id
stringlengths
3
8
content
stringlengths
100
981k
69867
import logging import os import sys import pandas as pd import torch class Batch_evaluate: ''' A class to evaluate a function by several batches to save memory. Sometimes out=func(x) requires a large memory to compute, this class devide x into several batches and combine the outputs. ''' def __init__(self, batch_size=None): ''' batch_size: the size of each batch, `None` means starting from x.shape[0] ''' self.batch_size = batch_size def __call__(self, func, x): ''' Evaluate a function with automatic batch size. Args: func: a function or a callable object x: input of function `func` Returns: output of the function `func`, allow multiple outputs ''' while True: try: if self.batch_size is None: out = func(x) else: area_list = x.split(self.batch_size) out_list = [func(area_batch) for area_batch in area_list] if isinstance(out_list[0], torch.Tensor): # return a single output out = torch.cat(out_list) else: # return multiple outputs out = tuple([torch.cat(o) for o in zip(*out_list)]) break except RuntimeError as e: if 'out of memory' in e.args[0]: if self.batch_size is None: self.batch_size = x.shape[0] // 2 else: self.batch_size //= 2 print(f'{__name__} out of memory, change batch size to {self.batch_size}') else: raise e return out def get_logger(args): logger = logging.getLogger(__name__) file_handler = logging.FileHandler(os.path.join(args.log_root, args.log_name), mode='w') file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) # comment this out if you do not want log file print_handler = logging.StreamHandler(sys.stdout) print_handler.setLevel(logging.DEBUG) logger.addHandler(print_handler) logger.setLevel(logging.DEBUG) return logger def unique(inputs, number=None): """ Select top `number` unique vectors. torch.unique has multiple weird behaviors, such as (1) not able to return tensors based on occurence (must be sorted), (2) two close float tensors are regarded as the same (so one of them will be eliminated), sometimes different Therefore, we use this function to select unique tensors and maintain occurrence. Args: inputs: torch.Tensor, size = (dim1, n_bar) input vectors number: int number of unique tensors needed Returns: out: torch.Tensor, size = (number, n_bar) """ inputs_unique, idx = torch.unique(inputs, return_inverse=True, dim=0) idx_unique = pd.unique(idx.cpu().numpy()) out = inputs_unique[idx_unique[:number]] return out
69869
import torch import torch.nn.functional as F def compas_robustness_loss(x, aggregates, concepts, relevances): """Computes Robustness Loss for the Compas data Formulated by Alvarez-Melis & Jaakkola (2018) [https://papers.nips.cc/paper/8003-towards-robust-interpretability-with-self-explaining-neural-networks.pdf] The loss formulation is specific to the data format The concept dimension is always 1 for this project by design Parameters ---------- x : torch.tensor Input as (batch_size x num_features) aggregates : torch.tensor Aggregates from SENN as (batch_size x num_classes x concept_dim) concepts : torch.tensor Concepts from Conceptizer as (batch_size x num_concepts x concept_dim) relevances : torch.tensor Relevances from Parameterizer as (batch_size x num_concepts x num_classes) Returns ------- robustness_loss : torch.tensor Robustness loss as frobenius norm of (batch_size x num_classes x num_features) """ batch_size = x.size(0) num_classes = aggregates.size(1) grad_tensor = torch.ones(batch_size, num_classes).to(x.device) J_yx = torch.autograd.grad(outputs=aggregates, inputs=x, \ grad_outputs=grad_tensor, create_graph=True, only_inputs=True)[0] # bs x num_features -> bs x num_features x num_classes J_yx = J_yx.unsqueeze(-1) # J_hx = Identity Matrix; h(x) is identity function robustness_loss = J_yx - relevances return robustness_loss.norm(p='fro') def mnist_robustness_loss(x, aggregates, concepts, relevances): """Computes Robustness Loss for MNIST data Formulated by Alvarez-Melis & Jaakkola (2018) [https://papers.nips.cc/paper/8003-towards-robust-interpretability-with-self-explaining-neural-networks.pdf] The loss formulation is specific to the data format The concept dimension is always 1 for this project by design Parameters ---------- x : torch.tensor Input as (batch_size x num_features) aggregates : torch.tensor Aggregates from SENN as (batch_size x num_classes x concept_dim) concepts : torch.tensor Concepts from Conceptizer as (batch_size x num_concepts x concept_dim) relevances : torch.tensor Relevances from Parameterizer as (batch_size x num_concepts x num_classes) Returns ------- robustness_loss : torch.tensor Robustness loss as frobenius norm of (batch_size x num_classes x num_features) """ # concept_dim is always 1 concepts = concepts.squeeze(-1) aggregates = aggregates.squeeze(-1) batch_size = x.size(0) num_concepts = concepts.size(1) num_classes = aggregates.size(1) # Jacobian of aggregates wrt x jacobians = [] for i in range(num_classes): grad_tensor = torch.zeros(batch_size, num_classes).to(x.device) grad_tensor[:, i] = 1. j_yx = torch.autograd.grad(outputs=aggregates, inputs=x, \ grad_outputs=grad_tensor, create_graph=True, only_inputs=True)[0] # bs x 1 x 28 x 28 -> bs x 784 x 1 jacobians.append(j_yx.view(batch_size, -1).unsqueeze(-1)) # bs x num_features x num_classes (bs x 784 x 10) J_yx = torch.cat(jacobians, dim=2) # Jacobian of concepts wrt x jacobians = [] for i in range(num_concepts): grad_tensor = torch.zeros(batch_size, num_concepts).to(x.device) grad_tensor[:, i] = 1. j_hx = torch.autograd.grad(outputs=concepts, inputs=x, \ grad_outputs=grad_tensor, create_graph=True, only_inputs=True)[0] # bs x 1 x 28 x 28 -> bs x 784 x 1 jacobians.append(j_hx.view(batch_size, -1).unsqueeze(-1)) # bs x num_features x num_concepts J_hx = torch.cat(jacobians, dim=2) # bs x num_features x num_classes robustness_loss = J_yx - torch.bmm(J_hx, relevances) return robustness_loss.norm(p='fro') def BVAE_loss(x, x_hat, z_mean, z_logvar): """ Calculate Beta-VAE loss as in [1] Parameters ---------- x : torch.tensor input data to the Beta-VAE x_hat : torch.tensor input data reconstructed by the Beta-VAE z_mean : torch.tensor mean of the latent distribution of shape (batch_size, latent_dim) z_logvar : torch.tensor diagonal log variance of the latent distribution of shape (batch_size, latent_dim) Returns ------- loss : torch.tensor loss as a rank-0 tensor calculated as: reconstruction_loss + beta * KL_divergence_loss References ---------- [1] Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with a constrained variational framework." (2016). """ # recon_loss = F.binary_cross_entropy(x_hat, x.detach(), reduction="mean") recon_loss = F.mse_loss(x_hat, x.detach(), reduction="mean") kl_loss = kl_div(z_mean, z_logvar) return recon_loss, kl_loss def mse_l1_sparsity(x, x_hat, concepts, sparsity_reg): """Sum of Mean Squared Error and L1 norm weighted by sparsity regularization parameter Parameters ---------- x : torch.tensor Input data to the encoder. x_hat : torch.tensor Reconstructed input by the decoder. concepts : torch.Tensor Concept (latent code) activations. sparsity_reg : float Regularizer (xi) for the sparsity term. Returns ------- loss : torch.tensor Concept loss """ return F.mse_loss(x_hat, x.detach()) + sparsity_reg * torch.abs(concepts).sum() def kl_div(mean, logvar): """Computes KL Divergence between a given normal distribution and a standard normal distribution Parameters ---------- mean : torch.tensor mean of the normal distribution of shape (batch_size x latent_dim) logvar : torch.tensor diagonal log variance of the normal distribution of shape (batch_size x latent_dim) Returns ------- loss : torch.tensor KL Divergence loss computed in a closed form solution """ batch_loss = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).mean(dim=0) loss = batch_loss.sum() return loss def zero_loss(*args, **kwargs): """Dummy loss that always returns zero. Parameters ---------- args : list Can take any number of positional arguments (without using them). kwargs : dict Can take any number of keyword arguments (without using them). Returns ------- loss : torch.tensor torch.tensor(0) """ return torch.tensor(0)
69878
import pandas as pd import bayesianpy from bayesianpy.network import Builder as builder import logging import os import numpy as np import scipy.stats as ss import matplotlib.pyplot as plt import seaborn as sns def main(): logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) bayesianpy.jni.attach(logger) db_folder = bayesianpy.utils.get_path_to_parent_dir(__file__) iris = pd.read_csv(os.path.join(db_folder, "data/iris.csv"), index_col=False) network = bayesianpy.network.create_network() cluster = builder.create_cluster_variable(network, 4) node = builder.create_multivariate_continuous_node(network, iris.drop('iris_class',axis=1).columns.tolist(), "joint") builder.create_link(network, cluster, node) class_variable = builder.create_discrete_variable(network, iris, 'iris_class', iris['iris_class'].unique()) builder.create_link(network, cluster, class_variable) head_variables = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] with bayesianpy.data.DataSet(iris, db_folder, logger) as dataset: model = bayesianpy.model.NetworkModel(network, logger) model.train(dataset) queries = [bayesianpy.model.QueryConditionalJointProbability( head_variables=[v], tail_variables=['iris_class']) for v in head_variables] (engine, _, _) = bayesianpy.model.InferenceEngine(network).create() query = bayesianpy.model.SingleQuery(network, engine, logger) results = query.query(queries, aslist=True) jd = bayesianpy.visual.JointDistribution() fig = plt.figure(figsize=(10,10)) for i, r in enumerate(list(results)): ax = fig.add_subplot(2, 2, i+1) jd.plot_distribution_with_variance(ax, iris, queries[i].get_head_variables(), r) plt.show() if __name__ == "__main__": main()
69882
from core.models import ProviderType from api.v2.serializers.details import ProviderTypeSerializer from api.v2.views.base import AuthModelViewSet class ProviderTypeViewSet(AuthModelViewSet): """ API endpoint that allows instance actions to be viewed or edited. """ queryset = ProviderType.objects.all() serializer_class = ProviderTypeSerializer http_method_names = ['get', 'head', 'options', 'trace']
69883
import dash_bootstrap_components as dbc from dash import html from .util import make_subheading form = html.Div( [ make_subheading("Form", "form"), dbc.Form( [ html.Div( [ dbc.Label("Username"), dbc.Input( placeholder="Enter your username", type="text", ), dbc.FormText( [ "Can't remember your username? ", html.A( "Click here.", href="#", className="text-muted", style={"textDecoration": "underline"}, ), ] ), ] ), html.Div( [ dbc.Label("Username"), dbc.Input( placeholder="Enter your password", type="password", ), dbc.FormText( [ "Can't remember your password? ", html.A( "Click here.", href="#", className="text-muted", style={"textDecoration": "underline"}, ), ] ), ] ), ] ), ], className="mb-4", )
69909
import pytest from django.contrib.auth import get_user_model from rest_framework.reverse import reverse from boards.models import Column, Board, Task User = get_user_model() @pytest.fixture def board(create_user): user = create_user() uni_board = Board.objects.create(name="University", owner=user) uni_board.members.add(user) return uni_board @pytest.fixture def col_backlog(board): return Column.objects.create(board=board, title="Backlog", column_order=1) @pytest.fixture def col_done(board): return Column.objects.create(board=board, title="Done", column_order=2) def test_order_columns(api_client_with_credentials, col_backlog, col_done): """ Order columns: Backlog, Done -> Done, Backlog """ response = api_client_with_credentials.post( reverse("sort-column"), {"order": [col_done.id, col_backlog.id]} ) col_backlog.refresh_from_db() col_done.refresh_from_db() assert response.status_code == 200 assert col_done.column_order == 1 assert col_backlog.column_order == 2 def test_order_tasks_same_column( api_client_with_credentials, column_factory, task_factory ): """ Order tasks (in one column): Task1, Task2, Task3 -> Task3, Task1, Task2 """ column = column_factory() task1 = task_factory(column=column, task_order=1) task2 = task_factory(column=column, task_order=2) task3 = task_factory(column=column, task_order=3) # Initial state column.refresh_from_db() assert list(column.tasks.all()) == [task1, task2, task3] response = api_client_with_credentials.post( reverse("sort-task"), { "board": column.board.id, "tasks": {column.id: [task3.id, task1.id, task2.id]}, "order": [task3.id, task1.id, task2.id], }, ) assert response.status_code == 200 # State after ordering column.refresh_from_db() assert list(column.tasks.all()) == [task3, task1, task2] def test_order_tasks_between_two_columns( api_client_with_credentials, board_factory, column_factory, task_factory ): """ Order tasks between two columns: Column1: Task1, Task2, Task3 Column2: Task4, Task5 After order: Column1: Task1, Task3 Column2: Task4, Task2, Task5 """ board = board_factory() column1 = column_factory(board=board) column2 = column_factory(board=board) task1 = task_factory(column=column1, task_order=1) task2 = task_factory(column=column1, task_order=2) task3 = task_factory(column=column1, task_order=3) task4 = task_factory(column=column2, task_order=4) task5 = task_factory(column=column2, task_order=5) # Initial state column1.refresh_from_db() column2.refresh_from_db() assert list(column1.tasks.all()) == [task1, task2, task3] assert list(column2.tasks.all()) == [task4, task5] response = api_client_with_credentials.post( reverse("sort-task"), { "board": column1.board.id, "tasks": { column1.id: [task1.id, task3.id], column2.id: [task4.id, task2.id, task5.id], }, "order": [task1.id, task3.id, task4.id, task2.id, task5.id], }, ) assert response.status_code == 200 # State after ordering column1.refresh_from_db() column2.refresh_from_db() assert list(column1.tasks.all()) == [task1, task3] assert list(column2.tasks.all()) == [task4, task2, task5] def test_invalid_move_atomic( api_client_with_credentials, board_factory, column_factory, task_factory ): board = board_factory() col1 = column_factory(board=board) col2 = column_factory(board=board) col3 = column_factory(board=board) col1_task = task_factory(column=col1, task_order=1) col2_task = task_factory(column=col2, task_order=2) response = api_client_with_credentials.post( reverse("sort-task"), { "board": board.id, "tasks": { col1.id: [col1_task.id, col2_task.id], col3.id: [col1_task.id, col2_task.id], }, "order": [col1_task.id, col2_task.id], }, ) assert response.status_code == 400 # State should remain the same col1.refresh_from_db() col2.refresh_from_db() col3.refresh_from_db() assert list(col1.tasks.all()) == [col1_task] assert list(col2.tasks.all()) == [col2_task] assert list(col3.tasks.all()) == [] def test_can_not_order_tasks_between_two_boards( api_client_with_credentials, board_factory, column_factory, task_factory ): board1 = board_factory() board2 = board_factory() board1_col = column_factory(board=board1) board2_col = column_factory(board=board2) board1_task = task_factory(column=board1_col, task_order=1) board2_task = task_factory(column=board2_col, task_order=2) response = api_client_with_credentials.post( reverse("sort-task"), { "board": board1.id, "tasks": { board1_col.id: [], board2_col.id: [board1_task.id, board2_task.id], }, "order": [board1_task.id, board2_task.id], }, ) assert response.status_code == 400 def test_order_duplicate(api_client_with_credentials, col_done): response = api_client_with_credentials.post( reverse("sort-column"), {"order": [col_done.id, col_done.id]} ) assert response.status_code == 400 @pytest.mark.parametrize( "post_data,expected_status_code", [ ({"order": [1, 2]}, 200), ({"order": [1, 1]}, 400), ({"order": [-1]}, 400), ({"order": "nope"}, 400), ({"order": {"asd"}}, 400), ({"other": "bad data"}, 400), ({}, 400), ], ) def test_order_column_status_code( post_data, expected_status_code, api_client_with_credentials, board ): Column.objects.create(id=1, board=board, title="col1") Column.objects.create(id=2, board=board, title="col2") response = api_client_with_credentials.post(reverse("sort-column"), post_data) assert response.status_code == expected_status_code def test_board_list(api_client, steve, amy, leo): uni_board = Board.objects.create(name="University", owner=steve) uni_board.members.set([steve, amy]) get_board_list = lambda: api_client.get(reverse("board-list")) # Not authenticated response = get_board_list() assert response.status_code == 401 # Owner can see his own boards api_client.force_authenticate(user=steve) response = get_board_list() assert response.status_code == 200 assert len(response.data) == 1 # Members can see the their boards api_client.force_authenticate(user=amy) response = get_board_list() assert response.status_code == 200 assert len(response.data) == 1 # Not part of any boards, can't see any api_client.force_authenticate(user=leo) response = get_board_list() assert response.status_code == 200 assert len(response.data) == 0 def test_board_detail(api_client, steve, amy, leo): uni_board = Board.objects.create(name="University", owner=steve) uni_board.members.set([steve, amy]) get_uni_board_detail = lambda: api_client.get( reverse("board-detail", kwargs={"pk": uni_board.id}) ) # Not authenticated response = get_uni_board_detail() assert response.status_code == 401 # Owner can see his own board api_client.force_authenticate(user=steve) response = get_uni_board_detail() assert response.status_code == 200 assert response.data["name"] == "University" # Member can see the board api_client.force_authenticate(user=amy) response = get_uni_board_detail() assert response.status_code == 200 assert response.data["name"] == "University" # Not part of the board, can't see it api_client.force_authenticate(user=leo) response = get_uni_board_detail() assert response.status_code == 404 def test_board_delete(api_client, steve, amy, leo): uni_board = Board.objects.create(name="University", owner=steve) uni_board.members.set([steve, amy]) delete_uni_board = lambda: api_client.delete( reverse("board-detail", kwargs={"pk": uni_board.id}) ) # Not authenticated response = delete_uni_board() assert response.status_code == 401 assert Board.objects.filter(id=uni_board.id).exists() # Not part of the board, can't see it api_client.force_authenticate(user=leo) response = delete_uni_board() assert response.status_code == 404 assert Board.objects.filter(id=uni_board.id).exists() # Member can't delete the board api_client.force_authenticate(user=amy) response = delete_uni_board() assert response.status_code == 403 assert Board.objects.filter(id=uni_board.id).exists() # Owner can see his own board api_client.force_authenticate(user=steve) response = delete_uni_board() assert response.status_code == 204 assert not Board.objects.filter(id=uni_board.id).exists() def test_board_create(api_client, steve, amy): assert len(Board.objects.all()) == 0 create_board = lambda: api_client.post(reverse("board-list"), {"name": "Pets"}) # Not authenticated response = create_board() assert response.status_code == 401 assert len(Board.objects.all()) == 0 # Steve should be owner and member after creation api_client.force_authenticate(user=steve) response = create_board() assert response.status_code == 201 assert len(Board.objects.all()) == 1 pets = Board.objects.get(name="Pets") assert pets.owner == steve assert list(pets.members.all()) == [steve] # Amy should not see any boards api_client.force_authenticate(user=amy) response = api_client.get(reverse("board-list")) assert response.status_code == 200 assert len(response.data) == 0 def test_board_invite_member(api_client, board_factory, steve, leo, amy): board = board_factory(owner=steve) board.members.set([leo, steve]) # Initially there are two members assert len(board.members.all()) == 2 send_invite = lambda users_ids: api_client.post( reverse("board-invite-member", kwargs={"pk": board.id}), {"users": users_ids} ) # Not authenticated response = send_invite([amy.id]) assert response.status_code == 401 assert len(board.members.all()) == 2 # Leo is not an owner and should not be able to invite others api_client.force_authenticate(user=leo) response = send_invite([amy.id]) assert response.status_code == 403 assert len(board.members.all()) == 2 # Steve as the owner should be able to successfully invite Amy api_client.force_authenticate(user=steve) response = send_invite([amy.id]) assert response.status_code == 200 assert len(board.members.all()) == 3 assert amy.id in list(map(lambda member: member.id, board.members.all())) # Should handle adding an existing member response = send_invite([steve.id]) assert response.status_code == 200 assert len(board.members.all()) == 3 # Should handle adding non existant user response = send_invite([-1]) assert response.status_code == 400 assert len(board.members.all()) == 3 def test_board_remove_member( api_client, board_factory, column_factory, task_factory, steve, leo, amy, mike ): board = board_factory(owner=steve) board.members.set([steve, leo, amy]) column = column_factory(board=board) task = task_factory(column=column) # Initially there are two members assert len(board.members.all()) == 3 remove_member = lambda username: api_client.post( reverse("board-remove-member", kwargs={"pk": board.id}), {"username": username} ) # Not authenticated response = remove_member(leo.username) assert response.status_code == 401 assert len(board.members.all()) == 3 # Leo should not be able to remove Amy (Leo isn't the owner) api_client.force_authenticate(user=leo) response = remove_member(amy.username) assert response.status_code == 403 assert len(board.members.all()) == 3 # Steve can't remove himself (the owner) api_client.force_authenticate(user=steve) response = remove_member(steve.username) assert response.status_code == 400 assert len(board.members.all()) == 3 # Steve can't remove Mike (not a member of the board) response = remove_member(mike.username) assert response.status_code == 400 assert len(board.members.all()) == 3 # Steve can't remove a non existant user response = remove_member("notvalidusername") assert response.status_code == 400 assert len(board.members.all()) == 3 # Steve can remove Leo, should also remove Leo from tasks task.assignees.set([leo]) assert len(task.assignees.all()) == 1 response = remove_member(leo.username) assert response.status_code == 200 assert len(board.members.all()) == 2 assert leo.id not in list(map(lambda member: member.id, board.members.all())) assert len(task.assignees.all()) == 0 def test_update_task_title(api_client, task_factory, steve, amy): task = task_factory(title="Landing page design") board = task.column.board board.members.set([steve]) new_title = "Admin page permissions" update_title = lambda: api_client.patch( reverse("task-detail", kwargs={"pk": task.id}), {"title": new_title} ) # Not authenticated response = update_title() assert response.status_code == 401 # Amy not a member, doesn't know about the task api_client.force_authenticate(user=amy) response = update_title() assert response.status_code == 404 # Steve is a board member, can update api_client.force_authenticate(user=steve) response = update_title() task.refresh_from_db() assert response.status_code == 200 assert task.title == new_title def test_delete_task(api_client, task_factory, steve, amy): task = task_factory() board = task.column.board board.members.set([steve]) delete_task = lambda: api_client.delete( reverse("task-detail", kwargs={"pk": task.id}) ) # Not authenticated response = delete_task() assert response.status_code == 401 # Amy not a member, doesn't know about the task api_client.force_authenticate(user=amy) response = delete_task() assert response.status_code == 404 # Steve is a board member, can delete api_client.force_authenticate(user=steve) response = delete_task() assert response.status_code == 204 assert not Task.objects.filter(id=task.id).exists() def test_update_column_title(api_client, column_factory, steve, amy): column = column_factory(title="On Hold") board = column.board board.members.set([steve]) new_title = "Ready" update_column_title = lambda: api_client.patch( reverse("column-detail", kwargs={"pk": column.id}), {"title": new_title} ) # Not authenticated response = update_column_title() assert response.status_code == 401 # Amy not a member, doesn't know about the column api_client.force_authenticate(user=amy) response = update_column_title() assert response.status_code == 404 # Steve is a board member, can update api_client.force_authenticate(user=steve) response = update_column_title() column.refresh_from_db() assert response.status_code == 200 assert column.title == new_title def test_create_column(api_client, board_factory, steve, amy): board = board_factory(name="Internals") board.members.set([steve]) column_data = {"title": "Send verification email on Regiser", "board": board.id} create_column = lambda post_data: api_client.post(reverse("column-list"), post_data) # Not authenticated response = create_column(column_data) assert response.status_code == 401 # Amy not a member api_client.force_authenticate(user=amy) response = create_column(column_data) assert response.status_code == 400 assert response.data[0] == "Must be a member of the board!" # Steve is a board member, can create api_client.force_authenticate(user=steve) response = create_column(column_data) assert response.status_code == 201 assert Column.objects.filter(title=column_data["title"]).exists() def test_create_task(api_client, column_factory, steve, amy): column = column_factory(title="Blocked") board = column.board board.members.set([steve]) task_data = { "title": "Send verification email on Regiser", "description": "<p>Send a verification email when a new user registers. " "Email template is provided by Dave.</p><p><br></p><p>Use our main SMTP provider.</p>", "column": column.id, "labels": [], "assignees": [steve.id], "priority": "H", } create_task = lambda post_data: api_client.post(reverse("task-list"), post_data) # Not authenticated response = create_task(task_data) assert response.status_code == 401 # Amy not a member assert amy not in board.members.all() api_client.force_authenticate(user=amy) response = create_task(task_data) assert response.status_code == 400 assert response.data[0] == "Must be a member of the board!" # One of the assignees (amy) is not a member api_client.force_authenticate(user=steve) response = create_task({**task_data, "assignees": [steve.id, amy.id]}) assert response.status_code == 400 assert response.data[0] == "Can't assign someone who isn't a board member!" # Steve is a board member, can create api_client.force_authenticate(user=steve) response = create_task(task_data) assert response.status_code == 201 assert Task.objects.filter(title=task_data["title"]).exists() def test_only_board_members_see_labels( api_client, board_factory, label_factory, steve, amy ): board = board_factory(name="Internals") board.members.set([steve]) label = label_factory(name="Documentation", board=board) get_label = lambda: api_client.get(reverse("label-detail", kwargs={"pk": label.id})) # Steve is a board member, can get label api_client.force_authenticate(user=steve) response = get_label() assert response.status_code == 200 # Amy is a not a board member, doesn't know about the label api_client.force_authenticate(user=amy) response = get_label() assert response.status_code == 404 def test_add_labels_to_task( api_client, board_factory, column_factory, task_factory, label_factory, steve, amy ): board1 = board_factory() board1.members.set([steve]) board2 = board_factory() column1 = column_factory(board=board1) label1 = label_factory(board=board1) label2 = label_factory(board=board2) task1 = task_factory(column=column1) add_labels = lambda labels: api_client.patch( reverse("task-detail", kwargs={"pk": task1.id}), {"labels": labels} ) # Can't add a label when not a member api_client.force_authenticate(user=amy) response = add_labels([label1.id]) task1.refresh_from_db() assert response.status_code == 404 assert len(task1.labels.all()) == 0 # Can't add a label from a different board api_client.force_authenticate(user=steve) response = add_labels([label1.id, label2.id]) task1.refresh_from_db() assert response.status_code == 400 assert response.data[0] == "Can't set a label that doesn't belong to the board!" assert len(task1.labels.all()) == 0 # Can add a label of this board as member api_client.force_authenticate(user=steve) response = add_labels([label1.id]) task1.refresh_from_db() assert response.status_code == 200 assert [label.id for label in task1.labels.all()] == [label1.id] def test_label_names_unique_per_board( api_client, board_factory, label_factory, steve, amy ): board = board_factory() board.members.set([steve]) label1 = label_factory(board=board, name="Hotfix") label_factory(board=board, name="Bug") api_client.force_authenticate(user=steve) response = api_client.patch( reverse("label-detail", kwargs={"pk": label1.id}), {"name": "Bug"} ) assert response.status_code == 400
69933
import io from twisted.internet import reactor from ygo.card import Card from ygo.duel_reader import DuelReader from ygo.parsers.duel_parser import DuelParser from ygo.utils import process_duel def msg_select_unselect_card(self, data): data = io.BytesIO(data[1:]) player = self.read_u8(data) finishable = self.read_u8(data) cancelable = self.read_u8(data) min = self.read_u8(data) max = self.read_u8(data) select_size = self.read_u8(data) select_cards = [] for i in range(select_size): code = self.read_u32(data) loc = self.read_u32(data) card = Card(code) card.set_location(loc) select_cards.append(card) unselect_size = self.read_u8(data) unselect_cards = [] for i in range(unselect_size): code = self.read_u32(data) loc = self.read_u32(data) card = Card(code) card.set_location(loc) unselect_cards.append(card) self.cm.call_callbacks('select_unselect_card', player, finishable, cancelable, min, max, select_cards, unselect_cards) return data.read() def select_unselect_card(self, player, finishable, cancelable, min, max, select_cards, unselect_cards): pl = self.players[player] pl.card_list = select_cards+unselect_cards def prompt(): text = pl._("Check or uncheck %d to %d cards by entering their number")%(min, max) if cancelable and not finishable: text += "\n"+pl._("Enter c to cancel") if finishable: text += "\n"+pl._("Enter f to finish") pl.notify(text) for i, c in enumerate(pl.card_list): name = self.cardlist_info_for_player(c, pl) if c in select_cards: state = pl._("unchecked") else: state = pl._("checked") pl.notify("%d: %s (%s)" % (i+1, name, state)) pl.notify(DuelReader, f, no_abort="Invalid command", restore_parser=DuelParser) def error(text): pl.notify(text) return prompt() def f(caller): if caller.text == 'c' and (cancelable and not finishable) or caller.text == 'f' and finishable: self.set_responsei(-1) reactor.callLater(0, process_duel, self) return try: c = int(caller.text, 10) except ValueError: return error(pl._("Invalid command")) if c < 1 or c > len(pl.card_list): return error(pl._("Number not in range")) buf = bytes([1, c - 1]) self.set_responseb(buf) reactor.callLater(0, process_duel, self) return prompt() MESSAGES = {26: msg_select_unselect_card} CALLBACKS = {'select_unselect_card': select_unselect_card}
69969
import numpy as np import pytest def test_camera_display_create(): from ctapipe.visualization.bokeh import CameraDisplay CameraDisplay() def test_camera_geom(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry c_display = CameraDisplay(geom) assert (c_display.cdsource.data["x"] == geom.pix_x.value).all() assert (c_display.cdsource.data["y"] == geom.pix_y.value).all() t = list(example_event.r0.tel.keys())[1] geom = example_subarray.tel[t].camera.geometry c_display.geom = geom assert (c_display.cdsource.data["x"] == geom.pix_x.value).all() assert (c_display.cdsource.data["y"] == geom.pix_y.value).all() def test_camera_image(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay, intensity_to_hex t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry n_pixels = geom.pix_x.value.size image = np.ones(n_pixels) colors = intensity_to_hex(image) with pytest.raises(ValueError): CameraDisplay(None, image) c_display = CameraDisplay(geom, image) assert (c_display.cdsource.data["image"] == colors).all() assert c_display.image_min == 0 assert c_display.image_max == 2 image[5] = 5 colors = intensity_to_hex(image) c_display.image = image assert (c_display.cdsource.data["image"] == colors).all() assert c_display.image_min == image.min() assert c_display.image_max == image.max() def test_camera_enable_pixel_picker(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry n_pixels = geom.pix_x.value.size image = np.ones(n_pixels) c_display = CameraDisplay(geom, image) c_display.enable_pixel_picker(2) assert len(c_display.active_pixels) == 2 c_display.enable_pixel_picker(3) assert len(c_display.active_pixels) == 3 def test_fast_camera_display_create(example_event, example_subarray): from ctapipe.visualization.bokeh import FastCameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry x = geom.pix_x.value y = geom.pix_y.value area = geom.pix_area.value size = np.sqrt(area) FastCameraDisplay(x, y, size) def test_fast_camera_image(example_event, example_subarray): from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry x = geom.pix_x.value y = geom.pix_y.value area = geom.pix_area.value size = np.sqrt(area) c_display = FastCameraDisplay(x, y, size) image = np.ones(x.size) colors = intensity_to_hex(image) c_display.image = colors assert (c_display.cdsource.data["image"] == colors).all() def test_waveform_display_create(): from ctapipe.visualization.bokeh import WaveformDisplay WaveformDisplay() def test_waveform_values(): from ctapipe.visualization.bokeh import WaveformDisplay wf = np.ones(30) w_display = WaveformDisplay(wf) assert (w_display.cdsource.data["samples"] == wf).all() assert (w_display.cdsource.data["t"] == np.arange(wf.size)).all() wf[5] = 5 w_display.waveform = wf assert (w_display.cdsource.data["samples"] == wf).all() assert (w_display.cdsource.data["t"] == np.arange(wf.size)).all() def test_span(): from ctapipe.visualization.bokeh import WaveformDisplay wf = np.ones(30) w_display = WaveformDisplay(wf) w_display.enable_time_picker() w_display.active_time = 4 assert w_display.span.location == 4 w_display.active_time = -3 assert w_display.active_time == 0 assert w_display.span.location == 0 w_display.active_time = wf.size + 10 assert w_display.active_time == wf.size - 1 assert w_display.span.location == wf.size - 1
70018
import os from pathlib import Path from typing import Iterable from .ext import Date from .ext import make_weekday_calendar, parse_calendar, make_const_calendar from .weekday import parse_weekdays #------------------------------------------------------------------------------- def load_calendar_file(path, *, name=None): """ Loads a calendar from the file at `path`. The file has the following format:: START date END date date date ... Each 'date' is in YYYY-MM-DD format. Blank lines are ignored. Text on each line following the date is ignored. :param name: The calendar name. If `None`, the file's stem name is used. """ path = Path(path) with open(path, "r") as file: cal = parse_calendar(file) cal.name = path.stem if name is None else name return cal def load_business_calendar(holiday_path, weekdays=(0, 1, 2, 3, 4), *, name=None): holiday_cal = load_calendar_file(holiday_path) weekday_cal = make_weekday_calendar(holiday_cal.range, weekdays) cal = weekday_cal & ~holiday_cal cal.name = ( ",".join( str(w) for w in weekdays ) + " except " + holiday_cal.name if name is None else name ) return cal def format_calendar(cal) -> Iterable[str]: """ Formats `cal` in the calendar file format. """ start, stop = cal.range yield f"START {start}" yield f"STOP {stop}" yield "" for date in cal.dates_array: yield str(date) def dump_calendar_file(cal, path): """ Writes `cal` as a calendar file at `path`. """ with open(path, "wt") as file: for line in format_calendar(cal): print(line, file=file) #------------------------------------------------------------------------------- class CalendarDir: """ A directory containing calendar files. Each calendar file has the suffix '.cal'. """ SUFFIX = ".cal" def __init__(self, path): self.__path = Path(path) @property def path(self): """ The path to the calendar directory. """ return self.__path # FIXME: Caching? def __getitem__(self, name): """ Gets a calendar from a calendar file. """ path = (self.__path / name).with_suffix(self.SUFFIX) try: return load_calendar_file(path) except FileNotFoundError: raise KeyError(name) # The initial calendar dir is the one shipped with Ora, or pointed to by # ORA_CALENDARS if this is set. try: _CALENDAR_DIR = os.environ["ORA_CALENDARS"] except KeyError: _CALENDAR_DIR = Path(__file__).parent / "calendars" _CALENDAR_DIR = CalendarDir(_CALENDAR_DIR) def get_calendar_dir(): """ Returns the global calendar directory. """ return _CALENDAR_DIR.path def set_calendar_dir(path): """ Sets the global calendar directory. """ global _CALENDAR_DIR _CALENDAR_DIR = CalendarDir(path) def _get_special_calendar(name): if name == "all": return make_const_calendar((Date.MIN, Date.MAX), True) if name == "none": return make_const_calendar((Date.MIN, Date.MAX), False) try: weekdays = parse_weekdays(name) except ValueError: pass else: cal = make_weekday_calendar((Date.MIN, Date.MAX), weekdays) # FIXME: Do this in make_weekday_calendar. cal.name = name return cal raise LookupError(f"unknown calendar: {name}") def get_calendar(name): """ Gets a calendar. The name may be: - "all" or "none" - A weekday expression; see `parse_weekdays`. - The name of a calendar in the global calendar directory. """ name = str(name) try: return _get_special_calendar(name) except LookupError: pass return _CALENDAR_DIR[name]
70021
import pybullet as p def render(height, width, view_matrix, projection_matrix, shadow=1, light_direction=[1, 1, 1], renderer=p.ER_BULLET_HARDWARE_OPENGL): # ER_BULLET_HARDWARE_OPENGL img_tuple = p.getCameraImage(width, height, view_matrix, projection_matrix, shadow=shadow, lightDirection=light_direction, renderer=renderer) _, _, img, depth, segmentation = img_tuple # import ipdb; ipdb.set_trace() # Here, if I do len(img), I get 9216. # img = np.reshape(np.array(img), (48, 48, 4)) img = img[:, :, :-1] return img, depth, segmentation def get_view_matrix(target_pos=(.75, -.2, 0), distance=0.9, yaw=180, pitch=-20, roll=0, up_axis_index=2): view_matrix = p.computeViewMatrixFromYawPitchRoll( target_pos, distance, yaw, pitch, roll, up_axis_index) return view_matrix def get_projection_matrix(height, width, fov=60, near_plane=0.1, far_plane=2): aspect = width / height projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near_plane, far_plane) return projection_matrix
70022
import datetime import threading from django.utils.html import escape as html_escape from mongoengine import EmbeddedDocument try: from mongoengine.base import ValidationError except ImportError: from mongoengine.errors import ValidationError from mongoengine.base.datastructures import BaseList from mongoengine.queryset import Q from crits.core.class_mapper import class_from_id from crits.core.form_consts import NotificationType from crits.core.user import CRITsUser from crits.core.user_tools import user_sources, get_subscribed_users from crits.notifications.notification import Notification from crits.notifications.processor import ChangeParser, MappedMongoFields from crits.notifications.processor import NotificationHeaderManager def create_notification(obj, username, message, source_filter=None, notification_type=NotificationType.ALERT): """ Generate a notification -- based on mongo obj. :param obj: The object. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes` :param username: The user creating the notification. :type username: str :param message: The notification message. :type message: str :param source_filter: Filter on who can see this notification. :type source_filter: list(str) :param notification_type: The notification type (e.g. alert, error). :type notification_type: str """ n = Notification() n.analyst = username obj_type = obj._meta['crits_type'] users = set() if notification_type not in NotificationType.ALL: notification_type = NotificationType.ALERT n.notification_type = notification_type if obj_type == 'Comment': n.obj_id = obj.obj_id n.obj_type = obj.obj_type n.notification = "%s added a comment: %s" % (username, obj.comment) users.update(obj.users) # notify mentioned users # for comments, use the sources from the object that it is linked to # instead of the comments's sources obj = class_from_id(n.obj_type, n.obj_id) else: n.notification = message n.obj_id = obj.id n.obj_type = obj_type if hasattr(obj, 'source'): sources = [s.name for s in obj.source] subscribed_users = get_subscribed_users(n.obj_type, n.obj_id, sources) # Filter on users that have access to the source of the object for subscribed_user in subscribed_users: allowed_sources = user_sources(subscribed_user) for allowed_source in allowed_sources: if allowed_source in sources: if source_filter is None or allowed_source in source_filter: users.add(subscribed_user) break else: users.update(get_subscribed_users(n.obj_type, n.obj_id, [])) users.discard(username) # don't notify the user creating this notification n.users = list(users) if not len(n.users): return try: n.save() except ValidationError: pass # Signal potentially waiting threads that notification information is available for user in n.users: notification_lock = NotificationLockManager.get_notification_lock(user) notification_lock.acquire() try: notification_lock.notifyAll() finally: notification_lock.release() def create_general_notification(username, target_users, header, link_url, message, notification_type=NotificationType.ALERT): """ Generate a general notification -- not based on mongo obj. :param obj: The object. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes` :param username: The user creating the notification. :type username: str :param target_users: The list of users who will get the notification. :type target_users: list(str) :param header: The notification header message. :type header: list(str) :param link_url: A link URL for the header, specify None if there is no link. :type link_url: str :param message: The notification message. :type message: str :param notification_type: The notification type (e.g. alert, error). :type notification_type: str """ if notification_type not in NotificationType.ALL: notification_type = NotificationType.ALERT n = Notification() n.analyst = username n.notification_type = notification_type n.notification = message n.header = header n.link_url = link_url for target_user in target_users: # Check to make sure the user actually exists user = CRITsUser.objects(username=target_user).first() if user is not None: n.users.append(target_user) # don't notify the user creating this notification n.users = [u for u in n.users if u != username] if not len(n.users): return try: n.save() except ValidationError: pass # Signal potentially waiting threads that notification information is available for user in n.users: notification_lock = NotificationLockManager.get_notification_lock(user) notification_lock.acquire() try: notification_lock.notifyAll() finally: notification_lock.release() def generate_audit_notification(username, operation_type, obj, changed_fields, what_changed, is_new_doc=False): """ Generate an audit notification on the specific change, if applicable. This is called during an audit of the object, before the actual save to the database occurs. :param username: The user creating the notification. :type username: str :param operation_type: The type of operation (i.e. save or delete). :type operation_type: str :param obj: The object. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes` :param changed_fields: A list of field names that were changed. :type changed_fields: list of str :param message: A message summarizing what changed. :type message: str :param is_new_doc: Indicates if the input obj is newly created. :type is_new_doc: bool """ obj_type = obj._meta['crits_type'] supported_notification = __supported_notification_types__.get(obj_type) # Check if the obj is supported for notifications if supported_notification is None: return if operation_type == "save": message = "%s updated the following attributes: %s" % (username, what_changed) elif operation_type == "delete": header_description = generate_notification_header(obj) message = "%s deleted the following: %s" % (username, header_description) if is_new_doc: sources = [] if hasattr(obj, 'source'): sources = [s.name for s in obj.source] message = None target_users = get_subscribed_users(obj_type, obj.id, sources) header = generate_notification_header(obj) link_url = None if hasattr(obj, 'get_details_url'): link_url = obj.get_details_url() if header is not None: header = "New " + header create_general_notification(username, target_users, header, link_url, message) process_result = process_changed_fields(message, changed_fields, obj) message = process_result.get('message') source_filter = process_result.get('source_filter') if message is not None: message = html_escape(message) create_notification(obj, username, message, source_filter, NotificationType.ALERT) def combine_source_filters(current_source_filters, new_source_filters): """ Combines sources together in a restrictive way, e.g. combines sources like a boolean AND operation, e.g. the source must exist in both lists. The only exception is if current_source_filters == None, in which case the new_source_filters will act as the new baseline. :type current_source_filters: list of source names :param current_source_filters: list(str). :type new_source_filters: list of source names :param new_source_filters: list(str). :returns: str: Returns a list of combined source names. """ combined_source_filters = [] if current_source_filters is None: return new_source_filters else: for new_source_filter in new_source_filters: if new_source_filter in current_source_filters: combined_source_filters.append(new_source_filter) return combined_source_filters def process_changed_fields(initial_message, changed_fields, obj): """ Processes the changed fields to determine what actually changed. :param message: An initial message to include. :type message: str :param changed_fields: A list of field names that were changed. :type changed_fields: list of str :param obj: The object. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes` :returns: str: Returns a message indicating what was changed. """ obj_type = obj._meta['crits_type'] message = initial_message if message is None: message = '' source_filter = None for changed_field in changed_fields: # Fields may be fully qualified, e.g. source.1.instances.0.reference # So, split on the '.' character and get the root of the changed field base_changed_field = MappedMongoFields.get_mapped_mongo_field(obj_type, changed_field.split('.')[0]) new_value = getattr(obj, base_changed_field, '') old_obj = class_from_id(obj_type, obj.id) old_value = getattr(old_obj, base_changed_field, '') change_handler = ChangeParser.get_changed_field_handler(obj_type, base_changed_field) if change_handler is not None: change_message = change_handler(old_value, new_value, base_changed_field) if isinstance(change_message, dict): if change_message.get('source_filter') is not None: new_source_filter = change_message.get('source_filter') source_filter = combine_source_filters(source_filter, new_source_filter) change_message = change_message.get('message') if change_message is not None: message += "\n" + change_message[:1].capitalize() + change_message[1:] else: change_field_handler = ChangeParser.generic_single_field_change_handler if isinstance(old_value, BaseList): list_value = None if len(old_value) > 0: list_value = old_value[0] elif len(new_value) > 0: list_value = new_value[0] if isinstance(list_value, basestring): change_field_handler = ChangeParser.generic_list_change_handler elif isinstance(list_value, EmbeddedDocument): change_field_handler = ChangeParser.generic_list_json_change_handler change_message = change_field_handler(old_value, new_value, base_changed_field) if isinstance(change_message, dict): if change_message.get('source_filter') is not None: new_source_filter = change_message.get('source_filter') combine_source_filters(source_filter, new_source_filter) change_message = change_message.get('message') if change_message is not None: message += "\n" + change_message[:1].capitalize() + change_message[1:] return {'message': message, 'source_filter': source_filter} def get_notification_details(request, newer_than): """ Generate the data to render the notification dialogs. :param request: The Django request. :type request: :class:`django.http.HttpRequest` :param newer_than: A filter that specifies that only notifications newer than this time should be returned. :type newer_than: str in ISODate format. :returns: arguments (dict) """ username = request.user.username notifications_list = [] notifications = None latest_notification_time = None lock = NotificationLockManager.get_notification_lock(username) timeout = 0 # Critical section, check if there are notifications to be consumed. lock.acquire() try: notifications = get_user_notifications(username, newer_than=newer_than) if len(notifications) > 0: latest_notification_time = str(notifications[0].created) else: # no new notifications -- block until time expiration or lock release lock.wait(60) # lock was released, check if there is any new information yet notifications = get_user_notifications(username, newer_than=newer_than) if len(notifications) > 0: latest_notification_time = str(notifications[0].created) finally: lock.release() if latest_notification_time is not None: acknowledgement_type = request.user.get_preference('toast_notifications', 'acknowledgement_type', 'sticky') if acknowledgement_type == 'timeout': timeout = request.user.get_preference('toast_notifications', 'timeout', 30) * 1000 for notification in notifications: obj = class_from_id(notification.obj_type, notification.obj_id) if obj is not None: link_url = obj.get_details_url() header = generate_notification_header(obj) else: if notification.header is not None: header = notification.header else: header = "%s %s" % (notification.obj_type, notification.obj_id) if notification.link_url is not None: link_url = notification.link_url else: link_url = None notification_type = notification.notification_type if notification_type is None or notification_type not in NotificationType.ALL: notification_type = NotificationType.ALERT notification_data = { "header": header, "message": notification.notification, "date_modified": str(notification.created.strftime("%Y/%m/%d %H:%M:%S")), "link": link_url, "modified_by": notification.analyst, "id": str(notification.id), "type": notification_type, } notifications_list.append(notification_data) return { 'notifications': notifications_list, 'newest_notification': latest_notification_time, 'server_time': str(datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S")), 'timeout': timeout, } def get_notifications_for_id(username, obj_id, obj_type): """ Get notifications for a specific top-level object and user. :param username: The user to search for. :param obj_id: The ObjectId to search for. :type obj_id: str :param obj_type: The top-level object type. :type obj_type: str :returns: :class:`crits.core.crits_mongoengine.CritsQuerySet` """ return Notification.objects(users=username, obj_id=obj_id, obj_type=obj_type) def remove_notification(obj_id): """ Remove an existing notification. :param obj_id: The top-level ObjectId to find the notification to remove. :type obj_id: str :returns: dict with keys "success" (boolean) and "message" (str). """ notification = Notification.objects(id=obj_id).first() if not notification: message = "Could not find notification to remove!" result = {'success': False, 'message': message} else: notification.delete() message = "Notification removed successfully!" result = {'success': True, 'message': message} return result def get_new_notifications(): """ Get any new notifications. """ return Notification.objects(status="new") def remove_user_from_notification(username, obj_id, obj_type): """ Remove a user from the list of users for a notification. :param username: The user to remove. :type username: str :param obj_id: The ObjectId of the top-level object for this notification. :type obj_id: str :param obj_type: The top-level object type. :type obj_type: str :returns: dict with keys "success" (boolean) and "message" (str) if failed. """ Notification.objects(obj_id=obj_id, obj_type=obj_type).update(pull__users=username) return {'success': True} def remove_user_from_notification_id(username, id): """ Remove a user from the list of users for a notification. :param username: The user to remove. :type username: str :param obj_id: The ObjectId of the top-level object for this notification. :type obj_id: str :param obj_type: The top-level object type. :type obj_type: str :returns: dict with keys "success" (boolean) and "message" (str) if failed. """ Notification.objects(id=id).update(pull__users=username) return {'success': True} def remove_user_notifications(username): """ Remove a user from all notifications. :param username: The user to remove. :type username: str :returns: dict with keys "success" (boolean) and "message" (str) if failed. """ Notification.objects(users=username).update(pull__users=username) def get_user_notifications(username, count=False, newer_than=None): """ Get the notifications for a user. :param username: The user to get notifications for. :type username: str :param count: Only return the count. :type count:bool :returns: int, :class:`crits.core.crits_mongoengine.CritsQuerySet` """ n = None if newer_than is None or newer_than == None: n = Notification.objects(users=username).order_by('-created') else: n = Notification.objects(Q(users=username) & Q(created__gt=newer_than)).order_by('-created') if count: return len(n) else: return n __supported_notification_types__ = { 'Actor': 'name', 'Campaign': 'name', 'Certificate': 'md5', 'Comment': 'object_id', 'Domain': 'domain', 'Email': 'id', 'Event': 'id', 'Indicator': 'id', 'IP': 'ip', 'PCAP': 'md5', 'RawData': 'title', 'Sample': 'md5', 'Target': 'email_address', } class NotificationLockManager(object): """ Manager class to handle locks for notifications. """ __notification_mutex__ = threading.Lock() __notification_locks__ = {} @classmethod def get_notification_lock(cls, username): """ @threadsafe Gets a notification lock for the specified user, if it doesn't exist then one is created. """ if username not in cls.__notification_locks__: # notification lock doesn't exist for user, create new lock cls.__notification_mutex__.acquire() try: # safe double checked locking if username not in cls.__notification_locks__: cls.__notification_locks__[username] = threading.Condition() finally: cls.__notification_mutex__.release() return cls.__notification_locks__.get(username) def generate_notification_header(obj): """ Generates notification header information based upon the object -- this is used to preface the notification's context. Could possibly be used for "Favorites" descriptions as well. :param obj: The top-level object instantiated class. :type obj: class which inherits from :class:`crits.core.crits_mongoengine.CritsBaseAttributes`. :returns: str with a human readable identification of the object """ generate_notification_header_handler = NotificationHeaderManager.get_header_handler(obj._meta['crits_type']) if generate_notification_header_handler is not None: return generate_notification_header_handler(obj) else: return "%s: %s" % (obj._meta['crits_type'], str(obj.id))
70027
from typing import List, Union, Dict from unittest import TestCase from unittest.mock import ANY, patch, Mock from parameterized import parameterized from samcli.lib.cookiecutter.question import Question, QuestionKind, Choice, Confirm, Info, QuestionFactory class TestQuestion(TestCase): _ANY_TEXT = "any text" _ANY_KEY = "any key" _ANY_OPTIONS = ["option1", "option2", "option3"] _ANY_ANSWER = "any answer" _ANY_NEXT_QUESTION_MAP = { "option1": "key1", "option2": "key2", "option3": "key3", } _ANY_DEFAULT_NEXT_QUESTION_KEY = "default" _ANY_KIND = QuestionKind.question def setUp(self): self.question = Question( text=self._ANY_TEXT, key=self._ANY_KEY, default=self._ANY_ANSWER, is_required=True, allow_autofill=False, next_question_map=self._ANY_NEXT_QUESTION_MAP, default_next_question_key=self._ANY_DEFAULT_NEXT_QUESTION_KEY, ) def get_question_with_default_from_cookiecutter_context_using_keypath( self, key_path: List[Union[str, Dict]] ) -> Question: return Question( text=self._ANY_TEXT, key=self._ANY_KEY, default={"keyPath": key_path}, is_required=True, next_question_map=self._ANY_NEXT_QUESTION_MAP, default_next_question_key=self._ANY_DEFAULT_NEXT_QUESTION_KEY, ) def test_creating_questions(self): q = Question(text=self._ANY_TEXT, key=self._ANY_KEY) self.assertEqual(q.text, self._ANY_TEXT) self.assertEqual(q.key, self._ANY_KEY) self.assertEqual(q.default_answer, "") self.assertFalse(q.required) self.assertEqual(q.next_question_map, {}) self.assertIsNone(q.default_next_question_key) q = self.question self.assertEqual(q.text, self._ANY_TEXT) self.assertEqual(q.key, self._ANY_KEY) self.assertEqual(q.default_answer, self._ANY_ANSWER) self.assertTrue(q.required) self.assertEqual(q.next_question_map, self._ANY_NEXT_QUESTION_MAP) self.assertEqual(q.default_next_question_key, self._ANY_DEFAULT_NEXT_QUESTION_KEY) def test_question_key_and_text_are_required(self): with (self.assertRaises(TypeError)): Question(text=self._ANY_TEXT) with (self.assertRaises(TypeError)): Question(key=self._ANY_KEY) def test_get_next_question_key(self): self.assertEqual(self.question.get_next_question_key("option1"), "key1") self.assertEqual(self.question.get_next_question_key("option2"), "key2") self.assertEqual(self.question.get_next_question_key("option3"), "key3") self.assertEqual(self.question.get_next_question_key("any-option"), self._ANY_DEFAULT_NEXT_QUESTION_KEY) self.question.set_default_next_question_key("new_default") self.assertEqual(self.question.get_next_question_key(None), "new_default") @patch("samcli.lib.cookiecutter.question.click") def test_ask(self, mock_click): mock_click.prompt.return_value = self._ANY_ANSWER answer = self.question.ask({}) self.assertEqual(answer, self._ANY_ANSWER) mock_click.prompt.assert_called_once_with(text=self.question.text, default=self.question.default_answer) @patch("samcli.lib.cookiecutter.question.click") def test_ask_resolves_from_cookiecutter_context(self, mock_click): # Setup expected_default_value = Mock() previous_question_key = "this is a question" previous_question_answer = "this is an answer" context = { "['x', 'this is an answer']": expected_default_value, previous_question_key: previous_question_answer, } question = self.get_question_with_default_from_cookiecutter_context_using_keypath( ["x", {"valueOf": previous_question_key}] ) # Trigger question.ask(context=context) # Verify mock_click.prompt.assert_called_once_with(text=self.question.text, default=expected_default_value) @patch("samcli.lib.cookiecutter.question.click") def test_ask_resolves_from_cookiecutter_context_non_exist_key_path(self, mock_click): # Setup context = {} question = self.get_question_with_default_from_cookiecutter_context_using_keypath(["y"]) # Trigger question.ask(context=context) # Verify mock_click.prompt.assert_called_once_with(text=self.question.text, default=None) def test_ask_resolves_from_cookiecutter_context_non_exist_question_key(self): # Setup expected_default_value = Mock() previous_question_key = "this is a question" previous_question_answer = "this is an answer" context = { "['x', 'this is an answer']": expected_default_value, previous_question_key: previous_question_answer, } question = self.get_question_with_default_from_cookiecutter_context_using_keypath( ["x", {"valueOf": "non_exist_question_key"}] ) # Trigger with self.assertRaises(KeyError): question.ask(context=context) @parameterized.expand([("this should have been a list"), ([1],), ({},)]) def test_ask_resolves_from_cookiecutter_context_with_key_path_not_a_list(self, key_path): # Setup context = {} question = self.get_question_with_default_from_cookiecutter_context_using_keypath(key_path) # Trigger with self.assertRaises(ValueError): question.ask(context=context) @parameterized.expand([({"keyPath123": Mock()},), ({"keyPath": [{"valueOf123": Mock()}]},)]) def test_ask_resolves_from_cookiecutter_context_with_default_object_missing_keys(self, default_object): # Setup context = {} question = self.get_question_with_default_from_cookiecutter_context_using_keypath([]) question._default_answer = default_object # Trigger with self.assertRaises(KeyError): question.ask(context=context) def test_question_allow_autofill_with_default_value(self): q = Question(text=self._ANY_TEXT, key=self._ANY_KEY, is_required=True, allow_autofill=True, default="123") self.assertEquals("123", q.ask()) @patch("samcli.lib.cookiecutter.question.click") def test_question_allow_autofill_without_default_value(self, click_mock): answer_mock = click_mock.prompt.return_value = Mock() q = Question(text=self._ANY_TEXT, key=self._ANY_KEY, is_required=True, allow_autofill=True) self.assertEquals(answer_mock, q.ask()) class TestChoice(TestCase): def setUp(self): self.question = Choice( text=TestQuestion._ANY_TEXT, key=TestQuestion._ANY_KEY, options=TestQuestion._ANY_OPTIONS, default=TestQuestion._ANY_ANSWER, is_required=True, next_question_map=TestQuestion._ANY_NEXT_QUESTION_MAP, default_next_question_key=TestQuestion._ANY_DEFAULT_NEXT_QUESTION_KEY, ) def test_create_choice_question(self): self.assertEqual(self.question.text, TestQuestion._ANY_TEXT) self.assertEqual(self.question.key, TestQuestion._ANY_KEY) self.assertEqual(self.question._options, TestQuestion._ANY_OPTIONS) with (self.assertRaises(TypeError)): Choice(key=TestQuestion._ANY_KEY, text=TestQuestion._ANY_TEXT) with (self.assertRaises(ValueError)): Choice(key=TestQuestion._ANY_KEY, text=TestQuestion._ANY_TEXT, options=None) with (self.assertRaises(ValueError)): Choice(key=TestQuestion._ANY_KEY, text=TestQuestion._ANY_TEXT, options=[]) def test_get_options_indexes_with_different_bases(self): indexes = self.question._get_options_indexes() self.assertEqual(indexes, [0, 1, 2]) indexes = self.question._get_options_indexes(base=1) self.assertEqual(indexes, [1, 2, 3]) @patch("samcli.lib.cookiecutter.question.click.Choice") @patch("samcli.lib.cookiecutter.question.click") def test_ask(self, mock_click, mock_choice): mock_click.prompt.return_value = 2 answer = self.question.ask({}) self.assertEqual(answer, TestQuestion._ANY_OPTIONS[1]) # we deduct one from user's choice (base 1 vs base 0) mock_click.prompt.assert_called_once_with( text="Choice", default=self.question.default_answer, show_choices=False, type=ANY, show_default=self.question.default_answer is not None, ) mock_choice.assert_called_once_with(["1", "2", "3"]) class TestInfo(TestCase): @patch("samcli.lib.cookiecutter.question.click") def test_ask(self, mock_click): q = Info(text=TestQuestion._ANY_TEXT, key=TestQuestion._ANY_KEY) mock_click.echo.return_value = None answer = q.ask({}) self.assertIsNone(answer) mock_click.echo.assert_called_once_with(message=q.text) class TestConfirm(TestCase): @patch("samcli.lib.cookiecutter.question.click") def test_ask(self, mock_click): q = Confirm(text=TestQuestion._ANY_TEXT, key=TestQuestion._ANY_KEY) mock_click.confirm.return_value = True answer = q.ask({}) self.assertTrue(answer) mock_click.confirm.assert_called_once_with(text=q.text) class TestQuestionFactory(TestCase): def test_there_is_a_handler_for_each_question_kind(self): question_json = {"key": TestQuestion._ANY_KEY, "question": TestQuestion._ANY_TEXT, "options": ["a", "b"]} for kind in QuestionKind: question_json["kind"] = kind.name q = QuestionFactory.create_question_from_json(question_json) expected_type = QuestionFactory.question_classes[kind] self.assertTrue(isinstance(q, expected_type))
70043
import copy import logging import dask import numpy as np import xarray as xr from numcodecs.compat import ensure_ndarray from xarray.backends.zarr import ( DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding, ) from zarr.meta import encode_fill_value from zarr.storage import array_meta_key, attrs_key, default_compressor, group_meta_key from zarr.util import normalize_shape from .api import DATASET_ID_ATTR_KEY dask_array_type = (dask.array.Array,) zarr_format = 2 zarr_consolidated_format = 1 zarr_metadata_key = '.zmetadata' logger = logging.getLogger('api') def _extract_dataset_zattrs(dataset: xr.Dataset): """helper function to create zattrs dictionary from Dataset global attrs""" zattrs = {} for k, v in dataset.attrs.items(): zattrs[k] = encode_zarr_attr_value(v) # remove xpublish internal attribute zattrs.pop(DATASET_ID_ATTR_KEY, None) return zattrs def _extract_dataarray_zattrs(da): """helper function to extract zattrs dictionary from DataArray""" zattrs = {} for k, v in da.attrs.items(): zattrs[k] = encode_zarr_attr_value(v) zattrs[DIMENSION_KEY] = list(da.dims) # We don't want `_FillValue` in `.zattrs` # It should go in `fill_value` section of `.zarray` _ = zattrs.pop('_FillValue', None) return zattrs def _extract_fill_value(da, dtype): """helper function to extract fill value from DataArray.""" fill_value = da.attrs.pop('_FillValue', None) return encode_fill_value(fill_value, dtype) def _extract_zarray(da, encoding, dtype): """helper function to extract zarr array metadata.""" meta = { 'compressor': encoding.get('compressor', da.encoding.get('compressor', default_compressor)), 'filters': encoding.get('filters', da.encoding.get('filters', None)), 'chunks': encoding.get('chunks', None), 'dtype': dtype.str, 'fill_value': _extract_fill_value(da, dtype), 'order': 'C', 'shape': list(normalize_shape(da.shape)), 'zarr_format': zarr_format, } if meta['chunks'] is None: meta['chunks'] = da.shape # validate chunks if isinstance(da.data, dask_array_type): var_chunks = tuple([c[0] for c in da.data.chunks]) else: var_chunks = da.shape if not var_chunks == tuple(meta['chunks']): raise ValueError('Encoding chunks do not match inferred chunks') meta['chunks'] = list(meta['chunks']) # return chunks as a list return meta def create_zvariables(dataset): """Helper function to create a dictionary of zarr encoded variables.""" zvariables = {} for key, da in dataset.variables.items(): encoded_da = encode_zarr_variable(da, name=key) zvariables[key] = encoded_da return zvariables def create_zmetadata(dataset): """Helper function to create a consolidated zmetadata dictionary.""" zmeta = {'zarr_consolidated_format': zarr_consolidated_format, 'metadata': {}} zmeta['metadata'][group_meta_key] = {'zarr_format': zarr_format} zmeta['metadata'][attrs_key] = _extract_dataset_zattrs(dataset) for key, da in dataset.variables.items(): encoded_da = encode_zarr_variable(da, name=key) encoding = extract_zarr_variable_encoding(da) zmeta['metadata'][f'{key}/{attrs_key}'] = _extract_dataarray_zattrs(encoded_da) zmeta['metadata'][f'{key}/{array_meta_key}'] = _extract_zarray( encoded_da, encoding, encoded_da.dtype ) return zmeta def jsonify_zmetadata(dataset: xr.Dataset, zmetadata: dict) -> dict: """Helper function to convert zmetadata dictionary to a json compatible dictionary. """ zjson = copy.deepcopy(zmetadata) for key in list(dataset.variables): # convert compressor to dict compressor = zjson['metadata'][f'{key}/{array_meta_key}']['compressor'] if compressor is not None: compressor_config = zjson['metadata'][f'{key}/{array_meta_key}'][ 'compressor' ].get_config() zjson['metadata'][f'{key}/{array_meta_key}']['compressor'] = compressor_config return zjson def encode_chunk(chunk, filters=None, compressor=None): """helper function largely copied from zarr.Array""" # apply filters if filters: for f in filters: chunk = f.encode(chunk) # check object encoding if ensure_ndarray(chunk).dtype == object: raise RuntimeError('cannot write object array without object codec') # compress if compressor: cdata = compressor.encode(chunk) else: cdata = chunk return cdata def get_data_chunk(da, chunk_id, out_shape): """Get one chunk of data from this DataArray (da). If this is an incomplete edge chunk, pad the returned array to match out_shape. """ ikeys = tuple(map(int, chunk_id.split('.'))) if isinstance(da, dask_array_type): chunk_data = da.blocks[ikeys] else: if ikeys != ((0,) * da.ndim): raise ValueError( 'Invalid chunk_id for numpy array: %s. Should have been: %s' % (chunk_id, ((0,) * da.ndim)) ) chunk_data = np.asarray(da) logger.debug('checking chunk output size, %s == %s' % (chunk_data.shape, out_shape)) if isinstance(chunk_data, dask_array_type): chunk_data = chunk_data.compute() # zarr expects full edge chunks, contents out of bounds for the array are undefined if chunk_data.shape != tuple(out_shape): new_chunk = np.empty_like(chunk_data, shape=out_shape) write_slice = tuple([slice(0, s) for s in chunk_data.shape]) new_chunk[write_slice] = chunk_data return new_chunk else: return chunk_data
70052
def hvplot_with_buffer(gdf, buffer_size, *args, **kwargs): """ Convenience function for plotting a GeoPandas point GeoDataFrame using point markers plus buffer polygons Parameters ---------- gdf : geopandas.GeoDataFrame point GeoDataFrame to plot buffer_size : numeric size of the buffer in meters (measured in EPSG:31287) """ buffered = gdf.to_crs('epsg:31287').buffer(buffer_size) buffered = gdf.copy().set_geometry(buffered).to_crs('epsg:4326') plot = ( buffered.hvplot(geo=True, tiles='OSM', alpha=0.5, line_width=0, *args, **kwargs) * gdf.hvplot(geo=True, hover_cols=['DESIGNATION']) ).opts(active_tools=['wheel_zoom']) return plot
70078
import argparse import cv2 import numpy as np import torch.nn.functional as F from torchvision.transforms.functional import normalize from facexlib.matting import init_matting_model from facexlib.utils import img2tensor def main(args): modnet = init_matting_model() # read image img = cv2.imread(args.img_path) / 255. # unify image channels to 3 if len(img.shape) == 2: img = img[:, :, None] if img.shape[2] == 1: img = np.repeat(img, 3, axis=2) elif img.shape[2] == 4: img = img[:, :, 0:3] img_t = img2tensor(img, bgr2rgb=True, float32=True) normalize(img_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) img_t = img_t.unsqueeze(0).cuda() # resize image for input _, _, im_h, im_w = img_t.shape ref_size = 512 if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 img_t = F.interpolate(img_t, size=(im_rh, im_rw), mode='area') # inference _, _, matte = modnet(img_t, True) # resize and save matte matte = F.interpolate(matte, size=(im_h, im_w), mode='area') matte = matte[0][0].data.cpu().numpy() cv2.imwrite(args.save_path, (matte * 255).astype('uint8')) # get foreground matte = matte[:, :, None] foreground = img * matte + np.full(img.shape, 1) * (1 - matte) cv2.imwrite(args.save_path.replace('.png', '_fg.png'), foreground * 255) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--img_path', type=str, default='assets/test.jpg') parser.add_argument('--save_path', type=str, default='test_matting.png') args = parser.parse_args() main(args)
70104
from pydub import AudioSegment class Frame(): def __init__(self, start=0, end=0, audio=AudioSegment.empty()): self.start = start self.end = end self.audio = audio def __eq__(self, frame): return self.start == frame.start and self.end == frame.end def __len__(self): return self.end - self.start def __iadd__(self, frame): if len(self) == 0: # empty case self.start = frame.start self.end = frame.end self.audio = frame.audio elif self.start < frame.start: self.end = frame.end self.audio += frame.audio elif self.start > frame.start: self.start = frame.start self.audio = frame.audio + self.audio return self def __add__(self,frame): new_frame = Frame() if self.start < frame.start: new_frame.start = self.start new_frame.end = frame.end new_frame.audio = self.audio + frame.audio elif self.start > frame.start: new_frame.start = frame.start new_frame.end = self.end new_frame.audio = frame.audio + self.audio return new_frame def timestamps(self): return (self.start, self.end)
70116
from __future__ import absolute_import import numpy as np import chainer import tqdm import glob import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict from ..data import load_image # NOQA class BaseDataset(chainer.dataset.DatasetMixin, metaclass=ABCMeta): """ Base class of dataset Args: root (str): Directory to the dataset patients (list, optional): List of patient names. Defaults to []. classes (None or list, optional): List of class names. Defaults to None. dtypes (dict, optional): An dictionary of data types. Defaults to {}. filenames (dict, optional): An dictionary of wildcard to filenames. Each filename can be a format string using '{root}' and '{patient}'. Defaults to {}. normalizer (callable, optional): An callable function for normalization. Defaults to None. augmentor (callable, optional): An callable function for data augmentation. Defaults to None. """ def __init__(self, root, patients=[], classes=None, dtypes={}, filenames={}, normalizer=None, augmentor=None): super(BaseDataset, self).__init__() assert isinstance(patients, (list, np.ndarray)), \ 'please specify the patient names..' if classes is not None: if isinstance(classes, list): classes = np.asarray(classes) assert isinstance(classes, np.ndarray), \ 'class names should be list or np.ndarray..' assert isinstance(dtypes, dict), \ 'please specify the dtype per each file..' assert isinstance(filenames, dict), \ 'please specify the filename per each file..' if normalizer is not None: assert callable(normalizer), 'normalizer should be callable..' if augmentor is not None: assert callable(augmentor), 'augmentor should be callable..' # initialize files = OrderedDict() file_sizes = [] for key in filenames.keys(): files[key] = [] for p in tqdm.tqdm(patients, desc='Collecting %s files' % key, ncols=80): files[key].extend( glob.glob(filenames[key].format(root=root, patient=p))) if len(files[key]) == 0: warnings.warn('%s files are not found.. ' % key) file_sizes.append(len(files[key])) assert all(file_sizes[0] == s for s in file_sizes), \ 'the number of files must be the same..' self._root = root self._patients = patients self._classes = classes self._dtypes = dtypes self._filenames = filenames self._files = files self._normalizer = normalizer self._augmentor = augmentor def __len__(self): key = list(self._files.keys())[0] return len(self._files[key]) @property def classes(self): return self._classes @property def n_classes(self): if self.classes is None: return None return len(self.classes) @property def files(self): return self._files @property def dtypes(self): return self._dtypes @property def normalizer(self): return self._normalizer @property def augmentor(self): return self._augmentor @augmentor.deleter def augmentor(self): self._augmentor = None @classmethod @abstractmethod def normalize(self, **kwargs): raise NotImplementedError() @classmethod @abstractmethod def denormalize(self, **kwargs): raise NotImplementedError() @classmethod @abstractmethod def get_example(self, i): raise NotImplementedError() @classmethod @abstractmethod def __copy__(self): """Copy the class instance""" raise NotImplementedError() from .volume import VolumeDataset # NOQA from .image import ImageDataset # NOQA def train_valid_split(train, valid_ratio): if isinstance(train, BaseDataset): valid = train.__copy__() n_samples = len(train) valid_indices = np.random.choice(np.arange(n_samples), int(valid_ratio * n_samples), replace=False) files = train.files for key in files.keys(): valid._files[key] = np.asarray(files[key])[valid_indices] train._files[key] = np.delete( np.asarray(files[key]), valid_indices) elif isinstance(train, (list, np.ndarray)): valid = np.asarray(train) n_samples = len(train) valid_indices = np.random.choice(np.arange(n_samples), int(valid_ratio * n_samples), replace=False) valid = valid[valid_indices] train = np.delete(train, valid_indices) assert len(train) + len(valid) == n_samples return train, valid def load_crossval_list(xls_file, index): import pandas as pd from distutils.version import LooseVersion if LooseVersion(pd.__version__) >= LooseVersion('0.21.0'): df = pd.read_excel(xls_file, sheet_name=index) else: df = pd.read_excel(xls_file, sheetname=index) train = df['train'].dropna().tolist() valid = df['valid'].dropna().tolist() test = df['test'].dropna().tolist() return {'train': train, 'valid': valid, 'test': test}
70142
import os from appdirs import AppDirs from cihai.config import Configurator, expand_config #: XDG App directory locations dirs = AppDirs("cihai", "cihai team") # appname # app author def test_configurator(tmpdir): c = Configurator() isinstance(c.dirs, AppDirs) assert c def test_expand_config_xdg_vars(): initial_dict = { 'dirs': {'cache': '{user_cache_dir}', 'data': '{user_cache_dir}/data'} } expected_dict = { 'dirs': { 'cache': dirs.user_cache_dir, 'data': os.path.join(dirs.user_cache_dir, 'data'), } } expand_config(initial_dict, dirs) assert initial_dict == expected_dict def test_expand_config_user_vars(): initial_dict = {'dirs': {'cache': '~'}} expected_dict = {'dirs': {'cache': os.path.expanduser('~')}} expand_config(initial_dict, dirs) assert initial_dict == expected_dict def test_expand_config_env_vars(tmpdir, monkeypatch): monkeypatch.setenv('MYDIR', str(tmpdir)) initial_dict = {'dirs': {'cache': '${MYDIR}'}} expected_dict = {'dirs': {'cache': os.environ.get('MYDIR')}} expand_config(initial_dict, dirs) assert initial_dict == expected_dict
70179
import tinyflow as tf from tinyflow.datasets import get_cifar10 import numpy as np num_epoch = 10 num_batch = 600 batch_size = 100 def conv_factory(x, filter_size, in_filters, out_filters): x = tf.nn.conv2d(x, num_filter=out_filters, ksize=[1, filter_size, filter_size, 1], padding='SAME') x = tf.nn.batch_normalization(x) x = tf.nn.relu(x) return x def residual_factory(x, in_filters, out_filters): if in_filters == out_filters: orig_x = x conv1 = conv_factory(x, 3, in_filters, out_filters) conv2 = conv_factory(conv1, 3, out_filters, out_filters) new = orig_x + conv2 return tf.nn.relu(new) else: conv1 = conv_factory(x, 3, in_filters, out_filters) conv2 = conv_factory(conv1, 3, out_filters, out_filters) project_x = conv_factory(x, 1, in_filters, out_filters) new = project_x + conv2 return tf.nn.relu(new) def resnet(x, n, in_filters, out_filters): for i in range(n): if i == 0: x = residual_factory(x, in_filters, 16) else: x = residual_factory(x, 16, 16) for i in range(n): if i == 0: x = residual_factory(x, 16, 32) else: x = residual_factory(x, 32, 32) for i in range(n): if i == 0: x = residual_factory(x, 32, 64) else: x = residual_factory(x, 64, 64) return x x = tf.placeholder(tf.float32) conv1 = tf.nn.conv2d(x, num_filter=16, ksize=[1, 5, 5, 1], padding='SAME') tanh1 = tf.tanh(conv1) res = resnet(tanh1, 1, 16, 64) pool1 = tf.nn.avg_pool(res, ksize=[1, 4, 4, 1], strides=[1, 2, 2, 1], padding='SAME', data_format='NCHW') conv2 = tf.nn.conv2d(pool1, num_filter=16, ksize=[1, 5, 5, 1]) flatten = tf.nn.flatten_layer(conv2) fc1 = tf.nn.linear(flatten, num_hidden=10, name="fc1") # define loss label = tf.placeholder(tf.float32) cross_entropy = tf.nn.mean_sparse_softmax_cross_entropy_with_logits(fc1, label) train_step = tf.train.AdamOptimizer(0.0005).minimize(cross_entropy) sess = tf.Session(config='gpu') # Auromatic variable shape inference API, infers the shape and initialize the weights. known_shape = {x: [batch_size, 3, 32, 32], label: [batch_size]} stdev = 0.01 init_step = [] for v, name, shape in tf.infer_variable_shapes( cross_entropy, feed_dict=known_shape): init_step.append(tf.assign(v, tf.normal(shape, stdev))) print("shape[%s]=%s" % (name, str(shape))) sess.run(init_step) sess.run(tf.initialize_all_variables()) # get the cifar dataset cifar = get_cifar10() for epoch in range(num_epoch): sum_loss = 0.0 for i in range(num_batch): batch_xs, batch_ys = cifar.train.next_batch(batch_size) loss, _ = sess.run([cross_entropy, train_step], feed_dict={x: batch_xs, label:batch_ys}) sum_loss += loss print("epoch[%d] cross_entropy=%g" % (epoch, sum_loss /num_batch)) correct_prediction = tf.equal(tf.argmax(fc1, 1), label) accuracy = tf.reduce_mean(correct_prediction) print(sess.run(accuracy, feed_dict={x: cifar.test.images, label: cifar.test.labels}))
70200
from typing import Dict, List from aiohttp import web from .path import full_url def default_server(request: web.Request) -> Dict[str, str]: app = request.app url = full_url(request) url = url.with_path(app["cli"].base_path) return dict(url=str(url), description="Api server") def server_urls(request: web.Request, paths: List[str]) -> List[str]: base_path = request.app["cli"].base_path n = len(base_path) spec = request.app.get("spec") server = spec.servers[0] if spec and spec.servers else default_server(request) base_url = server["url"] return [f"{base_url}{p[n:]}" for p in paths]
70355
import turbodbc.data_types from turbodbc import STRING, BINARY, NUMBER, DATETIME, ROWID ALL_TYPE_CODES = [turbodbc.data_types._BOOLEAN_CODE, turbodbc.data_types._INTEGER_CODE, turbodbc.data_types._FLOATING_POINT_CODE, turbodbc.data_types._STRING_CODE, turbodbc.data_types._UNICODE_CODE, turbodbc.data_types._TIMESTAMP_CODE, turbodbc.data_types._DATE_CODE] ALL_DATA_TYPES = [STRING, BINARY, NUMBER, DATETIME, ROWID] def test_each_type_code_matches_one_data_type(): for type_code in ALL_TYPE_CODES: matches = [type for type in ALL_DATA_TYPES if type_code == type] assert 1 == len(matches) def test_each_type_code_mismatches_all_but_one_data_type(): for type_code in ALL_TYPE_CODES: mismatches = [type for type in ALL_DATA_TYPES if type_code != type] expected = len(ALL_DATA_TYPES) - 1 assert expected == len(mismatches)
70357
import torch import torch.optim as optim import sys import os import argparse import tokenization from torch.optim import lr_scheduler from loss import registry as loss_f from loader import registry as loader from model import registry as Producer from evaluate import overall #hyper-parameters parser = argparse.ArgumentParser(description='contrastive learning framework for word vector') parser.add_argument('-dataset', help='the file of target vectors', type=str, default='data/wiki_100.vec') parser.add_argument('-batch_size', help='the number of samples in one batch', type=int, default=32) parser.add_argument('-epochs', help='the number of epochs to train the model', type=int, default=20) parser.add_argument('-shuffle', help='whether shuffle the samples', type=bool, default=True) parser.add_argument('-lowercase', help='if only use lower case', type=bool, default=True) parser.add_argument('-model_type', help='sum, rnn, cnn, attention, pam', type=str, default='pam') parser.add_argument('-encoder_layer', help='the number of layer of the encoder', type=int, default=1) parser.add_argument('-merge', help='merge pam and attention layer', type=bool, default=True) parser.add_argument('-att_head_num', help='the number of attentional head for the pam encoder', type=int, default=1) parser.add_argument('-loader_type', help='simple, aug, hard', type=str, default='hard') parser.add_argument('-loss_type', help='mse, ntx, align_uniform', type=str, default='ntx') parser.add_argument('-input_type', help='mixed, char, sub', type=str, default='mixed') parser.add_argument('-learning_rate', help='learning rate for training', type=float, default=2e-3) parser.add_argument('-drop_rate', help='the rate for dropout', type=float, default=0.1) parser.add_argument('-gamma', help='decay rate', type=float, default=0.97) parser.add_argument('-emb_dim', help='the dimension of target embeddings (FastText:300; BERT:768)', type=int, default=300) parser.add_argument('-vocab_path', help='the vocabulary used for training and inference', type=str, default='data/vocab.txt') parser.add_argument('-hard_neg_numbers', help='the number of hard negatives in each mini-batch', type=int, default=3) parser.add_argument('-hard_neg_path', help='the file path of hard negative samples ', type=str, default='data/hard_neg_samples.txt') parser.add_argument('-vocab_size', help='the size of the vocabulart', type=int, default=0) try: args = parser.parse_args() except: parser.print_help() sys.exit(0) def main(): TOKENIZER = tokenization.FullTokenizer(vocab_file=args.vocab_path, do_lower_case=args.lowercase) vocab_size = len(TOKENIZER.vocab) args.vocab_size = vocab_size data_loader = loader[args.loader_type](args, TOKENIZER) train_iterator = data_loader(data_path=args.dataset) model = Producer[args.model_type](args) print(model) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) print(trainable_num) model.cuda() optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=args.gamma) criterion = loss_f[args.loss_type]() max_acc = 0 for e in range(args.epochs): epoch_loss = 0 batch_num = 0 for words, oririn_repre, aug_repre_ids, mask in train_iterator: model.train() optimizer.zero_grad() batch_num += 1 if batch_num % 1000 == 0: print('sample = {b}, loss = {a}'.format(a=epoch_loss/batch_num, b=batch_num*args.batch_size)) # get produced vectors oririn_repre = oririn_repre.cuda() aug_repre_ids = aug_repre_ids.cuda() mask = mask.cuda() aug_embeddings = model(aug_repre_ids, mask) # calculate loss loss = criterion(oririn_repre, aug_embeddings) # backward loss.backward() optimizer.step() epoch_loss += loss.item() scheduler.step() print('[ lr rate] = {a}'.format(a=optimizer.state_dict()['param_groups'][0]['lr'])) print('----------------------') print('this is the {a} epoch, loss = {b}'.format(a=e + 1, b=epoch_loss / len(train_iterator))) if (e) % 1 == 0: model_path = './output/model_{a}.pt'.format(a=e+1) torch.save(model.state_dict(), model_path) overall(args, model_path=model_path, tokenizer=TOKENIZER) return max_acc if __name__ == '__main__': os.environ["CUDA_VISIBLE_DEVICES"] = "0" main()
70358
import os, sys os.environ['CUDA_VISIBLE_DEVICES'] = '0' import tensorflow as tf import cv2 import numpy as np sys.path.insert(1, os.path.join(sys.path[0], '/mywork/tensorflow-tuts/sd19reader')) from batches2patches_tensorflow import GetFuncToPatches, GetFuncOverlapAdd from myutils import describe from vizutils import bw_grid_vis, color_grid_vis from mypca import my_PCA_scikitlike as PCA # load image path2file = os.path.dirname(os.path.realpath(__file__)) inimg = os.path.join(path2file,'Lenna_noise1.png') testim = cv2.imread(inimg).astype(np.float32) / 255.0 # will use "valid" conv, so pad 1 wide for 3x3 patches padtest = np.pad(testim, [(1,1), (1,1), (0,0)], 'edge') # get patching function for local windows imshape = [int(ii) for ii in padtest.shape] batchsize = 1 batchimshapefull = [batchsize,]+imshape patchsize = 3 bordermode = 'valid' pimshape = (imshape[0]-patchsize+1,imshape[1]-patchsize+1) reconstrmode = 'full' N_PCA_COMPS = 6 batchunpadtest = np.expand_dims(testim, 0) batchtestims = padtest.reshape(batchimshapefull) # only one in batch, so resize the one featswrtshape = [int(ii) for ii in batchunpadtest.shape] featswrtshape[-1] = N_PCA_COMPS patchtheanofunc = GetFuncToPatches(batchimshapefull, patchsize, border_mode=bordermode, filter_flip=False) overlapaddfunc = GetFuncOverlapAdd(batchimshapefull, patchsize, pimshape, border_mode=reconstrmode, filter_flip=False) ######################################### # bilateral filter #tf_stdv_space = tf.get_variable('tf_stdv_space', initializer=tf.constant(1.0)) #tf_stdv_bilat = tf.get_variable('tf_stdv_bilat', initializer=tf.constant(1.0)) tf_placehold_img = tf.placeholder(tf.float32, batchunpadtest.shape, name="tf_placehold_img") tf_placehold_wrt = tf.placeholder(tf.float32, featswrtshape, name="tf_placehold_wrt") from test_utils import * bilateral_filters = load_func_from_lib() ######################################### # tensorflow sess init sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) outfold = 'test_patch_pca' ######################################### # compute patch PCA patches = patchtheanofunc(batchtestims) print(" ") describe("patches",patches) flatpatches = patches.reshape((patches.shape[0]*patches.shape[1]*patches.shape[2], np.prod(patches.shape[3:]))) describe("flatpatches",flatpatches) pca = PCA(n_components=N_PCA_COMPS, doplot=False).fit(flatpatches) transfpatches = pca.transform(flatpatches) reshtransfpatch = transfpatches.reshape((patches.shape[0], patches.shape[1], patches.shape[2], N_PCA_COMPS)) print(" ") describe("transfpatches", transfpatches) describe("reshtransfpatch", reshtransfpatch) print(" ") procpatches = pca.inverse_transform(transfpatches).reshape(patches.shape) tehpidx = -1 for tehpatchs in [patches, procpatches]: tehpidx += 1 FLPTCHS = tehpatchs.reshape((tehpatchs.shape[0], tehpatchs.shape[1]*tehpatchs.shape[2], np.prod(tehpatchs.shape[3:]))) #describe("FLPTCHS", FLPTCHS) for jj in range(batchsize): #describe("FLPTCHS[jj,...]", FLPTCHS[jj,...]) color_grid_vis(FLPTCHS[jj,...], savename=os.path.join(outfold,'pcacnn_FLPTCHS_'+str(tehpidx)+'_'+str(jj)+'.png'), flipbgr=True) #quit() ######################################### #define the function that's called every time one of the trackbars is moved def updateWindow(xxx): stdspace = float(cv2.getTrackbarPos('std_space*10','ImageWindow')) / 10. stdcolor = float(cv2.getTrackbarPos('std_color*50','ImageWindow')) / 50. stdspace = max(1e-3, stdspace) stdcolor = max(1e-3, stdcolor) #tf_stdv_space = tf.get_variable('tf_stdv_space', initializer=tf.constant(1.0)) #tf_stdv_bilat = tf.get_variable('tf_stdv_bilat', initializer=tf.constant(1.0)) #tf_placehold_img = tf.placeholder(tf.float32, batchimshapefull, name="tf_placehold_img") #tf_placehold_wrt = tf.placeholder(tf.float32, featswrtshape, name="tf_placehold_wrt") ret = bilateral_filters(NHWC_to_NCHW(tf_placehold_img), NHWC_to_NCHW(tf_placehold_wrt), stdspace, stdcolor) outbilNCHW = ret outbilat = NCHW_to_NHWC(outbilNCHW) tfret = outbilat.eval({tf_placehold_img: batchunpadtest, tf_placehold_wrt: reshtransfpatch}) describe("tfret00", tfret) tfret[tfret<0.0] = 0.0 tfret[tfret>1.0] = 1.0 describe("tfret11", tfret) cv2.imshow("ImageWindow", tfret[0,...]) cv2.namedWindow('ImageWindow') cv2.createTrackbar('std_space*10','ImageWindow',1,200,updateWindow) cv2.createTrackbar('std_color*50','ImageWindow',1,200,updateWindow) updateWindow(0) #Creates the window for the first time cv2.waitKey(0)
70373
from django.views.decorators.http import require_http_methods from graphene_django.views import GraphQLView @require_http_methods(['POST']) def graphql_view(request): from graph_wrap.tastypie import schema schema = schema() view = GraphQLView.as_view(schema=schema) return view(request)
70416
from .model_action import ModelAction """ If the seed model has displacement ventilation object, this measure will delete or keep the related objects If the seed model has no displacement ventilation object but the decision value is 1 (On) This measure will insert room air model objects for zones under the control of central air systems EnergyPlus related object: RoomAirSettings:ThreeNodeDisplacementVentilation Parameters: Number of Plumes per Occupant: 1 Thermostat Height: 1.1 m Comfort Height: 1.1 m Temperature Difference Threshold for Reporting: 0.4 """ class DisplacementVentilation(ModelAction): def __init__(self): ModelAction.__init__(self, 'displace_vent') self._default_list = [1, 0] self._data = 1 self._measure_name = 'DisplacementVent' self._lower_limit = 0 self._upper_limit = 1 self._measure_help = ''' measure name: DisplacementVent Unit: Not required Minimum: 0 (Off) Maximum: 1 (On) Type: Categorical (On/Off) If the seed model has displacement ventilation object, this measure will delete or keep the related objects If the seed model has no displacement ventilation object but the decision value is 1 (On) This measure will insert room air model objects for zones under the control of central air systems EnergyPlus related object: RoomAirSettings:ThreeNodeDisplacementVentilation: Default Setting Number of Plumes per Occupant: 1 Thermostat Height: 1.1 m Comfort Height: 1.1 m Temperature Difference Threshold for Reporting: 0.4 Use design template to configure your DV specifications. Warning: This measure only works on HVAC systems with central air handling unit. ''' def get_num_value(self): return ModelAction.num_of_value(self) def set_datalist(self, datalist): # this is just a on off option ModelAction.set_datalist(self, self._default_list) def set_min(self, min_val): ModelAction.set_min(self, 0) def set_max(self, max_val): ModelAction.set_max(self, 1)
70450
from rest_framework.mixins import ( CreateModelMixin, DestroyModelMixin, ListModelMixin ) from rest_framework.viewsets import GenericViewSet from pydis_site.apps.api.models.bot.offensive_message import OffensiveMessage from pydis_site.apps.api.serializers import OffensiveMessageSerializer class OffensiveMessageViewSet( CreateModelMixin, ListModelMixin, DestroyModelMixin, GenericViewSet ): """ View providing CRUD access to offensive messages. ## Routes ### GET /bot/offensive-messages Returns all offensive messages in the database. #### Response format >>> [ ... { ... 'id': '631953598091100200', ... 'channel_id': '291284109232308226', ... 'delete_date': '2019-11-01T21:51:15.545000Z' ... }, ... ... ... ] #### Status codes - 200: returned on success ### POST /bot/offensive-messages Create a new offensive message object. #### Request body >>> { ... 'id': int, ... 'channel_id': int, ... 'delete_date': datetime.datetime # ISO-8601-formatted date ... } #### Status codes - 201: returned on success - 400: if the body format is invalid ### DELETE /bot/offensive-messages/<id:int> Delete the offensive message object with the given `id`. #### Status codes - 204: returned on success - 404: if a offensive message object with the given `id` does not exist ## Authentication Requires an API token. """ serializer_class = OffensiveMessageSerializer queryset = OffensiveMessage.objects.all()
70462
from hamcrest import * from utils import * @pytest.mark.serial @pytest.mark.manual_batch_review def test_approve_pending_batch_change_success(shared_zone_test_context): """ Test approving a batch change succeeds for a support user """ client = shared_zone_test_context.ok_vinyldns_client approver = shared_zone_test_context.support_user_client batch_change_input = { "changes": [ get_change_A_AAAA_json("test-approve-success.not.loaded.", address="4.3.2.1"), get_change_A_AAAA_json("needs-review.not.loaded.", address="4.3.2.1"), get_change_A_AAAA_json("zone-name-flagged-for-manual-review.zone.requires.review.") ], "ownerGroupId": shared_zone_test_context.ok_group['id'] } to_delete = [] to_disconnect = None try: result = client.create_batch_change(batch_change_input, status=202) get_batch = client.get_batch_change(result['id']) assert_that(get_batch['status'], is_('PendingReview')) assert_that(get_batch['approvalStatus'], is_('PendingReview')) assert_that(get_batch['changes'][0]['status'], is_('NeedsReview')) assert_that(get_batch['changes'][0]['validationErrors'][0]['errorType'], is_('ZoneDiscoveryError')) assert_that(get_batch['changes'][1]['status'], is_('NeedsReview')) assert_that(get_batch['changes'][1]['validationErrors'][0]['errorType'], is_('RecordRequiresManualReview')) assert_that(get_batch['changes'][2]['status'], is_('NeedsReview')) assert_that(get_batch['changes'][2]['validationErrors'][0]['errorType'], is_('RecordRequiresManualReview')) # need to create the zone so the change can succeed zone = { 'name': 'not.loaded.', 'email': '<EMAIL>', 'adminGroupId': shared_zone_test_context.ok_group['id'], 'backendId': 'func-test-backend', 'shared': True } zone_create = approver.create_zone(zone, status=202) to_disconnect = zone_create['zone'] approver.wait_until_zone_active(to_disconnect['id']) approved = approver.approve_batch_change(result['id'], status=202) completed_batch = client.wait_until_batch_change_completed(approved) to_delete = [(change['zoneId'], change['recordSetId']) for change in completed_batch['changes']] assert_that(completed_batch['status'], is_('Complete')) for change in completed_batch['changes']: assert_that(change['status'], is_('Complete')) assert_that(len(change['validationErrors']), is_(0)) assert_that(completed_batch['approvalStatus'], is_('ManuallyApproved')) assert_that(completed_batch['reviewerId'], is_('support-user-id')) assert_that(completed_batch['reviewerUserName'], is_('support-user')) assert_that(completed_batch, has_key('reviewTimestamp')) assert_that(get_batch, not(has_key('cancelledTimestamp'))) finally: clear_zoneid_rsid_tuple_list(to_delete, client) if to_disconnect: approver.abandon_zones(to_disconnect['id'], status=202) @pytest.mark.manual_batch_review def test_approve_pending_batch_change_fails_if_there_are_still_errors(shared_zone_test_context): """ Test approving a batch change fails if there are still errors """ client = shared_zone_test_context.ok_vinyldns_client approver = shared_zone_test_context.support_user_client batch_change_input = { "changes": [ get_change_A_AAAA_json("needs-review.nonexistent.", address="4.3.2.1"), get_change_A_AAAA_json("zone.does.not.exist.") ], "ownerGroupId": shared_zone_test_context.ok_group['id'] } complete_rs = None try: result = client.create_batch_change(batch_change_input, status=202) get_batch = client.get_batch_change(result['id']) assert_that(get_batch['status'], is_('PendingReview')) assert_that(get_batch['approvalStatus'], is_('PendingReview')) assert_that(get_batch['changes'][0]['status'], is_('NeedsReview')) assert_that(get_batch['changes'][0]['validationErrors'][0]['errorType'], is_('RecordRequiresManualReview')) assert_that(get_batch['changes'][1]['status'], is_('NeedsReview')) assert_that(get_batch['changes'][1]['validationErrors'][0]['errorType'], is_('ZoneDiscoveryError')) approval_response = approver.approve_batch_change(result['id'], status=400) assert_that((approval_response[0]['errors'][0]), contains_string('Zone Discovery Failed')) assert_that((approval_response[1]['errors'][0]), contains_string('Zone Discovery Failed')) updated_batch = client.get_batch_change(result['id'], status=200) assert_that(updated_batch['status'], is_('PendingReview')) assert_that(updated_batch['approvalStatus'], is_('PendingReview')) assert_that(updated_batch, not(has_key('reviewerId'))) assert_that(updated_batch, not(has_key('reviewerUserName'))) assert_that(updated_batch, not(has_key('reviewTimestamp'))) assert_that(updated_batch, not(has_key('cancelledTimestamp'))) assert_that(updated_batch['changes'][0]['status'], is_('NeedsReview')) assert_that(updated_batch['changes'][0]['validationErrors'][0]['errorType'], is_('ZoneDiscoveryError')) assert_that(updated_batch['changes'][1]['status'], is_('NeedsReview')) assert_that(updated_batch['changes'][1]['validationErrors'][0]['errorType'], is_('ZoneDiscoveryError')) finally: if complete_rs: delete_result = client.delete_recordset(complete_rs['zoneId'], complete_rs['id'], status=202) client.wait_until_recordset_change_status(delete_result, 'Complete') @pytest.mark.manual_batch_review def test_approve_batch_change_with_invalid_batch_change_id_fails(shared_zone_test_context): """ Test approving a batch change with invalid batch change ID """ client = shared_zone_test_context.ok_vinyldns_client error = client.approve_batch_change("some-id", status=404) assert_that(error, is_("Batch change with id some-id cannot be found")) @pytest.mark.manual_batch_review def test_approve_batch_change_with_comments_exceeding_max_length_fails(shared_zone_test_context): """ Test approving a batch change with comments exceeding 1024 characters fails """ client = shared_zone_test_context.ok_vinyldns_client approve_batch_change_input = { "reviewComment": "a"*1025 } errors = client.approve_batch_change("some-id", approve_batch_change_input, status=400)['errors'] assert_that(errors, contains_inanyorder("Comment length must not exceed 1024 characters.")) @pytest.mark.manual_batch_review def test_approve_batch_change_fails_with_forbidden_error_for_non_system_admins(shared_zone_test_context): """ Test approving a batch change if the reviewer is not a super user or support user """ client = shared_zone_test_context.ok_vinyldns_client batch_change_input = { "changes": [ get_change_A_AAAA_json("no-owner-group-id.ok.", address="4.3.2.1") ] } to_delete = [] try: result = client.create_batch_change(batch_change_input, status=202) completed_batch = client.wait_until_batch_change_completed(result) to_delete = [(change['zoneId'], change['recordSetId']) for change in completed_batch['changes']] error = client.approve_batch_change(completed_batch['id'], status=403) assert_that(error, is_("User does not have access to item " + completed_batch['id'])) finally: clear_zoneid_rsid_tuple_list(to_delete, client)
70463
import info class subinfo( info.infoclass ): def setTargets( self ): for ver in ["2.4.6"]: self.targets[ ver ] = f"https://ftp.gnu.org/gnu/libtool/libtool-{ver}.tar.xz" self.targetInstSrc[ ver ] = f"libtool-{ver}" self.targetDigests["2.4.6"] = (['7c87a8c2c8c0fc9cd5019e402bed4292462d00a718a7cd5f11218153bf28b26f'], CraftHash.HashAlgorithm.SHA256) self.description = "GNU libtool is a generic library support script." self.patchLevel["2.4.6"] = 2 self.defaultTarget = "2.4.6" def setDependencies( self ): self.buildDependencies["dev-utils/automake"] = None from Package.AutoToolsPackageBase import * class Package( AutoToolsPackageBase ): def __init__( self ): AutoToolsPackageBase.__init__( self ) self.subinfo.options.configure.autoreconf = False self.subinfo.options.configure.args += " --disable-static --enable-shared " def postInstall(self): return self.patchInstallPrefix([os.path.join(self.installDir(), x) for x in [f"bin/libtool", f"bin/libtoolize"]], self.subinfo.buildPrefix, CraftCore.standardDirs.craftRoot())
70501
from germanium.decorators import login from germanium.test_cases.rest import RESTTestCase from germanium.tools import assert_in from germanium.tools.http import assert_http_unauthorized, assert_http_forbidden, assert_http_not_found from .test_case import HelperTestCase, AsSuperuserTestCase __all__ =( 'HttpExceptionsTestCase', ) class HttpExceptionsTestCase(AsSuperuserTestCase, HelperTestCase, RESTTestCase): ISSUE_API_URL = '/api/issue/' USER_API_URL = '/api/user/' ACCEPT_TYPES = ('application/json', 'text/xml', 'text/csv', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') def test_401_exception(self): for accept_type in self.ACCEPT_TYPES: resp = self.get(self.ISSUE_API_URL, headers={'HTTP_ACCEPT': accept_type}) assert_in(accept_type, resp['Content-Type']) assert_http_unauthorized(resp) @login(is_superuser=False) def test_403_exception(self): self.get_user_obj() for accept_type in self.ACCEPT_TYPES: resp = self.post(self.USER_API_URL, headers={'HTTP_ACCEPT': accept_type}, data={}) assert_in(accept_type, resp['Content-Type']) assert_http_forbidden(resp) @login(is_superuser=False) def test_404_exception(self): for accept_type in self.ACCEPT_TYPES: resp = self.get('%s%s/' % (self.ISSUE_API_URL, 5), headers={'HTTP_ACCEPT': accept_type}) assert_in(accept_type, resp['Content-Type']) assert_http_not_found(resp) @login(is_superuser=True) def test_403_csrf_exception(self): cookies = self.c.cookies self.c = self.client_class(enforce_csrf_checks=True) self.c.cookies = cookies for accept_type in self.ACCEPT_TYPES: resp = self.post(self.ISSUE_API_URL, {}, headers={'HTTP_ACCEPT': accept_type, 'CONTENT_TYPE': 'application/json'}) assert_in(accept_type, resp['Content-Type']) assert_http_forbidden(resp)
70528
import cPickle __all__ = ['memoize'] # This would usually be defined elsewhere class decoratorargs(object): def __new__(typ, *attr_args, **attr_kwargs): def decorator(orig_func): self = object.__new__(typ) self.__init__(orig_func, *attr_args, **attr_kwargs) return self return decorator class memoize(decoratorargs): class Node: __slots__ = ['key', 'value', 'older', 'newer'] def __init__(self, key, value, older=None, newer=None): self.key = key self.value = value self.older = older self.newer = newer def __init__(self, func, capacity, keyfunc=lambda *args, **kwargs: cPickle.dumps((args, kwargs))): self.func = func self.capacity = capacity self.keyfunc = keyfunc self.reset() def reset(self): self.mru = self.Node(None, None) self.mru.older = self.mru.newer = self.mru self.nodes = {self.mru.key: self.mru} self.count = 1 self.hits = 0 self.misses = 0 def __call__(self, *args, **kwargs): key = self.keyfunc(*args, **kwargs) try: node = self.nodes[key] except KeyError: # We have an entry not in the cache self.misses += 1 value = self.func(*args, **kwargs) lru = self.mru.newer # Always true # If we haven't reached capacity if self.count < self.capacity: # Put it between the MRU and LRU - it'll be the new MRU node = self.Node(key, value, self.mru, lru) self.mru.newer = node lru.older = node self.mru = node self.count += 1 else: # It's FULL! We'll make the LRU be the new MRU, but replace its # value first del self.nodes[lru.key] # This mapping is now invalid lru.key = key lru.value = value self.mru = lru # Add the new mapping self.nodes[key] = self.mru return value # We have an entry in the cache self.hits += 1 # If it's already the MRU, do nothing if node is self.mru: return node.value lru = self.mru.newer # Always true # If it's the LRU, update the MRU to be it if node is lru: self.mru = lru return node.value # Remove the node from the list node.older.newer = node.newer node.newer.older = node.older # Put it between MRU and LRU node.older = self.mru self.mru.newer = node node.newer = lru lru.older = node self.mru = node return node.value # Example usage - fib only needs a cache size of 3 to keep it from # being an exponential-time algorithm @memoize(3) def fib(n): return (n > 1) and (fib(n - 1) + fib(n - 2)) or 1 fib(100) # => 573147844013817084101L # This is faster because it doesn't use the default key function - # it doesn't need to call cPickle.dumps((*args, **kwargs)) @memoize(100, lambda n: n) def fib(n): return (n > 1) and (fib(n - 1) + fib(n - 2)) or 1 fib(100) # => 573147844013817084101L # See what's in the cache # => [(98, 218922995834555169026L), (99, 354224848179261915075L), (100, 573147844013817084101L)] [(node.key, node.value) for node in fib.nodes.values()] # Get an example of the key function working fib.keyfunc(40) # => 40 # Simple report on performance # => Hit %: 0.492462 print 'Hit %%: %f' % (float(fib.hits) / (fib.hits + fib.misses)) # Resize the LRU cache fib.capacity = 100 fib.reset() # Not necessary unless you shrink it
70556
import heapq class Solution: """ @param k: an integer @param W: an integer @param Profits: an array @param Capital: an array @return: final maximized capital """ def findMaximizedCapital(self, k, W, Profits, Capital): # Write your code here cappq = [(cap, i) for i, cap in enumerate(Capital)] heapq.heapify(cappq) profitpq = [] for _ in range(k): while cappq and cappq[0][0] <= W: cap, index = heapq.heappop(cappq) heapq.heappush(profitpq, -Profits[index]) if profitpq: W -= heapq.heappop(profitpq) else: break return W
70583
import os import logging import numpy as np import pandas as pd logger = logging.getLogger(__name__) from supervised.utils.config import LOG_LEVEL from supervised.utils.common import learner_name_to_fold_repeat from supervised.utils.metric import Metric logger.setLevel(LOG_LEVEL) import matplotlib.pyplot as plt import matplotlib.colors as mcolors MY_COLORS = list(mcolors.TABLEAU_COLORS.values()) class LearningCurves: output_file_name = "learning_curves.png" @staticmethod def single_iteration(learner_names, model_path): for ln in learner_names: df = pd.read_csv( os.path.join(model_path, f"{ln}_training.log"), names=["iteration", "train", "test"], ) if df.shape[0] > 1: return False return True @staticmethod def plot(learner_names, metric_name, model_path, trees_in_iteration=None): colors = MY_COLORS if len(learner_names) > len(colors): repeat_colors = int(np.ceil(len(learner_names) / len(colors))) colors = colors * repeat_colors if LearningCurves.single_iteration(learner_names, model_path): LearningCurves.plot_single_iter( learner_names, metric_name, model_path, colors ) else: LearningCurves.plot_iterations( learner_names, metric_name, model_path, colors, trees_in_iteration ) @staticmethod def plot_single_iter(learner_names, metric_name, model_path, colors): plt.figure(figsize=(10, 7)) for ln in learner_names: df = pd.read_csv( os.path.join(model_path, f"{ln}_training.log"), names=["iteration", "train", "test"], ) fold, repeat = learner_name_to_fold_repeat(ln) repeat_str = f" Reapeat {repeat+1}," if repeat is not None else "" plt.bar( f"Fold {fold+1},{repeat_str} train", df.train[0], color="white", edgecolor=colors[fold], ) plt.bar(f"Fold {fold+1},{repeat_str} test", df.test[0], color=colors[fold]) plt.ylabel(metric_name) plt.xticks(rotation=90) plt.tight_layout(pad=2.0) plot_path = os.path.join(model_path, LearningCurves.output_file_name) plt.savefig(plot_path) plt.close("all") @staticmethod def plot_iterations( learner_names, metric_name, model_path, colors, trees_in_iteration=None ): plt.figure(figsize=(10, 7)) for ln in learner_names: df = pd.read_csv( os.path.join(model_path, f"{ln}_training.log"), names=["iteration", "train", "test"], ) fold, repeat = learner_name_to_fold_repeat(ln) repeat_str = f" Reapeat {repeat+1}," if repeat is not None else "" # if trees_in_iteration is not None: # df.iteration = df.iteration * trees_in_iteration any_none = np.sum(pd.isnull(df.train)) if any_none == 0: plt.plot( df.iteration, df.train, "--", color=colors[fold], label=f"Fold {fold+1},{repeat_str} train", ) any_none = np.sum(pd.isnull(df.test)) if any_none == 0: plt.plot( df.iteration, df.test, color=colors[fold], label=f"Fold {fold+1},{repeat_str} test", ) best_iter = None if Metric.optimize_negative(metric_name): best_iter = df.test.argmax() else: best_iter = df.test.argmin() if best_iter is not None and best_iter != -1: plt.axvline(best_iter, color=colors[fold], alpha=0.3) if trees_in_iteration is not None: plt.xlabel("#Trees") else: plt.xlabel("#Iteration") plt.ylabel(metric_name) # limit number of learners in the legend # too many will raise warnings if len(learner_names) <= 15: plt.legend(loc="best") plt.tight_layout(pad=2.0) plot_path = os.path.join(model_path, LearningCurves.output_file_name) plt.savefig(plot_path) plt.close("all") @staticmethod def plot_for_ensemble(scores, metric_name, model_path): plt.figure(figsize=(10, 7)) plt.plot(range(1, len(scores) + 1), scores, label=f"Ensemble") plt.xlabel("#Iteration") plt.ylabel(metric_name) plt.legend(loc="best") plot_path = os.path.join(model_path, LearningCurves.output_file_name) plt.savefig(plot_path) plt.close("all")
70622
import datetime as dt import json from typing import List, Optional from uuid import UUID from fastapi.encoders import jsonable_encoder from injector import singleton, inject from common.cache import fail_silently, hash_cache_key from common.injection import Cache from database.utils import map_to from post.models import Post @singleton class PostCache: POSTS_EX: int = int(dt.timedelta(minutes=1).total_seconds()) @inject def __init__(self, cache: Cache): self._cache = cache @fail_silently() async def get_posts( self, wall_profile_id: UUID, include_friends: bool, older_than: dt.datetime) -> Optional[List[Post]]: cached_posts_ids = await self._cache.get( f"walls:{wall_profile_id}:posts:" f"{hash_cache_key(wall_profile_id, include_friends, older_than)}") cached_posts_ids = cached_posts_ids and json.loads(cached_posts_ids) if not cached_posts_ids: return None cached_posts = await self._cache.mget( *[f"posts:{post_id}" for post_id in cached_posts_ids]) return (all(cached_posts) or None) and [map_to(json.loads(post), Post) for post in cached_posts] @fail_silently() async def get_post(self, post_id: UUID) -> Optional[Post]: cached_post = await self._cache.get(f"posts:{post_id}") return cached_post and map_to(json.loads(cached_post), Post) @fail_silently() async def set_post(self, post: Post) -> None: await self._cache.set(f"posts:{post.id}", json.dumps(jsonable_encoder(post)), expire=PostCache.POSTS_EX) @fail_silently() async def set_posts( self, posts: List[Post], wall_profile_id: UUID, include_friends: bool, older_than: Optional[dt.date]) -> None: params_cache_key = hash_cache_key( wall_profile_id, include_friends, older_than) posts_ids_key = f"walls:{wall_profile_id}:posts:{params_cache_key}" pipe = self._cache.pipeline() pipe.mset(posts_ids_key, json.dumps([str(post.id) for post in posts]), *list(sum([(f"posts:{post.id}", json.dumps(jsonable_encoder(post))) for post in posts], ()))) for key in [posts_ids_key, *[f"posts:{post.id}" for post in posts]]: pipe.expire(key, PostCache.POSTS_EX) await pipe.execute() @fail_silently() async def unset_posts_ids( self, wall_profile_id: UUID, include_friends: bool, older_than: Optional[dt.date]) -> None: await self._cache.delete( f"walls:{wall_profile_id}:posts:" f"{hash_cache_key(wall_profile_id, include_friends, older_than)}") @fail_silently() async def unset_post(self, post_id: UUID) -> None: await self._cache.delete(f"posts:{post_id}")
70662
from typing import Type import warnings from base64 import b64encode from html import escape import json import pandas as pd import numpy as np from rdkit import Chem from rdkit.Chem import Draw from .utils import (env, requires, tooltip_formatter, mol_to_record, mol_to_smiles, sdf_to_dataframe, remove_coordinates) from .select import register try: from IPython.display import HTML, Javascript except ModuleNotFoundError: pass else: warnings.filterwarnings("ignore", "Consider using IPython.display.IFrame instead") class MolGrid: """Class that handles drawing molecules, rendering the HTML document and saving or displaying it in a notebook """ def __init__(self, df, smiles_col="SMILES", mol_col=None, removeHs=False, use_coords=True, coordGen=True, useSVG=True, size=(160, 120), MolDrawOptions=None, rename=None, name="default", **kwargs): """ Parameters ---------- df : pandas.DataFrame or dict or list Dataframe containing a SMILES or mol column, or dictionary containing a list of SMILES, or list of dictionnaries containing a SMILES field smiles_col : str or None Name of the SMILES column in the dataframe, if available mol_col : str or None Name of an RDKit molecule column. If available, coordinates and atom/bonds annotations from this will be used for depiction removeHs : bool Remove hydrogen atoms from the drawings use_coords : bool Use the existing coordinates of the molecule coordGen : bool Sets whether or not the CoordGen library should be preferred to the RDKit depiction library useSVG : bool Use SVG instead of PNG size : tuple The size of the drawing canvas MolDrawOptions : rdkit.Chem.Draw.MolDrawOptions or None Drawing options. Useful for making highly customized drawings rename : dict or None Rename the properties/fields stored in the molecule name : str Name of the grid. Used when retrieving selections from multiple grids at the same time kwargs : object MolDrawOptions attributes Notes ----- The list of supported MolDrawOptions attributes are available in https://www.rdkit.org/docs/source/rdkit.Chem.Draw.rdMolDraw2D.html#rdkit.Chem.Draw.rdMolDraw2D.MolDrawOptions ..versionchanged: 0.1.0 Added `rename` argument to replace `mapping` """ if not (smiles_col or mol_col): raise ValueError("One of `smiles_col` or `mol_col` must be set") if not isinstance(name, str): raise TypeError( f"`name` must be a string. Currently of type {type(name).__name__}") Draw.rdDepictor.SetPreferCoordGen(coordGen) if isinstance(df, pd.DataFrame): dataframe = df.copy() else: # list of dicts or other input formats for dataframes dataframe = pd.DataFrame(df) mapping = kwargs.pop("mapping", None) if mapping: warnings.warn( "`mapping` is deprecated and will be removed soon. Consider " "using `rename` in the future." ) rename = rename or mapping if rename: dataframe.rename(columns=rename, inplace=True) self._extra_columns = ["img", "mols2grid-id"] # generate temporary RDKit molecules if smiles_col and not mol_col: mol_col = "mol" keep_mols = False dataframe[mol_col] = dataframe[smiles_col].apply(Chem.MolFromSmiles) else: keep_mols = True # remove hydrogens if removeHs: dataframe[mol_col] = dataframe[mol_col].apply(Chem.RemoveHs) if not use_coords: dataframe[mol_col] = dataframe[mol_col].apply(remove_coordinates) # generate smiles col if mol_col and (smiles_col not in dataframe.columns): dataframe[smiles_col] = dataframe[mol_col].apply(mol_to_smiles) # add index dataframe["mols2grid-id"] = list(range(len(dataframe))) # drop None dataframe.dropna(axis=0, subset=[mol_col], inplace=True) # generate drawings self.useSVG = useSVG opts = MolDrawOptions or Draw.MolDrawOptions() for key, value in kwargs.items(): setattr(opts, key, value) self.MolDrawOptions = opts self._MolDraw2D = Draw.MolDraw2DSVG if useSVG else Draw.MolDraw2DCairo self.img_size = size dataframe["img"] = dataframe[mol_col].apply(self.mol_to_img) if keep_mols: self.dataframe = dataframe else: self.dataframe = dataframe.drop(columns=mol_col) mol_col = None self.smiles_col = smiles_col self.mol_col = mol_col # register instance self._grid_id = name register._init_grid(name) @classmethod def from_mols(cls, mols, **kwargs): """Set up the dataframe used by mols2grid directly from a list of RDKit molecules Parameters ---------- mols : list List of RDKit molecules kwargs : object Other arguments passed on initialization """ mol_col = kwargs.pop("mol_col", "mol") df = pd.DataFrame([mol_to_record(mol, mol_col=mol_col) for mol in mols]) return cls(df, mol_col=mol_col, **kwargs) @classmethod def from_sdf(cls, sdf_file, **kwargs): """Set up the dataframe used by mols2grid directly from an SDFile Parameters ---------- sdf_file : str Path to the SDF file kwargs : object Other arguments passed on initialization """ mol_col = kwargs.pop("mol_col", "mol") df = sdf_to_dataframe(sdf_file, mol_col=mol_col) return cls(df, mol_col=mol_col, **kwargs) @property def template(self): """Kind of grid displayed, one of: - pages - table """ return self._template @template.setter def template(self, value): if value not in ["pages", "table"]: raise ValueError(f"template={value!r} not supported. " "Use one of 'pages' or 'table'") self._template = value def draw_mol(self, mol): """Draw a molecule""" d2d = self._MolDraw2D(*self.img_size) d2d.SetDrawOptions(self.MolDrawOptions) hl_atoms = getattr(mol, "__sssAtoms", []) d2d.DrawMolecule(mol, highlightAtoms=hl_atoms) d2d.FinishDrawing() return d2d.GetDrawingText() def mol_to_img(self, mol): """Convert an RDKit mol to an HTML image containing a drawing of the molecule""" img = self.draw_mol(mol) if self.useSVG: return img data = b64encode(img).decode() return f'<img src="data:image/png;base64,{data}">' def render(self, template="pages", **kwargs): """Returns the HTML document corresponding to the "pages" or "table" template. See `to_pages` and `to_table` for the list of arguments Parameters ---------- template : str Kind of grid to draw: * "table" is a very simple table where all molecules are displayed on the document, the main usecase is printing to PDF or on paper. * "pages" is a more interactive version that splits the original data into several pages. """ self.template = template return getattr(self, f"to_{self.template}")(**kwargs) def to_pages(self, subset=None, tooltip=None, cell_width=160, n_cols=5, n_rows=3, border="1px solid #cccccc", gap=0, fontsize="12pt", fontfamily="'DejaVu', sans-serif", textalign="center", tooltip_fmt="<strong>{key}</strong>: {value}", tooltip_trigger="click hover", tooltip_placement="bottom", hover_color="#e7e7e7", style=None, selection=True, transform=None, custom_css=None, custom_header=None, callback=None, sort_by=None): """Returns the HTML document for the "pages" template Parameters ---------- subset : list or None Columns to be displayed in each cell of the grid. Each column's value will be displayed from top to bottom in the same order given here. Use `"img"` for the image of the molecule. Default: all columns (with "img" in first position) tooltip : list or None Columns to be displayed as a tooltip when hovering/clicking on the image of a cell. Use `None` for no tooltip. tooltip_fmt : str Format string of each key/value pair in the tooltip tooltip_trigger : str Sequence of triggers for the tooltip: (click, hover, focus) tooltip_placement : str Position of the tooltip: auto, top, bottom, left, right n_cols : int Number of columns per page n_rows : int Number of rows per page border : str Styling of the border around each cell (CSS) gap : int Size of the margin around each cell (CSS) fontsize : str Font size of the text displayed in each cell (CSS) fontfamily : str Font used for the text in each cell (CSS) textalign : str Alignment of the text in each cell (CSS) hover_color : str Background color when hovering a cell (CSS) style : dict or None CSS styling applied to specific items in all cells. The dict must follow a `key: function` structure where the key must correspond to one of the columns in `subset` or `tooltip`. The function takes the item's value as input, and outputs a valid CSS styling, for example `style={"Solubility": lambda x: "color: red" if x < -5 else ""}` if you want to color the text corresponding to the "Solubility" column in your dataframe. You can also style a whole cell using the `__all__` key, the corresponding function then has access to all values for each cell: `style={"__all__": lambda x: "color: red" if x["Solubility"] < -5 else ""}` selection : bool Enables the selection of molecules and displays a checkbox at the top of each cell. This is only usefull in the context of a Jupyter notebook, which gives you access to your selection (index and SMILES) through `mols2grid.get_selection()` transform : dict or None Functions applied to specific items in all cells. The dict must follow a `key: function` structure where the key must correspond to one of the columns in `subset` or `tooltip`. The function takes the item's value as input and transforms it, for example: `transform={"Solubility": lambda x: f"{x:.2f}", "Melting point": lambda x: f"MP: {5/9*(x-32):.1f}Β°C"}` will round the solubility to 2 decimals, and display the melting point in Celsius instead of Fahrenheit with a single digit precision and some text before (MP) and after (Β°C) the value. These transformations only affect columns in `subset` and `tooltip`, and do not interfere with `style`. custom_css : str or None Custom CSS properties applied to the content of the HTML document custom_header : str or None Custom libraries to be loaded in the header of the document callback : str or callable JavaScript or Python callback to be executed when clicking on an image. A dictionnary containing the data for the full cell is directly available as `data` in JS. For Python, the callback function must have `data` as the first argument to the function. All the values in the `data` dict are parsed as strings, except "mols2grid-id" which is always an integer. sort_by : str or None Sort the grid according to the following field (which must be present in `subset` or `tooltip`). """ if self.mol_col: df = self.dataframe.drop(columns=self.mol_col).copy() else: df = self.dataframe.copy() cell_width = self.img_size[0] smiles = self.smiles_col content = [] column_map = {} width = n_cols * (cell_width + 2 * (gap + 2)) if subset is None: subset = df.columns.tolist() subset = [subset.pop(subset.index("img"))] + subset # define fields that are searchable and sortable search_cols = [f"data-{col}" for col in subset if col != "img"] if tooltip: search_cols.append("mols2grid-tooltip") sort_cols = search_cols[:-1] sort_cols.extend([f"data-{col}" for col in tooltip]) for col in tooltip: if col not in subset: s = f'<div class="data data-{col}" style="display: none;"></div>' content.append(s) column_map[col] = f"data-{col}" else: sort_cols = search_cols[:] sort_cols = ["mols2grid-id"] + sort_cols # get unique list but keep order sort_cols = list(dict.fromkeys(sort_cols)) if style is None: style = {} if transform is None: transform = {} if tooltip is None: tooltip = [] value_names = list(set(subset + [smiles] + tooltip)) value_names = [f"data-{col}" for col in value_names] # force id, SMILES, and tooltip values to be present in the data final_columns = subset[:] final_columns.extend(["mols2grid-id", smiles]) if tooltip: final_columns.extend(tooltip) final_columns = list(set(final_columns)) # make a copy if id shown explicitely if "mols2grid-id" in subset: id_name = "mols2grid-id-copy" df[id_name] = df["mols2grid-id"] value_names.append(f"data-{id_name}") final_columns.append(id_name) subset = [id_name if x == "mols2grid-id" else x for x in subset] # organize data for col in subset: if col == "img" and tooltip: s = (f'<a tabindex="0" class="data data-{col} mols2grid-tooltip" ' 'data-toggle="popover" data-content="foo"></a>') else: if style.get(col): s = f'<div class="data data-{col} style-{col}" style=""></div>' else: s = f'<div class="data data-{col}"></div>' content.append(s) column_map[col] = f"data-{col}" # add but hide SMILES div if not present if smiles not in (subset + tooltip): s = f'<div class="data data-{smiles}" style="display: none;"></div>' content.append(s) column_map[smiles] = f"data-{smiles}" # set mapping for list.js if "__all__" in style.keys(): whole_cell_style = True x = "[{data: ['mols2grid-id', 'cellstyle']}, " else: whole_cell_style = False x = "[{data: ['mols2grid-id']}, " value_names = x + str(value_names)[1:] # apply CSS styles for col, func in style.items(): if col == "__all__": name = "cellstyle" df[name] = df.apply(func, axis=1) else: name = f"style-{col}" df[name] = df[col].apply(func) final_columns.append(name) value_names = value_names[:-1] + f", {{ attr: 'style', name: {name!r} }}]" if tooltip: df["mols2grid-tooltip"] = df.apply(tooltip_formatter, axis=1, args=(tooltip, tooltip_fmt, style, transform)) final_columns = final_columns + ["mols2grid-tooltip"] value_names = (value_names[:-1] + ", {attr: 'data-content', name: 'mols2grid-tooltip'}]") # apply custom user function for col, func in transform.items(): df[col] = df[col].apply(func) if selection: checkbox = '<input type="checkbox" class="position-relative float-left">' else: checkbox = "" if whole_cell_style: item = ('<div class="cell" data-mols2grid-id="0" ' 'data-cellstyle="0">{checkbox}{content}</div>') else: item = ('<div class="cell" data-mols2grid-id="0">' '{checkbox}{content}</div>') item = item.format(checkbox=checkbox, content="".join(content)) # callback if callable(callback): if callback.__name__ == "<lambda>": raise TypeError( "Lambda functions are not supported as callbacks. Please " "use a regular function instead.") callback_type = "python" callback = callback.__name__ else: callback_type = "js" if sort_by and sort_by != "mols2grid-id": if sort_by in (subset + tooltip): sort_by = f"data-{sort_by}" else: raise ValueError(f"{sort_by} is not an available field in " "`subset` or `tooltip`") else: sort_by = "mols2grid-id" df = df[final_columns].rename(columns=column_map).sort_values(sort_by) template = env.get_template('pages.html') template_kwargs = dict( width = width, border = border, textalign = textalign, cell_width = cell_width, fontfamily = fontfamily, fontsize = fontsize, gap = gap, hover_color = hover_color, item = item, item_repr = repr(item), value_names = value_names, tooltip = tooltip, tooltip_trigger = repr(tooltip_trigger), tooltip_placement = repr(tooltip_placement), n_items_per_page = n_rows * n_cols, search_cols = search_cols, data = json.dumps(df.to_dict("records")), selection = selection, smiles_col = smiles, sort_cols = sort_cols, grid_id = self._grid_id, whole_cell_style = whole_cell_style, custom_css = custom_css or "", custom_header = custom_header or "", callback = callback, callback_type = callback_type, sort_by = sort_by, ) return template.render(**template_kwargs) def get_selection(self): """Retrieve the dataframe subset corresponding to your selection Returns ------- pandas.DataFrame """ sel = list(register.get_selection().keys()) return (self.dataframe.loc[self.dataframe["mols2grid-id"].isin(sel)] .drop(columns=self._extra_columns)) def filter(self, mask): """Filters the grid using a mask (boolean array) Parameters ---------- mask : list, pd.Series, np.ndarray Boolean array: `True` when the item should be displayed, `False` if it should be filtered out. """ # convert mask to mols2grid-id ids = self.dataframe.loc[mask]["mols2grid-id"] return self._filter_by_id(ids) def filter_by_index(self, indices): """Filters the grid using the dataframe's index""" # convert index to mols2grid-id ids = self.dataframe.loc[self.dataframe.index.isin(indices)]["mols2grid-id"] return self._filter_by_id(ids) def _filter_by_id(self, ids): """Filters the grid using the values in the `mols2grid-id` column""" if isinstance(ids, (pd.Series, np.ndarray)): ids = ids.to_list() code = env.get_template('js/filter.js').render( grid_id = self._grid_id, ids = ids) return Javascript(code) def to_table(self, subset=None, tooltip=None, n_cols=6, cell_width=160, border="1px solid #cccccc", gap=0, fontsize="12pt", fontfamily="'DejaVu', sans-serif", textalign="center", tooltip_fmt="<strong>{key}</strong>: {value}", tooltip_trigger="click hover", tooltip_placement="bottom", hover_color="#e7e7e7", style=None, transform=None): """Returns the HTML document for the "table" template Parameters ---------- subset : list or None Columns to be displayed in each cell of the grid. Each column's value will be displayed from top to bottom in the same order given here. Use `"img"` for the image of the molecule. Default: all columns (with "img" in first position) tooltip : list or None Columns to be displayed as a tooltip when hovering/clicking on the image of a cell. Use `None` for no tooltip. tooltip_fmt : str Format string of each key/value pair in the tooltip tooltip_trigger : str Sequence of triggers for the tooltip: (click, hover, focus) tooltip_placement : str Position of the tooltip: auto, top, bottom, left, right n_cols : int Number of columns in the table border : str Styling of the border around each cell (CSS) gap : int or str Size of the margin around each cell (CSS) fontsize : str Font size of the text displayed in each cell (CSS) fontfamily : str Font used for the text in each cell (CSS) textalign : str Alignment of the text in each cell (CSS) hover_color : str Background color when hovering a cell (CSS) style : dict or None CSS styling applied to specific items in all cells. The dict must follow a `key: function` structure where the key must correspond to one of the columns in `subset` or `tooltip`. The function takes the item's value as input, and outputs a valid CSS styling, for example `style={"Solubility": lambda x: "color: red" if x < -5 else "color: black"}` if you want to color the text corresponding to the "Solubility" column in your dataframe transform : dict or None Functions applied to specific items in all cells. The dict must follow a `key: function` structure where the key must correspond to one of the columns in `subset`. The function takes the item's value as input and transforms it, for example: `transform={"Solubility": lambda x: f"{x:.2f}", "Melting point": lambda x: f"MP: {5/9*(x-32):.1f}Β°C"}` will round the solubility to 2 decimals, and display the melting point in Celsius instead of Fahrenheit with a single digit precision and some text before (MP) and after (Β°C) the value. These transformations only affect columns in `subset` and `tooltip`, and are applied independantly from `style` """ tr = [] data = [] df = self.dataframe cell_width = self.img_size[0] if subset is None: subset = df.columns.tolist() subset = [subset.pop(subset.index("img"))] + subset if style is None: style = {} if transform is None: transform = {} for i, row in df.iterrows(): ncell = i + 1 nrow, ncol = divmod(i, n_cols) td = [f'<td class="col-{ncol}>"'] if "__all__" in style.keys(): s = style["__all__"](row) div = [f'<div class="cell-{i}" style="{s}">'] else: div = [f'<div class="cell-{i}">'] for col in subset: v = row[col] if col == "img" and tooltip: popover = tooltip_formatter(row, tooltip, tooltip_fmt, style, transform) func = transform.get(col) v = func(v) if func else v item = (f'<div class="data data-{col} mols2grid-tooltip" data-toggle="popover" ' f'data-content="{escape(popover)}">{v}</div>') else: func = style.get(col) if func: item = f'<div class="data data-{col}" style="{func(v)}">' else: item = f'<div class="data data-{col}">' func = transform.get(col) v = func(v) if func else v item += f'{v}</div>' div.append(item) div.append("</div>") td.append("\n".join(div)) td.append("</td>") tr.append("\n".join(td)) if (ncell % n_cols == 0) or (ncell == len(df)): cell = [f'<tr class="row-{nrow}">'] cell.append("\n".join(tr)) cell.append("</tr>") data.append("\n".join(cell)) tr = [] template = env.get_template('table.html') template_kwargs = dict( border = border, textalign = textalign, cell_width = cell_width, fontfamily = fontfamily, fontsize = fontsize, gap = gap, hover_color = hover_color, tooltip = tooltip, tooltip_trigger = repr(tooltip_trigger), tooltip_placement = repr(tooltip_placement), data = "\n".join(data), ) return template.render(**template_kwargs) @requires("IPython.display") def display(self, width="100%", height=None, iframe_allow="clipboard-write", **kwargs): """Render and display the grid in a Jupyter notebook""" doc = self.render(**kwargs) iframe = (env.get_template("html/iframe.html") .render(width=width, height=height, padding=18, allow=iframe_allow, doc=escape(doc))) return HTML(iframe) def save(self, output, **kwargs): """Render and save the grid in an HTML document""" with open(output, "w") as f: f.write(self.render(**kwargs))
70717
from unittest.mock import patch from urllib.parse import urlencode import pytest from pyinaturalist.constants import API_V1_BASE_URL from pyinaturalist.v1 import get_taxa, get_taxa_autocomplete, get_taxa_by_id, get_taxa_map_layers from test.conftest import load_sample_data CLASS_AND_HIGHER = ['class', 'superclass', 'subphylum', 'phylum', 'kingdom'] SPECIES_AND_LOWER = ['form', 'variety', 'subspecies', 'hybrid', 'species'] CLASS_THOUGH_PHYLUM = ['class', 'superclass', 'subphylum', 'phylum'] def test_get_taxa(requests_mock): params = {'q': 'vespi', 'rank': 'genus,subgenus,species'} requests_mock.get( f'{API_V1_BASE_URL}/taxa?{urlencode(params)}', json=load_sample_data('get_taxa.json'), status_code=200, ) response = get_taxa(q='vespi', rank=['genus', 'subgenus', 'species']) first_result = response['results'][0] assert len(response['results']) == response['total_results'] == 30 assert first_result['id'] == 70118 assert first_result['name'] == 'Nicrophorus vespilloides' assert first_result['rank'] == 'species' assert first_result['is_active'] is True assert len(first_result['ancestor_ids']) == 14 @pytest.mark.parametrize( 'params, expected_ranks', [ ({'rank': 'genus'}, 'genus'), ({'min_rank': 'class'}, CLASS_AND_HIGHER), ({'max_rank': 'species'}, SPECIES_AND_LOWER), ({'min_rank': 'class', 'max_rank': 'phylum'}, CLASS_THOUGH_PHYLUM), ({'max_rank': 'species', 'rank': 'override_me'}, SPECIES_AND_LOWER), ], ) @patch('pyinaturalist.v1.taxa.get_v1') def test_get_taxa_by_rank_range( mock_get, params, expected_ranks, ): # Make sure custom rank params result in the correct 'rank' param value get_taxa(**params) params = mock_get.call_args[1] requested_rank = params['rank'] assert requested_rank == expected_ranks def test_get_taxa_by_id(requests_mock): taxon_id = 70118 requests_mock.get( f'{API_V1_BASE_URL}/taxa/{taxon_id}', json=load_sample_data('get_taxa_by_id.json'), status_code=200, ) response = get_taxa_by_id(taxon_id) result = response['results'][0] assert response['total_results'] == len(response['results']) == 1 assert result['id'] == taxon_id assert result['name'] == 'Nicrophorus vespilloides' assert result['rank'] == 'species' assert result['is_active'] is True assert len(result['ancestors']) == 12 @pytest.mark.parametrize('taxon_id', ['asdf', [None], [1, 'not a number']]) def test_get_taxa_by_id__invalid_inputs(taxon_id): with pytest.raises(ValueError): get_taxa_by_id(taxon_id) def test_get_taxa_autocomplete(requests_mock): requests_mock.get( f'{API_V1_BASE_URL}/taxa/autocomplete', json=load_sample_data('get_taxa_autocomplete.json'), status_code=200, ) response = get_taxa_autocomplete(q='vespi') first_result = response['results'][0] assert len(response['results']) == response['total_results'] == 10 assert first_result['matched_term'] == 'Vespidae' assert first_result['id'] == 52747 assert first_result['name'] == 'Vespidae' assert first_result['rank'] == 'family' assert first_result['is_active'] is True assert len(first_result['ancestor_ids']) == 11 def test_get_taxa_map_layers(requests_mock): requests_mock.get( f'{API_V1_BASE_URL}/taxa/47588/map_layers', json=load_sample_data('get_taxa_map_layers.json'), status_code=200, ) response = get_taxa_map_layers(47588) assert response['gbif_id'] == 2820380 assert response['gbif_url'] == 'https://www.gbif.org/species/2820380' assert response['ranges'] is False assert response['listed_places'] is True
70735
class LDAP_record: """ consume LDAP record and provide methods for accessing interesting data """ def __init__(self, unid): self.error = False ldap_dict = {} # # request complete user record from LDAP cmd = "/Users/" + unid try: raw_data = subprocess.check_output(["/usr/bin/dscl", "/LDAPv3/your.ldap.server", "-read", cmd]) except: self.error = True return # # begin parsing data into dictionary raw_data = string.replace(raw_data, '\n ', ' ') raw_data = raw_data.split('\n') for line in raw_data: y = line.split(":") y = [x for x in y if 'dsAttrTypeNative' not in x] if len(y) == 2: key = y[0] value = y[1] value = value.lstrip() else: key = y[0] value = y[1:] value = [x for x in value if x] if key: ldap_dict[key] = value self.record = ldap_dict def is_student(self): try: if 'CurrentStudent' in self.record['Student']: return True else: return False except: return False def is_staff(self): try: if self.record['Employee']: return True except: return False def my_name(self): try: if self.record['gecos']: if len(self.record['gecos']) > 1: return self.record['gecos'] else: # print "Beep!" try: if self.record['displayName']: return self.record['displayName'] except: return None except: try: if self.record['displayName']: return self.record['displayName'] except: return None def my_title(self): try: if self.record['title']: return self.record['title'] except: return None def my_email(self): try: if self.record['mail']: return self.record['mail'] except: try: if self.record['ExtensionAttribute4']: return self.record['ExtensionAttribute4'] except: return None def my_phone(self): try: if self.record['telephoneNumber']: return self.record['telephoneNumber'] except: return None def my_department(self): try: if self.record['department']: return self.record['department'] except: return None def my_address(self): try: if self.record['streetAddress']: return self.record['streetAddress'] except: return None # # diagnostic methods def print_full(self): for k, v in self.record.items(): print ("%s > %r" % (k, v)) def print_keys(self): return self.record.keys() def ldap(self): """ translate LDAP data from object into fields used in tugboat """ try: self.status_label.configure(style='Normal.TLabel') self.status_string.set("LDAP selected.") if self.valid_unid(): print("ldap %r" % self.endusername_string.get()) this_person = LDAP_record(self.endusername_string.get()) if not this_person.error: self.fullname_string.set(this_person.my_name()) self.email_string.set(this_person.my_email()) self.phone_string.set(this_person.my_phone()) self.room_string.set(this_person.my_address()) if this_person.my_title() is None: if this_person.my_department() is None: self.position_string.set("") else: self.position_string.set(this_person.my_department()) else: if this_person.my_department() is None: self.position_string.set(this_person.my_title()) else: self.position_string.set(this_person.my_title() + "/" + this_person.my_department()) if self.division_string.get(): self.division_string.set('None') if self.building_string.get(): self.building_string.set('None') else: self.status_label.configure(style='Warning.TLabel') self.status_string.set("LDAP error, no record found for uNID.") self.reset_data() else: self.status_label.configure(style='Warning.TLabel') self.status_string.set("Error setting LDAP Mode, no valid uNID.") self.reset_user() return except ValueError: self.status_label.configure(style='Warning.TLabel') self.status_string.set("Error setting LDAP Mode.") return
70745
import datetime import logging import json import hashlib import hmac import base64 import aiohttp import asyncio from collections import deque class AzureSentinelConnectorAsync: def __init__(self, session: aiohttp.ClientSession, log_analytics_uri, workspace_id, shared_key, log_type, queue_size=1000, queue_size_bytes=25 * (2**20)): self.log_analytics_uri = log_analytics_uri self.workspace_id = workspace_id self.shared_key = shared_key self.log_type = log_type self.queue_size = queue_size self.queue_size_bytes = queue_size_bytes self._queue = deque() self.successfull_sent_events_number = 0 self.failed_sent_events_number = 0 self.lock = asyncio.Lock() self.session = session async def send(self, event): events = None async with self.lock: self._queue.append(event) if len(self._queue) >= self.queue_size: events = list(self._queue) self._queue.clear() if events: await self._flush(events) async def flush(self): await self._flush(list(self._queue)) async def _flush(self, data: list): if data: data = self._split_big_request(data) await asyncio.gather(*[self._post_data(self.session, self.workspace_id, self.shared_key, d, self.log_type) for d in data]) def _build_signature(self, workspace_id, shared_key, date, content_length, method, content_type, resource): x_headers = 'x-ms-date:' + date string_to_hash = method + "\n" + str(content_length) + "\n" + content_type + "\n" + x_headers + "\n" + resource bytes_to_hash = bytes(string_to_hash, encoding="utf-8") decoded_key = base64.b64decode(shared_key) encoded_hash = base64.b64encode(hmac.new(decoded_key, bytes_to_hash, digestmod=hashlib.sha256).digest()).decode() authorization = "SharedKey {}:{}".format(workspace_id, encoded_hash) return authorization async def _post_data(self, session: aiohttp.ClientSession, workspace_id, shared_key, body, log_type): logging.debug('Start sending data to sentinel') events_number = len(body) body = json.dumps(body) method = 'POST' content_type = 'application/json' resource = '/api/logs' rfc1123date = datetime.datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT') content_length = len(body) signature = self._build_signature(workspace_id, shared_key, rfc1123date, content_length, method, content_type, resource) uri = self.log_analytics_uri + resource + '?api-version=2016-04-01' headers = { 'content-type': content_type, 'Authorization': signature, 'Log-Type': log_type, 'x-ms-date': rfc1123date } try_number = 1 while True: try: if len(body) < 10: logging.info(body) await self._make_request(session, uri, body, headers) except Exception as err: if try_number < 3: logging.warning('Error while sending data to Azure Sentinel. Try number: {}. Trying one more time. {}'.format(try_number, err)) await asyncio.sleep(try_number) try_number += 1 else: logging.error(str(err)) self.failed_sent_events_number += events_number raise err else: logging.debug('{} events have been successfully sent to Azure Sentinel'.format(events_number)) self.successfull_sent_events_number += events_number break async def _make_request(self, session, uri, body, headers): async with session.post(uri, data=body, headers=headers, ssl=False) as response: if not (200 <= response.status <= 299): raise Exception("Error during sending events to Azure Sentinel. Response code: {}".format(response.status)) def _check_size(self, queue): data_bytes_len = len(json.dumps(queue).encode()) return data_bytes_len < self.queue_size_bytes def _split_big_request(self, queue): if self._check_size(queue): return [queue] else: middle = int(len(queue) / 2) queues_list = [queue[:middle], queue[middle:]] return self._split_big_request(queues_list[0]) + self._split_big_request(queues_list[1])
70763
import sys import yaml class Config: def __init__(self, cfg=None): self.cfg = {} if cfg is not None: self.update(cfg) def __getattribute__(self, name): cfg = object.__getattribute__(self, 'cfg') if name not in cfg: return object.__getattribute__(self, name) return cfg[name] def items(self): return object.__getattribute__(self, 'cfg').items() def update(self, new_cfg): cfg = self.cfg for key, val in new_cfg.items(): if type(val) == dict: val = Config(val) if key in cfg: cfg[key].update(val) continue cfg[key] = val def add(self, arg, val=None): # Manual item if val is not None: subkeys = arg.split('.') subconfig = self for subkey in subkeys[:-1]: subconfig = subconfig.cfg[subkey] if subkeys[-1] in subconfig.cfg: if type(subconfig.cfg[subkeys[-1]]) == int: val = int(val) elif type(subconfig.cfg[subkeys[-1]]) == float: val = float(val) subconfig.cfg[subkeys[-1]] = val print('{} is set to {}'.format(arg, val)) return # Config file shortcut if not arg.endswith('.yaml'): arg = 'configs/{}.yaml'.format(arg) # Config file print('importing config from "{}"'.format(arg)) with open(arg) as f: self.update(yaml.load(f, Loader=yaml.Loader)) def as_dict(self): return {key: (val.as_dict() if isinstance(val, Config) else val) for key, val in self.cfg.items()} def show(self, depth=0): yaml.dump(self.as_dict(), sys.stdout) def get_path(self, name): return self.data.cfg[name].format(self.data.name, self.model.shortname) def init_config(): config = Config() config.add('configs/default.yaml') for arg in sys.argv[1:]: config.add(*arg.split('=')) return config def reset_config(): global config config = init_config() config = init_config()
70820
import os import copy import json import logging import torch from torch.utils.data import TensorDataset logger = logging.getLogger(__name__) class InputExample(object): """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ def __init__(self, guid, text_a, label): self.guid = guid self.text_a = text_a self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, attention_mask, token_type_ids, label_id): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.label_id = label_id def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class NsmcProcessor(object): """Processor for the NSMC data set """ def __init__(self, args): self.args = args @classmethod def _read_file(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: lines = [] for line in f: lines.append(line.strip()) return lines def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines[1:]): line = line.split('\t') guid = "%s-%s" % (set_type, i) text_a = line[1] label = int(line[2]) if i % 1000 == 0: logger.info(line) examples.append(InputExample(guid=guid, text_a=text_a, label=label)) return examples def get_examples(self, mode): """ Args: mode: train, dev, test """ file_to_read = None if mode == 'train': file_to_read = self.args.train_file elif mode == 'dev': file_to_read = self.args.dev_file elif mode == 'test': file_to_read = self.args.test_file logger.info("LOOKING AT {}".format(os.path.join(self.args.data_dir, file_to_read))) return self._create_examples(self._read_file(os.path.join(self.args.data_dir, file_to_read)), mode) processors = { "nsmc": NsmcProcessor, } def convert_examples_to_features(examples, max_seq_len, tokenizer, cls_token_segment_id=0, pad_token_segment_id=0, sequence_a_segment_id=0, mask_padding_with_zero=True): # Setting based on the current model type cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token pad_token_id = tokenizer.pad_token_id features = [] for (ex_index, example) in enumerate(examples): if ex_index % 5000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens = tokenizer.tokenize(example.text_a) # Account for [CLS] and [SEP] special_tokens_count = 2 if len(tokens) > max_seq_len - special_tokens_count: tokens = tokens[:(max_seq_len - special_tokens_count)] # Add [SEP] token tokens += [sep_token] token_type_ids = [sequence_a_segment_id] * len(tokens) # Add [CLS] token tokens = [cls_token] + tokens token_type_ids = [cls_token_segment_id] + token_type_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_len - len(input_ids) input_ids = input_ids + ([pad_token_id] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len) assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len) assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len) label_id = example.label if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % example.guid) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label_id)) features.append( InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label_id=label_id )) return features def load_and_cache_examples(args, tokenizer, mode): processor = processors[args.task](args) # Load data features from cache or dataset file cached_file_name = 'cached_{}_{}_{}_{}'.format( args.task, list(filter(None, args.model_name_or_path.split("/"))).pop(), args.max_seq_len, mode) cached_features_file = os.path.join(args.data_dir, cached_file_name) if os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) if mode == "train": examples = processor.get_examples("train") elif mode == "dev": examples = processor.get_examples("dev") elif mode == "test": examples = processor.get_examples("test") else: raise Exception("For mode, Only train, dev, test is available") features = convert_examples_to_features(examples, args.max_seq_len, tokenizer) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids) return dataset
70844
import numpy as np import scipy.sparse as ssp import torch from beta_rec.models.torch_engine import ModelEngine from beta_rec.utils.common_util import timeit def top_k(values, k, exclude=[]): """Return the indices of the k items with the highest value in the list of values. Exclude the ids from the list "exclude". """ # Put low similarity to viewed items to exclude them from recommendations values[exclude] = -np.inf return list(np.argpartition(-values, range(k))[:k]) def get_sparse_vector(ids, length, values=None): """Sparse vector generation. If "values" is None, the elements are set to 1. """ n = len(ids) if values is None: return ssp.coo_matrix((np.ones(n), (ids, np.zeros(n))), (length, 1)).tocsc() else: return ssp.coo_matrix((values, (ids, np.zeros(n))), (length, 1)).tocsc() class UserKNN(torch.nn.Module): """A PyTorch Module for UserKNN model.""" def __init__(self, config): """Initialize UserKNN Class.""" super(UserKNN, self).__init__() self.config = config self.device = self.config["device_str"] self.n_users = self.config["n_users"] self.n_items = self.config["n_items"] self.neighbourhood_size = self.config["neighbourhood_size"] def prepare_model(self, data): """Load data into matrices. :param data: :return: """ row = data.train["col_user"].to_numpy() col = data.train["col_item"].to_numpy() self.binary_user_item = ssp.coo_matrix( (np.ones(len(data.train)), (row, col)), shape=(self.n_users, self.n_items) ).tocsr() def _items_count_per_user(self): """Calculate the number of interacted items for an user. :return: """ if not hasattr(self, "__items_count_per_user"): self.__items_count_per_user = np.asarray( self.binary_user_item.sum(axis=1) ).ravel() return self.__items_count_per_user def similarity_with_users(self, sequence): """Calculate the similarity between the a given user and all users according to the overlap ratio. :param sequence: the user's interacted items :return: """ sparse_sequence = get_sparse_vector(sequence, self.n_items) overlap = self.binary_user_item.dot(sparse_sequence).toarray().ravel() overlap[overlap != 0] /= np.sqrt(self._items_count_per_user()[overlap != 0]) return overlap def forward(self, batch_data): """Redundant method for UserKNN. Args: batch_data: tuple consists of (users, pos_items, neg_items), which must be LongTensor. """ return 0.0 def predict(self, users, items): """Predict result with the model. Args: users (int, or list of int): user id(s). items (int, or list of int): item id(s). Return: scores (int, or list of int): predicted scores of these user-item pairs. """ scores = [] for i in range(len(users)): sequence = self.binary_user_item.getrow(users[i]).nonzero()[0] sim_with_users = self.similarity_with_users(sequence) nearest_neighbour = top_k(sim_with_users, self.neighbourhood_size) neighbour_items = get_sparse_vector( nearest_neighbour, self.n_users, values=sim_with_users[nearest_neighbour], ) sim_with_items = ( self.binary_user_item.T.dot(neighbour_items).toarray().ravel() ) sim_with_items[sequence] = -np.inf scores.append(sim_with_items[items[i]]) return torch.tensor(scores) class UserKNNEngine(ModelEngine): """UserKNNEngine Class.""" def __init__(self, config): """Initialize UserKNNEngine Class.""" print("userKNNEngine init") self.config = config self.model = UserKNN(config["model"]) # super(UserKNNEngine, self).__init__(config) def train_single_batch(self, batch_data): """Train a single batch. However, userKNN is a neighbourhood model bases its prediction on the similarity relationships among users. It requires no training procedure. Args: batch_data (list): batch users, positive items and negative items. Return: 0 """ assert hasattr(self, "model"), "Please specify the exact model !" return 0 @timeit def train_an_epoch(self, train_loader, epoch_id): """Train a epoch, generate batch_data from data_loader, and call train_single_batch. Like the train_single_batch method, UserKNN requires no training procedure. Args: train_loader (DataLoader): epoch_id (int): set to 1. """ assert hasattr(self, "model"), "Please specify the exact model !" # self.model.train() print(f"[Training Epoch {epoch_id}] skipped") self.writer.add_scalar("model/loss", 0.0, epoch_id) self.writer.add_scalar("model/regularizer", 0.0, epoch_id)
70849
class RetrievalError(Exception): pass class SetterError(Exception): pass class ControlError(SetterError): pass class AuthentificationError(Exception): pass class TemporaryAuthentificationError(AuthentificationError): pass class APICompatibilityError(Exception): pass class APIError(Exception): pass
70857
from __future__ import print_function, absolute_import, division from future.builtins import * from future import standard_library standard_library.install_aliases() # Copyright 2017 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module provides access to the chemical component database, which is stored in ``moldesign/_static_data/chemical_components`` and can be re-generated by running ``cd moldesign/_static_data/ && scripts/generate_residue_data.py --download`` """ import os from . import PACKAGEPATH from moldesign import utils class _DatabaseEntry(object): """ Maps into a field stored in the database """ def __init__(self, hostdb, keyname): self.hostdb = hostdb self.keyname = keyname self.index = self.hostdb['__FIELDS__']['RESFIELDS'].index(keyname) def __repr__(self): return '<Chemical component dictionary: "%s" entries>' % self.keyname def __getitem__(self, item): return self.hostdb[item][self.index] __contains__ = utils.Alias('hostdb.__contains__') def keys(self): for key in self.hostdb.keys(): if key == '__FIELDS__': continue yield key def items(self): for key in self: yield key, self[key] __iter__ = keys # This is a very big dict, so we load it as a compressed database _bondfilename = os.path.join(PACKAGEPATH, '_static_data', 'chemical_components') CCD_DATABASE = utils.CompressedJsonDbm(_bondfilename, 'r', dbm=utils.ReadOnlyDumb) RESIDUE_BONDS = _DatabaseEntry(CCD_DATABASE, 'bonds') RESIDUE_ATOMS = _DatabaseEntry(CCD_DATABASE, 'atoms') RESIDUE_CCD_NAMES = _DatabaseEntry(CCD_DATABASE, 'name') RESIDUE_CCD_TYPES = _DatabaseEntry(CCD_DATABASE, 'type')
70877
from rknn.api import RKNN class RKNN_model_container(): def __init__(self, model_path, target=None, device_id=None) -> None: rknn = RKNN() # Direct Load RKNN Model rknn.load_rknn(model_path) print('--> Init runtime environment') if target==None: ret = rknn.init_runtime() else: ret = rknn.init_runtime(target=target, device_id=device_id) if ret != 0: print('Init runtime environment failed') exit(ret) print('done') self.rknn = rknn def run(self, inputs): if isinstance(inputs, list) or isinstance(inputs, tuple): pass else: inputs = [inputs] result = self.rknn.inference(inputs=inputs) return result
70891
import geopandas as gpd import requests from vt2geojson.tools import vt_bytes_to_geojson MAPBOX_ACCESS_TOKEN = "<KEY>" x = 150 y = 194 z = 9 url = f"https://api.mapbox.com/v4/mapbox.mapbox-streets-v6/{z}/{x}/{y}.vector.pbf?access_token={MAPBOX_ACCESS_TOKEN}" r = requests.get(url) assert r.status_code == 200, r.content vt_content = r.content features = vt_bytes_to_geojson(vt_content, x, y, z) gdf = gpd.GeoDataFrame.from_features(features) print(gdf.head())
70892
from tensorflow.python.ops import init_ops from tensorflow.python.util import nest import tensorflow as tf def stack_bidirectional_dynamic_rnn(cells_fw, cells_bw, inputs, initial_states_fw=None, initial_states_bw=None, dtype=None, sequence_length=None, parallel_iterations=None, scope=None, time_pooling=None, pooling_avg=None, initializer=None, inter_layers=None, inter_layer_activation=None, batch_norm=None, inter_layer_keep_prob=None, pervasive_dropout=None): states_fw = [] states_bw = [] prev_layer = inputs with tf.variable_scope(scope or "stack_bidirectional_rnn", initializer=initializer): for i, (cell_fw, cell_bw) in enumerate(zip(cells_fw, cells_bw)): initial_state_fw = None initial_state_bw = None if initial_states_fw: initial_state_fw = initial_states_fw[i] if initial_states_bw: initial_state_bw = initial_states_bw[i] with tf.variable_scope('cell_{}'.format(i)): outputs, (state_fw, state_bw) = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, prev_layer, initial_state_fw=initial_state_fw, initial_state_bw=initial_state_bw, sequence_length=sequence_length, parallel_iterations=parallel_iterations, dtype=dtype) # Concat the outputs to create the new input. prev_layer = tf.concat(outputs, axis=2) if time_pooling and i < len(cells_fw) - 1: prev_layer, sequence_length = apply_time_pooling(prev_layer, sequence_length, time_pooling[i], pooling_avg) if inter_layers and len(inter_layers) > i and inter_layers[i]: layer_size = inter_layers[i] prev_layer = tf.layers.dense(prev_layer, layer_size, use_bias=not batch_norm) if inter_layer_activation.lower() == 'relu': prev_layer = tf.nn.relu(prev_layer) if batch_norm: prev_layer = tf.layers.batch_normalization(prev_layer) if inter_layer_keep_prob is not None: noise_shape = [1, 1, tf.shape(prev_layer)[2]] if pervasive_dropout else None prev_layer = tf.nn.dropout(prev_layer, keep_prob=inter_layer_keep_prob, noise_shape=noise_shape) states_fw.append(state_fw) states_bw.append(state_bw) return prev_layer, tuple(states_fw), tuple(states_bw) def apply_time_pooling(inputs, sequence_length, stride, pooling_avg=False): shape = [tf.shape(inputs)[0], tf.shape(inputs)[1], inputs.get_shape()[2].value] if pooling_avg: inputs_ = [inputs[:, i::stride, :] for i in range(stride)] max_len = tf.shape(inputs_[0])[1] for k in range(1, stride): len_ = tf.shape(inputs_[k])[1] paddings = tf.stack([[0, 0], [0, max_len - len_], [0, 0]]) inputs_[k] = tf.pad(inputs_[k], paddings=paddings) inputs = tf.reduce_sum(inputs_, axis=0) / len(inputs_) else: inputs = inputs[:, ::stride, :] inputs = tf.reshape(inputs, tf.stack([shape[0], tf.shape(inputs)[1], shape[2]])) sequence_length = (sequence_length + stride - 1) // stride # rounding up return inputs, sequence_length class CellInitializer(init_ops.Initializer): """ Orthogonal initialization of recurrent connections, like in Bahdanau et al. 2015 """ def __init__(self, cell_size): self.cell_size = cell_size self.default_initializer = tf.get_variable_scope().initializer or init_ops.glorot_uniform_initializer() self.initializer = tf.orthogonal_initializer() def __call__(self, shape, dtype=None, partition_info=None, verify_shape=None): if len(shape) == 1 or shape[1] % self.cell_size != 0: return self.default_initializer(shape, dtype=dtype, partition_info=partition_info) input_size = shape[0] - self.cell_size W, U = [], [] for _ in range(shape[1] // self.cell_size): W.append(self.default_initializer(shape=[input_size, self.cell_size])) U.append(self.initializer(shape=[self.cell_size, self.cell_size])) return tf.concat([tf.concat(W, axis=1), tf.concat(U, axis=1)], axis=0) class DropoutGRUCell(tf.nn.rnn_cell.RNNCell): def __init__(self, num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None, layer_norm=False, state_keep_prob=None, input_keep_prob=None, input_size=None, final=False): super(DropoutGRUCell, self).__init__(_reuse=reuse) self._num_units = num_units self._activation = activation or tf.nn.tanh self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._layer_norm = layer_norm self._state_keep_prob = state_keep_prob self._input_keep_prob = input_keep_prob self._final = final def batch_noise(s): s = tf.concat(([1], tf.TensorShape(s).as_list()), 0) return tf.random_uniform(s) if input_keep_prob is not None: self._input_noise = DropoutGRUCell._enumerated_map_structure(lambda i, s: batch_noise(s), input_size) if state_keep_prob is not None: self._state_noise = DropoutGRUCell._enumerated_map_structure(lambda i, s: batch_noise(s), num_units) @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units @staticmethod def _enumerated_map_structure(map_fn, *args, **kwargs): ix = [0] def enumerated_fn(*inner_args, **inner_kwargs): r = map_fn(ix[0], *inner_args, **inner_kwargs) ix[0] += 1 return r return nest.map_structure(enumerated_fn, *args, **kwargs) @staticmethod def _dropout(values, recurrent_noise, keep_prob): def dropout(index, value, noise): random_tensor = keep_prob + noise binary_tensor = tf.floor(random_tensor) ret = tf.div(value, keep_prob) * binary_tensor ret.set_shape(value.get_shape()) return ret return DropoutGRUCell._enumerated_map_structure(dropout, values, recurrent_noise) def call(self, inputs, state): inputs = tf.concat(inputs, axis=1) input_size = inputs.shape[1] state_size = state.shape[1] dtype = inputs.dtype if self._state_keep_prob: dropped_state = DropoutGRUCell._dropout(state, self._state_noise, self._state_keep_prob) else: dropped_state = state if self._input_keep_prob: dropped_inputs = DropoutGRUCell._dropout(inputs, self._input_noise, self._input_keep_prob) else: dropped_inputs = inputs with tf.variable_scope('state'): state_weights = tf.get_variable('kernel', [state_size, 3 * self._num_units], dtype=dtype, initializer=self._kernel_initializer) with tf.variable_scope('input'): input_weights = tf.get_variable('kernel', [input_size, 3 * self._num_units], dtype=dtype, initializer=self._kernel_initializer) bias = tf.get_variable('bias', [3 * self._num_units], dtype=dtype, initializer=self._bias_initializer) inputs_ = tf.matmul(dropped_inputs, input_weights) state_ = tf.matmul(dropped_state, state_weights) if self._layer_norm: state_ = tf.contrib.layers.layer_norm(state_) inputs_ = tf.contrib.layers.layer_norm(inputs_) size = 2 * self._num_units value = tf.nn.sigmoid(state_[:,:size] + inputs_[:,:size] + bias[:size]) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) c = self._activation(inputs_[:,size:] + state_[:,size:] * r + bias[size:]) new_h = u * state + (1 - u) * c return new_h, new_h class GRUCell(tf.nn.rnn_cell.RNNCell): def __init__(self, num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None, layer_norm=False): super(GRUCell, self).__init__(_reuse=reuse) self._num_units = num_units self._activation = activation or tf.nn.tanh self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._layer_norm = layer_norm @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def call(self, inputs, state): inputs = tf.concat(inputs, axis=1) input_size = inputs.shape[1] state_size = state.shape[1] dtype = inputs.dtype with tf.variable_scope("gates"): bias_initializer = self._bias_initializer if self._bias_initializer is None and not self._layer_norm: # bias of 1 for layer norm? bias_initializer = init_ops.constant_initializer(1.0, dtype=dtype) bias = tf.get_variable('bias', [2 * self._num_units], dtype=dtype, initializer=bias_initializer) weights = tf.get_variable('kernel', [input_size + state_size, 2 * self._num_units], dtype=dtype, initializer=self._kernel_initializer) inputs_ = tf.matmul(inputs, weights[:input_size]) state_ = tf.matmul(state, weights[input_size:]) if self._layer_norm: inputs_ = tf.contrib.layers.layer_norm(inputs_, scope='inputs') state_ = tf.contrib.layers.layer_norm(state_, scope='state') value = tf.nn.sigmoid(inputs_ + state_ + bias) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) with tf.variable_scope("candidate"): bias = tf.get_variable('bias', [self._num_units], dtype=dtype, initializer=self._bias_initializer) weights = tf.get_variable('kernel', [input_size + state_size, self._num_units], dtype=dtype, initializer=self._kernel_initializer) c = tf.matmul(tf.concat([inputs, r * state], axis=1), weights) if self._layer_norm: c = tf.contrib.layers.layer_norm(c) c = self._activation(c + bias) new_h = u * state + (1 - u) * c return new_h, new_h
70909
import urllib.parse from datetime import datetime from unittest.mock import patch from django.contrib.auth.models import User from django.contrib.messages import get_messages from django.test import TestCase from django.utils import timezone from dfirtrack_main.models import ( System, Systemstatus, Task, Taskname, Taskpriority, Taskstatus, ) class TaskCreatorViewTestCase(TestCase): """task creator view tests""" @classmethod def setUpTestData(cls): # create user test_user = User.objects.create_user( username='testuser_task_creator', password='<PASSWORD>' ) # create objects Taskname.objects.create(taskname_name='task_creator_taskname_1') Taskname.objects.create(taskname_name='task_creator_taskname_2') Taskname.objects.create(taskname_name='task_creator_taskname_3') Taskpriority.objects.create(taskpriority_name='taskpriority_1') # create object systemstatus_1 = Systemstatus.objects.create( systemstatus_name='task_creator_systemstatus_1' ) # create objects System.objects.create( system_name='task_creator_system_1', systemstatus=systemstatus_1, system_created_by_user_id=test_user, system_modified_by_user_id=test_user, ) System.objects.create( system_name='task_creator_system_2', systemstatus=systemstatus_1, system_created_by_user_id=test_user, system_modified_by_user_id=test_user, ) System.objects.create( system_name='task_creator_system_3', systemstatus=systemstatus_1, system_created_by_user_id=test_user, system_modified_by_user_id=test_user, ) def test_task_creator_not_logged_in(self): """test creator view""" # create url destination = '/login/?next=' + urllib.parse.quote('/task/creator/', safe='') # get response response = self.client.get('/task/creator/', follow=True) # compare self.assertRedirects( response, destination, status_code=302, target_status_code=200 ) def test_task_creator_logged_in(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get response response = self.client.get('/task/creator/') # compare self.assertEqual(response.status_code, 200) def test_task_creator_template(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get response response = self.client.get('/task/creator/') # compare self.assertTemplateUsed(response, 'dfirtrack_main/task/task_creator.html') def test_task_creator_get_user_context(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get response response = self.client.get('/task/creator/') # compare self.assertEqual(str(response.context['user']), 'testuser_task_creator') def test_task_creator_redirect(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # create url destination = urllib.parse.quote('/task/creator/', safe='/') # get response response = self.client.get('/task/creator', follow=True) # compare self.assertRedirects( response, destination, status_code=301, target_status_code=200 ) def test_task_creator_post_redirect(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get objects taskname_1 = Taskname.objects.get(taskname_name='task_creator_taskname_1') taskpriority_1 = Taskpriority.objects.get(taskpriority_name='taskpriority_1') taskstatus_pending = Taskstatus.objects.get(taskstatus_name='10_pending') system_1 = System.objects.get(system_name='task_creator_system_1') # create post data data_dict = { 'taskname': [ taskname_1.taskname_id, ], 'taskpriority': taskpriority_1.taskpriority_id, 'taskstatus': taskstatus_pending.taskstatus_id, 'system': [ system_1.system_id, ], } # create url destination = '/task/' # get response response = self.client.post('/task/creator/', data_dict) # compare self.assertRedirects( response, destination, status_code=302, target_status_code=200 ) def test_task_creator_post_system_and_tasks(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get objects taskname_1 = Taskname.objects.get(taskname_name='task_creator_taskname_1') taskname_2 = Taskname.objects.get(taskname_name='task_creator_taskname_2') taskname_3 = Taskname.objects.get(taskname_name='task_creator_taskname_3') taskpriority_1 = Taskpriority.objects.get(taskpriority_name='taskpriority_1') taskstatus_pending = Taskstatus.objects.get(taskstatus_name='10_pending') system_1 = System.objects.get(system_name='task_creator_system_1') system_2 = System.objects.get(system_name='task_creator_system_2') system_3 = System.objects.get(system_name='task_creator_system_3') # create post data data_dict = { 'taskname': [taskname_1.taskname_id, taskname_2.taskname_id], 'taskpriority': taskpriority_1.taskpriority_id, 'taskstatus': taskstatus_pending.taskstatus_id, 'system': [system_1.system_id, system_2.system_id], } # get response self.client.post('/task/creator/', data_dict) # get object task_1 = Task.objects.get( system=system_1, taskname=taskname_1, ) # compare self.assertTrue(system_1.task_set.filter(taskname=taskname_1).exists()) self.assertTrue(system_1.task_set.filter(taskname=taskname_2).exists()) self.assertFalse(system_1.task_set.filter(taskname=taskname_3).exists()) self.assertTrue(system_2.task_set.filter(taskname=taskname_1).exists()) self.assertTrue(system_2.task_set.filter(taskname=taskname_2).exists()) self.assertFalse(system_2.task_set.filter(taskname=taskname_3).exists()) self.assertFalse(system_3.task_set.filter(taskname=taskname_1).exists()) self.assertFalse(system_3.task_set.filter(taskname=taskname_2).exists()) self.assertFalse(system_3.task_set.filter(taskname=taskname_3).exists()) self.assertEqual(task_1.task_started_time, None) self.assertEqual(task_1.task_finished_time, None) def test_task_creator_post_times_working(self): """test creator view""" # mock timezone.now() dt = datetime(2020, 1, 2, tzinfo=timezone.utc) with patch.object(timezone, 'now', return_value=dt): # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get objects taskname_started = Taskname.objects.create( taskname_name='task_creator_started_time_working' ) taskpriority_1 = Taskpriority.objects.get( taskpriority_name='taskpriority_1' ) taskstatus_working = Taskstatus.objects.get(taskstatus_name='20_working') system_1 = System.objects.get(system_name='task_creator_system_1') # create post data data_dict = { 'taskname': [ taskname_started.taskname_id, ], 'taskpriority': taskpriority_1.taskpriority_id, 'taskstatus': taskstatus_working.taskstatus_id, 'system': [ system_1.system_id, ], } # get response self.client.post('/task/creator/', data_dict) # get object task_started = Task.objects.get( system=system_1, taskname=taskname_started, ) # compare self.assertEqual(task_started.task_started_time, timezone.now()) self.assertEqual(task_started.task_finished_time, None) def test_task_creator_post_times_done(self): """test creator view""" # mock timezone.now() dt = datetime(2020, 3, 4, tzinfo=timezone.utc) with patch.object(timezone, 'now', return_value=dt): # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get objects taskname_finished = Taskname.objects.create( taskname_name='task_creator_finished_time_working' ) taskpriority_1 = Taskpriority.objects.get( taskpriority_name='taskpriority_1' ) taskstatus_done = Taskstatus.objects.get(taskstatus_name='30_done') system_1 = System.objects.get(system_name='task_creator_system_1') # create post data data_dict = { 'taskname': [ taskname_finished.taskname_id, ], 'taskpriority': taskpriority_1.taskpriority_id, 'taskstatus': taskstatus_done.taskstatus_id, 'system': [ system_1.system_id, ], } # get response self.client.post('/task/creator/', data_dict) # get object task_finished = Task.objects.get( system=system_1, taskname=taskname_finished, ) # compare self.assertEqual(task_finished.task_started_time, timezone.now()) self.assertEqual(task_finished.task_finished_time, timezone.now()) def test_task_creator_post_invalid_reload(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # create post data data_dict = {} # get response response = self.client.post('/task/creator/', data_dict) # compare self.assertEqual(response.status_code, 200) def test_task_creator_post_invalid_template(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # create post data data_dict = {} # get response response = self.client.post('/task/creator/', data_dict) # compare self.assertTemplateUsed(response, 'dfirtrack_main/task/task_creator.html') def test_task_creator_post_messages(self): """test creator view""" # login testuser self.client.login( username='testuser_task_creator', password='<PASSWORD>' ) # get objects taskname_1 = Taskname.objects.get(taskname_name='task_creator_taskname_1') taskname_2 = Taskname.objects.get(taskname_name='task_creator_taskname_2') taskname_3 = Taskname.objects.get(taskname_name='task_creator_taskname_3') taskpriority_1 = Taskpriority.objects.get(taskpriority_name='taskpriority_1') taskstatus_pending = Taskstatus.objects.get(taskstatus_name='10_pending') system_1 = System.objects.get(system_name='task_creator_system_1') system_2 = System.objects.get(system_name='task_creator_system_2') system_3 = System.objects.get(system_name='task_creator_system_3') # create post data data_dict = { 'taskname': [ taskname_1.taskname_id, taskname_2.taskname_id, taskname_3.taskname_id, ], 'taskpriority': taskpriority_1.taskpriority_id, 'taskstatus': taskstatus_pending.taskstatus_id, 'system': [system_1.system_id, system_2.system_id, system_3.system_id], } # get response response = self.client.post('/task/creator/', data_dict) # get messages messages = list(get_messages(response.wsgi_request)) # compare self.assertEqual(str(messages[0]), 'Task creator started') self.assertEqual(str(messages[1]), '9 tasks created for 3 systems.')
70995
from __future__ import absolute_import # Copyright (c) 2010-2019 openpyxl import pytest from openpyxl.xml.functions import fromstring, tostring from openpyxl.tests.helper import compare_xml @pytest.fixture def PictureOptions(): from ..picture import PictureOptions return PictureOptions class TestPictureOptions: def test_ctor(self, PictureOptions): picture = PictureOptions() xml = tostring(picture.to_tree()) expected = """ <pictureOptions /> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_from_xml(self, PictureOptions): src = """ <pictureOptions /> """ node = fromstring(src) picture = PictureOptions.from_tree(node) assert picture == PictureOptions()
71029
from nalp.corpus import TextCorpus from nalp.encoders import IntegerEncoder from nalp.models import SeqGAN # When generating artificial text, make sure # to use the same data, classes and parameters # as the pre-trained network # Creating a character TextCorpus from file corpus = TextCorpus(from_file='data/text/chapter1_harry.txt', corpus_type='word') # Creating an IntegerEncoder and learning encoding encoder = IntegerEncoder() encoder.learn(corpus.vocab_index, corpus.index_vocab) # Creating the SeqGAN seqgan = SeqGAN(encoder=encoder, vocab_size=corpus.vocab_size, max_length=10, embedding_size=256, hidden_size=512, n_filters=(64, 128, 256), filters_size=(3, 5, 5), dropout_rate=0.25, temperature=1) # Loading pre-trained SeqGAN weights seqgan.load_weights('trained/seqgan').expect_partial() # Now, for the inference step, we build with a batch size equals to 1 seqgan.G.build((1, None)) # Defining an start string to generate the text start_string = 'Mr. and Mrs. Dursley' # Generating artificial text text = seqgan.G.generate_temperature_sampling(start=start_string.split(' '), max_length=1000, temperature=1) # Outputting the text print(start_string + ' ' + ' '.join(text))
71046
import fnmatch import os import datetime import sys from subprocess import Popen, PIPE import zipfile import skimage.io import scipy.io.wavfile import jsonlines import torch from setka.pipes.Pipe import Pipe def get_process_output(command): if not isinstance(command, (list, tuple)): command = command.split(' ') process = Popen(command, stdout=PIPE, shell=True) output, err = process.communicate() exit_code = process.wait() return exit_code, output.decode() def check_list(path, masks): for mask in masks: if fnmatch.fnmatch(path, mask): return False return True def collect_snapshot_list(command_root_dir, ignore_list, full_path=True): results = [] for file in os.listdir(command_root_dir): if check_list(file, ignore_list) and file[0] != '.': if os.path.isdir(os.path.join(command_root_dir, file)): for root, _, files in os.walk(os.path.join(command_root_dir, file)): for sub_file in files: if check_list(os.path.relpath(os.path.join(root, sub_file), command_root_dir), ignore_list): results.append(os.path.join(root, sub_file)) else: results.append(os.path.join(command_root_dir, file)) if full_path: return results else: return [os.path.relpath(f, command_root_dir) for f in results] class Logger(Pipe): """ This pipe saves all the information about training process of the model. It is important the training process understanding and for the experiment reproducibility. The information is stored in the directory ```./logs/time```, where time is a string representation of the timestamp when the experiment has started. During the initialization, the Logger creates all the necessary directories for storing information. It also saves the bash command that has triggered the Trainer creation in the text file called "bash_command.txt", it saves all the contents of the directory from where the command was called in the archive "snapshot.zip" (except for ```checkpoints```, ```logs```, ```predictions``` and ```runs``` directories). It creates the directories ```./logs/<timestamp>/checkpoints``` and ```./logs/<timestamp>/predictions``` and saves paths to these directories to the ```trainer._checkpoints_dir``` and ```trainer._predictions_dir```. The following information is logged during the training process: * loss value is saved after each batch in loss.txt file in the checkpoint directory * metrics values are stored in metrics.txt file (if metrics are specified) in the checkpoint directory * images, audios, figures, texts are stored in the corresponding directories in the checkpoint directory if the processing function ```f``` is specified. Args: f (callable): function for test samples visualization. If set to None, test will not be visualized. name (str): name of the experiment (will be used as a a name of the log folder) log_dir (str): path to the directory, where the logs are stored. ignore_list (list of str): folders to not to include to the snapshot. """ def __init__(self, f=None, name='experiment', log_dir='runs', make_snapshot=True, ignore_list=[ '*.zip*', '*.pth*', '*__pycache__*', '*.ipynb_checkpoints*', '*.jpg', '*.jpeg', '*.png', '*.wav', '*.mp4', '*.bmp', '*.mov', '*.mp3', '*.csv', '*.txt', '*.json', '*.tar.gz', '*.zip', '*.gzip', '*.7z', '*.ipynb', '*.coredump', '*data*', 'logs/*', 'runs/*', 'core.*'], full_snapshot_path=False, collect_environment=True): super(Logger, self).__init__() self.root_path = None self.f = f self.name = name self.log_dir = log_dir self.make_snapshot = make_snapshot self.full_snapshot_path = full_snapshot_path self.collect_environment = collect_environment self.ignore_list = ignore_list def on_init(self): self.root_path = os.path.join(self.log_dir, self.name, str(self.trainer.creation_time).replace(' ', '_').replace(':', '-')) if not os.path.exists(self.root_path): os.makedirs(self.root_path) with open(os.path.join(self.root_path, 'bash_command.txt'), 'w+') as fout: fout.write(' '.join(sys.argv)) if self.make_snapshot: command_root_dir = os.getcwd() with zipfile.ZipFile(os.path.join(self.root_path, 'snapshot.zip'), 'w') as snapshot: snapshot_list = collect_snapshot_list(command_root_dir, self.ignore_list, self.full_snapshot_path) for file in snapshot_list: snapshot.write(file) print('Made snapshot of size {:.2f} MB'.format( os.path.getsize(os.path.join(self.root_path, 'snapshot.zip')) / (1024 * 1024))) if self.collect_environment: is_conda = os.path.exists(os.path.join(sys.prefix, 'conda-meta')) if is_conda: print('Collecting environment using conda...', end=' ') code, res = get_process_output('conda env export') else: print('Collecting environment using pip...', end=' ') code, res = get_process_output('pip list') print('FAILED' if code != 0 else 'OK') with open(os.path.join(self.root_path, 'environment.txt'), 'w') as f: f.write(res) predictions_dir = os.path.join(self.root_path, 'predictions') if not os.path.exists(predictions_dir): os.makedirs(predictions_dir) # def before_epoch(self): # """ # Dumps metrics to the log file. # """ # if self.trainer._mode == 'train': # with open(os.path.join(self.root_path, 'metrics.txt'), 'a+') as fout: # if hasattr(self.trainer, '_metrics'): # fout.write(str(self.trainer._epoch - 1) + '\t' + str(self.trainer._metrics) + '\n') @staticmethod def make_dirs(fname): dir_name = os.sep.join(fname.split(os.sep)[:-1]) if not os.path.exists(dir_name): os.makedirs(dir_name) def save_image(self, name, content, epoch, ext='png'): fname = os.path.join(self.root_path, str(epoch) + '_' + name) if len(fname.split(os.sep)[-1].split('.')) == 1: fname = fname + '.' + ext if len(content.shape) == 3: content = content.swapaxes(0, 2).swapaxes(0, 1) self.make_dirs(fname) skimage.io.imsave(fname, content) def save_text(self, name, content, epoch, ext='txt'): fname = os.path.join(self.root_path, str(epoch) + '_' + name) if len(fname.split(os.sep)[-1].split('.')) == 1: fname = fname + '.' + ext self.make_dirs(fname) with open(fname, 'w+') as fout: fout.write(content) def save_audio(self, name, content, epoch, ext='wav'): fname = os.path.join(self.root_path, str(epoch) + '_' + name) if len(fname.split(os.sep)[-1].split('.')) == 1: fname = fname + '.' + ext self.make_dirs(fname) scipy.io.wavfile.write(fname, 44100, content) def save_figure(self, name, content, epoch, ext='png'): fname = os.path.join(self.root_path, str(epoch) + '_' + name) if len(fname.split(os.sep)[-1].split('.')) == 1: fname = fname + '.' + ext self.make_dirs(fname) content.savefig(fname) def save_file(self, name, content, epoch, ext='bin'): fname = os.path.join(self.root_path, str(epoch) + '_' + name) if len(fname.split(os.sep)[-1].split('.')) == 1: fname = fname + '.' + ext self.make_dirs(fname) with open(fname, 'wb+') as fout: # print(content) content.seek(0) fout.write(content.read()) def show(self, to_show, id): type_writers = { 'images': self.save_image, 'texts': self.save_text, 'audios': self.save_audio, 'figures': self.save_figure, 'files': self.save_file } for type in type_writers: if type in to_show: for desc in to_show[type]: kwargs = { 'name': os.path.join(type, str(id), desc), 'content': to_show[type][desc], 'epoch': str(self.trainer._epoch) } type_writers[type](**kwargs) def after_batch(self): """ Writes the loss to the loss log (in case of train mode). Also performs visualisation in case of test mode. """ if self.trainer._mode == 'train': with jsonlines.open(os.path.join(self.root_path, 'batch_log.json'), 'a') as fout: fout.write(self.trainer.status) # fout.write(status) # fout.write(str(self.trainer._epoch) + '\t' + # str(self.trainer._loss.detach().cpu().item()) + '\n') if self.trainer._mode == 'test' and (self.f is not None): for index in range(len(self.trainer._ids)): one_input = self.trainer.collection_op.split_index(self.trainer._input, index)[0] one_output = self.trainer.collection_op.split_index(self.trainer._output, index)[0] res = self.f(one_input, one_output) id = self.trainer._ids[index] self.show(res, id) def after_epoch(self): """ Writes the trainer status to the log file. """ # line = ' '.join([str(k) + ': ' + str(v) for k, v in self.trainer.status.items()]) with jsonlines.open(os.path.join(self.root_path, 'epoch_log.json'), 'a') as fout: # print(self.trainer.status) fout.write(self.trainer.status) # fout.write(line + '\n')
71067
from django import forms from tally_ho.libs.permissions import groups from tally_ho.apps.tally.models.tally import Tally from tally_ho.apps.tally.models.user_profile import UserProfile from tally_ho.libs.utils.form import lower_case_form_data disable_copy_input = { 'onCopy': 'return false;', 'onDrag': 'return false;', 'onDrop': 'return false;', 'onPaste': 'return false;', 'autocomplete': 'off', 'class': 'form-control required' } class TallyForm(forms.ModelForm): class Meta: model = Tally fields = ['name'] administrators = forms.ModelMultipleChoiceField( queryset=UserProfile.objects.filter( groups__name__exact=groups.SUPER_ADMINISTRATOR), widget=forms.CheckboxSelectMultiple()) def __init__(self, *args, **kwargs): if 'instance' in kwargs and kwargs['instance']: initial = kwargs.setdefault('initial', {}) initial['administrators'] = [ admin.pk for admin in kwargs['instance'].administrators.all()] super(TallyForm, self).__init__(*args, **kwargs) self.fields['name'].widget.attrs.update({'class': 'form-control'}) def clean(self): if self.is_valid(): lower_case_form_data(self, TallyForm, ['name']) def save(self): instance = forms.ModelForm.save(self) instance.administrators.clear() for admin in self.cleaned_data['administrators']: instance.administrators.add(admin) return instance
71104
from __future__ import print_function import sys import os from glob import glob import shutil try: import setuptools except ImportError: sys.stderr.write( "Please install setuptools before running this script. Exiting.") sys.exit(1) from setuptools import setup, find_packages # --------------------------------------------------------------------------- # # Basic project information # --------------------------------------------------------------------------- # name = 'BGWpy' description = 'Interface BerkeleyGW flows in python.' license = 'BSD' url = 'https://github.com/BerkeleyGW/BGWpy' __version__ = '3.1.4' # author and author_email should be a single string, not a list, but we can put # multiple authors / emails by separating them by commas inside the string. # If you contributed to this package, add your name and email. Don't be shy! author = '<NAME>' author_email = '<EMAIL>' # Requirements install_requires = [ 'numpy >=1.6', 'pymatgen >=2020', ] # --------------------------------------------------------------------------- # # Helper functions # --------------------------------------------------------------------------- # def find_package_data(): package_data={'BGWpy': ['data/structures/*', 'data/pseudos/*']} return package_data def find_data_files(): return [('config', ['config/BGWpyrc'])] def find_scripts(): scripts = [] scripts.extend(glob(os.path.join('BGWpy', 'scripts', "*.py"))) return scripts def cleanup(): print('Cleaning up') shutil.rmtree('BGWpy.egg-info', ignore_errors=True) shutil.rmtree('build', ignore_errors=True) shutil.rmtree('__pycache__', ignore_errors=True) # --------------------------------------------------------------------------- # # Setup # --------------------------------------------------------------------------- # setup_args = dict( name = name, version = __version__, description = description, author = author, author_email = author_email, license = license, url = url, install_requires = install_requires, packages = find_packages(), package_data = find_package_data(), data_files = find_data_files(), scripts = find_scripts(), ) if __name__ == "__main__": setup(**setup_args)
71113
import json, re, select, random, traceback, urllib, datetime, base64 import asyncio, aiohttp # The core codes for YouTube support are basically from taizan-hokuto/pytchat headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36", } class Youtube: q = None url = "" vid = "" ctn = "" client = None stop = False @classmethod async def run(cls, url, q, client, **kargs): from .paramgen import liveparam cls.q = q cls.url = url cls.client = client cls.stop = False cls.key = "<KEY> await cls.get_url() while cls.stop == False: try: await cls.get_room_info() cls.ctn = liveparam.getparam(cls.vid, cls.cid, 1) await cls.get_chat() except: traceback.print_exc() await asyncio.sleep(1) @classmethod async def stop(cls): cls.stop == True @classmethod async def get_url(cls): a = re.search(r"youtube.com/channel/([^/?]+)", cls.url) try: cid = a.group(1) cls.cid = cid cls.url = f"https://www.youtube.com/channel/{cid}/videos" except: a = re.search(r"youtube.com/watch\?v=([^/?]+)", cls.url) async with cls.client.request( "get", f"https://www.youtube.com/embed/{a.group(1)}" ) as resp: b = re.search(r'\\"channelId\\":\\"(.{24})\\"', await resp.text()) cls.cid = b.group(1) cls.url = f"https://www.youtube.com/channel/{cls.cid}/videos" @classmethod async def get_room_info(cls): async with cls.client.request("get", cls.url) as resp: t = re.search( r'"gridVideoRenderer"((.(?!"gridVideoRenderer"))(?!"style":"UPCOMING"))+"label":"(LIVE|LIVE NOW|PREMIERING NOW)"([\s\S](?!"style":"UPCOMING"))+?("gridVideoRenderer"|</script>)', await resp.text(), ).group(0) cls.vid = re.search(r'"gridVideoRenderer".+?"videoId":"(.+?)"', t).group(1) # print(cls.vid) @classmethod async def get_chat_single(cls): msgs = [] data = { "context": { "client": { "visitorData": "", "userAgent": headers["user-agent"], "clientName": "WEB", "clientVersion": "".join( ( "2.", (datetime.datetime.today() - datetime.timedelta(days=1)).strftime( "%Y%m%d" ), ".01.00", ) ), }, }, "continuation": cls.ctn, } u = f'https://www.youtube.com/{base64.b64decode(cls.key).decode("utf-8")}' async with cls.client.request("post", u, headers=headers, json=data) as resp: # print(await resp.text()) j = await resp.json() j = j["continuationContents"] cont = j["liveChatContinuation"]["continuations"][0] if cont is None: raise Exception("No Continuation") metadata = ( cont.get("invalidationContinuationData") or cont.get("timedContinuationData") or cont.get("reloadContinuationData") or cont.get("liveChatReplayContinuationData") ) cls.ctn = metadata["continuation"] # print(j['liveChatContinuation'].get('actions')) for action in j["liveChatContinuation"].get("actions", []): try: renderer = action["addChatItemAction"]["item"]["liveChatTextMessageRenderer"] msg = {} msg["name"] = renderer["authorName"]["simpleText"] message = "" runs = renderer["message"].get("runs") for r in runs: if r.get("emoji"): message += r["emoji"].get("shortcuts", [""])[0] else: message += r.get("text", "") msg["content"] = message msg["msg_type"] = "danmaku" msgs.append(msg) except: pass return msgs @classmethod async def get_chat(cls): while cls.stop == False: ms = await cls.get_chat_single() if len(ms) != 0: interval = 1 / len(ms) else: await asyncio.sleep(1) for m in ms: await cls.q.put(m) await asyncio.sleep(interval)
71120
import math; import decimal; import sys def trunc(f): if f == 0: return '0.0'; d = decimal.Decimal(f) if type(d)(int(d)) == d: return str(d) + '.0'; slen = len('%.*f' % (20, d)) return str(d)[:slen] # min, max: values; lower, upper: domain def interpolate(minV, maxV, lower, upper, varname): fact = (maxV-minV) / (upper-lower); return "" + trunc(minV) + " + (" + trunc(fact) + " * (" + varname + " - " + trunc(lower) + "))"; def ite(ifCond, thenExpr, elseExpr): return "if (" + ifCond + ") then " + thenExpr + " else " + elseExpr; def iteBlock(dom, code, varname): max = len(dom)-1; block = code[max]; for i in range(len(dom)-1): cond = "" + trunc(dom[max-i-1]) + "<=" + varname + " and " + varname + "<=" + trunc(dom[max-i]); block = ite(cond, code[max-i-1], block); if (i<max-1): block = "\n " + block; return block; def itpBlock(dom, vals, lastElseExpr, varname): block = lastElseExpr; max = len(dom)-1; code = [lastElseExpr]; for i in range(len(dom)-1): itp = interpolate(vals[max-i-1], vals[max-i], dom[max-i-1], dom[max-i], varname); code.append(itp); code.reverse(); return iteBlock(dom, code, varname); def funcNode(name, inputDecl, code, outputName, outputType): node = "node " + name + "(" + inputDecl + ") returns (" + outputName + ":" + outputType + ");"; node = node + "\nlet\n"; node = node + outputName + " = " + code + ";"; node = node + "\ntel\n"; return node; def interval(minD, maxD, precision): dom = []; width = float(maxD) - float(minD); step = width / (float(precision) - 1.0); dval = float(minD); for i in range(0, precision): dom.append(dval); # print dval; dval += step; return dom; # generates an interval with exponentially # decreasing resolution (2^) from minD to # maxD around center. #def intervalExponential(minD, maxD, center): #def intervalExponential(center): # return intervalExponential(sys.float_info.min, sys.float_info.max, center); def toRadians(interval): for i in range(0, len(interval)): interval[i] = math.radians(interval[i]); return interval; def sinLookupNode(precision): dom = toRadians( interval(0, 90, precision) ); val = []; for i in range(0, precision): val.append( math.sin(dom[i]) ); code = itpBlock(dom, val, "-1.0", "x"); return funcNode("__sin", "x:real", code, "out", "real"); def tanLookupNode(precision): dom = toRadians( interval(0, 90, precision) ); val = []; for i in range(0, precision): val.append( math.tan(dom[i]) ); code = itpBlock(dom, val, "-1.0", "x"); return funcNode("__tan", "x:real", code, "out", "real"); def asinLookupNode(precision): dom = toRadians( interval(0, 90, precision) ); val = []; for i in range(0, precision): dom[i] = math.sin(dom[i]); val.append( math.asin(dom[i]) ); code = itpBlock(dom, val, "-1.0", "x"); return funcNode("__asin", "x:real", code, "out", "real"); def sinNode(): dom = toRadians( interval(0, 360, 5) ); val = ["__sin(x)", "__sin(" + trunc(math.pi) + "-x)", "-(__sin(x - "+ trunc(math.pi)+"))", "-(__sin(" + trunc(math.pi*2.0) + " - x)) ", "-1.0"]; code = iteBlock(dom, val, "x") return funcNode("zsin", "x:real", code, "out", "real"); def tanNode(): dom = toRadians( interval(0, 360, 5) ); val = ["__tan(x)", "-(__tan(" + trunc(math.pi) + "-x))", "__tan(x - "+ trunc(math.pi)+")", "-(__tan(" + trunc(math.pi*2.0) + " - x)) ", "-1.0"]; code = iteBlock(dom, val, "x") return funcNode("ztan", "x:real", code, "out", "real"); def cosNode(): dom = [0.0, math.pi/2.0*3.0, math.pi*2.0]; val = ["zsin(" + trunc(math.pi/2.0) + " + x)", "zsin(x - " + trunc(math.pi/2.0*3.0) + ")", "-1.0"]; code = iteBlock(dom, val, "x") return funcNode("zcos", "x:real", code, "out", "real"); def asinNode(): dom = [-1.0, 0.0, 1.0]; val = ["-(__asin(-x))", "__asin(x)", "-1.0"]; code = iteBlock(dom, val, "x") return funcNode("zasin", "x:real", code, "out", "real"); def acosNode(): return funcNode("zacos", "x:real", "" + trunc(math.pi/2.0) + "-zasin(x)" , "out", "real"); def atanLookupNode(precision): precision -= 1; dom = toRadians( interval(0, 360, precision) ); dom.append(math.pi*512.0) precision += 1; val = []; for i in range(0, precision): val.append( math.atan(dom[i]) ); code = itpBlock(dom, val, trunc(math.pi/2.0), "x"); return funcNode("__atan", "x:real", code, "out", "real"); def atanNode(): code = ite("x>=0.0", "__atan(x)", "-(__atan(-x))"); return funcNode("zatan", "x:real", code, "out", "real"); # FH: maybe the divisions here are problematic? # def atan2Node(): x_less_0 = ite("y>=0.0", "zatan(y/x) + " + trunc(math.pi), "zatan(y/x) - " + trunc(math.pi)); y_leq_0 = ite("y<0.0", trunc(math.pi/-2.0), trunc(math.atan2(0,0)) ); x_eq_0 = ite("y>0.0", trunc(math.pi/2.0), "\n " + y_leq_0); code = ite("x<0.0", "\n " + x_less_0, "\n " + x_eq_0) code = ite("x>0.0", "zatan(y/x)", "\n " + code); return funcNode("zatan2", "y:real; x:real", code, "out", "real"); def cos(): print sinLookupNode(11); print sinNode(); print cosNode(); return def sin(): print sinLookupNode(11); print sinNode(); def tan(): print tanLookupNode(11); print tanNode(); def acos(): print asinLookupNode(11); print asinNode(); print acosNode(); def asin(): print asinLookupNode(11); print asinNode(); def atan(): print atanLookupNode(11); print atanNode(); def acos(): print asinLookupNode(11); print asinNode(); print acosNode(); def asin(): print asinLookupNode(11); print asinNode(); def atan(): print atanLookupNode(11); print atanNode(); def atan2(): print atanLookupNode(11); print atanNode(); print atan2Node(); def acos(): print asinLookupNode(11); print asinNode(); print acosNode(); def asin(): print asinLookupNode(11); print asinNode(); def atan(): print atanLookupNode(11); print atanNode(); def parseArgs(argv): import argparse as arg p = arg.ArgumentParser (description='\t Generate Math functions') p.add_argument ('--trig', help='Trig function', dest='trig', nargs="*", required=False, default = []) pars = p.parse_args(argv) return pars if __name__ == "__main__": #args = parseArgs(sys.argv[1:]) #for t in args.trig: # try: # if t=="cos": cos() # if t=="sin": sin() # if t=="tan": tan() # if t=="asin": asin() # if t=="acos": acos() # if t=="atan": atan() # if t=="atan2": atan2() # except Exception as e: # print e print sinLookupNode(11); print sinNode(); print cosNode(); print asinLookupNode(11); print asinNode(); print acosNode(); print atanLookupNode(11); print atanNode(); print atan2Node(); print tanLookupNode(11); print tanNode();
71128
import pytest from redis.exceptions import RedisError from rq.exceptions import NoSuchJobError from busy_beaver.models import Task, PostGitHubSummaryTask, PostTweetTask MODULE_TO_TEST = "busy_beaver.models.task" ########### # Base Task ########### def test_create_task(session): # Arrange task = Task( job_id="abcd", name="task_created_for_test", description="Task created for testing purposes", ) # Act session.add(task) session.commit() # Assert assert task.job_id == "abcd" assert task.complete is False assert task.failed is False def add(x, y): return x + y def test_run_async_task_update_progress(app, rq, session): # Arrange rq.job(add) job = add.queue(5, 2) job.meta["progress"] = 100 job.save_meta() # Act queued_task = Task(job_id=job.id, name="Add", description="Add task") session.add(queued_task) session.commit() # Assert assert queued_task.get_progress() == 100 def test_run_async_task_get_job_from_task(app, rq, session): # Arrange rq.job(add) job = add.queue(5, 2) queued_task = Task(job_id=job.id, name="Add", description="Add task") session.add(queued_task) session.commit() # Act retrieved_job = queued_task.get_rq_job() # Assert assert retrieved_job.id == job.id @pytest.fixture def patched_rq(patcher): def _wrapper(replacement): return patcher(MODULE_TO_TEST, namespace="Job", replacement=replacement) return _wrapper @pytest.mark.parametrize("raise_exc", [RedisError, NoSuchJobError]) def test_task_model_get_job_raises_exception(app, rq, session, patched_rq, raise_exc): # Arrange class FakeJob: def __init__(self, error): self.error = error def fetch(self, *args, **kwargs): raise self.error patched_rq(FakeJob(raise_exc)) rq.job(add) job = add.queue(5, 2) queued_task = Task(job_id=job.id, name="Add", description="Add task") session.add(queued_task) session.commit() # Act retrieved_job = queued_task.get_rq_job() # Assert assert retrieved_job is None ##################### # GitHub Summary Task ##################### def test_post_github_summary_task(session): # Arrange channel_name = "test-channel" task = PostGitHubSummaryTask( job_id="abcd", name="task_created_for_test", description="Task created for testing purposes", data={"channel_name": channel_name}, ) # Act session.add(task) session.commit() # Assert assert task.job_id == "abcd" assert task.complete is False assert task.failed is False assert task.data["channel_name"] == channel_name ################# # Post Tweet Task ################# def test_post_tweet_task(session): # Arrange channel_name = "test-channel" task = PostTweetTask( job_id="abcd", name="task_created_for_test", description="Task created for testing purposes", data={"channel_name": channel_name}, ) # Act session.add(task) session.commit() # Assert assert task.job_id == "abcd" assert task.complete is False assert task.failed is False assert task.data["channel_name"] == channel_name
71152
import glob from setuptools import setup setup( name='edxcut', version='0.4', author='<NAME> and <NAME>', author_email='<EMAIL>', packages=['edxcut'], scripts=[], url='http://pypi.python.org/pypi/edxcut/', license='LICENSE.txt', description='edX course unit tester', long_description=open('README.md').read(), include_package_data=True, entry_points={ 'console_scripts': [ 'edxcut = edxcut.main:CommandLine', ], }, install_requires=['lxml', 'requests', 'pyyaml', 'pytest', 'pysrt', ], package_dir={'edxcut': 'edxcut'}, package_data={}, # data_files = data_files, # test_suite="edxcut.test", )
71202
import random from ananas import PineappleBot, ConfigurationError, hourly, reply def make_gram(word_array): return " ".join(word_array) class NGramTextModel(): def __init__(self, n, lines): self.n = n self.gram_dictionary = dict() self.build_from_lines(lines) def build_from_lines(self, lines): for line in lines: line = line.replace("\r", " ") line = line.replace("\n", " ") line_arr = ["^"] * self.n + [word.strip() for word in line.split()] + ["$"] * self.n for i in range(self.n, len(line_arr)): gram = make_gram(line_arr[i - self.n : i]) word = line_arr[i] if (gram not in self.gram_dictionary): self.gram_dictionary[gram] = [] self.gram_dictionary[gram].append(word) def generate_sentence(self): sentence = self.n*["^"] next_gram = sentence[-self.n : ] while(next_gram != ["$"]*self.n): try: word_suggestion = random.choice(self.gram_dictionary[make_gram(next_gram)]) sentence += [word_suggestion] except IndexError: break next_gram = sentence[-self.n : ] return " ".join(sentence[self.n : -self.n]) class MarkovBot(PineappleBot): def init(): self.config.n = 2 def start(): if "corpus" not in self.config: raise ConfigurationError("MarkovBot requires a 'corpus'") with open(self.config.grammar_file, "r") as f: if f: self.model = NGramTextModel(self.config.n, f.lines()) else: raise ConfigurationError("Couldn't open corpus file") @reply def reply(self, mention, user): self.mastodon.status_post("@{} {}".format(user["acct"], self.model.generate_sentence()), in_reply_to_id = mention["id"], visibility = mention["visibility"]) @hourly() def post(self): self.mastodon.toot(self.model.generate_sentence())
71245
from social_auth.backends import PIPELINE from social_auth.utils import setting def save_status_to_session(request, auth, pipeline_index, *args, **kwargs): """Saves current social-auth status to session.""" next_entry = setting('SOCIAL_AUTH_PIPELINE_RESUME_ENTRY') if next_entry and next_entry in PIPELINE: idx = PIPELINE.index(next_entry) else: idx = pipeline_index + 1 data = auth.to_session_dict(idx, *args, **kwargs) name = setting('SOCIAL_AUTH_PARTIAL_PIPELINE_KEY', 'partial_pipeline') request.session[name] = data
71269
from __future__ import print_function import torch import torch.optim as optim from data.data_loader import CreateDataLoader import tqdm import cv2 import yaml from schedulers import WarmRestart, LinearDecay import numpy as np from models.networks import get_nets from models.losses import get_loss from models.models import get_model from tensorboardX import SummaryWriter import logging logging.basicConfig(filename='res.log',level=logging.DEBUG) writer = SummaryWriter('res_runs') REPORT_EACH = 100 torch.backends.cudnn.bencmark = True cv2.setNumThreads(0) class Trainer: def __init__(self, config): self.config = config self.train_dataset = self._get_dataset(config, 'train') self.val_dataset = self._get_dataset(config, 'test') self.best_metric = 0 self.warmup_epochs = config['warmup_num'] def train(self): self._init_params() for epoch in range(0, config['num_epochs']): if (epoch == self.warmup_epochs) and not(self.warmup_epochs == 0): self.netG.module.unfreeze() self.optimizer_G = self._get_optim(self.netG, self.config['optimizer']['lr_G']) self.scheduler_G = self._get_scheduler(self.optimizer_G) train_loss = self._run_epoch(epoch) val_loss, val_psnr = self._validate(epoch) self.scheduler_G.step() val_metric = val_psnr if val_metric > self.best_metric: self.best_metric = val_metric torch.save({ 'model': self.netG.state_dict() }, 'best_{}.h5'.format(self.config['experiment_desc'])) torch.save({ 'model': self.netG.state_dict() }, 'last_{}.h5'.format(self.config['experiment_desc'])) print(('val_loss={}, val_metric={}, best_metric={}\n'.format(val_loss, val_metric, self.best_metric))) logging.debug("Experiment Name: %s, Epoch: %d, Train Loss: %.3f, Val Accuracy: %.3f, Val Loss: %.3f, Best Loss: %.3f" % ( self.config['experiment_desc'], epoch, train_loss, val_loss, val_metric, self.best_metric)) def _run_epoch(self, epoch): self.netG = self.netG.train() losses_G = [] losses_vgg = [] losses_adv = [] psnrs = [] ssim = [] batches_per_epoch = len(self.train_dataset) / config['batch_size'] for param_group in self.optimizer_G.param_groups: lr = param_group['lr'] tq = tqdm.tqdm(self.train_dataset.dataloader) tq.set_description('Epoch {}, lr {}'.format(epoch, lr)) i = 0 for data in tq: inputs, targets = self.model.get_input(data) outputs = self.netG(inputs) for _ in range(config['D_update_ratio']): self.optimizer_D.zero_grad() loss_D = config['loss']['adv'] * self.criterionD(self.netD, outputs, targets) loss_D.backward(retain_graph=True) self.optimizer_D.step() self.optimizer_G.zero_grad() loss_content = self.criterionG(outputs, targets) loss_adv = self.criterionD.get_g_loss(self.netD, outputs) loss_G = loss_content + config['loss']['adv'] * loss_adv loss_G.backward() self.optimizer_G.step() losses_G.append(loss_G.item()) losses_vgg.append(loss_content.item()) losses_adv.append(loss_adv.item()) curr_psnr, curr_ssim = self.model.get_acc(outputs, targets) psnrs.append(curr_psnr) ssim.append(curr_ssim) mean_loss_G = np.mean(losses_G[-REPORT_EACH:]) mean_loss_vgg = np.mean(losses_vgg[-REPORT_EACH:]) mean_loss_adv = np.mean(losses_adv[-REPORT_EACH:]) mean_psnr = np.mean(psnrs[-REPORT_EACH:]) mean_ssim = np.mean(ssim[-REPORT_EACH:]) if i % 100 == 0: writer.add_scalar('Train_G_Loss', mean_loss_G, i + (batches_per_epoch * epoch)) writer.add_scalar('Train_G_Loss_vgg', mean_loss_vgg, i + (batches_per_epoch * epoch)) writer.add_scalar('Train_G_Loss_adv', mean_loss_adv, i + (batches_per_epoch * epoch)) writer.add_scalar('Train_PSNR', mean_psnr, i + (batches_per_epoch * epoch)) writer.add_scalar('Train_SSIM', mean_ssim, i + (batches_per_epoch * epoch)) writer.add_image('output', outputs) writer.add_image('target', targets) self.model.visualize_data(writer, data, i + (batches_per_epoch * epoch)) tq.set_postfix(loss=self.model.get_loss(mean_loss_G, mean_psnr, mean_ssim)) i += 1 tq.close() return np.mean(losses_G) def _validate(self, epoch): self.netG = self.netG.eval() losses = [] psnrs = [] ssim = [] tq = tqdm.tqdm(self.val_dataset.dataloader) tq.set_description('Validation') for data in tq: inputs, targets = self.model.get_input(data) outputs = self.netG(inputs) loss_content = self.criterionG(outputs, targets) loss_G = loss_content + config['loss']['adv'] * self.criterionD.get_g_loss(self.netD, outputs) losses.append(loss_G.item()) curr_psnr, curr_ssim = self.model.get_acc(outputs, targets, full=True) psnrs.append(curr_psnr) ssim.append(curr_ssim) val_loss = np.mean(losses) val_psnr = np.mean(psnrs) val_ssim = np.mean(ssim) tq.close() writer.add_scalar('Validation_Loss', val_loss, epoch) writer.add_scalar('Validation_PSNR', val_psnr, epoch) writer.add_scalar('Validation_SSIM', val_ssim, epoch) writer.add_image('output', outputs) writer.add_image('target', targets) return val_loss, val_psnr def _get_dataset(self, config, filename): data_loader = CreateDataLoader(config, filename) return data_loader.load_data() def _get_optim(self, model, lr): if self.config['optimizer']['name'] == 'adam': optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) elif self.config['optimizer']['name'] == 'sgd': optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) elif self.config['optimizer']['name'] == 'adadelta': optimizer = optim.Adadelta(filter(lambda p: p.requires_grad, model.parameters()), lr=lr) else: raise ValueError("Optimizer [%s] not recognized." % self.config['optimizer']['name']) return optimizer def _get_scheduler(self, optimizer): if self.config['scheduler']['name'] == 'plateau': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=self.config['scheduler']['patience'], factor=self.config['scheduler']['factor'], min_lr=self.config['scheduler']['min_lr']) elif self.config['optimizer']['name'] == 'sgdr': scheduler = WarmRestart(optimizer) elif self.config['scheduler']['name'] == 'linear': scheduler = LinearDecay(optimizer, min_lr=self.config['scheduler']['min_lr'], num_epochs=self.config['num_epochs'], start_epoch=self.config['scheduler']['start_epoch']) else: raise ValueError("Scheduler [%s] not recognized." % self.config['scheduler']['name']) return scheduler def _init_params(self): self.netG, self.netD = get_nets(self.config['model']) self.netG.cuda() self.netD.cuda() self.model = get_model(self.config['model']) self.criterionG, self.criterionD = get_loss(self.config['model']) self.optimizer_G = self._get_optim(self.netG, self.config['optimizer']['lr_G']) self.optimizer_D = self._get_optim(self.netD, self.config['optimizer']['lr_D']) self.scheduler_G = self._get_scheduler(self.optimizer_G) self.scheduler_D = self._get_scheduler(self.optimizer_D) if __name__ == '__main__': with open('config/deblur_solver.yaml', 'r') as f: config = yaml.load(f) trainer = Trainer(config) trainer.train()
71284
from __future__ import absolute_import import sys import copy import operator from functools import reduce from sqlbuilder.smartsql.compiler import compile from sqlbuilder.smartsql.constants import CONTEXT, PLACEHOLDER, MAX_PRECEDENCE from sqlbuilder.smartsql.exceptions import MaxLengthError from sqlbuilder.smartsql.pycompat import string_types from sqlbuilder.smartsql.utils import Undef, is_list, warn __all__ = ( 'Operable', 'Expr', 'ExprList', 'CompositeExpr', 'Param', 'Parentheses', 'OmitParentheses', 'Callable', 'NamedCallable', 'Constant', 'ConstantSpace', 'Case', 'Cast', 'Concat', 'Alias', 'Name', 'NameCompiler', 'Value', 'ValueCompiler', 'Array', 'ArrayItem', 'expr_repr', 'datatypeof', 'const', 'func' ) SPACE = " " @compile.when(object) def compile_object(compile, expr, state): state.sql.append(PLACEHOLDER) state.params.append(expr) @compile.when(type(None)) def compile_none(compile, expr, state): state.sql.append('NULL') @compile.when(slice) def compile_slice(compile, expr, state): # FIXME: Should be here numrange()? Looks like not, see http://initd.org/psycopg/docs/extras.html#adapt-range state.sql.append("[") state.sql.append("{0:d}".format(expr.start)) if expr.stop is not None: state.sql.append(", ") state.sql.append("{0:d}".format(expr.stop)) state.sql.append("]") @compile.when(list) @compile.when(tuple) def compile_list(compile, expr, state): compile(Parentheses(ExprList(*expr).join(", ")), state) class Operable(object): __slots__ = ('_datatype', '__weakref__') def __init__(self, datatype=None): if datatype is None: from sqlbuilder.smartsql.datatypes import BaseType datatype = BaseType self._datatype = datatype def __getattr__(self, name): """Use in derived classes: try: return Operable.__getattr__(self, key) except AttributeError: return derived_logic() """ if name.startswith('__'): # All allowed special method already defined. raise AttributeError delegate = self._datatype(self) return getattr(delegate, name) __hash__ = object.__hash__ def __add__(self, other): return self._datatype(self).__add__(other) def __radd__(self, other): return self._datatype(self).__radd__(other) def __sub__(self, other): return self._datatype(self).__sub__(other) def __rsub__(self, other): return self._datatype(self).__rsub__(other) def __mul__(self, other): return self._datatype(self).__mul__(other) def __rmul__(self, other): return self._datatype(self).__rmul__(other) def __div__(self, other): return self._datatype(self).__div__(other) def __rdiv__(self, other): return self._datatype(self).__rdiv__(other) def __truediv__(self, other): return self._datatype(self).__truediv__(other) def __rtruediv__(self, other): return self._datatype(self).__rtruediv__(other) def __floordiv__(self, other): return self._datatype(self).__floordiv__(other) def __rfloordiv__(self, other): return self._datatype(self).__rfloordiv__(other) def __and__(self, other): return self._datatype(self).__and__(other) def __rand__(self, other): return self._datatype(self).__rand__(other) def __or__(self, other): return self._datatype(self).__or__(other) def __ror__(self, other): return self._datatype(self).__ror__(other) def __gt__(self, other): return self._datatype(self).__gt__(other) def __lt__(self, other): return self._datatype(self).__lt__(other) def __ge__(self, other): return self._datatype(self).__ge__(other) def __le__(self, other): return self._datatype(self).__le__(other) def __eq__(self, other): return self._datatype(self).__eq__(other) def __ne__(self, other): return self._datatype(self).__ne__(other) def __rshift__(self, other): return self._datatype(self).__rshift__(other) def __rrshift__(self, other): return self._datatype(self).__rshift__(other) def __lshift__(self, other): return self._datatype(self).__lshift__(other) def __rlshift__(self, other): return self._datatype(self).__lshift__(other) def __pos__(self): return self._datatype(self).__pos__() def __neg__(self): return self._datatype(self).__neg__() def __invert__(self): return self._datatype(self).__invert__() def __pow__(self, other): return self._datatype(self).__pow__(other) def __rpow__(self, other): return self._datatype(self).__rpow__(other) def __mod__(self, other): return self._datatype(self).__mod__(other) def __rmod__(self, other): return self._datatype(self).__rmod__(other) def __abs__(self): return self._datatype(self).__abs__() def __getitem__(self, key): return self._datatype(self).__getitem__(key) class Expr(Operable): __slots__ = ('sql', 'params') def __init__(self, sql, *params, **kwargs): Operable.__init__(self, kwargs.get('datatype')) if params and is_list(params[0]): self.__init__(sql, *params[0]) return self.sql, self.params = sql, params def __repr__(self): return expr_repr(self) @compile.when(Expr) def compile_expr(compile, expr, state): state.sql.append(expr.sql) state.params += expr.params class ExprList(Expr): __slots__ = ('data', ) def __init__(self, *args): # if args and is_list(args[0]): # self.__init__(*args[0]) # return Expr.__init__(self, ' ') self.data = list(args) def join(self, sep): self.sql = sep return self def __len__(self): return len(self.data) def __setitem__(self, key, value): self.data[key] = value def __getitem__(self, key): if isinstance(key, slice): start = key.start or 0 end = key.stop or sys.maxsize return ExprList(*self.data[start:end]) return self.data[key] def __iter__(self): return iter(self.data) def append(self, x): return self.data.append(x) def insert(self, i, x): return self.data.insert(i, x) def extend(self, l): return self.data.extend(l) def pop(self, i): return self.data.pop(i) def remove(self, x): return self.data.remove(x) def reset(self): del self.data[:] return self def __copy__(self): dup = copy.copy(super(ExprList, self)) dup.data = dup.data[:] return dup @compile.when(ExprList) def compile_exprlist(compile, expr, state): first = True for a in expr: if first: first = False else: state.sql.append(expr.sql) compile(a, state) class CompositeExpr(object): __slots__ = ('data', 'sql') def __init__(self, *args): self.data = args self.sql = ", " def as_(self, aliases): return self.__class__(*(expr.as_(alias) for expr, alias in zip(self.data, aliases))) def in_(self, composite_others): return self._op_list(operator.eq, composite_others) def not_in(self, composite_others): return ~self._op_list(operator.eq, composite_others) def _op_list(self, op, composite_others): return reduce(operator.or_, (self._op(op, composite_other) for composite_other in composite_others)) def _op(self, op, composite_other): return reduce(operator.and_, (op(expr, val) for (expr, val) in zip(self.data, composite_other))) def __eq__(self, composite_other): return self._op(operator.eq, composite_other) def __ne__(self, composite_other): return self._op(operator.ne, composite_other) def __iter__(self): return iter(self.data) def __repr__(self): return expr_repr(self) @compile.when(CompositeExpr) def compile_compositeexpr(compile, expr, state): compile_exprlist(compile, expr, state) class Param(Expr): __slots__ = () def __init__(self, params): Operable.__init__(self) self.params = params @compile.when(Param) def compile_param(compile, expr, state): compile(expr.params, state) class Parentheses(Expr): __slots__ = ('expr', ) def __init__(self, expr): Operable.__init__(self) self.expr = expr @compile.when(Parentheses) def compile_parentheses(compile, expr, state): state.precedence += MAX_PRECEDENCE compile(expr.expr, state) class OmitParentheses(Parentheses): pass @compile.when(OmitParentheses) def compile_omitparentheses(compile, expr, state): state.precedence = 0 compile(expr.expr, state) class Callable(Expr): __slots__ = ('expr', 'args') def __init__(self, expr, *args): Operable.__init__(self) self.expr = expr self.args = ExprList(*args).join(", ") @compile.when(Callable) def compile_callable(compile, expr, state): compile(expr.expr, state) state.sql.append('(') compile(expr.args, state) state.sql.append(')') class NamedCallable(Callable): __slots__ = () def __init__(self, *args): Operable.__init__(self) self.args = ExprList(*args).join(", ") @compile.when(NamedCallable) def compile_namedcallable(compile, expr, state): state.sql.append(expr.sql) state.sql.append('(') compile(expr.args, state) state.sql.append(')') class Constant(Expr): __slots__ = () def __init__(self, const): Expr.__init__(self, const.upper()) def __call__(self, *args): return Callable(self, *args) @compile.when(Constant) def compile_constant(compile, expr, state): state.sql.append(expr.sql) class ConstantSpace(object): __slots__ = () def __getattr__(self, attr): return Constant(attr) class Case(Expr): __slots__ = ('cases', 'expr', 'default') def __init__(self, cases, expr=Undef, default=Undef): Operable.__init__(self) self.cases = cases self.expr = expr self.default = default @compile.when(Case) def compile_case(compile, expr, state): state.sql.append('CASE') if expr.expr is not Undef: state.sql.append(SPACE) compile(expr.expr, state) for clause, value in expr.cases: state.sql.append(' WHEN ') compile(clause, state) state.sql.append(' THEN ') compile(value, state) if expr.default is not Undef: state.sql.append(' ELSE ') compile(expr.default, state) state.sql.append(' END ') class Cast(NamedCallable): __slots__ = ("expr", "type",) sql = "CAST" def __init__(self, expr, type): Operable.__init__(self) self.expr = expr self.type = type @compile.when(Cast) def compile_cast(compile, expr, state): state.sql.append(expr.sql) state.sql.append('(') compile(expr.expr, state) state.sql.append(' AS ') state.sql.append(expr.type) state.sql.append(')') class Concat(ExprList): __slots__ = ('_ws', ) def __init__(self, *args): super(Concat, self).__init__(*args) self.sql = ' || ' self._ws = None def ws(self, sep=None): if sep is None: return self._ws self._ws = sep self.sql = ', ' return self @compile.when(Concat) def compile_concat(compile, expr, state): if not expr.ws(): return compile_exprlist(compile, expr, state) state.sql.append('concat_ws(') compile(expr.ws(), state) for a in expr: state.sql.append(expr.sql) compile(a, state) state.sql.append(')') class Alias(Expr): __slots__ = ('expr', 'sql') def __init__(self, expr=Undef, name=Undef): if isinstance(expr, string_types): warn('Alias(alias, expr)', 'Alias(name, expr)') expr, name = name, expr self.expr = expr if isinstance(name, string_types): name = Name(name) super(Alias, self).__init__(name) @compile.when(Alias) def compile_alias(compile, expr, state): if state.context == CONTEXT.FIELD: compile(expr.expr, state) state.sql.append(' AS ') compile(expr.sql, state) class Name(object): __slots__ = ('name', ) def __init__(self, name=None): self.name = name def __repr__(self): return expr_repr(self) class NameCompiler(object): _translation_mapping = ( ("\\", "\\\\"), ("\000", "\\0"), ('\b', '\\b'), ('\n', '\\n'), ('\r', '\\r'), ('\t', '\\t'), ("%", "%%") ) _delimiter = '"' _escape_delimiter = '"' _max_length = 63 def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, '_{}'.format(k), v) def __call__(self, compile, expr, state): state.sql.append(self._delimiter) name = expr.name name = name.replace(self._delimiter, self._escape_delimiter + self._delimiter) for k, v in self._translation_mapping: name = name.replace(k, v) if len(name) > self._get_max_length(state): raise MaxLengthError("The length of name {0!r} is more than {1}".format(name, self._max_length)) state.sql.append(name) state.sql.append(self._delimiter) def _get_max_length(self, state): # Max length can depend on context. return self._max_length compile_name = NameCompiler() compile.when(Name)(compile_name) class Value(object): __slots__ = ('value', ) def __init__(self, value): self.value = value def __repr__(self): return expr_repr(self) class ValueCompiler(object): _translation_mapping = ( ("\\", "\\\\"), ("\000", "\\0"), ('\b', '\\b'), ('\n', '\\n'), ('\r', '\\r'), ('\t', '\\t'), ("%", "%%") ) _delimiter = "'" _escape_delimiter = "'" def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, '_{}'.format(k), v) def __call__(self, compile, expr, state): state.sql.append(self._delimiter) value = str(expr.value) value = value.replace(self._delimiter, self._escape_delimiter + self._delimiter) for k, v in self._translation_mapping: value = value.replace(k, v) state.sql.append(value) state.sql.append(self._delimiter) compile_value = ValueCompiler() compile.when(Value)(compile_value) class Array(ExprList): # TODO: use composition instead of inheritance, to solve ambiguous of __getitem__()??? __slots__ = () def __init__(self, *args): Operable.__init__(self) self.sql, self.data = ", ", list(args) @compile.when(Array) def compile_array(compile, expr, state): if not expr.data: state.sql.append("'{}'") state.sql.append("ARRAY[{0}]".format(compile_exprlist(compile, expr, state))) class ArrayItem(Expr): __slots__ = ('array', 'key') def __init__(self, array, key): Operable.__init__(self) self.array = array assert isinstance(key, slice) self.key = key @compile.when(ArrayItem) def compile_arrayitem(compile, expr, state): compile(expr.array) state.sql.append("[") state.sql.append("{0:d}".format(expr.key.start)) if expr.key.stop is not None: state.sql.append(", ") state.sql.append("{0:d}".format(expr.key.stop)) state.sql.append("]") def datatypeof(obj): if isinstance(obj, Operable): return obj._datatype from sqlbuilder.smartsql.datatypes import BaseType return BaseType def expr_repr(expr): return "<{0}: {1}, {2!r}>".format(type(expr).__name__, *compile(expr)) func = const = ConstantSpace()
71294
import torch import torch import numpy as np import torch from torch.autograd import Variable import os import argparse from datetime import datetime import torch.nn.functional as F def joint_loss(pred, mask): weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask) wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none') wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3)) pred = torch.sigmoid(pred) inter = ((pred * mask)*weit).sum(dim=(2, 3)) union = ((pred + mask)*weit).sum(dim=(2, 3)) wiou = 1 - (inter + 1)/(union - inter+1) return (wbce + wiou).mean() def joint_loss_flat(pred, mask, roi_mask=None): W = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask).squeeze() L = F.binary_cross_entropy_with_logits(pred, mask, reduction='none').squeeze() P = torch.sigmoid(pred).squeeze() M = mask.squeeze() if roi_mask is not None: W = W[roi_mask] L = L[roi_mask] P = P[roi_mask] M = M[roi_mask] # Sum them up WL = (W*L).sum() / W.sum() I = ((P * M)*W).sum() U = ((P + M)*W).sum() # Compute Weighted IoU WIoU = 1 - (I + 1)/(U - I+1) return (WL + WIoU).mean() def clip_gradient(optimizer, grad_clip): """ For calibrating mis-alignment gradient via cliping gradient technique :param optimizer: :param grad_clip: :return: """ for group in optimizer.param_groups: for param in group['params']: if param.grad is not None: param.grad.data.clamp_(-grad_clip, grad_clip) def adjust_lr(optimizer, epoch, decay_rate=0.1, decay_epoch=30): decay = decay_rate ** (epoch // decay_epoch) for param_group in optimizer.param_groups: param_group['lr'] *= decay def collate_fn(batch): batch_dict = {} for k in batch[0]: batch_dict[k] = [] for i in range(len(batch)): batch_dict[k] += [batch[i][k]] # tuple(zip(*batch)) batch_dict['images'] = torch.stack(batch_dict['images']) if 'masks' in batch_dict: batch_dict['masks'] = torch.stack(batch_dict['masks']) if 'points' in batch_dict: batch_dict['points'] = torch.stack(batch_dict['points']) if 'edges' in batch_dict: batch_dict['edges'] = torch.stack(batch_dict['edges']) return batch_dict
71413
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal from torch.distributions.transforms import TanhTransform from rl_sandbox.constants import OBS_RMS, VALUE_RMS, CPU from rl_sandbox.model_architectures.utils import RunningMeanStd class ActorCritic(nn.Module): def __init__(self, obs_dim, norm_dim=(0,), device=torch.device(CPU), normalize_obs=False, normalize_value=False, **kwargs): super().__init__(**kwargs) self.device = device self._obs_dim = obs_dim if normalize_obs: if isinstance(obs_dim, int): obs_dim = (obs_dim,) self.obs_rms = RunningMeanStd(shape=obs_dim, norm_dim=norm_dim) if normalize_value: self.value_rms = RunningMeanStd(shape=(1,), norm_dim=(0,)) def _extract_features(self, x): x = self._flatten(x) obs, extra_features = x[:, :self._obs_dim], x[:, self._obs_dim:] if hasattr(self, OBS_RMS): obs = self.obs_rms.normalize(obs) x = torch.cat((obs, extra_features), dim=1) x = x.to(self.device) return x def forward(self, x, **kwargs): raise NotImplementedError() def evaluate_action(self, x, h, a, **kwargs): dist, value, _ = self.forward(x, h, **kwargs) log_prob = dist.log_prob(a.clone().detach().to(self.device)).sum(dim=-1, keepdim=True) return log_prob, value, dist.entropy() def compute_action(self, x, h, **kwargs): self.eval() with torch.no_grad(): dist, value, h = self.forward(x, h=h) action = dist.rsample() log_prob = dist.log_prob(action).sum(dim=-1, keepdim=True) self.train() return action[0].cpu().numpy(), value[0].cpu().numpy(), h[0].cpu().numpy(), log_prob[0].cpu().numpy(), dist.entropy()[0].cpu().numpy(), dist.mean[0].cpu().numpy(), dist.variance[0].cpu().numpy() def deterministic_action(self, x, h, **kwargs): self.eval() with torch.no_grad(): dist, value, h = self.forward(x, h=h) action = dist.mean log_prob = dist.log_prob(action).sum(dim=-1, keepdim=True) self.train() return action[0].cpu().numpy(), value[0].cpu().numpy(), h[0].cpu().numpy(), log_prob[0].cpu().numpy(), dist.entropy()[0].cpu().numpy() class LSTMActorCritic(ActorCritic): def __init__(self, obs_dim, hidden_state_dim, norm_dim=(0,), device=torch.device(CPU), normalize_obs=False, normalize_value=False, **kwargs): super().__init__(obs_dim=obs_dim, norm_dim=norm_dim, device=device, normalize_obs=normalize_obs, normalize_value=normalize_value, **kwargs) self.hidden_state_dim = hidden_state_dim def _convert_hidden_state_to_tuple(self, h): hidden_state = h[..., :self.hidden_state_dim].contiguous() cell_state = h[..., self.hidden_state_dim:].contiguous() return (hidden_state, cell_state) def _convert_tuple_to_hidden_state(self, h): return torch.cat((h[0], h[1]), dim=-1) def initialize_hidden_state(self): return torch.zeros((1, self.hidden_state_dim * 2)) def lstm_forward(self, x, h, lengths, **kwargs): batch_size = h.shape[0] seq_len = h.shape[1] if lengths is None: lengths = torch.ones(batch_size, dtype=torch.int) h = h.transpose(0, 1)[[0]] x = x.reshape(batch_size, seq_len, -1) h = self._convert_hidden_state_to_tuple(h.to(self.device)) x = torch.nn.utils.rnn.pack_padded_sequence( x, lengths, batch_first=True, enforce_sorted=False) x, h = self.lstm_layer(x, h) output, input_sizes = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True) x = output[range(output.shape[0]), input_sizes - 1, :] h = self._convert_tuple_to_hidden_state(h).transpose(0, 1) return x, h def evaluate_action(self, x, h, a, lengths, **kwargs): dist, value, _ = self.forward(x, h, lengths=lengths) log_prob = dist.log_prob(a.clone().detach().to(self.device)).sum(dim=-1, keepdim=True) return log_prob, value, dist.entropy() class QActorCritic(ActorCritic): def __init__(self, obs_dim, norm_dim=(0,), device=torch.device(CPU), normalize_obs=False, normalize_value=False, **kwargs): super().__init__(obs_dim=obs_dim, norm_dim=norm_dim, device=device, normalize_obs=normalize_obs, normalize_value=normalize_value, **kwargs) def _q_vals(self, x, h, a): input = torch.cat((x, a), dim=1) q1_val = self._q1(input) q2_val = self._q2(input) min_q = torch.min(q1_val, q2_val) return min_q, q1_val, q2_val, h def q_vals(self, x, h, a, **kwargs): x = self._extract_features(x) a = a.to(self.device) return self._q_vals(x, h, a) def act_lprob(self, x, h, **kwargs): dist, _, _ = self(x, h) action = dist.rsample() log_prob = dist.log_prob(action).sum(dim=-1, keepdim=True) return action, log_prob def act_stats(self, x, h, **kwargs): dist, val, _ = self(x, h) action = dist.rsample() return action, dist.mean, dist.variance, dist.entropy(), val def lprob(self, x, h, a, **kwargs): dist, _, _ = self(x, h) return dist.log_prob(a).sum(dim=-1, keepdim=True) def forward(self, x, h, **kwargs): raise NotImplementedError @property def policy_parameters(self): return self._policy.parameters() @property def qs_parameters(self): return list(self._q1.parameters()) + list(self._q2.parameters()) class SoftActorCritic(ActorCritic): def __init__(self, obs_dim, initial_alpha=1., norm_dim=(0,), device=torch.device(CPU), normalize_obs=False, normalize_value=False, **kwargs): super().__init__(obs_dim=obs_dim, norm_dim=norm_dim, device=device, normalize_obs=normalize_obs, normalize_value=normalize_value, **kwargs) assert initial_alpha > 0. self._log_alpha = nn.Parameter(torch.ones(1) * torch.log(torch.tensor(initial_alpha))) def _q_vals(self, x, h, a): input = torch.cat((x, a), dim=1) q1_val = self._q1(input) q2_val = self._q2(input) min_q = torch.min(q1_val, q2_val) return min_q, q1_val, q2_val, h def q_vals(self, x, h, a, **kwargs): x = self._extract_features(x) a = a.to(self.device) return self._q_vals(x, h, a) def act_lprob(self, x, h, **kwargs): dist, _, _ = self(x, h) action = dist.rsample() log_prob = dist.log_prob(action).sum(dim=-1, keepdim=True) return action, log_prob def forward(self, x, h, **kwargs): raise NotImplementedError @property def log_alpha(self): return self._log_alpha @property def alpha(self): return torch.exp(self._log_alpha) @property def policy_parameters(self): return self._policy.parameters() @property def qs_parameters(self): return list(self._q1.parameters()) + list(self._q2.parameters()) @property def soft_update_parameters(self): return self.qs_parameters class SquashedGaussianSoftActorCritic(SoftActorCritic): def __init__(self, obs_dim, initial_alpha=1., eps=1e-7, norm_dim=(0,), device=torch.device(CPU), normalize_obs=False, normalize_value=False, **kwargs): super().__init__(obs_dim=obs_dim, initial_alpha=initial_alpha, norm_dim=norm_dim, device=device, normalize_obs=normalize_obs, normalize_value=normalize_value, **kwargs) self._eps = eps self._squash_gaussian = TanhTransform() def _q_vals(self, x, a): input = torch.cat((x, a), dim=1) q1_val = self._q1(input) q2_val = self._q2(input) min_q = torch.min(q1_val, q2_val) return min_q, q1_val, q2_val def _lprob(self, dist, a, t_a): return torch.sum(dist.log_prob(a) - self._squash_gaussian.log_abs_det_jacobian(a, t_a), dim=-1, keepdim=True) def q_vals(self, x, h, a, **kwargs): a = a.to(self.device) x = self._extract_features(x) min_q, q1_val, q2_val = self._q_vals(x, a) return min_q, q1_val, q2_val, h def act_lprob(self, x, h, **kwargs): dist, _, _ = self.forward(x, h) action = dist.rsample() t_action = self._squash_gaussian(action) log_prob = self._lprob(dist, action, t_action) return t_action, log_prob def compute_action(self, x, h): self.eval() with torch.no_grad(): dist, value, h = self.forward(x, h=h) action = dist.rsample() t_action = self._squash_gaussian(action) log_prob = self._lprob(dist, action, t_action) self.train() return t_action[0].cpu().numpy(), value[0].cpu().numpy(), h[0].cpu().numpy(), log_prob[0].cpu().numpy(), dist.entropy()[0].cpu().numpy(), dist.mean[0].cpu().numpy(), dist.variance[0].cpu().numpy() def deterministic_action(self, x, h): self.eval() with torch.no_grad(): dist, value, h = self.forward(x, h=h) action = dist.mean t_action = self._squash_gaussian(action) log_prob = self._lprob(dist, action, t_action) self.train() return t_action[0].cpu().numpy(), value[0].cpu().numpy(), h[0].cpu().numpy(), log_prob[0].cpu().numpy(), dist.entropy()[0].cpu().numpy() def forward(self, x, h, **kwargs): x = self._extract_features(x) a_mean, a_raw_std = torch.chunk(self._policy(x), chunks=2, dim=1) a_std = F.softplus(a_raw_std) + self._eps dist = Normal(a_mean, a_std) t_a_mean = self._squash_gaussian(a_mean) min_q, _, _ = self._q_vals(x, t_a_mean) val = min_q - self.alpha * self._lprob(dist, a_mean, t_a_mean) return dist, val, h
71414
import os train_src="../dynet_nmt/data/train.de-en.de.wmixerprep" train_tgt="../dynet_nmt/data/train.de-en.en.wmixerprep" dev_src="../dynet_nmt/data/valid.de-en.de" dev_tgt="../dynet_nmt/data/valid.de-en.en" test_src="../dynet_nmt/data/test.de-en.de" test_tgt="../dynet_nmt/data/test.de-en.en" for temp in [0.5]: job_name = 'iwslt14.raml.corrupt_ngram.t%.3f' % temp train_log = 'train.' + job_name + '.log' model_name = 'model.' + job_name decode_file = 'iwslt14.test.en.raml.corrupt_ngram.t%.3f' % temp job_file = 'scripts/train.%s.sh' % job_name with open(job_file, 'w') as f: f.write("""#!/bin/sh python nmt.py \ --cuda \ --mode test \ --load_model models/{model_name}.bin \ --beam_size 5 \ --decode_max_time_step 100 \ --save_to_file decode/{decode_file} \ --test_src {test_src} \ --test_tgt {test_tgt} echo "test result" >> logs/{train_log} perl multi-bleu.perl {test_tgt} < decode/{decode_file} >> logs/{train_log} """.format(model_name=model_name, temp=temp, train_src=train_src, train_tgt=train_tgt, dev_src=dev_src, dev_tgt=dev_tgt, test_src=test_src, test_tgt=test_tgt, train_log=train_log, decode_file=decode_file)) os.system('bash submit_job.sh %s' % job_file)
71485
import os import typing from datetime import datetime from importlib import import_module from typing import Dict, Callable, Optional, List, Tuple from twitchbot.database import CustomCommand from twitchbot.message import Message from .config import cfg from .enums import CommandContext from .util import get_py_files, get_file_name from .util import temp_syspath if typing.TYPE_CHECKING: from .modloader import Mod DEFAULT_COOLDOWN_BYPASS = 'bypass_cooldown' DEFAULT_COOLDOWN = 0 __all__ = ( 'Command', 'commands', 'command_exist', 'load_commands_from_directory', 'DummyCommand', 'CustomCommandAction', 'ModCommand', 'SubCommand', 'get_command', 'CUSTOM_COMMAND_PLACEHOLDERS', 'command_last_execute', 'get_time_since_execute', 'reset_command_last_execute', 'is_command_off_cooldown', 'is_command_on_cooldown', 'update_command_last_execute', 'set_command_permission') class Command: def __init__(self, name: str, prefix: str = None, func: Callable = None, global_command: bool = True, context: CommandContext = CommandContext.DEFAULT_COMMAND_CONTEXT, permission: str = None, syntax: str = None, help: str = None, aliases: List[str] = None, cooldown: int = DEFAULT_COOLDOWN, cooldown_bypass: str = DEFAULT_COOLDOWN_BYPASS, hidden: bool = False, parent: 'Command' = None): """ :param name: name of the command (without the prefix) :param prefix: prefix require before the command name (defaults the the configs prefix if None) :param func: the function that the commands executes :param global_command: should the command be registered globally? :param context: the context through which calling the command is allowed :param permission: permission needed to run the command in chat :param syntax: help message for how to use the command, <> is required, () is optional :param help: help message for the command, used with the `help` command :param aliases: aliases for this same command, only works if global_command is True :param cooldown: time between when this command when can be run, 0 means the command be run without any delay and is default value :param cooldown_bypass: permission that allows those who have it to bypass the commands cooldown :param hidden: hides the command from the output of the commands command :param parent: parent command for this command, allows for this command to be a subcommand """ self.hidden = hidden self.cooldown_bypass = cooldown_bypass self.cooldown: int = cooldown self.aliases: List[str] = aliases if aliases is not None else [] self.help: str = help self.syntax: str = syntax self.permission: str = permission self.context: CommandContext = context self.prefix: str = (prefix if prefix is not None else cfg.prefix).lower() self.func: Callable = func self.name: str = name.lower() self.sub_cmds: Dict[str, Command] = {} self.parent: Optional[Command] = None self.update_parent_command(parent) if global_command: commands[self.fullname] = self # register all aliases passed to this functions if aliases is not None: for alias in aliases: commands[self.prefix + alias] = self def update_parent_command(self, parent: 'Command' = None): if parent is None: if self.parent is not None and self.name in self.parent.sub_cmds: del self.parent.sub_cmds[self.name] self.parent = None else: self.parent = parent if self.name in self.parent.sub_cmds: del self.parent.sub_cmds[self.name] parent.sub_cmds[self.name] = self @property def fullname(self) -> str: return self.prefix + self.name def parent_chain(self) -> List['Command']: """ returns a list with the chain of commands leading to this command also includes this command ex (with subcommands used): c subcommands b subcommands a parent_chain() returns [a, b, c] :return: list of parents leading to this command, plus the current command at the end """ parents = [self] parent = self.parent while parent: parents.append(parent) parent = parent.parent return parents[::-1] def _get_cmd_func(self, args) -> Tuple['Callable', List[str]]: """returns a tuple of the final commands command function and the remaining argument""" if not self.sub_cmds or not args or args[0].lower() not in self.sub_cmds: return self.func, args return self.sub_cmds[args[0].lower()]._get_cmd_func(args[1:]) def get_sub_cmd(self, args) -> Tuple['Command', Tuple[str]]: """ returns the final command in a sub-command chain from the args passed to the this function the sub-command chain is based off of the current command this function is called on args is a list or tuple of strings """ if not self.sub_cmds or not args or args[0].lower() not in self.sub_cmds: return self, args return self.sub_cmds[args[0].lower()].get_sub_cmd(args[1:]) async def execute(self, msg: Message): func, args = self._get_cmd_func(msg.parts[1:]) await func(msg, *args) async def has_permission_to_run_from_msg(self, origin_msg: Message): from .event_util import forward_event_with_results from .enums import Event for parent in self.parent_chain(): if (parent.permission and not all(await forward_event_with_results(Event.on_permission_check, origin_msg, parent, channel=origin_msg.channel_name))): return False return True # decorator support def __call__(self, func) -> 'Command': self.func = func return self def __str__(self): return f'<{self.__class__.__name__} fullname={repr(self.fullname)} parent={self.parent}>' def __getitem__(self, item): return self.sub_cmds.get(item.lower()) or self.sub_cmds.get(item.lower()[1:]) def __repr__(self): return f'<{self.__class__.__name__} fullname={self.fullname}>' class SubCommand(Command): def __init__(self, parent: Command, name: str, func: Callable = None, permission: str = None, syntax: str = None, help: str = None, cooldown: int = DEFAULT_COOLDOWN, cooldown_bypass: str = DEFAULT_COOLDOWN_BYPASS, hidden: bool = False): super().__init__(name=name, prefix='', func=func, permission=permission, syntax=syntax, help=help, global_command=False, cooldown=cooldown, cooldown_bypass=cooldown_bypass, hidden=hidden, parent=parent) # self.parent: Command = parent # self.update_parent_command(parent) # self.parent.sub_cmds[self.name] = self class DummyCommand(Command): def __init__(self, name: str, prefix: str = None, global_command: bool = True, context: CommandContext = CommandContext.DEFAULT_COMMAND_CONTEXT, permission: str = None, syntax: str = None, help: str = None, aliases: List[str] = None, hidden: bool = False, parent: Command = None): super().__init__(name=name, prefix=prefix, func=self.exec, global_command=global_command, context=context, permission=permission, syntax=syntax, help=help, aliases=aliases, hidden=hidden, parent=parent) async def exec(self, msg: Message, *args): """the function called when the dummy command is executed""" if self.sub_cmds: await msg.reply(f'command options: {", ".join(name for name, cmd in self.sub_cmds.items() if not cmd.hidden)}') else: await msg.reply('no sub-commands were found for this command') def add_sub_cmd(self, name: str) -> 'DummyCommand': """adds a new DummyCommand to the current DummyCommand as a sub-command, then returns the new DummyCommand""" cmd = DummyCommand(name, prefix='', global_command=False) self.sub_cmds[cmd.fullname] = cmd return cmd def _calc_channel_live_time(msg) -> str: if msg.channel.live: return format((msg.channel.stats.started_at - datetime.now()).total_seconds() / 3600, '.1f') return '[NOT LIVE]' CUSTOM_COMMAND_PLACEHOLDERS = ( ( '%user', lambda msg: f'@{msg.author}' ), ( '%uptime', _calc_channel_live_time ), ( '%channel', lambda msg: msg.channel_name ), ) class CustomCommandAction(Command): def __init__(self, cmd): super().__init__(cmd.name, prefix='', func=self.execute, global_command=False, hidden=True) self.cmd: CustomCommand = cmd self.cooldown = 0 async def execute(self, msg: Message): resp = self.cmd.response for placeholder, func in CUSTOM_COMMAND_PLACEHOLDERS: if placeholder in resp: resp = resp.replace(placeholder, func(msg)) await msg.channel.send_message(resp) class ModCommand(Command): def __init__(self, mod_name: str, name: str, prefix: str = None, func: Callable = None, global_command: bool = True, context: CommandContext = CommandContext.DEFAULT_COMMAND_CONTEXT, permission: str = None, syntax: str = None, help: str = None, cooldown: int = DEFAULT_COOLDOWN, cooldown_bypass: str = DEFAULT_COOLDOWN_BYPASS, hidden: bool = False, parent: Command = None): super().__init__(name=name, prefix=prefix, func=func, global_command=global_command, context=context, permission=permission, syntax=syntax, help=help, cooldown=cooldown, cooldown_bypass=cooldown_bypass, hidden=hidden, parent=parent) self.mod_name = mod_name @property def mod(self): from .modloader import mods return mods[self.mod_name] async def execute(self, msg: Message): func, args = self._get_cmd_func(msg.parts[1:]) if 'self' in func.__code__.co_varnames: await func(self.mod, msg, *args) else: await func(msg, *args) commands: Dict[str, Command] = {} command_last_execute: Dict[Tuple[str, str], datetime] = {} def _create_cooldown_key(channel: str, cmd: str) -> Tuple[str, str]: return channel.lower(), cmd.lower() def is_command_off_cooldown(channel: str, cmd: str, cooldown: int = None) -> bool: if not command_exist(cmd): return True return get_time_since_execute(channel, cmd) >= (cooldown or get_command(cmd).cooldown) def is_command_on_cooldown(channel: str, cmd: str, cooldown: int = None) -> bool: return not is_command_off_cooldown(channel, cmd, cooldown) def get_time_since_execute(channel: str, cmd: str) -> int: last_execute = command_last_execute.get(_create_cooldown_key(channel, cmd), datetime.min) return int(abs((last_execute - datetime.now()).total_seconds())) def update_command_last_execute(channel: str, cmd: str): command_last_execute[_create_cooldown_key(channel, cmd)] = datetime.now() def reset_command_last_execute(channel: str, cmd: str): command_last_execute[_create_cooldown_key(channel, cmd)] = datetime.min def load_commands_from_directory(path): print(f'loading commands from {path}') path = os.path.abspath(path) if not os.path.exists(path): return with temp_syspath(path): for file in get_py_files(path): fname = get_file_name(file) mod = import_module(fname) def command_exist(name: str) -> bool: """ returns a bool indicating if a command exists, tries added a configs prefix to the name if not found initially, does not check for custom commands """ return any(cmd in commands for cmd in (name, cfg.prefix + name)) def get_command(name: str) -> Optional[Command]: """ gets a commands, tries added a configs prefix to the name if not found initally, returns None if not exist, does not get custom commands """ return commands.get(name) or commands.get(cfg.prefix + name) def set_command_permission(cmd: str, new_permission: Optional[str]) -> bool: """ overrides a command's previous permission and sets to the new one from `new_permission` :param cmd: command to override permission for :param new_permission: new permission to set for `cmd` :return: """ command = get_command(cmd) if not command: return False command.permission = new_permission return True
71489
import torch import torch.nn as nn import torch.nn.functional as F import logging from typing import Iterator import time import json from seq2seq.helpers import sequence_accuracy from seq2seq.ReaSCAN_dataset import ReaSCANDataset import pdb device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger = logging.getLogger(__name__) def predict_and_save(dataset: ReaSCANDataset, model: nn.Module, output_file_path: str, max_decoding_steps: int, max_testing_examples=None, **kwargs): """ Predict all data in dataset with a model and write the predictions to output_file_path. :param dataset: a dataset with test examples :param model: a trained model from model.py :param output_file_path: a path where a .json file with predictions will be saved. :param max_decoding_steps: after how many steps to force quit decoding :param max_testing_examples: after how many examples to stop predicting, if None all examples will be evaluated """ cfg = locals().copy() with open(output_file_path, mode='w') as outfile: output = [] with torch.no_grad(): i = 0 for (input_sequence, derivation_spec, situation_spec, output_sequence, target_sequence, attention_weights_commands, attention_weights_situations, position_accuracy) in predict( dataset.get_data_iterator(batch_size=1), model=model, max_decoding_steps=max_decoding_steps, pad_idx=dataset.target_vocabulary.pad_idx, sos_idx=dataset.target_vocabulary.sos_idx, eos_idx=dataset.target_vocabulary.eos_idx): i += 1 accuracy = sequence_accuracy(output_sequence, target_sequence[0].tolist()[1:-1]) input_str_sequence = dataset.array_to_sentence(input_sequence[0].tolist(), vocabulary="input") input_str_sequence = input_str_sequence[1:-1] # Get rid of <SOS> and <EOS> target_str_sequence = dataset.array_to_sentence(target_sequence[0].tolist(), vocabulary="target") target_str_sequence = target_str_sequence[1:-1] # Get rid of <SOS> and <EOS> output_str_sequence = dataset.array_to_sentence(output_sequence, vocabulary="target") output.append({"input": input_str_sequence, "prediction": output_str_sequence, "derivation": derivation_spec, "target": target_str_sequence, "situation": situation_spec, "attention_weights_input": attention_weights_commands, "attention_weights_situation": attention_weights_situations, "accuracy": accuracy, "exact_match": True if accuracy == 100 else False, "position_accuracy": position_accuracy}) logger.info("Wrote predictions for {} examples.".format(i)) json.dump(output, outfile, indent=4) return output_file_path def predict(data_iterator: Iterator, model: nn.Module, max_decoding_steps: int, pad_idx: int, sos_idx: int, eos_idx: int, max_examples_to_evaluate=None) -> torch.Tensor: """ Loop over all data in data_iterator and predict until <EOS> token is reached. :param data_iterator: iterator containing the data to predict :param model: a trained model from model.py :param max_decoding_steps: after how many steps to abort decoding :param pad_idx: the padding idx of the target vocabulary :param sos_idx: the start-of-sequence idx of the target vocabulary :param eos_idx: the end-of-sequence idx of the target vocabulary :param: max_examples_to_evaluate: after how many examples to break prediction, if none all are predicted """ # Disable dropout and other regularization. model.eval() start_time = time.time() # Loop over the data. i = 0 for (input_sequence, input_lengths, derivation_spec, situation, situation_spec, target_sequence, target_lengths, agent_positions, target_positions) in data_iterator: i += 1 if max_examples_to_evaluate: if i > max_examples_to_evaluate: break # Encode the input sequence. encoded_input = model.encode_input(commands_input=input_sequence, commands_lengths=input_lengths, situations_input=situation) # For efficiency projected_keys_visual = model.visual_attention.key_layer( encoded_input["encoded_situations"]) # [bsz, situation_length, dec_hidden_dim] projected_keys_textual = model.textual_attention.key_layer( encoded_input["encoded_commands"]["encoder_outputs"]) # [max_input_length, bsz, dec_hidden_dim] # Iteratively decode the output. output_sequence = [] contexts_situation = [] hidden = model.attention_decoder.initialize_hidden( model.tanh(model.enc_hidden_to_dec_hidden(encoded_input["hidden_states"]))) token = torch.tensor([sos_idx], dtype=torch.long, device=device) decoding_iteration = 0 attention_weights_commands = [] attention_weights_situations = [] while token != eos_idx and decoding_iteration <= max_decoding_steps: (output, hidden, context_situation, attention_weights_command, attention_weights_situation) = model.decode_input( target_token=token, hidden=hidden, encoder_outputs=projected_keys_textual, input_lengths=input_lengths, encoded_situations=projected_keys_visual) output = F.log_softmax(output, dim=-1) token = output.max(dim=-1)[1] output_sequence.append(token.data[0].item()) attention_weights_commands.append(attention_weights_command.tolist()) attention_weights_situations.append(attention_weights_situation.tolist()) contexts_situation.append(context_situation.unsqueeze(1)) decoding_iteration += 1 if output_sequence[-1] == eos_idx: output_sequence.pop() attention_weights_commands.pop() attention_weights_situations.pop() if model.auxiliary_task: target_position_scores = model.auxiliary_task_forward(torch.cat(contexts_situation, dim=1).sum(dim=1)) auxiliary_accuracy_target = model.get_auxiliary_accuracy(target_position_scores, target_positions) else: auxiliary_accuracy_agent, auxiliary_accuracy_target = 0, 0 yield (input_sequence, derivation_spec, situation_spec, output_sequence, target_sequence, attention_weights_commands, attention_weights_situations, auxiliary_accuracy_target) elapsed_time = time.time() - start_time logging.info("Predicted for {} examples.".format(i)) logging.info("Done predicting in {} seconds.".format(elapsed_time))
71559
import os import numpy import numpy as np import torch from dg_util.python_utils import misc_util from torch import nn numpy.set_printoptions(precision=4) torch.set_printoptions(precision=4, sci_mode=False) def batch_norm_layer(channels): return nn.BatchNorm2d(channels) def nonlinearity(): return nn.ReLU(inplace=True) NONLINEARITY = nonlinearity NORM_LAYER = batch_norm_layer TIME_STR = misc_util.get_time_str() BASE_LOG_DIR = "logs" CHECK_FOR_NEW_DATA = False IMAGENET_MEAN = np.array([0.485, 0.456, 0.406], dtype=np.float32) * 255 IMAGENET_STD = np.array([0.229, 0.224, 0.225], dtype=np.float32) * 255 COOKIE_PATH = os.path.join(os.path.dirname(__file__), "youtube_scrape", "cookies.txt")
71569
import npc import pytest def test_creates_character(campaign): result = npc.commands.create_character.werewolf('wer<NAME>', 'cahalith') character = campaign.get_character('werewolf mann.nwod') assert result.success assert character.exists() assert campaign.get_absolute(result.openable[0]) == str(character) def test_adds_group_tags(campaign): result = npc.commands.create_character.werewolf('werewolf mann', 'cahalith', groups=['fork', 'spoon']) data = campaign.get_character_data('werewolf mann.nwod') assert 'fork' in data.tags('group') assert 'spoon' in data.tags('group') def test_duplicate_character(campaign): npc.commands.create_character.werewolf('wer<NAME>', 'cahalith') result = npc.commands.create_character.werewolf('werewolf mann', 'cahalith') assert not result.success def test_adds_auspice(campaign): npc.commands.create_character.werewolf('werewolf mann', 'cahalith') data = campaign.get_character_data('werewolf mann.nwod') assert 'Cahalith' in data.tags['auspice'] def test_adds_tribe(campaign): npc.commands.create_character.werewolf('werewolf mann', 'cahalith', tribe='Bone Talons') data = campaign.get_character_data('werewolf mann.nwod') assert 'Bone Talons' in data.tags['tribe'] def test_adds_pack(campaign): npc.commands.create_character.werewolf('werewolf mann', 'cahalith', pack='Foobars') data = campaign.get_character_data('werewolf mann.nwod') assert 'Foobars' in data.tags['pack']
71571
from odoo import fields, models class IrModel(models.Model): _inherit = 'ir.model' rest_api = fields.Boolean('REST API', default=True, help="Allow this model to be fetched through REST API")
71593
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("auditlog", "0005_logentry_additional_data_verbose_name"), ] operations = [ migrations.AlterField( model_name="logentry", name="object_pk", field=models.CharField( verbose_name="object pk", max_length=255, db_index=True ), ), ]
71624
import os import torch from typing import List, Tuple from torch import nn from transformers import BertConfig, BertModel, BertPreTrainedModel, BertTokenizerFast, AutoTokenizer from repconc.models.repconc import RepCONC class TCTEncoder(BertPreTrainedModel): def __init__(self, config: BertConfig): BertPreTrainedModel.__init__(self, config) self.bert = BertModel(config, add_pooling_layer=False) self.config.pooling = "mean" self.config.similarity_metric = "METRIC_IP" def forward(self, input_ids, attention_mask, return_dict=False): outputs = self.bert(input_ids, attention_mask, return_dict=True) token_embeds = outputs.last_hidden_state[:, 4:, :] input_mask_expanded = attention_mask[:, 4:].unsqueeze(-1).expand(token_embeds.size()).float() text_embeds = torch.sum(token_embeds * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) if return_dict: outputs.embedding = text_embeds return outputs else: return text_embeds @property def language_model(self): return self.bert def tct_repconc_from_pretrained(load_dir, use_constraint, sk_epsilon, sk_iters): dense_encoder = TCTEncoder.from_pretrained(os.path.join(load_dir, 'dense_encoder')) repconc = RepCONC( dense_encoder.config, dense_encoder, use_constraint=use_constraint, sk_epsilon=sk_epsilon, sk_iters=sk_iters) repconc.load_state_dict(torch.load(os.path.join(load_dir, "pytorch_model.bin"), map_location="cpu")) return repconc class TCTTokenizerFast(BertTokenizerFast): ''' ANCE lowers text before tokenization ''' def __call__(self, text, input_text_type, max_length=None, add_special_tokens=False, **kwargs): # TCT does not add special tokens and expands queries to a fixed length if input_text_type == "query": max_length = 36 text = ['[CLS] [Q] ' + query + '[MASK]' * 36 for query in text ] elif input_text_type == "doc": text = ['[CLS] [D] ' + doc for doc in text ] else: raise NotImplementedError() return super().__call__(text, max_length=max_length, add_special_tokens=False, **kwargs) if __name__ == "__main__": print(AutoTokenizer.from_pretrained("castorini/tct_colbert-v2-hnp-msmarco")) print("Test tokenizer") import inspect for tokenizer_class in [AutoTokenizer, TCTTokenizerFast]: tokenizer = tokenizer_class.from_pretrained("castorini/tct_colbert-v2-hnp-msmarco") print(tokenizer.__class__, tokenizer) text_lst = ["I am TCT tokenizer"] input_text_type = {"input_text_type": "doc"} if "input_text_type" in inspect.getfullargspec(tokenizer.__call__)[0] else {} print(tokenizer.convert_ids_to_tokens(tokenizer( text_lst, add_special_tokens=True, max_length=36, truncation=True, **input_text_type)['input_ids'][0])) input_text_type = {"input_text_type": "query"} if "input_text_type" in inspect.getfullargspec(tokenizer.__call__)[0] else {} print(tokenizer.convert_ids_to_tokens(tokenizer(text_lst, add_special_tokens=True, max_length=36, truncation=True, **input_text_type)['input_ids'][0]))
71645
import time from compactor.process import Process from compactor.context import Context import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) class WebProcess(Process): @Process.install('ping') def ping(self, from_pid, body): log.info("Received ping") def respond(): time.sleep(0.5) self.send(from_pid, "pong") self.context.loop.add_callback(respond) @Process.install('pong') def pong(self, from_pid, body): log.info("Received pong") def respond(): time.sleep(0.5) self.send(from_pid, "ping") self.context.loop.add_callback(respond) def listen(identifier): """ Launch a listener and return the compactor context. """ context = Context() process = WebProcess(identifier) context.spawn(process) log.info("Launching PID %s", process.pid) return process, context if __name__ == '__main__': a, a_context = listen("web(1)") b, b_context = listen("web(2)") a_context.start() b_context.start() # Kick off the game of ping/pong by sending a message to B from A a.send(b.pid, "ping") while a_context.isAlive() or b_context.isAlive(): time.sleep(0.5)
71748
from __future__ import absolute_import # flake8: noqa # import apis into api package from hubspot.cms.performance.api.public_performance_api import PublicPerformanceApi
71749
from roscraco.helper import validator from roscraco.exception import RouterSettingsError class WirelessSettings(object): """Represents all available Wireless settings for a router.""" SECURITY_TYPE_NONE = 'none' SECURITY_TYPE_WEP64 = 'wep64' SECURITY_TYPE_WEP128 = 'wep128' SECURITY_TYPE_WPA = 'wpa' SECURITY_TYPE_WPA2 = 'wpa2' #: List of properties to export using export() PROPERTIES = ( 'security_type', 'ssid', 'is_enabled', 'is_broadcasting_ssid', 'channel', 'password' ) def __init__(self): self._supports_wireless = True self._ssid = None self._enabled_status = True self._ssid_broadcast_status = True self._channel = None self._password = <PASSWORD> self._internal_params = {} self._supported_security_types = set([self.__class__.SECURITY_TYPE_NONE]) self._security_type = None self._supports_ascii_wep_passwords = True self._supports_auto_channel = True self._changes_require_reboot = True def set_auto_channel_support(self, value): self._supports_auto_channel = bool(value) @property def supports_auto_channel(self): """Tells whether auto channel is supported. Channel 0 is considered the auto channel, because that's how most routers represent the ``Auto`` value. Some devices, however, do not support Auto channel at all. """ return self._supports_auto_channel def add_security_support(self, security_type): """Adds a new security type to the list of supported security types. """ self._supported_security_types.add(security_type) @property def supported_security_types(self): return self._supported_security_types def set_security_type(self, security_type): self._security_type = security_type @property def security_type_is_wep(self): """Tells whether the current security type is WEP. Returns true for both WEP64 and WEP128. """ return self._security_type in (self.__class__.SECURITY_TYPE_WEP64, self.__class__.SECURITY_TYPE_WEP128) @property def security_type_is_wpa(self): """Tells whether the current security type is WPA. Returns true for both WPA and WPA2. """ return self._security_type in (self.__class__.SECURITY_TYPE_WPA, self.__class__.SECURITY_TYPE_WPA2) @property def security_type(self): return self._security_type def set_reboot_requirement_status(self, value): self._changes_require_reboot = bool(value) @property def changes_require_reboot(self): """Tells whether the router needs rebooting for changes to take effect. """ return self._changes_require_reboot def set_support_status(self, value): self._supports_wireless = bool(value) @property def is_supported(self): """Tells whether the router supports wireless (most of them do).""" return self._supports_wireless def set_ssid(self, value): self._ssid = value @property def ssid(self): """The current SSID (wireless network name).""" return self._ssid def set_enabled_status(self, value): self._enabled_status = bool(value) @property def is_enabled(self): return self._enabled_status def set_ssid_broadcast_status(self, value): self._ssid_broadcast_status = bool(value) @property def is_broadcasting_ssid(self): """Tells whether the SSID status is being broadcasted publicly. If it is, than the network is publicly visible by anyone. """ return self._ssid_broadcast_status def set_channel(self, value): self._channel = int(value) @property def channel(self): """The transmission channel for wireless communications.""" return self._channel def set_password(self, value): self._password = value @property def password(self): """The current password for the given security type. The password is sometimes None for some routers, to indicate that the password cannot be determined. Some routers hide the current password from their web-interface, so we can't detect it (but that doesn't mean that we can't change it with a new one). """ return self._password @property def is_wep_password_in_hex(self): """Tells whether the current WEP password is in HEX or in ASCII. Detecting this allows us to set the ASCII/HEX field in the management interface automatically. """ if not self.security_type_is_wep: raise RouterSettingsError('Not using WEP, but trying to inspect password!') bit_length = 128 if self.security_type == self.__class__.SECURITY_TYPE_WEP128 else 64 return validator.is_wep_password_in_hex(self.password, bit_length) def set_ascii_wep_password_support_status(self, value): self._supports_ascii_wep_passwords = bool(value) @property def supports_ascii_wep_passwords(self): """Tells whether the current router supports ASCII passwords for WEP security. Some devices only support HEX passwords. """ return self._supports_ascii_wep_passwords def set_internal_param(self, key, value): self._internal_params[key] = value def get_internal_param(self, key): return self._internal_params[key] if key in self._internal_params else None def validate(self): errors = {} if not validator.is_valid_ssid(self.ssid): errors['ssid'] = 'Invalid SSID: %s' % self.ssid # most routers use channel 0 as the 'Auto' channel channel_min = 0 if self.supports_auto_channel else 1 if not (channel_min <= self.channel <= 13): errors['channel'] = 'Invalid channel %d' % self.channel if self.security_type not in self._supported_security_types: errors['security_type'] = 'Invalid security type: %s' % self.security_type else: result = self.__validate_password() if result is not None: errors['password'] = result return errors def ensure_valid(self): errors = self.validate() if len(errors) != 0: raise RouterSettingsError(str(errors)) def __validate_password(self): if self.security_type in (self.__class__.SECURITY_TYPE_WPA, self.__class__.SECURITY_TYPE_WPA2): if not validator.is_valid_wpa_psk_password(self.password): return 'Invalid WPA PSK password: %s' % self.password if self.security_type in (self.__class__.SECURITY_TYPE_WEP64, self.__class__.SECURITY_TYPE_WEP128): bit_length = 128 if self.security_type == self.__class__.SECURITY_TYPE_WEP128 else 64 if not validator.is_valid_wep_password(self.password, bit_length): return 'Invalid WEP password for bit length %d: %s' % (bit_length, self.password) # Some devices only support HEX values for the WEP password field if not self.supports_ascii_wep_passwords and not self.is_wep_password_in_hex: return 'ASCII WEP passwords are not supported!' return None def eq(self, other, skip_attrs=()): # WEP passwords that use HEX are not case-sensitive, so we want # to validate them separately if self.security_type_is_wep and other.security_type_is_wep and \ self.is_wep_password_in_hex and other.is_wep_password_in_hex: skip_attrs = skip_attrs + ('password',) try: if self.password.lower() != other.password.lower(): return False except AttributeError: return False # Don't try to compare passwords when there's no security type if self.security_type == self.__class__.SECURITY_TYPE_NONE and \ other.security_type == self.__class__.SECURITY_TYPE_NONE: skip_attrs = skip_attrs + ('password',) for attr in self.__class__.PROPERTIES: if attr in skip_attrs: continue if getattr(self, attr, None) != getattr(other, attr, None): #print('[%s] %s != %s' % ( # attr, # getattr(self, attr, None), # getattr(other, attr, None) #)) return False return True def __eq__(self, other): return self.eq(other) def __ne__(self, other): return not self == other def __hash__(self): return id(self) def export(self): """Exports the most important settings attributes, omitting any internal attributes. """ export = {} for attr in self.__class__.PROPERTIES: export[attr] = getattr(self, attr, None) return export
71768
try: from unittest import mock except ImportError: import mock from rest_email_auth import serializers @mock.patch( "rest_email_auth.serializers.models.EmailAddress.send_confirmation", autospec=True, ) def test_create(mock_send_confirmation, user_factory): """ Test creating a new email address from the serializer. Creating a new email address should also send a confirmation email for the provided address. If the user does not have a primary email address, the created one should be marked as the primary. """ user = user_factory() data = {"email": "<EMAIL>"} serializer = serializers.EmailSerializer(data=data) assert serializer.is_valid() email = serializer.save(user=user) assert email.email == data["email"] assert email.is_primary # Make sure a confirmation email was sent assert mock_send_confirmation.call_count == 1 @mock.patch( "rest_email_auth.serializers.models.EmailAddress.send_duplicate_notification", # noqa autospec=True, ) def test_create_duplicate( mock_duplicate_notification, email_factory, user_factory ): """ Attempting to add an email address that already exists should send a notification to the existing email. """ email = email_factory() user = user_factory() data = {"email": email.email} serializer = serializers.EmailSerializer(data=data) assert serializer.is_valid(), serializer.errors serializer.save(user=user) assert mock_duplicate_notification.call_count == 1 assert mock_duplicate_notification.call_args[0] == (email,) @mock.patch( "rest_email_auth.serializers.models.EmailAddress.send_confirmation", autospec=True, ) def test_create_non_primary( mock_send_confirmation, email_factory, user_factory ): """ If the user already has a primary email address, the created email should not be marked as the user's primary. """ user = user_factory() email_factory(is_primary=True, user=user) data = {"email": "test<EMAIL>"} serializer = serializers.EmailSerializer(data=data) assert serializer.is_valid() email = serializer.save(user=user) assert email.email == data["email"] assert not email.is_primary # Make sure a confirmation email was sent assert mock_send_confirmation.call_count == 1 def test_serialize(email_factory): """ Test serializing an email address. """ email = email_factory() serializer = serializers.EmailSerializer(email) expected = { "id": email.id, "created_at": email.created_at.isoformat(), "email": email.email, "is_primary": email.is_primary, "is_verified": email.is_verified, } assert serializer.data == expected def test_update_is_primary(email_factory): """ If an email address is verified, it should be able to be marked as the user's primary address. """ email = email_factory(is_primary=False, is_verified=True) data = {"is_primary": True} serializer = serializers.EmailSerializer(email, data=data, partial=True) assert serializer.is_valid() with mock.patch.object( email, "set_primary", autospec=True ) as mock_set_primary: email = serializer.save() assert mock_set_primary.call_count == 1 def test_update_is_primary_false(email_factory): """ Updating 'is_primary' to false should not call set_primary. """ email = email_factory(is_primary=True, is_verified=True) data = {"is_primary": False} serializer = serializers.EmailSerializer(email, data=data, partial=True) assert serializer.is_valid() with mock.patch.object( email, "set_primary", autospec=True ) as mock_set_primary: email = serializer.save() assert mock_set_primary.call_count == 0 def test_validate_changed_email(email_factory): """ If a bound serializer attempts to change the email address of its instance it should not be valid. """ email = email_factory(email="<EMAIL>") data = {"email": "<EMAIL>"} serializer = serializers.EmailSerializer(email, data=data) assert not serializer.is_valid() assert set(serializer.errors.keys()) == {"email"} def test_validate_create_primary(): """ Attempting to create a primary email address should not be valid. It should only be valid to mark a verified email address as the primary unless this is the user's first email. """ data = {"email": "<EMAIL>", "is_primary": True} serializer = serializers.EmailSerializer(data=data) assert not serializer.is_valid() assert set(serializer.errors.keys()) == {"is_primary"} def test_validate_email_lowercase_domain(): """ The registration serializer should not change an email address with a lowercase domain. """ email = "<EMAIL>" serializer = serializers.EmailSerializer() assert serializer.validate_email(email) == email def test_validate_email_mixed_case_domain(): """ If the domain portion of the email is mixed case, it should be converted to lowercase. """ email = "<EMAIL>" expected = "<EMAIL>" serializer = serializers.EmailSerializer() assert serializer.validate_email(email) == expected def test_validate_make_unverified_primary(email_factory): """ Attempting to mark an existing but unverified email address as the primary should not be valid. """ email = email_factory(is_primary=False, is_verified=False) data = {"is_primary": True} serializer = serializers.EmailSerializer(email, data=data, partial=True) assert not serializer.is_valid() assert set(serializer.errors.keys()) == {"is_primary"}
71802
from __future__ import print_function import codecs import logging import os import sys from optparse import OptionParser from pypugjs.utils import process def convert_file(): support_compilers_list = [ 'django', 'jinja', 'underscore', 'mako', 'tornado', 'html', ] available_compilers = {} for i in support_compilers_list: try: compiler_class = __import__( 'pypugjs.ext.%s' % i, fromlist=['pypugjs'] ).Compiler except ImportError as e: logging.warning(e) else: available_compilers[i] = compiler_class usage = "usage: %prog [options] [file [output]]" parser = OptionParser(usage) parser.add_option( "-o", "--output", dest="output", help="Write output to FILE", metavar="FILE" ) # use a default compiler here to sidestep making a particular # compiler absolutely necessary (ex. django) default_compiler = sorted(available_compilers.keys())[0] parser.add_option( "-c", "--compiler", dest="compiler", choices=list(available_compilers.keys()), default=default_compiler, type="choice", help=( "COMPILER must be one of %s, default is %s" % (', '.join(list(available_compilers.keys())), default_compiler) ), ) parser.add_option( "-e", "--ext", dest="extension", help="Set import/extends default file extension", metavar="FILE", ) options, args = parser.parse_args() file_output = options.output or (args[1] if len(args) > 1 else None) compiler = options.compiler if options.extension: extension = '.%s' % options.extension elif options.output: extension = os.path.splitext(options.output)[1] else: extension = None if compiler in available_compilers: import six if len(args) >= 1: template = codecs.open(args[0], 'r', encoding='utf-8').read() elif six.PY3: template = sys.stdin.read() else: template = codecs.getreader('utf-8')(sys.stdin).read() output = process( template, compiler=available_compilers[compiler], staticAttrs=True, extension=extension, ) if file_output: outfile = codecs.open(file_output, 'w', encoding='utf-8') outfile.write(output) elif six.PY3: sys.stdout.write(output) else: codecs.getwriter('utf-8')(sys.stdout).write(output) else: raise Exception('You must have %s installed!' % compiler) if __name__ == '__main__': convert_file()
71809
from hachoir_parser.game.zsnes import ZSNESFile from hachoir_parser.game.spider_man_video import SpiderManVideoFile from hachoir_parser.game.laf import LafFile from hachoir_parser.game.blp import BLP1File, BLP2File from hachoir_parser.game.uasset import UAssetFile
71812
import csv import numpy as np import matplotlib.pyplot as plt import matplotlib from math import ceil from constants import ENV_NAMES import seaborn # sets some style parameters automatically COLORS = [(57, 106, 177), (218, 124, 48)] def switch_to_outer_plot(fig): ax0 = fig.add_subplot(111, frame_on=False) ax0.set_xticks([]) ax0.set_yticks([]) return ax0 def ema(data_in, smoothing=0): data_out = np.zeros_like(data_in) curr = np.nan for i in range(len(data_in)): x = data_in[i] if np.isnan(curr): curr = x else: curr = (1 - smoothing) * x + smoothing * curr data_out[i] = curr return data_out def plot_data_mean_std(ax, data_y, color_idx=0, data_x=None, x_scale=1, smoothing=0, first_valid=0, label=None): color = COLORS[color_idx] hexcolor = '#%02x%02x%02x' % color data_y = data_y[:,first_valid:] nx, num_datapoint = np.shape(data_y) if smoothing > 0: for i in range(nx): data_y[i,...] = ema(data_y[i,...], smoothing) if data_x is None: data_x = (np.array(range(num_datapoint)) + first_valid) * x_scale data_mean = np.mean(data_y, axis=0) data_std = np.std(data_y, axis=0, ddof=1) ax.plot(data_x, data_mean, color=hexcolor, label=label, linestyle='solid', alpha=1, rasterized=True) ax.fill_between(data_x, data_mean - data_std, data_mean + data_std, color=hexcolor, alpha=.25, linewidth=0.0, rasterized=True) def read_csv(filename, key_name): with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') key_index = -1 values = [] for line_num, row in enumerate(csv_reader): row = [x.lower() for x in row] if line_num == 0: idxs = [i for i, val in enumerate(row) if val == key_name] key_index = idxs[0] else: values.append(row[key_index]) return np.array(values, dtype=np.float32) def plot_values(ax, all_values, title=None, max_x=0, label=None, **kwargs): if max_x > 0: all_values = all_values[...,:max_x] if ax is not None: plot_data_mean_std(ax, all_values, label=label, **kwargs) ax.set_title(title) return all_values def plot_experiment(run_directory_prefix, titles=None, suffixes=[''], normalization_ranges=None, key_name='eprewmean', **kwargs): run_folders = [f'{run_directory_prefix}{x}' for x in range(3)] num_envs = len(ENV_NAMES) will_normalize_and_reduce = normalization_ranges is not None if will_normalize_and_reduce: num_visible_plots = 1 f, axarr = plt.subplots() else: num_visible_plots = num_envs dimx = dimy = ceil(np.sqrt(num_visible_plots)) f, axarr = plt.subplots(dimx, dimy, sharex=True) for suffix_idx, suffix in enumerate(suffixes): all_values = [] game_weights = [1] * num_envs for env_idx in range(num_envs): env_name = ENV_NAMES[env_idx] label = suffix if env_idx == 0 else None # only label the first graph to avoid legend duplicates print(f'loading results from {env_name}...') if num_visible_plots == 1: ax = axarr else: dimy = len(axarr[0]) ax = axarr[env_idx // dimy][env_idx % dimy] csv_files = [f"results/{resid}/progress-{env_name}{'-' if len(suffix) > 0 else ''}{suffix}.csv" for resid in run_folders] curr_ax = None if will_normalize_and_reduce else ax raw_data = np.array([read_csv(file, key_name) for file in csv_files]) values = plot_values(curr_ax, raw_data, title=env_name, color_idx=suffix_idx, label=label, **kwargs) if will_normalize_and_reduce: game_range = normalization_ranges[env_name] game_min = game_range[0] game_max = game_range[1] game_delta = game_max - game_min sub_values = game_weights[env_idx] * (np.array(values) - game_min) / (game_delta) all_values.append(sub_values) if will_normalize_and_reduce: normalized_data = np.sum(all_values, axis=0) normalized_data = normalized_data / np.sum(game_weights) title = 'Mean Normalized Score' plot_values(ax, normalized_data, title=None, color_idx=suffix_idx, label=suffix, **kwargs) if len(suffixes) > 1: if num_visible_plots == 1: ax.legend(loc='lower right') else: f.legend(loc='lower right', bbox_to_anchor=(.5, 0, .5, 1)) return f, axarr
71813
import torch from torch import nn, Tensor from torch.nn import functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, c1, c2, s=1, downsample= None, no_relu=False) -> None: super().__init__() self.conv1 = nn.Conv2d(c1, c2, 3, s, 1, bias=False) self.bn1 = nn.BatchNorm2d(c2) self.conv2 = nn.Conv2d(c2, c2, 3, 1, 1, bias=False) self.bn2 = nn.BatchNorm2d(c2) self.downsample = downsample self.no_relu = no_relu def forward(self, x: Tensor) -> Tensor: identity = x out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.no_relu else F.relu(out) class Bottleneck(nn.Module): expansion = 2 def __init__(self, c1, c2, s=1, downsample=None, no_relu=False) -> None: super().__init__() self.conv1 = nn.Conv2d(c1, c2, 1, bias=False) self.bn1 = nn.BatchNorm2d(c2) self.conv2 = nn.Conv2d(c2, c2, 3, s, 1, bias=False) self.bn2 = nn.BatchNorm2d(c2) self.conv3 = nn.Conv2d(c2, c2 * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(c2 * self.expansion) self.downsample = downsample self.no_relu = no_relu def forward(self, x: Tensor) -> Tensor: identity = x out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.no_relu else F.relu(out) class ConvBN(nn.Sequential): def __init__(self, c1, c2, k, s=1, p=0): super().__init__( nn.Conv2d(c1, c2, k, s, p, bias=False), nn.BatchNorm2d(c2) ) class Conv2BN(nn.Sequential): def __init__(self, c1, ch, c2, k, s=1, p=0): super().__init__( nn.Conv2d(c1, ch, k, s, p, bias=False), nn.BatchNorm2d(ch), nn.ReLU(), nn.Conv2d(ch, c2, k, s, p, bias=False), nn.BatchNorm2d(c2) ) class Stem(nn.Sequential): def __init__(self, c1, c2): super().__init__( nn.Conv2d(c1, c2, 3, 2, 1), nn.BatchNorm2d(c2), nn.ReLU(), nn.Conv2d(c2, c2, 3, 2, 1), nn.BatchNorm2d(c2), nn.ReLU() ) class Scale(nn.Sequential): def __init__(self, c1, c2, k, s=None, p=0): super().__init__( nn.AvgPool2d(k, s, p, ), nn.BatchNorm2d(c1), nn.ReLU(), nn.Conv2d(c1, c2, 1, bias=False) ) class ConvModule(nn.Sequential): def __init__(self, c1, c2, k, s=1, p=0): super().__init__( nn.BatchNorm2d(c1), nn.ReLU(), nn.Conv2d(c1, c2, k, s, p, bias=False) ) class DAPPM(nn.Module): def __init__(self, c1, ch, c2): super().__init__() self.scale1 = Scale(c1, ch, 5, 2, 2) self.scale2 = Scale(c1, ch, 9, 4, 4) self.scale3 = Scale(c1, ch, 17, 8, 8) self.scale4 = Scale(c1, ch, 1) self.scale0 = ConvModule(c1, ch, 1) self.process1 = ConvModule(ch, ch, 3, 1, 1) self.process2 = ConvModule(ch, ch, 3, 1, 1) self.process3 = ConvModule(ch, ch, 3, 1, 1) self.process4 = ConvModule(ch, ch, 3, 1, 1) self.compression = ConvModule(ch*5, c2, 1) self.shortcut = ConvModule(c1, c2, 1) def forward(self, x: Tensor) -> Tensor: outs = [self.scale0(x)] outs.append(self.process1((F.interpolate(self.scale1(x), size=x.shape[-2:], mode='bilinear', align_corners=True) + outs[-1]))) outs.append(self.process2((F.interpolate(self.scale2(x), size=x.shape[-2:], mode='bilinear', align_corners=True) + outs[-1]))) outs.append(self.process3((F.interpolate(self.scale3(x), size=x.shape[-2:], mode='bilinear', align_corners=True) + outs[-1]))) outs.append(self.process4((F.interpolate(self.scale4(x), size=x.shape[-2:], mode='bilinear', align_corners=True) + outs[-1]))) out = self.compression(torch.cat(outs, dim=1)) + self.shortcut(x) return out class SegHead(nn.Module): def __init__(self, c1, ch, c2, scale_factor=None): super().__init__() self.bn1 = nn.BatchNorm2d(c1) self.conv1 = nn.Conv2d(c1, ch, 3, 1, 1, bias=False) self.bn2 = nn.BatchNorm2d(ch) self.conv2 = nn.Conv2d(ch, c2, 1) self.scale_factor = scale_factor def forward(self, x: Tensor) -> Tensor: x = self.conv1(F.relu(self.bn1(x))) x = self.conv2(F.relu(self.bn2(x))) if self.scale_factor is not None: H, W = x.shape[-2] * self.scale_factor, x.shape[-1] * self.scale_factor x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) return x class DDRNet(nn.Module): def __init__(self, backbone: str = None, num_classes: int = 19) -> None: super().__init__() planes, spp_planes, head_planes = [32, 64, 128, 256, 512], 128, 64 self.conv1 = Stem(3, planes[0]) self.layer1 = self._make_layer(BasicBlock, planes[0], planes[0], 2) self.layer2 = self._make_layer(BasicBlock, planes[0], planes[1], 2, 2) self.layer3 = self._make_layer(BasicBlock, planes[1], planes[2], 2, 2) self.layer4 = self._make_layer(BasicBlock, planes[2], planes[3], 2, 2) self.layer5 = self._make_layer(Bottleneck, planes[3], planes[3], 1, 2) self.layer3_ = self._make_layer(BasicBlock, planes[1], planes[1], 2) self.layer4_ = self._make_layer(BasicBlock, planes[1], planes[1], 2) self.layer5_ = self._make_layer(Bottleneck, planes[1], planes[1], 1) self.compression3 = ConvBN(planes[2], planes[1], 1) self.compression4 = ConvBN(planes[3], planes[1], 1) self.down3 = ConvBN(planes[1], planes[2], 3, 2, 1) self.down4 = Conv2BN(planes[1], planes[2], planes[3], 3, 2, 1) self.spp = DAPPM(planes[-1], spp_planes, planes[2]) self.seghead_extra = SegHead(planes[1], head_planes, num_classes, 8) self.final_layer = SegHead(planes[2], head_planes, num_classes, 8) self.apply(self._init_weights) def _init_weights(self, m: nn.Module) -> None: if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def init_pretrained(self, pretrained: str = None) -> None: if pretrained: self.load_state_dict(torch.load(pretrained, map_location='cpu'), strict=False) def _make_layer(self, block, inplanes, planes, depths, s=1) -> nn.Sequential: downsample = None if inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, 1, s, bias=False), nn.BatchNorm2d(planes * block.expansion) ) layers = [block(inplanes, planes, s, downsample)] inplanes = planes * block.expansion for i in range(1, depths): if i == depths - 1: layers.append(block(inplanes, planes, no_relu=True)) else: layers.appned(block(inplanes, planes)) return nn.Sequential(*layers) def forward(self, x: Tensor) -> Tensor: H, W = x.shape[-2] // 8, x.shape[-1] // 8 layers = [] x = self.conv1(x) x = self.layer1(x) layers.append(x) x = self.layer2(F.relu(x)) layers.append(x) x = self.layer3(F.relu(x)) layers.append(x) x_ = self.layer3_(F.relu(layers[1])) x = x + self.down3(F.relu(x_)) x_ = x_ + F.interpolate(self.compression3(F.relu(layers[2])), size=(H, W), mode='bilinear', align_corners=True) if self.training: x_aux = self.seghead_extra(x_) x = self.layer4(F.relu(x)) layers.append(x) x_ = self.layer4_(F.relu(x_)) x = x + self.down4(F.relu(x_)) x_ = x_ + F.interpolate(self.compression4(F.relu(layers[3])), size=(H, W), mode='bilinear', align_corners=True) x_ = self.layer5_(F.relu(x_)) x = F.interpolate(self.spp(self.layer5(F.relu(x))), size=(H, W), mode='bilinear', align_corners=True) x_ = self.final_layer(x + x_) return (x_, x_aux) if self.training else x_ if __name__ == '__main__': model = DDRNet() # model.init_pretrained('checkpoints/backbones/ddrnet/ddrnet_23slim.pth') # model.load_state_dict(torch.load('checkpoints/pretrained/ddrnet/ddrnet_23slim_city.pth', map_location='cpu')) x = torch.zeros(2, 3, 224, 224) outs = model(x) for y in outs: print(y.shape)
71846
from datetime import datetime from datetime import timezone from uuid import UUID from bson import ObjectId UUID_1_EPOCH = datetime(1582, 10, 15, tzinfo=timezone.utc) UUID_TICKS = 10000000 UUID_VARIANT_1 = 0b1000000000000000 def is_uuid(candidate): """Determine if this is a uuid""" try: UUID(candidate) return True except ValueError: return False def validate_uuid(function): def validate(**kwargs): candidate = kwargs.get("id_") if not is_uuid(candidate): return f"ID: {candidate} is not a valid UUID", 400 else: return function(**kwargs) return validate def convert_objectid_to_uuid(object_id): """Convert an ObjectId to a UUID""" if isinstance(object_id, str) and not is_uuid(object_id) and ObjectId.is_valid(object_id): object_id = ObjectId(object_id) if not isinstance(object_id, ObjectId): return object_id unix_time = object_id.generation_time.astimezone(timezone.utc) hex_string = str(object_id) counter = int(hex_string[18:], 16) uuid_time = "1{:015x}".format( int((unix_time + (unix_time - UUID_1_EPOCH)).timestamp() * UUID_TICKS) ) uuid_clock = "{:04x}".format(UUID_VARIANT_1 | (counter & 0x3FFF)) uuid_node = "1" + hex_string[8:18].rjust(11, "0") string_uuid = "{}-{}-{}-{}-{}".format( uuid_time[-8:], uuid_time[4:8], uuid_time[:4], uuid_clock, uuid_node ) converted_uuid = UUID(string_uuid) return str(converted_uuid)
71897
from matplotlib.offsetbox import AnchoredOffsetbox, AuxTransformBox, VPacker,\ TextArea, AnchoredText, DrawingArea, AnnotationBbox from mpl_toolkits.axes_grid1.anchored_artists import \ AnchoredDrawingArea, AnchoredAuxTransformBox, \ AnchoredEllipse, AnchoredSizeBar
72068
import os import shutil import subprocess import sys import re import glob from colors import prGreen,prCyan,prRed TRACES_DIR = './.fpchecker/traces' TRACES_FILES = TRACES_DIR+'/'+'trace' STRACE = 'strace' SUPPORTED_COMPILERS = set([ 'nvcc', 'c++', 'cc', 'gcc', 'g++', 'xlc', 'xlC', 'xlc++', 'xlc_r', 'xlc++_r', 'mpic', 'mpic++', 'mpicxx', 'mpicc', 'mpixlc', 'mpixlC', 'mpixlf', 'mpif77', 'mpif90', 'clang', 'clang++', 'gfortran', 'xlf', 'xlf-gpu', 'xlf2003', 'xlf2003-gpu', 'xlf2003_r', 'xlf2003_r-gpu', 'xlf2008', 'xlf2008-gpu', 'xlf2008_r', 'xlf2008_r-gpu', 'xlf90', 'xlf90-gpu', 'xlf90_r', 'xlf90_r-gpu', 'xlf95', 'xlf95-gpu', 'xlf95_r', 'xlf95_r-gpu', 'xlf_r', 'xlf_r-gpu' ]) SUPPORTED_TOOLS = set([ 'ar', 'ranlib', 'bin2c' ]) # Examples of top commands # [pid 83362] execve("/usr/tce/packages/cuda/cuda-9.2.148/bin/nvcc", # [pid 63885] execve("/bin/sh", ["/bin/sh", "-c", "cd /usr/workspace/wsa/laguna/fpchecker/FPChecker/tests/tracing_tool/dynamic/test_cmake_simple/build/src/util && /usr/tcetmp/bin/c++ -o CMakeFiles/util.dir/util.cpp.o -c /usr/workspace/wsa/laguna/fpchecker/FPChecker/tests/tracing_tool/dynamic/test_cmake_simple/src/util/util.cpp"] # Saves Compilation commands class CommandsTracing: #open("/usr/tcetmp/packages/spack/opt/spack/linux-redhat7-ppc64le/gcc-4.8.5/gcc-4.9.3-3clrxj5wz2i54h #[pid 8690] execve("/usr/tcetmp/bin/c++", ["/usr/tcetmp/bin/c++", "CMakeFiles/main.dir/src/main.cpp.o", "-o", "main"] pidPattern = re.compile("^\[pid\s+[0-9]+\] ") # clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x200000044f60) = 55734 # vfork() = 55729 childSpawn_clone = re.compile("^clone\(.+=\s+[0-9]+") childSpawn_fork = re.compile("^vfork\(\).+=\s+[0-9]+") # Chdir call # chdir("/usr/workspace/wsa/laguna/fpchecker/clang_tool/wrapper/apps/RAJA_perf/RAJAPerf/build_ilaguna_build/tpl/RAJA") = 0 chdirPattern = re.compile("^chdir\(.+\s+=\s+[0-9]+") # Fork from root: # vfork(strace: Process 22625 attached # Other forks: # [pid 95927] stat("/usr/gapps/resmpi/llvm/ppc64le/llvm-openmp-trunk-install/lib/tls/power9/altivec", strace: Process 95932 attached # [pid 22631] vfork(strace: Process 22634 attached # [pid 78391] clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x200000044f60) = 78392 # [pid 86430] clone(strace: Process 86431 attached #attachPattern1 = re.compile("vfork\(strace\:\s+Process\s+[0-9]+\s+attached") #attachPattern_clone = re.compile("clone\(.+=\s+[0-9]+") #attachPattern_attach = re.compile("Process\s+[0-9]+\s+attached") # Process creation patterns: # We trace vfork() and clone() #[pid 69813] clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x200000044f60) = 69814 # [pid 129570] <... clone resumed>child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x200000044f60) = 129601 #[pid 69807] <... vfork resumed>) = 69808 childCreationPattern_clone_1 = re.compile("^\[pid\s+[0-9]+\] clone\(.+=\s+[0-9]+") childCreationPattern_clone_2 = re.compile("^\[pid\s+[0-9]+\] \<\.\.\. clone resumed\>.+=\s+[0-9]+") childCreationPattern_fork = re.compile("^\[pid\s+[0-9]+\] .+vfork.+=\s+[0-9]+") readPattern = re.compile("^\[pid\s+[0-9]+\] read\(") writePattern = re.compile("^\[pid\s+[0-9]+\] write\(") def __init__(self, make_command): self.traced_commands = [] self.make_command = make_command self.childTree = {} self.parentTree = {} self.tracedPIDs = set([]) def getTracesDir(self): return TRACES_DIR def isChildSpawn(self, line): child_fork = self.childSpawn_fork.search(line) child_clone = self.childSpawn_clone.search(line) pid = None if child_fork != None or child_clone != None: pid = line.split()[-1:][0] return pid def isMakeCommand(self, line): ret = False if "execve(\"" in line: # execve("/usr/tcetmp/bin/make", ["make", "-j"], 0x7fffffffb780 /* 128 vars */) = 0 cmd = line.split(', [')[1].split('], ')[0] cmd = cmd.replace('"','') cmd = cmd.replace(',','') cmd = cmd.split() #print(cmd, self.make_command) if cmd == self.make_command: return True return ret def getRootFile(self): # Find root file files = glob.glob(TRACES_DIR+'/trace.*') root_file = '' for f in files: #print('Checking', f) with open(f) as fd: first_line = fd.readline() if self.isMakeCommand(first_line): root_file = f break #print('Root file', root_file) if root_file == '': prRed('Error: root file not found') exit(-1) return root_file # Check if it is a chdir() system call # chdir("/usr/workspace/wsa/laguna/fpchecker/clang_tool/wrapper/apps/RAJA_perf/RAJAPerf/build_ilaguna_build/tpl/RAJA") = 0 def isChangeDir(self, line): chdir_found = self.chdirPattern.search(line) newDir = None if chdir_found != None: if line.split()[2] == '0': # check it ends with 0 newDir = line return newDir # Old implementation of recursive search # It has a bug on the cwd (it's kept for any recent process) # We want to unset the cwd once the process examination exits # # def recursiveTreeTraversal(self, fileName): # with open(fileName) as fd: # for line in fd: # # Save current dir # cwd = self.isChangeDir(line) # if cwd != None: # print('Found chdir: ', cwd, 'file:', fileName) # self.currentWorkingDir = cwd # # # Check if it's a top command, and it if so # topCmd = self.isTopCommand(line) # if topCmd != None: # # Add CWD and command # print('Adding:') # print('self.currentWorkingDir: ', self.currentWorkingDir) # print('line:', line) # self.traced_commands.append((self.currentWorkingDir, line)) # return # # # Check if child is created # childPID = self.isChildSpawn(line) # if childPID != None: # childFileName = TRACES_DIR + '/trace.' + childPID # self.recursiveTreeTraversal(childFileName) def recursiveTreeTraversal(self, fileName, chdirCmd): lastSeenCHDIR = chdirCmd with open(fileName) as fd: for line in fd: # Save current dir cwd = self.isChangeDir(line) if cwd != None: lastSeenCHDIR = cwd # Check if it's a top command, and it if so topCmd = self.isTopCommand(line) if topCmd != None: # Add CWD and command self.traced_commands.append((lastSeenCHDIR, line)) return # Check if child is created childPID = self.isChildSpawn(line) if childPID != None: childFileName = TRACES_DIR + '/trace.' + childPID self.recursiveTreeTraversal(childFileName, lastSeenCHDIR) def analyzeTraces(self): #prveTreeTraversal(root_file) prGreen('Searching root PID...') root_file = self.getRootFile() print('root:', root_file) prGreen('Analyzing traces...') self.recursiveTreeTraversal(root_file, '') def getProcessID(self, line): p = self.pidPattern.match(line) #print('match', p) if p != None: pid = line.split()[1].split(']')[0] else: pid = 'root' return pid def buildChildTree(self, line): pid = self.getProcessID(line) child = None child_clone_1 = self.childCreationPattern_clone_1.search(line) child_clone_2 = self.childCreationPattern_clone_2.search(line) child_fork = self.childCreationPattern_fork.search(line) read_pattern = self.readPattern.search(line) write_pattern = self.writePattern.search(line) if child_clone_1 != None and read_pattern == None and write_pattern == None: child = line.split()[-1:][0] elif child_clone_2 != None and read_pattern == None and write_pattern == None: child = line.split()[-1:][0] elif child_fork != None and read_pattern == None and write_pattern == None: child = line.split()[-1:][0] if child != None: # found child creation if pid not in self.childTree: self.childTree[pid] = [child] else: self.childTree[pid].append(child) self.parentTree[child] = pid if pid in self.tracedPIDs: self.tracedPIDs.add(child) def isASupportedCompiler(self, line): for compiler in SUPPORTED_COMPILERS: if line.endswith('/'+compiler): #or line == compiler: return True for tool in SUPPORTED_TOOLS: if line.endswith('/'+tool): return True return False # If it's a top command we do not trace their child commands def isTopCommand(self, line): baseExecutable = None if "execve(\"" in line: strCmd = line.split('execve(')[1].split(',')[0] # Shell command if strCmd.endswith('/sh"'): cmd = line.split('["')[1].split(']')[0] cmd = cmd.replace(', ','') cmd = cmd.replace('"', '') tokens = cmd.split() for t in tokens: if self.isASupportedCompiler(t): baseExecutable = ' '.join(tokens) strCmd = strCmd.replace('"', '') if self.isASupportedCompiler(strCmd): baseExecutable = strCmd return baseExecutable # [pid 78395] write(1, "[ 33%] Linking CXX static library libutil.a\n", 44[ 33%] Linking CXX static library libutil.a def printStdOut(self, line): if 'write(1' in line: if 'Building' in line or 'Linking' in line: l = line.split(', ')[1].replace('"','') prGreen(l) def saveCompilingCommands(self, l): #l = line.decode('utf-8') pid = self.getProcessID(l) cmd = self.isTopCommand(l) if cmd != None: if pid not in self.tracedPIDs: self.tracedPIDs.add(pid) self.traced_commands.append(l) #print('-->', cmd) self.buildChildTree(l) self.printStdOut(l) # Check if the command invokes chaning directories # If not, we change to the CWD def commandIvokesChangeDir(self, line): tokens = line.split() if 'cd' in tokens: idx = tokens.index('cd') path = tokens[idx+1] if os.path.exists(path): return True return False def formatCommandForExecution(self, cwd, line): if line.startswith('execve('): line = line.split(', [')[1:] line = ' '.join(line).split(']')[0] line = line.replace(', ',' ') line = line.replace('"', '') line = line.replace('\\', '') # Split commands if needed allCommands = re.split('\&\&|\;', line) newCommand = [] for cmd in allCommands: if '/sh -c' in cmd: cmd = ' '.join(cmd.split()[2:]) # remove /bin/sh -c if '-E ' in cmd: # Remove commands that only run the preprocessor with -E continue if not self.commandIvokesChangeDir(line): cmd = 'cd ' + cwd + ' && ' + cmd newCommand.append(cmd) line = ' && '.join(newCommand) return line def writeToFile(self): fileNameRaw = TRACES_DIR + '/raw_traces.txt' prGreen('Saving raw traces in '+fileNameRaw) fd = open(fileNameRaw, 'w') for line in self.traced_commands: fd.write(str(line)+'\n') fd.close() fileNameExec = TRACES_DIR + '/executable_traces.txt' prGreen('Saving executable traces in '+fileNameExec) fd = open(fileNameExec, 'w') for l in self.traced_commands: #line = l[1] cwd, line = l #if l[0] != '': # cwd = l[0].split('"')[1] #else: # cwd = '.' if cwd != '': cwd = cwd.split('"')[1] else: cwd = '.' line = self.formatCommandForExecution(cwd, line) fd.write(line+'\n') fd.close() def replayTraces(self, fileName): fd = open(fileName, 'r') for line in fd: self.saveCompilingCommands(line) fd.close() def createTracesDir(self): if os.path.exists(TRACES_DIR): shutil.rmtree(TRACES_DIR) os.makedirs(TRACES_DIR) def startTracing(self): self.createTracesDir() trace_command = [STRACE, '-o', TRACES_FILES, '-ff', '-s', '9999'] + self.make_command process = subprocess.Popen(trace_command, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Poll process for new output until finished c = 0 while True: nextline = process.stdout.readline() #nextline = process.stderr.readline() if process.poll() is not None or nextline.decode('utf-8') == '': break l = nextline.decode('utf-8')[:-1] print(l) #self.saveCompilingCommands(l) #fd.write(l) (stdout_data, stderr_data) = process.communicate() exitCode = process.returncode if (exitCode == 0): return (stdout_data, stderr_data) else: sys.exit('Error in input: ' + str(self.make_command)) if __name__ == '__main__': #l = 'execve("/usr/tce/packages/cuda/cuda-9.2.148/bin/nvcc", ["/usr/tce/packages/cuda/cuda-9.2.148/bin/nvcc", "-ccbin=clang++", "-restrict", "-gencode=arch=compute_70,code=sm_70", "-O3", "--expt-extended-lambda", "-Xcompiler=-fPIC", "-Wno-deprecated-gpu-targets", "-shared", "-dlink", "CMakeFiles/kripke.exe.dir/src/kripke.cpp.o", "-o", "CMakeFiles/kripke.exe.dir/cmake_device_link.o", "-L/usr/tce/packages/cuda/cuda-9.2.148/nvidia/targets/ppc64le-linux/lib/stubs", "-L/usr/tce/packages/cuda/cuda-9.2.148/nvidia/targets/ppc64le-linux/lib", "lib/libchai.a", "lib/libRAJA.a", "/usr/tce/packages/cuda/cuda-9.2.148/lib64/libcudart_static.a", "-lpthread", "-ldl", "lib/libkripke.a", "lib/libumpire.a", "-lcudadevrt", "-lcudart_static", "-lrt"], 0x7fffffffb8b8 /* 129 vars */) = 0\n' #strace = CommandsTracing(['make', '-j']) #ret = strace.isTopCommand(l) #print(l) #print('ret:', ret) #exit() #strace.analyzeTraces() #strace.traced_commands.append(('', l)) #strace.writeToFile() #exit() cmd = sys.argv[1:] strace = CommandsTracing(cmd) #strace.startTracing() strace.analyzeTraces() strace.writeToFile()
72070
from .cifar import Cifar10DataProvider, Cifar100DataProvider, \ Cifar10AugmentedDataProvider, Cifar100AugmentedDataProvider from .svhn import SVHNDataProvider def get_data_provider_by_name(name, train_params): """Return required data provider class""" if name == 'C10': return Cifar10DataProvider(**train_params) if name == 'C10+': return Cifar10AugmentedDataProvider(**train_params) if name == 'C100': return Cifar100DataProvider(**train_params) if name == 'C100+': return Cifar100AugmentedDataProvider(**train_params) if name == 'SVHN': return SVHNDataProvider(**train_params) else: print("Sorry, data provider for `%s` dataset " "was not implemented yet" % name) exit()
72100
class Socks5Error(Exception): pass class NoVersionAllowed(Socks5Error): pass class NoCommandAllowed(Socks5Error): pass class NoATYPAllowed(Socks5Error): pass class AuthenticationError(Socks5Error): pass class NoAuthenticationAllowed(AuthenticationError): pass
72115
import os import sys import cv2 import numpy as np from imageio import imread import json import argparse import visualization.visualizer.shader from PyQt5 import QtWidgets, QtGui, QtOpenGL from PyQt5.QtWidgets import * from PyQt5.QtGui import QIcon import PyQt5.QtCore as QtCore import glm from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * from visualization.visualizer.Viewer import Utils from visualization.visualizer.Viewer import LayoutView class TopWindow(QMainWindow): def __init__(self, img, layout, floor_reverse=False, parent=None): super().__init__(parent) sizeObject = QtWidgets.QDesktopWidget().screenGeometry(-1) [self.h, self.w] = [sizeObject.height(), sizeObject.width()] ratio = 0.9 self.h = int(self.h * ratio) self.w = int(self.w * ratio) self.setGeometry(20, 60, self.w, self.h) self.setWindowTitle("Layout Visualizer") self.centeralWidget = QWidget(self) self.layout = layout self.LayoutViewer = LayoutView.GLWindow(img, main=self, parent=self.centeralWidget) wallNum, wallPoints, lines, mesh = Utils.Label2Mesh(Utils.OldFormat2Mine(self.layout), floor_reverse) self.LayoutViewer.updateLayoutMesh(wallNum, wallPoints, lines, mesh) layout = QGridLayout() layout.setRowStretch(0, 1) layout.setColumnStretch(0, 1) layout.addWidget(self.LayoutViewer, 0, 0, 1, 1) self.centeralWidget.setLayout(layout) self.setCentralWidget(self.centeralWidget) def enterEvent(self, event): self.setFocus(True) def visualize_3d(layout, img): app = QtWidgets.QApplication(sys.argv) window = TopWindow(img, layout=layout) window.show() # cv2.waitKey() sys.exit(app.exec_()) if __name__ == '__main__': parser = argparse.ArgumentParser(description='360 Layout Visualizer', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--img', type=str, required=True, help='The panorama path') parser.add_argument('--json', type=str, required=True, help='The output json path') args = parser.parse_args() img = imread(args.img, pilmode='RGB') with open(args.json, 'r') as f: layout = json.load(f) visualize_3d(layout, img)
72127
import unittest try: import torch_butterfly BUTTERFLY = True except ImportError: BUTTERFLY = False class TestCase(unittest.TestCase): def test(self, butterfly=False): pass @unittest.skipIf(not BUTTERFLY, "torch_butterfly not found") def test_butterfly(self, **kwargs): self.test(butterfly=True, **kwargs)
72138
import logging class LogHelper(): handler = None @staticmethod def setup(): FORMAT = '[%(levelname)s] %(asctime)s - %(name)s - %(message)s' LogHelper.handler = logging.StreamHandler() LogHelper.handler.setLevel(logging.DEBUG) LogHelper.handler.setFormatter(logging.Formatter(FORMAT)) LogHelper.get_logger(LogHelper.__name__).info("Log Helper set up") @staticmethod def get_logger(name,level=logging.DEBUG): l = logging.getLogger(name) l.setLevel(level) l.addHandler(LogHelper.handler) return l
72160
import logging import platform from unittest.mock import Mock from sanic import __version__ from sanic.application.logo import BASE_LOGO from sanic.application.motd import MOTDTTY def test_logo_base(app, run_startup): logs = run_startup(app) assert logs[0][1] == logging.DEBUG assert logs[0][2] == BASE_LOGO def test_logo_false(app, run_startup): app.config.LOGO = False logs = run_startup(app) banner, port = logs[1][2].rsplit(":", 1) assert logs[0][1] == logging.INFO assert banner == "Goin' Fast @ http://127.0.0.1" assert int(port) > 0 def test_logo_true(app, run_startup): app.config.LOGO = True logs = run_startup(app) assert logs[0][1] == logging.DEBUG assert logs[0][2] == BASE_LOGO def test_logo_custom(app, run_startup): app.config.LOGO = "My Custom Logo" logs = run_startup(app) assert logs[0][1] == logging.DEBUG assert logs[0][2] == "My Custom Logo" def test_motd_with_expected_info(app, run_startup): logs = run_startup(app) assert logs[1][2] == f"Sanic v{__version__}" assert logs[3][2] == "mode: debug, single worker" assert logs[4][2] == "server: sanic" assert logs[5][2] == f"python: {platform.python_version()}" assert logs[6][2] == f"platform: {platform.platform()}" def test_motd_init(): _orig = MOTDTTY.set_variables MOTDTTY.set_variables = Mock() motd = MOTDTTY(None, "", {}, {}) motd.set_variables.assert_called_once() MOTDTTY.set_variables = _orig def test_motd_display(caplog): motd = MOTDTTY(" foobar ", "", {"one": "1"}, {"two": "2"}) with caplog.at_level(logging.INFO): motd.display() version_line = f"Sanic v{__version__}".center(motd.centering_length) assert ( "".join(caplog.messages) == f""" β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ {version_line} β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ foobar β”‚ one: 1 β”‚ | β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ two: 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ )
72167
import json import sqlite3 from scrapekit.logs import log_path conn = sqlite3.connect(':memory:') def dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d def log_parse(scraper): path = log_path(scraper) with open(path, 'r') as fh: for line in fh: data = json.loads(line) if data.get('scraperName') != scraper.name: continue yield data def load(scraper): conn.row_factory = dict_factory conn.execute("""CREATE TABLE IF NOT EXISTS log (scraperId text, taskName text, scraperStartTime datetime, asctime text, levelname text, taskId text)""") conn.commit() for data in log_parse(scraper): conn.execute("""INSERT INTO log (scraperId, taskName, scraperStartTime, asctime, levelname, taskId) VALUES (?, ?, ?, ?, ?, ?)""", (data.get('scraperId'), data.get('taskName'), data.get('scraperStartTime'), data.get('asctime'), data.get('levelname'), data.get('taskId'))) conn.commit() def query(sql, **kwargs): rp = conn.execute(sql, kwargs) for row in rp.fetchall(): yield row
72177
import os from flask import g, request, jsonify, make_response from flask_sqlalchemy import SQLAlchemy from .app import app from .conf import CONFIG from .utils import get_allowed_service from DeviceManager.Logger import Log app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_DATABASE_URI'] = CONFIG.get_db_url() app.config['SQLALCHEMY_BINDS'] = {} LOGGER = Log().color_log() # adapted from https://gist.github.com/miikka/28a7bd77574a00fcec8d class MultiTenantSQLAlchemy(SQLAlchemy): def check_binds(self, bind_key): binds = app.config.get('SQLALCHEMY_BINDS') if binds.get(bind_key, None) is None: binds[bind_key] = CONFIG.get_db_url() app.config['SQLALCHEMY_BINDS'] = binds def choose_tenant(self, bind_key): if hasattr(g, 'tenant'): raise RuntimeError('Switching tenant in the middle of the request.') g.tenant = bind_key def get_engine(self, app=None, bind=None): if bind is None: if not hasattr(g, 'tenant'): raise RuntimeError('No tenant chosen.') bind = g.tenant self.check_binds(bind) return super().get_engine(app=app, bind=bind) SINGLE_TENANT = os.environ.get('SINGLE_TENANT', False) if SINGLE_TENANT: db = SQLAlchemy(app) else: db = MultiTenantSQLAlchemy(app) @app.before_request def before_request(): try: tenant = get_allowed_service(request.headers['authorization']) db.choose_tenant(tenant) except KeyError: error = {"message": "No authorization token has been supplied", "status": 401} LOGGER.error(f' {error["message"]} - {error["status"]}.') return make_response(jsonify(error), 401) except ValueError: error = {"message": "Invalid authentication token", "status": 401} LOGGER.error(f' {error["message"]} - {error["status"]}.') return make_response(jsonify(error), 401)
72192
import numpy as np class Renderer: def __init__(self, height, width, config): self.height = height self.width = width self.content = None self.zbuffer = None self.m = None self.f = 1.0 self.resize(height, width) self.colors = config.colors self.bonds = config.bonds self.btoggle = len(self.bonds) > 0 self.pos, self.sym = np.array(config.coordinates), config.symbols self.ztoggle = True self.zoom = 1.0 self.rot = np.identity(3) self.rotcounter = [0, 0, 0] self.draw_scene() def draw_scene(self): """ A super simple rasterizer. For now, just draw single character atom symbols at their rounded x and y positions. :return: True if nothing bad happened. """ mx, my = self.m rot = np.matmul(self.pos, self.rot) self.clear() # Draw bonds for bond in self.bonds: i, j = bond # if bond is (i, j) with i == j, just draw the label (no bonds) if i == j: x, y, z = rot[i] xp, yp = round(float(x) * self.f * self.zoom + mx), round(float(y) * self.zoom + my) if 1 < xp < self.width - 2 and 1 < yp < self.height - 3 and float(z) < self.zbuffer[yp][xp]: self.zbuffer[yp][xp] = float(z) self.content[yp][xp] = self.sym[i][0].upper() + "," + self.colors[self.sym[i].upper()] # else draw the bond with the labels at the end points else: # Draw the two labels at the end points xa, ya, za = rot[i] xa = float(xa) * self.f * self.zoom + mx ya = float(ya) * self.zoom + my xb, yb, zb = rot[j] xb = float(xb) * self.f * self.zoom + mx yb = float(yb) * self.zoom + my xap, yap = round(xa), round(ya) xbp, ybp = round(xb), round(yb) if 1 < xap < self.width - 2 and 1 < yap < self.height - 3 and float(za) < self.zbuffer[yap][xap]: self.zbuffer[yap][xap] = float(za) self.content[yap][xap] = self.sym[i][0].upper() + "," + self.colors[self.sym[i].upper()] if 1 < xbp < self.width - 2 and 1 < ybp < self.height - 3 and float(zb) < self.zbuffer[ybp][xbp]: self.zbuffer[ybp][xbp] = float(zb) self.content[ybp][xbp] = self.sym[j][0].upper() + "," + self.colors[self.sym[j].upper()] if not self.btoggle: continue # Then start at xap+1 and go to xbp-1, drawing line segments sy = -1 if ya > yb else 1 sx = -1 if xa > xb else 1 sz = -1 if za > zb else 1 dx = float((xb - xa) / (yb - ya)) if abs(yb - ya) > 0 else 0 dy = float((yb - ya) / (xb - xa)) if abs(xb - xa) > 0 else 0 dz = float((zb - za) / (xb - xa)) if abs(xb - xa) > 0 else 0 if abs(dy) <= 1: for k in range(1, abs(xap - xbp)): xk = xap + sx * k yk = round(float(ya) + sx * k * dy) zk = round((float(za) + sz * k * dz)) if 1 < xk < self.width - 2 and 1 < yk < self.height - 3 and float(zk) < \ self.zbuffer[yk][xk]: col = self.colors[self.sym[i].upper()] if k < abs(xap - xbp) / 2 else self.colors[ self.sym[j].upper()] self.zbuffer[yk][xk] = float(zk) self.content[yk][xk] = "Β·,%s" % col else: for k in range(1, abs(yap - ybp)): xk = round((float(xa) + sy * k * dx)) yk = yap + sy * k zk = round((float(za) + sz * k * dz)) if 1 < xk < self.width - 2 and 1 < yk < self.height - 3 and float(zk) < \ self.zbuffer[yk][xk]: col = self.colors[self.sym[i].upper()] if k < abs(yap - ybp) / 2 else self.colors[ self.sym[j].upper()] self.zbuffer[yk][xk] = float(zk) self.content[yk][xk] = "Β·,%s" % col return True def rotate(self, direction): """ Set an internal rotation matrix that is applied to the coordinates before every render. :param direction: 1 and -1 are x and -x, 2 is either z/y, depending on whether the ztoggle is active or not """ if direction == 1: self.rot = np.matmul(self.rot, [[1.0, 0.0, 0.0], [0.0, 0.9962, -0.0872], [0.0, 0.0872, 0.9962]]) if self.rotcounter[0] + 5 > 360: self.rotcounter[0] = 0 self.rotcounter[0] += 5 elif direction == -1: self.rot = np.matmul(self.rot, [[1.0, 0.0, 0.0], [0.0, 0.9962, 0.0872], [0.0, -0.0872, 0.9962]]) if self.rotcounter[0] - 5 < 0: self.rotcounter[0] = 360 self.rotcounter[0] -= 5 elif direction == 2 and self.ztoggle: self.rot = np.matmul(self.rot, [[0.9962, -0.0872, 0.0], [0.0872, 0.9962, 0.0], [0.0, 0.0, 1.0]]) if self.rotcounter[2] + 5 > 360: self.rotcounter[2] = 0 else: self.rotcounter[2] += 5 elif direction == -2 and self.ztoggle: self.rot = np.matmul(self.rot, [[0.9962, 0.0872, 0.0], [-0.0872, 0.9962, 0.0], [0.0, 0.0, 1.0]]) if self.rotcounter[2] - 5 < 0: self.rotcounter[2] = 360 else: self.rotcounter[2] -= 5 elif direction == 2: self.rot = np.matmul(self.rot, [[0.9962, 0.0, 0.0872], [0.0, 1.0, 0.0], [-0.0872, 0.0, 0.9962]]) if self.rotcounter[1] + 5 > 360: self.rotcounter[1] = 0 else: self.rotcounter[1] += 5 elif direction == -2: self.rot = np.matmul(self.rot, [[0.9962, 0.0, -0.0872], [0.0, 1.0, 0.0], [0.0872, 0.0, 0.9962]]) if self.rotcounter[1] - 5 < 0: self.rotcounter[1] = 360 else: self.rotcounter[1] -= 5 def reset_view(self): """ Reset the view to the starting values. """ self.zoom = 1.0 self.rotcounter = [0, 0, 0] self.rot = np.identity(3) self.m = round(self.width / 2), round(self.height / 2) def resize(self, height, width): """ Resize the screen. Known issue: crashes if the resize is faster than the framerate. """ self.height = height self.width = width self.content = [[" ,0"] * self.width for n in range(self.height - 2)] self.zbuffer = [[10000.0] * self.width for n in range(self.height - 2)] self.m = round(self.width / 2), round(self.height / 2) # Since terminal characters are higher than wide, I correct for this by multiplying the x by f # so that it appears wider. 2.25 is what looks good on my terminals, but might be # nice to have a general way of determining the optimal value self.f = 2 def clear(self): """ Clear the canvas and redraw the border. """ for i in range(self.height - 2): for j in range(self.width): self.zbuffer[i][j] = 10000.0 for i in range(self.height - 2): for j in range(self.width): if i == 0 and j == 0: self.content[i][j] = "β”Œ,0" elif (i == 0 or i == self.height - 3) and 0 < j < self.width - 1: self.content[i][j] = "─,0" elif i == 0 and j == self.width - 1: self.content[i][j] = "┐,0" elif i < self.height - 3 and (j == 0 or j == self.width - 1): self.content[i][j] = "β”‚,0" elif i == self.height - 3 and j == 0: self.content[i][j] = "β””,0" elif i == self.height - 3 and j == self.width - 1: self.content[i][j] = "β”˜,0" else: self.content[i][j] = " ,0"
72201
import pathlib def iter_examples(): example_dir = pathlib.Path(__file__).parent.absolute() for fp in example_dir.iterdir(): if fp.name.startswith("_") or fp.suffix != ".py": continue yield fp
72214
from typing import Sequence, Dict from anoncreds.protocol.globals import LARGE_VPRIME, LARGE_MVECT, LARGE_E_START, \ LARGE_ETILDE, \ LARGE_VTILDE, LARGE_UTILDE, LARGE_RTILDE, LARGE_ALPHATILDE, ITERATIONS, \ DELTA from anoncreds.protocol.primary.primary_proof_common import calcTge, calcTeq from anoncreds.protocol.types import PrimaryClaim, Predicate, PrimaryInitProof, \ PrimaryEqualInitProof, PrimaryPrecicateGEInitProof, PrimaryProof, \ PrimaryEqualProof, PrimaryPredicateGEProof, \ ID, ClaimInitDataType, ClaimAttributeValues from anoncreds.protocol.utils import splitRevealedAttrs, fourSquares from anoncreds.protocol.wallet.prover_wallet import ProverWallet from config.config import cmod class PrimaryClaimInitializer: def __init__(self, wallet: ProverWallet): self._wallet = wallet async def genClaimInitData(self, schemaId: ID) -> ClaimInitDataType: pk = await self._wallet.getPublicKey(schemaId) ms = await self._wallet.getMasterSecret(schemaId) vprime = cmod.randomBits(LARGE_VPRIME) N = pk.N Rms = pk.Rms S = pk.S U = (S ** vprime) * (Rms ** ms) % N return ClaimInitDataType(U=U, vPrime=vprime) async def preparePrimaryClaim(self, schemaId: ID, claim: PrimaryClaim): claimInitDat = await self._wallet.getPrimaryClaimInitData(schemaId) newV = claim.v + claimInitDat.vPrime claim = claim._replace(v=newV) return claim class PrimaryProofBuilder: def __init__(self, wallet: ProverWallet): self._wallet = wallet async def initProof(self, schemaId, c1: PrimaryClaim, revealedAttrs: Sequence[str], predicates: Sequence[Predicate], m1Tilde, m2Tilde, claimAttributes: Dict[str, ClaimAttributeValues]) -> PrimaryInitProof: if not c1: return None eqProof = await self._initEqProof(schemaId, c1, revealedAttrs, m1Tilde, m2Tilde, claimAttributes) geProofs = [] for predicate in predicates: geProof = await self._initGeProof(schemaId, eqProof, c1, predicate, claimAttributes) geProofs.append(geProof) return PrimaryInitProof(eqProof, geProofs) async def finalizeProof(self, schemaId, cH, initProof: PrimaryInitProof) -> PrimaryProof: if not initProof: return None cH = cmod.integer(cH) eqProof = await self._finalizeEqProof(schemaId, cH, initProof.eqProof) geProofs = [] for initGeProof in initProof.geProofs: geProof = await self._finalizeGeProof(schemaId, cH, initGeProof, eqProof) geProofs.append(geProof) return PrimaryProof(eqProof, geProofs) async def _initEqProof(self, schemaId, c1: PrimaryClaim, revealedAttrs: Sequence[str], m1Tilde, m2Tilde, claimAttributes: Dict[str, ClaimAttributeValues]) \ -> PrimaryEqualInitProof: m2Tilde = m2Tilde if m2Tilde else cmod.integer( cmod.randomBits(LARGE_MVECT)) revealedAttrs, unrevealedAttrs = splitRevealedAttrs( claimAttributes, [a.name for a in revealedAttrs]) mtilde = self._getMTilde(unrevealedAttrs) Ra = cmod.integer(cmod.randomBits(LARGE_VPRIME)) pk = await self._wallet.getPublicKey(ID(schemaId=schemaId)) A, e, v = c1.A, c1.e, c1.v Aprime = A * (pk.S ** Ra) % pk.N vprime = (v - e * Ra) eprime = e - (2 ** LARGE_E_START) etilde = cmod.integer(cmod.randomBits(LARGE_ETILDE)) vtilde = cmod.integer(cmod.randomBits(LARGE_VTILDE)) Rur = 1 % pk.N for k, value in unrevealedAttrs.items(): if k in claimAttributes: Rur = Rur * (pk.R[k] ** mtilde[k]) Rur *= pk.Rms ** m1Tilde Rur *= pk.Rctxt ** m2Tilde # T = ((Aprime ** etilde) * Rur * (pk.S ** vtilde)) % pk.N T = calcTeq(pk, Aprime, etilde, vtilde, mtilde, m1Tilde, m2Tilde, unrevealedAttrs.keys()) return PrimaryEqualInitProof(c1, Aprime, T, etilde, eprime, vtilde, vprime, mtilde, m1Tilde, m2Tilde, unrevealedAttrs.keys(), revealedAttrs) async def _initGeProof(self, schemaId, eqProof: PrimaryEqualInitProof, c1: PrimaryClaim, predicate: Predicate, claimAttributes: Dict[str, ClaimAttributeValues]) \ -> PrimaryPrecicateGEInitProof: # gen U for Delta pk = await self._wallet.getPublicKey(ID(schemaId=schemaId)) k, value = predicate.attrName, predicate.value delta = claimAttributes[k].encoded - value if delta < 0: raise ValueError("Predicate is not satisfied") u = fourSquares(delta) # prepare C list r = {} T = {} CList = [] for i in range(0, ITERATIONS): r[str(i)] = cmod.integer(cmod.randomBits(LARGE_VPRIME)) T[str(i)] = (pk.Z ** u[str(i)]) * (pk.S ** r[str(i)]) % pk.N CList.append(T[str(i)]) r[DELTA] = cmod.integer(cmod.randomBits(LARGE_VPRIME)) T[DELTA] = (pk.Z ** delta) * (pk.S ** r[DELTA]) % pk.N CList.append(T[DELTA]) # prepare Tau List utilde = {} rtilde = {} for i in range(0, ITERATIONS): utilde[str(i)] = cmod.integer(cmod.randomBits(LARGE_UTILDE)) rtilde[str(i)] = cmod.integer(cmod.randomBits(LARGE_RTILDE)) rtilde[DELTA] = cmod.integer(cmod.randomBits(LARGE_RTILDE)) alphatilde = cmod.integer(cmod.randomBits(LARGE_ALPHATILDE)) TauList = calcTge(pk, utilde, rtilde, eqProof.mTilde[k], alphatilde, T) return PrimaryPrecicateGEInitProof(CList, TauList, u, utilde, r, rtilde, alphatilde, predicate, T) async def _finalizeEqProof(self, schemaId, cH, initProof: PrimaryEqualInitProof) -> PrimaryEqualProof: e = initProof.eTilde + (cH * initProof.ePrime) v = initProof.vTilde + (cH * initProof.vPrime) m = {} claimAttributes = await self._wallet.getClaimAttributes(ID(schemaId=schemaId)) for k in initProof.unrevealedAttrs: m[str(k)] = initProof.mTilde[str(k)] + ( cH * claimAttributes[str(k)].encoded) ms = await self._wallet.getMasterSecret(ID(schemaId=schemaId)) m1 = initProof.m1Tilde + (cH * ms) m2 = initProof.m2Tilde + (cH * initProof.c1.m2) return PrimaryEqualProof(e, v, m, m1, m2, initProof.Aprime, initProof.revealedAttrs) async def _finalizeGeProof(self, schemaId, cH, initProof: PrimaryPrecicateGEInitProof, eqProof: PrimaryEqualProof) \ -> PrimaryPredicateGEProof: u = {} r = {} urproduct = 0 for i in range(0, ITERATIONS): u[str(i)] = initProof.uTilde[str(i)] + cH * initProof.u[str(i)] r[str(i)] = initProof.rTilde[str(i)] + cH * initProof.r[str(i)] urproduct += initProof.u[str(i)] * initProof.r[str(i)] r[DELTA] = initProof.rTilde[DELTA] + cH * initProof.r[DELTA] alpha = initProof.alphaTilde + cH * (initProof.r[DELTA] - urproduct) k = initProof.predicate.attrName return PrimaryPredicateGEProof(u, r, alpha, eqProof.m[str(k)], initProof.T, initProof.predicate) def _getMTilde(self, unrevealedAttrs): mtilde = {} for key, value in unrevealedAttrs.items(): mtilde[key] = cmod.integer(cmod.randomBits(LARGE_MVECT)) return mtilde
72223
import token as TOKEN __all__ = ("EXCEPT", "INDENT", "LINE_LENGTH", "TOKEN") LINE_LENGTH = 100 # line length to use while formatting code TOKEN.COLONEQUAL = 0xFF # for versions that have assignment expressions implemented SPACE = " " INDENT_LENGTH = 4 # length of indentation to use INDENT = SPACE * INDENT_LENGTH # actual string to apply as one indent NEWLINES = {TOKEN.NEWLINE, TOKEN.NL} # tokens that are considered as newlines EXCEPT = { # symbols after which we do not expect to have {...} used for indentation TOKEN.NEWLINE, # \n TOKEN.NL, # \n TOKEN.LPAR, # ( TOKEN.LSQB, # [ TOKEN.COLON, # : TOKEN.COMMA, # , TOKEN.SEMI, # ; TOKEN.PLUS, # + TOKEN.MINUS, # - TOKEN.STAR, # * TOKEN.SLASH, # / TOKEN.VBAR, # | TOKEN.AMPER, # & TOKEN.LESS, # < TOKEN.GREATER, # > TOKEN.EQUAL, # = TOKEN.DOT, # . TOKEN.PERCENT, # % TOKEN.LBRACE, # { TOKEN.EQEQUAL, # == TOKEN.NOTEQUAL, # != TOKEN.LESSEQUAL, # <= TOKEN.GREATEREQUAL, # >= TOKEN.TILDE, # ~ TOKEN.CIRCUMFLEX, # ^ TOKEN.LEFTSHIFT, # << TOKEN.RIGHTSHIFT, # >> TOKEN.DOUBLESTAR, # ** TOKEN.PLUSEQUAL, # += TOKEN.MINEQUAL, # -= TOKEN.STAREQUAL, # *= TOKEN.SLASHEQUAL, # /= TOKEN.PERCENTEQUAL, # %= TOKEN.AMPEREQUAL, # &= TOKEN.VBAREQUAL, # |= TOKEN.CIRCUMFLEXEQUAL, # ^= TOKEN.LEFTSHIFTEQUAL, # <<= TOKEN.RIGHTSHIFTEQUAL, # >>= TOKEN.DOUBLESTAREQUAL, # **= TOKEN.DOUBLESLASH, # // TOKEN.DOUBLESLASHEQUAL, # //= TOKEN.AT, # @ TOKEN.ATEQUAL, # @= TOKEN.RARROW, # -> TOKEN.COLONEQUAL, # := }
72266
import os, sys #import GaussianRunPack from GaussianRunPack import GaussianDFTRun #test_sdf = GaussianRunPack.GaussianDFTRun('B3LYP', '3-21G*',12, 'OPT energy deen nmr uv homolumo',infilename,0) #test_sdf = GaussianRunPack.GaussianDFTRun('B3LYP', '3-21G*',1, 'OPT energy deen nmr uv homolumo',infilename,0) #outdic = test_sdf.run_gaussian() ind=1 calc_sdf = GaussianDFTRun('B3LYP', '3-21G*', 1, 'OPT energy deen nmr uv homolumo', 'CheckMolopt'+str(ind)+'.sdf', 0) outdic = calc_sdf.run_gaussian() #print(test_sdf.read_sdf()) print(outdic) print('uv', outdic['uv'][0][0], 'deen', outdic['deen'], 'uv', outdic['uv'][1][0]) #gap = test_sdf.Extract_values(infilename,1,0,1,1,0) #print (gap) #print(Energy[-1])
72279
import pytest from ruptures.datasets import pw_constant from ruptures.show import display from ruptures.show.display import MatplotlibMissingError @pytest.fixture(scope="module") def signal_bkps(): signal, bkps = pw_constant() return signal, bkps def test_display_with_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) figsize = (20, 10) # figure size fig, axarr = display( signal, bkps, figsize=figsize, ) fig, axarr = display( signal[:, 0], bkps, figsize=figsize, ) except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_without_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) figsize = (20, 10) # figure size fig, axarr = display(signal, bkps) fig, axarr = display(signal[:, 0], bkps) except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_with_new_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) fig, axarr = display(signal, bkps, facecolor="k", edgecolor="b") fig, axarr = display(signal[:, 0], bkps, facecolor="k", edgecolor="b") except MatplotlibMissingError: pytest.skip("matplotlib is not installed") def test_display_with_computed_chg_pts_options(signal_bkps): try: signal, bkps = signal_bkps fig, axarr = display(signal, bkps) fig, axarr = display(signal, bkps, bkps) fig, axarr = display(signal, bkps, bkps, computed_chg_pts_color="k") fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3 ) fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3, computed_chg_pts_linestyle="--", ) fig, axarr = display( signal, bkps, bkps, computed_chg_pts_color="k", computed_chg_pts_linewidth=3, computed_chg_pts_linestyle="--", computed_chg_pts_alpha=1.0, ) except MatplotlibMissingError: pytest.skip("matplotlib is not installed")
72323
from flask_restful import Resource from flask_restful.reqparse import RequestParser from pajbot.managers.db import DBManager from pajbot.models.playsound import Playsound from pajbot.models.sock import SocketClientManager from pajbot.modules import PlaysoundModule from pajbot.web.utils import requires_level from pajbot.managers.adminlog import AdminLogManager class PlaysoundAPI(Resource): @requires_level(500) def put(self, playsound_name, **options): playsound_name = PlaysoundModule.massage_name(playsound_name) if not PlaysoundModule.validate_name(playsound_name): return ( { "error": "Invalid Playsound name. The playsound name may only contain lowercase latin letters, 0-9, -, or _. No spaces :rage:" }, 400, ) post_parser = RequestParser() post_parser.add_argument("link", required=True) args = post_parser.parse_args() try: link = args["link"] except (ValueError, KeyError): return {"error": "Invalid `link` parameter."}, 400 with DBManager.create_session_scope() as db_session: count = db_session.query(Playsound).filter(Playsound.name == playsound_name).count() if count >= 1: return "Playsound already exists", 400 # the rest of the parameters are initialized with defaults playsound = Playsound(name=playsound_name, link=link) db_session.add(playsound) log_msg = f"The {playsound_name} playsound has been added" AdminLogManager.add_entry("Playsound added", options["user"], log_msg) return "OK", 200 @requires_level(500) def post(self, playsound_name, **options): # require JSON so the cooldown can be null post_parser = RequestParser() post_parser.add_argument("link", required=True) post_parser.add_argument("volume", type=int, required=True) post_parser.add_argument("cooldown", type=int, required=False) post_parser.add_argument("enabled", type=bool, required=False) args = post_parser.parse_args() link = args["link"] if not PlaysoundModule.validate_link(link): return "Empty or bad link, links must start with https:// and must not contain spaces", 400 volume = args["volume"] if not PlaysoundModule.validate_volume(volume): return "Bad volume argument", 400 # cooldown is allowed to be null/None cooldown = args.get("cooldown", None) if not PlaysoundModule.validate_cooldown(cooldown): return "Bad cooldown argument", 400 enabled = args["enabled"] if enabled is None: return "Bad enabled argument", 400 with DBManager.create_session_scope() as db_session: playsound = db_session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: return "Playsound does not exist", 404 raw_edited_data = { "link": (playsound.link, link), "volume": (playsound.volume, volume), "cooldown": (playsound.cooldown, cooldown), } # make a dictionary with all the changed values (except for enabled, which has a special case below) filtered_edited_data = {k: v for k, v in raw_edited_data.items() if v[0] != v[1]} log_msg = f"The {playsound_name} playsound has been updated: " log_msg_changes = [] if playsound.enabled != enabled: log_msg_changes.append("enabled" if enabled else "disabled") # iterate over changed values and push them to the log msg for edited_key, values in filtered_edited_data.items(): log_msg_changes.append(f"{edited_key} {values[0]} to {values[1]}") log_msg += ", ".join(log_msg_changes) playsound.link = link playsound.volume = volume playsound.cooldown = cooldown playsound.enabled = enabled db_session.add(playsound) if len(log_msg_changes): AdminLogManager.add_entry("Playsound edited", options["user"], log_msg) return "OK", 200 @requires_level(500) def delete(self, playsound_name, **options): with DBManager.create_session_scope() as db_session: playsound = db_session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: return "Playsound does not exist", 404 log_msg = f"The {playsound.name} playsound has been removed" AdminLogManager.add_entry("Playsound removed", options["user"], log_msg) db_session.delete(playsound) return "OK", 200 class PlayPlaysoundAPI(Resource): @requires_level(500) def post(self, playsound_name, **options): with DBManager.create_session_scope() as db_session: count = db_session.query(Playsound).filter(Playsound.name == playsound_name).count() if count <= 0: return "Playsound does not exist", 404 # explicitly don't check for disabled SocketClientManager.send("playsound.play", {"name": playsound_name}) return "OK", 200 def init(api): api.add_resource(PlaysoundAPI, "/playsound/<playsound_name>") api.add_resource(PlayPlaysoundAPI, "/playsound/<playsound_name>/play")
72331
from torch import nn from .PGFA_backbone import PGFABackbone from .PGFA_pool import PGFAPool from .PGFA_pose_guided_mask_block import PGFAPoseGuidedMaskBlock from .PGFA_reduction import PGFAReduction from .PGFA_classifier import PGFAClassifier class PGFA(nn.Module): def __init__(self, cfg): super(PGFA, self).__init__() self.backbone = PGFABackbone(cfg) self.pool = PGFAPool(cfg) self.pose_guide_mask_block = PGFAPoseGuidedMaskBlock(cfg) self.reduction = PGFAReduction(cfg) if hasattr(cfg.model, 'num_classes') and cfg.model.num_classes > 0: self.classifier = PGFAClassifier(cfg) def backbone_forward(self, in_dict): return self.backbone(in_dict) def pool_forward(self, in_dict, cfg): return self.pool(in_dict, cfg) def pose_guided_mask_block_forward(self, in_dict, out_dict, cfg): return self.pose_guide_mask_block(in_dict, out_dict, cfg) def reduction_forward(self, in_dict, cfg): return self.reduction(in_dict, cfg) def classifier_forward(self, in_dict, cfg): return self.classifier(in_dict, cfg) def forward(self, in_dict, cfg, forward_type='Supervised'): in_dict = self.backbone_forward(in_dict) out_dict = self.pool_forward(in_dict, cfg) out_dict = self.pose_guided_mask_block_forward(in_dict, out_dict, cfg) out_dict = self.reduction_forward(out_dict, cfg) if hasattr(self, 'classifier'): out_dict = self.classifier_forward(out_dict, cfg) return out_dict
72342
from amaranth_boards.zturn_lite_z010 import * from amaranth_boards.zturn_lite_z010 import __all__ import warnings warnings.warn("instead of nmigen_boards.zturn_lite_z010, use amaranth_boards.zturn_lite_z010", DeprecationWarning, stacklevel=2)
72395
import numpy as np from scipy.spatial import distance from Quaternions import Quaternions import Animation import AnimationStructure def constrain(positions, constraints): """ Constrain animation positions given a number of VerletParticles constrains Parameters ---------- positions : (F, J, 3) ndarray array of joint positions for F frames and J joints constraints : [(int, int, float, float, float)] A list of constraints in the format: (Joint1, Joint2, Masses1, Masses2, Lengths) Returns ------- positions : (F, J, 3) ndarray joint positions for F frames and J joints constrained using the supplied constraints """ from VerletParticles import VerletParticles particles = VerletParticles(positions, gravity=0.0, timestep=0.0) for i, j, w0, w1, l in constraints: particles.add_length_constraint(i, j, w0, w1, l) return particles.constrain() def extremities(positions, count, **kwargs): """ List of most extreme frame indices Parameters ---------- positions : (F, J, 3) ndarray array of joint positions for F frames and J joints count : int Number of indices to return, does not include first and last frame which are always included static : bool Find extremities where root translation has been removed Returns ------- indices : (C) ndarray Returns C frame indices of the most extreme frames including the first and last frames. Therefore if `count` it specified as `4` will return and array of `6` indices. """ if kwargs.pop('static', False): positions = positions - positions[:,0][:,np.newaxis,:] positions = positions.reshape((len(positions), -1)) distance_matrix = distance.squareform(distance.pdist(positions)) keys = [0] for _ in range(count-1): keys.append(int(np.argmax(np.min(distance_matrix[keys], axis=0)))) return np.array(keys) def load_to_maya(positions, names=None, parents=None, color=None, radius=0.1, thickness=5.0): import pymel.core as pm import maya.mel as mel if names is None: names = ['joint_%i' % i for i in xrange(positions.shape[1])] if color is None: color = (0.5, 0.5, 0.5) mpoints = [] frames = range(1, len(positions)+1) for i, name in enumerate(names): #try: # point = pm.PyNode(name) #except pm.MayaNodeError: # point = pm.sphere(p=(0,0,0), n=name, radius=radius)[0] point = pm.sphere(p=(0,0,0), n=name, radius=radius)[0] jpositions = positions[:,i] for j,attr,attr_name in zip(xrange(3), [point.tx, point.ty, point.tz], ["_translateX", "_translateY", "_translateZ"]): conn = attr.listConnections() if len(conn) == 0: curve = pm.nodetypes.AnimCurveTU(n=name + attr_name) pm.connectAttr(curve.output, attr) else: curve = conn[0] curve.addKeys(frames, jpositions[:,j]) mpoints.append(point) if parents != None: for i, p in enumerate(parents): if p == -1: continue pointname = names[i] parntname = names[p] conn = pm.PyNode(pointname).t.listConnections() if len(conn) != 0: continue curve = pm.curve(p=[[0,0,0],[0,1,0]], d=1, n=names[i]+'_curve') pm.connectAttr(pointname+'.t', names[i]+'_curve.cv[0]') pm.connectAttr(parntname+'.t', names[i]+'_curve.cv[1]') pm.select(curve) pm.runtime.AttachBrushToCurves() stroke = pm.selected()[0] brush = pm.listConnections(stroke.getChildren()[0]+'.brush')[0] pm.setAttr(brush+'.color1', color) pm.setAttr(brush+'.globalScale', thickness) pm.setAttr(brush+'.endCaps', 1) pm.setAttr(brush+'.tubeSections', 20) mel.eval('doPaintEffectsToPoly(1,0,0,1,100000);') mpoints += [stroke, curve] return pm.group(mpoints, n='AnimationPositions'), mpoints def load_from_maya(root, start, end): import pymel.core as pm def rig_joints_list(s, js): for c in s.getChildren(): if 'Geo' in c.name(): continue if isinstance(c, pm.nodetypes.Joint): js = rig_joints_list(c, js); continue if isinstance(c, pm.nodetypes.Transform): js = rig_joints_list(c, js); continue return [s] + js joints = rig_joints_list(root, []) names = map(lambda j: j.name(), joints) positions = np.empty((end - start, len(names), 3)) original_time = pm.currentTime(q=True) pm.currentTime(start) for i in range(start, end): pm.currentTime(i) for j in joints: positions[i-start, names.index(j.name())] = j.getTranslation(space='world') pm.currentTime(original_time) return positions, names def loop(positions, forward='z'): fid = 'xyz'.index(forward) data = positions.copy() trajectory = data[:,0:1,fid].copy() data[:,:,fid] -= trajectory diff = data[0] - data[-1] data += np.linspace( 0, 1, len(data))[:,np.newaxis,np.newaxis] * diff[np.newaxis] data[:,:,fid] += trajectory return data def extend(positions, length, forward='z'): fid = 'xyz'.index(forward) data = positions.copy() while len(data) < length: next = positions[1:].copy() next[:,:,fid] += data[-1,0,fid] data = np.concatenate([data, next], axis=0) return data[:length] def redirect(positions, joint0, joint1, forward='z'): forwarddir = { 'x': np.array([[[1,0,0]]]), 'y': np.array([[[0,1,0]]]), 'z': np.array([[[0,0,1]]]), }[forward] direction = (positions[:,joint0] - positions[:,joint1]).mean(axis=0)[np.newaxis,np.newaxis] direction = direction / np.sqrt(np.sum(direction**2)) rotation = Quaternions.between(direction, forwarddir).constrained_y() return rotation * positions
72417
import numpy as np import torch from torch.utils.data import Dataset import numpy as np from ad3 import factor_graph as fg try: import cPickle as pickle except: import pickle from tqdm import tqdm import time from .random_pgm_data import RandomPGMData, worker_init_fn len = 100000 class RandomPGMHop(Dataset): def __init__(self, chain_length, hop_order=9, ret_efeature_pw=True, size=len): self.chain_length = chain_length self.hop_order = hop_order if hop_order >> 1 else hop_order + 1 self.half_hop = self.hop_order >> 1 self.ret_efeature_pw = ret_efeature_pw self.size = size def __len__(self): return self.size def _generate_graph(self): g = fg.PFactorGraph() var_list = [] for i in range(self.chain_length): v = g.create_multi_variable(2) v.set_log_potentials(self.lops[i]) var_list.append(v) for i in range(self.chain_length - 1): g.create_factor_dense([var_list[i], var_list[i + 1]], self.pws[i][0]) for i in range(self.chain_length - self.hop_order + 1): v_list = [ var_list[j].get_state(1) for j in range(i, i + self.hop_order) ] g.create_factor_budget(v_list, self.cap[i + self.half_hop]) return g def _get_node_feature(self): self.lops = np.random.uniform(0.0, 1.0, (self.chain_length, 2)) return np.transpose(self.lops.astype(np.float32), [1, 0]) def _get_edge_feature_pw(self): self.pws = np.zeros(shape=[self.chain_length, 2, 4], dtype=np.float32) for i in range(self.chain_length - 1): # pws_to_right = np.random.randn(2, 2) pws_to_right = np.zeros([2, 2]) pws_to_right[1, 1] = np.random.uniform(0, 2) pws_to_left = np.transpose(pws_to_right) self.pws[i] = [list(pws_to_right.reshape(-1)), list(pws_to_left.reshape(-1))] efeature = np.zeros(shape=[self.chain_length, 3, 4], dtype=np.float32) for i in range(self.chain_length): e_self = np.zeros(4) e_left = self.pws[i-1][1] if i > 0 else e_self.copy() e_right = self.pws[i][0] if i < self.chain_length-1 else e_self.copy() efeature[i, 0] = e_left efeature[i, 1] = e_self efeature[i, 2] = e_right return np.transpose(efeature, [2, 0, 1]) def _generate_edge_feature_hop(self): self.cap = list(np.random.randint(low=1, high=self.hop_order, size=self.chain_length)) half_hop = self.hop_order >> 1 max_cap = np.zeros(self.hop_order) max_cap[self.hop_order-1] = 1 efeature = np.zeros(shape=[self.chain_length, self.hop_order], dtype=np.float32) for i in range(half_hop, self.chain_length - half_hop): efeature[i, self.cap[i]] = 1 for i in range(half_hop): efeature[i, self.hop_order-1] = 1 for i in range(self.chain_length - half_hop, self.chain_length): efeature[i, self.hop_order-1] = 1 return np.expand_dims(np.transpose(efeature, [1, 0]), -1) ''' passing info from node to factor ''' efeature = np.zeros(shape=[self.chain_length, self.hop_order, self.hop_order], dtype=np.float32) for i in range(self.chain_length): cur_cap = np.zeros(self.hop_order) cur_cap[self.cap[i]] = 1 for j in range(i - half_hop, i + half_hop + 1): efeature[i, j-i+half_hop] = max_cap.copy() \ if j < 0 or j >= self.chain_length else cur_cap.copy() return np.transpose(efeature, [2, 0, 1]) ''' passing info from factor to node ''' efeature2 = np.zeros(shape=[self.chain_length, self.hop_order, self.hop_order], dtype=np.float32) for i in range(self.chain_length): for j in range(i-half_hop, i+half_hop+1): if j < 0 or j >= self.chain_length: efeature2[i, j-i+half_hop] = max_cap.copy() else: cur_cap = np.zeros(self.hop_order) cur_cap[self.cap[j]] = 1 efeature2[i, j-i+half_hop] = cur_cap return np.transpose(efeature, [2, 0, 1]), np.transpose(efeature2, [2, 0, 1]) def __getitem__(self, index): node_feature = self._get_node_feature() efeature_pw = self._get_edge_feature_pw() efeature_hop = self._generate_edge_feature_hop() ''' exact solution ''' g = self._generate_graph() val, post, _, stat = g.solve(tol=1e-6, branch_and_bound=True) post = np.reshape(np.asarray(post), [self.chain_length, 2]) assign = np.argmax(post, axis=1) ''' approx solution ''' g = self._generate_graph() val1, post1, _, status = g.solve(branch_and_bound=False) post1 = np.reshape(np.asarray(post1), [self.chain_length, 2]) assign1 = np.argmax(post1, axis=1) if self.ret_efeature_pw: return node_feature, efeature_pw, efeature_hop, assign, assign1 else: pws = np.expand_dims(np.transpose(self.pws[:, 0, :], [1, 0]), -1) return node_feature, pws, efeature_hop, assign, assign1 if __name__ == '__main__': rpgm = RandomPGMHop(chain_length=6, hop_order=5, ret_efeature_pw=False) node_feature, efeature_pw, efeature_hop, assign, assign1 = rpgm[0] print('node_feature', node_feature.shape, np.transpose(node_feature, [1, 0])) print('efeature_pw', efeature_pw.shape, np.transpose(efeature_pw, [1, 2, 0])) print('efeature_hop', efeature_hop.shape, np.transpose(efeature_hop, [1, 2, 0])) print('assign', assign) print('assign1', assign1)
72426
input = """ num(2). node(a). p(N) :- num(N), #count{Y:node(Y)} = N1, <=(N,N1). """ output = """ {node(a), num(2)} """