language:
- ko
license: cc-by-nc-4.0
dataset_info:
features:
- name: index
dtype: string
- name: question
dtype: string
- name: choice_a
dtype: string
- name: choice_b
dtype: string
- name: choice_c
dtype: string
- name: choice_d
dtype: string
- name: answer
dtype: string
- name: category
dtype: string
- name: image
dtype: image
splits:
- name: test
num_bytes: 9681522
num_examples: 240
download_size: 3340794
dataset_size: 9681522
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
K-DTCBench
We introduce K-DTCBench, a newly developed Korean benchmark featuring both computer-generated and handwritten documents, tables, and charts. It consists of 80 questions for each image type and two questions per image, summing up to 240 questions in total. This benchmark is designed to evaluate whether vision-language models can process images in different formats and be applicable for diverse domains. All images are generated with made-up values and statements for evaluation purposes only. We scanned hand-written documents/tables/charts, or created digital objects with matplotlib library to build K-DTCBench. The proportions of digital and hand-written images are equal, each constituting 50%.
For more details, Please refer to the VARCO-VISION technical report.
- Technical Report: VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models
- Blog(Korean): VARCO-VISION Technical Report Summary
- Huggingface Version Model: NCSOFT/VARCO-VISION-14B-HF
Category | Image | K-DTCBench |
---|---|---|
document |
question: ๋ณด๊ณ ์์ ์ฃผ์ ๋ด์ฉ์ด ์๋ ๊ฒ์ ๋ฌด์์ธ๊ฐ์?
A: ์์ ์ธํ๋ผ ํ์ถฉ B: ์ฌ๋ ๋ฐ ์ฌ๊ณ ์๋ฐฉ ์ฒด๊ณ ๊ตฌ์ถ C: ์๋ฏผ ์์ ๊ต์ก ๊ฐํ D: ๊ธด๊ธ ๋์ ์์คํ ๊ฐ์ |
|
table |
question: ์ธํ๋ผ ๊ตฌ์ถ ํญ๋ชฉ์ ์ ์๋ ๋ช ์ ์ธ๊ฐ์?
A: 4 B: 6 C: 8 D: 10 |
|
chart |
question: ์ง์ฅ์ธ๋ค์ด ํด๊ทผ ํ ๋ ๋ฒ์งธ๋ก ์ ํธํ๋ ํ๋์ ๋ฌด์์ธ๊ฐ์?
A: ์ด๋ B: ์ฌ๊ฐํ๋ C: ์๊ธฐ๊ฐ๋ฐ D: ํด์ |
Inference Prompt
<image>
{question}
Options: A: {A}, B: {B}, C: {C}, D: {D}
์ฃผ์ด์ง ์ ํ์ง ์ค ํด๋น ์ต์
์ ๋ฌธ์๋ก ์ง์ ๋ตํ์ธ์.
Results
Below are the evaluation results of various vision-language models, including VARCO-VISION-14B on K-DTCBench.
VARCO-VISION-14B | Pangea-7B | Pixtral-12B | Molmo-7B-D | Qwen2-VL-7B-Instruct | LLaVA-One-Vision-7B | |
---|---|---|---|---|---|---|
K-DTCBench | 84.58 | 48.33 | 27.50 | 45.83 | 75.00 | 52.91 |
Citation
If you use K-DTCBench in your research, please cite the following:
@misc{ju2024varcovisionexpandingfrontierskorean,
title={VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models},
author={Jeongho Ju and Daeyoung Kim and SunYoung Park and Youngjune Kim},
year={2024},
eprint={2411.19103},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.19103},
}