split('_')[0] == 'O': pass elif tag.split('_')[0] == 'B': begin = i temp_type = tag.split('_')[1] check_if_closing_range() elif tag.split('_')[0] == 'I': check_if_closing_range() return ranges
63507
import bisect import copy import hashlib import itertools import json import operator import time from collections import ChainMap import pmdefaults as PM from pmdefaults import * from policy import NEATProperty, PropertyArray, PropertyMultiArray, ImmutablePropertyError, term_separator CIB_EXPIRED = 2 class CIBEntryError(Exception): pass def load_json(filename): """ Read CIB node from JSON file """ cib_file = open(filename, 'r') try: j = json.load(cib_file) except json.decoder.JSONDecodeError as e: logging.error("Could not parse CIB file " + filename) print(e) return return j class CIBNode(object): cib = None def __init__(self, node_dict=None): if node_dict is None: node_dict = dict() if not isinstance(node_dict, dict): raise CIBEntryError("invalid CIB object") self.root = node_dict.get('root', False) # otherwise chain matched CIBs self.link = node_dict.get('link', False) self.priority = node_dict.get('priority', 0) # TTL for the CIB node: the node is considered invalid after the time specified self.expire = node_dict.get('expire', None) or node_dict.get('expires', None) # FIXME expires is deprecated self.filename = node_dict.get('filename', None) self.description = node_dict.get('description', '') # convert to PropertyMultiArray with NEATProperties properties = node_dict.get('properties', []) if not isinstance(properties, list): # properties should be in a list. The list elements are expanded when generating the CIB rows. properties = [properties] self.properties = PropertyMultiArray() for p in properties: if isinstance(p, list): self.properties.add([PropertyArray.from_dict(ps) for ps in p]) else: self.properties.add(PropertyArray.from_dict(p)) self.match = [] # FIXME better error handling if match undefined for l in node_dict.get('match', []): # convert to NEATProperties self.match.append(PropertyArray.from_dict(l)) self.linked = set() if self.link and not self.match: logging.warning('link attribute set but no match field!') self.uid = node_dict.get('uid') if self.uid is None: self.uid = self._gen_uid() def dict(self): d = {} for attr in ['uid', 'root', 'link', 'priority', 'filename', 'description', 'expire', ]: try: d[attr] = getattr(self, attr) except AttributeError: logging.debug("CIB node doesn't contain attribute %s" % attr) if self.match: d['match'] = [] for m in self.match: d['match'].append(m.dict()) d['properties'] = self.properties.list() return d @property def expire(self): return self._expire @expire.setter def expire(self, value): if value is None: self._expire = time.time() + CIB_DEFAULT_TIMEOUT return value = float(value) if value == -1: # does not expire self._expire = value elif time.time() > value: raise CIBEntryError('ignoring expired CIB node', CIB_EXPIRED) else: self._expire = value def _gen_uid(self): # FIXME generate persistent UIDs d = self.dict() for k in ['expire', 'filename', 'uid', ]: try: del d[k] except KeyError: pass s = json.dumps(d, indent=0, sort_keys=True) return hashlib.md5(s.encode('utf-8')).hexdigest() def json(self, indent=4): return json.dumps(self.dict(), indent=indent, sort_keys=True) def resolve_paths(self, path=None): """recursively find all paths from this CIBNode to all other matched CIBnodes in the CIB graph""" if path is None: path = [] # insert own index based on CIB node priority to resolve overlapping properties later # FIXME priorities no longer work pos = bisect.bisect([self.cib[uid].priority for uid in path], self.priority) path.insert(pos, self.uid) # no more links to check if not (self.linked - set(path)): return [path] new_paths = [] for uid in self.linked: if uid in path: continue new_paths.extend(self.cib[uid].resolve_links(path.copy())) return new_paths def match_entry(self, entry): for match_properties in self.match: if match_properties <= entry: return True return False def expand(self): for p in self.properties.expand(): yield p def update_links_from_match(self): """ Look at the list elements in self.match and try to match all of its properties to another CIB entry. Generates a list containing the UIDs of the matched rows. The list is stored in self.linked. """ for match_properties in self.match: for node in self.cib.nodes.values(): if node.uid == self.uid: continue # ?? for p in node.expand(): # Check if the properties in the match list are a full subset of some CIB properties. # Also include the CIB uid as a property while matching if match_properties <= set(p.values()) | {NEATProperty(('uid', node.uid))}: self.linked.add(node.uid) def resolve_graph(self, path=None): """new try """ if path is None: path = [] path.append(self.uid) remaining = set(self.cib.graph.get(self.uid, [])) - set(path) if len(remaining) == 0: return [path] new_paths = [] for u in remaining: paths = self.cib.nodes[u].resolve_graph(path.copy()) new_paths.extend(paths) return new_paths def resolve_links(self, path=None): """find paths from current CIB to all linked CIBS """ if path is None: path = [] # insert own index based on CIB node priority to resolve overlapping properties later pos = bisect.bisect([self.cib[uid].priority for uid in path], self.priority) path.insert(pos, self.uid) # no more links to check if not (self.linked - set(path)): return [path] new_paths = [] for uid in self.linked: if uid in path: continue new_paths.extend(self.cib[uid].resolve_links(path.copy())) return new_paths def expand_rows(self, apply_extended=True): """Generate CIB rows by expanding all CIBs pointing to current CIB """ paths = self.resolve_graph() # for storing expanded rows rows = [] for path in paths: expanded_properties = (self.cib[uid].expand() for uid in path) for pas in itertools.product(*expanded_properties): chain = ChainMap(*pas) # For debugging purposes, add the path list to the chain. # Store as string to preserve path order (NEAT properties are not ordered). dbg_path = '<<'.join(uid for uid in path) # insert at position 0 to override any existing entries # chain.maps.insert(0, PropertyArray(NEATProperty(('cib_uids', dbg_path)))) # convert back to normal PropertyArrays row = PropertyArray(*(p for p in chain.values())) row.meta['cib_uids'] = dbg_path rows.append(row) if not apply_extended: return rows if not self.cib.extenders: # no extender CIB nodes loaded return rows # TODO optimize extended_rows = rows.copy() for entry in rows: # TODO take priorities into account # iterate extender cib_nodes for uid, xs in self.cib.extenders.items(): for pa in xs.expand(): if xs.match_entry(entry): entry_copy = copy.deepcopy(entry) chain = ChainMap(pa, entry_copy) new_pa = PropertyArray(*(p for p in chain.values())) try: del new_pa['uid'] except KeyError: pass extended_rows.append(new_pa) return extended_rows def __repr__(self): s = str(self.properties) if self.linked: s += " linked@%s" % self.linked return s class CIB(object): """ Internal representation of the CIB for testing """ cib_dir = PM.CIB_DIR CIB_EXTENSIONS = ('.cib', '.local', '.connection', '.remote', '.slim') def __init__(self, cib_dir=None): # dictionary containing all loaded CIB nodes, keyed by their uid self.nodes = {} # track CIB files self.files = dict() CIBNode.cib = self self.graph = {} if cib_dir: self.cib_dir = cib_dir self.reload_files() def __getitem__(self, uid): return self.nodes[uid] def items(self): return self.nodes.items() def keys(self): return self.nodes.keys() def values(self): return self.nodes.values() @property def roots(self): return {k: v for k, v in self.nodes.items() if v.root is True} @property def extenders(self): return {k: v for k, v in self.nodes.items() if not v.link} @property def rows(self): """ Returns a generator containing all expanded root CIB nodes """ for uid, r in self.roots.items(): # expand all cib nodes for entry in r.expand_rows(): entry.cib_node = uid yield entry def reload_files(self, cib_dir=None): """ Reload CIB files when a change is detected on disk """ if not cib_dir: cib_dir = self.cib_dir full_names = set() logging.info("checking for CIB updates...") if not os.path.exists(cib_dir): sys.exit('CIB directory %s does not exist' % cib_dir) for dirpath, dirnames, filenames in os.walk(cib_dir): for filename in filenames: if not filename.endswith(CIB.CIB_EXTENSIONS) or filename.startswith(('.', '#')): continue full_name = os.path.join(dirpath, filename) stat = os.stat(full_name) full_names.add(full_name) if full_name in self.files: if self.files[full_name] != stat.st_mtime_ns: logging.info("CIB node %s has changed", full_name) self.files[full_name] = stat.st_mtime_ns self.load_cib_file(full_name) else: logging.info("Loading new CIB node %s.", full_name) self.files[full_name] = stat.st_mtime_ns self.load_cib_file(full_name) removed_files = self.files.keys() - full_names for filename in removed_files: logging.info("CIB node %s has been removed", filename) del self.files[filename] deleted_cs = [cs for cs in self.nodes.values() if cs.filename == filename] # remove corresponding CIBNode object for cs in deleted_cs: self.nodes.pop(uid, None) self.update_graph() def load_cib_file(self, filename): cs = load_json(filename) if not cs: logging.warning("CIB node file %s was invalid" % filename) return try: cib_node = CIBNode(cs) except CIBEntryError as e: if CIB_EXPIRED in e.args: logging.debug("Ignoring CIB node %s: %s" % (filename, e.args[0])) return logging.error("Unable to load CIB node %s: %s" % (filename, e.args[0])) return cib_node.filename = filename self.register(cib_node) def update_graph(self): # FIXME this tree should be rebuilt dynamically # update links for all registered CIBs for cs in self.nodes.values(): cs.update_links_from_match() # FIXME check for invalid pointers self.graph = {} for i in self.nodes.values(): if not i.link: continue for r in i.linked: if r not in self.graph: self.graph[r] = [] if i.uid not in self.graph[r]: self.graph[r].append(i.uid) def import_json(self, slim, uid=None): """ Import JSON formatted CIB entries into current cib. """ # TODO optimize try: json_slim = json.loads(slim) except json.decoder.JSONDecodeError: logging.warning('invalid CIB file format') return # check if we received multiple objects in a list if isinstance(json_slim, list): for c in json_slim: self.import_json(json.dumps(c)) return # convert to CIB node object to do sanity check try: cs = CIBNode(json_slim) except CIBEntryError as e: print(e) return # no not import cache nodes if disabled if not PM.CIB_CACHE and any(['__cached' in p for p in cs.properties.expand()]): logging.debug('Ignoring cache CIB node') return if uid is not None: cs.uid = uid filename = cs.uid slim = cs.json() if not filename: logging.warning("CIB entry has no UID") # generate CIB filename filename = hashlib.md5(slim.encode('utf-8')).hexdigest() filename = '%s.cib' % filename.lower() with open(os.path.join(self.cib_dir, '%s' % filename), 'w') as f: f.write(slim) logging.debug("CIB entry saved as \"%s\"." % filename) self.reload_files() def register(self, cib_node): if cib_node in self.nodes: logging.debug("overwriting existing CIB with uid %s" % cib_node.uid) self.nodes[cib_node.uid] = cib_node def unregister(self, cib_uid): del self.nodes[cib_uid] self.update_graph() def remove(self, cib_uid): self.unregister(cib_uid) def lookup(self, input_properties, candidate_num=5): """CIB lookup logic implementation Return CIB rows that include *all* required properties from the request PropertyArray """ assert isinstance(input_properties, PropertyArray) candidates = [input_properties] for e in self.rows: try: # FIXME better check whether all input properties are included in row - improve matching # ignore optional properties in input request required_pa = PropertyArray( *(p for p in input_properties.values() if p.precedence == NEATProperty.IMMUTABLE)) if len(required_pa & e) != len(required_pa): continue except ImmutablePropertyError: continue try: candidate = e + input_properties candidate.cib_node = e.cib_node candidates.append(candidate) except ImmutablePropertyError: pass return sorted(candidates, key=operator.attrgetter('score'), reverse=True)[:candidate_num] def dump(self, show_all=False): print(term_separator("CIB START")) # ============================================================================ for i, e in enumerate(self.rows): print("%3i. %s" % (i, str(e))) # ============================================================================ print(term_separator("CIB END")) def __repr__(self): return 'CIB<%d>' % (len(self.nodes)) if __name__ == "__main__": cib = CIB('./cib/example/') b = cib['B'] c = cib['C'] cib.dump() import code code.interact(local=locals(), banner='CIB') for uid in cib.roots: z = cib[uid].resolve_links([]) print(z) query = PropertyArray() test_request_str = '{"MTU": {"value": [1500, Infinity]}, "low_latency": {"precedence": 2, "value": true}, "remote_ip": {"precedence": 2, "value": "10:54:1.23"}, "transport": {"value": "TCP"}}' test = json.loads(test_request_str) for k, v in test.items(): query.add(NEATProperty((k, v['value']), precedence=v.get('precedence', 1))) candidates = cib.lookup(query) for i in candidates: print(i) # print(i, i.cib_node, i.score)
63536
from .init import * from .opt import * from .checkpoint import * from .framework import * from .logger import * from .metrics import * from .geometry import * try: from .visualization import * except ImportError: __KAOLIN_LOADED__ = False else: __KAOLIN_LOADED__ = True
63539
import os import cv2 import numpy as np import torch import pickle import argparse from configs import paths from utils.cam_utils import perspective_project_torch from models.smpl_official import SMPL def rotate_2d(pt_2d, rot_rad): x = pt_2d[0] y = pt_2d[1] sn, cs = np.sin(rot_rad), np.cos(rot_rad) xx = x * cs - y * sn yy = x * sn + y * cs return np.array([xx, yy], dtype=np.float32) def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False): # augment size with scale src_w = src_width * scale src_h = src_height * scale src_center = np.zeros(2) src_center[0] = c_x src_center[1] = c_y # np.array([c_x, c_y], dtype=np.float32) # augment rotation rot_rad = np.pi * rot / 180 src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad) src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad) dst_w = dst_width dst_h = dst_height dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = src_center src[1, :] = src_center + src_downdir src[2, :] = src_center + src_rightdir dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = dst_center dst[1, :] = dst_center + dst_downdir dst[2, :] = dst_center + dst_rightdir if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def generate_patch_image_cv(cvimg, c_x, c_y, bb_width, bb_height, patch_width, patch_height, do_flip, scale, rot): img = cvimg.copy() img_height, img_width, img_channels = img.shape if do_flip: img = img[:, ::-1, :] c_x = img_width - c_x - 1 trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot, inv=False) img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) return img_patch, trans def get_single_image_crop(image, bbox, scale=1.2, crop_size=224): if isinstance(image, str): if os.path.isfile(image): image = cv2.cvtColor(cv2.imread(image), cv2.COLOR_BGR2RGB) else: print(image) raise BaseException(image, 'is not a valid file!') elif not isinstance(image, np.ndarray): raise('Unknown type for object', type(image)) crop_image, trans = generate_patch_image_cv( cvimg=image.copy(), c_x=bbox[0], c_y=bbox[1], bb_width=bbox[2], bb_height=bbox[3], patch_width=crop_size, patch_height=crop_size, do_flip=False, scale=scale, rot=0, ) return crop_image def pw3d_eval_extract(dataset_path, out_path, crop_wh=512): bbox_scale_factor = 1.2 smpl_male = SMPL(paths.SMPL, batch_size=1, gender='male').to(device) smpl_female = SMPL(paths.SMPL, batch_size=1, gender='female').to(device) # imgnames_, scales_, centers_, parts_ = [], [], [], [] cropped_frame_fnames_, whs_, centers_, = [], [], [] poses_, shapes_, genders_ = [], [], [] sequence_files = sorted([os.path.join(dataset_path, 'sequenceFiles', 'test', f) for f in os.listdir(os.path.join(dataset_path, 'sequenceFiles', 'test')) if f.endswith('.pkl')]) for filename in sequence_files: print('\n\n\n', filename) with open(filename, 'rb') as f: data = pickle.load(f, encoding='latin1') smpl_poses = data['poses'] # list of (num frames, 72) pose params for each person smpl_betas = data['betas'] # list of (10,) or (300,) shape params for each person poses2d = data['poses2d'] # list of (num frames, 3, 18) 2d kps for each person cam_extrinsics = data['cam_poses'] # array of (num frames, 4, 4) cam extrinsics cam_K = data['cam_intrinsics'] # array of (3, 3) cam intrinsics. genders = data['genders'] # list of genders for each person valid = data['campose_valid'] # list of (num frames,) boolean arrays for each person, indicating whether camera pose has been aligned to that person (for trans). trans = data['trans'] # list of (num frames, 3) translations in SMPL space for each person, to align them with image data (after projection) num_people = len(smpl_poses) # Number of people in sequence num_frames = len(smpl_poses[0]) # Number of frames in sequence seq_name = str(data['sequence']) print('smpl poses', len(smpl_poses), smpl_poses[0].shape, 'smpl betas', len(smpl_betas), smpl_betas[0].shape, 'poses2d', len(poses2d), poses2d[0].shape, 'global poses', cam_extrinsics.shape, 'cam_K', cam_K.shape, 'genders', genders, type(genders), 'valid', len(valid), valid[0].shape, np.sum(valid[0]), np.sum(valid[-1]), 'trans', len(trans), trans[0].shape, 'num people', num_people, 'num frames', num_frames, 'seq name', seq_name, '\n') cam_K = torch.from_numpy(cam_K[None, :]).float().to(device) for person_num in range(num_people): # Get valid frames flags, shape and gender valid_frames = valid[person_num].astype(np.bool) shape = smpl_betas[person_num][:10] torch_shape = torch.from_numpy(shape[None, :]).float().to(device) gender = genders[person_num] for frame_num in range(num_frames): if valid_frames[frame_num]: # Only proceed if frame has valid camera pose for person # Get bounding box using projected vertices pose = smpl_poses[person_num][frame_num] cam_R = cam_extrinsics[frame_num][:3, :3] cam_t = cam_extrinsics[frame_num][:3, 3] frame_trans = trans[person_num][frame_num] pose = torch.from_numpy(pose[None, :]).float().to(device) cam_t = torch.from_numpy(cam_t[None, :]).float().to(device) cam_R = torch.from_numpy(cam_R[None, :, :]).float().to(device) frame_trans = torch.from_numpy(frame_trans[None, :]).float().to(device) if gender == 'm': smpl_out = smpl_male(body_pose=pose[:, 3:], global_orient=pose[:, :3], betas=torch_shape, transl=frame_trans) elif gender == 'f': smpl_out = smpl_female(body_pose=pose[:, 3:], global_orient=pose[:, :3], betas=torch_shape, transl=frame_trans) vertices = smpl_out.vertices projected_aligned_vertices = perspective_project_torch(vertices, cam_R, cam_t, cam_K=cam_K) projected_aligned_vertices = projected_aligned_vertices[0].cpu().detach().numpy() bbox = [min(projected_aligned_vertices[:, 0]), min(projected_aligned_vertices[:, 1]), max(projected_aligned_vertices[:, 0]), max(projected_aligned_vertices[:, 1])] # (x1, y1, x2, y2) where x is cols and y is rows from top right corner. center = [(bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2] wh = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) # Save cropped frame using bounding box image_fpath = os.path.join(dataset_path, 'imageFiles', seq_name, 'image_{}.jpg'.format(str(frame_num).zfill(5))) image = cv2.imread(image_fpath) centre_wh_bbox = center + [wh, wh] cropped_image = get_single_image_crop(image, centre_wh_bbox, scale=bbox_scale_factor, crop_size=crop_wh) cropped_image_fname = seq_name + '_image_{}_person_{}.png'.format(str(frame_num).zfill(5), str(person_num).zfill(3)) cropped_image_fpath = os.path.join(out_path, 'cropped_frames', cropped_image_fname) cv2.imwrite(cropped_image_fpath, cropped_image) # Transform global using cam extrinsics pose before storing pose = pose[0].cpu().detach().numpy() cam_R = cam_R[0].cpu().detach().numpy() pose[:3] = cv2.Rodrigues(np.dot(cam_R, cv2.Rodrigues(pose[:3])[0]))[0].T[0] # Store everything in lists cropped_frame_fnames_.append(cropped_image_fname) centers_.append(center) whs_.append(wh) poses_.append(pose) shapes_.append(shape) genders_.append(gender) # print(cropped_image_fname, shape.shape, pose.shape, center, wh, gender) # Store all data in npz file. out_file = os.path.join(out_path, '3dpw_test.npz') np.savez(out_file, imgname=cropped_frame_fnames_, center=centers_, wh=whs_, pose=poses_, shape=shapes_, gender=genders_) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dataset_path', type=str) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "0" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('\nDevice: {}'.format(device)) out_path = os.path.join(args.dataset_path, 'test') if not os.path.isdir(out_path): os.makedirs(os.path.join(out_path, 'cropped_frames')) pw3d_eval_extract(args.dataset_path, out_path)
63570
from unittest.mock import patch from django.test import TestCase import vcr from data_refinery_common.models import ( Contribution, Experiment, ExperimentSampleAssociation, OntologyTerm, Sample, SampleAttribute, ) from data_refinery_foreman.foreman.management.commands.import_external_sample_attributes import ( Command, import_metadata, import_sample_attributes, ) TEST_METADATA = "/home/user/data_store/externally_supplied_metadata/test_data/metadata.json" class ImportExternalSampleAttributesTestCase(TestCase): def setUp(self): experiment = Experiment() experiment.accession_code = "GSE000" experiment.alternate_accession_code = "E-GEOD-000" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() self.experiment = experiment # Create some samples to attach metadata to sample = Sample() sample.accession_code = "SRR123" sample.technology = "RNA-SEQ" sample.source_database = "SRA" sample.title = "Not important" sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() sample2 = Sample() sample2.accession_code = "SRR456" sample2.technology = "RNA-SEQ" sample2.source_database = "SRA" sample2.title = "Not important" sample2.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample2 experiment_sample_association.experiment = experiment experiment_sample_association.save() # Create the ontology terms I'm using in the tests name = OntologyTerm() name.ontology_term = "PATO:0000122" name.human_readable_name = "length" name.save() unit = OntologyTerm() unit.ontology_term = "UO:0010012" unit.human_readable_name = "thou" unit.save() contribution = Contribution() contribution.source_name = "refinebio_tests" contribution.methods_url = "ccdatalab.org" contribution.save() self.contribution = contribution # # Test import_sample_attributes() # def test_skip_unknown_sample(self): """Make sure that if someone has metadata for a sample that we haven't surveyed then we just do nothing""" METADATA = [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}] import_sample_attributes("SRR789", METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 0) def test_import_invalid_ontology_term(self): METADATA = [{"PATO:0000122": {"value": 25, "unit": "thou"}}] self.assertRaises( ValueError, import_sample_attributes, "SRR123", METADATA, self.contribution ) METADATA = [{"length": {"value": 25, "unit": "UO:0010012"}}] self.assertRaises( ValueError, import_sample_attributes, "SRR123", METADATA, self.contribution ) def test_import_valid_sample_attributes(self): METADATA = [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}] import_sample_attributes("SRR123", METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = Sample.objects.get(accession_code="SRR123").contributed_metadata self.assertEqual( contributed_metadata[self.contribution.source_name]["length"], {"unit": "thou", "value": 25}, ) # # Test import_metadata() # def test_import_valid_metadata(self): METADATA = [ { "sample_accession": "SRR123", "attributes": [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}], } ] import_metadata(METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = Sample.objects.get(accession_code="SRR123").contributed_metadata self.assertEqual( contributed_metadata[self.contribution.source_name]["length"], {"unit": "thou", "value": 25}, ) # # End-to-end test # @vcr.use_cassette("/home/user/data_store/cassettes/foreman.sample_attributes.end-to-end.yaml") def test_management_command(self): sample = Sample() sample.accession_code = "DRR001173" sample.technology = "RNA-SEQ" sample.source_database = "SRA" sample.title = "Not important" sample.save() command = Command() SOURCE_NAME = "refinebio_tests" command.handle(file=TEST_METADATA, source_name=SOURCE_NAME, methods_url="ccdatalab.org") self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = sample.contributed_metadata self.assertEqual( set(contributed_metadata[SOURCE_NAME]["biological sex"].keys()), {"value", "confidence"}, ) self.assertEqual( contributed_metadata[SOURCE_NAME]["biological sex"]["value"].human_readable_name, "female", ) self.assertAlmostEqual( contributed_metadata[SOURCE_NAME]["biological sex"]["confidence"], 0.7856624891880539 )
63615
import torch import numpy as np import argparse import os from utils import Logger, LogFiles, ValidationAccuracies, cross_entropy_loss, compute_accuracy, MetaLearningState,\ shuffle from model import FewShotClassifier from dataset import get_dataset_reader from tf_dataset_reader import TfDatasetReader from image_folder_reader import ImageFolderReader NUM_VALIDATION_TASKS = 200 NUM_TEST_TASKS = 600 PRINT_FREQUENCY = 1000 def main(): learner = Learner() learner.run() class Learner: def __init__(self): self.args = self.parse_command_line() self.log_files = LogFiles(self.args.checkpoint_dir, self.args.resume_from_checkpoint, (self.args.mode == 'test') or (self.args.mode == 'test_vtab')) self.logger = Logger(self.args.checkpoint_dir, "log.txt") self.logger.print_and_log("Options: %s\n" % self.args) self.logger.print_and_log("Checkpoint Directory: %s\n" % self.log_files.checkpoint_dir) self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.model = self.init_model() self.train_set, self.validation_set, self.test_set = self.init_data() if self.args.mode == "train" or self.args.mode == "test" or self.args.mode == 'train_test': self.dataset = get_dataset_reader( args=self.args, train_set=self.train_set, validation_set=self.validation_set, test_set=self.test_set) if self.args.train_method == 'lite': self.train_fn = self.train_lite else: self.train_fn = self.train_task self.use_batches = False if self.args.train_method == 'no_lite' else True self.loss = cross_entropy_loss self.accuracy_fn = compute_accuracy self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate) self.validation_accuracies = ValidationAccuracies(self.validation_set) self.start_iteration = 0 if self.args.resume_from_checkpoint: self.load_checkpoint() self.optimizer.zero_grad() self.feature_cache = None def init_model(self): model = FewShotClassifier(args=self.args, logger=self.logger, device=self.device).to(self.device) model.count_parameters(model) # set encoder is always in train mode (it only sees context data). # Feature extractor gets switched in model. model.train() return model def init_data(self): train_set = ['ilsvrc_2012', 'omniglot', 'aircraft', 'cu_birds', 'dtd', 'quickdraw', 'fungi', 'mnist'] validation_set = ['omniglot', 'aircraft', 'cu_birds', 'dtd', 'quickdraw', 'fungi', 'mscoco'] test_set = self.args.test_datasets return train_set, validation_set, test_set """ Command line parser """ def parse_command_line(self): parser = argparse.ArgumentParser() # operational parameters parser.add_argument("--mode", choices=["train", "test", "train_test", "test_vtab"], default="train_test", help="Whether to run meta-training only, meta-testing only," "both meta-training and meta-testing, or testing on vtab.") parser.add_argument("--checkpoint_dir", "-c", default='../checkpoints', help="Directory to save checkpoint to.") parser.add_argument("--resume_from_checkpoint", "-r", dest="resume_from_checkpoint", default=False, action="store_true", help="Restart from latest checkpoint.") # data parameters parser.add_argument('--test_datasets', nargs='+', help='Datasets to use for testing', default=["omniglot", "aircraft", "cu_birds", "dtd", "quickdraw", "fungi", "traffic_sign", "mscoco"]) parser.add_argument("--data_path", default="../datasets", help="Path to Meta-Dataset records.") parser.add_argument("--download_path_for_tensorflow_datasets", default=None, help="Path to download the tensorflow datasets.") parser.add_argument("--download_path_for_sun397_dataset", default=None, help="Path to download the sun397 dataset.") # training parameters parser.add_argument("--train_method", choices=["lite", "small_task", "no_lite"], default="lite", help="Whether to use lite, small tasks, or not lite.") parser.add_argument("--pretrained_model_path", default="../models/efficientnet-b0_84.pt", help="Path to dataset records.") parser.add_argument("--learning_rate", "-lr", type=float, default=0.001, help="Learning rate.") parser.add_argument("--tasks_per_step", type=int, default=16, help="Number of tasks between parameter optimizations.") parser.add_argument("--training_iterations", "-i", type=int, default=10000, help="Number of meta-training iterations.") parser.add_argument("--max_way_train", type=int, default=50, help="Maximum way of meta-train task.") parser.add_argument("--max_support_train", type=int, default=500, help="Maximum support set size of meta-train task.") parser.add_argument("--image_size", type=int, default=224, help="Image height and width.") parser.add_argument("--batch_size", type=int, default=40, help="Size of batch.") parser.add_argument("--h", type=int, default=40, help="Number of support set samples to back-propagate when training with LITE.") # testing parameters parser.add_argument("--test_model_path", "-m", default=None, help="Path to model to load and test.") parser.add_argument("--val_freq", type=int, default=5000, help="Number of iterations between validations.") args = parser.parse_args() return args def run(self): if self.args.mode == 'train' or self.args.mode == 'train_test': train_accuracies = [] losses = [] total_iterations = self.args.training_iterations for iteration in range(self.start_iteration, total_iterations): task_dict = self.dataset.get_train_task() context_images, target_images, context_labels, target_labels = self.prepare_task(task_dict) if self.use_batches: self.model.clear_caches() self.feature_cache = None target_set_size = len(target_labels) num_batches = self._get_number_of_batches(target_set_size) for batch in range(num_batches): batch_start_index, batch_end_index = self._get_batch_indices(batch, target_set_size) batch_loss, batch_accuracy = self.train_fn( context_images, target_images[batch_start_index : batch_end_index], context_labels, target_labels[batch_start_index : batch_end_index] ) train_accuracies.append(batch_accuracy) losses.append(batch_loss) else: task_loss, task_accuracy = self.train_fn(context_images, target_images, context_labels, target_labels) train_accuracies.append(task_accuracy) losses.append(task_loss) # optimize if ((iteration + 1) % self.args.tasks_per_step == 0) or (iteration == (total_iterations - 1)): self.optimizer.step() self.optimizer.zero_grad() if (iteration + 1) % PRINT_FREQUENCY == 0: # print training stats self.save_checkpoint(iteration + 1) torch.save(self.model.state_dict(), os.path.join(self.log_files.checkpoint_dir, "model_{}.pt".format(iteration + 1))) self.logger.print_and_log('Task [{}/{}], Train Loss: {:.7f},' 'Train Accuracy: {:.7f}, Learning Rate: {:.7f}' .format(iteration + 1, total_iterations, torch.Tensor(losses).mean().item(), torch.Tensor(train_accuracies).mean().item(), self.optimizer.param_groups[0]['lr'])) train_accuracies = [] losses = [] if ((iteration + 1) % self.args.val_freq == 0) and (iteration + 1) != total_iterations: # validate accuracy_dict = self.validate() self.validation_accuracies.print(self.logger, accuracy_dict) # save the model if validation is the best so far if self.validation_accuracies.is_better(accuracy_dict): self.validation_accuracies.replace(accuracy_dict) torch.save(self.model.state_dict(), self.log_files.best_validation_model_path) self.logger.print_and_log('Best validation model was updated.') self.logger.print_and_log('') # save the final model torch.save(self.model.state_dict(), self.log_files.fully_trained_model_path) if self.args.mode == 'train_test': self.test(self.log_files.fully_trained_model_path) self.test(self.log_files.best_validation_model_path) if self.args.mode == 'test': self.test(self.args.test_model_path) if self.args.mode == 'test_vtab': self._test_transfer_learning(self.args.test_model_path) def train_task(self, context_images, target_images, context_labels, target_labels): target_logits = self.model(context_images, context_labels, target_images, MetaLearningState.META_TRAIN) task_loss = self.loss(target_logits, target_labels) / self.args.tasks_per_step regularization_term = (self.model.feature_adaptation_network.regularization_term()) regularizer_scaling = 0.001 task_loss += regularizer_scaling * regularization_term task_accuracy = self.accuracy_fn(target_logits, target_labels) task_loss.backward(retain_graph=False) return task_loss, task_accuracy def train_lite(self, context_images, target_images, context_labels, target_labels): # We'll split the context set into two: the first part will be of size batch_size and we'll use gradients # for that. The second part will be everything else and we'll use no gradients for that, so we only need to # compute that once per task. context_size = context_images.size(0) indices = np.random.permutation(context_size) h = min(self.args.h, context_size) # number of example to back propagate grad_indices = indices[0: h] no_grad_indices = indices[h:] self.model.build_task_representation_with_split_batch(context_images, grad_indices, no_grad_indices) context_features = self._compute_features_with_split_batch(context_images, grad_indices, no_grad_indices, MetaLearningState.META_TRAIN) self.model.configure_classifier(context_features, context_labels[indices]) # now the target set torch.set_grad_enabled(True) batch_logits = self.model.predict(target_images, MetaLearningState.META_TRAIN) # compute the loss batch_loss = self.loss(batch_logits, target_labels) / self.args.tasks_per_step regularization_term = (self.model.feature_adaptation_network.regularization_term()) regularizer_scaling = 0.001 batch_loss += regularizer_scaling * regularization_term # compute accuracy batch_accuracy = self.accuracy_fn(batch_logits, target_labels) batch_loss.backward(retain_graph=False) return batch_loss, batch_accuracy def _get_number_of_batches(self, task_size): num_batches = int(np.ceil(float(task_size) / float(self.args.batch_size))) if num_batches > 1 and (task_size % self.args.batch_size == 1): num_batches -= 1 return num_batches def _get_batch_indices(self, index, last_element): batch_start_index = index * self.args.batch_size batch_end_index = batch_start_index + self.args.batch_size if batch_end_index == (last_element - 1): # avoid batch size of 1 batch_end_index = last_element if batch_end_index > last_element: batch_end_index = last_element return batch_start_index, batch_end_index def validate(self): with torch.no_grad(): accuracy_dict ={} for item in self.validation_set: accuracies = [] for _ in range(NUM_VALIDATION_TASKS): task_dict = self.dataset.get_validation_task(item) context_images, target_images, context_labels, target_labels = self.prepare_task(task_dict) if self.use_batches: self.model.build_task_representation_by_batch(context_images) context_features = self._compute_features_by_batch(context_images, MetaLearningState.META_TEST) self.model.configure_classifier(context_features, context_labels) test_set_size = len(target_labels) num_batches = self._get_number_of_batches(test_set_size) target_logits = [] for batch in range(num_batches): batch_start_index, batch_end_index = self._get_batch_indices(batch, test_set_size) batch_logits = self.model.predict(target_images[batch_start_index: batch_end_index], MetaLearningState.META_TEST) target_logits.append(batch_logits) target_logits = torch.vstack(target_logits) target_accuracy = self.accuracy_fn(target_logits, target_labels) del target_logits accuracies.append(target_accuracy.item()) else: target_logits = self.model(context_images, context_labels, target_images, MetaLearningState.META_TEST) accuracy = self.accuracy_fn(target_logits, target_labels) accuracies.append(accuracy.item()) del target_logits accuracy = np.array(accuracies).mean() * 100.0 confidence = (196.0 * np.array(accuracies).std()) / np.sqrt(len(accuracies)) accuracy_dict[item] = {"accuracy": accuracy, "confidence": confidence} return accuracy_dict def test(self, path): self.logger.print_and_log("") # add a blank line self.logger.print_and_log('Testing model {0:}: '.format(path)) self.model = self.init_model() if path != 'None': self.model.load_state_dict(torch.load(path)) with torch.no_grad(): for item in self.test_set: accuracies = [] for _ in range(NUM_TEST_TASKS): task_dict = self.dataset.get_test_task(item) context_images, target_images, context_labels, target_labels = self.prepare_task(task_dict) if self.use_batches: self.model.build_task_representation_by_batch(context_images) context_features = self._compute_features_by_batch(context_images, MetaLearningState.META_TEST) self.model.configure_classifier(context_features, context_labels) test_set_size = len(target_labels) num_batches = self._get_number_of_batches(test_set_size) target_logits = [] for batch in range(num_batches): batch_start_index, batch_end_index = self._get_batch_indices(batch, test_set_size) batch_logits = self.model.predict(target_images[batch_start_index: batch_end_index], MetaLearningState.META_TEST) target_logits.append(batch_logits) target_logits = torch.vstack(target_logits) target_accuracy = self.accuracy_fn(target_logits, target_labels) del target_logits accuracies.append(target_accuracy.item()) else: target_logits = self.model(context_images, context_labels, target_images, MetaLearningState.META_TEST) accuracy = self.accuracy_fn(target_logits, target_labels) accuracies.append(accuracy.item()) del target_logits accuracy = np.array(accuracies).mean() * 100.0 accuracy_confidence = (196.0 * np.array(accuracies).std()) / np.sqrt(len(accuracies)) self.logger.print_and_log('{0:}: {1:3.1f}+/-{2:2.1f}'.format(item, accuracy, accuracy_confidence)) def _test_transfer_learning(self, path): self.logger.print_and_log("") # add a blank line self.logger.print_and_log('Testing model {0:}: '.format(path)) self.model = self.init_model() if path != 'None': self.model.load_state_dict(torch.load(path)) context_set_size = 1000 datasets = [ {'name': "caltech101", 'task': None, 'enabled': True}, {'name': "cifar100", 'task': None, 'enabled': True}, {'name': "oxford_flowers102", 'task': None, 'enabled': True}, {'name': "oxford_iiit_pet", 'task': None, 'enabled': True}, {'name': "sun397", 'task': None, 'enabled': True}, {'name': "svhn_cropped", 'task': None, 'enabled': True}, {'name': "eurosat", 'task': None, 'enabled': True}, {'name': "resisc45", 'task': None, 'enabled': True}, {'name': "patch_camelyon", 'task': None, 'enabled': True}, {'name': "diabetic_retinopathy_detection", 'task': None, 'enabled': True}, {'name': "clevr", 'task': "count", 'enabled': True}, {'name': "clevr", 'task': "distance", 'enabled': True}, {'name': "dsprites", 'task': "location", 'enabled': True}, {'name': "dsprites", 'task': "orientation", 'enabled': True}, {'name': "smallnorb", 'task': "azimuth", 'enabled': True}, {'name': "smallnorb", 'task': "elevation", 'enabled': True}, {'name': "dmlab", 'task': None, 'enabled': True}, {'name': "kitti", 'task': None, 'enabled': True}, ] with torch.no_grad(): for dataset in datasets: if dataset['enabled'] is False: continue if dataset['name'] == "sun397": # use the image folder reader as the tf reader is broken for sun397 dataset_reader = ImageFolderReader( path_to_images=self.args.download_path_for_sun397_dataset, context_batch_size=context_set_size, target_batch_size=self.args.batch_size, image_size=self.args.image_size, device=self.device) else: # use the tensorflow dataset reader dataset_reader = TfDatasetReader( dataset=dataset['name'], task=dataset['task'], context_batch_size=context_set_size, target_batch_size=self.args.batch_size, path_to_datasets=self.args.download_path_for_tensorflow_datasets, image_size=self.args.image_size, device=self.device ) context_images, context_labels = dataset_reader.get_context_batch() self.model.build_task_representation_by_batch(context_images) context_features = self._compute_features_by_batch(context_images, MetaLearningState.META_TEST) self.model.configure_classifier(context_features, context_labels) test_set_size = dataset_reader.get_target_dataset_length() num_batches = self._get_number_of_batches(test_set_size) target_logits = [] target_labels = [] for batch in range(num_batches): batch_target_images, batch_target_labels = dataset_reader.get_target_batch() batch_logits = self.model.predict(batch_target_images, MetaLearningState.META_TEST) target_logits.append(batch_logits) target_labels.append(batch_target_labels) target_logits = torch.vstack(target_logits) target_labels = torch.hstack(target_labels) target_accuracy = self.accuracy_fn(target_logits, target_labels) del target_logits accuracy = target_accuracy * 100.0 if dataset['task'] is None: self.logger.print_and_log('{0:}: {1:3.1f}'.format(dataset['name'], accuracy)) else: self.logger.print_and_log('{0:} {1:}: {2:3.1f}'.format(dataset['name'], dataset['task'], accuracy)) def _compute_features_by_batch(self, images, meta_learning_state): features = [] num_images = images.size(0) num_batches = self._get_number_of_batches(num_images) for batch in range(num_batches): batch_start_index, batch_end_index = self._get_batch_indices(batch, num_images) features.append(self.model.get_context_features(images[batch_start_index: batch_end_index], meta_learning_state)) return torch.vstack(features) def _compute_features_with_split_batch(self, images, grad_indices, no_grad_indices, meta_learning_state): num_images = images.size(0) if self.feature_cache is None: # cache the part with no gradients features = [] num_batches = self._get_number_of_batches(num_images) for batch in range(num_batches): batch_start_index, batch_end_index = self._get_batch_indices(batch, num_images) torch.set_grad_enabled(False) features.append(self.model.get_context_features(images[batch_start_index: batch_end_index], meta_learning_state)) self.feature_cache = torch.vstack(features).to(self.device) # now select some random images for that will have gradients and process those embeddings = [] if len(grad_indices) > 0: torch.set_grad_enabled(True) embeddings.append(self.model.get_context_features(images[grad_indices], meta_learning_state)) # now add in the no_grad images embeddings.extend(self.feature_cache[no_grad_indices]) return torch.vstack(embeddings) def prepare_task(self, task_dict): context_images_np, context_labels_np = task_dict['context_images'], task_dict['context_labels'] target_images_np, target_labels_np = task_dict['target_images'], task_dict['target_labels'] context_images_np = context_images_np.transpose([0, 3, 1, 2]) context_images_np, context_labels_np = shuffle(context_images_np, context_labels_np) context_images = torch.from_numpy(context_images_np) context_labels = torch.from_numpy(context_labels_np) target_images_np = target_images_np.transpose([0, 3, 1, 2]) target_images_np, target_labels_np = shuffle(target_images_np, target_labels_np) target_images = torch.from_numpy(target_images_np) target_labels = torch.from_numpy(target_labels_np) context_images = context_images.to(self.device) target_images = target_images.to(self.device) context_labels = context_labels.to(self.device) target_labels = target_labels.type(torch.LongTensor).to(self.device) return context_images, target_images, context_labels, target_labels def save_checkpoint(self, iteration): torch.save({ 'iteration': iteration, 'model_state_dict': self.model.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'best_accuracy': self.validation_accuracies.get_current_best_accuracy_dict(), }, os.path.join(self.log_files.checkpoint_dir, 'checkpoint.pt')) def load_checkpoint(self): checkpoint = torch.load(os.path.join(self.log_files.checkpoint_dir, 'checkpoint.pt')) self.start_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) self.validation_accuracies.replace(checkpoint['best_accuracy']) if __name__ == "__main__": main()
63633
import os import subprocess import sys args = sys.argv[:] print('hello from %s' % args[0]) print('args: ' + ' '.join(args)) print('current directory: ' + os.getcwd()) p = subprocess.Popen('ls -al', shell=True, bufsize=1, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: line = p.stdout.readline() if line != '': print(line.rstrip()) else: break retval = p.wait() print('%s done' % args[0])
63660
from io import StringIO from django.core.management import call_command from django.core.management.base import CommandError from django.test import TestCase from flags.state import flag_enabled class EnableFlagTestCase(TestCase): def test_enable_flag(self): out = StringIO() self.assertFalse(flag_enabled("DB_FLAG")) call_command("enable_flag", "DB_FLAG", stdout=out) self.assertTrue(flag_enabled("DB_FLAG")) self.assertIn("Successfully enabled", out.getvalue()) def test_enable_flag_non_existent_flag(self): with self.assertRaises(CommandError): call_command("enable_flag", "FLAG_DOES_NOT_EXIST")
63720
from program_synthesis.karel.dataset import executor from program_synthesis.karel.dataset import parser_for_synthesis branch_types = {'if', 'ifElse', 'while'} stmt_types = {'move', 'turnLeft', 'turnRight', 'putMarker', 'pickMarker'} class CoverageMeasurer(object): def __init__(self, code): self.parser = parser_for_synthesis.KarelForSynthesisParser( build_tree=True) self.executor = executor.KarelExecutor() self.code = code tree = self.parser.parse(code) # Statement coverage: actions self.stmt_coverage = {span: 0 for span in self.parser.action_spans} # Branch coverage: if, ifelse, while self.branch_coverage = {(span, cond_value): 0 for span in self.parser.cond_block_spans for cond_value in (True, False)} def add(self, inp): out, trace = self.executor.execute( self.code, None, inp, record_trace=True) if not out: return False for event in trace.events: if event.type in branch_types: self.branch_coverage[event.span, event.cond_value] += 1 elif event.type in stmt_types: self.stmt_coverage[event.span] += 1 return True def uncovered(self): return (tuple(k for k, v in self.stmt_coverage.iteritems() if v == 0), tuple(k for k, v in self.branch_coverage.iteritems() if v == 0))
63742
import os import re import sys import cffi from ._compat import PY2 _directive_re = re.compile(r'^\s*#.*?$(?m)') def make_ffi(module_path, crate_path, cached_header_filename=None): """Creates a FFI instance for the given configuration.""" if cached_header_filename is not None and \ os.path.isfile(cached_header_filename): with open(cached_header_filename, 'rb') as f: header = f.read() if not PY2: header = header.decode('utf-8') else: from .bindgen import generate_header header = generate_header(crate_path) header = _directive_re.sub('', header) if os.environ.get('SNAEK_DEBUG_HEADER') == '1': sys.stderr.write('/* generated header for "%s" */\n' % module_path) sys.stderr.write(header) sys.stderr.write('\n') sys.stderr.flush() ffi = cffi.FFI() ffi.cdef(header) ffi.set_source(module_path, None) return ffi
63754
import luhn def test_checksum_len1(): assert luhn.checksum('7') == 7 def test_checksum_len2(): assert luhn.checksum('13') == 5 def test_checksum_len3(): assert luhn.checksum('383') == 3 def test_checksum_len4(): assert luhn.checksum('2827') == 3 def test_checksum_len13(): assert luhn.checksum('4346537657597') == 9 def test_checksum_len14(): assert luhn.checksum('27184931073326') == 1 def test_valid(): assert luhn.verify('356938035643809') def test_invalid(): assert not luhn.verify('4222222222222222') def test_generate(): assert luhn.generate('7992739871') == 3 def test_append(): assert luhn.append('53461861341123') =='534618613411234'
63759
from setuptools import setup def _md(filename): ''' Load md file and sanitize it for PyPI. Remove unsupported github tags: - code-block directive - all badges ''' content = open(filename).read() return content long_description = '\n'.join(( _md('README.md'), _md('CHANGELOG.md'), '' )) exec(compile( open('devpi_semantic_ui/__about__.py').read(), 'devpi_semantic_ui/__about__.py', 'exec' )) setup( name="devpi-semantic-ui", description=__description__, url="https://github.com/apihackers/devpi-semantic-ui", version=__version__, maintainer="API Hackers", maintainer_email="<EMAIL>", license="MIT", entry_points={ 'devpi_server': [ "devpi-semantic-ui = devpi_semantic_ui" ] }, install_requires=['devpi-web'], include_package_data=True, zip_safe=False, packages=['devpi_semantic_ui'], keywords='devpi semantic-ui', classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python', 'Environment :: Web Environment', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Topic :: System :: Software Distribution', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: MIT License', ], )
63784
import re from PIL import Image, ImageOps from io import BytesIO from django.contrib.auth.models import User from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import HttpResponseForbidden from django.shortcuts import get_object_or_404 from django.core.files.uploadedfile import SimpleUploadedFile from forum.models import Topic MENTION_REGEX = re.compile(r'@(\w+)', re.M) IMAGE_LARGE = 144 IMAGE_MEDIUM = 96 IMAGE_SMALL = 48 NUM_PER_PAGE = 20 def _thumbnail(upload, size, fmt): img = ImageOps.fit(upload, size, Image.ANTIALIAS) temp = BytesIO() img.save(temp, fmt, quality=95) temp.seek(0) return temp def create_thumbnail(src, new_name, ext): upload = Image.open(BytesIO(src.read())) fmt = src.content_type.split('/')[-1] large = _thumbnail(upload, (IMAGE_LARGE, IMAGE_LARGE), fmt) filename_l = "%s_l.%s" % (new_name, ext) large_file = SimpleUploadedFile(filename_l, large.read(), content_type=src.content_type) medium = _thumbnail(upload, (IMAGE_MEDIUM, IMAGE_MEDIUM), fmt) filename_m = "%s_m.%s" % (new_name, ext) medium_file = SimpleUploadedFile(filename_m, medium.read(), content_type=src.content_type) small = _thumbnail(upload, (IMAGE_SMALL, IMAGE_SMALL), fmt) filename_s = "%s_s.%s" % (new_name, ext) small_file = SimpleUploadedFile(filename_s, small.read(), content_type=src.content_type) return large_file, medium_file, small_file def get_pagination(current_page, num_pages, count): page_list = [] show_pages = 2*count+1 if show_pages >= num_pages: page_list.extend(range(1, num_pages+1)) elif current_page - count < 1: page_list.extend(range(1, show_pages+1)) elif current_page + count > num_pages: page_list.extend(range(num_pages+1-show_pages, num_pages+1)) else: page_list.extend(range(current_page-count, current_page+count+1)) return page_list def topic_pagination(page, topics): paginator = Paginator(topics, NUM_PER_PAGE) try: topic_list = paginator.page(page) except PageNotAnInteger: topic_list = paginator.page(1) except EmptyPage: topic_list = paginator.page(paginator.num_pages) page_list = get_pagination(topic_list.number, paginator.num_pages, 2) return topic_list, page_list def author_required(view_func): def _wrapped_view_func(request, *args, **kwargs): topic_id = kwargs.get('topic_id') topic = get_object_or_404(Topic, id=topic_id) if topic.author == request.user: return view_func(request, *args, **kwargs) else: return HttpResponseForbidden() return _wrapped_view_func def get_metioned_user(sender, markdown): mentioned = set(re.findall(MENTION_REGEX, markdown)) - set([sender.username]) # mentioned = set(re.findall(MENTION_REGEX, markdown)) if mentioned: return User.objects.filter(username__in=mentioned) return None
63818
import sys # add your project directory to the sys.path project_home = u'.' if project_home not in sys.path: sys.path = [project_home] + sys.path from DataComets import app as application
63822
from ..factory import Type class updateChatPinnedMessage(Type): chat_id = None # type: "int53" pinned_message_id = None # type: "int53"
63881
from .base import BaseModel from .head import MLPHeadModel from .pretraining import ( DenoisingPretrainModel, SAINTPretrainModel, TabTransformerPretrainModel, VIMEPretrainModel, )
63897
import fabric.api from provy.core import Role from provy.more.debian.package.aptitude import AptitudeRole ''' Roles in this namespace are meant to provide `SELinux <http://selinuxproject.org/>`_ management utilities for Debian distributions. ''' class SELinuxRole(Role): ''' This role provides `SELinux <http://selinuxproject.org/>`_ utilities for Debian distributions. .. warning:: If you're provisioning a Ubuntu server, it's highly recommended you use :class:`AppArmorRole <provy.more.debian.security.apparmor.AppArmorRole>` instead of this one. Please note that, for SELinux to be installed from scratch, you have to reboot the server so that it relabels all the files in the system for SELinux. So it's also highly recommended that you provision a server that has SELinux installed and activated already. Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.ensure_login_mapping("foo") selinux.map_login("foo", "staff_u") selinux.map_role("foo", ["staff_r", "sysadm_r"]) ''' def __init__(self, prov, context): super(SELinuxRole, self).__init__(prov, context) def __distro_is_ubuntu(self): distro_info = self.get_distro_info() return distro_info.distributor_id.lower() == 'ubuntu' def provision(self): ''' Installs SELinux, its dependencies, its utilities and the `Audit framework <https://www.wzdftpd.net/docs/selinux/audit.html>`_. Also, it activates SELinux after installing the packages, puts the system in enforce mode and puts the generic users into confinement for enhanced security. Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): self.provision_role(SELinuxRole) # no need to call this if using with block. ''' self.install_packages() self.activate() self.log('''SELinux provisioned. Don't forget to reboot the server if it didn't have SELinux already installed and activated.''') def install_packages(self): ''' Installs the necessary packages to provision SELinux. This is executed during provisioning, so you can ignore this method. Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.install_packages() # no need to call this directly. ''' with self.using(AptitudeRole) as aptitude: if self.__distro_is_ubuntu(): aptitude.ensure_package_installed('selinux') else: aptitude.ensure_package_installed('selinux-basics') aptitude.ensure_package_installed('selinux-policy-default') aptitude.ensure_package_installed('selinux-utils') aptitude.ensure_package_installed('auditd') aptitude.ensure_package_installed('audispd-plugins') def activate(self): ''' Activates SELinux, confines generic users and puts the system into enforce mode. This is executed during provisioning, so you can ignore this method. Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.activate() # no need to call this directly. ''' if not self.__distro_is_ubuntu(): self.execute('selinux-activate', stdout=False, sudo=True) self.__confine_generic_users() self.enforce() def __confine_generic_users(self): self.execute("semanage login -m -s 'user_u' -r s0 __default__", stdout=False, sudo=True) def enforce(self): ''' Puts the system into enforce mode. This is executed during provisioning, so you can ignore this method. Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.enforce() # no need to call this directly. ''' with fabric.api.settings(warn_only=True): self.execute('setenforce 1', stdout=False, sudo=True) self.ensure_line('SELINUX=enforcing', '/etc/selinux/config', sudo=True) def ensure_login_mapping(self, user_or_group): ''' Makes sure that a mapping exists for a login user to an SELinux user (if creating one now, sets it to the "user_u" SELinux user). :param user_or_group: The user or group to be changed. If providing a group, pass it with an "@" before the group name (like "@my-group"). :type user_or_group: :class:`str` Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.ensure_login_mapping("foo") selinux.ensure_login_mapping("@bar") ''' with fabric.api.settings(warn_only=True): self.execute('semanage login -a %s' % user_or_group, stdout=False, sudo=True) def map_login(self, user_or_group, selinux_user): ''' Maps a login user to an SELinux user. If the login user has no mapping yet, the role creates one. :param user_or_group: The user or group to be changed. If providing a group, pass it with an "@" before the group name (like "@my-group"). :type user_or_group: :class:`str` :param selinux_user: The SELinux user to be referenced. :type selinux_user: :class:`str` Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.map_login("foo", "staff_u") ''' self.ensure_login_mapping(user_or_group) self.execute('semanage login -m -s %s %s' % (selinux_user, user_or_group), stdout=False, sudo=True) def map_role(self, user_or_group, selinux_roles): ''' Maps a login user to one or more SELinux roles. If the login user has no mapping yet, the role creates one. :param user_or_group: The user or group to be changed. If providing a group, pass it with an "@" before the group name (like "@my-group"). :type user_or_group: :class:`str` :param selinux_roles: The roles to be referenced. :type selinux_roles: :class:`iterable` Example: :: from provy.core import Role from provy.more.debian import SELinuxRole class MySampleRole(Role): def provision(self): with self.using(SELinuxRole) as selinux: selinux.map_role("foo", ["staff_r", "sysadm_r"]) ''' self.ensure_login_mapping(user_or_group) roles_as_string = ' '.join(selinux_roles) self.execute("semanage user -m -R '%s' %s" % (roles_as_string, user_or_group), stdout=False, sudo=True)
63902
import os from unittest import TestCase from keras_gpt_2 import get_bpe_from_files class TestBPE(TestCase): def test_encode_and_decode(self): current_path = os.path.dirname(os.path.abspath(__file__)) toy_checkpoint_path = os.path.join(current_path, 'toy_checkpoint') encoder_path = os.path.join(toy_checkpoint_path, 'encoder.json') vocab_path = os.path.join(toy_checkpoint_path, 'vocab.bpe') bpe = get_bpe_from_files(encoder_path, vocab_path) text = 'Power, give me more power!' indices = bpe.encode(text) self.assertEqual([13434, 11, 1577, 502, 517, 1176, 0], indices) self.assertEqual(text, bpe.decode(indices)) self.assertEqual(text, bpe.decode(bpe.encode(text)))
63915
from .ingredient import Ingredient from .recipe import Recipe from .source import Source __all__ = ["Ingredient", "Recipe", "Source"]
63918
import os import sys import torch import models import logging import argparse import datetime from amp import AMP from data_utils import load_data class Instructor: def __init__(self, args): self.args = args self.logger = logging.getLogger() self.logger.setLevel(logging.INFO) self.logger.addHandler(logging.StreamHandler(sys.stdout)) self.logger.addHandler(logging.FileHandler(args.log_name)) self.logger.info(f"> creating model {args.model}") self.model = models.__dict__[args.model](num_classes=args.num_classes, dropout=args.dropout) self.model.to(args.device) if args.device.type == 'cuda': self.logger.info(f"> cuda memory allocated: {torch.cuda.memory_allocated(args.device.index)}") self._print_args() def _print_args(self): n_trainable_params, n_nontrainable_params = 0, 0 for p in self.model.parameters(): n_params = torch.prod(torch.tensor(p.size())) if p.requires_grad: n_trainable_params += n_params else: n_nontrainable_params += n_params self.logger.info(f"> n_trainable_params: {n_trainable_params}, n_nontrainable_params: {n_nontrainable_params}") self.logger.info('> training arguments:') for arg in vars(self.args): self.logger.info(f">>> {arg}: {getattr(self.args, arg)}") def _train(self, train_dataloader, criterion, optimizer): train_loss, n_correct, n_train = 0, 0, 0 n_batch = len(train_dataloader) self.model.train() for i_batch, (inputs, targets) in enumerate(train_dataloader): inputs, targets = inputs.to(self.args.device), targets.to(self.args.device) def closure(): optimizer.zero_grad() outputs = self.model(inputs) loss = criterion(outputs, targets) loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_norm) return outputs, loss outputs, loss = optimizer.step(closure) train_loss += loss.item() * targets.size(0) n_correct += (torch.argmax(outputs, -1) == targets).sum().item() n_train += targets.size(0) ratio = int((i_batch+1)*50/n_batch) sys.stdout.write(f"\r[{'>'*ratio}{' '*(50-ratio)}] {i_batch+1}/{n_batch} {(i_batch+1)*100/n_batch:.2f}%") sys.stdout.flush() print() return train_loss / n_train, n_correct / n_train def _test(self, test_dataloader, criterion): test_loss, n_correct, n_test = 0, 0, 0 n_batch = len(test_dataloader) self.model.eval() with torch.no_grad(): for i_batch, (inputs, targets) in enumerate(test_dataloader): inputs, targets = inputs.to(self.args.device), targets.to(self.args.device) outputs = self.model(inputs) loss = criterion(outputs, targets) test_loss += loss.item() * targets.size(0) n_correct += (torch.argmax(outputs, -1) == targets).sum().item() n_test += targets.size(0) ratio = int((i_batch+1)*50/n_batch) sys.stdout.write(f"\r[{'>'*ratio}{' '*(50-ratio)}] {i_batch+1}/{n_batch} {(i_batch+1)*100/n_batch:.2f}%") sys.stdout.flush() print() return test_loss / n_test, n_correct / n_test def run(self): train_dataloader, test_dataloader = load_data(batch_size=self.args.batch_size, workers=0, dataset=self.args.dataset, data_target_dir=os.path.join(self.args.data_dir, self.args.dataset), data_aug=(self.args.no_data_aug==False), cutout=self.args.cutout, autoaug=self.args.autoaug) criterion = torch.nn.CrossEntropyLoss() optimizer = AMP(params=filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.args.lr, epsilon=self.args.epsilon, inner_lr=self.args.inner_lr, inner_iter=self.args.inner_iter, base_optimizer=torch.optim.SGD, momentum=self.args.momentum, weight_decay=self.args.decay, nesterov=True) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, self.args.milestones, self.args.gamma) best_loss, best_acc = 0, 0 for epoch in range(self.args.num_epoch): train_loss, train_acc = self._train(train_dataloader, criterion, optimizer) test_loss, test_acc = self._test(test_dataloader, criterion) scheduler.step() if test_acc > best_acc or (test_acc == best_acc and test_loss < best_loss): best_acc, best_loss = test_acc, test_loss self.logger.info(f"{epoch+1}/{self.args.num_epoch} - {100*(epoch+1)/self.args.num_epoch:.2f}%") self.logger.info(f"[train] loss: {train_loss:.4f}, acc: {train_acc*100:.2f}, err: {100-train_acc*100:.2f}") self.logger.info(f"[test] loss: {test_loss:.4f}, acc: {test_acc*100:.2f}, err: {100-test_acc*100:.2f}") self.logger.info(f"best loss: {best_loss:.4f}, best acc: {best_acc*100:.2f}, best err: {100-best_acc*100:.2f}") self.logger.info(f"log saved: {self.args.log_name}") if __name__ == '__main__': model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith('__') and callable(models.__dict__[name])) num_classes = {'svhn': 10, 'cifar10': 10, 'cifar100': 100} parser = argparse.ArgumentParser(description='Trainer', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--dataset', type=str, default='cifar10', choices=list(num_classes.keys()), help='Dataset name.') parser.add_argument('--data_dir', type=str, default='data', help='Dictionary for dataset.') parser.add_argument('--no_data_aug', default=False, action='store_true', help='Disable data augmentation.') parser.add_argument('--cutout', default=False, action='store_true', help='Enable Cutout augmentation.') parser.add_argument('--autoaug', default=False, action='store_true', help='Enable AutoAugment.') parser.add_argument('--model', default='preactresnet18', choices=model_names, help='Model architecture.') parser.add_argument('--num_epoch', type=int, default=200, help='Number of epochs to train.') parser.add_argument('--batch_size', type=int, default=50, help='Number of samples in a batch.') parser.add_argument('--lr', type=float, default=0.1, help='Outer learning rate.') parser.add_argument('--epsilon', type=float, default=0.5, help='Perturbation norm ball radius.') parser.add_argument('--inner_lr', type=float, default=1, help='Inner learning rate.') parser.add_argument('--inner_iter', type=int, default=1, help='Inner iteration number.') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') parser.add_argument('--decay', type=float, default=1e-4, help='Weight decay (L2 penalty).') parser.add_argument('--dropout', type=float, default=0, help='Dropout applied to the model.') parser.add_argument('--clip_norm', type=int, default=50, help='Maximum norm of parameter gradient.') parser.add_argument('--milestones', type=int, nargs='+', default=[100, 150], help='Decrease learning rate at these epochs.') parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on each milstone.') parser.add_argument('--device', type=str, default=None, choices=['cpu', 'cuda'], help='Device.') args = parser.parse_args() args.num_classes = num_classes[args.dataset] args.log_name = f"{args.dataset}_{args.model}_{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')[2:]}.log" args.device = torch.device(args.device) if args.device else torch.device('cuda' if torch.cuda.is_available() else 'cpu') ins = Instructor(args) ins.run()
63941
import math import os import time import numpy as np import pybullet as p import pybullet_utils.bullet_client as bc from gripper_module import load_gripper from misc.urdf_editor import UrdfEditor import utils from fusion import TSDFVolume class Gripper(object): """ A moving mount and a gripper. the mount has 4 joints: 0: prismatic x; 1: prismatic y; 2: prismatic z; 3: revolute z; the gripper is defined by the `gripper_type`. """ def __init__(self, gripper_type, bullet_client, home_position, num_side_images, voxel_size=0.004, trunc_margin_scale=5, **kwargs): self._bullet_client = bullet_client self._gripper_type = gripper_type self._gripper_size = kwargs['gripper_size'] self._home_position = home_position self._default_orientation = [0,0,0] self._num_side_images = num_side_images # load gripper self._gripper = load_gripper(gripper_type)(self._bullet_client, **kwargs) gripper_body_id = self._gripper.load(self._home_position) # load mount mount_urdf = 'assets/gripper/mount.urdf' mount_body_id = self._bullet_client.loadURDF( mount_urdf, basePosition=self._home_position, useFixedBase=True ) # combine mount and gripper by a joint ed_mount = UrdfEditor() ed_mount.initializeFromBulletBody(mount_body_id, self._bullet_client._client) ed_gripper = UrdfEditor() ed_gripper.initializeFromBulletBody(gripper_body_id, self._bullet_client._client) self._gripper_parent_index = 4 newjoint = ed_mount.joinUrdf( childEditor=ed_gripper, parentLinkIndex=self._gripper_parent_index, jointPivotXYZInParent=self._gripper.get_pos_offset(), jointPivotRPYInParent=self._bullet_client.getEulerFromQuaternion(self._gripper.get_orn_offset()), jointPivotXYZInChild=[0, 0, 0], jointPivotRPYInChild=[0, 0, 0], parentPhysicsClientId=self._bullet_client._client, childPhysicsClientId=self._bullet_client._client ) newjoint.joint_type = self._bullet_client.JOINT_FIXED newjoint.joint_name = "joint_mount_gripper" urdfname = f".tmp_combined_{self._gripper_type}_{self._gripper_size:.4f}_{np.random.random():.10f}_{time.time():.10f}.urdf" ed_mount.saveUrdf(urdfname) # remove mount and gripper bodies self._bullet_client.removeBody(mount_body_id) self._bullet_client.removeBody(gripper_body_id) self._body_id = self._bullet_client.loadURDF( urdfname, useFixedBase=True, basePosition=self._home_position, baseOrientation=self._bullet_client.getQuaternionFromEuler([0, 0, 0]) ) # remove the combined URDF os.remove(urdfname) # configure the gripper (e.g. friction) self._gripper.configure(self._body_id, self._gripper_parent_index+1) # define force and speed (movement of mount) self._force = 10000 self._speed = 0.005 self._tsdf_size = [64, 64, 32] self._voxel_size = voxel_size self._trunc_margin_scale = trunc_margin_scale bond = np.array(self._tsdf_size) * self._voxel_size self._vol_bnds = np.array([[-bond[0]/2, bond[0]/2], [-bond[1]/2, bond[1]/2], [0, bond[2]]]) self._vol_bnds += np.array(self._home_position).reshape(3, -1) # Add RGB-D camera (mimic RealSense D415) for gripper self._gripper_cam_lookat = self._vol_bnds.mean(1) self._gripper_cam_image_size = (512, 512) self._gripper_cam_z_near = 0.01 self._gripper_cam_z_far = 10.0 self._gripper_cam_fov_w = 69.40 self._gripper_cam_focal_length = (float(self._gripper_cam_image_size[1])/2)/np.tan((np.pi*self._gripper_cam_fov_w/180)/2) self._gripper_cam_fov_h = (math.atan((float(self._gripper_cam_image_size[0])/2)/self._gripper_cam_focal_length)*2/np.pi)*180 self._gripper_cam_projection_matrix = self._bullet_client.computeProjectionMatrixFOV( fov=self._gripper_cam_fov_h, aspect=float(self._gripper_cam_image_size[1])/float(self._gripper_cam_image_size[0]), nearVal=self._gripper_cam_z_near, farVal=self._gripper_cam_z_far ) # notes: 1) FOV is vertical FOV 2) aspect must be float self._gripper_cam_intrinsics = np.array([[self._gripper_cam_focal_length, 0, float(self._gripper_cam_image_size[1])/2], [0, self._gripper_cam_focal_length, float(self._gripper_cam_image_size[0])/2], [0, 0, 1]]) self.fix_joints(range(self._bullet_client.getNumJoints(self._body_id))) def get_gripper_cam_data(self, cam_position, cam_lookat, cam_up_direction): cam_view_matrix = self._bullet_client.computeViewMatrix(cam_position, cam_lookat, cam_up_direction) cam_pose_matrix = np.linalg.inv(np.array(cam_view_matrix).reshape(4, 4).T) # TODO: fix flipped up and forward vectors (quick hack) cam_pose_matrix[:, 1:3] = -cam_pose_matrix[:, 1:3] camera_data = self._bullet_client.getCameraImage(self._gripper_cam_image_size[1],self._gripper_cam_image_size[0], cam_view_matrix,self._gripper_cam_projection_matrix, shadow=1,flags=self._bullet_client.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX, renderer=self._bullet_client.ER_BULLET_HARDWARE_OPENGL) rgb_pixels = np.array(camera_data[2]).reshape((self._gripper_cam_image_size[0], self._gripper_cam_image_size[1], 4)) color_image = rgb_pixels[:,:,:3] # remove alpha channel z_buffer = np.array(camera_data[3]).reshape((self._gripper_cam_image_size[0], self._gripper_cam_image_size[1])) segmentation_mask = None # camera_data[4] - not implemented yet with renderer=p.ER_BULLET_HARDWARE_OPENGL depth_image = (2.0*self._gripper_cam_z_near*self._gripper_cam_z_far)/(self._gripper_cam_z_far+self._gripper_cam_z_near-(2.0*z_buffer-1.0)*(self._gripper_cam_z_far-self._gripper_cam_z_near)) return color_image, depth_image, segmentation_mask, cam_pose_matrix def get_tsdf(self, open_scale): self.move(self._home_position, 0) self.close() self.open(open_scale=open_scale) self._gripper_tsdf = TSDFVolume(self._vol_bnds, voxel_size=self._voxel_size) # take side images cam_up_direction = [0, 0, 1] side_look_directions = np.linspace(0, 2*np.pi, num=self._num_side_images, endpoint=False) cam_distance = 1 for direction in side_look_directions: cam_position = [ self._home_position[0] + cam_distance * np.cos(direction), self._home_position[1] + cam_distance * np.sin(direction), self._home_position[2] ] color_image, depth_image, _, cam_pose_matrix = self.get_gripper_cam_data(cam_position, self._gripper_cam_lookat, cam_up_direction) self._gripper_tsdf.integrate(color_image, depth_image, self._gripper_cam_intrinsics, cam_pose_matrix, obs_weight=1.) # take image from top color_image, depth_image, _, cam_pose_matrix = self.get_gripper_cam_data([0, 0, 2], self._gripper_cam_lookat, [1, 0, 0]) self._gripper_tsdf.integrate(color_image, depth_image, self._gripper_cam_intrinsics, cam_pose_matrix, obs_weight=2.) # take image from bottom color_image, depth_image, _, cam_pose_matrix = self.get_gripper_cam_data([0, 0, 0], self._gripper_cam_lookat, [1, 0, 0]) self._gripper_tsdf.integrate(color_image, depth_image, self._gripper_cam_intrinsics, cam_pose_matrix, obs_weight=2.) tsdf_vol_cpu, _ = self._gripper_tsdf.get_volume() tsdf_vol_cpu = np.transpose(tsdf_vol_cpu, [1, 0, 2]) # swap x-axis and y-axis to make it consitent with scene_tsdf return tsdf_vol_cpu def open(self, open_scale): self._gripper.open(self._body_id, self._gripper_parent_index+1, open_scale=open_scale) def close(self): self._gripper.close(self._body_id, self._gripper_parent_index+1) def move(self, target_position, rotation_angle, stop_at_contact=False): """ :param target_position: (x, y, z). the position of the bottom center, not the base! :param rotation_angle: rotation in z axis \in [0, 2 * \pi]. For 2-finger gripper, angle=0 --> parallel to x-axis """ target_position = np.array(target_position) - np.array(self._home_position) joint_ids = [0, 1, 2, 3] target_states = [target_position[0], target_position[1], target_position[2], rotation_angle%(2*np.pi)] self._bullet_client.setJointMotorControlArray( self._body_id, joint_ids, self._bullet_client.POSITION_CONTROL, targetPositions=target_states, forces=[self._force] * len(joint_ids), positionGains=[self._speed] * len(joint_ids) ) for i in range(240 * 6): current_states = np.array([self._bullet_client.getJointState(self._body_id, joint_id)[0] for joint_id in joint_ids]) states_diff = np.abs(target_states - current_states) # stop moving gripper if gripper collide with other objects if stop_at_contact: is_in_contact = False points = self._bullet_client.getContactPoints(bodyA=self._body_id) if len(points) > 0: for p in points: if p[9] > 0: is_in_contact = True break if is_in_contact: break if np.all(states_diff < 1e-4): break self._gripper.step_constraints(self._body_id, self._gripper_parent_index+1) self._bullet_client.stepSimulation() self.fix_joints(joint_ids) def fix_joints(self, joint_ids): current_states = np.array([self._bullet_client.getJointState(self._body_id, joint_id)[0] for joint_id in joint_ids]) self._bullet_client.setJointMotorControlArray( self._body_id, joint_ids, self._bullet_client.POSITION_CONTROL, targetPositions=current_states, forces=[self._force] * len(joint_ids), positionGains=[self._speed] * len(joint_ids) ) def primitive_grasping(self, target_position, rotation_angle, open_scale=1.0, stop_at_contact=False): """ :param target_position: (x, y, z). the position of the bottom center, not the base! :param rotation_angle: rotation in z axis \in [0, 2 * \pi] :return successs or not (True/False) """ self.move([target_position[0], target_position[1], self._home_position[2]], rotation_angle) self.open(open_scale) self.move(target_position, rotation_angle, stop_at_contact=stop_at_contact) self.close() self.move([target_position[0], target_position[1], self._home_position[2]], rotation_angle) def remove(self): self._bullet_client.removeBody(self._body_id) def get_vis_pts(self, open_scale): pts = self._gripper.get_vis_pts(open_scale) angle = self._default_orientation[-1] # only add rotation around z axis rotated_pts = np.transpose(np.dot(np.asarray( [[np.cos(angle),-np.sin(angle)], [np.sin(angle), np.cos(angle)]]),np.transpose(pts))) return rotated_pts
63975
from time import clock import sys sys.path.append('../../../') print (sys.path) from tspdb.src.data import generateHarmonics as gH from tspdb.src.data import generateTrend as gT import tspdb.src.data.generateARMA as gA import numpy as np from tspdb.src.hdf_util import write_data import matplotlib.pyplot as plt def armaDataTest(timeSteps): arLags = []#[0.4, 0.3, 0.2] maLags = []#[0.5, 0.1] startingArray = np.zeros(np.max([len(arLags), len(maLags)])) # start with all 0's noiseMean = 0.0 noiseSD = [1.0] (observedArray, meanArray, errorArray) = gA.generate(arLags, maLags, startingArray, timeSteps, noiseMean, noiseSD) return (observedArray, meanArray) def trendDataTest(timeSteps): dampening = 2.0*float(1.0/timeSteps) power = 0.35 displacement = -2.5 f1 = gT.linearTrendFn data = gT.generate(f1, power=power, displacement=displacement, timeSteps=timeSteps) f2 = gT.logTrendFn f3 = gT.negExpTrendFn return data def harmonicDataTest(timeSteps): sineCoeffs = [-2.0, 3.0] sinePeriods = [560.0, 30.0] cosineCoeffs = [-2.5] cosinePeriods = [16.0] data = gH.generate(sineCoeffs, sinePeriods, cosineCoeffs, cosinePeriods, timeSteps) #plt.plot(data) #plt.show() return data timeSteps = 10**5 +10000 print('generating data..') dt = clock() harmonicsTS = harmonicDataTest(timeSteps) trendTS = trendDataTest(timeSteps) (armaTS, armaMeanTS) = armaDataTest(timeSteps) meanTS = harmonicsTS + trendTS #+ armaMeanTS # combinedTS = harmonicsTS + trendTS + armaTS var = harmonicsTS var = (var - min(var)) errorArray = np.random.normal(0, np.sqrt(var[:timeSteps]), timeSteps) combinedTS = meanTS + errorArray # max1 = np.nanmax(combinedTS) # min1 = np.nanmin(combinedTS) # max2 = np.nanmax(meanTS) # min2 = np.nanmin(meanTS) # max = np.max([max1, max2]) # min = np.min([min1, min2]) # combinedTS = tsUtils.normalize(combinedTS, max, min) # meanTS = tsUtils.normalize(meanTS, max, min) # p = 1 plt.plot(combinedTS, label = 'obs') plt.plot(meanTS, label = 'mean') plt.plot(var, label = 'var') plt.show() print('Data Generated in ', clock() - dt) write_data('MixtureTS_var2.h5', 'means', meanTS) write_data('MixtureTS_var2.h5', 'obs', combinedTS,'a') write_data('MixtureTS_var2.h5', 'var', var,'a') # DF = pd.DataFrame() # DF['means'] = meanTS # DF['Obs'] = combinedTS # DF['trainData'] = trainData # DF.to_hdf('MixtureTS.h5','ts1')
64018
import re import bs4 from LimeSoup.lime_soup import Soup, RuleIngredient from LimeSoup.parser.elsevier_xml import ( resolve_elsevier_entities, extract_ce_text, find_non_empty_children, node_named, extract_ce_para, extract_ce_section, extract_ce_abstract, extract_ce_title, remove_consecutive_whitespaces) __author__ = '<NAME>, <NAME>' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __version__ = '0.3.2-xml' __all__ = ['ElsevierXMLSoup'] class ElsevierParseXML(RuleIngredient): @staticmethod def _parse(xml_str): xml_str = resolve_elsevier_entities(xml_str) return bs4.BeautifulSoup(xml_str, 'lxml-xml') class ElsevierReadMetaData(RuleIngredient): @staticmethod def get_text_or_none(soup, name, handler=None): if soup is None: return None node = soup.find(name=name) if node is None: return None elif handler is not None: return handler(node) else: return node.get_text().strip() @staticmethod def _parse(soup): # journal journal_name = ElsevierReadMetaData.get_text_or_none(soup, 'xocs:srctitle') or \ ElsevierReadMetaData.get_text_or_none(soup, 'prism:publicationName') doi = ElsevierReadMetaData.get_text_or_none(soup, 'xocs:doi') # https://www.elsevier.com/__data/assets/pdf_file/0003/58872/ja5_tagbytag5_v1.9.5.pdf # Elsevier XML definition pp. 46 head_node = soup.find('head') title = ElsevierReadMetaData.get_text_or_none(head_node, 'ce:title', extract_ce_title) or \ ElsevierReadMetaData.get_text_or_none(soup, 'dc:title') keywords = [] if head_node is not None: # Elsevier XML definition pp. 366 for node in head_node.find_all('ce:keyword'): text_node = node.find('ce:text') if text_node is not None: keyword = remove_consecutive_whitespaces( extract_ce_text(text_node), keep_newline=False ).strip() keywords.append(keyword) if len(keywords) == 0: for subject in soup.find_all('dcterms:subject'): keywords.append(subject.get_text().strip()) return soup, { 'Journal': journal_name, 'DOI': doi, 'Title': title, 'Keywords': keywords } class ElsevierCollect(RuleIngredient): @staticmethod def _parse(args): soup, obj = args paragraphs = [] # find all sections for node in soup.find_all('ce:abstract'): abstract_paragraph = extract_ce_abstract(node) normalized_name = re.sub(r'[^\w]', '', abstract_paragraph['name']) if re.match(r'abstracts?', normalized_name, re.IGNORECASE): paragraphs.append(abstract_paragraph) sections = soup.find('ce:sections') if sections is not None: for node in find_non_empty_children(sections): if node_named(node, 'ce:para'): paragraphs.extend(extract_ce_para(node).split('\n')) elif node_named(node, 'ce:section'): paragraphs.append(extract_ce_section(node)) obj['Sections'] = paragraphs return obj ElsevierXMLSoup = Soup(parser_version=__version__) ElsevierXMLSoup.add_ingredient(ElsevierParseXML()) ElsevierXMLSoup.add_ingredient(ElsevierReadMetaData()) ElsevierXMLSoup.add_ingredient(ElsevierCollect())
64025
import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import logging import configparser import time import json import concurrent.futures logger = logging.getLogger(__name__) config = configparser.ConfigParser() config.read('config.ini') crxcavator_api = config['crxcavator']['api'] MAX_THREADS = int(config['crxcavator']['threads']) # Get max number of threads for multi-threading class CrXcavator(object): def __init__(self, extension_id, version, name): self.id = extension_id self.version = version self.name = name self.risk_csp = None self.risk_external_javascript = None self.risk_external_calls = None self.risk_score = 0 self.entry_points = None self.dangerous_functions = None self.chrome_link = "https://chrome.google.com/webstore/detail/{0}".format(extension_id) self.crxcavator_link = "https://crxcavator.io/report/{0}/{1}".format(extension_id, version) def print(self): print('ID: %s' % self.id) print('Version: %s' % self.version) print('Score: %d' % self.risk_score) print('Link: %s' % self.chrome_link) print('CrXcavator Link: %s' % self.crxcavator_link) if self.risk_csp is not None: print('CSP: \n%s' % json.dumps(self.risk_csp, indent=2)) if self.risk_external_javascript is not None: print('External JavaScript: \n%s' % json.dumps(self.risk_external_javascript, indent=2)) if self.risk_external_calls is not None: print('External Calls: \n%s' % json.dumps(self.risk_external_calls, indent=2)) if self.dangerous_functions is not None: print('Dangerous Functions: \n%s' % json.dumps(self.dangerous_functions, indent=2)) if self.entry_points is not None: print('Entry Points: \n%s' % json.dumps(self.entry_points, indent=2)) print() # Generate session with max of 3 retries and interval of 1 second def session_generator(): session = requests.Session() session.headers.update({'API-Key': config['crxcavator']['key'], 'Content-Type': 'application/json'}) retry = Retry(connect=3, backoff_factor=0.5) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session # Parse risk data returned from report of crxcavator def parse_risk_data(extension_id, version, data): riskobj = CrXcavator(extension_id, version, data['webstore']['name']) if 'csp' in data: riskobj.risk_csp = data['csp'] if 'extjs' in data: riskobj.risk_external_javascript = data['extjs'] if 'extcalls' in data: riskobj.risk_external_calls = data['extcalls'] if 'entrypoints' in data: riskobj.entry_points = data['entrypoints'] if 'dangerousfunctions' in data: riskobj.dangerous_functions = data['dangerousfunctions'] if 'risk' in data: for each_item in data['risk']: if each_item == 'total' or each_item == 'webstore' or each_item == 'metadata': continue else: riskobj.risk_score = riskobj.risk_score + int(data['risk'][each_item]['total']) return riskobj # Get risk data for a particular extension and their version def get_extension_risk(extension_id, version): risk_obj = None session = session_generator() resp = session.get("%s/report/%s/%s" % (crxcavator_api, extension_id, version)) if resp.ok: try: response = resp.json() except json.decoder.JSONDecodeError: logger.warning('JSON Decode Error. Retrying for extension %s version %s' % (extension_id, version)) risk_obj = get_extension_risk(extension_id, version) return risk_obj if response is None: logger.info('Failed to fetch report on %s version %s' % (extension_id, version)) else: if 'version' in response: if response['version'] is not None: risk_obj = parse_risk_data(extension_id, response['version'], response['data']) else: print(json.dumps(response, indent=4)) elif 600 > resp.status_code >= 500 or resp.status_code == 429: logger.warning("Exceed rate limit.") time.sleep(60) # TO DO: # Check header to see if spits out retry. # print(resp.header) risk_obj = get_extension_risk(extension_id, version) else: logger.error('ERROR %s: %s' % (resp.status_code, resp.text)) logger.error('Unable to get risk data on extension %s of version %s' % (extension_id, version)) return risk_obj # Submit an extension to get it scanned by crxcavator. This would also be useful to classify the extensions to the # below categories def submit_extension(extension_id: str): submit_results = {} submit_results['id'] = extension_id submit_results['version'] = None submit_results['extension'] = False submit_results['not_free'] = False submit_results['run_again'] = False submit_results['removed_from_store'] = False data = {'extension_id': extension_id} session = session_generator() resp = session.post("%s/submit" % crxcavator_api, json=data) if resp.ok: try: response = resp.json() except json.decoder.JSONDecodeError: logger.warning('JSON Decode Error. Retrying for extension %s' % extension_id) submit_results = submit_extension(extension_id) return submit_results if 'error' not in response: if "no longer in Chrome" in response['message']: submit_results['removed_from_store'] = True else: submit_results['version'] = response['version'] submit_results['extension'] = True else: if "not free" in response['error']: submit_results['not_free'] = True elif "Error retrieving extension from webstore" in response['error']: submit_results['run_again'] = True elif "Theme" in response['error']: submit_results['extension'] = False elif 'Error extension is too big' in response['error']: submit_results['version'] = "" submit_results['extension'] = True else: logger.error('Extension %s: %s' % (extension_id, response['error'])) elif resp.status_code == 429: logger.warning("Exceed rate limit.") time.sleep(60) # TO DO: # Check header to see if spits out retry. # print(resp.header) submit_results = submit_extension(extension_id) elif 600 > resp.status_code >= 500: time.sleep(90) logger.error('Server not responsive for extension %s. Trying Again' % extension_id) submit_results['run_again'] = True else: logger.error('ERROR %s: %s' % (resp.status_code, resp.text)) return submit_results # Get risk data on multiple versions of the same chrome extension def fetch_risk_details(extension_id, versions): riskobjs = [] # Check if report exist for current version with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor: fs = [executor.submit(get_extension_risk, extension_id, version) for version in versions] for future in concurrent.futures.as_completed(fs): riskobj = future.result() if riskobj is not None: riskobjs.append(riskobj) return riskobjs
64031
from .build_arima import BuildArima from .build_sarimax import BuildSarimax from .build_autoarimax import BuildAutoSarimax from .build_var import BuildVAR
64066
import sqlalchemy.orm from .authors import Author from .base import Base from .books import Book def setup(engine): Base.metadata.create_all(engine) session = sqlalchemy.orm.Session(engine) author_wodehouse = Author(name="<NAME>") author_bernières = Author(name="<NAME>") session.add_all((author_wodehouse, author_bernières)) session.flush() session.add(Book(title="Leave It to Psmith", genre="comedy", author_id=author_wodehouse.id)) session.add(Book(title="Right Ho, Jeeves", genre="comedy", author_id=author_wodehouse.id)) session.add(Book(title="Captain Corelli's Mandolin", genre="historical_fiction", author_id=author_bernières.id)) session.commit()
64076
import datetime import unittest from flask import Blueprint, request, jsonify from freezegun import freeze_time from mock import Mock, patch import jwt from requests.exceptions import HTTPError from shared_helpers import services from testing import TrottoTestCase, LIVE_APP_HOST class TestFunctions(unittest.TestCase): @patch('shared_helpers.services.get_service_config', return_value={'signing_secret': 'so_secret'}) def test__create_internal_token(self, mock_get_service_config): now = datetime.datetime.now(datetime.timezone.utc) with freeze_time(now): token = services._create_internal_token('my_service', {'id': 1}) self.assertEqual({'exp': int(now.timestamp()) + 30, 'id': 1}, jwt.decode(token, 'so_secret', algorithms=['HS256'])) with freeze_time(now + datetime.timedelta(seconds=40)): with self.assertRaises(jwt.exceptions.ExpiredSignatureError): jwt.decode(token, 'so_secret', algorithms=['HS256']) mock_get_service_config.assert_called_once_with('my_service') @patch('shared_helpers.services.requests.get') @patch('shared_helpers.services._create_internal_token', return_value='internal_token') @patch('shared_helpers.services.get_service_config', return_value={'base_url': 'https://trot.to'}) def test_get__basic(self, mock_get_service_config, mock_create_internal_token, mock_requests_get): mock_response = Mock() mock_response.json.return_value = {'id': 1} mock_requests_get.return_value = mock_response self.assertEqual({'id': 1}, services.get('my_service', 'api/users')) mock_get_service_config.assert_called_once_with('my_service') mock_create_internal_token.assert_called_once_with('my_service', {'url': 'https://trot.to/api/users'}) mock_requests_get.assert_called_once_with('https://trot.to/api/users', headers={'X-Token': 'internal_token'}) @patch('shared_helpers.services.requests.get') @patch('shared_helpers.services._create_internal_token', return_value='internal_token') @patch('shared_helpers.services.get_service_config', return_value={'base_url': 'https://trot.to/'}) def test_get__trailing_and_leading_slashes(self, mock_get_service_config, mock_create_internal_token, mock_requests_get): mock_response = Mock() mock_response.json.return_value = {'id': 1} mock_requests_get.return_value = mock_response self.assertEqual({'id': 1}, services.get('my_service', '/api/users')) mock_get_service_config.assert_called_once_with('my_service') mock_create_internal_token.assert_called_once_with('my_service', {'url': 'https://trot.to/api/users'}) mock_requests_get.assert_called_once_with('https://trot.to/api/users', headers={'X-Token': 'internal_token'}) @patch('shared_helpers.services.requests.get') @patch('shared_helpers.services._create_internal_token', return_value='internal_token') @patch('shared_helpers.services.get_service_config', return_value={'base_url': 'https://trot.to'}) def test_get__http_error(self, mock_get_service_config, mock_create_internal_token, mock_requests_get): mock_response = Mock() mock_response.raise_for_status.side_effect = HTTPError mock_requests_get.return_value = mock_response with self.assertRaises(HTTPError): services.get('my_service', 'api/users') mock_get_service_config.assert_called_once_with('my_service') mock_create_internal_token.assert_called_once_with('my_service', {'url': 'https://trot.to/api/users'}) mock_requests_get.assert_called_once_with('https://trot.to/api/users', headers={'X-Token': 'internal_token'}) def test_validate_internal_request__no_token(self): mock_request = Mock() mock_request.headers = {} with self.assertRaises(services.InvalidInternalToken) as cm: services.validate_internal_request(mock_request) self.assertEqual('no token', str(cm.exception)) @patch('shared_helpers.services.get_config_by_key_path', return_value='so_secret') def test_validate_internal_request__invalid_signature__wrong_secret(self, mock_get_config_by_key_path): token = jwt.encode({'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=30), 'url': 'https://trot.to/api/users'}, 'a_secret', algorithm='HS256') mock_request = Mock() mock_request.headers = {'X-Token': token} mock_request.url = 'https://trot.to/api/users' with self.assertRaises(services.InvalidInternalToken) as cm: services.validate_internal_request(mock_request) self.assertEqual('invalid signature', str(cm.exception)) mock_get_config_by_key_path.assert_called_once_with(['signing_secret']) @patch('shared_helpers.services.get_config_by_key_path', return_value='so_secret') def test_validate_internal_request__invalid_signature__no_exp(self, mock_get_config_by_key_path): token = jwt.encode({'url': 'https://trot.to/api/users'}, 'so_secret', algorithm='HS256') mock_request = Mock() mock_request.headers = {'X-Token': token} mock_request.url = 'https://trot.to/api/users' with self.assertRaises(services.InvalidInternalToken) as cm: services.validate_internal_request(mock_request) self.assertEqual('missing exp', str(cm.exception)) mock_get_config_by_key_path.assert_called_once_with(['signing_secret']) @patch('shared_helpers.services.get_config_by_key_path', return_value='so_secret') def test_validate_internal_request__expired_token(self, mock_get_config_by_key_path): token = jwt.encode({'exp': datetime.datetime.utcnow() - datetime.timedelta(seconds=1), 'url': 'https://trot.to/api/users'}, 'so_secret', algorithm='HS256') mock_request = Mock() mock_request.headers = {'X-Token': token} mock_request.url = 'https://trot.to/api/users' with self.assertRaises(services.InvalidInternalToken) as cm: services.validate_internal_request(mock_request) self.assertEqual('expired', str(cm.exception)) mock_get_config_by_key_path.assert_called_once_with(['signing_secret']) @patch('shared_helpers.services.get_config_by_key_path', return_value='so_secret') def test_validate_internal_request__mismatched_url(self, mock_get_config_by_key_path): token = jwt.encode({'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=30), 'url': 'https://trot.to/api/users/1'}, 'so_secret', algorithm='HS256') mock_request = Mock() mock_request.headers = {'X-Token': token} mock_request.url = 'https://trot.to/api/users' with self.assertRaises(services.InvalidInternalToken) as cm: services.validate_internal_request(mock_request) self.assertEqual('mismatched URL', str(cm.exception)) mock_get_config_by_key_path.assert_called_once_with(['signing_secret']) @patch('shared_helpers.services.get_config_by_key_path', return_value='so_secret') def test_validate_internal_request__valid_token(self, mock_get_config_by_key_path): token = jwt.encode({'exp': datetime.datetime.utcnow() + datetime.timedelta(seconds=30), 'url': 'https://trot.to/api/users'}, 'so_secret', algorithm='HS256') mock_request = Mock() mock_request.headers = {'X-Token': token} mock_request.url = 'https://trot.to/api/users' self.assertEqual(True, services.validate_internal_request(mock_request)) mock_get_config_by_key_path.assert_called_once_with(['signing_secret']) routes = Blueprint('test', __name__) @routes.route('/_/api/users', methods=['GET']) def get_users(): services.validate_internal_request(request) return jsonify([{'id': 1}]) class TestIntegration(TrottoTestCase): blueprints_under_test = [routes] start_live_app = True live_app_config = {'sessions_secret': 'a_sessions_secret', 'signing_secret': 'so_secret', 'postgres': {'url': 'postgresql://admin:testing@/testing_trotto_core'}} @patch('shared_helpers.config.get_config', return_value={'services': {'my_service': {'signing_secret': 'so_secret', 'base_url': LIVE_APP_HOST}}}) def test_internal_request__real_handler__valid_token(self, _): self.assertEqual([{'id': 1}], services.get('my_service', '/_/api/users')) @patch('shared_helpers.config.get_config', return_value={'services': {'my_service': {'signing_secret': 'a_secret', 'base_url': LIVE_APP_HOST}}}) def test_internal_request__real_handler__invalid_token(self, _): with self.assertRaises(HTTPError) as cm: self.assertEqual([{'id': 1}], services.get('my_service', '/_/api/users')) self.assertEqual(500, cm.exception.response.status_code)
64088
from tableschema import Table # Data from WEB, schema from MEMORY SOURCE = 'https://raw.githubusercontent.com/frictionlessdata/tableschema-py/master/data/data_infer.csv' SCHEMA = {'fields': [{'name': 'id', 'type': 'integer'}, {'name': 'age', 'type': 'integer'}, {'name': 'name', 'type': 'string'}] } # If schema is not passed it will be inferred table = Table(SOURCE, schema=SCHEMA) rows = table.iter() while True: try: print(next(rows)) except StopIteration: break except Exception as exception: print(exception)
64129
import numpy as np import sys,os ##################################### INPUT ############################################ realizations = 2000 ######################################################################################## root1 = '/simons/scratch/fvillaescusa/pdf_information/Snapshots/latin_hypercube' root2 = '/simons/scratch/fvillaescusa/pdf_information/Linear_Pk/latin_hypercube' # do a loop over all realizations for i in xrange(realizations): folder_in = '%s/%d'%(root1,i) folder_out = '%s/%d'%(root2,i) if not(os.path.exists(folder_out)): os.system('mkdir %s'%folder_out) os.system('cp %s/CAMB.params %s/'%(folder_in, folder_out)) os.system('cp %s/ICs/Pk_mm_z=0.000.txt %s/'%(folder_in, folder_out))
64160
import re import lib.core.common __product__ = "3dcart" __description__ = ( "The 3dcart Shopping Cart Software is a complete e-commerce solution for anyone." ) def search(html, **kwargs): html = str(html) headers = kwargs.get("headers", None) plugin_detection_schema = ( re.compile(r"3dcart.stats", re.I), re.compile(r"/3dvisit/", re.I) ) for plugin in plugin_detection_schema: if plugin.search(html) is not None: return True if plugin.search(headers.get(lib.core.common.HTTP_HEADER.SET_COOKIE, "")) is not None: return True
64179
expected_output = { "tag": { "test": { "system_id": { "R2_xr": { "type": { "L1L2": { "area_address": ["49.0001"], "circuit_id": "R1_xe.01", "format": "Phase V", "interface": "GigabitEthernet2.115", "ip_address": ["10.12.115.2*"], "ipv6_address": ["FE80::F816:3EFF:FE67:2452"], "nsf": "capable", "priority": 64, "state": "up", "topology": ["ipv4", "ipv6"], "uptime": "3d04h", } } }, "R3_nx": { "type": { "L1L2": { "area_address": ["49.0001"], "circuit_id": "R1_xe.02", "format": "Phase V", "interface": "GigabitEthernet3.115", "ip_address": ["10.13.115.3*"], "ipv6_address": ["FE80::5C01:FF:FE02:7"], "nsf": "capable", "priority": 64, "state": "up", "topology": ["ipv4", "ipv6"], "uptime": "3d04h", } } }, } }, "test1": { "system_id": { "2222.22ff.4444": { "type": { "L1L2": { "area_address": ["49.0001"], "circuit_id": "2222.22ff.4444.01", "format": "Phase V", "interface": "GigabitEthernet2.415", "ip_address": ["10.12.115.2*"], "ipv6_address": ["FE80::F816:3EFF:FE67:2452"], "nsf": "capable", "priority": 128, "state": "init", "topology": ["ipv4", "ipv6"], "uptime": "3d04h", } } }, "R3_nx": { "type": { "L1L2": { "area_address": ["49.0001"], "circuit_id": "R1_xe.02", "format": "Phase V", "interface": "GigabitEthernet3.415", "ip_address": ["10.13.115.3*"], "ipv6_address": ["FE80::5C01:FF:FE02:7"], "nsf": "capable", "priority": 64, "state": "up", "topology": ["ipv4", "ipv6"], "uptime": "3d04h", } } }, } }, } }
64185
from wasmer import engine, Store, Module, Instance from wasmer_compiler_cranelift import Compiler as Cranelift from wasmer_compiler_llvm import Compiler as LLVM from wasmer_compiler_singlepass import Compiler as Singlepass TEST_BYTES = open('benchmarks/nbody.wasm', 'rb').read() def test_benchmark_headless_time_nbody_cranelift_jit(benchmark): store = Store(engine.JIT(Cranelift)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized) def test_benchmark_headless_time_nbody_cranelift_native(benchmark): store = Store(engine.Native(Cranelift)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized) def test_benchmark_headless_time_nbody_llvm_jit(benchmark): store = Store(engine.JIT(LLVM)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized) def test_benchmark_headless_time_nbody_llvm_native(benchmark): store = Store(engine.Native(LLVM)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized) def test_benchmark_headless_time_nbody_singlepass_jit(benchmark): store = Store(engine.JIT(Singlepass)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized) def test_benchmark_headless_time_nbody_singlepass_native(benchmark): store = Store(engine.Native(Singlepass)) module = Module(store, TEST_BYTES) serialized = module.serialize() @benchmark def bench(): deserialized = Module.deserialize(store, serialized) _ = Instance(deserialized)
64240
import torch import torch.nn as nn import physics_aware_training.digital_twin_utils class SplitInputParameterNet(nn.Module): def __init__(self, input_dim, nparams, output_dim, parameterNunits = [100,100,100], internalNunits = [10,10,10]): ''' Defines network that splits inputs x into physical system input and parameters. Inputs are propagated through a "main" neural network whose weights are predicted by an auxiliary neural network whose inputs are the parameters. Args: inputDim (int): dimension of physical system inputs outputDim (int): dimension of physical system outputs parameterDim (int): dimension of all physical system parameters combined parameterNunits (list of int): defines the number of hidden units per layer in the auxiliary parameter network. internalDim (int): number of hidden units per layer of the main neural network that propagates physical system inputs inputNlayers (int): number of hidden layers of main neural network ''' super(SplitInputParameterNet, self).__init__() self.input_dim = input_dim self.nparams = nparams self.output_dim = output_dim self.internalNunits = internalNunits self.inputNlayers = len(internalNunits) nparameters = 0 for i in range(len(internalNunits)-1): nparameters += internalNunits[i]*internalNunits[i+1] nparameters += internalNunits[i+1] # parameterNet is a submodel that predicts a matrix of dimensions self.parameterNet = torch.nn.Sequential() self.parameterNet.add_module("fcIn", torch.nn.Linear(nparams, parameterNunits[0])) for i in range(len(parameterNunits)): if i<len(parameterNunits)-1: self.parameterNet.add_module(f"relu{i}", torch.nn.ReLU()) self.parameterNet.add_module(f"fc{i}", torch.nn.Linear(parameterNunits[i], parameterNunits[i+1])) else: self.parameterNet.add_module(f"relu{i}", torch.nn.ReLU()) self.parameterNet.add_module(f"fcOut", torch.nn.Linear(parameterNunits[i], nparameters)) # two fully connected input and output layers adjust the input and output dimenstion to # the internal dimension self.fcIn = nn.Linear(input_dim, internalNunits[0]) self.fcOut = nn.Linear(internalNunits[-1], output_dim) def forward(self, x): batch_size, _ = x.shape # initialize matrices for inputNet inputNetMatrices = [] inputNetBiases = [] for i in range(len(self.internalNunits)-1): inputNetMatrices.append([torch.zeros(batch_size, self.internalNunits[i], self.internalNunits[i+1])]) inputNetBiases.append([torch.zeros(batch_size, self.internalNunits[i+1], 1)]) # split x into physical system inputs and parameters inputs = x[:, :self.input_dim] parameters = x[:, self.input_dim:] # AUXILIARY PARAMETER NETWORK parameters = self.parameterNet(parameters) # fill inputNetMatrices with outputs from parameterNet index = 0 for i in range(len(self.internalNunits)-1): index_temp = index index += self.internalNunits[i] * self.internalNunits[i+1] inputNetMatrices[i] = parameters[:, index_temp:index].reshape(batch_size, self.internalNunits[i+1], self.internalNunits[i]) # fill inputNetBiases with outputs from parameterNet for i in range(len(self.internalNunits)-1): index_temp = index index += self.internalNunits[i+1] inputNetBiases[i] = parameters[:, index_temp:index].reshape(batch_size, self.internalNunits[i+1], 1) # MAIN INPUT NETWORK inputs = self.fcIn(inputs).unsqueeze(-1) # MAIN INPUT NETWORK for i in range(len(self.internalNunits)-1): # apply matrices and biases just filled with outputs from parameterNet inputs = torch.bmm(inputNetMatrices[i], inputs) inputs += inputNetBiases[i] inputs = torch.relu(inputs) return self.fcOut(inputs.squeeze(-1)) class SplitInputParameterObjective(object): # define class to smuggle additional arguments into objective function def __init__(self, train_loader, test_loader, dt_path, input_dim, nparams, output_dim, **modelargs): self.modelargs = modelargs self.dt_path = dt_path self.train_loader = train_loader self.test_loader = test_loader self.input_dim = input_dim self.nparams = nparams self.output_dim = output_dim def __call__(self, trial): lr = trial.suggest_loguniform("lr", 1e-4, 1e-1) parameterNlayers = trial.suggest_categorical("parameterNlayers", [1, 2, 3, 4, 5]) parameterNunits = [] if parameterNlayers == 1: parameterNunits.append(int(trial.suggest_loguniform("Nunits1", 50, 1000))) if parameterNlayers == 2: parameterNunits.append(int(trial.suggest_loguniform("Nunits1", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits2", 50, 1000))) if parameterNlayers == 3: parameterNunits.append(int(trial.suggest_loguniform("Nunits1", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits2", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits3", 50, 1000))) if parameterNlayers == 4: parameterNunits.append(int(trial.suggest_loguniform("Nunits1", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits2", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits3", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits4", 50, 1000))) if parameterNlayers == 5: parameterNunits.append(int(trial.suggest_loguniform("Nunits1", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits2", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits3", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits4", 50, 1000))) parameterNunits.append(int(trial.suggest_loguniform("Nunits5", 50, 1000))) internalNlayers = trial.suggest_categorical("internalNlayers", [1, 2, 3, 4, 5]) internalNunits = [] if parameterNlayers == 1: internalNunits.append(int(trial.suggest_loguniform("iNunits1", 10, 100))) if parameterNlayers == 2: internalNunits.append(int(trial.suggest_loguniform("iNunits1", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits2", 10, 100))) if parameterNlayers == 3: internalNunits.append(int(trial.suggest_loguniform("iNunits1", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits2", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits3", 10, 100))) if parameterNlayers == 4: internalNunits.append(int(trial.suggest_loguniform("iNunits1", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits2", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits3", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits4", 10, 100))) if parameterNlayers == 5: internalNunits.append(int(trial.suggest_loguniform("iNunits1", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits2", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits3", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits4", 10, 100))) internalNunits.append(int(trial.suggest_loguniform("iNunits5", 10, 100))) name = f"{self.dt_path}_v{trial.number}" #create name with trial index value, model_path = physics_aware_training.digital_twin_utils.train_loop_reg_model( self.train_loader, self.test_loader, name, self.input_dim, self.nparams, self.output_dim, Model = SplitInputParameterNet, parameterNunits = parameterNunits, internalNunits = internalNunits, lr = lr, **self.modelargs) trial.set_user_attr('model_path', model_path) #save the model path string in NAS study return value
64256
from random import randint from cowait.worker.worker_node import WorkerNode from .html_logger import HTMLLogger class NotebookNode(WorkerNode): """ The Notebook Node is a variant of the standard worker node meant to run in a notebook. It simulates a running task by connecting upstream and forwarding events from tasks created from within the notebook. NotebookNodes use random ports for their web servers to allow multiple nodes on a single host. Output is disabled to prevent event spam into the notebook. """ def __init__(self, taskdef): self.taskdef = taskdef super().__init__( id=taskdef.id, upstream=taskdef.upstream, port=randint(10000, 60000), logger=HTMLLogger(), ) async def start(self, token: str) -> None: """ Starts the node by connecting upstream, sending initialization events and starting the local web server. """ await self.connect(token) await self.parent.send_init(self.taskdef) await self.parent.send_run() await self.parent.send_log(data='Kernel ready.', file='stdout') self.serve() async def stop(self): await self.parent.send_log(data='Kernel stopped!', file='stdout') await self.parent.send_stop() await self.parent.close() async def connect(self, token: str) -> None: await self.parent.connect(self.upstream, token)
64326
import click from .schemaless import SchemalessPrompter from agent import source class KafkaPrompter(SchemalessPrompter): timestamp_types = ['datetime', 'string', 'unix', 'unix_ms'] target_types = ['counter', 'gauge', 'running_counter'] def prompt_config(self): self.data_preview() self.set_values() self.prompt_measurement_names() self.prompt_timestamp() self.set_dimensions() self.set_consumer_group() self.prompt_static_dimensions() self.prompt_tags() self.filter() self.set_transform() self.set_uses_schema() def set_consumer_group(self): self.config['override_source'][source.KafkaSource.CONFIG_CONSUMER_GROUP] =\ click.prompt('Consumer group name', self._get_default_consumer_group()) def _get_default_consumer_group(self) -> str: if source.KafkaSource.CONFIG_CONSUMER_GROUP in self.config['override_source']: return self.config['override_source'][source.KafkaSource.CONFIG_CONSUMER_GROUP] return "agent_" + self.pipeline.name
64329
import heapq import itertools as itt import operator as op from collections import OrderedDict, UserDict, defaultdict from .array import Array from .optional import Nothing, Some from .repr import short_repr from .row import KeyValue, Row from .stream import Stream def identity(_): return _ class Map(OrderedDict): '''A mutable dictionary enhanced with a bulk of useful methods. ''' def items(self): return Stream(super().items()).starmap(KeyValue) def values(self): return Stream(super().values()) def keys(self): return Stream(super().keys()) def update(self, *args, **kwds): '''Update Map from dict/iterable and ``return self`` >>> m = Map(a=3, b=4) >>> m2 = m.update(a=5, c=3).update({'d': 2}) >>> m is m2 True >>> m Map({'a': 5, 'b': 4, 'c': 3, 'd': 2}) ''' super().update(*args, **kwds) return self def updated(self, *args, **kwds): '''Create a new Map instance that is updated from dict/iterable. This method is the same as ``m.copy().update(...)`` >>> m = Map(a=3, b=4) >>> m2 = m.updated(a=5, c=3).update({'d': 2}) >>> m2 Map({'a': 5, 'b': 4, 'c': 3, 'd': 2}) >>> m Map({'a': 3, 'b': 4}) ''' m = self.copy() return m.update(*args, **kwds) def join(self, *others, fillvalue=None, agg=None): """Create a new Map instance with keys merged and values joined. >>> m1 = Map(a=1, b=2) >>> m2 = m1.join(dict(a=3, b=4, c=5)) >>> m2 is m1 False >>> m2 Map({'a': Row(f0=1, f1=3), 'b': Row(f0=2, f1=4), 'c': Row(f0=None, f1=5)}) >>> m1 = Map(a=1, b=2) >>> m2 = m1.join(dict(a=3, b=4, c=5), agg=sum, fillvalue=0) >>> m2 Map({'a': 4, 'b': 6, 'c': 5}) """ return Map(self.iter_joined(*others, fillvalue=fillvalue, agg=agg)) def iter_joined(self, *others, fillvalue=None, agg=None): """Create a ``Row(key, Row(v0, v1, ...))`` iterator with keys from all Maps and value joined. >>> m = Map(a=1, b=2) >>> l = list(m.iter_joined( ... Map(a=3, b=4, c=5), ... Map(a=6, c=7), ... fillvalue=0)) >>> l[0] Row(key='a', values=Row(f0=1, f1=3, f2=6)) >>> l[1] Row(key='b', values=Row(f0=2, f1=4, f2=0)) >>> l[2] Row(key='c', values=Row(f0=0, f1=5, f2=7)) """ if agg is None: agg = identity keys = list(self.keys()) keys_set = set(keys) for other in others: for key in other.keys(): if key not in keys_set: keys_set.add(key) keys.append(key) dicts = (self,) + others for key in keys: yield Row(key=key, values=agg(Row.from_values( d.get(key, fillvalue) for d in dicts))) def __repr__(self): return f'Map({self.make_string()})' def map(self, func): '''Create a new Map instance that each key, value pair is derived by applying function to original key, value. >>> Map(a=3, b=4).map(lambda k, v: (v, k)) Map({3: 'a', 4: 'b'}) Parameters ---------- func : ``pred(key, value) -> (key, value)`` function for computing new key/value pair ''' return Map(func(key, value) for key, value in self.items()) def map_keys(self, func): '''Create a new Map instance that all values remains the same, while each corresponding key is updated by applying function to original key, value. >>> Map(a=3, b=4).map_keys(lambda k, v: k + '_1') Map({'a_1': 3, 'b_1': 4}) Parameters ---------- func : ``pred(key, value) -> key`` function for computing new keys ''' return Map((func(key, value), value) for key, value in self.items()) def map_values(self, func): '''Create a new Map instance that all keys remains the same, while each corresponding value is updated by applying function to original key, value. >>> Map(a=3, b=4).map_values(lambda k, v: v * 2) Map({'a': 6, 'b': 8}) Parameters ---------- func : ``pred(key, value) -> value`` function for computing new values ''' return Map((key, func(key, value)) for key, value in self.items()) def revamp_values(self, func): '''Update values of current Map and return self. Each value is derived by computing the function using both key and value. >>> m = Map(a=3, b=4) >>> m.revamp_values(lambda k, v: v * 2) Map({'a': 6, 'b': 8}) >>> m Map({'a': 6, 'b': 8}) Parameters ---------- func : ``pred(key, value) -> value`` function for computing new values Returns ------- self ''' for key, value in self.items(): self[key] = func(key, value) return self def keep(self, *keys): '''Delete keys not specified and return self >>> m = Map(a=3, b=4, c=5) >>> m.keep('a', 'c') Map({'a': 3, 'c': 5}) >>> m Map({'a': 3, 'c': 5}) Returns ------- self ''' keys = set(keys) current_keys = set(self.keys()) keys_to_delete = current_keys - keys for key, in keys_to_delete: del self[key] return self def project(self, *keys): '''Create a new Map instance contains only specified keys. >>> m = Map(a=3, b=4, c=5) >>> m.project('a', 'c') Map({'a': 3, 'c': 5}) >>> m Map({'a': 3, 'b': 4, 'c': 5}) Returns ------- Map[key, value] ''' return Map((k, self[k]) for k in keys) def get_opt(self, key): '''Get the value of specified key as Optional type. Return Some(value) if key exists, otherwise return Nothing. >>> m = Map(a=3, b=4) >>> m.get_opt('a') Some(3) >>> m.get_opt('c') Nothing >>> m.get_opt('a').map(lambda v: v * 2) Some(6) >>> m.get_opt('c').map(lambda v: v * 2) Nothing Returns ------- Optional[value] ''' if key in self: return Some(self[key]) return Nothing def remove(self, *keys): '''Delete keys and return self >>> m = Map(a=3, b=4, c=5) >>> m.remove('a', 'c') Map({'b': 4}) >>> m Map({'b': 4}) Returns ------- self ''' for key in keys: del self[key] return self def without(self, *keys): '''Create a new Map instance with those keys >>> m = Map(a=3, b=4, c=6) >>> m.without('a', 'c') Map({'b': 4}) >>> m Map({'a': 3, 'b': 4, 'c': 6}) Returns ------- Map[key, value] ''' return Map((key, value) for key, value in self.items() if key not in keys) def retain(self, pred): '''Delete key/value pairs not satisfying the predicate and return self >>> m = Map(a=3, b=4, c=5) >>> m.retain(lambda k, v: k == 'b' or v == 5) Map({'b': 4, 'c': 5}) >>> m Map({'b': 4, 'c': 5}) Parameters ---------- pred : ``(k, v) -> bool`` Returns ------- self ''' keys_to_delete = [] for key, value in self.items(): if not pred(key, value): keys_to_delete.append(key) return self.remove(*keys_to_delete) def retain_false(self, pred): '''Delete key/value pairs satisfying the predicate and return self >>> m = Map(a=3, b=4, c=5) >>> m.retain_false(lambda k, v: k == 'b' or v == 5) Map({'a': 3}) >>> m Map({'a': 3}) Parameters ---------- pred : ``(k, v) -> bool`` Returns ------- self ''' keys_to_delete = [] for key, value in self.items(): if pred(key, value): keys_to_delete.append(key) return self.remove(*keys_to_delete) def retain_by_key(self, pred): '''Delete key/value pairs not satisfying the predicate and return self >>> m = Map(a=3, b=4, c=5) >>> m.retain_by_key(lambda k: k == 'b') Map({'b': 4}) >>> m Map({'b': 4}) Parameters ---------- pred : ``(k) -> bool`` Returns ------- self ''' keys_to_delete = [] for key, value in self.items(): if not pred(key): keys_to_delete.append(key) return self.remove(*keys_to_delete) def retain_by_value(self, pred): '''Delete key/value pairs not satisfying the predicate and return self >>> m = Map(a=3, b=4, c=5) >>> m.retain_by_value(lambda v: v == 4) Map({'b': 4}) >>> m Map({'b': 4}) Parameters ---------- pred : ``(k) -> bool`` Returns ------- self ''' keys_to_delete = [] for key, value in self.items(): if not pred(value): keys_to_delete.append(key) return self.remove(*keys_to_delete) def filter(self, pred): '''Create a new Map with key/value pairs satisfying the predicate >>> m = Map({1: 2, 2: 4, 3: 6}) >>> m2 = m.filter(lambda k, v: (v-k) % 3 == 0) >>> m2 Map({3: 6}) Parameters ---------- pred : ``(k, v) -> bool`` predicate Returns ------- Map[key, value] ''' return Map((k, v) for k, v in self.items() if pred(k, v)) def filter_false(self, pred): '''Create a new Map with key/value pairs not satisfying the predicate >>> m = Map({1: 2, 2: 4, 3: 6}) >>> m2 = m.filter_false(lambda k, v: (v-k) % 3 == 0) >>> m2 Map({1: 2, 2: 4}) Parameters ---------- pred : ``(k, v) -> bool`` predicate Returns ------- Map[key, value] ''' return Map((k, v) for k, v in self.items() if not pred(k, v)) def filter_by_key(self, pred): '''Create a new Map with keys satisfying the predicate >>> m = Map({1: 2, 2: 4, 3: 6}) >>> m2 = m.filter_by_key(lambda k: k % 3 == 0) >>> m2 Map({3: 6}) Parameters ---------- pred : ``(k, v) -> bool`` predicate Returns ------- Map[key, value] ''' return Map((k, v) for k, v in self.items() if pred(k)) def filter_by_value(self, pred): '''Create a new Map with values satisfying the predicate >>> m = Map({1: 2, 2: 4, 3: 6}) >>> m2 = m.filter_by_value(lambda v: v % 3 == 0) >>> m2 Map({3: 6}) Parameters ---------- pred : ``(k, v) -> bool`` predicate Returns ------- Map[key, value] ''' return Map((k, v) for k, v in self.items() if pred(v)) def group_by(self, key_func): '''Group key/value pairs into nested Maps. >>> Map(a=3, b=4, c=5).group_by(lambda k, v: v % 2) Map({1: Map({'a': 3, 'c': 5}), 0: Map({'b': 4})}) Parameters ---------- key_func : ``(key, value) -> group_key`` predicate Returns ------- Map[key_func(key), Map[key, value]] ''' grouped_d = defaultdict(Map) for key, value in self.items(): grouped_d[key_func(key, value)][key] = value return Map(grouped_d) def reduce(self, key): pass def make_string(self, key_value_format='{key!r}: {value!r}', start='{', item_sep=', ', end='}'): '''Construct a string from key/values. >>> m = Map(a=3, b=4, c=5) >>> m.make_string() "{'a': 3, 'b': 4, 'c': 5}" >>> m.make_string(start='(', key_value_format='{key}={value!r}', ... item_sep=', ', end=')') '(a=3, b=4, c=5)' Parameters ---------- key_value_format : str string template using builtin ``str.format()`` for formatting key/value pairs. Default to ``'{key!r}: {value!r}'``. Available named placeholders: ``{key}``, ``{value}`` start : str Default to ``'{'``. item_sep : str Default to ``', '`` end : str Default to ``}`` Returns ------- str ''' items_str = item_sep.join( key_value_format.format(key=key, value=value) for key, value in self.items()) return start + items_str + end def take(self, n): '''create a Stream instance of first ``n`` ``Row(key, value)`` elements. >>> m = Map(a=4, b=5, c=6, d=7) >>> m.take(2).to_list() [Row(key='a', value=4), Row(key='b', value=5)] Returns ------- Stream[Row[key, value]] ''' return self.to_stream().take(n) def first(self): '''Get the first item in ``Row(key, value)`` type >>> m = Map(a=4, b=5, c=6, d=7) >>> m.first() Row(key='a', value=4) >>> m.first().key 'a' >>> m.first().value 4 >>> m = Map() >>> m.first() Traceback (most recent call last): ... IndexError: index out of range. Returns ------- Row[key, value] ''' return self.nth(0) def first_opt(self): '''Optionally get the first item. Return Some(Row(key, value)) if first item exists, otherwise return Nothing >>> m = Map(a=4, b=5, c=6, d=7) >>> m.first_opt().map(lambda kv: kv.transform(value=lambda v: v * 2)) Some(Row(key='a', value=8)) >>> m.first_opt().map(lambda kv: kv.value) Some(4) >>> m = Map() >>> m.first_opt() Nothing Returns ------- Optional[Row[key, value]] ''' return self.nth_opt(0) def nth(self, index): '''Get the nth item in ``Row(key, value)`` type. >>> m = Map(a=4, b=5, c=6, d=7) >>> m.nth(2) Row(key='c', value=6) >>> m = Map(a=4, b=5) >>> m.nth(2) Traceback (most recent call last): ... IndexError: index out of range. Returns ------- Row[key, value] ''' try: key, value = next(itt.islice(self.items(), index, None)) return KeyValue(key, value) except StopIteration: raise IndexError('index out of range.') def nth_opt(self, index): '''Optionally get the nth item. Return ``Some(Row(key, value))`` if first item exists, otherwise return Nothing. >>> m = Map(a=4, b=5, c=6, d=7) >>> m.first_opt().map(lambda kv: kv.transform(value=lambda v: v * 2)) Some(Row(key='a', value=8)) >>> m = Map() >>> m.first_opt() Nothing Returns ------- Optional[Row[key, value]] ''' try: return Some(self.nth(index)) except IndexError: return Nothing def len(self): '''Get the length of this Map >>> m = Map(a=4, b=5, c=6, d=7) >>> m.len() 4 Returns ------- int ''' return len(self) def to_stream(self, key_field='key', value_field='value'): '''Convert to a Stream instance of ``Row(key, value)`` iterable. >>> m = Map(a=4, b=5, c=6, d=7) >>> m.to_stream().take(2).to_list() [Row(key='a', value=4), Row(key='b', value=5)] Returns ------- Stream[Row[key, value]] ''' return (Stream(super().items()) .starmap(lambda key, value: Row(**{key_field: key, value_field: value}))) def to_array(self): '''Convert to an Array instance of ``Row(key, value)`` iterable. >>> m = Map(a=4, b=5, c=6, d=7) >>> m.to_array().take(2) Array([Row(key='a', value=4), Row(key='b', value=5)]) Returns ------- Array[Row[key, value]] ''' return self.to_stream().to_array() def to_list(self): '''Convert to an list instance of ``Row(key, value)`` iterable. >>> m = Map(a=4, b=5) >>> m.to_list() [Row(key='a', value=4), Row(key='b', value=5)] Returns ------- Array[Row[key, value]] ''' return self.to_stream().to_list() def to_dict(self): '''Convert to dict''' return dict(self) def flip(self): '''Create a new Map which key/value pairs are fliped >>> m = Map(a=4, b=5, c=6) >>> m.flip() Map({4: 'a', 5: 'b', 6: 'c'}) ''' return Map((value, key) for key, value in self.items()) def for_each(self, func): '''Call func for each key/value pair >>> m = Map(a=[], b=[], c=[]) >>> m.for_each(lambda k, v: v.append(k)) >>> m Map({'a': ['a'], 'b': ['b'], 'c': ['c']}) ''' for k, v in self.items(): func(k, v) def for_each_key(self, func): '''Call func for each key >>> m = Map(a=[], b=[], c=[]) >>> keys = [] >>> m.for_each_key(lambda k: keys.append(k)) >>> keys ['a', 'b', 'c'] ''' for k in self.keys(): func(k) def for_each_value(self, func): '''Call func for each value >>> m = Map(a=[], b=[], c=[]) >>> m.for_each_value(lambda v: v.append(3)) >>> m Map({'a': [3], 'b': [3], 'c': [3]}) ''' for v in self.values(): func(v) def nlargest_value_items(self, n=None): '''Get top n largest values >>> m = Map(a=6, b=2, c=10, d=9) >>> m.nlargest_value_items(n=2) Array([Row(key='c', value=10), Row(key='d', value=9)]) Returns ------- Array[Row[key, value]] ''' if n is None: vs = sorted(self.items(), key=op.itemgetter(1), reverse=True) vs = heapq.nlargest(n, self.items(), key=op.itemgetter(1)) return Array(vs) def nsmallest_value_items(self, n=None): '''Get top n smallest values >>> m = Map(a=6, b=2, c=10, d=9) >>> m.nsmallest_value_items(n=2) Array([Row(key='b', value=2), Row(key='a', value=6)]) Returns ------- Array[Row[key, value]] ''' if n is None: vs = sorted(self.items(), key=op.itemgetter(1), reverse=False) vs = heapq.nsmallest(n, self.items(), key=op.itemgetter(1)) return Array(vs)
64406
from django.test import TestCase, Client from django.contrib.auth.models import User from .models import Feed class FeedViewsTest(TestCase): def setUp(self): self.client = Client() user = User.objects.create_user( username='test_user', email='<EMAIL>', password='<PASSWORD>' ) self.feed = Feed.objects.create(user=user, post='test feed') def test_feeds(self): response = self.client.get('/feeds/') self.assertEqual(response.status_code, 200) def test_feed(self): response = self.client.get('/feeds/123/') self.assertEqual(response.status_code, 404) response = self.client.get(f'/feeds/{self.feed.pk}/') self.assertEqual(response.status_code, 200)
64444
import unittest from pyparsing import ParseException from media_management_scripts.support.search_parser import parse_and_execute, parse class ParseTestCase(): def parse(self, query, expected, context={}): self.assertEqual(parse_and_execute(query, context), expected) class SimpleTest(unittest.TestCase, ParseTestCase): def test_basic(self): self.parse('1+1', 2) self.parse('1-1', 0) self.parse('-1-2', -3) self.parse('3*2', 6) self.parse('10/2', 5) def test_whitespace(self): self.parse(' 1 + 1 ', 2) self.parse(' 1 + 1 ', 2) def test_order_of_operations(self): self.parse('1+2*3', 7) self.parse('2*3+1', 7) self.parse('(1+2)*3', 9) def test_boolean(self): self.parse('true', True) self.parse('false', False) self.parse('true and true', True) self.parse('true and false', False) self.parse('True and False', False) self.parse('true or false', True) self.parse('not true', False) self.parse('not false', True) def test_boolean_order_of_operations(self): self.parse('true and true or false', True) self.parse('not false and false', False) self.parse('not false or false', True) self.parse('1 in [1] or false', True) self.parse('1 in [1] and false', False) def test_comparison(self): self.parse('1 = 1', True) self.parse('1 != 1', False) self.parse('1 != 2', True) self.parse('1 > 1', False) self.parse('2 > 1', True) self.parse('1 < 1', False) self.parse('1 >= 1', True) self.parse('1 <= 1', True) def test_in(self): self.parse('1 in [1]', True) self.parse('1 in [1,2]', True) self.parse('2 in [1]', False) def test_basic_context(self): self.parse('a', 2, {'a': 2}) self.parse('a+1', 3, {'a': 2}) self.parse('a.b+1', 3, {'a': {'b': 2}}) def test_reuse(self): op = parse('a+1') self.assertEqual(2, op.exec({'a': 1})) self.assertEqual(3, op.exec({'a': 2})) def test_invalid(self): with self.assertRaises(ParseException): parse('True and') with self.assertRaises(ParseException): parse('1+') def test_isNull(self): self.parse('isNull(1)', False) self.parse('isNull(a)', True, {'a': None}) self.parse('not isNull(a)', True, {'a': 1}) def test_all(self): self.parse('a = 1', True, {'a': [1, 2]}) self.parse('all(a) = 1', True, {'a': [1, 1]}) self.parse('all(a) = 1', False, {'a': [1, 2]}) self.parse('all(a) != 1', True, {'a': [1, 2]}) self.parse('all(a) != 1', False, {'a': [1, 1]}) def test_string(self): self.parse('"test"', 'test') self.parse('test', 'test') self.parse('"test test"', 'test test') self.parse('"test test"', 'test test') self.parse('"test test" = "test test"', True)
64450
import random class Fluctuation: def __init__(self, percentage, baseline): self.percentage = percentage self.baseline = baseline def __call__(self, value): return self.apply(value) def apply(self, value): return value + self.generate(self.baseline) def generate(self, baseline): relative_value = self.get_relative_value(baseline) corridor = (-relative_value, relative_value) return random.randint(corridor[0], corridor[1]) def get_relative_value(self, baseline): relative_value = float(baseline) / 100.0 * float(self.percentage) return int(relative_value)
64481
def fib(n): "return nth term of Fibonacci sequence" a, b = 0, 1 i = 0 while i<n: a, b = b, a+b i += 1 return b def linear_recurrence(n, (a,b)=(2,0), (u0, u1)=(1,1)): """return nth term of the sequence defined by the linear recurrence u(n+2) = a*u(n+1) + b*u(n)""" i = 0 u, v = u0, u1 while i<n: w = a*v + b*u u, v = v, w i +=1 return w
64482
import os import sys import json import commands import re testrange = [300, 500, 800, 1100, 1400] WIDTH, HEIGHT = 800, 480 FPS = 25 def eventloop(test_file): os.system('mkdir img') #os.system('mkdir img/%s' % (test_file)) os.system('mkdir tmp_%s' % (test_file)) os.system('mkdir tmp2_%s' % (test_file)) # ffmpeg -i mov/1.flv -vf fps=25 -s 1280x720 img/1.flv/%5d.png os.system('ffmpeg -y -i mov/%s -vf fps=%d -s 1280x720 tmp_%s/%%d.png' % (test_file, FPS, test_file)) os.system('ffmpeg -y -i tmp_%s/%%d.png -vf fps=5 -s 64x36 img/%s_%%d.png' % (test_file, test_file)) img_files = os.listdir('tmp_%s/' % test_file) img_files.sort() _count = len(img_files) _file = open(test_file + '_vmaf.log', 'w') _filelen = open(test_file + '_len.log', 'w') for _frame in xrange(1, _count + 1, FPS): for _p in xrange(FPS): os.system('cp -f tmp_%s/%d.png tmp2_%s/%d.png' % (test_file, _frame + _p, test_file, _p)) os.system( 'ffmpeg -y -i tmp2_%s/%%d.png -pix_fmt yuv420p tmp_%s.yuv' % (test_file, test_file)) for _range in testrange: os.system( 'ffmpeg -y -i tmp2_%s/%%d.png -vcodec libx264 -s %dx%d -b:v %dk -f flv tmp_%s.flv' % (test_file, WIDTH, HEIGHT, _range, test_file)) os.system( '../ffmpeg2vmaf %d %d tmp_%s.yuv tmp_%s.flv --ref-fmt yuv420p --ref-width 1280 --ref-height 720 --out-fmt json 1>tmp_%s.json' % (WIDTH, HEIGHT, test_file, test_file, test_file)) _size = os.path.getsize('tmp_%s.flv' % (test_file)) _filelen.write(str(_size)) _filelen.write(',') with open('tmp_' + test_file + '.json') as json_file: data = json.load(json_file) score = float(data['aggregate']['VMAF_score']) / 100.0 _file.write(str(score)) _file.write(',') _file.write('\n') _filelen.write('\n') _file.close() _filelen.close() os.system('rm -rf tmp_%s' % (test_file)) os.system('rm -rf tmp2_%s' % (test_file)) os.system('rm -rf tmp_%s.flv' % (test_file)) os.system('rm -rf tmp_%s.yuv' % (test_file)) print 'done' if __name__ == '__main__': os.system('export PYTHONPATH=\"$(pwd)/../python/src:$PYTHONPATH\"') for _file in os.listdir('mov/'): eventloop(_file)
64492
import numpy as np from public_tool.form_index import form_index from XGB_HMM.form_B_matrix_by_XGB import form_B_matrix_by_XGB from XGB_HMM.predict import self_pred def pred_proba_XGB(A, model, pi, O, allow_flag, lengths): # 对dataset形成pred_proba,注意这里的dataset是solve_on_raw_data后的结果,即附带allow_flag的数据 # output: # pred_proba:数组类型 n_states = len(pi) pred_proba = np.zeros((O.shape[0], n_states)) for i in range(len(lengths)): begin_index, end_index = form_index(lengths, i) now_O = O[begin_index:end_index, :] now_allow_flag = allow_flag[begin_index:end_index] now_pred_proba = np.zeros((now_O.shape[0], n_states)) now_allow_B = form_B_matrix_by_XGB(model, now_O[now_allow_flag == 1], pi) _, now_allow_pred_proba, _ = self_pred(now_allow_B, [now_allow_B.shape[0]], A, pi) now_pred_proba[now_allow_flag == 1] = now_allow_pred_proba pred_proba[begin_index:end_index] = now_pred_proba return pred_proba
64506
from __future__ import unicode_literals from django.db import models # noqa # Create your models here.
64507
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm import cPickle from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Layer from keras.layers import Conv2D, Conv2DTranspose from keras.models import Model from keras import backend as K from keras import metrics from keras import optimizers from full_params_conv_101 import * if K.image_data_format() == 'channels_first': original_img_size = (img_chns, img_rows, img_cols) else: original_img_size = (img_rows, img_cols, img_chns) x = Input(shape=original_img_size) conv_1 = Conv2D(32, kernel_size=(4, 4), strides=(2, 2), padding='same', activation='relu')(x) conv_2 = Conv2D(64, kernel_size=(4, 4), padding='same', activation='relu', strides=(2, 2))(conv_1) conv_3 = Conv2D(128, kernel_size=(4, 4), padding='same', activation='relu', strides=(2, 2))(conv_2) conv_4 = Conv2D(256, kernel_size=(4, 4), padding='same', activation='relu', strides=(2, 2))(conv_3) flat = Flatten()(conv_4) hidden = Dense(intermediate_dim, activation='relu')(flat) z_mean = Dense(latent_dim)(hidden) z_log_var = Dense(latent_dim)(hidden) def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_var) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # so you could write `Lambda(sampling)([z_mean, z_log_var])` z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) # we instantiate these layers separately so as to reuse them later decoder_hid = Dense(intermediate_dim, activation='relu') decoder_upsample = Dense(16384, activation='relu') if K.image_data_format() == 'channels_first': output_shape = (batch_size, 256, 8, 8) else: output_shape = (batch_size, 8, 8, 256) decoder_reshape = Reshape(output_shape[1:]) decoder_deconv_1 = Conv2DTranspose(128, kernel_size=(4, 4), padding='same', strides=(2, 2), activation='relu') decoder_deconv_2 = Conv2DTranspose(64, kernel_size=(4, 4), padding='same', strides=(2, 2), activation='relu') decoder_deconv_3_upsamp = Conv2DTranspose(32, kernel_size=(4, 4), strides=(2, 2), padding='same', activation='relu') decoder_mean_squash = Conv2DTranspose(3, kernel_size=(4, 4), strides=(2, 2), padding='same', activation='relu') hid_decoded = decoder_hid(z) up_decoded = decoder_upsample(hid_decoded) reshape_decoded = decoder_reshape(up_decoded) deconv_1_decoded = decoder_deconv_1(reshape_decoded) deconv_2_decoded = decoder_deconv_2(deconv_1_decoded) x_decoded_relu = decoder_deconv_3_upsamp(deconv_2_decoded) x_decoded_mean_squash = decoder_mean_squash(x_decoded_relu) # Custom loss layer class CustomVariationalLayer(Layer): def __init__(self, **kwargs): self.is_placeholder = True super(CustomVariationalLayer, self).__init__(**kwargs) def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss) def call(self, inputs): x = inputs[0] x_decoded_mean_squash = inputs[1] loss = self.vae_loss(x, x_decoded_mean_squash) self.add_loss(loss, inputs=inputs) # We don't use this output. return x y = CustomVariationalLayer()([x, x_decoded_mean_squash]) vae = Model(x, y) sgd = optimizers.SGD(lr=0.01) vae.compile(optimizer=sgd, loss=None) vae.summary() """ with open('../datasets/101_ObjectCategories.pkl') as f: dic = cPickle.load(f) x_train = dic['all_images'] """ x_train = np.load('../datasets/full_x.npy') print "dataset loaded" history = vae.fit(x_train, shuffle=True, epochs=epochs, batch_size=batch_size, ) # build a model to project inputs on the latent space encoder = Model(x, z_mean) """ # display a 2D plot of the digit classes in the latent space x_test_encoded = encoder.predict(x_test, batch_size=batch_size) plt.figure(figsize=(6, 6)) plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test) plt.colorbar() plt.show() """ # build a digit generator that can sample from the learned distribution decoder_input = Input(shape=(latent_dim,)) _hid_decoded = decoder_hid(decoder_input) _up_decoded = decoder_upsample(_hid_decoded) _reshape_decoded = decoder_reshape(_up_decoded) _deconv_1_decoded = decoder_deconv_1(_reshape_decoded) _deconv_2_decoded = decoder_deconv_2(_deconv_1_decoded) _x_decoded_relu = decoder_deconv_3_upsamp(_deconv_2_decoded) _x_decoded_mean_squash = decoder_mean_squash(_x_decoded_relu) generator = Model(decoder_input, _x_decoded_mean_squash) vae.save('../models/object101_ld_%d_conv_%d_id_%d_e_%d_vae.h5' % (latent_dim, num_conv, intermediate_dim, epochs)) encoder.save('../models/object101_ld_%d_conv_%d_id_%d_e_%d_encoder.h5' % (latent_dim, num_conv, intermediate_dim, epochs)) generator.save('../models/object101_ld_%d_conv_%d_id_%d_e_%d_generator.h5' % (latent_dim, num_conv, intermediate_dim, epochs)) fname = '../models/object101_ld_%d_conv_%d_id_%d_e_%d_history.pkl' % (latent_dim, num_conv, intermediate_dim, epochs) with open(fname, 'wb') as file_pi: cPickle.dump(history.history, file_pi) """ # display a 2D manifold of the digits n = 15 # figure with 15x15 digits digit_size = 28 figure = np.zeros((digit_size * n, digit_size * n)) # linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian # to produce values of the latent variables z, since the prior of the latent space is Gaussian grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): z_sample = np.array([[xi, yi]]) z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2) x_decoded = generator.predict(z_sample, batch_size=batch_size) digit = x_decoded[0].reshape(digit_size, digit_size) figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys_r') plt.show() """
64545
from leavedemo.leave.models import Account from datetime import timedelta def update_hr(workitem): ''' automated and simplistic version of hrform. ''' instance = workitem.instance leaverequest = workitem.instance.content_object if leaverequest.reason_denial: raise Exception('denial reason is not empty') if leaverequest.dayStart > leaverequest.day_end: raise Exception('date error') delta = leaverequest.dayEnd - leaverequest.day_start nbjours = delta.days + 1 account = Account.objects.get(user=instance.user) if account.days < nbjours: raise Exception('no days enough in user account.') account.days -= nbjours account.save() print('test') pass
64726
from typing import List class Solution: def findErrorNums(self, nums: List[int]) -> List[int]: res = list() nums.sort() stdList = range(1, len(nums) + 1) # len(nums) = n repeatedNum = sum(nums) - sum(set(nums)) res.append(repeatedNum) missingNum = (set(stdList) - set(nums)).pop() res.append(missingNum) return res # below is testing sol = Solution() print(sol.findErrorNums([4,2, 1,2]))
64750
from concurrent import futures import logging import os import grpc from PIL import Image, ImageOps import helloworld_pb2 import helloworld_pb2_grpc from minio import Minio minioEnvKey = "MINIO_ADDRESS" image_name = 'img2.jpeg' image2_name = 'img3.jpeg' image_path = '/pulled_' + image_name image_path2 = '/pulled_' +image2_name responses = ["record_response", "replay_response"] minioAddress = os.getenv(minioEnvKey) class Greeter(helloworld_pb2_grpc.GreeterServicer): def SayHello(self, request, context): if minioAddress == None: return None minioClient = Minio(minioAddress, access_key='minioadmin', secret_key='minioadmin', secure=False) if request.name == "record": msg = 'Hello, %s!' % responses[0] minioClient.fget_object('mybucket', image_name, image_path) image = Image.open(image_path) img = image.transpose(Image.ROTATE_90) elif request.name == "replay": msg = 'Hello, %s!' % responses[1] minioClient.fget_object('mybucket', image2_name, image_path2) image2 = Image.open(image_path2) img = image2.transpose(Image.ROTATE_90) else: msg = 'Hello, %s!' % request.name minioClient.fget_object('mybucket', image_name, image_path) image = Image.open(image_path) img = image.transpose(Image.ROTATE_90) return helloworld_pb2.HelloReply(message=msg) def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) helloworld_pb2_grpc.add_GreeterServicer_to_server(Greeter(), server) server.add_insecure_port('[::]:50051') server.start() server.wait_for_termination() if __name__ == '__main__': logging.basicConfig() serve()
64772
import csv from flask_wtf import FlaskForm as Form from flask_wtf.file import FileField, FileRequired, FileAllowed from wtforms import StringField, SubmitField from wtforms.validators import DataRequired from wtforms import ValidationError # noinspection PyMethodMayBeStatic class HostForm(Form): fqdn = StringField('FQDN or IP', validators=[DataRequired()]) port = StringField('TCP Port') friendly_name = StringField('Friendly Name') submit = SubmitField('Submit') def validate_port(self, field): if len(field.data) > 0: try: int(field.data) except ValueError: raise ValidationError('Port provided is not valid') class ImportForm(Form): file = FileField('Hosts', validators=[FileRequired(), FileAllowed(['csv'], 'Only CSV is supported!')]) submit = SubmitField('Submit')
64839
import os import os test_list = [line. rstrip('\n') for line in open('./food-101/meta/test.txt')] os.mkdir('./food-101/test') source_base = './food-101/images/' target_base = './food-101/test/' for item in test_list: c = item.split('/')[0] if not os.path.exists(os.path.join(base, c)): os.mkdir(os.path.join(base, c)) os.rename(os.path.join(source_base, item) + '.jpg', os.path.join(target_base, item) + '.jpg')
64844
from typing import Dict class APIException(Exception): """ example: { "status": bool, "system": { "code": int, "message": str }, "data": None, } """ def __init__(self, status: bool, system: Dict[str, int], source: None): self.status = status self.system = system self.source = source
64870
import unittest import numpy as np from revpy import fare_transformation class FareTransformationTest(unittest.TestCase): def setUp(self): # example data from page 13 of research paper # "Optimization of Mixed Fare Structures: Theory and Applications" # by <NAME> al. (2010) self.fares = np.array([1200, 1000, 800, 600, 400, 200]) self.demands = np.array([31.2, 10.9, 14.8, 19.9, 26.9, 36.3]) def test_faretrafo_zero_demand(self): demands = np.zeros(self.fares.shape) adjusted_fares, adjusted_demand = \ fare_transformation.calc_fare_transformation(self.fares, demands) np.testing.assert_equal([1200, np.nan, np.nan, np.nan, np.nan, np.nan], adjusted_fares) np.testing.assert_equal([0, np.nan, np.nan, np.nan, np.nan, np.nan], adjusted_demand) def test_example1(self): # test example from above mentioned paper adjusted_fares, adjusted_demand = \ fare_transformation.calc_fare_transformation(self.fares, self.demands) np.testing.assert_almost_equal(adjusted_fares, [1200, 427, 231, 28, np.nan, np.nan], 0) def test_example2(self): # example containing some zero demands demands = np.array([0, 15, 0, 30, 2, 60]) adjusted_fares, adjusted_demand = \ fare_transformation.calc_fare_transformation(self.fares, demands) np.testing.assert_almost_equal(adjusted_fares, [1200, 1000, np.nan, 400, np.nan, np.nan, ]) def test_efficient_strategies(self): fares = np.array([69.5, 59.5, 48.5, 37.5, 29.]) demands = np.array([3, 1, 0, 0, 10]) Q = demands.cumsum() TR = Q*fares __, __, __, __, eff_indices = \ fare_transformation.efficient_strategies(Q, TR, fares[0]) self.assertEqual(eff_indices.tolist(), [0, 1, 4])
64918
from typing import List import torch from torch.utils.data.dataset import Dataset def noise(outlier_classes: List[int], generated_noise: torch.Tensor, norm: torch.Tensor, nom_class: int, train_set: Dataset, gt: bool = False) -> Dataset: """ Creates a dataset based on the nominal classes of a given dataset and generated noise anomalies. :param outlier_classes: a list of all outlier class indices. :param generated_noise: torch tensor of noise images (might also be Outlier Exposure based noise) (n x c x h x w). :param norm: torch tensor of nominal images (n x c x h x w). :param nom_class: the index of the class that is considered nominal. :param train_set: some training dataset. :param gt: whether to provide ground-truth maps as well, atm not available! :return: a modified dataset, with training data consisting of nominal samples and artificial anomalies. """ if gt: raise ValueError('No GT mode for pure noise available!') anom = generated_noise.clamp(0, 255).byte() data = torch.cat((norm, anom)) targets = torch.cat( (torch.ones(norm.size(0)) * nom_class, torch.ones(anom.size(0)) * outlier_classes[0]) ) train_set.data = data train_set.targets = targets return train_set def malformed_normal(outlier_classes: List[int], generated_noise: torch.Tensor, norm: torch.Tensor, nom_class: int, train_set: Dataset, gt: bool = False, brightness_threshold: float = 0.11*255) -> Dataset: """ Creates a dataset based on the nominal classes of a given dataset and generated noise anomalies. Unlike above, the noise images are not directly utilized as anomalies, but added to nominal samples to create malformed normal anomalies. :param outlier_classes: a list of all outlier class indices. :param generated_noise: torch tensor of noise images (might also be Outlier Exposure based noise) (n x c x h x w). :param norm: torch tensor of nominal images (n x c x h x w). :param nom_class: the index of the class that is considered nominal. :param train_set: some training dataset. :param gt: whether to provide ground-truth maps as well. :param brightness_threshold: if the average brightness (averaged over color channels) of a pixel exceeds this threshold, the noise image's pixel value is subtracted instead of added. This avoids adding brightness values to bright pixels, where approximately no effect is achieved at all. :return: a modified dataset, with training data consisting of nominal samples and artificial anomalies. """ assert (norm.dim() == 4 or norm.dim() == 3) and generated_noise.shape == norm.shape norm_dim = norm.dim() if norm_dim == 3: norm, generated_noise = norm.unsqueeze(1), generated_noise.unsqueeze(1) # assuming ch dim is skipped anom = norm.clone() # invert noise for bright regions (bright regions are considered being on average > brightness_threshold) generated_noise = generated_noise.int() bright_regions = norm.sum(1) > brightness_threshold * norm.shape[1] for ch in range(norm.shape[1]): gnch = generated_noise[:, ch] gnch[bright_regions] = gnch[bright_regions] * -1 generated_noise[:, ch] = gnch anom = (anom.int() + generated_noise).clamp(0, 255).byte() data = torch.cat((norm, anom)) targets = torch.cat( (torch.ones(norm.size(0)) * nom_class, torch.ones(anom.size(0)) * outlier_classes[0]) ) if norm_dim == 3: data = data.squeeze(1) train_set.data = data train_set.targets = targets if gt: gtmaps = torch.cat( (torch.zeros_like(norm)[:, 0].float(), # 0 for nominal (norm != anom).max(1)[0].clone().float()) # 1 for anomalous ) if norm_dim == 4: gtmaps = gtmaps.unsqueeze(1) return train_set, gtmaps else: return train_set