repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
automl/SpySMAC
cave/utils/bokeh_routines.py
1
7662
import logging from bokeh.models import (CustomJS, ColumnDataSource) from bokeh.models.widgets import (RadioButtonGroup, CheckboxButtonGroup, Button, DataTable, TableColumn) def get_checkbox(glyph_renderers, labels, max_checkbox_length=None): """ Parameters ---------- glyph_renderers: List[List[Renderer]] list of glyph-renderers labels: List[str] list with strings to be put in checkbox max_checkbox_length: None or int maximum number of checkboxes in a single CheckboxButtonGroup, splits up the checkboxes over multiple CheckboxButtonGroups (e.g. to simulate "line-breaks" in the visual layout) NOTE: if this is not None, will return List[CheckboxButtonGroup] Returns ------- checkbox: CheckboxButtonGroup or List[CheckboxButtonGroup] checkbox object (or list of checkbox-objects) select_all: Button button related to checkbox select_none: Button button related to checkbox """ code, args_checkbox = _prepare_nested_glyphs(glyph_renderers) # Toggle all renderers in a subgroup, if their domain is set to active code += """ for (i = 0; i < len_labels; i++) { if (cb_obj.active.includes(i)) { // console.log('Setting to true: ' + i + '(' + glyph_renderers[i].length + ')') for (j = 0; j < glyph_renderers[i].length; j++) { glyph_renderers[i][j].visible = true; // console.log('Setting to true: ' + i + ' : ' + j) } } else { // console.log('Setting to false: ' + i + '(' + glyph_renderers[i].length + ')') for (j = 0; j < glyph_renderers[i].length; j++) { glyph_renderers[i][j].visible = false; // console.log('Setting to false: ' + i + ' : ' + j) } } } """ # Create the actual checkbox-widget callback = CustomJS(args=args_checkbox, code=code) checkbox = CheckboxButtonGroup(labels=labels, active=list(range(len(labels))), callback=callback) # Select all/none: handle_list_as_string = str(list(range(len(glyph_renderers)))) code_button_tail = "checkbox.active = labels;" + code.replace('cb_obj', 'checkbox') select_all = Button(label="All", callback=CustomJS(args=dict({'checkbox': checkbox}, **args_checkbox), code="var labels = {}; {}".format( handle_list_as_string, code_button_tail))) select_none = Button(label="None", callback=CustomJS(args=dict({'checkbox': checkbox}, **args_checkbox), code="var labels = {}; {}".format('[]', code_button_tail))) if max_checkbox_length: # Keep all and none buttons, but create new checkboxes and return a list slices = list(range(0, len(glyph_renderers), max_checkbox_length)) + [len(glyph_renderers)] checkboxes = [get_checkbox(glyph_renderers[s:e], labels[s:e])[0] for s, e in zip(slices[:-1], slices[1:])] return checkboxes, select_all, select_none return checkbox, select_all, select_none def get_radiobuttongroup(glyph_renderers, labels): """ Parameters ---------- glyph_renderers: List[List[Renderer]] list of glyph-renderers labels: List[str] list with strings to be put in widget Returns ------- radiobuttongroup: RadioButtonGroup radiobuttongroup widget to select one of the elements """ code, args = _prepare_nested_glyphs(glyph_renderers) # Toggle all renderers in a subgroup, if their domain is set to active code += """ for (i = 0; i < len_labels; i++) { if (cb_obj.active === i) { console.log('Setting to true: ' + i + '(' + glyph_renderers[i].length + ')') for (j = 0; j < glyph_renderers[i].length; j++) { glyph_renderers[i][j].visible = true; console.log('Setting to true: ' + i + ' : ' + j) } } else { console.log('Setting to false: ' + i + '(' + glyph_renderers[i].length + ')') for (j = 0; j < glyph_renderers[i].length; j++) { glyph_renderers[i][j].visible = false; console.log('Setting to false: ' + i + ' : ' + j) } } } """ # Create the actual checkbox-widget callback = CustomJS(args=args, code=code) radio = RadioButtonGroup(labels=labels, active=0, callback=callback) return radio def _prepare_nested_glyphs(glyph_renderers): # First create a consecutive list of strings named glyph_renderer_i for i in len(all_renderers) num_total_lines = sum([len(group) for group in glyph_renderers]) aliases_flattened = ['glyph_renderer' + str(i) for i in range(num_total_lines)] # Make that list nested to sum up multiple renderers in one checkbox aliases = [] start = 0 for group in glyph_renderers: aliases.append(aliases_flattened[start: start+len(group)]) start += len(group) # Flatten renderers-list to pass it to the CustomJS properly glyph_renderers_flattened = [a for b in glyph_renderers for a in b] args = {name: glyph for name, glyph in zip(aliases_flattened, glyph_renderers_flattened)} # Create javascript-code code = "len_labels = " + str(len(aliases)) + ";" # Create nested list of glyph renderers to be toggled by a button code += "glyph_renderers = [{}];".format( ','.join(['[' + ','.join([str(idx) for idx in group]) + ']' for group in aliases])) return code, args def array_to_bokeh_table(df, sortable=None, width=None, logger=None): """ Create bokeh-table from array. Parameters ---------- df: pandas.DataFrame dataframe with columns and index set sortable: dict(str : boolean) columns that should be sortable, default none width: dict(str : int) width of columns, default 100 for all logger: logging.Logger logger to use, if not set use default Returns ------- bokeh_table: bokeh.models.widgets.DataTable bokeh object """ if logger is None: logger = logging.getLogger('cave.utils.bokeh_routines.array_to_bokeh_table') if sortable is None: sortable = {} if width is None: width = {} columns = list(df.columns.values) data = dict(df[columns]) # Sanity checks for attr, d in {'width': width, 'sortable': sortable}.items(): diff = set(d.keys()).difference(set(columns)) if len(diff) > 0: logger.debug("For attr %s with value %s and columns %s there is a diff %s", attr, d, columns, diff) raise ValueError("Illegal table description! Trying to specify '%s' for the following columns, but they " "are not present in DataFrame: %s!" % (attr, diff)) source = ColumnDataSource(data) columns = [TableColumn(field=header, title=header, sortable=sortable.get(header, False), default_sort='descending', width=width.get(header, 100)) for header in columns ] data_table = DataTable(source=source, columns=columns, height=20 + 30 * len(list(data.values())[0]), index_position=None, # Disable index-column ) return data_table
bsd-3-clause
dpaiton/OpenPV
pv-core/analysis/python/plot_amoeba_response.py
1
4052
""" Make a histogram of normally distributed random numbers and plot the analytic PDF over it """ import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib.cm as cm import matplotlib.image as mpimg import PVReadWeights as rw import PVReadSparse as rs import math """ mi=mpimg.imread(sys.argv[3]) imgplot = plt.imshow(mi, interpolation='Nearest') imgplot.set_cmap('hot') plt.show() """ def nearby_neighbor(kzPre, zScaleLog2Pre, zScaleLog2Post): a = math.pow(2.0, (zScaleLog2Pre - zScaleLog2Post)) ia = a if ia < 2: k0 = 0 else: k0 = ia/2 - 1 if a < 1.0 and kzPre < 0: k = kzPre - (1.0/a) + 1 else: k = kzPre return k0 + (a * k) def zPatchHead(kzPre, nzPatch, zScaleLog2Pre, zScaleLog2Post): a = math.pow(2.0, (zScaleLog2Pre - zScaleLog2Post)) if a == 1: shift = -(0.5 * nzPatch) return shift + nearby_neighbor(kzPre, zScaleLog2Pre, zScaleLog2Post) shift = 1 - (0.5 * nzPatch) if (nzPatch % 2) == 0 and a < 1: kpos = (kzPre < 0) if kzPre < 0: kpos = -(1+kzPre) else: kpos = kzPre l = (2*a*kpos) % 2 if kzPre < 0: shift -= l == 1 else: shift -= l == 0 elif (nzPatch % 2) == 1 and a < 1: shift = -(0.5 * nzPatch) neighbor = nearby_neighbor(kzPre, zScaleLog2Pre, zScaleLog2Post) if nzPatch == 1: return neighbor return shift + neighbor """ a = zPatchHead(int(sys.argv[1]), 5, -math.log(4, 2), -math.log(1, 2)) print a print int(a) sys.exit() """ vmax = 100.0 # Hz space = 1 extended = False w = rw.PVReadWeights(sys.argv[1]) wOff = rw.PVReadWeights(sys.argv[2]) nx = w.nx ny = w.ny nxp = w.nxp nyp = w.nyp nx_im = nx * (nxp + space) + space ny_im = ny * (nyp + space) + space predub = np.zeros(((nx*nx),(nxp * nxp))) predubOff = np.zeros(((nx*nx),(nxp * nxp))) numpat = w.numPatches print "numpat = ", numpat for k in range(numpat): p = w.next_patch() pOff = wOff.next_patch() predub[k] = p predubOff[k] = pOff print "weights done" #print "p = ", P #if k == 500: # sys.exit() #end fig loop activ = rs.PVReadSparse(sys.argv[3], extended) end = int(sys.argv[4]) step = int(sys.argv[5]) begin = int(sys.argv[6]) count = 0 for end in range(begin+step, end, step): A = activ.avg_activity(begin, end) this = 7 + count count += 1 print "this = ", this print "file = ", sys.argv[this] print numrows, numcols = A.shape min = np.min(A) max = np.max(A) s = np.zeros(numcols) for col in range(numcols): s[col] = np.sum(A[:,col]) s = s/numrows b = np.reshape(A, (len(A)* len(A))) c = np.shape(b)[0] mi=mpimg.imread(sys.argv[this]) print "a w start" rr = nx / 64 im = np.zeros((64, 64)) for yi in range(len(A)): for xi in range(len(A)): x = int(zPatchHead(int(xi), 5, -math.log(rr, 2), -math.log(1, 2))) y = int(zPatchHead(int(yi), 5, -math.log(rr, 2), -math.log(1, 2))) if 58 > x >= 0 and 58 > y >= 0: if A[yi, xi] > 0: patch = predub[yi * (nx) + xi] patchOff = predubOff[yi * (nx) + xi] patch = np.reshape(patch, (nxp, nxp)) patchOff = np.reshape(patchOff, (nxp, nxp)) for yy in range(nyp): for xx in range(nxp): im[y + yy, x + xx] += patch[yy, xx] * A[yi, xi] im[y + yy, x + xx] -= patchOff[yy, xx] * A[yi, xi] fig = plt.figure() ax = fig.add_subplot(3,1,1) ax.imshow(mi, interpolation='Nearest', cmap='gray') ax = fig.add_subplot(3,1,2) #ax.imshow(mi, interpolation='Nearest', cmap='gray', origin="lower") ax.set_xlabel('activity') ax.imshow(A, cmap=cm.jet, interpolation='nearest', vmin = 0.0, vmax = np.max(A)) ax = fig.add_subplot(313) ax.set_xlabel('image reconstruction') ax.imshow(im, cmap=cm.jet, interpolation='nearest', vmin = 0.0, vmax = np.max(im)) plt.show() #end fig loop
epl-1.0
neale/CS-program
434-MachineLearning/final_project/linearClassifier/sklearn/utils/tests/test_sparsefuncs.py
78
17611
import numpy as np import scipy.sparse as sp from scipy import linalg from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from numpy.random import RandomState from sklearn.datasets import make_classification from sklearn.utils.sparsefuncs import (mean_variance_axis, incr_mean_variance_axis, inplace_column_scale, inplace_row_scale, inplace_swap_row, inplace_swap_column, min_max_axis, count_nonzero, csc_median_axis_0) from sklearn.utils.sparsefuncs_fast import (assign_rows_csr, inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from sklearn.utils.testing import assert_raises def test_mean_variance_axis0(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) X_csr = sp.csr_matrix(X_lil) X_csc = sp.csc_matrix(X_lil) expected_dtypes = [(np.float32, np.float32), (np.float64, np.float64), (np.int32, np.float64), (np.int64, np.float64)] for input_dtype, output_dtype in expected_dtypes: X_test = X.astype(input_dtype) for X_sparse in (X_csr, X_csc): X_sparse = X_sparse.astype(input_dtype) X_means, X_vars = mean_variance_axis(X_sparse, axis=0) assert_equal(X_means.dtype, output_dtype) assert_equal(X_vars.dtype, output_dtype) assert_array_almost_equal(X_means, np.mean(X_test, axis=0)) assert_array_almost_equal(X_vars, np.var(X_test, axis=0)) def test_mean_variance_axis1(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) X_csr = sp.csr_matrix(X_lil) X_csc = sp.csc_matrix(X_lil) expected_dtypes = [(np.float32, np.float32), (np.float64, np.float64), (np.int32, np.float64), (np.int64, np.float64)] for input_dtype, output_dtype in expected_dtypes: X_test = X.astype(input_dtype) for X_sparse in (X_csr, X_csc): X_sparse = X_sparse.astype(input_dtype) X_means, X_vars = mean_variance_axis(X_sparse, axis=0) assert_equal(X_means.dtype, output_dtype) assert_equal(X_vars.dtype, output_dtype) assert_array_almost_equal(X_means, np.mean(X_test, axis=0)) assert_array_almost_equal(X_vars, np.var(X_test, axis=0)) def test_incr_mean_variance_axis(): for axis in [0, 1]: rng = np.random.RandomState(0) n_features = 50 n_samples = 10 data_chunks = [rng.randint(0, 2, size=n_features) for i in range(n_samples)] # default params for incr_mean_variance last_mean = np.zeros(n_features) last_var = np.zeros_like(last_mean) last_n = 0 # Test errors X = np.array(data_chunks[0]) X = np.atleast_2d(X) X_lil = sp.lil_matrix(X) X_csr = sp.csr_matrix(X_lil) assert_raises(TypeError, incr_mean_variance_axis, axis, last_mean, last_var, last_n) assert_raises(TypeError, incr_mean_variance_axis, axis, last_mean, last_var, last_n) assert_raises(TypeError, incr_mean_variance_axis, X_lil, axis, last_mean, last_var, last_n) # Test _incr_mean_and_var with a 1 row input X_means, X_vars = mean_variance_axis(X_csr, axis) X_means_incr, X_vars_incr, n_incr = \ incr_mean_variance_axis(X_csr, axis, last_mean, last_var, last_n) assert_array_almost_equal(X_means, X_means_incr) assert_array_almost_equal(X_vars, X_vars_incr) assert_equal(X.shape[axis], n_incr) # X.shape[axis] picks # samples X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis) assert_array_almost_equal(X_means, X_means_incr) assert_array_almost_equal(X_vars, X_vars_incr) assert_equal(X.shape[axis], n_incr) # Test _incremental_mean_and_var with whole data X = np.vstack(data_chunks) X_lil = sp.lil_matrix(X) X_csr = sp.csr_matrix(X_lil) X_csc = sp.csc_matrix(X_lil) expected_dtypes = [(np.float32, np.float32), (np.float64, np.float64), (np.int32, np.float64), (np.int64, np.float64)] for input_dtype, output_dtype in expected_dtypes: for X_sparse in (X_csr, X_csc): X_sparse = X_sparse.astype(input_dtype) X_means, X_vars = mean_variance_axis(X_sparse, axis) X_means_incr, X_vars_incr, n_incr = \ incr_mean_variance_axis(X_sparse, axis, last_mean, last_var, last_n) assert_equal(X_means_incr.dtype, output_dtype) assert_equal(X_vars_incr.dtype, output_dtype) assert_array_almost_equal(X_means, X_means_incr) assert_array_almost_equal(X_vars, X_vars_incr) assert_equal(X.shape[axis], n_incr) def test_mean_variance_illegal_axis(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_csr = sp.csr_matrix(X) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-3) assert_raises(ValueError, mean_variance_axis, X_csr, axis=2) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-1) assert_raises(ValueError, incr_mean_variance_axis, X_csr, axis=-3, last_mean=None, last_var=None, last_n=None) assert_raises(ValueError, incr_mean_variance_axis, X_csr, axis=2, last_mean=None, last_var=None, last_n=None) assert_raises(ValueError, incr_mean_variance_axis, X_csr, axis=-1, last_mean=None, last_var=None, last_n=None) def test_densify_rows(): for dtype in (np.float32, np.float64): X = sp.csr_matrix([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=dtype) X_rows = np.array([0, 2, 3], dtype=np.intp) out = np.ones((6, X.shape[1]), dtype=dtype) out_rows = np.array([1, 3, 4], dtype=np.intp) expect = np.ones_like(out) expect[out_rows] = X[X_rows, :].toarray() assign_rows_csr(X, X_rows, out_rows, out) assert_array_equal(out, expect) def test_inplace_column_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(200) XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_row_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(100) XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_swap_row(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) def test_inplace_swap_column(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) def test_min_max_axis0(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) def test_min_max_axis1(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) def test_min_max_axis_errors(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) assert_raises(TypeError, min_max_axis, X_csr.tolil(), axis=0) assert_raises(ValueError, min_max_axis, X_csr, axis=2) assert_raises(ValueError, min_max_axis, X_csc, axis=-3) def test_count_nonzero(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) X_nonzero = X != 0 sample_weight = [.5, .2, .3, .1, .1] X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None] for axis in [0, 1, -1, -2, None]: assert_array_almost_equal(count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)) assert_array_almost_equal(count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), X_nonzero_weighted.sum(axis=axis)) assert_raises(TypeError, count_nonzero, X_csc) assert_raises(ValueError, count_nonzero, X_csr, axis=2) def test_csc_row_median(): # Test csc_row_median actually calculates the median. # Test that it gives the same output when X is dense. rng = np.random.RandomState(0) X = rng.rand(100, 50) dense_median = np.median(X, axis=0) csc = sp.csc_matrix(X) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test that it gives the same output when X is sparse X = rng.rand(51, 100) X[X < 0.7] = 0.0 ind = rng.randint(0, 50, 10) X[ind] = -X[ind] csc = sp.csc_matrix(X) dense_median = np.median(X, axis=0) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test for toy data. X = [[0, -2], [-1, -1], [1, 0], [2, 1]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5])) X = [[0, -2], [-1, -5], [1, -3]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0., -3])) # Test that it raises an Error for non-csc matrices. assert_raises(TypeError, csc_median_axis_0, sp.csr_matrix(X)) def test_inplace_normalize(): ones = np.ones((10, 1)) rs = RandomState(10) for inplace_csr_row_normalize in (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2): for dtype in (np.float64, np.float32): X = rs.randn(10, 5).astype(dtype) X_csr = sp.csr_matrix(X) inplace_csr_row_normalize(X_csr) assert_equal(X_csr.dtype, dtype) if inplace_csr_row_normalize is inplace_csr_row_normalize_l2: X_csr.data **= 2 assert_array_almost_equal(np.abs(X_csr).sum(axis=1), ones)
unlicense
AlexRobson/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
rodriggs/pipeline
preprocessing/preprocessing.py
2
21493
import numpy as np import pandas as pd from collections import Counter import scipy.stats as scs from scipy.stats import skew, pearsonr, spearmanr, kendalltau import cPickle as pickle import string from edatools import compare_missing_values, count_data, summary_stats, printall class data_transporter(object): """ A 'data' class that will contain all of the data, for ease of use. This class can be used to quickly access the different types of variables (continuous, discrete, ordinal, nominal). Determined by examining data. """ def __init__(self, filename): """ Instantiate class and initialize dataframe, id, and labels if training data set. """ print 'Instantiate data class\n' self.package = self.load_data(filename) self.unpack(self.package) # Load feature labels self.load_feature_labels() def load_data(self, filename): """ Load data and add variables to dataframes, """ print "Reading in data from csv\n" df_train = pd.read_csv(filename[0]) df_test = pd.read_csv(filename[1]) # Replace individual data points # The sample with ID 666 has GarageArea, GarageCars, and GarageType # but none of the other fields, so use the mode and median to fill them in. df_test.loc[666, 'GarageFinish'] = 'Unf' df_test.loc[666, 'GarageCond'] = 'TA' df_test.loc[666, 'GarageQual'] = 'TA' df = pd.concat((df_train.loc[:,'MSSubClass':'SaleCondition'], df_test.loc[:,'MSSubClass':'SaleCondition'])) df.reset_index(inplace=True, drop=True) df_train_id = df_train['Id'] df_test_id = df_test['Id'] y = df_train['SalePrice'].get_values() # Package that will be unpacked package = [df, df_train_id, df_test_id, y] return package def unpack(self, package): """ INPUT: Package of raw data OUPUT: No output returned simply defining instance variables """ print "Loading data on transporter\n" self.df = package[0] self.df_train_id = package[1] self.df_test_id = package[2] self.y = package[3] self.original_features = self.df.columns.unique() self.X = 0 self.X_pred = 0 self.df_train = 0 self.df_test = 0 self.df_pretransform = 0 def continuous(self): """ Returns all of the continuous variable labels """ c = ['LotFrontage', 'LotArea', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal'] self.continuous_feat = c def discrete(self): """ Returns all of the discrete variable labels """ d = ['YearBuilt', 'YearRemodAdd','BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'MoSold', 'YrSold'] self.discrete_feat = d def nominal(self): """ Returns all of the nominal variable labels """ n = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotConfig', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'CentralAir', 'Electrical', 'Functional', 'GarageType', 'PavedDrive', 'MiscFeature'] self.nominal_feat = n def ordinal(self): """ Returns all of the ordinal variable labels """ o = ['LotShape', 'LandContour', 'Utilities', 'LandSlope', 'OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'GarageCond', 'PoolQC', 'Fence', 'SaleType', 'SaleCondition'] self.ordinal_feat = o def constructed(self): """ Returns all constructed variable labels """ self.constructed_feat = [] self.mapped_feat = [] self.removed_feat = [] self.binary_feat = [] def load_feature_labels(self): """ Load labels onto data class """ print 'Load class labels\n' self.continuous() self.discrete() self.nominal() self.ordinal() self.constructed() def missing_values(dt): """ Replacing all of the NaN's with values that were determined by examining the individual rows that were missing values as well as surrounding rows and the number of values for each label in a feature """ # Find null values using all_data[pd.isnull(all_data['PoolQC'])] print 'Replace missing values\n' df = dt.df # Replace garage year with year built if null df.GarageYrBlt.fillna(df.YearBuilt, inplace=True) # MSZoning is replaced with the most common value within each Neighborhood as most zoning = {} for N in df.Neighborhood.unique().tolist(): zoning[N] = df[df['Neighborhood'] == N]['MSZoning'].mode()[0] mask = df['MSZoning'].isnull() df.loc[mask, 'MSZoning'] = df.loc[mask, 'Neighborhood'].map(zoning) # Replace nulls with most common values D = { 'Exterior1st': 'VinylSd', 'Exterior2nd': 'VinylSd', 'Utilities': 'AllPub', 'Electrical': 'SBrkr', 'Functional': 'Typ', 'SaleType': 'WD' } for k, v in D.iteritems(): df[k].fillna(value=v, inplace=True) # Replace null with None col_none = [ 'Alley', 'MasVnrType', 'Fence', 'MiscFeature', 'GarageType', 'BsmtExposure', 'PoolQC', 'BsmtQual', 'BsmtCond', 'BsmtFinType1', 'BsmtFinType2', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', 'GarageFinish' ] for col in col_none: df[col].fillna(value='None', inplace=True) # Replace null with 0 col_0 = [ 'BsmtFullBath', 'BsmtHalfBath', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'MasVnrArea', 'PoolArea', 'MiscVal', 'LotFrontage', 'PoolArea', 'TotalBsmtSF' ] for col in col_0: df[col].fillna(value=0, inplace=True) # Convert to floats df['OverallQual'] = df['OverallQual'].astype(float) df['OverallCond'] = df['OverallCond'].astype(float) dt.df = df return dt # New variable construction ### Use self.function to place functions below inside the class def load_new_features(dt): """ Add new columns to data frame """ print 'Load new features\n' df = dt.df # Additions of new features # The total square feet of the house: float64 df['TotSqFt'] = (df['TotalBsmtSF'] + df['GrLivArea']).astype(float) # The time since the house was sold, 2010 base year df['TimeSinceSold'] = ((2010 - df['YrSold']) * 1).astype(float) # The number of bathroooms in the house: float64 df['TotBath'] = (df['BsmtHalfBath'] + df['BsmtFullBath'] + df['FullBath'] + df['HalfBath']).astype(float) # How old the house was at the time of sale 0, 1 df['SaleAge'] = (df['YrSold'] - df['YearBuilt']).astype(float) df['SaleAge'].replace(to_replace=-1, value=0, inplace=True) # How many years has it been since the remodel: 0,1 df['YrSinceRemodel'] = (df['YrSold'] - df['YearRemodAdd']).astype(float) df['YrSinceRemodel'].replace({-2:0, -1:0}, inplace=True) # Is the square footage greater than two standard deviations from the mean? sq ft: 0, 1 PremiumSQ = df.TotSqFt.mean() + 2 * df.TotSqFt.std() df['Premium'] = (df['TotSqFt'] > PremiumSQ) * 1 # Is the garage detached: 0, 1 df['IsGarageDetached'] = (df['GarageType'] == 'Detchd') * 1 # Most have a paved drive so treat dirt/gravel and partial pavement as 'not paved': 0,1 df['IsPavedDrive'] = (df['PavedDrive'] == 'Y') * 1 # The only interesting 'misc. feature' is the presence of a shed: 0,1 df['HasShed'] = (df['MiscFeature'] == 'Shed') * 1 # If YearRemodAdd != YearBuilt, then a remodeling took place at some point : 0,1 df['Remodeled'] = (df['YearRemodAdd'] != df['YearBuilt']) * 1 # Did a remodeling happen in the year the house was sold?: 0,1 df['RecentRemodel'] = (df['YearRemodAdd'] == df['YrSold']) * 1 # Was house sold in the year it was built?: 0,1 df['VeryNewHouse'] = (df['YearBuilt'] == df['YrSold']) * 1 # Features a result of specific labels 0, 1 df['Has2ndFloor'] = (df['2ndFlrSF'] == 0) * 1 df['HasMasVnr'] = (df['MasVnrArea'] == 0) * 1 df['HasWoodDeck'] = (df['WoodDeckSF'] == 0) * 1 df['HasOpenPorch'] = (df['OpenPorchSF'] == 0) * 1 df['HasEnclosedPorch'] = (df['EnclosedPorch'] == 0) * 1 df['Has3SsnPorch'] = (df['3SsnPorch'] == 0) * 1 df['HasScreenPorch'] = (df['ScreenPorch'] == 0) * 1 # Is the house in a residential district: 1, 0 df['Residential'] = df['MSZoning'].isin(['C (all)', 'FV']) * 1 # Is the house level: 1, 0 df['Level'] = df['LandContour'].isin(['Bnk', 'Low', 'HLS']) * 1 # Does the house have Shingles: 0, 1 df['HasShingles'] = df['RoofMatl'].isin(['ClyTile', 'Membran', 'Metal', 'Roll', 'Tar&Grv', 'WdShake', 'WdShngl']) * 1 # Does the house have a gas furnace: 0, 1 df['GasFurance'] = df['Electrical'].isin(['FuseA', 'FuseF', 'FuseP', 'Mix']) * 1 # Circuit Breakers: 0, 1 df['CircuitBreaker'] = df['LandContour'].isin(['Bnk', 'Low', 'HLS']) * 1 # Typical home functionality? :0, 1 df['TypHomeFunc'] = df['Functional'].isin(['Maj1', 'Maj2', 'Min1', 'Min2', 'Mod', 'Sev']) * 1 # Is the dive paved?: 0, 1 df['Paved'] = df['PavedDrive'].isin(['N', 'P']) * 1 # There is no fence: 0, 1 df['NoFence'] = df['Fence'].isin(['GdPrv', 'GdWo', 'MnPrv', 'MnWw']) * 1 # Is it a conventional warranty deed? 0, 1 df['ConvWarrantyDeed'] = df['SaleType'].isin(['COD','CWD', 'Con', 'ConLD', 'ConLI', 'ConLw', 'New', 'Oth']) * 1 # Was the sale condition normal?: 0, 1 df['NormalSaleCondition'] = df['SaleCondition'].isin(['Abnorml', 'AdjLand', 'Alloca', 'Family', 'Partial']) * 1 # Regular lot shape": 0, 1 df['RegLotShape'] = df['LotShape'].isin(['IR3', 'IR2', 'IR1']) * 1 # Worst time to buy July/Aug/Nov/Dec/Jan/Feb: 0, 1 df['BestBuyTime'] = df['MoSold'].isin([3, 4, 5, 6, 9, 10]) * 1 # Append constructed feature names dt.constructed_feat = ['TotSqFt', 'TimeSinceSold', 'TotBath', 'SaleAge', 'YrSinceRemodel', 'Premium', 'IsPavedDrive', 'HasShed', 'Remodeled', 'RecentRemodel', 'VeryNewHouse', 'Has2ndFloor', 'HasMasVnr', 'HasWoodDeck', 'HasOpenPorch', 'HasEnclosedPorch', 'Has3SsnPorch', 'HasScreenPorch', 'TimeSinceSold', 'Residential', 'Level', 'HasShingles', 'GasFurance', 'CircuitBreaker', 'TypHomeFunc', 'Paved', 'NoFence', 'ConvWarrantyDeed', 'NormalSaleCondition', 'RegLotShape', 'BestBuyTime'] binary_features = df[dt.constructed_feat].select_dtypes(include=['int64']).columns.unique() dt.binary_feat = binary_features.tolist() dt.df = df return dt def map_ordinal_feat(dt): """ Ordinal features are mapped to numerical representations based on the labels of the individual columns, both the new features and old features are kept and will be fed to feature selection models """ df = dt.df print 'Mapping ordinal features\n' # MSSubClass map digits to alphabetic labels for type of dwelling so models dont treat as numerical data subclass = [20, 30, 40, 45, 50, 60, 70, 75, 80, 85, 90, 120, 150, 160, 180, 190] alpha = list(string.ascii_uppercase) sub_list = zip(subclass, alpha[:len(subclass)]) sub_mapping = dict(sub_list) df['MSSubClass'] = df['MSSubClass'].map(sub_mapping) # Slope Mapping slope = ['Gtl', 'Mod', 'Sev'] s_list = zip(slope, xrange(0, len(slope))) sloped_mapping = dict(s_list) df['map_LandSlope'] = df['LandSlope'].map(sloped_mapping).astype(float) # Exposure exposure = ['None', 'No', 'Mn', 'Av', 'Gd'] ex_list = zip(exposure, xrange(0, len(exposure))) ex_mapping = dict(ex_list) df['BsmtExposure'] = df['BsmtExposure'].map(ex_mapping) # Garage mapping garage_mapping = {'None': 0.0, 'Unf': 1.0, 'RFn': 2.0, 'Fin': 3.0} df['map_GarageFinish'] = df['GarageFinish'].map(garage_mapping).astype(float) # Fence mapping fence_mapping = {'None': 0.0, 'MnWw': 1.0, 'GdWo': 2.0, 'MnPrv': 3.0, 'GdPrv': 4.0} df['map_Fence'] = df['Fence'].map(fence_mapping).astype(float) df['map_Fence'].fillna(value=0, inplace=True) ordinals_quality = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PoolQC'] quality = ['None', 'Po', 'Fa', 'TA', 'Gd', 'Ex'] q_list = zip(quality, xrange(0, len(quality)+1)) quality_mapping = dict(q_list) for column in iter(ordinals_quality): new_col = '{}'.format(column) df[new_col] = df[column].map(quality_mapping) df[new_col].fillna(value=0, inplace=True) dt.mapped_feat = ['map_LandSlope', 'map_BsmtExposure', 'map_GarageFinish', 'map_Fence'] return dt def encode_labels(dt): """ Creating new dummy features from all categorical feature labels using pandas get_dummies """ print 'Encoding labels of nominal and ordinal features\n' features = dt.ordinal_feat + dt.nominal_feat remove_feat = ['OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PoolQC', 'BsmtExposure'] features = [x for x in features if x not in remove_feat] columns_before = set(dt.df.columns.unique()) # Get dummies and drop the first column dt.df = pd.get_dummies(dt.df, columns=features, drop_first=True) # Generate list of binary columns to exclude from standarization columns_after = set(dt.df.columns.unique()) dt.binary_feat = dt.binary_feat + list(columns_after.difference(columns_before)) return dt def remove_missing_features(dt): """ The following features do not appear in the test data set, in order to avoid over fitting we will remove them (found by running missing values in edatools) """ print 'Dropping features that dont show up in training set\n' D = compare_missing_values() # generate column names from missing values dictionary, clean up drop_feats = [] for k,v in D.iteritems(): if v: [drop_feats.append([k, x]) for x in v] drop_columns = ['{}_{}'.format(k, v) for k,v in drop_feats] drop_columns.append('MSSubClass_M') # Check if feature column was generated when encoding and then drop due to missing value in missing features [dt.df.drop(column, axis=1, inplace=True) for column in drop_columns if column in dt.df.columns] remove_binary = [x for x in drop_columns if x in dt.binary_feat] [dt.binary_feat.remove(bin_feat) for bin_feat in remove_binary] return dt def preprocessing(dt): """ Take log1 transformations of numerical values with absolute skew greater than 0.5 to help normalize data. Then standarize data (mu = 0, sigma = 1) in order to more efficiently train the machine learning algorithms """ numeric_features = dt.continuous_feat + dt.discrete_feat + dt.ordinal_feat + ['TotSqFt', 'TotBath', 'SaleAge', 'YrSinceRemodel', 'TimeSinceSold', 'map_LandSlope', 'map_GarageFinish', 'map_Fence'] # These were encoded in encode_labels -> not numerical values remove_feat = [ 'LotShape', 'LandContour', 'Utilities', 'LandSlope', 'BsmtFinType1', 'BsmtFinType2', 'GarageFinish', 'Fence', 'SaleType', 'SaleCondition', 'MoSold'] # Following transformations determined by plotting feature vs log1p(SalePrice) in PlotsPreTransformedData print "Begin transformations\n" # The following features show that although skew is big, log transformations lead to lower Pearson correlation low_pearson_feat = ['BsmtCond', 'BsmtUnfSF', 'PoolQC'] # Special log transformation of the form log(x/mean(x)+k) applied mean_log_feat = ['YearBuilt_log', 'MasVnrArea_log', 'BsmtFinSF1_log', 'TotalBsmtSF_log', 'GarageQual_log', 'SaleAge_log'] feat_log = ['YearBuilt', 'MasVnrArea', 'BsmtFinSF1', 'TotalBsmtSF', 'GarageQual', 'SaleAge'] k_s = [1, 1, 10, 1, 10, 1] mean_log_dict = zip(mean_log_feat, k_s, feat_log) for feats in mean_log_dict: mean = dt.df[feats[2]].mean() dt.df[feats[0]] = np.log(dt.df[feats[2]] / mean + feats[1]) # Power transformations (squared and cubed) feats = ['BsmtQual', 'BsmtQual', 'BsmtQual', '2ndFlrSF', '2ndFlrSF', '2ndFlrSF', 'BsmtHalfBath', 'BsmtHalfBath', 'BsmtHalfBath'] power_feat = ['BsmtQual1', 'BsmtQual2', 'BsmtQual3', '2ndFlrSF', '2ndFlrSF2', '2ndFlrSF3', 'BsmtHalfBath1', 'BsmtHalfBath2', 'BsmtHalfBath3'] powers = [1, 2, 3, 1, 2, 3, 1, 2, 3] power_dict = zip(feats, power_feat, powers) for feats in power_dict: dt.df[feats[1]] = np.power(dt.df[feats[0]], feats[2]) # Features to remove from skew analysis remove_feat = remove_feat + low_pearson_feat + mean_log_feat + power_feat # Remaining numerical features can be transformed to address skew numeric_features = [x for x in numeric_features if x not in remove_feat] # Transform the skewed numeric features by taking log(feature + 1). # This will make the features more normal. print 'Correct for data skew\n' # Make sure we are performing transformations only on training data, we don't want data leakage of future information skewed_features = dt.df.loc[:1459][numeric_features].apply(lambda x: skew(x.dropna().astype(float))) # This is a hyperparameter that can be tuned (0.75 most common on kaggle), .6 identifies the best division between whether to log transform depending on the pearson correl coeff as shown in the jupyter notebook PlotsPreTransformedData skewed_features = skewed_features[abs(skewed_features) > 0.75] skewed_features = skewed_features.index dt.df[skewed_features] = np.log1p(dt.df[skewed_features]) # Log transform y values dt.y = np.log1p(dt.y) return dt def standarization(dt): """ Here we standardize numerical features that are not binary. Since binary features aren't meaningful with respect to sizes or shapes, moreover we would lose interpretations that can be made from the dummy predictors """ print 'Standarize features\n' from sklearn.preprocessing import StandardScaler dt.df_pretransform = dt.df.copy() # look to see if there is a way to mask or do something easier features_stand = [x for x in dt.df.columns.unique() if x not in dt.binary_feat] # Make array of remaining feature values to standardize X_array = dt.df.loc[:1459][features_stand].get_values() X_pred_array = dt.df.loc[1460:][features_stand].get_values() # Standarize scaler = StandardScaler(with_mean=True).fit(X_array) X_scaled = scaler.transform(X_array) X_pred_scaled = scaler.transform(X_pred_array) # Reload onto data transporter df_X = pd.DataFrame(data=X_scaled, index=None, columns=features_stand, copy=True) df_X_pred = pd.DataFrame(data=X_pred_scaled, index=None, columns=features_stand, copy=True) df_standarized = pd.concat([df_X, df_X_pred], ignore_index=True) df_binary = dt.df[dt.binary_feat] dt.df = pd.concat([df_standarized, df_binary], axis=1, copy=True) dt.df_train = dt.df.loc[:1459] dt.df_test = dt.df.loc[1460:] # dt.X contains the training data set dt.X = dt.df_train.get_values() dt.X_pred = dt.df_test.get_values() # dt.df_train.columns[dt.df_train.max() == 1] old way of getting binary features return dt def load_data(): """ Load data and add constructed variables to dataframe """ print "Loading data to data transporter object\n" data_location = ['../data/train.csv', '../data/test.csv'] dt = data_transporter(data_location) dt = missing_values(dt) dt = load_new_features(dt) dt = map_ordinal_feat(dt) dt = encode_labels(dt) dt = remove_missing_features(dt) dt = preprocessing(dt) dt = standarization(dt) # Features that we are going to test on dt.features = dt.df_train.columns.tolist() dt.n_features = dt.df_train.shape[1] print "Done Loading Data\n" print "" return dt if __name__ == '__main__': all_data = load_data() file_name = 'processed_data.pkl' with open(file_name,'wb') as fileObject: pickle.dump(all_data, fileObject)
mit
hitszxp/scikit-learn
sklearn/tests/test_random_projection.py
19
14015
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import gaussian_random_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.random_projection import SparseRandomProjection from sklearn.random_projection import GaussianRandomProjection from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils import DataDimensionalityWarning all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = int(n_samples * n_features / 100.) data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): """Check basic properties of random matrix generation""" for random_matrix in all_random_matrix: check_input_size_random_matrix(random_matrix) check_size_generated(random_matrix) check_zero_mean_and_unit_norm(random_matrix) for random_matrix in all_sparse_random_matrix: check_input_with_sparse_random_matrix(random_matrix) random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) check_zero_mean_and_unit_norm(random_matrix_dense) def test_gaussian_random_matrix(): """Check some statical properties of Gaussian random matrix""" # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): """Check some statical properties of sparse random matrix""" n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [0, 1, 2]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: assert_warns(DataDimensionalityWarning, RandomProjection(n_components=n_features + 1).fit, data) def test_works_with_sparse_data(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: rp_dense = RandomProjection(n_components=3, random_state=1).fit(data) rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sp.csr_matrix(data)) assert_array_almost_equal(densify(rp_dense.components_), densify(rp_sparse.components_))
bsd-3-clause
phdowling/scikit-learn
sklearn/tests/test_cross_validation.py
27
41664
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100))
bsd-3-clause
grocsvs/grocsvs
src/grocsvs/datasets.py
1
4607
import logging import os import pandas import pysam import cStringIO as StringIO import sys from grocsvs import utilities from grocsvs.utilities import get_key class Dataset(object): def serialize(self): d = self.__dict__.copy() d["type"] = self.__class__.__name__ del d["sample"] return d @staticmethod def deserialize(sample, dict_): if not isinstance(dict_, dict): print "samples must be of type 'dict', not '{}': '{}'".format(type(dict_).__name__, dict_) sys.exit(1) dict_ = dict_.copy() dataset_types = [TenXDataset, ShortFragDataset, MatePairDataset] dataset_types = dict((x.__name__, x) for x in dataset_types) type_ = get_key(dict_, "type", error_msg="sample") # just for type-checking if not type_ in dataset_types: print "ERROR: Sample type must be one of '{}'; got '{}' instead".format(dataset_types.keys(), type_) sys.exit(1) dataset_class = dataset_types[dict_.pop("type")] dict_["sample"] = sample #try: return dataset_class(**dict_) #except TypeError: # print "MISSING FIELD FOR SAMPLE:", sample.name, dataset_class # print " Fields provided:", dataset_class.__class__.__name__, dict_ # sys.exit(1) class TenXDataset(Dataset): def __init__(self, **kwdargs):#sample, bam, fragments, phased_fragments, id, sorted_fastqs=None): self.sample = get_key(kwdargs, "sample", None, error_msg="TenXDataset") self.bam = os.path.realpath(get_key(kwdargs, "bam", error_msg="TenXDataset")) #self.fragments = get_key(kwdargs, "fragments", error_msg="TenXDataset") #self.phased_fragments = get_key(kwdargs, "phased_fragments", error_msg="TenXDataset") #self.sorted_fastqs = get_key(kwdargs, "sorted_fastqs", default=None, error_msg="TenXDataset") self.id = get_key(kwdargs, "id", error_msg="TenXDataset") self.validate() def validate(self): assert os.path.exists(self.bam), "missing bam file '{}' for sample '{}' and dataset '{}'".format( self.bam, self.sample.name, self.id) # @staticmethod # def from_longranger_dir(self, longranger_dir): # fragments = os.path.join(longranger_dir, # "PHASER_SVCALLER_CS/PHASER_SVCALLER/_REPORTER/" # "REPORT_SINGLE_PARTITION/fork0/files/fragments.h5") # bam = os.path.join(longranger_dir, # "PHASER_SVCALLER_CS/PHASER_SVCALLER/ATTACH_PHASING/" # "fork0/files/phased_possorted_bam.bam") # phased_fragments = os.path.join(longranger_dir, # "10XSARCOMAC1/PHASER_SVCALLER_CS/PHASER_SVCALLER/" # "_SNPINDEL_PHASER/PHASE_SNPINDELS/fork0/files/" # "fragment_phasing.tsv.gz") # self.validate() # return TenXDataset(bam, fragments, phased_fragments) # def load_phased_fragments(self, chrom=None, start=None, end=None): # columns = ["chrom", "start_pos", "end_pos", "phase_set", "ps_start", # "ps_end", "bc", "h0", "h1", "hmix", "unkn"] # try: # tabix = pysam.TabixFile(self.phased_fragments) # s = StringIO.StringIO("\n".join(tabix.fetch(chrom, start, end))) # frags = pandas.read_table(s) # frags.columns = columns # except (IOError, ValueError): # frags = pandas.DataFrame(columns=columns) # return frags # def load_fragments(self, chrom=None, start=None, end=None): # tabix = pysam.TabixFile() # try: # fragments = utilities.read_data_frame(self.fragments) # goodbcs = utilities.get_good_barcodes(fragments) # fragments = fragments.loc[fragments["bc"].isin(goodbcs)] # # fragments = fragments.loc[fragments["num_reads"]>5] # if chrom is not None: # fragments = fragments.loc[fragments["chrom"]==chrom] # return fragments # except: # logging.exception("Unable to load fragments from fragments file " # "'{}'".format(self.fragments)) # raise class ShortFragDataset(Dataset): def __init__(self, sample, bam, id): self.sample = sample self.bam = os.path.realpath(bam) self.id = id class MatePairDataset(Dataset): def __init__(self, sample, bam, id): self.sample = sample self.bam = os.path.realpath(bam) self.id = id
mit
aaroncnb/comic_dust
q_interp.py
1
4409
# coding: utf-8 # In[1]: import pyfits import numpy as np # Set up matplotlib and use a nicer set of plot parameters get_ipython().magic(u'config InlineBackend.rc = {}') import matplotlib import matplotlib.pyplot as plt get_ipython().magic(u'matplotlib inline') from astropy.io import fits # In[2]: ####The 'helper function' suggestion, below, comes from the follwing very helpful Stack Exchange answer: #########http://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array -by user "eat" def nan_helper(row): """Helper to handle indices and logical indices of NaNs. Input: - y, 1d numpy array with possible NaNs Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices Example: >>> # linear interpolation of NaNs >>> nans, x= nan_helper(y) >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans]) """ return np.isnan(row), lambda z: z.nonzero()[0] ######################## ####################### # In[3]: ## Give the fits file name: input_map = 'NL_SLIT1.fits' #interpolated_map_deadfix = 'NL_SLIT1_interp_deadfix.fits' interpolated_map_hotfix = 'NL_SLIT1_interp_hotfix.fits' ## Load the fits file into Python: hdulist = pyfits.open(input_map) ## Get the file's data from the "HDU" structure, using the '.data' attribute: data = hdulist[0].data ## Print the dimensions for confirmation: print data.shape print data.dtype.name # In[4]: data_dead = np.copy(data[0]) for y in range(0,240): row = data_dead[y,:] row_bad = np.where(row < -130.) row[row_bad] = np.nan nans, x= nan_helper(row) row[nans]= np.interp(x(nans), x(~nans), row[~nans]) data_dead[y,:] = row # In[5]: plt.imshow(data_dead, cmap='gray') plt.colorbar() # In[6]: data_hot = np.copy(data_dead) for y in range(0,240): for x in range(0,320): if 74 < y < 116 and 273 < x < 284: #This is to ignore the Y-range where the strong line emission appears continue if data_hot[y,x] > 4000.: data_hot[y,x] = np.nan row = data_hot[y,:] nans, x= nan_helper(row) row[nans]= np.interp(x(nans), x(~nans), row[~nans]) data_hot[y,:] = row # In[7]: plt.imshow(data_hot, cmap='gray') plt.colorbar() # In[8]: ## Second pass of hot pixel interpolation - this time completely ## excluding the bright source regions and line emission. ## The process is the same as above, but with a lower threshold. ## This should interpolate all of the bad pixels which are outside of the bright regions data_hot_2 = np.copy(data_hot) for y in range(0,240): for x in range(0,320): if 78 < y < 113 or 271 < x < 289: #This is to ignore the Y-range where the strong line emission appears continue if data_hot_2[y,x] > 1000.: data_hot_2[y,x] = np.nan row = data_hot_2[y,:] nans, x= nan_helper(row) row[nans]= np.interp(x(nans), x(~nans), row[~nans]) data_hot_2[y,:] = row # In[10]: plt.imshow(data_hot_2, cmap='gray') plt.colorbar() # In[17]: ## Second pass of hot pixel interpolation - this time completely ## excluding the bright source regions and line emission. ## The process is the same as above, but with a lower threshold. ## This should interpolate all of the bad pixels which are outside of the bright regions data_hot_3 = np.copy(data_hot_2) for y in range(0,240): for x in range(0,320): if (78 < y < 113) or (0 < x < 41) or (270 < x < 289): #This is to ignore the Y-range where the strong line emission appears continue if data_hot_3[y,x] > 600.: data_hot_3[y,x] = np.nan row = data_hot_3[y,:] nans, x= nan_helper(row) row[nans]= np.interp(x(nans), x(~nans), row[~nans]) data_hot_3[y,:] = row # In[19]: plt.imshow(data_hot_3, cmap='gray') plt.colorbar() # In[21]: ## Write the interpolated array to a file (keeping the header info): data[0] = data_hot_3 #hdulist.writeto(interpolated_map_deadfix, output_verify='ignore',clobber=True) hdulist.writeto(interpolated_map_hotfix, output_verify='ignore',clobber=True) # In[ ]:
apache-2.0
allenlavoie/tensorflow
tensorflow/contrib/learn/python/learn/estimators/debug_test.py
40
32402
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Debug estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import operator import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import debug from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib NUM_EXAMPLES = 100 N_CLASSES = 5 # Cardinality of multiclass labels. LABEL_DIMENSION = 3 # Dimensionality of regression labels. def _train_test_split(features_and_labels): features, labels = features_and_labels train_set = (features[:int(len(features) / 2)], labels[:int(len(features) / 2)]) test_set = (features[int(len(features) / 2):], labels[int(len(features) / 2):]) return train_set, test_set def _input_fn_builder(features, labels): def input_fn(): feature_dict = {'features': constant_op.constant(features)} my_labels = labels if my_labels is not None: my_labels = constant_op.constant(my_labels) return feature_dict, my_labels return input_fn class DebugClassifierTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.labels = np.random.choice( range(N_CLASSES), p=[0.1, 0.3, 0.4, 0.1, 0.1], size=NUM_EXAMPLES) self.binary_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) self.binary_float_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) def testPredict(self): """Tests that DebugClassifier outputs the majority class.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictBinary(self): """Same as above for binary predictions.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictProba(self): """Tests that DebugClassifier outputs observed class distribution.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) class_distribution = np.zeros((1, N_CLASSES)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testPredictProbaBinary(self): """Same as above but for binary classification.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, int(label)] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugClassifier(n_classes=3), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugClassifier) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" classifier = debug.DebugClassifier(n_classes=3) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=3) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier(n_classes=3) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_StringLabel(self): """Tests multi-class classification with string labels.""" def _input_fn_train(): labels = constant_op.constant([['foo'], ['bar'], ['baz'], ['bar']]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels classifier = debug.DebugClassifier( n_classes=3, label_keys=['foo', 'bar', 'baz']) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier( weight_column_name='w', n_classes=2, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier(weight_column_name='w') classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones(shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(classifier.predict_classes(input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) model_dir = tempfile.mkdtemp() classifier = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column(language, dimension=1) ] classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=5) def default_input_fn(unused_estimator, examples): return feature_column_ops.parse_feature_columns_from_examples( examples, feature_columns) export_dir = tempfile.mkdtemp() classifier.export(export_dir, input_fn=default_input_fn) class DebugRegressorTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.targets = np.random.rand(NUM_EXAMPLES, LABEL_DIMENSION) def testPredictScores(self): """Tests that DebugRegressor outputs the mean target.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.targets]) mean_target = np.mean(train_labels, 0) expected_prediction = np.vstack( [mean_target for _ in range(test_labels.shape[0])]) classifier = debug.DebugRegressor(label_dimension=LABEL_DIMENSION) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_scores( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugRegressor(), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones(shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) model_dir = tempfile.mkdtemp() regressor = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) if __name__ == '__main__': test.main()
apache-2.0
astroJeff/dart_board
paper/scripts/mock_3_low.py
1
2611
import sys import numpy as np import time import matplotlib matplotlib.use('Agg') sys.path.append("../pyBSE/") import pybse import dart_board from dart_board import sf_history # Values for mock system 3 # Input values: 11.01 7.42 744.19 0.50 167.69 1.79 2.08 83.2559 -69.9377 36.59 # Output values: 1.31 7.43 53.45 0.458 36.30 1.140e-12 25.58 13 1 LMC_metallicity = 0.008 system_kwargs = {"M2" : 7.84, "M2_err" : 0.25, "P_orb" : 14.11, "P_orb_err" : 1.0, "ecc" : 0.47, "ecc_err" : 0.05, "L_x" : 1.94e33, "L_x_err" : 1.0e32, "ra" : 83.5744461 , "dec" : -69.4876344} pub = dart_board.DartBoard("HMXB", evolve_binary=pybse.evolve, ln_prior_pos=sf_history.lmc.prior_lmc, nwalkers=320, threads=20, ntemps=10, metallicity=LMC_metallicity, thin=100, system_kwargs=system_kwargs) # Darts need to be in ln pub.aim_darts(N_iterations=200000, a_set='low') start_time = time.time() pub.throw_darts(nburn=2, nsteps=150000) print("Simulation took",time.time()-start_time,"seconds.") # Since emcee_PT does not have a blobs function, we must include the following calculation if pub.chains.ndim == 4: print("Generating derived values...") ntemps, nchains, nsteps, nvar = pub.chains.shape pub.derived = np.zeros(shape=(ntemps, nchains, nsteps, 9)) for i in range(ntemps): for j in range(nchains): for k in range(nsteps): x_i = pub.chains[i,j,k] ln_M1, ln_M2, ln_a, ecc, v_kick_1, theta_kick_1, phi_kick_1, ra, dec, ln_t = x_i M1 = np.exp(ln_M1) M2 = np.exp(ln_M2) a = np.exp(ln_a) time = np.exp(ln_t) P_orb = dart_board.posterior.A_to_P(M1, M2, a) output = pybse.evolve(M1, M2, P_orb, ecc, v_kick_1, theta_kick_1, phi_kick_1, v_kick_1, theta_kick_1, phi_kick_1, time, LMC_metallicity, False) pub.derived[i,j,k] = np.array([output]) print("...finished.") # Acceptance fraction print("Acceptance fractions:",pub.sampler.acceptance_fraction) # Autocorrelation length try: print("Autocorrelation length:", pub.sample.acor) except: print("Acceptance fraction is too low.") # Save outputs np.save("../data/mock_3_low_chain.npy", pub.chains) np.save("../data/mock_3_low_derived.npy", pub.derived) np.save("../data/mock_3_low_lnprobability.npy", pub.lnprobability)
mit
andyfaff/scipy
scipy/integrate/odepack.py
21
10740
# Author: Travis Oliphant __all__ = ['odeint'] import numpy as np from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error).", -8: "Run terminated (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False): """ Integrate a system of ordinary differential equations. .. note:: For new code, use `scipy.integrate.solve_ivp` to solve a differential equation. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y, t, ...) [or func(t, y, ...)] where y can be a vector. .. note:: By default, the required order of the first two arguments of `func` are in the opposite order of the arguments in the system definition function used by the `scipy.integrate.ode` class and the function `scipy.integrate.solve_ivp`. To use a function with the signature ``func(t, y, ...)``, the argument `tfirst` must be set to ``True``. Parameters ---------- func : callable(y, t, ...) or callable(t, y, ...) Computes the derivative of y at t. If the signature is ``callable(t, y, ...)``, then the argument `tfirst` must be set ``True``. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. This sequence must be monotonically increasing or monotonically decreasing; repeated values are allowed. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t, ...) or callable(t, y, ...) Gradient (Jacobian) of `func`. If the signature is ``callable(t, y, ...)``, then the argument `tfirst` must be set ``True``. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message tfirst: bool, optional If True, the first two arguments of `func` (and `Dfun`, if given) must ``t, y`` instead of the default ``y, t``. .. versionadded:: 1.1.0 Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step 'tcur' vector with the value of t reached for each time step (will always be at least as large as the input times) 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise 'lenrw' the length of the double work array required 'leniw' the length of integer work array required 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g., singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- solve_ivp : solve an initial value problem for a system of ODEs ode : a more object-oriented integrator based on VODE quad : for finding the area under a curve Examples -------- The second order differential equation for the angle `theta` of a pendulum acted on by gravity with friction can be written:: theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0 where `b` and `c` are positive constants, and a prime (') denotes a derivative. To solve this equation with `odeint`, we must first convert it to a system of first order equations. By defining the angular velocity ``omega(t) = theta'(t)``, we obtain the system:: theta'(t) = omega(t) omega'(t) = -b*omega(t) - c*sin(theta(t)) Let `y` be the vector [`theta`, `omega`]. We implement this system in Python as: >>> def pend(y, t, b, c): ... theta, omega = y ... dydt = [omega, -b*omega - c*np.sin(theta)] ... return dydt ... We assume the constants are `b` = 0.25 and `c` = 5.0: >>> b = 0.25 >>> c = 5.0 For initial conditions, we assume the pendulum is nearly vertical with `theta(0)` = `pi` - 0.1, and is initially at rest, so `omega(0)` = 0. Then the vector of initial conditions is >>> y0 = [np.pi - 0.1, 0.0] We will generate a solution at 101 evenly spaced samples in the interval 0 <= `t` <= 10. So our array of times is: >>> t = np.linspace(0, 10, 101) Call `odeint` to generate the solution. To pass the parameters `b` and `c` to `pend`, we give them to `odeint` using the `args` argument. >>> from scipy.integrate import odeint >>> sol = odeint(pend, y0, t, args=(b, c)) The solution is an array with shape (101, 2). The first column is `theta(t)`, and the second is `omega(t)`. The following code plots both components. >>> import matplotlib.pyplot as plt >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)') >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)') >>> plt.legend(loc='best') >>> plt.xlabel('t') >>> plt.grid() >>> plt.show() """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call dt = np.diff(t) if not((dt >= 0).all() or (dt <= 0).all()): raise ValueError("The values in t must be monotonically increasing " "or monotonically decreasing; repeated values are " "allowed.") t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords, int(bool(tfirst))) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
bsd-3-clause
theusual/kaggle-seeclickfix-ensemble
Bryan/data_io.py
2
4219
""" Functions for data IO """ __author__ = 'Bryan Gregory' __email__ = '[email protected]' __date__ = '09-06-2013' #Internal modules import utils #Start logger to record all info, warnings, and errors to Logs/logfile.log log = utils.start_logging(__name__) #External modules import json import csv import gc import pandas as pd import time import os from datetime import datetime from sklearn.externals import joblib #import JSON data into a dict def load_json(file_path): return [json.loads(line) for line in open(file_path)] #import delimited flat file into a list def load_flatfile(file_path, delimiter=''): temp_array = [] #if no delimiter is specified, try to use the built-in delimiter detection if delimiter == '': csv_reader = csv.reader(open(file_path)) else: csv_reader = csv.reader(open(file_path),delimiter) for line in csv_reader: temp_array += line return temp_array #[line for line in csv_reader] #import delimited flat file into a pandas dataframe def load_flatfile_to_df(file_path, delimiter=''): #if no delimiter is specified, try to use the built-in delimiter detection if delimiter == '': return pd.read_csv(file_path) else: return pd.read_csv(file_path, delimiter) def save_predictions(df,target,model_name='',directory='Submits/',estimator_class='',note=''): timestamp = datetime.now().strftime('%m-%d-%y_%H%M') filename = directory+timestamp+'--'+model_name+'_'+estimator_class+'_'+note+'.csv' #---Perform any manual predictions cleanup that may be necessary---# #Save predictions try: df[target] = [x[0] for x in df[target]] except IndexError: df[target] = [x for x in df[target]] df.ix[:,['id',target]].to_csv(filename, index=False) log.info('Submission file saved: %s' % filename) def save_combined_predictions(df,directory,filename,note=''): #If previous combined predictions already exist, archive existing ones by renaming to append datetime try: modified_date = time.strptime(time.ctime(os.path.getmtime(directory+filename)), '%a %b %d %H:%M:%S %Y') modified_date = datetime.fromtimestamp(time.mktime(modified_date)).strftime('%m-%d-%y_%H%M') archived_file = directory+'Archive/'+filename[:len(filename)-4]+'--'+modified_date+'.csv' os.rename(directory+filename,archived_file) log.info('File already exists with given filename, archiving old file to: '+ archived_file) except WindowsError: pass #Save predictions df.to_csv(directory+filename, index=False) log.info('Predictions saved: %s' % filename) def save_cached_object(object, filename, directory='Cache/'): """Save cached objects in pickel format using joblib compression. If a previous cached file exists, then get its modified date and append it to filename and archive it """ if filename[-4:] != '.pkl': filename = filename+'.pkl' try: modified_date = time.strptime(time.ctime(os.path.getmtime(directory+filename)), '%a %b %d %H:%M:%S %Y') modified_date = datetime.fromtimestamp(time.mktime(modified_date)).strftime('%m-%d-%y_%H%M') archived_file = directory+'Archive/'+filename[:len(filename)-4]+'--'+modified_date+'.pkl' os.rename(directory+filename,archived_file) log.info('Cached object already exists with given filename, archiving old object to: '+ archived_file) except WindowsError: pass joblib.dump(object, directory+filename, compress=9) log.info('New object cached to: '+directory+filename) def load_cached_object(filename, directory='Cache/'): if filename[-4:] != '.pkl': filename = filename+'.pkl' try: object = joblib.load(directory+filename) log.info('Successfully loaded object from: '+directory+filename) except IOError: log.info('Cached object does not exist: '+directory+filename) return object def save_text_features(output_file, feature_names): o_f = open( output_file, 'wb' ) feature_names = '\n'.join( feature_names ) o_f.write( feature_names )
bsd-3-clause
jcfr/mystic
examples/test_lorentzian2.py
1
3233
#!/usr/bin/env python # # Author: Patrick Hung (patrickh @caltech) # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) # Copyright (c) 1997-2015 California Institute of Technology. # License: 3-clause BSD. The full license text is available at: # - http://trac.mystic.cacr.caltech.edu/project/mystic/browser/mystic/LICENSE """ Same as test_lorentzian, but with n being a fitted variable This is MUCH faster than test_lorentzian because the cost function no longer has to do an "integral" as an intermediate step """ import pylab, matplotlib from numpy import * from mystic.solvers import DifferentialEvolutionSolver from mystic.termination import ChangeOverGeneration, VTR from mystic.strategy import Best1Exp, Rand1Exp, Best2Exp, Best2Exp from mystic.monitors import Monitor from mystic.tools import getch from mystic.tools import random_seed random_seed(123) #matplotlib.interactive(True) from mystic.models import lorentzian F = lorentzian.ForwardFactory def show(): import Image pylab.savefig('test_lorentzian_out',dpi=72) im = Image.open('test_lorentzian_out.png') im.show() return def plot_sol(solver=None): def _(params): import signal print "plotting params: ", params pylab.errorbar(binsc, histo, sqrt(histo), fmt='b+') x = arange(xmin, xmax, (0.1* binwidth)) pylab.plot(x, pdf(x)*N,'b:') pylab.plot(x, F(params)(x)*N,'r-') pylab.xlabel('E (GeV)') pylab.ylabel('Counts') try: show() except ImportError: pylab.show() if solver is not None: signal.signal(signal.SIGINT, solver.signal_handler) return _ ND = 7 NP = 50 MAX_GENERATIONS = 200 generations = 200 minrange = [0.5,30, -15, 10, 0, 0, 100] maxrange = [2, 60., -5, 50, 2, 1, 200] def de_solve(CF): solver = DifferentialEvolutionSolver(ND, NP) solver.enable_signal_handler() stepmon = Monitor() solver.SetRandomInitialPoints(min=minrange,max=maxrange) solver.SetStrictRanges(min=minrange,max=maxrange) solver.SetEvaluationLimits(generations=MAX_GENERATIONS) solver.SetGenerationMonitor(stepmon) termination=ChangeOverGeneration(generations=generations) solver.Solve(CF, termination=termination, strategy=Rand1Exp, \ sigint_callback = plot_sol(solver)) solution = solver.Solution() return solution, stepmon if __name__ == '__main__': target = [1., 45., -10., 20., 1., 0.1, 120.] from mystic.models.lorentzian import gendata, histogram npts = 4000; binwidth = 0.1 N = npts * binwidth xmin, xmax = 0.0, 3.0 pdf = F(target) print "pdf(1): ", pdf(1) data = gendata(target, xmin, xmax, npts) pylab.plot(data[1:N],0*data[1:N],'k.') pylab.title('Samples drawn from density to be estimated.') try: show() except ImportError: pylab.show() pylab.clf() binsc, histo = histogram(data, binwidth, xmin,xmax) print "binsc: ", binsc print "count: ", histo print "ncount: ", histo/N print "exact : ", pdf(binsc) print "now with DE..." myCF = lorentzian.CostFactory2(binsc, histo/N, ND) sol, steps = de_solve(myCF) plot_sol()(sol) #print "steps: ", steps.x, steps.y # end of file
bsd-3-clause
hksonngan/pynopticon
src/em/examples/pdfestimation.py
4
1418
#! /usr/bin/env python # Last Change: Sun Jul 22 12:00 PM 2007 J # Example of doing pdf estimation with EM algorithm. Requires matplotlib. import numpy as N import pylab as P from scikits.learn.machine.em import EM, GM, GMM import utils oldfaithful = utils.get_faithful() # We want the relationship between d(t) and w(t+1), but get_faithful gives # d(t), w(t), so we have to shift to get the "usual" faithful data waiting = oldfaithful[1:, 1:] duration = oldfaithful[:len(waiting), :1] dt = N.concatenate((duration, waiting), 1) # Scale the data so that each component is in [0..1] dt = utils.scale(dt) # This function train a mixture model with k components, returns the trained # model and the BIC def cluster(data, k, mode = 'full'): d = data.shape[1] gm = GM(d, k, mode) gmm = GMM(gm) em = EM() em.train(data, gmm, maxiter = 20) return gm, gmm.bic(data) # bc will contain a list of BIC values for each model trained bc = [] mode = 'full' P.figure() for k in range(1, 5): # Train a model of k component, and plots isodensity curve P.subplot(2, 2, k) gm, b = cluster(dt, k = k, mode = mode) bc.append(b) X, Y, Z, V = gm.density_on_grid() P.contour(X, Y, Z, V) P.plot(dt[:, 0], dt[:, 1], '.') P.xlabel('duration time (scaled)') P.ylabel('waiting time (scaled)') print "According to the BIC, model with %d components is better" % (N.argmax(bc) + 1)
gpl-3.0
YzPaul3/h2o-3
h2o-py/tests/testdir_algos/deeplearning/pyunit_anomaly_deeplearning_large.py
8
1702
from __future__ import print_function from builtins import range import sys, os sys.path.insert(1, os.path.join("..","..","..")) import h2o from tests import pyunit_utils from h2o.estimators.deeplearning import H2OAutoEncoderEstimator def anomaly(): print("Deep Learning Anomaly Detection MNIST") train = h2o.import_file(pyunit_utils.locate("bigdata/laptop/mnist/train.csv.gz")) test = h2o.import_file(pyunit_utils.locate("bigdata/laptop/mnist/test.csv.gz")) predictors = list(range(0,784)) resp = 784 # unsupervised -> drop the response column (digit: 0-9) train = train[predictors] test = test[predictors] # 1) LEARN WHAT'S NORMAL # train unsupervised Deep Learning autoencoder model on train_hex ae_model = H2OAutoEncoderEstimator(activation="Tanh", hidden=[2], l1=1e-5, ignore_const_cols=False, epochs=1) ae_model.train(x=predictors,training_frame=train) # 2) DETECT OUTLIERS # anomaly app computes the per-row reconstruction error for the test data set # (passing it through the autoencoder model and computing mean square error (MSE) for each row) test_rec_error = ae_model.anomaly(test) # 3) VISUALIZE OUTLIERS # Let's look at the test set points with low/median/high reconstruction errors. # We will now visualize the original test set points and their reconstructions obtained # by propagating them through the narrow neural net. # Convert the test data into its autoencoded representation (pass through narrow neural net) test_recon = ae_model.predict(test) # In python, the visualization could be done with tools like numpy/matplotlib or numpy/PIL if __name__ == "__main__": pyunit_utils.standalone_test(anomaly) else: anomaly()
apache-2.0
Stanford-Online/edx-analytics-pipeline
edx/analytics/tasks/common/tests/test_mysql.py
2
6726
""" Ensure we can read from MySQL data sources. """ from __future__ import absolute_import import datetime import textwrap import unittest import luigi from mock import MagicMock, patch, sentinel from pandas import read_csv from edx.analytics.tasks.common.mysql_dump import MysqlSelectTask, mysql_datetime from edx.analytics.tasks.util.tests.config import with_luigi_config from edx.analytics.tasks.util.tests.target import FakeTarget from edx.analytics.tasks.util.url import ExternalURL class ConversionTestCase(unittest.TestCase): """ Ensure we can reliably convert native python data types to strings. """ def setUp(self): self.task = MysqlSelectTask( credentials=sentinel.ignored, destination=sentinel.ignored ) def test_convert_datetime(self): self.assert_converted_string_equals( datetime.datetime.strptime('2014-01-02', '%Y-%m-%d').date(), '2014-01-02' ) def assert_converted_string_equals(self, obj, expected_string): """ Args: obj (mixed): Any object. expected_string (str): The expected string representation of `obj`. Raises: AssertionError: iff the string resulting from converting `obj` to a string does not match the expected string. """ self.assertEquals(self.task.convert(obj), expected_string) def test_convert_integer(self): self.assert_converted_string_equals( 10, '10' ) def test_convert_none(self): self.assert_converted_string_equals( None, '-' ) def test_convert_unicode(self): self.assert_converted_string_equals( u'\u0669(\u0361\u0e4f\u032f\u0361\u0e4f)\u06f6', u'\u0669(\u0361\u0e4f\u032f\u0361\u0e4f)\u06f6'.encode('utf-8') ) class MysqlSelectTaskTestCase(unittest.TestCase): """ Ensure we can connect to and read data from MySQL data sources. """ def setUp(self): patcher = patch('edx.analytics.tasks.common.mysql_dump.mysql.connector') self.mock_mysql_connector = patcher.start() self.addCleanup(patcher.stop) mock_conn = self.mock_mysql_connector.connect.return_value # pylint: disable=maybe-no-member self.mock_cursor = mock_conn.cursor.return_value # By default, emulate 0 results returned self.mock_cursor.fetchone.return_value = None def run_task(self, credentials=None, query=None): """ Emulate execution of a generic MysqlSelectTask. """ if not credentials: credentials = '''\ { "host": "db.example.com", "port": "3306", "username": "exampleuser", "password": "example password" }''' if not query: query = 'SELECT 1' # Create a dummy task that simply returns the parameters given class TestTask(MysqlSelectTask): """A generic MysqlSelectTask that wraps the parameters from the enclosing function""" database = "exampledata" @property def query(self): return query @property def filename(self): return None # pragma: no cover task = TestTask( credentials=sentinel.ignored, destination=sentinel.ignored ) fake_input = { 'credentials': FakeTarget(value=textwrap.dedent(credentials)) } task.input = MagicMock(return_value=fake_input) output_target = FakeTarget() task.output = MagicMock(return_value=output_target) task.run() try: parsed = read_csv(output_target.buffer, header=None, sep="\t", na_values=['-'], encoding='utf-8') except ValueError: parsed = None return parsed def test_connect_with_missing_credentials(self): with self.assertRaises(KeyError): self.run_task('{}') def test_connect_with_credential_syntax_error(self): with self.assertRaises(ValueError): self.run_task('{') def test_connect_with_complete_credentials(self): self.run_task() def test_execute_query(self): self.mock_cursor.fetchone.side_effect = [ (2L,), (3L,), (10L,), None ] output = self.run_task(query=sentinel.query) self.mock_cursor.execute.assert_called_once_with(sentinel.query, tuple()) self.assertEquals(output[0][0], 2) self.assertEquals(output[0][1], 3) self.assertEquals(output[0][2], 10) def test_unicode_results(self): unicode_string = u'\u0669(\u0361\u0e4f\u032f\u0361\u0e4f)\u06f6' self.mock_cursor.fetchone.side_effect = [ (unicode_string,), None ] output = self.run_task(query=sentinel.query) self.assertEquals(output[0][0], unicode_string) def test_default_attributes(self): destination = 'file:///tmp/foo' class GenericTask(MysqlSelectTask): """A dummy task used to ensure defaults are reasonable""" @property def filename(self): return 'bar' task = GenericTask( credentials=sentinel.credentials, destination=destination, database=sentinel.database, ) self.assertEquals(task.credentials, sentinel.credentials) self.assertEquals(task.database, sentinel.database) self.assertEquals(task.destination, destination) self.assertEquals(task.query, 'SELECT 1') self.assertEquals(task.query_parameters, tuple()) self.assertIsInstance(task.requires()['credentials'], ExternalURL) self.assertEquals(task.requires()['credentials'].url, sentinel.credentials) self.assertIsInstance(task.output(), luigi.LocalTarget) self.assertEquals(task.output().path, '/tmp/foo/bar') # pylint: disable=maybe-no-member @with_luigi_config('database-import', 'database', 'foobar') def test_parameters_from_config(self): t = MysqlSelectTask(credentials=sentinel.credentials, destination=sentinel.destination) self.assertEquals(t.database, 'foobar') def test_mysql_timestamp(self): string_timestamp = '2014-01-02 13:10:11' timestamp = datetime.datetime.strptime(string_timestamp, '%Y-%m-%d %H:%M:%S') self.assertEquals(mysql_datetime(timestamp), string_timestamp)
agpl-3.0
gotomypc/scikit-learn
sklearn/mixture/tests/test_gmm.py
200
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
rafaelmartins/rst2pdf
setup.py
6
3121
# -*- coding: utf-8 -*- #$HeadURL$ #$LastChangedDate$ #$LastChangedRevision$ import os from setuptools import setup, find_packages version = '0.93' def read(*rnames): return open(os.path.join(os.path.dirname(__file__), *rnames)).read() long_description = ( read('LICENSE.txt') + '\n' + 'Detailed Documentation\n' '**********************\n' + '\n' + read('README.txt') + '\n' + 'Contributors\n' '************\n' + '\n' + read('Contributors.txt') + '\n' + 'Change history\n' '**************\n' + '\n' + read('CHANGES.txt') + '\n' + 'Download\n' '********\n' ) install_requires = [ 'setuptools', 'docutils', 'reportlab>=2.4', 'Pygments', 'pdfrw', ] try: import json except ImportError: install_requires.append('simplejson') tests_require = ['pyPdf'] sphinx_require = ['sphinx'] hyphenation_require = ['wordaxe>=1.0'] images_require = ['PIL'] pdfimages_require = ['pyPdf','PythonMagick'] pdfimages2_require = ['pyPdf','SWFTools'] svgsupport_require = ['svg2rlg'] aafiguresupport_require = ['aafigure>=0.4'] mathsupport_require = ['matplotlib'] rawhtmlsupport_require = ['xhtml2pdf'] setup( name="rst2pdf", version=version, packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), package_data=dict(rst2pdf=['styles/*.json', 'styles/*.style', 'images/*png', 'images/*jpg', 'templates/*tmpl' ]), include_package_data=True, dependency_links=[ ], install_requires=install_requires, tests_require=tests_require, extras_require=dict( tests=tests_require, sphinx=sphinx_require, hyphenation=hyphenation_require, images=images_require, pdfimages=pdfimages_require, pdfimages2=pdfimages2_require, svgsupport=svgsupport_require, aafiguresupport=aafiguresupport_require, mathsupport=mathsupport_require, rawhtmlsupport=rawhtmlsupport_require, ), # metadata for upload to PyPI # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Documentation', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Text Processing', 'Topic :: Utilities', ], author="Roberto Alsina", author_email="ralsina at netmanagers dot com dot ar", description="Convert restructured text to PDF via reportlab.", long_description=long_description, license="MIT", keywords="restructured convert rst pdf docutils pygments reportlab", url="http://rst2pdf.googlecode.com", download_url="http://code.google.com/p/rst2pdf/downloads/list", entry_points={'console_scripts': ['rst2pdf = rst2pdf.createpdf:main']}, test_suite='rst2pdf.tests.test_rst2pdf.test_suite', )
mit
eclee25/flu-SDI-exploratory-age
scripts/create_fluseverity_figs/ILINet_F3_zOR_benchmark_altnorm.py
1
8694
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 6/19/14 ###Function: mean peak-based retro zOR metric vs. CDC benchmark index, mean Thanksgiving-based early zOR metric vs. CDC benchmark index ###Import data: /home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/cdc_severity_index_long.csv, CDC_Source/Import_Data/all_cdc_source_data.csv, Census/Import_Data/totalpop_age_Census_98-14.csv, My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv ###Command Line: python ILINet_F3_zOR_benchmark.py ############################################## ### notes ### # Incidence per 100,000 is normalized by total population by second calendar year of the flu season # 2013-14 ILINet data is normalized by estimated population size from December 2013 because 2014 estimates are not available at this time # 2009-10 data is removed from cdc_severity_index_long.csv ### packages/modules ### import csv import matplotlib.pyplot as plt import numpy as np ## local modules ## import functions as fxn ### data structures ### ### functions ### ### data files ### incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/all_cdc_source_data.csv','r') incidin.readline() # remove header incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Census/Import_Data/totalpop_age_Census_98-14.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # normalization scheme: pre-pandemic and post-pandemic (1997-98 through 2008-09, 2010-11 through 2013-14) ixin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/cdc_severity_index_long_norm1.csv','r') ixin.readline() ix = csv.reader(ixin, delimiter=',') # normalization scheme: 1997-98 through 2002-03, 2003-04 through 2008-09, 2010-11 through 2013-14 ixin2 = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/cdc_severity_index_long_norm2.csv','r') ixin2.readline() ix2 = csv.reader(ixin2, delimiter=',') ### called/local plotting parameters ### ps = fxn.pseasons sl = fxn.gp_ILINet_seasonlabels fs = 24 fssml = 16 # coordinates for mild and severe text mildretro_txtcoords, sevretro_txtcoords = fxn.gp_txt_retro_coords mildearly_txtcoords, sevearly_txtcoords = fxn.gp_txt_early_coords ### program ### # import data # d_benchmark[seasonnum] = CDC benchmark index value d_benchmark1 = fxn.benchmark_import(ix, 8) # no ILINet, norm scheme 1 d_benchmark2 = fxn.benchmark_import(ix2, 8) # no ILINet, norm scheme 2 # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.ILINet_week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) # dict_classifzOR[seasonnum] = (mean retrospective zOR, mean early warning zOR) d_classifzOR = fxn.classif_zOR_processing(d_wk, d_incid53ls, d_zOR53ls, thanks) # plot values benchmark1 = [d_benchmark1[s] for s in ps] benchmark2 = [d_benchmark2[s] for s in ps] retrozOR = [d_classifzOR[s][0] for s in ps] earlyzOR = [d_classifzOR[s][1] for s in ps] print 'retro corr coef, norm 1', np.corrcoef(benchmark1, retrozOR) print 'early corr coef, norm 1', np.corrcoef(benchmark1, earlyzOR) print 'retro corr coef, norm 2', np.corrcoef(benchmark2, retrozOR) print 'early corr coef, norm 2', np.corrcoef(benchmark2, earlyzOR) # normalization scheme 1: plots # pre and post-pandemic normalization scheme # mean retro zOR vs. benchmark index fig1 = plt.figure() ax1 = fig1.add_subplot(1,1,1) ax1.plot(benchmark1, retrozOR, marker = 'o', color = 'black', linestyle = 'None') ax1.vlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax1.hlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax1.fill([-6, -1, -1, -6], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax1.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax1.fill([1, 10, 10, 1], [-1, -1, -20, -20], facecolor='red', alpha=0.4) ax1.annotate('Mild', xy=mildretro_txtcoords, fontsize=fssml) ax1.annotate('Severe', xy=sevretro_txtcoords, fontsize=fssml) for s, x, y in zip(sl, benchmark1, retrozOR): ax1.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax1.set_ylabel(fxn.gp_sigma_r, fontsize=fs) ax1.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax1.tick_params(axis='both',labelsize=fssml) ax1.set_xlim([-6,10]) ax1.set_ylim([-20,20]) ax1.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/ILINet/all_ILINet/zOR_benchmark_norm1.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # mean early warning zOR vs. benchmark index fig2 = plt.figure() ax2 = fig2.add_subplot(1,1,1) ax2.plot(benchmark1, earlyzOR, marker = 'o', color = 'black', linestyle = 'None') ax2.vlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax2.hlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax2.fill([-6, -1, -1, -6], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax2.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax2.fill([1, 10, 10, 1], [-1, -1, -20, -20], facecolor='red', alpha=0.4) ax2.annotate('Mild', xy=mildearly_txtcoords, fontsize=fssml) ax2.annotate('Severe', xy=sevearly_txtcoords, fontsize=fssml) for s, x, y in zip(sl, benchmark1, earlyzOR): ax2.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax2.set_ylabel(fxn.gp_sigma_w, fontsize=fs) ax2.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax2.tick_params(axis='both', labelsize=fssml) ax2.set_xlim([-6,6]) ax2.set_ylim([-8,8]) ax2.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/ILINet/all_ILINet/zOR_benchmark_early_norm1.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # normalization scheme 2: plots # 97-03, 03-09, 10-14 norm scheme # mean retro zOR vs. benchmark index fig3 = plt.figure() ax3 = fig3.add_subplot(1,1,1) ax3.plot(benchmark2, retrozOR, marker = 'o', color = 'black', linestyle = 'None') ax3.vlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax3.hlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax3.fill([-6, -1, -1, -6], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax3.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax3.fill([1, 10, 10, 1], [-1, -1, -20, -20], facecolor='red', alpha=0.4) ax3.annotate('Mild', xy=mildretro_txtcoords, fontsize=fssml) ax3.annotate('Severe', xy=sevretro_txtcoords, fontsize=fssml) for s, x, y in zip(sl, benchmark2, retrozOR): ax3.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax3.set_ylabel(fxn.gp_sigma_r, fontsize=fs) ax3.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax3.tick_params(axis='both',labelsize=fssml) ax3.set_xlim([-6,10]) ax3.set_ylim([-20,20]) ax3.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/ILINet/all_ILINet/zOR_benchmark_norm2.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # mean early warning zOR vs. benchmark index fig4 = plt.figure() ax4 = fig4.add_subplot(1,1,1) ax4.plot(benchmark2, earlyzOR, marker = 'o', color = 'black', linestyle = 'None') ax4.vlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax4.hlines([-1, 1], -20, 20, colors='k', linestyles='solid') ax4.fill([-6, -1, -1, -6], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax4.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax4.fill([1, 10, 10, 1], [-1, -1, -20, -20], facecolor='red', alpha=0.4) ax4.annotate('Mild', xy=mildearly_txtcoords, fontsize=fssml) ax4.annotate('Severe', xy=sevearly_txtcoords, fontsize=fssml) for s, x, y in zip(sl, benchmark2, earlyzOR): ax4.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax4.set_ylabel(fxn.gp_sigma_w, fontsize=fs) ax4.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax4.tick_params(axis='both', labelsize=fssml) ax4.set_xlim([-6,6]) ax4.set_ylim([-8,8]) ax4.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/ILINet/all_ILINet/zOR_benchmark_early_norm2.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close()
mit
weegreenblobbie/mplapp
mplapp/button.py
1
2966
# Python import colorsys import time from matplotlib.colors import ColorConverter from mplapp.label import Label class Button(Label): """ A push button. """ def __init__(self, width, height, text, callback = None, **kwargs): if callback and not callable(callback): raise ValueError("callback isn't callable!") self._callback = callback ec = 'black' if 'ec' not in kwargs and 'edgecolor' not in kwargs: kwargs['ec'] = ec super(Button, self).__init__(width, height, text, **kwargs) self._cid = None def is_enabled(self): return self._cid is not None def enable(self): if self._cid: # already enabled? return # set enabled colors ec, fc, text_color = self._colors ax = self._axes ax.set_axis_bgcolor(fc) for side in ['bottom', 'top', 'left', 'right']: ax.spines[side].set_color(ec) self._text.set_color(text_color) self._axes.figure.canvas.draw() self._cid = self._axes.figure.canvas.mpl_connect( 'button_press_event', self._blink_on_click) def disable(self): if self._cid is None: # already disabled? return self._axes.figure.canvas.mpl_disconnect(self._cid) self._cid = None # set disabled colors ax = self._axes grey65 = [1.0 - 0.65] * 3 grey45 = [1.0 - 0.45] * 3 grey25 = [1.0 - 0.20] * 3 ax.set_axis_bgcolor(grey25) for side in ['bottom', 'top', 'left', 'right']: ax.spines[side].set_color(grey45) self._text.set_color(grey65) self._axes.figure.canvas.draw() def _render(self, fig, x, y): super(Button, self)._render(fig, x, y) self._cid = self._axes.figure.canvas.mpl_connect( 'button_press_event', self._blink_on_click ) def _blink_on_click(self, event): """ 'blink' the axis color to give visual feedback the button has been pressed. Reference: http://stackoverflow.com/a/1165145/562106 """ if event.inaxes != self._axes: return orig_color = self._axes.get_axis_bgcolor() r,g,b = ColorConverter().to_rgb(orig_color) cmax = max([r,g,b]) cmin = min([r,g,b]) # gray? if abs(cmax - cmin) < 5: if cmax > 0.5: r,g,b = 0.10,0.10,0.10 else: r,g,b = 0.90,0.90,0.90 h,l,s = colorsys.rgb_to_hls(r,g,b) # invert hue h = 360.0 - h new_color = colorsys.hls_to_rgb(h,l,s) self._axes.set_axis_bgcolor(new_color) self._axes.figure.canvas.draw() time.sleep(0.05) self._axes.set_axis_bgcolor(orig_color) self._axes.figure.canvas.draw() if self._callback: self._callback(event)
mit
BhallaLab/moose
moose-core/python/moose/helper.py
4
2432
"""helper.py: Some helper functions which are compatible with both python2 and python3. """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2017-, Dilawar Singh" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import os import re import subprocess def execute(cmd): """execute: Execute a given command. :param cmd: string, given command. Return: ------ Return a iterator over output. """ popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def find_files( dirname, ext=None, name_contains=None, text_regex_search=None): files = [] for d, sd, fs in os.walk(dirname): for f in fs: fpath = os.path.join(d,f) include = True if ext is not None: if f.split('.')[-1] != ext: include = False if name_contains: if name_contains not in os.path.basename(f): include = False if text_regex_search: with open(fpath, 'r' ) as f: txt = f.read() if re.search(text_regex_search, txt) is None: include = False if include: files.append(fpath) return files # Matplotlib text for running simulation. It make sures at each figure is saved # to individual png files. matplotlibText = """ print( '>>>> saving all figues') import matplotlib.pyplot as plt def multipage(filename, figs=None, dpi=200): pp = PdfPages(filename) if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for fig in figs: fig.savefig(pp, format='pdf') pp.close() def saveall(prefix='results', figs=None): if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for i, fig in enumerate(figs): outfile = '%s.%d.png' % (prefix, i) fig.savefig(outfile) print( '>>>> %s saved.' % outfile ) plt.close() try: saveall() except Exception as e: print( '>>>> Error in saving: %s' % e ) quit(0) """
gpl-3.0
Hiyorimi/scikit-image
doc/examples/features_detection/plot_multiblock_local_binary_pattern.py
9
2603
""" =========================================================== Multi-Block Local Binary Pattern for texture classification =========================================================== This example shows how to compute multi-block local binary pattern (MB-LBP) features as well as how to visualize them. The features are calculated similarly to local binary patterns (LBPs), except that summed blocks are used instead of individual pixel values. MB-LBP is an extension of LBP that can be computed on multiple scales in constant time using the integral image. 9 equally-sized rectangles are used to compute a feature. For each rectangle, the sum of the pixel intensities is computed. Comparisons of these sums to that of the central rectangle determine the feature, similarly to LBP (See `LBP <plot_local_binary_pattern.html>`_). First, we generate an image to illustrate the functioning of MB-LBP: consider a (9, 9) rectangle and divide it into (3, 3) block, upon which we then apply MB-LBP. """ from __future__ import print_function from skimage.feature import multiblock_lbp import numpy as np from numpy.testing import assert_equal from skimage.transform import integral_image # Create test matrix where first and fifth rectangles starting # from top left clockwise have greater value than the central one. test_img = np.zeros((9, 9), dtype='uint8') test_img[3:6, 3:6] = 1 test_img[:3, :3] = 50 test_img[6:, 6:] = 50 # First and fifth bits should be filled. This correct value will # be compared to the computed one. correct_answer = 0b10001000 int_img = integral_image(test_img) lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3) assert_equal(correct_answer, lbp_code) ###################################################################### # Now let's apply the operator to a real image and see how the visualization # works. from skimage import data from matplotlib import pyplot as plt from skimage.feature import draw_multiblock_lbp test_img = data.coins() int_img = integral_image(test_img) lbp_code = multiblock_lbp(int_img, 0, 0, 90, 90) img = draw_multiblock_lbp(test_img, 0, 0, 90, 90, lbp_code=lbp_code, alpha=0.5) plt.imshow(img, interpolation='nearest') plt.show() ###################################################################### # On the above plot we see the result of computing a MB-LBP and visualization # of the computed feature. The rectangles that have less intensities' sum # than the central rectangle are marked in cyan. The ones that have higher # intensity values are marked in white. The central rectangle is left # untouched.
bsd-3-clause
Sentient07/scikit-learn
examples/preprocessing/plot_function_transformer.py
158
1993
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.show()
bsd-3-clause
joernhees/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
103
2017
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matplotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
hongguangguo/shogun
examples/undocumented/python_modular/graphical/classifier_perceptron_graphical.py
26
2311
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import latex_plot_inits parameter_list = [[20, 5, 1., 1000, 1, None, 5], [100, 5, 1., 1000, 1, None, 10]] def classifier_perceptron_graphical(n=100, distance=5, learn_rate=1., max_iter=1000, num_threads=1, seed=None, nperceptrons=5): from modshogun import RealFeatures, BinaryLabels from modshogun import Perceptron from modshogun import MSG_INFO # 2D data _DIM = 2 # To get the nice message that the perceptron has converged dummy = BinaryLabels() dummy.io.set_loglevel(MSG_INFO) np.random.seed(seed) # Produce some (probably) linearly separable training data by hand # Two Gaussians at a far enough distance X = np.array(np.random.randn(_DIM,n))+distance Y = np.array(np.random.randn(_DIM,n)) label_train_twoclass = np.hstack((np.ones(n), -np.ones(n))) fm_train_real = np.hstack((X,Y)) feats_train = RealFeatures(fm_train_real) labels = BinaryLabels(label_train_twoclass) perceptron = Perceptron(feats_train, labels) perceptron.set_learn_rate(learn_rate) perceptron.set_max_iter(max_iter) perceptron.set_initialize_hyperplane(False) # Find limits for visualization x_min = min(np.min(X[0,:]), np.min(Y[0,:])) x_max = max(np.max(X[0,:]), np.max(Y[0,:])) y_min = min(np.min(X[1,:]), np.min(Y[1,:])) y_max = max(np.max(X[1,:]), np.max(Y[1,:])) for i in xrange(nperceptrons): # Initialize randomly weight vector and bias perceptron.set_w(np.random.random(2)) perceptron.set_bias(np.random.random()) # Run the perceptron algorithm perceptron.train() # Construct the hyperplane for visualization # Equation of the decision boundary is w^T x + b = 0 b = perceptron.get_bias() w = perceptron.get_w() hx = np.linspace(x_min-1,x_max+1) hy = -w[1]/w[0] * hx plt.plot(hx, -1/w[1]*(w[0]*hx+b)) # Plot the two-class data plt.scatter(X[0,:], X[1,:], s=40, marker='o', facecolors='none', edgecolors='b') plt.scatter(Y[0,:], Y[1,:], s=40, marker='s', facecolors='none', edgecolors='r') # Customize the plot plt.axis([x_min-1, x_max+1, y_min-1, y_max+1]) plt.title('Rosenblatt\'s Perceptron Algorithm') plt.xlabel('x') plt.ylabel('y') plt.show() return perceptron if __name__=='__main__': print('Perceptron graphical') classifier_perceptron_graphical(*parameter_list[0])
gpl-3.0
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/examples/ex_generic_mle.py
3
16380
import numpy as np from scipy import stats import statsmodels.api as sm from statsmodels.base.model import GenericLikelihoodModel data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=False) # in this dir probit_mod = sm.Probit(data.endog, data.exog) probit_res = probit_mod.fit() loglike = probit_mod.loglike score = probit_mod.score mod = GenericLikelihoodModel(data.endog, data.exog*2, loglike, score) res = mod.fit(method="nm", maxiter = 500) def probitloglike(params, endog, exog): """ Log likelihood for the probit """ q = 2*endog - 1 X = exog return np.add.reduce(stats.norm.logcdf(q*np.dot(X,params))) mod = GenericLikelihoodModel(data.endog, data.exog, loglike=probitloglike) res = mod.fit(method="nm", fargs=(data.endog,data.exog), maxiter=500) print res #np.allclose(res.params, probit_res.params) print res.params, probit_res.params #datal = sm.datasets.longley.load() datal = sm.datasets.ccard.load() datal.exog = sm.add_constant(datal.exog, prepend=False) # Instance of GenericLikelihood model doesn't work directly, because loglike # cannot get access to data in self.endog, self.exog nobs = 5000 rvs = np.random.randn(nobs,6) datal.exog = rvs[:,:-1] datal.exog = sm.add_constant(datal.exog, prepend=False) datal.endog = 1 + rvs.sum(1) show_error = False show_error2 = 1#False if show_error: def loglike_norm_xb(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, loglike_norm_xb) res_norm = mod_norm.fit(method="nm", maxiter = 500) print res_norm.params if show_error2: def loglike_norm_xb(params, endog, exog): beta = params[:-1] sigma = params[-1] #print exog.shape, beta.shape xb = np.dot(exog, beta) #print xb.shape, stats.norm.logpdf(endog, loc=xb, scale=sigma).shape return stats.norm.logpdf(endog, loc=xb, scale=sigma).sum() mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, loglike_norm_xb) res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 5000, fargs=(datal.endog, datal.exog)) print res_norm.params class MygMLE(GenericLikelihoodModel): # just for testing def loglike(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma).sum() def loglikeobs(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm2 = MygMLE(datal.endog, datal.exog) #res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 500) res_norm2 = mod_norm2.fit(start_params=[1.]*datal.exog.shape[1]+[1], method="nm", maxiter = 500) print res_norm2.params res2 = sm.OLS(datal.endog, datal.exog).fit() start_params = np.hstack((res2.params, np.sqrt(res2.mse_resid))) res_norm3 = mod_norm2.fit(start_params=start_params, method="nm", maxiter = 500, retall=0) print start_params print res_norm3.params print res2.bse #print res_norm3.bse # not available print 'llf', res2.llf, res_norm3.llf bse = np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_norm3.params)))) res_norm3.model.score(res_norm3.params) #fprime in fit option cannot be overwritten, set to None, when score is defined # exception is fixed, but I don't think score was supposed to be called ''' >>> mod_norm2.fit(start_params=start_params, method="bfgs", fprime=None, maxiter Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 316, in fit disp=disp, retall=retall, callback=callback) File "C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6 579.win32\Programs\Python25\Lib\site-packages\scipy\optimize\optimize.py", line 710, in fmin_bfgs gfk = myfprime(x0) File "C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6 579.win32\Programs\Python25\Lib\site-packages\scipy\optimize\optimize.py", line 103, in function_wrapper return function(x, *args) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 240, in <lambda> score = lambda params: -self.score(params) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 480, in score return approx_fprime1(params, self.nloglike) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\sandbox\regression\numdiff.py", line 81, in approx_fprime1 nobs = np.size(f0) #len(f0) TypeError: object of type 'numpy.float64' has no len() ''' res_bfgs = mod_norm2.fit(start_params=start_params, method="bfgs", fprime=None, maxiter = 500, retall=0) from statsmodels.tools.numdiff import approx_fprime, approx_hess hb=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) hf=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) hh = (hf+hb)/2. print np.linalg.eigh(hh) grad = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) print grad gradb = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) gradf = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) print (gradb+gradf)/2. print res_norm3.model.score(res_norm3.params) print res_norm3.model.score(start_params) mod_norm2.loglike(start_params/2.) print np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params)) print np.sqrt(np.diag(res_bfgs.cov_params())) print res_norm3.bse print "MLE - OLS parameter estimates" print res_norm3.params[:-1] - res2.params print "bse diff in percent" print (res_norm3.bse[:-1] / res2.bse)*100. - 100 ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' Optimization terminated successfully. Current function value: 12.818804 Iterations 6 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 <statsmodels.model.LikelihoodModelResults object at 0x02131290> [ 1.6258006 0.05172931 1.42632252 -7.45229732] [ 1.62581004 0.05172895 1.42633234 -7.45231965] Warning: Maximum number of function evaluations has been exceeded. [ -1.18109149 246.94438535 -16.21235536 24.05282629 -324.80867176 274.07378453] Warning: Maximum number of iterations has been exceeded [ 17.57107 -149.87528787 19.89079376 -72.49810777 -50.06067953 306.14170418] Optimization terminated successfully. Current function value: 506.488765 Iterations: 339 Function evaluations: 550 [ -3.08181404 234.34702702 -14.99684418 27.94090839 -237.1465136 284.75079529] [ -3.08181304 234.34701361 -14.99684381 27.94088692 -237.14649571 274.6857294 ] [ 5.51471653 80.36595035 7.46933695 82.92232357 199.35166485] llf -506.488764864 -506.488764864 Optimization terminated successfully. Current function value: 506.488765 Iterations: 9 Function evaluations: 13 Gradient evaluations: 13 (array([ 2.41772580e-05, 1.62492628e-04, 2.79438138e-04, 1.90996240e-03, 2.07117946e-01, 1.28747174e+00]), array([[ 1.52225754e-02, 2.01838216e-02, 6.90127235e-02, -2.57002471e-04, -5.25941060e-01, -8.47339404e-01], [ 2.39797491e-01, -2.32325602e-01, -9.36235262e-01, 3.02434938e-03, 3.95614029e-02, -1.02035585e-01], [ -2.11381471e-02, 3.01074776e-02, 7.97208277e-02, -2.94955832e-04, 8.49402362e-01, -5.20391053e-01], [ -1.55821981e-01, -9.66926643e-01, 2.01517298e-01, 1.52397702e-03, 4.13805882e-03, -1.19878714e-02], [ -9.57881586e-01, 9.87911166e-02, -2.67819451e-01, 1.55192932e-03, -1.78717579e-02, -2.55757014e-02], [ -9.96486655e-04, -2.03697290e-03, -2.98130314e-03, -9.99992985e-01, -1.71500426e-05, 4.70854949e-06]])) [[ -4.91007768e-05 -7.28732630e-07 -2.51941401e-05 -2.50111043e-08 -4.77484718e-08 -9.72022463e-08]] [[ -1.64845915e-08 -2.87059265e-08 -2.88764568e-07 -6.82121026e-09 2.84217094e-10 -1.70530257e-09]] [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> print res_norm3.model.score(res_norm3.params) [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] >>> print res_norm3.model.score(start_params) [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] >>> mod_norm2.loglike(start_params/2.) -598.56178102781314 >>> print np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params)) [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> print np.sqrt(np.diag(res_bfgs.cov_params())) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print res_norm3.bse [ 5.47162086 75.03147114 6.98192136 82.60858536 185.40595756 22.88919522] >>> res_norm3.conf_int <bound method LikelihoodModelResults.conf_int of <statsmodels.model.LikelihoodModelResults object at 0x021317F0>> >>> res_norm3.conf_int() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 993, in conf_int lower = self.params - dist.ppf(1-alpha/2,self.model.df_resid) *\ AttributeError: 'MygMLE' object has no attribute 'df_resid' >>> res_norm3.params array([ -3.08181304, 234.34701361, -14.99684381, 27.94088692, -237.14649571, 274.6857294 ]) >>> res2.params array([ -3.08181404, 234.34702702, -14.99684418, 27.94090839, -237.1465136 ]) >>> >>> res_norm3.params - res2.params Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shape mismatch: objects cannot be broadcast to a single shape >>> res_norm3.params[:-1] - res2.params array([ 9.96859735e-07, -1.34122981e-05, 3.72278400e-07, -2.14645839e-05, 1.78919019e-05]) >>> >>> res_norm3.bse[:-1] - res2.bse array([ -0.04309567, -5.33447922, -0.48741559, -0.31373822, -13.94570729]) >>> (res_norm3.bse[:-1] / res2.bse) - 1 array([-0.00781467, -0.06637735, -0.06525554, -0.00378352, -0.06995531]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_bfgs.params)))) array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) array([ 5.10032831, 74.34988912, 6.96522122, 76.7091604 , 169.8117832 , 22.91695494]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([ -7.51422527, -7.4858335 , -6.74913633, -7.49275094, -14.8179759 ]) >>> hb=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=-1e-4) >>> hf=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=1e-4) >>> hh = (hf+hb)/2. >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-hh))) >>> bse_bfgs array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(hh))) >>> np.diag(hh) array([ 9.81680159e-01, 1.39920076e-02, 4.98101826e-01, 3.60955710e-04, 9.57811608e-04, 1.90709670e-03]) >>> np.diag(np.inv(hh)) Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'module' object has no attribute 'inv' >>> np.diag(np.linalg.inv(hh)) array([ 2.64875153e+01, 5.91578496e+03, 5.13279911e+01, 6.11533345e+03, 3.33775960e+04, 5.24357391e+02]) >>> res2.bse**2 array([ 3.04120984e+01, 6.45868598e+03, 5.57909945e+01, 6.87611175e+03, 3.97410863e+04]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> bse_bfgs - res_norm3.bse array([-0.32501855, 1.88266901, 0.18243424, -4.40798785, -2.71059354, 0.00965609]) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([-6.67512508, -4.29511526, -4.0831115 , -5.69415552, -8.35523538]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> (bse_bfgs / res_norm3.bse)*100. - 100 array([-5.94007812, 2.50917247, 2.61295176, -5.33599242, -1.46197759, 0.04218624]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> dir(res_bfgs) ['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref__', 'bse', 'conf_int', 'cov_params', 'f_test', 'initialize', 'llf', 'mle_retvals', 'mle_settings', 'model', 'normalized_cov_params', 'params', 'scale', 't', 't_test'] >>> res_bfgs.scale 1.0 >>> res2.scale 81083.015420213851 >>> res2.mse_resid 81083.015420213851 >>> print np.sqrt(np.diag(np.linalg.inv(-1*mod_norm2.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print np.sqrt(np.diag(np.linalg.inv(-1*res_bfgs.model.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] Is scale a misnomer, actually scale squared, i.e. variance of error term ? ''' print res_norm3.model.jac(res_norm3.params).shape jac = res_norm3.model.jac(res_norm3.params) print np.sqrt(np.diag(np.dot(jac.T, jac)))/start_params jac2 = res_norm3.model.jac(res_norm3.params, centered=True) print np.sqrt(np.diag(np.linalg.inv(np.dot(jac.T, jac)))) print res_norm3.bse print res2.bse
apache-2.0
nhejazi/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
104
3139
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the mean and std for each candidate along with the parameter # settings for all the candidates explored by grid search. n_candidates = len(grid_search.cv_results_['params']) for i in range(n_candidates): print(i, 'params - %s; mean - %0.2f; std - %0.2f' % (grid_search.cv_results_['params'][i], grid_search.cv_results_['mean_test_score'][i], grid_search.cv_results_['std_test_score'][i])) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
jtorrents/networkx
doc/make_gallery.py
12
2477
#!/usr/bin/env python # generate a thumbnail gallery of examples template = """\ {%% extends "layout.html" %%} {%% set title = "Gallery" %%} {%% block body %%} <h3>Click on any image to see source code</h3> <br/> %s {%% endblock %%} """ link_template = """\ <a href="%s"><img src="%s" border="0" alt="%s"/></a> """ import os, glob, re, shutil, sys import matplotlib matplotlib.use("Agg") import matplotlib.pyplot import matplotlib.image from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas examples_source_dir = '../examples/drawing' examples_dir = 'examples/drawing' template_dir = 'source/templates' static_dir = 'source/static/examples' pwd=os.getcwd() rows = [] if not os.path.exists(static_dir): os.makedirs(static_dir) os.chdir(examples_source_dir) all_examples=sorted(glob.glob("*.py")) # check for out of date examples stale_examples=[] for example in all_examples: png=example.replace('py','png') png_static=os.path.join(pwd,static_dir,png) if (not os.path.exists(png_static) or os.stat(png_static).st_mtime < os.stat(example).st_mtime): stale_examples.append(example) for example in stale_examples: print example, png=example.replace('py','png') matplotlib.pyplot.figure(figsize=(6,6)) stdout=sys.stdout sys.stdout=open('/dev/null','w') try: execfile(example) sys.stdout=stdout print " OK" except ImportError,strerr: sys.stdout=stdout sys.stdout.write(" FAIL: %s\n"%strerr) continue matplotlib.pyplot.clf() im=matplotlib.image.imread(png) fig = Figure(figsize=(2.5, 2.5)) canvas = FigureCanvas(fig) ax = fig.add_axes([0,0,1,1], aspect='auto', frameon=False, xticks=[], yticks =[]) # basename, ext = os.path.splitext(basename) ax.imshow(im, aspect='auto', resample=True, interpolation='bilinear') thumbfile=png.replace(".png","_thumb.png") fig.savefig(thumbfile) shutil.copy(thumbfile,os.path.join(pwd,static_dir,thumbfile)) shutil.copy(png,os.path.join(pwd,static_dir,png)) basename, ext = os.path.splitext(example) link = '%s/%s.html'%(examples_dir, basename) rows.append(link_template%(link, os.path.join('_static/examples',thumbfile), basename)) os.chdir(pwd) fh = open(os.path.join(template_dir,'gallery.html'), 'w') fh.write(template%'\n'.join(rows)) fh.close()
bsd-3-clause
mmoussallam/bird
demo_meg_denoising.py
1
2805
# Authors: Alexandre Gramfort <[email protected]> # Manuel Moussallam <[email protected]> # # License: BSD (3-clause) from scipy import linalg from meeg_tools import simu_meg from bird import bird, s_bird from joblib import Memory if __name__ == '__main__': white = False # change to True/False for white/pink noise scales = [8, 16, 32, 64, 128] n_runs = 30 # Structured sparsity parameters n_channels = 20 # Set this value to 20 to reproduce figures from the paper p_active = 1. random_state = 42 # Reference true data # Note : due to some changes in MNE, simulated data is no longer # parameterized using explicit SNR values, but rather using the NAVE parameter # Look up some documentation there: https://mne.tools/dev/generated/mne.simulation.simulate_evoked.html#mne.simulation.simulate_evoked seed = 42 evoked_no_noise = simu_meg(nave=10000, white=True, seed=seed) single_no_noise = evoked_no_noise.data[:n_channels, :] # noisy simulation : to simulate a SNR of approximately 10 # we use 10 times less averaged epochs (nave parameter set to 2000) evoked_noise = simu_meg(nave=2000, white=white, seed=seed) single_noise = evoked_noise.data[:n_channels, :] n_jobs = 1 # set to -1 to run in parellel memory = Memory(None) p_above = 1e-8 bird_estimate = bird(single_noise, scales, n_runs, p_above=p_above, random_state=random_state, n_jobs=n_jobs, memory=memory) sbird_estimate = s_bird(single_noise, scales, n_runs, p_above=p_above, p_active=p_active, random_state=random_state, n_jobs=n_jobs, memory=memory) print("RMSE BIRD : %s" % linalg.norm(bird_estimate - single_noise)) print("RMSE S-BIRD : %s" % linalg.norm(sbird_estimate - single_noise)) subset = range(1, n_channels, 2) start = 100 # make time start at 0 import matplotlib.pyplot as plt plt.figure(figsize=(7, 5)) p1 = plt.plot(1e3 * evoked_no_noise.times[start:], single_noise[subset, start:].T, 'k:', alpha=0.5) p2 = plt.plot(1e3 * evoked_no_noise.times[start:], single_no_noise[subset, start:].T, 'r:', linewidth=1.5) p3 = plt.plot(1e3 * evoked_no_noise.times[start:], bird_estimate[subset, start:].T, 'k-', linewidth=1.5) p4 = plt.plot(1e3 * evoked_no_noise.times[start:], sbird_estimate[subset, start:].T, 'm-', linewidth=1.5) plt.legend((p1[0], p2[0], p3[0], p4[0]), ('Noisy', 'Clean', 'BIRD Estimates', 'S-BIRD Estimates'), loc='upper right') plt.xlabel('Time (ms)') plt.ylabel('MEG') plt.ylim([-1.5e-12, 2.5e-12]) plt.show()
bsd-3-clause
fyffyt/scikit-learn
benchmarks/bench_plot_fastkmeans.py
294
4676
from __future__ import print_function from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() data = nr.random_integers(-50, 50, (n_samples, n_features)) print('K-Means') tstart = time() kmeans = KMeans(init='k-means++', n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results['kmeans_speed'].append(delta) results['kmeans_quality'].append(kmeans.inertia_) print('Fast K-Means') # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=10, batch_size=chunk) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0]]) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() print('Fast K-Means') tstart = time() mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(np.int) features_range = np.linspace(150, 50000, 5).astype(np.int) chunks = np.linspace(500, 10000, 15).astype(np.int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max([max(i) for i in [t for (label, t) in results.iteritems() if "speed" in label]]) max_inertia = max([max(i) for i in [ t for (label, t) in results.iteritems() if "speed" not in label]]) fig = plt.figure('scikit-learn K-Means benchmark results') for c, (label, timings) in zip('brcy', sorted(results.iteritems())): if 'speed' in label: ax = fig.add_subplot(2, 2, 1, projection='3d') ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection='3d') ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') i = 0 for c, (label, timings) in zip('br', sorted(results_2.iteritems())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel('Chunks') ax.set_ylabel(label) plt.show()
bsd-3-clause
jasset75/py-boletus
test/performance_test.py
1
1568
from datetime import datetime import pandas as pd import numpy as np from tqdm import tqdm stats = {} def draw_to_str(draw, sep='_'): nums = np.asarray(draw).tolist() return sep.join(map(str,nums)) def check_draw(df_historical, draw, sort=True): df = df_historical.copy() for i, row in tqdm(enumerate(df.values), total=df.shape[0], desc='historical'): s_row = set(row[1:7]) s_draw = set(draw) success = len(s_draw.intersection(s_row)) df.at[i, 'draw'] = draw_to_str(draw) df.at[i, 'success'] = success df.at[i, 'comp'] = row[7] in s_draw return df[df['success'] > 2] if __name__ == '__main__': f_test = r'/home/apollo/work/py-boletus/test/oh_fortuna.csv' df_test = pd.read_csv(f_test, names=['N1', 'N2', 'N3', 'N4', 'N5', 'N6']) f_historical = r'/home/apollo/work/py-boletus/data/ES-bonoloto.csv' df_historical = pd.read_csv(f_historical, parse_dates=['FECHA']) f_out = '/home/apollo/work/py-boletus/out/{0}_{1}_fortuna_{2}.csv' df_total = pd.DataFrame() for i, draw in tqdm(enumerate(df_test.values), total=df_test.shape[0], desc='draws'): df_parcial = check_draw(df_historical, draw, sort=False) if df_total.empty: df_total = df_parcial.copy() else: df_total = df_total.append(df_parcial, sort=False) df_total.sort_values(by=['success', 'comp', 'FECHA'], ascending=False, inplace=True) max_num_success = df_total['success'].max() df_total.to_csv(f_out.format(max_num_success, 'boletus', 'M'))
mit
debsankha/networkx
examples/graph/unix_email.py
62
2683
#!/usr/bin/env python """ Create a directed graph, allowing multiple edges and self loops, from a unix mailbox. The nodes are email addresses with links that point from the sender to the recievers. The edge data is a Python email.Message object which contains all of the email message data. This example shows the power of XDiGraph to hold edge data of arbitrary Python objects (in this case a list of email messages). By default, load the sample unix email mailbox called "unix_email.mbox". You can load your own mailbox by naming it on the command line, eg python unixemail.py /var/spool/mail/username """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2005 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import email from email.utils import getaddresses,parseaddr import mailbox import sys # unix mailbox recipe # see http://www.python.org/doc/current/lib/module-mailbox.html def msgfactory(fp): try: return email.message_from_file(fp) except email.Errors.MessageParseError: # Don't return None since that will stop the mailbox iterator return '' if __name__ == '__main__': import networkx as nx try: import matplotlib.pyplot as plt except: pass if len(sys.argv)==1: filePath = "unix_email.mbox" else: filePath = sys.argv[1] mbox = mailbox.mbox(filePath, msgfactory) # parse unix mailbox G=nx.MultiDiGraph() # create empty graph # parse each messages and build graph for msg in mbox: # msg is python email.Message.Message object (source_name,source_addr) = parseaddr(msg['From']) # sender # get all recipients # see http://www.python.org/doc/current/lib/module-email.Utils.html tos = msg.get_all('to', []) ccs = msg.get_all('cc', []) resent_tos = msg.get_all('resent-to', []) resent_ccs = msg.get_all('resent-cc', []) all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs) # now add the edges for this mail message for (target_name,target_addr) in all_recipients: G.add_edge(source_addr,target_addr,message=msg) # print edges with message subject for (u,v,d) in G.edges_iter(data=True): print("From: %s To: %s Subject: %s"%(u,v,d['message']["Subject"])) try: # draw pos=nx.spring_layout(G,iterations=10) nx.draw(G,pos,node_size=0,alpha=0.4,edge_color='r',font_size=16) plt.savefig("unix_email.png") plt.show() except: # matplotlib not available pass
bsd-3-clause
akhilaananthram/nupic.research
sequence_prediction/continuous_sequence/comparePerformance.py
1
4889
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import csv, sys import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from optparse import OptionParser from swarm_runner import SwarmRunner rcParams.update({'figure.autolayout': True}) plt.ion() plt.close('all') def loadDataFile(filePath): reader = csv.reader(filePath) ncol=len(next(reader)) # Read first line and count columns if ncol == 1: data = pd.read_csv(filePath, header=0, skiprows=[1,2], names=['value']) else: data = pd.read_csv(filePath, header=0, skiprows=[1,2], names=['step', 'value']) data = data['value'].astype('float').tolist() data = np.array(data) return data def NRMSE(data, pred): return np.sqrt(np.nanmean(np.square(pred-data)))/np.sqrt(np.nanmean( np.square(data-np.nanmean(data)))) def plotPerformance(dataSet, nTrain): filePath = './data/' + dataSet + '.csv' print "load test data from ", filePath trueData = loadDataFile(filePath) filePath = './prediction/' + dataSet + '_TM_pred.csv' print "load TM prediction from ", filePath predData_TM = loadDataFile(filePath) # filePath = './prediction/' + dataSet + '_ARIMA_pred_cont.csv' # predData_ARIMA = loadDataFile(filePath) N = min(len(predData_TM), len(trueData)) print "nTrain: ", nTrain print "nTest: ", len(trueData[nTrain:]) TM_lag = 1 predData_shift = np.roll(trueData, 1) predData_TM = np.roll(predData_TM, TM_lag) trueData = trueData[nTrain:] predData_TM = predData_TM[nTrain:] predData_shift = predData_shift[nTrain:] # predData_ARIMA = predData_ARIMA[lag:N] NRMSE_TM = NRMSE(trueData, predData_TM) # NRMSE_ARIMA = NRMSE(trueData, predData_ARIMA) NRMSE_Shift = NRMSE(trueData, predData_shift) resTM = abs(trueData-predData_TM) res_shift = abs(trueData-predData_shift) resTM = resTM[np.isnan(resTM) == False] res_shift = res_shift[np.isnan(res_shift) == False] print "NRMSE: Shift", NRMSE_Shift print "NRMSE: TM", NRMSE_TM # print "NRMSE: ARIMA", NRMSE_ARIMA plt.figure(1) plt.plot(trueData, label='True Data') plt.plot(predData_shift, label='Trival NRMSE: '+"%0.3f" % NRMSE_Shift) # plt.plot(predData_ARIMA, label='ARIMA NRMSE: '+"%0.3f" % NRMSE_ARIMA) plt.plot(predData_TM, label='TM, NRMSE: '+"%0.3f" % NRMSE_TM) plt.legend() plt.xlabel('Time') fileName = './result/'+dataSet+"modelPrediction.pdf" print "save example prediction trace to ", fileName plt.savefig(fileName) plt.figure(2) xl = [0, max(max(resTM), max(res_shift))] plt.subplot(2,2,1) plt.hist(resTM) plt.title('TM median='+"%0.3f" % np.median(resTM)+' NRMSE: '+"%0.3f" % NRMSE_TM) plt.xlim(xl) plt.xlabel("|residual|") plt.subplot(2,2,3) plt.hist(res_shift) plt.title('Trivial median='+"%0.3f" % np.median(res_shift)+' NRMSE: '+"%0.3f" % NRMSE_Shift) plt.xlim(xl) plt.xlabel("|residual|") fileName = './result/'+dataSet+"error_distribution.pdf" print "save residual error distribution to ", fileName plt.savefig(fileName) def _getArgs(): parser = OptionParser(usage="%prog PARAMS_DIR OUTPUT_DIR [options]" "\n\nCompare TM performance with trivial predictor using " "model outputs in prediction directory " "and outputting results to result directory.") parser.add_option("-d", "--dataSet", type=str, default=0, dest="dataSet", help="DataSet Name, choose from sine, SantaFe_A, MackeyGlass") (options, args) = parser.parse_args(sys.argv[1:]) return options, args if __name__ == "__main__": (_options, _args) = _getArgs() dataSet = _options.dataSet SWARM_CONFIG = SwarmRunner.importSwarmDescription(dataSet) nTrain = SWARM_CONFIG["streamDef"]['streams'][0]['last_record'] print 'Compare Model performance for ', dataSet plotPerformance(dataSet, nTrain)
gpl-3.0
cowlicks/numpy
numpy/lib/twodim_base.py
83
26903
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, ) from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0, 1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0, 1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2D-histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) Or we fill the histogram H with a determined bin content: >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted [[ 13. 14. 15. 16.] [ 9. 10. 11. 12.] [ 5. 6. 7. 8.] [ 1. 2. 3. 4.]] Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow: equidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) pcolormesh can display exact bin edges: >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh: exact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') NonUniformImage displays exact bin edges with interpolation: >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage: interpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> ax.set_xlim(xedges[0], xedges[-1]) >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
geeklhem/pimad
bin/figures.py
1
6889
from __future__ import division import os import matplotlib.pyplot as plt import numpy as np import cPickle as pickle import sys import platform import time from pimad import pip from pimad import invasion from pimad import draw from pimad.models.toycontinuous import ToyContinuous, ToyContinuousNLC, ToyContinuousGST, ToyContinuousSigB MODEL = ToyContinuous MODEL_CODE = "TOY" param = {"n": 5000, # Number of patches "T": 100, # Patch size "ip":0.01, # Initial proportions of mutants "r":0.5, # Resident trait value "mu":0, # Mutation rate "b":20, # Benefits coefficient "c":1, # Cost coefficient "g":100, # Number of generations "dz":0.01, "replica": 25, "time": time.asctime(), "host": "|".join(platform.uname()), "precision":0.01, "invfitness_g":10, "lk_R":1000, # Specific to threshold "T_range": [20,100], "b_range": [3,4,5,6,7,8,9,10,15,20,25,30,35,40], "kmax":10, "thres_r":1, #Specific to trajectories "range_ip":[0.001,0.005,0.01,0.05,0.1], "range_g":[10,50,100,200], #NLC & GST & SIG "chi": 4, "alpha":0.75, "k":.3, "s":.1 } def get_definition(model,param,pre="%",su=""): s = "% MODEL: " + model.model_name+"\n %PARAMETERS:\n" s += "\n".join(["{} {}={} {}".format(pre,k,v,su)for k,v in param.items()]) return s if __name__ == "__main__": DO = "ALL" print sys.argv if len(sys.argv) >= 2: DO = sys.argv[1] if len(sys.argv) >= 3: par = sys.argv[2].split("AND") #print par for st in par: k,v = st.split("=") param[k] = eval(v) print "{} set to {}".format(k,v) if len(sys.argv) >= 4: if sys.argv[3] == "NLC": MODEL = ToyContinuousNLC MODEL_CODE = sys.argv[3] if sys.argv[3] == "GST": MODEL = ToyContinuousGST MODEL_CODE = sys.argv[3] if sys.argv[3] == "SIG": MODEL = ToyContinuousSigB MODEL_CODE = sys.argv[3] print("DO: {} with model {}".format(DO,MODEL_CODE)) param["m"] = param["r"] + param["dz"] ## Figure 2: Numerical PIP ## if DO == "pip" or DO == "ALL": print "{:-^80}".format(" PIP ") pip_file = "pip{}_T{}_n{}_step{}_repl_{}_b{}_ip{}".format(MODEL_CODE, param["T"], param["n"], param["precision"], param["replica"], param["b"], param["ip"]) print pip_file if not os.path.exists(pip_file+".pkle"): pip_data,pip_param = pip.mp_pip(MODEL,param.copy(),param["precision"]) with open(pip_file+".pkle","w") as fi: pickle.dump((pip_data,pip_param),fi) print "saved {}.pkle".format(pip_file) else: with open(pip_file+".pkle","r") as fi: pip_data,pip_param = pickle.load(fi) if not os.path.exists(pip_file+".eps"): draw.pip(pip_data,False) plt.savefig(pip_file+".eps") with open(pip_file+".eps","a") as fi: fi.write(get_definition(MODEL,pip_param)) print "saved {}.eps".format(pip_file) ## Figure 3: INVASION Heatmap ## if DO == "heatmap" or DO == "ALL": print "{:-^80}".format(" HEATMAP ") heatmap_file = "heatmap_r_{}_m{}_repl{}".format(param["r"],param["m"],param["replica"]) if not os.path.exists(heatmap_file+".pkle"): data,out_param = invasion.heatmap(MODEL,param.copy()) with open(heatmap_file+".pkle","w") as fi: pickle.dump((data,out_param),fi) else: with open(heatmap_file+".pkle","r") as fi: data,out_param = pickle.load(fi) if not os.path.exists(heatmap_file+".eps"): draw.heatmap(data,out_param,False) plt.savefig(heatmap_file+".eps") with open(heatmap_file+".eps","a") as fi: fi.write(get_definition(MODEL,out_param)) ## Figure 4: Sociality threshold ## if DO == "threshold" or DO == "ALL": print "{:-^80}".format(" SCORE THRESHOLD ") threshold_file = "threshold_kmax{}_{}T_{}b_g{}_{}repl".format(param["kmax"], len(param["T_range"]), len(param["b_range"]), param["g"], param["replica"]) if not os.path.exists(threshold_file+".pkle"): data,out_param = invasion.threshold(MODEL,param.copy()) with open(threshold_file+".pkle","w") as fi: pickle.dump((data,out_param),fi) else: with open(threshold_file+".pkle","r") as fi: data,out_param = pickle.load(fi) if not os.path.exists(threshold_file+".eps"): draw.threshold(data) plt.savefig(threshold_file+".eps") with open(threshold_file+".eps","a") as fi: fi.write(get_definition(MODEL,out_param)) ## Figure S1: Quelques trajectoires d'invasion (different ip) ## if DO == "trajectoires": print "{:-^80}".format(" Trajectories ") traj_file = "trajectories_m{}_{}ip_{}g".format(param["m"],len(param["range_ip"]),len(param["range_g"])) if not os.path.exists(traj_file+".pkle"): data = [np.zeros((len(param["range_ip"]), len(param["range_g"]))), np.zeros((len(param["range_ip"]), len(param["range_g"])))] for j,g in enumerate(param["range_g"]): for i,ip in enumerate(param["range_ip"]): print i,j,data[0].shape,data[1].shape param["g"] = g param["ip"] = ip data[0][i,j],data[1][i,j] = invasion.mp_invasion_fitness(MODEL,param) with open(traj_file+".pkle","w") as fi: del param["g"] del param["ip"] pickle.dump((data,param),fi) else: with open(traj_file+".pkle","r") as fi: data,param = pickle.load(fi) if not os.path.exists(traj_file+"eps"): draw.trajectories(data,param) plt.savefig(traj_file+".eps") with open(traj_file+".eps","a") as fi: fi.write(get_definition(MODEL,param))
gpl-3.0
geolovic/TProfiler
test/04_profile_from_river.py
1
3412
# -*- coding: utf-8 -*- """ José Vicente Pérez Granada University (Spain) June, 2017 Testing suite for profiler.py Last modified: 29 October 2017 """ import time import profiler as p import ogr import matplotlib.pyplot as plt import numpy as np print("Tests for profiler.profiles_from_rivers()") def test01(): """ Test for profiles_from_rivers() function Testing all rivers in rivers with tributaries """ inicio = time.time() print("=" * 40) print("Test 01 para profiles_from_rivers function") print("Testing all rivers with tributaries") print("Test in progress...") # Test parameters fac = "data/in/darro25fac.tif" dem = "data/in/darro25.tif" river_shapefile = "data/in/rios.shp" id_field = "id_rio" name_field = "name" perfiles = p.profiles_from_rivers(fac, dem, river_shapefile, id_field=id_field, name_field=name_field) draw_profiles(perfiles) fin = time.time() print("Test finalizado en " + str(fin - inicio) + " segundos") print("=" * 40) def test02(): """ Test for profiles_from_rivers() function """ inicio = time.time() print("=" * 40) print("Test 01 para profiles_from_rivers function") print("Testing all rivers with tributaries, no id, no namefield") print("Test in progress...") # Test parameters fac = "data/in/darro25fac.tif" dem = "data/in/darro25.tif" river_shapefile = "data/in/rios.shp" # Check with id and name_field perfiles = p.profiles_from_rivers(fac, dem, river_shapefile) draw_profiles(perfiles) fin = time.time() print("Test finalizado en " + str(fin - inicio) + " segundos") print("=" * 40) def test03(): """ Test for profiles_from_rivers() function """ inicio = time.time() print("=" * 40) print("Test 01 para profiles_from_rivers function") print("Testing all rivers without tributaries") print("Test in progress...") # Test parameters fac = "data/in/darro25fac.tif" dem = "data/in/darro25.tif" river_shapefile = "data/in/rios.shp" id_field = "id_rio" name_field = "name" # Get profiles perfiles = p.profiles_from_rivers(fac, dem, river_shapefile, id_field, name_field, tributaries=False) draw_profiles(perfiles) fin = time.time() print("Test finalizado en " + str(fin - inicio) + " segundos") print("=" * 40) def test04(): """ Test for profiles_from_rivers() function """ inicio = time.time() print("=" * 40) print("Test 01 para profiles_from_rivers function") print("Testing a river shapefile with disconected rivers") print("Test in progress...") # Test parameters fac = "data/in/darro25fac.tif" dem = "data/in/darro25.tif" river_shapefile = "data/in/rios2.shp" id_field = "id_rio" name_field = "name" # Get profiles perfiles = p.profiles_from_rivers(fac, dem, river_shapefile, id_field, name_field, tributaries=True) draw_profiles(perfiles) fin = time.time() print("Test finalizado en " + str(fin - inicio) + " segundos") print("=" * 40) def draw_profiles(perfiles): fig = plt.figure() ax = fig.add_subplot(111) for perfil in perfiles: chi = perfil.get_chi(False) zi = perfil.get_z(False) ax.plot(chi, zi, label=perfil.name) ax.legend() plt.show() test01() test02() test03() test04()
gpl-3.0
naritta/numpy
numpy/core/code_generators/ufunc_docstrings.py
51
90047
""" Docstrings for generated ufuncs The syntax is designed to look like the function add_newdoc is being called from numpy.lib, but in this file add_newdoc puts the docstrings in a dictionary. This dictionary is used in numpy/core/code_generators/generate_umath.py to generate the docstrings for the ufuncs in numpy.core at the C level when the ufuncs are created at compile time. """ from __future__ import division, absolute_import, print_function docdict = {} def get(name): return docdict.get(name) def add_newdoc(place, name, doc): docdict['.'.join((place, name))] = doc add_newdoc('numpy.core.umath', 'absolute', """ Calculate the absolute value element-wise. Parameters ---------- x : array_like Input array. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(start=-10, stop=10, num=101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10]) >>> plt.show() """) add_newdoc('numpy.core.umath', 'add', """ Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """) add_newdoc('numpy.core.umath', 'arccos', """ Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional Array of the same shape as `a`, to store results in. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. If `x` is a scalar then a scalar is returned, otherwise an array of the same shape as `x` is returned. See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cos(z) = x`. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytic function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arccosh', """ Inverse hyperbolic cosine, element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array of the same shape as `x`, to store results in. See `doc.ufuncs` (Section "Output arguments") for details. Returns ------- arccosh : ndarray Array of the same shape as `x`. See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0 """) add_newdoc('numpy.core.umath', 'arcsin', """ Inverse sine, element-wise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. out : ndarray, optional Array of the same shape as `x`, in which to store the results. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. If `x` is a scalar, a scalar is returned, otherwise an array. See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytic function that has, by convention, the branch cuts [-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or sin^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 """) add_newdoc('numpy.core.umath', 'arcsinh', """ Inverse hyperbolic sine element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : ndarray Array of of the same shape as `x`. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295]) """) add_newdoc('numpy.core.umath', 'arctan', """ Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like Input values. `arctan` is applied to each element of `x`. Returns ------- out : ndarray Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). It is a scalar if `x` is a scalar. See Also -------- arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`) and the positive `x`-axis. angle : Argument of complex values. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytic function that has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or tan^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arctan2', """ Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : array_like, real-valued `y`-coordinates. x2 : array_like, real-valued `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. See Also -------- arctan, tan, angle Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816]) """) add_newdoc('numpy.core.umath', '_arg', """ DO NOT USE, ONLY FOR TESTING """) add_newdoc('numpy.core.umath', 'arctanh', """ Inverse hyperbolic tangent element-wise. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Array of the same shape as `x`. See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614]) """) add_newdoc('numpy.core.umath', 'bitwise_and', """ Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_or', """ Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like Result. See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_xor', """ Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'ceil', """ Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\\lceil x \\rceil`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. See Also -------- floor, trunc, rint Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'trunc', """ Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. See Also -------- ceil, floor, rint Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'conjugate', """ Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]]) """) add_newdoc('numpy.core.umath', 'cos', """ Cosine element-wise. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding cosine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'cosh', """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Output array of same shape as `x`. Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show() """) add_newdoc('numpy.core.umath', 'degrees', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as x. Returns ------- y : ndarray of floats The corresponding degree values; if `out` was supplied this is a reference to it. See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = degrees(rad, out) >>> np.all(r == out) True """) add_newdoc('numpy.core.umath', 'rad2deg', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The corresponding angle in degrees. See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """) add_newdoc('numpy.core.umath', 'divide', """ Divide arguments element-wise. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The quotient ``x1/x2``, element-wise. Returns a scalar if both ``x1`` and ``x2`` are scalars. See Also -------- seterr : Set whether to raise or warn on overflow, underflow and division by zero. Notes ----- Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting. Behavior on division by zero can be changed using ``seterr``. In Python 2, when both ``x1`` and ``x2`` are of an integer type, ``divide`` will behave like ``floor_divide``. In Python 3, it behaves like ``true_divide``. Examples -------- >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types (Python 2 only): >>> np.divide(2, 4) 0 >>> np.divide(2, 4.) 0.5 Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning: >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int)) array([0, 0]) Division by zero can, however, be caught using ``seterr``: >>> old_err_state = np.seterr(divide='raise') >>> np.divide(1, 0) Traceback (most recent call last): File "<stdin>", line 1, in <module> FloatingPointError: divide by zero encountered in divide >>> ignored_states = np.seterr(**old_err_state) >>> np.divide(1, 0) 0 """) add_newdoc('numpy.core.umath', 'equal', """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False], dtype=bool) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True], dtype=bool) """) add_newdoc('numpy.core.umath', 'exp', """ Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Output array, element-wise exponential of `x`. See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", http://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Phase (angle) of exp(x)') >>> plt.show() """) add_newdoc('numpy.core.umath', 'exp2', """ Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array to insert results into. Returns ------- out : ndarray Element-wise 2 to the power `x`. See Also -------- power Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.]) """) add_newdoc('numpy.core.umath', 'expm1', """ Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Element-wise exponential minus one: ``out = exp(x) - 1``. See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10 """) add_newdoc('numpy.core.umath', 'fabs', """ Compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The absolute values of `x`, the returned values are always floats. See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2]) """) add_newdoc('numpy.core.umath', 'floor', """ Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\\lfloor x \\rfloor`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The floor of each element in `x`. See Also -------- ceil, trunc, rint Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", in other words ``floor(-2.5) == -2``. NumPy instead uses the definition of `floor` where `floor(-2.5) == -3`. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'floor_divide', """ Return the largest integer smaller or equal to the division of the inputs. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. Returns ------- y : ndarray y = floor(`x1`/`x2`) See Also -------- divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.]) """) add_newdoc('numpy.core.umath', 'fmod', """ Return the element-wise remainder of division. This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend `x1`. It is equivalent to the Matlab(TM) ``rem`` function and should not be confused with the Python modulus operator ``x1 % x2``. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. Returns ------- y : array_like The remainder of the division of `x1` by `x2`. See Also -------- remainder : Equivalent to the Python ``%`` operator. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. For `fmod`, the sign of result is the sign of the dividend, while for `remainder` the sign of the result is the sign of the divisor. The `fmod` function is equivalent to the Matlab(TM) ``rem`` function. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]]) """) add_newdoc('numpy.core.umath', 'greater', """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False], dtype=bool) If the inputs are ndarrays, then np.greater is equivalent to '>'. >>> a = np.array([4,2]) >>> b = np.array([2,2]) >>> a > b array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'greater_equal', """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'hypot', """ Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- z : ndarray The hypotenuse of the triangle(s). Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """) add_newdoc('numpy.core.umath', 'invert', """ Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x1 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", http://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'isfinite', """ Test element-wise for finiteness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- y : ndarray, bool For scalar input, the result is a new boolean with value True if the input is finite; otherwise the value is False (input is either positive infinity, negative infinity or Not a Number). For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is finite; otherwise the values are False (element is either positive infinity, negative infinity or Not a Number). See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0]) """) add_newdoc('numpy.core.umath', 'isinf', """ Test element-wise for positive or negative infinity. Returns a boolean array of the same shape as `x`, True where ``x == +/-inf``, otherwise False. Parameters ---------- x : array_like Input values out : array_like, optional An array with the same shape as `x` to store the result. Returns ------- y : bool (scalar) or boolean ndarray For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same shape as the input and the values are True where the corresponding element of the input is positive or negative infinity; elsewhere the values are False. If a second argument was supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True, respectively. The return value `y` is then a reference to that array. See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1]) """) add_newdoc('numpy.core.umath', 'isnan', """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray or bool For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False. For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False. See Also -------- isinf, isneginf, isposinf, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'left_shift', """ Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Has to be non-negative. Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40]) """) add_newdoc('numpy.core.umath', 'less', """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less_equal, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'less_equal', """ Return the truth value of (x1 =< x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, greater_equal, equal, not_equal Examples -------- >>> np.less_equal([4, 2, 1], [2, 2, 2]) array([False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'log', """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf]) """) add_newdoc('numpy.core.umath', 'log10', """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., NaN]) """) add_newdoc('numpy.core.umath', 'log2', """ Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Base-2 logarithm of `x`. See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.]) >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j]) """) add_newdoc('numpy.core.umath', 'logaddexp', """ Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50 """) add_newdoc('numpy.core.umath', 'logaddexp2', """ Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, optional Array to store results in. Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50 """) add_newdoc('numpy.core.umath', 'log1p', """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0 """) add_newdoc('numpy.core.umath', 'logical_and', """ Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Input arrays. `x1` and `x2` must be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical AND operation on corresponding elements of `x1` and `x2`. See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_not', """ Compute the truth value of NOT x element-wise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_or', """ Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. They have to be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical OR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_xor', """ Compute the truth value of x1 XOR x2, element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. They must be broadcastable to the same shape. Returns ------- y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by whether or not broadcasting of one or both arrays was required. See Also -------- logical_and, logical_or, logical_not, bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', 'maximum', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- minimum : Element-wise minimum of two arrays, propagates NaNs. fmax : Element-wise maximum of two arrays, ignores NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. fmin, amin, nanmin Notes ----- The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.maximum(np.Inf, 1) inf """) add_newdoc('numpy.core.umath', 'minimum', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- maximum : Element-wise maximum of two arrays, propagates NaNs. fmin : Element-wise minimum of two arrays, ignores NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. fmax, amax, nanmax Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.minimum(-np.Inf, 1) -inf """) add_newdoc('numpy.core.umath', 'fmax', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmin : Element-wise minimum of two arrays, ignores NaNs. maximum : Element-wise maximum of two arrays, propagates NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. minimum, amin, nanmin Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'fmin', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmax : Element-wise maximum of two arrays, ignores NaNs. minimum : Element-wise minimum of two arrays, propagates NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. maximum, amax, nanmax Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'modf', """ Return the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. Returns ------- y1 : ndarray Fractional part of `x`. y2 : ndarray Integral part of `x`. Notes ----- For integer input the return values are floats. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0) """) add_newdoc('numpy.core.umath', 'multiply', """ Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """) add_newdoc('numpy.core.umath', 'negative', """ Numerical negative, element-wise. Parameters ---------- x : array_like or scalar Input array. Returns ------- y : ndarray or scalar Returned array or scalar: `y = -x`. Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.]) """) add_newdoc('numpy.core.umath', 'not_equal', """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. out : ndarray, optional A placeholder the same shape as `x1` to store the result. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- not_equal : ndarray bool, scalar bool For each element in `x1, x2`, return True if `x1` is not equal to `x2` and False otherwise. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True], dtype=bool) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', '_ones_like', """ This function used to be the numpy.ones_like, but now a specific function for that has been written for consistency with the other *_like functions. It is only used internally in a limited fashion now. See Also -------- ones_like """) add_newdoc('numpy.core.umath', 'power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]]) """) add_newdoc('numpy.core.umath', 'radians', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding radian values. See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out True """) add_newdoc('numpy.core.umath', 'deg2rad', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. Returns ------- y : ndarray The corresponding angle in radians. See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931 """) add_newdoc('numpy.core.umath', 'reciprocal', """ Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray Return array. Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003]) """) add_newdoc('numpy.core.umath', 'remainder', """ Return element-wise remainder of division. Computes ``x1 - floor(x1 / x2) * x2``, the result has the same sign as the divisor `x2`. It is equivalent to the Python modulus operator ``x1 % x2`` and should not be confused with the Matlab(TM) ``rem`` function. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The remainder of the quotient ``x1/x2``, element-wise. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- fmod : Equivalent of the Matlab(TM) ``rem`` function. divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1]) """) add_newdoc('numpy.core.umath', 'right_shift', """ Shift the bits of an integer to the right. Bits are shifted to the right `x2`. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1]) """) add_newdoc('numpy.core.umath', 'rint', """ Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray or scalar Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'sign', """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The sign of `x`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 """) add_newdoc('numpy.core.umath', 'signbit', """ Returns element-wise True where signbit is set (less than zero). Parameters ---------- x : array_like The input value(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- result : ndarray of bool Output array, or reference to `out` if that was supplied. Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'copysign', """ Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences, they have to be of the same length. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : array_like Values to change the sign of. x2 : array_like The sign of `x2` is copied to `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like The values of `x1` with the sign of `x2`. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.]) """) add_newdoc('numpy.core.umath', 'nextafter', """ Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'spacing', """ Return the distance between x and the nearest adjacent number. Parameters ---------- x1 : array_like Values to find the spacing of. Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> np.spacing(1) == np.finfo(np.float64).eps True """) add_newdoc('numpy.core.umath', 'sin', """ Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \\pi` rad equals 360 degrees). Returns ------- y : array_like The sine of each element of x. See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\\pi`. Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'sinh', """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic sine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'sqrt', """ Return the positive square-root of an array, element-wise. Parameters ---------- x : array_like The values whose square-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real "interval" [`-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, numpy.inf]) array([ 2., NaN, Inf]) """) add_newdoc('numpy.core.umath', 'cbrt', """ Return the cube-root of an array, element-wise. .. versionadded:: 1.10.0 Parameters ---------- x : array_like The values whose cube-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the cube cube-root of each element in `x`. If `out` was provided, `y` is a reference to it. Examples -------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """) add_newdoc('numpy.core.umath', 'square', """ Return the element-wise square of the input. Parameters ---------- x : array_like Input data. Returns ------- out : ndarray Element-wise `x*x`, of the same shape and dtype as `x`. Returns scalar if `x` is a scalar. See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j]) """) add_newdoc('numpy.core.umath', 'subtract', """ Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]]) """) add_newdoc('numpy.core.umath', 'tan', """ Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'tanh', """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", http://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'true_divide', """ Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. Returns ------- out : ndarray Result is scalar if both inputs are scalar, ndarray otherwise. Notes ----- The floor division operator ``//`` was added in Python 2.2 making ``//`` and ``/`` equivalent operators. The default floor division operation of ``/`` can be replaced by true division with ``from __future__ import division``. In Python 3.0, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([0, 0, 0, 0, 1]) >>> x//4 array([0, 0, 0, 0, 1]) >>> from __future__ import division >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1]) """) add_newdoc('numpy.core.umath', 'frexp', """ Decompose the elements of x into mantissa and twos exponent. Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``. The mantissa is lies in the open interval(-1, 1), while the twos exponent is a signed integer. Parameters ---------- x : array_like Array of numbers to be decomposed. out1 : ndarray, optional Output array for the mantissa. Must have the same shape as `x`. out2 : ndarray, optional Output array for the exponent. Must have the same shape as `x`. Returns ------- (mantissa, exponent) : tuple of ndarrays, (float, int) `mantissa` is a float array with values between -1 and 1. `exponent` is an int array which represents the exponent of 2. See Also -------- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Examples -------- >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4]) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.]) """) add_newdoc('numpy.core.umath', 'ldexp', """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : array_like Array of multipliers. x2 : array_like, int Array of twos exponents. out : ndarray, optional Output array for the result. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. See Also -------- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.], dtype=float32) >>> x = np.arange(6) >>> np.ldexp(*np.frexp(x)) array([ 0., 1., 2., 3., 4., 5.]) """)
bsd-3-clause
uhjish/seaborn
doc/sphinxext/ipython_directive.py
37
37557
# -*- coding: utf-8 -*- """ Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). For example, to enable syntax highlighting and the IPython directive:: extensions = ['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive'] The IPython directive outputs code-blocks with the language 'ipython'. So if you do not have the syntax highlighting extension enabled as well, then all rendered code-blocks will be uncolored. By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are: ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ipython_mplbackend: The string which specifies if the embedded Sphinx shell should import Matplotlib and set the backend. The value specifies a backend that is passed to `matplotlib.use()` before any lines in `ipython_execlines` are executed. If not specified in conf.py, then the default value of 'agg' is used. To use the IPython directive without matplotlib as a dependency, set the value to `None`. It may end up that matplotlib is still imported if the user specifies so in `ipython_execlines` or makes use of the @savefig pseudo decorator. ipython_execlines: A list of strings to be exec'd in the embedded Sphinx shell. Typical usage is to make certain packages always available. Set this to an empty list if you wish to have no imports always available. If specified in conf.py as `None`, then it has the effect of making no imports available. If omitted from conf.py altogether, then the default value of ['import numpy as np', 'import matplotlib.pyplot as plt'] is used. ipython_holdcount When the @suppress pseudo-decorator is used, the execution count can be incremented or not. The default behavior is to hold the execution count, corresponding to a value of `True`. Set this to `False` to increment the execution count after each suppressed command. As an example, to use the IPython directive when `matplotlib` is not available, one sets the backend to `None`:: ipython_mplbackend = None An example usage of the directive is: .. code-block:: rst .. ipython:: In [1]: x = 1 In [2]: y = x**2 In [3]: print(y) See http://matplotlib.org/sampledoc/ipython_directive.html for additional documentation. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ from __future__ import print_function from __future__ import unicode_literals #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import os import re import sys import tempfile import ast from pandas.compat import zip, range, map, lmap, u, cStringIO as StringIO import warnings # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io from IPython.utils.py3compat import PY3 if PY3: from io import StringIO text_type = str else: from StringIO import StringIO text_type = unicode #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class DecodingStringIO(StringIO, object): def __init__(self,buf='',encodings=('utf8',), *args, **kwds): super(DecodingStringIO, self).__init__(buf, *args, **kwds) self.set_encodings(encodings) def set_encodings(self, encodings): self.encodings = encodings def write(self,data): if isinstance(data, text_type): return super(DecodingStringIO, self).write(data) else: for enc in self.encodings: try: data = data.decode(enc) return super(DecodingStringIO, self).write(data) except : pass # default to brute utf8 if no encoding succeded return super(DecodingStringIO, self).write(data.decode('utf8', 'replace')) class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self, exec_lines=None,state=None): self.cout = DecodingStringIO(u'') if exec_lines is None: exec_lines = [] self.state = state # Create config object for IPython config = Config() config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize global ipython, but don't start its mainloop. # This will persist across different EmbededSphinxShell instances. IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done after instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # Optionally, provide more detailed information to shell. self.directive = None # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # Prepopulate the namespace. for line in exec_lines: self.process_input_line(line, store_history=False) def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: try: source_raw = splitter.source_raw_reset()[1] except: # recent ipython #4504 source_raw = splitter.raw_reset() self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """ Process data block for INPUT token. """ decorator, input, rest = data image_file = None image_directive = None is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = (decorator is not None and \ decorator.startswith('@doctest')) or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_okexcept = decorator=='@okexcept' or self.is_okexcept is_okwarning = decorator=='@okwarning' or self.is_okwarning is_savefig = decorator is not None and \ decorator.startswith('@savefig') # set the encodings to be used by DecodingStringIO # to convert the execution output into unicode if # needed. this attrib is set by IpythonDirective.run() # based on the specified block options, defaulting to ['ut self.cout.set_encodings(self.output_encoding) input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False # Hold the execution count, if requested to do so. if is_suppress and self.hold_count: store_history = False else: store_history = True # Note: catch_warnings is not thread safe with warnings.catch_warnings(record=True) as ws: for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i == 0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') # context information filename = self.state.document.current_source lineno = self.state.document.current_line # output any exceptions raised during execution to stdout # unless :okexcept: has been specified. if not is_okexcept and "Traceback" in output: s = "\nException in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write(output) sys.stdout.write('<<<' + ('-' * 73) + '\n\n') # output any warning raised during execution to stdout # unless :okwarning: has been specified. if not is_okwarning: for w in ws: s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write('-' * 76 + '\n') s=warnings.formatwarning(w.message, w.category, w.filename, w.lineno, w.line) sys.stdout.write(s) sys.stdout.write('<<<' + ('-' * 73) + '\n') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, decorator, image_file, image_directive) def process_output(self, data, output_prompt, input_lines, output, is_doctest, decorator, image_file): """ Process data block for OUTPUT token. """ TAB = ' ' * 4 if is_doctest and output is not None: found = output found = found.strip() submitted = data.strip() if self.directive is None: source = 'Unavailable' content = 'Unavailable' else: source = self.directive.state.document.current_source content = self.directive.content # Add tabs and join into a single string. content = '\n'.join([TAB + line for line in content]) # Make sure the output contains the output prompt. ind = found.find(output_prompt) if ind < 0: e = ('output does not contain output prompt\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'Input line(s):\n{TAB}{2}\n\n' 'Output line(s):\n{TAB}{3}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), TAB=TAB) raise RuntimeError(e) found = found[len(output_prompt):].strip() # Handle the actual doctest comparison. if decorator.strip() == '@doctest': # Standard doctest if found != submitted: e = ('doctest failure\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'On input line(s):\n{TAB}{2}\n\n' 'we found output:\n{TAB}{3}\n\n' 'instead of the expected:\n{TAB}{4}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), repr(submitted), TAB=TAB) raise RuntimeError(e) else: self.custom_doctest(decorator, input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = ('plt.gcf().savefig("%s", bbox_inches="tight", ' 'dpi=100)' % image_file) #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token == OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): """ Ensures that pyplot has been imported into the embedded IPython shell. Also, makes sure to set the backend appropriately if not set already. """ # We are here if the @figure pseudo decorator was used. Thus, it's # possible that we could be here even if python_mplbackend were set to # `None`. That's also strange and perhaps worthy of raising an # exception, but for now, we just set the backend to 'agg'. if not self._pyplot_imported: if 'matplotlib.backends' not in sys.modules: # Then ipython_matplotlib was set to None but there was a # call to the @figure decorator (and ipython_execlines did # not set a backend). #raise Exception("No backend was set, but @figure was used!") import matplotlib matplotlib.use('agg') # Always import pyplot into embedded shell. self.process_input_line('import matplotlib.pyplot as plt', store_history=False) self._pyplot_imported = True def process_pure_python(self, content): """ content is a list of strings. it is unedited directive content This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) # if the next line is indented, it should be part of multiline if len(content) > lineno + 1: nextline = content[lineno + 1] if len(nextline) - len(nextline.lstrip()) > 3: continue try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output def custom_doctest(self, decorator, input_lines, found, submitted): """ Perform a specialized doctest. """ from .custom_doctests import doctests args = decorator.split() doctest_type = args[1] if doctest_type in doctests: doctests[doctest_type](self, args, input_lines, found, submitted) else: e = "Invalid option to @doctest: {0}".format(doctest_type) raise Exception(e) class IPythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, 'okexcept': directives.flag, 'okwarning': directives.flag, 'output_encoding': directives.unchanged_required } shell = None seen_docs = set() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout mplbackend = config.ipython_mplbackend exec_lines = config.ipython_execlines hold_count = config.ipython_holdcount return (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) def setup(self): # Get configuration values. (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) = self.get_config_options() if self.shell is None: # We will be here many times. However, when the # EmbeddedSphinxShell is created, its interactive shell member # is the same for each instance. if mplbackend: import matplotlib # Repeated calls to use() will not hurt us since `mplbackend` # is the same each time. matplotlib.use(mplbackend) # Must be called after (potentially) importing matplotlib and # setting its backend since exec_lines might import pylab. self.shell = EmbeddedSphinxShell(exec_lines, self.state) # Store IPython directive to enable better error messages self.shell.directive = self # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? if not self.state.document.current_source in self.seen_docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 self.shell.IP.prompt_manager.width = 0 self.seen_docs.add(self.state.document.current_source) # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir self.shell.hold_count = hold_count # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options self.shell.is_okexcept = 'okexcept' in options self.shell.is_okwarning = 'okwarning' in options self.shell.output_encoding = [options.get('output_encoding', 'utf8')] # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython', ''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') if len(lines)>2: if debug: print('\n'.join(lines)) else: # This has to do with input, not output. But if we comment # these lines out, then no IPython code will appear in the # final output. self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) # cleanup self.teardown() return [] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IPythonDirective) app.add_config_value('ipython_savefig_dir', None, 'env') app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_promptin', 'In [%d]:', 'env') app.add_config_value('ipython_promptout', 'Out[%d]:', 'env') # We could just let matplotlib pick whatever is specified as the default # backend in the matplotlibrc file, but this would cause issues if the # backend didn't work in headless environments. For this reason, 'agg' # is a good default backend choice. app.add_config_value('ipython_mplbackend', 'agg', 'env') # If the user sets this config value to `None`, then EmbeddedSphinxShell's # __init__ method will treat it as []. execlines = ['import numpy as np', 'import matplotlib.pyplot as plt'] app.add_config_value('ipython_execlines', execlines, 'env') app.add_config_value('ipython_holdcount', True, 'env') # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) @doctest float In [154]: 0.1 + 0.2 Out[154]: 0.3 @doctest float In [155]: np.arange(16).reshape(4,4) Out[155]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) In [1]: x = np.arange(16, dtype=float).reshape(4,4) In [2]: x[0,0] = np.inf In [3]: x[0,1] = np.nan @doctest float In [4]: x Out[4]: array([[ inf, nan, 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') IPythonDirective('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print('All OK? Check figures in _static/')
bsd-3-clause
idlead/scikit-learn
examples/svm/plot_svm_anova.py
12
2017
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
liyu1990/sklearn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
bigdataelephants/scikit-learn
sklearn/linear_model/tests/test_omp.py
15
7882
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import check_skip_travis from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): # FIXME: This test is unstable on Travis, see issue #3190 for more detail. check_skip_travis() y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
saiwing-yeung/scikit-learn
benchmarks/bench_plot_randomized_svd.py
57
17557
""" Benchmarks on the power iterations phase in randomized SVD. We test on various synthetic and real datasets the effect of increasing the number of power iterations in terms of quality of approximation and running time. A number greater than 0 should help with noisy matrices, which are characterized by a slow spectral decay. We test several policy for normalizing the power iterations. Normalization is crucial to avoid numerical issues. The quality of the approximation is measured by the spectral norm discrepancy between the original input matrix and the reconstructed one (by multiplying the randomized_svd's outputs). The spectral norm is always equivalent to the largest singular value of a matrix. (3) justifies this choice. However, one can notice in these experiments that Frobenius and spectral norms behave very similarly in a qualitative sense. Therefore, we suggest to run these benchmarks with `enable_spectral_norm = False`, as Frobenius' is MUCH faster to compute. The benchmarks follow. (a) plot: time vs norm, varying number of power iterations data: many datasets goal: compare normalization policies and study how the number of power iterations affect time and norm (b) plot: n_iter vs norm, varying rank of data and number of components for randomized_SVD data: low-rank matrices on which we control the rank goal: study whether the rank of the matrix and the number of components extracted by randomized SVD affect "the optimal" number of power iterations (c) plot: time vs norm, varing datasets data: many datasets goal: compare default configurations We compare the following algorithms: - randomized_svd(..., power_iteration_normalizer='none') - randomized_svd(..., power_iteration_normalizer='LU') - randomized_svd(..., power_iteration_normalizer='QR') - randomized_svd(..., power_iteration_normalizer='auto') - fbpca.pca() from https://github.com/facebook/fbpca (if installed) Conclusion ---------- - n_iter=2 appears to be a good default value - power_iteration_normalizer='none' is OK if n_iter is small, otherwise LU gives similar errors to QR but is cheaper. That's what 'auto' implements. References ---------- (1) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 (2) A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert (3) An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ # Author: Giorgio Patrini import numpy as np import scipy as sp import matplotlib.pyplot as plt import gc import pickle from time import time from collections import defaultdict import os.path from sklearn.utils import gen_batches from sklearn.utils.validation import check_random_state from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import (make_low_rank_matrix, make_sparse_uncorrelated) from sklearn.datasets import (fetch_lfw_people, fetch_mldata, fetch_20newsgroups_vectorized, fetch_olivetti_faces, fetch_rcv1) try: import fbpca fbpca_available = True except ImportError: fbpca_available = False # If this is enabled, tests are much slower and will crash with the large data enable_spectral_norm = False # TODO: compute approximate spectral norms with the power method as in # Estimating the largest eigenvalues by the power and Lanczos methods with # a random start, Jacek Kuczynski and Henryk Wozniakowski, SIAM Journal on # Matrix Analysis and Applications, 13 (4): 1094-1122, 1992. # This approximation is a very fast estimate of the spectral norm, but depends # on starting random vectors. # Determine when to switch to batch computation for matrix norms, # in case the reconstructed (dense) matrix is too large MAX_MEMORY = np.int(2e9) # The following datasets can be dowloaded manually from: # CIFAR 10: http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz # SVHN: http://ufldl.stanford.edu/housenumbers/train_32x32.mat CIFAR_FOLDER = "./cifar-10-batches-py/" SVHN_FOLDER = "./SVHN/" datasets = ['low rank matrix', 'lfw_people', 'olivetti_faces', '20newsgroups', 'MNIST original', 'CIFAR', 'a1a', 'SVHN', 'uncorrelated matrix'] big_sparse_datasets = ['big sparse matrix', 'rcv1'] def unpickle(file_name): with open(file_name, 'rb') as fo: return pickle.load(fo, encoding='latin1')["data"] def handle_missing_dataset(file_folder): if not os.path.isdir(file_folder): print("%s file folder not found. Test skipped." % file_folder) return 0 def get_data(dataset_name): print("Getting dataset: %s" % dataset_name) if dataset_name == 'lfw_people': X = fetch_lfw_people().data elif dataset_name == '20newsgroups': X = fetch_20newsgroups_vectorized().data[:, :100000] elif dataset_name == 'olivetti_faces': X = fetch_olivetti_faces().data elif dataset_name == 'rcv1': X = fetch_rcv1().data elif dataset_name == 'CIFAR': if handle_missing_dataset(CIFAR_FOLDER) == "skip": return X1 = [unpickle("%sdata_batch_%d" % (CIFAR_FOLDER, i + 1)) for i in range(5)] X = np.vstack(X1) del X1 elif dataset_name == 'SVHN': if handle_missing_dataset(SVHN_FOLDER) == 0: return X1 = sp.io.loadmat("%strain_32x32.mat" % SVHN_FOLDER)['X'] X2 = [X1[:, :, :, i].reshape(32 * 32 * 3) for i in range(X1.shape[3])] X = np.vstack(X2) del X1 del X2 elif dataset_name == 'low rank matrix': X = make_low_rank_matrix(n_samples=500, n_features=np.int(1e4), effective_rank=100, tail_strength=.5, random_state=random_state) elif dataset_name == 'uncorrelated matrix': X, _ = make_sparse_uncorrelated(n_samples=500, n_features=10000, random_state=random_state) elif dataset_name == 'big sparse matrix': sparsity = np.int(1e6) size = np.int(1e6) small_size = np.int(1e4) data = np.random.normal(0, 1, np.int(sparsity/10)) data = np.repeat(data, 10) row = np.random.uniform(0, small_size, sparsity) col = np.random.uniform(0, small_size, sparsity) X = sp.sparse.csr_matrix((data, (row, col)), shape=(size, small_size)) del data del row del col else: X = fetch_mldata(dataset_name).data return X def plot_time_vs_s(time, norm, point_labels, title): plt.figure() colors = ['g', 'b', 'y'] for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.plot(time[l], norm[l], label=l, marker='o', c=colors.pop()) else: plt.plot(time[l], norm[l], label=l, marker='^', c='red') for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -20), textcoords='offset points', ha='right', va='bottom') plt.legend(loc="upper right") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def scatter_time_vs_s(time, norm, point_labels, title): plt.figure() size = 100 for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.scatter(time[l], norm[l], label=l, marker='o', c='b', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -80), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) else: plt.scatter(time[l], norm[l], label=l, marker='^', c='red', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, 30), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) plt.legend(loc="best") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def plot_power_iter_vs_s(power_iter, s, title): plt.figure() for l in sorted(s.keys()): plt.plot(power_iter, s[l], label=l, marker='o') plt.legend(loc="lower right", prop={'size': 10}) plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("n_iter") def svd_timing(X, n_comps, n_iter, n_oversamples, power_iteration_normalizer='auto', method=None): """ Measure time for decomposition """ print("... running SVD ...") if method is not 'fbpca': gc.collect() t0 = time() U, mu, V = randomized_svd(X, n_comps, n_oversamples, n_iter, power_iteration_normalizer, random_state=random_state, transpose=False) call_time = time() - t0 else: gc.collect() t0 = time() # There is a different convention for l here U, mu, V = fbpca.pca(X, n_comps, raw=True, n_iter=n_iter, l=n_oversamples+n_comps) call_time = time() - t0 return U, mu, V, call_time def norm_diff(A, norm=2, msg=True): """ Compute the norm diff with the original matrix, when randomized SVD is called with *params. norm: 2 => spectral; 'fro' => Frobenius """ if msg: print("... computing %s norm ..." % norm) if norm == 2: # s = sp.linalg.norm(A, ord=2) # slow value = sp.sparse.linalg.svds(A, k=1, return_singular_vectors=False) else: if sp.sparse.issparse(A): value = sp.sparse.linalg.norm(A, ord=norm) else: value = sp.linalg.norm(A, ord=norm) return value def scalable_frobenius_norm_discrepancy(X, U, s, V): # if the input is not too big, just call scipy if X.shape[0] * X.shape[1] < MAX_MEMORY: A = X - U.dot(np.diag(s).dot(V)) return norm_diff(A, norm='fro') print("... computing fro norm by batches...") batch_size = 1000 Vhat = np.diag(s).dot(V) cum_norm = .0 for batch in gen_batches(X.shape[0], batch_size): M = X[batch, :] - U[batch, :].dot(Vhat) cum_norm += norm_diff(M, norm='fro', msg=False) return np.sqrt(cum_norm) def bench_a(X, dataset_name, power_iter, n_oversamples, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) X_spectral_norm = norm_diff(X, norm=2, msg=False) all_frobenius = defaultdict(list) X_fro_norm = norm_diff(X, norm='fro', msg=False) for pi in power_iter: for pm in ['none', 'LU', 'QR']: print("n_iter = %d on sklearn - %s" % (pi, pm)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples) label = "sklearn - %s" % pm all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: print("n_iter = %d on fbca" % (pi)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples, method='fbpca') label = "fbpca" all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_spectral, power_iter, title) title = "%s: Frobenius norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_frobenius, power_iter, title) def bench_b(power_list): n_samples, n_features = 1000, 10000 data_params = {'n_samples': n_samples, 'n_features': n_features, 'tail_strength': .7, 'random_state': random_state} dataset_name = "low rank matrix %d x %d" % (n_samples, n_features) ranks = [10, 50, 100] if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for rank in ranks: X = make_low_rank_matrix(effective_rank=rank, **data_params) if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) for n_comp in [np.int(rank/2), rank, rank*2]: label = "rank=%d, n_comp=%d" % (rank, n_comp) print(label) for pi in power_list: U, s, V, _ = svd_timing(X, n_comp, n_iter=pi, n_oversamples=2, power_iteration_normalizer='LU') if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_spectral, title) title = "%s: Frobenius norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_frobenius, title) def bench_c(datasets, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) n_comps = np.minimum(n_comps, np.min(X.shape)) label = "sklearn" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=10, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: label = "fbpca" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=2, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if len(all_time) == 0: raise ValueError("No tests ran. Aborting.") if enable_spectral_norm: title = "normalized spectral norm diff vs running time" scatter_time_vs_s(all_time, all_spectral, datasets, title) title = "normalized Frobenius norm diff vs running time" scatter_time_vs_s(all_time, all_frobenius, datasets, title) if __name__ == '__main__': random_state = check_random_state(1234) power_iter = np.linspace(0, 6, 7, dtype=int) n_comps = 50 for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue print(" >>>>>> Benching sklearn and fbpca on %s %d x %d" % (dataset_name, X.shape[0], X.shape[1])) bench_a(X, dataset_name, power_iter, n_oversamples=2, n_comps=np.minimum(n_comps, np.min(X.shape))) print(" >>>>>> Benching on simulated low rank matrix with variable rank") bench_b(power_iter) print(" >>>>>> Benching sklearn and fbpca default configurations") bench_c(datasets + big_sparse_datasets, n_comps) plt.show()
bsd-3-clause
ebellm/ztf_summerschool_2015
bootcamp_software/test_python_packages.py
1
5597
from __future__ import print_function import subprocess import sys # test for Anaconda pypath = subprocess.check_output(["which", "python"]) if b"anaconda" not in pypath.split(b"/"): print("WARNING: You are not running the anaconda distribution of Python!") print("\t If this is intentional, ignore this message.") print("\t If you attempted to install anaconda, check your PATH...") print("\t you may need to prepend the ~/anaconda/bin/ directory.") # test for necessary libraries # NumPy try: import numpy numpy_version = numpy.__version__ if numpy_version[0:4] != '1.11': print("minor warning: you are running a version of numpy < 1.11") print("\t to update in anaconda, use the command line:") print("\t $> conda update numpy") except ImportError: print("WARNING: You do not have the numpy package installed") print("\t your Python is bare bones, please install anaconda") # astropy try: import astropy astropy_version = astropy.__version__ if astropy_version[0:3] != '1.2': print("minor warning: you are running a version of astropy < 1.2") print("\t to update in anaconda, use the command line:") print("\t $> conda update astropy") except ImportError: print("WARNING: You do not have the astropy package installed") print("\t to install in anaconda, use the command line:") print("\t $> conda install astropy") print("\t if you aren't using anaconda consider using pip") # glob try: import glob except ImportError: print("WARNING: You do not have the glob package installed") print("\t your Python is bare bones, please install anaconda") # matplotlib try: import matplotlib matplotlib_version = matplotlib.__version__ if matplotlib_version[0:3] != '1.5': print("minor warning: you are running a version of matplotlib < 1.5") print("\t to update in anaconda, use the command line:") print("\t $> conda update matplotlib") except ImportError: print("WARNING: You do not have the matplotlib package installed") print("\t your Python is bare bones, please install anaconda") # shelve try: import shelve except ImportError: print("WARNING: You do not have the shelve package installed") print("\t your Python is bare bones, please install anaconda") # pickle try: import pickle except ImportError: print("WARNING: You do not have the pickle package installed") print("\t your Python is bare bones, please install anaconda") # time try: import time except ImportError: print("WARNING: You do not have the time package installed") print("\t your Python is bare bones, please install anaconda") # astroML try: import astroML astroml_version = astroML.__version__ if astroml_version[0:3] != '0.3': print("minor warning: you are running a version of astroML < 0.3") print("\t consider upgrading") except ImportError: print("WARNING: You do not have the astroML package installed") print("\t to install in anaconda, use the command line:") print("\t $> conda install --channel https://conda.binstar.org/astropy astroML") print("\t if you aren't using anaconda consider using pip:") print("\t $> pip install astroML") print("\t ALSO! Speed up your code, by running this (all Python):") print("\t $> pip install astroML_addons") # gatspy try: import gatspy gatspy_version = gatspy.__version__ if gatspy_version[0:3] != '0.3': print("minor warning: you are running a version of gatspy < 0.3") print("\t consider upgrading") except ImportError: print("WARNING: You do not have the gatspy package installed") print("\t to install, use the command line:") print("\t $> pip install gatspy") # astroquery try: import astroquery astroquery_version = astroquery.__version__ if astroquery_version[0:3] != '0.3': print("minor warning: you are running a version of astroquery < 0.3") print("\t consider upgrading") except ImportError: print("WARNING: You do not have the astroquery package installed") print("\t to install astroquery use pip on the command line:") print("\t $> pip install astroquery") # sklearn try: import sklearn sklearn_version = sklearn.__version__ if sklearn_version[0:4] != '0.17': print("minor warning: you are running a version of scikit-learn < 0.16") print("\t to update in anaconda, use the command line:") print("\t $> conda update scikit-learn") except ImportError: print("WARNING: You do not have the scikit-learn package installed") print("\t to install in anaconda, use the command line:") print("\t $> conda install scikit-learn") print("\t if you aren't using anaconda consider using pip:") print("\t $> pip install scikit-learn") # FATS (only compatible with python2 for now) if sys.version[0] == '2': try: import FATS except ImportError: print("WARNING: You do not have the FATS package installed") print("\t to install FATS use the pip on the command line:") print("\t $> pip install FATS") # IPython try: import IPython ipy_version = IPython.__version__ if ipy_version[0] != '4': print("minor warning: you are running a version of ipython < 4.0.0") print("\t to update in anaconda, use the command line:") print("\t $> conda update ipython") except ImportError: print("WARNING: You do not have IPython installed") print("\t your Python is bare bones, please install anaconda")
bsd-3-clause
ablifedev/ABLIRC
ABLIRC/bin/Clip-Seq/ABLIFE/peak_overlap_between_ablife_and_piranha.py
1
12831
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- #################################################################################### ### Copyright (C) 2015-2019 by ABLIFE #################################################################################### #################################################################################### #################################################################################### # Date Version Author ChangeLog # # # # ##################################################################################### """ 程序功能说明: 1.将实验组与对照组非overlap的peaks挑选出来 程序设计思路: 利用HTSeq模块的GenomicArrayOfSets来记录对照组的peaks,然后遍历实验组peaks,如果peak所在的interval 有对照组的peak部分存在,则跳过。 """ import re, os, sys, logging, time, datetime from optparse import OptionParser, OptionGroup reload(sys) sys.setdefaultencoding('utf-8') import subprocess import threading from ablib.utils.tools import * import gffutils import HTSeq import numpy import multiprocessing from matplotlib import pyplot if sys.version_info < (2, 7): print("Python Version error: please use phthon2.7") sys.exit(-1) _version = 'v0.1' # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def configOpt(): """Init for option """ usage = 'Usage: %prog [-f] [other option] [-h]' p = OptionParser(usage) ##basic options p.add_option( '-e', '--exp', dest='exp', action='store', type='string', help='ablife peaks文件,头三列需分别是peak的:染色体,start,end') p.add_option( '-c', '--ctrl', dest='ctrl', action='store', type='string', help='piranha peaks文件,头三列需分别是peak的:染色体,start,end') p.add_option( '-o', '--outfile', dest='outfile', default='peak_overlap_between_ablife_and_piranha.txt', action='store', type='string', help='peak_overlap_between_ablife_and_piranha') p.add_option( '-n', '--samplename', dest='samplename', default='', action='store', type='string', help='sample name,default is ""') group = OptionGroup(p, "Preset options") ##preset options group.add_option( '-O', '--outDir', dest='outDir', default='./', action='store', type='string', help='output directory', metavar="DIR") group.add_option( '-L', '--logDir', dest='logDir', default='', action='store', type='string', help='log dir ,default is same as outDir') group.add_option( '-P', '--logPrefix', dest='logPrefix', default='', action='store', type='string', help='log file prefix') group.add_option( '-E', '--email', dest='email', default='none', action='store', type='string', help='email address, if you want get a email when this job is finished,default is no email', metavar="EMAIL") group.add_option( '-Q', '--quiet', dest='quiet', default=False, action='store_true', help='do not print messages to stdout') group.add_option( '-K', '--keepTemp', dest='keepTemp', default=False, action='store_true', help='keep temp dir') group.add_option( '-T', '--test', dest='isTest', default=False, action='store_true', help='run this program for test') p.add_option_group(group) opt, args = p.parse_args() return (p, opt, args) def listToString(x): """获得完整的命令 """ rVal = '' for a in x: rVal += a + ' ' return rVal opt_parser, opt, args = configOpt() if opt.logDir == "": opt.logDir = opt.outDir + '/log/' sample = "" if opt.samplename != "": sample = opt.samplename + '_' if opt.outfile == 'peak_overlap_between_ablife_and_piranha.txt': opt.outfile = sample + opt.outfile # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- scriptPath = os.path.abspath(os.path.dirname(__file__)) # absolute script path binPath = scriptPath + '/bin' # absolute bin path outPath = os.path.abspath(opt.outDir) # absolute output path os.mkdir(outPath) if not os.path.isdir(outPath) else None logPath = os.path.abspath(opt.logDir) os.mkdir(logPath) if not os.path.isdir(logPath) else None tempPath = outPath + '/temp/' # absolute bin path # os.mkdir(tempPath) if not os.path.isdir(tempPath) else None resultPath = outPath + '/result/' # os.mkdir(resultPath) if not os.path.isdir(resultPath) else None # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def initLogging(logFilename): """Init for logging """ logging.basicConfig( level=logging.DEBUG, format='[%(asctime)s : %(levelname)s] %(message)s', datefmt='%y-%m-%d %H:%M', filename=logFilename, filemode='w') if not opt.quiet: # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('[%(asctime)s : %(levelname)s] %(message)s', datefmt='%y-%m-%d %H:%M') # tell the handler to use this format console.setFormatter(formatter) logging.getLogger('').addHandler(console) dt = datetime.datetime.now() logFile = logPath + '/' + opt.logPrefix + 'log.' + str(dt.strftime('%Y%m%d.%H%M%S.%f')) + '.txt' initLogging(logFile) logging.debug(sys.modules[__name__].__doc__) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- logging.debug('Program version: %s' % _version) logging.debug('Start the program with [%s]\n', listToString(sys.argv)) startTime = datetime.datetime.now() logging.debug("计时器:Program start at %s" % startTime) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- ### S # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- ### E # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def main(): logging.debug("Main procedure start...") gas = HTSeq.GenomicArrayOfSets( "auto", stranded=True ) # #chr start end name tags strand pvalue # chr1 2392860 2392880 X 8 + 0.000238833 title2 = getTitle(opt.ctrl) piranha_total_peaknum = 0 for eachLine in open(opt.ctrl,'r'): line=eachLine.strip().split("\t") if eachLine.startswith("#"): continue peak_iv = HTSeq.GenomicInterval(line[0], int(line[1]) - 1, int(line[2]), line[5]) gas[peak_iv]+=eachLine.strip() piranha_total_peaknum += 1 w = open(opt.outfile,"w") title1 = getTitle(opt.exp) w.writelines("ablife"+title1+"\tpiranha"+title2+"\n") ablife_total_peaknum = 0 for eachLine in open(opt.exp,'r'): line=eachLine.strip().split("\t") if eachLine.startswith("#"): continue ablife_total_peaknum += 1 peak_iv = HTSeq.GenomicInterval(line[0], int(line[1]) - 1, int(line[2]), line[5]) peak_len = int(line[2]) - int(line[1]) + 1 flag = 0 overlap_length = 0 for iv, fs in gas[peak_iv].steps(): if len(fs) >= 1: flag = 1 overlap_length += iv.length for p in fs: w.writelines(eachLine.strip()+"\t"+str(iv.length)+"\t"+p+'\n') # if flag == 0: # print(eachLine.strip()+"\t"+str(peak_len)) # else: # print(eachLine.strip()+str(overlap_length)+'\n') w.close() tmp = os.popen('cut -f 11,12,13 '+opt.outfile+' | sort|uniq|wc -l').readlines() piranha_peaknum = int(tmp[0].strip()) - 1 tmp = os.popen('cut -f 4 '+opt.outfile+' | sort|uniq|wc -l').readlines() ablife_peaknum = int(tmp[0].strip()) - 1 ablife_overlap_percent = round(100 * float(ablife_peaknum) / ablife_total_peaknum, 2) piranha_overlap_percent = round(100 * float(piranha_peaknum) / piranha_total_peaknum, 2) print("ablife total peaks:"+str(ablife_total_peaknum)) print("ablife overlap peaks:"+str(ablife_peaknum)+ "(" + str(ablife_overlap_percent) + "%)" ) print("piranha total peaks:"+str(piranha_total_peaknum)) print("piranha overlap peaks:"+str(piranha_peaknum)+ "(" + str(piranha_overlap_percent) + "%)" ) if __name__ == '__main__': main() # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # if not opt.keepTemp: # os.system('rm -rf ' + tempPath) # logging.debug("Temp folder is deleted..") # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- logging.debug("Program ended") currentTime = datetime.datetime.now() runningTime = (currentTime - startTime).seconds # in seconds logging.debug("计时器:Program start at %s" % startTime) logging.debug("计时器:Program end at %s" % currentTime) logging.debug("计时器:Program ran %.2d:%.2d:%.2d" % (runningTime / 3600, (runningTime % 3600) / 60, runningTime % 60)) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- if opt.email != "none": run_cmd = listToString(sys.argv) sendEmail(opt.email, str(startTime), str(currentTime), run_cmd, outPath) logging.info("发送邮件通知到 %s" % opt.email) # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- def countProgram(programName, startT, runT, isTest): countProgramFile = open('/users/ablife/ablifepy/countProgram.txt', 'a') countProgramFile.write( programName + '\t' + str(os.getlogin()) + '\t' + str(startT) + '\t' + str(runT) + 's\t' + isTest + '\n') countProgramFile.close() testStr = 'P' if opt.isTest: testStr = 'T' countProgram(sys.argv[0], startTime, runningTime, testStr) # ----------------------------------------------------------------------------------- # -----------------------------------------------------------------------------------
mit
johndpope/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/dataframe.py
85
4704
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataFrame is a container for ingesting and preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from .series import Series from .transform import Transform class DataFrame(object): """A DataFrame is a container for ingesting and preprocessing data.""" def __init__(self): self._columns = {} def columns(self): """Set of the column names.""" return frozenset(self._columns.keys()) def __len__(self): """The number of columns in the DataFrame.""" return len(self._columns) def assign(self, **kwargs): """Adds columns to DataFrame. Args: **kwargs: assignments of the form key=value where key is a string and value is an `inflow.Series`, a `pandas.Series` or a numpy array. Raises: TypeError: keys are not strings. TypeError: values are not `inflow.Series`, `pandas.Series` or `numpy.ndarray`. TODO(jamieas): pandas assign method returns a new DataFrame. Consider switching to this behavior, changing the name or adding in_place as an argument. """ for k, v in kwargs.items(): if not isinstance(k, str): raise TypeError("The only supported type for keys is string; got %s" % type(k)) if v is None: del self._columns[k] elif isinstance(v, Series): self._columns[k] = v elif isinstance(v, Transform) and v.input_valency() == 0: self._columns[k] = v() else: raise TypeError( "Column in assignment must be an inflow.Series, inflow.Transform," " or None; got type '%s'." % type(v).__name__) def select_columns(self, keys): """Returns a new DataFrame with a subset of columns. Args: keys: A list of strings. Each should be the name of a column in the DataFrame. Returns: A new DataFrame containing only the specified columns. """ result = type(self)() for key in keys: result[key] = self._columns[key] return result def exclude_columns(self, exclude_keys): """Returns a new DataFrame with all columns not excluded via exclude_keys. Args: exclude_keys: A list of strings. Each should be the name of a column in the DataFrame. These columns will be excluded from the result. Returns: A new DataFrame containing all columns except those specified. """ result = type(self)() for key, value in self._columns.items(): if key not in exclude_keys: result[key] = value return result def __getitem__(self, key): """Indexing functionality for DataFrames. Args: key: a string or an iterable of strings. Returns: A Series or list of Series corresponding to the given keys. """ if isinstance(key, str): return self._columns[key] elif isinstance(key, collections.Iterable): for i in key: if not isinstance(i, str): raise TypeError("Expected a String; entry %s has type %s." % (i, type(i).__name__)) return [self.__getitem__(i) for i in key] raise TypeError( "Invalid index: %s of type %s. Only strings or lists of strings are " "supported." % (key, type(key))) def __setitem__(self, key, value): if isinstance(key, str): key = [key] if isinstance(value, Series): value = [value] self.assign(**dict(zip(key, value))) def __delitem__(self, key): if isinstance(key, str): key = [key] value = [None for _ in key] self.assign(**dict(zip(key, value))) def build(self, **kwargs): # We do not allow passing a cache here, because that would encourage # working around the rule that DataFrames cannot be expected to be # synced with each other (e.g., they shuffle independently). cache = {} tensors = {name: c.build(cache, **kwargs) for name, c in self._columns.items()} return tensors
apache-2.0
untom/scikit-learn
examples/classification/plot_lda.py
164
2224
""" ==================================================================== Normal and Shrinkage Linear Discriminant Analysis for classification ==================================================================== Shows how shrinkage improves classification. """ from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.lda import LDA n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation def generate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack([X, np.random.randn(n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2 = [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2 = 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LDA(solver='lsqr', shrinkage='auto').fit(X, y) clf2 = LDA(solver='lsqr', shrinkage=None).fit(X, y) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) features_samples_ratio = np.array(n_features_range) / n_train plt.plot(features_samples_ratio, acc_clf1, linewidth=2, label="LDA with shrinkage", color='r') plt.plot(features_samples_ratio, acc_clf2, linewidth=2, label="LDA", color='g') plt.xlabel('n_features / n_samples') plt.ylabel('Classification accuracy') plt.legend(loc=1, prop={'size': 12}) plt.suptitle('LDA vs. shrinkage LDA (1 discriminative feature)') plt.show()
bsd-3-clause
cshallue/models
research/differential_privacy/pate/ICLR2018/plot_partition.py
1
13619
"""Produces two plots. One compares aggregators and their analyses. The other illustrates sources of privacy loss for Confident-GNMax. A script in support of the paper "Scalable Private Learning with PATE" by Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson (https://arxiv.org/abs/1802.08908). The input is a file containing a numpy array of votes, one query per row, one class per column. Ex: 43, 1821, ..., 3 31, 16, ..., 0 ... 0, 86, ..., 438 The output is written to a specified directory and consists of two files. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import pickle import sys sys.path.append('..') # Main modules reside in the parent directory. from absl import app from absl import flags from collections import namedtuple import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top import numpy as np import core as pate import smooth_sensitivity as pate_ss plt.style.use('ggplot') FLAGS = flags.FLAGS flags.DEFINE_boolean('cache', False, 'Read results of privacy analysis from cache.') flags.DEFINE_string('counts_file', None, 'Counts file.') flags.DEFINE_string('figures_dir', '', 'Path where figures are written to.') flags.DEFINE_float('threshold', None, 'Threshold for step 1 (selection).') flags.DEFINE_float('sigma1', None, 'Sigma for step 1 (selection).') flags.DEFINE_float('sigma2', None, 'Sigma for step 2 (argmax).') flags.DEFINE_integer('queries', None, 'Number of queries made by the student.') flags.DEFINE_float('delta', 1e-8, 'Target delta.') flags.mark_flag_as_required('counts_file') flags.mark_flag_as_required('threshold') flags.mark_flag_as_required('sigma1') flags.mark_flag_as_required('sigma2') Partition = namedtuple('Partition', ['step1', 'step2', 'ss', 'delta']) def analyze_gnmax_conf_data_ind(votes, threshold, sigma1, sigma2, delta): orders = np.logspace(np.log10(1.5), np.log10(500), num=100) n = votes.shape[0] rdp_total = np.zeros(len(orders)) answered_total = 0 answered = np.zeros(n) eps_cum = np.full(n, None, dtype=float) for i in range(n): v = votes[i,] if threshold is not None and sigma1 is not None: q_step1 = np.exp(pate.compute_logpr_answered(threshold, sigma1, v)) rdp_total += pate.rdp_data_independent_gaussian(sigma1, orders) else: q_step1 = 1. # always answer answered_total += q_step1 answered[i] = answered_total rdp_total += q_step1 * pate.rdp_data_independent_gaussian(sigma2, orders) eps_cum[i], order_opt = pate.compute_eps_from_delta(orders, rdp_total, delta) if i > 0 and (i + 1) % 1000 == 0: print('queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} ' 'at order = {:.2f}.'.format( i + 1, answered[i], eps_cum[i], order_opt)) sys.stdout.flush() return eps_cum, answered def analyze_gnmax_conf_data_dep(votes, threshold, sigma1, sigma2, delta): # Short list of orders. # orders = np.round(np.logspace(np.log10(20), np.log10(200), num=20)) # Long list of orders. orders = np.concatenate((np.arange(20, 40, .2), np.arange(40, 75, .5), np.logspace(np.log10(75), np.log10(200), num=20))) n = votes.shape[0] num_classes = votes.shape[1] num_teachers = int(sum(votes[0,])) if threshold is not None and sigma1 is not None: is_data_ind_step1 = pate.is_data_independent_always_opt_gaussian( num_teachers, num_classes, sigma1, orders) else: is_data_ind_step1 = [True] * len(orders) is_data_ind_step2 = pate.is_data_independent_always_opt_gaussian( num_teachers, num_classes, sigma2, orders) eps_partitioned = np.full(n, None, dtype=Partition) order_opt = np.full(n, None, dtype=float) ss_std_opt = np.full(n, None, dtype=float) answered = np.zeros(n) rdp_step1_total = np.zeros(len(orders)) rdp_step2_total = np.zeros(len(orders)) ls_total = np.zeros((len(orders), num_teachers)) answered_total = 0 for i in range(n): v = votes[i,] if threshold is not None and sigma1 is not None: logq_step1 = pate.compute_logpr_answered(threshold, sigma1, v) rdp_step1_total += pate.compute_rdp_threshold(logq_step1, sigma1, orders) else: logq_step1 = 0. # always answer pr_answered = np.exp(logq_step1) logq_step2 = pate.compute_logq_gaussian(v, sigma2) rdp_step2_total += pr_answered * pate.rdp_gaussian(logq_step2, sigma2, orders) answered_total += pr_answered rdp_ss = np.zeros(len(orders)) ss_std = np.zeros(len(orders)) for j, order in enumerate(orders): if not is_data_ind_step1[j]: ls_step1 = pate_ss.compute_local_sensitivity_bounds_threshold(v, num_teachers, threshold, sigma1, order) else: ls_step1 = np.full(num_teachers, 0, dtype=float) if not is_data_ind_step2[j]: ls_step2 = pate_ss.compute_local_sensitivity_bounds_gnmax( v, num_teachers, sigma2, order) else: ls_step2 = np.full(num_teachers, 0, dtype=float) ls_total[j,] += ls_step1 + pr_answered * ls_step2 beta_ss = .49 / order ss = pate_ss.compute_discounted_max(beta_ss, ls_total[j,]) sigma_ss = ((order * math.exp(2 * beta_ss)) / ss) ** (1 / 3) rdp_ss[j] = pate_ss.compute_rdp_of_smooth_sensitivity_gaussian( beta_ss, sigma_ss, order) ss_std[j] = ss * sigma_ss rdp_total = rdp_step1_total + rdp_step2_total + rdp_ss answered[i] = answered_total _, order_opt[i] = pate.compute_eps_from_delta(orders, rdp_total, delta) order_idx = np.searchsorted(orders, order_opt[i]) # Since optimal orders are always non-increasing, shrink orders array # and all cumulative arrays to speed up computation. if order_idx < len(orders): orders = orders[:order_idx + 1] rdp_step1_total = rdp_step1_total[:order_idx + 1] rdp_step2_total = rdp_step2_total[:order_idx + 1] eps_partitioned[i] = Partition(step1=rdp_step1_total[order_idx], step2=rdp_step2_total[order_idx], ss=rdp_ss[order_idx], delta=-math.log(delta) / (order_opt[i] - 1)) ss_std_opt[i] = ss_std[order_idx] if i > 0 and (i + 1) % 1 == 0: print('queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} +/- {:.3f} ' 'at order = {:.2f}. Contributions: delta = {:.3f}, step1 = {:.3f}, ' 'step2 = {:.3f}, ss = {:.3f}'.format( i + 1, answered[i], sum(eps_partitioned[i]), ss_std_opt[i], order_opt[i], eps_partitioned[i].delta, eps_partitioned[i].step1, eps_partitioned[i].step2, eps_partitioned[i].ss)) sys.stdout.flush() return eps_partitioned, answered, ss_std_opt, order_opt def plot_comparison(figures_dir, simple_ind, conf_ind, simple_dep, conf_dep): """Plots variants of GNMax algorithm and their analyses. """ def pivot(x_axis, eps, answered): y = np.full(len(x_axis), None, dtype=float) # delta for i, x in enumerate(x_axis): idx = np.searchsorted(answered, x) if idx < len(eps): y[i] = eps[idx] return y def pivot_dep(x_axis, data_dep): eps_partitioned, answered, _, _ = data_dep eps = [sum(p) for p in eps_partitioned] # Flatten eps return pivot(x_axis, eps, answered) xlim = 10000 x_axis = range(0, xlim, 10) y_simple_ind = pivot(x_axis, *simple_ind) y_conf_ind = pivot(x_axis, *conf_ind) y_simple_dep = pivot_dep(x_axis, simple_dep) y_conf_dep = pivot_dep(x_axis, conf_dep) # plt.close('all') fig, ax = plt.subplots() fig.set_figheight(4.5) fig.set_figwidth(4.7) ax.plot(x_axis, y_simple_ind, ls='--', color='r', lw=3, label=r'Simple GNMax, data-ind analysis') ax.plot(x_axis, y_conf_ind, ls='--', color='b', lw=3, label=r'Confident GNMax, data-ind analysis') ax.plot(x_axis, y_simple_dep, ls='-', color='r', lw=3, label=r'Simple GNMax, data-dep analysis') ax.plot(x_axis, y_conf_dep, ls='-', color='b', lw=3, label=r'Confident GNMax, data-dep analysis') plt.xticks(np.arange(0, xlim + 1000, 2000)) plt.xlim([0, xlim]) plt.ylim(bottom=0) plt.legend(fontsize=16) ax.set_xlabel('Number of queries answered', fontsize=16) ax.set_ylabel(r'Privacy cost $\varepsilon$ at $\delta=10^{-8}$', fontsize=16) ax.tick_params(labelsize=14) plot_filename = os.path.join(figures_dir, 'comparison.pdf') print('Saving the graph to ' + plot_filename) fig.savefig(plot_filename, bbox_inches='tight') plt.show() def plot_partition(figures_dir, gnmax_conf, print_order): """Plots an expert version of the privacy-per-answered-query graph. Args: figures_dir: A name of the directory where to save the plot. eps: The cumulative privacy cost. partition: Allocation of the privacy cost. answered: Cumulative number of queries answered. order_opt: The list of optimal orders. """ eps_partitioned, answered, ss_std_opt, order_opt = gnmax_conf xlim = 10000 x = range(0, int(xlim), 10) lenx = len(x) y0 = np.full(lenx, np.nan, dtype=float) # delta y1 = np.full(lenx, np.nan, dtype=float) # delta + step1 y2 = np.full(lenx, np.nan, dtype=float) # delta + step1 + step2 y3 = np.full(lenx, np.nan, dtype=float) # delta + step1 + step2 + ss noise_std = np.full(lenx, np.nan, dtype=float) y_right = np.full(lenx, np.nan, dtype=float) for i in range(lenx): idx = np.searchsorted(answered, x[i]) if idx < len(eps_partitioned): y0[i] = eps_partitioned[idx].delta y1[i] = y0[i] + eps_partitioned[idx].step1 y2[i] = y1[i] + eps_partitioned[idx].step2 y3[i] = y2[i] + eps_partitioned[idx].ss noise_std[i] = ss_std_opt[idx] y_right[i] = order_opt[idx] # plt.close('all') fig, ax = plt.subplots() fig.set_figheight(4.5) fig.set_figwidth(4.7) fig.patch.set_alpha(0) l1 = ax.plot( x, y3, color='b', ls='-', label=r'Total privacy cost', linewidth=1).pop() for y in (y0, y1, y2): ax.plot(x, y, color='b', ls='-', label=r'_nolegend_', alpha=.5, linewidth=1) ax.fill_between(x, [0] * lenx, y0.tolist(), facecolor='b', alpha=.5) ax.fill_between(x, y0.tolist(), y1.tolist(), facecolor='b', alpha=.4) ax.fill_between(x, y1.tolist(), y2.tolist(), facecolor='b', alpha=.3) ax.fill_between(x, y2.tolist(), y3.tolist(), facecolor='b', alpha=.2) ax.fill_between(x, (y3 - noise_std).tolist(), (y3 + noise_std).tolist(), facecolor='r', alpha=.5) plt.xticks(np.arange(0, xlim + 1000, 2000)) plt.xlim([0, xlim]) ax.set_ylim([0, 3.]) ax.set_xlabel('Number of queries answered', fontsize=16) ax.set_ylabel(r'Privacy cost $\varepsilon$ at $\delta=10^{-8}$', fontsize=16) # Merging legends. if print_order: ax2 = ax.twinx() l2 = ax2.plot( x, y_right, 'r', ls='-', label=r'Optimal order', linewidth=5, alpha=.5).pop() ax2.grid(False) # ax2.set_ylabel(r'Optimal Renyi order', fontsize=16) ax2.set_ylim([0, 200.]) # ax.legend((l1, l2), (l1.get_label(), l2.get_label()), loc=0, fontsize=13) ax.tick_params(labelsize=14) plot_filename = os.path.join(figures_dir, 'partition.pdf') print('Saving the graph to ' + plot_filename) fig.savefig(plot_filename, bbox_inches='tight', dpi=800) plt.show() def run_all_analyses(votes, threshold, sigma1, sigma2, delta): simple_ind = analyze_gnmax_conf_data_ind(votes, None, None, sigma2, delta) conf_ind = analyze_gnmax_conf_data_ind(votes, threshold, sigma1, sigma2, delta) simple_dep = analyze_gnmax_conf_data_dep(votes, None, None, sigma2, delta) conf_dep = analyze_gnmax_conf_data_dep(votes, threshold, sigma1, sigma2, delta) return (simple_ind, conf_ind, simple_dep, conf_dep) def run_or_load_all_analyses(): temp_filename = os.path.expanduser('~/tmp/partition_cached.pkl') if FLAGS.cache and os.path.isfile(temp_filename): print('Reading from cache ' + temp_filename) with open(temp_filename, 'rb') as f: all_analyses = pickle.load(f) else: fin_name = os.path.expanduser(FLAGS.counts_file) print('Reading raw votes from ' + fin_name) sys.stdout.flush() votes = np.load(fin_name) if FLAGS.queries is not None: if votes.shape[0] < FLAGS.queries: raise ValueError('Expect {} rows, got {} in {}'.format( FLAGS.queries, votes.shape[0], fin_name)) # Truncate the votes matrix to the number of queries made. votes = votes[:FLAGS.queries, ] all_analyses = run_all_analyses(votes, FLAGS.threshold, FLAGS.sigma1, FLAGS.sigma2, FLAGS.delta) print('Writing to cache ' + temp_filename) with open(temp_filename, 'wb') as f: pickle.dump(all_analyses, f) return all_analyses def main(argv): del argv # Unused. simple_ind, conf_ind, simple_dep, conf_dep = run_or_load_all_analyses() figures_dir = os.path.expanduser(FLAGS.figures_dir) plot_comparison(figures_dir, simple_ind, conf_ind, simple_dep, conf_dep) plot_partition(figures_dir, conf_dep, True) plt.close('all') if __name__ == '__main__': app.run(main)
apache-2.0
toobaz/pandas
pandas/io/json/_json.py
1
35551
from io import StringIO from itertools import islice import os import numpy as np import pandas._libs.json as json from pandas._libs.tslibs import iNaT from pandas.errors import AbstractMethodError from pandas.core.dtypes.common import ensure_str, is_period_dtype from pandas import DataFrame, MultiIndex, Series, isna, to_datetime from pandas.core.reshape.concat import concat from pandas.io.common import ( BaseIterator, _get_handle, _infer_compression, _stringify_path, get_filepath_or_buffer, ) from pandas.io.formats.printing import pprint_thing from pandas.io.parsers import _validate_integer from ._normalize import convert_to_line_delimits from ._table_schema import build_table_schema, parse_table_schema loads = json.loads dumps = json.dumps TABLE_SCHEMA_VERSION = "0.20.0" # interface to/from def to_json( path_or_buf, obj, orient=None, date_format="epoch", double_precision=10, force_ascii=True, date_unit="ms", default_handler=None, lines=False, compression="infer", index=True, ): if not index and orient not in ["split", "table"]: raise ValueError( "'index=False' is only valid when 'orient' is " "'split' or 'table'" ) path_or_buf = _stringify_path(path_or_buf) if lines and orient != "records": raise ValueError("'lines' keyword only valid when 'orient' is records") if orient == "table" and isinstance(obj, Series): obj = obj.to_frame(name=obj.name or "values") if orient == "table" and isinstance(obj, DataFrame): writer = JSONTableWriter elif isinstance(obj, Series): writer = SeriesWriter elif isinstance(obj, DataFrame): writer = FrameWriter else: raise NotImplementedError("'obj' should be a Series or a DataFrame") s = writer( obj, orient=orient, date_format=date_format, double_precision=double_precision, ensure_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, index=index, ).write() if lines: s = convert_to_line_delimits(s) if isinstance(path_or_buf, str): fh, handles = _get_handle(path_or_buf, "w", compression=compression) try: fh.write(s) finally: fh.close() elif path_or_buf is None: return s else: path_or_buf.write(s) class Writer: def __init__( self, obj, orient, date_format, double_precision, ensure_ascii, date_unit, index, default_handler=None, ): self.obj = obj if orient is None: orient = self._default_orient self.orient = orient self.date_format = date_format self.double_precision = double_precision self.ensure_ascii = ensure_ascii self.date_unit = date_unit self.default_handler = default_handler self.index = index self.is_copy = None self._format_axes() def _format_axes(self): raise AbstractMethodError(self) def write(self): return self._write( self.obj, self.orient, self.double_precision, self.ensure_ascii, self.date_unit, self.date_format == "iso", self.default_handler, ) def _write( self, obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ): return dumps( obj, orient=orient, double_precision=double_precision, ensure_ascii=ensure_ascii, date_unit=date_unit, iso_dates=iso_dates, default_handler=default_handler, ) class SeriesWriter(Writer): _default_orient = "index" def _format_axes(self): if not self.obj.index.is_unique and self.orient == "index": raise ValueError( "Series index must be unique for orient=" "'{orient}'".format(orient=self.orient) ) def _write( self, obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ): if not self.index and orient == "split": obj = {"name": obj.name, "data": obj.values} return super()._write( obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ) class FrameWriter(Writer): _default_orient = "columns" def _format_axes(self): """ Try to format axes if they are datelike. """ if not self.obj.index.is_unique and self.orient in ("index", "columns"): raise ValueError( "DataFrame index must be unique for orient=" "'{orient}'.".format(orient=self.orient) ) if not self.obj.columns.is_unique and self.orient in ( "index", "columns", "records", ): raise ValueError( "DataFrame columns must be unique for orient=" "'{orient}'.".format(orient=self.orient) ) def _write( self, obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ): if not self.index and orient == "split": obj = obj.to_dict(orient="split") del obj["index"] return super()._write( obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ) class JSONTableWriter(FrameWriter): _default_orient = "records" def __init__( self, obj, orient, date_format, double_precision, ensure_ascii, date_unit, index, default_handler=None, ): """ Adds a `schema` attribute with the Table Schema, resets the index (can't do in caller, because the schema inference needs to know what the index is, forces orient to records, and forces date_format to 'iso'. """ super().__init__( obj, orient, date_format, double_precision, ensure_ascii, date_unit, index, default_handler=default_handler, ) if date_format != "iso": msg = ( "Trying to write with `orient='table'` and " "`date_format='{fmt}'`. Table Schema requires dates " "to be formatted with `date_format='iso'`".format(fmt=date_format) ) raise ValueError(msg) self.schema = build_table_schema(obj, index=self.index) # NotImplemented on a column MultiIndex if obj.ndim == 2 and isinstance(obj.columns, MultiIndex): raise NotImplementedError("orient='table' is not supported for MultiIndex") # TODO: Do this timedelta properly in objToJSON.c See GH #15137 if ( (obj.ndim == 1) and (obj.name in set(obj.index.names)) or len(obj.columns & obj.index.names) ): msg = "Overlapping names between the index and columns" raise ValueError(msg) obj = obj.copy() timedeltas = obj.select_dtypes(include=["timedelta"]).columns if len(timedeltas): obj[timedeltas] = obj[timedeltas].applymap(lambda x: x.isoformat()) # Convert PeriodIndex to datetimes before serialzing if is_period_dtype(obj.index): obj.index = obj.index.to_timestamp() # exclude index from obj if index=False if not self.index: self.obj = obj.reset_index(drop=True) else: self.obj = obj.reset_index(drop=False) self.date_format = "iso" self.orient = "records" self.index = index def _write( self, obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ): data = super()._write( obj, orient, double_precision, ensure_ascii, date_unit, iso_dates, default_handler, ) serialized = '{{"schema": {schema}, "data": {data}}}'.format( schema=dumps(self.schema), data=data ) return serialized def read_json( path_or_buf=None, orient=None, typ="frame", dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression="infer", ): """ Convert a JSON string to pandas object. Parameters ---------- path_or_buf : a valid JSON str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.json``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. orient : string, Indication of expected JSON string format. Compatible JSON strings can be produced by ``to_json()`` with a corresponding orient value. The set of possible orients is: - ``'split'`` : dict like ``{index -> [index], columns -> [columns], data -> [values]}`` - ``'records'`` : list like ``[{column -> value}, ... , {column -> value}]`` - ``'index'`` : dict like ``{index -> {column -> value}}`` - ``'columns'`` : dict like ``{column -> {index -> value}}`` - ``'values'`` : just the values array The allowed and default values depend on the value of the `typ` parameter. * when ``typ == 'series'``, - allowed orients are ``{'split','records','index'}`` - default is ``'index'`` - The Series index must be unique for orient ``'index'``. * when ``typ == 'frame'``, - allowed orients are ``{'split','records','index', 'columns','values', 'table'}`` - default is ``'columns'`` - The DataFrame index must be unique for orients ``'index'`` and ``'columns'``. - The DataFrame columns must be unique for orients ``'index'``, ``'columns'``, and ``'records'``. .. versionadded:: 0.23.0 'table' as an allowed value for the ``orient`` argument typ : {'frame', 'series'}, default 'frame' The type of object to recover. dtype : bool or dict, default None If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don't infer dtypes at all, applies only to the data. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_axes : bool, default None Try to convert the axes to the proper dtypes. For all ``orient`` values except ``'table'``, default is True. .. versionchanged:: 0.25.0 Not applicable for ``orient='table'``. convert_dates : bool or list of str, default True List of columns to parse for dates. If True, then try to parse datelike columns. A column label is datelike if * it ends with ``'_at'``, * it ends with ``'_time'``, * it begins with ``'timestamp'``, * it is ``'modified'``, or * it is ``'date'``. keep_default_dates : bool, default True If parsing dates, then parse the default datelike columns. numpy : bool, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : bool, default False Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality. date_unit : str, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. encoding : str, default is 'utf-8' The encoding to use to decode py3 bytes. lines : bool, default False Read the file as a json object per line. chunksize : int, optional Return JsonReader object for iteration. See the `line-delimited json docs <http://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#line-delimited-json>`_ for more information on ``chunksize``. This can only be passed if `lines=True`. If this is None, the file will be read into memory all at once. .. versionadded:: 0.21.0 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if path_or_buf is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. .. versionadded:: 0.21.0 Returns ------- Series or DataFrame The type returned depends on the value of `typ`. See Also -------- DataFrame.to_json : Convert a DataFrame to a JSON string. Series.to_json : Convert a Series to a JSON string. Notes ----- Specific to ``orient='table'``, if a :class:`DataFrame` with a literal :class:`Index` name of `index` gets written with :func:`to_json`, the subsequent read operation will incorrectly set the :class:`Index` name to ``None``. This is because `index` is also used by :func:`DataFrame.to_json` to denote a missing :class:`Index` name, and the subsequent :func:`read_json` operation cannot distinguish between the two. The same limitation is encountered with a :class:`MultiIndex` and any names beginning with ``'level_'``. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) Encoding/decoding a Dataframe using ``'split'`` formatted JSON: >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ if orient == "table" and dtype: raise ValueError("cannot pass both dtype and orient='table'") if orient == "table" and convert_axes: raise ValueError("cannot pass both convert_axes and orient='table'") if dtype is None and orient != "table": dtype = True if convert_axes is None and orient != "table": convert_axes = True compression = _infer_compression(path_or_buf, compression) filepath_or_buffer, _, compression, should_close = get_filepath_or_buffer( path_or_buf, encoding=encoding, compression=compression ) json_reader = JsonReader( filepath_or_buffer, orient=orient, typ=typ, dtype=dtype, convert_axes=convert_axes, convert_dates=convert_dates, keep_default_dates=keep_default_dates, numpy=numpy, precise_float=precise_float, date_unit=date_unit, encoding=encoding, lines=lines, chunksize=chunksize, compression=compression, ) if chunksize: return json_reader result = json_reader.read() if should_close: try: filepath_or_buffer.close() except: # noqa: flake8 pass return result class JsonReader(BaseIterator): """ JsonReader provides an interface for reading in a JSON file. If initialized with ``lines=True`` and ``chunksize``, can be iterated over ``chunksize`` lines at a time. Otherwise, calling ``read`` reads in the whole document. """ def __init__( self, filepath_or_buffer, orient, typ, dtype, convert_axes, convert_dates, keep_default_dates, numpy, precise_float, date_unit, encoding, lines, chunksize, compression, ): self.path_or_buf = filepath_or_buffer self.orient = orient self.typ = typ self.dtype = dtype self.convert_axes = convert_axes self.convert_dates = convert_dates self.keep_default_dates = keep_default_dates self.numpy = numpy self.precise_float = precise_float self.date_unit = date_unit self.encoding = encoding self.compression = compression self.lines = lines self.chunksize = chunksize self.nrows_seen = 0 self.should_close = False if self.chunksize is not None: self.chunksize = _validate_integer("chunksize", self.chunksize, 1) if not self.lines: raise ValueError("chunksize can only be passed if lines=True") data = self._get_data_from_filepath(filepath_or_buffer) self.data = self._preprocess_data(data) def _preprocess_data(self, data): """ At this point, the data either has a `read` attribute (e.g. a file object or a StringIO) or is a string that is a JSON document. If self.chunksize, we prepare the data for the `__next__` method. Otherwise, we read it into memory for the `read` method. """ if hasattr(data, "read") and not self.chunksize: data = data.read() if not hasattr(data, "read") and self.chunksize: data = StringIO(data) return data def _get_data_from_filepath(self, filepath_or_buffer): """ The function read_json accepts three input types: 1. filepath (string-like) 2. file-like object (e.g. open file object, StringIO) 3. JSON string This method turns (1) into (2) to simplify the rest of the processing. It returns input types (2) and (3) unchanged. """ data = filepath_or_buffer exists = False if isinstance(data, str): try: exists = os.path.exists(filepath_or_buffer) # gh-5874: if the filepath is too long will raise here except (TypeError, ValueError): pass if exists or self.compression is not None: data, _ = _get_handle( filepath_or_buffer, "r", encoding=self.encoding, compression=self.compression, ) self.should_close = True self.open_stream = data return data def _combine_lines(self, lines): """ Combines a list of JSON objects into one JSON object. """ lines = filter(None, map(lambda x: x.strip(), lines)) return "[" + ",".join(lines) + "]" def read(self): """ Read the whole JSON input into a pandas object. """ if self.lines and self.chunksize: obj = concat(self) elif self.lines: data = ensure_str(self.data) obj = self._get_object_parser(self._combine_lines(data.split("\n"))) else: obj = self._get_object_parser(self.data) self.close() return obj def _get_object_parser(self, json): """ Parses a json document into a pandas object. """ typ = self.typ dtype = self.dtype kwargs = { "orient": self.orient, "dtype": self.dtype, "convert_axes": self.convert_axes, "convert_dates": self.convert_dates, "keep_default_dates": self.keep_default_dates, "numpy": self.numpy, "precise_float": self.precise_float, "date_unit": self.date_unit, } obj = None if typ == "frame": obj = FrameParser(json, **kwargs).parse() if typ == "series" or obj is None: if not isinstance(dtype, bool): kwargs["dtype"] = dtype obj = SeriesParser(json, **kwargs).parse() return obj def close(self): """ If we opened a stream earlier, in _get_data_from_filepath, we should close it. If an open stream or file was passed, we leave it open. """ if self.should_close: try: self.open_stream.close() except (IOError, AttributeError): pass def __next__(self): lines = list(islice(self.data, self.chunksize)) if lines: lines_json = self._combine_lines(lines) obj = self._get_object_parser(lines_json) # Make sure that the returned objects have the right index. obj.index = range(self.nrows_seen, self.nrows_seen + len(obj)) self.nrows_seen += len(obj) return obj self.close() raise StopIteration class Parser: _STAMP_UNITS = ("s", "ms", "us", "ns") _MIN_STAMPS = { "s": 31536000, "ms": 31536000000, "us": 31536000000000, "ns": 31536000000000000, } def __init__( self, json, orient, dtype=None, convert_axes=True, convert_dates=True, keep_default_dates=False, numpy=False, precise_float=False, date_unit=None, ): self.json = json if orient is None: orient = self._default_orient self.orient = orient self.dtype = dtype if orient == "split": numpy = False if date_unit is not None: date_unit = date_unit.lower() if date_unit not in self._STAMP_UNITS: raise ValueError( "date_unit must be one of {units}".format(units=self._STAMP_UNITS) ) self.min_stamp = self._MIN_STAMPS[date_unit] else: self.min_stamp = self._MIN_STAMPS["s"] self.numpy = numpy self.precise_float = precise_float self.convert_axes = convert_axes self.convert_dates = convert_dates self.date_unit = date_unit self.keep_default_dates = keep_default_dates self.obj = None def check_keys_split(self, decoded): """ Checks that dict has only the appropriate keys for orient='split'. """ bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys = ", ".join(bad_keys) raise ValueError( "JSON data had unexpected key(s): {bad_keys}".format( bad_keys=pprint_thing(bad_keys) ) ) def parse(self): # try numpy numpy = self.numpy if numpy: self._parse_numpy() else: self._parse_no_numpy() if self.obj is None: return None if self.convert_axes: self._convert_axes() self._try_convert_types() return self.obj def _convert_axes(self): """ Try to convert axes. """ for axis in self.obj._AXIS_NUMBERS.keys(): new_axis, result = self._try_convert_data( axis, self.obj._get_axis(axis), use_dtypes=False, convert_dates=True ) if result: setattr(self.obj, axis, new_axis) def _try_convert_types(self): raise AbstractMethodError(self) def _try_convert_data(self, name, data, use_dtypes=True, convert_dates=True): """ Try to parse a ndarray like into a column by inferring dtype. """ # don't try to coerce, unless a force conversion if use_dtypes: if not self.dtype: return data, False elif self.dtype is True: pass else: # dtype to force dtype = ( self.dtype.get(name) if isinstance(self.dtype, dict) else self.dtype ) if dtype is not None: try: dtype = np.dtype(dtype) return data.astype(dtype), True except (TypeError, ValueError): return data, False if convert_dates: new_data, result = self._try_convert_to_date(data) if result: return new_data, True result = False if data.dtype == "object": # try float try: data = data.astype("float64") result = True except (TypeError, ValueError): pass if data.dtype.kind == "f": if data.dtype != "float64": # coerce floats to 64 try: data = data.astype("float64") result = True except (TypeError, ValueError): pass # don't coerce 0-len data if len(data) and (data.dtype == "float" or data.dtype == "object"): # coerce ints if we can try: new_data = data.astype("int64") if (new_data == data).all(): data = new_data result = True except (TypeError, ValueError): pass # coerce ints to 64 if data.dtype == "int": # coerce floats to 64 try: data = data.astype("int64") result = True except (TypeError, ValueError): pass return data, result def _try_convert_to_date(self, data): """ Try to parse a ndarray like into a date column. Try to coerce object in epoch/iso formats and integer/float in epoch formats. Return a boolean if parsing was successful. """ # no conversion on empty if not len(data): return data, False new_data = data if new_data.dtype == "object": try: new_data = data.astype("int64") except (TypeError, ValueError, OverflowError): pass # ignore numbers that are out of range if issubclass(new_data.dtype.type, np.number): in_range = ( isna(new_data.values) | (new_data > self.min_stamp) | (new_data.values == iNaT) ) if not in_range.all(): return data, False date_units = (self.date_unit,) if self.date_unit else self._STAMP_UNITS for date_unit in date_units: try: new_data = to_datetime(new_data, errors="raise", unit=date_unit) except ValueError: continue except Exception: break return new_data, True return data, False def _try_convert_dates(self): raise AbstractMethodError(self) class SeriesParser(Parser): _default_orient = "index" _split_keys = ("name", "index", "data") def _parse_no_numpy(self): json = self.json orient = self.orient if orient == "split": decoded = { str(k): v for k, v in loads(json, precise_float=self.precise_float).items() } self.check_keys_split(decoded) self.obj = Series(dtype=None, **decoded) else: self.obj = Series(loads(json, precise_float=self.precise_float), dtype=None) def _parse_numpy(self): json = self.json orient = self.orient if orient == "split": decoded = loads( json, dtype=None, numpy=True, precise_float=self.precise_float ) decoded = {str(k): v for k, v in decoded.items()} self.check_keys_split(decoded) self.obj = Series(**decoded) elif orient == "columns" or orient == "index": self.obj = Series( *loads( json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float, ) ) else: self.obj = Series( loads(json, dtype=None, numpy=True, precise_float=self.precise_float) ) def _try_convert_types(self): if self.obj is None: return obj, result = self._try_convert_data( "data", self.obj, convert_dates=self.convert_dates ) if result: self.obj = obj class FrameParser(Parser): _default_orient = "columns" _split_keys = ("columns", "index", "data") def _parse_numpy(self): json = self.json orient = self.orient if orient == "columns": args = loads( json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float, ) if len(args): args = (args[0].T, args[2], args[1]) self.obj = DataFrame(*args) elif orient == "split": decoded = loads( json, dtype=None, numpy=True, precise_float=self.precise_float ) decoded = {str(k): v for k, v in decoded.items()} self.check_keys_split(decoded) self.obj = DataFrame(**decoded) elif orient == "values": self.obj = DataFrame( loads(json, dtype=None, numpy=True, precise_float=self.precise_float) ) else: self.obj = DataFrame( *loads( json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float, ) ) def _parse_no_numpy(self): json = self.json orient = self.orient if orient == "columns": self.obj = DataFrame( loads(json, precise_float=self.precise_float), dtype=None ) elif orient == "split": decoded = { str(k): v for k, v in loads(json, precise_float=self.precise_float).items() } self.check_keys_split(decoded) self.obj = DataFrame(dtype=None, **decoded) elif orient == "index": self.obj = ( DataFrame.from_dict( loads(json, precise_float=self.precise_float), dtype=None, orient="index", ) .sort_index(axis="columns") .sort_index(axis="index") ) elif orient == "table": self.obj = parse_table_schema(json, precise_float=self.precise_float) else: self.obj = DataFrame( loads(json, precise_float=self.precise_float), dtype=None ) def _process_converter(self, f, filt=None): """ Take a conversion function and possibly recreate the frame. """ if filt is None: filt = lambda col, c: True needs_new_obj = False new_obj = dict() for i, (col, c) in enumerate(self.obj.items()): if filt(col, c): new_data, result = f(col, c) if result: c = new_data needs_new_obj = True new_obj[i] = c if needs_new_obj: # possibly handle dup columns new_obj = DataFrame(new_obj, index=self.obj.index) new_obj.columns = self.obj.columns self.obj = new_obj def _try_convert_types(self): if self.obj is None: return if self.convert_dates: self._try_convert_dates() self._process_converter( lambda col, c: self._try_convert_data(col, c, convert_dates=False) ) def _try_convert_dates(self): if self.obj is None: return # our columns to parse convert_dates = self.convert_dates if convert_dates is True: convert_dates = [] convert_dates = set(convert_dates) def is_ok(col): """ Return if this col is ok to try for a date parse. """ if not isinstance(col, str): return False col_lower = col.lower() if ( col_lower.endswith("_at") or col_lower.endswith("_time") or col_lower == "modified" or col_lower == "date" or col_lower == "datetime" or col_lower.startswith("timestamp") ): return True return False self._process_converter( lambda col, c: self._try_convert_to_date(c), lambda col, c: ( (self.keep_default_dates and is_ok(col)) or col in convert_dates ), )
bsd-3-clause
miloharper/neural-network-animation
matplotlib/sankey.py
11
40247
#!/usr/bin/env python """ Module for creating Sankey diagrams using matplotlib """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip __author__ = "Kevin L. Davies" __credits__ = ["Yannick Copin"] __license__ = "BSD" __version__ = "2011/09/16" # Original version by Yannick Copin ([email protected]) 10/2/2010, available # at: # http://matplotlib.org/examples/api/sankey_demo_old.html # Modifications by Kevin Davies ([email protected]) 6/3/2011: # --Used arcs for the curves (so that the widths of the paths are uniform) # --Converted the function to a class and created methods to join multiple # simple Sankey diagrams # --Provided handling for cases where the total of the inputs isn't 100 # Now, the default layout is based on the assumption that the inputs sum to # 1. A scaling parameter can be used in other cases. # --The call structure was changed to be more explicit about layout, # including the length of the trunk, length of the paths, gap between the # paths, and the margin around the diagram. # --Allowed the lengths of paths to be adjusted individually, with an option # to automatically justify them # --The call structure was changed to make the specification of path # orientation more flexible. Flows are passed through one array, with # inputs being positive and outputs being negative. An orientation # argument specifies the direction of the arrows. The "main" # inputs/outputs are now specified via an orientation of 0, and there may # be several of each. # --Added assertions to catch common calling errors # --Added the physical unit as a string argument to be used in the labels, so # that the values of the flows can usually be applied automatically # --Added an argument for a minimum magnitude below which flows are not shown # --Added a tapered trunk in the case that the flows do not sum to 0 # --Allowed the diagram to be rotated import numpy as np from matplotlib.cbook import iterable, Bunch from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.transforms import Affine2D from matplotlib import verbose from matplotlib import docstring # Angles [deg/90] RIGHT = 0 UP = 1 # LEFT = 2 DOWN = 3 class Sankey: """ Sankey diagram in matplotlib Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. They are typically used to visualize energy or material or cost transfers between processes. `Wikipedia (6/1/2011) <http://en.wikipedia.org/wiki/Sankey_diagram>`_ """ def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25, radius=0.1, shoulder=0.03, offset=0.15, head_angle=100, margin=0.4, tolerance=1e-6, **kwargs): """ Create a new Sankey instance. Optional keyword arguments: =============== =================================================== Field Description =============== =================================================== *ax* axes onto which the data should be plotted If *ax* isn't provided, new axes will be created. *scale* scaling factor for the flows *scale* sizes the width of the paths in order to maintain proper layout. The same scale is applied to all subdiagrams. The value should be chosen such that the product of the scale and the sum of the inputs is approximately 1.0 (and the product of the scale and the sum of the outputs is approximately -1.0). *unit* string representing the physical unit associated with the flow quantities If *unit* is None, then none of the quantities are labeled. *format* a Python number formatting string to be used in labeling the flow as a quantity (i.e., a number times a unit, where the unit is given) *gap* space between paths that break in/break away to/from the top or bottom *radius* inner radius of the vertical paths *shoulder* size of the shoulders of output arrowS *offset* text offset (from the dip or tip of the arrow) *head_angle* angle of the arrow heads (and negative of the angle of the tails) [deg] *margin* minimum space between Sankey outlines and the edge of the plot area *tolerance* acceptable maximum of the magnitude of the sum of flows The magnitude of the sum of connected flows cannot be greater than *tolerance*. =============== =================================================== The optional arguments listed above are applied to all subdiagrams so that there is consistent alignment and formatting. If :class:`Sankey` is instantiated with any keyword arguments other than those explicitly listed above (``**kwargs``), they will be passed to :meth:`add`, which will create the first subdiagram. In order to draw a complex Sankey diagram, create an instance of :class:`Sankey` by calling it without any kwargs:: sankey = Sankey() Then add simple Sankey sub-diagrams:: sankey.add() # 1 sankey.add() # 2 #... sankey.add() # n Finally, create the full diagram:: sankey.finish() Or, instead, simply daisy-chain those calls:: Sankey().add().add... .add().finish() .. seealso:: :meth:`add` :meth:`finish` **Examples:** .. plot:: mpl_examples/api/sankey_demo_basics.py """ # Check the arguments. assert gap >= 0, ( "The gap is negative.\nThis isn't allowed because it " "would cause the paths to overlap.") assert radius <= gap, ( "The inner radius is greater than the path spacing.\n" "This isn't allowed because it would cause the paths to overlap.") assert head_angle >= 0, ( "The angle is negative.\nThis isn't allowed " "because it would cause inputs to look like " "outputs and vice versa.") assert tolerance >= 0, ( "The tolerance is negative.\nIt must be a magnitude.") # Create axes if necessary. if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[]) self.diagrams = [] # Store the inputs. self.ax = ax self.unit = unit self.format = format self.scale = scale self.gap = gap self.radius = radius self.shoulder = shoulder self.offset = offset self.margin = margin self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0) self.tolerance = tolerance # Initialize the vertices of tight box around the diagram(s). self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf)) # If there are any kwargs, create the first subdiagram. if len(kwargs): self.add(**kwargs) def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)): """ Return the codes and vertices for a rotated, scaled, and translated 90 degree arc. Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *quadrant* uses 0-based indexing (0, 1, 2, or 3) *cw* if True, clockwise *center* (x, y) tuple of the arc's center =============== ========================================== """ # Note: It would be possible to use matplotlib's transforms to rotate, # scale, and translate the arc, but since the angles are discrete, # it's just as easy and maybe more efficient to do it here. ARC_CODES = [Path.LINETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4] # Vertices of a cubic Bezier curve approximating a 90 deg arc # These can be determined by Path.arc(0,90). ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.65114773e-01], [8.94571235e-01, 5.19642327e-01], [7.07106781e-01, 7.07106781e-01], [5.19642327e-01, 8.94571235e-01], [2.65114773e-01, 1.00000000e+00], # Insignificant #[6.12303177e-17, 1.00000000e+00]]) [0.00000000e+00, 1.00000000e+00]]) if quadrant == 0 or quadrant == 2: if cw: vertices = ARC_VERTICES else: vertices = ARC_VERTICES[:, ::-1] # Swap x and y. elif quadrant == 1 or quadrant == 3: # Negate x. if cw: # Swap x and y. vertices = np.column_stack((-ARC_VERTICES[:, 1], ARC_VERTICES[:, 0])) else: vertices = np.column_stack((-ARC_VERTICES[:, 0], ARC_VERTICES[:, 1])) if quadrant > 1: radius = -radius # Rotate 180 deg. return list(zip(ARC_CODES, radius * vertices + np.tile(center, (ARC_VERTICES.shape[0], 1)))) def _add_input(self, path, angle, flow, length): """ Add an input to a path and return its tip and label locations. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. dipdepth = (flow / 2) * self.pitch if angle == RIGHT: x -= length dip = [x + dipdepth, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, dip), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x + self.gap, y + flow])]) label_location = [dip[0] - self.offset, dip[1]] else: # Vertical x -= self.gap if angle == UP: sign = 1 else: sign = -1 dip = [x - flow / 2, y - sign * (length - dipdepth)] if angle == DOWN: quadrant = 2 else: quadrant = 1 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x + self.radius, y - sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y - sign * length]), (Path.LINETO, dip), (Path.LINETO, [x - flow, y - sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=flow + self.radius, center=(x + self.radius, y - sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [dip[0], dip[1] - sign * self.offset] return dip, label_location def _add_output(self, path, angle, flow, length): """ Append an output to a path and return its tip and label locations. .. note:: *flow* is negative for an output. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. tipheight = (self.shoulder - flow / 2) * self.pitch if angle == RIGHT: x += length tip = [x + tipheight, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, [x, y + self.shoulder]), (Path.LINETO, tip), (Path.LINETO, [x, y - self.shoulder + flow]), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x - self.gap, y + flow])]) label_location = [tip[0] + self.offset, tip[1]] else: # Vertical x += self.gap if angle == UP: sign = 1 else: sign = -1 tip = [x - flow / 2.0, y + sign * (length + tipheight)] if angle == UP: quadrant = 3 else: quadrant = 0 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x - self.radius, y + sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y + sign * length]), (Path.LINETO, [x - self.shoulder, y + sign * length]), (Path.LINETO, tip), (Path.LINETO, [x + self.shoulder - flow, y + sign * length]), (Path.LINETO, [x - flow, y + sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=self.radius - flow, center=(x - self.radius, y + sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [tip[0], tip[1] + sign * self.offset] return tip, label_location def _revert(self, path, first_action=Path.LINETO): """ A path is not simply revertable by path[::-1] since the code specifies an action to take from the **previous** point. """ reverse_path = [] next_code = first_action for code, position in path[::-1]: reverse_path.append((next_code, position)) next_code = code return reverse_path # This might be more efficient, but it fails because 'tuple' object # doesn't support item assignment: #path[1] = path[1][-1:0:-1] #path[1][0] = first_action #path[2] = path[2][::-1] #return path @docstring.dedent_interpd def add(self, patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs): """ Add a simple Sankey diagram with flows at the same hierarchical level. Return value is the instance of :class:`Sankey`. Optional keyword arguments: =============== =================================================== Keyword Description =============== =================================================== *patchlabel* label to be placed at the center of the diagram Note: *label* (not *patchlabel*) will be passed to the patch through ``**kwargs`` and can be used to create an entry in the legend. *flows* array of flow values By convention, inputs are positive and outputs are negative. *orientations* list of orientations of the paths Valid values are 1 (from/to the top), 0 (from/to the left or right), or -1 (from/to the bottom). If *orientations* == 0, inputs will break in from the left and outputs will break away to the right. *labels* list of specifications of the labels for the flows Each value may be *None* (no labels), '' (just label the quantities), or a labeling string. If a single value is provided, it will be applied to all flows. If an entry is a non-empty string, then the quantity for the corresponding flow will be shown below the string. However, if the *unit* of the main diagram is None, then quantities are never shown, regardless of the value of this argument. *trunklength* length between the bases of the input and output groups *pathlengths* list of lengths of the arrows before break-in or after break-away If a single value is given, then it will be applied to the first (inside) paths on the top and bottom, and the length of all other arrows will be justified accordingly. The *pathlengths* are not applied to the horizontal inputs and outputs. *prior* index of the prior diagram to which this diagram should be connected *connect* a (prior, this) tuple indexing the flow of the prior diagram and the flow of this diagram which should be connected If this is the first diagram or *prior* is *None*, *connect* will be ignored. *rotation* angle of rotation of the diagram [deg] *rotation* is ignored if this diagram is connected to an existing one (using *prior* and *connect*). The interpretation of the *orientations* argument will be rotated accordingly (e.g., if *rotation* == 90, an *orientations* entry of 1 means to/from the left). =============== =================================================== Valid kwargs are :meth:`matplotlib.patches.PathPatch` arguments: %(Patch)s As examples, ``fill=False`` and ``label='A legend entry'``. By default, ``facecolor='#bfd1d4'`` (light blue) and ``linewidth=0.5``. The indexing parameters (*prior* and *connect*) are zero-based. The flows are placed along the top of the diagram from the inside out in order of their index within the *flows* list or array. They are placed along the sides of the diagram from the top down and along the bottom from the outside in. If the the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bezier curve along the top and bottom edges of the trunk. .. seealso:: :meth:`finish` """ # Check and preprocess the arguments. if flows is None: flows = np.array([1.0, -1.0]) else: flows = np.array(flows) n = flows.shape[0] # Number of flows if rotation is None: rotation = 0 else: # In the code below, angles are expressed in deg/90. rotation /= 90.0 if orientations is None: orientations = [0, 0] assert len(orientations) == n, ( "orientations and flows must have the same length.\n" "orientations has length %d, but flows has length %d." % (len(orientations), n)) if labels != '' and getattr(labels, '__iter__', False): # iterable() isn't used because it would give True if labels is a # string assert len(labels) == n, ( "If labels is a list, then labels and flows must have the " "same length.\nlabels has length %d, but flows has length %d." % (len(labels), n)) else: labels = [labels] * n assert trunklength >= 0, ( "trunklength is negative.\nThis isn't allowed, because it would " "cause poor layout.") if np.absolute(np.sum(flows)) > self.tolerance: verbose.report( "The sum of the flows is nonzero (%f).\nIs the " "system not at steady state?" % np.sum(flows), 'helpful') scaled_flows = self.scale * flows gain = sum(max(flow, 0) for flow in scaled_flows) loss = sum(min(flow, 0) for flow in scaled_flows) if not (0.5 <= gain <= 2.0): verbose.report( "The scaled sum of the inputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if not (-2.0 <= loss <= -0.5): verbose.report( "The scaled sum of the outputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if prior is not None: assert prior >= 0, "The index of the prior diagram is negative." assert min(connect) >= 0, ( "At least one of the connection indices is negative.") assert prior < len(self.diagrams), ( "The index of the prior diagram is %d, but there are " "only %d other diagrams.\nThe index is zero-based." % (prior, len(self.diagrams))) assert connect[0] < len(self.diagrams[prior].flows), ( "The connection index to the source diagram is %d, but " "that diagram has only %d flows.\nThe index is zero-based." % (connect[0], len(self.diagrams[prior].flows))) assert connect[1] < n, ( "The connection index to this diagram is %d, but this diagram" "has only %d flows.\n The index is zero-based." % (connect[1], n)) assert self.diagrams[prior].angles[connect[0]] is not None, ( "The connection cannot be made. Check that the magnitude " "of flow %d of diagram %d is greater than or equal to the " "specified tolerance." % (connect[0], prior)) flow_error = (self.diagrams[prior].flows[connect[0]] + flows[connect[1]]) assert abs(flow_error) < self.tolerance, ( "The scaled sum of the connected flows is %f, which is not " "within the tolerance (%f)." % (flow_error, self.tolerance)) # Determine if the flows are inputs. are_inputs = [None] * n for i, flow in enumerate(flows): if flow >= self.tolerance: are_inputs[i] = True elif flow <= -self.tolerance: are_inputs[i] = False else: verbose.report( "The magnitude of flow %d (%f) is below the " "tolerance (%f).\nIt will not be shown, and it " "cannot be used in a connection." % (i, flow, self.tolerance), 'helpful') # Determine the angles of the arrows (before rotation). angles = [None] * n for i, (orient, is_input) in enumerate(zip(orientations, are_inputs)): if orient == 1: if is_input: angles[i] = DOWN elif not is_input: # Be specific since is_input can be None. angles[i] = UP elif orient == 0: if is_input is not None: angles[i] = RIGHT else: assert orient == -1, ( "The value of orientations[%d] is %d, " "but it must be -1, 0, or 1." % (i, orient)) if is_input: angles[i] = UP elif not is_input: angles[i] = DOWN # Justify the lengths of the paths. if iterable(pathlengths): assert len(pathlengths) == n, ( "If pathlengths is a list, then pathlengths and flows must " "have the same length.\npathlengths has length %d, but flows " "has length %d." % (len(pathlengths), n)) else: # Make pathlengths into a list. urlength = pathlengths ullength = pathlengths lrlength = pathlengths lllength = pathlengths d = dict(RIGHT=pathlengths) pathlengths = [d.get(angle, 0) for angle in angles] # Determine the lengths of the top-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(zip(angles, are_inputs, scaled_flows)): if angle == DOWN and is_input: pathlengths[i] = ullength ullength += flow elif angle == UP and not is_input: pathlengths[i] = urlength urlength -= flow # Flow is negative for outputs. # Determine the lengths of the bottom-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(reversed(list(zip( angles, are_inputs, scaled_flows)))): if angle == UP and is_input: pathlengths[n - i - 1] = lllength lllength += flow elif angle == DOWN and not is_input: pathlengths[n - i - 1] = lrlength lrlength -= flow # Determine the lengths of the left-side arrows # from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, zip(scaled_flows, pathlengths))))): if angle == RIGHT: if is_input: if has_left_input: pathlengths[n - i - 1] = 0 else: has_left_input = True # Determine the lengths of the right-side arrows # from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT: if not is_input: if has_right_output: pathlengths[i] = 0 else: has_right_output = True # Begin the subpaths, and smooth the transition if the sum of the flows # is nonzero. urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0), # Upper right gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, gain / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, gain / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap), -loss / 2.0])] llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower left loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, loss / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, loss / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0), -gain / 2.0])] lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower right loss / 2.0])] ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0, # Upper left gain / 2.0])] # Add the subpaths and assign the locations of the tips and labels. tips = np.zeros((n, 2)) label_locations = np.zeros((n, 2)) # Add the top-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == DOWN and is_input: tips[i, :], label_locations[i, :] = self._add_input( ulpath, angle, *spec) elif angle == UP and not is_input: tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Add the bottom-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == UP and is_input: tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location elif angle == DOWN and not is_input: tip, label_location = self._add_output(lrpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the left-side inputs from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT and is_input: if not has_left_input: # Make sure the lower path extends # at least as far as the upper one. if llpath[-1][1][0] > ulpath[-1][1][0]: llpath.append((Path.LINETO, [ulpath[-1][1][0], llpath[-1][1][1]])) has_left_input = True tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the right-side outputs from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT and not is_input: if not has_right_output: # Make sure the upper path extends # at least as far as the lower one. if urpath[-1][1][0] < lrpath[-1][1][0]: urpath.append((Path.LINETO, [lrpath[-1][1][0], urpath[-1][1][1]])) has_right_output = True tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Trim any hanging vertices. if not has_left_input: ulpath.pop() llpath.pop() if not has_right_output: lrpath.pop() urpath.pop() # Concatenate the subpaths in the correct order (clockwise from top). path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) + [(Path.CLOSEPOLY, urpath[0][1])]) # Create a patch with the Sankey outline. codes, vertices = list(zip(*path)) vertices = np.array(vertices) def _get_angle(a, r): if a is None: return None else: return a + r if prior is None: if rotation != 0: # By default, none of this is needed. angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_point tips = rotate(tips) label_locations = rotate(label_locations) vertices = rotate(vertices) text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center') else: rotation = (self.diagrams[prior].angles[connect[0]] - angles[connect[1]]) angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_point tips = rotate(tips) offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]] translate = Affine2D().translate(*offset).transform_point tips = translate(tips) label_locations = translate(rotate(label_locations)) vertices = translate(rotate(vertices)) kwds = dict(s=patchlabel, ha='center', va='center') text = self.ax.text(*offset, **kwds) if False: # Debug print("llpath\n", llpath) print("ulpath\n", self._revert(ulpath)) print("urpath\n", urpath) print("lrpath\n", self._revert(lrpath)) xs, ys = list(zip(*vertices)) self.ax.plot(xs, ys, 'go-') patch = PathPatch(Path(vertices, codes), fc=kwargs.pop('fc', kwargs.pop('facecolor', '#bfd1d4')), # Custom defaults lw=kwargs.pop('lw', kwargs.pop('linewidth', 0.5)), **kwargs) self.ax.add_patch(patch) # Add the path labels. texts = [] for number, angle, label, location in zip(flows, angles, labels, label_locations): if label is None or angle is None: label = '' elif self.unit is not None: quantity = self.format % abs(number) + self.unit if label != '': label += "\n" label += quantity texts.append(self.ax.text(x=location[0], y=location[1], s=label, ha='center', va='center')) # Text objects are placed even they are empty (as long as the magnitude # of the corresponding flow is larger than the tolerance) in case the # user wants to provide labels later. # Expand the size of the diagram if necessary. self.extent = (min(np.min(vertices[:, 0]), np.min(label_locations[:, 0]), self.extent[0]), max(np.max(vertices[:, 0]), np.max(label_locations[:, 0]), self.extent[1]), min(np.min(vertices[:, 1]), np.min(label_locations[:, 1]), self.extent[2]), max(np.max(vertices[:, 1]), np.max(label_locations[:, 1]), self.extent[3])) # Include both vertices _and_ label locations in the extents; there are # where either could determine the margins (e.g., arrow shoulders). # Add this diagram as a subdiagram. self.diagrams.append(Bunch(patch=patch, flows=flows, angles=angles, tips=tips, text=text, texts=texts)) # Allow a daisy-chained call structure (see docstring for the class). return self def finish(self): """ Adjust the axes and return a list of information about the Sankey subdiagram(s). Return value is a list of subdiagrams represented with the following fields: =============== =================================================== Field Description =============== =================================================== *patch* Sankey outline (an instance of :class:`~maplotlib.patches.PathPatch`) *flows* values of the flows (positive for input, negative for output) *angles* list of angles of the arrows [deg/90] For example, if the diagram has not been rotated, an input to the top side will have an angle of 3 (DOWN), and an output from the top side will have an angle of 1 (UP). If a flow has been skipped (because its magnitude is less than *tolerance*), then its angle will be *None*. *tips* array in which each row is an [x, y] pair indicating the positions of the tips (or "dips") of the flow paths If the magnitude of a flow is less the *tolerance* for the instance of :class:`Sankey`, the flow is skipped and its tip will be at the center of the diagram. *text* :class:`~matplotlib.text.Text` instance for the label of the diagram *texts* list of :class:`~matplotlib.text.Text` instances for the labels of flows =============== =================================================== .. seealso:: :meth:`add` """ self.ax.axis([self.extent[0] - self.margin, self.extent[1] + self.margin, self.extent[2] - self.margin, self.extent[3] + self.margin]) self.ax.set_aspect('equal', adjustable='datalim') return self.diagrams
mit
soylentdeen/Graffity
src/ParabolicMirror/gridsearch.py
1
1218
import scipy import numpy import matplotlib.pyplot as pyplot import astropy.io.fits as pyfits import glob datadir = '/home/cdeen/Data/CIAO/UT3/Alignment/2016-08-31_3/PARABOLA_SEARCH-190246/' files = glob.glob(datadir+'*.fits') scan = [] flux = [] scans = [] for f in files: data = pyfits.getdata(f).field('Intensities') header = pyfits.getheader(f) scan.append(header.get('ESO TPL EXPNO')) flux.append(numpy.max(numpy.mean(data, axis=1))) scans.append(numpy.mean(data, axis=1)) middle = numpy.array([1717503, 1667465]) corner = middle - numpy.array([250000, 250000]) step = 5000 scan = numpy.array(scan) order = numpy.argsort(scan) scan = scan[order]*step+corner[0] scans = numpy.array(scans)[order] flux = numpy.array(flux)[order] fig = pyplot.figure(0) fig.clear() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) for s in scans[40:50]: ax.plot(s) #ax.plot(scan, flux) ax.set_ylabel("Average Subaperture Intensity") ax.set_xlabel("Frame number") ax.set_xbound(3200, 3500) fig.show() fig.savefig("Scan40to50.png") raw_input() ax.clear() ax.plot(scan, flux) ax.set_xlabel('Scan number') ax.set_ylabel('Brightest Frame') ax.get_xaxis().get_major_formatter().set_useOffset(False) fig.show()
mit
igorcoding/os-simulation
src/simulation.py
1
2801
# coding=utf-8 import simpy import pylab from src.sim.os_simulator import OsSimulator from src.stats.global_stats import GlobalStats class Simulation(object): def __init__(self): super(Simulation, self).__init__() @staticmethod def _experiment(stats, simulation_time, **params): env = simpy.Environment() simulator = OsSimulator(env, stats, **params) simulator.start() env.run(until=simulation_time) del simulator @staticmethod def _generate_configs(data): configs = [] for d in data['buffer_latency']: for l in data['gen_lambda']: config = dict(delta=data['delta'], buffer_size=data['buffer_size'] - 1, buffer_latency=d, gen_lambda=l, time_distrib=data['time_distrib']) configs.append(config) return configs def simulation(self, **data): results = GlobalStats() configs = self._generate_configs(data) for i, conf in enumerate(configs): print "Running configuration %d/%d" % (i+1, len(configs)) bulk_stats = results.get_new_bulk_stats(**conf) for j in xrange(data['exp_per_conf']): print "%d/%d" % (j+1, data['exp_per_conf']), stats = bulk_stats.get_new_stats() self._experiment(stats, data['sim_time'], **conf) print pylab.matplotlib.rc('font', family='Arial') pylab.clf() for d in data['buffer_latency']: plot_total = results.get_avg_total_time_vs_lambda(d) plot_inner = results.get_avg_inner_time_vs_lambda(d) plots = [ dict(title=u'Среднее общее время пребывания задания (внешняя очередь + система)', file='avg_total.png', points=plot_total), dict(title=u'Среднее время пребывания задания в системе', file='avg_inner.png', points=plot_inner), ] for i, p in enumerate(plots): pylab.figure(i) pylab.plot(*zip(*p['points']), label='d = %d' % d) pylab.legend() pylab.xlabel(u'λ') pylab.ylabel(u'Время') pylab.grid(True) pylab.title(p['title']) pylab.savefig(p['file']) pylab.close() del results def main(): data = { 'sim_time': 1000, 'exp_per_conf': 1, 'buffer_latency': xrange(1, 22, 5), 'gen_lambda': xrange(1, 101), 'buffer_size': 5, 'delta': 9, 'time_distrib': dict(mu=40, sigma=10) } s = Simulation() s.simulation(**data) if __name__ == "__main__": main()
mit
nguyentu1602/statsmodels
statsmodels/sandbox/nonparametric/tests/ex_smoothers.py
33
1413
# -*- coding: utf-8 -*- """ Created on Fri Nov 04 10:51:39 2011 @author: josef """ from __future__ import print_function import numpy as np from numpy.testing import assert_almost_equal, assert_equal from statsmodels.sandbox.nonparametric import smoothers, kernels from statsmodels.regression.linear_model import OLS, WLS #DGP: simple polynomial order = 3 sigma_noise = 0.5 nobs = 100 lb, ub = -1, 2 x = np.linspace(lb, ub, nobs) x = np.sin(x) exog = x[:,None]**np.arange(order+1) y_true = exog.sum(1) y = y_true + sigma_noise * np.random.randn(nobs) #xind = np.argsort(x) pmod = smoothers.PolySmoother(2, x) pmod.fit(y) #no return y_pred = pmod.predict(x) error = y - y_pred mse = (error*error).mean() print(mse) res_ols = OLS(y, exog[:,:3]).fit() print(np.squeeze(pmod.coef) - res_ols.params) weights = np.ones(nobs) weights[:nobs//3] = 0.1 weights[-nobs//5:] = 2 pmodw = smoothers.PolySmoother(2, x) pmodw.fit(y, weights=weights) #no return y_predw = pmodw.predict(x) error = y - y_predw mse = (error*error).mean() print(mse) res_wls = WLS(y, exog[:,:3], weights=weights).fit() print(np.squeeze(pmodw.coef) - res_wls.params) doplot = 1 if doplot: import matplotlib.pyplot as plt plt.plot(y, '.') plt.plot(y_true, 'b-', label='true') plt.plot(y_pred, '-', label='poly') plt.plot(y_predw, '-', label='poly -w') plt.legend(loc='upper left') plt.close() #plt.show()
bsd-3-clause
AsimmHirani/ISpyPi
tensorflow/contrib/tensorflow-master/tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
18
13185
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import sys import tempfile # pylint: disable=g-bad-todo # TODO(#6568): Remove this hack that makes dlopen() not crash. # pylint: enable=g-bad-todo # pylint: disable=g-import-not-at-top if hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags'): import ctypes sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL) import numpy as np from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose( predictions['class'], np.argmax( predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose( classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
bzamecnik/ml
snippets/keras/lstm_char_rnn/lstm_text_generation.py
2
5412
'''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. Source: https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py License: MIT (see https://github.com/fchollet/keras/blob/master/LICENSE) ''' from __future__ import print_function from keras.callbacks import LambdaCallback from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file from keras.utils.np_utils import to_categorical import numpy as np import random from sklearn.preprocessing import LabelEncoder import sys class Dataset: def __init__(self, frame_size=40, hop_size=3): self.frame_size = frame_size self.hop_size = hop_size path = get_file('nietzsche.txt', origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt") self.text = open(path).read().lower() print('corpus length:', len(self.text)) chars = sorted(list(set(self.text))) self.class_count = len(chars) print('total chars:', self.class_count) self.le = LabelEncoder().fit(chars) self.text_ohe = self.text_to_ohe(self.text) def split_to_frames(values, frame_size, hop_size): """ Split to overlapping frames. """ return np.stack(values[i:i + frame_size] for i in range(0, len(values) - frame_size + 1, hop_size)) def split_features_targets(frames): """ Split each frame to features (all but last element) and targets (last element). """ frame_size = frames.shape[1] X = frames[:, :frame_size - 1] y = frames[:, -1] return X, y # cut the text in semi-redundant sequences of frame_size characters self.X, self.y = split_features_targets(split_to_frames( self.text_ohe, frame_size + 1, hop_size)) print('X.shape:', self.X.shape, 'y.shape:', self.y.shape) def ohe_to_text(self, text_ohe): return self.le_to_text(text_ohe.argmax(axis=1)) def text_to_ohe(self, text): return self.le_to_ohe(self.text_to_le(list(text))) def le_to_text(self, text_le): return ''.join(self.le.inverse_transform(text_le)) def text_to_le(self, text): return self.le.transform(text) def le_to_ohe(self, text_le): return to_categorical(text_le, nb_classes=self.class_count) class Model: def __init__(self, dataset): self.dataset = dataset def create_model(dataset): # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(128, input_shape=(dataset.frame_size, dataset.class_count))) model.add(Dense(dataset.class_count)) model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=optimizer) return model self.model = create_model(self.dataset) def fit_with_preview(self): # output generated text after each iteration preview_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: self.preview()) self.model.fit( self.dataset.X, self.dataset.y, batch_size=1000, nb_epoch=60, callbacks=[preview_callback]) def generate_chars(self, seed_text, length, temperature=1.0): def sample(preds, temperature): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) window_ohe = self.dataset.text_to_ohe(seed_text) for i in range(length): # single data point x = window_ohe[np.newaxis] probs = self.model.predict(x, verbose=0)[0] next_index = sample(probs, temperature) yield dataset.le_to_text(next_index) next_ohe = dataset.le_to_ohe([next_index]) window_ohe = np.vstack([window_ohe[1:], next_ohe]) def preview(self, seed_text=None, length=100): if seed_text is None: start_index = random.randint(0, len(dataset.text) - dataset.frame_size - 1) seed_text = self.dataset.text[start_index:start_index + dataset.frame_size] print() print('----- Generating with seed: "' + seed_text + '"') for temperature in [0.2, 0.5, 1.0, 1.2]: print('----- temperature:', temperature) for char in self.generate_chars(seed_text, length, temperature): sys.stdout.write(char) sys.stdout.flush() print() if __name__ == '__main__': dataset = Dataset() model = Model(dataset) model.fit_with_preview()
mit
joshloyal/scikit-learn
examples/linear_model/plot_sgd_comparison.py
112
1819
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
rvelseg/string_resonance
string_resonance.py
1
12954
from pylab import plot, show, subplots from numpy import arange, pi, ma, tanh, sin, fft, zeros from matplotlib import animation from detect_peaks import detect_peaks __author__ = "R. Velasco-Segura and Pablo L. Rendon" __version__ = "0.2" __license__ = "BSD" # ------------------------------------------------------ # ------- configurable parameters ampl = 1 # amplitude of the emitted wave L = 3.0 # resonator length in meters x_max = 4.0 # domain length in meters Nx = 50 # number of grid points dx = x_max/(Nx - 1.0) # *don't change* # spatial step in meters t_max = 1.0 # final time in seconds f_ini = 100.0 # initial frequency in Hz f_fin = 300.0 # final frequency in Hz c = 343.0 # speed of sound in m/s # 343 m/s is typically the speed of sound in air, and not necessarily # on a string. However, it is not that different from typical values # in guitar strings. mic_pos = x_max/8.0 # microphone position in meters # Chirp type. The possible values this variable can take are: # # "exp" : stands for exponential, which sometimes is also called # logarithmic chirp. # # "lin" : linear chirp. # chirp_type = "exp" # Temporal step. The choice dt=dx/c has some advantages. However, be # aware that in this case the obstacle as harmonic oscillator only is # not usable: small values of KoM have no effect, and large values of # KoM make the numeric system unstable, without an intermediate # region. When the obstacle is only an harmonic oscillator, with no # estra mass, dt=0.9*dx/c works fine. dt = 1*dx/c # Output type. The possible values this variable can take are: # # "file" : The script creates a video file. You probably will have to # adjust the writer to something that works on your system. # # "fly" : A visualization is displayed on the fly, as data is been # generated. # output = "fly" # --------------------------------------------------- # ------- calculated and fixed paramenters, --------- # ------- don't change these parameters. t_min = 0.0 # initial time in seconds w = 2.0*pi*f_ini # current value of angular frequency phi = 0.0 # phase correction s_fc = 1.0 n = 0 # current step init_sim = 0 x = arange(0,x_max+dx/2.0,dx) # spatial domain cdtdx2 = (c*dt/dx)**2 dt2 = dt*dt t_axis = arange(t_min,t_max+dt/2.0,dt) # temporal domain mic_i = int(round(mic_pos/dx)) # microphone position index obs_i = int(round(L/dx)) # obstacle position index # ---------------------------------------------------- y_next = zeros(Nx) # solution at t y_now = y_next.copy() # solution at t-dt y_prev = y_now.copy() # solution at t-2*dt mic = [] mic_t = [] am_min = [] am_max = [] am = [] am_s = [] f_ax = [] fft_spec = [] fft_axis = [] fft_axis_t = [] fft_peaks = [] fig, ax = subplots(3) def init_y() : global y_now, y_prev, x for i in range(0,len(x)) : y_now[i] = 0 y_prev[i] = 0 def step_y() : global y_next, y_now, y_prev global dt2, cdtdx2, dx global obs_i for i in range(1, len(y_next)-1) : y_next[i] = (- y_prev[i] + 2 * y_now[i] + cdtdx2 * (y_now[i-1] - 2*y_now[i] + y_now[i+1]) ) # Obstacle : i = obs_i # # harmonic oscillator # KoM = 1e5 # this is k/m # y_next[i] -= (dt2/dx)*KoM*y_now[i] # extra mass MM = 5.0 kappa = 4e5 k = kappa/dx y_next[i] += (dt2*(k/MM) - cdtdx2) * (y_now[i-1] - 2*y_now[i] + y_now[i+1]) def boundary_y(t) : global y_now, y_prev global x, w, phi, ampl # absorbing boundary y_now[-1] = y_prev[-2] # forcing boundary y_now[0] = ( ampl * sin( w * (t - x[0]) + phi) * ( 0.5 + 0.5 * tanh( t * 1715 - 4 ) ) ) def pp(x,t) : # This function is used to draw a sine wave of the current emitted # frequency, to be compared with y_now. global w, phi ret = ( ampl * sin( w * (t - x) + phi) * ( 0.5 + 0.5 * tanh( t * 1715 - 4 ) ) ) return ret def get_mic(pos, t) : global y_now global mic, mic_t mic.append(y_now[pos]) mic_t.append(t) # static like variables for this function # norm = 0 # prev_s = 1 # prev_dd = 0 def get_am(pos, t) : global am_max, am_min global w, dt, mic # global s_fc # global norm, prev_s, prev_dd global f_fin ii = len(mic) period = 2*pi/w i_p = int(period/dt) i_p_m = max(0, int(ii - 5*i_p)) # i_p_m2 = max(0, int(ii - 10*i_p)) am_min.append(min(mic[i_p_m:])) am_max.append(max(mic[i_p_m:])) am.append(am_max[-1] - am_min[-1]) f_ax.append(w/(2*pi)) # dd = am[-1] - 2*am[i_p_m] + am[i_p_m2] # print dd # print am[-1], am[i_p_m] # t_adp_start = t_min + (t_max-t_min)/10 # if (t > t_adp_start ) : # if norm == 0 : # norm = abs(am[-1] - am[i_p_m])/am[-1] # m = abs(am[-1] - am[i_p_m])/(am[-1]*0.5*norm) # m = min(5,m) # # print "{:.5f}".format(m) # if (am[-1] >= am[i_p_m]) : # s_fc = 1 # else : # s_fc = 1 # if prev_s != abs(s_fc)/s_fc : # prev_s *= -1 # # f_fin = w/(2*pi) def animate(t): global x, w, phi, ampl, f_fin, dt global s_fc global y_next, y_now, y_prev global cdtdx2 global n global mic_t, mic global fft_spec, fft_axis, fft_axis_t, fft_peaks # TODO: This approach has acumulative error, the value of the # frequency can be calculated without its previous value, do that. if chirp_type == "exp" : wnew = w * ( f_fin / f_ini )**(s_fc*dt/t_max) elif chirp_type == "lin" : # linear chirp gives trouble at low frequencies if ( w > pi ) | ( s_fc > 0 ) : wnew = w + s_fc*dt*2.0*pi*(f_fin-f_ini)/t_max; else : print "Low frequency bound reached." wnew = w else : print "ERROR: chirp_type not recognized." return phi += t*(w-wnew) w = wnew boundary_y(t) step_y() if ( len(mic) > 10 ) : if ( n%30 == 0 ) : fft_norm = 2.0/len(mic_t) fft_spec = abs(fft_norm * fft.fft(mic))[:len(mic_t)/2] fft_axis = fft.fftfreq(len(mic_t), dt)[:len(mic_t)/2] # mph stands for minimum peak height fft_peaks = detect_peaks(fft_spec, mph=ampl/4.0) else : fft_spec = zeros(10) fft_axis = range(0,10) get_mic(mic_i, t) get_am(mic_i, t) n += 1 if n%100 == 0 : print t # Change the value used to calculate the module according to how # offen do you want to refresh the plot. if n%1 == 0 : texts[0].set_text("t = " + "{:.4f}".format(t) + " s") texts[1].set_text("current emitted frequency = " + "{:.4f}".format(w/(2*pi)) + " Hz") texts[2].set_text("current step = " + str(n)) # texts[3].set_text("s_fc = " + str(s_fc)) peaks_str = "" for peak_i in fft_peaks : peaks_str += "{:.2f}, ".format(fft_axis[peak_i]) peaks_str = "FFT peaks [Hz]: " + peaks_str[:-2] texts[9].set_text(peaks_str) # solution 'y_next' doesn't have the boundary points, that is # why 'y_now' is plotted. lines[0].set_ydata(y_now) # lines[1].set_ydata(pp(x,t)) lines[2].set_xdata(mic_t) lines[2].set_ydata(mic) lines[3].set_xdata(mic_t) lines[3].set_ydata(am_min) lines[4].set_xdata(mic_t) lines[4].set_ydata(am_max) lines[5].set_xdata(mic_t) lines[5].set_ydata(am) scatters[1].set_offsets([[obs_i*dx],[y_now[obs_i]]]) lines[6].set_xdata(f_ax) lines[6].set_ydata(am) lines[7].set_xdata(fft_axis) lines[7].set_ydata(5*fft_spec) y_prev = y_now.copy() y_now = y_next.copy() # You could return tuple(ax) but it makes the simulation slower. return tuple(lines) + tuple(texts) + tuple(scatters) def init_ani() : global init_sim # When the window is resized init_ani is called again, but we # don't want our simulation to return to the initial state. if init_sim == 0 : init_y() init_sim += 1 # It is neccesary to do this cleanup, otherwise objects get # overlaped. for line in lines : line.set_ydata(ma.array(line.get_xdata(), mask=True)) for scatter in scatters : scatter.set_offsets([[],[]]) for text in texts : text.set_text('') # costant values of the objects to be animated lines[6].set_linestyle('--') lines[7].set_linestyle('-') lines[7].set_marker('+') scatters[0].set_offsets([[mic_pos],[0]]) texts[0].set_transform(ax[0].transAxes) texts[0].set_x(0.1) texts[0].set_y(0.9) texts[0].set_va('center') texts[1].set_transform(ax[0].transAxes) texts[1].set_x(0.4) texts[1].set_y(0.9) texts[1].set_va('center') texts[2].set_transform(ax[0].transAxes) texts[2].set_x(0.1) texts[2].set_y(0.75) texts[2].set_va('center') texts[3].set_transform(ax[0].transData) texts[3].set_x(mic_i*dx) texts[3].set_y(-2*ampl) texts[3].set_va('center') texts[3].set_text('measuring point, aka microphone') texts[4].set_transform(ax[0].transData) texts[4].set_x(obs_i*dx) texts[4].set_y(-2*ampl) texts[4].set_va('center') texts[4].set_text('obstacle') texts[5].set_transform(ax[1].transAxes) texts[5].set_x(0.1) texts[5].set_y(0.8) texts[5].set_va('center') texts[5].set_text('Mic signal, upper envelope, lower envelope, and amplitude.') texts[6].set_transform(ax[1].transAxes) texts[6].set_x(0.1) texts[6].set_y(0.65) texts[6].set_va('center') texts[6].set_text('Amplitude is the difference of the upper and lower ev.') texts[7].set_transform(ax[2].transAxes) texts[7].set_x(0.1) texts[7].set_y(0.8) texts[7].set_va('center') texts[7].set_text('Dashed: Amplitude as function of the current emitted freq.') texts[8].set_transform(ax[2].transAxes) texts[8].set_x(0.1) texts[8].set_y(0.65) texts[8].set_va('center') texts[8].set_text('Solid: 5 * FFT of the current signal') texts[9].set_transform(ax[2].transAxes) texts[9].set_x(0.1) texts[9].set_y(0.5) texts[9].set_va('center') # not used texts[10].set_transform(ax[2].transAxes) texts[10].set_x(0.1) texts[10].set_y(0.5) texts[10].set_va('center') return tuple(lines) + tuple(texts) + tuple(scatters) # Create empty objects to be animated lines = [] # first subplot line = ax[0].plot(x,y_now)[0] # this particular object cannot be empty :S lines.append(line) line = ax[0].plot([],[])[0] lines.append(line) # second subplot line = ax[1].plot([],[])[0] lines.append(line) line = ax[1].plot([],[])[0] lines.append(line) line = ax[1].plot([],[])[0] lines.append(line) line = ax[1].plot([],[])[0] lines.append(line) # third subplot line = ax[2].plot([],[])[0] lines.append(line) line = ax[2].plot([],[])[0] lines.append(line) scatters = [] scatter = ax[0].scatter([],[],s=10) scatters.append(scatter) scatter = ax[0].scatter([],[],s=10) scatters.append(scatter) texts = [] text = ax[0].text([], [], '') texts.append(text) text = ax[0].text([], [], '') texts.append(text) text = ax[0].text([], [], '') texts.append(text) text = ax[0].text([], [], '') texts.append(text) text = ax[0].text([], [], '') texts.append(text) text = ax[1].text([], [], '') texts.append(text) text = ax[1].text([], [], '') texts.append(text) text = ax[2].text([], [], '') texts.append(text) text = ax[2].text([], [], '') texts.append(text) text = ax[2].text([], [], '') texts.append(text) text = ax[2].text([], [], '') texts.append(text) ax[0].set_ylim( (-ampl*10,ampl*10) ) ax[0].set_xlim( 0,x[-1] ) ax[0].set_xticks( (0,L) ) ax[0].set_xlabel("x [m]",labelpad=-10) ax[1].set_ylim( (-ampl*10,ampl*30) ) ax[1].set_xlim( 0,t_max ) ax[1].set_xlabel("time [s]",labelpad=-10) ax[2].set_ylim( (0,ampl*30) ) ax[2].set_xlim( f_ini,f_fin ) ax[2].set_xlabel("frequency [Hz]",labelpad=0) ani = animation.FuncAnimation(fig, animate, arange(t_min, t_max, dt), repeat=False, init_func=init_ani, interval=10, blit=True) # mng = fig.canvas.manager # # To maximize the animation window you can try the following # # lines. Each of them could work, or not, depending on your # # system. I didn't manage to make this work when generating a video # # file. # ################## # # mng.frame.Maximize(True) # # mng.window.showMaximized() # # mng.window.state('zoomed') # mng.resize(*mng.window.maxsize()) # tkagg # ################## if output == "fly" : show() elif output == "file" : ani.save("string.mp4", writer="avconv", fps=25) else : print "ERROR: output type not recognized."
bsd-2-clause
ntu-dsi-dcn/ntu-dsi-dcn
src/flow-monitor/examples/wifi-olsr-flowmon.py
27
7354
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <[email protected]> import sys import ns.applications import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.NqosWifiMacHelper.Default() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.RandomVariableValue(ns.core.ConstantVariable(1))) onOffHelper.SetAttribute("OffTime", ns.core.RandomVariableValue(ns.core.ConstantVariable(0))) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) app.Start(ns.core.Seconds(ns.core.UniformVariable(20, 30).GetValue())) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
mattcieslak/DSI2
dsi2/aggregation/region_clusters.py
1
17921
#!/usr/bin/env python import os import numpy as np from ..streamlines.track_dataset import RegionCluster, TrackDataset from .cluster_ui import ClusterEditor from ..streamlines.track_math import tracks_to_endpoints from ..database.track_datasource import TrackDataSource import matplotlib.pyplot as plt from dipy.tracking import metrics as tm from dipy.tracking import distances as td from traits.api import HasTraits, Instance, Array, Enum, \ Str, File, on_trait_change, Bool, Dict, Range, Color, List, Int, \ Property, Button, DelegatesTo, on_trait_change, Str, Tuple from traitsui.api import View, Group, Item, RangeEditor, EnumEditor, OKButton, CancelButton from ..streamlines.track_math import region_pair_dict_from_roi_list import networkx as nx graphml_lookup = { "scale33":"resolution83", "scale60":"resolution150", "scale125":"resolution258", "scale250":"resolution500", "scale500":"resolution1015" } class TerminationPatternPlotter(HasTraits): pass class RegionAggregator(ClusterEditor): # Maps roi integer to a name region_labels = Dict # Maps pairs of roi integers to an index region_pairs_to_index = Dict index_to_region_pairs = Dict regions = Array # will a connection be allowed if it appears in ANY or ALL subjects? across_subject_comparison_operation = Enum("Union","Intersection") parameters = ["min_tracks"] min_tracks = Range(low=0,high=100,value=1, auto_set=False,name="min_tracks", desc="A cluster label must be assigned to at least this many tracks", label="Minimum tracks", parameter=True ) atlas_name = Str("None",parameter=True) # Buttons for the algorithm_widgets b_plot_connection_vector = Button(label="Connection Vectors") b_query_region_pairs = Button(label="Query a Region Pair") b_change_postproc = Button(label="Change PostProcessor") # Previously from "Atlas" possible_atlases = List atlas_graphml = File connection_vector_plot_type = Enum("lines","imshow") def _b_plot_connection_vector_fired(self): """Listen for button clicks""" self.plot_connection_vectors() @on_trait_change("atlas_name") def set_atlas(self,atlas_name): """ Loads a numpy array from disk based on the string `atlas_name`. Parameters: ----------- atlas_name:Str Must exist as a key in the TrackDataset.properties.atlases of each subject Does: ----- * Reads the graphml file from CMP corresponding to `atlas_name` * Builds lookup tables for connection_id -> (region1, region2) * Builds lookup tables for connection_id -> ("region1", region2) """ if not len(self.track_sets): return self.atlas_name = atlas_name # only use the first part of the atlas name to get lausanne labels if not all([atlas_name in tds.properties.atlases.keys() for tds in self.track_sets]): print "WARNING: Not all TrackDatasets have ", atlas_name return # Set the .connections attribute on each TrackDataset for tds in self.track_sets: tds.load_connections(self.atlas_name) # ===================================================================================== # IF there is a graphml, load it to get the region names self.atlas_graphml = self.track_sets[0].properties.atlases[atlas_name]["graphml_path"] if self.atlas_graphml: print "loading regions from", self.atlas_graphml graph = nx.read_graphml(self.atlas_graphml) for roi_id,roi_data in graph.nodes(data=True): self.region_labels[roi_id] = roi_data self.regions = np.array(sorted(map( int,graph.nodes() ))) self.region_pairs_to_index = region_pair_dict_from_roi_list(self.regions) # Which regionpairs map to which unique id in this dataset? self.index_to_region_pairs = dict( [ (idxnum,(self.region_labels[str(id1)]['dn_name'], self.region_labels[str(id2)]['dn_name']) ) \ for (id1,id2), idxnum in self.region_pairs_to_index.iteritems() ] ) self.region_pair_strings_to_index = dict([ (value,key) for key,value in self.index_to_region_pairs.iteritems() ]) #self.update_clusters() def get_region_pair_code(self,region1,region2): if (region1,region2) in self.region_pair_strings_to_index: return self.region_pair_strings_to_index[(region1,region2)] if (region2,region1) in self.region_pair_strings_to_index: return self.region_pair_strings_to_index[(region2,region1)] else: return None def update_clusters(self): """ OVERRIDES THE BASE update_clusters so we can apply the postproc filter 1) A first-pass "clusterize" is run over all the track_sets 2) The conection-vector matrix is built using all subjects 3) IF a post-processing is selected 3a) Statistics for each connection_id are used to determine which connection_ids should be visualized 3b) clusterize is run again to collect stats for each dataset AFTER they've been subset to contain only selected connection_ids """ ## First-pass: collect all the termination patterns _clusters = [] self.label_lookup = [] # If we're not supposed to query tracks, clear the clusters and do nothing if not self.render_tracks: self.clusters = _clusters return # First-pass clustering for tds in self.track_sets: clusts, connection_id_map = self.clusterize(tds) self.label_lookup.append(connection_id_map) tds.set_clusters(clusts, update_glyphs=(self.filter_operation=="None")) _clusters += tds.clusters # collect the colorized version self.clusters = _clusters self.pre_filter_connections, self.pre_filter_matrix = self.connection_vector_matrix() if self.filter_operation == "None": self.post_filter_matrix, self.post_filter_connections,= \ self.pre_filter_matrix, self.pre_filter_connections print "%"*5, "No Postprocessing Filter" return # A post-processing filter is to be applied print "%"*5, "Applying", self.filter_operation, "filter" OK_regions = self.post_processor.filter_clusters( ( self.pre_filter_connections,self.pre_filter_matrix) ) # Second pass: subset the track_sets so that only OK regions # are plotted filt_tracks = [] _clusters = [] self.label_lookup = [] for tds in self.track_sets: ftds = tds.subset(tds.get_tracks_by_connection_id(OK_regions)) clusts, connection_id_map = self.clusterize(ftds) self.label_lookup.append(connection_id_map) ftds.set_clusters(clusts) _clusters += ftds.clusters # collect the colorized version filt_tracks.append(ftds) self.clusters = _clusters self.set_track_sets(filt_tracks) self.post_filter_connections, self.post_filter_matrix = \ self.connection_vector_matrix() def clusterize(self, ttracks): """ Operates **On a single TrackDataset**. 1) track_dataset.connections are tabulated 2) a RegionCluster is created for each connection_id Nothing is returned. """ # Holds the cluster assignments for each track clusters = [] label_id_map = {} if self.atlas_name == "None": print "Requires an atlas to be specified!!" return clusters, label_id_map labels = ttracks.connections # Populate the clusters list clustnum = 0 for k in np.unique(labels): indices = np.flatnonzero(labels == k) ntracks = len(indices) if ntracks < self.min_tracks: continue try: start_region, end_region = self.index_to_region_pairs[k] except KeyError: print "Region clusterizer encountered an unexpected connection id: ", k start_region, end_region = "undefined","undefined" clustnum += 1 clusters.append( RegionCluster( start_coordinate = start_region, end_coordinate = end_region, ntracks = ntracks, id_number = clustnum, indices = indices, connection_id = k, scan_id = ttracks.scan_id ) ) label_id_map[k] = clustnum-1 return clusters, label_id_map def found_connections(self): """ Returns a list of connections found by the tracks considered """ found_conns = [set([cl.connection_id for cl in ts.clusters]) for ts in self.track_sets] connection_ids = [] if len(found_conns) == 0: print "Found no connections" return connection_ids = set([]) for conns in found_conns: if self.across_subject_comparison_operation == "Union": connection_ids.update(conns) elif self.across_subject_comparison_operation == "Intersection": connection_ids.intersection_update(conns) return sorted(list(connection_ids)) def connection_vector_matrix(self,n_top=0): """ Parameters ---------- n_top:int only return the `n_top` highest ranked connections Returns ------- observed_connections:list the results of the self.found_connections() connection_vectors:np.ndarray one row per dataset, one column per region pair """ observed_connections = self.found_connections() connection_vectors = np.zeros((len(self.track_sets), len(observed_connections))) row_labels = [] for tds_num,(tds,lut) in enumerate(zip(self.track_sets,self.label_lookup)): row_labels.append(tds.properties.scan_id) for nconn, connection in enumerate(observed_connections): idx = lut.get(connection,-999) if idx < 0: continue connection_vectors[tds_num,nconn] = tds.clusters[idx].ntracks if n_top > 0: top_indices = np.flatnonzero(( connection_vectors.shape[1] -1 \ - connection_vectors.argsort().argsort().sum(0).argsort().argsort()) \ < n_top ) return [observed_connections[n] for n in top_indices], connection_vectors[:,top_indices] return observed_connections, connection_vectors def plot_connection_vectors(self): # Which data should we use? if self.post_filter_connections.size == 0: matrix = self.pre_filter_matrix labels = self.pre_filter_connections else: matrix = self.post_filter_matrix labels = self.post_filter_connections # Pad dimensions if matrix.ndim == 1: matrix.shape = (1,matrix.shape[0]) if self.connection_vector_plot_type == "imshow": self.plot_connection_vector_tiles(matrix, labels) elif self.connection_vector_plot_type == "lines": self.plot_connection_vector_lines(matrix, labels) def plot_connection_vector_lines(self,matrix,labels): fig = plt.figure() ax = fig.add_subplot(1,1,1) static_colors = all( [not s.properties.dynamic_color_clusters for s in self.track_sets]) # Is each TrackDataset assigned a specific color? if static_colors: print "plotting using static colors" for tds, vec in zip(self.track_sets,self.post_filter_matrix): ax.plot( vec, label=tds.properties.scan_id, color=[x/255. for x in tds.properties.static_color[:3]], linewidth=4) else: for tds, vec in zip(self.track_sets, self.post_filter_matrix): ax.plot(vec,label=tds.properties.scan_id,linewidth=4) ax.legend() ax.set_xticks(np.arange(self.post_filter_matrix.shape[1])) ax.set_title("Observed Connections") ax.set_ylabel("Streamline Count") ax.set_xticklabels( ["(%s, %s)" % self.index_to_region_pairs.get(conn,("no-label","no-label")) \ for conn in self.post_filter_connections ] ) plt.xticks(rotation=90,size=12) plt.subplots_adjust(bottom=0.55) fig.show() return fig def plot_connection_vector_tiles(self,matrix,labels): fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.imshow(cv,interpolation="nearest", aspect="auto") ax.set_yticks(np.arange(cv.shape[0])) ax.set_yticklabels([tds.properties.scan_id for tds in self.track_sets]) ax.set_xticks(np.arange(cv.shape[1])) ax.set_title("Observed Connections") ax.set_ylabel("Streamline Count") ax.set_xticklabels( ["(%s, %s)" % self.index_to_region_pairs[conn] \ for conn in connections ] ) plt.xticks(rotation=90,size=12) plt.subplots_adjust(bottom=0.45) fig.show() return fig def get_R_dat(self,subject_ids,roi_name): """ Saves a tab-delimited text file of the Termination Patterns found. Parameters ---------- subject_ids:list subject names corresponding to the rows returned by `self.connection_vector_matrix()` roi_name:str name of the ROI to be saved in the ROI column of the dat file Returns ------- results:list a string row for each subject """ conn_ids, cvec = self.connection_vector_matrix() region_pairs = ["%s.%s" % self.index_to_region_pairs[conn] \ for conn in conn_ids ] header = "\t".join( ["subject","roi", "region.pair", "count"]) results = [ header ] for subject_id,subject_data in zip(subject_ids,cvec): for pair_id, pair_count in zip(region_pairs,subject_data): results.append( "\t".join( ['"s%s"'%subject_id, roi_name, pair_id, "%.2f"%pair_count ] )) return results # widgets for editing algorithm parameters algorithm_widgets = Group( Item(name="min_tracks", editor=RangeEditor(mode="slider", high = 100,low = 0,format = "%i")), Item("atlas_name", editor= EnumEditor(name="possible_atlases")), Group( Item("post_processor", style="simple"), Item(name="b_plot_connection_vector"), show_border=True, show_labels=False ) ) def query_region_pair(self): """ Opens a little GUI where you can select two regions. Each TrackDataset is subset so that only streamlines connecting that region-pair are visible. """ if len(self.track_source) == 0: return # launch the ui and stop everything else ui = self.region_pair_query.edit_traits() if not ui.result: print "canceled, exiting" return self.save_name = "%s__to__%s" % ( self.region_pair_query.region1, self.region_pair_query.region2) region_id = self.clusterer.get_region_pair_code( self.region_pair_query.region1, self.region_pair_query.region2) if region_id is None: print "region pair not found" else: self.render_region_pairs(region_id) def render_region_pairs(self,region_id): self.clusterer.clear_clusters() self.clusterer.set_track_sets( self.track_source.query_connection_id(region_id, every=self.downsample)) # --- Rendering --- self.scene3d.disable_render = True self.clear_track_glyphs() self.clusterer.update_clusters() self.clusterer.draw_tracks() class RegionPair(HasTraits): possible_regions = List region1 = Str region2 = Str selected_connection = Int def update_regions(self, clusterer): """Updates ``self.possible_regions`` based on the clusterer and sets an arbitrary region pair """ print "updating possible regions" self.possible_regions = sorted([ clusterer.region_labels[str(id1)]['dn_name'] \ for id1 in clusterer.regions ]) if not len(self.possible_regions): return self.region1 = self.possible_regions[0] self.region2 = self.possible_regions[0] traits_view = View(Group( Item("region1",editor=EnumEditor(name="possible_regions")), Item("region2",editor=EnumEditor(name="possible_regions")), orientation="vertical" ), kind="modal", buttons=[OKButton,CancelButton] )
gpl-3.0
huzq/scikit-learn
sklearn/discriminant_analysis.py
3
30056
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause import warnings import numpy as np from scipy import linalg from scipy.special import expit from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model._base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array from .utils.validation import check_is_fitted from .utils.multiclass import check_classification_targets from .utils.extmath import softmax from .preprocessing import StandardScaler from .utils.validation import _deprecate_positional_args __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. shrinkage : {'empirical', 'auto'} or float, default=None Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : ndarray of shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, str): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like of shape (n_classes, n_features) Class means. """ classes, y = np.unique(y, return_inverse=True) cnt = np.bincount(y) means = np.zeros(shape=(len(classes), X.shape[1])) np.add.at(means, y, X) means /= cnt[:, None] return means def _class_cov(X, y, priors, shrinkage=None): """Compute weighted within-class covariance matrix. The per-class covariance are weighted by the class priors. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like of shape (n_classes,) Class priors. shrinkage : 'auto' or float, default=None Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like of shape (n_features, n_features) Weighted within-class covariance matrix """ classes = np.unique(y) cov = np.zeros(shape=(X.shape[1], X.shape[1])) for idx, group in enumerate(classes): Xg = X[y == group, :] cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage)) return cov class LinearDiscriminantAnalysis(LinearClassifierMixin, TransformerMixin, BaseEstimator): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions, using the `transform` method. .. versionadded:: 0.17 *LinearDiscriminantAnalysis*. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : {'svd', 'lsqr', 'eigen'}, default='svd' Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : 'auto' or float, default=None Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array-like of shape (n_classes,), default=None The class prior probabilities. By default, the class proportions are inferred from the training data. n_components : int, default=None Number of components (<= min(n_classes - 1, n_features)) for dimensionality reduction. If None, will be set to min(n_classes - 1, n_features). This parameter only affects the `transform` method. store_covariance : bool, default=False If True, explicitely compute the weighted within-class covariance matrix when solver is 'svd'. The matrix is always computed and stored for the other solvers. .. versionadded:: 0.17 tol : float, default=1.0e-4 Absolute threshold for a singular value of X to be considered significant, used to estimate the rank of X. Dimensions whose singular values are non-significant are discarded. Only used if solver is 'svd'. .. versionadded:: 0.17 Attributes ---------- coef_ : ndarray of shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : ndarray of shape (n_classes,) Intercept term. covariance_ : array-like of shape (n_features, n_features) Weighted within-class covariance matrix. It corresponds to `sum_k prior_k * C_k` where `C_k` is the covariance matrix of the samples in class `k`. The `C_k` are estimated using the (potentially shrunk) biased estimator of covariance. If solver is 'svd', only exists when `store_covariance` is True. explained_variance_ratio_ : ndarray of shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen or svd solver is used. means_ : array-like of shape (n_classes, n_features) Class-wise means. priors_ : array-like of shape (n_classes,) Class priors (sum to 1). scalings_ : array-like of shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. Only available for 'svd' and 'eigen' solvers. xbar_ : array-like of shape (n_features,) Overall mean. Only present if solver is 'svd'. classes_ : array-like of shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis() >>> print(clf.predict([[-0.8, -1]])) [1] """ @_deprecate_positional_args def __init__(self, *, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals) )[::-1][:self._max_components] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, Vt = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) # Scaling of within covariance is: V' 1/S scalings = (Vt[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, Vt = linalg.svd(X, full_matrices=0) self.explained_variance_ratio_ = (S**2 / np.sum( S**2))[:self._max_components] rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, Vt.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. """ X, y = self._validate_data(X, y, ensure_min_samples=2, estimator=self, dtype=[np.float64, np.float32]) self.classes_ = unique_labels(y) n_samples, _ = X.shape n_classes = len(self.classes_) if n_samples == n_classes: raise ValueError("The number of samples must be more " "than the number of classes.") if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = np.bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if not np.isclose(self.priors_.sum(), 1.0): warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Maximum number of components no matter what n_components is # specified: max_components = min(len(self.classes_) - 1, X.shape[1]) if self.n_components is None: self._max_components = max_components else: if self.n_components > max_components: raise ValueError( "n_components cannot be larger than min(n_features, " "n_classes - 1)." ) self._max_components = self.n_components if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2, dtype=X.dtype) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1, dtype=X.dtype) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- X_new : ndarray of shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) return X_new[:, :self._max_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated probabilities. """ check_is_fitted(self) decision = self.decision_function(X) if self.classes_.size == 2: proba = expit(decision) return np.vstack([1-proba, proba]).T else: return softmax(decision) def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated log probabilities. """ prediction = self.predict_proba(X) prediction[prediction == 0.0] += np.finfo(prediction.dtype).tiny return np.log(prediction) def decision_function(self, X): """Apply decision function to an array of samples. The decision function is equal (up to a constant factor) to the log-posterior of the model, i.e. `log p(y = k | x)`. In a binary classification setting this instead corresponds to the difference `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples (test vectors). Returns ------- C : ndarray of shape (n_samples,) or (n_samples, n_classes) Decision function values related to each class, per sample. In the two-class case, the shape is (n_samples,), giving the log likelihood ratio of the positive class. """ # Only override for the doc return super().decision_function(X) class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator): """Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. .. versionadded:: 0.17 *QuadraticDiscriminantAnalysis* Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- priors : ndarray of shape (n_classes,), default=None Class priors. By default, the class proportions are inferred from the training data. reg_param : float, default=0.0 Regularizes the per-class covariance estimates by transforming S2 as ``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``, where S2 corresponds to the `scaling_` attribute of a given class. store_covariance : bool, default=False If True, the class covariance matrices are explicitely computed and stored in the `self.covariance_` attribute. .. versionadded:: 0.17 tol : float, default=1.0e-4 Absolute threshold for a singular value to be considered significant, used to estimate the rank of `Xk` where `Xk` is the centered matrix of samples in class k. This parameter does not affect the predictions. It only controls a warning that is raised when features are considered to be colinear. .. versionadded:: 0.17 Attributes ---------- covariance_ : list of len n_classes of ndarray \ of shape (n_features, n_features) For each class, gives the covariance matrix estimated using the samples of that class. The estimations are unbiased. Only present if `store_covariance` is True. means_ : array-like of shape (n_classes, n_features) Class-wise means. priors_ : array-like of shape (n_classes,) Class priors (sum to 1). rotations_ : list of len n_classes of ndarray of shape (n_features, n_k) For each class k an array of shape (n_features, n_k), where ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. It corresponds to `V`, the matrix of eigenvectors coming from the SVD of `Xk = U S Vt` where `Xk` is the centered matrix of samples from class k. scalings_ : list of len n_classes of ndarray of shape (n_k,) For each class, contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. It corresponds to `S^2 / (n_samples - 1)`, where `S` is the diagonal matrix of singular values from the SVD of `Xk`, where `Xk` is the centered matrix of samples from class k. classes_ : ndarray of shape (n_classes,) Unique class labels. Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) QuadraticDiscriminantAnalysis() >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ @_deprecate_positional_args def __init__(self, *, priors=None, reg_param=0., store_covariance=False, tol=1.0e-4): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariance = store_covariance self.tol = tol def fit(self, X, y): """Fit the model according to the given training data and parameters. .. versionchanged:: 0.19 ``store_covariances`` has been moved to main constructor as ``store_covariance`` .. versionchanged:: 0.19 ``tol`` has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values (integers) """ X, y = self._validate_data(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('The number of classes has to be greater than' ' one; got %d class' % (n_classes)) if self.priors is None: self.priors_ = np.bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None store_covariance = self.store_covariance if store_covariance: cov = [] means = [] scalings = [] rotations = [] for ind in range(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T _, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariance or store_covariance: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariance or store_covariance: self.covariance_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): # return log posterior, see eq (4.12) p. 110 of the ESL. check_is_fitted(self) X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, axis=1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. The decision function is equal (up to a constant factor) to the log-posterior of the model, i.e. `log p(y = k | x)`. In a binary classification setting this instead corresponds to the difference `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples (test vectors). Returns ------- C : ndarray of shape (n_samples,) or (n_samples, n_classes) Decision function values related to each class, per sample. In the two-class case, the shape is (n_samples,), giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : ndarray of shape (n_samples,) """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples/test vectors. Returns ------- C : ndarray of shape (n_samples, n_classes) Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return log of posterior probabilities of classification. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples/test vectors. Returns ------- C : ndarray of shape (n_samples, n_classes) Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
xyguo/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
SAGES-UCSC/GC-CaT-Metallicitiy
interp.py
1
10305
#! /usr/bin/env python ''' Created on Mar 17, 2011 @author: Chris Usher ''' import numpy as np #import matplotlib.pyplot as plt import scipy.interpolate as interpolate def redisperse(inputwavelengths, inputfluxes, firstWavelength=None, lastWavelength=None, dispersion=None, nPixels=None, outside=None, function='spline'): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] epsilon = 1e-10 if dispersion == None and nPixels != None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.linspace(firstWavelength, lastWavelength, nPixels) elif dispersion != None and nPixels == None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) elif dispersion != None and nPixels != None: if firstWavelength != None: outputwavelengths = firstWavelength + dispersion * np.ones(nPixels) elif lastWavelength != None: outputwavelengths = lastWavelength - dispersion * np.ones(nPixels) outputwavelengths = outputwavelengths[::-1] else: outputwavelengths = inputwavelengths[0] + dispersion * np.ones(nPixels) else: dispersion = (inputwavelengths[-1] - inputwavelengths[0]) / (inputwavelengths.size - 1) if lastWavelength == None: lastWavelength = inputwavelengths[-1] if firstWavelength != None: outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) else: outputwavelengths = np.arange(inputwavelengths[0], lastWavelength + epsilon, dispersion) outputdispersion = outputwavelengths[1] - outputwavelengths[0] outputedges = np.linspace(outputwavelengths[0] - outputdispersion / 2, outputwavelengths[-1] + outputdispersion / 2, outputwavelengths.size + 1) outputfluxes = interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function) return (outputwavelengths, outputfluxes) def rebin(inputwavelengths, inputfluxes, outputwavelengths, outside=None, function='spline', ratio=False): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.empty(outputwavelengths.size + 1) outputedges[1:-1] = (outputwavelengths[1:] + outputwavelengths[:-1]) / 2 outputedges[0] = 3 * outputwavelengths[0] / 2 - outputwavelengths[1] / 2 outputedges[-1] = 3 * outputwavelengths[-1] / 2 - outputwavelengths[-2] / 2 return interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside=None, function='spline', ratio=False): if not ratio: fluxdensities = inputfluxes / inputdispersions.mean() else: fluxdensities = inputfluxes outputfluxes = np.ones(outputwavelengths.size) if outside != None: outputfluxes = outputfluxes * outside else: middle = (outputwavelengths[0] + outputwavelengths[-1]) / 2 firstnew = None lastnew = None if function == 'nearest': pixels = np.arange(0, inputfluxes.size) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = 0 below = inputedges[1:] < outputlowerlimit above = inputedges[:-1] > outputupperlimit ok = ~(below | above) for oldpixel in pixels[ok]: inputlowerlimit = inputedges[oldpixel] inputupperlimit = inputedges[oldpixel + 1] if inputlowerlimit >= outputlowerlimit and inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * inputdispersions[oldpixel] elif inputlowerlimit < outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - outputlowerlimit) elif inputlowerlimit < outputlowerlimit and outputlowerlimit <= inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (inputupperlimit - outputlowerlimit) elif outputupperlimit >= inputlowerlimit >= outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - inputlowerlimit) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] else: fluxspline = interpolate.UnivariateSpline(inputwavelengths, fluxdensities, s=0, k=3) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = fluxspline.integral(outputedges[newpixel], outputedges[newpixel + 1]) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] if outside == None: for newpixel in range(outputfluxes.size): if outputwavelengths[newpixel] < inputwavelengths[0]: outputfluxes[newpixel] = firstnew elif outputwavelengths[newpixel] > inputwavelengths[-1]: outputfluxes[newpixel] = lastnew return outputfluxes def lineartolog(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False, logDispersion=0): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] if logDispersion: outputedges = np.arange(np.log10(inputedges[0]), np.log10(inputedges[-1]), logDispersion) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 outputedges = 10**outputedges outputwavelengths = 10**outputwavelengths else: outputedges = np.logspace(np.log10(inputedges[0]), np.log10(inputedges[-1]), inputedges.size) outputwavelengths = (outputedges[:-1] * outputedges[1:])**.5 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def logtolinear(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False): logWavelengths = np.log10(inputwavelengths) inputedges = np.empty(logWavelengths.size + 1) inputedges[1:-1] = (logWavelengths[1:] + logWavelengths[:-1]) / 2 inputedges[0] = 3 * logWavelengths[0] / 2 - logWavelengths[1] / 2 inputedges[-1] = 3 * logWavelengths[-1] / 2 - logWavelengths[-2] / 2 inputedges = 10**inputedges inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.linspace(inputedges[0], inputedges[-1], inputedges.size) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def log_redisperse(inputwavelengths, inputfluxes, firstWavelength, lastWavelength, dispersion, outside=0, function='spline', ratio=False): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] outputwavelengths = np.arange(np.log10(firstWavelength), np.log10(lastWavelength), dispersion) outputedges = np.linspace(outputwavelengths[0] - dispersion / 2, outputwavelengths[-1] + dispersion / 2, outputwavelengths.size + 1) outputedges = 10**outputedges outputwavelengths = 10**outputwavelengths return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) #plt.show()
bsd-3-clause
bmazin/ARCONS-pipeline
photometry/plot3DImage.py
1
2500
#This code uses Popup to plot a 3D image import warnings from functools import partial from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from util.popup import * def plot3DImage(fig,ax,data,errs=None,fit=None,surface=True,countour=False): data[np.where(np.invert(data>0.))]=0. x=np.tile(range(len(data[0])),(len(data),1)) y=np.tile(range(len(data)),(len(data[0]),1)).transpose() ax = fig.add_subplot(111, projection='3d') if surface: ax.plot_surface(x, y, data, rstride=1, cstride=1, color='black',alpha=0.1) else: with warnings.catch_warnings(): warnings.filterwarnings("ignore",'invalid value encountered in divide',RuntimeWarning) ax.bar3d(x.flatten(),y.flatten(),x.flatten()*0,1,1,data.flatten(),color='cyan',alpha=0.9) if errs!=None: ax.bar3d(x[np.where(np.invert(np.isfinite(errs)))].flatten(),y[np.where(np.invert(np.isfinite(errs)))].flatten(),x[np.where(np.invert(np.isfinite(errs)))].flatten()*0,1,1,data[np.where(np.invert(np.isfinite(errs)))].flatten(),color='red',alpha=0.9) if countour: #cset = ax.contourf(x, y, data, zdir='z', offset=0, cmap=cm.coolwarm) cset = ax.contourf(x, y, data, zdir='x', offset=0., cmap=cm.coolwarm) cset = ax.contourf(x, y, data, zdir='y', offset=0., cmap=cm.coolwarm) else: ax.plot(range(len(data[0])+1),np.zeros(len(data[0])+1),zs=np.concatenate(([0],np.amax(data,0))),zdir='z',color='blue',drawstyle='steps') ax.plot(np.zeros(len(data)+1),range(len(data)+1),zs=np.concatenate(([0],np.amax(data,1))),zdir='z',color='blue',drawstyle='steps') if fit!=None: ax.plot_wireframe(x+0.5, y+0.5, fit, rstride=1, cstride=1, color='red') ax.plot(np.asarray(range(len(data[0])))+0.5,np.zeros(len(data[0])),zs=np.amax(fit,0),zdir='z',color='red') ax.plot(np.zeros(len(data)),np.asarray(range(len(data)))+0.5,zs=np.amax(fit,1),zdir='z',color='red') ax.set_zlim(0, np.amax(data)) ax.set_xlim(0,np.amax(x)) ax.set_ylim(0,np.amax(y)) cid = fig.canvas.mpl_connect('scroll_event', partial(scroll3D,fig,ax)) def scroll3D(fig,ax,event): increment = 0.05 currentZlim = ax.get_zlim()[1] if event.button == 'up': newZlim = currentZlim-increment*currentZlim if event.button == 'down': newZlim = currentZlim+increment*currentZlim if newZlim < 10: newZlim=10 ax.set_zlim(0,newZlim) fig.canvas.draw()
gpl-2.0
pygeo/geoval
tests/test_grid.py
1
1263
# -*- coding: utf-8 -*- """ This file is part of GEOVAL. (c) 2016- Alexander Loew For COPYING and LICENSE details, please refer to the LICENSE file """ import matplotlib matplotlib.use('Agg') import sys sys.path.append('..') import unittest from geoval import grid import numpy as np class TestGeovalGrid(unittest.TestCase): def setUp(self): self.lon = np.linspace(-120., 130.) self.lat = np.linspace(-30., 30.) self.grid = grid.Grid(np.deg2rad(self.lat), np.deg2rad(self.lon), sphere_radius=6000000.) def test_DummyTest(self): pass def test_grid_init(self): with self.assertRaises(ValueError): G = grid.Grid(np.deg2rad(self.lat), np.deg2rad(self.lon)) G = grid.Grid(np.deg2rad(self.lat), np.deg2rad(self.lon), sphere_radius=6000000.) def test_grid_cellarea(self): with self.assertRaises(ValueError): self.grid.calc_cell_area() def test_grid_plot(self): self.grid.plot() def test_grid_plot_voronoi(self): self.grid.plot_voronoi() def test_grid_plot_delaunay(self): self.grid.plot_delaunay_grid() def test_grid_draw_edge(self): self.grid.draw_edges() if __name__ == "__main__": unittest.main()
apache-2.0
RuthAngus/kalesalad
code/identify_dwarfs.py
1
4436
# Find the giants in the TGAS/EPIC crossmatched catalog and remove them from # the list. # Saves a .csv file of the tgas_epic.csv catalogue with the giants removed and # stars of very high and low temperatures removed. # I have not made a cut in parallax error. import numpy as np import matplotlib.pyplot as plt import pandas as pd import isochrones # from isochrones.dartmouth import Dartmouth_Isochrone from isochrones.mist import MIST_Isochrone from scipy.interpolate import interp1d plotpar = {'axes.labelsize': 20, 'text.fontsize': 20, 'legend.fontsize': 20, 'xtick.labelsize': 20, 'ytick.labelsize': 20, 'text.usetex': True} plt.rcParams.update(plotpar) def abs_mag_w_MC_uncertainty(mean_m, m_err, mean_p, parallax_err, N): values = np.vstack((mean_m + np.random.randn(N)*m_err, mean_p + np.random.randn(N)*parallax_err)).T abs_mags = [abs_mag(m, parallax) for m, parallax in values] mean = np.mean(abs_mags) lower, upper = np.percentile(abs_mags, 16), np.percentile(abs_mags, 84) return mean, mean - lower, upper - mean def abs_mag(m, parallax): return m - 5 * np.log10(1./parallax) + 5 def CMD_plot(colour, abs_mag): """ Plot and save a CMD. """ counts, xbins, ybins = np.histogram2d(colour, abs_jmag, bins=100) plt.clf() lower_lim, upper_lim = -.2, 1.5 m = (lower_lim < colour) * (colour < upper_lim) plt.scatter(colour[m], abs_jmag[m], c=colour[m], s=2) # plt.contour(xbins[:-1], ybins[:-1], counts, colors='black'); plt.contour(counts.transpose(), extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], linewidths=.5, colors='white', linestyles='solid') plt.colorbar(label="$J - K$") plt.xlabel("$J - K$") plt.ylabel("$M_J$") plt.ylim(22, 8) plt.xlim(lower_lim, upper_lim) plt.subplots_adjust(left=.15, bottom=.15) plt.savefig("CMD") def HRD_plot(teff, abs_gmag): # dar = Dartmouth_Isochrone() mist = MIST_Isochrone() iso_300 = mist.isochrone(age=np.log10(300e6), feh=0.0, AV=0.0) counts, xbins, ybins = np.histogram2d(teff, abs_gmag, bins=100) # Make temperature cuts lower_lim, upper_lim = 3200, 8000 m = (lower_lim < teff) * (teff < upper_lim) plt.clf() # Plot points + contours plt.scatter(teff[m], abs_gmag[m], c=teff[m], s=2, cmap="viridis_r", zorder=0) plt.colorbar(label="$T_{\mathrm{eff}}$") plt.contour(counts.transpose(), extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], linewidths=.5, colors='white', linestyles='solid') # Plot isochrones plt.plot(iso_300.Teff[:100], iso_300.G_mag[:100]+1, "k", lw=.5) plt.plot(iso_300.Teff[:100], iso_300.G_mag[:100]-1, "k", lw=.5) # Select stars between isochrones fup = interp1d(iso_300.Teff[:100], iso_300.G_mag[:100] + 1) flo = interp1d(iso_300.Teff[:100], iso_300.G_mag[:100] - 1) inds = [] for i, G in enumerate(abs_gmag[m]): upper_G_at_this_teff = fup(teff[m][i]) lower_G_at_this_teff = flo(teff[m][i]) if (lower_G_at_this_teff < G) and (G < upper_G_at_this_teff): inds.append(i) # plt.scatter(teff[m][inds], abs_gmag[m][inds], c="k", s=2, zorder=1) plt.xlabel("$T_{\mathrm{eff}}$") plt.ylabel("$M_G$") plt.ylim(10, -7) plt.xlim(upper_lim, lower_lim) plt.subplots_adjust(left=.15, bottom=.15) plt.savefig("HRD") plt.savefig("HRD.pdf") return m, inds if __name__ == "__main__": # import isochrones.dartmouth # isochrones.dartmouth.download_grids() # Plot a CMD. df = pd.read_csv("epic_tgas.csv") # Calculate colours and magnitudes abs_jmag = abs_mag(df.k2_jmag.values, df.tgas_parallax.values*1e-3) colour = df.k2_jmag.values - df.k2_kmag.values # Remove NaNs m = np.isfinite(colour) * np.isfinite(abs_jmag) colour, abs_jmag = colour[m], abs_jmag[m] CMD_plot(colour, abs_jmag) teff = df.k2_teff.values abs_gmag = abs_mag(df.tgas_phot_g_mean_mag.values, df.tgas_parallax.values*1e-3) m = np.isfinite(teff) * np.isfinite(abs_gmag) teff, abs_gmag = teff[m], abs_gmag[m] teff_cut, inds = HRD_plot(teff, abs_gmag) df_temp_cuts = df.iloc[teff_cut] df_dwarfs = df_temp_cuts.iloc[inds] df_dwarfs.to_csv("tgas_epic_dwarfs.csv")
mit
emon10005/sympy
sympy/external/tests/test_importtools.py
91
1215
from sympy.external import import_module # fixes issue that arose in addressing issue 6533 def test_no_stdlib_collections(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections2(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections3(): '''make sure we get the right collections with no catch''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0') if matplotlib: assert collections != matplotlib.collections
bsd-3-clause
lsbardel/zipline
zipline/sources/data_frame_source.py
6
4633
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tools to generate data sources. """ import pandas as pd from zipline.gens.utils import hash_args from zipline.sources.data_source import DataSource class DataFrameSource(DataSource): """ Yields all events in event_list that match the given sid_filter. If no event_list is specified, generates an internal stream of events to filter. Returns all events if filter is None. Configuration options: sids : list of values representing simulated internal sids start : start date delta : timedelta between internal events filter : filter to remove the sids """ def __init__(self, data, **kwargs): assert isinstance(data.index, pd.tseries.index.DatetimeIndex) self.data = data # Unpack config dictionary with default values. self.sids = kwargs.get('sids', data.columns) self.start = kwargs.get('start', data.index[0]) self.end = kwargs.get('end', data.index[-1]) # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None @property def mapping(self): return { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt, series in self.data.iterrows(): for sid, price in series.iterkv(): if sid in self.sids: event = { 'dt': dt, 'sid': sid, 'price': price, 'volume': 1000, } yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data class DataPanelSource(DataSource): """ Yields all events in event_list that match the given sid_filter. If no event_list is specified, generates an internal stream of events to filter. Returns all events if filter is None. Configuration options: sids : list of values representing simulated internal sids start : start date delta : timedelta between internal events filter : filter to remove the sids """ def __init__(self, data, **kwargs): assert isinstance(data.major_axis, pd.tseries.index.DatetimeIndex) self.data = data # Unpack config dictionary with default values. self.sids = kwargs.get('sids', data.items) self.start = kwargs.get('start', data.major_axis[0]) self.end = kwargs.get('end', data.major_axis[-1]) # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None @property def mapping(self): mapping = { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } # Add additional fields. for field_name in self.data.minor_axis: if field_name in ['price', 'volume', 'dt', 'sid']: continue mapping[field_name] = (lambda x: x, field_name) return mapping @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt in self.data.major_axis: df = self.data.major_xs(dt) for sid, series in df.iterkv(): if sid in self.sids: event = { 'dt': dt, 'sid': sid, } for field_name, value in series.iteritems(): event[field_name] = value yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data
apache-2.0
chebee7i/twitter
scripts/counter/notes.py
1
5689
""" Begin date: 2014-04-25 08:00 UTC End date: 2015-04-25 08:00 UTC Basic stats and counts for each hashtag are stored in an sqlite3 database: hashtag_counts.db. The tweets were binned at a temporal resolution of 5 minutes. This means each hashtag has roughly 100k bins associated to it. There is a single table "hashtags" which was constructed as: CREATE TABLE IF NOT EXISTS hashtags ( hashtag text unique, nnz_bins int, range_bins int, min_bin int, max_bin int, wmean_bin real, total_counts int, mean_counts real, std_counts real, nonzero_mean_counts real, nonzero_std_counts real, counts text ); Descriptions: hashtag The hashtag. Two special hashtags are included: "#world" and "#us". Note that this is safe since hashtags are not allowed to have "#" mark. So there is no conflict with the hashtags "world" and "us". Hashtags are stored in lowercase, but not necessarily in English. nnz_bins The number of 5-minute bins that have nonzero counts. range_bins The difference between the latest and earliest nonzero bins. min_bin The earliest nonzero bin. max_bin The latest nonzero bin. wmean_bin The weighted mean of nonzero bins: \sum_i w_i b_i / \sum_j w_j. This weights each bin by the number of counts in that bin. total_counts The total number of times the hashtag was mentioned in the data. mean_counts The mean count per bin. std_counts The standard deviation of counts per bin with ddof=0. mean_counts The mean count per nonzero bin. std_counts The standard deviation of counts per nonzero bin with ddof=0. counts A string representing a JSON object (similar to a Python dictionary) that maps bin indexes to count values. In Python, you'd run: import json c = json.loads(counts) """ from __future__ import division import datetime import json import sqlite3 from pytz import utc import numpy as np START_DATE = utc.localize(datetime.datetime(2014, 04, 25, 8)) STOP_DATE = utc.localize(datetime.datetime(2015, 04, 25, 8)) n_days = (STOP_DATE - START_DATE).days resolution = 5 # in minutes slots = int(n_days * 24 * 60 / resolution) DELTA = datetime.timedelta(minutes=resolution) DATES = [START_DATE + i * DELTA for i in range(slots)] DB = 'hashtag_counts.db' conn = sqlite3.connect(DB) def fetch(hashtag, dense=True): """ Returns the stored data for a given hashtag. If dense is True, the counts are returned as a NumPy array instead of a dictionary. """ select = """SELECT * FROM hashtags WHERE hashtag = ?""" with conn: stored = conn.execute(select, (hashtag,)).fetchone() if stored is None: return None out = list(stored) counts = out[-1] d = json.loads(counts) indexes = map(int, d.keys()) counts = d.values() d = dict(zip(indexes, counts)) if dense: x = np.array([ d.get(idx, 0) for idx in range(slots) ]) out[-1] = x return tuple(out) def plot_usworld(): """ Plots counts as a function of days. """ import matplotlib.pyplot as plt import seaborn us = fetch('#us', dense=True)[-1] world = fetch('#world', dense=True)[-1] days = DATES[::12 * 24] us_daily = [arr.sum() for arr in np.array_split(us, slots / (12 * 24))] world_daily = [arr.sum() for arr in np.array_split(world, slots / (12 * 24))] f, ax = plt.subplots() ax.plot(days[-200:], us_daily[-200:], label='US') ax.plot(days[-200:], world_daily[-200:], label='World') ax.set_title('Geotagged Hashtags') ax.set_ylabel('Count') ax.set_xlabel('Time') f.autofmt_xdate() plt.legend(loc='best') plt.savefig('hashtag_counts.pdf') def fetch_counts(pre, repeater, post, repeats=50): counts = {} for k in range(1, repeats): hashtag = pre + k * repeater + post data = fetch(hashtag, dense=True) if data: print hashtag, data[6] counts[k] = data[6] return counts def plot_repeaters(hashtags, kmax=20): """ Plots the counts repeating symbols over different hashtags. hashtags should be a list of 3-tuples, each representing a family of hashtags. The 3-tuple should specify the pre, repeater, and post portion. """ import matplotlib.pyplot as plt import seaborn plt.rcParams['text.usetex'] = False counts = [] max_k = 0 for hashtag in hashtags: c = fetch_counts(*hashtag) mx = max(list(c.keys())) if mx > max_k: max_k = mx counts.append(c) # Make counts dense max_k = min(kmax, max_k) kvals = range(1, max_k + 1) counts = [ [c.get(k, 0) for k in kvals] for c in counts ] f, ax = plt.subplots() for i, hashtag in enumerate(hashtags): if len(hashtag[1]) > 1: label = '${}({})^k{}$'.format(*hashtag) else: label = '${}{}^k{}$'.format(*hashtag) ax.plot(kvals, counts[i], marker='o', label=label, alpha=.5, clip_on=True) ax.set_title("Repeated symbols in hashtags") ax.set_yscale('log') ax.set_ylabel('Counts') ax.set_xlabel('k') plt.legend(loc='best') plt.savefig('hashtag_repeats.pdf') def main(): plot_usworld() """ hashtags = [ ('ye', 's', ''), ('n', 'o', ''), ('w', 'o', 'w'), ('wo', 'w', ''), ('', 'ha', ''), ('', 'jk', ''), ] plot_repeaters(hashtags) """ if __name__ == '__main__': main()
unlicense
lenck/vlb
python/bench/Utils.py
1
13763
#!/usr/bin/python # -*- coding: utf-8 -*- # =========================================================== # File Name: Util.py # Author: Xu Zhang, Columbia University # Creation Date: 01-25-2019 # Last Modified: Mon Apr 15 14:51:27 2019 # # Description: Writing and printing functions # # Copyright (C) 2018 Xu Zhang # All rights reserved. # # This file is made available under # the terms of the BSD license (see the COPYING file). # =========================================================== import numpy as np import os import csv from tqdm import tqdm import cv2 import matplotlib as mpl if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') mpl.use('Agg') import plotly.plotly as py import matplotlib.pyplot as plt def draw_sequence_result(results, sequence_name, term_to_show, figure_num=1, result_dir='./python_scores/'): if len(results) == 0: return sequence_index = -1 result = results[0] for idx, sequence_result in enumerate(result['sequence_result']): if sequence_name == sequence_result['sequence_name']: sequence_index = idx if sequence_index < 0: print("No {} sequence in the results!".format(sequence_name)) return link_id_list = result['sequence_result'][sequence_index]['result_link_id_list'] sorted_index = sorted( range( len(link_id_list)), key=link_id_list.__getitem__) #link_id_list = link_id_list[sorted_index] link_id_list = [link_id_list[i] for i in sorted_index] score_list = [] detector_list = [] for result in results: # print(result['sequence_result'][sequence_index]['sequence_name']) if result['sequence_result'][sequence_index]['sequence_name'] != sequence_name: print( "{} doesn't have the result for sequence {}.".format( result['detector_name'], sequence_name)) continue detector_list.append(result['detector_name']) cur_score_list = [] for idx, sorted_idx in enumerate(sorted_index): if result['sequence_result'][sequence_index]['result_link_id_list'][sorted_idx] == link_id_list[idx]: cur_score_list.append( result['sequence_result'][sequence_index][term_to_show][sorted_idx]) else: print( 'Detector {} miss link {} for sequence {}'.format( result['detector_name'], link_id_list[idx], sequence_name)) score_list.append(cur_score_list) print(score_list) color = ['r', 'g', 'b', 'k', 'y', 'c'] plt.figure(figure_num) # the first figure for idx, score in enumerate(score_list): plt.plot(range(len(score)), score, color[idx % len(color)]) plt.title('{}-{}({})'.format(term_to_show, results[0]['dataset_name'], sequence_name)) plt.xticks(range(len(score)), link_id_list, rotation=45) plt.xlabel('label') plt.ylabel(term_to_show) plt.legend(detector_list, loc='upper right') plt.savefig('{}{}/{}/{}_{}_result.png'.format(result_dir, results[0]['bench_name'], results[0]['dataset_name'], sequence_name, term_to_show)) plt.clf() def draw_feature(dataset, sequence_name, image_idx, detector, use_cache=True, figure_num=1, tmp_feature_dir='./features/', result_dir='./python_image/'): image = dataset.get_image(sequence_name, image_idx) feature_file_name = '{}{}/{}/{}_{}_frame'.format(tmp_feature_dir, dataset.name, detector.name, sequence_name, image_idx) get_feature_flag = False if use_cache: try: feature = np.load(feature_file_name + '.npy') get_feature_flag = True except BaseException: get_feature_flag = False if not get_feature_flag: feature = detector.detect_feature(image) kp_list = [cv2.KeyPoint(p[1], p[0], p[2], p[3]) for p in feature] draw_image = np.copy(image) #draw_image = draw_image[...,::-1] #draw_image = draw_image.copy() if len(draw_image.shape) == 3: draw_image = (draw_image[..., ::-1]).copy() try: os.makedirs('{}{}/{}/'.format(result_dir, dataset.name, detector.name)) except BaseException: pass draw_image = cv2.drawKeypoints( draw_image, kp_list, draw_image, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) image_file_name = '{}{}/{}/{}_{}_frame.png'.format(result_dir, dataset.name, detector.name, sequence_name, image_idx) cv2.imwrite(image_file_name, draw_image) def print_sequence_result(results, sequence_name, term_to_show): if len(results) == 0: return sequence_index = -1 result = results[0] for idx, sequence_result in enumerate(result['sequence_result']): if sequence_name == sequence_result['sequence_name']: sequence_index = idx if sequence_index < 0: print("No {} sequence in the results!".format(sequence_name)) return print("") print( "Dataset: {}, Sequence: {}".format( results[0]['dataset_name'], sequence_name)) print("Metric: {}".format(term_to_show)) results_str_list = get_sequence_str_list( results, sequence_name, term_to_show) print_table(results_str_list) def print_result(results, term_to_show): if len(results) == 0: return print("") print("Dataset: {}".format(results[0]['dataset_name'])) print("Metric: {}".format(term_to_show)) results_str_list = get_str_list(results, term_to_show) print_table(results_str_list) def print_retrieval_result(results, term_to_show): if len(results) == 0: return print("") print("Dataset: {}".format(results[0]['dataset_name'])) print("Metric: {}".format(term_to_show)) results_str_list = get_retrieval_str_list(results, term_to_show) print_retrieval_table(results_str_list) def print_retrieval_table(content_list): if len(content_list) == 0: return max_detector_name_len = 8 max_sequence_name_len = 6 for content in content_list: if len(content[0]) > max_detector_name_len: max_detector_name_len = len(content[0]) content = content_list[0][1:] for sequence_name in content: if len(sequence_name) > max_sequence_name_len: max_sequence_name_len = len(sequence_name) content = content_list[0] title_str = '' for idx, this_str in enumerate(content): if idx == 0: title_str = "|{}|".format( this_str.ljust(max_detector_name_len)[ :max_detector_name_len]) else: title_str = title_str + \ "{}|".format( this_str.ljust(max_sequence_name_len)[ :max_sequence_name_len]) print('-' * len(title_str)) print(title_str) print('-' * len(title_str)) content_str = '' for content in content_list[1:]: for idx, this_str in enumerate(content): if idx == 0: content_str = "|{}|".format( this_str.ljust(max_detector_name_len)[ :max_detector_name_len]) else: content_str = content_str + \ "{}|".format( this_str.ljust(max_sequence_name_len)[ :max_sequence_name_len]) print(content_str) print('-' * len(title_str)) def print_table(content_list): if len(content_list) == 0: return max_detector_name_len = 8 max_sequence_name_len = 6 for content in content_list: if len(content[0]) > max_detector_name_len: max_detector_name_len = len(content[0]) content = content_list[0][1:] for sequence_name in content: if len(sequence_name) > max_sequence_name_len: max_sequence_name_len = len(sequence_name) content = content_list[0] title_str = '' for idx, this_str in enumerate(content): if idx == 0: title_str = "|{}|".format( this_str.ljust(max_detector_name_len)[ :max_detector_name_len]) else: title_str = title_str + \ "{}|".format( this_str.ljust(max_sequence_name_len)[ :max_sequence_name_len]) print('-' * len(title_str)) print(title_str) print('-' * len(title_str)) content_str = '' for content in content_list[1:]: for idx, this_str in enumerate(content): if idx == 0: content_str = "|{}|".format( this_str.ljust(max_detector_name_len)[ :max_detector_name_len]) else: content_str = content_str + \ "{}|".format( this_str.ljust(max_sequence_name_len)[ :max_sequence_name_len]) print(content_str) print('-' * len(title_str)) def save_result(results, term_to_show, result_dir='./python_scores/'): result_file_csv = csv.writer(open('{}{}/{}/{}_result.csv'.format(result_dir, results[0]['bench_name'], results[0]['dataset_name'], term_to_show), 'w'), delimiter=',') results_str_list = get_str_list(results, term_to_show) for this_str in results_str_list: result_file_csv.writerow(this_str) def save_sequence_result(results, sequence_name, term_to_show, result_dir='./python_scores/'): if len(results) == 0: return sequence_index = -1 result = results[0] for idx, sequence_result in enumerate(result['sequence_result']): if sequence_name == sequence_result['sequence_name']: sequence_index = idx if sequence_index < 0: print("No {} sequence in the results!".format(sequence_name)) return result_file_csv = csv.writer(open('{}{}/{}/{}_{}_result.csv'.format(result_dir, results[0]['bench_name'], results[0]['dataset_name'], sequence_name, term_to_show), 'w'), delimiter=',') results_str_list = get_sequence_str_list( results, sequence_name, term_to_show) for this_str in results_str_list: result_file_csv.writerow(this_str) def save_retrieval_result(results, term_to_show, result_dir='./python_scores/'): result_file_csv = csv.writer(open('{}{}/{}/{}_result.csv'.format(result_dir, results[0]['bench_name'], results[0]['dataset_name'], term_to_show), 'w'), delimiter=',') results_str_list = get_retrieval_str_list(results, term_to_show) for this_str in results_str_list: result_file_csv.writerow(this_str) def get_str_list(results, term_to_show): results_str_list = [] title_str = [] title_str.append('Detector') result = results[0] for sequence_result in result['sequence_result']: title_str.append(sequence_result['sequence_name']) title_str.append('Ave') results_str_list.append(title_str) for result in results: write_str = [] write_str.append(result['detector_name']) for sequence_result in result['sequence_result']: write_str.append( str(sequence_result['ave_{}'.format(term_to_show)])) write_str.append(str(result['ave_{}'.format(term_to_show)])) results_str_list.append(write_str) return results_str_list def get_sequence_str_list(results, sequence_name, term_to_show): sequence_index = -1 result = results[0] for idx, sequence_result in enumerate(result['sequence_result']): if sequence_name == sequence_result['sequence_name']: sequence_index = idx results_str_list = [] title_str = [] title_str.append('Detector') link_id_list = sequence_result['result_link_id_list'] sorted_index = sorted( range( len(link_id_list)), key=link_id_list.__getitem__) link_id_list = [link_id_list[i] for i in sorted_index] for link_id in link_id_list: title_str.append(str(link_id)) title_str.append('Ave') results_str_list.append(title_str) for result in results: write_str = [] write_str.append(result['detector_name']) sequence_result = result['sequence_result'][sequence_index] link_id_list = sequence_result['result_link_id_list'] sorted_index = sorted( range(len(link_id_list)), key=link_id_list.__getitem__) for sorted_idx in sorted_index: write_str.append(str(sequence_result[term_to_show][sorted_idx])) write_str.append(str(sequence_result['ave_{}'.format(term_to_show)])) results_str_list.append(write_str) return results_str_list def get_retrieval_str_list(results, term_to_show): results_str_list = [] title_str = [] title_str.append('Detector') result = results[0] title_str.append(term_to_show) results_str_list.append(title_str) for result in results: write_str = [] write_str.append(result['detector_name']) write_str.append(str(result[term_to_show])) results_str_list.append(write_str) return results_str_list
bsd-2-clause
schets/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
cpsnowden/ComputationalNeurodynamics
Exercise_2/Run2L.py
3
2347
""" Computational Neurodynamics Exercise 2 Simulates two layers of Izhikevich neurons. Layer 0 is stimulated with a constant base current and layer 1 receives synaptic input of layer 0. (C) Murray Shanahan et al, 2015 """ from Connect2L import Connect2L import numpy as np import matplotlib.pyplot as plt N1 = 4 N2 = 4 T = 500 # Simulation time Ib = 5 # Base current net = Connect2L(N1, N2) ## Initialise layers for lr in xrange(len(net.layer)): net.layer[lr].v = -65 * np.ones(net.layer[lr].N) net.layer[lr].u = net.layer[lr].b * net.layer[lr].v net.layer[lr].firings = np.array([]) v1 = np.zeros([T, N1]) v2 = np.zeros([T, N2]) u1 = np.zeros([T, N1]) u2 = np.zeros([T, N2]) ## SIMULATE for t in xrange(T): # Deliver a constant base current to layer 1 net.layer[0].I = Ib * np.ones(N1) net.layer[1].I = np.zeros(N2) net.Update(t) v1[t] = net.layer[0].v v2[t] = net.layer[1].v u1[t] = net.layer[0].u u2[t] = net.layer[1].u ## Retrieve firings and add Dirac pulses for presentation firings1 = net.layer[0].firings firings2 = net.layer[1].firings if firings1.size != 0: v1[firings1[:, 0], firings1[:, 1]] = 30 if firings2.size != 0: v2[firings2[:, 0], firings2[:, 1]] = 30 ## Plot membrane potentials plt.figure(1) plt.subplot(211) plt.plot(range(T), v1) plt.title('Population 1 membrane potentials') plt.ylabel('Voltage (mV)') plt.ylim([-90, 40]) plt.subplot(212) plt.plot(range(T), v2) plt.title('Population 2 membrane potentials') plt.ylabel('Voltage (mV)') plt.ylim([-90, 40]) plt.xlabel('Time (ms)') ## Plot recovery variable plt.figure(2) plt.subplot(211) plt.plot(range(T), u1) plt.title('Population 1 recovery variables') plt.ylabel('Voltage (mV)') plt.subplot(212) plt.plot(range(T), u2) plt.title('Population 2 recovery variables') plt.ylabel('Voltage (mV)') plt.xlabel('Time (ms)') ## Raster plots of firings if firings1.size != 0: plt.figure(3) plt.subplot(211) plt.scatter(firings1[:, 0], firings1[:, 1] + 1, marker='.') plt.xlim(0, T) plt.ylabel('Neuron number') plt.ylim(0, N1+1) plt.title('Population 1 firings') if firings2.size != 0: plt.subplot(212) plt.scatter(firings2[:, 0], firings2[:, 1] + 1, marker='.') plt.xlim(0, T) plt.ylabel('Neuron number') plt.ylim(0, N2+1) plt.xlabel('Time (ms)') plt.title('Population 2 firings') plt.show()
gpl-3.0
facom/AstrodynTools
tides/util.py
1
3377
#!/usr/bin/env python #-*-coding:utf-8-*- from constants import * from numpy import * from matplotlib.pyplot import * from sys import exit ################################################### #CONSTANTS ################################################### DEG=pi/180 RAD=180/pi ################################################### #NUMERIC ################################################### #P2 Legendre Polynomial def P2(psi): p=0.5*(3*cos(psi)**2-1) return p ################################################### #PHYSICAL ################################################### #Deformed Radius def R2(Rp,eps2,theta): R=Rp*(1+eps2*P2(theta)) return R #Interior Potential def Vint(r,theta,R,rho,eps2): V=-4*pi/3*R**3*rho*Gconst*((3*R**2-r**2)/(2*R**3)+3./5*(r**2/R**3)*eps2*P2(theta)) return V #Exterior Potential def Vext(r,theta,R,rho,eps2): V=-4*pi/3*R**3*rho*Gconst*(1/r+3./5*R**2/r**3*eps2*P2(theta)) return V #Equilibrium Tide def Csi(Ms,Mp,Rp,a): csi=(Ms/Mp)*(Rp/a)**3*Rp return csi #Tide potential def V3(r,theta,Ms,Mp,Rp,a): g=Gconst*Mp/Rp**2 csi=Csi(Ms,Mp,Rp,a) V=-csi*g*(r/Rp)**2*P2(theta) return V #Contornos def contourPotential(V,R,range=(-1,1),levels='none'): N=range[2] X=linspace(range[0]*R,range[1]*R,N) Y=linspace(range[0]*R,range[1]*R,N) XM,YM=meshgrid(X,Y) VM=zeros((N,N)) for i in xrange(N): x=X[i] for j in xrange(N): y=Y[j] theta=arctan(y/x) r=sqrt(x**2+y**2) VM[j,i]=V(r,theta) if levels!='none':args=dict(levels=levels) else:args=dict() contourf(XM/R,YM/R,VM,**args) ################################################### #TEST CODE ################################################### if __name__=='__main__': Ms=Mmoon Mp=Mearth Rp=Rearth rho=rhoearth a=rmoon eps2=0.2 #TEST RD figure(figsize=(6,6)) theta=linspace(0,2*pi,100) R=R2(Rp,eps2,theta) x=R*cos(theta) y=R*sin(theta) plot(x/Rp,y/Rp,'r-') xc=Rp*cos(theta) yc=Rp*sin(theta) plot(xc/Rp,yc/Rp,'b--') xlim((-1.5,1.5)) ylim((-1.5,1.5)) savefig("test-Rd.png") #TEST CSI csi=Csi(Ms,Mp,Rp,a) print "Equilibrium tide: %e"%csi #TEST V3 r=Rp theta=linspace(0,pi,100) figure() plot(theta*RAD,V3(r,theta,Ms,Mp,Rp,a),'k-') savefig("test-V3.png") #TEST VINT, VEXT figure() R=Rp for theta in 0,30,60,90: theta*=DEG rint=linspace(0,R,100) rext=linspace(R,2*R,100) Vi=Vint(rint,theta,Rp,rho,eps2) Ve=Vext(rext,theta,Rp,rho,eps2) line=plot(rint/Rp,Vi,'-',label="%s"%(theta*RAD)) color=line[0].get_color() plot(rext/Rp,Ve,'-',color=color) axvline(1.0,color='k') legend(loc='best') xlabel('$r/R_p$') ylabel('$V$ (j/kg)') savefig("test-VintVext.png") ################################################### #VECTOR ################################################### def vec2to3(r): return concatenate((r,[0])) def dot2(r1,r2): r1_3=concatenate((r1,[0])) r2_3=concatenate((r2,[0])) return dot(r1_3,r2_3) def cross2(r1,r2): r1_3=concatenate((r1,[0])) r2_3=concatenate((r2,[0])) c=cross(r1_3,r2_3) return c[1:] def magvec(r): return dot(r,r)**0.5
gpl-2.0
HofmannZ/global-ai-hackathon-coin-truth
src/nlp/Sentiment_Analysis.py
1
3698
''' Author: Giovanni Kastanja Python: 3.6.0 Performing sentiment analysis on a piece of text !Important!: install nltk in commandline use command: 'nltk.download' to download - vader, under the models ta ToDo: - add learning for the sentiment analysis ToDo There isn't data for doing the sentiment analysis, so for know we will work with dummy data ''' # for sentiment intensity classification from nltk.corpus import subjectivity from nltk.sentiment import SentimentAnalyzer from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.tokenize import word_tokenize from nltk.sentiment.util import * # for time insights from profilehooks import coverage, timecall # for sentiment classification import pandas as pd import numpy as np from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cross_validation import train_test_split from sklearn import naive_bayes from sklearn.metrics import roc_auc_score POSITIVE = list() NEGATIVE = list() BUZZWORDS = dict() class Sentiment(object): """docstring for Sentiment""" version = '0.0.1' def __init__(self, classifier, data): ''' In what format is the information passed: - json with metadata? - array with words? assume that data passed is in JSON, but for now we assume that the passed data is a String data = String() ''' self.text = data self.sentiment = self.sent_analysis(classifier, data) self.sentiment_intensity = self.sentiment_intensity_analysis(data) # then we tokenize the piece of text, @timecall def _tokenize_text(self, text): return word_tokenize(text) # do some preprocessing on the text def _preprocessing(self): # remove punctuation # remove capital letters # word_error handling? pass # do the sentiment analysis @timecall def sent_analysis(self, classifier, text): ''' This function will classify a piece of text, based on the classifier that is passed returns: - returns the class the text will be classified in according to the trained predictor ''' text_array = np.array([text]) text_vector = vectorizer.transform(text_array) return classifier.predict(text_vector) @timecall def sentiment_intensity_analysis(self, text): ''' Calculates the intensity of the text passed as argument parameters: text (String), a string of the text we want to analyze returns: sentiment_intensity (dict), a dict contaning the different intensity-scores of the text ''' sid = SentimentIntensityAnalyzer() sentiment_intensity = sid.polarity_scores(text) return sentiment_intensity def __repr__(self): return """ Sentiment_obj: text:{} sentiment:{} sentiment intensity:{} """.format(self.text, self.sentiment, self.sentiment_intensity) # return the dominant sentiment of the piece of text # train the sentiment classifier def train_sentiment_classifier(trainingtext): ''' trains a naive bayes classifier to train on sentiment. parameters: - trainingtext(.csv/.txt), needs to be annotated ''' df = pd.read_csv('training.txt', sep='\t', names=['liked', 'txt']) # vectorize words stopset = set(stopwords.words('english')) vectorizer = TfidfVectorizer(use_idf=True, lowercase=True, strip_accents='ascii', stop_words=stopset) # target y = df.liked # samples X = vectorizer.fit_transform(df.txt) # split dataset X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # train the naive bayes classifier clf = naive_bayes.MultinomialNB() clf.fit(X_train, y_train) return clf
mit
dshen1/trading-with-python
lib/functions.py
76
11627
# -*- coding: utf-8 -*- """ twp support functions @author: Jev Kuznetsov Licence: GPL v2 """ from scipy import polyfit, polyval import datetime as dt #from datetime import datetime, date from pandas import DataFrame, Index, Series import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd def nans(shape, dtype=float): ''' create a nan numpy array ''' a = np.empty(shape, dtype) a.fill(np.nan) return a def plotCorrelationMatrix(price, thresh = None): ''' plot a correlation matrix as a heatmap image inputs: price: prices DataFrame thresh: correlation threshold to use for checking, default None ''' symbols = price.columns.tolist() R = price.pct_change() correlationMatrix = R.corr() if thresh is not None: correlationMatrix = correlationMatrix > thresh plt.imshow(abs(correlationMatrix.values),interpolation='none') plt.xticks(range(len(symbols)),symbols) plt.yticks(range(len(symbols)),symbols) plt.colorbar() plt.title('Correlation matrix') return correlationMatrix def pca(A): """ performs principal components analysis (PCA) on the n-by-p DataFrame A Rows of A correspond to observations, columns to variables. Returns : coeff : principal components, column-wise transform: A in principal component space latent : eigenvalues """ # computing eigenvalues and eigenvectors of covariance matrix M = (A - A.mean()).T # subtract the mean (along columns) [latent,coeff] = np.linalg.eig(np.cov(M)) # attention:not always sorted idx = np.argsort(latent) # sort eigenvalues idx = idx[::-1] # in ascending order coeff = coeff[:,idx] latent = latent[idx] score = np.dot(coeff.T,A.T) # projection of the data in the new space transform = DataFrame(index = A.index, data = score.T) return coeff,transform,latent def pos2pnl(price,position , ibTransactionCost=False ): """ calculate pnl based on price and position Inputs: --------- price: series or dataframe of price position: number of shares at each time. Column names must be same as in price ibTransactionCost: use bundled Interactive Brokers transaction cost of 0.005$/share Returns a portfolio DataFrame """ delta=position.diff() port = DataFrame(index=price.index) if isinstance(price,Series): # no need to sum along 1 for series port['cash'] = (-delta*price).cumsum() port['stock'] = (position*price) else: # dealing with DataFrame here port['cash'] = (-delta*price).sum(axis=1).cumsum() port['stock'] = (position*price).sum(axis=1) if ibTransactionCost: tc = -0.005*position.diff().abs() # basic transaction cost tc[(tc>-1) & (tc<0)] = -1 # everything under 1$ will be ceil'd to 1$ if isinstance(price,DataFrame): tc = tc.sum(axis=1) port['tc'] = tc.cumsum() else: port['tc'] = 0. port['total'] = port['stock']+port['cash']+port['tc'] return port def tradeBracket(price,entryBar,maxTradeLength,bracket): ''' trade a symmetrical bracket on price series, return price delta and exit bar # Input ------ price : series of price values entryBar: entry bar number maxTradeLength : max trade duration in bars bracket : allowed price deviation ''' lastBar = min(entryBar+maxTradeLength,len(price)-1) p = price[entryBar:lastBar]-price[entryBar] idxOutOfBound = np.nonzero(abs(p)>bracket) # find indices where price comes out of bracket if idxOutOfBound[0].any(): # found match priceDelta = p[idxOutOfBound[0][0]] exitBar = idxOutOfBound[0][0]+entryBar else: # all in bracket, exiting based on time priceDelta = p[-1] exitBar = lastBar return priceDelta, exitBar def estimateBeta(priceY,priceX,algo = 'standard'): ''' estimate stock Y vs stock X beta using iterative linear regression. Outliers outside 3 sigma boundary are filtered out Parameters -------- priceX : price series of x (usually market) priceY : price series of y (estimate beta of this price) Returns -------- beta : stockY beta relative to stock X ''' X = DataFrame({'x':priceX,'y':priceY}) if algo=='returns': ret = (X/X.shift(1)-1).dropna().values #print len(ret) x = ret[:,0] y = ret[:,1] # filter high values low = np.percentile(x,20) high = np.percentile(x,80) iValid = (x>low) & (x<high) x = x[iValid] y = y[iValid] iteration = 1 nrOutliers = 1 while iteration < 10 and nrOutliers > 0 : (a,b) = polyfit(x,y,1) yf = polyval([a,b],x) #plot(x,y,'x',x,yf,'r-') err = yf-y idxOutlier = abs(err) > 3*np.std(err) nrOutliers =sum(idxOutlier) beta = a #print 'Iteration: %i beta: %.2f outliers: %i' % (iteration,beta, nrOutliers) x = x[~idxOutlier] y = y[~idxOutlier] iteration += 1 elif algo=='log': x = np.log(X['x']) y = np.log(X['y']) (a,b) = polyfit(x,y,1) beta = a elif algo=='standard': ret =np.log(X).diff().dropna() beta = ret['x'].cov(ret['y'])/ret['x'].var() else: raise TypeError("unknown algorithm type, use 'standard', 'log' or 'returns'") return beta def estimateVolatility(ohlc, N=10, algo='YangZhang'): """ Volatility estimation Possible algorithms: ['YangZhang', 'CC'] """ cc = np.log(ohlc.close/ohlc.close.shift(1)) if algo == 'YangZhang': # Yang-zhang volatility ho = np.log(ohlc.high/ohlc.open) lo = np.log(ohlc.low/ohlc.open) co = np.log(ohlc.close/ohlc.open) oc = np.log(ohlc.open/ohlc.close.shift(1)) oc_sq = oc**2 cc_sq = cc**2 rs = ho*(ho-co)+lo*(lo-co) close_vol = pd.rolling_sum(cc_sq, window=N) * (1.0 / (N - 1.0)) open_vol = pd.rolling_sum(oc_sq, window=N) * (1.0 / (N - 1.0)) window_rs = pd.rolling_sum(rs, window=N) * (1.0 / (N - 1.0)) result = (open_vol + 0.164333 * close_vol + 0.835667 * window_rs).apply(np.sqrt) * np.sqrt(252) result[:N-1] = np.nan elif algo == 'CC': # standard close-close estimator result = np.sqrt(252)*np.sqrt(((pd.rolling_sum(cc**2,N))/N)) else: raise ValueError('Unknown algo type.') return result*100 def rank(current,past): ''' calculate a relative rank 0..1 for a value against series ''' return (current>past).sum()/float(past.count()) def returns(df): return (df/df.shift(1)-1) def logReturns(df): t = np.log(df) return t-t.shift(1) def dateTimeToDate(idx): ''' convert datetime index to date ''' dates = [] for dtm in idx: dates.append(dtm.date()) return dates def readBiggerScreener(fName): ''' import data from Bigger Capital screener ''' with open(fName,'rb') as f: reader = csv.reader(f) rows = [row for row in reader] header = rows[0] data = [[] for i in range(len(header))] for row in rows[1:]: for i,elm in enumerate(row): try: data[i].append(float(elm)) except Exception: data[i].append(str(elm)) return DataFrame(dict(zip(header,data)),index=Index(range(len(data[0]))))[header] def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std() def drawdown(s): """ calculate max drawdown and duration Input: s, price or cumulative pnl curve $ Returns: drawdown : vector of drawdwon values duration : vector of drawdown duration """ # convert to array if got pandas series, 10x speedup if isinstance(s,pd.Series): idx = s.index s = s.values returnSeries = True else: returnSeries = False if s.min() < 0: # offset if signal minimum is less than zero s = s-s.min() highwatermark = np.zeros(len(s)) drawdown = np.zeros(len(s)) drawdowndur = np.zeros(len(s)) for t in range(1,len(s)): highwatermark[t] = max(highwatermark[t-1], s[t]) drawdown[t] = (highwatermark[t]-s[t]) drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1) if returnSeries: return pd.Series(index=idx,data=drawdown), pd.Series(index=idx,data=drawdowndur) else: return drawdown , drawdowndur def profitRatio(pnl): ''' calculate profit ratio as sum(pnl)/drawdown Input: pnl - daily pnl, Series or DataFrame ''' def processVector(pnl): # process a single column s = pnl.fillna(0) dd = drawdown(s)[0] p = s.sum()/dd.max() return p if isinstance(pnl,Series): return processVector(pnl) elif isinstance(pnl,DataFrame): p = Series(index = pnl.columns) for col in pnl.columns: p[col] = processVector(pnl[col]) return p else: raise TypeError("Input must be DataFrame or Series, not "+str(type(pnl))) def candlestick(df,width=0.5, colorup='b', colordown='r'): ''' plot a candlestick chart of a dataframe ''' O = df['open'].values H = df['high'].values L = df['low'].values C = df['close'].values fig = plt.gcf() ax = plt.axes() #ax.hold(True) X = df.index #plot high and low ax.bar(X,height=H-L,bottom=L,width=0.1,color='k') idxUp = C>O ax.bar(X[idxUp],height=(C-O)[idxUp],bottom=O[idxUp],width=width,color=colorup) idxDown = C<=O ax.bar(X[idxDown],height=(O-C)[idxDown],bottom=C[idxDown],width=width,color=colordown) try: fig.autofmt_xdate() except Exception: # pragma: no cover pass ax.grid(True) #ax.bar(x,height=H-L,bottom=L,width=0.01,color='k') def datetime2matlab(t): ''' convert datetime timestamp to matlab numeric timestamp ''' mdn = t + dt.timedelta(days = 366) frac = (t-dt.datetime(t.year,t.month,t.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0) return mdn.toordinal() + frac def getDataSources(fName = None): ''' return data sources directories for this machine. directories are defined in datasources.ini or provided filepath''' import socket from ConfigParser import ConfigParser pcName = socket.gethostname() p = ConfigParser() p.optionxform = str if fName is None: fName = 'datasources.ini' p.read(fName) if pcName not in p.sections(): raise NameError('Host name section %s not found in file %s' %(pcName,fName)) dataSources = {} for option in p.options(pcName): dataSources[option] = p.get(pcName,option) return dataSources if __name__ == '__main__': df = DataFrame({'open':[1,2,3],'high':[5,6,7],'low':[-2,-1,0],'close':[2,1,4]}) plt.clf() candlestick(df)
bsd-3-clause
unsiloai/syntaxnet-ops-hack
tensorflow/contrib/learn/python/learn/dataframe/queues/feeding_functions.py
27
1592
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for enqueuing data from arrays and pandas `DataFrame`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.python.estimator.inputs.queues.feeding_functions import _ArrayFeedFn from tensorflow.python.estimator.inputs.queues.feeding_functions import _enqueue_data from tensorflow.python.estimator.inputs.queues.feeding_functions import _GeneratorFeedFn from tensorflow.python.estimator.inputs.queues.feeding_functions import _OrderedDictNumpyFeedFn from tensorflow.python.estimator.inputs.queues.feeding_functions import _PandasFeedFn # pylint: enable=unused-import from tensorflow.python.util.deprecation import deprecated @deprecated('2017-06-15', 'Moved to tf.contrib.training.enqueue_data.') def enqueue_data(*args, **kwargs): return _enqueue_data(*args, **kwargs)
apache-2.0
SamStudio8/scikit-bio
skbio/draw/_distributions.py
10
30987
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from future.builtins import map, range, zip from itertools import cycle import warnings import numpy as np import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Polygon, Rectangle import six from skbio.util._decorator import deprecated distribution_plot_deprecation_p = { 'as_of': '0.4.0', 'until': '0.4.1', 'reason': ( "Plots that are not specific to bioinformatics should be generated " "with seaborn or another general-purpose plotting package." )} @deprecated(**distribution_plot_deprecation_p) def boxplots(distributions, x_values=None, x_tick_labels=None, title=None, x_label=None, y_label=None, x_tick_labels_orientation='vertical', y_min=None, y_max=None, whisker_length=1.5, box_width=0.5, box_colors=None, figure_width=None, figure_height=None, legend=None): """Generate a figure with a boxplot for each distribution. Parameters ---------- distributions: 2-D array_like Distributions to plot. A boxplot will be created for each distribution. x_values : list of numbers, optional List indicating where each boxplot should be placed. Must be the same length as `distributions` if provided. x_tick_labels : list of str, optional List of x-axis tick labels. title : str, optional Title of the plot. x_label : str, optional x-axis label. y_label : str, optional y-axis label. x_tick_labels_orientation : {'vertical', 'horizontal'} Orientation of the x-axis labels. y_min : scalar, optional Minimum value of the y-axis. If ``None``, uses matplotlib's autoscale. y_max : scalar, optional Maximum value of the y-axis. If ``None``, uses matplotlib's autoscale. whisker_length : scalar, optional Length of the whiskers as a function of the IQR. For example, if 1.5, the whiskers extend to ``1.5 * IQR``. Anything outside of that range is treated as an outlier. box_width : scalar, optional Width of each box in plot units. box_colors : str, tuple, or list of colors, optional Either a matplotlib-compatible string or tuple that indicates the color to be used for every boxplot, or a list of colors to color each boxplot individually. If ``None``, boxes will be the same color as the plot background. If a list of colors is provided, a color must be provided for each boxplot. Can also supply ``None`` instead of a color, which will color the box the same color as the plot background. figure_width : scalar, optional Width of the plot figure in inches. If not provided, will default to matplotlib's default figure width. figure_height : scalar, optional Height of the plot figure in inches. If not provided, will default to matplotlib's default figure height. legend : tuple or list, optional Two-element tuple or list that contains a list of valid matplotlib colors as the first element and a list of labels (strings) as the second element. The lengths of the first and second elements must be the same. If ``None``, a legend will not be plotted. Returns ------- matplotlib.figure.Figure Figure containing a boxplot for each distribution. See Also -------- matplotlib.pyplot.boxplot scipy.stats.ttest_ind Notes ----- This is a convenience wrapper around matplotlib's ``boxplot`` function that allows for coloring of boxplots and legend generation. Examples -------- Create a plot with two boxplots: .. plot:: >>> from skbio.draw import boxplots >>> fig = boxplots([[2, 2, 1, 3, 4, 4.2, 7], [0, -1, 4, 5, 6, 7]]) Plot three distributions with custom colors and labels: .. plot:: >>> from skbio.draw import boxplots >>> fig = boxplots( ... [[2, 2, 1, 3], [0, -1, 0, 0.1, 0.3], [4, 5, 6, 3]], ... x_tick_labels=('Control', 'Treatment 1', 'Treatment 2'), ... box_colors=('green', 'blue', 'red')) """ distributions = _validate_distributions(distributions) num_dists = len(distributions) _validate_x_values(x_values, x_tick_labels, num_dists) # Create a new figure to plot our data on, and then plot the distributions. fig, ax = plt.subplots() box_plot = plt.boxplot(distributions, positions=x_values, whis=whisker_length, widths=box_width) if box_colors is not None: if _is_single_matplotlib_color(box_colors): box_colors = [box_colors] * num_dists _color_box_plot(ax, box_plot, box_colors) # Set up the various plotting options, such as x- and y-axis labels, plot # title, and x-axis values if they have been supplied. _set_axes_options(ax, title, x_label, y_label, x_tick_labels=x_tick_labels, x_tick_labels_orientation=x_tick_labels_orientation, y_min=y_min, y_max=y_max) if legend is not None: if len(legend) != 2: raise ValueError("Invalid legend was provided. The legend must be " "a two-element tuple/list where the first " "element is a list of colors and the second " "element is a list of labels.") _create_legend(ax, legend[0], legend[1], 'colors') _set_figure_size(fig, figure_width, figure_height) return fig @deprecated(**distribution_plot_deprecation_p) def grouped_distributions(plot_type, data, x_values=None, data_point_labels=None, distribution_labels=None, distribution_markers=None, x_label=None, y_label=None, title=None, x_tick_labels_orientation='vertical', y_min=None, y_max=None, whisker_length=1.5, error_bar_type='stdv', distribution_width=None, figure_width=None, figure_height=None): """Generate a figure with distributions grouped at points along the x-axis. Parameters ---------- plot_type : {'bar', 'scatter', 'box'} Type of plot to visualize distributions with. data : list of lists of lists Each inner list represents a data point along the x-axis. Each data point contains lists of data for each distribution in the group at that point. This nesting allows for the grouping of distributions at each data point. x_values : list of scalars, optional Spacing of data points along the x-axis. Must be the same length as the number of data points and be in ascending sorted order. If not provided, plots will be spaced evenly. data_point_labels : list of str, optional Labels for data points. distribution_labels : list of str, optional Labels for each distribution in a data point grouping. distribution_markers : list of str or list of tuple, optional Matplotlib-compatible strings or tuples that indicate the color or symbol to be used to distinguish each distribution in a data point grouping. Colors will be used for bar charts or box plots, while symbols will be used for scatter plots. x_label : str, optional x-axis label. y_label : str, optional y-axis label. title : str, optional Plot title. x_tick_labels_orientation : {'vertical', 'horizontal'} Orientation of x-axis labels. y_min : scalar, optional Minimum value of the y-axis. If ``None``, uses matplotlib's autoscale. y_max : scalar, optional Maximum value of the y-axis. If ``None``, uses matplotlib's autoscale. whisker_length : scalar, optional If `plot_type` is ``'box'``, determines the length of the whiskers as a function of the IQR. For example, if 1.5, the whiskers extend to ``1.5 * IQR``. Anything outside of that range is seen as an outlier. If `plot_type` is not ``'box'``, this parameter is ignored. error_bar_type : {'stdv', 'sem'} Type of error bars to use if `plot_type` is ``'bar'``. Can be either ``'stdv'`` (for standard deviation) or ``'sem'`` for the standard error of the mean. If `plot_type` is not ``'bar'``, this parameter is ignored. distribution_width : scalar, optional Width in plot units of each individual distribution (e.g. each bar if the plot type is a bar chart, or the width of each box if the plot type is a boxplot). If None, will be automatically determined. figure_width : scalar, optional Width of the plot figure in inches. If not provided, will default to matplotlib's default figure width. figure_height : scalar, optional Height of the plot figure in inches. If not provided, will default to matplotlib's default figure height. Returns ------- matplotlib.figure.Figure Figure containing distributions grouped at points along the x-axis. Examples -------- Create a plot with two distributions grouped at three points: .. plot:: >>> from skbio.draw import grouped_distributions >>> fig = grouped_distributions('bar', ... [[[2, 2, 1,], [0, 1, 4]], ... [[1, 1, 1], [4, 4.5]], ... [[2.2, 2.4, 2.7, 1.0], [0, 0.2]]], ... distribution_labels=['Treatment 1', ... 'Treatment 2']) """ # Set up different behavior based on the plot type. if plot_type == 'bar': plotting_function = _plot_bar_data distribution_centered = False marker_type = 'colors' elif plot_type == 'scatter': plotting_function = _plot_scatter_data distribution_centered = True marker_type = 'symbols' elif plot_type == 'box': plotting_function = _plot_box_data distribution_centered = True marker_type = 'colors' else: raise ValueError("Invalid plot type '%s'. Supported plot types are " "'bar', 'scatter', or 'box'." % plot_type) num_points, num_distributions = _validate_input(data, x_values, data_point_labels, distribution_labels) # Create a list of matplotlib markers (colors or symbols) that can be used # to distinguish each of the distributions. If the user provided a list of # markers, use it and loop around to the beginning if there aren't enough # markers. If they didn't provide a list, or it was empty, use our own # predefined list of markers (again, loop around to the beginning if we # need more markers). distribution_markers = _get_distribution_markers(marker_type, distribution_markers, num_distributions) # Now calculate where each of the data points will start on the x-axis. x_locations = _calc_data_point_locations(num_points, x_values) assert (len(x_locations) == num_points), "The number of x_locations " +\ "does not match the number of data points." if distribution_width is None: # Find the smallest gap between consecutive data points and divide this # by the number of distributions + 1 for some extra spacing between # data points. min_gap = max(x_locations) for i in range(len(x_locations) - 1): curr_gap = x_locations[i + 1] - x_locations[i] if curr_gap < min_gap: min_gap = curr_gap distribution_width = min_gap / float(num_distributions + 1) else: if distribution_width <= 0: raise ValueError("The width of a distribution cannot be less than " "or equal to zero.") result, plot_axes = plt.subplots() # Iterate over each data point, and plot each of the distributions at that # data point. Increase the offset after each distribution is plotted, # so that the grouped distributions don't overlap. for point, x_pos in zip(data, x_locations): dist_offset = 0 for dist_index, dist, dist_marker in zip(range(num_distributions), point, distribution_markers): dist_location = x_pos + dist_offset plotting_function(plot_axes, dist, dist_marker, distribution_width, dist_location, whisker_length, error_bar_type) dist_offset += distribution_width # Set up various plot options that are best set after the plotting is done. # The x-axis tick marks (one per data point) are centered on each group of # distributions. plot_axes.set_xticks(_calc_data_point_ticks(x_locations, num_distributions, distribution_width, distribution_centered)) _set_axes_options(plot_axes, title, x_label, y_label, x_values, data_point_labels, x_tick_labels_orientation, y_min, y_max) if distribution_labels is not None: _create_legend(plot_axes, distribution_markers, distribution_labels, marker_type) _set_figure_size(result, figure_width, figure_height) # matplotlib seems to sometimes plot points on the rightmost edge of the # plot without adding padding, so we need to add our own to both sides of # the plot. For some reason this has to go after the call to draw(), # otherwise matplotlib throws an exception saying it doesn't have a # renderer. Boxplots need extra padding on the left. if plot_type == 'box': left_pad = 2 * distribution_width else: left_pad = distribution_width plot_axes.set_xlim(plot_axes.get_xlim()[0] - left_pad, plot_axes.get_xlim()[1] + distribution_width) return result def _validate_distributions(distributions): dists = [] for distribution in distributions: try: distribution = np.asarray(distribution, dtype=float) except ValueError: raise ValueError("Each value in each distribution must be " "convertible to a number.") # Empty distributions are plottable in mpl < 1.4.0. In 1.4.0, a # ValueError is raised. This has been fixed in mpl 1.4.0-dev (see # https://github.com/matplotlib/matplotlib/pull/3571). In order to # support empty distributions across mpl versions, we replace them with # [np.nan]. See https://github.com/pydata/pandas/issues/8382, # https://github.com/matplotlib/matplotlib/pull/3571, and # https://github.com/pydata/pandas/pull/8240 for details. # If we decide to only support mpl > 1.4.0 in the future, this code can # likely be removed in favor of letting mpl handle empty distributions. if distribution.size > 0: dists.append(distribution) else: dists.append(np.array([np.nan])) return dists def _validate_input(data, x_values, data_point_labels, distribution_labels): """Returns a tuple containing the number of data points and distributions in the data. Validates plotting options to make sure they are valid with the supplied data. """ if data is None or not data or isinstance(data, six.string_types): raise ValueError("The data must be a list type, and it cannot be " "None or empty.") num_points = len(data) num_distributions = len(data[0]) empty_data_error_msg = ("The data must contain at least one data " "point, and each data point must contain at " "least one distribution to plot.") if num_points == 0 or num_distributions == 0: raise ValueError(empty_data_error_msg) for point in data: if len(point) == 0: raise ValueError(empty_data_error_msg) if len(point) != num_distributions: raise ValueError("The number of distributions in each data point " "grouping must be the same for all data points.") # Make sure we have the right number of x values (one for each data point), # and make sure they are numbers. _validate_x_values(x_values, data_point_labels, num_points) if (distribution_labels is not None and len(distribution_labels) != num_distributions): raise ValueError("The number of distribution labels must be equal " "to the number of distributions.") return num_points, num_distributions def _validate_x_values(x_values, x_tick_labels, num_expected_values): """Validates the x values provided by the user, making sure they are the correct length and are all numbers. Also validates the number of x-axis tick labels. Raises a ValueError if these conditions are not met. """ if x_values is not None: if len(x_values) != num_expected_values: raise ValueError("The number of x values must match the number " "of data points.") try: list(map(float, x_values)) except: raise ValueError("Each x value must be a number.") if x_tick_labels is not None: if len(x_tick_labels) != num_expected_values: raise ValueError("The number of x-axis tick labels must match the " "number of data points.") def _get_distribution_markers(marker_type, marker_choices, num_markers): """Returns a list of length num_markers of valid matplotlib colors or symbols. The markers will be comprised of those found in marker_choices (if not None and not empty) or a list of predefined markers (determined by marker_type, which can be either 'colors' or 'symbols'). If there are not enough markers, the list of markers will be reused from the beginning again (as many times as are necessary). """ if num_markers < 0: raise ValueError("num_markers must be greater than or equal to zero.") if marker_choices is None or len(marker_choices) == 0: if marker_type == 'colors': marker_choices = ['b', 'g', 'r', 'c', 'm', 'y', 'w'] elif marker_type == 'symbols': marker_choices = \ ['s', 'o', '^', '>', 'v', '<', 'd', 'p', 'h', '8', '+', 'x'] else: raise ValueError("Invalid marker_type: '%s'. marker_type must be " "either 'colors' or 'symbols'." % marker_type) if len(marker_choices) < num_markers: # We don't have enough markers to represent each distribution uniquely, # so let the user know. We'll add as many markers (starting from the # beginning of the list again) until we have enough, but the user # should still know because they may want to provide a new list of # markers. warnings.warn( "There are not enough markers to uniquely represent each " "distribution in your dataset. You may want to provide a list " "of markers that is at least as large as the number of " "distributions in your dataset.", RuntimeWarning) marker_cycle = cycle(marker_choices[:]) while len(marker_choices) < num_markers: marker_choices.append(next(marker_cycle)) return marker_choices[:num_markers] def _calc_data_point_locations(num_points, x_values=None): """Returns the x-axis location for each of the data points to start at. Note: A numpy array is returned so that the overloaded "+" operator can be used on the array. The x-axis locations are scaled by x_values if it is provided, or else the x-axis locations are evenly spaced. In either case, the x-axis locations will always be in the range [1, num_points]. """ if x_values is None: # Evenly space the x-axis locations. x_locs = np.arange(1, num_points + 1) else: if len(x_values) != num_points: raise ValueError("The number of x-axis values must match the " "number of data points.") # Scale to the range [1, num_points]. Taken from # http://www.heatonresearch.com/wiki/Range_Normalization x_min = min(x_values) x_max = max(x_values) x_range = x_max - x_min n_range = num_points - 1 x_locs = np.array([(((x_val - x_min) * n_range) / float(x_range)) + 1 for x_val in x_values]) return x_locs def _calc_data_point_ticks(x_locations, num_distributions, distribution_width, distribution_centered): """Returns a 1D numpy array of x-axis tick positions. These positions will be centered on each data point. Set distribution_centered to True for scatter and box plots because their plot types naturally center over a given horizontal position. Bar charts should use distribution_centered = False because the leftmost edge of a bar starts at a given horizontal position and extends to the right for the width of the bar. """ dist_size = num_distributions - 1 if distribution_centered else\ num_distributions return x_locations + ((dist_size * distribution_width) / 2) def _plot_bar_data(plot_axes, distribution, distribution_color, distribution_width, x_position, whisker_length, error_bar_type): """Returns the result of plotting a single bar in matplotlib.""" result = None # We do not want to plot empty distributions because matplotlib will not be # able to render them as PDFs. if len(distribution) > 0: avg = np.mean(distribution) if error_bar_type == 'stdv': error_bar = np.std(distribution) elif error_bar_type == 'sem': error_bar = np.std(distribution) / np.sqrt(len(distribution)) else: raise ValueError( "Invalid error bar type '%s'. Supported error bar types are " "'stdv' and 'sem'." % error_bar_type) result = plot_axes.bar(x_position, avg, distribution_width, yerr=error_bar, ecolor='black', facecolor=distribution_color) return result def _plot_scatter_data(plot_axes, distribution, distribution_symbol, distribution_width, x_position, whisker_length, error_bar_type): """Returns the result of plotting a single scatterplot in matplotlib.""" result = None x_vals = [x_position] * len(distribution) # matplotlib's scatter function doesn't like plotting empty data. if len(x_vals) > 0 and len(distribution) > 0: result = plot_axes.scatter(x_vals, distribution, marker=distribution_symbol, c='k') return result def _plot_box_data(plot_axes, distribution, distribution_color, distribution_width, x_position, whisker_length, error_bar_type): """Returns the result of plotting a single boxplot in matplotlib.""" result = None if len(distribution) > 0: result = plot_axes.boxplot([distribution], positions=[x_position], widths=distribution_width, whis=whisker_length) _color_box_plot(plot_axes, result, [distribution_color]) return result def _is_single_matplotlib_color(color): """Returns True if color is a single (not a list) mpl color.""" single_color = False if (isinstance(color, six.string_types)): single_color = True elif len(color) == 3 or len(color) == 4: single_color = True for e in color: if not (isinstance(e, float) or isinstance(e, int)): single_color = False return single_color def _color_box_plot(plot_axes, box_plot, colors): """Color boxes in the box plot with the specified colors. If any of the colors are None, the box will not be colored. The box_plot argument must be the dictionary returned by the call to matplotlib's boxplot function, and the colors argument must consist of valid matplotlib colors. """ # Note: the following code is largely taken from this matplotlib boxplot # example: # http://matplotlib.sourceforge.net/examples/pylab_examples/ # boxplot_demo2.html num_colors = len(colors) num_box_plots = len(box_plot['boxes']) if num_colors != num_box_plots: raise ValueError("The number of colors (%d) does not match the number " "of boxplots (%d)." % (num_colors, num_box_plots)) for box, median, color in zip(box_plot['boxes'], box_plot['medians'], colors): if color is not None: box_x = [] box_y = [] # There are five points in the box. The first is the same as # the last. for i in range(5): box_x.append(box.get_xdata()[i]) box_y.append(box.get_ydata()[i]) box_coords = list(zip(box_x, box_y)) box_polygon = Polygon(box_coords, facecolor=color) plot_axes.add_patch(box_polygon) # Draw the median lines back over what we just filled in with # color. median_x = [] median_y = [] for i in range(2): median_x.append(median.get_xdata()[i]) median_y.append(median.get_ydata()[i]) plot_axes.plot(median_x, median_y, 'black') def _set_axes_options(plot_axes, title=None, x_label=None, y_label=None, x_values=None, x_tick_labels=None, x_tick_labels_orientation='vertical', y_min=None, y_max=None): """Applies various labelling options to the plot axes.""" if title is not None: plot_axes.set_title(title) if x_label is not None: plot_axes.set_xlabel(x_label) if y_label is not None: plot_axes.set_ylabel(y_label) if (x_tick_labels_orientation != 'vertical' and x_tick_labels_orientation != 'horizontal'): raise ValueError("Invalid orientation for x-axis tick labels: '%s'. " "Valid orientations are 'vertical' or 'horizontal'." % x_tick_labels_orientation) # If labels are provided, always use them. If they aren't, use the x_values # that denote the spacing between data points as labels. If that isn't # available, simply label the data points in an incremental fashion, # i.e. 1, 2, 3, ..., n, where n is the number of data points on the plot. if x_tick_labels is not None: plot_axes.set_xticklabels(x_tick_labels, rotation=x_tick_labels_orientation) elif x_tick_labels is None and x_values is not None: plot_axes.set_xticklabels(x_values, rotation=x_tick_labels_orientation) else: plot_axes.set_xticklabels( range(1, len(plot_axes.get_xticklabels()) + 1), rotation=x_tick_labels_orientation) # Set the y-axis range if specified. if y_min is not None: plot_axes.set_ylim(bottom=float(y_min)) if y_max is not None: plot_axes.set_ylim(top=float(y_max)) def _create_legend(plot_axes, distribution_markers, distribution_labels, marker_type): """Creates a legend on the supplied axes.""" # We have to use a proxy artist for the legend because box plots currently # don't have a very useful legend in matplotlib, and using the default # legend for bar/scatterplots chokes on empty/null distributions. # # Note: This code is based on the following examples: # http://matplotlib.sourceforge.net/users/legend_guide.html # http://stackoverflow.com/a/11423554 if len(distribution_markers) != len(distribution_labels): raise ValueError("The number of distribution markers does not match " "the number of distribution labels.") if marker_type == 'colors': legend_proxy = [Rectangle((0, 0), 1, 1, fc=marker) for marker in distribution_markers] plot_axes.legend(legend_proxy, distribution_labels, loc='best') elif marker_type == 'symbols': legend_proxy = [Line2D(range(1), range(1), color='white', markerfacecolor='black', marker=marker) for marker in distribution_markers] plot_axes.legend(legend_proxy, distribution_labels, numpoints=3, scatterpoints=3, loc='best') else: raise ValueError("Invalid marker_type: '%s'. marker_type must be " "either 'colors' or 'symbols'." % marker_type) def _set_figure_size(fig, width=None, height=None): """Sets the plot figure size and makes room for axis labels, titles, etc. If both width and height are not provided, will use matplotlib defaults. Making room for labels will not always work, and if it fails, the user will be warned that their plot may have cut-off labels. """ # Set the size of the plot figure, then make room for the labels so they # don't get cut off. Must be done in this order. if width is not None and height is not None and width > 0 and height > 0: fig.set_size_inches(width, height) try: fig.tight_layout() except ValueError: warnings.warn( "Could not automatically resize plot to make room for " "axes labels and plot title. This can happen if the labels or " "title are extremely long and the plot size is too small. Your " "plot may have its labels and/or title cut-off. To fix this, " "try increasing the plot's size (in inches) and try again.", RuntimeWarning)
bsd-3-clause
davidgbe/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
69
8605
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[np.newaxis, 1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[np.newaxis, 1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample[np.newaxis, :]) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
bzero/statsmodels
statsmodels/graphics/mosaicplot.py
20
26989
"""Create a mosaic plot from a contingency table. It allows to visualize multivariate categorical data in a rigorous and informative way. see the docstring of the mosaic function for more informations. """ # Author: Enrico Giampieri - 21 Jan 2013 from __future__ import division from statsmodels.compat.python import (iteritems, iterkeys, lrange, string_types, lzip, itervalues, zip, range) import numpy as np from statsmodels.compat.collections import OrderedDict from itertools import product from numpy import iterable, r_, cumsum, array from statsmodels.graphics import utils from pandas import DataFrame __all__ = ["mosaic"] def _normalize_split(proportion): """ return a list of proportions of the available space given the division if only a number is given, it will assume a split in two pieces """ if not iterable(proportion): if proportion == 0: proportion = array([0.0, 1.0]) elif proportion >= 1: proportion = array([1.0, 0.0]) elif proportion < 0: raise ValueError("proportions should be positive," "given value: {}".format(proportion)) else: proportion = array([proportion, 1.0 - proportion]) proportion = np.asarray(proportion, dtype=float) if np.any(proportion < 0): raise ValueError("proportions should be positive," "given value: {}".format(proportion)) if np.allclose(proportion, 0): raise ValueError("at least one proportion should be " "greater than zero".format(proportion)) # ok, data are meaningful, so go on if len(proportion) < 2: return array([0.0, 1.0]) left = r_[0, cumsum(proportion)] left /= left[-1] * 1.0 return left def _split_rect(x, y, width, height, proportion, horizontal=True, gap=0.05): """ Split the given rectangle in n segments whose proportion is specified along the given axis if a gap is inserted, they will be separated by a certain amount of space, retaining the relative proportion between them a gap of 1 correspond to a plot that is half void and the remaining half space is proportionally divided among the pieces. """ x, y, w, h = float(x), float(y), float(width), float(height) if (w < 0) or (h < 0): raise ValueError("dimension of the square less than" "zero w={} h=()".format(w, h)) proportions = _normalize_split(proportion) # extract the starting point and the dimension of each subdivision # in respect to the unit square starting = proportions[:-1] amplitude = proportions[1:] - starting # how much each extrema is going to be displaced due to gaps starting += gap * np.arange(len(proportions) - 1) # how much the squares plus the gaps are extended extension = starting[-1] + amplitude[-1] - starting[0] # normalize everything for fit again in the original dimension starting /= extension amplitude /= extension # bring everything to the original square starting = (x if horizontal else y) + starting * (w if horizontal else h) amplitude = amplitude * (w if horizontal else h) # create each 4-tuple for each new block results = [(s, y, a, h) if horizontal else (x, s, w, a) for s, a in zip(starting, amplitude)] return results def _reduce_dict(count_dict, partial_key): """ Make partial sum on a counter dict. Given a match for the beginning of the category, it will sum each value. """ L = len(partial_key) count = sum(v for k, v in iteritems(count_dict) if k[:L] == partial_key) return count def _key_splitting(rect_dict, keys, values, key_subset, horizontal, gap): """ Given a dictionary where each entry is a rectangle, a list of key and value (count of elements in each category) it split each rect accordingly, as long as the key start with the tuple key_subset. The other keys are returned without modification. """ result = OrderedDict() L = len(key_subset) for name, (x, y, w, h) in iteritems(rect_dict): if key_subset == name[:L]: # split base on the values given divisions = _split_rect(x, y, w, h, values, horizontal, gap) for key, rect in zip(keys, divisions): result[name + (key,)] = rect else: result[name] = (x, y, w, h) return result def _tuplify(obj): """convert an object in a tuple of strings (even if it is not iterable, like a single integer number, but keep the string healthy) """ if np.iterable(obj) and not isinstance(obj, string_types): res = tuple(str(o) for o in obj) else: res = (str(obj),) return res def _categories_level(keys): """use the Ordered dict to implement a simple ordered set return each level of each category [[key_1_level_1,key_2_level_1],[key_1_level_2,key_2_level_2]] """ res = [] for i in zip(*(keys)): tuplefied = _tuplify(i) res.append(list(OrderedDict([(j, None) for j in tuplefied]))) return res def _hierarchical_split(count_dict, horizontal=True, gap=0.05): """ Split a square in a hierarchical way given a contingency table. Hierarchically split the unit square in alternate directions in proportion to the subdivision contained in the contingency table count_dict. This is the function that actually perform the tiling for the creation of the mosaic plot. If the gap array has been specified it will insert a corresponding amount of space (proportional to the unit lenght), while retaining the proportionality of the tiles. Parameters ---------- count_dict : dict Dictionary containing the contingency table. Each category should contain a non-negative number with a tuple as index. It expects that all the combination of keys to be representes; if that is not true, will automatically consider the missing values as 0 horizontal : bool The starting direction of the split (by default along the horizontal axis) gap : float or array of floats The list of gaps to be applied on each subdivision. If the lenght of the given array is less of the number of subcategories (or if it's a single number) it will extend it with exponentially decreasing gaps Returns ---------- base_rect : dict A dictionary containing the result of the split. To each key is associated a 4-tuple of coordinates that are required to create the corresponding rectangle: 0 - x position of the lower left corner 1 - y position of the lower left corner 2 - width of the rectangle 3 - height of the rectangle """ # this is the unit square that we are going to divide base_rect = OrderedDict([(tuple(), (0, 0, 1, 1))]) # get the list of each possible value for each level categories_levels = _categories_level(list(iterkeys(count_dict))) L = len(categories_levels) # recreate the gaps vector starting from an int if not np.iterable(gap): gap = [gap / 1.5 ** idx for idx in range(L)] # extend if it's too short if len(gap) < L: last = gap[-1] gap = list(*gap) + [last / 1.5 ** idx for idx in range(L)] # trim if it's too long gap = gap[:L] # put the count dictionay in order for the keys # this will allow some code simplification count_ordered = OrderedDict([(k, count_dict[k]) for k in list(product(*categories_levels))]) for cat_idx, cat_enum in enumerate(categories_levels): # get the partial key up to the actual level base_keys = list(product(*categories_levels[:cat_idx])) for key in base_keys: # for each partial and each value calculate how many # observation we have in the counting dictionary part_count = [_reduce_dict(count_ordered, key + (partial,)) for partial in cat_enum] # reduce the gap for subsequents levels new_gap = gap[cat_idx] # split the given subkeys in the rectangle dictionary base_rect = _key_splitting(base_rect, cat_enum, part_count, key, horizontal, new_gap) horizontal = not horizontal return base_rect def _single_hsv_to_rgb(hsv): """Transform a color from the hsv space to the rgb.""" from matplotlib.colors import hsv_to_rgb return hsv_to_rgb(array(hsv).reshape(1, 1, 3)).reshape(3) def _create_default_properties(data): """"Create the default properties of the mosaic given the data first it will varies the color hue (first category) then the color saturation (second category) and then the color value (third category). If a fourth category is found, it will put decoration on the rectangle. Doesn't manage more than four level of categories """ categories_levels = _categories_level(list(iterkeys(data))) Nlevels = len(categories_levels) # first level, the hue L = len(categories_levels[0]) # hue = np.linspace(1.0, 0.0, L+1)[:-1] hue = np.linspace(0.0, 1.0, L + 2)[:-2] # second level, the saturation L = len(categories_levels[1]) if Nlevels > 1 else 1 saturation = np.linspace(0.5, 1.0, L + 1)[:-1] # third level, the value L = len(categories_levels[2]) if Nlevels > 2 else 1 value = np.linspace(0.5, 1.0, L + 1)[:-1] # fourth level, the hatch L = len(categories_levels[3]) if Nlevels > 3 else 1 hatch = ['', '/', '-', '|', '+'][:L + 1] # convert in list and merge with the levels hue = lzip(list(hue), categories_levels[0]) saturation = lzip(list(saturation), categories_levels[1] if Nlevels > 1 else ['']) value = lzip(list(value), categories_levels[2] if Nlevels > 2 else ['']) hatch = lzip(list(hatch), categories_levels[3] if Nlevels > 3 else ['']) # create the properties dictionary properties = {} for h, s, v, t in product(hue, saturation, value, hatch): hv, hn = h sv, sn = s vv, vn = v tv, tn = t level = (hn,) + ((sn,) if sn else tuple()) level = level + ((vn,) if vn else tuple()) level = level + ((tn,) if tn else tuple()) hsv = array([hv, sv, vv]) prop = {'color': _single_hsv_to_rgb(hsv), 'hatch': tv, 'lw': 0} properties[level] = prop return properties def _normalize_data(data, index): """normalize the data to a dict with tuples of strings as keys right now it works with: 0 - dictionary (or equivalent mappable) 1 - pandas.Series with simple or hierarchical indexes 2 - numpy.ndarrays 3 - everything that can be converted to a numpy array 4 - pandas.DataFrame (via the _normalize_dataframe function) """ # if data is a dataframe we need to take a completely new road # before coming back here. Use the hasattr to avoid importing # pandas explicitly if hasattr(data, 'pivot') and hasattr(data, 'groupby'): data = _normalize_dataframe(data, index) index = None # can it be used as a dictionary? try: items = list(iteritems(data)) except AttributeError: # ok, I cannot use the data as a dictionary # Try to convert it to a numpy array, or die trying data = np.asarray(data) temp = OrderedDict() for idx in np.ndindex(data.shape): name = tuple(i for i in idx) temp[name] = data[idx] data = temp items = list(iteritems(data)) # make all the keys a tuple, even if simple numbers data = OrderedDict([_tuplify(k), v] for k, v in items) categories_levels = _categories_level(list(iterkeys(data))) # fill the void in the counting dictionary indexes = product(*categories_levels) contingency = OrderedDict([(k, data.get(k, 0)) for k in indexes]) data = contingency # reorder the keys order according to the one specified by the user # or if the index is None convert it into a simple list # right now it doesn't do any check, but can be modified in the future index = lrange(len(categories_levels)) if index is None else index contingency = OrderedDict() for key, value in iteritems(data): new_key = tuple(key[i] for i in index) contingency[new_key] = value data = contingency return data def _normalize_dataframe(dataframe, index): """Take a pandas DataFrame and count the element present in the given columns, return a hierarchical index on those columns """ #groupby the given keys, extract the same columns and count the element # then collapse them with a mean data = dataframe[index].dropna() grouped = data.groupby(index, sort=False) counted = grouped[index].count() averaged = counted.mean(axis=1) return averaged def _statistical_coloring(data): """evaluate colors from the indipendence properties of the matrix It will encounter problem if one category has all zeros """ data = _normalize_data(data, None) categories_levels = _categories_level(list(iterkeys(data))) Nlevels = len(categories_levels) total = 1.0 * sum(v for v in itervalues(data)) # count the proportion of observation # for each level that has the given name # at each level levels_count = [] for level_idx in range(Nlevels): proportion = {} for level in categories_levels[level_idx]: proportion[level] = 0.0 for key, value in iteritems(data): if level == key[level_idx]: proportion[level] += value proportion[level] /= total levels_count.append(proportion) # for each key I obtain the expected value # and it's standard deviation from a binomial distribution # under the hipothesys of independence expected = {} for key, value in iteritems(data): base = 1.0 for i, k in enumerate(key): base *= levels_count[i][k] expected[key] = base * total, np.sqrt(total * base * (1.0 - base)) # now we have the standard deviation of distance from the # expected value for each tile. We create the colors from this sigmas = dict((k, (data[k] - m) / s) for k, (m, s) in iteritems(expected)) props = {} for key, dev in iteritems(sigmas): red = 0.0 if dev < 0 else (dev / (1 + dev)) blue = 0.0 if dev > 0 else (dev / (-1 + dev)) green = (1.0 - red - blue) / 2.0 hatch = 'x' if dev > 2 else 'o' if dev < -2 else '' props[key] = {'color': [red, green, blue], 'hatch': hatch} return props def _get_position(x, w, h, W): if W == 0: return x return (x + w / 2.0) * w * h / W def _create_labels(rects, horizontal, ax, rotation): """find the position of the label for each value of each category right now it supports only up to the four categories ax: the axis on which the label should be applied rotation: the rotation list for each side """ categories = _categories_level(list(iterkeys(rects))) if len(categories) > 4: msg = ("maximum of 4 level supported for axes labeling..and 4" "is alreay a lot of level, are you sure you need them all?") raise NotImplementedError(msg) labels = {} #keep it fixed as will be used a lot of times items = list(iteritems(rects)) vertical = not horizontal #get the axis ticks and labels locator to put the correct values! ax2 = ax.twinx() ax3 = ax.twiny() #this is the order of execution for horizontal disposition ticks_pos = [ax.set_xticks, ax.set_yticks, ax3.set_xticks, ax2.set_yticks] ticks_lab = [ax.set_xticklabels, ax.set_yticklabels, ax3.set_xticklabels, ax2.set_yticklabels] #for the vertical one, rotate it by one if vertical: ticks_pos = ticks_pos[1:] + ticks_pos[:1] ticks_lab = ticks_lab[1:] + ticks_lab[:1] #clean them for pos, lab in zip(ticks_pos, ticks_lab): pos([]) lab([]) #for each level, for each value in the level, take the mean of all #the sublevel that correspond to that partial key for level_idx, level in enumerate(categories): #this dictionary keep the labels only for this level level_ticks = dict() for value in level: #to which level it should refer to get the preceding #values of labels? it's rather a tricky question... #this is dependent on the side. It's a very crude management #but I couldn't think a more general way... if horizontal: if level_idx == 3: index_select = [-1, -1, -1] else: index_select = [+0, -1, -1] else: if level_idx == 3: index_select = [+0, -1, +0] else: index_select = [-1, -1, -1] #now I create the base key name and append the current value #It will search on all the rects to find the corresponding one #and use them to evaluate the mean position basekey = tuple(categories[i][index_select[i]] for i in range(level_idx)) basekey = basekey + (value,) subset = dict((k, v) for k, v in items if basekey == k[:level_idx + 1]) #now I extract the center of all the tiles and make a weighted #mean of all these center on the area of the tile #this should give me the (more or less) correct position #of the center of the category vals = list(itervalues(subset)) W = sum(w * h for (x, y, w, h) in vals) x_lab = sum(_get_position(x, w, h, W) for (x, y, w, h) in vals) y_lab = sum(_get_position(y, h, w, W) for (x, y, w, h) in vals) #now base on the ordering, select which position to keep #needs to be written in a more general form of 4 level are enough? #should give also the horizontal and vertical alignment side = (level_idx + vertical) % 4 level_ticks[value] = y_lab if side % 2 else x_lab #now we add the labels of this level to the correct axis ticks_pos[level_idx](list(itervalues(level_ticks))) ticks_lab[level_idx](list(iterkeys(level_ticks)), rotation=rotation[level_idx]) return labels def mosaic(data, index=None, ax=None, horizontal=True, gap=0.005, properties=lambda key: None, labelizer=None, title='', statistic=False, axes_label=True, label_rotation=0.0): """Create a mosaic plot from a contingency table. It allows to visualize multivariate categorical data in a rigorous and informative way. Parameters ---------- data : dict, pandas.Series, np.ndarray, pandas.DataFrame The contingency table that contains the data. Each category should contain a non-negative number with a tuple as index. It expects that all the combination of keys to be representes; if that is not true, will automatically consider the missing values as 0. The order of the keys will be the same as the one of insertion. If a dict of a Series (or any other dict like object) is used, it will take the keys as labels. If a np.ndarray is provided, it will generate a simple numerical labels. index: list, optional Gives the preferred order for the category ordering. If not specified will default to the given order. It doesn't support named indexes for hierarchical Series. If a DataFrame is provided, it expects a list with the name of the columns. ax : matplotlib.Axes, optional The graph where display the mosaic. If not given, will create a new figure horizontal : bool, optional (default True) The starting direction of the split (by default along the horizontal axis) gap : float or array of floats The list of gaps to be applied on each subdivision. If the lenght of the given array is less of the number of subcategories (or if it's a single number) it will extend it with exponentially decreasing gaps labelizer : function (key) -> string, optional A function that generate the text to display at the center of each tile base on the key of that tile properties : function (key) -> dict, optional A function that for each tile in the mosaic take the key of the tile and returns the dictionary of properties of the generated Rectangle, like color, hatch or similar. A default properties set will be provided fot the keys whose color has not been defined, and will use color variation to help visually separates the various categories. It should return None to indicate that it should use the default property for the tile. A dictionary of the properties for each key can be passed, and it will be internally converted to the correct function statistic: bool, optional (default False) if true will use a crude statistical model to give colors to the plot. If the tile has a containt that is more than 2 standard deviation from the expected value under independence hipotesys, it will go from green to red (for positive deviations, blue otherwise) and will acquire an hatching when crosses the 3 sigma. title: string, optional The title of the axis axes_label: boolean, optional Show the name of each value of each category on the axis (default) or hide them. label_rotation: float or list of float the rotation of the axis label (if present). If a list is given each axis can have a different rotation Returns ---------- fig : matplotlib.Figure The generate figure rects : dict A dictionary that has the same keys of the original dataset, that holds a reference to the coordinates of the tile and the Rectangle that represent it See Also ---------- A Brief History of the Mosaic Display Michael Friendly, York University, Psychology Department Journal of Computational and Graphical Statistics, 2001 Mosaic Displays for Loglinear Models. Michael Friendly, York University, Psychology Department Proceedings of the Statistical Graphics Section, 1992, 61-68. Mosaic displays for multi-way contingecy tables. Michael Friendly, York University, Psychology Department Journal of the american statistical association March 1994, Vol. 89, No. 425, Theory and Methods Examples ---------- The most simple use case is to take a dictionary and plot the result >>> data = {'a': 10, 'b': 15, 'c': 16} >>> mosaic(data, title='basic dictionary') >>> pylab.show() A more useful example is given by a dictionary with multiple indices. In this case we use a wider gap to a better visual separation of the resulting plot >>> data = {('a', 'b'): 1, ('a', 'c'): 2, ('d', 'b'): 3, ('d', 'c'): 4} >>> mosaic(data, gap=0.05, title='complete dictionary') >>> pylab.show() The same data can be given as a simple or hierarchical indexed Series >>> rand = np.random.random >>> from itertools import product >>> >>> tuples = list(product(['bar', 'baz', 'foo', 'qux'], ['one', 'two'])) >>> index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) >>> data = pd.Series(rand(8), index=index) >>> mosaic(data, title='hierarchical index series') >>> pylab.show() The third accepted data structureis the np array, for which a very simple index will be created. >>> rand = np.random.random >>> data = 1+rand((2,2)) >>> mosaic(data, title='random non-labeled array') >>> pylab.show() If you need to modify the labeling and the coloring you can give a function tocreate the labels and one with the graphical properties starting from the key tuple >>> data = {'a': 10, 'b': 15, 'c': 16} >>> props = lambda key: {'color': 'r' if 'a' in key else 'gray'} >>> labelizer = lambda k: {('a',): 'first', ('b',): 'second', ('c',): 'third'}[k] >>> mosaic(data, title='colored dictionary', properties=props, labelizer=labelizer) >>> pylab.show() Using a DataFrame as source, specifying the name of the columns of interest >>> gender = ['male', 'male', 'male', 'female', 'female', 'female'] >>> pet = ['cat', 'dog', 'dog', 'cat', 'dog', 'cat'] >>> data = pandas.DataFrame({'gender': gender, 'pet': pet}) >>> mosaic(data, ['pet', 'gender']) >>> pylab.show() """ if isinstance(data, DataFrame) and index is None: raise ValueError("You must pass an index if data is a DataFrame." " See examples.") from pylab import Rectangle fig, ax = utils.create_mpl_ax(ax) # normalize the data to a dict with tuple of strings as keys data = _normalize_data(data, index) # split the graph into different areas rects = _hierarchical_split(data, horizontal=horizontal, gap=gap) # if there is no specified way to create the labels # create a default one if labelizer is None: labelizer = lambda k: "\n".join(k) if statistic: default_props = _statistical_coloring(data) else: default_props = _create_default_properties(data) if isinstance(properties, dict): color_dict = properties properties = lambda key: color_dict.get(key, None) for k, v in iteritems(rects): # create each rectangle and put a label on it x, y, w, h = v conf = properties(k) props = conf if conf else default_props[k] text = labelizer(k) Rect = Rectangle((x, y), w, h, label=text, **props) ax.add_patch(Rect) ax.text(x + w / 2, y + h / 2, text, ha='center', va='center', size='smaller') #creating the labels on the axis #o clearing it if axes_label: if np.iterable(label_rotation): rotation = label_rotation else: rotation = [label_rotation] * 4 labels = _create_labels(rects, horizontal, ax, rotation) else: ax.set_xticks([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_yticklabels([]) ax.set_title(title) return fig, rects
bsd-3-clause
schets/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
wronk/mne-python
mne/viz/montage.py
11
1801
"""Functions to plot EEG sensor montages or digitizer montages """ import numpy as np from .utils import plt_show def plot_montage(montage, scale_factor=1.5, show_names=False, show=True): """Plot a montage Parameters ---------- montage : instance of Montage The montage to visualize. scale_factor : float Determines the size of the points. Defaults to 1.5. show_names : bool Whether to show the channel names. Defaults to False. show : bool Show figure if True. Returns ------- fig : Instance of matplotlib.figure.Figure The figure object. """ from ..channels.montage import Montage, DigMontage import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa fig = plt.figure() ax = fig.add_subplot(111, projection='3d') if isinstance(montage, Montage): pos = montage.pos ax.scatter(pos[:, 0], pos[:, 1], pos[:, 2]) if show_names: ch_names = montage.ch_names for ch_name, x, y, z in zip(ch_names, pos[:, 0], pos[:, 1], pos[:, 2]): ax.text(x, y, z, ch_name) elif isinstance(montage, DigMontage): pos = np.vstack((montage.hsp, montage.elp)) ax.scatter(pos[:, 0], pos[:, 1], pos[:, 2]) if show_names: if montage.point_names: hpi_names = montage.point_names for hpi_name, x, y, z in zip(hpi_names, montage.elp[:, 0], montage.elp[:, 1], montage.elp[:, 2]): ax.text(x, y, z, hpi_name) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt_show(show) return fig
bsd-3-clause
mne-tools/mne-tools.github.io
0.17/_downloads/073cd329c76032781ae018af6b775d9b/plot_decoding_unsupervised_spatial_filter.py
29
2496
""" ================================================================== Analysis of evoked response using ICA and PCA reduction techniques ================================================================== This example computes PCA and ICA of evoked or epochs data. Then the PCA / ICA components, a.k.a. spatial filters, are used to transform the channel data to new sources / virtual channels. The output is visualized on the average of all the epochs. """ # Authors: Jean-Remi King <[email protected]> # Asish Panda <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.decoding import UnsupervisedSpatialFilter from sklearn.decomposition import PCA, FastICA print(__doc__) # Preprocess data data_path = sample.data_path() # Load and filter data, set up epochs raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.1, 0.3 event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4) raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 20, fir_design='firwin') events = mne.read_events(event_fname) picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) X = epochs.get_data() ############################################################################## # Transform data with PCA computed on the average ie evoked response pca = UnsupervisedSpatialFilter(PCA(30), average=False) pca_data = pca.fit_transform(X) ev = mne.EvokedArray(np.mean(pca_data, axis=0), mne.create_info(30, epochs.info['sfreq'], ch_types='eeg'), tmin=tmin) ev.plot(show=False, window_title="PCA", time_unit='s') ############################################################################## # Transform data with ICA computed on the raw epochs (no averaging) ica = UnsupervisedSpatialFilter(FastICA(30), average=False) ica_data = ica.fit_transform(X) ev1 = mne.EvokedArray(np.mean(ica_data, axis=0), mne.create_info(30, epochs.info['sfreq'], ch_types='eeg'), tmin=tmin) ev1.plot(show=False, window_title='ICA', time_unit='s') plt.show()
bsd-3-clause
zorroblue/scikit-learn
sklearn/datasets/__init__.py
61
3734
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_breast_cancer from .base import load_boston from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_sample_images from .base import load_sample_image from .base import load_wine from .base import get_data_home from .base import clear_data_home from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'load_wine', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
EnboYang/eebybay
eeofbatse.py
1
4697
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <headingcell level=1> # Project:BB Analysis of BATSE GRB # <markdowncell> # This script is used to do Bayesian Block analysis with the ascii file of BATSE GRB # # Author:Enbo Yang([email protected]) # # Lisence:GPLv2 # <headingcell level=2> # Module preparing # <codecell> import numpy as np import matplotlib.pyplot as plt from astroML.plotting import hist as bbhist # <headingcell level=2> # Get the Trigger Num # <codecell> trig=raw_input('Please input the tigger:') # <headingcell level=2> # Create file to save the channel data # <codecell> chnum=1 while chnum<=4: f=open("%s.time.CH%s"%(trig,chnum),'w') f.close() chnum+=1 # <headingcell level=2> # Split data of each channel # <codecell> #This part is used to split channel data of the ascii file of a burst ''' Because of the bug in numpy.genfromtxt( cannot read a file with differential rows to a array), so I use numpy.fromstring instead. timedata: First array in ascii file, stand for the photon arrival time(need to be redit here!) chdata: Second array in ascii file, stand for the channel information. totalno: The number of photons that arrived the detectored ''' timedata=np.fromstring(''.join(open('%s.time'%trig,'r').read().splitlines()),sep=' ') # CAUTIONS: Need to give the time file manually chdata=np.fromstring(''.join(open('%s.channel'%trig,'r').read().splitlines()),sep=' ') (totalno,)=np.shape(timedata) n=0 # n is just a temporary variable here, maybe need to be changed if conflict while n<totalno: f=open("%s.time.CH%i"%(trig,chdata[n]),'a') f.write("%f"%timedata[n]+'\n') f.close() n+=1 # <headingcell level=2> # Do Bayesian Block analysis # <markdowncell> # During the analysis, we add Knuth bins ,Scott bins and Freedman bins as comparision. # <headingcell level=3> # total data # <codecell> #We use standard histogram as background, then Knuth bins & Bayesian block fig,axes = plt.subplots(2,1,figsize=(12,6)) axes[0].hist(timedata/1000,bins=64,color='blue',histtype='step',label='64ms') axes[0].set_title('bins=64') axes[0].set_xlabel('Time/second') axes[0].set_ylabel('Count') axes[0].legend(loc='best') axes[1].hist(timedata/1000,bins=1000,color='blue',histtype='step',normed='True',label='bins=1s') bbhist(timedata/1000,bins='blocks',color='red',histtype='step',normed='True',label='bayesian') axes[1].legend(loc='best') axes[1].set_title('Bayesian block') axes[1].set_xlabel('Time/second') axes[1].set_ylabel('Count Rate($s^{-1}$)') #axes[1].set_ylim([0,0.001]) fig.tight_layout() fig.savefig('%s.png'%trig,dpi=200) # <headingcell level=2> # Channel data # <headingcell level=3> # Read Channel data from file # <codecell> ch1time=np.genfromtxt('%s.time.CH1'%trig) ch2time=np.genfromtxt('%s.time.CH2'%trig) ch3time=np.genfromtxt('%s.time.CH3'%trig) ch4time=np.genfromtxt('%s.time.CH4'%trig) (count1,)=ch1time.shape (count2,)=ch2time.shape (count3,)=ch3time.shape (count4,)=ch4time.shape ch1time=np.reshape(ch1time,[count1,1]) ch2time=np.reshape(ch2time,[count2,1]) ch3time=np.reshape(ch3time,[count3,1]) ch4time=np.reshape(ch4time,[count4,1]) # <headingcell level=3> # Plot data in one Picture # <codecell> fig=plt.figure(figsize=(15,11)) axes=plt.subplot(2,2,1) axes.hist(ch1time/1000,bins=128,color='blue',normed='True',histtype='step',label='bins=1s') bbhist(ch1time/1000,bins='blocks',color='red',normed='True',histtype='step',label='bayesian') axes.legend(loc='best') axes.set_title('Channel 1') axes.set_xlabel('Time/second') axes.set_ylabel('Count Rate($s^{-1}$)') axes=plt.subplot(2,2,2) axes.hist(ch2time/1000,bins=64,color='blue',normed='True',histtype='step',label='bins=1s') bbhist(ch2time/1000,bins='blocks',color='red',normed='True',histtype='step',label='bayesian') axes.legend(loc='best') axes.set_title('Channel 2') axes.set_xlabel('Time/second') axes.set_ylabel('Count Rate($s^{-1}$)') axes=plt.subplot(2,2,3) axes.hist(ch3time/1000,bins=64,color='blue',normed='True',histtype='step',label='bins=1s') bbhist(ch3time/1000,bins='blocks',color='red',normed='True',histtype='step',label='bayesian') axes.legend(loc='best') axes.set_title('Channel 3') axes.set_xlabel('Time/second') axes.set_ylabel('Count Rate($s^{-1}$)') axes=plt.subplot(2,2,4) axes.hist(ch4time/1000,bins=64,color='blue',normed='True',histtype='step',label='bins=1s') bbhist(ch4time/1000,bins='blocks',color='red',normed='True',histtype='step',label='bayesian') axes.legend(loc='best') axes.set_title('Channel 4') axes.set_xlabel('Time/second') axes.set_ylabel('Count Rate($s^{-1}$)') fig.tight_layout() fig.savefig('%sCH.png'%trig,dpi=200) # <codecell>
gpl-2.0
mjirik/quantan
setup.py
2
3556
# Fallowing command is used to upload to pipy # bumpversion patch # python setup.py register sdist upload from setuptools import setup, find_packages # Always prefer setuptools over distutils from os import path __VERSION__ = '0.0.27' here = path.abspath(path.dirname(__file__)) setup( name='quantan', description='Quantitative histological analyser', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # http://packaging.python.org/en/latest/tutorial.html#version version=__VERSION__, url='https://github.com/mjirik/quanta', author='Miroslav Jirik and Pavel Volkovinsky', author_email='[email protected]', license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Bio-Informatics', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: BSD License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', # 'Programming Language :: Python :: 3', # 'Programming Language :: Python :: 3.2', # 'Programming Language :: Python :: 3.3', # 'Programming Language :: Python :: 3.4', ], # What does your project relate to? keywords='dicom 3D read write', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['dist', 'docs', 'tests*']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/technical.html#install-requires-vs-requirements-files install_requires=['numpy', 'scipy', "pyyaml", 'matplotlib', 'skelet3d', 'imtools', 'sed3', "pysegbase", "io3d"], # 'SimpleITK'], # Removed becaouse of errors when pip is installing dependency_links=[], # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. package_data={ 'quantan': ['icon/icon.png'], }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. # see # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )
mit
icdishb/scikit-learn
examples/bicluster/bicluster_newsgroups.py
42
7098
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals import six from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] weight = X[rows[:, np.newaxis], cols].sum() cut = (X[row_complement[:, np.newaxis], cols].sum() + X[rows[:, np.newaxis], col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(six.iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in xrange(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
richlewis42/scikit-chem
skchem/test/test_core/test_bond.py
1
3412
#! /usr/bin/env python # # Copyright (C) 2015-2016 Rich Lewis <[email protected]> # License: 3-clause BSD import pytest import numpy as np import pandas as pd from ...core import bond, Mol from . import example_mol #provides 'm' fixture @pytest.fixture(name='b') def example_bond(m): return m.bonds[0] @pytest.fixture(name='bwp') def example_bond_with_props(b): b.props['test'] = 'value' return b def test_len(m): assert len(m.bonds) == 6 def test_out_of_range(m): with pytest.raises(IndexError): m.bonds[100] def test_reverse_index(m): assert m.bonds[-1].order == 1 def test_slice(m): assert len(m.bonds[[1, 4]]) == 2 def test_repr(b): assert repr(b) == '<Bond type="O-C" at {}>'.format(hex(id(b))) def test_owner(m): # rdkit gives a copy of the object, so cant test for identity assert m.bonds[0].owner.to_smiles() == m.to_smiles() def test_index(b): assert b.index == 0 def test_to_dict(b): assert b.to_dict() == {'b': 0, 'e':1, 'o': 1} def test_index(m): assert m.bonds.index.equals(pd.RangeIndex(6, name='bond_idx')) def test_all_params_on_view(): params = list(bond.Bond.__dict__.keys()) for param in ('__doc__', '__repr__', '__str__', '__module__', 'atoms', 'props', 'owner', 'draw', 'to_dict'): params.remove(param) for param in params: assert hasattr(bond.BondView, param) def test_atoms(b): assert len(b.atoms) == 2 def test_atom_idxs(b): assert b.atom_idxs == (0, 1) test_data = [ ('order', [1, 2, 1, 1, 1, 1]), ('stereo_symbol', ['NONE', 'NONE', 'NONE', 'NONE', 'NONE', 'NONE']), ('is_in_ring', [False, False, False, False, False, False]), ('is_conjugated', [True, True, False, False, False, False]), ('is_aromatic', [False, False, False, False, False, False]) ] params = pytest.mark.parametrize('param, expected', test_data) @pytest.fixture(name='m_a') def exampole_aromatic_mol(): return Mol.from_smiles('c1ccNc1') arom_test_data = [ ('order', [1.5, 1.5, 1.5, 1.5, 1.5]), ('stereo_symbol', ['NONE', 'NONE', 'NONE', 'NONE', 'NONE']), ('is_in_ring', [True, True, True, True, True]), ('is_conjugated', [True, True, True, True, True]), ('is_aromatic', [True, True, True, True, True]) ] arom_params = pytest.mark.parametrize('param, expected', arom_test_data) @params def test_params_on_bond_view(m, param, expected): assert np.array_equal(getattr(m.bonds, param), expected) @arom_params def test_arom_params(m_a, param, expected): assert np.array_equal(getattr(m_a.bonds, param), expected) @params def test_params_on_bonds(m, param, expected): res = np.array([getattr(b, param) for b in m.bonds]) assert np.array_equal(res, expected) def test_props_keys_empty(b): assert len(b.props.keys()) == 0 def test_props_len_empty(b): assert len(b.props) == 0 def test_props_keys_full(bwp): assert len(bwp.props.keys()) == 1 assert bwp.props.keys()[0] == 'test' def test_props_len_full(bwp): assert len(bwp.props) == 1 def test_edge_adj(m): assert np.array_equal(m.bonds.adjacency_matrix(), np.array([ [0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0], [1, 1, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 1, 0, 1], [0, 0, 0, 0, 1, 0]])) def test_atom_idx_view(m): assert m.bonds.atom_idxs.shape == (len(m.bonds), 2)
bsd-3-clause
JsNoNo/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
jhamman/xarray
xarray/core/groupby.py
1
32122
import datetime import functools import warnings import numpy as np import pandas as pd from . import dtypes, duck_array_ops, nputils, ops from .arithmetic import SupportsArithmetic from .common import ImplementsArrayReduce, ImplementsDatasetReduce from .concat import concat from .formatting import format_array_flat from .options import _get_keep_attrs from .pycompat import integer_types from .utils import ( either_dict_or_kwargs, hashable, is_scalar, maybe_wrap_array, peek_at, safe_cast_to_index, ) from .variable import IndexVariable, Variable, as_variable def check_reduce_dims(reduce_dims, dimensions): if reduce_dims is not ...: if is_scalar(reduce_dims): reduce_dims = [reduce_dims] if any([dim not in dimensions for dim in reduce_dims]): raise ValueError( "cannot reduce over dimensions %r. expected either '...' to reduce over all dimensions or one or more of %r." % (reduce_dims, dimensions) ) def unique_value_groups(ar, sort=True): """Group an array by its unique values. Parameters ---------- ar : array-like Input array. This will be flattened if it is not already 1-D. sort : boolean, optional Whether or not to sort unique values. Returns ------- values : np.ndarray Sorted, unique values as returned by `np.unique`. indices : list of lists of int Each element provides the integer indices in `ar` with values given by the corresponding value in `unique_values`. """ inverse, values = pd.factorize(ar, sort=sort) groups = [[] for _ in range(len(values))] for n, g in enumerate(inverse): if g >= 0: # pandas uses -1 to mark NaN, but doesn't include them in values groups[g].append(n) return values, groups def _dummy_copy(xarray_obj): from .dataset import Dataset from .dataarray import DataArray if isinstance(xarray_obj, Dataset): res = Dataset( { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.data_vars.items() }, { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims }, xarray_obj.attrs, ) elif isinstance(xarray_obj, DataArray): res = DataArray( dtypes.get_fill_value(xarray_obj.dtype), { k: dtypes.get_fill_value(v.dtype) for k, v in xarray_obj.coords.items() if k not in xarray_obj.dims }, dims=[], name=xarray_obj.name, attrs=xarray_obj.attrs, ) else: # pragma: no cover raise AssertionError return res def _is_one_or_none(obj): return obj == 1 or obj is None def _consolidate_slices(slices): """Consolidate adjacent slices in a list of slices. """ result = [] last_slice = slice(None) for slice_ in slices: if not isinstance(slice_, slice): raise ValueError("list element is not a slice: %r" % slice_) if ( result and last_slice.stop == slice_.start and _is_one_or_none(last_slice.step) and _is_one_or_none(slice_.step) ): last_slice = slice(last_slice.start, slice_.stop, slice_.step) result[-1] = last_slice else: result.append(slice_) last_slice = slice_ return result def _inverse_permutation_indices(positions): """Like inverse_permutation, but also handles slices. Parameters ---------- positions : list of np.ndarray or slice objects. If slice objects, all are assumed to be slices. Returns ------- np.ndarray of indices or None, if no permutation is necessary. """ if not positions: return None if isinstance(positions[0], slice): positions = _consolidate_slices(positions) if positions == slice(None): return None positions = [np.arange(sl.start, sl.stop, sl.step) for sl in positions] indices = nputils.inverse_permutation(np.concatenate(positions)) return indices class _DummyGroup: """Class for keeping track of grouped dimensions without coordinates. Should not be user visible. """ __slots__ = ("name", "coords", "size") def __init__(self, obj, name, coords): self.name = name self.coords = coords self.size = obj.sizes[name] @property def dims(self): return (self.name,) @property def ndim(self): return 1 @property def values(self): return range(self.size) @property def shape(self): return (self.size,) def __getitem__(self, key): if isinstance(key, tuple): key = key[0] return self.values[key] def _ensure_1d(group, obj): if group.ndim != 1: # try to stack the dims of the group into a single dim orig_dims = group.dims stacked_dim = "stacked_" + "_".join(orig_dims) # these dimensions get created by the stack operation inserted_dims = [dim for dim in group.dims if dim not in group.coords] # the copy is necessary here, otherwise read only array raises error # in pandas: https://github.com/pydata/pandas/issues/12813 group = group.stack(**{stacked_dim: orig_dims}).copy() obj = obj.stack(**{stacked_dim: orig_dims}) else: stacked_dim = None inserted_dims = [] return group, obj, stacked_dim, inserted_dims def _unique_and_monotonic(group): if isinstance(group, _DummyGroup): return True else: index = safe_cast_to_index(group) return index.is_unique and index.is_monotonic def _apply_loffset(grouper, result): """ (copied from pandas) if loffset is set, offset the result index This is NOT an idempotent routine, it will be applied exactly once to the result. Parameters ---------- result : Series or DataFrame the result of resample """ needs_offset = ( isinstance(grouper.loffset, (pd.DateOffset, datetime.timedelta)) and isinstance(result.index, pd.DatetimeIndex) and len(result.index) > 0 ) if needs_offset: result.index = result.index + grouper.loffset grouper.loffset = None class GroupBy(SupportsArithmetic): """A object that implements the split-apply-combine pattern. Modeled after `pandas.GroupBy`. The `GroupBy` object can be iterated over (unique_value, grouped_array) pairs, but the main way to interact with a groupby object are with the `apply` or `reduce` methods. You can also directly call numpy methods like `mean` or `std`. You should create a GroupBy object by using the `DataArray.groupby` or `Dataset.groupby` methods. See Also -------- Dataset.groupby DataArray.groupby """ __slots__ = ( "_full_index", "_inserted_dims", "_group", "_group_dim", "_group_indices", "_groups", "_obj", "_restore_coord_dims", "_stacked_dim", "_unique_coord", "_dims", ) def __init__( self, obj, group, squeeze=False, grouper=None, bins=None, restore_coord_dims=None, cut_kwargs={}, ): """Create a GroupBy object Parameters ---------- obj : Dataset or DataArray Object to group. group : DataArray Array with the group values. squeeze : boolean, optional If "group" is a coordinate of object, `squeeze` controls whether the subarrays have a dimension of length 1 along that coordinate or if the dimension is squeezed out. grouper : pd.Grouper, optional Used for grouping values along the `group` array. bins : array-like, optional If `bins` is specified, the groups will be discretized into the specified bins by `pandas.cut`. restore_coord_dims : bool, optional If True, also restore the dimension order of multi-dimensional coordinates. cut_kwargs : dict, optional Extra keyword arguments to pass to `pandas.cut` """ from .dataarray import DataArray if grouper is not None and bins is not None: raise TypeError("can't specify both `grouper` and `bins`") if not isinstance(group, (DataArray, IndexVariable)): if not hashable(group): raise TypeError( "`group` must be an xarray.DataArray or the " "name of an xarray variable or dimension" ) group = obj[group] if len(group) == 0: raise ValueError(f"{group.name} must not be empty") if group.name not in obj.coords and group.name in obj.dims: # DummyGroups should not appear on groupby results group = _DummyGroup(obj, group.name, group.coords) if getattr(group, "name", None) is None: raise ValueError("`group` must have a name") group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj) group_dim, = group.dims expected_size = obj.sizes[group_dim] if group.size != expected_size: raise ValueError( "the group variable's length does not " "match the length of this variable along its " "dimension" ) full_index = None if bins is not None: if duck_array_ops.isnull(bins).all(): raise ValueError("All bin edges are NaN.") binned = pd.cut(group.values, bins, **cut_kwargs) new_dim_name = group.name + "_bins" group = DataArray(binned, group.coords, name=new_dim_name) full_index = binned.categories if grouper is not None: index = safe_cast_to_index(group) if not index.is_monotonic: # TODO: sort instead of raising an error raise ValueError("index must be monotonic for resampling") full_index, first_items = self._get_index_and_items(index, grouper) sbins = first_items.values.astype(np.int64) group_indices = [slice(i, j) for i, j in zip(sbins[:-1], sbins[1:])] + [ slice(sbins[-1], None) ] unique_coord = IndexVariable(group.name, first_items.index) elif group.dims == (group.name,) and _unique_and_monotonic(group): # no need to factorize group_indices = np.arange(group.size) if not squeeze: # use slices to do views instead of fancy indexing # equivalent to: group_indices = group_indices.reshape(-1, 1) group_indices = [slice(i, i + 1) for i in group_indices] unique_coord = group else: # look through group to find the unique values unique_values, group_indices = unique_value_groups( safe_cast_to_index(group), sort=(bins is None) ) unique_coord = IndexVariable(group.name, unique_values) if len(group_indices) == 0: if bins is not None: raise ValueError( "None of the data falls within bins with edges %r" % bins ) else: raise ValueError( "Failed to group data. Are you grouping by a variable that is all NaN?" ) if ( isinstance(obj, DataArray) and restore_coord_dims is None and any(obj[c].ndim > 1 for c in obj.coords) ): warnings.warn( "This DataArray contains multi-dimensional " "coordinates. In the future, the dimension order " "of these coordinates will be restored as well " "unless you specify restore_coord_dims=False.", FutureWarning, stacklevel=2, ) restore_coord_dims = False # specification for the groupby operation self._obj = obj self._group = group self._group_dim = group_dim self._group_indices = group_indices self._unique_coord = unique_coord self._stacked_dim = stacked_dim self._inserted_dims = inserted_dims self._full_index = full_index self._restore_coord_dims = restore_coord_dims # cached attributes self._groups = None self._dims = None @property def dims(self): if self._dims is None: self._dims = self._obj.isel( **{self._group_dim: self._group_indices[0]} ).dims return self._dims @property def groups(self): # provided to mimic pandas.groupby if self._groups is None: self._groups = dict(zip(self._unique_coord.values, self._group_indices)) return self._groups def __len__(self): return self._unique_coord.size def __iter__(self): return zip(self._unique_coord.values, self._iter_grouped()) def __repr__(self): return "{}, grouped over {!r} \n{!r} groups with labels {}.".format( self.__class__.__name__, self._unique_coord.name, self._unique_coord.size, ", ".join(format_array_flat(self._unique_coord, 30).split()), ) def _get_index_and_items(self, index, grouper): from .resample_cftime import CFTimeGrouper s = pd.Series(np.arange(index.size), index) if isinstance(grouper, CFTimeGrouper): first_items = grouper.first_items(index) else: first_items = s.groupby(grouper).first() _apply_loffset(grouper, first_items) full_index = first_items.index if first_items.isnull().any(): first_items = first_items.dropna() return full_index, first_items def _iter_grouped(self): """Iterate over each element in this group""" for indices in self._group_indices: yield self._obj.isel(**{self._group_dim: indices}) def _infer_concat_args(self, applied_example): if self._group_dim in applied_example.dims: coord = self._group positions = self._group_indices else: coord = self._unique_coord positions = None dim, = coord.dims if isinstance(coord, _DummyGroup): coord = None return coord, dim, positions @staticmethod def _binary_op(f, reflexive=False, **ignored_kwargs): @functools.wraps(f) def func(self, other): g = f if not reflexive else lambda x, y: f(y, x) applied = self._yield_binary_applied(g, other) combined = self._combine(applied) return combined return func def _yield_binary_applied(self, func, other): dummy = None for group_value, obj in self: try: other_sel = other.sel(**{self._group.name: group_value}) except AttributeError: raise TypeError( "GroupBy objects only support binary ops " "when the other argument is a Dataset or " "DataArray" ) except (KeyError, ValueError): if self._group.name not in other.dims: raise ValueError( "incompatible dimensions for a grouped " "binary operation: the group variable %r " "is not a dimension on the other argument" % self._group.name ) if dummy is None: dummy = _dummy_copy(other) other_sel = dummy result = func(obj, other_sel) yield result def _maybe_restore_empty_groups(self, combined): """Our index contained empty groups (e.g., from a resampling). If we reduced on that dimension, we want to restore the full index. """ if self._full_index is not None and self._group.name in combined.dims: indexers = {self._group.name: self._full_index} combined = combined.reindex(**indexers) return combined def _maybe_unstack(self, obj): """This gets called if we are applying on an array with a multidimensional group.""" if self._stacked_dim is not None and self._stacked_dim in obj.dims: obj = obj.unstack(self._stacked_dim) for dim in self._inserted_dims: if dim in obj.coords: del obj.coords[dim] return obj def fillna(self, value): """Fill missing values in this object by group. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic, except the result is aligned to this object (``join='left'``) instead of aligned to the intersection of index coordinates (``join='inner'``). Parameters ---------- value : valid type for the grouped object's fillna method Used to fill all matching missing values by group. Returns ------- same type as the grouped object See also -------- Dataset.fillna DataArray.fillna """ out = ops.fillna(self, value) return out def where(self, cond, other=dtypes.NA): """Return elements from `self` or `other` depending on `cond`. Parameters ---------- cond : DataArray or Dataset with boolean dtype Locations at which to preserve this objects values. other : scalar, DataArray or Dataset, optional Value to use for locations in this object where ``cond`` is False. By default, inserts missing values. Returns ------- same type as the grouped object See also -------- Dataset.where """ return ops.where_method(self, cond, other) def _first_or_last(self, op, skipna, keep_attrs): if isinstance(self._group_indices[0], integer_types): # NB. this is currently only used for reductions along an existing # dimension return self._obj if keep_attrs is None: keep_attrs = _get_keep_attrs(default=True) return self.reduce( op, self._group_dim, skipna=skipna, keep_attrs=keep_attrs, allow_lazy=True ) def first(self, skipna=None, keep_attrs=None): """Return the first element of each group along the group dimension """ return self._first_or_last(duck_array_ops.first, skipna, keep_attrs) def last(self, skipna=None, keep_attrs=None): """Return the last element of each group along the group dimension """ return self._first_or_last(duck_array_ops.last, skipna, keep_attrs) def assign_coords(self, coords=None, **coords_kwargs): """Assign coordinates by group. See also -------- Dataset.assign_coords Dataset.swap_dims """ coords_kwargs = either_dict_or_kwargs(coords, coords_kwargs, "assign_coords") return self.apply(lambda ds: ds.assign_coords(**coords_kwargs)) def _maybe_reorder(xarray_obj, dim, positions): order = _inverse_permutation_indices(positions) if order is None: return xarray_obj else: return xarray_obj[{dim: order}] class DataArrayGroupBy(GroupBy, ImplementsArrayReduce): """GroupBy object specialized to grouping DataArray objects """ def _iter_grouped_shortcut(self): """Fast version of `_iter_grouped` that yields Variables without metadata """ var = self._obj.variable for indices in self._group_indices: yield var[{self._group_dim: indices}] def _concat_shortcut(self, applied, dim, positions=None): # nb. don't worry too much about maintaining this method -- it does # speed things up, but it's not very interpretable and there are much # faster alternatives (e.g., doing the grouped aggregation in a # compiled language) stacked = Variable.concat(applied, dim, shortcut=True) reordered = _maybe_reorder(stacked, dim, positions) result = self._obj._replace_maybe_drop_dims(reordered) return result def _restore_dim_order(self, stacked): def lookup_order(dimension): if dimension == self._group.name: dimension, = self._group.dims if dimension in self._obj.dims: axis = self._obj.get_axis_num(dimension) else: axis = 1e6 # some arbitrarily high value return axis new_order = sorted(stacked.dims, key=lookup_order) return stacked.transpose(*new_order, transpose_coords=self._restore_coord_dims) def apply(self, func, shortcut=False, args=(), **kwargs): """Apply a function over each array in the group and concatenate them together into a new array. `func` is called like `func(ar, *args, **kwargs)` for each array `ar` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the array. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped array after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each array. shortcut : bool, optional Whether or not to shortcut evaluation under the assumptions that: (1) The action of `func` does not depend on any of the array metadata (attributes or coordinates) but only on the data and dimensions. (2) The action of `func` creates arrays with homogeneous metadata, that is, with the same dimensions and attributes. If these conditions are satisfied `shortcut` provides significant speedup. This should be the case for many common groupby operations (e.g., applying numpy ufuncs). args : tuple, optional Positional arguments passed to `func`. **kwargs Used to call `func(ar, **kwargs)` for each array `ar`. Returns ------- applied : DataArray or DataArray The result of splitting, applying and combining this array. """ if shortcut: grouped = self._iter_grouped_shortcut() else: grouped = self._iter_grouped() applied = (maybe_wrap_array(arr, func(arr, *args, **kwargs)) for arr in grouped) return self._combine(applied, shortcut=shortcut) def _combine(self, applied, restore_coord_dims=False, shortcut=False): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) if shortcut: combined = self._concat_shortcut(applied, dim, positions) else: combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) if isinstance(combined, type(self._obj)): # only restore dimension order for arrays combined = self._restore_dim_order(combined) if coord is not None: if shortcut: combined._coords[coord.name] = as_variable(coord) else: combined.coords[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def quantile(self, q, dim=None, interpolation="linear", keep_attrs=None): """Compute the qth quantile over each array in the groups and concatenate them together into a new array. Parameters ---------- q : float in range of [0,1] (or sequence of floats) Quantile to compute, which must be between 0 and 1 inclusive. dim : `...`, str or sequence of str, optional Dimension(s) over which to apply quantile. Defaults to the grouped dimension. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. Returns ------- quantiles : Variable If `q` is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanpercentile, pandas.Series.quantile, Dataset.quantile, DataArray.quantile """ if dim is None: dim = self._group_dim out = self.apply( self._obj.__class__.quantile, shortcut=False, q=q, dim=dim, interpolation=interpolation, keep_attrs=keep_attrs, ) if np.asarray(q, dtype=np.float64).ndim == 0: out = out.drop("quantile") return out def reduce( self, func, dim=None, axis=None, keep_attrs=None, shortcut=True, **kwargs ): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : `...`, str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ if dim is None: dim = self._group_dim if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) def reduce_array(ar): return ar.reduce(func, dim, axis, keep_attrs=keep_attrs, **kwargs) check_reduce_dims(dim, self.dims) return self.apply(reduce_array, shortcut=shortcut) ops.inject_reduce_methods(DataArrayGroupBy) ops.inject_binary_ops(DataArrayGroupBy) class DatasetGroupBy(GroupBy, ImplementsDatasetReduce): def apply(self, func, args=(), shortcut=None, **kwargs): """Apply a function over each Dataset in the group and concatenate them together into a new Dataset. `func` is called like `func(ds, *args, **kwargs)` for each dataset `ds` in this group. Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how to stack together the datasets. The rule is: 1. If the dimension along which the group coordinate is defined is still in the first grouped item after applying `func`, then stack over this dimension. 2. Otherwise, stack over the new dimension given by name of this grouping (the argument to the `groupby` function). Parameters ---------- func : function Callable to apply to each sub-dataset. args : tuple, optional Positional arguments to pass to `func`. **kwargs Used to call `func(ds, **kwargs)` for each sub-dataset `ar`. Returns ------- applied : Dataset or DataArray The result of splitting, applying and combining this dataset. """ # ignore shortcut if set (for now) applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped()) return self._combine(applied) def _combine(self, applied): """Recombine the applied objects like the original.""" applied_example, applied = peek_at(applied) coord, dim, positions = self._infer_concat_args(applied_example) combined = concat(applied, dim) combined = _maybe_reorder(combined, dim, positions) if coord is not None: combined[coord.name] = coord combined = self._maybe_restore_empty_groups(combined) combined = self._maybe_unstack(combined) return combined def reduce(self, func, dim=None, keep_attrs=None, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of collapsing an np.ndarray over an integer valued axis. dim : `...`, str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dimension' and 'axis' arguments can be supplied. If neither are supplied, then `func` is calculated over all dimension for each group item. keep_attrs : bool, optional If True, the datasets's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ if dim is None: dim = self._group_dim if keep_attrs is None: keep_attrs = _get_keep_attrs(default=False) def reduce_dataset(ds): return ds.reduce(func, dim, keep_attrs, **kwargs) check_reduce_dims(dim, self.dims) return self.apply(reduce_dataset) def assign(self, **kwargs): """Assign data variables by group. See also -------- Dataset.assign """ return self.apply(lambda ds: ds.assign(**kwargs)) ops.inject_reduce_methods(DatasetGroupBy) ops.inject_binary_ops(DatasetGroupBy)
apache-2.0
RomainBrault/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
sinhrks/seaborn
seaborn/palettes.py
21
43467
from __future__ import division import colorsys from itertools import cycle import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from .external import husl from .external.six import string_types from .external.six.moves import range from .utils import desaturate, set_hls_values from .xkcd_rgb import xkcd_rgb from .crayons import crayons from .miscplot import palplot SEABORN_PALETTES = dict( deep=["#4C72B0", "#55A868", "#C44E52", "#8172B2", "#CCB974", "#64B5CD"], muted=["#4878CF", "#6ACC65", "#D65F5F", "#B47CC7", "#C4AD66", "#77BEDB"], pastel=["#92C6FF", "#97F0AA", "#FF9F9A", "#D0BBFF", "#FFFEA3", "#B0E0E6"], bright=["#003FFF", "#03ED3A", "#E8000B", "#8A2BE2", "#FFC400", "#00D7FF"], dark=["#001C7F", "#017517", "#8C0900", "#7600A1", "#B8860B", "#006374"], colorblind=["#0072B2", "#009E73", "#D55E00", "#CC79A7", "#F0E442", "#56B4E9"] ) class _ColorPalette(list): """Set the color palette in a with statement, otherwise be a list.""" def __enter__(self): """Open the context.""" from .rcmod import set_palette self._orig_palette = color_palette() set_palette(self) return self def __exit__(self, *args): """Close the context.""" from .rcmod import set_palette set_palette(self._orig_palette) def as_hex(self): """Return a color palette with hex codes instead of RGB values.""" hex = [mpl.colors.rgb2hex(rgb) for rgb in self] return _ColorPalette(hex) def color_palette(palette=None, n_colors=None, desat=None): """Return a list of colors defining a color palette. Availible seaborn palette names: deep, muted, bright, pastel, dark, colorblind Other options: hls, husl, any named matplotlib palette, list of colors Calling this function with ``palette=None`` will return the current matplotlib color cycle. Matplotlib paletes can be specified as reversed palettes by appending "_r" to the name or as dark palettes by appending "_d" to the name. (These options are mutually exclusive, but the resulting list of colors can also be reversed). This function can also be used in a ``with`` statement to temporarily set the color cycle for a plot or set of plots. Parameters ---------- palette: None, string, or sequence, optional Name of palette or None to return current palette. If a sequence, input colors are used but possibly cycled and desaturated. n_colors : int, optional Number of colors in the palette. If ``None``, the default will depend on how ``palette`` is specified. Named palettes default to 6 colors, but grabbing the current palette or passing in a list of colors will not change the number of colors unless this is specified. Asking for more colors than exist in the palette will cause it to cycle. desat : float, optional Proportion to desaturate each color by. Returns ------- palette : list of RGB tuples. Color palette. Behaves like a list, but can be used as a context manager and possesses an ``as_hex`` method to convert to hex color codes. See Also -------- set_palette : Set the default color cycle for all plots. set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to colors from one of the seaborn palettes. Examples -------- Show one of the "seaborn palettes", which have the same basic order of hues as the default matplotlib color cycle but more attractive colors. .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.color_palette("muted")) Use discrete values from one of the built-in matplotlib colormaps. .. plot:: :context: close-figs >>> sns.palplot(sns.color_palette("RdBu", n_colors=7)) Make a "dark" matplotlib sequential palette variant. (This can be good when coloring multiple lines or points that correspond to an ordered variable, where you don't want the lightest lines to be invisible). .. plot:: :context: close-figs >>> sns.palplot(sns.color_palette("Blues_d")) Use a categorical matplotlib palette, add some desaturation. (This can be good when making plots with large patches, which look best with dimmer colors). .. plot:: :context: close-figs >>> sns.palplot(sns.color_palette("Set1", n_colors=8, desat=.5)) Use as a context manager: .. plot:: :context: close-figs >>> import numpy as np, matplotlib.pyplot as plt >>> with sns.color_palette("husl", 8): ... _ = plt.plot(np.c_[np.zeros(8), np.arange(8)].T) """ if palette is None: palette = mpl.rcParams["axes.color_cycle"] if n_colors is None: n_colors = len(palette) elif not isinstance(palette, string_types): palette = palette if n_colors is None: n_colors = len(palette) else: if n_colors is None: n_colors = 6 if palette == "hls": palette = hls_palette(n_colors) elif palette == "husl": palette = husl_palette(n_colors) elif palette.lower() == "jet": raise ValueError("No.") elif palette in SEABORN_PALETTES: palette = SEABORN_PALETTES[palette] elif palette in dir(mpl.cm): palette = mpl_palette(palette, n_colors) elif palette[:-2] in dir(mpl.cm): palette = mpl_palette(palette, n_colors) else: raise ValueError("%s is not a valid palette name" % palette) if desat is not None: palette = [desaturate(c, desat) for c in palette] # Always return as many colors as we asked for pal_cycle = cycle(palette) palette = [next(pal_cycle) for _ in range(n_colors)] # Always return in r, g, b tuple format try: palette = map(mpl.colors.colorConverter.to_rgb, palette) palette = _ColorPalette(palette) except ValueError: raise ValueError("Could not generate a palette for %s" % str(palette)) return palette def hls_palette(n_colors=6, h=.01, l=.6, s=.65): """Get a set of evenly spaced colors in HLS hue space. h, l, and s should be between 0 and 1 Parameters ---------- n_colors : int number of colors in the palette h : float first hue l : float lightness s : float saturation Returns ------- palette : seaborn color palette List-like object of colors as RGB tuples. See Also -------- husl_palette : Make a palette using evently spaced circular hues in the HUSL system. Examples -------- Create a palette of 10 colors with the default parameters: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.hls_palette(10)) Create a palette of 10 colors that begins at a different hue value: .. plot:: :context: close-figs >>> sns.palplot(sns.hls_palette(10, h=.5)) Create a palette of 10 colors that are darker than the default: .. plot:: :context: close-figs >>> sns.palplot(sns.hls_palette(10, l=.4)) Create a palette of 10 colors that are less saturated than the default: .. plot:: :context: close-figs >>> sns.palplot(sns.hls_palette(10, s=.4)) """ hues = np.linspace(0, 1, n_colors + 1)[:-1] hues += h hues %= 1 hues -= hues.astype(int) palette = [colorsys.hls_to_rgb(h_i, l, s) for h_i in hues] return _ColorPalette(palette) def husl_palette(n_colors=6, h=.01, s=.9, l=.65): """Get a set of evenly spaced colors in HUSL hue space. h, s, and l should be between 0 and 1 Parameters ---------- n_colors : int number of colors in the palette h : float first hue s : float saturation l : float lightness Returns ------- palette : seaborn color palette List-like object of colors as RGB tuples. See Also -------- hls_palette : Make a palette using evently spaced circular hues in the HSL system. Examples -------- Create a palette of 10 colors with the default parameters: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.husl_palette(10)) Create a palette of 10 colors that begins at a different hue value: .. plot:: :context: close-figs >>> sns.palplot(sns.husl_palette(10, h=.5)) Create a palette of 10 colors that are darker than the default: .. plot:: :context: close-figs >>> sns.palplot(sns.husl_palette(10, l=.4)) Create a palette of 10 colors that are less saturated than the default: .. plot:: :context: close-figs >>> sns.palplot(sns.husl_palette(10, s=.4)) """ hues = np.linspace(0, 1, n_colors + 1)[:-1] hues += h hues %= 1 hues *= 359 s *= 99 l *= 99 palette = [husl.husl_to_rgb(h_i, s, l) for h_i in hues] return _ColorPalette(palette) def mpl_palette(name, n_colors=6): """Return discrete colors from a matplotlib palette. Note that this handles the qualitative colorbrewer palettes properly, although if you ask for more colors than a particular qualitative palette can provide you will get fewer than you are expecting. In contrast, asking for qualitative color brewer palettes using :func:`color_palette` will return the expected number of colors, but they will cycle. If you are using the IPython notebook, you can also use the function :func:`choose_colorbrewer_palette` to interactively select palettes. Parameters ---------- name : string Name of the palette. This should be a named matplotlib colormap. n_colors : int Number of discrete colors in the palette. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. Examples -------- Create a qualitative colorbrewer palette with 8 colors: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.mpl_palette("Set2", 8)) Create a sequential colorbrewer palette: .. plot:: :context: close-figs >>> sns.palplot(sns.mpl_palette("Blues")) Create a diverging palette: .. plot:: :context: close-figs >>> sns.palplot(sns.mpl_palette("seismic", 8)) Create a "dark" sequential palette: .. plot:: :context: close-figs >>> sns.palplot(sns.mpl_palette("GnBu_d")) """ brewer_qual_pals = {"Accent": 8, "Dark2": 8, "Paired": 12, "Pastel1": 9, "Pastel2": 8, "Set1": 9, "Set2": 8, "Set3": 12} if name.endswith("_d"): pal = ["#333333"] pal.extend(color_palette(name.replace("_d", "_r"), 2)) cmap = blend_palette(pal, n_colors, as_cmap=True) else: cmap = getattr(mpl.cm, name) if name in brewer_qual_pals: bins = np.linspace(0, 1, brewer_qual_pals[name])[:n_colors] else: bins = np.linspace(0, 1, n_colors + 2)[1:-1] palette = list(map(tuple, cmap(bins)[:, :3])) return _ColorPalette(palette) def _color_to_rgb(color, input): """Add some more flexibility to color choices.""" if input == "hls": color = colorsys.hls_to_rgb(*color) elif input == "husl": color = husl.husl_to_rgb(*color) elif input == "xkcd": color = xkcd_rgb[color] return color def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"): """Make a sequential palette that blends from dark to ``color``. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_dark_palette` function. Parameters ---------- color : base color for high values hex, rgb-tuple, or html color name n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional if True, return as a matplotlib colormap instead of list input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. See Also -------- light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette with two colors. Examples -------- Generate a palette from an HTML color: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.dark_palette("purple")) Generate a palette that decreases in lightness: .. plot:: :context: close-figs >>> sns.palplot(sns.dark_palette("seagreen", reverse=True)) Generate a palette from an HUSL-space seed: .. plot:: :context: close-figs >>> sns.palplot(sns.dark_palette((260, 75, 60), input="husl")) Generate a colormap object: .. plot:: :context: close-figs >>> from numpy import arange >>> x = arange(25).reshape(5, 5) >>> cmap = sns.dark_palette("#2ecc71", as_cmap=True) >>> ax = sns.heatmap(x, cmap=cmap) """ color = _color_to_rgb(color, input) gray = "#222222" colors = [color, gray] if reverse else [gray, color] return blend_palette(colors, n_colors, as_cmap) def light_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"): """Make a sequential palette that blends from light to ``color``. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The ``color`` parameter can be specified in a number of ways, including all options for defining a color in matplotlib and several additional color spaces that are handled by seaborn. You can also use the database of named colors from the XKCD color survey. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_light_palette` function. Parameters ---------- color : base color for high values hex code, html color name, or tuple in ``input`` space. n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional if True, return as a matplotlib colormap instead of list input : {'rgb', 'hls', 'husl', xkcd'} Color space to interpret the input color. The first three options apply to tuple inputs and the latter applies to string inputs. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. See Also -------- dark_palette : Create a sequential palette with dark low values. diverging_palette : Create a diverging palette with two colors. Examples -------- Generate a palette from an HTML color: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.light_palette("purple")) Generate a palette that increases in lightness: .. plot:: :context: close-figs >>> sns.palplot(sns.light_palette("seagreen", reverse=True)) Generate a palette from an HUSL-space seed: .. plot:: :context: close-figs >>> sns.palplot(sns.light_palette((260, 75, 60), input="husl")) Generate a colormap object: .. plot:: :context: close-figs >>> from numpy import arange >>> x = arange(25).reshape(5, 5) >>> cmap = sns.light_palette("#2ecc71", as_cmap=True) >>> ax = sns.heatmap(x, cmap=cmap) """ color = _color_to_rgb(color, input) light = set_hls_values(color, l=.95) colors = [color, light] if reverse else [light, color] return blend_palette(colors, n_colors, as_cmap) def _flat_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"): """Make a sequential palette that blends from gray to ``color``. Parameters ---------- color : matplotlib color hex, rgb-tuple, or html color name n_colors : int, optional number of colors in the palette reverse : bool, optional if True, reverse the direction of the blend as_cmap : bool, optional if True, return as a matplotlib colormap instead of list Returns ------- palette : list or colormap dark_palette : Create a sequential palette with dark low values. """ color = _color_to_rgb(color, input) flat = desaturate(color, 0) colors = [color, flat] if reverse else [flat, color] return blend_palette(colors, n_colors, as_cmap) def diverging_palette(h_neg, h_pos, s=75, l=50, sep=10, n=6, center="light", as_cmap=False): """Make a diverging palette between two HUSL colors. If you are using the IPython notebook, you can also choose this palette interactively with the :func:`choose_diverging_palette` function. Parameters ---------- h_neg, h_pos : float in [0, 359] Anchor hues for negative and positive extents of the map. s : float in [0, 100], optional Anchor saturation for both extents of the map. l : float in [0, 100], optional Anchor lightness for both extents of the map. n : int, optional Number of colors in the palette (if not returning a cmap) center : {"light", "dark"}, optional Whether the center of the palette is light or dark as_cmap : bool, optional If true, return a matplotlib colormap object rather than a list of colors. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. See Also -------- dark_palette : Create a sequential palette with dark values. light_palette : Create a sequential palette with light values. Examples -------- Generate a blue-white-red palette: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.diverging_palette(240, 10, n=9)) Generate a brighter green-white-purple palette: .. plot:: :context: close-figs >>> sns.palplot(sns.diverging_palette(150, 275, s=80, l=55, n=9)) Generate a blue-black-red palette: .. plot:: :context: close-figs >>> sns.palplot(sns.diverging_palette(250, 15, s=75, l=40, ... n=9, center="dark")) Generate a colormap object: .. plot:: :context: close-figs >>> from numpy import arange >>> x = arange(25).reshape(5, 5) >>> cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True) >>> ax = sns.heatmap(x, cmap=cmap) """ palfunc = dark_palette if center == "dark" else light_palette neg = palfunc((h_neg, s, l), 128 - (sep / 2), reverse=True, input="husl") pos = palfunc((h_pos, s, l), 128 - (sep / 2), input="husl") midpoint = dict(light=[(.95, .95, .95, 1.)], dark=[(.133, .133, .133, 1.)])[center] mid = midpoint * sep pal = blend_palette(np.concatenate([neg, mid, pos]), n, as_cmap=as_cmap) return pal def blend_palette(colors, n_colors=6, as_cmap=False, input="rgb"): """Make a palette that blends between a list of colors. Parameters ---------- colors : sequence of colors in various formats interpreted by ``input`` hex code, html color name, or tuple in ``input`` space. n_colors : int, optional Number of colors in the palette. as_cmap : bool, optional If True, return as a matplotlib colormap instead of list. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. """ colors = [_color_to_rgb(color, input) for color in colors] name = "blend" pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors) if not as_cmap: pal = _ColorPalette(pal(np.linspace(0, 1, n_colors))) return pal def xkcd_palette(colors): """Make a palette with color names from the xkcd color survey. See xkcd for the full list of colors: http://xkcd.com/color/rgb/ This is just a simple wrapper around the ``seaborn.xkcd_rgb`` dictionary. Parameters ---------- colors : list of strings List of keys in the ``seaborn.xkcd_rgb`` dictionary. Returns ------- palette : seaborn color palette Returns the list of colors as RGB tuples in an object that behaves like other seaborn color palettes. See Also -------- crayon_palette : Make a palette with Crayola crayon colors. """ palette = [xkcd_rgb[name] for name in colors] return color_palette(palette, len(palette)) def crayon_palette(colors): """Make a palette with color names from Crayola crayons. Colors are taken from here: http://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors This is just a simple wrapper around the ``seaborn.crayons`` dictionary. Parameters ---------- colors : list of strings List of keys in the ``seaborn.crayons`` dictionary. Returns ------- palette : seaborn color palette Returns the list of colors as rgb tuples in an object that behaves like other seaborn color palettes. See Also -------- xkcd_palette : Make a palette with named colors from the XKCD color survey. """ palette = [crayons[name] for name in colors] return color_palette(palette, len(palette)) def cubehelix_palette(n_colors=6, start=0, rot=.4, gamma=1.0, hue=0.8, light=.85, dark=.15, reverse=False, as_cmap=False): """Make a sequential palette from the cubehelix system. This produces a colormap with linearly-decreasing (or increasing) brightness. That means that information will be preserved if printed to black and white or viewed by someone who is colorblind. "cubehelix" is also availible as a matplotlib-based palette, but this function gives the user more control over the look of the palette and has a different set of defaults. Parameters ---------- n_colors : int Number of colors in the palette. start : float, 0 <= start <= 3 The hue at the start of the helix. rot : float Rotations around the hue wheel over the range of the palette. gamma : float 0 <= gamma Gamma factor to emphasize darker (gamma < 1) or lighter (gamma > 1) colors. hue : float, 0 <= hue <= 1 Saturation of the colors. dark : float 0 <= dark <= 1 Intensity of the darkest color in the palette. light : float 0 <= light <= 1 Intensity of the lightest color in the palette. reverse : bool If True, the palette will go from dark to light. as_cmap : bool If True, return a matplotlib colormap instead of a list of colors. Returns ------- palette or cmap : seaborn color palette or matplotlib colormap List-like object of colors as RGB tuples, or colormap object that can map continuous values to colors, depending on the value of the ``as_cmap`` parameter. See Also -------- choose_cubehelix_palette : Launch an interactive widget to select cubehelix palette parameters. dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. References ---------- Green, D. A. (2011). "A colour scheme for the display of astronomical intensity images". Bulletin of the Astromical Society of India, Vol. 39, p. 289-295. Examples -------- Generate the default palette: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set() >>> sns.palplot(sns.cubehelix_palette()) Rotate backwards from the same starting location: .. plot:: :context: close-figs >>> sns.palplot(sns.cubehelix_palette(rot=-.4)) Use a different starting point and shorter rotation: .. plot:: :context: close-figs >>> sns.palplot(sns.cubehelix_palette(start=2.8, rot=.1)) Reverse the direction of the lightness ramp: .. plot:: :context: close-figs >>> sns.palplot(sns.cubehelix_palette(reverse=True)) Generate a colormap object: .. plot:: :context: close-figs >>> from numpy import arange >>> x = arange(25).reshape(5, 5) >>> cmap = sns.cubehelix_palette(as_cmap=True) >>> ax = sns.heatmap(x, cmap=cmap) Use the full lightness range: .. plot:: :context: close-figs >>> cmap = sns.cubehelix_palette(dark=0, light=1, as_cmap=True) >>> ax = sns.heatmap(x, cmap=cmap) """ cdict = mpl._cm.cubehelix(gamma, start, rot, hue) cmap = mpl.colors.LinearSegmentedColormap("cubehelix", cdict) x = np.linspace(light, dark, n_colors) pal = cmap(x)[:, :3].tolist() if reverse: pal = pal[::-1] if as_cmap: x_256 = np.linspace(light, dark, 256) if reverse: x_256 = x_256[::-1] pal_256 = cmap(x_256) cmap = mpl.colors.ListedColormap(pal_256) return cmap else: return _ColorPalette(pal) def set_color_codes(palette="deep"): """Change how matplotlib color shorthands are interpreted. Calling this will change how shorthand codes like "b" or "g" are interpreted by matplotlib in subsequent plots. Parameters ---------- palette : {deep, muted, pastel, dark, bright, colorblind} Named seaborn palette to use as the source of colors. See Also -------- set : Color codes can be set through the high-level seaborn style manager. set_palette : Color codes can also be set through the function that sets the matplotlib color cycle. Examples -------- Map matplotlib color codes to the default seaborn palette. .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> import seaborn as sns; sns.set() >>> sns.set_color_codes() >>> _ = plt.plot([0, 1], color="r") Use a different seaborn palette. .. plot:: :context: close-figs >>> sns.set_color_codes("dark") >>> _ = plt.plot([0, 1], color="g") >>> _ = plt.plot([0, 2], color="m") """ if palette == "reset": colors = [(0., 0., 1.), (0., .5, 0.), (1., 0., 0.), (.75, .75, 0.), (.75, .75, 0.), (0., .75, .75), (0., 0., 0.)] else: colors = SEABORN_PALETTES[palette] + [(.1, .1, .1)] for code, color in zip("bgrmyck", colors): rgb = mpl.colors.colorConverter.to_rgb(color) mpl.colors.colorConverter.colors[code] = rgb mpl.colors.colorConverter.cache[code] = rgb def _init_mutable_colormap(): """Create a matplotlib colormap that will be updated by the widgets.""" greys = color_palette("Greys", 256) cmap = LinearSegmentedColormap.from_list("interactive", greys) cmap._init() cmap._set_extremes() return cmap def _update_lut(cmap, colors): """Change the LUT values in a matplotlib colormap in-place.""" cmap._lut[:256] = colors cmap._set_extremes() def _show_cmap(cmap): """Show a continuous matplotlib colormap.""" from .rcmod import axes_style # Avoid circular import with axes_style("white"): f, ax = plt.subplots(figsize=(8.25, .75)) ax.set(xticks=[], yticks=[]) x = np.linspace(0, 1, 256)[np.newaxis, :] ax.pcolormesh(x, cmap=cmap) def choose_colorbrewer_palette(data_type, as_cmap=False): """Select a palette from the ColorBrewer set. These palettes are built into matplotlib and can be used by name in many seaborn functions, or by passing the object returned by this function. Parameters ---------- data_type : {'sequential', 'diverging', 'qualitative'} This describes the kind of data you want to visualize. See the seaborn color palette docs for more information about how to choose this value. Note that you can pass substrings (e.g. 'q' for 'qualitative. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. diverging_palette : Create a diverging palette from selected colors. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ from IPython.html.widgets import interact, FloatSliderWidget if data_type.startswith("q") and as_cmap: raise ValueError("Qualitative palettes cannot be colormaps.") pal = [] if as_cmap: cmap = _init_mutable_colormap() if data_type.startswith("s"): opts = ["Greys", "Reds", "Greens", "Blues", "Oranges", "Purples", "BuGn", "BuPu", "GnBu", "OrRd", "PuBu", "PuRd", "RdPu", "YlGn", "PuBuGn", "YlGnBu", "YlOrBr", "YlOrRd"] variants = ["regular", "reverse", "dark"] @interact def choose_sequential(name=opts, n=(2, 18), desat=FloatSliderWidget(min=0, max=1, value=1), variant=variants): if variant == "reverse": name += "_r" elif variant == "dark": name += "_d" if as_cmap: colors = color_palette(name, 256, desat) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = color_palette(name, n, desat) palplot(pal) elif data_type.startswith("d"): opts = ["RdBu", "RdGy", "PRGn", "PiYG", "BrBG", "RdYlBu", "RdYlGn", "Spectral"] variants = ["regular", "reverse"] @interact def choose_diverging(name=opts, n=(2, 16), desat=FloatSliderWidget(min=0, max=1, value=1), variant=variants): if variant == "reverse": name += "_r" if as_cmap: colors = color_palette(name, 256, desat) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = color_palette(name, n, desat) palplot(pal) elif data_type.startswith("q"): opts = ["Set1", "Set2", "Set3", "Paired", "Accent", "Pastel1", "Pastel2", "Dark2"] @interact def choose_qualitative(name=opts, n=(2, 16), desat=FloatSliderWidget(min=0, max=1, value=1)): pal[:] = color_palette(name, n, desat) palplot(pal) if as_cmap: return cmap return pal def choose_dark_palette(input="husl", as_cmap=False): """Launch an interactive widget to create a dark sequential palette. This corresponds with the :func:`dark_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`dark_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- dark_palette : Create a sequential palette with dark low values. light_palette : Create a sequential palette with bright low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ from IPython.html.widgets import interact pal = [] if as_cmap: cmap = _init_mutable_colormap() if input == "rgb": @interact def choose_dark_palette_rgb(r=(0., 1.), g=(0., 1.), b=(0., 1.), n=(3, 17)): color = r, g, b if as_cmap: colors = dark_palette(color, 256, input="rgb") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="rgb") palplot(pal) elif input == "hls": @interact def choose_dark_palette_hls(h=(0., 1.), l=(0., 1.), s=(0., 1.), n=(3, 17)): color = h, l, s if as_cmap: colors = dark_palette(color, 256, input="hls") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="hls") palplot(pal) elif input == "husl": @interact def choose_dark_palette_husl(h=(0, 359), s=(0, 99), l=(0, 99), n=(3, 17)): color = h, s, l if as_cmap: colors = dark_palette(color, 256, input="husl") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = dark_palette(color, n, input="husl") palplot(pal) if as_cmap: return cmap return pal def choose_light_palette(input="husl", as_cmap=False): """Launch an interactive widget to create a light sequential palette. This corresponds with the :func:`light_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- input : {'husl', 'hls', 'rgb'} Color space for defining the seed value. Note that the default is different than the default input for :func:`light_palette`. as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- light_palette : Create a sequential palette with bright low values. dark_palette : Create a sequential palette with dark low values. cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ from IPython.html.widgets import interact pal = [] if as_cmap: cmap = _init_mutable_colormap() if input == "rgb": @interact def choose_light_palette_rgb(r=(0., 1.), g=(0., 1.), b=(0., 1.), n=(3, 17)): color = r, g, b if as_cmap: colors = light_palette(color, 256, input="rgb") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="rgb") palplot(pal) elif input == "hls": @interact def choose_light_palette_hls(h=(0., 1.), l=(0., 1.), s=(0., 1.), n=(3, 17)): color = h, l, s if as_cmap: colors = light_palette(color, 256, input="hls") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="hls") palplot(pal) elif input == "husl": @interact def choose_light_palette_husl(h=(0, 359), s=(0, 99), l=(0, 99), n=(3, 17)): color = h, s, l if as_cmap: colors = light_palette(color, 256, input="husl") _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = light_palette(color, n, input="husl") palplot(pal) if as_cmap: return cmap return pal def choose_diverging_palette(as_cmap=False): """Launch an interactive widget to choose a diverging color palette. This corresponds with the :func:`diverging_palette` function. This kind of palette is good for data that range between interesting low values and interesting high values with a meaningful midpoint. (For example, change scores relative to some baseline value). Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- diverging_palette : Create a diverging color palette or colormap. choose_colorbrewer_palette : Interactively choose palettes from the colorbrewer set, including diverging palettes. """ from IPython.html.widgets import interact, IntSliderWidget pal = [] if as_cmap: cmap = _init_mutable_colormap() @interact def choose_diverging_palette(h_neg=IntSliderWidget(min=0, max=359, value=220), h_pos=IntSliderWidget(min=0, max=359, value=10), s=IntSliderWidget(min=0, max=99, value=74), l=IntSliderWidget(min=0, max=99, value=50), sep=IntSliderWidget(min=1, max=50, value=10), n=(2, 16), center=["light", "dark"]): if as_cmap: colors = diverging_palette(h_neg, h_pos, s, l, sep, 256, center) _update_lut(cmap, colors) _show_cmap(cmap) else: pal[:] = diverging_palette(h_neg, h_pos, s, l, sep, n, center) palplot(pal) if as_cmap: return cmap return pal def choose_cubehelix_palette(as_cmap=False): """Launch an interactive widget to create a sequential cubehelix palette. This corresponds with the :func:`cubehelix_palette` function. This kind of palette is good for data that range between relatively uninteresting low values and interesting high values. The cubehelix system allows the palette to have more hue variance across the range, which can be helpful for distinguishing a wider range of values. Requires IPython 2+ and must be used in the notebook. Parameters ---------- as_cmap : bool If True, the return value is a matplotlib colormap rather than a list of discrete colors. Returns ------- pal or cmap : list of colors or matplotlib colormap Object that can be passed to plotting functions. See Also -------- cubehelix_palette : Create a sequential palette or colormap using the cubehelix system. """ from IPython.html.widgets import (interact, FloatSliderWidget, IntSliderWidget) pal = [] if as_cmap: cmap = _init_mutable_colormap() @interact def choose_cubehelix(n_colors=IntSliderWidget(min=2, max=16, value=9), start=FloatSliderWidget(min=0, max=3, value=0), rot=FloatSliderWidget(min=-1, max=1, value=.4), gamma=FloatSliderWidget(min=0, max=5, value=1), hue=FloatSliderWidget(min=0, max=1, value=.8), light=FloatSliderWidget(min=0, max=1, value=.85), dark=FloatSliderWidget(min=0, max=1, value=.15), reverse=False): if as_cmap: colors = cubehelix_palette(256, start, rot, gamma, hue, light, dark, reverse) _update_lut(cmap, np.c_[colors, np.ones(256)]) _show_cmap(cmap) else: pal[:] = cubehelix_palette(n_colors, start, rot, gamma, hue, light, dark, reverse) palplot(pal) if as_cmap: return cmap return pal
bsd-3-clause
mrklees/cy-automation-library
cyautomation/cyschoolhouse/student.py
2
7352
import os from time import sleep import numpy as np import pandas as pd from selenium.webdriver.support.ui import Select from . import simple_cysh as cysh from .cyschoolhousesuite import get_driver, open_cyschoolhouse from .sendemail import send_email def _sf_api_approach(): """ This is how the task would be accomplished via salesforce API, if only I could edit the fields: """ df = pd.read_excel(r'C:\Users\City_Year\Downloads\New Students for cyschoolhouse(1-11).xlsx') school_df = get_cysh_df('Account', ['Id', 'Name']) df = df.merge(school_df, how='left', left_on='School', right_on='Name') drop_ids = [] for index, row in df.iterrows(): search_result = cysh.sf.query(f"SELECT Id FROM Student__c WHERE Local_Student_ID__c = '{row['Student CPS ID']}'") if len(search_result['records']) > 0: drop_ids.append(row['Student CPS ID']) df = df.loc[~df['Student CPS ID'].isin(drop_ids)] for index, row in df.iterrows(): stu_dict = { 'Local_Student_ID__c':str(row['Student CPS ID']), 'School__c':row['Id'], 'Name':(row['Student First Name'] + ' ' + row['Student Last Name']), 'Student_Last_Name__c':row['Student Last Name'], 'Grade__c':str(row['Student Grade Level']), #'School_Name__c':row['Name_y'], } return None def import_parameters(xlsx_path, enrollment_date): """Imports input data from xlsx `enrollment_date` in the format 'MM/DD/YYYY' """ df = pd.read_excel(xlsx_path, converters={'*REQ* Grade':int}) column_rename = { 'Student CPS ID':'*REQ* Local Student ID', 'Student First Name':'*REQ* First Name', 'Student Last Name':'*REQ* Last Name', 'Student Grade Level':'*REQ* Grade', } df.rename(columns=column_rename, inplace=True) df["*REQ* Student Id"] = df['*REQ* Local Student ID'] df["*REQ* Type"] = 'Student' if "*REQ* Entry Date" not in df.columns: df["*REQ* Entry Date"] = enrollment_date for col in ["Date of Birth", "Gender", "Ethnicity", "Disability Flag", "ELL"]: if col not in df.columns: df[col] = np.nan col_order = [ 'School', '*REQ* Student Id', '*REQ* Local Student ID', '*REQ* First Name', '*REQ* Last Name', '*REQ* Grade', 'Date of Birth', 'Gender', 'Ethnicity', 'Disability Flag', 'ELL', '*REQ* Entry Date', '*REQ* Type', ] df = df[col_order] return df def remove_extant_students(df, sf=cysh.sf): local_student_id_col = '*REQ* Local Student ID' drop_ids = [] for index, row in df.iterrows(): search_result = sf.query(f"SELECT Id FROM Student__c WHERE Local_Student_ID__c = '{row[local_student_id_col]}'") if len(search_result['records']) > 0: drop_ids.append(row[local_student_id_col]) del search_result df = df.loc[~df[local_student_id_col].isin(drop_ids)] return df def input_file(driver, path_to_csv): driver.find_element_by_xpath('//*[@id="selectedFile"]').send_keys(path_to_csv) driver.find_element_by_xpath('//*[@id="j_id0:j_id42"]/div[3]/div[1]/div[6]/input[2]').click() def insert_data(driver): driver.find_element_by_xpath('//*[@id="startBatchButton"]').click() def upload_all(enrollment_date, xlsx_dir=os.path.join(os.path.dirname(__file__),'input_files'), xlsx_name='New Students for cyschoolhouse.xlsx', sf=cysh.sf): """ Runs the entire student upload process. """ xlsx_path = os.path.join(xlsx_dir, xlsx_name) params = import_parameters(xlsx_path, enrollment_date) params = remove_extant_students(params) setup_df = cysh.get_object_df('Setup__c', ['Id', 'School__c'], rename_id=True, rename_name=True) school_df = cysh.get_object_df('Account', ['Id', 'Name']) setup_df = setup_df.merge(school_df, how='left', left_on='School__c', right_on='Id'); del school_df setup_df = setup_df.loc[~setup_df['Id'].isnull()] if len(params) == 0: print(f'No new students to upload.') return None driver = get_driver() open_cyschoolhouse(driver) for school_name in params['School'].unique(): # Write csv path_to_csv = os.path.join(xlsx_dir, f"SY19 New Students for CYSH - {school_name}.csv") df_csv = params.loc[params["School"]==school_name].copy() df_csv.drop(["School"], axis=1, inplace=True) df_csv.to_csv(path_to_csv, index=False, date_format='%m/%d/%Y') # Navigatge to student enrollment page setup_id = setup_df.loc[setup_df['Name']==school_name, 'Setup__c'].values[0] driver.get(f'https://c.na30.visual.force.com/apex/CT_core_LoadCsvData_v2?setupId={setup_id}&OldSideBar=true&type=Student') sleep(2) input_file(driver, path_to_csv) sleep(2) insert_data(driver) sleep(2) # Publish # Seems to work, but not completely sure if script # pauses until upload is complete, both for the "Insert Data" # phase, and the "Publish Staff/Student Records" phase. driver.get(f'https://c.na30.visual.force.com/apex/schoolsetup_staff?setupId={setup_id}') driver.find_element_by_css_selector('input.red_btn').click() sleep(3) print(f"Uploaded {len(df_csv)} students") os.remove(path_to_csv) # Email school manager to inform of successful student upload school_df = cysh.get_object_df('Account', ['Id', 'Name']) school_df.rename(columns={'Name':'School', 'Id':'Organization__c'}, inplace=True) staff_df = cysh.get_object_df( 'Staff__c', ['Name', 'Email__c', 'Role__c', 'Organization__c'], where=f"Organization__c IN ({str(school_df['Organization__c'].tolist())[1:-1]})" ) staff_df = staff_df.merge(school_df, how='left', on='Organization__c') staff_df = staff_df.loc[staff_df['Role__c'].str.lower()=='impact manager'] to_addrs = staff_df.loc[staff_df['School'].isin(params['School']), 'Email__c'].tolist() send_email( to_addrs = list(set(to_addrs)), subject = 'New student(s) now in cyschoolhouse', body = 'The student(s) you submitted have been successfully uploaded to cyschoolhouse.' ) driver.quit() def update_student_External_Id(prefix='CPS_', sf=cysh.sf): """ Updates 'External_Id__c' field to 'CPS_' + 'Local_Student_ID__c'. Triggers external integrations at HQ. """ school_df = cysh.get_object_df('Account', ['Id', 'Name']) student_df = cysh.get_object_df( 'Student__c', ['Id', 'Local_Student_ID__c', 'External_Id__c'], where=f"School__c IN ({str(school_df['Id'].tolist())[1:-1]})" ) if sum(student_df['Local_Student_ID__c'].duplicated()) > 0: raise ValueError(f'Error: Duplicates exist on Local_Student_ID__c.') student_df = student_df.loc[student_df['External_Id__c'].isnull() & (student_df['Local_Student_ID__c'].str.len()==8)] if len(student_df) == 0: print(f'No students to fix IDs for.') return None results = [] for index, row in student_df.iterrows(): result = sf.Student__c.update(row['Id'],{'External_Id__c':(prefix + row['Local_Student_ID__c'])}) results.append(result) return results
gpl-3.0
CforED/Machine-Learning
examples/svm/plot_custom_kernel.py
171
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
cbertinato/pandas
pandas/io/clipboards.py
1
4334
""" io on the clipboard """ from io import StringIO import warnings from pandas.core.dtypes.generic import ABCDataFrame from pandas import get_option, option_context def read_clipboard(sep=r'\s+', **kwargs): # pragma: no cover r""" Read text from clipboard and pass to read_csv. See read_csv for the full argument list Parameters ---------- sep : str, default '\s+' A string or regex delimiter. The default of '\s+' denotes one or more whitespace characters. Returns ------- parsed : DataFrame """ encoding = kwargs.pop('encoding', 'utf-8') # only utf-8 is valid for passed value because that's what clipboard # supports if encoding is not None and encoding.lower().replace('-', '') != 'utf8': raise NotImplementedError( 'reading from clipboard only supports utf-8 encoding') from pandas.io.clipboard import clipboard_get from pandas.io.parsers import read_csv text = clipboard_get() # Try to decode (if needed, as "text" might already be a string here). try: text = text.decode(kwargs.get('encoding') or get_option('display.encoding')) except AttributeError: pass # Excel copies into clipboard with \t separation # inspect no more then the 10 first lines, if they # all contain an equal number (>0) of tabs, infer # that this came from excel and set 'sep' accordingly lines = text[:10000].split('\n')[:-1][:10] # Need to remove leading white space, since read_csv # accepts: # a b # 0 1 2 # 1 3 4 counts = {x.lstrip().count('\t') for x in lines} if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0: sep = '\t' # Edge case where sep is specified to be None, return to default if sep is None and kwargs.get('delim_whitespace') is None: sep = r'\s+' # Regex separator currently only works with python engine. # Default to python if separator is multi-character (regex) if len(sep) > 1 and kwargs.get('engine') is None: kwargs['engine'] = 'python' elif len(sep) > 1 and kwargs.get('engine') == 'c': warnings.warn('read_clipboard with regex separator does not work' ' properly with c engine') return read_csv(StringIO(text), sep=sep, **kwargs) def to_clipboard(obj, excel=True, sep=None, **kwargs): # pragma: no cover """ Attempt to write text representation of object to the system clipboard The clipboard can be then pasted into Excel for example. Parameters ---------- obj : the object to write to the clipboard excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes ----- Requirements for your platform - Linux: xclip, or xsel (with PyQt4 modules) - Windows: - OS X: """ encoding = kwargs.pop('encoding', 'utf-8') # testing if an invalid encoding is passed to clipboard if encoding is not None and encoding.lower().replace('-', '') != 'utf8': raise ValueError('clipboard only supports utf-8 encoding') from pandas.io.clipboard import clipboard_set if excel is None: excel = True if excel: try: if sep is None: sep = '\t' buf = StringIO() # clipboard_set (pyperclip) expects unicode obj.to_csv(buf, sep=sep, encoding='utf-8', **kwargs) text = buf.getvalue() clipboard_set(text) return except TypeError: warnings.warn('to_clipboard in excel mode requires a single ' 'character separator.') elif sep is not None: warnings.warn('to_clipboard with excel=False ignores the sep argument') if isinstance(obj, ABCDataFrame): # str(df) has various unhelpful defaults, like truncation with option_context('display.max_colwidth', 999999): objstr = obj.to_string(**kwargs) else: objstr = str(obj) clipboard_set(objstr)
bsd-3-clause
lvsoft/HiBench
bin/report_gen_plot.py
22
5011
#!/usr/bin/env python #coding: utf-8 import sys, os, re from pprint import pprint from collections import defaultdict, namedtuple import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx import numpy as np RecordRaw=namedtuple("RecordRaw", "type durtation data_size throughput_total throughput_per_node") Record=namedtuple("Record", "type language durtation data_size throughput_total throughput_per_node") def human_readable_size(n): "convert number into human readable string" if n<1000: return str(n) if n<800000: return "%.3fK" % (n/1000.0) if n<800000000: return "%.3fM" % (n/1000000.0) if n<800000000000: return "%.3fG" % (n/1000000000.0) return "%.3fT" % (n/1000000000000.0) def group_by_type(datas): groups = defaultdict(dict) for i in datas: words = re.sub(r'((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))', r' \1', i.type).split() prefix = words[0].lower() suffix = "_".join([x.lower() for x in words[1:]]) groups[suffix][prefix] = Record(type = "".join(words[1:]), language = prefix, durtation = i.durtation, data_size = i.data_size, throughput_total = i.throughput_total, throughput_per_node = i.throughput_per_node ) return dict(groups) def report_plot(fn): if not os.path.isfile(fn): print "Failed to find `sparkbench.report`" sys.exit(1) with open(fn) as f: data = [x.split() for x in f.readlines()[1:] if x.strip() and not x.strip().startswith('#')] pprint(data, width=300) groups = group_by_type([RecordRaw(type = x[0], data_size = int(x[3]), durtation = float(x[4]), throughput_total = int(x[5]) / 1024.0 / 1024, throughput_per_node = int(x[6]) / 1024.0 /1024 ) for x in data]) #print groups base_dir = os.path.dirname(fn) plot(groups, "Seconds of durtations (Less is better)", "Seconds", "durtation", os.path.join(base_dir, "durtation.png")) # plot(groups, "Throughput in total (Higher is better)", "MB/s", "throughput_total", os.path.join(base_dir, "throughput_total.png")) # plot(groups, "Throughput per node (Higher is better)", "MB/s", "throughput_per_node", os.path.join(base_dir, "throughput_per_node.png")) def plot(groups, title="Seconds of durtations", ylabel="Seconds", value_field="durtation", fig_fn = "foo.png"): # plot it keys = groups.keys() languages = sorted(reduce(lambda x,y: x.union(y), [set([groups[x][y].language for y in groups[x]]) for x in groups])) width = 0.15 rects = [] fig = plt.figure() ax = plt.axes() colors='rgbcymw' # NCURVES=10 # curves = [np.random.random(20) for i in range(NCURVES)] # values = range(NCURVES) # jet = colors.Colormap('jet') # cNorm = colors.Normalize(vmin=0, vmax=values[-1]) # scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet) patterns = ('-', '+', 'x', '\\', '/', '*', '.', 'O') for idx, lang in enumerate(languages): rects.append(ax.bar([x + width * (idx + 1) for x in range(len(keys))], # x index [getattr(groups[x][lang], value_field) if x in groups and groups[x].has_key(lang) else 0 for x in keys], # value width, color = colors[idx], hatch = patterns[idx] ) # width ) # Set the tick labels font for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontname('Arial') label.set_fontsize(24) ax.set_ylabel(ylabel, fontname="Arial", size="32") ax.set_title(title, fontname="Arial", size="44") x_axis_offset = len(languages)* width /2.0 ax.set_xticks([(x + width + x_axis_offset) for x in range(len(keys))]) ax.set_xticklabels(["%s \n@%s" % (x, human_readable_size(groups[x].values()[0].data_size)) for x in keys]) ax.grid(True) ax.legend([x[0] for x in rects], languages) def autolabel(rects): for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d' % int(height), ha='center', va='bottom') # [autolabel(x) for x in rects] fig = plt.gcf() fig.set_size_inches(18.5,10.5) plt.savefig(fig_fn, dpi=100) if __name__ == "__main__": try: default_report_fn = sys.argv[1] except: default_report_fn = os.path.join(os.path.dirname(__file__), "..", "sparkbench.report") report_plot(default_report_fn)
apache-2.0
IssamLaradji/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
bikong2/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
nrhine1/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
169
8809
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_class_weights(): # Test class weights. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None, random_state=100) clf.fit(X2, y2) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight={1: 0.001}, random_state=100) clf.fit(X2, y2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_partial_fit_weight_class_balanced(): # partial_fit with class_weight='balanced' not supported clf = PassiveAggressiveClassifier(class_weight="balanced") assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y)) def test_equal_class_weight(): X2 = [[1, 0], [1, 0], [0, 1], [0, 1]] y2 = [0, 0, 1, 1] clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None) clf.fit(X2, y2) # Already balanced, so "balanced" weights should have no effect clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight="balanced") clf_balanced.fit(X2, y2) clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X2, y2) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2) def test_wrong_class_weight_label(): # ValueError due to wrong class_weight label. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight={0: 0.5}) assert_raises(ValueError, clf.fit, X2, y2) def test_wrong_class_weight_format(): # ValueError due to wrong class_weight argument type. X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y2 = [1, 1, 1, -1, -1] clf = PassiveAggressiveClassifier(class_weight=[0.5]) assert_raises(ValueError, clf.fit, X2, y2) clf = PassiveAggressiveClassifier(class_weight="the larch") assert_raises(ValueError, clf.fit, X2, y2) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
PatrickOReilly/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
jblackburne/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
aewhatley/scikit-learn
sklearn/neural_network/tests/test_rbm.py
142
6276
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples(np.arange(1000) * 100) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause