id
stringlengths
3
8
content
stringlengths
100
981k
72470
from vehiculo import vehiculo class autobus(vehiculo): def tarifaAutobus(self): return float(vehiculo.tarifa(self)) + ((vehiculo.random * 100) * 0.10)
72472
import os import tempfile import shutil import multiprocessing import pickle from copy import deepcopy from enum import Enum from typing import Optional, List, Tuple, Dict, Any from typing_extensions import Literal import rdkit.Chem as Chem from ccdc.docking import Docker as DockerGold from ccdc.io import MoleculeReader, EntryWriter from ccdc.protein import Protein from pydantic import BaseModel from dockstream.core.Schrodinger.Glide_docker import Parallelization from dockstream.utils.enums.logging_enums import LoggingConfigEnum from dockstream.utils.execute_external.Gold import GoldExecutor from dockstream.core.docker import Docker from dockstream.core.Gold.Gold_result_parser import GoldResultParser from dockstream.utils.enums.Gold_enums import GoldLigandPreparationEnum from dockstream.utils.enums.Gold_enums import GoldTargetKeywordEnum, GoldExecutablesEnum, GoldOutputEnum from dockstream.utils.general_utils import gen_temp_file from dockstream.utils.translations.molecule_translator import MoleculeTranslator from dockstream.utils.dockstream_exceptions import DockingRunFailed class GoldFitnessFunction(str, Enum): GOLDSCORE = "goldscore" CHEMSCORE = "chemscore" ASP = "asp" PLP = "plp" class GoldResponseValue(str, Enum): FITNESS = "fitness" VALUE = "value" class GoldParameters(BaseModel): prefix_execution: Optional[str] = None binary_location: Optional[str] = None receptor_paths: Optional[List[str]] = None time_limit_per_compound: Optional[int] = None parallelization: Optional[Parallelization] fitness_function: GoldFitnessFunction response_value: GoldResponseValue = GoldResponseValue.FITNESS early_termination: bool autoscale: float # Autoscale percentage. very fast: 10, medium: 50, very slow: 100. ndocks: int = 10 diverse_solutions: Optional[Tuple[bool, Optional[int], Optional[float]]] = None # If diverse solutions is enabled this will be (True, cluster size, rmsd), otherwise (False, None, None). TODO: rework for GUI. def get(self, key: str) -> Any: """Temporary method to support nested_get""" return self.dict()[key] _LP = GoldLigandPreparationEnum() _TK = GoldTargetKeywordEnum() _EE = GoldExecutablesEnum() _ROE = GoldOutputEnum() _LE = LoggingConfigEnum() class Gold(Docker): """Interface to the Gold backend.""" backend: Literal["Gold"] = "Gold" parameters: GoldParameters _target_dict: Dict = None _Gold_executor: GoldExecutor = None _scoring_function_parameters: Dict[str, str] = None class Config: underscore_attrs_are_private = True def __init__(self, **run_parameters): # invoke base class's constructor first super().__init__(**run_parameters) # prepare and check Gold backend availability self._check_Gold_backend_availability() # parse the fitness function and response value set self._parse_fitness_function() # set the tag name for the scoring function and whether minimial or maximum values are better self._scoring_function_parameters = self._get_scoring_function_parameters() def _check_Gold_backend_availability(self): self._Gold_executor = GoldExecutor( prefix_execution=self.parameters.prefix_execution, binary_location=self.parameters.binary_location) if not self._Gold_executor.is_available(): raise DockingRunFailed("Cannot initialize Gold docker, as Gold backend is not available - abort.") self._logger.log(f"Checked Gold backend availability (prefix_execution={self.parameters.prefix_execution}).", _LE.DEBUG) def _parse_fitness_function(self): self._logger.log(f"Set fitness function to {self.parameters.fitness_function} and response value to {self.parameters.response_value}.", _LE.DEBUG) def _initialize_cavity(self, settings): # load the target dictionary specification and initialize the cavity target_path = self.parameters.receptor_paths[0] with open(target_path, "rb") as file: self._target_dict = pickle.load(file) self._logger.log(f"Loaded pickled cavity dictionary stored in file {target_path}.", _LE.DEBUG) if self._target_dict[_TK.VERSION] != _TK.CURRENT_VERSION: self._logger.log(f"Version of pickled target ({self._target_dict[_TK.VERSION]}) is not the same as DockStream's ({_TK.CURRENT_VERSION}).", _LE.WARNING) self._logger.log(f"Unpacked the target dictionary.", _LE.DEBUG) tmpdir = tempfile.mkdtemp() if self._target_dict[_TK.CAVITY_METHOD] == _TK.CAVITY_METHOD_REFERENCE: # write ligand to temporary file (ending copied over in settings) tmp_ref_ligand_path = gen_temp_file(suffix=self._target_dict[_TK.REFERENCE_LIGAND_FILENAME], dir=tmpdir) with open(tmp_ref_ligand_path, 'w') as file: for line in self._target_dict[_TK.REFERENCE_LIGAND]: file.write(line) self._logger.log(f"Wrote temporary ligand file {tmp_ref_ligand_path} with {len(self._target_dict[_TK.REFERENCE_LIGAND])} lines.", _LE.DEBUG) # write target PDB to temporary file tmp_target_path = gen_temp_file(suffix=".pdb", dir=tmpdir) with open(tmp_target_path, 'w') as file: for line in self._target_dict[_TK.TARGET_PDB]: file.write(line) self._logger.log(f"Wrote temporary target file {tmp_target_path} with {len(self._target_dict[_TK.TARGET_PDB])} lines.", _LE.DEBUG) # build the cavity ref_ligand = MoleculeReader(filename=tmp_ref_ligand_path)[0] self._prepare_protein(settings, tmp_target_path) protein = settings.proteins[0] settings.binding_site = settings.BindingSiteFromLigand(protein, ref_ligand, distance=self._target_dict[_TK.CAVITY_REFERENCE_DISTANCE]) settings.reference_ligand_file = tmp_ref_ligand_path elif self._target_dict[_TK.CAVITY_METHOD] == _TK.CAVITY_METHOD_POINT: raise NotImplementedError # origin (x,x,x) # distance x else: raise DockingRunFailed("Specified cavity determination method not defined for GOLD.") self._logger.log(f"Initialized GOLD Protein.BindingSite with method {self._target_dict[_TK.CAVITY_METHOD]}.", _LE.DEBUG) def add_molecules(self, molecules: list): """This method overrides the parent class, docker.py add_molecules method. This method appends prepared ligands to a list for subsequent docking. Note, that while internally we will store the ligands for "GOLD" in RDkit format, they will need to be written out as an SDF file before docking can commence later. :param molecules: A list that is to contain all prepared ligands for subsequent docking :type molecules: list :raises NotImplementedError: Each backend must override the parent class, docker.py add_molecules method. Inability to do so or a bug causing incorrect implementation will raise a NotImplementedError """ mol_trans = MoleculeTranslator(self.ligands, force_mol_type=_LP.TYPE_RDKIT) mol_trans.add_molecules(molecules) self.ligands = mol_trans.get_as_rdkit() self._docking_performed = False def _generate_temporary_input_output_files(self, start_indices, sublists): # in case singletons are handed over, wrap them in a list for "zipping" later if not isinstance(start_indices, list): start_indices = [start_indices] if not isinstance(sublists, list): sublists = [sublists] tmp_output_dirs = [] tmp_input_sdf_paths = [] tmp_output_sdf_paths = [] for start_index, sublist in zip(start_indices, sublists): # generate temporary input files and output directory cur_tmp_output_dir = tempfile.mkdtemp() cur_tmp_sdf = gen_temp_file(prefix=str(start_index), suffix=".sdf", dir=cur_tmp_output_dir) # write-out the temporary input file writer = Chem.SDWriter(cur_tmp_sdf) one_written = False for ligand in sublist: # initialize all ligands (as they could have failed) if ligand.get_molecule() is not None: mol = deepcopy(ligand.get_molecule()) mol.SetProp("_Name", ligand.get_identifier()) one_written = True writer.write(mol) writer.close() if one_written is False: if os.path.isdir(cur_tmp_output_dir): shutil.rmtree(cur_tmp_output_dir) continue # add the path to which "_dock_subjob()" will write the result SDF output_sdf_path = gen_temp_file(prefix=str(start_index), suffix="_result.sdf", dir=cur_tmp_output_dir) tmp_output_dirs.append(cur_tmp_output_dir) tmp_output_sdf_paths.append(output_sdf_path) tmp_input_sdf_paths.append(cur_tmp_sdf) return tmp_output_dirs, tmp_input_sdf_paths, tmp_output_sdf_paths def _dock(self, number_cores: int): # partition ligands into sublists and distribute to processor cores for docking start_indices, sublists = self.get_sublists_for_docking(number_cores=number_cores) number_sublists = len(sublists) self._logger.log(f"Split ligands into {number_sublists} sublists for docking.", _LE.DEBUG) sublists_submitted = 0 slices_per_iteration = min(number_cores, number_sublists) while sublists_submitted < len(sublists): upper_bound_slice = min((sublists_submitted + slices_per_iteration), len(sublists)) cur_slice_start_indices = start_indices[sublists_submitted:upper_bound_slice] cur_slice_sublists = sublists[sublists_submitted:upper_bound_slice] # generate paths and initialize molecules (so that if they fail, this can be covered) tmp_output_dirs, tmp_input_sdf_paths, \ tmp_output_sdf_paths = self._generate_temporary_input_output_files(cur_slice_start_indices, cur_slice_sublists) # run in parallel; wait for all subjobs to finish before proceeding processes = [] for chunk_index in range(len(tmp_output_dirs)): p = multiprocessing.Process(target=self._dock_subjob, args=(tmp_input_sdf_paths[chunk_index], tmp_output_sdf_paths[chunk_index], tmp_output_dirs[chunk_index])) processes.append(p) p.start() for p in processes: p.join() # add the number of input sublists rather than the output temporary folders to account for cases where # entire sublists failed to produce an input structure sublists_submitted += len(cur_slice_sublists) # load the chunks and recombine the result; add conformations for chunk_index in range(len(tmp_output_dirs)): # this is a protection against the case where empty (file size == 0 bytes) files are generated due to # a failure during docking if not os.path.isfile(tmp_output_sdf_paths[chunk_index]) or os.path.getsize(tmp_output_sdf_paths[chunk_index]) == 0: continue for molecule in Chem.SDMolSupplier(tmp_output_sdf_paths[chunk_index], removeHs=False): # it can happen, that ligands have "impossible chemistry" and will be loaded by RDkit as "None" if molecule is None: continue # parse the molecule name (sorted by FITNESS not the score) which looks like: # "0:0|0xa6enezm|sdf|1|dock6" cur_conformer_name = str(molecule.GetProp("_Name")).split(sep='|')[0] # add molecule to the appropriate ligand for ligand in self.ligands: if ligand.get_identifier() == cur_conformer_name: ligand.add_conformer(molecule) break # clean-up for path in tmp_output_dirs: shutil.rmtree(path) self._log_docking_progress(number_done=sublists_submitted, number_total=number_sublists) # update conformer names to contain the conformer id # -> <ligand_number>:<enumeration>:<conformer_number> reverse = True if self._get_scoring_function_parameters()[_ROE.BEST] == "max" else False for ligand in self.ligands: ligand.set_conformers(sorted(ligand.get_conformers(), key=lambda x: self._get_score_from_conformer(conformer=x), reverse=reverse)) ligand.add_tags_to_conformers() # log any docking fails self._docking_fail_check() # generate docking results as dataframe result_parser = GoldResultParser(ligands=[ligand.get_clone() for ligand in self.ligands], fitness_function=self.parameters.fitness_function, response_value=self.parameters.response_value) self._df_results = result_parser.as_dataframe() # set docking flag self._docking_performed = True def _dock_subjob(self, sdf_ligand_path, path_sdf_results, tmp_output_dir): # 1) prepare Gold docker: (i) "clone" the docker instance, (ii) set remaining, ligang-specific settings and # (iii) initialize this chunk's ligands cur_docker = DockerGold() settings = cur_docker.settings settings.output_directory = tmp_output_dir settings.output_file = os.path.basename(path_sdf_results) settings.output_format = "sdf" settings.fitness_function = self.parameters.fitness_function settings.early_termination = self.parameters.early_termination settings.autoscale = self.parameters.autoscale if self.parameters.diverse_solutions is not None: settings.diverse_solutions = self.parameters.diverse_solutions self._initialize_cavity(settings) settings.add_ligand_file(sdf_ligand_path, ndocks=self.parameters.ndocks) # 2) write settings file settings_file_path = os.path.join(tmp_output_dir, _EE.GOLD_AUTO_CONFIG_NAME) settings.write(settings_file_path) with open(settings_file_path, 'r') as file: self._logger.log(f"Contents of configurations file {settings_file_path}:", _LE.DEBUG) for line in file: self._logger_blank.log(line.rstrip("\n"), _LE.DEBUG) # 3) run Gold docker arguments = [settings_file_path] execution_result = self._Gold_executor.execute(command=_EE.GOLD_AUTO, arguments=arguments, check=False) self._delay4file_system(path=path_sdf_results) self._logger.log(f"Finished sublist (input: {sdf_ligand_path}, output directory: {tmp_output_dir}), with return code '{execution_result.returncode}'.", _LE.DEBUG) def _prepare_protein(self, settings, tmp_protein_path): protein = Protein.from_file(tmp_protein_path) protein.remove_all_waters() protein.remove_unknown_atoms() protein.add_hydrogens() ligands = protein.ligands for l in ligands: protein.remove_ligand(l.identifier) protein_file_name = os.path.join(settings.output_directory, 'clean_%s.mol2' % protein.identifier) with EntryWriter(protein_file_name) as writer: writer.write(protein) settings.add_protein_file(protein_file_name) return ligands def write_docked_ligands(self, path, mode="all"): self._write_docked_ligands(path, mode, mol_type=_LP.TYPE_RDKIT) def _get_scoring_function_parameters(self): # get the appropriate name of the tag and whether minimal or maximal values are best for # the specified scoring function if self.parameters.response_value == GoldResponseValue.FITNESS: scoring_function_parameters = _ROE.DICT_FITNESS[self.parameters.fitness_function] elif self.parameters.response_value == GoldResponseValue.VALUE: scoring_function_parameters = _ROE.DICT_VALUE[self.parameters.fitness_function] else: raise ValueError("Parameter response value must be either fitness or value.") self._logger.log(f"Set scoring_function_parameters to {scoring_function_parameters} for obtaining the scores.", _LE.DEBUG) return scoring_function_parameters def get_scores(self, best_only): """This method overrides the parent class, docker.py get_scores method. This method returns a list containing all docking scores. This method allows returning the best docking scores only. "best" can mean the minimum or maximum values for this given scoring function. By default, it will return the minimum values. Returning all the docking scores (of different poses for instance) is also possible if best only is not enforced :param best_only: Determines whether the best (either minimum or maximum) docking scores are returned :type best_only: boolean, True of False :return: list of returned docking scores :raises ValueError: If best_only is True but neither "min" nor "max" was specified, a ValueError is raised """ return self._get_scores(best_only=best_only, best=self._scoring_function_parameters[_ROE.BEST]) def write_result(self, path, mode="all"): """This method overrides the parent class, docker.py write_result method. This method writes the docking results to a csv file. There is the option to write out either the best predicted binding pose per enumeration or all the predicted binding poses. Output for the best predicted binding pose per ligand has yet to be implemented :param path: Contains information on results output path :type path: string :param mode: Determines whether the output contains the best predicted binding pose per ligand, the best predicted binding pose per enumeration, or all the predicted binding poses :type mode: string, optional, default value is "all". Other possible value is "best_per_enumeration" :param best: Determines whether lower or higher values are better (typically lower ones) :type best: string, optional, default value is "min". Other possible value is "max" """ return self._write_result(path=path, mode=mode, best=self._scoring_function_parameters[_ROE.BEST]) def _get_score_from_conformer(self, conformer): return float(conformer.GetProp(self._scoring_function_parameters[_ROE.TAG])) def _sort_conformers(self, conformers: list, best=None) -> list: return super()._sort_conformers(conformers=conformers, best=self._scoring_function_parameters[_ROE.BEST])
72499
import info class subinfo(info.infoclass): def setTargets(self): self.targets['0.2'] = "" self.defaultTarget = '0.2' self.description = "deprecated: use virtual/base instead" def setDependencies(self): self.runtimeDependencies["virtual/base"] = None from Package.VirtualPackageBase import * class Package(VirtualPackageBase): def __init__(self): VirtualPackageBase.__init__(self)
72509
import os import zstandard import json import jsonlines import io import datetime def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, (datetime.datetime,)): return obj.isoformat() raise TypeError ("Type %s not serializable" % type(obj)) # Modified version of lm_dataformat Archive for single file. class Archive: def __init__(self, file_path, compression_level=3): self.file_path = file_path dir_name = os.path.dirname(file_path) if dir_name: os.makedirs(dir_name, exist_ok=True) self.fh = open(self.file_path, 'wb') self.cctx = zstandard.ZstdCompressor(level=compression_level) self.compressor = self.cctx.stream_writer(self.fh) def add_data(self, data, meta={}): self.compressor.write(json.dumps({'text': data, 'meta': meta}, default=json_serial).encode('UTF-8') + b'\n') def commit(self): self.compressor.flush(zstandard.FLUSH_FRAME) self.fh.flush() self.fh.close() # Modified version of lm_dataformat Reader with self.fh set, allowing peeking for tqdm. class Reader: def __init__(self): pass def read_jsonl(self, file, get_meta=False, autojoin_paragraphs=True, para_joiner='\n\n'): with open(file, 'rb') as fh: self.fh = fh cctx = zstandard.ZstdDecompressor() reader = io.BufferedReader(cctx.stream_reader(fh)) rdr = jsonlines.Reader(reader) for ob in rdr: # naive jsonl where each object is just the string itself, with no meta. For legacy compatibility. if isinstance(ob, str): assert not get_meta yield ob continue text = ob['text'] if autojoin_paragraphs and isinstance(text, list): text = para_joiner.join(text) if get_meta: yield text, (ob['meta'] if 'meta' in ob else {}) else: yield text
72518
import os from PIL import Image from math import ceil, sqrt from .exceptions import CollageOfZeroFramesError from .utils import does_path_exists from typing import List # Module to create collage from list of images, the # images are the extracted frames of the input video. class MakeCollage: """ Class that creates the collage from list of images. Collage that should be as close to the shape of a square. The images are arranged by timestamp of the frames, their index in the image_list is based on thier timestamp on the video. The image with the index 2 is a frame from the 3rd second and an index 39 is from at the 40th second. The index is one less due to zero-based indexing. Let's say we have a list with 9 images. As the images should be arranged in a way to resemble a square, we take the square root of 9 and that is 3. Now we need to make a 3x3 frames collage. Arrangement should be: Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8 Img9 If the number of images is not a perfect square, calculate the square root and round it to the nearest integer. If number of images is 13, which is not a perfect square. sqrt(13) = 3.605551275463989 round(3.605551275463989) = 4 Thus the image should be 4x4 frames of collage. Arrangement should be: ----------------------------- | Img1 Img2 Img3 Img4 | | Img5 Img6 Img7 Img8 | | Img9 Img10 Img11 Img12 | | Img13 X X X | ----------------------------- X denotes the empty space due to lack of images. But the empty spaces will not affect the robustness as downsized/transcoded version of the video will also produce these vacant spaces. """ def __init__( self, image_list: List[str], output_path: str, collage_image_width: int = 1024, ) -> None: """ Checks if the list passed is not an empty list. Also makes sure that the output_path directory exists. And calls the make method, the make method creates the collage. :param image_list: A python list containing the list of absolute path of images that are to be added in the collage. The order of images is kept intact and is very important. :param output_path: Absolute path of the collage including the image name. (This is where the collage is saved.) Example: '/home/username/projects/collage.jpeg'. :param collage_image_width: An integer specifying the image width of the output collage. Default value is 1024 pixels. :return: None :rtype: NoneType """ self.image_list = image_list self.number_of_images = len(self.image_list) self.output_path = output_path self.collage_image_width = collage_image_width self.images_per_row_in_collage = int(round(sqrt(self.number_of_images))) if self.number_of_images == 0: raise CollageOfZeroFramesError("Can not make a collage of zero images.") output_path_dir = os.path.dirname(self.output_path) + "/" if not does_path_exists(output_path_dir): raise FileNotFoundError( "Directory at which output collage is to be saved does not exists." ) self.make() def make(self) -> None: """ Creates the collage from the list of images. It calculates the scale of the images on collage by measuring the first image width and height, there's no reason for choosing first one and it's arbitrary. But we assume that all the images passed should have same size. A base image of 'collage_image_width' width and of 'number of rows times scaled frame image height' height is created. The base image has all pixels with RGB value 0,0,0 that is the base image is pure black. The frame images are now embeded on it. The frame images are scaled to fit the collage base image such that the shape of collage is as close to the shape of a square. :return: None :rtype: NoneType """ # arbitrarily selecting the first image from the list, index 0 with Image.open(self.image_list[0]) as first_frame_image_in_list: # Find the width and height of the first image of the list. # Assuming all the images have same size. frame_image_width, frame_image_height = first_frame_image_in_list.size # scale is the ratio of collage_image_width and product of # images_per_row_in_collage with frame_image_width. # The scale will always lie between 0 and 1, which implies that # the images are always going to get downsized. scale = (self.collage_image_width) / ( self.images_per_row_in_collage * frame_image_width ) # Calculating the scaled height and width for the frame image. scaled_frame_image_width = ceil(frame_image_width * scale) scaled_frame_image_height = ceil(frame_image_height * scale) # Divide the number of images by images_per_row_in_collage. The later # was calculated by taking the square root of total number of images. number_of_rows = ceil(self.number_of_images / self.images_per_row_in_collage) # Multiplying the height of one downsized image with number of rows. # Height of 1 downsized image is product of scale and frame_image_height # Total height is number of rows times the height of one downsized image. self.collage_image_height = ceil(scale * frame_image_height * number_of_rows) # Create an image of passed collage_image_width and calculated collage_image_height. # The downsized images will be pasted on this new base image. # The image is 0,0,0 RGB(black). collage_image = Image.new( "RGB", (self.collage_image_width, self.collage_image_height) ) # keep track of the x and y coordinates of the resized frame images i, j = (0, 0) # iterate the frames and paste them on their position on the collage_image for count, frame_path in enumerate(self.image_list): # Set the x coordinate to zero if we are on the first column # If self.images_per_row_in_collage is 4 # then 0,4,8 and so on should have their x coordinate as 0 if (count % self.images_per_row_in_collage) == 0: i = 0 # open the frame image, must open it to resize it using the thumbnail method frame = Image.open(frame_path) # scale the opened frame images frame.thumbnail( (scaled_frame_image_width, scaled_frame_image_height), Image.ANTIALIAS ) # set the value of x to that of i's value. # i is set to 0 if we are on the first column. x = i # It ensures that y coordinate stays the same for any given row. # The floor of a real number is the largest integer that is less # than or equal to the number. floor division is used because of # the zero based indexing, the floor of the division stays same # for an entier row as the decimal values are negled by the floor. # for the first row the result of floor division is always zero and # the product of 0 with scaled_frame_image_height is also zero, they # y coordinate for the first row is 0. # For the second row the result of floor division is one and the prodcut # with scaled_frame_image_height ensures that the y coordinate is # scaled_frame_image_height below the first row. y = (j // self.images_per_row_in_collage) * scaled_frame_image_height # paste the frame image on the newly created base image(base image is black) collage_image.paste(frame, (x, y)) frame.close() # increase the x coordinate by scaled_frame_image_width # to get the x coordinate of the next frame. unless the next image # will be on the very first column this will be the x coordinate. i = i + scaled_frame_image_width # increase the value of j by 1, this is to calculate the y coordinate of # next image. The increased number will be floor divided by images_per_row_in_collage # therefore the y coordinate stays the same for any given row. j += 1 # save the base image with all the scaled frame images embeded on it. collage_image.save(self.output_path) collage_image.close()
72562
import copy from proxy import Proxy class ProxyList(list): """ A proxy wrapper for a normal Python list. A lot of functionality is being reproduced from Proxy. Inheriting Proxy would simplify things a lot but I get type errors when I try to do so. It is not exactly clear what a partial copy entails for a ProxyList so we will not consider this option for now. """ __slots__ = ["_obj", "__weakref__", "__slots__", "_is_copied", "_enable_partial_copy", "_attr_map"] _is_copied = False _special_names = [ '__add__', '__contains__', '__delitem__', '__delslice__', '__eq__', '__ge__', '__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setitem__', '__setslice__', '__sizeof__', '__str__', '__subclasshook__', '__xor__', 'next', ] def __init__(self, obj, _partial_copy=False): object.__setattr__(self, "_obj", obj) object.__setattr__(self, "_enable_partial_copy", _partial_copy) def append(self, obj): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.append(obj) def count(self, obj): return self._obj.count(obj) def extend(self, iterable): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.extend(iterable) def index(self, obj): return self._obj.index(obj) def insert(self, idx, obj): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.insert(idx, obj) def pop(self): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True return self._obj.pop() def remove(self, obj): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.remove(obj) def reverse(self): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.reverse() def sort(self, cm='None', key='None', reverse='False'): if not self._is_copied: self._obj = copy.deepcopy(self._obj) self._is_copied = True self._obj.sort(cm, key, reverse) @classmethod def _create_class_proxy(cls, theclass): """creates a proxy for the given class""" def make_method(name): def method(self, *args, **kw): if name in cls._special_names and args is not (): args = map(lambda x: x._obj if isinstance(x, Proxy) or isinstance(x, ProxyList) else x, args) return getattr(object.__getattribute__(self, "_obj"), name)(*args, **kw) return method namespace = {} for name in cls._special_names: if hasattr(theclass, name): namespace[name] = make_method(name) return type("%s(%s)" % (cls.__name__, theclass.__name__), (cls,), namespace) def __new__(cls, obj, *args, **kwargs): """ creates an proxy instance referencing `obj`. (obj, *args, **kwargs) are passed to this class' __init__, so deriving classes can define an __init__ method of their own. note: _class_proxy_cache is unique per deriving class (each deriving class must hold its own cache) """ try: cache = cls.__dict__["_class_proxy_cache"] except KeyError: cls._class_proxy_cache = cache = {} try: theclass = cache[obj.__class__] except KeyError: cache[obj.__class__] = theclass = cls._create_class_proxy(obj.__class__) ins = list.__new__(theclass) theclass.__init__(ins, obj, *args, **kwargs) return ins
72574
from jaxrl.agents.awac.awac_learner import AWACLearner from jaxrl.agents.bc.bc_learner import BCLearner from jaxrl.agents.ddpg.ddpg_learner import DDPGLearner from jaxrl.agents.drq.drq_learner import DrQLearner from jaxrl.agents.sac.sac_learner import SACLearner from jaxrl.agents.sac_v1.sac_v1_learner import SACV1Learner
72577
import csv import os import random import uuid import pickle from multiprocessing import Pool from collections import Counter import numpy as np import imgaug.augmenters as iaa from PIL import Image def rotate_save(img, flip, angle, label, new_label_dict, out_dir): filename = str(uuid.uuid4()) + ".png" new_label_dict[filename] = label if not flip: img.rotate(angle, expand=True).save(os.path.join(out_dir, filename)) else: img.rotate(angle, expand=True).transpose(Image.FLIP_LEFT_RIGHT).save(os.path.join(out_dir, filename)) def process_image(image_filename, in_dir, out_dir, label_dict, count): new_label_dict = {} img = Image.open(os.path.join(in_dir, image_filename)) config = [ (False, 0), (False, 90), (False, 180), (False, 270), (True, 0), (True, 90), (True, 180), (True, 270) ] aug = iaa.Sequential([ iaa.OneOf([ iaa.Affine(scale={"x": (0.7, 1.3), "y": (0.7, 1.3)}), iaa.Affine(rotate=(-25, 25)) ]) ]) while count > 0: flip, angle = config[(count - 1) % len(config)] rotate_save(Image.fromarray(aug(images=[np.array(img)])[0]), flip, angle, label_dict[image_filename[:-4]], new_label_dict, out_dir) count -= 1 return new_label_dict def main(in_dir, out_dir, labels_file): label_dict = {} with open(labels_file, "r") as f: csvfile = csv.reader(f) # Skip column description next(csvfile) for row in csvfile: label_dict[row[0]] = row[1:].index("1.0") new_label_dict = {} counter = {} files = os.listdir(in_dir) random.shuffle(files) for f in files: counter[label_dict[f[:-4]]] = counter.get(label_dict[f[:-4]], 0) + 1 print(counter) desired_counts = {k:int(max(0.5*(max(counter.values()) - n) + n, n)) for k, n in counter.items()} print(desired_counts) print(len(files)) p = Pool(16) dicts = p.starmap( process_image, [ ( image_filename, in_dir, out_dir, label_dict, int(desired_counts[label_dict[image_filename[:-4]]] / counter[label_dict[image_filename[:-4]]]) ) for image_filename in files ] ) combined_dict = {} for d in dicts: combined_dict.update(d) with open("label_dict.pkl", "wb") as f: pickle.dump(combined_dict, f) if __name__ == "__main__": main("train/", "train_aug/", "ISIC2018_Task3_Training_GroundTruth.csv")
72592
from typing import List, Optional, Tuple from django.http import HttpRequest from django_scim.filters import UserFilterQuery from zerver.lib.request import RequestNotes # This is in a separate file due to circular import issues django-scim2 runs into # when this is placed in zerver.lib.scim. class ZulipUserFilterQuery(UserFilterQuery): """This class implements the filter functionality of SCIM2. E.g. requests such as /scim/v2/Users?filter=userName eq "<EMAIL>" can be made to refer to resources via their properties. This gets fairly complicated in its full scope (https://datatracker.ietf.org/doc/html/rfc7644#section-3.4.2.2) and django-scim2 implements an entire mechanism of converting this SCIM2 filter syntax into SQL queries. What we have to do in this class is to customize django-scim2 so that it knows which SCIM attributes map to which UserProfile fields. We can assume that get_extra_model_filter_kwargs_getter has already ensured that we will only interact with non-bot user accounts in the realm associated with this SCIM configuration. """ # attr_map describes which table.column the given SCIM2 User # attributes refer to. attr_map = { # attr, sub attr, uri ("userName", None, None): "zerver_userprofile.delivery_email", # We can only reasonably support filtering by name.formatted # as UserProfile.full_name is its equivalent. We don't store # first/last name information for UserProfile, so we can't # support filtering based on name.givenName or name.familyName. ("name", "formatted", None): "zerver_userprofile.full_name", ("active", None, None): "zerver_userprofile.is_active", } # joins tells django-scim2 to always add the specified JOINS # to the formed SQL queries. We need to JOIN the Realm table # because we need to limit the results to the realm (subdomain) # of the request. joins = ("INNER JOIN zerver_realm ON zerver_realm.id = realm_id",) @classmethod def get_extras(cls, q: str, request: Optional[HttpRequest] = None) -> Tuple[str, List[object]]: """ Return extra SQL and params to be attached to end of current Query's SQL and params. The return format matches the format that should be used for providing raw SQL with params to Django's .raw(): https://docs.djangoproject.com/en/3.2/topics/db/sql/#passing-parameters-into-raw Here we ensure that results are limited to the subdomain of the request and also exclude bots, as we currently don't want them to be managed by SCIM2. """ assert request is not None realm = RequestNotes.get_notes(request).realm assert realm is not None return "AND zerver_realm.id = %s AND zerver_userprofile.is_bot = False", [realm.id]
72606
from geospacelab import preferences import geospacelab.datahub.sources.madrigal.utilities as utilities from geospacelab.datahub import DatabaseModel class WDCDatabase(DatabaseModel): def __new__(cls, str_in, **kwargs): obj = super().__new__(cls, str_in, **kwargs) return obj wdc_database = WDCDatabase('WDC') wdc_database.url = 'http://wdc.kugi.kyoto-u.ac.jp/' wdc_database.category = 'online database' wdc_database.Notes = ''' - Data Usage Rules The rules for the data use and exchange are defined by the International Council for Science - World Data System (ICSU-WDS) Data Sharing Principles. The data and services at the WDC Kyoto are available for scientific use without restrictions, but for the real-time (quicklook) data, please contact our staff (<EMAIL>) before using those in publications and presentations. The WDC Kyoto does not allow commercial applications of the geomagnetic indices. ''' try: default_user_email = preferences.user_config['datahub']['wdc']['user_email'] except KeyError: if preferences._on_rtd: default_user_email = '<EMAIL>' save = 'y' else: print("Inputs for accessing the WDC (wdc.kugi.kyoto-u.ac.jp) database.") default_user_email = input("User's email: ") save = input("Save as default? [y]/n: ") if save.lower() in ['', 'y', 'yes']: uc = preferences.user_config uc.setdefault('datahub', {}) uc['datahub'].setdefault('wdc', {}) uc['datahub']['wdc']['user_email'] = default_user_email preferences.set_user_config(user_config=uc, set_as_default=True)
72607
import cv2 import numpy as np import sys sys.path.append('build') import kosutils from tracker import * # Setting the dimensions for output window H = 700 W = 700 dispWindow = np.zeros((H,W,3),dtype=np.uint8) PREDICTOR_PATH = "../shape_predictor_5_face_landmarks.dat" # Creating the object for obj3D class obj1 = kosutils.kos_Obj3D(dispWindow.shape[:2]) # Creating the object for kos_vcam class cam1 = kosutils.kos_vcam(dispWindow.shape[:2]) cap = cv2.VideoCapture(0) tr = tracker(PREDICTOR_PATH) angle = 0 diff = 0 while True: ret, frame = cap.read() if ret: frame = cv2.flip(frame,1) img = np.copy(frame) size = img.shape[:2] x,y = tr.getNose(p1x_,p1y_,frame) p1x_ = x p1y_ = y # rect = tr.rect angle+=2*np.pi/180; if(angle > 2*np.pi): angle = 0 # try: # cv2.rectangle(frame,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),3) # except: # pass # cv2.imshow("Face Tracking",frame) # cv2.waitKey(1) drift_x = x - size[1]//2 drift_y = size[0]//2 - y drift_z = -cam1.focal_length-2*(500 - 2*tr.face_width) cam1.updtTxMat(drift_x,drift_y,drift_z) obj1.rotateObj(np.pi/4,angle,np.pi) cam1.render(obj1.pts3d,dispWindow)
72643
from django.conf.urls import url from .views import TakeLevelView urlpatterns = [ url(r'^source$', TakeLevelView.as_view(), name='source_examen'), ]
72655
import itertools from contextlib import suppress from copy import deepcopy from pymongo import MongoClient from tinydb_serialization import SerializationMiddleware from tinymongo import TinyMongoClient from tinymongo.serializers import DateTimeSerializer from tinymongo.tinymongo import generate_id from quokka.utils.text import split_all_category_roots class QuokkaTinyMongoClient(TinyMongoClient): @property def _storage(self): serialization = SerializationMiddleware() serialization.register_serializer(DateTimeSerializer(), 'TinyDate') # TODO: Read custom serializers from settings and extensions return serialization class QuokkaDB(object): config = {} system = 'tinydb' folder = 'databases' host = 'localhost' port = 27017 name = 'quokka_db' collections = { 'index': 'index', 'contents': 'contents', 'uploads': 'uploads', 'users': 'users', } def __init__(self, app=None): self.app = None if app is not None: self.init_app(app) def init_app(self, app): self.config = app.config.get('DATABASE', {}) # update atributes with config counterparts for key, value in self.config.items(): if key.lower() != 'collections': setattr(self, key.lower(), value) else: self.collections.update(value) self._register(app) def _register(self, app): if not hasattr(app, 'extensions'): app.extensions = {} if 'db' in app.extensions: raise RuntimeError("Flask extension already initialized") app.extensions['db'] = self self.app = app def get_db_name(self, collection): """return db_name for collection""" if self.system == "mongo": return self.name return collection def get_collection(self, collection): """Get the corresponding database collection/table""" col_name = self.collections.get(collection, collection) db_name = self.get_db_name(col_name) return self.connection[db_name][col_name] def get_content_collection(self, content_id): return self.connection[content_id]['contents'] def get_content_collection_mongo(self, content_id): return self.connection[self.name]['contents'] @property def connection(self): if getattr(self, '_connection', None) is None: if self.system == 'tinydb': self._connection = QuokkaTinyMongoClient(self.folder) elif self.system == 'mongo': self._connection = MongoClient( host=self.host, port=self.port ) return self._connection def __dir__(self): """Return existing attributes + collection names""" attrs = [] for attr in super().__dir__(): if attr.endswith(('_mongo', '_tinydb')): attrs.append(attr.rpartition('_')[0]) else: attrs.append(attr) return sorted(list(set(attrs)) + list(self.collections.keys())) def __getattribute__(self, name): collections = super().__getattribute__('collections') get_collection = super().__getattribute__('get_collection') if name in collections: return get_collection(name) # Try to get system specific method e.g: self.categories_mongo try: system = super().__getattribute__('system') return super().__getattribute__(f'{name}_{system}') except AttributeError: return super().__getattribute__(name) # [ <-- DB query helpers --> ] def generate_id(self): return generate_id() def value_set(self, colname, key, filter=None, sort=True, flat=False, **kwargs): """Return a set of all values in a key""" if filter is not None: data = self.get_collection(colname).find(filter, **kwargs) else: data = self.get_collection(colname).find(**kwargs) values = [item.get(key) for item in data if item.get(key) is not None] if flat is True: values = list(itertools.chain(*values)) with suppress(TypeError): values = list(set(values)) return sorted(values) if sort is True else values def author_set(self, sort=True, **kwargs): users = [ item.get('fullname', item.get('username')) for item in self.users.find() ] authors = self.value_set('index', 'authors', flat=True, **kwargs) values = list(set(users + authors)) return sorted(values) if sort is True else values def tag_set(self, sort=True, **kwargs): return self.value_set('index', 'tags', flat=True, sort=sort, **kwargs) def category_set(self, sort=True, **kwargs): results = self.value_set('index', 'category', sort=sort, **kwargs) cats = [] for result in results: cats.extend(split_all_category_roots(result)) return sorted(set(cats)) if sort is True else set(cats) def content_set(self, *args, **kwargs): return self.index.find(*args, **kwargs) def article_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get('ARTICLE_ORDER_BY', [('date', -1)]) ) if not args: args = [{'content_type': 'article'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'article' return self.content_set(*args, **kwargs) def page_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get('PAGE_ORDER_BY', [('title', -1)]) ) if not args: args = [{'content_type': 'page'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'page' return self.content_set(*args, **kwargs) def block_set(self, *args, **kwargs): kwargs.setdefault( 'sort', self.app.theme_context.get( 'BLOCK_ORDER_BY', [('title', -1)] ) ) if not args: args = [{'content_type': 'block'}] elif isinstance(args[0], dict): args[0]['content_type'] = 'block' return self.content_set(*args, **kwargs) def select(self, colname, *args, **kwargs): return self.get_collection(colname).find(*args, **kwargs) def count(self, colname, *args, **kwargs): return self.get_collection(colname).find(*args, **kwargs).count() def get(self, colname, *args, **kwargs): return self.get_collection(colname).find_one(*args, **kwargs) def insert(self, colname, *args, **kwargs): return self.get_collection(colname).insert(*args, **kwargs) def update(self, colname, query, doc): return self.get_collection(colname).update_one(query, doc) def push_content(self, model): """Insert or Update content related to model""" collection = self.get_content_collection(model['_id']) current_saved = collection.find_one({ 'content_id': model['_id'], 'version': model.get('version', 0) }) if is_equal(model, current_saved): model.pop('content', None) return model_to_save = deepcopy(model) if not current_saved: version = 0 else: version = model.get('version', 0) + 1 model['version'] = model_to_save['version'] = version model_to_save['content_id'] = model_to_save.pop('_id') collection.insert(model_to_save) model.pop('content', None) def pull_content(self, model): if not isinstance(model, dict): model = self.get('index', {'_id': model}) if not model or ( model.get('version') == 0 and not model.get('_isclone')): return collection = self.get_content_collection(model['_id']) record = collection.find_one({ 'content_id': model['_id'], 'version': model['version'] }) return record['content'] if record else None def get_with_content(self, **kwargs): model = self.get('index', kwargs) if model: model['content'] = self.pull_content(model) return model def is_equal(model, other): if not other: return False versioned_keys = [ 'title', 'summary', 'tags', 'category', 'date', 'content', 'authors', 'slug', 'status', 'published', 'comments', 'block_items' ] for key in versioned_keys: if model.get(key) != other.get(key): return False return True
72718
import numpy as np from tsfuse.transformers.uniqueness import * from tsfuse.data import Collection def test_has_duplicate_true(): x = Collection.from_array([1, 2, 3, 3]) actual = HasDuplicate().transform(x).values np.testing.assert_equal(actual, True) def test_has_duplicate_false(): x = Collection.from_array([1, 2, 3, 4]) actual = HasDuplicate().transform(x).values np.testing.assert_equal(actual, False) def test_has_duplicate_min_true(): x = Collection.from_array([1, 1, 2, 3]) actual = HasDuplicateMin().transform(x).values np.testing.assert_equal(actual, True) def test_has_duplicate_min_false(): x = Collection.from_array([2, 3, 4, 4]) actual = HasDuplicateMin().transform(x).values np.testing.assert_equal(actual, False) def test_has_duplicate_max_true(): x = Collection.from_array([2, 3, 4, 4]) actual = HasDuplicateMax().transform(x).values np.testing.assert_equal(actual, True) def test_has_duplicate_max_false(): x = Collection.from_array([1, 1, 2, 3]) actual = HasDuplicateMax().transform(x).values np.testing.assert_equal(actual, False) def test_has_duplicate_empty(): x = Collection.from_array([np.nan]) actual = HasDuplicate().transform(x).values np.testing.assert_equal(actual, False) def test_number_of_unique_values_rel(): x = Collection.from_array([1, 2, 3, 4]) actual = NumberUniqueValues(rel=True).transform(x).values np.testing.assert_equal(actual, 1.0) def test_number_of_unique_values_abs(): x = Collection.from_array([1, 2, 3, 4]) actual = NumberUniqueValues(rel=False).transform(x).values np.testing.assert_equal(actual, 4) def test_number_of_unique_values_1_rel(): x = Collection.from_array([2, 2, 2, 2]) actual = NumberUniqueValues(rel=True).transform(x).values np.testing.assert_equal(actual, 0.25) def test_number_of_unique_values_1_abs(): x = Collection.from_array([2, 2, 2, 2]) actual = NumberUniqueValues(rel=False).transform(x).values np.testing.assert_equal(actual, 1) def test_number_of_unique_values_0_rel(): x = Collection.from_array([np.nan]) actual = NumberUniqueValues(rel=True).transform(x).values np.testing.assert_equal(actual, np.nan) def test_number_of_unique_values_0_abs(): x = Collection.from_array([np.nan]) actual = NumberUniqueValues(rel=False).transform(x).values np.testing.assert_equal(actual, np.nan) def test_sum_of_reoccurring_data_poins(): x = Collection.from_array([1, 1, 2, 3, 3, 4]) actual = SumReoccurringDataPoints().transform(x).values np.testing.assert_equal(actual, 8) def test_sum_of_reoccurring_data_points_0(): x = Collection.from_array([1, 2, 3, 4]) actual = SumReoccurringDataPoints().transform(x).values np.testing.assert_equal(actual, 0) def test_sum_of_reoccurring_values(): x = Collection.from_array([1, 1, 2, 3, 3, 4]) actual = SumReoccurringValues().transform(x).values np.testing.assert_equal(actual, 4) def test_sum_of_reoccurring_values_0(): x = Collection.from_array([1, 2, 3, 4]) actual = SumReoccurringValues().transform(x).values np.testing.assert_equal(actual, 0)
72722
from paiargparse import PAIArgumentParser from tfaip.util.logging import logger from calamari_ocr.ocr.training.cross_fold_trainer import ( CrossFoldTrainer, CrossFoldTrainerParams, ) logger = logger(__name__) def run(): return main(parse_args()) def parse_args(args=None): parser = PAIArgumentParser() parser.add_root_argument("root", CrossFoldTrainerParams, CrossFoldTrainerParams()) params: CrossFoldTrainerParams = parser.parse_args(args).root # TODO: add the training args (omit those params, that are set by the cross fold training) # setup_train_args(parser, omit=["files", "validation", "weights", # "early_stopping_best_model_output_dir", "early_stopping_best_model_prefix", # "output_dir"]) return params def main(params): trainer = CrossFoldTrainer(params) logger.info("Running cross fold train with params") logger.info(params.to_json(indent=2)) trainer.run() if __name__ == "__main__": run()
72726
import sys import unittest import pendulum from src import ( Stocks, StocksCommandService, ) from minos.networks import ( InMemoryRequest, Response, ) from tests.utils import ( build_dependency_injector, ) class TestStocksCommandService(unittest.IsolatedAsyncioTestCase): def setUp(self) -> None: self.injector = build_dependency_injector() async def asyncSetUp(self) -> None: await self.injector.wire(modules=[sys.modules[__name__]]) async def asyncTearDown(self) -> None: await self.injector.unwire() def test_constructor(self): service = StocksCommandService() self.assertIsInstance(service, StocksCommandService) async def test_get_remote_quotes(self): service = StocksCommandService() now = pendulum.now() now_minus_one_month = now.subtract(months=1) response = service.call_remote("AAPL", now_minus_one_month.to_date_string(), now.to_date_string()) self.assertIsInstance(response, list) if __name__ == "__main__": unittest.main()
72787
import logging import os from typing import Optional, List import pandas as pd from .sketch import sketch_fasta, sketch_fastqs from .parser import mash_dist_output_to_dataframe from ..utils import run_command from ..const import MASH_REFSEQ_MSH def mash_dist_refseq(sketch_path: str, mash_bin: str = "mash") -> str: """Compute Mash distances of sketch file of genome fasta to RefSeq sketch DB. Args: mash_bin (str): Mash binary path sketch_path (str): Mash sketch file path or genome fasta file path Returns: (str): Mash STDOUT string """ assert os.path.exists(sketch_path) cmd_list = [mash_bin, 'dist', MASH_REFSEQ_MSH, sketch_path] exit_code, stdout, stderr = run_command(cmd_list) if exit_code != 0: raise Exception( 'Could not run Mash dist. EXITCODE="{}" STDERR="{}" STDOUT="{}"'.format(exit_code, stderr, stdout)) return stdout def fasta_vs_refseq(fasta_path: str, mash_bin: str = "mash", sample_name: Optional[str] = None, tmp_dir: str = "/tmp", k: int = 16, s: int = 400) -> pd.DataFrame: """Compute Mash distances between input FASTA against all RefSeq genomes Args: fasta_path: FASTA file path mash_bin: Mash binary path sample_name: Sample name tmp_dir: Temporary working directory k: Mash kmer size s: Mash number of min-hashes Returns: (pd.DataFrame): Mash genomic distance results ordered by ascending distance """ sketch_path = None try: sketch_path = sketch_fasta(fasta_path, mash_bin=mash_bin, tmp_dir=tmp_dir, sample_name=sample_name, k=k, s=s) mashout = mash_dist_refseq(sketch_path, mash_bin=mash_bin) logging.info('Ran Mash dist successfully (output length=%s). Parsing Mash dist output', len(mashout)) df_mash = mash_dist_output_to_dataframe(mashout) df_mash['sample'] = sample_name logging.info('Parsed Mash dist output into Pandas DataFrame with %s rows', df_mash.shape[0]) logging.debug('df_mash: %s', df_mash.head(5)) return df_mash finally: if sketch_path and os.path.exists(sketch_path): logging.info('Deleting temporary sketch file "%s"', sketch_path) os.remove(sketch_path) logging.info('Sketch file "%s" deleted!', sketch_path) def fastq_vs_refseq(fastqs: List[str], mash_bin: str = 'mash', sample_name: str = None, tmp_dir: str = '/tmp', k: int = 16, s: int = 400, m: int = 8) -> pd.DataFrame: """Compute Mash distances between input reads against all RefSeq genomes Args: fastqs: FASTQ paths mash_bin: Mash binary path sample_name: Sample name tmp_dir: Temporary working directory k: Mash kmer size s: Mash number of min-hashes m: Mash number of times a k-mer needs to be observed in order to be considered for Mash sketch DB Returns: (pd.DataFrame): Mash genomic distance results ordered by ascending distance """ assert len(fastqs) > 0, "Must supply one or more FASTQ paths" sketch_path = None try: sketch_path = sketch_fastqs(fastqs, mash_bin=mash_bin, tmp_dir=tmp_dir, sample_name=sample_name, k=k, s=s, m=m) logging.info('Mash sketch database created for "%s" at "%s"', fastqs, sketch_path) logging.info('Querying Mash sketches "%s" against RefSeq sketch database', sketch_path) mashout = mash_dist_refseq(sketch_path, mash_bin=mash_bin) logging.info('Queried "%s" against RefSeq sketch database. Parsing into Pandas DataFrame', sketch_path) df_mash = mash_dist_output_to_dataframe(mashout) df_mash['sample'] = sample_name logging.info('Parsed Mash distance results into DataFrame with %s entries', df_mash.shape[0]) logging.debug('df_mash %s', df_mash.head(5)) return df_mash finally: if sketch_path and os.path.exists(sketch_path): logging.info('Deleting temporary sketch file "%s"', sketch_path) os.remove(sketch_path) logging.info('Sketch file "%s" deleted!', sketch_path)
72790
from Screens import PluginBrowser as PBBase from Screens.InfoBarGenerics import InfoBarNotifications OriginalPluginBrowser = PBBase.PluginBrowser if not issubclass(OriginalPluginBrowser, InfoBarNotifications): class PluginBrowser(OriginalPluginBrowser, InfoBarNotifications): def __init__(self, *args, **kwargs): OriginalPluginBrowser.__init__(self, *args, **kwargs) #if self.skinName in ("NotifiablePluginBrowser", "OriginalPluginBrowser"): # self.skinName = "PluginBrowser" InfoBarNotifications.__init__(self) NotifiablePluginBrowser = PluginBrowser else: NotifiablePluginBrowser = OriginalPluginBrowser def install(): PBBase.PluginBrowser = NotifiablePluginBrowser def uninstall(): PBBase.PluginBrowser = OriginalPluginBrowser __all__ = ['OriginalPluginBrowser', 'NotifiablePluginBrowser', 'install', 'uninstall']
72808
import json import os import pytest import requests from tests.acceptance.helpers import ENDPOINT_ACTIVATE from tests.acceptance.helpers import ENDPOINT_CONFIG from tests.acceptance.helpers import create_and_validate_request_and_response from tests.acceptance.helpers import sort_response expected_activate_ab = """[ { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true } ]""" expected_activate_ab_empty_experimentKey = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "", "variationKey": "", "type": "", "enabled": false, "error": "experimentKey not found" } ]""" expected_activate_ab_invalid_experimentKey = """[ { "userId": "matjaz", "experimentKey": "invalid exper key", "featureKey": "", "variationKey": "", "type": "", "enabled": false, "error": "experimentKey not found" } ]""" @pytest.mark.parametrize("experiment_key, expected_response, expected_status_code", [ ("ab_test1", expected_activate_ab, 200), ("", expected_activate_ab_empty_experimentKey, 200), ("invalid exper key", expected_activate_ab_invalid_experimentKey, 200), ], ids=["valid case", "empty exper key", "invalid exper key"]) def test_activate__experiment(session_obj, experiment_key, expected_response, expected_status_code): """ Test validates: 1. Presence of correct variation in the returned decision for AB experiment Instead of on single field (variation, enabled), validation is done on the whole response (that includes variations and enabled fields). This is to add extra robustness to the test. Sort the reponses because dictionaries shuffle order. :param session_obj: session object :param experiment_key: experiment_key :param expected_response: expected_response :param expected_status_code: expected_status_code """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = {"experimentKey": experiment_key} resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, payload=payload, params=params) assert json.loads(expected_response) == resp.json() assert resp.status_code == expected_status_code, resp.text resp.raise_for_status() expected_activate_feat = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true } ]""" expected_activate_feat_empty_featureKey = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "", "variationKey": "", "type": "", "enabled": false, "error": "featureKey not found" } ]""" expected_activate_feat_invalid_featureKey = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "invalid feat key", "variationKey": "", "type": "", "enabled": false, "error": "featureKey not found" } ]""" @pytest.mark.parametrize("feature_key, expected_response, expected_status_code", [ ("feature_1", expected_activate_feat, 200), ("", expected_activate_feat_empty_featureKey, 200), ("invalid feat key", expected_activate_feat_invalid_featureKey, 200), ], ids=["valid case", "empty feat key", "invalid feat key"]) def test_activate__feature(session_obj, feature_key, expected_response, expected_status_code): """ Test validates: That feature is enabled in the decision for the feature test Instead of on single field (variation, enabled), validation is done on the whole response (that includes variations and enabled fields). This is to add extra robustness to the test. Sort the reponses because dictionaries shuffle order. :param session_obj: session object :param feature_key: API request feature key :param expected_response: API expected response :param expected_status_code: API response expected status code """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = {"featureKey": feature_key} resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, payload=payload, params=params) if isinstance(resp.json(), dict) and resp.json()['error']: with pytest.raises(requests.exceptions.HTTPError): assert resp.json() == json.loads(expected_response) assert resp.status_code == expected_status_code, resp.text resp.raise_for_status() assert json.loads(expected_response) == resp.json() assert resp.status_code == expected_status_code, resp.text expected_activate_type_exper = """[ { "userId": "matjaz", "experimentKey": "feature_2_test", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true }, { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true } ]""" expected_activate_type_feat = """[ { "userId": "matjaz", "experimentKey": "feature_2_test", "featureKey": "feature_2", "variationKey": "variation_1", "type": "feature", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_3", "variationKey": "", "type": "feature", "enabled": false }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_4", "variationKey": "", "type": "feature", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_5", "variationKey": "", "type": "feature", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true } ]""" @pytest.mark.parametrize("decision_type, expected_response, expected_status_code, bypass_validation_request", [ ("experiment", expected_activate_type_exper, 200, False), ("feature", expected_activate_type_feat, 200, False), ("invalid decision type", {'error': 'type "invalid decision type" not supported'}, 400, True), ("", {'error': 'type "" not supported'}, 400, True) ], ids=["experiment decision type", "feature decision type", "invalid decision type", "empty decision type"]) def test_activate__type(session_obj, decision_type, expected_response, expected_status_code, bypass_validation_request): """ Test cases: 1. Get decisions with "experiment" type 2. Get decisions with "feature" type 3. Get empty list when non-existent decision type -> bug OASIS-6031 :param session_obj: session object :param decision_type: parameterized decision type :param expected_response: expected response :param bypass_validation: option to bypass schema validation """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = {"type": decision_type} resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, bypass_validation_request, payload=payload, params=params) if decision_type in ['experiment', 'feature']: sorted_actual = sort_response( resp.json(), 'experimentKey', 'featureKey') sorted_expected = sort_response(json.loads(expected_response), 'experimentKey', 'featureKey') assert sorted_actual == sorted_expected elif resp.json()['error']: with pytest.raises(requests.exceptions.HTTPError): assert resp.json() == expected_response resp.raise_for_status() def test_activate_403(session_override_sdk_key): """ Test that 403 Forbidden is returned. We use invalid SDK key to trigger 403. :param session_override_sdk_key: sdk key to override the session using invalid sdk key """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = {"type": "experiment"} with pytest.raises(requests.exceptions.HTTPError): resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_override_sdk_key, payload=payload, params=params) assert resp.status_code == 403 assert resp.json()['error'] == 'unable to fetch fresh datafile (consider ' \ 'rechecking SDK key), status code: 403 Forbidden' resp.raise_for_status() @pytest.mark.parametrize( "experiment, disableTracking, expected_status_code, bypass_validation_request", [ ("ab_test1", "true", 200, False), ("ab_test1", "false", 200, False), ("feature_2_test", "true", 200, False), ("feature_2_test", "false", 200, False), ("ab_test1", "", 200, True), ("ab_test1", "invalid_boolean", 200, True), ], ids=["ab_experiment and decision_tr true", "ab_experiment and decision_tr false", "feature test and decision_tr true", "feature test and decision_tr false", "empty disableTracking", "invalid disableTracking"]) def test_activate__disable_tracking(session_obj, experiment, disableTracking, expected_status_code, bypass_validation_request): """ Setting to true will disable impression tracking for ab experiments and feature tests. It's equivalent to previous "get_variation". Can not test it in acceptance tests. Just testing basic status code. FS compatibility test suite uses proxy event displatcher where they test this by validating that event was not sent. :param session_obj: session fixture :param experiment: ab experiment or feature test :param disableTracking: true or false :param expected_status_code :param bypass_validation: option to bypass schema validation """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = { "experimentKey": experiment, "disableTracking": disableTracking } resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, bypass_validation_request, payload=payload, params=params) resp.raise_for_status() assert resp.status_code == expected_status_code expected_enabled_true_all_true = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true }, { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true } ]""" expected_enabled_true_feature_off = """[ { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true } ]""" expected_enabled_false_feature_on = """[]""" expected_enabled_false_feature_off = """[ { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_3", "variationKey": "", "type": "feature", "enabled": false } ]""" expected_enabled_empty = """[ { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true } ]""" expected_enabled_invalid = """[ { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true } ]""" @pytest.mark.parametrize( "enabled, experimentKey, featureKey, expected_response, expected_status_code, bypass_validation_request", [ ("true", "ab_test1", "feature_1", expected_enabled_true_all_true, 200, False), ("true", "ab_test1", "feature_3", expected_enabled_true_feature_off, 200, False), ("false", "ab_test1", "feature_1", expected_enabled_false_feature_on, 200, False), ("false", "ab_test1", "feature_3", expected_enabled_false_feature_off, 200, False), ("", "ab_test1", "feature_1", expected_enabled_empty, 200, True), ("invalid for enabled", "ab_test1", "feature_1", expected_enabled_invalid, 200, True) ], ids=["enabled true, all true", "enabled true, feature off", "enabled false, feature on", "enabled false, feature off", "empty value for enabled", "invalid value for enabled"]) def test_activate__enabled(session_obj, enabled, experimentKey, featureKey, expected_response, expected_status_code, bypass_validation_request): """ Filter the activation response to return only enabled decisions. Value for enabled key needs to be a string: "true" or "false" - feature_1 feature is enabled - should not appear in response when enabled is set to False - feature_3 feature is not enabled in the project - should not appear in the project when enabled is True :param session_obj: session fixture :param enabled: boolean is feature enabled :param experimentKey: experiment key :param featureKey: feature key :param expected_response: API expected response :param expected_status_code: expected status code :param bypass_validation: option to bypass schema validation """ payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = { "experimentKey": experimentKey, "featureKey": featureKey, "enabled": enabled } resp = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, bypass_validation_request, payload=payload, params=params) actual_response = sort_response(resp.json(), 'experimentKey', 'featureKey') expected_response = sort_response(json.loads(expected_response), 'experimentKey', 'featureKey') assert actual_response == expected_response assert resp.status_code == expected_status_code resp.raise_for_status() # ####################################################### # MISCELANEOUS ALTERNATIVE TEST CASES # ####################################################### expected_activate_with_config = """[ { "userId": "matjaz", "experimentKey": "ab_test1", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true }, { "userId": "matjaz", "experimentKey": "feature_2_test", "featureKey": "", "variationKey": "variation_1", "type": "experiment", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_1", "variationKey": "", "type": "feature", "variables": { "bool_var": true, "double_var": 5.6, "int_var": 1, "str_var": "hello" }, "enabled": true }, { "userId": "matjaz", "experimentKey": "feature_2_test", "featureKey": "feature_2", "variationKey": "variation_1", "type": "feature", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_3", "variationKey": "", "type": "feature", "enabled": false }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_4", "variationKey": "", "type": "feature", "enabled": true }, { "userId": "matjaz", "experimentKey": "", "featureKey": "feature_5", "variationKey": "", "type": "feature", "enabled": true } ]""" def test_activate_with_config(session_obj): """ Tests experimentKeys, featureKeys, variables and variations because it validates against the whole response body. In "activate" Request payload defines the “who” (user id and attributes) while the query parameters define the “what” (feature, experiment, etc) Request parameter is a list of experiment keys or feature keys. If you want both add both and separate them with comma. Example: params = { "featureKey": <list of feature keys>, "experimentKey": <list of experiment keys> } Need to sort the response (list of dictionaries). And the sorting needs to be primary and secondary, because we are getting response for two params - experimentKey and featureKey and they have different responses. experimentKey has experimentKey field always populated and it has featureKey empty. Whereas featureKey response has featureKey field populated and experimentKey empty. When we sort on both then the responses are properly sorted and ready for being asserted on. :param session_obj: session object """ # config BASE_URL = os.getenv('host') resp = session_obj.get(BASE_URL + ENDPOINT_CONFIG) resp_config = resp.json() # activate feat = [key for key in resp_config['featuresMap']] exp = [key for key in resp_config['experimentsMap']] payload = '{"userId": "matjaz", "userAttributes": {"attr_1": "hola"}}' params = { "featureKey": feat, "experimentKey": exp } resp_activate = create_and_validate_request_and_response(ENDPOINT_ACTIVATE, 'post', session_obj, payload=payload, params=params) sorted_actual = sort_response(resp_activate.json(), 'experimentKey', 'featureKey') sorted_expected = sort_response(json.loads(expected_activate_with_config), 'experimentKey', 'featureKey') assert sorted_actual == sorted_expected
72830
import matlab.engine import argparse import torch from torch.autograd import Variable import numpy as np import time, math, glob import scipy.io as sio import cv2 parser = argparse.ArgumentParser(description="PyTorch EDSR Eval") parser.add_argument("--cuda", action="store_true", help="use cuda?") parser.add_argument("--model", default="checkpoint/model_edsr.pth", type=str, help="model path") parser.add_argument("--dataset", default="Set5", type=str, help="dataset name, Default: Set5") parser.add_argument("--scale", default=4, type=int, help="scale factor, Default: 4") def PSNR(pred, gt, shave_border=0): height, width = pred.shape[:2] pred = pred[shave_border:height - shave_border, shave_border:width - shave_border] gt = gt[shave_border:height - shave_border, shave_border:width - shave_border] imdff = pred - gt rmse = math.sqrt(np.mean(imdff ** 2)) if rmse == 0: return 100 return 20 * math.log10(255.0 / rmse) opt = parser.parse_args() cuda = opt.cuda eng = matlab.engine.start_matlab() if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") model = torch.load(opt.model)["model"] image_list = glob.glob(opt.dataset+"/*.*") avg_psnr_predicted = 0.0 avg_psnr_bicubic = 0.0 avg_elapsed_time = 0.0 for image_name in image_list: print("Processing ", image_name) im_gt_y = sio.loadmat(image_name)['im_gt_y'] im_b_y = sio.loadmat(image_name)['im_b_y'] im_l = sio.loadmat(image_name)['im_l'] im_gt_y = im_gt_y.astype(float) im_b_y = im_b_y.astype(float) im_l = im_l.astype(float) psnr_bicubic = PSNR(im_gt_y, im_b_y,shave_border=opt.scale) avg_psnr_bicubic += psnr_bicubic im_input = im_l.astype(np.float32).transpose(2,0,1) im_input = im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2]) im_input = Variable(torch.from_numpy(im_input/255.).float()) if cuda: model = model.cuda() im_input = im_input.cuda() else: model = model.cpu() start_time = time.time() HR_4x = model(im_input) elapsed_time = time.time() - start_time avg_elapsed_time += elapsed_time HR_4x = HR_4x.cpu() im_h = HR_4x.data[0].numpy().astype(np.float32) im_h = im_h*255. im_h = np.clip(im_h, 0., 255.) im_h = im_h.transpose(1,2,0).astype(np.float32) im_h_matlab = matlab.double((im_h / 255.).tolist()) im_h_ycbcr = eng.rgb2ycbcr(im_h_matlab) im_h_ycbcr = np.array(im_h_ycbcr._data).reshape(im_h_ycbcr.size, order='F').astype(np.float32) * 255. im_h_y = im_h_ycbcr[:,:,0] psnr_predicted = PSNR(im_gt_y, im_h_y,shave_border=opt.scale) avg_psnr_predicted += psnr_predicted print("Scale=", opt.scale) print("Dataset=", opt.dataset) print("PSNR_predicted=", avg_psnr_predicted/len(image_list)) print("PSNR_bicubic=", avg_psnr_bicubic/len(image_list)) print("It takes average {}s for processing".format(avg_elapsed_time/len(image_list)))
72832
from trading_ig import IGService from trading_ig.config import config import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # if you need to cache to DB your requests from datetime import timedelta import requests_cache from predefined_functions.initialisation import Initialisation class Order_Management(): def __init__(self): logging.basicConfig(level=logging.INFO) self.log = logging.getLogger(__name__) # set object and then set connection self.initial = Initialisation() self.initialise_connection() def initialise_connection(self): self.ig_service = self.initial.initialise_connection() self.ig_service.create_session() # limit orders def create_working_order(self, direction, epic, size, price, stop_distance,limit_distance,force_open=False): currency_code = "GBP" direction = direction epic = epic expiry = "DFB" if force_open == True: guaranteed_stop = False else: guaranteed_stop = True # entering price level = price # Pound per point size size = size time_in_force = "GOOD_TILL_CANCELLED" # LIMIT orders are now STOP order_type = "STOP" limit_distance = limit_distance stop_distance = stop_distance # currency_code = "GBP" # direction = "SELL" # epic = "CS.D.BITCOIN.TODAY.IP" # expiry = "DFB" # guaranteed_stop = False # # entering price # level = 13109 # # Pound per point size # size = 0.50 # time_in_force = "GOOD_TILL_CANCELLED" # order_type = "LIMIT" # limit_distance = 4000.0 # stop_distance = 160.0 # """Creates an OTC working order""" try: response = self.ig_service.create_working_order( currency_code=currency_code, direction=direction, epic=epic, expiry=expiry, guaranteed_stop=guaranteed_stop, level=level, size=size, time_in_force=time_in_force, order_type=order_type, limit_distance=limit_distance, stop_distance=stop_distance, force_open=force_open ) return response except Exception as e: self.log.info(str(e) + " error occurred when creating a working order") return None # market orders def create_open_position(self, direction, epic, size, limit_distance, stop_distance, force_open): currency_code = "GBP" direction = direction epic = epic expiry = "DFB" # no matter what you are doing force open always has to be True other wise stop losses do not work force_open = force_open if force_open: guaranteed_stop = False else: guaranteed_stop = True stop_distance = stop_distance size = size trailing_stop = False trailing_stop_increment = None trailing_stop_distance = None time_in_force = "FILL_OR_KILL" order_type = "MARKET" limit_distance = limit_distance try: response = self.ig_service.create_open_position( currency_code=currency_code, direction=direction, epic=epic, expiry=expiry, # no matter what you are doing force open always has to be True other wise stop losses do not work force_open=True, guaranteed_stop=guaranteed_stop, stop_distance=stop_distance, size=size, trailing_stop=trailing_stop, trailing_stop_increment=trailing_stop_increment, # trailing_stop_distance = trailing_stop_distance, # time_in_force=time_in_force, order_type=order_type, limit_distance=limit_distance) return response except Exception as e: self.log.info(str(e) + " error occurred when opening a position") return None # market orders to close positions def close_open_position(self, position, size): # set randomly try: direction = "BUY" position_direction = position["direction"] if position_direction == "BUY": direction = "SELL" deal_id = position["dealId"] order_type = "MARKET" size = size response = self.ig_service.close_open_position( deal_id=deal_id, direction=direction, order_type=order_type, size=size) return response except Exception as e: self.log.info(str(e) + " error occurred when closing position") return None def delete_working_order(self, deal_id): try: deal_id = deal_id response = self.ig_service.delete_working_order(deal_id) return response except Exception as e: self.log.info(str(e) + " error occurred when deleting working order") return None def update_position(self, limit_level, stop_level, deal_id, guaranteed_stop): limit_level = limit_level guaranteed_stop = guaranteed_stop stop_level=stop_level deal_id=deal_id trailing_stop = False trailing_stop_distance = None trailing_stop_increment = None try: response = self.ig_service.update_open_position( limit_level=limit_level, stop_level=stop_level, # guaranteed_stop=guaranteed_stop, deal_id =deal_id, # trailing_stop=trailing_stop, # trailing_stop_distance=trailing_stop_distance, # trailing_stop_increment=trailing_stop_increment ) return response except Exception as e: self.log.info(str(e) + " error occurred when updating position or maybe the order is no longer open") return None def get_open_positions(self): while(True): try: return self.ig_service.fetch_open_positions() except Exception as e: self.log.info(str(e) + " error occurred when getting open positions") # resets the connection self.initialise_connection() def get_working_orders(self): while(True): try: return self.ig_service.fetch_working_orders() except Exception as e: self.log.info(str(e) + " error occurred when getting working orders") self.initialise_connection()
72882
from textbox.data.dataloader.abstract_dataloader import AbstractDataLoader from textbox.data.dataloader.single_sent_dataloader import SingleSentenceDataLoader from textbox.data.dataloader.paired_sent_dataloader import PairedSentenceDataLoader from textbox.data.dataloader.attr_sent_dataloader import AttributedSentenceDataLoader from textbox.data.dataloader.kg_sent_dataloader import KGSentenceDataLoader from textbox.data.dataloader.wikibio_sent_dataloader import WikiBioSentenceDataLoader from textbox.data.dataloader.rotowire_sent_dataloader import RotoWireSentenceDataLoader
72894
from records_mover.url.s3.awscli import aws_cli from mock import patch, call import unittest class TestAwsCli(unittest.TestCase): @patch("records_mover.url.s3.awscli.dict") @patch("records_mover.url.s3.awscli.os") @patch("records_mover.url.s3.awscli.create_clidriver") def test_aws_cli(self, mock_create_cli_driver, mock_os, mock_dict): mock_cli_driver = mock_create_cli_driver.return_value mock_cli_driver.main.return_value = 0 mock_os.environ.copy.return_value = { 'old_value': 'old', 'LC_CTYPE': 'orig_LC_CTYPE' } aws_cli('a', 'b', 'c') mock_dict.assert_called_with(mock_os.environ) mock_cli_driver.main.assert_called_with(args=('a', 'b', 'c')) mock_os.environ.update.assert_has_calls([ call({'old_value': 'old', 'LC_CTYPE': 'en_US.UTF'}), call(mock_dict.return_value) ]) mock_os.environ.clear.assert_called_with()
72895
from .assetmapper import AssetMapper from .assetfactory import AssetFactory from .sqlserver import SqlServerTableMapper
72916
import torch.nn as nn import torch.nn.functional as F import params as P import utils class Net(nn.Module): # Layer names FLAT = 'flat' FC5 = 'fc5' RELU5 = 'relu5' BN5 = 'bn5' FC6 = 'fc6' CLASS_SCORES = FC6 # Symbolic name of the layer providing the class scores as output def __init__(self, input_shape=P.INPUT_SHAPE): super(Net, self).__init__() # Shape of the tensors that we expect to receive as input self.input_shape = input_shape self.input_size = utils.shape2size(self.input_shape) # Here we define the layers of our network # FC Layers self.fc5 = nn.Linear(self.input_size, 300) # conv_output_size-dimensional input, 300-dimensional output self.bn5 = nn.BatchNorm1d(300) # Batch Norm layer self.fc6 = nn.Linear(300, P.NUM_CLASSES) # 300-dimensional input, 10-dimensional output (one per class) # Here we define the flow of information through the network def forward(self, x): out = {} # Stretch out the feature map before feeding it to the FC layers flat = x.view(-1, self.input_size) # Fifth Layer: FC with ReLU activations + batch norm fc5_out = self.fc5(flat) relu5_out = F.relu(fc5_out) bn5_out = self.bn5(relu5_out) # Sixth Layer: dropout + FC, outputs are the class scores fc6_out = self.fc6(F.dropout(bn5_out, p=0.5, training=self.training)) # Build dictionary containing outputs from convolutional and FC layers out[self.FLAT] = flat out[self.FC5] = fc5_out out[self.RELU5] = relu5_out out[self.BN5] = bn5_out out[self.FC6] = fc6_out return out
72957
from array_stack import ArrayStack def delimiter_matched_v1(expr): """Return True if all delimiters are properly match; False otherwise. >>> delimiter_matched_v1('[(2+x)*(3+y)]') True >>> delimiter_matched_v1('{[{(xbcd))]}') False """ left, right = '({[', ')}]' S = ArrayStack() for c in expr: if c in left: S.push(c) elif c in right: if S.is_empty() or right.index(c) != left.index(S.pop()): return False return S.is_empty() def delimiter_matched_v2(expr: str) -> bool: """ >>> delimiter_matched_v2('[(2+x)*(3+y)]') True >>> delimiter_matched_v2('{[{(xbcd))]}') False """ S = ArrayStack() d = {")": "(", "]": "[", "}": "{"} for c in expr: if c in d.values(): S.push(c) elif c in d: if S.is_empty() or d[c] != S.pop(): return False return S.is_empty() if __name__ == "__main__": import doctest doctest.testmod()
72984
import urllib.parse assert urllib.parse.unquote("foo%20bar") == "foo bar" import urllib.request with urllib.request.urlopen('https://httpbin.org/headers') as f: f.read() # issue 1424 text = """Hello World""" assert urllib.parse.urlencode({"text": text}) == "text=Hello%0AWorld" print('passed all tests')
73012
from hknweb.academics.views.base_viewset import AcademicEntityViewSet from hknweb.academics.models import Instructor from hknweb.academics.serializers import InstructorSerializer class InstructorViewSet(AcademicEntityViewSet): queryset = Instructor.objects.all() serializer_class = InstructorSerializer
73035
from sevenbridges.meta.fields import ( StringField, DateTimeField, CompoundField, BooleanField ) from sevenbridges.meta.resource import Resource from sevenbridges.models.compound.jobs.job_docker import JobDocker from sevenbridges.models.compound.jobs.job_instance import Instance from sevenbridges.models.compound.jobs.job_log import Logs class Job(Resource): """ Job resource contains information for a single executed node in the analysis. """ name = StringField(read_only=True) start_time = DateTimeField(read_only=True) end_time = DateTimeField(read_only=True) status = StringField(read_only=True) command_line = StringField(read_only=True) retried = BooleanField(read_only=True) instance = CompoundField(Instance, read_only=True) docker = CompoundField(JobDocker, read_only=True) logs = CompoundField(Logs, read_only=True) def __str__(self): return f'<Job: name={self.name}, status={self.status}>'
73042
from ldtcommon import ATTR_SURFACING_PROJECT from ldtcommon import ATTR_SURFACING_OBJECT from ldtcommon import TEXTURE_FILE_PATTERN from ldt import context from ldtui import qtutils """ .. module:: Maya import material :synopsis: MayaTextureImport Plugin. Imports textureSets to maya Surfacing Projects .. moduleauthor:: <NAME> """ import os import logging from functools import partial from Qt import QtGui, QtWidgets, QtCore from Qt.QtWidgets import QApplication, QWidget, QLabel, QMainWindow from yapsy.IPlugin import IPlugin import ldtutils import ldtmaya import ldttextures logger = logging.getLogger(__name__) class MayaTextureImport(IPlugin): """Plug-in to Import textures to surfacing projects and surfacing objects.""" name = "MayaTextureImport Plugin" plugin_layout = None def __init__(self): """Check dcc context, and build the ui if context is correct.""" # Load dcc python packages inside a try, to catch the application # environment, this will be replaced by IPlugin Categories dcc = context.dcc() if dcc == 'Maya': logger.info('MayaTextureImport loaded') import pymel.core as pm import ldtmaya self.build_ui() else: logger.warning( 'MayaTextureImport not loaded, dcc libs not found') self.plugin_layout = QtWidgets.QWidget() self.label_ui = QtWidgets.QLabel(self.plugin_layout) self.label_ui.setText( 'MayaTextureImport\nPlugin not available in this application') def build_ui(self): """Build the Plug-in UI and append it to the main ui as a tab.""" self.plugin_layout = QtWidgets.QWidget() main_layout = QtWidgets.QVBoxLayout() self.lbl_extension = QtWidgets.QLabel('Find files with pattern') self.ln_pattern = QtWidgets.QLineEdit('.tex') self.btn_search_files = QtWidgets.QPushButton( "Search files in folder" ) self.form_widget = QtWidgets.QTableWidget(0, 2) self.form_widget.setWordWrap(True) # col_headers = ['filepath', 'import', 'Select in Maya'] col_headers = ['filepath', 'import'] self.form_widget.setHorizontalHeaderLabels(col_headers) self.form_widget.setRowCount(0) self.form_widget.setColumnWidth(0, 300) main_layout = QtWidgets.QVBoxLayout() # Attach widgets to the main layout main_layout.addWidget(self.lbl_extension) main_layout.addWidget(self.ln_pattern) main_layout.addWidget(self.btn_search_files) main_layout.addWidget(self.form_widget) # Set main layout self.plugin_layout.setLayout(main_layout) self.btn_search_files.clicked.connect( self.load_textures ) def load_textures(self): """Load textures and populates form.""" search_folder = qtutils.get_folder_path() if search_folder: logger.info('Search folder: %s' % search_folder) file_list = ldtutils.get_files_in_folder( search_folder, recursive=True, pattern=self.ln_pattern.text()) self.populate_form(file_list) def populate_form(self, file_list): """ Populate form with texture lucidity parsed files. Args: file_templates (list): A list of lucidity parsed files, with file_path key added. """ texture_finder = ldttextures.TextureFinder(file_list) udim_file_list = texture_finder.merge_udims() self.form_widget.setRowCount(len(udim_file_list)) buttons = {} for num, file_path in enumerate(udim_file_list): self.form_widget.setCellWidget( num, 0, QtWidgets.QLabel(file_path)) buttons[num] = QtWidgets.QPushButton('import') self.form_widget.setCellWidget( num, 1, buttons[num]) # TODO if there is a file node in the scene with # the same path, add the option to select it. # self.form_widget.setCellWidget( # num, 2, QtWidgets.QPushButton('select')) buttons[num].clicked.connect( lambda x=file_path: self.import_texture(x)) def import_texture(self, file_path): """ Creates a maya file node with the given file_path.""" file_path = file_path.replace('udim', '<UDIM>') file_node = ldtmaya.create_file_node(name=os.path.basename(file_path)) file_node.fileTextureName.set(file_path)
73043
getObject = { 'id': 37401, 'memoryCapacity': 242, 'modifyDate': '', 'name': 'test-dedicated', 'diskCapacity': 1200, 'createDate': '2017-10-16T12:50:23-05:00', 'cpuCount': 56, 'accountId': 1199911 } getAvailableRouters = [ {'hostname': 'bcr01a.dal05', 'id': 12345}, {'hostname': 'bcr02a.dal05', 'id': 12346}, {'hostname': 'bcr03a.dal05', 'id': 12347}, {'hostname': 'bcr04a.dal05', 'id': 12348} ] getObjectById = { 'datacenter': { 'id': 12345, 'name': 'dal05', 'longName': 'Dallas 5' }, 'memoryCapacity': 242, 'modifyDate': '2017-11-06T11:38:20-06:00', 'name': 'test-dedicated', 'diskCapacity': 1200, 'backendRouter': { 'domain': 'test.com', 'hostname': 'bcr01a.dal05', 'id': 12345 }, 'guestCount': 1, 'cpuCount': 56, 'guests': [{ 'domain': 'test.com', 'hostname': 'test-dedicated', 'id': 12345, 'uuid': 'F9329795-4220-4B0A-B970-C86B950667FA' }], 'billingItem': { 'nextInvoiceTotalRecurringAmount': 1515.556, 'orderItem': { 'id': 12345, 'order': { 'status': 'APPROVED', 'privateCloudOrderFlag': False, 'modifyDate': '2017-11-02T11:42:50-07:00', 'orderQuoteId': '', 'userRecordId': 12345, 'createDate': '2017-11-02T11:40:56-07:00', 'impersonatingUserRecordId': '', 'orderTypeId': 7, 'presaleEventId': '', 'userRecord': { 'username': 'test-dedicated' }, 'id': 12345, 'accountId': 12345 } }, 'id': 12345, 'children': [ { 'nextInvoiceTotalRecurringAmount': 0.0, 'categoryCode': 'dedicated_host_ram' }, { 'nextInvoiceTotalRecurringAmount': 0.0, 'categoryCode': 'dedicated_host_disk' } ] }, 'id': 12345, 'createDate': '2017-11-02T11:40:56-07:00' } deleteObject = True getGuests = [{ 'id': 200, 'hostname': 'vs-test1', 'domain': 'test.sftlyr.ws', 'fullyQualifiedDomainName': 'vs-test1.test.sftlyr.ws', 'status': {'keyName': 'ACTIVE', 'name': 'Active'}, 'datacenter': {'id': 50, 'name': 'TEST00', 'description': 'Test Data Center'}, 'powerState': {'keyName': 'RUNNING', 'name': 'Running'}, 'maxCpu': 2, 'maxMemory': 1024, 'primaryIpAddress': '172.16.240.2', 'globalIdentifier': '1a2b3c-1701', 'primaryBackendIpAddress': '10.45.19.37', 'hourlyBillingFlag': False, 'billingItem': { 'id': 6327, 'recurringFee': 1.54, 'orderItem': { 'order': { 'userRecord': { 'username': 'chechu', } } } }, }, { 'id': 202, 'hostname': 'vs-test2', 'domain': 'test.sftlyr.ws', 'fullyQualifiedDomainName': 'vs-test2.test.sftlyr.ws', 'status': {'keyName': 'ACTIVE', 'name': 'Active'}, 'datacenter': {'id': 50, 'name': 'TEST00', 'description': 'Test Data Center'}, 'powerState': {'keyName': 'RUNNING', 'name': 'Running'}, 'maxCpu': 4, 'maxMemory': 4096, 'primaryIpAddress': '172.16.240.7', 'globalIdentifier': '05a8ac-6abf0', 'primaryBackendIpAddress': '10.45.19.35', 'hourlyBillingFlag': True, 'billingItem': { 'id': 6327, 'recurringFee': 1.54, 'orderItem': { 'order': { 'userRecord': { 'username': 'chechu', } } } } }]
73065
class FileSystemAuditRule(AuditRule): """ Represents an abstraction of an access control entry (ACE) that defines an audit rule for a file or directory. This class cannot be inherited. FileSystemAuditRule(identity: IdentityReference,fileSystemRights: FileSystemRights,flags: AuditFlags) FileSystemAuditRule(identity: IdentityReference,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) FileSystemAuditRule(identity: str,fileSystemRights: FileSystemRights,flags: AuditFlags) FileSystemAuditRule(identity: str,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) """ @staticmethod def __new__(self,identity,fileSystemRights,*__args): """ __new__(cls: type,identity: IdentityReference,fileSystemRights: FileSystemRights,flags: AuditFlags) __new__(cls: type,identity: IdentityReference,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) __new__(cls: type,identity: str,fileSystemRights: FileSystemRights,flags: AuditFlags) __new__(cls: type,identity: str,fileSystemRights: FileSystemRights,inheritanceFlags: InheritanceFlags,propagationFlags: PropagationFlags,flags: AuditFlags) """ pass AccessMask=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the access mask for this rule. """ FileSystemRights=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the System.Security.AccessControl.FileSystemRights flags associated with the current System.Security.AccessControl.FileSystemAuditRule object. Get: FileSystemRights(self: FileSystemAuditRule) -> FileSystemRights """
73104
import json from uuid import UUID from pymongo import MongoClient data = {} def _convertForJson(d): for k,v in d.items(): if isinstance(v, UUID): d[k] = str(v) if isinstance(v, list): v = [str(s) for s in v] d[k] = v return d db = MongoClient().artifact_database data['gem5Data'] = [] for i in db.artifacts.find(limit=20): data['gem5Data'].append(_convertForJson(i)) with open('data.json', 'w') as outfile: json.dump(data['gem5Data'],outfile)
73121
import sys import numpy as np import pandas as pd from pspy import so_dict, so_map d = so_dict.so_dict() d.read_from_file(sys.argv[1]) binary = so_map.read_map(d["template"]) if binary.data.ndim > 2: # Only use temperature binary.data = binary.data[0] binary.data = binary.data.astype(np.int16) binary.data[:] = 1 # Sigurd point sources if "point_source_file" in d: print("Adding point sources...") df = pd.read_table(d["point_source_file"], escapechar="#", sep="\s+") high_flux_good_SNR = (df.Tflux > d.get("point_source_Tflux", 15)) & ( df.SNR > d.get("point_source_SNR", 5) ) df = df[high_flux_good_SNR] coordinates = np.deg2rad([df.dec, df.ra]) mask = so_map.generate_source_mask(binary, coordinates, d.get("point_source_radius", 5.0)) # Monster sources if "monster_source_file" in d: print("Adding monster point sources...") df = pd.read_csv(d["monster_source_file"], comment="#") for index, row in df.iterrows(): mask.data *= so_map.generate_source_mask( binary, np.deg2rad([row.dec, row.ra]), row.radius ).data # Dust if "dust_file" in d: print("Adding dust sources...") dust = so_map.read_map(d["dust_file"]) mask.data *= dust.data print("Writing mask...") mask.write_map(d["output_file"]) mask.downgrade(4).plot(file_name=d["output_file"].replace(".fits", ""))
73146
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np def plot_2ala_ramachandran(traj, ax=None, weights=None): import mdtraj as md if ax == None: ax = plt.gca() if isinstance(weights, np.ndarray): ax.hist2d( md.compute_phi(traj)[1].reshape(-1), md.compute_psi(traj)[1].reshape(-1), bins=[np.linspace(-np.pi, np.pi, 64), np.linspace(-np.pi, np.pi, 64)], norm=mpl.colors.LogNorm(), weights=weights, ) else: ax.hist2d( md.compute_phi(traj)[1].reshape(-1), md.compute_psi(traj)[1].reshape(-1), bins=[np.linspace(-np.pi, np.pi, 64), np.linspace(-np.pi, np.pi, 64)], norm=mpl.colors.LogNorm(), ) ax.set_xlim(-np.pi, np.pi) ax.set_ylim(-np.pi, np.pi) ax.set_xlabel(r"$\phi$") ax.set_ylabel(r"$\psi$")
73182
import sys, getopt import json import requests from pprint import pprint def handleRequest(argv): """Function to read user request, form http message and send it""" try: opts, args = getopt.getopt(argv,"",["help","version=","repo=","org=","branch=","user=","apitoken=","updateversion="]) except getopt.GetoptError: print 'usage: python deploy_pxscene.py --version=<version> --repo=<repo> --org=<org> --branch=<branch> --user=<user> --apitoken=<apitoken> --updateversion=<true/false>' exit (1) #initialize input values version=""; repo_name="pxCore"; user_name=""; api_token=""; update_version="false"; branch="master"; #read input values for opt, arg in opts: if opt == "--help": print 'python deploy_pxscene.py --version=<version> --repo=<repo> --org=<org> --branch=<branch> --user=<user> --apitoken=<apitoken> --updateversion=<true/false>' exit (1) elif len(arg) == 0: print "argument cannot be empty for option", opt exit (1) elif opt == "--version": version=arg; elif opt == "--repo": repo_name=arg; elif opt == "--user": user_name=arg; elif opt == "--apitoken": api_token=arg; elif opt == "--updateversion": update_version=arg; elif opt == "--org": org_name=arg; elif opt == "--branch": branch=arg; if version=="" or user_name=="" or api_token=="": print 'usage: python deploy_pxscene.py --version=<version> --repo=<repo> --org=<org> --branch=<branch> --user=<user> --apitoken=<apitoken> --updateversion=<true/false>' exit (1) if update_version != "true" and update_version != "false": print ("please enter proper update version value true/false"); exit (1) with open('pxscene_deploy_rules.json') as data_file: data = json.load(data_file) #populate environment variables data["request"][unicode("branch")] = unicode(branch); data["request"][unicode("message")] = unicode("OS X Release build")+" "+unicode(version); data["request"]["config"][unicode("env")] = {} data["request"]["config"]["env"][unicode("PX_VERSION")] = unicode(version); data["request"]["config"]["env"][unicode("REPO_USER_NAME")] = unicode(user_name); data["request"]["config"]["env"][unicode("REPO_NAME")] = unicode(repo_name); data["request"]["config"]["env"][unicode("UPDATE_VERSION")] = unicode(update_version); string = json.dumps(data); #print the request json data pprint(string); tokendata = "token "; tokendata += str(api_token); #populate http header headers = {} headers["Content-Type" ] = "application/json"; headers["Accept" ] = "application/json"; headers["Travis-API-Version"] = "3"; headers["Authorization"] = tokendata; url = "https://api.travis-ci.org/repo/" + str(org_name) + "%2F" + str(repo_name) + "/requests"; #send http request response = requests.post(url, headers=headers, data=string) print response.content if __name__ == "__main__": if len(sys.argv) < 2: print 'usage: python deploy_pxscene.py --version=<version> --repo=<repo> --org=<org> --branch=<branch> --user=<user> --apitoken=<apitoken> --updateversion=<true/false>' exit (1) handleRequest(sys.argv[1:])
73207
from aiogram.dispatcher.filters.state import StatesGroup, State from aiogram.types import Message from aiogram_dialog import Dialog, Window, DialogManager from aiogram_dialog.tools import render_transitions from aiogram_dialog.widgets.input import MessageInput from aiogram_dialog.widgets.kbd import Next, Back from aiogram_dialog.widgets.text import Const class RenderSG(StatesGroup): first = State() second = State() last = State() async def on_input(m: Message, dialog: Dialog, manager: DialogManager): manager.current_context().dialog_data["name"] = m.text await dialog.next() dialog = Dialog( Window( Const("1. First"), Next(), state=RenderSG.first, ), Window( Const("2. Second"), Back(), MessageInput(on_input), state=RenderSG.second, ), Window( Const("3. Last"), Back(), state=RenderSG.last, ), ) # this is diagram rendering render_transitions([dialog])
73220
import unittest from lib import Monitor from cloudasr.test_doubles import PollerSpy from cloudasr.messages.helpers import * class TestMonitor(unittest.TestCase): def setUp(self): self.poller = PollerSpy() self.scale_workers = ScaleWorkersSpy() self.create_poller = lambda: self.poller self.monitor = Monitor(self.create_poller, self.emit, self.scale_workers, self.poller.has_next_message) self.emmited_messages = [] def test_monitor_forwards_messages_to_socketio(self): messages = [ createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "STARTED", 1).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 2).SerializeToString(), ] self.run_monitor(messages) expected_messages = [ {"address": "tcp://127.0.0.1:1", "model": "en-GB", "status": "STARTED", "time": 1}, {"address": "tcp://127.0.0.1:1", "model": "en-GB", "status": "WORKING", "time": 2}, ] self.assertThatMonitorForwardedMessages(expected_messages) def test_monitor_saves_worker_statuses(self): messages = [ createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "STARTED", 1).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:2", "en-GB", "WORKING", 2).SerializeToString(), ] self.run_monitor(messages) expected_messages = [ {"address": "tcp://127.0.0.1:1", "model": "en-GB", "status": "STARTED", "time": 1}, {"address": "tcp://127.0.0.1:2", "model": "en-GB", "status": "WORKING", "time": 2}, ] self.assertEqual(expected_messages, self.monitor.get_statuses()) def test_monitor_will_add_new_workers_when_all_workers_are_working(self): messages = [ createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 1).SerializeToString() ] self.run_monitor(messages) expected_messages = [ {"en-GB": +1} ] self.assertEqual(expected_messages, self.scale_workers.scaling_history) def test_monitor_will_not_add_new_workers_when_it_is_currently_adding_new_workers(self): messages = [ createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 1).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 2).SerializeToString() ] self.run_monitor(messages) expected_messages = [{"en-GB": +1}, {}] self.assertEqual(expected_messages, self.scale_workers.scaling_history) def test_monitor_will_add_new_workers_when_it_finished_scaling_and_it_needs_new_workers(self): messages = [ createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 1).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 2).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:2", "en-GB", "STARTED", 3).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:1", "en-GB", "WORKING", 4).SerializeToString(), createWorkerStatusMessage("tcp://127.0.0.1:2", "en-GB", "WORKING", 5).SerializeToString() ] self.run_monitor(messages) expected_messages = [{"en-GB": +1}, {}, {}, {}, {"en-GB": +1}] self.assertEqual(expected_messages, self.scale_workers.scaling_history) def run_monitor(self, messages): self.poller.add_messages([{"master": message} for message in messages]) self.monitor.run() def assertThatMonitorForwardedMessages(self, messages): forwarded_messages = self.emmited_messages self.assertEqual(messages, forwarded_messages) def emit(self, message): self.emmited_messages.append(message) class ScaleWorkersSpy: def __init__(self): self.scaling_history = [] def __call__(self, commands): self.scaling_history.append(commands)
73260
import os import yaml import argparse import datetime import shutil parser = argparse.ArgumentParser() parser.add_argument('--preprocessedoutputdir', type=str, help="intermediate preprocessed pipeline data directory") parser.add_argument('--trainoutputdir', type=str, help="intermediate training pipeline data directory") parser.add_argument('--interpretabilityoutputdir', type=str, help="intermediate interpretability pipeline data directory") parser.add_argument('--outputsdir', type=str, help="persistent outputs directory on blob") args = parser.parse_args() cur_date = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') # Get paths of data on intermediate pipeline storage cfg = yaml.full_load(open("./config.yml", 'r')) # Load config data train_set_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['TRAIN_SET'].split('/')[-1] test_set_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['TEST_SET'].split('/')[-1] data_info_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['DATA_INFO'].split('/')[-1] ordinal_col_transformer_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['ORDINAL_COL_TRANSFORMER'].split('/')[-1] ohe_col_transformer_mv_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['OHE_COL_TRANSFORMER_MV'].split('/')[-1] ohe_col_transformer_sv_path = args.preprocessedoutputdir + '/' + cfg['PATHS']['OHE_COL_TRANSFORMER_SV'].split('/')[-1] scaler_col_transformer_path = args.trainoutputdir + '/' + cfg['PATHS']['SCALER_COL_TRANSFORMER'].split('/')[-1] model_to_load_path = args.trainoutputdir + '/' + cfg['PATHS']['MODEL_TO_LOAD'].split('/')[-1] logs_path = args.trainoutputdir + '/logs' multi_train_test_metrics_path = args.trainoutputdir + '/' + cfg['PATHS']['MULTI_TRAIN_TEST_METRICS'].split('/')[-1] lime_explainer_path = args.interpretabilityoutputdir + '/' + cfg['PATHS']['LIME_EXPLAINER'].split('/')[-1] lime_submodular_pick_path = args.interpretabilityoutputdir + '/' + cfg['PATHS']['LIME_SUBMODULAR_PICK'].split('/')[-1] submod_pick_image_path = args.interpretabilityoutputdir + '/' + cfg['PATHS']['IMAGES'].split('/')[-1] + '/submodular_pick.png' # Build destination paths in output folder on blob datastore destination_dir = args.outputsdir + cur_date + '/' if not os.path.exists(destination_dir): os.makedirs(destination_dir) business_outputs_dir = destination_dir + 'business_outputs/' if not os.path.exists(business_outputs_dir): os.makedirs(business_outputs_dir) # Move all outputs from intermediate data to outputs folder on blob shutil.copy(train_set_path, destination_dir) shutil.copy(test_set_path, destination_dir) shutil.copy(data_info_path, destination_dir) shutil.copy(ordinal_col_transformer_path, destination_dir) shutil.copy(ohe_col_transformer_mv_path, destination_dir) shutil.copy(ohe_col_transformer_sv_path, destination_dir) shutil.copy(scaler_col_transformer_path, destination_dir) shutil.copy(model_to_load_path, destination_dir) shutil.copytree(logs_path, destination_dir + 'logs') shutil.copy(multi_train_test_metrics_path, business_outputs_dir) shutil.copy(lime_explainer_path, destination_dir) shutil.copy(lime_submodular_pick_path, destination_dir) shutil.copy(submod_pick_image_path, business_outputs_dir)
73264
import asyncio import random import pytest import uuid from collections import defaultdict import aiotask_context as context @asyncio.coroutine def dummy3(): yield from asyncio.sleep(random.uniform(0, 2)) return context.get("key") @asyncio.coroutine def dummy2(a, b): yield from asyncio.sleep(random.uniform(0, 2)) res = context.get("key") yield from asyncio.sleep(random.uniform(0, 2)) res1 = yield from dummy3() assert res == res1 return a, b, res @asyncio.coroutine def dummy1(n_tasks): context.set("key", str(uuid.uuid4())) tasks = [ asyncio.ensure_future( dummy2(id(context.asyncio_current_task()), n)) for n in range(n_tasks)] results = yield from asyncio.gather(*tasks) info = defaultdict(list) for taskid, n, key in results: info[key].append([taskid, n]) return info @pytest.mark.asyncio @asyncio.coroutine def test_ensure_future_concurrent(): n_tasks = 10 results = yield from asyncio.gather(*[dummy1(n_tasks=n_tasks) for x in range(1000)]) for r in results: assert len(r) == 1 for key, value in r.items(): assert len(value) == n_tasks @pytest.mark.asyncio @asyncio.coroutine def test_ensurefuture_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.ensure_future(change_context()) assert context.get("key") == "what" assert context.get("other") == "data" @pytest.mark.asyncio @asyncio.coroutine def test_waitfor_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.wait_for(change_context(), 1) assert context.get("key") == "what" assert context.get("other") == "data" @pytest.mark.asyncio @asyncio.coroutine def test_gather_context_propagation(): context.set("key", "value") @asyncio.coroutine def change_context(): assert context.get("key") == "value" context.set("key", "what") context.set("other", "data") yield from asyncio.gather(change_context()) assert context.get("key") == "what" assert context.get("other") == "data"
73297
from binaryninja_cortex.platforms import MCU class Chip(MCU): NAME="STM32F3" ROM_OFF=0x08000000 RAM_OFF=0x20000000 IRQ=MCU.IRQ+ [ "NVIC_WWDG_IRQ", "NVIC_PVD_IRQ", "NVIC_TAMP_STAMP_IRQ", "NVIC_RTC_WKUP_IRQ", "NVIC_FLASH_IRQ", "NVIC_RCC_IRQ", "NVIC_EXTI0_IRQ", "NVIC_EXTI1_IRQ", "NVIC_EXTI2_TSC_IRQ", "NVIC_EXTI3_IRQ", "NVIC_EXTI4_IRQ", "NVIC_DMA1_CHANNEL1_IRQ", "NVIC_DMA1_CHANNEL2_IRQ", "NVIC_DMA1_CHANNEL3_IRQ", "NVIC_DMA1_CHANNEL4_IRQ", "NVIC_DMA1_CHANNEL5_IRQ", "NVIC_DMA1_CHANNEL6_IRQ", "NVIC_DMA1_CHANNEL7_IRQ", "NVIC_ADC1_2_IRQ", "NVIC_USB_HP_CAN1_TX_IRQ", "NVIC_USB_LP_CAN1_RX0_IRQ", "NVIC_CAN1_RX1_IRQ", "NVIC_CAN1_SCE_IRQ", "NVIC_EXTI9_5_IRQ", "NVIC_TIM1_BRK_TIM15_IRQ", "NVIC_TIM1_UP_TIM16_IRQ", "NVIC_TIM1_TRG_COM_TIM17_IRQ", "NVIC_TIM1_CC_IRQ", "NVIC_TIM2_IRQ", "NVIC_TIM3_IRQ", "NVIC_TIM4_IRQ", "NVIC_I2C1_EV_EXTI23_IRQ", "NVIC_I2C1_ER_IRQ", "NVIC_I2C2_EV_EXTI24_IRQ", "NVIC_I2C2_ER_IRQ", "NVIC_SPI1_IRQ", "NVIC_SPI2_IRQ", "NVIC_USART1_EXTI25_IRQ", "NVIC_USART2_EXTI26_IRQ", "NVIC_USART3_EXTI28_IRQ", "NVIC_EXTI15_10_IRQ", "NVIC_RTC_ALARM_IRQ", "NVIC_USB_WKUP_A_IRQ", "NVIC_TIM8_BRK_IRQ", "NVIC_TIM8_UP_IRQ", "NVIC_TIM8_TRG_COM_IRQ", "NVIC_TIM8_CC_IRQ", "NVIC_ADC3_IRQ", "NVIC_RESERVED_1_IRQ", "NVIC_RESERVED_2_IRQ", "NVIC_RESERVED_3_IRQ", "NVIC_SPI3_IRQ", "NVIC_UART4_EXTI34_IRQ", "NVIC_UART5_EXTI35_IRQ", "NVIC_TIM6_DAC_IRQ", "NVIC_TIM7_IRQ", "NVIC_DMA2_CHANNEL1_IRQ", "NVIC_DMA2_CHANNEL2_IRQ", "NVIC_DMA2_CHANNEL3_IRQ", "NVIC_DMA2_CHANNEL4_IRQ", "NVIC_DMA2_CHANNEL5_IRQ", "NVIC_ETH_IRQ", "NVIC_RESERVED_4_IRQ", "NVIC_RESERVED_5_IRQ", "NVIC_COMP123_IRQ", "NVIC_COMP456_IRQ", "NVIC_COMP7_IRQ", "NVIC_HRTIM_MASTER_IRQ", "NVIC_HRTIM_TIMA_IRQ", "NVIC_HRTIM_TIMB_IRQ", "NVIC_HRTIM_TIMC_IRQ", "NVIC_HRTIM_TIMD_IRQ", "NVIC_HRTIM_TIME_IRQ", "NVIC_HRTIM_FLT_IRQ", "NVIC_USB_HP_IRQ", "NVIC_USB_LP_IRQ", "NVIC_USB_WKUP_IRQ", "NVIC_RESERVED_13_IRQ", "NVIC_RESERVED_14_IRQ", "NVIC_RESERVED_15_IRQ", "NVIC_RESERVED_16_IRQ", ]
73313
from PIL import Image, ImageDraw, ImageFont import numpy as np import random from phi.fluidformat import * def text_to_pixels(text, size=10, binary=False, as_numpy_array=True): image = Image.new("1" if binary else "L", (len(text)*size*3//4, size), 0) draw = ImageDraw.Draw(image) try: font = ImageFont.truetype("arial.ttf", size) except: font = ImageFont.truetype('Pillow/Tests/fonts/DejaVuSans.ttf', size=size) draw.text((0,0), text, fill=255, font=font) del draw if as_numpy_array: return np.array(image).astype(np.float32) / 255.0 else: return image # image = text_to_pixels("The", as_numpy_array=False) # image.save("testimg.png", "PNG") def alphabet_soup(shape, count, margin=1, total_content=100, fontsize=10): if len(shape) != 4: raise ValueError("shape must be 4D") array = np.zeros(shape) letters = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' for batch in range(shape[0]): for i in range(count): letter = letters[random.randint(0, len(letters)-1)] tile = text_to_pixels(letter, fontsize)#[::-1, :] y = random.randint(margin, shape[1] - margin - tile.shape[0] - 2) x = random.randint(margin, shape[2] - margin - tile.shape[1] - 2) array[batch, y:(y+tile.shape[0]), x:(x+tile.shape[1]), 0] += tile return array.astype(np.float32) * total_content / np.sum(array) def random_word(shape, min_count, max_count, margin=1, total_content=100, fontsize=10, y=40): if len(shape) != 4: raise ValueError("shape must be 4D") array = np.zeros(shape) letters = '<KEY>' for b in range(shape[0]): count = random.randint(min_count, max_count) for i in range(count): letter = letters[random.randint(0, len(letters)-1)] tile = text_to_pixels(letter, fontsize)#[::-1, :] x = random.randint(margin, shape[2] - margin - tile.shape[1] - 2) array[b, y:(y+tile.shape[0]), x:(x+tile.shape[1]), 0] += tile return array.astype(np.float32) * total_content / np.sum(array) def single_shape(shape, scene, margin=1, fluid_mask=None): if len(shape) != 4: raise ValueError("shape must be 4D") array = np.zeros(shape) for batch in range(shape[0]): img = scene.read_array("Shape", random.choice(scene.indices))[0,...] while True: y = random.randint(margin, shape[1] - margin - img.shape[0] - 2) x = random.randint(margin, shape[2] - margin - img.shape[1] - 2) array[batch, y:(y + img.shape[0]), x:(x + img.shape[1]), :] = img if _all_density_valid(array[batch:batch+1,...], fluid_mask): break else: array[batch,...] = 0 return array.astype(np.float32) def _all_density_valid(density, fluid_mask): if fluid_mask is None: return True return np.sum(density * fluid_mask) == np.sum(density) def push_density_inside(density_tile, tile_location, fluid_mask): # (y, x) """ Tries to adjust the tile_location so that the density_tile does not overlap with any obstacles. :param density_tile: 2D binary array, representing the density mask to be shifted :param tile_location: the initial location of the tile, (1D array with 2 values) :param fluid_mask: 2D binary array (must be larger than the tile) :return: the shifted location (1D array with 2 values) """ x, y = np.meshgrid(*[np.linspace(-1, 1, d) for d in density_tile.shape]) location = np.array(tile_location, dtype=np.int) def cropped_mask(location): slices = [slice(location[i], location[i]+density_tile.shape[i]) for i in range(2)] return fluid_mask[slices] while True: cropped_fluid_mask = cropped_mask(location) overlap = density_tile * (1-cropped_fluid_mask) if np.sum(overlap) == 0: return location update = -np.sign([np.sum(overlap * y), np.sum(overlap * x)]).astype(np.int) if np.all(update == 0): raise ValueError("Failed to push tile with initial location %s out of obstacle" % (tile_location,)) location += update # print(alphabet_soup([1, 16, 16, 1], 1000)[0,:,:,0]) # result = single_shape((2, 64, 64, 1), scene_at("data/shapelib/sim_000000")) # print(result.shape, np.sum(result)) # Test push_density_inside # fluid_mask = np.ones([64, 64]) # fluid_mask[10:20, 10:20] = 0 # density_tile = np.ones([5,5]) # tile_location = (18,9) # print(push_density_inside(density_tile, tile_location, fluid_mask))
73334
Experiment(description='Testing the pure linear kernel', data_dir='../data/tsdlr/', max_depth=10, random_order=False, k=1, debug=False, local_computation=False, n_rand=9, sd=2, jitter_sd=0.1, max_jobs=500, verbose=False, make_predictions=False, skip_complete=True, results_dir='../results/2013-10-01-pure-lin/', iters=250, base_kernels='SE,PureLin,Const,Exp,Fourier,Noise', zero_mean=True, random_seed=1, period_heuristic=5, subset=True, subset_size=250, full_iters=10, bundle_size=5, additive_form=True, model_noise=True, no_noise=True)
73335
import crypt from base64 import encodestring try: from django.conf import settings _CHARSET = settings.DEFAULT_CHARSET _LDAP_SALT_LENGHT = settings.LDAP_PASSWORD_SALT_SIZE except: _CHARSET = 'utf-8' _LDAP_SALT_LENGHT = 8 from hashlib import (sha1, sha256, sha384, sha512) from passlib.hash import (ldap_plaintext, lmhash, nthash, ldap_md5, ldap_md5_crypt, ldap_salted_md5, ldap_sha1, ldap_salted_sha1, atlassian_pbkdf2_sha1, ldap_md5_crypt, ldap_sha256_crypt, ldap_sha512_crypt) from os import urandom # how many bytes the salt is long def encode_secret(enc, new_value=None): """ https://docs.python.org/3.5/library/hashlib.html http://passlib.readthedocs.io/en/stable/lib/passlib.hash.ldap_std.html """ password_renewed = None if enc == 'Plaintext': password_renewed = ldap_plaintext.hash(new_value) elif enc == 'NT': password_renewed = nthash.hash(new_value) elif enc == 'LM': password_renewed = lmhash.hash(new_value) elif enc == 'MD5': password_renewed = ldap_md5.hash(new_value.encode(_CHARSET)) elif enc == 'SMD5': password_renewed = ldap_salted_md5.hash(new_value.encode(_CHARSET)) elif enc == 'SHA': password_renewed = ldap_sha1.hash(new_value.encode(_CHARSET)) elif enc == 'SSHA': salt = urandom(8) hash = sha1(new_value.encode(_CHARSET)) hash.update(salt) hash_encoded = encodestring(hash.digest() + salt) password_renewed = hash_encoded.decode(_CHARSET)[:-1] password_renewed = '{%<PASSWORD>' % (enc, password_renewed) elif enc == 'SHA256': password_renewed = sha256(new_value.encode(_CHARSET)).digest() password_renewed = '{%s}%s' % (enc, encodestring(password_renewed).decode(_CHARSET)[:-1]) elif enc == 'SSHA256': salt = urandom(_LDAP_SALT_LENGHT) hash = sha256(new_value.encode(_CHARSET)) hash.update(salt) hash_encoded = encodestring(hash.digest() + salt) password_renewed = hash_encoded.decode(_CHARSET)[:-1] password_renewed = '{%<PASSWORD>' % (enc, password_renewed) elif enc == 'SHA384': password_renewed = sha<PASSWORD>(new_value.encode(_CHARSET)).digest() password_renewed = '{%<PASSWORD>' % (enc, encodestring(password_renewed).decode(_CHARSET)[:-1]) elif enc == 'SSHA384': salt = urandom(_LDAP_SALT_LENGHT) hash = sha384(new_value.encode(_CHARSET)) hash.update(salt) hash_encoded = encodestring(hash.digest() + salt) password_renewed = hash_encoded.decode(_CHARSET)[:-1] password_renewed = '{%<PASSWORD>' % (enc, password_renewed) elif enc == 'SHA512': password_renewed = sha512(new_value.encode(_CHARSET)).<PASSWORD>() password_renewed = '{%s}%s' % (enc, encodestring(password_renewed).decode(_CHARSET)[:-1]) elif enc == 'SSHA512': salt = urandom(_LDAP_SALT_LENGHT) hash = sha512(new_value.encode(_CHARSET)) hash.update(salt) hash_encoded = encodestring(hash.digest() + salt) password_renewed = hash_encoded.decode(_CHARSET)[:-1] password_renewed = '{%<PASSWORD>' % (enc, password_renewed) elif enc == 'PKCS5S2': return atlassian_pbkdf2_sha1.encrypt(new_value) elif enc == 'CRYPT': password_renewed = crypt.crypt(new_value, crypt.mksalt(crypt.METHOD_CRYPT)) password_renewed = '{%s}%s' % (enc, password_renewed) elif enc == 'CRYPT-MD5': # this worked too # return ldap_md5_crypt.encrypt(new_value) password_renewed = crypt.crypt(new_value, crypt.mksalt(crypt.METHOD_MD5)) password_renewed = '{CRYPT}%s' % (password_renewed) elif enc == 'CRYPT-SHA-256': password_renewed = crypt.crypt(new_value, crypt.mksalt(crypt.METHOD_SHA256)) password_renewed = '{CRYPT}%s' % (password_renewed) elif enc == 'CRYPT-SHA-512': password_renewed = crypt.crypt(new_value, crypt.mksalt(crypt.METHOD_SHA512)) password_renewed = '{CRYPT}%s' % (password_renewed) return password_renewed def test_encoding_secrets(): for i in settings.SECRET_PASSWD_TYPE: p = encode_secret(i, 'zio') print(i, ':', p) # additionals for i in ['NT', 'LM']: p = encode_secret(i, 'zio') print(i, ':', p) if __name__ == '__main__': test_encoding_secrets()
73378
import json import logging from django.http import HttpResponse from pollaris.app.models import SearchLog def log_failed_search(request): """API route to log searches that failed on FE to the Pollaris DB""" body = json.loads(request.body) logging.info(f"Logging failed search: {body}") address_json = body.pop("address_entered", {}) status = body.pop("status", "") if not address_json or not status: logging.error( "address_entered and status are required in failed search log request" ) log = SearchLog( success=False, search_status=status, referrer=request.META.get("HTTP_REFERER"), other_data={}, ) add_address_data(log, address_json) add_metadata(log, body) log.save() return HttpResponse(status=204) def add_metadata(log, metadata): if not metadata: return # Copy metadata so we don't alter the original logging_metadata = metadata.copy() if logging_metadata.get("heap_id"): log.heap_id = logging_metadata.pop("heap_id") else: # If this request comes from Mobile Commons instead of the Web UI, use phone number as main person identifier log.heap_id = logging_metadata.get("phone_number") log.autocomplete_selected = logging_metadata.pop("autocomplete_selected", None) log.source = logging_metadata.pop("source", None) log.search_id = logging_metadata.pop("pollaris_search_id", None) log.other_data.update(logging_metadata) def add_address_data(search_log, address_json=None, search_string=None): if not search_string: search_string = address_json.get("search_string") if search_string: search_log.search_string = search_string[:1000] if address_json: search_log.street_number = address_json.get("street_number") search_log.street = address_json.get("street") search_log.county = address_json.get("county") search_log.city = address_json.get("city") search_log.state_code = address_json.get("state") search_log.zip5 = address_json.get("zip5") search_log.zip9 = address_json.get("zip9") search_log.other_data["latitude"] = address_json.get("latitude") search_log.other_data["longitude"] = address_json.get("longitude")
73397
from conans import ConanFile, CMake, tools import os class LibmikmodConan(ConanFile): name = "libmikmod" description = "Module player and library supporting many formats, including mod, s3m, it, and xm." topics = ("libmikmod", "audio") url = "https://github.com/conan-io/conan-center-index" homepage = "http://mikmod.sourceforge.net" license = "LGPL-2.1-or-later" exports_sources = ["patches/*", "CMakeLists.txt"] generators = "cmake" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_dsound": [True, False], "with_mmsound": [True, False], "with_alsa": [True, False], "with_oss": [True, False], "with_pulse": [True, False], "with_coreaudio": [True, False] } default_options = { "shared": False, "fPIC": True, "with_dsound": True, "with_mmsound": True, "with_alsa": True, "with_oss": True, "with_pulse": True, "with_coreaudio": True } _source_subfolder = "source_subfolder" _build_subfolder = "build_subfolder" _cmake = None def config_options(self): if self.settings.os == "Windows": del self.options.fPIC else: del self.options.with_dsound del self.options.with_mmsound if self.settings.os != "Linux": del self.options.with_alsa # Non-Apple Unices if self.settings.os not in ["Linux", "FreeBSD"]: del self.options.with_oss del self.options.with_pulse # Apple if tools.is_apple_os(self.settings.os): del self.options.with_coreaudio def configure(self): if self.options.shared: del self.options.fPIC del self.settings.compiler.libcxx del self.settings.compiler.cppstd def requirements(self): if self.settings.os == "Linux": if self.options.with_alsa: self.requires("libalsa/1.2.4") if self.options.with_pulse: self.requires("pulseaudio/13.0") def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = self.name + "-" + self.version os.rename(extracted_dir, self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self, set_cmake_flags=True) self._cmake.definitions["ENABLE_STATIC"] = not self.options.shared self._cmake.definitions["ENABLE_DOC"] = False self._cmake.definitions["ENABLE_DSOUND"] = self.options.get_safe("with_dsound", False) self._cmake.definitions["ENABLE_MMSOUND"] = self.options.get_safe("with_mmsound", False) self._cmake.definitions["ENABLE_ALSA"] = self.options.get_safe("with_alsa", False) self._cmake.definitions["ENABLE_OSS"] = self.options.get_safe("with_oss", False) self._cmake.definitions["ENABLE_PULSE"] = self.options.get_safe("with_pulse", False) self._cmake.definitions["ENABLE_COREAUDIO"] = self.options.get_safe("with_coreaudio", False) self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) tools.replace_in_file(os.path.join(self._source_subfolder, "CMakeLists.txt"), "CMAKE_SOURCE_DIR", "PROJECT_SOURCE_DIR") # Ensure missing dependencies yields errors tools.replace_in_file(os.path.join(self._source_subfolder, "CMakeLists.txt"), "MESSAGE(WARNING", "MESSAGE(FATAL_ERROR") tools.replace_in_file(os.path.join(self._source_subfolder, "drivers", "drv_alsa.c"), "alsa_pcm_close(pcm_h);", "if (pcm_h) alsa_pcm_close(pcm_h);") cmake = self._configure_cmake() cmake.build() def package(self): self.copy(pattern="COPYING.LESSER", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() os.remove(os.path.join(self.package_folder, "bin", "libmikmod-config")) if not self.options.shared: tools.rmdir(os.path.join(self.package_folder, "bin")) tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) def package_info(self): self.cpp_info.libs = tools.collect_libs(self) if not self.options.shared: self.cpp_info.defines = ["MIKMOD_STATIC"] self.cpp_info.filenames["pkg_config"] = "libmikmod" if self.options.get_safe("with_dsound"): self.cpp_info.system_libs.append("dsound") if self.options.get_safe("with_mmsound"): self.cpp_info.system_libs.append("winmm") if self.options.get_safe("with_coreaudio"): self.cpp_info.frameworks.append("CoreAudio")
73437
from collections import OrderedDict class MyObj(object): b = 1 a = 2 def __init__(self): object.__setattr__(self, '_attrs', OrderedDict()) self.c = 1 self.d = 2 def __setattr__(self, key, value): assert key != '_attrs' self._attrs[key] = value def __getattr__(self, item): try: return self._attrs[item] except KeyError: return self.__class__.__dict__[item] @property def __dict__(self): return self._attrs a = MyObj() a.e = 3 print(a.__dict__) print(MyObj.__dict__) print(a.a)
73456
import pytest from plenum.common.exceptions import MissingNodeOp, InvalidNodeOp from plenum.common.messages.fields import NonNegativeNumberField, AnyValueField, HexField, BooleanField, Base58Field from plenum.common.messages.message_base import MessageBase from plenum.common.messages.node_message_factory import MessageFactory, NodeMessageFactory from plenum.test.input_validation.stub_messages import Message1, Message2, Message3, Message4 @pytest.fixture def factory(): return MessageFactory('plenum.test.input_validation.stub_messages') def test_message_factory_module_is_not_found_fails(): with pytest.raises(ImportError): MessageFactory('foo.bar') def test_message_factory_classes_not_found_fails(): with pytest.raises(ValueError) as excinfo: # TODO assumes that __init__ won't import any # MessageBase child classes MessageFactory('plenum.test.input_validation.__init__') assert "no messages classes found" in str(excinfo.value) def test_message_factory_missed_op_fails(factory): msg = {'a': 0, 'b': 'bar'} with pytest.raises(MissingNodeOp): factory.get_instance(**msg) def test_message_factory_invalid_op_fails(factory): msg = {'op': 'unknown_op', 'a': 0, 'b': 'bar'} with pytest.raises(InvalidNodeOp): factory.get_instance(**msg) def test_message_factory_stub_module_is_loaded(factory): msg = {'op': 'Message1', 'a': 0, 'b': 'bar'} assert isinstance(factory.get_instance(**msg), Message1) def test_message_factory_set_non_message_class_fails(factory): class NonMessageClass: pass with pytest.raises(ValueError): factory.set_message_class(NonMessageClass) def test_message_factory_set_message_class_can_add_message_class(factory): class ANewMessageClass(MessageBase): typename = 'NewMessage' schema = ( ('a', NonNegativeNumberField()), ) factory.set_message_class(ANewMessageClass) msg = {'op': 'NewMessage', 'a': 0} assert isinstance(factory.get_instance(**msg), ANewMessageClass) def test_node_message_factory_module_is_loaded(): NodeMessageFactory() def test_message_factory_can_replace_field(factory): # check precondition msg = {'op': 'Message2', 'a': 0, 'b': 'foo'} assert isinstance(factory.get_instance(**msg), Message2) factory.update_schemas_by_field_type(AnyValueField, NonNegativeNumberField) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'int', got 'str'") def test_message_factory_can_replace_iterable_field(factory): # check precondition msg = {'op': 'Message3', 'a': 0, 'b': [True, False]} assert isinstance(factory.get_instance(**msg), Message3) factory.update_schemas_by_field_type(BooleanField, Base58Field) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'str', got 'bool'") def test_message_factory_can_replace_map_field(factory): # check precondition msg = {'op': 'Message4', 'a': 0, 'b': {'123': 'abc'}} assert isinstance(factory.get_instance(**msg), Message4) factory.update_schemas_by_field_type(HexField, NonNegativeNumberField) with pytest.raises(TypeError) as exc_info: factory.get_instance(**msg) exc_info.match("expected types 'int', got 'str'")
73462
from ...accounts import Account, account_factory import tempfile import os import pickle from os import listdir from os.path import isfile, join class LocalFileSystemAccountAdapter(): def __init__(self, root=None): if root is None: root = tempfile.gettempdir() if not os.path.exists(root+"/accounts/"): os.makedirs(root+"/accounts/") self.root = root def get_account(self, account_id: str, current_date=None): with open(self.root + "/accounts/" + account_id + ".pickle", 'rb') as f: return pickle.load(file=f) def has_account(self, account_id: str, current_date=None): try: pickle.load(file=self.root + "/accounts/" + account_id + ".pickle") return True except: return False def put_account(self, account: Account, current_date=None): with open(self.root + "/accounts/" + account.account_id + ".pickle", 'wb') as f: pickle.dump(account, file=f) def get_account_ids(self, current_date=None): mypath = self.root + "/accounts/" return [f.split(".")[0] for f in listdir(mypath) if isfile(join(mypath, f))] def delete_account(self, account, current_date=None): try: os.remove(self.root + "/accounts/" + account_factory(account).account_id + ".pickle") except: pass def delete_accounts(self, accounts, current_date=None): [self.delete_account(account) for account in accounts]
73471
from setuptools import setup, find_packages from dexy.version import DEXY_VERSION import platform is_windows = platform.system() == 'Windows' if is_windows: os_specific_requires = [] else: os_specific_requires = ['pexpect'] setup( author='<NAME>', author_email='<EMAIL>', classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Financial and Insurance Industry", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Topic :: Documentation", "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Code Generators", "Topic :: Software Development :: Documentation", "Topic :: Text Processing", "Topic :: Text Processing :: Markup :: HTML", "Topic :: Text Processing :: Markup :: LaTeX" ], description='Document Automation', ### "entry-points" entry_points = { 'console_scripts' : [ 'dexy = dexy.commands:run' ], 'pygments.lexers' : [ 'rst+django = dexy.filters.utils:RstDjangoLexer' ] }, ### @end include_package_data = True, install_requires = os_specific_requires + [ # for internal dexy use or used in many common plugins 'BeautifulSoup4', 'PyYAML', 'cashew>=0.4.1', 'chardet', 'inflection>=0.2.0', 'jinja2', 'ply>=3.4', 'pygments', 'python3-modargs', 'requests>=0.10.6', # for convenience of running additional filters 'Markdown', 'docutils' ], name='dexy', packages=find_packages(), url='http://dexy.it', version=DEXY_VERSION )
73486
import json import logging.config import os import re from string import Template from jans.pycloudlib import get_manager from jans.pycloudlib.persistence import render_couchbase_properties from jans.pycloudlib.persistence import render_base_properties from jans.pycloudlib.persistence import render_hybrid_properties from jans.pycloudlib.persistence import render_ldap_properties from jans.pycloudlib.persistence import render_salt from jans.pycloudlib.persistence import sync_couchbase_truststore from jans.pycloudlib.persistence import sync_ldap_truststore from jans.pycloudlib.persistence import render_sql_properties from jans.pycloudlib.persistence import render_spanner_properties from jans.pycloudlib.persistence.utils import PersistenceMapper from jans.pycloudlib.utils import cert_to_truststore from settings import LOGGING_CONFIG logging.config.dictConfig(LOGGING_CONFIG) logger = logging.getLogger("entrypoint") manager = get_manager() def modify_jetty_xml(): fn = "/opt/jetty/etc/jetty.xml" with open(fn) as f: txt = f.read() # disable contexts updates = re.sub( r'<New id="DefaultHandler" class="org.eclipse.jetty.server.handler.DefaultHandler"/>', r'<New id="DefaultHandler" class="org.eclipse.jetty.server.handler.DefaultHandler">\n\t\t\t\t <Set name="showContexts">false</Set>\n\t\t\t </New>', txt, flags=re.DOTALL | re.M, ) with open(fn, "w") as f: f.write(updates) def modify_webdefault_xml(): fn = "/opt/jetty/etc/webdefault.xml" with open(fn) as f: txt = f.read() # disable dirAllowed updates = re.sub( r'(<param-name>dirAllowed</param-name>)(\s*)(<param-value>)true(</param-value>)', r'\1\2\3false\4', txt, flags=re.DOTALL | re.M, ) with open(fn, "w") as f: f.write(updates) def main(): persistence_type = os.environ.get("CN_PERSISTENCE_TYPE", "ldap") render_salt(manager, "/app/templates/salt.tmpl", "/etc/jans/conf/salt") render_base_properties("/app/templates/jans.properties.tmpl", "/etc/jans/conf/jans.properties") mapper = PersistenceMapper() persistence_groups = mapper.groups() if persistence_type == "hybrid": render_hybrid_properties("/etc/jans/conf/jans-hybrid.properties") if "ldap" in persistence_groups: render_ldap_properties( manager, "/app/templates/jans-ldap.properties.tmpl", "/etc/jans/conf/jans-ldap.properties", ) sync_ldap_truststore(manager) if "couchbase" in persistence_groups: render_couchbase_properties( manager, "/app/templates/jans-couchbase.properties.tmpl", "/etc/jans/conf/jans-couchbase.properties", ) sync_couchbase_truststore(manager) if "sql" in persistence_groups: render_sql_properties( manager, "/app/templates/jans-sql.properties.tmpl", "/etc/jans/conf/jans-sql.properties", ) if "spanner" in persistence_groups: render_spanner_properties( manager, "/app/templates/jans-spanner.properties.tmpl", "/etc/jans/conf/jans-spanner.properties", ) if not os.path.isfile("/etc/certs/web_https.crt"): manager.secret.to_file("ssl_cert", "/etc/certs/web_https.crt") cert_to_truststore( "web_https", "/etc/certs/web_https.crt", "/usr/java/latest/jre/lib/security/cacerts", "changeit", ) modify_jetty_xml() modify_webdefault_xml() configure_logging() def configure_logging(): # default config config = { "fido2_log_target": "STDOUT", "fido2_log_level": "INFO", "persistence_log_target": "FILE", "persistence_log_level": "INFO", } # pre-populate custom config; format is JSON string of ``dict`` try: custom_config = json.loads(os.environ.get("CN_FIDO2_APP_LOGGERS", "{}")) except json.decoder.JSONDecodeError as exc: logger.warning(f"Unable to load logging configuration from environment variable; reason={exc}; fallback to defaults") custom_config = {} # ensure custom config is ``dict`` type if not isinstance(custom_config, dict): logger.warning("Invalid data type for CN_FIDO2_APP_LOGGERS; fallback to defaults") custom_config = {} # list of supported levels; OFF is not supported log_levels = ("FATAL", "ERROR", "WARN", "INFO", "DEBUG", "TRACE",) # list of supported outputs log_targets = ("STDOUT", "FILE",) for k, v in custom_config.items(): if k not in config: continue if k.endswith("_log_level") and v not in log_levels: logger.warning(f"Invalid {v} log level for {k}; fallback to defaults") v = config[k] if k.endswith("_log_target") and v not in log_targets: logger.warning(f"Invalid {v} log output for {k}; fallback to defaults") v = config[k] # update the config config[k] = v # mapping between the ``log_target`` value and their appenders file_aliases = { "fido2_log_target": "FILE", "persistence_log_target": "PERSISTENCE_FILE", } for key, value in file_aliases.items(): if config[key] == "FILE": config[key] = value logfile = "/opt/jans/jetty/jans-fido2/resources/log4j2.xml" with open(logfile) as f: txt = f.read() tmpl = Template(txt) with open(logfile, "w") as f: f.write(tmpl.safe_substitute(config)) if __name__ == "__main__": main()
73496
import importlib import sys import tensorflow as tf LSTM_SIZE = 2048 def resnet_rnn_model(features, model_params, example_description, training): # Get hyperparameters dropout_rate = model_params['resnet_rnn'].get('dropout_rate', 0.5) # Reshape inputs into proper dimensions for (name, f), d in zip(features.items(), example_description): if name.endswith('images'): telescope_data = tf.reshape(f, [-1, *d['shape']]) num_telescopes = d['shape'][0] if name.endswith('triggers'): telescope_triggers = tf.cast(f, tf.float32) # Transpose telescope_data from [batch_size,num_tel,length,width,channels] # to [num_tel,batch_size,length,width,channels]. telescope_data = tf.transpose(telescope_data, perm=[1, 0, 2, 3, 4]) # Define the network being used. Each CNN block analyzes a single # telescope. The outputs for non-triggering telescopes are zeroed out # (effectively, those channels are dropped out). # Unlike standard dropout, this zeroing-out procedure is performed both at # training and test time since it encodes meaningful aspects of the data. # The telescope outputs are then stacked into input for the array-level # network, either into 1D feature vectors or into 3D convolutional # feature maps, depending on the requirements of the network head. # The array-level processing is then performed by the network head. The # logits are returned and fed into a classifier. # Load ResNet block model sys.path.append(model_params['model_directory']) resnet_block_module = importlib.import_module(model_params['resnet_rnn']['network']['module']) resnet_block = getattr(resnet_block_module, model_params['resnet_rnn']['network']['function']) trainable = model_params['resnet_rnn'].get('trainable_backbone', False) #calculate number of valid images per event num_tels_triggered = tf.to_int32(tf.reduce_sum(telescope_triggers,1)) telescope_outputs = [] for telescope_index in range(num_telescopes): # Set all telescopes after the first to share weights reuse = None if telescope_index == 0 else True with tf.variable_scope("resnet_block"): x = tf.gather(telescope_data, telescope_index) # The original ResNet implementation use this padding, but we pad the images in the ImageMapper. #x = tf.pad(telescope_data, tf.constant([[3, 3], [3, 3]]), name='conv1_pad') init_layer = model_params['res_net'].get('init_layer', False) if init_layer: x = tf.layers.conv2d(x, filters=init_layer['filters'], kernel_size=init_layer['kernel_size'], strides=init_layer['strides'], trainable=trainable, name='conv1_conv') #x = tf.pad(x, tf.constant([[1, 1], [1, 1]]), name='pool1_pad') init_max_pool = model_params['res_net'].get('init_max_pool', False) if init_max_pool: x = tf.layers.max_pooling2d(x, init_max_pool['size'], strides=init_max_pool['strides'], trainable=trainable, name='pool1_pool') output = resnet_block(x, params=model_params, reuse=reuse, trainable=trainable) output = tf.reduce_mean(output, axis=[1,2], name='global_avgpool') if model_params['resnet_rnn']['pretrained_weights']: tf.contrib.framework.init_from_checkpoint(model_params['resnet_rnn']['pretrained_weights'],{'Network/':'resnet_block/'}) #flatten output of embedding CNN to (batch_size, _) image_embedding = tf.layers.flatten(output, name='image_embedding') image_embedding_dropout = tf.layers.dropout(image_embedding, training=training) telescope_outputs.append(image_embedding_dropout) with tf.variable_scope("NetworkHead"): #combine image embeddings (batch_size, num_tel, num_units_embedding) embeddings = tf.stack(telescope_outputs,axis=1) #implement attention mechanism with range num_tel (covering all timesteps) #define LSTM cell size rnn_cell = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE) outputs, _ = tf.nn.dynamic_rnn( rnn_cell, embeddings, dtype=tf.float32, swap_memory=True, sequence_length=num_tels_triggered) # (batch_size, max_num_tel * LSTM_SIZE) outputs = tf.layers.flatten(outputs) output_dropout = tf.layers.dropout(outputs, rate=dropout_rate, training=training, name="rnn_output_dropout") fc1 = tf.layers.dense(inputs=output_dropout, units=1024, kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.004), name="fc1") dropout_1 = tf.layers.dropout(inputs=fc1, rate=dropout_rate, training=training) fc2 = tf.layers.dense(inputs=dropout_1, units=512, kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.004), name="fc2") dropout_2 = tf.layers.dropout(inputs=fc2, rate=dropout_rate, training=training) return dropout_2
73561
import os, sys import numpy as np from math import sqrt # testing without install #sys.path.insert(0, '../build/lib.macosx-10.9-x86_64-3.8') import poppunk_refine # Original PopPUNK function (with some improvements) def withinBoundary(dists, x_max, y_max, slope=2): boundary_test = np.ones((dists.shape[0])) for row in range(boundary_test.size): if slope == 2: in_tri = dists[row, 1] * x_max + dists[row, 0] * y_max - x_max * y_max elif slope == 0: in_tri = dists[row, 0] - x_max elif slope == 1: in_tri = dists[row, 1] - y_max if abs(in_tri) < np.finfo(np.float32).eps: boundary_test[row] = 0 elif in_tri < 0: boundary_test[row] = -1 return(boundary_test) def check_tuples(t1, t2): for t in t1: if t not in t2: raise RuntimeError("Results don't match") def iter_tuples(assign_results, n_samples): tuple_list = [] idx = 0 for i in range(n_samples): for j in range(i + 1, n_samples): if assign_results[idx] == -1: tuple_list.append((i, j)) idx += 1 return tuple_list def check_res(res, expected): if (not np.all(res == expected)): print(res) print(expected) raise RuntimeError("Results don't match") # assigning x = np.arange(0, 1, 0.1, dtype=np.float32) y = np.arange(0, 1, 0.1, dtype=np.float32) xv, yv = np.meshgrid(x, y) distMat = np.hstack((xv.reshape(-1,1), yv.reshape(-1,1))) assign0 = poppunk_refine.assignThreshold(distMat, 0, 0.5, 0.5, 2) assign1 = poppunk_refine.assignThreshold(distMat, 1, 0.5, 0.5, 2) assign2 = poppunk_refine.assignThreshold(distMat, 2, 0.5, 0.5, 2) assign0_res = withinBoundary(distMat, 0.5, 0.5, 0) assign1_res = withinBoundary(distMat, 0.5, 0.5, 1) assign2_res = withinBoundary(distMat, 0.5, 0.5, 2) check_res(assign0, assign0_res) check_res(assign1, assign1_res) check_res(assign2, assign2_res) # Check results when returned as tuple samples = 100 distMat = np.random.rand(int(0.5 * samples * (samples - 1)), 2) distMat = np.array(distMat, dtype = np.float32) assign0_res = withinBoundary(distMat, 0.5, 0.5, 0) assign0_edge_res = iter_tuples(assign0_res, samples) check_tuples(assign0_edge_res, poppunk_refine.generateTuples([int(x) for x in assign0_res], -1)) assign1_edge_res = iter_tuples(withinBoundary(distMat, 0.5, 0.5, 1), samples) assign2_edge_res = iter_tuples(withinBoundary(distMat, 0.5, 0.5, 2), samples) assign0_edges = poppunk_refine.edgeThreshold(distMat, 0, 0.5, 0.5) assign1_edges = poppunk_refine.edgeThreshold(distMat, 1, 0.5, 0.5) assign2_edges = poppunk_refine.edgeThreshold(distMat, 2, 0.5, 0.5) check_tuples(assign0_edges, assign0_edge_res) check_tuples(assign1_edges, assign1_edge_res) check_tuples(assign2_edges, assign2_edge_res) # move boundary 1D # example is symmetrical at points (0.1, 0.1); (0.2, 0.2); (0.3, 0.3) offsets = [x * sqrt(2) for x in [-0.1, 0.0, 0.1]] i_vec, j_vec, idx_vec = poppunk_refine.thresholdIterate1D(distMat, offsets, 2, 0.2, 0.2, 0.3, 0.3) sketchlib_i = [] sketchlib_j = [] for offset_idx, offset in enumerate(offsets): for i, j, idx in zip(i_vec, j_vec, idx_vec): if idx > offset_idx: break elif idx == offset_idx: sketchlib_i.append(i) sketchlib_j.append(j) py_i = [] py_j = [] xmax = 0.4 + (2 * (offset/sqrt(2))) assign = poppunk_refine.assignThreshold(distMat, 2, xmax, xmax, 1) dist_idx = 0 for i in range(samples): for j in range(i + 1, samples): if assign[dist_idx] <= 0: py_i.append(i) py_j.append(j) dist_idx += 1 if set(zip(py_i, py_j)) != set(zip(sketchlib_i, sketchlib_j)): raise RuntimeError("Threshold 1D iterate mismatch at offset " + str(offset)) # move boundary 2D # example is for boundaries (0.1, 0.2); (0.2, 0.2); (0.3, 0.2) offsets = [0.1, 0.2, 0.3] y_max = 0.2 i_vec, j_vec, idx_vec = poppunk_refine.thresholdIterate2D(distMat, offsets, y_max) sketchlib_i = [] sketchlib_j = [] for offset_idx, offset in enumerate(offsets): for i, j, idx in zip(i_vec, j_vec, idx_vec): if idx > offset_idx: break elif idx == offset_idx: sketchlib_i.append(i) sketchlib_j.append(j) py_i = [] py_j = [] assign = poppunk_refine.assignThreshold(distMat, 2, offset, y_max, 1) dist_idx = 0 for i in range(samples): for j in range(i + 1, samples): if assign[dist_idx] <= 0: py_i.append(i) py_j.append(j) dist_idx += 1 if set(zip(py_i, py_j)) != set(zip(sketchlib_i, sketchlib_j)): raise RuntimeError("Threshold 2D iterate mismatch at offset " + str(offset))
73567
from Raspi_MotorHAT.Raspi_PWM_Servo_Driver import PWM class Servos(object): def __init__(self, addr=0x6f, deflect_90_in_ms = 0.9): """addr: The i2c address of the PWM chip. deflect_90_in_ms: set this to calibrate the servo motors. it is what a deflection of 90 degrees is in terms of a pulse length in milliseconds.""" self._pwm = PWM(addr) # This sets the timebase for it all pwm_frequency = 60 self._pwm.setPWMFreq(pwm_frequency) # Frequency is 1/period, but working ms, we can use 1000 period_in_ms = 1000.0 / pwm_frequency # The chip has 4096 steps in each period. pulse_steps = 4096.0 # Mid point of the servo pulse length in milliseconds. servo_mid_point_ms = 1.5 # Steps for every millisecond. steps_per_ms = pulse_steps / period_in_ms # Steps for a degree self.steps_per_degree = (deflect_90_in_ms * steps_per_ms) / 90.0 # Mid point of the servo in steps self.servo_mid_point_steps = servo_mid_point_ms * steps_per_ms # Prepare servo's turned off self.stop_all() def stop_all(self): # 0 in start is nothing, 4096 sets the OFF bit. self._pwm.setPWM(0, 0, 4096) self._pwm.setPWM(1, 0, 4096) self._pwm.setPWM(14, 0, 4096) self._pwm.setPWM(15, 0, 4096) def _convert_degrees_to_pwm(self, position): return int(self.servo_mid_point_steps + (position * self.steps_per_degree)) def set_servo_angle(self, channel, angle): """position: The position in degrees from the center. -90 to 90""" # Validate if angle > 90 or angle < -90: raise ValueError("Angle outside of range") # Then set the position off_step = self._convert_degrees_to_pwm(angle) self._pwm.setPWM(channel, 0, off_step)
73569
def verify_format(_, res): return res def format_index(body): # pragma: no cover """Format index data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = { 'id': body['id'].split('/', 1)[-1], 'fields': body['fields'] } if 'type' in body: result['type'] = body['type'] if 'name' in body: result['name'] = body['name'] if 'deduplicate' in body: result['deduplicate'] = body['deduplicate'] if 'sparse' in body: result['sparse'] = body['sparse'] if 'unique' in body: result['unique'] = body['unique'] if 'minLength' in body: result['min_length'] = body['minLength'] if 'geoJson' in body: result['geo_json'] = body['geoJson'] if 'ignoreNull' in body: result['ignore_none'] = body['ignoreNull'] if 'selectivityEstimate' in body: result['selectivity'] = body['selectivityEstimate'] if 'isNewlyCreated' in body: result['new'] = body['isNewlyCreated'] if 'expireAfter' in body: result['expiry_time'] = body['expireAfter'] if 'inBackground' in body: result['in_background'] = body['inBackground'] if 'bestIndexedLevel' in body: result['best_indexed_level'] = body['bestIndexedLevel'] if 'worstIndexedLevel' in body: result['worst_indexed_level'] = body['worstIndexedLevel'] if 'maxNumCoverCells' in body: result['max_num_cover_cells'] = body['maxNumCoverCells'] return verify_format(body, result) def format_key_options(body): # pragma: no cover """Format collection key options data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'type' in body: result['key_generator'] = body['type'] if 'increment' in body: result['key_increment'] = body['increment'] if 'offset' in body: result['key_offset'] = body['offset'] if 'allowUserKeys' in body: result['user_keys'] = body['allowUserKeys'] if 'lastValue' in body: result['key_last_value'] = body['lastValue'] return verify_format(body, result) def format_database(body): # pragma: no cover """Format databases info. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'id' in body: result['id'] = body['id'] if 'name' in body: result['name'] = body['name'] if 'path' in body: result['path'] = body['path'] if 'system' in body: result['system'] = body['system'] if 'isSystem' in body: result['system'] = body['isSystem'] # Cluster only if 'sharding' in body: result['sharding'] = body['sharding'] if 'replicationFactor' in body: result['replication_factor'] = body['replicationFactor'] if 'writeConcern' in body: result['write_concern'] = body['writeConcern'] return verify_format(body, result) def format_collection(body): # pragma: no cover """Format collection data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'id' in body: result['id'] = body['id'] if 'objectId' in body: result['object_id'] = body['objectId'] if 'name' in body: result['name'] = body['name'] if 'isSystem' in body: result['system'] = body['isSystem'] if 'isSmart' in body: result['smart'] = body['isSmart'] if 'type' in body: result['type'] = body['type'] result['edge'] = body['type'] == 3 if 'waitForSync' in body: result['sync'] = body['waitForSync'] if 'status' in body: result['status'] = body['status'] if 'statusString' in body: result['status_string'] = body['statusString'] if 'globallyUniqueId' in body: result['global_id'] = body['globallyUniqueId'] if 'cacheEnabled' in body: result['cache'] = body['cacheEnabled'] if 'replicationFactor' in body: result['replication_factor'] = body['replicationFactor'] if 'minReplicationFactor' in body: result['min_replication_factor'] = body['minReplicationFactor'] if 'writeConcern' in body: result['write_concern'] = body['writeConcern'] # MMFiles only if 'doCompact' in body: result['compact'] = body['doCompact'] if 'journalSize' in body: result['journal_size'] = body['journalSize'] if 'isVolatile' in body: result['volatile'] = body['isVolatile'] if 'indexBuckets' in body: result['index_bucket_count'] = body['indexBuckets'] # Cluster only if 'shards' in body: result['shards'] = body['shards'] if 'replicationFactor' in body: result['replication_factor'] = body['replicationFactor'] if 'numberOfShards' in body: result['shard_count'] = body['numberOfShards'] if 'shardKeys' in body: result['shard_fields'] = body['shardKeys'] if 'distributeShardsLike' in body: result['shard_like'] = body['distributeShardsLike'] if 'shardingStrategy' in body: result['sharding_strategy'] = body['shardingStrategy'] if 'smartJoinAttribute' in body: result['smart_join_attribute'] = body['smartJoinAttribute'] # Key Generator if 'keyOptions' in body: result['key_options'] = format_key_options(body['keyOptions']) # Replication only if 'cid' in body: result['cid'] = body['cid'] if 'version' in body: result['version'] = body['version'] if 'allowUserKeys' in body: result['user_keys'] = body['allowUserKeys'] if 'planId' in body: result['plan_id'] = body['planId'] if 'deleted' in body: result['deleted'] = body['deleted'] # New in 3.7 if 'syncByRevision' in body: result['sync_by_revision'] = body['syncByRevision'] if 'tempObjectId' in body: result['temp_object_id'] = body['tempObjectId'] if 'usesRevisionsAsDocumentIds' in body: result['rev_as_id'] = body['usesRevisionsAsDocumentIds'] if 'isDisjoint' in body: result['disjoint'] = body['isDisjoint'] if 'isSmartChild' in body: result['smart_child'] = body['isSmartChild'] if 'minRevision' in body: result['min_revision'] = body['minRevision'] if 'schema' in body: result['schema'] = body['schema'] return verify_format(body, result) def format_aql_cache(body): """Format AQL cache data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = { 'mode': body['mode'], 'max_results': body['maxResults'], 'max_results_size': body['maxResultsSize'], 'max_entry_size': body['maxEntrySize'], 'include_system': body['includeSystem'] } return verify_format(body, result) def format_wal_properties(body): # pragma: no cover """Format WAL properties. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'allowOversizeEntries' in body: result['oversized_ops'] = body['allowOversizeEntries'] if 'logfileSize' in body: result['log_size'] = body['logfileSize'] if 'historicLogfiles' in body: result['historic_logs'] = body['historicLogfiles'] if 'reserveLogfiles' in body: result['reserve_logs'] = body['reserveLogfiles'] if 'syncInterval' in body: result['sync_interval'] = body['syncInterval'] if 'throttleWait' in body: result['throttle_wait'] = body['throttleWait'] if 'throttleWhenPending' in body: result['throttle_limit'] = body['throttleWhenPending'] return verify_format(body, result) def format_wal_transactions(body): # pragma: no cover """Format WAL transactions. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'minLastCollected' in body: result['last_collected'] = body['minLastCollected'] if 'minLastSealed' in body: result['last_sealed'] = body['minLastSealed'] if 'runningTransactions' in body: result['count'] = body['runningTransactions'] return verify_format(body, result) def format_aql_query(body): # pragma: no cover """Format AQL query data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {'id': body['id'], 'query': body['query']} if 'started' in body: result['started'] = body['started'] if 'state' in body: result['state'] = body['state'] if 'stream' in body: result['stream'] = body['stream'] if 'bindVars' in body: result['bind_vars'] = body['bindVars'] if 'runTime' in body: result['runtime'] = body['runTime'] return verify_format(body, result) def format_aql_tracking(body): # pragma: no cover """Format AQL tracking data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'enabled' in body: result['enabled'] = body['enabled'] if 'maxQueryStringLength' in body: result['max_query_string_length'] = body['maxQueryStringLength'] if 'maxSlowQueries' in body: result['max_slow_queries'] = body['maxSlowQueries'] if 'slowQueryThreshold' in body: result['slow_query_threshold'] = body['slowQueryThreshold'] if 'slowStreamingQueryThreshold' in body: result['slow_streaming_query_threshold'] = \ body['slowStreamingQueryThreshold'] if 'trackBindVars' in body: result['track_bind_vars'] = body['trackBindVars'] if 'trackSlowQueries' in body: result['track_slow_queries'] = body['trackSlowQueries'] return verify_format(body, result) def format_tick_values(body): # pragma: no cover """Format tick data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'tickMin' in body: result['tick_min'] = body['tickMin'] if 'tickMax' in body: result['tick_max'] = body['tickMax'] if 'tick' in body: result['tick'] = body['tick'] if 'time' in body: result['time'] = body['time'] if 'server' in body: result['server'] = format_server_info(body['server']) return verify_format(body, result) def format_server_info(body): # pragma: no cover """Format server data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ return {'version': body['version'], 'server_id': body['serverId']} def format_replication_applier_config(body): # pragma: no cover """Format replication applier configuration data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'endpoint' in body: result['endpoint'] = body['endpoint'] if 'database' in body: result['database'] = body['database'] if 'username' in body: result['username'] = body['username'] if 'verbose' in body: result['verbose'] = body['verbose'] if 'incremental' in body: result['incremental'] = body['incremental'] if 'requestTimeout' in body: result['request_timeout'] = body['requestTimeout'] if 'connectTimeout' in body: result['connect_timeout'] = body['connectTimeout'] if 'ignoreErrors' in body: result['ignore_errors'] = body['ignoreErrors'] if 'maxConnectRetries' in body: result['max_connect_retries'] = body['maxConnectRetries'] if 'lockTimeoutRetries' in body: result['lock_timeout_retries'] = body['lockTimeoutRetries'] if 'sslProtocol' in body: result['ssl_protocol'] = body['sslProtocol'] if 'chunkSize' in body: result['chunk_size'] = body['chunkSize'] if 'skipCreateDrop' in body: result['skip_create_drop'] = body['skipCreateDrop'] if 'autoStart' in body: result['auto_start'] = body['autoStart'] if 'adaptivePolling' in body: result['adaptive_polling'] = body['adaptivePolling'] if 'autoResync' in body: result['auto_resync'] = body['autoResync'] if 'autoResyncRetries' in body: result['auto_resync_retries'] = body['autoResyncRetries'] if 'maxPacketSize' in body: result['max_packet_size'] = body['maxPacketSize'] if 'includeSystem' in body: result['include_system'] = body['includeSystem'] if 'includeFoxxQueues' in body: result['include_foxx_queues'] = body['includeFoxxQueues'] if 'requireFromPresent' in body: result['require_from_present'] = body['requireFromPresent'] if 'restrictType' in body: result['restrict_type'] = body['restrictType'] if 'restrictCollections' in body: result['restrict_collections'] = body['restrictCollections'] if 'connectionRetryWaitTime' in body: result['connection_retry_wait_time'] = body['connectionRetryWaitTime'] if 'initialSyncMaxWaitTime' in body: result['initial_sync_max_wait_time'] = body['initialSyncMaxWaitTime'] if 'idleMinWaitTime' in body: result['idle_min_wait_time'] = body['idleMinWaitTime'] if 'idleMaxWaitTime' in body: result['idle_max_wait_time'] = body['idleMaxWaitTime'] return verify_format(body, result) def format_applier_progress(body): # pragma: no cover """Format replication applier progress data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'time' in body: result['time'] = body['time'] if 'message' in body: result['message'] = body['message'] if 'failedConnects' in body: result['failed_connects'] = body['failedConnects'] return verify_format(body, result) def format_applier_error(body): # pragma: no cover """Format replication applier error data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'errorNum' in body: result['error_num'] = body['errorNum'] if 'errorMessage' in body: result['error_message'] = body['errorMessage'] if 'time' in body: result['time'] = body['time'] return verify_format(body, result) def format_applier_state_details(body): # pragma: no cover """Format replication applier state details. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'started' in body: result['started'] = body['started'] if 'running' in body: result['running'] = body['running'] if 'phase' in body: result['phase'] = body['phase'] if 'time' in body: result['time'] = body['time'] if 'safeResumeTick' in body: result['safe_resume_tick'] = body['safeResumeTick'] if 'ticksBehind' in body: result['ticks_behind'] = body['ticksBehind'] if 'lastAppliedContinuousTick' in body: result['last_applied_continuous_tick'] = \ body['lastAppliedContinuousTick'] if 'lastProcessedContinuousTick' in body: result['last_processed_continuous_tick'] = \ body['lastProcessedContinuousTick'] if 'lastAvailableContinuousTick' in body: result['last_available_continuous_tick'] = \ body['lastAvailableContinuousTick'] if 'progress' in body: result['progress'] = format_applier_progress(body['progress']) if 'totalRequests' in body: result['total_requests'] = body['totalRequests'] if 'totalFailedConnects' in body: result['total_failed_connects'] = body['totalFailedConnects'] if 'totalEvents' in body: result['total_events'] = body['totalEvents'] if 'totalDocuments' in body: result['total_documents'] = body['totalDocuments'] if 'totalRemovals' in body: result['total_removals'] = body['totalRemovals'] if 'totalResyncs' in body: result['total_resyncs'] = body['totalResyncs'] if 'totalOperationsExcluded' in body: result['total_operations_excluded'] = body['totalOperationsExcluded'] if 'totalApplyTime' in body: result['total_apply_time'] = body['totalApplyTime'] if 'averageApplyTime' in body: result['average_apply_time'] = body['averageApplyTime'] if 'totalFetchTime' in body: result['total_fetch_time'] = body['totalFetchTime'] if 'averageFetchTime' in body: result['average_fetch_time'] = body['averageFetchTime'] if 'lastError' in body: result['last_error'] = format_applier_error(body['lastError']) return verify_format(body, result) def format_replication_applier_state(body): # pragma: no cover """Format replication applier state. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'endpoint' in body: result['endpoint'] = body['endpoint'] if 'database' in body: result['database'] = body['database'] if 'username' in body: result['username'] = body['username'] if 'state' in body: result['state'] = format_applier_state_details(body['state']) if 'server' in body: result['server'] = format_server_info(body['server']) return verify_format(body, result) def format_replication_state(body): # pragma: no cover """Format replication state. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ if not isinstance(body, dict): return body result = {} if 'running' in body: result['running'] = body['running'] if 'time' in body: result['time'] = body['time'] if 'lastLogTick' in body: result['last_log_tick'] = body['lastLogTick'] if 'totalEvents' in body: result['total_events'] = body['totalEvents'] if 'lastUncommittedLogTick' in body: result['last_uncommitted_log_tick'] = body['lastUncommittedLogTick'] return verify_format(body, result) def format_replication_logger_state(body): # pragma: no cover """Format replication collection data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'state' in body: result['state'] = format_replication_state(body['state']) if 'server' in body: result['server'] = format_server_info(body['server']) if 'clients' in body: result['clients'] = body['clients'] return verify_format(body, result) def format_replication_collection(body): # pragma: no cover """Format replication collection data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'planVersion' in body: result['plan_version'] = body['planVersion'] if 'isReady' in body: result['is_ready'] = body['isReady'] if 'allInSync' in body: result['all_in_sync'] = body['allInSync'] if 'indexes' in body: result['indexes'] = [format_index(index) for index in body['indexes']] if 'parameters' in body: result['parameters'] = format_collection(body['parameters']) return verify_format(body, result) def format_replication_database(body): # pragma: no cover """Format replication database data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = { 'id': body['id'], 'name': body['name'], 'collections': [ format_replication_collection(col) for col in body['collections'] ], 'views': [format_view(view) for view in body['views']] } if 'properties' in body: result['properties'] = format_database(body['properties']) return verify_format(body, result) def format_replication_inventory(body): # pragma: no cover """Format replication inventory data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'tick' in body: result['tick'] = body['tick'] if 'state' in body: result['state'] = format_replication_state(body['state']) if 'databases' in body: result['databases'] = { k: format_replication_database(v) for k, v in body['databases'].items() } if 'collections' in body: result['collections'] = [ format_replication_collection(col) for col in body['collections'] ] if 'views' in body: result['views'] = [format_view(view) for view in body['views']] if 'properties' in body: result['properties'] = format_database(body['properties']) return verify_format(body, result) def format_replication_sync(body): # pragma: no cover """Format replication sync result. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'collections' in body: result['collections'] = body['collections'] if 'lastLogTick' in body: result['last_log_tick'] = body['lastLogTick'] return verify_format(body, result) def format_replication_header(headers): # pragma: no cover """Format replication headers. :param headers: Request headers. :type headers: dict :return: Formatted body. :rtype: dict """ headers = {k.lower(): v for k, v in headers.items()} result = {} if 'x-arango-replication-frompresent' in headers: result['from_present'] = \ headers['x-arango-replication-frompresent'] == 'true' if 'x-arango-replication-lastincluded' in headers: result['last_included'] = \ headers['x-arango-replication-lastincluded'] if 'x-arango-replication-lastscanned' in headers: result['last_scanned'] = \ headers['x-arango-replication-lastscanned'] if 'x-arango-replication-lasttick' in headers: result['last_tick'] = \ headers['x-arango-replication-lasttick'] if 'x-arango-replication-active' in headers: result['active'] = \ headers['x-arango-replication-active'] == 'true' if 'x-arango-replication-checkmore' in headers: result['check_more'] = \ headers['x-arango-replication-checkmore'] == 'true' return result def format_view_link(body): # pragma: no cover """Format view link data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'analyzers' in body: result['analyzers'] = body['analyzers'] if 'fields' in body: result['fields'] = body['fields'] if 'includeAllFields' in body: result['include_all_fields'] = body['includeAllFields'] if 'trackListPositions' in body: result['track_list_positions'] = body['trackListPositions'] if 'storeValues' in body: result['store_values'] = body['storeValues'] return verify_format(body, result) def format_view_consolidation_policy(body): # pragma: no cover """Format view consolidation policy data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'type' in body: result['type'] = body['type'] if 'threshold' in body: result['threshold'] = body['threshold'] if 'segmentsMin' in body: result['segments_min'] = body['segmentsMin'] if 'segmentsMax' in body: result['segments_max'] = body['segmentsMax'] if 'segmentsBytesMax' in body: result['segments_bytes_max'] = body['segmentsBytesMax'] if 'segmentsBytesFloor' in body: result['segments_bytes_floor'] = body['segmentsBytesFloor'] if 'minScore' in body: result['min_score'] = body['minScore'] return verify_format(body, result) def format_view(body): # pragma: no cover """Format view data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = {} if 'globallyUniqueId' in body: result['global_id'] = body['globallyUniqueId'] if 'id' in body: result['id'] = body['id'] if 'name' in body: result['name'] = body['name'] if 'type' in body: result['type'] = body['type'] if 'cleanupIntervalStep' in body: result['cleanup_interval_step'] = body['cleanupIntervalStep'] if 'commitIntervalMsec' in body: result['commit_interval_msec'] = body['commitIntervalMsec'] if 'consolidationIntervalMsec' in body: result['consolidation_interval_msec'] = \ body['consolidationIntervalMsec'] if 'consolidationPolicy' in body: result['consolidation_policy'] = \ format_view_consolidation_policy(body['consolidationPolicy']) if 'primarySort' in body: result['primary_sort'] = body['primarySort'] if 'primarySortCompression' in body: result['primary_sort_compression'] = body['primarySortCompression'] if 'storedValues' in body: result['stored_values'] = body['storedValues'] if 'writebufferIdle' in body: result['writebuffer_idle'] = body['writebufferIdle'] if 'writebufferActive' in body: result['writebuffer_active'] = body['writebufferActive'] if 'writebufferSizeMax' in body: result['writebuffer_max_size'] = body['writebufferSizeMax'] if 'links' in body: result['links'] = {link_key: format_view_link(link_content) for link_key, link_content in body['links'].items()} return verify_format(body, result) def format_vertex(body): # pragma: no cover """Format vertex data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ vertex = body['vertex'] if '_oldRev' in vertex: vertex['_old_rev'] = vertex.pop('_oldRev') if 'new' in body or 'old' in body: result = {'vertex': vertex} if 'new' in body: result['new'] = body['new'] if 'old' in body: result['old'] = body['old'] return result else: return vertex def format_edge(body): # pragma: no cover """Format edge data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ edge = body['edge'] if '_oldRev' in edge: edge['_old_rev'] = edge.pop('_oldRev') if 'new' in body or 'old' in body: result = {'edge': edge} if 'new' in body: result['new'] = body['new'] if 'old' in body: result['old'] = body['old'] return result else: return edge def format_tls(body): # pragma: no cover """Format TLS data. :param body: Input body. :type body: dict :return: Formatted body. :rtype: dict """ result = body return verify_format(body, result)
73574
import pandas as pd def read_clean_csv(path, sep='|'): """will read and clean a csv file'""" df = pd.read_csv(path, sep=sep) if('Unnamed: 0' in df.columns.values): df = remove_unnamed(df) return(df) def remove_unnamed(df): df = df.drop('Unnamed: 0', 1) return df
73624
from .version import __version__ from .scienceworld import ScienceWorldEnv from .scienceworld import BufferedHistorySaver
73642
import numpy as np import pickle """ The first part of this file is to test if the data.py prepare the data correctly The second part of this file is to test if the data_FlIC_plus.py prepare the data correctly """ ### The first part n_joint = 9 # the number of joint that you want to display y_test = np.load('y_test_flic.npy') x_test = np.load('x_test_flic.npy') print('x_test shape is', x_test.shape) i = np.random.randint(0, high=x_test.shape[0]) print('Show the %dth image and the heat map for n_joint:' % i) y_test = y_test.astype(np.float32) y_test = y_test / 256 coords = np.zeros([2, n_joint]) img = x_test[i, :, :, :] img = np.reshape(img, (x_test.shape[1], x_test.shape[2], x_test.shape[3])) for joint in range(n_joint): print(joint) hmap = y_test[i, :, :, joint] hmap = np.reshape(hmap, (y_test.shape[1], y_test.shape[2])) print(hmap.shape) x, y = np.where(hmap == np.max(hmap)) print(x, y) coords[:, joint] = [x, y] coords = coords * 8 print('coords:', coords) with open('pairwise_distribution.pickle', 'rb') as handle: pairwise_distribution = pickle.load(handle) import matplotlib.pyplot as plt # plt.figure(1) # plt.imshow((img)) # plt.figure(2) # plt.imshow((hmap)) for name in ['nose_torso', 'rsho_torso', 'relb_torso', 'rwri_torso', 'rhip_torso']: plt.imshow(pairwise_distribution[name]) plt.savefig('img/0epoch_' + name + '.png', dpi=300) plt.clf() ### The second part n_joint = 9 # the number of joint that you want to display y_test = np.load('y_test_flic_plus.npy') x_test = np.load('x_test_flic_plus.npy') print('x_test shape is', x_test.shape) i = np.random.randint(0, high=x_test.shape[0]) print('Show the %dth image and the heat map for n_joint:' % i) y_test = y_test.astype(np.float32) y_test = y_test / 256 coords = np.zeros([2, n_joint]) img = x_test[i, :, :, :] img = np.reshape(img, (x_test.shape[1], x_test.shape[2], x_test.shape[3])) for joint in range(n_joint): print(joint) hmap = y_test[i, :, :, joint] hmap = np.reshape(hmap, (y_test.shape[1], y_test.shape[2])) print(hmap.shape) x, y = np.where(hmap == np.max(hmap)) print(x, y) coords[:, joint] = [x, y] coords = coords * 8 print('coords:', coords) with open('pairwise_distribution_plus.pickle', 'rb') as handle: pairwise_distribution = pickle.load(handle) import matplotlib.pyplot as plt plt.figure(1) plt.imshow((img)) plt.figure(2) plt.imshow((hmap)) plt.figure(3) plt.imshow((pairwise_distribution['lwri_torso'])) plt.show()
73647
from collections import namedtuple Point2D = namedtuple('Point2D', 'x y') Point2D.__doc__ = 'Represents a 2D Cartesian coordinate' Point2D.x.__doc__ = 'x-coordinate' Point2D.y.__doc__ = 'y-coordinate' print(help(help(Point2D)))
73692
from __future__ import print_function from __future__ import division import random import time import itertools as it import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) from utils import load_data from train_lstm import LSTM from train_tdlstm import TDLSTM from train_tclstm import TCLSTM from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval from skopt import gp_minimize, forest_minimize, gbrt_minimize from skopt.space import Categorical def random_search(param_grid, sampsize=None): expanded_param_grid = expand_grid(param_grid) if sampsize == None: sampsize = int(len(expanded_param_grid) / 2.0) samp = random.sample(expanded_param_grid, sampsize) return samp def expand_grid(param_grid): varNames = sorted(param_grid) return [dict(zip(varNames, prod)) for prod in it.product(*(param_grid[varName] for varName in varNames))] def skopt_search(args, data, model, param_grid, skopt_method, n_calls): param_keys, param_vecs = zip(*param_grid.items()) param_keys = list(param_keys) param_vecs = list(param_vecs) def skopt_scorer(param_vec): params = dict(zip(param_keys, param_vec)) args.num_hidden = params['num_hidden'] args.dropout_output = params['dropout_output'] args.dropout_input = params['dropout_input'] args.clip_norm = params['clip_norm'] args.batch_size = params['batch_size'] print(args) print() scores = run_network(args, data, model, tuning=args.tune) test_score, eval_score = scores tf.reset_default_graph() eval_score = -eval_score[0] return eval_score outcome = skopt_method(skopt_scorer, list(param_vecs), n_calls=n_calls) results = [] for err, param_vec in zip(outcome.func_vals, outcome.x_iters): params = dict(zip(param_keys, param_vec)) results.append({'loss': err, 'params': params}) return results def skoptTUNE(args, model, n_calls): """ Hyper-parameter optimization using scikit-opt. It has 3 algorithms: forest_minimize (decision-tree regression search); gbrt_minimize (gradient-boosted-tree search); and hp_minimize (Gaussian process regression search). """ hyperparameters = { 'batch_size': (40, 120), 'num_hidden': (100, 500), 'dropout_output': (0.3, 1.0), 'dropout_input': (0.3, 1.0), 'clip_norm': (0.5, 1.0), } data = load_data(args, args.data, saved=args.load_data) all_res = skopt_search(args, data, model, hyperparameters, gp_minimize, n_calls=n_calls) print(all_res) def hyperopt_search(args, data, model, param_grid, max_evals): def objective(param_grid): args.num_hidden = param_grid['num_hidden'] args.dropout_output = param_grid['dropout_output'] args.dropout_input = param_grid['dropout_input'] args.clip_norm = param_grid['clip_norm'] args.batch_size = param_grid['batch_size'] # args.learning_rate = param_grid['learning_rate'] print(args) print() scores = run_network(args, data, model, tuning=args.tune) test_score, eval_score = scores tf.reset_default_graph() eval_score = -eval_score[0] return {'loss': eval_score, 'params': args, 'status': STATUS_OK} trials = Trials() results = fmin( objective, param_grid, algo=tpe.suggest, trials=trials, max_evals=max_evals) return results, trials.results def hyperoptTUNE(args, model, n_calls): """ Search the hyper-parameter space according to the tree of Parzen estimators; a Bayesian approach. """ hyperparameters = { 'batch_size': hp.choice('batch_size', range(40, 130, 20)), 'num_hidden': hp.quniform('num_hidden', 100, 500, 1), # 'learning_rate': hp.choice('learning_rate', [0.0005]), 'dropout_output': hp.quniform('dropout_output', 0.3, 1.0, 0.1), 'dropout_input': hp.quniform('dropout_input', 0.3, 1.0, 0.1), 'clip_norm': hp.quniform('clip_norm', 0.5, 1.0, 0.1), } data = load_data(args, args.data, saved=args.load_data) best_params, all_res = hyperopt_search(args, data, model, hyperparameters, max_evals=n_calls) print(best_params) def TUNE(args, model, mode, n_calls=5): hyperparameters_all = { 'batch_size': range(40, 130, 20), 'seq_len': [42], 'num_hidden': np.random.randint(100, 501, 10), 'learning_rate': [0.0005], 'dropout_output': np.arange(0.3, 1.1, 0.1), 'dropout_input': np.arange(0.3, 1.1, 0.1), 'clip_norm': np.arange(0.5, 1.01, 0.1), } maxx = 0 data = load_data(args, args.data, saved=args.load_data) if mode == 'rand': samp = random_search(hyperparameters_all, n_calls) #random search else: samp = expand_grid(hyperparameters_all) #grid-search for hyperparameters in samp: print("Evaluating hyperparameters:", hyperparameters) for attr, value in hyperparameters.items(): setattr(args, attr, value) scores = run_network(args, data, model, tuning=args.tune) test_score, eval_score = scores if eval_score[0] > maxx: maxx = eval_score[0] best_score = test_score hyperparameters_best = hyperparameters tf.reset_default_graph() print() print("Optimisation finished..") print("Optimised hyperparameters:") with open(os.path.dirname(args.checkpoint_file)+'/checkpoint', 'w') as fp: fp.write('%s:"%s"\n' % ('model',args.model)) for attr, value in sorted(hyperparameters_best.items()): print("{}={}".format(attr.upper(), value)) fp.write('%s:"%s"\n' % (attr, value)) print() print("Final Test Data Accuracy = {:.5f}; 3-class F1 = {:.5f}; 2-class F1 = {:.5f}" .format(best_score[0], best_score[1], best_score[2])) def TRAIN(args, model): t0 = time.time() print("\nParameters:") for attr, value in sorted(vars(args).items()): print("{}={}".format(attr.upper(), value)) print() print("Graph initialized..") t1 = time.time() print("time taken:", t1-t0) print() data = load_data(args, args.data, saved=args.load_data) run_network(args, data, model, tuning=args.tune) def run_network(args, data, model, tuning=False): if model == 'LSTM': nn = LSTM(args, data, tuning=tuning) scores = nn.train_lstm(args, data) return scores elif model =='TDLSTM': nn = TDLSTM(args, data, tuning=tuning) scores = nn.train_tdlstm(args, data) return scores elif model =='TCLSTM': nn = TCLSTM(args, data, tuning=tuning) scores = nn.train_tclstm(args, data) return scores else: print("No such model; please select from LSTM, TDLSTM or TCLSTM")
73695
import torch from torch import nn from torch.nn import functional as F from .activations import sigmoid, HardSwish, Swish from .utils_i2rnet import ( relu_fn, round_filters, round_repeats, drop_connect, get_same_padding_conv2d, Conv2dDynamicSamePadding, get_model_params, efficientnet_params, load_pretrained_weights, ) def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class MBConvBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d padding = self._block_args.kernel_size //2 # Conv2d = Conv2dDynamicSamePadding # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels if self._block_args.expand_ratio != 1: self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase k = self._block_args.kernel_size s = self._block_args.stride self._depthwise_conv = Conv2d( in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise kernel_size=k, stride=s, bias=False, padding = padding) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) # Output phase final_oup = self._block_args.output_filters self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution x = inputs if self._block_args.expand_ratio != 1: x = relu_fn(self._bn0(self._expand_conv(inputs))) x = relu_fn(self._bn1(self._depthwise_conv(x))) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x x = self._bn2(self._project_conv(x)) # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class I2RConvBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d padding = self._block_args.kernel_size //2 # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride if self._block_args.expand_ratio == 2: self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, stride = s, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) elif inp != final_oup and s == 1: self._project_conv = None self._expand_conv = None self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) elif inp != final_oup and s == 2: self._project_conv = None self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, stride = s, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) else: # if inp == final_oup: self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # if not (self._block_args.expand_ratio == 2): self.identity = True self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() x = inputs # NOTE:remove the first 3x3 conv to reduce running mem, need to verfy the performance if self._project_conv is not None: x = relu_fn(self._bn0(self._project_conv(inputs))) x = self._bn1(self._linear1(x)) x = relu_fn(self._bn2(self._linear2(x))) if self._expand_conv is not None: x = self._bn3(self._expand_conv(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class MBConvBlockV1(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup group_1x1 = 1 self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp), nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps), Swish(), #first linear layer Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), # sec linear layer Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), # expand layer Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) elif inp != final_oup and s == 1: self.features=nn.Sequential( Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), # only two linear layers are needed Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), ) elif inp != final_oup and s == 2: self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) else: self.identity = True self.features = nn.Sequential( Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp), nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps), Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups=group_1x1), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), Swish(), Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup), nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps), ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 1 # num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() x = self.features(inputs) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class GhostI2RBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # apply repeat scheme self.split_ratio = 2 self.ghost_idx_inp = inp // self.split_ratio self.ghost_idx_oup = int(final_oup - self.ghost_idx_inp) self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_mode = 'small' if se_mode == 'large': se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) else: se_expand_ratio = 1 num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,ghost_id],dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,ghost_id],dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # import pdb;pdb.set_trace() if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class GhostI2RBlock_change_droppath_pos(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 apply_ghost = True # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride if apply_ghost: # apply repeat scheme self.split_ratio = 2 self.ghost_idx_inp = inp // self.split_ratio self.ghost_idx_oup = int(final_oup - self.ghost_idx_inp) else: self.ghost_idx_inp = inp self.ghost_idx_oup = final_oup self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.ghost_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,ghost_id],dim=1) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:,self.ghost_idx_inp:,:,:] x = self.bn2(self.project_layer(x[:,:self.ghost_idx_inp,:,:])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,ghost_id],dim=1) if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class NESI2RBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect group_1x1 = 1 # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels final_oup = self._block_args.output_filters self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = _make_divisible(oup,16) oup = _make_divisible(oup,2) k = self._block_args.kernel_size s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # apply repeat scheme self.split_ratio = 2 self.nes_idx_inp = inp // self.split_ratio self.nes_idx_oup = final_oup // self.split_ratio self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self._block_args.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() #first linear layer self.project_layer = Conv2d(in_channels=self.nes_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.nes_idx_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=self.nes_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups = group_1x1) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() # ) elif inp != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup, stride=s) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1=Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) self.bn1 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) self.act = Swish() self.project_layer = Conv2d(in_channels=self.nes_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.nes_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = nn.BatchNorm2d(num_features=self.nes_idx_oup, momentum=self._bn_mom, eps=self._bn_eps) # Swish(), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) self.bn4 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # ) # Depthwise convolution phase # self._depthwise_conv = Conv2d( # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # kernel_size=k, stride=s, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired # import pdb;pdb.set_trace() if self.has_se: se_expand_ratio = 0.5 num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio * se_expand_ratio)) # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio * se_expand_ratio)) self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # Output phase # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self._block_args.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv nes_x = x[:,:self.nes_idx_inp,:,:] + x[:,self.nes_idx_inp:,:,:] x = self.bn2(self.project_layer(nes_x)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x,x],dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv nes_x = x[:,:self.nes_idx_inp,:,:] + x[:,self.nes_idx_inp:,:,:] x = self.bn2(self.project_layer(nes_x)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x,x],dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.identity and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class EfficientNet(nn.Module): """ An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods Args: blocks_args (list): A list of BlockArgs to construct blocks global_params (namedtuple): A set of GlobalParams shared between blocks Example: model = EfficientNet.from_pretrained('efficientnet-b0') """ def __init__(self, blocks_args=None, global_params=None): super().__init__() assert isinstance(blocks_args, list), 'blocks_args should be a list' assert len(blocks_args) > 0, 'block args must be greater than 0' self._global_params = global_params self._blocks_args = blocks_args # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Conv2d = nn.Conv2d # Batch norm parameters bn_mom = 1 - self._global_params.batch_norm_momentum bn_eps = self._global_params.batch_norm_epsilon # Stem in_channels = 3 # rgb # NOTE change first filter to be 16 to follow MOBILENETV3 # NOTE change back to 32 for efficientnet series out_channels = round_filters(32, self._global_params) # number of output channels self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # build_block = NESI2RBlock build_block = GhostI2RBlock # build_block = GhostI2RBlock_change_droppath_pos # build_block = MBConvBlockV1 # build_block = I2RConvBlock # Build blocks self._blocks = nn.ModuleList([]) for block_args in self._blocks_args: # Update block input and output filters based on depth multiplier. block_args = block_args._replace( input_filters=round_filters(block_args.input_filters, self._global_params), output_filters=round_filters(block_args.output_filters, self._global_params), num_repeat=round_repeats(block_args.num_repeat, self._global_params) ) # The first block needs to take care of stride and filter size increase. self._blocks.append(build_block(block_args, self._global_params)) if block_args.num_repeat > 1: block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) for _ in range(block_args.num_repeat - 1): self._blocks.append(build_block(block_args, self._global_params)) # Head in_channels = block_args.output_filters # output of final block out_channels = round_filters(1280, self._global_params) # self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Final linear layer self._dropout = self._global_params.dropout_rate self._fc = nn.Linear(out_channels, self._global_params.num_classes) def extract_features(self, inputs): """ Returns output of the final convolution layer """ # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x, drop_connect_rate=drop_connect_rate) # Head # x = relu_fn(self._bn1(self._conv_head(x))) return x def forward(self, inputs): """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ # Convolution layers x = self.extract_features(inputs) # Pooling and final linear layer x = F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) if self._dropout: x = F.dropout(x, p=self._dropout, training=self.training) x = self._fc(x) return x @classmethod def from_name(cls, model_name, override_params=None): cls._check_model_name_is_valid(model_name) blocks_args, global_params = get_model_params(model_name, override_params) return EfficientNet(blocks_args, global_params) @classmethod def from_pretrained(cls, model_name, num_classes=1000): model = EfficientNet.from_name(model_name, override_params={'num_classes': num_classes}) load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000)) return model @classmethod def get_image_size(cls, model_name): cls._check_model_name_is_valid(model_name) _, _, res, _ = efficientnet_params(model_name) return res @classmethod def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False): """ Validates model name. None that pretrained weights are only available for the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """ num_models = 4 if also_need_pretrained_weights else 8 valid_models = ['efficientnet_b'+str(i) for i in range(num_models)] + ['i2rnet_b' + str(i) for i in range(num_models)] + ['mnext_l', 'mnext_s',' mnext_mbv2_cfg'] if model_name.replace('-','_') not in valid_models: raise ValueError('model_name should be one of: ' + ', '.join(valid_models)) def efficient_i2rnet(progress=None,width_mult=1, rm_1x1=None, interpolation=None, group_1x1=None): return EfficientNet.from_name('efficientnet-b0') # class I2RConvBlock_half_id(nn.Module): # """ # Mobile Inverted Residual Bottleneck Block # Args: # block_args (namedtuple): BlockArgs, see above # global_params (namedtuple): GlobalParam, see above # Attributes: # has_se (bool): Whether the block contains a Squeeze and Excitation layer. # """ # def __init__(self, block_args, global_params): # super().__init__() # self._block_args = block_args # self._bn_mom = 1 - global_params.batch_norm_momentum # self._bn_eps = global_params.batch_norm_epsilon # self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) # self.id_skip = block_args.id_skip # skip connection and drop connect # # Get static or dynamic convolution depending on image size # Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # # Conv2d = nn.Conv2d # padding = self._block_args.kernel_size //2 # # Expansion phase # inp = self._block_args.input_filters # number of input channels # oup = self._block_args.input_filters // self._block_args.expand_ratio # number of output channels # final_oup = self._block_args.output_filters # self.inp, self.final_oup = inp, final_oup # self.identity = False # if oup < oup / 6.: # oup = math.ceil(oup / 6.) # oup = _make_divisible(oup,16) # k = self._block_args.kernel_size # s = self._block_args.stride[0] if isinstance(self._block_args.stride,list) else self._block_args.stride # if self._block_args.expand_ratio == 2: # self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups=inp) # self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, # stride = s, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # elif inp != final_oup and s == 1: # self._project_conv = None # self._expand_conv = None # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # elif inp != final_oup and s == 2: # self._project_conv = None # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, # stride = s, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # else: # # if inp == final_oup: # self._project_conv = Conv2d(in_channels=inp, out_channels=inp, kernel_size=k, bias=False, groups = inp) # self._bn0 = nn.BatchNorm2d(num_features=inp, momentum=self._bn_mom, eps=self._bn_eps) # self._expand_conv = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, bias=False, groups = final_oup) # self._bn3 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # # if not (self._block_args.expand_ratio == 2): # self.identity = True # self._linear1 = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # self._linear2 = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase # # self._depthwise_conv = Conv2d( # # in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise # # kernel_size=k, stride=s, bias=False) # # self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # # Squeeze and Excitation layer, if desired # if self.has_se: # num_squeezed_channels = max(1, int(final_oup / self._block_args.expand_ratio * self._block_args.se_ratio)) # self._se_reduce = Conv2d(in_channels=final_oup, out_channels=num_squeezed_channels, kernel_size=1) # self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=final_oup, kernel_size=1) # # # Output phase # # self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) # # self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) # def forward(self, inputs, drop_connect_rate=None): # """ # :param inputs: input tensor # :param drop_connect_rate: drop connect rate (float, between 0 and 1) # :return: output of block # """ # # Expansion and Depthwise Convolution # # import pdb;pdb.set_trace() # x = inputs # # NOTE:remove the first 3x3 conv to reduce running mem, need to verfy the performance # if self._project_conv is not None: # x = relu_fn(self._bn0(self._project_conv(inputs))) # x = self._bn1(self._linear1(x)) # x = relu_fn(self._bn2(self._linear2(x))) # if self._expand_conv is not None: # x = self._bn3(self._expand_conv(x)) # # Squeeze and Excitation # if self.has_se: # x_squeezed = F.adaptive_avg_pool2d(x, 1) # x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) # x = torch.sigmoid(x_squeezed) * x # # Skip connection and drop connect # input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters # if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) # shape = inputs.shape # # shape[1] = shape[1]//2 # id_tensor = torch.cat([inputs[:,:shape[1]//2,:,:],torch.zeros(shape)[:,shape[1]//2:,:,:].cuda()],dim=1) # x = x + id_tensor # # import pdb;pdb.set_trace() # # x = x + inputs # skip connection # return x
73696
from minos.cqrs import ( CommandService, ) from minos.networks import ( Request, Response, ResponseException, enroute, ) from ..aggregates import ( PaymentAggregate, ) class PaymentCommandService(CommandService): """PaymentCommandService class.""" def validate_card(self, card_number: str) -> bool: def digits_of(n): return [int(d) for d in str(n)] digits = digits_of(card_number) odd_digits = digits[-1::-2] even_digits = digits[-2::-2] checksum = 0 checksum += sum(odd_digits) for d in even_digits: checksum += sum(digits_of(d * 2)) return_value = checksum % 10 if return_value == 0: return True return False @enroute.broker.command("CreatePayment") async def create_payment(self, request: Request) -> Response: """Create a new ``Payment`` instance. :param request: The ``Request`` instance. :return: A ``Response`` instance. """ try: content = await request.content() if self.validate_card(content["card_number"]): payment = await PaymentAggregate.create( content["card_number"], content["validity"], content["security_code"], content["name"], content["surname"], ) return Response({"status": "payment accepted"}) except Exception as exc: raise ResponseException(f"An error occurred during Payment creation: {exc}")
73726
import torch from torch.utils.data import Dataset from random import choice from pytorch_pretrained_bert import BertTokenizer, BertModel max_len = 400 device = "cuda:0" # bert_path = './pretrain/bert-base-chinese/' # tokenizer = BertTokenizer.from_pretrained(bert_path + 'vocab.txt') # BERT = BertModel.from_pretrained(bert_path).to(device) # BERT.eval() tokenizer = None BERT = None def text2bert(texts): texts = [text.lower() for text in texts] mask_loss = [] text_seqs = [] segments_ids = [] text_len = [min(max_len, 1 + len(text) + 1) for text in texts] text_max = max(text_len) for num, text in enumerate(texts): text_cat = ['[CLS]'] + list(text[:(max_len - 2)]) + ['[SEP]'] text_bert = [] for c in text_cat: if c in tokenizer.vocab: text_bert.append(c) else: text_bert.append('[UNK]') # 用于损失的mask,除了sentence其余都是0 mask_loss.append([0] + [1] * (len(text_cat) - 2) + [0] * (text_max - text_len[num] + 1)) # 输入bert text_seq = tokenizer.convert_tokens_to_ids(text_bert) + [0] * (text_max - text_len[num]) text_seqs.append(text_seq) segments_ids.append([0] * text_max) text_seqs = torch.LongTensor(text_seqs).to(device) segments_ids = torch.LongTensor(segments_ids).to(device) # bert的mask编码 mask_bert = 1 - torch.eq(text_seqs, 0) with torch.no_grad(): sentence_features, _ = BERT(text_seqs, segments_ids, mask_bert) sentence_features = sentence_features[-1] mask_loss = torch.LongTensor(mask_loss).to(device) mask_feature = mask_loss.unsqueeze(-1).repeat(1, 1, 768) # 最终只保留sentence的序列输出 sentence_features = torch.where(torch.eq(mask_feature, 0), torch.zeros_like(sentence_features), sentence_features) return sentence_features, mask_loss # 定义数据读取方式 class MyDataset(Dataset): def __init__(self, dataset, subject_data, alias_data, n=1): self.dataset = dataset self.subject_data = subject_data self.alias_data = alias_data self.kb_ids = list(subject_data.keys()) self.n = n def __getitem__(self, index): data_one = self.dataset[index] entity_list = data_one['entity_list'] entity_ses = [] kb_seqs = [] labels = [] for entity_info in entity_list: kb_id, entity, s, e = entity_info # 正样本 kb_seq = self.subject_data[kb_id]['data_seq'][:max_len] kb_seqs.append(kb_seq) labels.append(1) kb_id_other_remove = [kb_id] # 负样本 for i in range(1, self.n + 1): # link_label == 0,当存在歧义,从歧义选0,否则任意抽一个0 kb_id_other = choice(self.kb_ids) # 抽样的效率 while kb_id_other in kb_id_other_remove: kb_id_other = choice(self.kb_ids) if entity in self.alias_data: kb_id_others = list(self.alias_data[entity].keys()) if len(kb_id_others) > i: kb_id_other = choice(kb_id_others) while kb_id_other in kb_id_other_remove: kb_id_other = choice(kb_id_others) kb_seq = self.subject_data[kb_id_other]['data_seq'][:max_len] kb_seqs.append(kb_seq) labels.append(0) kb_id_other_remove.append(kb_id_other) return data_one, kb_seqs, labels, entity_ses def __len__(self): return len(self.dataset) def seqs2batch(seqs): seqs_len = [min(max_len, len(i)) for i in seqs] seqs_max = max(seqs_len) seqs_batch = [] for num, seq in enumerate(seqs): seqs_batch.append(seq[:max_len] + [0] * (seqs_max - seqs_len[num])) return seqs_batch, seqs_max def collate_fn(batch): # 实体识别 text_seqs_ner, text_max = seqs2batch([i[0]['text_seq'] for i in batch]) entity_starts = [] entity_ends = [] text_seqs_link = [] kb_seqs_link = [] labels_link = [] for num, i in enumerate(batch): data_one, kb_seqs, labels, entity_ses = i entity_start = [0] * (text_max + 2) for j in data_one['entity_start']: entity_start[j + 1] = 1 entity_starts.append(entity_start) entity_end = [0] * (text_max + 2) for j in data_one['entity_end']: entity_end[j + 1] = 1 entity_ends.append(entity_end) text_seqs_link += [text_seqs_ner[num]] * len(labels) kb_seqs_link += kb_seqs labels_link += labels texts = [i[0]['text'] for i in batch] text_features, mask_loss_texts = text2bert(texts) entity_starts = torch.Tensor(entity_starts).to(device) entity_ends = torch.Tensor(entity_ends).to(device) return (text_features, mask_loss_texts, entity_starts, entity_ends), (text_seqs_link, kb_seqs_link, labels_link) def deal_eval(batch): text_seq = [] for i, j in enumerate(batch): text_seq.append(j['text_seq']) text_seq = torch.LongTensor(text_seq) return text_seq def collate_fn_link(batch): text_seqs, text_max = seqs2batch([i[0]['text_seq'] for i in batch]) entity_starts = [] entity_ends = [] text_seqs_link = [] kb_seqs_link = [] labels_link = [] for num, i in enumerate(batch): data_one, kb_seqs, labels, entity_ses = i entity_start = [0] * (text_max + 2) for j in data_one['entity_start']: entity_start[j + 1] = 1 entity_starts.append(entity_start) entity_end = [0] * (text_max + 2) for j in data_one['entity_end']: entity_end[j + 1] = 1 entity_ends.append(entity_end) text_seqs_link += [text_seqs[num]] * len(labels) kb_seqs_link += kb_seqs labels_link += labels return None, (text_seqs_link, kb_seqs_link, labels_link)
73728
import unittest from hidden_word import checkio class Tests(unittest.TestCase): TESTS = { "Basics": [ { "input": [ """DREAMING of apples on a wall, And dreaming often, dear, I dreamed that, if I counted all, -How many would appear?""", "ten", ], "answer": [2, 14, 2, 16], }, { "input": [ """He took his vorpal sword in hand: Long time the manxome foe he sought-- So rested he by the Tumtum tree, And stood awhile in thought. And as in uffish thought he stood, The Jabberwock, with eyes of flame, Came whiffling through the tulgey wood, And burbled as it came!""", "noir", ], "answer": [4, 16, 7, 16], }, ], "Extra": [ { "input": [ """Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.""", "them", ], "answer": [4, 4, 4, 7], }, { "input": [ """Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.""", "stog", ], "answer": [1, 19, 4, 19], }, { "input": [ """One, two! One, two! And through and through The vorpal blade went snicker-snack! He left it dead, and with its head He went galumphing back.""", "back", ], "answer": [4, 17, 4, 20], }, { "input": [ """And hast thou slain the Jabberwock? Come to my arms, my beamish boy! O frabjous day! Callooh! Callay!' He chortled in his joy. 'Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe.'""", "tomy", ], "answer": [2, 5, 2, 8], }, { "input": [ """<NAME> sat on a wall: <NAME> had a great fall. All the King's horses and all the King's men Couldn't put <NAME> in his place again.""", "oast", ], "answer": [1, 16, 4, 16], }, { "input": [ """Hi all! And all goodbye! Of course goodbye. or not""", "haoo", ], "answer": [1, 1, 4, 1], }, { "input": [ """xa xb x""", "ab", ], "answer": [1, 2, 2, 2], }, ], } def test_Basics(self): for i in self.TESTS['Basics']: assert checkio(*i['input']) == i['answer'] def test_Extra(self): for i in self.TESTS['Extra']: assert checkio(*i['input']) == i['answer'] if __name__ == "__main__": # pragma: no cover unittest.main()
73774
class Rect(object): def __init__(self, cx, cy, width, height, confidence): self.cx = cx self.cy = cy self.width = width self.height = height self.confidence = confidence self.true_confidence = confidence def overlaps(self, other): if abs(self.cx - other.cx) > (self.width + other.width) / 1.5: return False elif abs(self.cy - other.cy) > (self.height + other.height) / 2.0: return False else: return True def distance(self, other): return sum( map( abs, [ self.cx - other.cx, self.cy - other.cy, self.width - other.width, self.height - other.height ] ) ) def intersection(self, other): left = max(self.cx - self.width / 2., other.cx - other.width / 2.) right = min(self.cx + self.width / 2., other.cx + other.width / 2.) width = max(right - left, 0) top = max(self.cy - self.height / 2., other.cy - other.height / 2.) bottom = min(self.cy + self.height / 2., other.cy + other.height / 2.) height = max(bottom - top, 0) return width * height def area(self): return self.height * self.width def union(self, other): return self.area() + other.area() - self.intersection(other) def iou(self, other): return self.intersection(other) / self.union(other) def __eq__(self, other): return ( self.cx == other.cx and self.cy == other.cy and self.width == other.width and self.height == other.height and self.confidence == other.confidence )
73784
from .ReportDaily import * # Find personal repositories that nonowners are pushing to. # These repositories should be moved into organizations. # Only look at active users (not suspended!) and only look at pushes # of the last 4 weeks. class ReportReposPersonalNonOwnerPushes(ReportDaily): def name(self): return "repositories-personal-nonowner-pushes" def updateDailyData(self): self.detailedHeader, self.detailedData = self.parseData(self.executeQuery(self.query())) self.header = ["date", "personal repositories with nonowner pushes"] self.data.append([str(self.yesterday()), len(self.detailedData)]) self.truncateData(self.timeRangeTotal()) self.sortDataByDate() def query(self): fourWeeksAgo = self.daysAgo(28) return ''' SELECT CONCAT(users.login, "/", repositories.name) as "repository", COUNT(DISTINCT(pushes.pusher_id)) as "nonowner pushers" FROM repositories JOIN users ON repositories.owner_id = users.id JOIN pushes ON pushes.repository_id = repositories.id WHERE users.type = "user" AND users.suspended_at IS NULL AND CAST(pushes.created_at AS DATE) BETWEEN "''' + str(fourWeeksAgo) + '''" AND "''' + str(self.yesterday()) + '''" AND pushes.pusher_id != users.id GROUP BY repositories.id ORDER BY 2 DESC, 1'''
73788
import pandas as pd import numpy as np import re import nltk from utils.utils import * import time from ql_score import ql_score import pickle class QL: alpha = 0.5 mu=1500. _inverted_index = {} # data_root = './' # _term_stats_path = data_root + 'clueweb_stats/term_stats.pkl' # _term_stats_porter_path = data_root + 'clueweb_stats/term_stats.porter.pkl' # _term_stats_krovetz_path = data_root + 'clueweb_stats/term_stats.krovetz.pkl' # _doc_stats_path = data_root + 'clueweb_stats/doc_lengths' # _index_path = data_root + 'data/topic_indexes/{}.pkl' _mean_doc_len = 770.4786222801615 _total_docs = 33836981 _total_terms = 0 def __init__(self, do_stemming, do_stopword_removal, data_root = './', load_stats=True): self.do_stemming = do_stemming self.do_stopword_removal = do_stopword_removal self.data_root = data_root self._stopwords = nltk.corpus.stopwords.words('english') self._term_stats_path = self.data_root + 'clueweb_stats/term_stats.pkl' self._term_stats_porter_path = self.data_root + 'clueweb_stats/term_stats.porter.pkl' self._term_stats_krovetz_path = self.data_root + 'clueweb_stats/term_stats.krovetz.pkl' self._doc_stats_path = self.data_root + 'clueweb_stats/doc_lengths' self._index_path = self.data_root + 'topic_indexes/{}.pkl' if load_stats and self.do_stemming: self._term_stats = pd.read_pickle(self._term_stats_krovetz_path)[1].to_dict() elif load_stats: self._term_stats = pd.read_pickle(self._term_stats_path)[1].to_dict() for k in self._term_stats: self._total_terms += self._term_stats[k] if self.do_stopword_removal: for stopw in self._stopwords: self._total_terms -= self._term_stats[stopw] if stopw in self._term_stats else 0 def _stopword_removal(self, tokens): return [word for word in tokens if word not in self._stopwords] def load_doc_stats(self): doc_lengths = pd.read_csv(self._doc_stats_path, sep='\t', header=None) self._mean_doc_len = doc_lengths[2].mean() self._total_docs = len(doc_lengths.index) def load_topic_index(self, topic_id): with open(self._index_path.format(topic_id), 'rb') as inp: self._inverted_index = pickle.load(inp) if self.do_stopword_removal: for doc in self._inverted_index: for stopw in self._stopwords: if stopw in self._inverted_index[doc]['terms']: self._inverted_index[doc]['length'] -= self._inverted_index[doc]['terms'][stopw] def update_query_lang_model(self, query, question, answer): output = {} query_tokens, qlen = self._preprocess(query) if type(question) == str: other_tokens, other_len = self._preprocess(question + ' ' + answer) else: other_tokens, other_len = self._preprocess(question + answer) # answer_tokens, ans_len = self._preprocess(answer) all_tokens = set(list(query_tokens.keys()) + list(other_tokens.keys())) for t in all_tokens: try: qfreq = float(query_tokens[t]) / qlen except KeyError: qfreq = 0 try: qafreq = float(other_tokens[t]) / other_len except KeyError: qafreq = 0 output[t] = self.alpha * qfreq + (1 - self.alpha) * qafreq # print(t, output[t]) self._query_lm = output def _preprocess(self, text): if type(text) == str: if self.do_stemming: text_tokens = tokenize_and_stem(text) else: text_tokens = tokenize_only(text) if self.do_stopword_removal: text_tokens = self._stopword_removal(text_tokens) else: text_tokens = text output = dict() for t in text_tokens: if t not in output: output[t] = 0. output[t] += 1. return output, len(text_tokens) def _add_doc_to_inverted_index_if_not_existing(self, document_id, document): if document_id not in self._inverted_index: document_tokens, length = self._preprocess(document) self._inverted_index[document_id] = {'terms': document_tokens, 'length': length} # try: # # print(document_tokens) # self._inverted_index[document_id]['terms'] = document_tokens # except KeyError: # self._inverted_index[document_id]['terms'] = {} # self._inverted_index[document_id]['length'] = len(document_tokens) def get_result_list(self): output = [] for doc_id in self._inverted_index: output.append((doc_id, self.get_interpolated_score(doc_id))) return output def get_result_df(self, topk, query_id): df = pd.DataFrame(self.get_result_list()).sort_values(1, ascending=False).head(topk) df['record_id'] = query_id return df def get_interpolated_score(self, document_id): doc_inf = self._inverted_index[document_id] doc_len = doc_inf['length'] score = 0. for t in self._query_lm: try: dfreq = doc_inf['terms'][t] except KeyError: dfreq = 0 try: nq = self._term_stats[t] except KeyError: nq = 0. # qafreq = float(other_tokens.count(t)) / len(other_tokens) # # print(t, qfreq, qafreq) # # q_score = self.alpha * qfreq + (1 - self.alpha) * qafreq # # print('qscore', q_score) # d_score = float(dfreq) / (self.mu + doc_len) # d_score += (self.mu / (self.mu + doc_len)) * (float(nq) / self._total_terms) # # print('dscore',d_score) # if d_score > 0: # score += q_score * np.log(d_score) # else: # print('This terms returns zero document frequency: ', t) nq = 0 q_score = self._query_lm[t] #float(query_tokens.count(t)) / len(query_tokens) # score += ql_score.ql_score_f(q_score, dfreq, self.mu, doc_len, nq, self._total_terms) # qafreq = float(other_tokens.count(t)) / len(other_tokens) # # print(t, qfreq, qafreq) # # q_score = self.alpha * qfreq + (1 - self.alpha) * qafreq # # print('qscore', q_score) # print(dfreq,self.mu, doc_len,nq, self._total_terms) # #old # d_score = float(dfreq) / (self.mu + doc_len) # d_score += (self.mu / (self.mu + doc_len)) * (float(nq) / self._total_terms) # d_score = (float(dfreq) + (self.mu *(float(nq)/self._total_terms))/(doc_len+) # # print('dscore',d_score) # print(d_score) # if d_score > 0: # score += q_score * np.log(d_score) # else: # print('This terms returns zero document frequency: ', t) return score
73789
from buidl.bech32 import ( cbor_encode, cbor_decode, bc32encode, bc32decode, uses_only_bech32_chars, ) from buidl.helper import is_intable from binascii import a2b_base64, b2a_base64 from math import ceil import hashlib class BCURStringFormatError(RuntimeError): pass def bcur_encode(data): """Returns bcur encoded string and checksum""" cbor = cbor_encode(data) enc = bc32encode(cbor) h = hashlib.sha256(cbor).digest() enc_hash = bc32encode(h) return enc, enc_hash def bcur_decode(data, checksum=None): """Returns decoded data, verifies checksum if provided""" cbor = bc32decode(data) if checksum is not None: h = bc32decode(checksum) calculated_digest = hashlib.sha256(cbor).digest() if h != calculated_digest: raise ValueError(f"Calculated digest {calculated_digest} != {h}") return cbor_decode(cbor) def _parse_bcur_helper(bcur_string): """ This parses a bcur string and returns the following (or raises an error): payload, checksum, x, y Notes: - Works for both BCURSingle and BCURMulti. - All entries may be empty except for payload. - Checksums are not validated here, as checksum validation is different for single vs multi. """ if type(bcur_string) is not str: raise BCURStringFormatError( f"{bcur_string} is of type {type(bcur_string)}, not a string" ) string = bcur_string.lower().strip() if not string.startswith("ur:bytes/"): raise BCURStringFormatError(f"String {string} doesn't start with ur:bytes/") bcur_parts = string.split("/") if len(bcur_parts) == 2: # Non-animated QR code (just 1 qr, doesn't display 1of1 nor checksum) _, payload = bcur_parts checksum, x_int, y_int = None, 1, 1 elif len(bcur_parts) == 3: # Non-animated QR code (just 1 qr, doesn't display 1of1 but does have checksum) _, checksum, payload = bcur_parts x_int, y_int = 1, 1 elif len(bcur_parts) == 4: # Animated QR code _, xofy, checksum, payload = bcur_parts xofy_parts = xofy.split("of") if len(xofy_parts) != 2: raise BCURStringFormatError(f"x-of-y section malformed: {xofy_parts}") if not is_intable(xofy_parts[0]) or not is_intable(xofy_parts[1]): raise BCURStringFormatError( f"x and y (in x-of-y) must both be integers: {xofy_parts}" ) x_int = int(xofy_parts[0]) y_int = int(xofy_parts[1]) if x_int > y_int: raise BCURStringFormatError("x must be >= y (in x-of-y): {xofy_parts}") else: raise BCURStringFormatError(f"{string} doesn't have 2-4 slashes") if checksum: if len(checksum) != 58: raise BCURStringFormatError("Checksum must be 58 chars") if not uses_only_bech32_chars(checksum): raise BCURStringFormatError( f"checksum can only contain bech32 characters: {checksum}" ) if not uses_only_bech32_chars(payload): raise BCURStringFormatError( f"Payload can only contain bech32 characters: {payload}" ) return payload, checksum, x_int, y_int class BCURSingle: def __init__(self, text_b64, encoded=None, checksum=None): binary_b64 = a2b_base64(text_b64) enc, enc_hash = bcur_encode(data=binary_b64) if encoded and encoded != enc: raise ValueError(f"Calculated encoding {enc} != {encoded}") if checksum and checksum != enc_hash: raise ValueError(f"Calculated checksum {enc_hash} != {checksum}") self.text_b64 = text_b64 self.encoded = enc self.enc_hash = enc_hash def __repr__(self): return self.encode() def encode(self, use_checksum=True): # Single QR, no x-of-y if use_checksum: return f"ur:bytes/{self.enc_hash}/{self.encoded}" else: return f"ur:bytes/{self.encoded}" @classmethod def parse(cls, to_parse): """Parses (decodes) a BCURSingle from a single BCUR string""" payload, checksum, x, y = _parse_bcur_helper(bcur_string=to_parse) if x != 1 or y != 1: raise BCURStringFormatError( f"BCURSingle must have x=1 and y=1, instead got x={x} and y={y}" ) # will throw an error if checksum is incorrect enc = bcur_decode(data=payload, checksum=checksum) return cls( text_b64=b2a_base64(enc).strip().decode(), encoded=payload, checksum=checksum, ) class BCURMulti: def __init__(self, text_b64, encoded=None, checksum=None): binary_b64 = a2b_base64(text_b64) enc, enc_hash = bcur_encode(data=binary_b64) if encoded and encoded != enc: raise ValueError(f"Calculated encoding {enc} != {encoded}") if checksum and checksum != enc_hash: raise ValueError(f"Calculated checksum {enc_hash} != {checksum}") self.checksum = checksum self.encoded = enc self.text_b64 = text_b64 self.enc_hash = enc_hash def __repr__(self): return f"bcur: {self.checksum}\n{self.text_b64}\n" def encode(self, max_size_per_chunk=300, animate=True): """ Take some base64 text (i.e. a PSBT string) and encode it into multiple QR codes using Blockchain Commons Uniform Resources. If animate=False, then max_size_per_chunk is ignored and this returns a 1of1 with checksum. Use parse() to return a BCURMulti object from this encoded result. This algorithm makes all the chunks of about equal length. This makes sure that the last chunk is not (too) different in size which is visually noticeable when animation occurs Inspired by this JS implementation: https://github.com/cryptoadvance/specter-desktop/blob/da35e7d88072475746077432710c77f799017eb0/src/cryptoadvance/specter/templates/includes/qr-code.html """ if animate is False: number_of_chunks = 1 else: number_of_chunks = ceil(len(self.encoded) / max_size_per_chunk) chunk_length = ceil(len(self.encoded) / number_of_chunks) # For number_of_chunks == 1 (with no checksum) use BCURSingle resulting_chunks = [] for cnt in range(number_of_chunks): start_idx = cnt * chunk_length finish_idx = (cnt + 1) * chunk_length resulting_chunks.append( f"ur:bytes/{cnt+1}of{number_of_chunks}/{self.enc_hash}/{self.encoded[start_idx:finish_idx]}" ) return resulting_chunks @classmethod def parse(cls, to_parse): """Parses a BCURMulti from a list of BCUR strings""" if type(to_parse) not in (list, tuple): raise BCURStringFormatError( f"{to_parse} is of type {type(to_parse)}, not a list/tuple" ) payloads = [] global_checksum, global_y = "", 0 for cnt, bcur_string in enumerate(to_parse): entry_payload, entry_checksum, entry_x, entry_y = _parse_bcur_helper( bcur_string=bcur_string ) if cnt + 1 != entry_x: raise ValueError( f"BCUR strings not in order: got {entry_x} and was expecting {cnt+1}" ) # Initialize checksum and y (as in x-of-y) on first loop if cnt == 0: global_checksum = entry_checksum global_y = entry_y elif entry_checksum != global_checksum: raise ValueError( f"Entry {bcur_string} has checksum {entry_checksum} but we're expecting {global_checksum}" ) elif entry_y != global_y: raise ValueError( f"Entry {bcur_string} wants {entry_y} parts but we're expecting {global_y} parts" ) # All checks pass payloads.append(entry_payload) # will throw an error if checksum is incorrect enc = bcur_decode(data="".join(payloads), checksum=global_checksum) return cls(text_b64=b2a_base64(enc).strip().decode(), checksum=global_checksum)
73795
from datetime import datetime from fastapi.encoders import jsonable_encoder from sqlalchemy.orm import Session from app import crud from app.core.security import verify_password from app.models.domain import Domain from app.models.event import Event from app.models.user import User from app.schemas.user import UserCreate, UserUpdate from app.tests.utils.domain import create_random_domain from app.tests.utils.event import create_random_page_view_event from app.tests.utils.user import create_random_user from app.tests.utils.utils import random_email, random_lower_string def test_create_user(db: Session) -> None: email = random_email() password = <PASSWORD>() user_in = UserCreate(email=email, password=password) user = crud.user.create(db, obj_in=user_in) assert user.email == email assert hasattr(user, "hashed_password") def test_authenticate_user(db: Session) -> None: email = random_email() password = <PASSWORD>() user_in = UserCreate(email=email, password=password) user = crud.user.create(db, obj_in=user_in) authenticated_user = crud.user.authenticate(db, email=email, password=password) assert authenticated_user assert user.email == authenticated_user.email def test_not_authenticate_user(db: Session) -> None: email = random_email() password = <PASSWORD>() user = crud.user.authenticate(db, email=email, password=password) assert user is None def test_check_if_user_is_active(db: Session) -> None: email = random_email() password = <PASSWORD>() user_in = UserCreate(email=email, password=password) user = crud.user.create(db, obj_in=user_in) is_active = crud.user.is_active(user) assert is_active is True def test_check_if_user_is_active_inactive(db: Session) -> None: email = random_email() password = <PASSWORD>_<PASSWORD>() user_in = UserCreate(email=email, password=password, disabled=True) user = crud.user.create(db, obj_in=user_in) is_active = crud.user.is_active(user) assert is_active def test_check_if_user_is_superuser(db: Session) -> None: email = random_email() password = <PASSWORD>_<PASSWORD>() user_in = UserCreate(email=email, password=password, is_superuser=True) user = crud.user.create(db, obj_in=user_in) is_superuser = crud.user.is_superuser(user) assert is_superuser is True def test_check_if_user_is_superuser_normal_user(db: Session) -> None: username = random_email() password = <PASSWORD>() user_in = UserCreate(email=username, password=password) user = crud.user.create(db, obj_in=user_in) is_superuser = crud.user.is_superuser(user) assert is_superuser is False def test_get_user(db: Session) -> None: password = <PASSWORD>() username = random_email() user_in = UserCreate(email=username, password=password, is_superuser=True) user = crud.user.create(db, obj_in=user_in) user_2 = crud.user.get(db, id=user.id) assert user_2 assert user.email == user_2.email assert jsonable_encoder(user) == jsonable_encoder(user_2) def test_update_user(db: Session) -> None: password = <PASSWORD>() email = random_email() user_in = UserCreate(email=email, password=password, is_superuser=True) user = crud.user.create(db, obj_in=user_in) new_password = <PASSWORD>() user_in_update = UserUpdate(password=<PASSWORD>, is_superuser=True) crud.user.update(db, db_obj=user, obj_in=user_in_update) user_2 = crud.user.get(db, id=user.id) assert user_2 assert user.email == user_2.email assert verify_password(new_password, user_2.hashed_password) def test_mark_deletion(db: Session): user = create_random_user(db) assert not user.delete_at crud.user.mark_for_removal(db, user) assert user.delete_at def test_delete_pending_users(db: Session): user = create_random_user(db) domain = create_random_domain(db, owner_id=user.id) event_id = create_random_page_view_event(db, domain=domain).id user2 = create_random_user(db) domain2 = create_random_domain(db, owner_id=user2.id) event2_id = create_random_page_view_event(db, domain=domain2).id domain_id = domain.id user_id = user.id user.delete_at = datetime.now() db.commit() crud.user.delete_pending_users(db) assert not db.query(Domain).get(domain_id) assert not db.query(User).get(user_id) assert not db.query(Event).filter(Event.id == event_id).scalar() assert db.query(Event).filter(Event.id == event2_id).scalar() assert db.query(Domain).get(domain2.id) assert db.query(User).get(user2.id)
73823
import time from glob import glob import subprocess import os from odyssey import run_signal_stem, slurm_fname, temp_dir, jobdir if __name__ == "__main__": print "Monitoring slurm jobs in {0}".format(os.getcwd()) while True: for fname in glob(run_signal_stem + "*"): jobname = fname[len(run_signal_stem):] print "Launching job {0}".format(jobname) with temp_dir(jobdir(jobname)): subprocess.call(["sbatch", slurm_fname]) os.remove(fname) time.sleep(2)
73825
import unittest from unittest import mock from printy.exceptions import InvalidFlag, InvalidInputType from printy.core import Printy, WINDOWS from printy.flags import Flags class TestGlobalFlagsPrinty(unittest.TestCase): """ Test case for formatting with a global set of flags specified """ def setUp(self): self.sample_text = "Some Text To Print Out" self.printy = Printy() self.raw_text = self.printy.get_formatted_text self.esc = self.printy.escape def test_empty_value(self): """ Tests passing an empty value print's nothing""" text = '' result = self.raw_text(text) self.assertEqual(result, text) def test_empty_value_with_flags(self): """ Tests that passing and empty value with some flags returns the escape ansi characters """ text = '' flags = 'rBH' result = self.raw_text(text, flags) expected_result = "%s%s" % ( Flags.join_flags(Flags.get_flag_values(flags)), Flags.get_end_of_line() ) self.assertEqual(result, expected_result) def test_single_invalid_flag(self): """ Tests that passing an invalid flag (only one) raises and exception """ invalid_flag = 'P' with self.assertRaises(InvalidFlag): self.printy.format(self.sample_text, invalid_flag) def test_multiple_invalid_flag(self): """ Tests that passing multiple invalid flags raises an exception with the first invalid flag found """ # P and G are invalid, should raise InvalidFlag # with 'P' as invalid flag flags = 'yBPGr' with self.assertRaises(InvalidFlag) as e: self.printy.format(self.sample_text, flags) self.assertEqual(e.exception.flag, 'P') def test_high_intensity_flag_color(self): """ Checks the correct format is returned for a high intensity (>) flag color """ flag = 'p>' text = 'Hello' expected_text = '\x1b[38;5;98mHello\x1b[0m' self.assertEqual(self.raw_text(text, flag), expected_text) def test_low_intensity_flag_color(self): """ Checks the correct format is returned for a low intensity (<) flag color """ flag = '<p' text = 'Hello' expected_text = '\x1b[38;5;54mHello\x1b[0m' self.assertEqual(self.raw_text(text, flag), expected_text) def tests_always_closing_format(self): """ Tests that the returned text is always ended with the closing tag """ result = self.raw_text(self.sample_text, 'r') closing_tag = result[-4:] self.assertEqual(len(closing_tag), 4) self.assertEqual(closing_tag, Flags.get_end_of_line()) def test_no_flag_parameter_passed(self): """ Tests that passing no flag parameter will return a default value """ result = self.raw_text(self.sample_text) self.assertEqual(result, self.sample_text) def test_empty_flag(self): """ Test that passing and empty string as a flag still returns the default value """ result = self.raw_text(self.sample_text, '') self.assertEqual(result, self.sample_text) def test_flags_with_spaces_in_between(self): """ Tests that passing a set of flags with some spaces in between (like 'yB H U') still applies the desired formats """ desired_flags = 'yBH' flags_with_one_space = 'yB H' flags_with_multiple_spaces = 'y B H' result_one = self.raw_text(self.sample_text, desired_flags) result_two = self.raw_text(self.sample_text, flags_with_one_space) result_three = self.raw_text(self.sample_text, flags_with_multiple_spaces) self.assertTrue(result_one == result_two == result_three) def test_escape_with_global_flags(self): """ Test escaping values with global flags """ text = '[n]escaped@' expected_text = '\x1b[38;5;196m[n]escaped@\x1b[0m' result = self.raw_text(self.esc(text), 'r') self.assertEqual(result, expected_text) @mock.patch('printy.core.Printy.set_windows_console_mode', return_value=True) def test_virtual_terminal_processing_on_windows(self, mock_console_mode): """ Tests that if platform is windows, then then returns True """ self.printy.platform = WINDOWS virtual_terminal_processing = mock_console_mode() self.assertTrue(virtual_terminal_processing) def test_return_cleaned_value_if_windows_is_not_properly_configured(self): """ Tests that if printy virtual_console_mode is false, then it returns the cleaned_text """ flags = 'rBH' # Changes platform to Windows self.printy.platform = WINDOWS self.printy.virtual_terminal_processing = False result_one = self.raw_text(self.sample_text, flags) self.assertEqual(result_one, self.sample_text) def test_background_color_with_global_flags(self): """ Test backgroun color with global flags """ flags = 'yB{o}' text = 'Hello' expected_text = '\x1b[48;5;208;38;5;11;1mHello\x1b[0m' self.assertEqual(self.raw_text(text, flags), expected_text) def test_background_color_no_flag_with_global_flags(self): """ Test backgroun color with no flag for it, with global flags """ flags = 'yB{}' text = 'Hello' expected_text = '\x1b[38;5;11;1mHello\x1b[0m' self.assertEqual(self.raw_text(text, flags), expected_text) class TestInlineFlagsPrinty(unittest.TestCase): """ Test case for inline formatting """ def setUp(self): self.printy = Printy() self.raw_text = self.printy.get_formatted_text self.esc = self.printy.escape def test_inline_format_with_global_flags(self): """ Tests that passing a text with inline formatting and also a global set of flags takes this last one as the format to be applied """ inline_formatted = "[y]Hey you@" no_format = 'Hey you' global_flags = 'rB' result_one = self.raw_text(inline_formatted, global_flags) result_two = self.raw_text(no_format, global_flags) self.assertEqual(result_one, result_two) def test_inline_format_without_ending_format_character(self): """ Tests that passing an inline formatted text without the ending formatting character still returns the formatted text """ result_one = self.raw_text('[y]Hey you') result_two = self.raw_text('[y]Hey you@') self.assertEqual(result_one, result_two) def test_escape_special_characters(self): """ Tests that escaping special characters prints them out """ inline_text_one = '[y]<EMAIL>@' global_text_one = '<EMAIL>', 'y' inline_text_two = '[bH]Some text \@@' global_text_two = 'Some text @', 'bH' inline_result_one = self.raw_text(inline_text_one) global_result_one = self.raw_text(global_text_one[0], global_text_one[1]) inline_result_two = self.raw_text(inline_text_two) global_result_two = self.raw_text(global_text_two[0], global_text_two[1]) self.assertEqual(inline_result_one, global_result_one) self.assertEqual(inline_result_two, global_result_two) def test_multiple_sections(self): """ Test that formats are applied correctly to each section """ section_one = "Some" section_two = ' ' section_three = 'text' global_format_one = self.raw_text(section_one, 'rB') global_format_two = self.raw_text(section_two) global_format_three = self.raw_text(section_three, 'y') joined_global_format = global_format_one + global_format_two + global_format_three inline_text = '[rB]Some@ [y]text@' inline_format = self.raw_text(inline_text) self.assertEqual(inline_format, joined_global_format) def test_read_file(self): """ Test retrieving the text from a file """ text_in_file = 'printy' file_name = 'printy_file' with mock.patch('builtins.open', mock.mock_open(read_data=text_in_file)) as m: result = self.printy.read_file(file_name) m.assert_called_once_with(file_name) self.assertEqual(result, text_in_file) def test_escape_special_chars_method(self): """ Test escaping especial characters correctly, this method is used when an object other than a string is passed """ text_to_escape = '[some text @ ]' expected_value = '\[some text \@ \]' escaped_text = Printy._escape_special_chars(text_to_escape) self.assertEqual(expected_value, escaped_text) def test_pretty_print_dicts(self): """ Test pretty printing dictionaries """ dict_to_print = {'name': '<NAME>', 'age': 34} expected_result = '{\n [n>]\'name\'@: [c>]\'<NAME>\'@[<oB],@\n [n>]\'age\'@: [c]34@[<oB],@\n}' pretty_dict = Printy._repr_value(dict_to_print) self.assertEqual(expected_result, pretty_dict) def test_pretty_print_lists(self): """ Test pretty printing lists """ list_to_print = [1, 2, 'hello'] expected_result = '\[\n [c]1@[<oB],@ [c]2@[<oB],@ [c>]\'hello\'@\n\]' pretty_list = Printy._repr_value(list_to_print) self.assertEqual(expected_result, pretty_list) def test_pretty_printy_tuples(self): """ Test pretty printing tuples """ tuple_to_print = (1, 2, 'hello') expected_result = '(\n [c]1@[<oB],@ [c]2@[<oB],@ [c>]\'hello\'@\n)' pretty_tuple = Printy._repr_value(tuple_to_print) self.assertEqual(expected_result, pretty_tuple) def test_pretty_printy_sets(self): """ Test pretty printing sets """ set_to_print = {1, 2, 'hello'} expected_result = '{\n [c]1@[<oB],@ [c]2@[<oB],@ [c>]\'hello\'@\n}' pretty_set = Printy._repr_value(set_to_print) self.assertEqual(expected_result, pretty_set) def test_pretty_printy_dict_pretty_false(self): """ Tests pretty printing a dict when 'pretty' parameter is set to False """ dict_to_print = {'name': '<NAME>', 'age': 34} expected_result = '{\'name\': \'<NAME>\', \'age\': 34}' not_pretty_dict = Printy._repr_value(dict_to_print, pretty=False) self.assertEqual(expected_result, not_pretty_dict) def test_pretty_printy_list_pretty_false(self): """ Tests pretty printing a list when 'pretty' parameter is set to False """ list_to_print = [1, 2, 'hello'] expected_result = '\[1, 2, \'hello\'\]' not_pretty_list = Printy._repr_value(list_to_print, pretty=False) self.assertEqual(expected_result, not_pretty_list) def test_pretty_printy_tuple_pretty_false(self): """ Tests pretty printing a tuple when 'pretty' parameter is set to False """ tuple_to_print = (1, 2, 'hello') expected_result = '(1, 2, \'hello\')' not_pretty_tuple = Printy._repr_value(tuple_to_print, pretty=False) self.assertEqual(expected_result, not_pretty_tuple) def test_pretty_printy_set_pretty_false(self): """ Tests pretty printing a set when 'pretty' parameter is set to False """ set_to_print = {1, 2, 'hello'} expected_result = '{1, 2, \'hello\'}' not_pretty_set = Printy._repr_value(set_to_print, pretty=False) self.assertEqual(expected_result, not_pretty_set) def test_pretty_print_str_method_of_objects(self): """ Test printing the str method of an object, both not defined and defined """ builtin_obj = int expected_builtin_result = '<class \'int\'>' pretty_builtin = Printy._repr_value(builtin_obj) class Person: def __str__(self): return '[c]I am a person@' custom_str = Person() # Notice how it should not return the escaped character expected_custom_result = '[c]I am a person@' pretty_custom = Printy._repr_value(custom_str) self.assertEqual(expected_builtin_result, pretty_builtin) self.assertEqual(expected_custom_result, pretty_custom) def test_pretty_object_in_dictionary(self): """ Test pretty printing an str method of an object inside a dictionary or any iterable, it should give it a light magenta color """ dict_to_print = {'class': int} expected_result = '{\n [n>]\'class\'@: <class \'int\'>[<oB],@\n}' pretty_dict = Printy._repr_value(dict_to_print) self.assertEqual(expected_result, pretty_dict) def test_pretty_custom_str_method_in_dictionary(self): class CustomStrMethod: def __str__(self): return '[rBU]Red Bold Underlined@ and [y]Yellow@' dict_to_print = {'str': CustomStrMethod()} expected_result = '{\n [n>]\'str\'@: [rBU]Red Bold Underlined@ and [y]Yellow@[<oB],@\n}' pretty_dict = Printy._repr_value(dict_to_print) self.assertEqual(expected_result, pretty_dict) def test_print_number(self): integer_to_print = 123 float_to_print = 123.45 expected_result_integer = '[c]123@' expected_result_float = '[c]123.45@' result_integer = Printy._repr_value(integer_to_print) result_float = Printy._repr_value(float_to_print) self.assertEqual(expected_result_integer, result_integer) self.assertEqual(expected_result_float, result_float) def test_print_boolean(self): expected_false = '[<o]False@' expected_true = '[<o]True@' result_false = Printy._repr_value(False) result_true = Printy._repr_value(True) self.assertEqual(expected_false, result_false) self.assertEqual(expected_true, result_true) def test_print_none(self): expected_none = '[<o]None@' result_none = Printy._repr_value(None) self.assertEqual(expected_none, result_none) def test_escape_with_inline_flags(self): """ Test escaping values on inline formats """ email = '<EMAIL>' expected_text = '\x1b[38;5;28<EMAIL>\x1b[0m' result = self.raw_text(f'[n]{self.esc(email)}@') self.assertEqual(result, expected_text) def test_background_color_with_inline_flags(self): """ Test backgroun color with inline flags """ text = '[yB{o}]Hello@' expected_text = '\x1b[48;5;208;38;5;11;1mHello\x1b[0m' self.assertEqual(self.raw_text(text), expected_text) def test_background_color_no_flag_with_global_flags(self): """ Test backgroun color with no flag for it, with global flags """ text = '[yB{}]Hello@' expected_text = '\x1b[38;5;11;1mHello\x1b[0m' self.assertEqual(self.raw_text(text), expected_text) class TestInputy(unittest.TestCase): """ Test case for inputy functionality Here, it is not necessary to test whether the prompted message has the correct format because it uses the methods already tested in the Printy test cases """ def setUp(self): self.inputy = Printy() str_valid_test = "Valid String" int_valid_test = 23 float_valid_test = 45.6 bool_valid_test = False def test_normalize_options_not_enough_options_raises_value_error(self): """ Tests that passing a list with less than 2 items as 'options' raises a Value Error when input_type is different than 'bool' """ with self.assertRaises(ValueError): self.inputy._normalize_options([], self.inputy.STR) def test_normalize_options_bool_more_than_two_items_get_the_first_two(self): """ Tests that passing more than 2 items as options for input_type 'bool' returns only the first two """ options = ['yes', 'no', 'Yep', 'Nope'] normalized_options = self.inputy._normalize_options(options, self.inputy.BOOL) expected_options = {'1': 'yes', '2': 'no'} self.assertEqual(normalized_options, expected_options) def test_normalize_options_bool_less_than_two_items_returns_tru_false(self): """ Tests that passing more than 2 items as options for input_type 'bool' returns only the first two """ options = ['yes'] normalized_options = self.inputy._normalize_options(options, self.inputy.BOOL) expected_options = {'1': 'True', '2': 'False'} self.assertEqual(normalized_options, expected_options) def test_check_boolean_case_insensitive(self): """ Test that passing a different case for one of the options still returns the value """ options = {'1': 'y', '2': 'n'} value = 'Y' result, valid = self.inputy.check_boolean(value, options, 'i') self.assertEqual(result, True) self.assertEqual(valid, True) def test_check_boolean_case_sensitive(self): """ Test that passing a different case for one of the options returns an invalid value """ options = {'1': 'y', '2': 'n'} value = 'Y' result, valid = self.inputy.check_boolean(value, options, '') self.assertEqual(result, False) self.assertEqual(valid, False) def test_check_integer_no_condition(self): """ Tests that passing no condition to check an integer returns the value """ positive_value = 5 negative_value = -5 condition = '' result_positive, valid_positive = self.inputy.check_integer(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_integer(str(negative_value), condition) self.assertTrue(valid_positive) self.assertTrue(valid_negative) self.assertEqual(result_positive, 5) self.assertEqual(result_negative, -5) def test_check_integer_condition_only_positive(self): """ Test that passing a condition '-' to the check_integer function will return a valid value only when the value is negative """ positive_value = 5 negative_value = -5 condition = '-' result_positive, valid_positive = self.inputy.check_integer(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_integer(str(negative_value), condition) self.assertFalse(valid_positive) self.assertTrue(valid_negative) self.assertEqual(result_positive, 5) self.assertEqual(result_negative, -5) def test_check_integer_condition_only_negative(self): """ Test that passing a condition '-' to the check_integer function will return a valid value only when the value is negative """ positive_value = 5 negative_value = -5 condition = '+' result_positive, valid_positive = self.inputy.check_integer(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_integer(str(negative_value), condition) self.assertTrue(valid_positive) self.assertFalse(valid_negative) self.assertEqual(result_positive, 5) self.assertEqual(result_negative, -5) def test_check_float_no_condition(self): """ Tests that passing no condition to check a float returns the value """ positive_value = 5.0 negative_value = -5.0 condition = '' result_positive, valid_positive = self.inputy.check_float(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_float(str(negative_value), condition) self.assertTrue(valid_positive) self.assertTrue(valid_negative) self.assertEqual(result_positive, 5.0) self.assertEqual(result_negative, -5.0) def test_check_float_condition_only_positive(self): """ Test that passing a condition '-' to the check_float function will return a valid value only when the value is negative """ positive_value = 5.0 negative_value = -5.0 condition = '-' result_positive, valid_positive = self.inputy.check_float(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_float(str(negative_value), condition) self.assertFalse(valid_positive) self.assertTrue(valid_negative) self.assertEqual(result_positive, 5.0) self.assertEqual(result_negative, -5.0) def test_check_float_condition_only_negative(self): """ Test that passing a condition '-' to the check_float function will return a valid value only when the value is negative """ positive_value = 5.0 negative_value = -5.0 condition = '+' result_positive, valid_positive = self.inputy.check_float(str(positive_value), condition) result_negative, valid_negative = self.inputy.check_float(str(negative_value), condition) self.assertTrue(valid_positive) self.assertFalse(valid_negative) self.assertEqual(result_positive, 5.0) self.assertEqual(result_negative, -5.0) def test_check_string_options_by_number_case_sensitive(self): """ Tests that, passing a set of options, the correct value is returned if user enters the number of the item in the list (case sensitive scenario) """ options = {'1': 'Oranges', '2': 'Apples', '3': 'Pineapples'} selected = 3 expected_returned_value = options[str(selected)] result, valid = self.inputy.check_string(str(selected), options, '') self.assertTrue(valid) self.assertEqual(result, expected_returned_value) def test_check_string_options_by_number_case_insensitive(self): """ Tests that, passing a set of options, the correct value is returned if user enters the number of the item in the list (case insensitive scenario) """ options = {'1': 'Oranges', '2': 'Apples', '3': 'Pineapples'} selected = 3 expected_returned_value = options[str(selected)] result, valid = self.inputy.check_string(str(selected), options, 'i') self.assertTrue(valid) self.assertEqual(result, expected_returned_value) def test_check_string_options_invalid_by_number_case_insensitive(self): """ Tests that, passing a set of options, the correct value is returned if user enters the number of the item in the list (case insensitive scenario) """ options = {'1': 'Oranges', '2': 'Apples', '3': 'Pineapples'} selected = 6 # invalid expected_returned_value = str(selected) result, valid = self.inputy.check_string(str(selected), options, 'i') self.assertFalse(valid) self.assertEqual(result, expected_returned_value) def test_check_string_options_case_insensitive(self): """ Test that passing a different case for one of the options still returns the value """ options = {'1': 'Oranges', '2': 'Apples', '3': 'Pineapples'} selected_capital_case = 'ORANGES' selected_lower_case = 'oranges' expected_returned_value = options['1'] result_capital, valid_capital = self.inputy.check_string(selected_capital_case, options, 'i') result_lower, valid_lower = self.inputy.check_string(selected_lower_case, options, 'i') self.assertTrue(valid_capital) self.assertTrue(valid_lower) self.assertEqual(result_capital, expected_returned_value) self.assertEqual(result_lower, expected_returned_value) def test_check_string_case_sensitive(self): """ Test that passing a different case for one of the options returns an invalid value """ options = {'1': 'Oranges', '2': 'Apples', '3': 'Pineapples'} selected_capital_case = 'ORANGES' selected_matched_case = 'Oranges' expected_returned_value = options['1'] result_capital, valid_capital = self.inputy.check_string(selected_capital_case, options, '') result_matched, valid_matched = self.inputy.check_string(selected_matched_case, options, '') self.assertFalse(valid_capital) self.assertTrue(valid_matched) self.assertEqual(result_matched, expected_returned_value) @mock.patch('builtins.input', return_value=str_valid_test) def test_passing_no_parameters_returns_a_value_str(self, mock_input): """ Testing 'inputy' as a normal 'input()' function """ result_str = self.inputy.format_input() self.assertEqual(result_str, self.str_valid_test) @mock.patch('builtins.input', return_value=int_valid_test) def test_passing_no_parameters_returns_a_value_str_from_int(self, mock_input): """ Testing 'inputy' as a normal 'input()' function """ result_str_from_int = self.inputy.format_input() self.assertEqual(result_str_from_int, str(self.int_valid_test)) @mock.patch('builtins.input', side_effect=[str_valid_test, bool_valid_test, float_valid_test, None, int_valid_test]) def test_passed_invalid_when_requested_int(self, mock_input): """ Test that, when specifying the users has to enter an integer, the message is prompted until a valid number is passed """ result_valid_int = self.inputy.format_input(type='int') self.assertEqual(result_valid_int, self.int_valid_test) @mock.patch('builtins.input', side_effect=[None, str_valid_test, bool_valid_test, float_valid_test]) def test_passed_invalid_when_requested_float(self, mock_input): """ Test that, when specifying the users has to enter a number, the message is prompted until a valid number is passed """ result_valid_int = self.inputy.format_input(type='float') self.assertEqual(result_valid_int, self.float_valid_test) @mock.patch('builtins.input', side_effect=[str_valid_test, None, int_valid_test, bool_valid_test]) def test_passed_invalid_when_requested_boolean(self, mock_input): """ Test that, when specifying the user has to enter a boolean the message is prompted until a boolean is passed """ result_valid_boolean = self.inputy.format_input(type='bool') self.assertEqual(result_valid_boolean, self.bool_valid_test) @mock.patch('builtins.input', side_effect=[str_valid_test, None, int_valid_test, 'True']) def test_passed_invalid_when_requested_boolean_str(self, mock_input): """ Test that, when specifying the user has to enter a boolean the message is prompted until a test case insensitive with the name of one of the boolean values is passed """ result_valid_boolean = self.inputy.format_input(type='bool') self.assertEqual(result_valid_boolean, True) @mock.patch('builtins.input', return_value=str_valid_test) def test_passing_and_invalid_input_type(self, mock_input): """ Tests that passing and invalid input type raises an InvalidInputType exception. We mock the input() just in case the tests reaches that section """ invalid_input_type = 'not_int_nor_float' with self.assertRaises(InvalidInputType) as e: self.inputy.format_input(type=invalid_input_type) self.assertEqual(e.exception.input_type, invalid_input_type) def test_converting_value_to_integer(self): number_as_string_value = '2' invalid_string = 'Not a number as a string' none_value = None self.assertEqual(Printy._to_int(number_as_string_value), 2) self.assertEqual(Printy._to_int(none_value), None) with self.assertRaises(ValueError): Printy._to_int(invalid_string) def test_max_digits(self): """ Tests restriction when passing a max_digits parameter """ max_digits = 3 invalid_number = '1234' valid_number = '123' invalid_number_value, invalid_number_valid_value = self.inputy._check_number( int, value=invalid_number, max_digits=max_digits ) valid_number_value, valid_number_valid_value = self.inputy._check_number( int, valid_number, max_digits=max_digits ) self.assertTrue(valid_number_valid_value) self.assertFalse(invalid_number_valid_value) def test_max_decimals(self): """ Tests restriction when passing a max_decimals parameter """ max_decimals = 3 invalid_number = '1234.1234' valid_number = '1234.123' invalid_number_value, invalid_number_valid_value = self.inputy._check_number( float, value=invalid_number, max_decimals=max_decimals ) valid_number_value, valid_number_valid_value = self.inputy._check_number( float, valid_number, max_decimals=max_decimals ) self.assertTrue(valid_number_valid_value) self.assertFalse(invalid_number_valid_value)
73826
import tensorflow as tf from deepsleep.nn import * class DeepFeatureNet(object): def __init__( self, batch_size, input_dims, n_classes, is_train, reuse_params, use_dropout, name="deepfeaturenet" ): self.batch_size = batch_size self.input_dims = input_dims self.n_classes = n_classes self.is_train = is_train self.reuse_params = reuse_params self.use_dropout = use_dropout self.name = name self.activations = [] self.layer_idx = 1 self.monitor_vars = [] def _build_placeholder(self): # Input name = "x_train" if self.is_train else "x_valid" self.input_var = tf.compat.v1.placeholder( tf.float32, shape=[self.batch_size, self.input_dims, 1, 1], name=name + "_inputs" ) # Target self.target_var = tf.compat.v1.placeholder( tf.int32, shape=[self.batch_size, ], name=name + "_targets" ) def _conv1d_layer(self, input_var, filter_size, n_filters, stride, wd=0): input_shape = input_var.get_shape() n_batches = input_shape[0].value input_dims = input_shape[1].value n_in_filters = input_shape[3].value name = "l{}_conv".format(self.layer_idx) with tf.compat.v1.variable_scope(name) as scope: output = conv_1d(name="conv1d", input_var=input_var, filter_shape=[filter_size, 1, n_in_filters, n_filters], stride=stride, bias=None, wd=wd) # # MONITORING # self.monitor_vars.append(("{}_before_bn".format(name), output)) output = batch_norm_new(name="bn", input_var=output, is_train=self.is_train) # # MONITORING # self.monitor_vars.append(("{}_after_bn".format(name), output)) # output = leaky_relu(name="leaky_relu", input_var=output) output = tf.nn.relu(output, name="relu") self.activations.append((name, output)) self.layer_idx += 1 return output def build_model(self, input_var): # List to store the output of each CNNs output_conns = [] ######### CNNs with small filter size at the first layer ######### # Convolution # network = self._conv1d_layer(input_var=input_var, filter_size=128, n_filters=64, stride=16, wd=1e-3) network = self._conv1d_layer(input_var=input_var, filter_size=50, n_filters=64, stride=6, wd=1e-3) # Max pooling name = "l{}_pool".format(self.layer_idx) network = max_pool_1d(name=name, input_var=network, pool_size=8, stride=8) self.activations.append((name, network)) self.layer_idx += 1 # Dropout if self.use_dropout: name = "l{}_dropout".format(self.layer_idx) if self.is_train: network = tf.nn.dropout(network, keep_prob=0.5, name=name) else: network = tf.nn.dropout(network, keep_prob=1.0, name=name) self.activations.append((name, network)) self.layer_idx += 1 # Convolution network = self._conv1d_layer(input_var=network, filter_size=8, n_filters=128, stride=1) network = self._conv1d_layer(input_var=network, filter_size=8, n_filters=128, stride=1) network = self._conv1d_layer(input_var=network, filter_size=8, n_filters=128, stride=1) # Max pooling name = "l{}_pool".format(self.layer_idx) network = max_pool_1d(name=name, input_var=network, pool_size=4, stride=4) self.activations.append((name, network)) self.layer_idx += 1 # Flatten name = "l{}_flat".format(self.layer_idx) network = flatten(name=name, input_var=network) self.activations.append((name, network)) self.layer_idx += 1 output_conns.append(network) ######### CNNs with large filter size at the first layer ######### # Convolution # network = self._conv1d_layer(input_var=input_var, filter_size=1024, n_filters=64, stride=128) network = self._conv1d_layer(input_var=input_var, filter_size=400, n_filters=64, stride=50) # Max pooling name = "l{}_pool".format(self.layer_idx) network = max_pool_1d(name=name, input_var=network, pool_size=4, stride=4) self.activations.append((name, network)) self.layer_idx += 1 # Dropout if self.use_dropout: name = "l{}_dropout".format(self.layer_idx) if self.is_train: network = tf.nn.dropout(network, keep_prob=0.5, name=name) else: network = tf.nn.dropout(network, keep_prob=1.0, name=name) self.activations.append((name, network)) self.layer_idx += 1 # Convolution network = self._conv1d_layer(input_var=network, filter_size=6, n_filters=128, stride=1) network = self._conv1d_layer(input_var=network, filter_size=6, n_filters=128, stride=1) network = self._conv1d_layer(input_var=network, filter_size=6, n_filters=128, stride=1) # Max pooling name = "l{}_pool".format(self.layer_idx) network = max_pool_1d(name=name, input_var=network, pool_size=2, stride=2) self.activations.append((name, network)) self.layer_idx += 1 # Flatten name = "l{}_flat".format(self.layer_idx) network = flatten(name=name, input_var=network) self.activations.append((name, network)) self.layer_idx += 1 output_conns.append(network) ######### Aggregate and link two CNNs ######### # Concat name = "l{}_concat".format(self.layer_idx) network = tf.concat(axis=1, values=output_conns, name=name) self.activations.append((name, network)) self.layer_idx += 1 # Dropout if self.use_dropout: name = "l{}_dropout".format(self.layer_idx) if self.is_train: network = tf.nn.dropout(network, keep_prob=0.5, name=name) else: network = tf.nn.dropout(network, keep_prob=1.0, name=name) self.activations.append((name, network)) self.layer_idx += 1 return network def init_ops(self): self._build_placeholder() # Get loss and prediction operations with tf.compat.v1.variable_scope(self.name) as scope: # Reuse variables for validation if self.reuse_params: scope.reuse_variables() # Build model network = self.build_model(input_var=self.input_var) # Softmax linear name = "l{}_softmax_linear".format(self.layer_idx) network = fc(name=name, input_var=network, n_hiddens=self.n_classes, bias=0.0, wd=0) self.activations.append((name, network)) self.layer_idx += 1 # Outputs of softmax linear are logits self.logits = network ######### Compute loss ######### # Cross-entropy loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.logits, labels=self.target_var, name="sparse_softmax_cross_entropy_with_logits" ) loss = tf.reduce_mean(loss, name="cross_entropy") # Regularization loss regular_loss = tf.add_n( tf.compat.v1.get_collection("losses", scope=scope.name + "\/"), name="regular_loss" ) # print " " # print "Params to compute regularization loss:" # for p in tf.compat.v1.get_collection("losses", scope=scope.name + "\/"): # print p.name # print " " # Total loss self.loss_op = tf.add(loss, regular_loss) # Predictions self.pred_op = tf.argmax(self.logits, 1) class DeepSleepNet(DeepFeatureNet): def __init__( self, batch_size, input_dims, n_classes, seq_length, n_rnn_layers, return_last, is_train, reuse_params, use_dropout_feature, use_dropout_sequence, name="deepsleepnet" ): super(self.__class__, self).__init__( batch_size=batch_size, input_dims=input_dims, n_classes=n_classes, is_train=is_train, reuse_params=reuse_params, use_dropout=use_dropout_feature, name=name ) self.seq_length = seq_length self.n_rnn_layers = n_rnn_layers self.return_last = return_last self.use_dropout_sequence = use_dropout_sequence def _build_placeholder(self): # Input name = "x_train" if self.is_train else "x_valid" self.input_var = tf.compat.v1.placeholder( tf.float32, shape=[self.batch_size*self.seq_length, self.input_dims, 1, 1], name=name + "_inputs" ) # Target self.target_var = tf.compat.v1.placeholder( tf.int32, shape=[self.batch_size*self.seq_length, ], name=name + "_targets" ) def build_model(self, input_var): # Create a network with superclass method network = super(self.__class__, self).build_model( input_var=self.input_var ) # Residual (or shortcut) connection output_conns = [] # Fully-connected to select some part of the output to add with the output from bi-directional LSTM name = "l{}_fc".format(self.layer_idx) with tf.compat.v1.variable_scope(name) as scope: output_tmp = fc(name="fc", input_var=network, n_hiddens=1024, bias=None, wd=0) output_tmp = batch_norm_new(name="bn", input_var=output_tmp, is_train=self.is_train) # output_tmp = leaky_relu(name="leaky_relu", input_var=output_tmp) output_tmp = tf.nn.relu(output_tmp, name="relu") self.activations.append((name, output_tmp)) self.layer_idx += 1 output_conns.append(output_tmp) ###################################################################### # Reshape the input from (batch_size * seq_length, input_dim) to # (batch_size, seq_length, input_dim) name = "l{}_reshape_seq".format(self.layer_idx) input_dim = network.get_shape()[-1].value seq_input = tf.reshape(network, shape=[-1, self.seq_length, input_dim], name=name) assert self.batch_size == seq_input.get_shape()[0].value self.activations.append((name, seq_input)) self.layer_idx += 1 # Bidirectional LSTM network name = "l{}_bi_lstm".format(self.layer_idx) hidden_size = 512 # will output 1024 (512 forward, 512 backward) with tf.compat.v1.variable_scope(name) as scope: def lstm_cell(): cell = tf.compat.v1.nn.rnn_cell.LSTMCell(hidden_size, use_peepholes=True, state_is_tuple=True, reuse=tf.compat.v1.get_variable_scope().reuse) if self.use_dropout_sequence: keep_prob = 0.5 if self.is_train else 1.0 cell = tf.compat.v1.nn.rnn_cell.DropoutWrapper( cell, output_keep_prob=keep_prob ) return cell fw_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell([lstm_cell() for _ in range(self.n_rnn_layers)], state_is_tuple = True) bw_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell([lstm_cell() for _ in range(self.n_rnn_layers)], state_is_tuple = True) # Initial state of RNN self.fw_initial_state = fw_cell.zero_state(self.batch_size, tf.float32) self.bw_initial_state = bw_cell.zero_state(self.batch_size, tf.float32) # Feedforward to MultiRNNCell list_rnn_inputs = tf.unstack(seq_input, axis=1) #outputs, fw_state, bw_state = tf.nn.bidirectional_rnn( outputs, fw_state, bw_state = tf.compat.v1.nn.static_bidirectional_rnn( cell_fw=fw_cell, cell_bw=bw_cell, inputs=list_rnn_inputs, initial_state_fw=self.fw_initial_state, initial_state_bw=self.bw_initial_state ) if self.return_last: network = outputs[-1] else: network = tf.reshape(tf.concat(axis=1, values=outputs), [-1, hidden_size*2], name=name) self.activations.append((name, network)) self.layer_idx +=1 self.fw_final_state = fw_state self.bw_final_state = bw_state # Append output output_conns.append(network) ###################################################################### # Add name = "l{}_add".format(self.layer_idx) network = tf.add_n(output_conns, name=name) self.activations.append((name, network)) self.layer_idx += 1 # Dropout if self.use_dropout_sequence: name = "l{}_dropout".format(self.layer_idx) if self.is_train: network = tf.nn.dropout(network, keep_prob=0.5, name=name) else: network = tf.nn.dropout(network, keep_prob=1.0, name=name) self.activations.append((name, network)) self.layer_idx += 1 return network def init_ops(self): self._build_placeholder() # Get loss and prediction operations with tf.compat.v1.variable_scope(self.name) as scope: # Reuse variables for validation if self.reuse_params: scope.reuse_variables() # Build model network = self.build_model(input_var=self.input_var) # Softmax linear name = "l{}_softmax_linear".format(self.layer_idx) network = fc(name=name, input_var=network, n_hiddens=self.n_classes, bias=0.0, wd=0) self.activations.append((name, network)) self.layer_idx += 1 # Outputs of softmax linear are logits self.logits = network ######### Compute loss ######### # Weighted cross-entropy loss for a sequence of logits (per example) loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [self.logits], [self.target_var], [tf.ones([self.batch_size * self.seq_length])], name="sequence_loss_by_example" ) loss = tf.reduce_sum(loss) / self.batch_size # Regularization loss regular_loss = tf.add_n( tf.compat.v1.get_collection("losses", scope=scope.name + "\/"), name="regular_loss" ) # print " " # print "Params to compute regularization loss:" # for p in tf.compat.v1.get_collection("losses", scope=scope.name + "\/"): # print p.name # print " " # Total loss self.loss_op = tf.add(loss, regular_loss) # Predictions self.pred_op = tf.argmax(self.logits, 1)
73901
from concurrent.futures import Future, ThreadPoolExecutor import logging from vonx.indy.messages import StoredCredential from vonx.web.view_helpers import ( IndyCredentialProcessor, IndyCredentialProcessorException, ) from api_indy.indy.credential import Credential, CredentialException, CredentialManager from .boot import run_django_proc LOGGER = logging.getLogger(__name__) class CredentialProcessorQueue(IndyCredentialProcessor): def __init__(self, max_threads=10): super(CredentialProcessorQueue, self).__init__() self._max_threads = max_threads def setup(self, app): app["credqueue"] = self app.on_startup.append(self.app_start) app.on_cleanup.append(self.app_stop) async def app_start(self, _app=None): self.start() async def app_stop(self, _app=None): self.stop() def start(self): self._executor = ThreadPoolExecutor(max_workers=self._max_threads) def stop(self): self._executor.shutdown(True) def start_batch(self) -> object: """ May return batch info used for caching and/or scheduling """ return {"manager": CredentialManager()} def get_manager(self, batch_info): if batch_info: return batch_info["manager"] return CredentialManager() def process_credential( self, stored: StoredCredential, origin_did: str = None, batch_info=None) -> Future: """ Perform credential processing and create related objects. Processing can be deferred until end_batch to determine appropriate chunk size, currently using naive :class:`ThreadPoolExecutor` """ cred = Credential(stored.cred.cred_data, stored.cred.cred_req_metadata, stored.cred_id) credential_manager = self.get_manager(batch_info) LOGGER.info("Processing credential %s for DID %s", stored.cred_id, origin_did) def proc(): try: return credential_manager.process(cred, origin_did) except CredentialException as e: raise IndyCredentialProcessorException(str(e)) from e return self._executor.submit(run_django_proc, proc) def end_batch(self, batch_info): """ Ensure that processing has been kicked off """ pass
73910
import sys from unittest.mock import MagicMock import pytest from lightning_transformers.core.nlp import HFBackboneConfig, HFTransformerDataConfig from lightning_transformers.task.nlp.text_classification import ( TextClassificationDataModule, TextClassificationTransformer, ) @pytest.mark.skipif(sys.platform == "win32", reason="Currently Windows is not supported") def test_smoke_train_e2e(script_runner): script_runner.hf_train(task="text_classification", dataset="emotion", model="prajjwal1/bert-tiny") @pytest.mark.skipif(sys.platform == "win32", reason="Currently Windows is not supported") def test_smoke_train_default_dataset(script_runner): script_runner.hf_train( task="text_classification", model="prajjwal1/bert-tiny", cmd_args=['dataset.cfg.dataset_name="emotion"'] ) def test_smoke_predict_e2e(script_runner): y = script_runner.hf_predict(['+x="Lightning rocks!"'], task="text_classification", model="prajjwal1/bert-tiny") assert len(y) == 1 assert isinstance(y[0]["score"], float) def test_predict_from_ckpt_path(script_runner, tmpdir): script_runner.hf_train( task="text_classification", dataset="emotion", model="prajjwal1/bert-tiny", cmd_args=[f"trainer.default_root_dir={tmpdir}"], fast_dev_run=0, ) ckpt_path = tmpdir / "checkpoints" / "epoch=0-step=0.ckpt" assert ckpt_path.exists() y = script_runner.hf_predict( ['+x="Lightning rocks!"', f'+checkpoint_path="{ckpt_path}"'], task="text_classification", model="prajjwal1/bert-tiny", ) assert len(y) == 1 assert isinstance(y[0]["score"], float) def test_model_has_correct_cfg(): model = TextClassificationTransformer(HFBackboneConfig(pretrained_model_name_or_path="bert-base-cased")) assert model.hparams.downstream_model_type == "transformers.AutoModelForSequenceClassification" def test_datamodule_has_correct_cfg(): tokenizer = MagicMock() dm = TextClassificationDataModule(tokenizer) assert type(dm.cfg) is HFTransformerDataConfig assert dm.tokenizer is tokenizer
73940
import unittest import rxbp from rxbp.flowable import Flowable from rxbp.multicast.multicast import MultiCast from rxbp.multicast.multicastsubscriber import MultiCastSubscriber from rxbp.multicast.multicasts.loopflowablemulticast import LoopFlowableMultiCast from rxbp.multicast.testing.testmulticast import TestMultiCast from rxbp.multicast.testing.testmulticastobserver import TestMultiCastObserver from rxbp.observerinfo import ObserverInfo from rxbp.subscriber import Subscriber from rxbp.testing.testflowable import TestFlowable from rxbp.testing.tobserver import TObserver from rxbp.testing.tscheduler import TScheduler class TestLoopFlowablesMultiCast(unittest.TestCase): def setUp(self) -> None: self.multicast_scheduler = TScheduler() self.source_scheduler = TScheduler() self.info = MultiCastInfo( multicast_scheduler=self.multicast_scheduler, source_scheduler=self.source_scheduler, ) self.source_multicast = TestMultiCast() self.rx_sink = TestMultiCastObserver() self.source1 = TestFlowable() self.source2 = TestFlowable() def test_send_single_flowable(self): reduce_multicast = LoopFlowableMultiCast( source=self.source_multicast, func=lambda m: MultiCast(m).pipe( rxbp.multicast.op.map(lambda t: t[0]), ), initial=[0], ) reduce_multicast.get_source(self.info).subscribe(self.rx_sink) self.source_multicast.on_next(Flowable(self.source1)) self.assertEqual(1, len(self.rx_sink.received)) def test_subscribe_single_flowable(self): reduce_multicast = LoopFlowableMultiCast( source=self.source_multicast, func=lambda m: MultiCast(m).pipe( rxbp.multicast.op.map(lambda t: t[0]), ), initial=[10], ) reduce_multicast.get_source(self.info).subscribe(self.rx_sink) self.source_multicast.on_next(Flowable(self.source1)) sink = TObserver(immediate_continue=0) subscription = self.rx_sink.received[0].unsafe_subscribe(Subscriber( scheduler=self.source_scheduler, subscribe_scheduler=self.source_scheduler, )) subscription.observable.observe(init_observer_info(sink)) self.multicast_scheduler.advance_by(1) self.source_scheduler.advance_by(1) # self.source1.on_next_single(0) print(sink.received) self.assertEqual([10], sink.received) # def test_send_dictionary(self): # reduce_multicast = ReduceMultiCast(source=self.source_multicast) # reduce_multicast.get_source(self.info).subscribe(self.rx_sink) # # self.source_multicast.on_next({'f1': Flowable(self.source1)}) # # self.assertEqual(1, len(self.rx_sink.received)) # # def test_reduce_single_flowables_without_maintaining_order(self): # reduce_multicast = ReduceMultiCast(source=self.source_multicast) # reduce_multicast.get_source(self.info).subscribe(self.rx_sink) # self.source_multicast.on_next(Flowable(self.source1)) # self.source_multicast.on_next(Flowable(self.source2)) # self.source_multicast.on_completed() # # sink = TestObserver() # subscription = self.rx_sink.received[0].unsafe_subscribe(Subscriber( # scheduler=self.source_scheduler, # subscribe_scheduler=self.source_scheduler # )) # subscription.observable.observe(init_observer_info(observer=sink)) # # # sending the lifted flowable is scheduled on the multicast_scheduler # self.multicast_scheduler.advance_by(1) # # self.source1.on_next_single(1) # self.source2.on_next_single('a') # self.source1.on_next_single(2) # self.source1.on_completed() # self.source2.on_next_single('b') # self.source2.on_completed() # # self.assertEqual([1, 'a', 2, 'b'], sink.received) # self.assertTrue(sink.is_completed) # # def test_reduce_single_flowables_with_maintaining_order(self): # reduce_multicast = ReduceMultiCast( # source=self.source_multicast, # maintain_order=True, # ) # reduce_multicast.get_source(self.info).subscribe(self.rx_sink) # self.source_multicast.on_next(Flowable(self.source1)) # self.source_multicast.on_next(Flowable(self.source2)) # self.source_multicast.on_completed() # # sink = TestObserver() # subscription = self.rx_sink.received[0].unsafe_subscribe(Subscriber( # scheduler=self.source_scheduler, # subscribe_scheduler=self.source_scheduler # )) # subscription.observable.observe(init_observer_info(observer=sink)) # # # sending the lifted flowable is scheduled on the multicast_scheduler # self.multicast_scheduler.advance_by(1) # # self.source1.on_next_single(1) # self.source2.on_next_single('a') # self.source1.on_next_single(2) # self.source1.on_completed() # self.source2.on_next_single('b') # self.source2.on_completed() # # self.assertEqual([1, 2, 'a', 'b'], sink.received) # self.assertTrue(sink.is_completed)
73949
from functools import partial from itertools import groupby from couchdbkit import ResourceNotFound from corehq.apps.domain import SHARED_DOMAIN, UNKNOWN_DOMAIN from corehq.blobs import CODES from corehq.blobs.mixin import BlobHelper, BlobMetaRef from corehq.blobs.models import BlobMigrationState, BlobMeta from corehq.form_processor.backends.sql.dbaccessors import ReindexAccessor from corehq.util.doc_processor.sql import SqlDocumentProvider import corehq.apps.accounting.models as acct import corehq.apps.app_manager.models as apps import corehq.apps.hqmedia.models as hqmedia from corehq.apps.builds.models import CommCareBuild from corehq.apps.case_importer.tracking.models import CaseUploadFileMeta, CaseUploadRecord from corehq.apps.domain.models import Domain from corehq.apps.export import models as exports from corehq.apps.ota.models import DemoUserRestore from corehq.apps.users.models import CommCareUser import casexml.apps.case.models as cases import couchforms.models as xform class MultiDbMigrator(object): def __init__(self, slug, couch_types, sql_reindexers): self.slug = slug self.couch_types = couch_types self.sql_reindexers = sql_reindexers def iter_migrators(self): from . import migrate as mod NoStateMigrator, SqlMigrator, BlobMetaMigrator = make_migrators(mod) couch_migrator = partial(BlobMetaMigrator, blob_helper=couch_blob_helper) def db_key(doc_type): if isinstance(doc_type, tuple): doc_type = doc_type[1] return doc_type.get_db().dbname for key, types in groupby(sorted(self.couch_types, key=db_key), key=db_key): slug = "%s-%s" % (self.slug, key) yield NoStateMigrator(slug, list(types), couch_migrator) for rex in self.sql_reindexers: slug = "%s-%s" % (self.slug, rex.model_class.__name__) yield SqlMigrator(slug, rex(), BlobMetaMigrator) def migrate(self, filename, *args, **kw): def filen(n): return None if filename is None else "{}.{}".format(filename, n) migrated = 0 skipped = 0 for n, item in enumerate(self.iter_migrators()): one_migrated, one_skipped = item.migrate(filen(n), *args, **kw) migrated += one_migrated skipped += one_skipped print("\n") if not skipped: BlobMigrationState.objects.get_or_create(slug=self.slug)[0].save() return migrated, skipped def make_migrators(mod): # defer class definitions to work around circular import class BlobMetaMigrator(mod.BaseDocMigrator): """Migrate blob metadata to BlobMeta model""" def __init__(self, *args, **kw): super(BlobMetaMigrator, self).__init__(*args, **kw) self.total_blobs = 0 def migrate(self, doc): if not doc.get("external_blobs"): return True type_code = self.get_type_code(doc) obj = self.blob_helper(doc, self.couchdb, type_code) domain = obj.domain if domain is None: self.error(obj, { "error": "unknown-domain", "doc_type": obj.doc_type, "doc_id": obj._id, }) domain = UNKNOWN_DOMAIN if getattr(obj, "_attachments", None): self.error(obj, { "error": "ignored-couch-attachments", "doc_type": obj.doc_type, "doc_id": obj._id, "domain": obj.domain, "attachments": obj._attachments, }) with BlobMeta.get_cursor_for_partition_value(doc['_id']) as cursor: for name, meta in obj.external_blobs.items(): if meta.blobmeta_id is not None: # blobmeta already saved continue cursor.execute(""" INSERT INTO blobs_blobmeta ( domain, type_code, parent_id, name, key, content_type, content_length, created_on ) VALUES (%s, %s, %s, %s, %s, %s, %s, CLOCK_TIMESTAMP()) ON CONFLICT (key) DO NOTHING """, params=[ domain, type_code, doc["_id"], name, meta.key, meta.content_type, meta.content_length or 0, ]) self.total_blobs += 1 return True def error(self, obj, doc): print("Error: %s %r" % (doc["error"], obj)) super(BlobMetaMigrator, self).write_backup(doc) class NoStateMigrator(mod.Migrator): def write_migration_completed_state(self): pass class SqlMigrator(NoStateMigrator): def __init__(self, slug, reindexer, doc_migrator_class): types = [reindexer.model_class] def doc_migrator(*args, **kw): kw["blob_helper"] = reindexer.blob_helper kw["get_type_code"] = reindexer.get_type_code return doc_migrator_class(*args, **kw) super(SqlMigrator, self).__init__(slug, types, doc_migrator) self.reindexer = reindexer def get_document_provider(self): return SqlDocumentProvider(self.iteration_key, self.reindexer) return NoStateMigrator, SqlMigrator, BlobMetaMigrator class SqlBlobHelper(object): """Adapt a SQL model object to look like a BlobHelper This is currently built on the assumtion that the SQL model only references a single blob, and the blob name is not used. """ def __init__(self, obj, key, domain, reindexer): self.obj = obj self.domain = domain self.blobs = {"": BlobMetaRef(key=key, **reindexer.blob_kwargs(obj))} self.external_blobs = self.blobs def __repr__(self): return "<%s %s domain=%s id=%s>" % ( type(self).__name__, self.doc_type, self.domain, self._id, ) @property def _id(self): # NOTE unlike couch documents, this is different from `doc["_id"]`, # the value used to set `BlobMeta.parent_id`. This value should # only be used to identify the record in in case of error. return self.obj.id @property def doc_type(self): return type(self.obj).__name__ def sql_blob_helper(key_attr): def blob_helper(self, doc, *ignored): """This has the same signature as BlobHelper :returns: Object having parts of BlobHelper interface needed for blob migrations (currently only used by BlobMetaMigrator). """ obj = doc["_obj_not_json"] domain = self.get_domain(obj) return SqlBlobHelper(obj, getattr(obj, key_attr), domain, self) return blob_helper class PkReindexAccessor(ReindexAccessor): @property def id_field(self): return 'id' def get_doc(self, *args, **kw): # only used for retries; BlobMetaMigrator doesn't retry raise NotImplementedError def doc_to_json(self, obj, id): return {"_id": str(id), "_obj_not_json": obj, "external_blobs": True} class CaseUploadFileMetaReindexAccessor(PkReindexAccessor): model_class = CaseUploadFileMeta blob_helper = sql_blob_helper("identifier") def doc_to_json(self, obj): return PkReindexAccessor.doc_to_json(self, obj, self.get_domain(obj)) @staticmethod def get_type_code(doc): return CODES.data_import def get_domain(self, obj): try: return CaseUploadRecord.objects.get(upload_file_meta_id=obj.id).domain except CaseUploadRecord.DoesNotExist: return None def blob_kwargs(self, obj): return {"content_length": obj.length} class DemoUserRestoreReindexAccessor(PkReindexAccessor): model_class = DemoUserRestore blob_helper = sql_blob_helper("restore_blob_id") def doc_to_json(self, obj): return PkReindexAccessor.doc_to_json( self, obj, obj.demo_user_id or "DemoUserRestore") @staticmethod def get_type_code(doc): return CODES.demo_user_restore def get_domain(self, obj): try: return CommCareUser.get(obj.demo_user_id).domain except ResourceNotFound: return None def blob_kwargs(self, obj): return {"content_length": obj.content_length, "content_type": "text/xml"} def couch_blob_helper(doc, *args, **kw): obj = BlobHelper(doc, *args, **kw) get_domain = DOMAIN_MAP.get(obj.doc_type) if get_domain is not None: assert not hasattr(obj, "domain"), obj obj.domain = get_domain(doc) elif not hasattr(obj, "domain"): obj.domain = None # will trigger "unknown-domain" error return obj def get_shared_domain(doc): return SHARED_DOMAIN def get_invoice_domain(doc): if doc.get("is_wire"): try: return acct.WireInvoice.objects.get(id=int(doc["invoice_id"])).domain except acct.WireInvoice.DoesNotExist: return None # trigger "unknown-domain" error # customer invoice has no domain return UNKNOWN_DOMAIN DOMAIN_MAP = { "InvoicePdf": get_invoice_domain, "CommCareBuild": get_shared_domain, "CommCareAudio": get_shared_domain, "CommCareImage": get_shared_domain, "CommCareVideo": get_shared_domain, "CommCareMultimedia": get_shared_domain, } migrate_metadata = lambda: MultiDbMigrator("migrate_metadata", couch_types=[ apps.Application, apps.LinkedApplication, apps.RemoteApp, ("Application-Deleted", apps.Application), ("RemoteApp-Deleted", apps.RemoteApp), apps.SavedAppBuild, CommCareBuild, Domain, acct.InvoicePdf, hqmedia.CommCareAudio, hqmedia.CommCareImage, hqmedia.CommCareVideo, hqmedia.CommCareMultimedia, cases.CommCareCase, ('CommCareCase-deleted', cases.CommCareCase), ('CommCareCase-Deleted', cases.CommCareCase), ('CommCareCase-Deleted-Deleted', cases.CommCareCase), exports.CaseExportInstance, exports.FormExportInstance, exports.SMSExportInstance, ], sql_reindexers=[ CaseUploadFileMetaReindexAccessor, DemoUserRestoreReindexAccessor, ], )
73983
import os from setuptools import find_packages, setup from openwisp_ipam import get_version with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() def get_install_requires(): """ parse requirements.txt, ignore links, exclude comments """ requirements = [] for line in open('requirements.txt').readlines(): if line.startswith('#') or line == '' or line.startswith('git'): continue requirements.append(line) return requirements setup( name='openwisp-ipam', version=get_version(), license='BSD-3-Clause', author='OpenWISP', author_email='<EMAIL>', description='IP address space administration module of OpenWISP.', long_description=README, url='https://github.com/openwisp/openwisp-ipam', download_url='https://github.com/openwisp/openwisp-ipam/releases', platforms=['Platform Independent'], keywords=['django', 'freeradius', 'networking', 'openwisp'], packages=find_packages(exclude=['tests*', 'docs*']), include_package_data=True, zip_safe=False, install_requires=get_install_requires(), classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Topic :: Internet :: WWW/HTTP', 'Topic :: System :: Networking', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Framework :: Django', 'Programming Language :: Python :: 3', ], )
73992
from stack import Stack class Graph: def __init__(self): self.vertices: list = [] self.adjacencyList: dict = {} self.distance: dict = {} self.prev: dict = {} self.colors: dict = {} self.entry: dict = {} self.exit: dict = {} self.time: int = 0 def addVertex(self, label: str): self.vertices.append(label) self.adjacencyList[label]: list = [] self.distance[label] = 0 self.prev[label] = None self.colors[label] = "white" def addEdge(self, label1: str, label2: str): self.adjacencyList[label1].append(label2) self.adjacencyList[label2].append(label1) def dfs(self, label: str): s = Stack() s.push(label) self.colors[label] = "gray" self.time += 1 self.entry[label] = self.time current: str neighbour: str while not s.isEmpty(): current = s.peek() neighbour = self.findUnvisitedNeighbour(current) if neighbour is not None: self.colors[neighbour] = "gray" self.distance[neighbour] = self.distance[current] + 1 self.prev[neighbour] = current self.time += 1 self.entry[neighbour] = self.time s.push(neighbour) else: s.pop() self.time += 1 self.exit[current] = self.time self.colors[current] = "black" def findUnvisitedNeighbour(self, label: str): count: int = 0 found: bool = False neighbour: str = None while count < len(self.adjacencyList[label]) and not found: if self.colors[self.adjacencyList[label][count]] == "white": found = True neighbour = self.adjacencyList[label][count] else: count += 1 return neighbour def showPath(self, end: str)->str: if self.prev[end] is None: return end else: return self.showPath(self.prev[end]) + " -> " + end
73993
import csv filename = 'ch02-data.tab' data = [] try: with open(filename) as f: reader = csv.reader(f, dialect=csv.excel_tab) c = 0 for row in reader: if c == 0: header = row else: data.append(row) c += 1 except csv.Error as e: print "Error reading CSV file at line %s: %s" % (reader.line_num, e) sys.exit(-1) if header: print header print '===================' for datarow in data: print datarow
74001
import contextlib from datetime import datetime, timedelta from typing import Iterable, Optional, Tuple, Union import jwt with open("tests/key/private_key", "rb") as f: private_key = f.read() with open("tests/key/public_key", "rb") as f: public_key = f.read() ACCESS_COOKIE_NAME = "access" REFRESH_COOKIE_NAME = "refresh" class User: """ Setup a user object with the given id, username and admin status. """ def __init__(self, id: int, username: str, admin: bool): self.id = id self.username = username self.is_admin = admin self.data = {"id": id, "username": username} def mock_get_authenticated_user(): """ Mock the get_authenticated_user function to return a user object. Returns: User: A user object. """ class User: def __init__(self): """ Setup a user object with the given id, username and admin status. """ self.id = 2 self.username = "user" self.is_admin = False self.data = {"id": self.id, "username": self.username} return User() class MockDatabaseBackend: """ Mock the get_authenticated_user function to return a user object. """ def __init__(self, database_name): self._incr = 5 self._users = [ { "id": 1, "email": "<EMAIL>", "username": "admin", "password": "<PASSWORD>", "active": True, "confirmed": True, "permissions": ["admin"], }, { "id": 2, "email": "<EMAIL>", "username": "user", "password": "<PASSWORD>", "active": True, "confirmed": True, "permissions": [], }, { "id": 3, "email": "<EMAIL>", "username": "anotheruser", "password": "<PASSWORD>", "active": True, "confirmed": False, "permissions": [], }, { "id": 4, "email": "<EMAIL>", "username": "inactiveuser", "password": "<PASSWORD>", "active": False, "confirmed": True, "permissions": [], }, { "id": 5, "email": "<EMAIL>", "username": "socialuser", "provider": "google", "sid": "8888", "active": False, "confirmed": True, "permissions": [], }, ] self._email_confirmations = [] def _increment_id(self) -> int: self._incr += 1 return self._incr def _get(self, field: str, value) -> Optional[dict]: return next((item for item in self._users if item.get(field) == value), None) async def get(self, id: int) -> Optional[dict]: return self._get("id", id) async def get_by_email(self, email: str) -> Optional[dict]: return self._get("email", email) async def get_by_username(self, username: str) -> Optional[dict]: return self._get("username", username) async def get_by_social(self, provider: str, sid: str) -> Optional[dict]: return next( ( item for item in self._users if item.get("provider") == provider and item.get("sid") == sid ), None, ) # pragma: no cover async def create(self, obj: dict) -> int: id = self._increment_id() obj["id"] = id self._users.append(obj) return id async def update(self, id: int, obj: dict) -> bool: for i, item in enumerate(self._users): if item.get("id") == id: self._users[i].update(obj) return True return False # pragma: no cover async def delete(self, id: int) -> bool: """ Delete a user. Args: id (int): The user id to delete. Returns: bool: True if the user was deleted, False otherwise. """ for i, item in enumerate(self._users): # pragma: no cover if item.get("id") == id: # pragma: no cover del self._users[i] # pragma: no cover return True # pragma: no cover return False # pragma: no cover async def count(self, query) -> int: return 42 # pragma: no cover async def request_email_confirmation(self, email: str, token_hash: str) -> None: """ Add a new email confirmation to the list. Args: email (str): The email address to confirm. token_hash (str): The token hash to confirm. Returns: None """ for i, item in enumerate(self._email_confirmations): if item.get("email") == email: # pragma: no cover self._email_confirmations[i].update( {"token": token_hash} ) # pragma: no cover return None # pragma: no cover self._email_confirmations.append({"email": email, "token": token_hash}) async def confirm_email(self, token_hash: str) -> bool: """ Confirm an email address. Args: token_hash (str): The token hash to confirm. Returns: bool: True if the email was confirmed, False otherwise. """ for item in self._email_confirmations: if item.get("token") == token_hash: user = self._get("email", item.get("email")) await self.update(user.get("id"), {"confirmed": True}) return True return False async def get_blacklist(self) -> Iterable[dict]: """ Get the blacklist. Returns: Iterable[dict]: The blacklist. """ return [ item for item in self._users if not item.get("active") ] # pragma: no cover async def search(self) -> Tuple[dict, int]: return self._users, 1 # pragma: no cover class MockCacheBackend: """ mock the cache backend. """ def __init__(self) -> None: self._db = {} async def get(self, key: str) -> Optional[str]: return self._db.get(key) async def delete(self, key: str) -> None: with contextlib.suppress(KeyError): self._db.pop(key) async def keys(self, match: str) -> Iterable[str]: return {} # pragma: no cover async def set(self, key: str, value: Union[str, bytes, int], expire: int) -> None: self._db[key] = value async def setnx(self, key: str, value: Union[str, bytes, int], expire: int) -> None: v = self._db.get(key) # pragma: no cover if v is None: # pragma: no cover self._db[key] = value # pragma: no cover async def incr(self, key: str) -> str: v = self._db.get(key) if v is not None: self._db[key] = int(v) + 1 async def dispatch_action(self, channel: str, action: str, payload: str) -> None: print("Dispatching action") # pragma: no cover print(action) # pragma: no cover print(payload) # pragma: no cover class MockAuthBackend: @classmethod def create( cls, jwt_algorithm: str, private_key: bytes, public_key: bytes, access_expiration: int, refresh_expiration: int, ) -> None: pass # pragma: no cover def __init__( self, jwt_algorithm: str, private_key: bytes, public_key: bytes, access_expiration: int = 60 * 5, refresh_expiration: int = 60 * 10, ): self._jwt_algorithm = jwt_algorithm self._private_key = private_key self._public_key = public_key self._access_expiration = access_expiration self._refresh_expiration = refresh_expiration self._private_key = private_key self._public_key = public_key async def decode_token(self, token: str, leeway: int = 0) -> Optional[dict]: """ Decode a JWT token. Args: token (str): The JWT token to decode. leeway (int, optional): The leeway to use when decoding the token. Defaults to 0. Returns: Optional[dict]: The decoded token. """ if token: return jwt.decode(token, key=self._public_key, algorithms="RS256") return None # pragma: no cover def _create_token( self, payload: dict, token_type: str, expiration_delta: Optional[int] = None ) -> str: iat = datetime.utcnow() if expiration_delta: exp = datetime.utcnow() + timedelta(seconds=expiration_delta) else: exp = datetime.utcnow() + timedelta(seconds=60) # pragma: no cover payload |= {"iat": iat, "exp": exp, "type": token_type} token = jwt.encode(payload, self._private_key, algorithm=self._jwt_algorithm) if isinstance(token, bytes): # For PyJWT <= 1.7.1 return token.decode("utf-8") # pragma: no cover # For PyJWT >= 2.0.0a1 return token def create_access_token(self, payload: dict) -> str: return self._create_token(payload, "access", 60 * 5) def create_refresh_token(self, payload: dict) -> str: return self._create_token(payload, "refresh", 60 * 10) def create_tokens(self, payload: dict) -> dict: access = self.create_access_token(payload) refresh = self.create_refresh_token(payload) return {"access": access, "refresh": refresh} class MockEmailClient: def __init__(self, *args): pass async def send_confirmation_email(self, *args): """ Send a confirmation email. """ async def send_forgot_password_email(self, *args): """ Send a forgot password email. """ def mock_verify_password(password: str, db_password: str) -> bool: return password == <PASSWORD> def mock_admin_required(): pass
74006
import logging from mpfmc.tests.MpfMcTestCase import MpfMcTestCase from unittest.mock import MagicMock, ANY try: from mpfmc.core.audio import SoundSystem from mpfmc.assets.sound import SoundStealingMethod except ImportError: SoundSystem = None SoundStealingMethod = None logging.warning("mpfmc.core.audio library could not be loaded. Audio " "features will not be available") class TestAudioSoundLoop(MpfMcTestCase): """Test audio sound loops.""" def get_machine_path(self): return 'tests/machine_files/audio' def get_config_file(self): return 'test_audio_sound_loop.yaml' def test_sound_loop_track(self): """ Tests the Sound Loop track type and its associated assets""" if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) # Check sound loop track track_loops = interface.get_track_by_name("loops") self.assertIsNotNone(track_loops) self.assertEqual(track_loops.name, "loops") self.assertAlmostEqual(track_loops.volume, 0.6, 1) # /sounds/loops self.assertTrue(hasattr(self.mc, 'sounds')) self.assertIn('hihat', self.mc.sounds) self.assertIn('kick', self.mc.sounds) self.assertIn('kick2', self.mc.sounds) # Sound loop sets self.assertTrue(hasattr(self.mc, 'sound_loop_sets')) self.assertIn('hi_hat', self.mc.sound_loop_sets) self.assertIn('basic_beat', self.mc.sound_loop_sets) self.assertIn('basic_beat2', self.mc.sound_loop_sets) # Mock BCP send method self.mc.bcp_processor.send = MagicMock() self.mc.bcp_processor.enabled = True # Test sound_loop_player self.advance_time() status = track_loops.get_status() self.assertEqual(0, len(status)) self.mc.events.post('play_hi_hat') self.advance_real_time(1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['sound_id']) self.assertEqual(130.0, status[0]['tempo']) # Ensure sound_loop_set.events_when_played is working properly (send event when a sound_loop_set is played) self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_played') self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_looping') self.mc.bcp_processor.send.reset_mock() self.mc.events.post('play_basic_beat') self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(2, len(status)) self.assertEqual('delayed', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.assertEqual('playing', status[1]['status']) self.assertEqual(325660, status[1]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[1]['sound_id']) self.assertEqual(status[0]['start_delay_samples_remaining'], status[1]['stop_loop_samples_remaining']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_stopped') self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_played') status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_looping') self.mc.bcp_processor.send.reset_mock() status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.mc.events.post('play_hi_hat') self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(2, len(status)) self.assertEqual('delayed', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['sound_id']) self.assertEqual('playing', status[1]['status']) self.assertEqual(325660, status[1]['length']) self.assertEqual(self.mc.sounds['kick'].id, status[1]['sound_id']) self.assertEqual(status[0]['start_delay_samples_remaining'], status[1]['stop_loop_samples_remaining']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_stopped') self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_played') status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['sound_id']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_looping') self.mc.bcp_processor.send.reset_mock() status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['sound_id']) self.mc.events.post('play_basic_beat2') self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(2, len(status)) self.assertEqual('delayed', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick2'].id, status[0]['sound_id']) self.assertEqual('playing', status[1]['status']) self.assertEqual(325660, status[1]['length']) self.assertEqual(self.mc.sounds['hihat'].id, status[1]['sound_id']) self.assertEqual(status[0]['start_delay_samples_remaining'], status[1]['stop_loop_samples_remaining']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='hi_hat_stopped') self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat2_played') status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick2'].id, status[0]['sound_id']) self.advance_real_time(2) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat2_looping') status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick2'].id, status[0]['sound_id']) def test_sound_loop_track_layers(self): """ Tests the Sound Loop track layers""" if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) # Check sound loop track track_loops = interface.get_track_by_name("loops") self.assertIsNotNone(track_loops) self.assertEqual(track_loops.name, "loops") self.assertAlmostEqual(track_loops.volume, 0.6, 1) # /sounds/loops self.assertTrue(hasattr(self.mc, 'sounds')) self.assertIn('kick', self.mc.sounds) self.assertIn('kick2', self.mc.sounds) self.assertIn('hihat', self.mc.sounds) self.assertIn('snare', self.mc.sounds) self.assertIn('clap', self.mc.sounds) self.assertIn('bass_synth', self.mc.sounds) self.assertEqual(1, self.mc.sounds["kick"].marker_count) self.assertEqual(2, self.mc.sounds["hihat"].marker_count) # Sound loop sets self.assertTrue(hasattr(self.mc, 'sound_loop_sets')) self.assertIn('basic_beat_layers', self.mc.sound_loop_sets) self.assertIn('basic_beat_layers2', self.mc.sound_loop_sets) # Mock BCP send method self.mc.bcp_processor.send = MagicMock() self.mc.bcp_processor.enabled = True # Test sound_loop_player self.advance_time() self.mc.events.post('play_sound_synthping') self.mc.events.post('play_basic_beat_layers') self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(325660, status[0]['length']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.assertEqual(130.0, status[0]['tempo']) self.assertEqual(3, len(status[0]['layers'])) self.assertEqual('stopped', status[0]['layers'][0]['status']) self.assertEqual('stopped', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.advance_real_time(0.9) # Ensure sound_loop_set.events_when_played is working properly (send event when a sound_loop_set is played) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_layers_played') self.mc.events.post('add_hi_hats') self.advance_time() status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.assertEqual(3, len(status[0]['layers'])) self.assertEqual('queued', status[0]['layers'][0]['status']) self.assertEqual('stopped', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.advance_real_time(3) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.assertEqual(3, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('stopped', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.mc.events.post('add_snare') self.mc.events.post('add_claps') self.advance_real_time(2) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds['kick'].id, status[0]['sound_id']) self.assertEqual(3, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('playing', status[0]['layers'][1]['status']) self.assertEqual('playing', status[0]['layers'][2]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) # Ensure sound_loop_set.events_when_looping is working properly (send event when a sound_loop_set loops) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_layers_looping') # Ensure sound marker events are working properly for underlying sounds self.mc.bcp_processor.send.assert_any_call('trigger', name='kick_marker_1', sound_instance=ANY, marker_id=0) self.mc.bcp_processor.send.assert_any_call('trigger', name='hihat_marker_1', sound_instance=ANY, marker_id=0) self.mc.bcp_processor.send.assert_any_call('trigger', name='hihat_marker_2', sound_instance=ANY, marker_id=1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds["kick"].id, status[0]['sound_id']) self.assertEqual(3, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('playing', status[0]['layers'][1]['status']) self.assertEqual('playing', status[0]['layers'][2]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.advance_real_time(2) self.mc.events.post('play_basic_beat_layers2') self.advance_time() status = track_loops.get_status() self.assertEqual(2, len(status)) self.assertEqual('delayed', status[0]['status']) self.assertEqual(self.mc.sounds["kick2"].id, status[0]['sound_id']) self.assertEqual('playing', status[1]['status']) self.assertEqual(self.mc.sounds["kick"].id, status[1]['sound_id']) self.assertEqual(status[0]['start_delay_samples_remaining'], status[1]['stop_loop_samples_remaining']) self.advance_real_time(4) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds["kick2"].id, status[0]['sound_id']) self.assertEqual(4, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('playing', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual('playing', status[0]['layers'][3]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.assertEqual(self.mc.sounds['bass_synth'].id, status[0]['layers'][3]['sound_id']) # Ensure sound_loop_set.events_when_stopped is working properly (send event when a sound_loop_set stops) self.mc.bcp_processor.send.assert_any_call('trigger', name='basic_beat_layers_stopped') self.mc.bcp_processor.send.assert_any_call('trigger', name='sound_loop_set_stopped') self.mc.events.post('fade_out_bass_synth') self.advance_time() status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds["kick2"].id, status[0]['sound_id']) self.assertEqual(4, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('playing', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual('fading out', status[0]['layers'][3]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.assertEqual(self.mc.sounds['bass_synth'].id, status[0]['layers'][3]['sound_id']) self.assertGreater(status[0]['layers'][3]['fade_out_steps'], 0) self.assertGreater(status[0]['layers'][3]['fade_steps_remaining'], 0) self.advance_real_time(4) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(self.mc.sounds["kick2"].id, status[0]['sound_id']) self.assertEqual(4, len(status[0]['layers'])) self.assertEqual('playing', status[0]['layers'][0]['status']) self.assertEqual('playing', status[0]['layers'][1]['status']) self.assertEqual('stopped', status[0]['layers'][2]['status']) self.assertEqual('stopped', status[0]['layers'][3]['status']) self.assertEqual(self.mc.sounds['hihat'].id, status[0]['layers'][0]['sound_id']) self.assertEqual(self.mc.sounds['snare'].id, status[0]['layers'][1]['sound_id']) self.assertEqual(self.mc.sounds['clap'].id, status[0]['layers'][2]['sound_id']) self.assertEqual(self.mc.sounds['bass_synth'].id, status[0]['layers'][3]['sound_id']) self.assertGreater(status[0]['layers'][3]['fade_out_steps'], 0) self.assertEqual(0, status[0]['layers'][3]['fade_steps_remaining']) self.mc.events.post('reset_current_loop') self.advance_real_time(0.1) self.mc.events.post('reset_current_loop') self.advance_real_time(0.1) self.mc.events.post('reset_current_loop') self.advance_real_time(0.1) self.mc.events.post('reset_current_loop') self.advance_real_time(0.2) self.mc.events.post('reset_current_loop') self.advance_real_time(0.1) self.mc.events.post('play_basic_beat_layers') self.mc.events.post('stop_current_loop') self.mc.events.post('play_sound_synthping') self.advance_real_time(2) # Make sure next pending sound_loop_set is cancelled with stop action status = track_loops.get_status() self.assertEqual(0, len(status)) def test_sound_loop_fades(self): """ Tests Sound Loop fading""" if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) # Check sound loop track track_loops = interface.get_track_by_name("loops") self.assertIsNotNone(track_loops) self.assertEqual(track_loops.name, "loops") self.assertAlmostEqual(track_loops.volume, 0.6, 1) # /sounds/loops self.assertTrue(hasattr(self.mc, 'sounds')) self.assertIn('hihat', self.mc.sounds) self.assertIn('kick', self.mc.sounds) self.assertIn('kick2', self.mc.sounds) # Sound loop sets self.assertTrue(hasattr(self.mc, 'sound_loop_sets')) self.assertIn('hi_hat', self.mc.sound_loop_sets) self.assertIn('basic_beat', self.mc.sound_loop_sets) self.assertIn('basic_beat2', self.mc.sound_loop_sets) # Play hi-hat loop and check status track_loops.play_sound_loop_set(self.mc.sound_loop_sets['hi_hat']) self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['hihat'].id) # Now play kick loop and recheck status (both loops should be cross-fading and in sync) track_loops.play_sound_loop_set(self.mc.sound_loop_sets['basic_beat'], None, {'fade_in': 1.0, 'timing': 'now', 'synchronize': True}) self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual('fading out', status[1]['status']) self.assertEqual('fading in', status[0]['status']) self.assertGreater(status[1]['fade_out_steps'], 0) self.assertGreater(status[0]['fade_in_steps'], 1) self.assertEqual(status[1]['sample_pos'], status[0]['sample_pos']) self.assertEqual(status[1]['sound_id'], self.mc.sounds['hihat'].id) self.assertEqual(status[0]['sound_id'], self.mc.sounds['kick'].id) # Recheck status (hi-hat loop should be finished and kick loop should be playing) self.advance_real_time(1.1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['kick'].id) # Now play hi hat loop and recheck status (both loops should be cross-fading and in sync) track_loops.play_sound_loop_set(self.mc.sound_loop_sets['hi_hat'], None, {'fade_in': 2.0, 'timing': 'now', 'synchronize': True}) self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(2, len(status)) self.assertEqual('fading out', status[1]['status']) self.assertEqual('fading in', status[0]['status']) self.assertGreater(status[1]['fade_out_steps'], 0) self.assertGreater(status[0]['fade_in_steps'], 0) self.assertEqual(status[1]['sample_pos'], status[0]['sample_pos']) self.assertEqual(status[1]['sound_id'], self.mc.sounds['kick'].id) self.assertEqual(status[0]['sound_id'], self.mc.sounds['hihat'].id) self.advance_real_time(0.3) # Now play kick 2 and recheck status (new loop should be fading in and other two loops fading out) track_loops.play_sound_loop_set(self.mc.sound_loop_sets['basic_beat2'], None, {'fade_in': 0.8, 'timing': 'now', 'synchronize': False}) self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(3, len(status)) self.assertEqual('fading in', status[0]['status']) self.assertEqual('fading out', status[1]['status']) self.assertEqual('fading out', status[2]['status']) self.assertGreater(status[0]['fade_in_steps'], 0) self.assertGreater(status[1]['fade_out_steps'], 0) self.assertGreater(status[1]['fade_out_steps'], 0) # don't know why this is off by one on Linux self.assertIn(status[0]['fade_steps_remaining'], [status[1]['fade_steps_remaining'], status[1]['fade_steps_remaining'] + 1]) self.assertIn(status[0]['fade_steps_remaining'], [status[2]['fade_steps_remaining'], status[2]['fade_steps_remaining'] + 1]) self.assertEqual(status[1]['sample_pos'], status[2]['sample_pos']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['kick2'].id) self.assertEqual(status[1]['sound_id'], self.mc.sounds['hihat'].id) self.assertEqual(status[2]['sound_id'], self.mc.sounds['kick'].id) def test_sound_loop_timing_settings(self): """ Tests Sound Loop fading""" if SoundSystem is None or self.mc.sound_system is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system is not enabled - skipping audio tests") self.skipTest("Sound system is not enabled") self.assertIsNotNone(self.mc.sound_system) interface = self.mc.sound_system.audio_interface if interface is None: log = logging.getLogger('TestAudioSoundLoop') log.warning("Sound system audio interface could not be loaded - skipping audio tests") self.skipTest("Sound system audio interface could not be loaded") self.assertIsNotNone(interface) # Check sound loop track track_loops = interface.get_track_by_name("loops") self.assertIsNotNone(track_loops) self.assertEqual(track_loops.name, "loops") self.assertAlmostEqual(track_loops.volume, 0.6, 1) # /sounds/loops self.assertTrue(hasattr(self.mc, 'sounds')) self.assertIn('hihat', self.mc.sounds) self.assertIn('kick', self.mc.sounds) self.assertIn('kick2', self.mc.sounds) # Sound loop sets self.assertTrue(hasattr(self.mc, 'sound_loop_sets')) self.assertIn('hi_hat', self.mc.sound_loop_sets) self.assertIn('basic_beat', self.mc.sound_loop_sets) self.assertIn('basic_beat2', self.mc.sound_loop_sets) # Play hi-hat loop and check status track_loops.play_sound_loop_set(self.mc.sound_loop_sets['hi_hat']) self.advance_real_time(0.1) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['hihat'].id) self.advance_real_time(0.5) # Now play kick loop and recheck status (loops should perform a quick cross-fade and switch) track_loops.play_sound_loop_set(self.mc.sound_loop_sets['basic_beat'], None, {'timing': 'now'}) self.advance_real_time(0.2) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['kick'].id) self.advance_real_time(0.3) # Now play second kick loop and recheck status (loops should perform a quick cross-fade and switch) track_loops.play_sound_loop_set(self.mc.sound_loop_sets['basic_beat2'], None, {'timing': 'now'}) self.advance_real_time(0.2) status = track_loops.get_status() self.assertEqual(1, len(status)) self.assertEqual('playing', status[0]['status']) self.assertEqual(status[0]['sound_id'], self.mc.sounds['kick2'].id) self.advance_real_time(0.3)
74020
import time import dweepy import RPi.GPIO as GPIO KEY = 'tweet_about_me' OUTPUT_PIN = 18 OUTPUT_DURATION = 10 GPIO.setmode(GPIO.BCM) GPIO.setup(OUTPUT_PIN, GPIO.OUT) while True: try: for dweet in dweepy.listen_for_dweets_from(KEY): print('Tweet: ' + dweet['content']['text']) GPIO.output(OUTPUT_PIN, True) time.sleep(OUTPUT_DURATION) GPIO.output(OUTPUT_PIN, False) except Exception: pass
74046
import cv2, time #TODO: fix ipcam #import urllib2, base64 import numpy as np class ipCamera(object): def __init__(self,url, user = None, password = None): self.url = url auth_encoded = base64.encodestring('%s:%s' % (user, password))[:-1] self.req = urllib2.Request(self.url) self.req.add_header('Authorization', 'Basic %s' % auth_encoded) def get_frame(self): response = urllib2.urlopen(self.req) img_array = np.asarray(bytearray(response.read()), dtype=np.uint8) frame = cv2.imdecode(img_array, 1) return frame class Camera(object): def __init__(self, camera = 0): self.cam = cv2.VideoCapture(camera) self.valid = False try: resp = self.cam.read() self.shape = resp[1].shape self.valid = True except: self.shape = None def get_frame(self): if self.valid: _,frame = self.cam.read() else: frame = np.ones((480,640,3), dtype=np.uint8) col = (0,256,256) cv2.putText(frame, "(Error: Camera not accessible)", (65,220), cv2.FONT_HERSHEY_PLAIN, 2, col) return frame def release(self): self.cam.release()
74067
import unittest from rcwa import Source, Layer, Plotter, Crystal, Solver, LayerStack from rcwa.shorthand import * from rcwa.testing import * from rcwa.matrices import * from rcwa import numpyArrayFromFile, testLocation, numpyArrayFromSeparatedColumnsFile import numpy as np class TestSolver(unittest.TestCase): def testSetupSource(self): kIncidentActual = complexArray([1.0607, 0.61237, 0.70711]) kIncidentCalculated = self.solver.source.kIncident assertAlmostEqual(kIncidentActual, kIncidentCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: kIncident") def testSetupKMatrices(self): KxActual = self.Kx KxCalculated = self.solver.Kx assertAlmostEqual(KxActual, KxCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: Kx") KyActual = self.Ky KyCalculated = self.solver.Ky assertAlmostEqual(KyActual, KyCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: Ky") KzActual = self.KzReflectionRegion KzCalculated = self.solver.KzReflectionRegion assertAlmostEqual(KzActual, KzCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: KzReflectionRegion") KzActual = self.KzTransmissionRegion KzCalculated = self.solver.KzTransmissionRegion assertAlmostEqual(KzActual, KzCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: KzTransmissionRegion") KzActual = self.KzGapRegion KzCalculated = self.solver.KzGapRegion assertAlmostEqual(KzActual, KzCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: KzGapRegion") def testEdgeSMatrices(self): self.solver.Solve() SActual = self.SReflectionRegion SCalculated = self.solver.SReflection assertAlmostEqual(SActual, SCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: SReflection") self.solver.Solve() SActual = self.STransmissionRegion SCalculated = self.solver.STransmission assertAlmostEqual(SActual, SCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: STransmission") def testInternalSMatrices(self): self.solver.Solve() SActual = self.SLayer1 SCalculated = self.solver.Si[0] assertAlmostEqual(SActual, SCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: Si[0]") self.solver.Solve() SActual = self.SLayer2 SCalculated = self.solver.Si[1] assertAlmostEqual(SActual, SCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: Si[1]") def testrtAmplitudeCoefficients(self): self.solver.Solve() # HACK - FOR SOME REASON MY PHASE IS OFF BY PI. rxActual = -self.rx ryActual = -self.ry rzActual = -self.rz (rxCalculated, ryCalculated, rzCalculated) = (self.solver.rx, self.solver.ry, self.solver.rz) (txCalculated, tyCalculated, tzCalculated) = (self.solver.tx, self.solver.ty, self.solver.tz) assertAlmostEqual(rxActual, rxCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: rx") assertAlmostEqual(ryActual, ryCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: ry") assertAlmostEqual(rzActual, rzCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: rz") txActual = -self.tx tyActual = -self.ty tzActual = -self.tz (rxCalculated, ryCalculated, rzCalculated) = (self.solver.rx, self.solver.ry, self.solver.rz) (txCalculated, tyCalculated, tzCalculated) = (self.solver.tx, self.solver.ty, self.solver.tz) (R, T) = (self.solver.R, self.solver.T) assertAlmostEqual(txActual, txCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: tx") assertAlmostEqual(tyActual, tyCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: ty") assertAlmostEqual(tzActual, tzCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: tz") def testDiffractionEfficiencies(self): self.solver.Solve() RActual = self.R TActual = self.T (RCalculated, TCalculated) = (self.solver.R, self.solver.T) assertAlmostEqual(RActual, RCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: R") assertAlmostEqual(TActual, TCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: T") RTotActual = self.RTot TTotActual = self.TTot CTotActual = 1.0 RTotCalculated = self.solver.RTot TTotCalculated = self.solver.TTot CTotCalculated = self.solver.conservation assertAlmostEqual(RTotActual, RTotCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: RTot") assertAlmostEqual(TTotActual, TTotCalculated, self.absoluteTolerance, self.relativeTolerance, "testSolver: TTot") assertAlmostEqual(CTotActual, CTotCalculated, 1e-7, 1e-7, "testSolver: Conservation Violated") def testIntegrationMultiWavelength(self): testWavelengths = self.solver.source.wavelength*np.arange(0.2,2,0.01) self.solver.Solve(testWavelengths) #Plotter.plotReflectionSpectra(self.solver.results) def setUp(self): self.absoluteTolerance = 1e-4 self.relativeTolerance = 1e-3 devicePermittivityCellData = np.transpose(np.loadtxt(testLocation + '/triangleData.csv', delimiter=',')) devicePermeabilityCellData = 1 + 0 * devicePermittivityCellData reflectionLayer = Layer(er=2.0, ur=1.0) transmissionLayer = Layer(er=9.0, ur=1.0) # NOTE: t1 AND t2 MUST BE NORMALIZED BY MULTIPLYING BY k0, OTHERWISE THIS WILL NOT WORK, AS # EVERYTHING WAS FORMULATED IN TERMS OF NORMALIZED WAVEVECTORS. I DON'T KNOW OF AN ELEGANT WAY # TO DO THIS OTHER THAN REQUIRING A CRYSTAL TO HAVE A SOURCE AS THE INPUT. I DON'T KNOW OF # AN EASY WAY TO FIX THIS. I'M GOING TO FUDGE IT FOR NOW. wavelength = 2 k0 = 2*pi/wavelength theta = 60 * deg phi = 30*deg pTEM = 1/sqrt(2)*complexArray([1,1j]) source = Source(wavelength=wavelength, theta=theta, phi=phi, pTEM=pTEM, layer=reflectionLayer) t1, t2 = complexArray([1.75, 0, 0]), complexArray([0, 1.5, 0]) thicknessLayer1 = 0.5 # should be 0.5 thicknessLayer2 = 0.3 # should be 0.3 numberHarmonics = (3, 3) deviceCrystal = Crystal(devicePermittivityCellData, devicePermeabilityCellData, t1, t2) layer1 = Layer(crystal=deviceCrystal, L=thicknessLayer1, numberHarmonics=numberHarmonics) layer2 = Layer(er=6.0, ur=1.0, L=thicknessLayer2) layerStack = LayerStack(reflectionLayer, layer1, layer2, transmissionLayer) self.solver = Solver(layerStack, source, numberHarmonics) @classmethod def setUpClass(self): """ Test fixture for loading in all the external test data. """ self.Kx = np.diag(complexArray( [2.2035, 1.0607, -0.0822, 2.2035, 1.0607, -0.0822, 2.2035, 1.0607, -0.0822])) self.Ky = np.diag(complexArray( [1.9457, 1.9457, 1.9457, 0.6124, 0.6124, 0.6124, -0.7210, -0.7210, -0.7210])) self.KzReflectionRegion = numpyArrayFromFile( testLocation + "/matrixDataOblique/reflectionRegion/KzReflectionRegion.txt") self.KzTransmissionRegion = np.diag(complexArray( [0.5989, 2.0222, 2.2820, 1.9415, 2.7386, 2.9357, 1.9039, 2.7121, 2.9109])) self.KzGapRegion = numpyArrayFromFile( testLocation + "/matrixDataOblique/freeSpace/KzFreeSpace.txt") self.SGlobal11= numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/SGlobal11.txt") self.SGlobal12= numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/SGlobal12.txt") self.SGlobal21= numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/SGlobal21.txt") self.SGlobal22= numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/SGlobal22.txt") self.SGlobal = complexArray([ [self.SGlobal11, self.SGlobal12], [self.SGlobal21, self.SGlobal22]]) self.S11ReflectionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/reflectionRegion/S11ReflectionRegion.txt") self.S12ReflectionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/reflectionRegion/S12ReflectionRegion.txt") self.S21ReflectionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/reflectionRegion/S21ReflectionRegion.txt") self.S22ReflectionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/reflectionRegion/S22ReflectionRegion.txt") self.SReflectionRegion = complexArray([ [self.S11ReflectionRegion, self.S12ReflectionRegion], [self.S21ReflectionRegion, self.S22ReflectionRegion]]) self.S11TransmissionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/transmissionRegion/S11TransmissionRegion.txt") self.S12TransmissionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/transmissionRegion/S12TransmissionRegion.txt") self.S21TransmissionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/transmissionRegion/S21TransmissionRegion.txt") self.S22TransmissionRegion = numpyArrayFromSeparatedColumnsFile( testLocation + "/matrixDataOblique/transmissionRegion/S22TransmissionRegion.txt") self.STransmissionRegion = complexArray([ [self.S11TransmissionRegion, self.S12TransmissionRegion], [self.S21TransmissionRegion, self.S22TransmissionRegion]]) self.S11Layer1 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer1/S11Layer1.txt") self.S12Layer1 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer1/S12Layer1.txt") self.S21Layer1 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer1/S21Layer1.txt") self.S22Layer1 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer1/S22Layer1.txt") self.SLayer1 = complexArray([ [self.S11Layer1, self.S12Layer1], [self.S21Layer1, self.S22Layer1]]) self.S11Layer2 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer2/S11Layer2.txt") self.S12Layer2 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer2/S12Layer2.txt") self.S21Layer2 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer2/S21Layer2.txt") self.S22Layer2 = numpyArrayFromSeparatedColumnsFile(testLocation + "/matrixDataOblique/layer2/S22Layer2.txt") self.SLayer2 = complexArray([ [self.S11Layer2, self.S12Layer2], [self.S21Layer2, self.S22Layer2]]) self.DLayer12= np.loadtxt(testLocation + '/matrixDataOblique/layer2/D12.csv', dtype=np.cdouble) self.FLayer12= np.loadtxt(testLocation + '/matrixDataOblique/layer2/F12.csv', dtype=np.cdouble) self.rx = complexArray([-0.0187- 0.0155j, 0.0486 - 0.0467j, 0.0016 + 0.0012j, 0.0324 - 0.0229j, -0.1606 - 0.0348j, -0.0089 + 0.0156j, 0.0020 + 0.0105j, 0.0076 + 0.0187j, -0.0027 - 0.0129j]) self.ry = complexArray([-0.0077 - 0.0106j, 0.0184 + 0.0323j, -0.0267 - 0.0070j, -0.0286 + 0.0472j, 0.2335 + 0.0138j, 0.0243 + 0.0164j, 0.0435 - 0.018j, 0.0183 + 0.0146j, -0.0062 + 0.0011j]) self.rz = complexArray([0.0213 - 0.0218j, -0.0078 + 0.0512j, 0.0103 - 0.0388j, 0.0120 + 0.0300j, -0.0386 - 0.0403j, 0.0123 + 0.0069j, -0.0197 - 0.0147j, -0.0087 + 0.0157j, 0.0039 + 0.0002j]) self.tx = complexArray([0.0015 - 0.0016j, -0.0583 + 0.0256j, -0.0245 - 0.0098j, 0.0060 + 0.0210j, 0.3040 + 0.0664j, -0.0054 - 0.0632j, -0.0123 - 0.0262j, -0.0323 - 0.0534j, 0.0169 + 0.0455j]) self.ty = complexArray([-0.0024 + 0.0011j, 0.0356 + 0.0282j, -0.0230 - 0.0071j, 0.0610 - 0.0011j, 0.0523 - 0.2913j, -0.0645 - 0.0027j, -0.0170 - 0.0165j, -0.0420 + 0.0298j, 0.0258 - 0.0234j]) self.tz = complexArray([0.0023 + 0.0021j, - 0.0036 - 0.0406j, 0.0187 + 0.0057j, -0.0261 - 0.0235j, -0.1294 + 0.0394j, 0.0133 - 0.0012j, 0.0078 + 0.0241j, 0.0014 + 0.0288j, 0.0069 - 0.0045j]) self.R = np.array([ [0,0,0], [0,0.0848, 0.0011], [0, 0.0025, 0.0004]]) self.T = np.array([ [0, 0.0149, 0.0055], [0.0222, 0.7851, 0.0283], [0.0053, 0.0348, 0.0150]]) self.R = np.transpose(self.R) self.T = np.transpose(self.T) self.RTot = 0.088768 self.TTot = 0.91123
74080
defaults = ''' const vec4 light = vec4(4.0, 3.0, 10.0, 0.0); const vec4 eye = vec4(4.0, 3.0, 2.0, 0.0); const mat4 mvp = mat4( -0.8147971034049988, -0.7172931432723999, -0.7429299354553223, -0.7427813410758972, 1.0863960981369019, -0.5379698276519775, -0.5571974515914917, -0.5570859909057617, 0.0, 2.2415409088134766, -0.37146496772766113, -0.3713906705379486, 0.0, 0.0, 5.186222076416016, 5.385164737701416 ); '''
74103
from setuptools import setup, find_packages import crisscross.metadata with open("README.md", "r") as f: long_description = f.read() setup( name='crisscross', version=crisscross.metadata.version, author='pnlng', description='', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/pnlng/crisscross', classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Topic :: Text Processing', 'Topic :: Utilities' ], packages=find_packages(), include_package_data=True, install_requires=[ 'click', 'chevron', 'poyo' ], entry_points=''' [console_scripts] crisscross=crisscross.cli:cli ''', python_requires='>=3.5' )
74112
from deepproblog.utils import check_path template = """ [Default] batch_size = {0} infoloss = {1} name = poker_batch_{0}_infoloss_{1} """ i = 0 check_path("parameter_cfg/0.cfg") for batch_size in [10, 25, 50, 100]: for infoloss in [0, 0.5, 1.0, 2.0, 4.0]: with open("parameter_cfg/{}.cfg".format(i), "w") as f: f.write(template.format(batch_size, infoloss)) i += 1 template = """ [Default] batch_size = 10 infoloss = 0.5 labeled = {0} name = poker_batch_labeled_{0}_{1} """ i = 0 check_path("experiment/0.cfg") for labeled in [300]: for rep in range(10): with open("experiment/{}.cfg".format(i), "w") as f: f.write(template.format(labeled, rep)) i += 1
74135
from .quantum_register import QuantumRegister from .classical_register import ClassicalRegister import qsy.gates as gates __version__ = '0.4.4'
74149
from interact import * def eva_model(): parser = ArgumentParser() parser.add_argument('--gpt2', action='store_true', help="use gpt2") parser.add_argument("--model_checkpoint", type=str, default="./models/", help="Path, url or short name of the model") parser.add_argument("--max_history", type=int, default=2, help="Number of previous utterances to keep in history") parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)") parser.add_argument("--no_sample", action='store_true', help="Set to use greedy decoding instead of sampling") parser.add_argument("--max_length", type=int, default=30, help="Maximum length of the output utterances") parser.add_argument("--min_length", type=int, default=1, help="Minimum length of the output utterances") parser.add_argument("--seed", type=int, default=42, help="Seed") parser.add_argument("--temperature", type=int, default=0.7, help="Sampling softmax temperature") parser.add_argument("--top_k", type=int, default=0, help="Filter top-k tokens before sampling (<=0: no filtering)") parser.add_argument("--top_p", type=float, default=0.9, help="Nucleus filtering (top-p) before sampling (<=0.0: no filtering)") args = parser.parse_args() logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__file__) logger.info(pformat(args)) if args.model_checkpoint == "": logging.error("Checkpoint needed!") return random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) logger.info("Get pretrained model and tokenizer") tokenizer_class = BertTokenizer model_class = OpenAIGPTLMHeadModel if not args.gpt2 else GPT2LMHeadModel tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint, do_lower_case=True) model = model_class.from_pretrained(args.model_checkpoint) model.to(args.device) model.eval() return model,tokenizer,args history = [] model,tokenizer,args = eva_model() def chat_response(raw_text): global history def tokenize(obj): if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) if isinstance(obj, dict): return dict((n, tokenize(o)) for n, o in obj.items()) return list(tokenize(o) for o in obj) raw_text = " ".join(list(raw_text.replace(" ", ""))) history.append(tokenize(raw_text)) with torch.no_grad(): out_ids = sample_sequence(history, tokenizer, model, args) history.append(out_ids) history = history[-(2 * args.max_history + 1):] out_text = tokenizer.decode(out_ids, skip_special_tokens=True) #print(out_text) return out_text print(0)
74173
import os import pytest import taichi as ti from taichi import approx def run_mpm88_test(): dim = 2 N = 64 n_particles = N * N n_grid = 128 dx = 1 / n_grid inv_dx = 1 / dx dt = 2.0e-4 p_vol = (dx * 0.5)**2 p_rho = 1 p_mass = p_vol * p_rho E = 400 x = ti.Vector.field(dim, dtype=ti.f32, shape=n_particles) v = ti.Vector.field(dim, dtype=ti.f32, shape=n_particles) C = ti.Matrix.field(dim, dim, dtype=ti.f32, shape=n_particles) J = ti.field(dtype=ti.f32, shape=n_particles) grid_v = ti.Vector.field(dim, dtype=ti.f32, shape=(n_grid, n_grid)) grid_m = ti.field(dtype=ti.f32, shape=(n_grid, n_grid)) @ti.kernel def substep(): for p in x: base = (x[p] * inv_dx - 0.5).cast(int) fx = x[p] * inv_dx - base.cast(float) w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2] stress = -dt * p_vol * (J[p] - 1) * 4 * inv_dx * inv_dx * E affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p] for i in ti.static(range(3)): for j in ti.static(range(3)): offset = ti.Vector([i, j]) dpos = (offset.cast(float) - fx) * dx weight = w[i][0] * w[j][1] grid_v[base + offset].atomic_add( weight * (p_mass * v[p] + affine @ dpos)) grid_m[base + offset].atomic_add(weight * p_mass) for i, j in grid_m: if grid_m[i, j] > 0: bound = 3 inv_m = 1 / grid_m[i, j] grid_v[i, j] = inv_m * grid_v[i, j] grid_v[i, j][1] -= dt * 9.8 if i < bound and grid_v[i, j][0] < 0: grid_v[i, j][0] = 0 if i > n_grid - bound and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0 if j < bound and grid_v[i, j][1] < 0: grid_v[i, j][1] = 0 if j > n_grid - bound and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0 for p in x: base = (x[p] * inv_dx - 0.5).cast(int) fx = x[p] * inv_dx - base.cast(float) w = [ 0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2 ] new_v = ti.Vector.zero(ti.f32, 2) new_C = ti.Matrix.zero(ti.f32, 2, 2) for i in ti.static(range(3)): for j in ti.static(range(3)): dpos = ti.Vector([i, j]).cast(float) - fx g_v = grid_v[base + ti.Vector([i, j])] weight = w[i][0] * w[j][1] new_v += weight * g_v new_C += 4 * weight * g_v.outer_product(dpos) * inv_dx v[p] = new_v x[p] += dt * v[p] J[p] *= 1 + dt * new_C.trace() C[p] = new_C # gui = ti._lib.core.GUI("MPM88", ti.core_veci(512, 512)) # canvas = gui.get_canvas() for i in range(n_particles): x[i] = [i % N / N * 0.4 + 0.2, i / N / N * 0.4 + 0.05] v[i] = [0, -3] J[i] = 1 for frame in range(10): for s in range(50): grid_v.fill([0, 0]) grid_m.fill(0) substep() pos = x.to_numpy() pos[:, 1] *= 2 regression = [ 0.31722742, 0.15826741, 0.10224003, 0.07810827, ] for i in range(4): assert (pos**(i + 1)).mean() == approx(regression[i], rel=1e-2) @ti.test() def test_mpm88(): run_mpm88_test() def _is_appveyor(): # AppVeyor adds `APPVEYOR=True` ('true' on Ubuntu) # https://www.appveyor.com/docs/environment-variables/ return os.getenv('APPVEYOR', '').lower() == 'true' #TODO: Remove exclude of ti.metal @pytest.mark.skipif(_is_appveyor(), reason='Stuck on Appveyor.') @ti.test(require=ti.extension.async_mode, exclude=[ti.metal], async_mode=True) def test_mpm88_async(): # It seems that all async tests on Appveyor run super slow. For example, # on Appveyor, 10+ tests have passed during the execution of # test_fuse_dense_x2y2z. Maybe thread synchronizations are expensive? run_mpm88_test() @ti.test(arch=[ti.cpu, ti.cuda, ti.opengl]) def test_mpm88_numpy_and_ndarray(): import numpy as np dim = 2 N = 64 n_particles = N * N n_grid = 128 dx = 1 / n_grid inv_dx = 1 / dx dt = 2.0e-4 p_vol = (dx * 0.5)**2 p_rho = 1 p_mass = p_vol * p_rho E = 400 @ti.kernel def substep(x: ti.any_arr(element_dim=1), v: ti.any_arr(element_dim=1), C: ti.any_arr(element_dim=2), J: ti.any_arr(), grid_v: ti.any_arr(element_dim=1), grid_m: ti.any_arr()): for p in x: base = (x[p] * inv_dx - 0.5).cast(int) fx = x[p] * inv_dx - base.cast(float) w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2] stress = -dt * p_vol * (J[p] - 1) * 4 * inv_dx * inv_dx * E affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p] for i in ti.static(range(3)): for j in ti.static(range(3)): offset = ti.Vector([i, j]) dpos = (offset.cast(float) - fx) * dx weight = w[i][0] * w[j][1] grid_v[base + offset].atomic_add( weight * (p_mass * v[p] + affine @ dpos)) grid_m[base + offset].atomic_add(weight * p_mass) for i, j in grid_m: if grid_m[i, j] > 0: bound = 3 inv_m = 1 / grid_m[i, j] grid_v[i, j] = inv_m * grid_v[i, j] grid_v[i, j][1] -= dt * 9.8 if i < bound and grid_v[i, j][0] < 0: grid_v[i, j][0] = 0 if i > n_grid - bound and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0 if j < bound and grid_v[i, j][1] < 0: grid_v[i, j][1] = 0 if j > n_grid - bound and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0 for p in x: base = (x[p] * inv_dx - 0.5).cast(int) fx = x[p] * inv_dx - base.cast(float) w = [ 0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2 ] new_v = ti.Vector.zero(ti.f32, 2) new_C = ti.Matrix.zero(ti.f32, 2, 2) for i in ti.static(range(3)): for j in ti.static(range(3)): dpos = ti.Vector([i, j]).cast(float) - fx g_v = grid_v[base + ti.Vector([i, j])] weight = w[i][0] * w[j][1] new_v += weight * g_v new_C += 4 * weight * g_v.outer_product(dpos) * inv_dx v[p] = new_v x[p] += dt * v[p] J[p] *= 1 + dt * new_C.trace() C[p] = new_C def run_test(x, v, C, J, grid_v, grid_m): for i in range(n_particles): x[i] = [i % N / N * 0.4 + 0.2, i / N / N * 0.4 + 0.05] v[i] = [0, -3] J[i] = 1 for frame in range(10): for s in range(50): grid_v.fill(0) grid_m.fill(0) substep(x, v, C, J, grid_v, grid_m) pos = x if isinstance(x, np.ndarray) else x.to_numpy() pos[:, 1] *= 2 regression = [ 0.31722742, 0.15826741, 0.10224003, 0.07810827, ] for i in range(4): assert (pos**(i + 1)).mean() == approx(regression[i], rel=1e-2) def test_numpy(): x = np.zeros((n_particles, dim), dtype=np.float32) v = np.zeros((n_particles, dim), dtype=np.float32) C = np.zeros((n_particles, dim, dim), dtype=np.float32) J = np.zeros(n_particles, dtype=np.float32) grid_v = np.zeros((n_grid, n_grid, dim), dtype=np.float32) grid_m = np.zeros((n_grid, n_grid), dtype=np.float32) run_test(x, v, C, J, grid_v, grid_m) def test_ndarray(): x = ti.Vector.ndarray(dim, ti.f32, n_particles) v = ti.Vector.ndarray(dim, ti.f32, n_particles) C = ti.Matrix.ndarray(dim, dim, ti.f32, n_particles) J = ti.ndarray(ti.f32, n_particles) grid_v = ti.Vector.ndarray(dim, ti.f32, (n_grid, n_grid)) grid_m = ti.ndarray(ti.f32, (n_grid, n_grid)) run_test(x, v, C, J, grid_v, grid_m) test_numpy() test_ndarray()
74198
import argparse import importlib profiles = { "core": True, "legacy": False, } applications = { "pyglet": "application_pyglet", "pyglfw": "application_pyglfw", "glut": "application_glut", } demos = { "basic": "scene_basic", "texturing": "scene_texture", "scene_graph": "scene_scene_graph", "orthographic": "scene_orthographic", "multiple_viewports": "scene_multiple_viewports", "sorting": "scene_sorting", } def parse_arguments(): parser = argparse.ArgumentParser( description = "PyGLy demo application" ) parser.add_argument( "-g", "--opengl_profile", choices = profiles.keys(), default = "core", help = "The OpenGL profile to use. (default: core)", ) parser.add_argument( "-p", "--platform", choices = applications.keys(), default = "pyglet", help = "The windowing platform to use. (default: pyglet)", ) parser.add_argument( "-d", "--demo", choices = demos.keys(), default = "basic", help = "The demo to run. (default: basic)", ) return parser.parse_args() def run_demo( args ): global profiles, applications, demos print "Windowing system:\t", args.platform print "OpenGL profile:\t", args.opengl_profile print "Scene:\t", args.demo is_core = profiles[ args.opengl_profile ] scene_module = __import__( demos[ args.demo ], fromlist=[""] ) scene = scene_module.Scene( is_core ) app_module = __import__( applications[ args.platform ], fromlist=[""] ) application = app_module.Application( scene ) application.run() if __name__ == "__main__": args = parse_arguments() run_demo( args )
74200
from brownie import * import json def main(): thisNetwork = network.show_active() if thisNetwork == "development": acct = accounts[0] # configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet" or thisNetwork == "rsk-mainnet": acct = accounts.load("rskdeployer") else: raise Exception("network not supported") if thisNetwork == "rsk-mainnet": configFile = open('./scripts/contractInteraction/mainnet_contracts.json') elif thisNetwork == "testnet": configFile = open('./scripts/contractInteraction/testnet_contracts.json') contracts = json.load(configFile) timelockOwnerAddress = contracts['timelockOwner'] multiSigKeyHolders= acct.deploy(MultiSigKeyHolders) multiSigKeyHolders.transferOwnership(timelockOwnerAddress)
74249
from kivy.animation import Animation from kivy.clock import Clock from kivy.lang.builder import Builder from kivy.properties import ( BooleanProperty, ListProperty, NumericProperty, OptionProperty, StringProperty, ) from kivy.uix.boxlayout import BoxLayout from kivymd.theming import ThemableBehavior Builder.load_string( """ <AKCircularProgress>: canvas.before: Color: rgba: root.background_circle_color if root.background_circle_color else app.theme_cls.primary_light Line: circle: ( self.x+ self.width/2, self.y+ self.height/2, self.height/2, root.start_deg, root.end_deg) width: root.background_line_width Color: rgba: root.circle_color if root.circle_color else app.theme_cls.primary_color Line: circle: ( self.x+ self.width/2, self.y+ self.height/2, self.height/2, root.start_deg, root._current_deg) width: root.line_width MDLabel: id: _percent_label halign: 'center' valign: 'center' theme_text_color: 'Custom' text_color: root.percent_color if root.percent_color else app.theme_cls.primary_color font_size: root.percent_size """ ) class AKCircularProgress(ThemableBehavior, BoxLayout): circle_color = ListProperty() start_deg = NumericProperty(0) end_deg = NumericProperty(360) line_width = NumericProperty("3dp") percent_color = ListProperty() percent_size = NumericProperty("20dp") current_percent = NumericProperty(-1) anim_speed = NumericProperty(0.3) anim_transition = StringProperty("out_quad") max_percent = NumericProperty(100) percent_type = OptionProperty("percent", options=["percent", "relative"]) background_circle_color = ListProperty() background_line_width = NumericProperty("1dp") _current_deg = NumericProperty(-1) def __init__(self, **kwargs): super().__init__(**kwargs) Clock.schedule_once(lambda x: self._update()) def _update(self): self.current_percent = 0 def on_current_percent(self, *args): deg_distance = self.end_deg - self.start_deg self._each_percent = deg_distance / self.max_percent _current_deg = args[1] * self._each_percent percent_anim = Animation( _current_deg=self.start_deg + _current_deg, duration=self.anim_speed, t=self.anim_transition, ) percent_anim.start(self) def on__current_deg(self, *args): if self.percent_type == "percent": self.ids._percent_label.text = ( str( int( (self._current_deg - self.start_deg) / self._each_percent ) ) + " %" ) elif self.percent_type == "relative": self.ids._percent_label.text = ( str( int( (self._current_deg - self.start_deg) / self._each_percent ) ) + "\\" + str(self.max_percent) )
74261
import FWCore.ParameterSet.Config as cms siTrackerMultiRecHitUpdator = cms.ESProducer("SiTrackerMultiRecHitUpdatorESProducer", ComponentName = cms.string('SiTrackerMultiRecHitUpdator'), TTRHBuilder = cms.string('WithAngleAndTemplate'), HitPropagator = cms.string('trackingRecHitPropagator'), #AnnealingProgram = cms.vdouble(80.0, 9.0, 4.0, 1.0, 1.0, 1.0), AnnealingProgram = cms.vdouble(30.0, 18.0, 14.0, 11.0, 6.0, 4.0, 2.0, 1.0), ChiSquareCut1D = cms.double(10.8276), ChiSquareCut2D = cms.double(13.8155), Debug = cms.bool(False) )
74268
import numpy as np from typing import Callable from .base_score import BaseScore class BleiLaffertyScore(BaseScore): """ This score implements method described in 2009 paper Blei, <NAME>., and <NAME>erty. "Topic models." Text Mining. Chapman and Hall/CRC, 2009. 101-124. At the core this score helps to discover tokens that are most likely to describe given topic. Summing up that score helps to estimate how well the model distinguishes between topics. The higher this score - better """ def __init__( self, name: str = None, num_top_tokens: int = 30, should_compute: Callable[[int], bool] = None): """ Parameters ---------- name: name of the score num_top_tokens : int now many tokens we consider to be """ super().__init__(name=name, should_compute=should_compute) self.num_top_tokens = num_top_tokens def __repr__(self): return f'{self.__class__.__name__}(num_top_tokens={self.num_top_tokens})' def _compute_blei_scores(self, phi): """ Computes Blei score phi[wt] * [log(phi[wt]) - 1/T sum_k log(phi[wk])] Parameters ---------- phi : pd.Dataframe phi matrix of the model Returns ------- score : pd.Dataframe wheighted phi matrix """ # noqa: W291 topic_number = phi.shape[1] blei_eps = 1e-42 log_phi = np.log(phi + blei_eps) numerator = np.sum(log_phi, axis=1) numerator = numerator[:, np.newaxis] if hasattr(log_phi, "values"): multiplier = log_phi.values - numerator / topic_number else: multiplier = log_phi - numerator / topic_number scores = phi * multiplier return scores def call(self, model, **kwargs): modalities = list(model.class_ids.keys()) score = 0 for modality in modalities: phi = model.get_phi(class_ids=modality) modality_scores = np.sort(self._compute_blei_scores(phi).values) score += np.sum(modality_scores[-self.num_top_tokens:, :]) if modalities is None: phi = model.get_phi() modality_scores = np.sort(self._compute_blei_scores(phi).values) score = np.sum(modality_scores[-self.num_top_tokens:, :]) return score
74285
from setuptools import setup with open("README.md") as f: long_description = f.read() setup( name="prefixdate", version="0.4.0", description="Formatting utility for international postal addresses", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/pudo/prefixdate", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.9", "Operating System :: OS Independent", ], keywords="date, partial date, iso8601, rfc3339", packages=["prefixdate"], package_data={"prefixdate": ["py.typed"]}, include_package_data=True, scripts=[], install_requires=[], zip_safe=False, extras_require={ "dev": [ "pytest", "pytest-cov", "mypy", "bump2version", "wheel>=0.29.0", "twine", ], }, )
74289
from fabric.api import local, task @task def bower(command, args='', option=''): """ usage: fab bower:<command>, <args>, <option> Execute bower commands. See 'fab bower:help' for more information """ local('cd {{ project_name }} && bower {0} {1} {2}'.format( command, args, option )) @task def npm(command, args='', option=''): """ usage: fab npm:<command>, <args>, <option> Execute npm commands See 'fab npm:help' for more information """ local('cd {{ project_name }} && npm {0} {1} {2}'.format( command, option, args, )) @task def scaffold(skip_install=''): """ Setup frontend management for Django project with yo, grunt and bower. See 'https://github.com/cirlabs/generator-newsapp' for more information. Skip installing npm modules by running fab scaffold:skip-install """ if skip_install != 'skip-install': npm('install', 'yo', '-g') npm('install', 'generator-newsapp', '-g') local('cd {{ project_name }} && yo newsapp')
74319
from flask import Flask, jsonify, request from flask.views import MethodView app = Flask(__name__) languages = [{'name' : 'JavaScript'}, {'name' : 'Python'}, {'name' : 'Ruby'}] def get_language(name): return [language for language in languages if language['name'] == name][0] class Language(MethodView): def get(self, language_name): if language_name: return jsonify({'language' : get_language(language_name)}) else: return jsonify({'languages': languages}) def post(self): new_language_name = request.json['name'] language = {'name' : new_language_name} languages.append(language) return jsonify({'language' : get_language(new_language_name)}), 201 def put(self, language_name): language = get_language(language_name) new_language_name = request.json['name'] language['name'] = new_language_name return jsonify({'language' : get_language(new_language_name)}) def delete(self, language_name): language = get_language(language_name) languages.remove(language) return '', 204 language_view = Language.as_view('language_api') app.add_url_rule('/language', methods=['POST'], view_func=language_view) app.add_url_rule('/language', methods=['GET'], defaults={'language_name' : None}, view_func=language_view) app.add_url_rule('/language/<language_name>', methods=['GET', 'PUT', 'DELETE'], view_func=language_view)
74329
import cPickle as pkl import gzip import os import re import sys import numpy import math import random from binary_tree import BinaryTree def convert_ptb_to_tree(line): index = 0 tree = None line = line.rstrip() stack = [] parts = line.split() for p_i, p in enumerate(parts): # opening of a bracket, create a new node, take parent from top of stack if p == '(': if tree is None: tree = BinaryTree(index) else: add_descendant(tree, index, stack[-1]) # add the newly created node to the stack and increment the index stack.append(index) index += 1 # close of a bracket, pop node on top of the stack elif p == ')': stack.pop(-1) # otherwise, create a new node, take parent from top of stack, and set word else: add_descendant(tree, index, stack[-1]) tree.set_word(index, p) index += 1 return tree def add_descendant(tree, index, parent_index): # add to the left first if possible, then to the right if tree.has_left_descendant_at_node(parent_index): if tree.has_right_descendant_at_node(parent_index): sys.exit("Node " + str(parent_index) + " already has two children") else: tree.add_right_descendant(index, parent_index) else: tree.add_left_descendant(index, parent_index) def fopen(filename, mode='r'): if filename.endswith('.gz'): return gzip.open(filename, mode) return open(filename, mode) class TextIterator: """Simple Bitext iterator.""" def __init__(self, source, target, label, dict, batch_size=128, n_words=-1, maxlen=500, shuffle=True): self.source = fopen(source, 'r') self.target = fopen(target, 'r') self.label = fopen(label, 'r') with open(dict, 'rb') as f: self.dict = pkl.load(f) self.batch_size = batch_size self.n_words = n_words self.maxlen = maxlen self.shuffle = shuffle self.end_of_data = False self.source_buffer = [] self.target_buffer = [] self.label_buffer = [] self.k = batch_size * 20 def __iter__(self): return self def reset(self): self.source.seek(0) self.target.seek(0) self.label.seek(0) def next(self): if self.end_of_data: self.end_of_data = False self.reset() raise StopIteration source = [] target = [] label = [] # fill buffer, if it's empty assert len(self.source_buffer) == len(self.target_buffer), 'Buffer size mismatch!' assert len(self.source_buffer) == len(self.label_buffer), 'Buffer size mismatch!' if len(self.source_buffer) == 0: for k_ in xrange(self.k): ss = self.source.readline() if ss == "": break tt = self.target.readline() if tt == "": break ll = self.label.readline() if ll == "": break ss = convert_ptb_to_tree(ss) words_ss, left_mask_ss, right_mask_ss = ss.convert_to_sequence_and_masks(ss.root) words_ss = [self.dict[w] if w in self.dict else 1 for w in words_ss] if self.n_words > 0: words_ss = [w if w < self.n_words else 1 for w in words_ss] ss = (words_ss, left_mask_ss, right_mask_ss) tt = convert_ptb_to_tree(tt) words_tt, left_mask_tt, right_mask_tt = tt.convert_to_sequence_and_masks(tt.root) words_tt = [self.dict[w] if w in self.dict else 1 for w in words_tt] if self.n_words > 0: words_tt = [w if w < self.n_words else 1 for w in words_tt] tt = (words_tt, left_mask_tt, right_mask_tt) if len(words_ss) > self.maxlen or len(words_tt) > self.maxlen: continue self.source_buffer.append(ss) self.target_buffer.append(tt) self.label_buffer.append(ll.strip()) if self.shuffle: # sort by target buffer tlen = numpy.array([len(t[0]) for t in self.target_buffer]) tidx = tlen.argsort() # shuffle mini-batch tindex = [] small_index = range(int(math.ceil(len(tidx)*1./self.batch_size))) random.shuffle(small_index) for i in small_index: if (i+1)*self.batch_size > len(tidx): tindex.extend(tidx[i*self.batch_size:]) else: tindex.extend(tidx[i*self.batch_size:(i+1)*self.batch_size]) tidx = tindex _sbuf = [self.source_buffer[i] for i in tidx] _tbuf = [self.target_buffer[i] for i in tidx] _lbuf = [self.label_buffer[i] for i in tidx] self.source_buffer = _sbuf self.target_buffer = _tbuf self.label_buffer = _lbuf if len(self.source_buffer) == 0 or len(self.target_buffer) == 0 or len(self.label_buffer) == 0: self.end_of_data = False self.reset() raise StopIteration try: # actual work here while True: # read from source file and map to word index try: ss = self.source_buffer.pop(0) tt = self.target_buffer.pop(0) ll = self.label_buffer.pop(0) except IndexError: break source.append(ss) target.append(tt) label.append(ll) if len(source) >= self.batch_size or \ len(target) >= self.batch_size or \ len(label) >= self.batch_size: break except IOError: self.end_of_data = True if len(source) <= 0 or len(target) <= 0 or len(label) <= 0: self.end_of_data = False self.reset() raise StopIteration return source, target, label
74343
import argparse import baselineUtils import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F import os import time from transformer.batch import subsequent_mask from torch.optim import Adam,SGD,RMSprop,Adagrad from transformer.noam_opt import NoamOpt import numpy as np import scipy.io import json import pickle from torch.utils.tensorboard import SummaryWriter def main(): parser=argparse.ArgumentParser(description='Train the individual Transformer model') parser.add_argument('--dataset_folder',type=str,default='datasets') parser.add_argument('--dataset_name',type=str,default='zara1') parser.add_argument('--obs',type=int,default=8) parser.add_argument('--preds',type=int,default=12) parser.add_argument('--emb_size',type=int,default=512) parser.add_argument('--heads',type=int, default=8) parser.add_argument('--layers',type=int,default=6) parser.add_argument('--dropout',type=float,default=0.1) parser.add_argument('--cpu',action='store_true') parser.add_argument('--output_folder',type=str,default='Output') parser.add_argument('--val_size',type=int, default=0) parser.add_argument('--gpu_device',type=str, default="0") parser.add_argument('--verbose',action='store_true') parser.add_argument('--max_epoch',type=int, default=100) parser.add_argument('--batch_size',type=int,default=100) parser.add_argument('--validation_epoch_start', type=int, default=30) parser.add_argument('--resume_train',action='store_true') parser.add_argument('--delim',type=str,default='\t') parser.add_argument('--name', type=str, default="zara1") parser.add_argument('--factor', type=float, default=1.) parser.add_argument('--evaluate',type=bool,default=True) parser.add_argument('--save_step', type=int, default=1) args=parser.parse_args() model_name=args.name try: os.mkdir('models') except: pass try: os.mkdir('output') except: pass try: os.mkdir('output/QuantizedTF') except: pass try: os.mkdir(f'models/QuantizedTF') except: pass try: os.mkdir(f'output/QuantizedTF/{args.name}') except: pass try: os.mkdir(f'models/QuantizedTF/{args.name}') except: pass log=SummaryWriter('logs/%s'%model_name) #os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_device device=torch.device("cuda") if args.cpu or not torch.cuda.is_available(): device=torch.device("cpu") args.verbose=True ## creation of the dataloaders for train and validation if args.val_size==0: train_dataset,_ = baselineUtils.create_dataset(args.dataset_folder,args.dataset_name,0,args.obs,args.preds,delim=args.delim,train=True,verbose=args.verbose) val_dataset, _ = baselineUtils.create_dataset(args.dataset_folder, args.dataset_name, 0, args.obs, args.preds, delim=args.delim, train=False, verbose=args.verbose) else: train_dataset, val_dataset = baselineUtils.create_dataset(args.dataset_folder, args.dataset_name, args.val_size, args.obs, args.preds, delim=args.delim, train=True, verbose=args.verbose) test_dataset,_ = baselineUtils.create_dataset(args.dataset_folder,args.dataset_name,0,args.obs,args.preds,delim=args.delim,train=False,eval=True,verbose=args.verbose) mat = scipy.io.loadmat(os.path.join(args.dataset_folder, args.dataset_name, "clusters.mat")) clusters=mat['centroids'] import quantized_TF model=quantized_TF.QuantizedTF(clusters.shape[0], clusters.shape[0]+1, clusters.shape[0], N=args.layers, d_model=args.emb_size, d_ff=1024, h=args.heads, dropout=args.dropout).to(device) tr_dl=torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0) val_dl = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0) #optim = SGD(list(a.parameters())+list(model.parameters())+list(generator.parameters()),lr=0.01) #sched=torch.optim.lr_scheduler.StepLR(optim,0.0005) optim = NoamOpt(args.emb_size, args.factor, len(tr_dl)*5, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) #optim=Adagrad(list(a.parameters())+list(model.parameters())+list(generator.parameters()),lr=0.01,lr_decay=0.001) epoch=0 while epoch<args.max_epoch: epoch_loss=0 model.train() for id_b,batch in enumerate(tr_dl): optim.optimizer.zero_grad() scale=np.random.uniform(0.5,4) #rot_mat = np.array([[np.cos(r), np.sin(r)], [-np.sin(r), np.cos(r)]]) n_in_batch=batch['src'].shape[0] speeds_inp=batch['src'][:,1:,2:4]*scale inp=torch.tensor(scipy.spatial.distance.cdist(speeds_inp.reshape(-1,2),clusters).argmin(axis=1).reshape(n_in_batch,-1)).to(device) speeds_trg = batch['trg'][:,:,2:4]*scale target = torch.tensor( scipy.spatial.distance.cdist(speeds_trg.reshape(-1, 2), clusters).argmin(axis=1).reshape(n_in_batch, -1)).to( device) src_att = torch.ones((inp.shape[0], 1,inp.shape[1])).to(device) trg_att=subsequent_mask(target.shape[1]).repeat(n_in_batch,1,1).to(device) start_of_seq=torch.tensor([clusters.shape[0]]).repeat(n_in_batch).unsqueeze(1).to(device) dec_inp=torch.cat((start_of_seq,target[:,:-1]),1) out=model(inp, dec_inp, src_att, trg_att) loss = F.cross_entropy(out.view(-1,out.shape[-1]),target.view(-1),reduction='mean') loss.backward() optim.step() print("epoch %03i/%03i frame %04i / %04i loss: %7.4f" % (epoch, args.max_epoch, id_b, len(tr_dl), loss.item())) epoch_loss += loss.item() #sched.step() log.add_scalar('Loss/train', epoch_loss / len(tr_dl), epoch) with torch.no_grad(): model.eval() gt=[] pr=[] val_loss=0 step=0 for batch in val_dl: # rot_mat = np.array([[np.cos(r), np.sin(r)], [-np.sin(r), np.cos(r)]]) n_in_batch = batch['src'].shape[0] speeds_inp = batch['src'][:, 1:, 2:4] inp = torch.tensor( scipy.spatial.distance.cdist(speeds_inp.contiguous().reshape(-1, 2), clusters).argmin(axis=1).reshape(n_in_batch, -1)).to( device) speeds_trg = batch['trg'][:, :, 2:4] target = torch.tensor( scipy.spatial.distance.cdist(speeds_trg.contiguous().reshape(-1, 2), clusters).argmin(axis=1).reshape(n_in_batch, -1)).to( device) src_att = torch.ones((inp.shape[0], 1,inp.shape[1])).to(device) trg_att = subsequent_mask(target.shape[1]).repeat(n_in_batch, 1, 1).to(device) start_of_seq = torch.tensor([clusters.shape[0]]).repeat(n_in_batch).unsqueeze(1).to(device) dec_inp = torch.cat((start_of_seq, target[:, :-1]), 1) out = model(inp, dec_inp, src_att, trg_att) loss = F.cross_entropy(out.contiguous().view(-1, out.shape[-1]), target.contiguous().view(-1), reduction='mean') print("val epoch %03i/%03i frame %04i / %04i loss: %7.4f" % ( epoch, args.max_epoch, step, len(val_dl), loss.item())) val_loss+=loss.item() step+=1 log.add_scalar('validation/loss', val_loss / len(val_dl), epoch) if args.evaluate: # DETERMINISTIC MODE model.eval() model.eval() gt = [] pr = [] inp_ = [] peds = [] frames = [] dt = [] for batch in test_dl: inp_.append(batch['src'][:,:,0:2]) gt.append(batch['trg'][:, :, 0:2]) frames.append(batch['frames']) peds.append(batch['peds']) dt.append(batch['dataset']) n_in_batch = batch['src'].shape[0] speeds_inp = batch['src'][:, 1:, 2:4] gt_b = batch['trg'][:, :, 0:2] inp = torch.tensor( scipy.spatial.distance.cdist(speeds_inp.reshape(-1, 2), clusters).argmin(axis=1).reshape(n_in_batch, -1)).to( device) src_att = torch.ones((inp.shape[0], 1,inp.shape[1])).to(device) trg_att = subsequent_mask(target.shape[1]).repeat(n_in_batch, 1, 1).to(device) start_of_seq = torch.tensor([clusters.shape[0]]).repeat(n_in_batch).unsqueeze(1).to(device) dec_inp = start_of_seq for i in range(args.preds): trg_att = subsequent_mask(dec_inp.shape[1]).repeat(n_in_batch, 1, 1).to(device) out = model(inp, dec_inp, src_att, trg_att) dec_inp=torch.cat((dec_inp,out[:,-1:].argmax(dim=2)),1) preds_tr_b=clusters[dec_inp[:,1:].cpu().numpy()].cumsum(1)+batch['src'][:,-1:,0:2].cpu().numpy() pr.append(preds_tr_b) peds = np.concatenate(peds, 0) frames = np.concatenate(frames, 0) dt = np.concatenate(dt, 0) gt = np.concatenate(gt, 0) dt_names = test_dataset.data['dataset_name'] pr = np.concatenate(pr, 0) mad,fad,errs=baselineUtils.distance_metrics(gt,pr) log.add_scalar('eval/DET_mad', mad, epoch) log.add_scalar('eval/DET_fad', fad, epoch) scipy.io.savemat(f"output/QuantizedTF/{args.name}/{epoch:05d}.mat", {'input': inp, 'gt': gt, 'pr': pr, 'peds': peds, 'frames': frames, 'dt': dt, 'dt_names': dt_names}) # MULTI MODALITY if False: num_samples=20 model.eval() gt=[] pr_all={} for sam in range(num_samples): pr_all[sam]=[] for batch in test_dl: # rot_mat = np.array([[np.cos(r), np.sin(r)], [-np.sin(r), np.cos(r)]]) n_in_batch = batch['src'].shape[0] speeds_inp = batch['src'][:, 1:, 2:4] gt_b = batch['trg'][:, :, 0:2] gt.append(gt_b) inp = torch.tensor( scipy.spatial.distance.cdist(speeds_inp.reshape(-1, 2), clusters).argmin(axis=1).reshape(n_in_batch, -1)).to( device) src_att = torch.ones((inp.shape[0], 1,inp.shape[1])).to(device) trg_att = subsequent_mask(target.shape[1]).repeat(n_in_batch, 1, 1).to(device) start_of_seq = torch.tensor([clusters.shape[0]]).repeat(n_in_batch).unsqueeze(1).to(device) for sam in range(num_samples): dec_inp = start_of_seq for i in range(args.preds): trg_att = subsequent_mask(dec_inp.shape[1]).repeat(n_in_batch, 1, 1).to(device) out = model.predict(inp, dec_inp, src_att, trg_att) h=out[:,-1] dec_inp=torch.cat((dec_inp,torch.multinomial(h,1)),1) preds_tr_b=clusters[dec_inp[:,1:].cpu().numpy()].cumsum(1)+batch['src'][:,-1:,0:2].cpu().numpy() pr_all[sam].append(preds_tr_b) gt=np.concatenate(gt,0) #pr=np.concatenate(pr,0) samp = {} for k in pr_all.keys(): samp[k] = {} samp[k]['pr'] = np.concatenate(pr_all[k], 0) samp[k]['mad'], samp[k]['fad'], samp[k]['err'] = baselineUtils.distance_metrics(gt, samp[k]['pr']) ev = [samp[i]['err'] for i in range(num_samples)] e20 = np.stack(ev, -1) mad_samp=e20.mean(1).min(-1).mean() fad_samp=e20[:,-1].min(-1).mean() #mad,fad,errs=baselineUtils.distance_metrics(gt,pr) log.add_scalar('eval/MM_mad', mad_samp, epoch) log.add_scalar('eval/MM_fad', fad_samp, epoch) if epoch % args.save_step == 0: torch.save(model.state_dict(), f'models/QuantizedTF/{args.name}/{epoch:05d}.pth') epoch+=1 ab=1 if __name__=='__main__': main()