repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
geophysics/mtpy
mtpy/modeling/occam2d_rewrite.py
1
304439
# -*- coding: utf-8 -*- """ Spin-off from 'occamtools' (Created August 2011, re-written August 2013) Tools for Occam2D authors: JP/LK Classes: - Data - Model - Setup - Run - Plot - Mask Functions: - getdatetime - makestartfiles - writemeshfile - writemodelfile - writestartupfile - read_datafile - get_model_setup - blocks_elements_setup """ #============================================================================== import numpy as np import scipy as sp from scipy.stats import mode import sys import os import os.path as op import subprocess import shutil import fnmatch import datetime from operator import itemgetter import time import matplotlib.colorbar as mcb from matplotlib.colors import Normalize from matplotlib.ticker import MultipleLocator import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import scipy.interpolate as spi import mtpy.core.edi as MTedi import mtpy.core.mt as mt import mtpy.modeling.winglinktools as MTwl import mtpy.utils.conversions as MTcv import mtpy.utils.filehandling as MTfh import mtpy.utils.configfile as MTcf import mtpy.analysis.geometry as MTgy import mtpy.utils.exceptions as MTex import scipy.interpolate as si from mtpy.imaging.mtplottools import plot_errorbar reload(MTcv) reload(MTcf) reload(MTedi) reload(MTex) #============================================================================== class Mesh(): """ deals only with the finite element mesh. Builds a finite element mesh based on given parameters defined below. The mesh reads in the station locations, finds the center and makes the relative location of the furthest left hand station 0. The mesh increases in depth logarithmically as required by the physics of MT. Also, the model extends horizontally and vertically with padding cells in order to fullfill the assumption of the forward operator that at the edges the structure is 1D. Stations are place on the horizontal nodes as required by Wannamaker's forward operator. Mesh has the ability to create a mesh that incorporates topography given a elevation profile. It adds more cells to the mesh with thickness z1_layer. It then sets the values of the triangular elements according to the elevation value at that location. If the elevation covers less than 50% of the triangular cell, then the cell value is set to that of air .. note:: Mesh is inhereted by Regularization, so the mesh can also be be built from there, same as the example below. Arguments: ----------- ======================= =================================================== Key Words/Attributes Description ======================= =================================================== air_key letter associated with the value of air *default* is 0 air_value value given to an air cell, *default* is 1E13 cell_width width of cells with in station area in meters *default* is 100 elevation_profile elevation profile along the profile line. given as np.ndarray(nx, 2), where the elements are x_location, elevation. If elevation profile is given add_elevation is called automatically. *default* is None mesh_fn full path to mesh file. mesh_values letter values of each triangular mesh element if the cell is free value is ? n_layers number of vertical layers in mesh *default* is 90 num_x_pad_cells number of horizontal padding cells outside the the station area that will increase in size by x_pad_multiplier. *default* is 7 num_x_pad_small_cells number of horizonal padding cells just outside the station area with width cell_width. This is to extend the station area if needed. *default* is 2 num_z_pad_cells number of vertical padding cells below z_target_depth down to z_bottom. *default* is 5 rel_station_locations relative station locations within the mesh. The locations are relative to the center of the station area. *default* is None, filled later save_path full path to save mesh file to. *default* is current working directory. station_locations location of stations in meters, can be on a relative grid or in UTM. x_grid location of horizontal grid nodes in meters x_nodes relative spacing between grid nodes x_pad_multiplier horizontal padding cells will increase by this multiple out to the edge of the grid. *default* is 1.5 z1_layer thickness of the first layer in the model. Should be at least 1/4 of the first skin depth *default* is 10 z_bottom bottom depth of the model (m). Needs to be large enough to be 1D at the edge. *default* is 200000.0 z_grid location of vertical nodes in meters z_nodes relative distance between vertical nodes in meters z_target_depth depth to deepest target of interest. Below this depth cells will be padded to z_bottom ======================= =================================================== ======================= =================================================== Methods Description ======================= =================================================== add_elevation adds elevation to the mesh given elevation profile. build_mesh builds the mesh given the attributes of Mesh. If elevation_profile is not None, add_elevation is called inside build_mesh plot_mesh plots the built mesh with station location. read_mesh_file reads in an existing mesh file and populates the appropriate attributes. write_mesh_file writes a mesh file to save_path ======================= =================================================== :Example: :: >>> import mtpy.modeling.occam2d as occcam2d >>> edipath = r"/home/mt/edi_files" >>> slist = ['mt{0:03}'.format(ss) for ss in range(20)] >>> ocd = occam2d.Data(edi_path=edipath, station_list=slist) >>> ocd.save_path = r"/home/occam/Line1/Inv1" >>> ocd.write_data_file() >>> ocm = occam2d.Mesh(ocd.station_locations) >>> # add in elevation >>> ocm.elevation_profile = ocd.elevation_profile >>> # change number of layers >>> ocm.n_layers = 110 >>> # change cell width in station area >>> ocm.cell_width = 200 >>> ocm.build_mesh() >>> ocm.plot_mesh() >>> ocm.save_path = ocd.save_path >>> ocm.write_mesh_file() """ def __init__(self, station_locations=None, **kwargs): self.station_locations = station_locations self.rel_station_locations = None self.n_layers = kwargs.pop('n_layers', 90) self.cell_width = kwargs.pop('cell_width', 100) self.num_x_pad_cells = kwargs.pop('num_x_pad_cells', 7) self.num_z_pad_cells = kwargs.pop('num_z_pad_cells', 5) self.x_pad_multiplier = kwargs.pop('x_pad_multiplier', 1.5) self.z1_layer = kwargs.pop('z1_layer', 10.0) self.z_bottom = kwargs.pop('z_bottom', 200000.0) self.z_target_depth = kwargs.pop('z_target_depth', 50000.0) self.num_x_pad_small_cells = kwargs.pop('num_x_pad_small_cells', 2) self.save_path = kwargs.pop('save_path', None) self.mesh_fn = kwargs.pop('mesh_fn', None) self.elevation_profile = kwargs.pop('elevation_profile', None) self.x_nodes = None self.z_nodes = None self.x_grid = None self.z_grid = None self.mesh_values = None self.air_value = 1e13 self.air_key = '0' def build_mesh(self): """ Build the finite element mesh given the parameters defined by the attributes of Mesh. Computes relative station locations by finding the center of the station area and setting the middle to 0. Mesh blocks are built by calculating the distance between stations and putting evenly spaced blocks between the stations being close to cell_width. This places a horizontal node at the station location. If the spacing between stations is smaller than cell_width, a horizontal node is placed between the stations to be sure the model has room to change between the station. If elevation_profile is given, add_elevation is called to add topography into the mesh. Populates attributes: * mesh_values * rel_station_locations * x_grid * x_nodes * z_grid * z_nodes :Example: :: >>> import mtpy.modeling.occam2d as occcam2d >>> edipath = r"/home/mt/edi_files" >>> slist = ['mt{0:03}'.format(ss) for ss in range(20)] >>> ocd = occam2d.Data(edi_path=edipath, station_list=slist) >>> ocd.save_path = r"/home/occam/Line1/Inv1" >>> ocd.write_data_file() >>> ocm = occam2d.Mesh(ocd.station_locations) >>> # add in elevation >>> ocm.elevation_profile = ocd.elevation_profile >>> # change number of layers >>> ocm.n_layers = 110 >>> # change cell width in station area >>> ocm.cell_width = 200 >>> ocm.build_mesh() """ if self.station_locations is None: raise OccamInputError('Need to input station locations to define ' 'a finite element mesh') #be sure the station locations are sorted from left to right self.station_locations.sort() self.rel_station_locations = np.copy(self.station_locations) #center the stations around 0 like the mesh will be self.rel_station_locations -= self.rel_station_locations.mean() #1) make horizontal nodes at station locations and fill in the cells # around that area with cell width. This will put the station # in the center of the regularization block as prescribed for occam # the first cell of the station area will be outside of the furthest # right hand station to reduce the effect of a large neighboring cell. self.x_grid = np.array([self.rel_station_locations[0]-self.cell_width*\ self.x_pad_multiplier]) for ii, offset in enumerate(self.rel_station_locations[:-1]): dx = self.rel_station_locations[ii+1]-offset num_cells = int(np.floor(dx/self.cell_width)) #if the spacing between stations is smaller than mesh set cell #size to mid point between stations if num_cells == 0: cell_width = dx/2. num_cells = 1 #calculate cell spacing so that they are equal between neighboring #stations else: cell_width = dx/num_cells if self.x_grid[-1] != offset: self.x_grid = np.append(self.x_grid, offset) for dd in range(num_cells): new_cell = offset+(dd+1)*cell_width #make sure cells aren't too close together try: if abs(self.rel_station_locations[ii+1]-new_cell) >= cell_width*.9: self.x_grid = np.append(self.x_grid, new_cell) else: pass except IndexError: pass self.x_grid = np.append(self.x_grid, self.rel_station_locations[-1]) # add a cell on the right hand side of the station area to reduce # effect of a large cell next to it self.x_grid = np.append(self.x_grid, self.rel_station_locations[-1]+self.cell_width*\ self.x_pad_multiplier) #--> pad the mesh with exponentially increasing horizontal cells # such that the edge of the mesh can be estimated with a 1D model x_left = float(abs(self.x_grid[0]-self.x_grid[1])) x_right = float(abs(self.x_grid[-1]-self.x_grid[-2])) x_pad_cell = np.max([x_left, x_right]) for ii in range(self.num_x_pad_cells): left_cell = self.x_grid[0] right_cell = self.x_grid[-1] pad_cell = x_pad_cell*self.x_pad_multiplier**(ii+1) self.x_grid = np.insert(self.x_grid, 0, left_cell-pad_cell) self.x_grid = np.append(self.x_grid, right_cell+pad_cell) #--> compute relative positions for the grid self.x_nodes = self.x_grid.copy() for ii, xx in enumerate(self.x_grid[:-1]): self.x_nodes[ii] = abs(self.x_grid[ii+1]-xx) self.x_nodes = self.x_nodes[:-1] #2) make vertical nodes so that they increase with depth #--> make depth grid log_z = np.logspace(np.log10(self.z1_layer), np.log10(self.z_target_depth-\ np.logspace(np.log10(self.z1_layer), np.log10(self.z_target_depth), num=self.n_layers)[-2]), num=self.n_layers-self.num_z_pad_cells) #round the layers to be whole numbers ztarget = np.array([zz-zz%10**np.floor(np.log10(zz)) for zz in log_z]) #--> create padding cells past target depth log_zpad = np.logspace(np.log10(self.z_target_depth), np.log10(self.z_bottom-\ np.logspace(np.log10(self.z_target_depth), np.log10(self.z_bottom), num=self.num_z_pad_cells)[-2]), num=self.num_z_pad_cells) #round the layers to be whole numbers zpadding = np.array([zz-zz%10**np.floor(np.log10(zz)) for zz in log_zpad]) #create the vertical nodes self.z_nodes = np.append(ztarget, zpadding) #calculate actual distances of depth layers self.z_grid = np.array([self.z_nodes[:ii+1].sum() for ii in range(self.z_nodes.shape[0])]) self.mesh_values = np.zeros((self.x_nodes.shape[0], self.z_nodes.shape[0], 4), dtype=str) self.mesh_values[:,:,:] = '?' #get elevation if elevation_profile is given if self.elevation_profile is not None: self.add_elevation(self.elevation_profile) print '='*55 print '{0:^55}'.format('mesh parameters'.upper()) print '='*55 print ' number of horizontal nodes = {0}'.format(self.x_nodes.shape[0]) print ' number of vertical nodes = {0}'.format(self.z_nodes.shape[0]) print ' Total Horizontal Distance = {0:2f}'.format(self.x_nodes.sum()) print ' Total Vertical Distance = {0:2f}'.format(self.z_nodes.sum()) print '='*55 def add_elevation(self, elevation_profile=None): """ the elevation model needs to be in relative coordinates and be a numpy.ndarray(2, num_elevation_points) where the first column is the horizontal location and the second column is the elevation at that location. If you have a elevation model use Profile to project the elevation information onto the profile line To build the elevation I'm going to add the elevation to the top of the model which will add cells to the mesh. there might be a better way to do this, but this is the first attempt. So I'm going to assume that the first layer of the mesh without elevation is the minimum elevation and blocks will be added to max elevation at an increment according to z1_layer .. note:: the elevation model should be symmetrical ie, starting at the first station and ending on the last station, so for now any elevation outside the station area will be ignored and set to the elevation of the station at the extremities. This is not ideal but works for now. Arguments: ----------- **elevation_profile** : np.ndarray(2, num_elev_points) - 1st row is for profile location - 2nd row is for elevation values Computes: --------- **mesh_values** : mesh values, setting anything above topography to the key for air, which for Occam is '0' """ if elevation_profile is not None: self.elevation_profile = elevation_profile if self.elevation_profile is None: raise OccamInputError('Need to input an elevation profile to ' 'add elevation into the mesh.') elev_diff = abs(elevation_profile[1].max()-elevation_profile[1].min()) num_elev_layers = int(elev_diff/self.z1_layer) #add vertical nodes and values to mesh_values self.z_nodes = np.append([self.z1_layer]*num_elev_layers, self.z_nodes) self.z_grid = np.array([self.z_nodes[:ii+1].sum() for ii in range(self.z_nodes.shape[0])]) #this assumes that mesh_values have not been changed yet and are all ? self.mesh_values = np.zeros((self.x_grid.shape[0], self.z_grid.shape[0], 4), dtype=str) self.mesh_values[:,:,:] = '?' #--> need to interpolate the elevation values onto the mesh nodes # first center the locations about 0, this needs to be the same # center as the station locations. offset = elevation_profile[0]-elevation_profile[0].mean() elev = elevation_profile[1]-elevation_profile[1].min() func_elev = spi.interp1d(offset, elev, kind='linear') # need to figure out which cells and triangular cells need to be air xpad = self.num_x_pad_cells+1 for ii, xg in enumerate(self.x_grid[xpad:-xpad], xpad): #get the index value for z_grid by calculating the elevation #difference relative to the top of the model dz = elev.max()-func_elev(xg) #index of ground in the model for that x location zz = int(np.ceil(dz/self.z1_layer)) if zz == 0: pass else: #--> need to figure out the triangular elements #top triangle zlayer = elev.max()-self.z_grid[zz] try: xtop = xg+(self.x_grid[ii+1]-xg)/2 ytop = zlayer+3*(self.z_grid[zz]-self.z_grid[zz-1])/4 elev_top = func_elev(xtop) #print xg, xtop, ytop, elev_top, zz if elev_top > ytop: self.mesh_values[ii, 0:zz, 0] = self.air_key else: self.mesh_values[ii, 0:zz-1, 0] = self.air_key except ValueError: pass #left triangle try: xleft = xg+(self.x_grid[ii+1]-xg)/4. yleft = zlayer+(self.z_grid[zz]-self.z_grid[zz-1])/2. elev_left = func_elev(xleft) #print xg, xleft, yleft, elev_left, zz if elev_left > yleft: self.mesh_values[ii, 0:zz, 1] = self.air_key except ValueError: pass #bottom triangle try: xbottom = xg+(self.x_grid[ii+1]-xg)/2 ybottom = zlayer+(self.z_grid[zz]-self.z_grid[zz-1])/4 elev_bottom = func_elev(xbottom) #print xg, xbottom, ybottom, elev_bottom, zz if elev_bottom > ybottom: self.mesh_values[ii, 0:zz, 2] = self.air_key except ValueError: pass #right triangle try: xright = xg+3*(self.x_grid[ii+1]-xg)/4 yright = zlayer+(self.z_grid[zz]-self.z_grid[zz-1])/2 elev_right = func_elev(xright) if elev_right > yright*.95: self.mesh_values[ii, 0:zz, 3] = self.air_key except ValueError: pass #--> need to fill out the padding cells so they have the same elevation # as the extremity stations. for ii in range(xpad): self.mesh_values[ii, :, :] = self.mesh_values[xpad+1, :, :] for ii in range(xpad+1): self.mesh_values[-(ii+1), :, :] = self.mesh_values[-xpad-2, :, :] print '{0:^55}'.format('--- Added Elevation to Mesh --') def plot_mesh(self, **kwargs): """ Plot built mesh with station locations. =================== =================================================== Key Words Description =================== =================================================== depth_scale [ 'km' | 'm' ] scale of mesh plot. *default* is 'km' fig_dpi dots-per-inch resolution of the figure *default* is 300 fig_num number of the figure instance *default* is 'Mesh' fig_size size of figure in inches (width, height) *default* is [5, 5] fs size of font of axis tick labels, axis labels are fs+2. *default* is 6 ls [ '-' | '.' | ':' ] line style of mesh lines *default* is '-' marker marker of stations *default* is r"$\blacktriangledown$" ms size of marker in points. *default* is 5 plot_triangles [ 'y' | 'n' ] to plot mesh triangles. *default* is 'n' =================== =================================================== """ fig_num = kwargs.pop('fig_num', 'Mesh') fig_size = kwargs.pop('fig_size', [5, 5]) fig_dpi = kwargs.pop('fig_dpi', 300) marker = kwargs.pop('marker', r"$\blacktriangledown$") ms = kwargs.pop('ms', 5) mc = kwargs.pop('mc', 'k') lw = kwargs.pop('ls', .35) fs = kwargs.pop('fs', 6) plot_triangles = kwargs.pop('plot_triangles', 'n') depth_scale = kwargs.pop('depth_scale', 'km') #set the scale of the plot if depth_scale == 'km': df = 1000. elif depth_scale == 'm': df = 1. else: df = 1000. plt.rcParams['figure.subplot.left'] = .12 plt.rcParams['figure.subplot.right'] = .98 plt.rcParams['font.size'] = fs if self.x_grid is None: self.build_mesh() fig = plt.figure(fig_num, figsize=fig_size, dpi=fig_dpi) ax = fig.add_subplot(1, 1, 1, aspect='equal') #plot the station marker #plots a V for the station cause when you use scatter the spacing #is variable if you change the limits of the y axis, this way it #always plots at the surface. for offset in self.rel_station_locations: ax.text((offset)/df, 0, marker, horizontalalignment='center', verticalalignment='baseline', fontdict={'size':ms,'color':mc}) #--> make list of column lines row_line_xlist = [] row_line_ylist = [] for xx in self.x_grid/df: row_line_xlist.extend([xx,xx]) row_line_xlist.append(None) row_line_ylist.extend([0, self.z_grid[-1]/df]) row_line_ylist.append(None) #plot column lines (variables are a little bit of a misnomer) ax.plot(row_line_xlist, row_line_ylist, color='k', lw=lw) #--> make list of row lines col_line_xlist = [self.x_grid[0]/df, self.x_grid[-1]/df] col_line_ylist = [0, 0] for yy in self.z_grid/df: col_line_xlist.extend([self.x_grid[0]/df, self.x_grid[-1]/df]) col_line_xlist.append(None) col_line_ylist.extend([yy, yy]) col_line_ylist.append(None) #plot row lines (variables are a little bit of a misnomer) ax.plot(col_line_xlist, col_line_ylist, color='k', lw=lw) if plot_triangles == 'y': row_line_xlist = [] row_line_ylist = [] for xx in self.x_grid/df: row_line_xlist.extend([xx,xx]) row_line_xlist.append(None) row_line_ylist.extend([0, self.z_grid[-1]/df]) row_line_ylist.append(None) #plot columns ax.plot(row_line_xlist, row_line_ylist, color='k', lw=lw) col_line_xlist = [] col_line_ylist = [] for yy in self.z_grid/df: col_line_xlist.extend([self.x_grid[0]/df, self.x_grid[-1]/df]) col_line_xlist.append(None) col_line_ylist.extend([yy, yy]) col_line_ylist.append(None) #plot rows ax.plot(col_line_xlist, col_line_ylist, color='k', lw=lw) diag_line_xlist = [] diag_line_ylist = [] for xi, xx in enumerate(self.x_grid[:-1]/df): for yi, yy in enumerate(self.z_grid[:-1]/df): diag_line_xlist.extend([xx, self.x_grid[xi+1]/df]) diag_line_xlist.append(None) diag_line_xlist.extend([xx, self.x_grid[xi+1]/df]) diag_line_xlist.append(None) diag_line_ylist.extend([yy, self.z_grid[yi+1]/df]) diag_line_ylist.append(None) diag_line_ylist.extend([self.z_grid[yi+1]/df, yy]) diag_line_ylist.append(None) #plot diagonal lines. ax.plot(diag_line_xlist, diag_line_ylist, color='k', lw=lw) #--> set axes properties ax.set_ylim(self.z_target_depth/df, -2000/df) xpad = self.num_x_pad_cells-1 ax.set_xlim(self.x_grid[xpad]/df, -self.x_grid[xpad]/df) ax.set_xlabel('Easting ({0})'.format(depth_scale), fontdict={'size':fs+2, 'weight':'bold'}) ax.set_ylabel('Depth ({0})'.format(depth_scale), fontdict={'size':fs+2, 'weight':'bold'}) plt.show() def write_mesh_file(self, save_path=None, basename='Occam2DMesh'): """ Write a finite element mesh file. Calls build_mesh if it already has not been called. Arguments: ----------- **save_path** : string directory path or full path to save file **basename** : string basename of mesh file. *default* is 'Occam2DMesh' Returns: ---------- **mesh_fn** : string full path to mesh file :example: :: >>> import mtpy.modeling.occam2d as occam2d >>> edi_path = r"/home/mt/edi_files" >>> profile = occam2d.Profile(edi_path) >>> profile.plot_profile() >>> mesh = occam2d.Mesh(profile.station_locations) >>> mesh.build_mesh() >>> mesh.write_mesh_file(save_path=r"/home/occam2d/Inv1") """ if save_path is not None: self.save_path = save_path if self.save_path is None: self.save_path = os.getcwd() self.mesh_fn = os.path.join(self.save_path, basename) if self.x_nodes is None: self.build_mesh() mesh_lines = [] nx = self.x_nodes.shape[0] nz = self.z_nodes.shape[0] mesh_lines.append('MESH FILE Created by mtpy.modeling.occam2d\n') mesh_lines.append(" {0} {1} {2} {0} {0} {3}\n".format(0, nx, nz, 2)) #--> write horizontal nodes node_str = '' for ii, xnode in enumerate(self.x_nodes): node_str += '{0:>9.1f} '.format(xnode) if np.remainder(ii+1, 8) == 0: node_str += '\n' mesh_lines.append(node_str) node_str = '' node_str += '\n' mesh_lines.append(node_str) #--> write vertical nodes node_str = '' for ii, znode in enumerate(self.z_nodes): node_str += '{0:>9.1f} '.format(znode) if np.remainder(ii+1, 8) == 0: node_str += '\n' mesh_lines.append(node_str) node_str = '' node_str += '\n' mesh_lines.append(node_str) #--> need a 0 after the nodes mesh_lines.append(' 0\n') #--> write triangular mesh block values as ? for zz in range(self.z_nodes.shape[0]): for tt in range(4): mesh_lines.append(''.join(self.mesh_values[:, zz, tt])+'\n') mfid = file(self.mesh_fn, 'w') mfid.writelines(mesh_lines) mfid.close() print 'Wrote Mesh file to {0}'.format(self.mesh_fn) def read_mesh_file(self, mesh_fn): """ reads an occam2d 2D mesh file Arguments: ---------- **mesh_fn** : string full path to mesh file Populates: ----------- **x_grid** : array of horizontal locations of nodes (m) **x_nodes**: array of horizontal node relative distances (column locations (m)) **z_grid** : array of vertical node locations (m) **z_nodes** : array of vertical nodes (row locations(m)) **mesh_values** : np.array of free parameters To do: ------ incorporate fixed values :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> mg = occam2d.Mesh() >>> mg.mesh_fn = r"/home/mt/occam/line1/Occam2Dmesh" >>> mg.read_mesh_file() """ self.mesh_fn = mesh_fn mfid = file(self.mesh_fn,'r') mlines = mfid.readlines() nh = int(mlines[1].strip().split()[1]) nv = int(mlines[1].strip().split()[2]) self.x_nodes = np.zeros(nh) self.z_nodes=np.zeros(nv) self.mesh_values = np.zeros((nh, nv, 4), dtype=str) #get horizontal nodes h_index = 0 v_index = 0 m_index = 0 line_count = 2 #--> fill horizontal nodes for mline in mlines[line_count:]: mline = mline.strip().split() for m_value in mline: self.x_nodes[h_index] = float(m_value) h_index += 1 line_count += 1 if h_index == nh: break #--> fill vertical nodes for mline in mlines[line_count:]: mline = mline.strip().split() for m_value in mline: self.z_nodes[v_index] = float(m_value) v_index += 1 line_count += 1 if v_index == nv: break #--> fill model values for ll, mline in enumerate(mlines[line_count+1:], line_count): mline = mline.strip() if m_index == nv or mline.lower().find('exception')>0: break else: mlist = list(mline) if len(mlist) != nh: print '--- Line {0} in {1}'.format(ll, self.mesh_fn) print 'Check mesh file too many columns' print 'Should be {0}, has {1}'.format(nh,len(mlist)) mlist = mlist[0:nh] for kk in range(4): for jj, mvalue in enumerate(list(mlist)): self.mesh_values[jj,m_index,kk] = mline[jj] m_index += 1 #sometimes it seems that the number of nodes is not the same as the #header would suggest so need to remove the zeros self.x_nodes = self.x_nodes[np.nonzero(self.x_nodes)] if self.x_nodes.shape[0] != nh: new_nh = self.x_nodes.shape[0] print 'The header number {0} should read {1}'.format(nh, new_nh) self.mesh_values.resize(new_nh, nv, 4) else: new_nh = nh self.z_nodes = self.z_nodes[np.nonzero(self.z_nodes)] if self.z_nodes.shape[0] != nv: new_nv = self.z_nodes.shape[0] print 'The header number {0} should read {1}'.format(nv, new_nv) self.mesh_values.resize(new_nh, nv, 4) #make x_grid and z_grid self.x_grid = self.x_nodes.copy() self.x_grid = np.append(self.x_grid, self.x_grid[-1]) self.x_grid = np.array([self.x_grid[:ii].sum() for ii in range(self.x_grid.shape[0])]) self.x_grid -= self.x_grid.mean() self.z_grid = np.array([self.z_nodes[:ii].sum() for ii in range(self.z_nodes.shape[0])]) class Profile(): """ Takes data from .edi files to create a profile line for 2D modeling. Can project the stations onto a profile that is perpendicular to strike or a given profile direction. If _rotate_to_strike is True, the impedance tensor and tipper are rotated to align with the geoelectric strike angle. If _rotate_to_strike is True and geoelectric_strike is not given, then it is calculated using the phase tensor. First, 2D sections are estimated from the impedance tensort hen the strike is esitmated from the phase tensor azimuth + skew. This angle is then used to project the stations perpendicular to the strike angle. If you want to project onto an angle not perpendicular to strike, give profile_angle and set _rotate_to_strike to False. This will project the impedance tensor and tipper to be perpendicular with the profile_angle. Arguments: ----------- **edi_path** : string full path to edi files **station_list** : list of stations to create profile for if None is given all .edi files in edi_path will be used. .. note:: that algorithm assumes .edi files are named by station and it only looks for the station within the .edi file name it does not match exactly, so if you have .edi files with similar names there might be some problems. **geoelectric_strike** : float geoelectric strike direction in degrees assuming 0 is North and East is 90 **profile_angle** : float angle to project the stations onto a profile line .. note:: the geoelectric strike angle and profile angle should be orthogonal for best results from 2D modeling. ======================= =================================================== **Attributes** Description ======================= =================================================== edi_list list of mtpy.core.mt.MT instances for each .edi file found in edi_path elevation_model numpy.ndarray(3, num_elevation_points) elevation values for the profile line (east, north, elev) geoelectric_strike geoelectric strike direction assuming N == 0 profile_angle angle of profile line assuming N == 0 profile_line (slope, N-intercept) of profile line _profile_generated [ True | False ] True if profile has already been generated edi_path path to find .edi files station_list list of stations to extract from edi_path num_edi number of edi files to create a profile for _rotate_to_strike [ True | False] True to project the stations onto a line that is perpendicular to geoelectric strike also Z and Tipper are rotated to strike direction. ======================= =================================================== .. note:: change _rotate_to_strike to False if you want to project the stations onto a given profile direction. This will rotate Z and Tipper to be orthogonal to this direction ======================= =================================================== Methods Description ======================= =================================================== generate_profile generates a profile for the given stations plot_profile plots the profile line along with original station locations to compare. ======================= =================================================== :Example: :: >>> import mtpy.modeling.occam2d as occam >>> edi_path = r"/home/mt/edi_files" >>> station_list = ['mt{0:03}'.format(ss) for ss in range(0, 15)] >>> prof_line = occam.Profile(edi_path, station_list=station_list) >>> prof_line.plot_profile() >>> #if you want to project to a given strike >>> prof_line.geoelectric_strike = 36.7 >>> prof_line.generate_profile() >>> prof_line.plot_profile() """ def __init__(self, edi_path=None, **kwargs): self.edi_path = edi_path self.station_list = kwargs.pop('station_list', None) self.geoelectric_strike = kwargs.pop('geoelectric_strike', None) self.profile_angle = kwargs.pop('profile_angle', None) self.edi_list = [] self._rotate_to_strike = True self.num_edi = 0 self._profile_generated = False self.profile_line = None self.station_locations = None self.elevation_model = kwargs.pop('elevation_model', None) self.elevation_profile = None self.estimate_elevation = True def _get_edi_list(self): """ get a list of edi files that coorespond to the station list each element of the list is a mtpy.core.mt.MT object """ if self.station_list is not None: for station in self.station_list: for edi in os.listdir(self.edi_path): if edi.find(station) == 0 and edi[-3:] == 'edi': self.edi_list.append(mt.MT(os.path.join(self.edi_path, edi))) break else: self.edi_list = [mt.MT(os.path.join(self.edi_path, edi)) for edi in os.listdir(self.edi_path) if edi[-3:]=='edi'] self.num_edi = len(self.edi_list) for edi in self.edi_list: if type(edi.Tipper.rotation_angle) is list: edi.Tipper.rotation_angle = np.array(edi.Tipper.rotation_angle) def generate_profile(self): """ Generate linear profile by regression of station locations. If profile_angle is not None, then station are projected onto that line. Else, the a geoelectric strike is calculated from the data and the stations are projected onto an angle perpendicular to the estimated strike direction. If _rotate_to_strike is True, the impedance tensor and Tipper data are rotated to align with strike. Else, data is not rotated to strike. To project stations onto a given line, set profile_angle and _rotate_to_strike to False. This will project the stations onto profile_angle and rotate the impedance tensor and tipper to be perpendicular to the profile_angle. """ self._get_edi_list() strike_angles = np.zeros(self.num_edi) easts = np.zeros(self.num_edi) norths = np.zeros(self.num_edi) utm_zones = np.zeros(self.num_edi) for ii, edi in enumerate(self.edi_list): #find strike angles for each station if a strike angle is not given if self.geoelectric_strike is None: try: #check dimensionality to be sure strike is estimate for 2D dim = MTgy.dimensionality(z_object=edi.Z) #get strike for only those periods gstrike = MTgy.strike_angle(edi.Z.z[np.where(dim==2)])[:,0] strike_angles[ii] = np.median(gstrike) except: pass easts[ii] = edi.east norths[ii] = edi.north utm_zones[ii] = int(edi.utm_zone[:-1]) if len(self.edi_list) == 0: raise IOError('Could not find and .edi file in {0}'.format(self.edi_path)) if self.geoelectric_strike is None: try: #might try mode here instead of mean self.geoelectric_strike = np.median(strike_angles[np.nonzero(strike_angles)]) except: #empty list or so.... #can happen, if everyhing is just 1D self.geoelectric_strike = 0. #need to check the zones of the stations main_utmzone = mode(utm_zones)[0][0] for ii, zone in enumerate(utm_zones): if zone == main_utmzone: continue else: print ('station {0} is out of main utm zone'.format(self.edi_list[ii].station)+\ ' will not be included in profile') # check regression for 2 profile orientations: # horizontal (N=N(E)) or vertical(E=E(N)) # use the one with the lower standard deviation profile1 = sp.stats.linregress(easts, norths) profile2 = sp.stats.linregress(norths, easts) profile_line = profile1[:2] #if the profile is rather E=E(N), the parameters have to converted # into N=N(E) form: if profile2[4] < profile1[4]: profile_line = (1./profile2[0], -profile2[1]/profile2[0]) self.profile_line = profile_line #profile_line = sp.polyfit(lo_easts, lo_norths, 1) if self.profile_angle is None: self.profile_angle = (90-(np.arctan(profile_line[0])*180/np.pi))%180 #rotate Z according to strike angle, #if strike was explicitely given, use that value! #otherwise: #have 90 degree ambiguity in strike determination #choose strike which offers larger angle with profile #if profile azimuth is in [0,90]. if self._rotate_to_strike is False: if 0 <= self.profile_angle < 90: if np.abs(self.profile_angle-self.geoelectric_strike) < 45: self.geoelectric_strike += 90 elif 90 <= self.profile_angle < 135: if self.profile_angle-self.geoelectric_strike < 45: self.geoelectric_strike -= 90 else: if self.profile_angle-self.geoelectric_strike >= 135: self.geoelectric_strike += 90 self.geoelectric_strike = self.geoelectric_strike%180 #rotate components of Z and Tipper to align with geoelectric strike #which should now be perpendicular to the profile strike if self._rotate_to_strike == True: self.profile_angle = self.geoelectric_strike+90 p1 = np.tan(np.deg2rad(90-self.profile_angle)) #need to project the y-intercept to the new angle p2 = (self.profile_line[0]-p1)*easts[0]+self.profile_line[1] self.profile_line = (p1, p2) for edi in self.edi_list: edi.Z.rotate(self.geoelectric_strike-edi.Z.rotation_angle) # rotate tipper to profile azimuth, not strike. try: edi.Tipper.rotate((self.profile_angle-90)%180- edi.Tipper.rotation_angle.mean()) except AttributeError: edi.Tipper.rotate((self.profile_angle-90)%180- edi.Tipper.rotation_angle) print '='*72 print ('Rotated Z and Tipper to align with ' '{0:+.2f} degrees E of N'.format(self.geoelectric_strike)) print ('Profile angle is ' '{0:+.2f} degrees E of N'.format(self.profile_angle)) print '='*72 else: for edi in self.edi_list: edi.Z.rotate((self.profile_angle-90)%180-edi.Z.rotation_angle) # rotate tipper to profile azimuth, not strike. try: edi.Tipper.rotate((self.profile_angle-90)%180- edi.Tipper.rotation_angle.mean()) except AttributeError: edi.Tipper.rotate((self.profile_angle-90)%180- edi.Tipper.rotation_angle) print '='*72 print ('Rotated Z and Tipper to be perpendicular with ' '{0:+.2f} profile angle'.format((self.profile_angle-90)%180)) print ('Profile angle is' '{0:+.2f} degrees E of N'.format(self.profile_angle)) print '='*72 #--> project stations onto profile line projected_stations = np.zeros((self.num_edi, 2)) self.station_locations = np.zeros(self.num_edi) #create profile vector profile_vector = np.array([1, self.profile_line[0]]) #be sure the amplitude is 1 for a unit vector profile_vector /= np.linalg.norm(profile_vector) for ii, edi in enumerate(self.edi_list): station_vector = np.array([easts[ii], norths[ii]-self.profile_line[1]]) position = np.dot(profile_vector, station_vector)*profile_vector self.station_locations[ii] = np.linalg.norm(position) edi.offset = np.linalg.norm(position) edi.projected_east = position[0] edi.projected_north = position[1]+self.profile_line[1] projected_stations[ii] = [position[0], position[1]+self.profile_line[1]] #set the first station to 0 for edi in self.edi_list: edi.offset -= self.station_locations.min() self.station_locations -= self.station_locations.min() #Sort from West to East: index_sort = np.argsort(self.station_locations) if self.profile_angle == 0: #Exception: sort from North to South index_sort = np.argsort(norths) #sorting along the profile self.edi_list = [self.edi_list[ii] for ii in index_sort] self.station_locations = np.array([self.station_locations[ii] for ii in index_sort]) if self.estimate_elevation == True: self.project_elevation() self._profile_generated = True def project_elevation(self, elevation_model=None): """ projects elevation data into the profile Arguments: ------------- **elevation_model** : np.ndarray(3, num_elevation_points) (east, north, elevation) for now needs to be in utm coordinates if None then elevation is taken from edi_list Returns: ---------- **elevation_profile** : """ self.elevation_model = elevation_model #--> get an elevation model for the mesh if self.elevation_model == None: self.elevation_profile = np.zeros((2, len(self.edi_list))) self.elevation_profile[0,:] = np.array([ss for ss in self.station_locations]) self.elevation_profile[1,:] = np.array([edi.elev for edi in self.edi_list]) #--> project known elevations onto the profile line else: self.elevation_profile = np.zeros((2, self.elevation_model.shape[1])) #create profile vector profile_vector = np.array([1, self.profile_line[0]]) #be sure the amplitude is 1 for a unit vector profile_vector /= np.linalg.norm(profile_vector) for ii in range(self.elevation_model.shape[1]): east = self.elevation_model[0, ii] north = self.elevation_model[1, ii] elev = self.elevation_model[2, ii] elev_vector = np.array([east, north-self.profile_line[1]]) position = np.dot(profile_vector, elev_vector)*profile_vector self.elevation_profile[0, ii] = np.linalg.norm(position) self.elevation_profile[1, ii] = elev def plot_profile(self, **kwargs): """ Plot the projected profile line along with original station locations to make sure the line projected is correct. ===================== ================================================= Key Words Description ===================== ================================================= fig_dpi dots-per-inch resolution of figure *default* is 300 fig_num number if figure instance *default* is 'Projected Profile' fig_size size of figure in inches (width, height) *default* is [5, 5] fs [ float ] font size in points of axes tick labels axes labels are fs+2 *default* is 6 lc [ string | (r, g, b) ]color of profile line (see matplotlib.line for options) *default* is 'b' -- blue lw float, width of profile line in points *default* is 1 marker [ string ] marker for stations (see matplotlib.pyplot.plot) for options mc [ string | (r, g, b) ] color of projected stations. *default* is 'k' -- black ms [ float ] size of station marker *default* is 5 station_id [min, max] index values for station labels *default* is None ===================== ================================================= :Example: :: >>> edipath = r"/home/mt/edi_files" >>> pr = occam2d.Profile(edi_path=edipath) >>> pr.generate_profile() >>> # set station labels to only be from 1st to 4th index >>> # of station name >>> pr.plot_profile(station_id=[0,4]) """ fig_num = kwargs.pop('fig_num', 'Projected Profile') fig_size = kwargs.pop('fig_size', [5, 5]) fig_dpi = kwargs.pop('fig_dpi', 300) marker = kwargs.pop('marker', 'v') ms = kwargs.pop('ms', 5) mc = kwargs.pop('mc', 'k') lc = kwargs.pop('lc', 'b') lw = kwargs.pop('ls', 1) fs = kwargs.pop('fs', 6) station_id = kwargs.pop('station_id', None) plt.rcParams['figure.subplot.left'] = .12 plt.rcParams['figure.subplot.right'] = .98 plt.rcParams['font.size'] = fs if self._profile_generated is False: self.generate_profile() fig = plt.figure(fig_num, figsize=fig_size, dpi=fig_dpi) ax = fig.add_subplot(1, 1, 1, aspect='equal') for edi in self.edi_list: m1, = ax.plot(edi.projected_east, edi.projected_north, marker=marker, ms=ms, mfc=mc, mec=mc, color=lc) m2, = ax.plot(edi.east, edi.north, marker=marker, ms=.5*ms, mfc=(.6, .6, .6), mec=(.6, .6, .6), color=lc) if station_id is None: ax.text(edi.projected_east, edi.projected_north*1.00025, edi.station, ha='center', va='baseline', fontdict={'size':fs, 'weight':'bold'}) else: ax.text(edi.projected_east, edi.projected_north*1.00025, edi.station[station_id[0]:station_id[1]], ha='center', va='baseline', fontdict={'size':fs, 'weight':'bold'}) peasts = np.array([edi.projected_east for edi in self.edi_list]) pnorths = np.array([edi.projected_north for edi in self.edi_list]) easts = np.array([edi.east for edi in self.edi_list]) norths = np.array([edi.north for edi in self.edi_list]) ploty = sp.polyval(self.profile_line, easts) ax.plot(easts, ploty, lw=lw, color=lc) ax.set_title('Original/Projected Stations') ax.set_ylim((min([norths.min(), pnorths.min()])*.999, max([norths.max(), pnorths.max()])*1.001)) ax.set_xlim((min([easts.min(), peasts.min()])*.98, max([easts.max(), peasts.max()])*1.02)) ax.set_xlabel('Easting (m)', fontdict={'size':fs+2, 'weight':'bold'}) ax.set_ylabel('Northing (m)', fontdict={'size':fs+2, 'weight':'bold'}) ax.grid(alpha=.5) ax.legend([m1, m2], ['Projected', 'Original'], loc='upper left', prop={'size':fs}) plt.show() class Regularization(Mesh): """ Creates a regularization grid based on Mesh. Note that Mesh is inherited by Regularization, therefore the intended use is to build a mesh with the Regularization class. The regularization grid is what Occam calculates the inverse model on. Setup is tricky and can be painful, as you can see it is not quite fully functional yet, as it cannot incorporate topography yet. It seems like you'd like to have the regularization setup so that your target depth is covered well, in that the regularization blocks to this depth are sufficiently small to resolve resistivity structure at that depth. Finally, you want the regularization to go to a half space at the bottom, basically one giant block. Arguments: ----------- **station_locations** : np.ndarray(n_stations) array of station locations along a profile line in meters. ======================= =================================================== Key Words/Attributes Description ======================= =================================================== air_key letter associated with the value of air *default* is 0 air_value value given to an air cell, *default* is 1E13 binding_offset offset from the right side of the furthest left hand model block in meters. The regularization grid is setup such that this should be 0. cell_width width of cells with in station area in meters *default* is 100 description description of the model for the model file. *default* is 'simple inversion' elevation_profile elevation profile along the profile line. given as np.ndarray(nx, 2), where the elements are x_location, elevation. If elevation profile is given add_elevation is called automatically. *default* is None mesh_fn full path to mesh file. mesh_values letter values of each triangular mesh element if the cell is free value is ? model_columns model_name model_rows min_block_width [ float ] minimum model block width in meters, *default* is 2*cell_width n_layers number of vertical layers in mesh *default* is 90 num_free_param [ int ] number of free parameters in the model. this is a tricky number to estimate apparently. num_layers [ int ] number of regularization layers. num_x_pad_cells number of horizontal padding cells outside the the station area that will increase in size by x_pad_multiplier. *default* is 7 num_x_pad_small_cells number of horizonal padding cells just outside the station area with width cell_width. This is to extend the station area if needed. *default* is 2 num_z_pad_cells number of vertical padding cells below z_target_depth down to z_bottom. *default* is 5 prejudice_fn full path to prejudice file *default* is 'none' reg_basename basename of regularization file (model file) *default* is 'Occam2DModel' reg_fn full path to regularization file (model file) *default* is save_path/reg_basename rel_station_locations relative station locations within the mesh. The locations are relative to the center of the station area. *default* is None, filled later save_path full path to save mesh and model file to. *default* is current working directory. statics_fn full path to static shift file Static shifts in occam may not work. *default* is 'none' station_locations location of stations in meters, can be on a relative grid or in UTM. trigger [ float ] multiplier to merge model blocks at depth. A higher number increases the number of model blocks at depth. *default* is .65 x_grid location of horizontal grid nodes in meters x_nodes relative spacing between grid nodes x_pad_multiplier horizontal padding cells will increase by this multiple out to the edge of the grid. *default* is 1.5 z1_layer thickness of the first layer in the model. Should be at least 1/4 of the first skin depth *default* is 10 z_bottom bottom depth of the model (m). Needs to be large enough to be 1D at the edge. *default* is 200000.0 z_grid location of vertical nodes in meters z_nodes relative distance between vertical nodes in meters z_target_depth depth to deepest target of interest. Below this depth cells will be padded to z_bottom ======================= =================================================== .. note:: regularization does not work with topography yet. Having problems calculating the number of free parameters. ========================= ================================================= Methods Description ========================= ================================================= add_elevation adds elevation to the mesh given elevation profile. build_mesh builds the mesh given the attributes of Mesh. If elevation_profile is not None, add_elevation is called inside build_mesh build_regularization builds the regularization grid from the build mesh be sure to plot the grids before starting the inversion to make sure coverage is appropriate. get_num_free_param estimate the number of free parameters. **This is a work in progress** plot_mesh plots the built mesh with station location. read_mesh_file reads in an existing mesh file and populates the appropriate attributes. read_regularization_file read in existing regularization file, populates apporopriate attributes write_mesh_file writes a mesh file to save_path write_regularization_file writes a regularization file ======================= =================================================== :Example: :: >>> edipath = r"/home/mt/edi_files" >>> profile = occam2d.Profile(edi_path=edi_path) >>> profile.generate_profile() >>> reg = occam2d.Regularization(profile.station_locations) >>> reg.build_mesh() >>> reg.build_regularization() >>> reg.save_path = r"/home/occam2d/Line1/Inv1" >>> reg.write_regularization_file() """ def __init__(self, station_locations=None, **kwargs): # Be sure to initialize Mesh Mesh.__init__(self, station_locations, **kwargs) self.min_block_width = kwargs.pop('min_block_width', 2*np.median(self.cell_width)) self.trigger = kwargs.pop('trigger', .75) self.model_columns = None self.model_rows = None self.binding_offset = None self.reg_fn = None self.reg_basename = 'Occam2DModel' self.model_name = 'model made by mtpy.modeling.occam2d' self.description = 'simple Inversion' self.num_param = None self.num_free_param = None self.statics_fn = kwargs.pop('statics_fn', 'none') self.prejudice_fn = kwargs.pop('prejudice_fn', 'none') self.num_layers = kwargs.pop('num_layers', None) #--> build mesh if self.station_locations is not None: self.build_mesh() self.build_regularization() def build_regularization(self): """ Builds larger boxes around existing mesh blocks for the regularization. As the model deepens the regularization boxes get larger. The regularization boxes are merged mesh cells as prescribed by the Occam method. """ # list of the mesh columns to combine self.model_columns = [] # list of mesh rows to combine self.model_rows = [] #At the top of the mesh model blocks will be 2 combined mesh blocks #Note that the padding cells are combined into one model block station_col = [2]*((self.x_nodes.shape[0]-2*self.num_x_pad_cells)/2) model_cols = [self.num_x_pad_cells]+station_col+[self.num_x_pad_cells] station_widths = [self.x_nodes[ii]+self.x_nodes[ii+1] for ii in range(self.num_x_pad_cells, self.x_nodes.shape[0]-self.num_x_pad_cells, 2)] pad_width = self.x_nodes[0:self.num_x_pad_cells].sum() model_widths = [pad_width]+station_widths+[pad_width] num_cols = len(model_cols) model_thickness = np.append(self.z_nodes[0:self.z_nodes.shape[0]- self.num_z_pad_cells], self.z_nodes[-self.num_z_pad_cells:].sum()) self.num_param = 0 #--> now need to calulate model blocks to the bottom of the model columns = list(model_cols) widths = list(model_widths) for zz, thickness in enumerate(model_thickness): #index for model column blocks from first_row, start at 1 because # 0 is for padding cells block_index = 1 num_rows = 1 if zz == 0: num_rows += 1 if zz == len(model_thickness)-1: num_rows = self.num_z_pad_cells while block_index+1 < num_cols-1: #check to see if horizontally merged mesh cells are not larger #than the thickness times trigger if thickness < self.trigger*(widths[block_index]+\ widths[block_index+1]): block_index += 1 continue #merge 2 neighboring cells to avoid vertical exaggerations else: widths[block_index] += widths[block_index+1] columns[block_index] += columns[block_index+1] #remove one of the merged cells widths.pop(block_index+1) columns.pop(block_index+1) num_cols -= 1 self.num_param += num_cols self.model_columns.append(list(columns)) self.model_rows.append([num_rows, num_cols]) #calculate the distance from the right side of the furthest left #model block to the furthest left station which is half the distance # from the center of the mesh grid. self.binding_offset = self.x_grid[self.num_x_pad_cells+1]+\ self.station_locations.mean() self.get_num_free_params() print '='*55 print '{0:^55}'.format('regularization parameters'.upper()) print '='*55 print ' binding offset = {0:.1f}'.format(self.binding_offset) print ' number layers = {0}'.format(len(self.model_columns)) print ' number of parameters = {0}'.format(self.num_param) print ' number of free param = {0}'.format(self.num_free_param) print '='*55 def get_num_free_params(self): """ estimate the number of free parameters in model mesh. I'm assuming that if there are any fixed parameters in the block, then that model block is assumed to be fixed. Not sure if this is right cause there is no documentation. **DOES NOT WORK YET** """ self.num_free_param = 0 row_count = 0 #loop over columns and rows of regularization grid for col, row in zip(self.model_columns, self.model_rows): rr = row[0] col_count = 0 for ii, cc in enumerate(col): #make a model block from the index values of the regularization #grid model_block = self.mesh_values[row_count:row_count+rr, col_count:col_count+cc, :] #find all the free triangular blocks within that model block find_free = np.where(model_block=='?') try: #test to see if the number of free parameters is equal #to the number of triangular elements with in the model #block, if there is the model block is assumed to be free. if find_free[0].size == model_block.size: self.num_free_param += 1 except IndexError: pass col_count += cc row_count += rr def write_regularization_file(self, reg_fn=None, reg_basename=None, statics_fn='none', prejudice_fn='none', save_path=None): """ Write a regularization file for input into occam. Calls build_regularization if build_regularization has not already been called. if reg_fn is None, then file is written to save_path/reg_basename Arguments: ---------- **reg_fn** : string full path to regularization file. *default* is None and file will be written to save_path/reg_basename **reg_basename** : string basename of regularization file **statics_fn** : string full path to static shift file .. note:: static shift does not always work in occam2d.exe **prejudice_fn** : string full path to prejudice file **save_path** : string path to save regularization file. *default* is current working directory """ if save_path is not None: self.save_path = save_path if reg_basename is not None: self.reg_basename = reg_basename if reg_fn is None: if self.save_path is None: self.save_path = os.getcwd() self.reg_fn = os.path.join(self.save_path, self.reg_basename) self.statics_fn = statics_fn self.prejudice_fn = prejudice_fn if self.model_columns is None: if self.binding_offset is None: self.build_mesh() self.build_regularization() reg_lines = [] #--> write out header information reg_lines.append('{0:<18}{1}\n'.format('Format:', 'occam2mtmod_1.0'.upper())) reg_lines.append('{0:<18}{1}\n'.format('Model Name:', self.model_name.upper())) reg_lines.append('{0:<18}{1}\n'.format('Description:', self.description.upper())) if os.path.dirname(self.mesh_fn) == self.save_path: reg_lines.append('{0:<18}{1}\n'.format('Mesh File:', os.path.basename(self.mesh_fn))) else: reg_lines.append('{0:<18}{1}\n'.format('Mesh File:',self.mesh_fn)) reg_lines.append('{0:<18}{1}\n'.format('Mesh Type:', 'pw2d'.upper())) if os.path.dirname(self.statics_fn) == self.save_path: reg_lines.append('{0:<18}{1}\n'.format('Statics File:', os.path.basename(self.statics_fn))) else: reg_lines.append('{0:<18}{1}\n'.format('Statics File:', self.statics_fn)) if os.path.dirname(self.prejudice_fn) == self.save_path: reg_lines.append('{0:<18}{1}\n'.format('Prejudice File:', os.path.basename(self.prejudice_fn))) else: reg_lines.append('{0:<18}{1}\n'.format('Prejudice File:', self.prejudice_fn)) reg_lines.append('{0:<20}{1: .1f}\n'.format('Binding Offset:', self.binding_offset)) reg_lines.append('{0:<20}{1}\n'.format('Num Layers:', len(self.model_columns))) #--> write rows and columns of regularization grid for row, col in zip(self.model_rows, self.model_columns): reg_lines.append(''.join([' {0:>5}'.format(rr) for rr in row])+'\n') reg_lines.append(''.join(['{0:>5}'.format(cc) for cc in col])+'\n') reg_lines.append('{0:<18}{1}\n'.format('NO. EXCEPTIONS:', '0')) rfid = file(self.reg_fn, 'w') rfid.writelines(reg_lines) rfid.close() print 'Wrote Regularization file to {0}'.format(self.reg_fn) def read_regularization_file(self, reg_fn): """ Read in a regularization file and populate attributes: * binding_offset * mesh_fn * model_columns * model_rows * prejudice_fn * statics_fn """ self.reg_fn = reg_fn self.save_path = os.path.dirname(reg_fn) rfid = open(self.reg_fn, 'r') self.model_rows = [] self.model_columns = [] ncols = [] rlines = rfid.readlines() for ii, iline in enumerate(rlines): #read header information if iline.find(':') > 0: iline = iline.strip().split(':') key = iline[0].strip().lower() key = key.replace(' ', '_').replace('file', 'fn') value = iline[1].strip() try: setattr(self, key, float(value)) except ValueError: setattr(self, key, value) #append the last line if key.find('exception') > 0: self.model_columns.append(ncols) #get mesh values else: iline = iline.strip().split() iline = [int(jj) for jj in iline] if len(iline) == 2: if len(ncols) > 0: self.model_columns.append(ncols) self.model_rows.append(iline) ncols = [] elif len(iline) > 2: ncols = ncols+iline #set mesh file name if not os.path.isfile(self.mesh_fn): self.mesh_fn = os.path.join(self.save_path, self.mesh_fn) #set statics file name if not os.path.isfile(self.mesh_fn): self.statics_fn = os.path.join(self.save_path, self.statics_fn) #set prejudice file name if not os.path.isfile(self.mesh_fn): self.prejudice_fn = os.path.join(self.save_path, self.prejudice_fn) class Startup(object): """ Reads and writes the startup file for Occam2D. .. note:: Be sure to look at the Occam 2D documentation for description of all parameters ========================= ================================================= Key Words/Attributes Description ========================= ================================================= data_fn full path to data file date_time date and time the startup file was written debug_level [ 0 | 1 | 2 ] see occam documentation *default* is 1 description brief description of inversion run *default* is 'startup created by mtpy' diagonal_penalties penalties on diagonal terms *default* is 0 format Occam file format *default* is 'OCCAMITER_FLEX' iteration current iteration number *default* is 0 iterations_to_run maximum number of iterations to run *default* is 20 lagrange_value starting lagrange value *default* is 5 misfit_reached [ 0 | 1 ] 0 if misfit has been reached, 1 if it has. *default* is 0 misfit_value current misfit value. *default* is 1000 model_fn full path to model file model_limits limits on model resistivity values *default* is None model_value_steps limits on the step size of model values *default* is None model_values np.ndarray(num_free_params) of model values param_count number of free parameters in model resistivity_start starting resistivity value. If model_values is not given, then all values with in model_values array will be set to resistivity_start roughness_type [ 0 | 1 | 2 ] type of roughness *default* is 1 roughness_value current roughness value. *default* is 1E10 save_path directory path to save startup file to *default* is current working directory startup_basename basename of startup file name. *default* is Occam2DStartup startup_fn full path to startup file. *default* is save_path/startup_basename stepsize_count max number of iterations per step *default* is 8 target_misfit target misfit value. *default* is 1. ========================= ================================================= :Example: :: >>> startup = occam2d.Startup() >>> startup.data_fn = ocd.data_fn >>> startup.model_fn = profile.reg_fn >>> startup.param_count = profile.num_free_params >>> startup.save_path = r"/home/occam2d/Line1/Inv1" """ def __init__(self, **kwargs): self.save_path = kwargs.pop('save_path', None) self.startup_basename = kwargs.pop('startup_basename', 'Occam2DStartup') self.startup_fn = kwargs.pop('startup_fn', None) self.model_fn = kwargs.pop('model_fn', None) self.data_fn = kwargs.pop('data_fn', None) self.format = kwargs.pop('format', 'OCCAMITER_FLEX') self.date_time = kwargs.pop('date_time', time.ctime()) self.description = kwargs.pop('description', 'startup created by mtpy') self.iterations_to_run = kwargs.pop('iterations_to_run', 20) self.roughness_type = kwargs.pop('roughness_type', 1) self.target_misfit = kwargs.pop('target_misfit', 1.0) self.diagonal_penalties = kwargs.pop('diagonal_penalties', 0) self.stepsize_count = kwargs.pop('stepsize_count', 8) self.model_limits = kwargs.pop('model_limits', None) self.model_value_steps = kwargs.pop('model_value_steps', None) self.debug_level = kwargs.pop('debug_level', 1) self.iteration = kwargs.pop('iteration', 0) self.lagrange_value = kwargs.pop('lagrange_value', 5.0) self.roughness_value = kwargs.pop('roughness_value', 1e10) self.misfit_value = kwargs.pop('misfit_value', 1000) self.misfit_reached = kwargs.pop('misfit_reached', 0) self.param_count = kwargs.pop('param_count', None) self.resistivity_start = kwargs.pop('resistivity_start', 2) self.model_values = kwargs.pop('model_values', None) def write_startup_file(self, startup_fn=None, save_path=None, startup_basename=None): """ Write a startup file based on the parameters of startup class. Default file name is save_path/startup_basename Arguments: ----------- **startup_fn** : string full path to startup file. *default* is None **save_path** : string directory to save startup file. *default* is None **startup_basename** : string basename of starup file. *default* is None """ if save_path is not None: self.save_path = save_path if self.save_path is None: self.save_path = os.path.dirname(self.data_fn) if startup_basename is not None: self.startup_basename = startup_basename if startup_fn is None: self.startup_fn = os.path.join(self.save_path, self.startup_basename) #--> check to make sure all the important input are given if self.data_fn is None: raise OccamInputError('Need to input data file name') if self.model_fn is None: raise OccamInputError('Need to input model/regularization file name') if self.param_count is None: raise OccamInputError('Need to input number of model parameters') slines = [] slines.append('{0:<20}{1}\n'.format('Format:',self.format)) slines.append('{0:<20}{1}\n'.format('Description:', self.description)) if os.path.dirname(self.model_fn) == self.save_path: slines.append('{0:<20}{1}\n'.format('Model File:', os.path.basename(self.model_fn))) else: slines.append('{0:<20}{1}\n'.format('Model File:', self.model_fn)) if os.path.dirname(self.data_fn) == self.save_path: slines.append('{0:<20}{1}\n'.format('Data File:', os.path.basename(self.data_fn))) else: slines.append('{0:<20}{1}\n'.format('Data File:', self.data_fn)) slines.append('{0:<20}{1}\n'.format('Date/Time:', self.date_time)) slines.append('{0:<20}{1}\n'.format('Iterations to run:', self.iterations_to_run)) slines.append('{0:<20}{1}\n'.format('Target Misfit:', self.target_misfit)) slines.append('{0:<20}{1}\n'.format('Roughness Type:', self.roughness_type)) slines.append('{0:<20}{1}\n'.format('Diagonal Penalties:', self.diagonal_penalties)) slines.append('{0:<20}{1}\n'.format('Stepsize Cut Count:', self.stepsize_count)) if self.model_limits is None: slines.append('{0:<20}{1}\n'.format('!Model Limits:', 'none')) else: slines.append('{0:<20}{1},{2}\n'.format('Model Limits:', self.model_limits[0], self.model_limits[1])) if self.model_value_steps is None: slines.append('{0:<20}{1}\n'.format('!Model Value Steps:', 'none')) else: slines.append('{0:<20}{1}\n'.format('Model Value Steps:', self.model_value_steps)) slines.append('{0:<20}{1}\n'.format('Debug Level:', self.debug_level)) slines.append('{0:<20}{1}\n'.format('Iteration:', self.iteration)) slines.append('{0:<20}{1}\n'.format('Lagrange Value:', self.lagrange_value)) slines.append('{0:<20}{1}\n'.format('Roughness Value:', self.roughness_value)) slines.append('{0:<20}{1}\n'.format('Misfit Value:', self.misfit_value)) slines.append('{0:<20}{1}\n'.format('Misfit Reached:', self.misfit_reached)) slines.append('{0:<20}{1}\n'.format('Param Count:', self.param_count)) #make an array of starting values if not are given if self.model_values is None: self.model_values = np.zeros(self.param_count) self.model_values[:] = self.resistivity_start if self.model_values.shape[0] != self.param_count: raise OccamInputError('length of model vaues array is not equal ' 'to param count {0} != {1}'.format( self.model_values.shape[0], self.param_count)) #write out starting resistivity values sline = [] for ii, mv in enumerate(self.model_values): sline.append('{0:^10.4f}'.format(mv)) if np.remainder(ii+1, 4) == 0: sline.append('\n') slines.append(''.join(list(sline))) sline = [] slines.append(''.join(list(sline+['\n']))) #--> write file sfid = file(self.startup_fn, 'w') sfid.writelines(slines) sfid.close() print 'Wrote Occam2D startup file to {0}'.format(self.startup_fn) #------------------------------------------------------------------------------ class Data(Profile): """ Reads and writes data files and more. Inherets Profile, so the intended use is to use Data to project stations onto a profile, then write the data file. ===================== ===================================================== Model Modes Description ===================== ===================================================== 1 or log_all Log resistivity of TE and TM plus Tipper 2 or log_te_tip Log resistivity of TE plus Tipper 3 or log_tm_tip Log resistivity of TM plus Tipper 4 or log_te_tm Log resistivity of TE and TM 5 or log_te Log resistivity of TE 6 or log_tm Log resistivity of TM 7 or all TE, TM and Tipper 8 or te_tip TE plus Tipper 9 or tm_tip TM plus Tipper 10 or te_tm TE and TM mode 11 or te TE mode 12 or tm TM mode 13 or tip Only Tipper ===================== ===================================================== **data** : is a list of dictioinaries containing the data for each station. keys include: * 'station' -- name of station * 'offset' -- profile line offset * 'te_res' -- TE resisitivity in linear scale * 'tm_res' -- TM resistivity in linear scale * 'te_phase' -- TE phase in degrees * 'tm_phase' -- TM phase in degrees in first quadrant * 're_tip' -- real part of tipper along profile * 'im_tip' -- imaginary part of tipper along profile each key is a np.ndarray(2, num_freq) index 0 is for data index 1 is for error ===================== ===================================================== Key Words/Attributes Desctription ===================== ===================================================== _data_header header line in data file _data_string full data string _profile_generated [ True | False ] True if profile has already been generated. _rotate_to_strike [ True | False ] True to rotate data to strike angle. *default* is True data list of dictionaries of data for each station. see above data_fn full path to data file data_list list of lines to write to data file edi_list list of mtpy.core.mt instances for each .edi file read edi_path directory path where .edi files are edi_type [ 'z' | 'spectra' ] for .edi format elevation_model model elevation np.ndarray(east, north, elevation) in meters elevation_profile elevation along profile np.ndarray (x, elev) (m) fn_basename data file basename *default* is OccamDataFile.dat freq list of frequencies to use for the inversion freq_max max frequency to use in inversion. *default* is None freq_min min frequency to use in inversion. *default* is None freq_num number of frequencies to use in inversion geoelectric_strike geoelectric strike angle assuming N = 0, E = 90 masked_data similar to data, but any masked points are now 0 mode_dict dictionary of model modes to chose from model_mode model mode to use for inversion, see above num_edi number of stations to invert for occam_dict dictionary of occam parameters to use internally occam_format occam format of data file. *default* is OCCAM2MTDATA_1.0 phase_te_err percent error in phase for TE mode. *default* is 5 phase_tm_err percent error in phase for TM mode. *default* is 5 profile_angle angle of profile line realtive to N = 0, E = 90 profile_line m, b coefficients for mx+b definition of profile line res_te_err percent error in resistivity for TE mode. *default* is 10 res_tm_err percent error in resistivity for TM mode. *default* is 10 save_path directory to save files to station_list list of station for inversion station_locations station locations along profile line tipper_err percent error in tipper. *default* is 5 title title in data file. ===================== ===================================================== =========================== =============================================== Methods Description =========================== =============================================== _fill_data fills the data array that is described above _get_data_list gets the lines to write to data file _get_frequencies gets frequency list to invert for get_profile_origin get profile origin in UTM coordinates mask_points masks points in data picked from plot_mask_points plot_mask_points plots data responses to interactively mask data points. plot_resonse plots data/model responses, returns PlotResponse data type. read_data_file read in existing data file and fill appropriate attributes. write_data_file write a data file according to Data attributes =========================== =============================================== :Example Write Data File: :: >>> import mtpy.modeling.occam2d as occam2d >>> edipath = r"/home/mt/edi_files" >>> slst = ['mt{0:03}'.format(ss) for ss in range(1, 20)] >>> ocd = occam2d.Data(edi_path=edipath, station_list=slst) >>> # model just the tm mode and tipper >>> ocd.model_mode = 3 >>> ocd.save_path = r"/home/occam/Line1/Inv1" >>> ocd.write_data_file() >>> # mask points >>> ocd.plot_mask_points() >>> ocd.mask_points() """ def __init__(self, edi_path=None, **kwargs): Profile.__init__(self, edi_path, **kwargs) self.data_fn = kwargs.pop('data_fn', None) self.fn_basename = kwargs.pop('fn_basename', 'OccamDataFile.dat') self.save_path = kwargs.pop('save_path', None) self.freq = kwargs.pop('freq', None) self.model_mode = kwargs.pop('model_mode', '1') self.data = kwargs.pop('data', None) self.data_list = None self.res_te_err = kwargs.pop('res_te_err', 10) self.res_tm_err = kwargs.pop('res_tm_err', 10) self.phase_te_err = kwargs.pop('phase_te_err', 5) self.phase_tm_err = kwargs.pop('phase_tm_err', 5) self.tipper_err = kwargs.pop('tipper_err', 10) self.freq_min = kwargs.pop('freq_min', None) self.freq_max = kwargs.pop('freq_max', None) self.freq_num = kwargs.pop('freq_num', None) self.occam_format = 'OCCAM2MTDATA_1.0' self.title = 'MTpy-OccamDatafile' self.edi_type = 'z' self.masked_data = None self.occam_dict = {'1':'log_te_res', '2':'te_phase', '3':'re_tip', '4':'im_tip', '5':'log_tm_res', '6':'tm_phase', '9':'te_res', '10':'tm_res'} self.mode_dict = {'log_all':[1, 2, 3, 4, 5, 6], 'log_te_tip':[1, 2, 3, 4], 'log_tm_tip':[5, 6, 3, 4], 'log_te_tm':[1, 2, 5, 6], 'log_te':[1, 2], 'log_tm':[5, 6], 'all':[9, 2, 3, 4, 10, 6], 'te_tip':[9, 2, 3, 4], 'tm_tip':[10, 6, 3, 4], 'te_tm':[9, 2, 10, 6], 'te':[9, 2], 'tm':[10, 6], 'tip':[3, 4], '1':[1, 2, 3, 4, 5, 6], '2':[1, 2, 3, 4], '3':[5, 6, 3, 4], '4':[1, 2, 5, 6], '5':[1, 2], '6':[5, 6], '7':[9, 2, 3, 4, 10, 6], '8':[9, 2, 3, 4], '9':[10, 6, 3, 4], '10':[9, 2, 10, 6], '11':[9, 2], '12':[10, 6], '13':[3, 4]} self._data_string = '{0:^6}{1:^6}{2:^6} {3: >8} {4: >8}\n' self._data_header = '{0:<6}{1:<6}{2:<6} {3:<8} {4:<8}\n'.format( 'SITE', 'FREQ', 'TYPE', 'DATUM', 'ERROR') def read_data_file(self, data_fn=None): """ Read in an existing data file and populate appropriate attributes * data * data_list * freq * station_list * station_locations Arguments: ----------- **data_fn** : string full path to data file *default* is None and set to save_path/fn_basename :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Data() >>> ocd.read_data_file(r"/home/Occam2D/Line1/Inv1/Data.dat") """ if data_fn is not None: self.data_fn = data_fn if os.path.isfile(self.data_fn) == False: raise OccamInputError('Could not find {0}'.format(self.data_fn)) if self.data_fn is None: raise OccamInputError('data_fn is None, input filename') self.save_path = op.dirname(self.data_fn) print 'Reading from {0}'.format(self.data_fn) dfid = open(self.data_fn,'r') dlines = dfid.readlines() #get format of input data self.occam_format = dlines[0].strip().split(':')[1].strip() #get title title_str = dlines[1].strip().split(':')[1].strip() title_list = title_str.split(',') self.title = title_list[0] #get strike angle and profile angle if len(title_list) > 1: for t_str in title_list[1:]: t_list = t_str.split('=') if len(t_list) > 1: key = t_list[0].strip().lower().replace(' ', '_') if key == 'profile': key = 'profile_angle' elif key == 'strike': key = 'geoelectric_strike' value = t_list[1].split('deg')[0].strip() print ' {0} = {1}'.format(key, value) try: setattr(self, key, float(value)) except ValueError: setattr(self, key, value) #get number of sites nsites = int(dlines[2].strip().split(':')[1].strip()) print ' {0} = {1}'.format('number of sites', nsites) #get station names self.station_list = np.array([dlines[ii].strip() for ii in range(3, nsites+3)]) #get offsets in meters self.station_locations = np.array([float(dlines[ii].strip()) for ii in range(4+nsites, 4+2*nsites)]) #get number of frequencies nfreq = int(dlines[4+2*nsites].strip().split(':')[1].strip()) print ' {0} = {1}'.format('number of frequencies', nfreq) #get frequencies self.freq = np.array([float(dlines[ii].strip()) for ii in range(5+2*nsites,5+2*nsites+nfreq)]) #get periods self.period = 1./self.freq #-----------get data------------------- #set zero array size the first row will be the data and second the error asize = (2, self.freq.shape[0]) #make a list of dictionaries for each station. self.data = [{'station':station, 'offset':offset, 'te_phase':np.zeros(asize), 'tm_phase':np.zeros(asize), 're_tip':np.zeros(asize), 'im_tip':np.zeros(asize), 'te_res':np.zeros(asize), 'tm_res':np.zeros(asize)} for station, offset in zip(self.station_list, self.station_locations)] self.data_list = dlines[7+2*nsites+nfreq:] for line in self.data_list: try: station, freq, comp, odata, oerr = line.split() #station index -1 cause python starts at 0 ss = int(station)-1 #frequency index -1 cause python starts at 0 ff = int(freq)-1 #data key key = self.occam_dict[comp] #put into array if int(comp) == 1 or int(comp) == 5: self.data[ss][key[4:]][0, ff] = 10**float(odata) #error self.data[ss][key[4:]][1, ff] = float(oerr)*np.log(10) else: self.data[ss][key][0, ff] = float(odata) #error self.data[ss][key][1, ff] = float(oerr) except ValueError: print 'Could not read line {0}'.format(line) def _get_frequencies(self): """ from the list of edi's get a frequency list to invert for. Uses Attributes: ------------ **freq_min** : float (Hz) minimum frequency to invert for. *default* is None and will use the data to find min **freq_max** : float (Hz) maximum frequency to invert for *default* is None and will use the data to find max **freq_num** : int number of frequencies to invert for *default* is None and will use the data to find num """ #get all frequencies from all edi files lo_all_freqs = [] for edi in self.edi_list: lo_all_freqs.extend(list(edi.Z.freq)) #sort all frequencies so that they are in descending order, #use set to remove repeats and make an array all_freqs = np.array(sorted(list(set(lo_all_freqs)), reverse=True)) #--> get min and max values if none are given if (self.freq_min is None) or (self.freq_min < all_freqs.min()) or\ (self.freq_min > all_freqs.max()): self.freq_min = all_freqs.min() if (self.freq_max is None) or (self.freq_max > all_freqs.max()) or\ (self.freq_max < all_freqs.max()): self.freq_max = all_freqs.max() #--> get all frequencies within the given range self.freq = all_freqs[np.where((all_freqs >= self.freq_min) & (all_freqs <= self.freq_max))] if len(self.freq) == 0: raise OccamInputError('No frequencies in user-defined interval ' '[{0}, {1}]'.format(self.freq_min, self.freq_max)) #check, if frequency list is longer than given max value if self.freq_num is not None: if int(self.freq_num) < self.freq.shape[0]: print ('Number of frequencies exceeds freq_num ' '{0} > {1} '.format(self.freq.shape[0], self.freq_num)+ 'Trimming frequencies to {0}'.format(self.freq_num)) excess = self.freq.shape[0]/float(self.freq_num) if excess < 2: offset = 0 else: stepsize = (self.freq.shape[0]-1)/self.freq_num offset = stepsize/2. indices = np.array(np.around(np.linspace(offset, self.freq.shape[0]-1-offset, self.freq_num),0), dtype='int') if indices[0] > (self.freq.shape[0]-1-indices[-1]): indices -= 1 self.freq = self.freq[indices] def _fill_data(self): """ Read all Edi files. Create a profile rotate impedance and tipper Extract frequencies. Collect all information sorted according to occam specifications. Data of Z given in muV/m/nT = km/s Error is assumed to be 1 stddev. """ #create a profile line, this sorts the stations by offset and rotates #data. self.generate_profile() self.plot_profile() #--> get frequencies to invert for self._get_frequencies() #set zero array size the first row will be the data and second the error asize = (2, self.freq.shape[0]) #make a list of dictionaries for each station. self.data=[{'station':station, 'offset':offset, 'te_phase':np.zeros(asize), 'tm_phase':np.zeros(asize), 're_tip':np.zeros(asize), 'im_tip':np.zeros(asize), 'te_res':np.zeros(asize), 'tm_res':np.zeros(asize)} for station, offset in zip(self.station_list, self.station_locations)] #loop over mt object in edi_list and use a counter starting at 1 #because that is what occam starts at. for s_index, edi in enumerate(self.edi_list): rho = edi.Z.resistivity phi = edi.Z.phase rho_err = edi.Z.resistivity_err station_freqs = edi.Z.freq tipper = edi.Tipper.tipper tipper_err = edi.Tipper.tippererr self.data[s_index]['station'] = edi.station self.data[s_index]['offset'] = edi.offset for freq_num, frequency in enumerate(self.freq): #skip, if the listed frequency is not available for the station if not (frequency in station_freqs): continue #find the respective frequency index for the station f_index = np.abs(station_freqs-frequency).argmin() #--> get te resistivity self.data[s_index]['te_res'][0, freq_num] = rho[f_index, 0, 1] #compute error if rho[f_index, 0, 1] != 0.0: #--> get error from data if self.res_te_err is None: self.data[s_index]['te_res'][1, freq_num] = \ np.abs(rho_err[f_index, 0, 1]/rho[f_index, 0, 1]) #--> set generic error floor else: self.data[s_index]['te_res'][1, freq_num] = \ self.res_te_err/100. #--> get tm resistivity self.data[s_index]['tm_res'][0, freq_num] = rho[f_index, 1, 0] #compute error if rho[f_index, 1, 0] != 0.0: #--> get error from data if self.res_tm_err is None: self.data[s_index]['tm_res'][1, freq_num] = \ np.abs(rho_err[f_index, 1, 0]/rho[f_index, 1, 0]) #--> set generic error floor else: self.data[s_index]['tm_res'][1, freq_num] = \ self.res_tm_err/100. #--> get te phase phase_te = phi[f_index, 0, 1] #be sure the phase is in the first quadrant if phase_te > 180: phase_te -= 180 self.data[s_index]['te_phase'][0, freq_num] = phase_te #compute error #if phi[f_index, 0, 1] != 0.0: #--> get error from data if self.phase_te_err is None: self.data[s_index]['te_phase'][1, freq_num] = \ np.degrees(np.arcsin(.5* self.data[s_index]['te_res'][0, freq_num])) #--> set generic error floor else: self.data[s_index]['te_phase'][1, freq_num] = \ (self.phase_te_err/100.)*57./2. #--> get tm phase and be sure its in the first quadrant phase_tm = phi[f_index, 1, 0]%180 self.data[s_index]['tm_phase'][0, freq_num] = phase_tm #compute error #if phi[f_index, 1, 0] != 0.0: #--> get error from data if self.phase_tm_err is None: self.data[s_index]['tm_phase'][1, freq_num] = \ np.degrees(np.arcsin(.5* self.data[s_index]['tm_res'][0, freq_num])) #--> set generic error floor else: self.data[s_index]['tm_phase'][1, freq_num] = \ (self.phase_tm_err/100.)*57./2. #--> get Tipper if tipper is not None: self.data[s_index]['re_tip'][0, freq_num] = \ tipper[f_index, 0, 1].real self.data[s_index]['im_tip'][0, freq_num] = \ tipper[f_index, 0, 1].imag #get error if self.tipper_err is not None: self.data[s_index]['re_tip'][1, freq_num] = \ self.tipper_err/100. self.data[s_index]['im_tip'][1, freq_num] = \ self.tipper_err/100. else: self.data[s_index]['re_tip'][1, freq_num] = \ tipper[f_index, 0, 1].real/tipper_err[f_index, 0, 1] self.data[s_index]['im_tip'][1, freq_num] = \ tipper[f_index, 0, 1].imag/tipper_err[f_index, 0, 1] def _get_data_list(self): """ Get all the data needed to write a data file. """ self.data_list = [] for ss, sdict in enumerate(self.data, 1): for ff in range(self.freq.shape[0]): for mmode in self.mode_dict[self.model_mode]: #log(te_res) if mmode == 1: if sdict['te_res'][0, ff] != 0.0: dvalue = np.log10(sdict['te_res'][0, ff]) derror = sdict['te_res'][1, ff]/np.log(10) dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #te_res if mmode == 9: if sdict['te_res'][0, ff] != 0.0: dvalue = sdict['te_res'][0, ff] derror = sdict['te_res'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #te_phase if mmode == 2: if sdict['te_phase'][0, ff] != 0.0: dvalue = sdict['te_phase'][0, ff] derror = sdict['te_phase'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #log(tm_res) if mmode == 5: if sdict['tm_res'][0, ff] != 0.0: dvalue = np.log10(sdict['tm_res'][0, ff]) derror = sdict['tm_res'][1, ff]/np.log(10) dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #tm_res if mmode == 10: if sdict['tm_res'][0, ff] != 0.0: dvalue = sdict['tm_res'][0, ff] derror = sdict['tm_res'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #tm_phase if mmode == 6: if sdict['tm_phase'][0, ff] != 0.0: dvalue = sdict['tm_phase'][0, ff] derror = sdict['tm_phase'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #Re_tip if mmode == 3: if sdict['re_tip'][0, ff] != 0.0: dvalue = sdict['re_tip'][0, ff] derror = sdict['re_tip'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) #Im_tip if mmode == 4: if sdict['im_tip'][0, ff] != 0.0: dvalue = sdict['im_tip'][0, ff] derror = sdict['im_tip'][1, ff] dstr = '{0:.4f}'.format(dvalue) derrstr = '{0:.4f}'.format(derror) line = self._data_string.format(ss, ff+1, mmode, dstr, derrstr) self.data_list.append(line) def write_data_file(self, data_fn=None): """ Write a data file. Arguments: ----------- **data_fn** : string full path to data file. *default* is save_path/fn_basename If there data is None, then _fill_data is called to create a profile, rotate data and get all the necessary data. This way you can use write_data_file directly without going through the steps of projecting the stations, etc. :Example: :: >>> edipath = r"/home/mt/edi_files" >>> slst = ['mt{0:03}'.format(ss) for ss in range(1, 20)] >>> ocd = occam2d.Data(edi_path=edipath, station_list=slst) >>> ocd.save_path = r"/home/occam/line1/inv1" >>> ocd.write_data_file() """ if self.data is None: self._fill_data() #get the appropriate data to write to file self._get_data_list() if data_fn is not None: self.data_fn = data_fn else: if self.save_path is None: self.save_path = os.getcwd() if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.data_fn = os.path.join(self.save_path, self.fn_basename) data_lines = [] #--> header line data_lines.append('{0:<18}{1}\n'.format('FORMAT:', self.occam_format)) #--> title line if self.profile_angle is None: self.profile_angle = 0 if self.geoelectric_strike is None: self.geoelectric_strike = 0.0 t_str = '{0}, Profile={1:.1f} deg, Strike={2:.1f} deg'.format( self.title, self.profile_angle, self.geoelectric_strike) data_lines.append('{0:<18}{1}\n'.format('TITLE:', t_str)) #--> sites data_lines.append('{0:<18}{1}\n'.format('SITES:', len(self.data))) for sdict in self.data: data_lines.append(' {0}\n'.format(sdict['station'])) #--> offsets data_lines.append('{0:<18}\n'.format('OFFSETS (M):')) for sdict in self.data: data_lines.append(' {0:.1f}\n'.format(sdict['offset'])) #--> frequencies data_lines.append('{0:<18}{1}\n'.format('FREQUENCIES:', self.freq.shape[0])) for ff in self.freq: data_lines.append(' {0:.6f}\n'.format(ff)) #--> data data_lines.append('{0:<18}{1}\n'.format('DATA BLOCKS:', len(self.data_list))) data_lines.append(self._data_header) data_lines += self.data_list dfid = file(self.data_fn, 'w') dfid.writelines(data_lines) dfid.close() print 'Wrote Occam2D data file to {0}'.format(self.data_fn) def get_profile_origin(self): """ get the origin of the profile in real world coordinates Author: Alison Kirkby (2013) NEED TO ADAPT THIS TO THE CURRENT SETUP. """ x,y = self.easts,self.norths x1,y1 = x[0],y[0] [m,c1] = self.profile x0 = (y1+(1.0/m)*x1-c1)/(m+(1.0/m)) y0 = m*x0+c1 self.profile_origin = [x0,y0] def plot_response(self, **kwargs): """ plot data and model responses as apparent resistivity, phase and tipper. See PlotResponse for key words. Returns: --------- **pr_obj** : PlotResponse object :Example: :: >>> pr_obj = ocd.plot_response() """ pr_obj = PlotResponse(self.data_fn, **kwargs) return pr_obj def plot_mask_points(self, data_fn=None, marker='h', res_err_inc=.25, phase_err_inc=.05): """ An interactive plotting tool to mask points an add errorbars Arguments: ---------- **res_err_inc** : float amount to increase the error bars. Input as a decimal percentage. 0.3 for 30 percent *Default* is 0.2 (20 percent) **phase_err_inc** : float amount to increase the error bars. Input as a decimal percentage. 0.3 for 30 percent *Default* is 0.05 (5 percent) **marker** : string marker that the masked points will be *Default* is 'h' for hexagon :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Data() >>> ocd.data_fn = r"/home/Occam2D/Line1/Inv1/Data.dat" >>> ocd.plot_mask_points() """ if data_fn is not None: self.data_fn = data_fn pr_obj = self.plot_response(**kwargs) #make points an attribute of self which is a data type OccamPointPicker self.masked_data = OccamPointPicker(pr_obj.ax_list, pr_obj.line_list, pr_obj.err_list, phase_err_inc=phase_err_inc, res_err_inc=res_err_inc) plt.show() def mask_points(self, maskpoints_obj): """ mask points and rewrite the data file NEED TO REDO THIS TO FIT THE CURRENT SETUP """ mp_obj = maskpoints_obj m_data = list(self.data) #rewrite the data file #make a reverse dictionary for locating the masked points in the data #file rploc = dict([('{0}'.format(mp_obj.fndict[key]),int(key)-1) for key in mp_obj.fndict.keys()]) #make a period dictionary to locate points changed frpdict = dict([('{0:.5g}'.format(fr),ff) for ff,fr in enumerate(1./self.freq)]) #loop over the data list for dd, dat in enumerate(mp_obj.data): derror = self.points.error[dd] #loop over the 4 main entrie for ss, skey in enumerate(['resxy', 'resyx', 'phasexy','phaseyx']): #rewrite any coinciding points for frpkey in frpdict.keys(): try: ff = frpdict[frpkey] floc = self.points.fdict[dd][ss][frpkey] #CHANGE APPARENT RESISTIVITY if ss == 0 or ss == 1: #change the apparent resistivity value if m_data[rploc[str(dd)]][skey][0][ff] != \ np.log10(dat[ss][floc]): if dat[ss][floc] == 0: m_data[rploc[str(dd)]][skey][0][ff] = 0.0 else: m_data[rploc[str(dd)]][skey][0][ff] = \ np.log10(dat[ss][floc]) #change the apparent resistivity error value if dat[ss][floc] == 0.0: rerr = 0.0 else: rerr = derror[ss][floc]/dat[ss][floc]/np.log(10) if m_data[rploc[str(dd)]][skey][1][ff] != rerr: m_data[rploc[str(dd)]][skey][1][ff] = rerr #DHANGE PHASE elif ss == 2 or ss == 3: #change the phase value if m_data[rploc[str(dd)]][skey][0][ff] != \ dat[ss][floc]: if dat[ss][floc] == 0: m_data[rploc[str(dd)]][skey][0][ff] = 0.0 else: m_data[rploc[str(dd)]][skey][0][ff] = \ dat[ss][floc] #change the apparent resistivity error value if dat[ss][floc] == 0.0: rerr = 0.0 else: rerr = derror[ss][floc] if m_data[rploc[str(dd)]][skey][1][ff] != rerr: m_data[rploc[str(dd)]][skey][1][ff] = rerr except KeyError: pass class Response(object): """ Reads .resp file output by Occam. Similar structure to Data.data. If resp_fn is given in the initialization of Response, read_response_file is called. Arguments: ------------ **resp_fn** : string full path to .resp file Attributes: ------------- **resp** : is a list of dictioinaries containing the data for each station. keys include: * 'te_res' -- TE resisitivity in linear scale * 'tm_res' -- TM resistivity in linear scale * 'te_phase' -- TE phase in degrees * 'tm_phase' -- TM phase in degrees in first quadrant * 're_tip' -- real part of tipper along profile * 'im_tip' -- imaginary part of tipper along profile each key is a np.ndarray(2, num_freq) index 0 is for model response index 1 is for normalized misfit :Example: :: >>> resp_obj = occam2d.Response(r"/home/occam/line1/inv1/test_01.resp") """ def __init__(self, resp_fn=None, **kwargs): self.resp_fn = resp_fn self.resp = None self.occam_dict = {'1':'log_te_res', '2':'te_phase', '3':'re_tip', '4':'im_tip', '5':'log_tm_res', '6':'tm_phase', '9':'te_res', '10':'tm_res'} if resp_fn is not None: self.read_response_file() def read_response_file(self, resp_fn=None): """ read in response file and put into a list of dictionaries similar to Data """ if resp_fn is not None: self.resp_fn = resp_fn if self.resp_fn is None: raise OccamInputError('resp_fn is None, please input response file') if os.path.isfile(self.resp_fn) == False: raise OccamInputError('Could not find {0}'.format(self.resp_fn)) r_arr = np.loadtxt(self.resp_fn, dtype=[('station', np.int), ('freq', np.int), ('comp', np.int), ('z', np.int), ('data', np.float), ('resp', np.float), ('err', np.float)]) num_stat = r_arr['station'].max() num_freq = r_arr['freq'].max() #set zero array size the first row will be the data and second the error asize = (2, num_freq) #make a list of dictionaries for each station. self.resp = [{'te_phase':np.zeros(asize), 'tm_phase':np.zeros(asize), 're_tip':np.zeros(asize), 'im_tip':np.zeros(asize), 'te_res':np.zeros(asize), 'tm_res':np.zeros(asize)} for ss in range(num_stat)] for line in r_arr: #station index -1 cause python starts at 0 ss = line['station']-1 #frequency index -1 cause python starts at 0 ff = line['freq']-1 #data key key = self.occam_dict[str(line['comp'])] #put into array if line['comp'] == 1 or line['comp'] == 5: self.resp[ss][key[4:]][0, ff] = 10**line['resp'] #error self.resp[ss][key[4:]][1, ff] = line['err']*np.log(10) else: self.resp[ss][key][0, ff] = line['resp'] #error self.resp[ss][key][1, ff] = line['err'] class Model(Startup): """ Read .iter file output by Occam2d. Builds the resistivity model from mesh and regularization files found from the .iter file. The resistivity model is an array(x_nodes, z_nodes) set on a regular grid, and the values of the model response are filled in according to the regularization grid. This allows for faster plotting. Inherets Startup because they are basically the same object. Argument: ---------- **iter_fn** : string full path to .iter file to read. *default* is None. **model_fn** : string full path to regularization file. *default* is None and found directly from the .iter file. Only input if the regularization is different from the file that is in the .iter file. **mesh_fn** : string full path to mesh file. *default* is None Found directly from the model_fn file. Only input if the mesh is different from the file that is in the model file. ===================== ===================================================== Key Words/Attributes Description ===================== ===================================================== data_fn full path to data file iter_fn full path to .iter file mesh_fn full path to mesh file mesh_x np.ndarray(x_nodes, z_nodes) mesh grid for plotting mesh_z np.ndarray(x_nodes, z_nodes) mesh grid for plotting model_values model values from startup file plot_x nodes of mesh in horizontal direction plot_z nodes of mesh in vertical direction res_model np.ndarray(x_nodes, z_nodes) resistivity model values in linear scale ===================== ===================================================== ===================== ===================================================== Methods Description ===================== ===================================================== build_model get the resistivity model from the .iter file in a regular grid according to the mesh file with resistivity values according to the model file read_iter_file read .iter file and fill appropriate attributes write_iter_file write an .iter file incase you want to set it as the starting model or a priori model ===================== ===================================================== :Example: :: >>> model = occam2D.Model(r"/home/occam/line1/inv1/test_01.iter") >>> model.build_model() """ def __init__(self, iter_fn=None, model_fn=None, mesh_fn=None, **kwargs): Startup.__init__(self, **kwargs) self.iter_fn = iter_fn self.model_fn = model_fn self.mesh_fn = mesh_fn self.data_fn = kwargs.pop('data_fn', None) self.model_values = kwargs.pop('model_values', None) self.res_model = None self.plot_x = None self.plot_z = None self.mesh_x = None self.mesh_z = None def read_iter_file(self, iter_fn=None): """ Read an iteration file. Arguments: ---------- **iter_fn** : string full path to iteration file if iterpath=None. If iterpath is input then iterfn is just the name of the file without the full path. Returns: -------- :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> itfn = r"/home/Occam2D/Line1/Inv1/Test_15.iter" >>> ocm = occam2d.Model(itfn) >>> ocm.read_iter_file() """ if iter_fn is not None: self.iter_fn == iter_fn if self.iter_fn is None: raise OccamInputError('iter_fn is None, input iteration file') #check to see if the file exists if os.path.exists(self.iter_fn) == False: raise OccamInputError('Can not find {0}'.format(self.iter_fn)) self.save_path = os.path.dirname(self.iter_fn) #open file, read lines, close file ifid = file(self.iter_fn, 'r') ilines = ifid.readlines() ifid.close() ii = 0 #put header info into dictionary with similar keys while ilines[ii].lower().find('param') != 0: iline = ilines[ii].strip().split(':') key = iline[0].strip().lower() if key.find('!') != 0: key = key.replace(' ', '_').replace('file', 'fn').replace('/','_') value = iline[1].strip() try: setattr(self, key, float(value)) except ValueError: setattr(self, key, value) ii += 1 #get number of parameters iline = ilines[ii].strip().split(':') key = iline[0].strip().lower().replace(' ', '_') value = int(iline[1].strip()) setattr(self, key, value) self.model_values = np.zeros(self.param_count) kk= int(ii+1) jj = 0 mv_index = 0 while jj < len(ilines)-kk: iline = np.array(ilines[jj+kk].strip().split(), dtype='float') self.model_values[mv_index:mv_index+iline.shape[0]] = iline jj += 1 mv_index += iline.shape[0] #make sure data file is full path if os.path.isfile(self.data_fn) == False: self.data_fn = os.path.join(self.save_path, self.data_fn) #make sure model file is full path if os.path.isfile(self.model_fn) == False: self.model_fn = os.path.join(self.save_path, self.model_fn) def write_iter_file(self, iter_fn=None): """ write an iteration file if you need to for some reason, same as startup file """ if iter_fn is not None: self.iter_fn = iter_fn self.write_startup_file(iter_fn) def build_model(self): """ build the model from the mesh, regularization grid and model file """ #first read in the iteration file self.read_iter_file() #read in the regulariztion file r1 = Regularization() r1.read_regularization_file(self.model_fn) r1.model_rows = np.array(r1.model_rows) self.model_rows = r1.model_rows self.model_columns = r1.model_columns #read in mesh file r1.read_mesh_file(r1.mesh_fn) #get the binding offset which is the right side of the furthest left #block, this helps locate the model in relative space bndgoff = r1.binding_offset #make sure that the number of rows and number of columns are the same assert len(r1.model_rows) == len(r1.model_columns) #initiate the resistivity model to the shape of the FE mesh self.res_model = np.zeros((r1.z_nodes.shape[0], r1.x_nodes.shape[0])) #read in the model and set the regularization block values to map onto #the FE mesh so that the model can be plotted as an image or regular #mesh. mm = 0 for ii in range(len(r1.model_rows)): #get the number of layers to combine #this index will be the first index in the vertical direction ny1 = r1.model_rows[:ii, 0].sum() #the second index in the vertical direction ny2 = ny1+r1.model_rows[ii][0] #make the list of amalgamated columns an array for ease lc = np.array(r1.model_columns[ii]) #loop over the number of amalgamated blocks for jj in range(len(r1.model_columns[ii])): #get first in index in the horizontal direction nx1 = lc[:jj].sum() #get second index in horizontal direction nx2 = nx1+lc[jj] #put the apporpriate resistivity value into all the amalgamated #model blocks of the regularization grid into the forward model #grid self.res_model[ny1:ny2, nx1:nx2] = self.model_values[mm] mm += 1 #make some arrays for plotting the model self.plot_x = np.array([r1.x_nodes[:ii+1].sum() for ii in range(len(r1.x_nodes))]) self.plot_z = np.array([r1.z_nodes[:ii+1].sum() for ii in range(len(r1.z_nodes))]) #center the grid onto the station coordinates x0 = bndgoff-self.plot_x[r1.model_columns[0][0]] self.plot_x += x0 #flip the arrays around for plotting purposes #plotx = plotx[::-1] and make the first layer start at zero self.plot_z = self.plot_z[::-1]-self.plot_z[0] #make a mesh grid to plot in the model coordinates self.mesh_x, self.mesh_z = np.meshgrid(self.plot_x, self.plot_z) #flip the resmodel upside down so that the top is the stations self.res_model = np.flipud(self.res_model) #============================================================================== # plot the MT and model responses #============================================================================== class PlotResponse(): """ Helper class to deal with plotting the MT response and occam2d model. Arguments: ------------- **data_fn** : string full path to data file **resp_fn** : string or list full path(s) to response file(s) ==================== ====================================================== Attributes/key words description ==================== ====================================================== ax_list list of matplotlib.axes instances for use with OccamPointPicker color_mode [ 'color' | 'bw' ] plot figures in color or black and white ('bw') cted color of Data TE marker and line ctem color of Model TE marker and line ctewl color of Winglink Model TE marker and line ctmd color of Data TM marker and line ctmm color of Model TM marker and line ctmwl color of Winglink Model TM marker and line e_capsize size of error bar caps in points e_capthick line thickness of error bar caps in points err_list list of line properties of error bars for use with OccamPointPicker fig_dpi figure resolution in dots-per-inch fig_list list of dictionaries with key words station --> station name fig --> matplotlib.figure instance axrte --> matplotlib.axes instance for TE app.res axrtm --> matplotlib.axes instance for TM app.res axpte --> matplotlib.axes instance for TE phase axptm --> matplotlib.axes instance for TM phase fig_num starting number of figure fig_size size of figure in inches (width, height) font_size size of axes ticklabel font in points line_list list of matplotlib.Line instances for use with OccamPointPicker lw line width of lines in points ms marker size in points mted marker for Data TE mode mtem marker for Model TE mode mtewl marker for Winglink Model TE mtmd marker for Data TM mode mtmm marker for Model TM mode mtmwl marker for Winglink TM mode period np.ndarray of periods to plot phase_limits limits on phase plots in degrees (min, max) plot_num [ 1 | 2 ] 1 to plot both modes in a single plot 2 to plot modes in separate plots (default) plot_tipper [ 'y' | 'n' ] plot tipper data if desired plot_type [ '1' | station_list] '1' --> to plot all stations in different figures station_list --> to plot a few stations, give names of stations ex. ['mt01', 'mt07'] plot_yn [ 'y' | 'n'] 'y' --> to plot on instantiation 'n' --> to not plot on instantiation res_limits limits on resistivity plot in log scale (min, max) rp_list list of dictionaries from read2Ddata station_list station_list list of stations in rp_list subplot_bottom subplot spacing from bottom (relative coordinates) subplot_hspace vertical spacing between subplots subplot_left subplot spacing from left subplot_right subplot spacing from right subplot_top subplot spacing from top subplot_wspace horizontal spacing between subplots wl_fn Winglink file name (full path) ==================== ====================================================== =================== ======================================================= Methods Description =================== ======================================================= plot plots the apparent resistiviy and phase of data and model if given. called on instantiation if plot_yn is 'y'. redraw_plot call redraw_plot to redraw the figures, if one of the attributes has been changed save_figures save all the matplotlib.figure instances in fig_list =================== ======================================================= :Example: :: >>> data_fn = r"/home/occam/line1/inv1/OccamDataFile.dat" >>> resp_list = [r"/home/occam/line1/inv1/test_{0:02}".format(ii) for ii in range(2, 8, 2)] >>> pr_obj = occam2d.PlotResponse(data_fn, resp_list, plot_tipper='y') """ def __init__(self, data_fn, resp_fn=None, **kwargs): self.data_fn = data_fn self.resp_fn = resp_fn if self.resp_fn is not None: if type(self.resp_fn) != list: self.resp_fn = [self.resp_fn] self.wl_fn = kwargs.pop('wl_fn', None) self.color_mode = kwargs.pop('color_mode', 'color') self.ms = kwargs.pop('ms', 1.5) self.lw = kwargs.pop('lw', .5) self.e_capthick = kwargs.pop('e_capthick', .5) self.e_capsize = kwargs.pop('e_capsize', 2) self.ax_list = [] self.line_list = [] self.err_list = [] #color mode if self.color_mode == 'color': #color for data self.cted = kwargs.pop('cted', (0, 0, 1)) self.ctmd = kwargs.pop('ctmd', (1, 0, 0)) self.mted = kwargs.pop('mted', 's') self.mtmd = kwargs.pop('mtmd', 'o') #color for occam2d model self.ctem = kwargs.pop('ctem', (0, .6, .3)) self.ctmm = kwargs.pop('ctmm', (.9, 0, .8)) self.mtem = kwargs.pop('mtem', '+') self.mtmm = kwargs.pop('mtmm', '+') #color for Winglink model self.ctewl = kwargs.pop('ctewl', (0, .6, .8)) self.ctmwl = kwargs.pop('ctmwl', (.8, .7, 0)) self.mtewl = kwargs.pop('mtewl', 'x') self.mtmwl = kwargs.pop('mtmwl', 'x') #color of tipper self.ctipr = kwargs.pop('ctipr', self.cted) self.ctipi = kwargs.pop('ctipi', self.ctmd) #black and white mode elif self.color_mode == 'bw': #color for data self.cted = kwargs.pop('cted', (0, 0, 0)) self.ctmd = kwargs.pop('ctmd', (0, 0, 0)) self.mted = kwargs.pop('mted', '*') self.mtmd = kwargs.pop('mtmd', 'v') #color for occam2d model self.ctem = kwargs.pop('ctem', (0.6, 0.6, 0.6)) self.ctmm = kwargs.pop('ctmm', (0.6, 0.6, 0.6)) self.mtem = kwargs.pop('mtem', '+') self.mtmm = kwargs.pop('mtmm', 'x') #color for Winglink model self.ctewl = kwargs.pop('ctewl', (0.3, 0.3, 0.3)) self.ctmwl = kwargs.pop('ctmwl', (0.3, 0.3, 0.3)) self.mtewl = kwargs.pop('mtewl', '|') self.mtmwl = kwargs.pop('mtmwl', '_') self.ctipr = kwargs.pop('ctipr', self.cted) self.ctipi = kwargs.pop('ctipi', self.ctmd) self.phase_limits = kwargs.pop('phase_limits', (-5, 95)) self.res_limits = kwargs.pop('res_limits', None) self.tip_limits = kwargs.pop('tip_limits', (-.5, .5)) self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.subplot_wspace = .1 self.subplot_hspace = .15 self.subplot_right = .98 self.subplot_left = .085 self.subplot_top = .93 self.subplot_bottom = .1 self.font_size = kwargs.pop('font_size', 6) self.plot_type = kwargs.pop('plot_type', '1') self.plot_num = kwargs.pop('plot_num', 2) self.plot_tipper = kwargs.pop('plot_tipper', 'n') self.plot_model_error = kwargs.pop('plot_model_err', 'y') self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_num == 1: self.ylabel_coord = kwargs.pop('ylabel_coords', (-.055, .5)) elif self.plot_num == 2: self.ylabel_coord = kwargs.pop('ylabel_coords', (-.12, .5)) self.fig_list = [] if self.plot_yn == 'y': self.plot() def plot(self): """ plot the data and model response, if given, in individual plots. """ data_obj = Data() data_obj.read_data_file(self.data_fn) rp_list = data_obj.data nr = len(rp_list) #create station list self.station_list = [rp['station'] for rp in rp_list] #boolean for adding winglink output to the plots 0 for no, 1 for yes addwl = 0 #read in winglink data file if self.wl_fn != None: addwl = 1 self.subplot_hspace+.1 wld, wlrp_list, wlplist, wlslist, wltlist = MTwl.readOutputFile( self.wl_fn) sdict = dict([(ostation, wlistation) for wlistation in wlslist for ostation in self.station_list if wlistation.find(ostation)>=0]) #set a local parameter period for less typing period = data_obj.period #---------------plot each respones in a different figure--------------- if self.plot_type == '1': pstation_list = range(len(self.station_list)) else: if type(self.plot_type) is not list: self.plot_type = [self.plot_type] pstation_list = [] for ii, station in enumerate(self.station_list): for pstation in self.plot_type: if station.find(pstation) >= 0: pstation_list.append(ii) #set the grid of subplots if self.plot_tipper == 'y': gs = gridspec.GridSpec(3, 2, wspace=self.subplot_wspace, left=self.subplot_left, top=self.subplot_top, bottom=self.subplot_bottom, right=self.subplot_right, hspace=self.subplot_hspace, height_ratios=[2, 1.5, 1]) else: gs = gridspec.GridSpec(2, 2, wspace=self.subplot_wspace, left=self.subplot_left, top=self.subplot_top, bottom=self.subplot_bottom, right=self.subplot_right, hspace=self.subplot_hspace, height_ratios=[2, 1.5]) #--> set default font size plt.rcParams['font.size'] = self.font_size #loop over each station to plot for ii, jj in enumerate(pstation_list): fig = plt.figure(self.station_list[jj], self.fig_size, dpi=self.fig_dpi) plt.clf() #--> set subplot instances #---plot both TE and TM in same subplot--- if self.plot_num == 1: axrte = fig.add_subplot(gs[0,:]) axrtm = axrte axpte = fig.add_subplot(gs[1,:],sharex=axrte) axptm = axpte if self.plot_tipper == 'y': axtipre = fig.add_subplot(gs[2, :], sharex=axrte) axtipim = axtipre #---plot TE and TM in separate subplots--- elif self.plot_num == 2: axrte = fig.add_subplot(gs[0,0]) axrtm = fig.add_subplot(gs[0,1]) axpte = fig.add_subplot(gs[1,0], sharex=axrte) axptm = fig.add_subplot(gs[1,1], sharex=axrtm) if self.plot_tipper == 'y': axtipre = fig.add_subplot(gs[2, 0], sharex=axrte) axtipim = fig.add_subplot(gs[2, 1], sharex=axrtm) #plot the data, it should be the same for all response files #empty lists for legend marker and label rlistte = [] llistte = [] rlisttm = [] llisttm = [] #------------Plot Resistivity---------------------------------- #cut out missing data points first #--> data rxy = np.where(rp_list[jj]['te_res'][0]!=0)[0] ryx = np.where(rp_list[jj]['tm_res'][0]!=0)[0] #--> TE mode Data if len(rxy) > 0: rte_err = rp_list[jj]['te_res'][1, rxy]*\ rp_list[jj]['te_res'][0, rxy] rte = plot_errorbar(axrte, period[rxy], rp_list[jj]['te_res'][0, rxy], ls=':', marker=self.mted, ms=self.ms, color=self.cted, y_error=rte_err, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) rlistte.append(rte[0]) llistte.append('$Obs_{TE}$') else: rte = [None, [None, None, None], [None, None, None]] #--> TM mode data if len(ryx) > 0: rtm_err = rp_list[jj]['tm_res'][1, ryx]*\ rp_list[jj]['tm_res'][0, ryx] rtm = plot_errorbar(axrtm, period[ryx], rp_list[jj]['tm_res'][0, ryx], ls=':', marker=self.mtmd, ms=self.ms, color=self.ctmd, y_error=rtm_err, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) rlisttm.append(rtm[0]) llisttm.append('$Obs_{TM}$') else: rtm = [None, [None, None, None], [None, None, None]] #--------------------plot phase-------------------------------- #cut out missing data points first #--> data pxy = np.where(rp_list[jj]['te_phase'][0]!=0)[0] pyx = np.where(rp_list[jj]['tm_phase'][0]!=0)[0] #--> TE mode data if len(pxy) > 0: pte = plot_errorbar(axpte, period[pxy], rp_list[jj]['te_phase'][0, pxy], ls=':', marker=self.mted, ms=self.ms, color=self.cted, y_error=rp_list[jj]['te_phase'][1, pxy], lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) else: pte = [None, [None, None, None], [None, None, None]] #--> TM mode data if len(pyx)>0: ptm = plot_errorbar(axptm, period[pyx], rp_list[jj]['tm_phase'][0, pyx], ls=':', marker=self.mtmd, ms=self.ms, color=self.ctmd, y_error=rp_list[jj]['tm_phase'][1, pyx], lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) else: ptm = [None, [None, None, None], [None, None, None]] #append axis properties to lists that can be used by #OccamPointPicker self.ax_list.append([axrte, axrtm, axpte, axptm]) self.line_list.append([rte[0], rtm[0], pte[0], ptm[0]]) self.err_list.append([[rte[1][0],rte[1][1],rte[2][0]], [rtm[1][0],rtm[1][1],rtm[2][0]], [pte[1][0],pte[1][1],pte[2][0]], [ptm[1][0],ptm[1][1],ptm[2][0]]]) #---------------------plot tipper---------------------------------- if self.plot_tipper == 'y': t_list = [] t_label = [] txy = np.where(rp_list[jj]['re_tip'][0]!=0)[0] tyx = np.where(rp_list[jj]['im_tip'][0]!=0)[0] #--> real tipper data if len(txy)>0: per_list_p =[] tpr_list_p = [] per_list_n =[] tpr_list_n = [] for per, tpr in zip(period[txy], rp_list[jj]['re_tip'][0, txy]): if tpr >= 0: per_list_p.append(per) tpr_list_p.append(tpr) else: per_list_n.append(per) tpr_list_n.append(tpr) if len(per_list_p) > 0: m_line, s_line, b_line = axtipre.stem(per_list_p, tpr_list_p, markerfmt='^', basefmt='k') plt.setp(m_line, 'markerfacecolor', self.ctipr) plt.setp(m_line, 'markeredgecolor', self.ctipr) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', self.ctipr) plt.setp(b_line, 'linewidth', .01) t_list.append(m_line) t_label.append('Real') if len(per_list_n) > 0: m_line, s_line, b_line = axtipre.stem(per_list_n, tpr_list_n, markerfmt='v', basefmt='k') plt.setp(m_line, 'markerfacecolor', self.ctipr) plt.setp(m_line, 'markeredgecolor', self.ctipr) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', self.ctipr) plt.setp(b_line, 'linewidth', .01) if len(t_list) == 0: t_list.append(m_line) t_label.append('Real') else: pass if len(tyx)>0: per_list_p =[] tpi_list_p = [] per_list_n =[] tpi_list_n = [] for per, tpi in zip(period[tyx], rp_list[jj]['im_tip'][0, tyx]): if tpi >= 0: per_list_p.append(per) tpi_list_p.append(tpi) else: per_list_n.append(per) tpi_list_n.append(tpi) if len(per_list_p) > 0: m_line, s_line, b_line = axtipim.stem(per_list_p, tpi_list_p, markerfmt='^', basefmt='k') plt.setp(m_line, 'markerfacecolor', self.ctipi) plt.setp(m_line, 'markeredgecolor', self.ctipi) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', self.ctipi) plt.setp(b_line, 'linewidth', .01) t_list.append(m_line) t_label.append('Imag') if len(per_list_n) > 0: m_line, s_line, b_line = axtipim.stem(per_list_n, tpi_list_n, markerfmt='v', basefmt='k') plt.setp(m_line, 'markerfacecolor', self.ctipi) plt.setp(m_line, 'markeredgecolor', self.ctipi) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', self.ctipi) plt.setp(b_line, 'linewidth', .01) if len(t_list) <= 1: t_list.append(m_line) t_label.append('Imag') else: pass #------------------- plot model response -------------------------- if self.resp_fn is not None: num_resp = len(self.resp_fn) for rr, rfn in enumerate(self.resp_fn): resp_obj = Response() resp_obj.read_response_file(rfn) rp = resp_obj.resp # create colors for different responses if self.color_mode == 'color': cxy = (0, .4+float(rr)/(3*num_resp), 0) cyx = (.7+float(rr)/(4*num_resp), .13, .63-float(rr)/(4*num_resp)) elif self.color_mode == 'bw': cxy = (1-1.25/(rr+2.), 1-1.25/(rr+2.), 1-1.25/(rr+2.)) cyx = (1-1.25/(rr+2.), 1-1.25/(rr+2.), 1-1.25/(rr+2.)) #calculate rms's rmslistte = np.hstack((rp[jj]['te_res'][1], rp[jj]['te_phase'][1])) rmslisttm = np.hstack((rp[jj]['tm_res'][1], rp[jj]['tm_phase'][1])) rmste = np.sqrt(np.sum([rms**2 for rms in rmslistte])/ len(rmslistte)) rmstm = np.sqrt(np.sum([rms**2 for rms in rmslisttm])/ len(rmslisttm)) #------------Plot Resistivity------------------------------ #cut out missing data points first #--> response mrxy = np.where(rp[jj]['te_res'][0]!=0)[0] mryx = np.where(rp[jj]['tm_res'][0]!=0)[0] #--> TE mode Model Response if len(mrxy) > 0: r3 = plot_errorbar(axrte, period[mrxy], rp[jj]['te_res'][0, mrxy], ls='--', marker=self.mtem, ms=self.ms, color=cxy, y_error=None, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) rlistte.append(r3[0]) llistte.append('$Mod_{TE}$ '+'{0:.2f}'.format(rmste)) else: pass #--> TM mode model response if len(mryx)>0: r4 = plot_errorbar(axrtm, period[mryx], rp[jj]['tm_res'][0, mryx], ls='--', marker=self.mtmm, ms=self.ms, color=cyx, y_error=None, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) rlisttm.append(r4[0]) llisttm.append('$Mod_{TM}$ '+'{0:.2f}'.format(rmstm)) else: pass #--------------------plot phase-------------------------------- #cut out missing data points first #--> reponse mpxy = np.where(rp[jj]['te_phase'][0]!=0)[0] mpyx = np.where(rp[jj]['tm_phase'][0]!=0)[0] #--> TE mode response if len(mpxy) > 0: p3 = plot_errorbar(axpte, period[mpxy], rp[jj]['te_phase'][0, mpxy], ls='--', ms=self.ms, color=cxy, y_error=None, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) else: pass #--> TM mode response if len(mpyx) > 0: p4 = plot_errorbar(axptm, period[mpyx], rp[jj]['tm_phase'][0, mpyx], ls='--', marker=self.mtmm, ms=self.ms, color=cyx, y_error=None, lw=self.lw, e_capsize=self.e_capsize, e_capthick=self.e_capthick) else: pass #---------------------plot tipper-------------------------- if self.plot_tipper == 'y': txy = np.where(rp[jj]['re_tip'][0]!=0)[0] tyx = np.where(rp[jj]['im_tip'][0]!=0)[0] #--> real tipper data if len(txy)>0: per_list_p =[] tpr_list_p = [] per_list_n =[] tpr_list_n = [] for per, tpr in zip(period[txy], rp[jj]['re_tip'][0, txy]): if tpr >= 0: per_list_p.append(per) tpr_list_p.append(tpr) else: per_list_n.append(per) tpr_list_n.append(tpr) if len(per_list_p) > 0: m_line, s_line, b_line = axtipre.stem(per_list_p, tpr_list_p, markerfmt='^', basefmt='k') plt.setp(m_line, 'markerfacecolor', cxy) plt.setp(m_line, 'markeredgecolor', cxy) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', cxy) plt.setp(b_line, 'linewidth', .01) if len(per_list_n) > 0: m_line, s_line, b_line = axtipre.stem(per_list_n, tpr_list_n, markerfmt='v', basefmt='k') plt.setp(m_line, 'markerfacecolor', cxy) plt.setp(m_line, 'markeredgecolor', cxy) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', cxy) plt.setp(b_line, 'linewidth', .01) else: pass if len(tyx)>0: per_list_p =[] tpi_list_p = [] per_list_n =[] tpi_list_n = [] for per, tpi in zip(period[tyx], rp[jj]['im_tip'][0, tyx]): if tpi >= 0: per_list_p.append(per) tpi_list_p.append(tpi) else: per_list_n.append(per) tpi_list_n.append(tpi) if len(per_list_p) > 0: m_line, s_line, b_line = axtipim.stem(per_list_p, tpi_list_p, markerfmt='^', basefmt='k') plt.setp(m_line, 'markerfacecolor', cyx) plt.setp(m_line, 'markeredgecolor', cyx) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', cyx) plt.setp(b_line, 'linewidth', .01) if len(per_list_n) > 0: m_line, s_line, b_line = axtipim.stem(per_list_n, tpi_list_n, markerfmt='v', basefmt='k') plt.setp(m_line, 'markerfacecolor', cyx) plt.setp(m_line, 'markeredgecolor', cyx) plt.setp(m_line, 'markersize', self.ms) plt.setp(s_line, 'linewidth', self.lw) plt.setp(s_line, 'color', cyx) plt.setp(b_line, 'linewidth', .01) else: pass #--------------add in winglink responses------------------------ if addwl == 1: try: wlrms = wld[sdict[self.station_list[jj]]]['rms'] axrte.set_title(self.station_list[jj]+ '\n rms_occ_TE={0:.2f}'.format(rmste)+ 'rms_occ_TM={0:.2f}'.format(rmstm)+ 'rms_wl={0:.2f}'.format(wlrms), fontdict={'size':self.font_size, 'weight':'bold'}) for ww, wlistation in enumerate(wlslist): if wlistation.find(self.station_list[jj])==0: print '{0} was Found {0} in winglink file'.format( self.station_list[jj], wlistation) wlrpdict = wlrp_list[ww] zrxy = [np.where(wlrpdict['te_res'][0]!=0)[0]] zryx = [np.where(wlrpdict['tm_res'][0]!=0)[0]] #plot winglink resistivity r5 = axrte.loglog(wlplist[zrxy], wlrpdict['te_res'][1][zrxy], ls='-.', marker=self.mtewl, ms=self.ms, color=self.ctewl, mfc=self.ctewl, lw=self.lw) r6 = axrtm.loglog(wlplist[zryx], wlrpdict['tm_res'][1][zryx], ls='-.', marker=self.mtmwl, ms=self.ms, color=self.ctmwl, mfc=self.ctmwl, lw=self.lw) #plot winglink phase axpte.semilogx(wlplist[zrxy], wlrpdict['te_phase'][1][zrxy], ls='-.', marker=self.mtewl, ms=self.ms, color=self.ctewl, mfc=self.ctewl, lw=self.lw) axptm.semilogx(wlplist[zryx], wlrpdict['tm_phase'][1][zryx], ls='-.', marker=self.mtmwl, ms=self.ms, color=self.ctmwl, mfc=self.ctmwl, lw=self.lw) rlistte.append(r5[0]) rlisttm.append(r6[0]) llistte.append('$WLMod_{TE}$ '+'{0:.2f}'.format(wlrms)) llisttm.append('$WLMod_{TM}$ '+'{0:.2f}'.format(wlrms)) except (IndexError, KeyError): print 'Station not present' else: if self.plot_num == 1: axrte.set_title(self.station_list[jj], fontdict={'size':self.font_size+2, 'weight':'bold'}) elif self.plot_num == 2: fig.suptitle(self.station_list[jj], fontdict={'size':self.font_size+2, 'weight':'bold'}) #set the axis properties ax_list = [axrte, axrtm] for aa, axr in enumerate(ax_list): #set both axes to logarithmic scale axr.set_xscale('log') try: axr.set_yscale('log') except ValueError: pass #put on a grid axr.grid(True, alpha=.3, which='both', lw=.5*self.lw) axr.yaxis.set_label_coords(self.ylabel_coord[0], self.ylabel_coord[1]) #set resistivity limits if desired if self.res_limits != None: axr.set_ylim(10**self.res_limits[0], 10**self.res_limits[1]) #set the tick labels to invisible plt.setp(axr.xaxis.get_ticklabels(), visible=False) if aa == 0: axr.set_ylabel('App. Res. ($\Omega \cdot m$)', fontdict={'size':self.font_size+2, 'weight':'bold'}) #set legend based on the plot type if self.plot_num == 1: if aa == 0: axr.legend(rlistte+rlisttm,llistte+llisttm, loc=2,markerscale=1, borderaxespad=.05, labelspacing=.08, handletextpad=.15, borderpad=.05, prop={'size':self.font_size+1}) elif self.plot_num == 2: if aa == 0: axr.legend(rlistte, llistte, loc=2,markerscale=1, borderaxespad=.05, labelspacing=.08, handletextpad=.15, borderpad=.05, prop={'size':self.font_size+1}) if aa==1: axr.legend(rlisttm, llisttm, loc=2,markerscale=1, borderaxespad=.05, labelspacing=.08, handletextpad=.15, borderpad=.05, prop={'size':self.font_size+1}) #set Properties for the phase axes for aa, axp in enumerate([axpte, axptm]): #set the x-axis to log scale axp.set_xscale('log') #set the phase limits axp.set_ylim(self.phase_limits) #put a grid on the subplot axp.grid(True, alpha=.3, which='both', lw=.5*self.lw) #set the tick locations axp.yaxis.set_major_locator(MultipleLocator(10)) axp.yaxis.set_minor_locator(MultipleLocator(2)) #set the x axis label if self.plot_tipper == 'y': plt.setp(axp.get_xticklabels(), visible=False) else: axp.set_xlabel('Period (s)', fontdict={'size':self.font_size+2, 'weight':'bold'}) #put the y label on the far left plot axp.yaxis.set_label_coords(self.ylabel_coord[0], self.ylabel_coord[1]) if aa==0: axp.set_ylabel('Phase (deg)', fontdict={'size':self.font_size+2, 'weight':'bold'}) #set axes properties of tipper axis if self.plot_tipper == 'y': for aa, axt in enumerate([axtipre, axtipim]): axt.set_xscale('log') #set tipper limits axt.set_ylim(self.tip_limits) #put a grid on the subplot axt.grid(True, alpha=.3, which='both', lw=.5*self.lw) #set the tick locations axt.yaxis.set_major_locator(MultipleLocator(.2)) axt.yaxis.set_minor_locator(MultipleLocator(.1)) #set the x axis label axt.set_xlabel('Period (s)', fontdict={'size':self.font_size+2, 'weight':'bold'}) axt.set_xlim(10**np.floor(np.log10(data_obj.period.min())), 10**np.ceil(np.log10(data_obj.period.max()))) #put the y label on the far left plot axt.yaxis.set_label_coords(self.ylabel_coord[0], self.ylabel_coord[1]) if aa==0: axt.set_ylabel('Tipper', fontdict={'size':self.font_size+2, 'weight':'bold'}) if self.plot_num == 2: axt.text(axt.get_xlim()[0]*1.25, self.tip_limits[1]*.9, 'Real', horizontalalignment='left', verticalalignment='top', bbox={'facecolor':'white'}, fontdict={'size':self.font_size+1}) else: axt.legend(t_list, t_label, loc=2,markerscale=1, borderaxespad=.05, labelspacing=.08, handletextpad=.15, borderpad=.05, prop={'size':self.font_size+1}) if aa == 1: if self.plot_num == 2: axt.text(axt.get_xlim()[0]*1.25, self.tip_limits[1]*.9, 'Imag', horizontalalignment='left', verticalalignment='top', bbox={'facecolor':'white'}, fontdict={'size':self.font_size+1}) #make sure the axis and figure are accessible to the user self.fig_list.append({'station':self.station_list[jj], 'fig':fig, 'axrte':axrte, 'axrtm':axrtm, 'axpte':axpte, 'axptm':axptm}) #set the plot to be full screen well at least try plt.show() def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plot2DResponses() >>> #change color of te markers to a gray-blue >>> p1.cted = (.5, .5, .7) >>> p1.redraw_plot() """ plt.close('all') self.plot() def save_figures(self, save_path, fig_fmt='pdf', fig_dpi=None, close_fig='y'): """ save all the figure that are in self.fig_list :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plot2DResponses() >>> p1.save_figures(r"/home/occam2d/Figures", fig_fmt='jpg') """ if not os.path.exists(save_path): os.mkdir(save_path) for fdict in self.fig_list: svfn = '{0}_resp.{1}'.format(fdict['station'], fig_fmt) fdict['fig'].savefig(os.path.join(save_path, svfn), dpi=self.fig_dpi) if close_fig == 'y': plt.close(fdict['fig']) print "saved figure to {0}".format(os.path.join(save_path, svfn)) #============================================================================== # plot model #============================================================================== class PlotModel(Model): """ plot the 2D model found by Occam2D. The model is displayed as a meshgrid instead of model bricks. This speeds things up considerably. Inherets the Model class to take advantage of the attributes and methods already coded. Arguments: ----------- **iter_fn** : string full path to iteration file. From here all the necessary files can be found assuming they are in the same directory. If they are not then need to input manually. ======================= =============================================== keywords description ======================= =============================================== block_font_size font size of block number is blocknum == 'on' blocknum [ 'on' | 'off' ] to plot regulariztion block numbers. cb_pad padding between axes edge and color bar cb_shrink percentage to shrink the color bar climits limits of the color scale for resistivity in log scale (min, max) cmap name of color map for resistivity values femesh plot the finite element mesh femesh_triangles plot the finite element mesh with each block divided into four triangles fig_aspect aspect ratio between width and height of resistivity image. 1 for equal axes fig_dpi resolution of figure in dots-per-inch fig_num number of figure instance fig_size size of figure in inches (width, height) font_size size of axes tick labels, axes labels is +2 grid [ 'both' | 'major' |'minor' | None ] string to tell the program to make a grid on the specified axes. meshnum [ 'on' | 'off' ] 'on' will plot finite element mesh numbers meshnum_font_size font size of mesh numbers if meshnum == 'on' ms size of station marker plot_yn [ 'y' | 'n'] 'y' --> to plot on instantiation 'n' --> to not plot on instantiation regmesh [ 'on' | 'off' ] plot the regularization mesh plots as blue lines station_color color of station marker station_font_color color station label station_font_pad padding between station label and marker station_font_rotation angle of station label in degrees 0 is horizontal station_font_size font size of station label station_font_weight font weight of station label station_id index to take station label from station name station_marker station marker. if inputing a LaTex marker be sure to input as r"LaTexMarker" otherwise might not plot properly subplot_bottom subplot spacing from bottom subplot_left subplot spacing from left subplot_right subplot spacing from right subplot_top subplot spacing from top title title of plot. If None then the name of the iteration file and containing folder will be the title with RMS and Roughness. xlimits limits of plot in x-direction in (km) xminorticks increment of minor ticks in x direction xpad padding in x-direction in km ylimits depth limits of plot positive down (km) yminorticks increment of minor ticks in y-direction ypad padding in negative y-direction (km) yscale [ 'km' | 'm' ] scale of plot, if 'm' everything will be scaled accordingly. ======================= =============================================== =================== ======================================================= Methods Description =================== ======================================================= plot plots resistivity model. redraw_plot call redraw_plot to redraw the figures, if one of the attributes has been changed save_figure saves the matplotlib.figure instance to desired location and format =================== ====================================================== :Example: --------------- >>> import mtpy.modeling.occam2d as occam2d >>> model_plot = occam2d.PlotModel(r"/home/occam/Inv1/mt_01.iter") >>> # change the color limits >>> model_plot.climits = (1, 4) >>> model_plot.redraw_plot() >>> #change len of station name >>> model_plot.station_id = [2, 5] >>> model_plot.redraw_plot() """ def __init__(self, iter_fn=None, data_fn=None, **kwargs): Model.__init__(self, iter_fn, **kwargs) self.yscale = kwargs.pop('yscale', 'km') self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.xpad = kwargs.pop('xpad', 1.0) self.ypad = kwargs.pop('ypad', 1.0) self.ms = kwargs.pop('ms', 10) self.station_locations = None self.station_list = None self.station_id = kwargs.pop('station_id', None) self.station_font_size = kwargs.pop('station_font_size', 8) self.station_font_pad = kwargs.pop('station_font_pad', 1.0) self.station_font_weight = kwargs.pop('station_font_weight', 'bold') self.station_font_rotation = kwargs.pop('station_font_rotation', 60) self.station_font_color = kwargs.pop('station_font_color', 'k') self.station_marker = kwargs.pop('station_marker', r"$\blacktriangledown$") self.station_color = kwargs.pop('station_color', 'k') self.ylimits = kwargs.pop('ylimits', None) self.xlimits = kwargs.pop('xlimits', None) self.xminorticks = kwargs.pop('xminorticks', 5) self.yminorticks = kwargs.pop('yminorticks', 1) self.climits = kwargs.pop('climits', (0,4)) self.cmap = kwargs.pop('cmap', 'jet_r') self.font_size = kwargs.pop('font_size', 8) self.femesh = kwargs.pop('femesh', 'off') self.femesh_triangles = kwargs.pop('femesh_triangles', 'off') self.femesh_lw = kwargs.pop('femesh_lw', .4) self.femesh_color = kwargs.pop('femesh_color', 'k') self.meshnum = kwargs.pop('meshnum', 'off') self.meshnum_font_size = kwargs.pop('meshnum_font_size', 3) self.regmesh = kwargs.pop('regmesh', 'off') self.regmesh_lw = kwargs.pop('regmesh_lw', .4) self.regmesh_color = kwargs.pop('regmesh_color', 'b') self.blocknum = kwargs.pop('blocknum', 'off') self.block_font_size = kwargs.pop('block_font_size', 3) self.grid = kwargs.pop('grid', None) self.cb_shrink = kwargs.pop('cb_shrink', .8) self.cb_pad = kwargs.pop('cb_pad', .01) self.subplot_right = .99 self.subplot_left = .085 self.subplot_top = .92 self.subplot_bottom = .1 self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def plot(self): """ plotModel will plot the model output by occam2d in the iteration file. :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> itfn = r"/home/Occam2D/Line1/Inv1/Test_15.iter" >>> model_plot = occam2d.PlotModel(itfn) >>> model_plot.ms = 20 >>> model_plot.ylimits = (0,.350) >>> model_plot.yscale = 'm' >>> model_plot.spad = .10 >>> model_plot.ypad = .125 >>> model_plot.xpad = .025 >>> model_plot.climits = (0,2.5) >>> model_plot.aspect = 'equal' >>> model_plot.redraw_plot() """ #--> read in iteration file and build the model self.read_iter_file() self.build_model() #--> get station locations and names from data file d_object = Data() d_object.read_data_file(self.data_fn) setattr(self, 'station_locations', d_object.station_locations.copy()) setattr(self, 'station_list', d_object.station_list.copy()) #set the scale of the plot if self.yscale == 'km': df = 1000. pf = 1.0 elif self.yscale == 'm': df = 1. pf = 1000. else: df = 1000. pf = 1.0 #set some figure properties to use the maiximum space plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top #station font dictionary fdict = {'size':self.station_font_size, 'weight':self.station_font_weight, 'rotation':self.station_font_rotation, 'color':self.station_font_color} #plot the model as a mesh self.fig = plt.figure(self.fig_num, self.fig_size, dpi=self.fig_dpi) plt.clf() #add a subplot to the figure with the specified aspect ratio ax = self.fig.add_subplot(1, 1, 1, aspect=self.fig_aspect) #plot the model as a pcolormesh so the extents are constrained to #the model coordinates ax.pcolormesh(self.mesh_x/df, self.mesh_z/df, self.res_model, cmap=self.cmap, vmin=self.climits[0], vmax=self.climits[1]) #make a colorbar for the resistivity cbx = mcb.make_axes(ax, shrink=self.cb_shrink, pad=self.cb_pad) cb = mcb.ColorbarBase(cbx[0], cmap=self.cmap, norm=Normalize(vmin=self.climits[0], vmax=self.climits[1])) cb.set_label('Resistivity ($\Omega \cdot$m)', fontdict={'size':self.font_size+1,'weight':'bold'}) cb.set_ticks(np.arange(int(self.climits[0]),int(self.climits[1])+1)) cb.set_ticklabels(['10$^{0}$'.format('{'+str(nn)+'}') for nn in np.arange(int(self.climits[0]), int(self.climits[1])+1)]) #set the offsets of the stations and plot the stations #need to figure out a way to set the marker at the surface in all #views. for offset, name in zip(self.station_locations, self.station_list): #plot the station marker #plots a V for the station cause when you use scatter the spacing #is variable if you change the limits of the y axis, this way it #always plots at the surface. ax.text(offset/df, self.plot_z.min(), self.station_marker, horizontalalignment='center', verticalalignment='baseline', fontdict={'size':self.ms,'color':self.station_color}) #put station id onto station marker #if there is a station id index if self.station_id != None: ax.text(offset/df, -self.station_font_pad*pf, name[self.station_id[0]:self.station_id[1]], horizontalalignment='center', verticalalignment='baseline', fontdict=fdict) #otherwise put on the full station name found form data file else: ax.text(offset/df, -self.station_font_pad*pf, name, horizontalalignment='center', verticalalignment='baseline', fontdict=fdict) #set the initial limits of the plot to be square about the profile line if self.ylimits == None: ax.set_ylim(abs(self.station_locations.max()- self.station_locations.min())/df, -self.ypad*pf) else: ax.set_ylim(self.ylimits[1]*pf, (self.ylimits[0]-self.ypad)*pf) if self.xlimits == None: ax.set_xlim(self.station_locations.min()/df-(self.xpad*pf), self.station_locations.max()/df+(self.xpad*pf)) else: ax.set_xlim(self.xlimits[0]*pf, self.xlimits[1]*pf) #set the axis properties ax.xaxis.set_minor_locator(MultipleLocator(self.xminorticks*pf)) ax.yaxis.set_minor_locator(MultipleLocator(self.yminorticks*pf)) #set axes labels ax.set_xlabel('Horizontal Distance ({0})'.format(self.yscale), fontdict={'size':self.font_size+2,'weight':'bold'}) ax.set_ylabel('Depth ({0})'.format(self.yscale), fontdict={'size':self.font_size+2,'weight':'bold'}) #put a grid on if one is desired if self.grid is not None: ax.grid(alpha=.3, which=self.grid, lw=.35) #set title as rms and roughness if type(self.title) is str: if self.title == 'on': titlestr = os.path.join(os.path.basename( os.path.dirname(self.iter_fn)), os.path.basename(self.iter_fn)) ax.set_title('{0}: RMS={1:.2f}, Roughness={2:.0f}'.format( titlestr,self.misfit_value, self.roughness_value), fontdict={'size':self.font_size+1, 'weight':'bold'}) else: ax.set_title('{0}; RMS={1:.2f}, Roughness={2:.0f}'.format( self.title, self.misfit_value, self.roughness_value), fontdict={'size':self.font_size+1, 'weight':'bold'}) else: print 'RMS {0:.2f}, Roughness={1:.0f}'.format(self.misfit_value, self.roughness_value) #plot forward model mesh #making an extended list seperated by None's speeds up the plotting #by as much as 99 percent, handy if self.femesh == 'on': row_line_xlist = [] row_line_ylist = [] for xx in self.plot_x/df: row_line_xlist.extend([xx,xx]) row_line_xlist.append(None) row_line_ylist.extend([0, self.plot_zy[0]/df]) row_line_ylist.append(None) #plot column lines (variables are a little bit of a misnomer) ax.plot(row_line_xlist, row_line_ylist, color='k', lw=.5) col_line_xlist = [] col_line_ylist = [] for yy in self.plot_z/df: col_line_xlist.extend([self.plot_x[0]/df, self.plot_x[-1]/df]) col_line_xlist.append(None) col_line_ylist.extend([yy, yy]) col_line_ylist.append(None) #plot row lines (variables are a little bit of a misnomer) ax.plot(col_line_xlist, col_line_ylist, color='k', lw=.5) if self.femesh_triangles == 'on': row_line_xlist = [] row_line_ylist = [] for xx in self.plot_x/df: row_line_xlist.extend([xx,xx]) row_line_xlist.append(None) row_line_ylist.extend([0, self.plot_z[0]/df]) row_line_ylist.append(None) #plot columns ax.plot(row_line_xlist, row_line_ylist, color='k', lw=.5) col_line_xlist = [] col_line_ylist = [] for yy in self.plot_z/df: col_line_xlist.extend([self.plot_x[0]/df, self.plot_x[-1]/df]) col_line_xlist.append(None) col_line_ylist.extend([yy, yy]) col_line_ylist.append(None) #plot rows ax.plot(col_line_xlist, col_line_ylist, color='k', lw=.5) diag_line_xlist = [] diag_line_ylist = [] for xi, xx in enumerate(self.plot_x[:-1]/df): for yi, yy in enumerate(self.plot_z[:-1]/df): diag_line_xlist.extend([xx, self.plot_x[xi+1]/df]) diag_line_xlist.append(None) diag_line_xlist.extend([xx, self.plot_x[xi+1]/df]) diag_line_xlist.append(None) diag_line_ylist.extend([yy, self.plot_z[yi+1]/df]) diag_line_ylist.append(None) diag_line_ylist.extend([self.plot_z[yi+1]/df, yy]) diag_line_ylist.append(None) #plot diagonal lines. ax.plot(diag_line_xlist, diag_line_ylist, color='k', lw=.5) #plot the regularization mesh if self.regmesh == 'on': line_list = [] for ii in range(len(self.model_rows)): #get the number of layers to combine #this index will be the first index in the vertical direction ny1 = self.model_rows[:ii,0].sum() #the second index in the vertical direction ny2 = ny1+self.model_rows[ii][0] #make the list of amalgamated columns an array for ease lc = np.array(self.model_cols[ii]) yline = ax.plot([self.plot_x[0]/df,self.plot_x[-1]/df], [self.plot_z[-ny1]/df, self.plot_z[-ny1]/df], color='b', lw=.5) line_list.append(yline) #loop over the number of amalgamated blocks for jj in range(len(self.model_cols[ii])): #get first in index in the horizontal direction nx1 = lc[:jj].sum() #get second index in horizontal direction nx2 = nx1+lc[jj] try: if ny1 == 0: ny1 = 1 xline = ax.plot([self.plot_x[nx1]/df, self.plot_x[nx1]/df], [self.plot_z[-ny1]/df, self.plot_z[-ny2]/df], color='b', lw=.5) line_list.append(xline) except IndexError: pass ##plot the mesh block numbers if self.meshnum == 'on': kk = 1 for yy in self.plot_z[::-1]/df: for xx in self.plot_x/df: ax.text(xx, yy, '{0}'.format(kk), fontdict={'size':self.meshnum_font_size}) kk+=1 ##plot regularization block numbers if self.blocknum == 'on': kk=1 for ii in range(len(self.model_rows)): #get the number of layers to combine #this index will be the first index in the vertical direction ny1 = self.model_rows[:ii,0].sum() #the second index in the vertical direction ny2 = ny1+self.model_rows[ii][0] #make the list of amalgamated columns an array for ease lc = np.array(self.model_cols[ii]) #loop over the number of amalgamated blocks for jj in range(len(self.model_cols[ii])): #get first in index in the horizontal direction nx1 = lc[:jj].sum() #get second index in horizontal direction nx2 = nx1+lc[jj] try: if ny1 == 0: ny1 = 1 #get center points of the blocks yy = self.plot_z[-ny1]-(self.plot_z[-ny1]- self.plot_z[-ny2])/2 xx = self.plot_x[nx1]-\ (self.plot_x[nx1]-self.plot_x[nx2])/2 #put the number ax.text(xx/df, yy/df, '{0}'.format(kk), fontdict={'size':self.block_font_size}, horizontalalignment='center', verticalalignment='center') kk+=1 except IndexError: pass plt.show() #make attributes that can be manipulated self.ax = ax self.cbax = cb def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ plt.close(self.fig) self.plot() def save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y'): """ save_plot will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> model_plot.save_figure(r"/home/occam/figures", file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, 'OccamModel.'+ file_format) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print 'Saved figure to: '+self.fig_fn def update_plot(self): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotAllResponses() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ self.fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots the resistivity model found by Occam2D.") #============================================================================== # plot L2 curve of iteration vs rms #============================================================================== class PlotL2(): """ Plot L2 curve of iteration vs rms and rms vs roughness. Need to only input an .iter file, will read all similar .iter files to get the rms, iteration number and roughness of all similar .iter files. Arguments: ---------- **iter_fn** : string full path to an iteration file output by Occam2D. ======================= =================================================== Keywords/attributes Description ======================= =================================================== ax1 matplotlib.axes instance for rms vs iteration ax2 matplotlib.axes instance for roughness vs rms fig matplotlib.figure instance fig_dpi resolution of figure in dots-per-inch fig_num number of figure instance fig_size size of figure in inches (width, height) font_size size of axes tick labels, axes labels is +2 plot_yn [ 'y' | 'n'] 'y' --> to plot on instantiation 'n' --> to not plot on instantiation rms_arr structure np.array as described above rms_color color of rms marker and line rms_lw line width of rms line rms_marker marker for rms values rms_marker_size size of marker for rms values rms_mean_color color of mean line rms_median_color color of median line rough_color color of roughness line and marker rough_font_size font size for iteration number inside roughness marker rough_lw line width for roughness line rough_marker marker for roughness rough_marker_size size of marker for roughness subplot_bottom subplot spacing from bottom subplot_left subplot spacing from left subplot_right subplot spacing from right subplot_top subplot spacing from top ======================= =================================================== =================== ======================================================= Methods Description =================== ======================================================= plot plots L2 curve. redraw_plot call redraw_plot to redraw the figures, if one of the attributes has been changed save_figure saves the matplotlib.figure instance to desired location and format =================== ====================================================== """ def __init__(self, iter_fn, **kwargs): self.iter_path = os.path.dirname(iter_fn) self.iter_basename = os.path.basename(iter_fn)[:-7] self.iter_fn_list = [] self.rms_arr = None self.rough_arr = None self.subplot_right = .98 self.subplot_left = .085 self.subplot_top = .91 self.subplot_bottom = .1 self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.font_size = kwargs.pop('font_size', 8) self.rms_lw = kwargs.pop('rms_lw', 1) self.rms_marker = kwargs.pop('rms_marker', 'd') self.rms_color = kwargs.pop('rms_color', 'k') self.rms_marker_size = kwargs.pop('rms_marker_size', 5) self.rms_median_color = kwargs.pop('rms_median_color', 'red') self.rms_mean_color = kwargs.pop('rms_mean_color', 'orange') self.rough_lw = kwargs.pop('rough_lw', .75) self.rough_marker = kwargs.pop('rough_marker', 'o') self.rough_color = kwargs.pop('rough_color', 'b') self.rough_marker_size = kwargs.pop('rough_marker_size', 7) self.rough_font_size = kwargs.pop('rough_font_size', 6) self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def _get_iterfn_list(self): """ get all iteration files for a given inversion """ self.iter_fn_list = [os.path.join(self.iter_path, fn) for fn in os.listdir(self.iter_path) if fn.find(self.iter_basename) == 0 and fn.find('.iter') > 0] def _get_values(self): """ get rms and roughness values from iteration files """ self._get_iterfn_list() self.rms_arr = np.zeros((len(self.iter_fn_list), 2)) self.rough_arr = np.zeros((len(self.iter_fn_list), 2)) for ii, itfn in enumerate(self.iter_fn_list): m_object = Model(itfn) m_object.read_iter_file() m_index = int(m_object.iteration) self.rms_arr[ii, 1] = float(m_object.misfit_value) self.rms_arr[ii, 0] = m_index self.rough_arr[ii, 1] = float(m_object.roughness_value) self.rough_arr[ii, 0] = m_index #sort by iteration number # self.rms_arr = np.sort(self.rms_arr, axis=1) # self.rough_arr = np.sort(self.rough_arr, axis=1) def plot(self): """ plot L2 curve """ self._get_values() nr = self.rms_arr.shape[0] med_rms = np.median(self.rms_arr[1:, 1]) mean_rms = np.mean(self.rms_arr[1:, 1]) #set the dimesions of the figure plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top #make figure instance self.fig = plt.figure(self.fig_num,self.fig_size, dpi=self.fig_dpi) plt.clf() #make a subplot for RMS vs Iteration self.ax1 = self.fig.add_subplot(1, 1, 1) #plot the rms vs iteration l1, = self.ax1.plot(self.rms_arr[:, 0], self.rms_arr[:, 1], '-k', lw=1, marker='d', ms=5) #plot the median of the RMS m1, = self.ax1.plot(self.rms_arr[:, 0], np.repeat(med_rms, nr), ls='--', color=self.rms_median_color, lw=self.rms_lw*.75) #plot the mean of the RMS m2, = self.ax1.plot(self.rms_arr[:, 0], np.repeat(mean_rms, nr), ls='--', color=self.rms_mean_color, lw=self.rms_lw*.75) #make subplot for RMS vs Roughness Plot self.ax2 = self.ax1.twiny() self.ax2.set_xlim(self.rough_arr[1:, 1].min(), self.rough_arr[1:, 1].max()) self.ax1.set_ylim(np.floor(self.rms_arr[1:,1].min()), self.rms_arr[1:, 1].max()) #plot the rms vs roughness l2, = self.ax2.plot(self.rough_arr[:, 1], self.rms_arr[:, 1], ls='--', color=self.rough_color, lw=self.rough_lw, marker=self.rough_marker, ms=self.rough_marker_size, mfc='white') #plot the iteration number inside the roughness marker for rms, ii, rough in zip(self.rms_arr[:, 1], self.rms_arr[:, 0], self.rough_arr[:, 1]): #need this because if the roughness is larger than this number #matplotlib puts the text out of bounds and a draw_text_image #error is raised and file cannot be saved, also the other #numbers are not put in. if rough > 1e8: pass else: self.ax2.text(rough, rms, '{0:.0f}'.format(ii), horizontalalignment='center', verticalalignment='center', fontdict={'size':self.rough_font_size, 'weight':'bold', 'color':self.rough_color}) #make a legend self.ax1.legend([l1, l2, m1, m2], ['RMS', 'Roughness', 'Median_RMS={0:.2f}'.format(med_rms), 'Mean_RMS={0:.2f}'.format(mean_rms)], ncol=1, loc='upper right', columnspacing=.25, markerscale=.75, handletextpad=.15) #set the axis properties for RMS vs iteration self.ax1.yaxis.set_minor_locator(MultipleLocator(.1)) self.ax1.xaxis.set_minor_locator(MultipleLocator(1)) self.ax1.xaxis.set_major_locator(MultipleLocator(1)) self.ax1.set_ylabel('RMS', fontdict={'size':self.font_size+2, 'weight':'bold'}) self.ax1.set_xlabel('Iteration', fontdict={'size':self.font_size+2, 'weight':'bold'}) self.ax1.grid(alpha=.25, which='both', lw=self.rough_lw) self.ax2.set_xlabel('Roughness', fontdict={'size':self.font_size+2, 'weight':'bold', 'color':self.rough_color}) for t2 in self.ax2.get_xticklabels(): t2.set_color(self.rough_color) plt.show() def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ plt.close(self.fig) self.plot() def save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y'): """ save_plot will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, '_L2.'+ file_format) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print 'Saved figure to: '+self.fig_fn def update_plot(self): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotAllResponses() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ self.fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots RMS vs Iteration computed by Occam2D") #============================================================================== # plot pseudo section of data and model response #============================================================================== class PlotPseudoSection(object): """ plot a pseudo section of the data and response if given Arguments: ------------- **data_fn** : string full path to data file. **resp_fn** : string full path to response file. ==================== ====================================================== key words description ==================== ====================================================== axmpte matplotlib.axes instance for TE model phase axmptm matplotlib.axes instance for TM model phase axmrte matplotlib.axes instance for TE model app. res axmrtm matplotlib.axes instance for TM model app. res axpte matplotlib.axes instance for TE data phase axptm matplotlib.axes instance for TM data phase axrte matplotlib.axes instance for TE data app. res. axrtm matplotlib.axes instance for TM data app. res. cb_pad padding between colorbar and axes cb_shrink percentage to shrink the colorbar to fig matplotlib.figure instance fig_dpi resolution of figure in dots per inch fig_num number of figure instance fig_size size of figure in inches (width, height) font_size size of font in points label_list list to label plots ml factor to label stations if 2 every other station is labeled on the x-axis period np.array of periods to plot phase_cmap color map name of phase phase_limits_te limits for te phase in degrees (min, max) phase_limits_tm limits for tm phase in degrees (min, max) plot_resp [ 'y' | 'n' ] to plot response plot_tipper [ 'y' | 'n' ] to plot tipper plot_yn [ 'y' | 'n' ] 'y' to plot on instantiation res_cmap color map name for resistivity res_limits_te limits for te resistivity in log scale (min, max) res_limits_tm limits for tm resistivity in log scale (min, max) rp_list list of dictionaries as made from read2Dresp station_id index to get station name (min, max) station_list station list got from rp_list subplot_bottom subplot spacing from bottom (relative coordinates) subplot_hspace vertical spacing between subplots subplot_left subplot spacing from left subplot_right subplot spacing from right subplot_top subplot spacing from top subplot_wspace horizontal spacing between subplots ==================== ====================================================== =================== ======================================================= Methods Description =================== ======================================================= plot plots a pseudo-section of apparent resistiviy and phase of data and model if given. called on instantiation if plot_yn is 'y'. redraw_plot call redraw_plot to redraw the figures, if one of the attributes has been changed save_figure saves the matplotlib.figure instance to desired location and format =================== ======================================================= :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> r_fn = r"/home/Occam2D/Line1/Inv1/Test_15.resp" >>> d_fn = r"/home/Occam2D/Line1/Inv1/DataRW.dat" >>> ps_plot = occam2d.PlotPseudoSection(d_fn, r_fn) """ def __init__(self, data_fn, resp_fn=None, **kwargs): self.data_fn = data_fn self.resp_fn = resp_fn self.plot_resp = kwargs.pop('plot_resp', 'y') if self.resp_fn is None: self.plot_resp = 'n' self.label_list = [r'$\rho_{TE-Data}$',r'$\rho_{TE-Model}$', r'$\rho_{TM-Data}$',r'$\rho_{TM-Model}$', '$\phi_{TE-Data}$','$\phi_{TE-Model}$', '$\phi_{TM-Data}$','$\phi_{TM-Model}$', '$\Re e\{T_{Data}\}$','$\Re e\{T_{Model}\}$', '$\Im m\{T_{Data}\}$','$\Im m\{T_{Model}\}$'] self.phase_limits_te = kwargs.pop('phase_limits_te', (-5, 95)) self.phase_limits_tm = kwargs.pop('phase_limits_tm', (-5, 95)) self.res_limits_te = kwargs.pop('res_limits_te', (0,3)) self.res_limits_tm = kwargs.pop('res_limits_tm', (0,3)) self.tip_limits_re = kwargs.pop('tip_limits_re', (-1, 1)) self.tip_limits_im = kwargs.pop('tip_limits_im', (-1, 1)) self.phase_cmap = kwargs.pop('phase_cmap', 'jet') self.res_cmap = kwargs.pop('res_cmap', 'jet_r') self.tip_cmap = kwargs.pop('res_cmap', 'Spectral') self.ml = kwargs.pop('ml', 2) self.station_id = kwargs.pop('station_id', [0,4]) self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.subplot_wspace = .025 self.subplot_hspace = .0 self.subplot_right = .95 self.subplot_left = .085 self.subplot_top = .97 self.subplot_bottom = .1 self.font_size = kwargs.pop('font_size', 6) self.plot_type = kwargs.pop('plot_type', '1') self.plot_num = kwargs.pop('plot_num', 2) self.plot_tipper = kwargs.pop('plot_tipper', 'n') self.plot_yn = kwargs.pop('plot_yn', 'y') self.cb_shrink = .7 self.cb_pad = .015 self.axrte = None self.axrtm = None self.axpte = None self.axptm = None self.axmrte = None self.axmrtm = None self.axmpte = None self.axmptm = None self.axtpr = None self.axtpi = None self.axmtpr = None self.axmtpi = None self.te_res_arr = None self.tm_res_arr = None self.te_phase_arr = None self.tm_phase_arr = None self.tip_real_arr = None self.tip_imag_arr = None self.fig = None if self.plot_yn == 'y': self.plot() def plot(self): """ plot pseudo section of data and response if given """ if self.plot_resp == 'y': nr = 2 else: nr = 1 data_obj = Data() data_obj.read_data_file(self.data_fn) if self.resp_fn is not None: resp_obj = Response() resp_obj.read_response_file(self.resp_fn) ns = len(data_obj.station_list) nf = len(data_obj.period) ylimits = (data_obj.period.max(), data_obj.period.min()) #make a grid for pcolormesh so you can have a log scale #get things into arrays for plotting offset_list = np.zeros(ns+1) te_res_arr = np.ones((nf, ns, nr)) tm_res_arr = np.ones((nf, ns, nr)) te_phase_arr = np.zeros((nf, ns, nr)) tm_phase_arr = np.zeros((nf, ns, nr)) tip_real_arr = np.zeros((nf, ns, nr)) tip_imag_arr = np.zeros((nf, ns, nr)) for ii, d_dict in enumerate(data_obj.data): offset_list[ii] = d_dict['offset'] te_res_arr[:, ii, 0] = d_dict['te_res'][0] tm_res_arr[:, ii, 0] = d_dict['tm_res'][0] te_phase_arr[:, ii, 0] = d_dict['te_phase'][0] tm_phase_arr[:, ii, 0] = d_dict['tm_phase'][0] tip_real_arr[:, ii, 0] = d_dict['re_tip'][0] tip_imag_arr[:, ii, 0] = d_dict['im_tip'][0] #read in response data if self.plot_resp == 'y': for ii, r_dict in enumerate(resp_obj.resp): te_res_arr[:, ii, 1] = r_dict['te_res'][0] tm_res_arr[:, ii, 1] = r_dict['tm_res'][0] te_phase_arr[:, ii, 1] = r_dict['te_phase'][0] tm_phase_arr[:, ii, 1] = r_dict['tm_phase'][0] tip_real_arr[:, ii, 1] = r_dict['re_tip'][0] tip_imag_arr[:, ii, 1] = r_dict['im_tip'][0] #need to make any zeros 1 for taking log10 te_res_arr[np.where(te_res_arr == 0)] = 1.0 tm_res_arr[np.where(tm_res_arr == 0)] = 1.0 self.te_res_arr = te_res_arr self.tm_res_arr = tm_res_arr self.te_phase_arr = te_phase_arr self.tm_phase_arr = tm_phase_arr self.tip_real_arr = tip_real_arr self.tip_imag_arr = tip_imag_arr #need to extend the last grid cell because meshgrid expects n+1 cells offset_list[-1] = offset_list[-2]*1.15 #make a meshgrid for plotting #flip frequency so bottom corner is long period dgrid, fgrid = np.meshgrid(offset_list, data_obj.period[::-1]) #make list for station labels sindex_1 = self.station_id[0] sindex_2 = self.station_id[1] slabel = [data_obj.station_list[ss][sindex_1:sindex_2] for ss in range(0, ns, self.ml)] xloc = offset_list[0]+abs(offset_list[0]-offset_list[1])/5 yloc = 1.10*data_obj.period[1] plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.left'] = self.subplot_left log_labels_te = ['10$^{0}$'.format('{'+str(nn)+'}') for nn in np.arange(int(self.res_limits_te[0]), int(self.res_limits_te[1])+1)] log_labels_tm = ['10$^{0}$'.format('{'+str(nn)+'}') for nn in np.arange(int(self.res_limits_tm[0]), int(self.res_limits_tm[1])+1)] self.fig = plt.figure(self.fig_num, self.fig_size, dpi=self.fig_dpi) plt.clf() if self.plot_resp == 'y': if self.plot_tipper == 'y': gs1 = gridspec.GridSpec(1, 3, left=self.subplot_left, right=self.subplot_right, wspace=self.subplot_wspace) gs4 = gridspec.GridSpecFromSubplotSpec(2, 2, hspace=self.subplot_hspace, wspace=0, subplot_spec=gs1[2]) else: gs1 = gridspec.GridSpec(1, 2, left=self.subplot_left, right=self.subplot_right, wspace=self.subplot_wspace) gs2 = gridspec.GridSpecFromSubplotSpec(2, 2, hspace=self.subplot_hspace, wspace=0, subplot_spec=gs1[0]) gs3 = gridspec.GridSpecFromSubplotSpec(2, 2, hspace=self.subplot_hspace, wspace=0, subplot_spec=gs1[1]) #plot TE resistivity data self.axrte = plt.Subplot(self.fig, gs2[0, 0]) self.fig.add_subplot(self.axrte) self.axrte.pcolormesh(dgrid, fgrid, np.flipud(np.log10(te_res_arr[:, :, 0])), cmap=self.res_cmap, vmin=self.res_limits_te[0], vmax=self.res_limits_te[1]) #plot TE resistivity model self.axmrte = plt.Subplot(self.fig, gs2[0, 1]) self.fig.add_subplot(self.axmrte) self.axmrte.pcolormesh(dgrid, fgrid, np.flipud(np.log10(te_res_arr[:, :, 1])), cmap=self.res_cmap, vmin=self.res_limits_te[0], vmax=self.res_limits_te[1]) #plot TM resistivity data self.axrtm = plt.Subplot(self.fig, gs3[0, 0]) self.fig.add_subplot(self.axrtm) self.axrtm.pcolormesh(dgrid, fgrid, np.flipud(np.log10(tm_res_arr[:,:,0])), cmap=self.res_cmap, vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1]) #plot TM resistivity model self.axmrtm = plt.Subplot(self.fig, gs3[0, 1]) self.fig.add_subplot(self.axmrtm) self.axmrtm.pcolormesh(dgrid, fgrid, np.flipud(np.log10(tm_res_arr[:,:,1])), cmap=self.res_cmap, vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1]) #plot TE phase data self.axpte = plt.Subplot(self.fig, gs2[1, 0]) self.fig.add_subplot(self.axpte) self.axpte.pcolormesh(dgrid, fgrid, np.flipud(te_phase_arr[:,:,0]), cmap=self.phase_cmap, vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1]) #plot TE phase model self.axmpte = plt.Subplot(self.fig, gs2[1, 1]) self.fig.add_subplot(self.axmpte) self.axmpte.pcolormesh(dgrid, fgrid, np.flipud(te_phase_arr[:,:,1]), cmap=self.phase_cmap, vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1]) #plot TM phase data self.axptm = plt.Subplot(self.fig, gs3[1, 0]) self.fig.add_subplot(self.axptm) self.axptm.pcolormesh(dgrid, fgrid, np.flipud(tm_phase_arr[:,:,0]), cmap=self.phase_cmap, vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1]) #plot TM phase model self.axmptm = plt.Subplot(self.fig, gs3[1, 1]) self.fig.add_subplot(self.axmptm) self.axmptm.pcolormesh(dgrid, fgrid, np.flipud(tm_phase_arr[:,:,1]), cmap=self.phase_cmap, vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1]) ax_list=[self.axrte, self.axmrte, self.axrtm, self.axmrtm, self.axpte, self.axmpte, self.axptm, self.axmptm] if self.plot_tipper == 'y': #plot real tipper data self.axtpr = plt.Subplot(self.fig, gs4[0, 0]) self.fig.add_subplot(self.axtpr) self.axtpr.pcolormesh(dgrid, fgrid, np.flipud(tip_real_arr[:,:,0]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) #plot real tipper model self.axmtpr = plt.Subplot(self.fig, gs4[0, 1]) self.fig.add_subplot(self.axmtpr) self.axmtpr.pcolormesh(dgrid, fgrid, np.flipud(tip_real_arr[:,:,1]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) #plot imag tipper data self.axtpi = plt.Subplot(self.fig, gs4[1, 0]) self.fig.add_subplot(self.axtpi) self.axtpi.pcolormesh(dgrid, fgrid, np.flipud(tip_imag_arr[:,:,0]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) #plot imag tipper model self.axmtpi = plt.Subplot(self.fig, gs4[1, 1]) self.fig.add_subplot(self.axmtpi) self.axmtpi.pcolormesh(dgrid, fgrid, np.flipud(tip_imag_arr[:,:,1]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) ax_list.append(self.axtpr) ax_list.append(self.axmtpr) ax_list.append(self.axtpi) ax_list.append(self.axmtpi) #make everthing look tidy for xx, ax in enumerate(ax_list): ax.semilogy() ax.set_ylim(ylimits) ax.xaxis.set_ticks(offset_list[np.arange(0, ns, self.ml)]) ax.xaxis.set_ticks(offset_list, minor=True) ax.xaxis.set_ticklabels(slabel) ax.set_xlim(offset_list.min(),offset_list.max()) if np.remainder(xx, 2.0) == 1: plt.setp(ax.yaxis.get_ticklabels(), visible=False) cbx = mcb.make_axes(ax, shrink=self.cb_shrink, pad=self.cb_pad) if xx == 2 or xx == 6 or xx == 8 or xx == 10: plt.setp(ax.yaxis.get_ticklabels(), visible=False) if xx < 4: plt.setp(ax.xaxis.get_ticklabels(), visible=False) if xx == 1: cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_te[0], vmax=self.res_limits_te[1])) cb.set_ticks(np.arange(int(self.res_limits_te[0]), int(self.res_limits_te[1])+1)) cb.set_ticklabels(log_labels_te) if xx == 3: cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1])) cb.set_label('App. Res. ($\Omega \cdot$m)', fontdict={'size':self.font_size+1, 'weight':'bold'}) cb.set_label('Resistivity ($\Omega \cdot$m)', fontdict={'size':self.font_size+1, 'weight':'bold'}) cb.set_ticks(np.arange(int(self.res_limits_tm[0]), int(self.res_limits_tm[1])+1)) cb.set_ticklabels(log_labels_tm) else: #color bar TE phase if xx == 5: cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1])) #color bar TM phase if xx == 7: cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1])) cb.set_label('Phase (deg)', fontdict={'size':self.font_size+1, 'weight':'bold'}) #color bar tipper Imag if xx == 9: cb = mcb.ColorbarBase(cbx[0],cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1])) cb.set_label('Re{T}', fontdict={'size':self.font_size+1, 'weight':'bold'}) if xx == 11: cb = mcb.ColorbarBase(cbx[0],cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_im[0], vmax=self.tip_limits_im[1])) cb.set_label('Im{T}', fontdict={'size':self.font_size+1, 'weight':'bold'}) ax.text(xloc, yloc, self.label_list[xx], fontdict={'size':self.font_size+1}, bbox={'facecolor':'white'}, horizontalalignment='left', verticalalignment='top') if xx == 0 or xx == 4: ax.set_ylabel('Period (s)', fontdict={'size':self.font_size+2, 'weight':'bold'}) if xx>3: ax.set_xlabel('Station',fontdict={'size':self.font_size+2, 'weight':'bold'}) plt.show() else: if self.plot_tipper == 'y': gs1 = gridspec.GridSpec(2, 3, left=self.subplot_left, right=self.subplot_right, hspace=self.subplot_hspace, wspace=self.subplot_wspace) else: gs1 = gridspec.GridSpec(2, 2, left=self.subplot_left, right=self.subplot_right, hspace=self.subplot_hspace, wspace=self.subplot_wspace) #plot TE resistivity data self.axrte = self.fig.add_subplot(gs1[0, 0]) self.axrte.pcolormesh(dgrid, fgrid, np.flipud(np.log10(te_res_arr[:, :, 0])), cmap=self.res_cmap, vmin=self.res_limits_te[0], vmax=self.res_limits_te[1]) #plot TM resistivity data self.axrtm = self.fig.add_subplot(gs1[0, 1]) self.axrtm.pcolormesh(dgrid, fgrid, np.flipud(np.log10(tm_res_arr[:, :, 0])), cmap=self.res_cmap, vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1]) #plot TE phase data self.axpte = self.fig.add_subplot(gs1[1, 0]) self.axpte.pcolormesh(dgrid, fgrid, np.flipud(te_phase_arr[:, :, 0]), cmap=self.phase_cmap, vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1]) #plot TM phase data self.axptm = self.fig.add_subplot(gs1[1, 1]) self.axptm.pcolormesh(dgrid, fgrid, np.flipud(tm_phase_arr[:,:, 0]), cmap=self.phase_cmap, vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1]) ax_list = [self.axrte, self.axrtm, self.axpte, self.axptm] if self.plot_tipper == 'y': #plot real tipper data self.axtpr = plt.Subplot(self.fig, gs1[0, 2]) self.fig.add_subplot(self.axtpr) self.axtpr.pcolormesh(dgrid, fgrid, np.flipud(tip_real_arr[:,:,0]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) #plot real tipper data self.axtpi = plt.Subplot(self.fig, gs1[1, 2]) self.fig.add_subplot(self.axtpi) self.axtpi.pcolormesh(dgrid, fgrid, np.flipud(tip_imag_arr[:,:,0]), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) ax_list.append(self.axtpr) ax_list.append(self.axtpi) #make everything look tidy for xx,ax in enumerate(ax_list): ax.semilogy() ax.set_ylim(ylimits) ax.xaxis.set_ticks(offset_list[np.arange(0, ns, self.ml)]) ax.xaxis.set_ticks(offset_list, minor=True) ax.xaxis.set_ticklabels(slabel) ax.grid(True, alpha=.25) ax.set_xlim(offset_list.min(),offset_list.max()) cbx = mcb.make_axes(ax, shrink=self.cb_shrink, pad=self.cb_pad) if xx == 0: plt.setp(ax.xaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_te[0], vmax=self.res_limits_te[1])) cb.set_ticks(np.arange(self.res_limits_te[0], self.res_limits_te[1]+1)) cb.set_ticklabels(log_labels_te) elif xx == 1: plt.setp(ax.xaxis.get_ticklabels(), visible=False) plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1])) cb.set_label('App. Res. ($\Omega \cdot$m)', fontdict={'size':self.font_size+1, 'weight':'bold'}) cb.set_ticks(np.arange(self.res_limits_tm[0], self.res_limits_tm[1]+1)) cb.set_ticklabels(log_labels_tm) elif xx == 2: cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1])) cb.set_ticks(np.arange(self.phase_limits_te[0], self.phase_limits_te[1]+1, 15)) elif xx == 3: plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1])) cb.set_label('Phase (deg)', fontdict={'size':self.font_size+1, 'weight':'bold'}) cb.set_ticks(np.arange(self.phase_limits_te[0], self.phase_limits_te[1]+1, 15)) #real tipper elif xx == 4: plt.setp(ax.xaxis.get_ticklabels(), visible=False) plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0], cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1])) cb.set_label('Re{T}', fontdict={'size':self.font_size+1, 'weight':'bold'}) #imag tipper elif xx == 5: plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0], cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_im[0], vmax=self.tip_limits_im[1])) cb.set_label('Im{T}', fontdict={'size':self.font_size+1, 'weight':'bold'}) ax.text(xloc, yloc, self.label_list[2*xx], fontdict={'size':self.font_size+1}, bbox={'facecolor':'white'}, horizontalalignment='left', verticalalignment='top') if xx == 0 or xx == 2: ax.set_ylabel('Period (s)', fontdict={'size':self.font_size+2, 'weight':'bold'}) if xx>1: ax.set_xlabel('Station',fontdict={'size':self.font_size+2, 'weight':'bold'}) plt.show() def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotPseudoSection() >>> #change color of te markers to a gray-blue >>> p1.res_cmap = 'seismic_r' >>> p1.redraw_plot() """ plt.close(self.fig) self.plot() def save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y'): """ save_plot will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, 'OccamPseudoSection.'+ file_format) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_plot == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print 'Saved figure to: '+self.fig_fn def update_plot(self): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ self.fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots a pseudo section of TE and TM modes for data and " "response if given.") #============================================================================== # plot misfits as a pseudo-section #============================================================================== class PlotMisfitPseudoSection(object): """ plot a pseudo section of the data and response if given Arguments: ------------- **rp_list** : list of dictionaries for each station with keywords: * *station* : string station name * *offset* : float relative offset * *resxy* : np.array(nf,4) TE resistivity and error as row 0 and 1 respectively * *resyx* : np.array(fn,4) TM resistivity and error as row 0 and 1 respectively * *phasexy* : np.array(nf,4) TE phase and error as row 0 and 1 respectively * *phaseyx* : np.array(nf,4) Tm phase and error as row 0 and 1 respectively * *realtip* : np.array(nf,4) Real Tipper and error as row 0 and 1 respectively * *imagtip* : np.array(nf,4) Imaginary Tipper and error as row 0 and 1 respectively Note: that the resistivity will be in log10 space. Also, there are 2 extra rows in the data arrays, this is to put the response from the inversion. **period** : np.array of periods to plot that correspond to the index values of each rp_list entry ie. resxy. ==================== ================================================== key words description ==================== ================================================== axmpte matplotlib.axes instance for TE model phase axmptm matplotlib.axes instance for TM model phase axmrte matplotlib.axes instance for TE model app. res axmrtm matplotlib.axes instance for TM model app. res axpte matplotlib.axes instance for TE data phase axptm matplotlib.axes instance for TM data phase axrte matplotlib.axes instance for TE data app. res. axrtm matplotlib.axes instance for TM data app. res. cb_pad padding between colorbar and axes cb_shrink percentage to shrink the colorbar to fig matplotlib.figure instance fig_dpi resolution of figure in dots per inch fig_num number of figure instance fig_size size of figure in inches (width, height) font_size size of font in points label_list list to label plots ml factor to label stations if 2 every other station is labeled on the x-axis period np.array of periods to plot phase_cmap color map name of phase phase_limits_te limits for te phase in degrees (min, max) phase_limits_tm limits for tm phase in degrees (min, max) plot_resp [ 'y' | 'n' ] to plot response plot_yn [ 'y' | 'n' ] 'y' to plot on instantiation res_cmap color map name for resistivity res_limits_te limits for te resistivity in log scale (min, max) res_limits_tm limits for tm resistivity in log scale (min, max) rp_list list of dictionaries as made from read2Dresp station_id index to get station name (min, max) station_list station list got from rp_list subplot_bottom subplot spacing from bottom (relative coordinates) subplot_hspace vertical spacing between subplots subplot_left subplot spacing from left subplot_right subplot spacing from right subplot_top subplot spacing from top subplot_wspace horizontal spacing between subplots ==================== ================================================== =================== ======================================================= Methods Description =================== ======================================================= plot plots a pseudo-section of apparent resistiviy and phase of data and model if given. called on instantiation if plot_yn is 'y'. redraw_plot call redraw_plot to redraw the figures, if one of the attributes has been changed save_figure saves the matplotlib.figure instance to desired location and format =================== ======================================================= :Example: :: >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData() >>> rfile = r"/home/Occam2D/Line1/Inv1/Test_15.resp" >>> ocd.data_fn = r"/home/Occam2D/Line1/Inv1/DataRW.dat" >>> ps1 = ocd.plot2PseudoSection(resp_fn=rfile) """ def __init__(self, data_fn, resp_fn, **kwargs): self.data_fn = data_fn self.resp_fn = resp_fn self.label_list = [r'$\rho_{TE}$', r'$\rho_{TM}$', '$\phi_{TE}$', '$\phi_{TM}$', '$\Re e\{T\}$', '$\Im m\{T\}$'] self.phase_limits_te = kwargs.pop('phase_limits_te', (-10, 10)) self.phase_limits_tm = kwargs.pop('phase_limits_tm', (-10, 10)) self.res_limits_te = kwargs.pop('res_limits_te', (-2, 2)) self.res_limits_tm = kwargs.pop('res_limits_tm', (-2, 2)) self.tip_limits_re = kwargs.pop('tip_limits_re', (-.2, .2)) self.tip_limits_im = kwargs.pop('tip_limits_im', (-.2, .2)) self.phase_cmap = kwargs.pop('phase_cmap', 'BrBG') self.res_cmap = kwargs.pop('res_cmap', 'BrBG_r') self.tip_cmap = kwargs.pop('tip_cmap', 'PuOr') self.plot_tipper = kwargs.pop('plot_tipper', 'n') self.ml = kwargs.pop('ml', 2) self.station_id = kwargs.pop('station_id', [0,4]) self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.subplot_wspace = .0025 self.subplot_hspace = .0 self.subplot_right = .95 self.subplot_left = .085 self.subplot_top = .97 self.subplot_bottom = .1 self.font_size = kwargs.pop('font_size', 6) self.plot_yn = kwargs.pop('plot_yn', 'y') self.cb_shrink = .7 self.cb_pad = .015 self.axrte = None self.axrtm = None self.axpte = None self.axptm = None self.axtpr = None self.axtpi = None self.misfit_te_res = None self.misfit_te_phase = None self.misfit_tm_res = None self.misfit_tm_phase = None self.misfit_tip_real = None self.misfit_tip_imag = None self.fig = None self._data_obj = None if self.plot_yn == 'y': self.plot() def get_misfit(self): """ compute misfit of MT response found from the model and the data. Need to normalize correctly """ data_obj = Data() data_obj.read_data_file(self.data_fn) self._data_obj = data_obj resp_obj = Response() resp_obj.read_response_file(self.resp_fn) n_stations = len(data_obj.station_list) n_periods = len(data_obj.freq) self.misfit_te_res = np.zeros((n_periods, n_stations)) self.misfit_te_phase = np.zeros((n_periods, n_stations)) self.misfit_tm_res = np.zeros((n_periods, n_stations)) self.misfit_tm_phase = np.zeros((n_periods, n_stations)) self.misfit_tip_real = np.zeros((n_periods, n_stations)) self.misfit_tip_imag = np.zeros((n_periods, n_stations)) for rr, r_dict in zip(range(n_stations), resp_obj.resp): self.misfit_te_res[:, rr] = r_dict['te_res'][1] self.misfit_tm_res[:, rr] = r_dict['tm_res'][1] self.misfit_te_phase[:, rr] = r_dict['te_phase'][1] self.misfit_tm_phase[:, rr] = r_dict['tm_phase'][1] self.misfit_tip_real[:, rr] = r_dict['re_tip'][1] self.misfit_tip_imag[:, rr] = r_dict['im_tip'][1] self.misfit_te_res = np.nan_to_num(self.misfit_te_res) self.misfit_te_phase = np.nan_to_num(self.misfit_te_phase) self.misfit_tm_res = np.nan_to_num(self.misfit_tm_res) self.misfit_tm_phase = np.nan_to_num(self.misfit_tm_phase) self.misfit_tip_real = np.nan_to_num(self.misfit_tip_real) self.misfit_tip_imag = np.nan_to_num(self.misfit_tip_imag) def plot(self): """ plot pseudo section of data and response if given """ self.get_misfit() ylimits = (self._data_obj.period.max(), self._data_obj.period.min()) offset_list = np.append(self._data_obj.station_locations, self._data_obj.station_locations[-1]*1.15) #make a meshgrid for plotting #flip frequency so bottom corner is long period dgrid, fgrid = np.meshgrid(offset_list, self._data_obj.period[::-1]) #make list for station labels ns = len(self._data_obj.station_list) sindex_1 = self.station_id[0] sindex_2 = self.station_id[1] slabel = [self._data_obj.station_list[ss][sindex_1:sindex_2] for ss in range(0, ns, self.ml)] xloc = offset_list[0]+abs(offset_list[0]-offset_list[1])/5 yloc = 1.10*self._data_obj.period[1] plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.hspace'] = self.subplot_hspace plt.rcParams['figure.subplot.wspace'] = self.subplot_wspace self.fig = plt.figure(self.fig_num, self.fig_size, dpi=self.fig_dpi) plt.clf() if self.plot_tipper != 'y': self.axrte = self.fig.add_subplot(2, 2, 1) self.axrtm = self.fig.add_subplot(2, 2, 2, sharex=self.axrte) self.axpte = self.fig.add_subplot(2, 2, 3, sharex=self.axrte) self.axptm = self.fig.add_subplot(2, 2, 4, sharex=self.axrte) else: self.axrte = self.fig.add_subplot(2, 3, 1) self.axrtm = self.fig.add_subplot(2, 3, 2, sharex=self.axrte) self.axpte = self.fig.add_subplot(2, 3, 4, sharex=self.axrte) self.axptm = self.fig.add_subplot(2, 3, 5, sharex=self.axrte) self.axtpr = self.fig.add_subplot(2, 3, 3, sharex=self.axrte) self.axtpi = self.fig.add_subplot(2, 3, 6, sharex=self.axrte) #--> TE Resistivity self.axrte.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_te_res), cmap=self.res_cmap, vmin=self.res_limits_te[0], vmax=self.res_limits_te[1]) #--> TM Resistivity self.axrtm.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_tm_res), cmap=self.res_cmap, vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1]) #--> TE Phase self.axpte.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_te_phase), cmap=self.phase_cmap, vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1]) #--> TM Phase self.axptm.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_tm_phase), cmap=self.phase_cmap, vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1]) ax_list = [self.axrte, self.axrtm, self.axpte, self.axptm] if self.plot_tipper == 'y': self.axtpr.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_tip_real), cmap=self.tip_cmap, vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1]) self.axtpi.pcolormesh(dgrid, fgrid, np.flipud(self.misfit_tip_imag), cmap=self.tip_cmap, vmin=self.tip_limits_im[0], vmax=self.tip_limits_im[1]) ax_list.append(self.axtpr) ax_list.append(self.axtpi) #make everthing look tidy for xx, ax in enumerate(ax_list): ax.semilogy() ax.set_ylim(ylimits) ax.xaxis.set_ticks(offset_list[np.arange(0, ns, self.ml)]) ax.xaxis.set_ticks(offset_list, minor=True) ax.xaxis.set_ticklabels(slabel) ax.set_xlim(offset_list.min(),offset_list.max()) cbx = mcb.make_axes(ax, shrink=self.cb_shrink, pad=self.cb_pad) #te res if xx == 0: plt.setp(ax.xaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_te[0], vmax=self.res_limits_te[1])) #tm res elif xx == 1: plt.setp(ax.xaxis.get_ticklabels(), visible=False) plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits_tm[0], vmax=self.res_limits_tm[1])) cb.set_label('Log$_{10}$ App. Res. ($\Omega \cdot$m)', fontdict={'size':self.font_size+1, 'weight':'bold'}) #te phase elif xx == 2: cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_te[0], vmax=self.phase_limits_te[1])) #tm phase elif xx == 3: plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0],cmap=self.phase_cmap, norm=Normalize(vmin=self.phase_limits_tm[0], vmax=self.phase_limits_tm[1])) cb.set_label('Phase (deg)', fontdict={'size':self.font_size+1, 'weight':'bold'}) #real tipper elif xx == 4: plt.setp(ax.xaxis.get_ticklabels(), visible=False) plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0], cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_re[0], vmax=self.tip_limits_re[1])) cb.set_label('Re{Tip}', fontdict={'size':self.font_size+1, 'weight':'bold'}) #imag tipper elif xx == 5: plt.setp(ax.yaxis.get_ticklabels(), visible=False) cb = mcb.ColorbarBase(cbx[0], cmap=self.tip_cmap, norm=Normalize(vmin=self.tip_limits_im[0], vmax=self.tip_limits_im[1])) cb.set_label('Im{Tip}', fontdict={'size':self.font_size+1, 'weight':'bold'}) #make label for plot ax.text(xloc, yloc, self.label_list[xx], fontdict={'size':self.font_size+2}, bbox={'facecolor':'white'}, horizontalalignment='left', verticalalignment='top') if xx == 0 or xx == 2: ax.set_ylabel('Period (s)', fontdict={'size':self.font_size+2, 'weight':'bold'}) if xx > 1: ax.set_xlabel('Station',fontdict={'size':self.font_size+2, 'weight':'bold'}) plt.show() def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotPseudoSection() >>> #change color of te markers to a gray-blue >>> p1.res_cmap = 'seismic_r' >>> p1.redraw_plot() """ plt.close(self.fig) self.plot() def save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y'): """ save_plot will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, 'OccamMisfitPseudoSection.'+ file_format) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_plot == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print 'Saved figure to: '+self.fig_fn def update_plot(self): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ self.fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots a pseudo section of TE and TM modes for data and " "response if given.") class OccamPointPicker(object): """ This class helps the user interactively pick points to mask and add error bars. Useage: ------- To mask just a single point right click over the point and a gray point will appear indicating it has been masked To mask both the apparent resistivity and phase left click over the point. Gray points will appear over both the apparent resistivity and phase. Sometimes the points don't exactly matchup, haven't quite worked that bug out yet, but not to worry it picks out the correct points To add error bars to a point click the middle or scroll bar button. This only adds error bars to the point and does not reduce them so start out with reasonable errorbars. You can change the increment that the error bars are increased with res_err_inc and phase_err_inc. .. note:: There is a bug when only plotting TE or TM that you cannot mask points in the phase. I'm not sure where it comes from, but works with all modes. So my suggestion is to make a data file with all modes, mask data points and then rewrite that data file if you want to use just one of the modes. That's the work around for the moment. Arguments: ---------- **ax_list** : list of the resistivity and phase axis that have been plotted as [axr_te,axr_tm,axp_te,axp_tm] **line_list** : list of lines used to plot the responses, not the error bars as [res_te,res_tm,phase_te,phase_tm] **err_list** : list of the errorcaps and errorbar lines as [[cap1,cap2,bar],...] **res_err_inc** : increment to increase the errorbars for resistivity. put .20 for 20 percent change. *Default* is .05 **phase_err_inc** : increment to increase the errorbars for the phase put .10 for 10 percent change. *Defualt* is .02 **marker** : marker type for masked points. See matplotlib.pyplot.plot for options of markers. *Default* is h for hexagon. Attributes: ----------- **ax_list** : axes list used to plot the data **line_list** : line list used to plot the data **err_list** : error list used to plot the data **data** : list of data points that were not masked for each plot. **fdict** : dictionary of frequency arrays for each plot and data set. **fndict** : dictionary of figure numbers to corresponed with data. **cid_list** : list of event ids. **res_err_inc** : increment to increase resistivity error bars **phase_inc** : increment to increase phase error bars **marker** : marker of masked points **fig_num** : figure numbers **data_list** : list of lines to write into the occam2d data file. :Example: :: >>> ocd = occam2d.Occam2DData() >>> ocd.data_fn = r"/home/Occam2D/Line1/Inv1/Data.dat" >>> ocd.plotMaskPoints() """ def __init__(self, ax_list, line_list, err_list, res_err_inc=.05, phase_err_inc=.02, marker='h'): #give the class some attributes self.ax_list = ax_list self.line_list = line_list self.err_list = err_list self.data = [] self.error = [] self.fdict = [] self.fndict = {} #see if just one figure is plotted or multiple figures are plotted self.ax = ax_list[0][0] self.line = line_list[0][0] self.cidlist = [] self.ax_num = None self.res_index = None self.phase_index = None self.fig_num = 0 for nn in range(len(ax_list)): self.data.append([]) self.error.append([]) self.fdict.append([]) #get data from lines and make a dictionary of frequency points for #easy indexing #line_find = False for ii, line in enumerate(line_list[nn]): try: self.data[nn].append(line.get_data()[1]) self.fdict[nn].append(dict([('{0:.5g}'.format(kk), ff) for ff,kk in enumerate(line.get_data()[0])])) self.fndict['{0}'.format(line.figure.number)] = nn #set some events #if line_find == False: cid1 = line.figure.canvas.mpl_connect('pick_event',self) cid2 = line.figure.canvas.mpl_connect('axes_enter_event', self.inAxes) cid3 = line.figure.canvas.mpl_connect('key_press_event', self.on_close) cid4 = line.figure.canvas.mpl_connect('figure_enter_event', self.inFigure) self.cidlist.append([cid1, cid2, cid3, cid4]) #set the figure number self.fig_num = self.line.figure.number #line_find = True except AttributeError: self.data[nn].append([]) self.fdict[nn].append([]) #read in the error in a useful way so that it can be translated to #the data file. Make the error into an array for ee, err in enumerate(err_list[nn]): try: errpath = err[2].get_paths() errarr = np.zeros(len(self.fdict[nn][ee].keys())) for ff, epath in enumerate(errpath): errv = epath.vertices errarr[ff] = abs(errv[0,1]-self.data[nn][ee][ff]) self.error[nn].append(errarr) except AttributeError: self.error[nn].append([]) #set the error bar increment values self.res_err_inc = res_err_inc self.phase_err_inc = phase_err_inc #set the marker self.marker = marker #make a list of occam2d lines to write later self.data_list = [] def __call__(self, event): """ When the function is called the mouse events will be recorder for picking points to mask or change error bars. The axes is redrawn with a gray marker to indicate a masked point and/or increased size in errorbars. Arguments: ---------- **event** : type mouse_click_event Useage: ------- **Left mouse button** will mask both resistivity and phase point **Right mouse button** will mask just the point selected **Middle mouse button** will increase the error bars **q** will close the figure. """ self.event = event #make a new point that is an PickEvent type npoint = event.artist #if the right button is clicked mask the point if event.mouseevent.button == 3: #get the point that was clicked on ii = event.ind xd = npoint.get_xdata()[ii] yd = npoint.get_ydata()[ii] #set the x index from the frequency dictionary ll = self.fdict[self.fig_num][self.ax_num]['{0:.5g}'.format(xd[0])] #change the data to be a zero self.data[self.fig_num][self.ax_num][ll] = 0 #reset the point to be a gray x self.ax.plot(xd, yd, ls = 'None', color=(.7, .7, .7), marker=self.marker, ms=4) #redraw the canvas self.ax.figure.canvas.draw() #if the left button is clicked change both resistivity and phase points elif event.mouseevent.button == 1: #get the point that was clicked on ii = event.ind xd = npoint.get_xdata()[ii] yd = npoint.get_ydata()[ii] #set the x index from the frequency dictionary ll = self.fdict[self.fig_num][self.ax_num]['{0:.5g}'.format(xd[0])] #set the data point to zero print self.data[self.fig_num][self.ax_num][ll] self.data[self.fig_num][self.ax_num][ll] = 0 #reset the point to be a gray x self.ax.plot(xd, yd, ls='None', color=(.7, .7, .7), marker=self.marker, ms=4) self.ax.figure.canvas.draw() #check to make sure there is a corresponding res/phase point try: kk = (self.ax_num+2)%4 print kk #get the corresponding y-value yd2 = self.data[self.fig_num][kk][ll] #set that data point to 0 as well self.data[self.fig_num][kk][ll] = 0 #make that data point a gray x self.ax_list[self.fig_num][kk].plot(xd, yd2, ls='None', color=(.7, .7, .7), marker=self.marker, ms=4) #redraw the canvas self.ax.figure.canvas.draw() except KeyError: print 'Axis does not contain res/phase point' #if click the scroll button or middle button change increase the #errorbars by the given amount elif event.mouseevent.button == 2: ii = event.ind xd = npoint.get_xdata()[ii] yd = npoint.get_ydata()[ii] jj = self.ax_num #get x index ll = self.fdict[self.fig_num][jj]['{0:.5g}'.format(xd[0])] #make error bar array eb = self.err_list[self.fig_num][jj][2].get_paths()[ll].vertices #make ecap array ecapl = self.err_list[self.fig_num][jj][0].get_data()[1][ll] ecapu = self.err_list[self.fig_num][jj][1].get_data()[1][ll] #change apparent resistivity error if jj == 0 or jj == 1: nebu = eb[0,1]-self.res_err_inc*eb[0,1] nebl = eb[1,1]+self.res_err_inc*eb[1,1] ecapl = ecapl-self.res_err_inc*ecapl ecapu = ecapu+self.res_err_inc*ecapu #change phase error elif jj == 2 or jj == 3: nebu = eb[0,1]-eb[0,1]*self.phase_err_inc nebl = eb[1,1]+eb[1,1]*self.phase_err_inc ecapl = ecapl-ecapl*self.phase_err_inc ecapu = ecapu+ecapu*self.phase_err_inc #put the new error into the error array self.error[self.fig_num][jj][ll] = abs(nebu-\ self.data[self.fig_num][jj][ll]) #set the new error bar values eb[0, 1] = nebu eb[1, 1] = nebl #reset the error bars and caps ncapl = self.err_list[self.fig_num][jj][0].get_data() ncapu = self.err_list[self.fig_num][jj][1].get_data() ncapl[1][ll] = ecapl ncapu[1][ll] = ecapu #set the values self.err_list[self.fig_num][jj][0].set_data(ncapl) self.err_list[self.fig_num][jj][1].set_data(ncapu) self.err_list[self.fig_num][jj][2].get_paths()[ll].vertices = eb #redraw the canvas self.ax.figure.canvas.draw() #get the axis number that the mouse is in and change to that axis def inAxes(self, event): """ gets the axes that the mouse is currently in. Arguments: --------- **event**: is a type axes_enter_event Returns: -------- **OccamPointPicker.jj** : index of resistivity axes for ax_list **OccamPointPicker.kk** : index of phase axes for ax_list """ self.event2 = event self.ax = event.inaxes for jj, axj in enumerate(self.ax_list): for ll, axl in enumerate(axj): if self.ax == axl: self.ax_num = ll self.line = self.line_list[self.fig_num][self.ax_num] #get the figure number that the mouse is in def inFigure(self, event): """ gets the figure number that the mouse is in Arguments: ---------- **event** : figure_enter_event Returns: -------- **OccamPointPicker.fig_num** : figure number that corresponds to the index in the ax_list, datalist, errorlist and line_list. """ self.event3 = event self.fig_num = self.fndict['{0}'.format(event.canvas.figure.number)] #type the q key to quit the figure and disconnect event handling def on_close(self, event): """ close the figure with a 'q' key event and disconnect the event ids Arguments: ---------- **event** : key_press_event Returns: -------- print statement saying the figure is closed """ self.event3 = event if self.event3.key == 'q': for cid in self.cidlist[self.fig_num]: event.canvas.mpl_disconnect(cid) plt.close(event.canvas.figure) print 'Closed figure ', self.fig_num class Run(): """ Run Occam2D by system call. Future plan: implement Occam in Python and call it from here directly. """ class Mask(Data): """ Allow masking of points from data file (effectively commenting them out, so the process is reversable). Inheriting from Data class. """ class OccamInputError(Exception): pass
gpl-3.0
daxadal/Computational-Geometry
Practica_2/test_classify_plane_points_v2.py
1
3255
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Checking the implementation of MLP Data in points along two logarithmic spirals @author: avaldes """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import time from MLP import MLP # create data nb_black = 100 nb_red = 100 nb_data = nb_black + nb_red s = np.linspace(0, 4*np.pi, nb_black) x_black = np.vstack([np.log(1 + s) * np.cos(s), np.log(1 + s) * np.sin(s)]).T x_red = np.vstack([-np.log(1 + s) * np.cos(s), -np.log(1 + s) * np.sin(s)]).T x_data = np.vstack((x_black, x_red)) t_data = np.asarray([0]*nb_black + [1]*nb_red).reshape(nb_data, 1) # Net structure D = x_data.shape[1] # initial dimension K = 1 # final dimension # You must find the best MLP structure in order to # misclassify as few points as possible. Training time will be # measured too. # You can use at most 3000 weights and 2000 epochs. # For example: K_list = [D, 50, 50, K] # list of dimensions of layers # The bigger the amount of neurons, the "smoother" it will appear, # although there is no significant change in the amont of correctly # classified points, which seem to be inevitably all but one of the # centermost points (even with as few as 50 epochs, with something like # 50 neurons in each hidden layer, or with as few as 25 neurons (or less!) # per layer with sufficient epochs). activation_functions = [lambda x: np.sin(x), MLP.sigmoid, MLP.sigmoid] diff_activation_functions = [lambda x: np.cos(x), MLP.dsigmoid, MLP.dsigmoid] # network training time_begin = time.time() mlp = MLP(K_list, activation_functions, diff_activation_functions) mlp.train(x_data, t_data, epochs=2000, batch_size=10, epsilon=0.1, print_cost=True) time_end = time.time() print('Time used in training %f' % (time_end - time_begin)) # check if circles nearby the middle one are # correctly classified mlp.get_activations_and_units(x_black) wrong_black = (mlp.y > 1/2).squeeze() print('Points misclassified as black: {}'.format(np.sum(wrong_black))) mlp.get_activations_and_units(x_red) wrong_red = (mlp.y < 1/2).squeeze() print('Points misclassified as red: {}'.format(np.sum(wrong_red))) # plot the probability mapping and the data delta = 0.01 x = np.arange(-3, 3, delta) y = np.arange(-3, 3, delta) X, Y = np.meshgrid(x, y) x_pts = np.vstack((X.flatten(), Y.flatten())).T mlp.get_activations_and_units(x_pts) grid_size = X.shape[0] Z = mlp.y.reshape(grid_size, grid_size) plt.axis('equal') plt.contourf(X, Y, Z, 50) plt.scatter(x_black[:, 0], x_black[:, 1], marker=',', s=1, color='black') plt.scatter(x_red[:, 0], x_red[:, 1], marker=',', s=1, color='red') plt.scatter(x_black[wrong_black, 0], x_black[wrong_black, 1], facecolors='None', s=50, marker='o', color='red') plt.scatter(x_red[wrong_red, 0], x_red[wrong_red, 1], facecolors='None', s=50, marker='o', color='black') plt.show()
apache-2.0
lin-credible/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
wholmgren/pvlib-python
pvlib/test/test_midc.py
2
2266
import inspect import os import pandas as pd from pandas.util.testing import network import pytest import pytz from pvlib.iotools import midc @pytest.fixture def test_mapping(): return { 'Direct Normal [W/m^2]': 'dni', 'Global PSP [W/m^2]': 'ghi', 'Rel Humidity [%]': 'relative_humidity', 'Temperature @ 2m [deg C]': 'temp_air', 'Non Existant': 'variable', } test_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) midc_testfile = os.path.join(test_dir, '../data/midc_20181014.txt') midc_raw_testfile = os.path.join(test_dir, '../data/midc_raw_20181018.txt') midc_network_testfile = ('https://midcdmz.nrel.gov/apps/data_api.pl' '?site=UAT&begin=20181018&end=20181019') def test_midc_format_index(): data = pd.read_csv(midc_testfile) data = midc.format_index(data) start = pd.Timestamp("20181014 00:00") start = start.tz_localize("MST") end = pd.Timestamp("20181014 23:59") end = end.tz_localize("MST") assert type(data.index) == pd.DatetimeIndex assert data.index[0] == start assert data.index[-1] == end def test_midc_format_index_tz_conversion(): data = pd.read_csv(midc_testfile) data = data.rename(columns={'MST': 'PST'}) data = midc.format_index(data) assert data.index[0].tz == pytz.timezone('Etc/GMT+8') def test_midc_format_index_raw(): data = pd.read_csv(midc_raw_testfile) data = midc.format_index_raw(data) start = pd.Timestamp('20181018 00:00') start = start.tz_localize('MST') end = pd.Timestamp('20181018 23:59') end = end.tz_localize('MST') assert data.index[0] == start assert data.index[-1] == end def test_read_midc_var_mapping_as_arg(test_mapping): data = midc.read_midc(midc_testfile, variable_map=test_mapping) assert 'ghi' in data.columns assert 'temp_air' in data.columns @network def test_read_midc_raw_data_from_nrel(): start_ts = pd.Timestamp('20181018') end_ts = pd.Timestamp('20181019') var_map = midc.MIDC_VARIABLE_MAP['UAT'] data = midc.read_midc_raw_data_from_nrel('UAT', start_ts, end_ts, var_map) for k, v in var_map.items(): assert v in data.columns assert data.index.size == 2880
bsd-3-clause
tiagofrepereira2012/tensorflow
tensorflow/examples/learn/text_classification.py
12
6651
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 MAX_LABEL = 15 WORDS_FEATURE = 'words' # Name of the input words feature. def estimator_spec_for_softmax_classification( logits, labels, mode): """Returns EstimatorSpec instance for softmax classification.""" predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def bag_of_words_model(features, labels, mode): """A bag-of-words model. Note it disregards the word order in the text.""" bow_column = tf.feature_column.categorical_column_with_identity( WORDS_FEATURE, num_buckets=n_words) bow_embedding_column = tf.feature_column.embedding_column( bow_column, dimension=EMBEDDING_SIZE) bow = tf.feature_column.input_layer( features, feature_columns=[bow_embedding_column]) logits = tf.layers.dense(bow, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def rnn_model(features, labels, mode): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features[WORDS_FEATURE], vocab_size=n_words, embed_dim=EMBEDDING_SIZE) # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for softmax # classification over output classes. logits = tf.layers.dense(encoding, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor( MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: # Subtract 1 because VocabularyProcessor outputs a word-id matrix where word # ids start from 1 and 0 means 'no word'. But # categorical_column_with_identity assumes 0-based count and uses -1 for # missing word. x_train -= 1 x_test -= 1 model_fn = bag_of_words_model classifier = tf.estimator.Estimator(model_fn=model_fn) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
emmanuelle/scikits.image
skimage/transform/tests/test_warps.py
2
3592
from numpy.testing import assert_array_almost_equal, run_module_suite import numpy as np from scipy.ndimage import map_coordinates from skimage.transform import (warp, warp_coords, fast_homography, AffineTransform, ProjectiveTransform, SimilarityTransform) from skimage import transform as tf, data, img_as_float from skimage.color import rgb2gray def test_warp(): x = np.zeros((5, 5), dtype=np.uint8) x[2, 2] = 255 x = img_as_float(x) theta = - np.pi / 2 tform = SimilarityTransform(scale=1, rotation=theta, translation=(0, 4)) x90 = warp(x, tform, order=1) assert_array_almost_equal(x90, np.rot90(x)) x90 = warp(x, tform.inverse, order=1) assert_array_almost_equal(x90, np.rot90(x)) def test_homography(): x = np.zeros((5, 5), dtype=np.uint8) x[1, 1] = 255 x = img_as_float(x) theta = -np.pi / 2 M = np.array([[np.cos(theta), - np.sin(theta), 0], [np.sin(theta), np.cos(theta), 4], [0, 0, 1]]) x90 = warp(x, inverse_map=ProjectiveTransform(M).inverse, order=1) assert_array_almost_equal(x90, np.rot90(x)) def test_fast_homography(): img = rgb2gray(data.lena()).astype(np.uint8) img = img[:, :100] theta = np.deg2rad(30) scale = 0.5 tx, ty = 50, 50 H = np.eye(3) S = scale * np.sin(theta) C = scale * np.cos(theta) H[:2, :2] = [[C, -S], [S, C]] H[:2, 2] = [tx, ty] for mode in ('constant', 'mirror', 'wrap'): p0 = warp(img, ProjectiveTransform(H).inverse, mode=mode, order=1) p1 = fast_homography(img, H, mode=mode) # import matplotlib.pyplot as plt # f, (ax0, ax1, ax2, ax3) = plt.subplots(1, 4) # ax0.imshow(img) # ax1.imshow(p0, cmap=plt.cm.gray) # ax2.imshow(p1, cmap=plt.cm.gray) # ax3.imshow(np.abs(p0 - p1), cmap=plt.cm.gray) # plt.show() d = np.mean(np.abs(p0 - p1)) assert d < 0.001 def test_swirl(): image = img_as_float(data.checkerboard()) swirl_params = {'radius': 80, 'rotation': 0, 'order': 2, 'mode': 'reflect'} swirled = tf.swirl(image, strength=10, **swirl_params) unswirled = tf.swirl(swirled, strength=-10, **swirl_params) assert np.mean(np.abs(image - unswirled)) < 0.01 def test_const_cval_out_of_range(): img = np.random.randn(100, 100) warped = warp(img, AffineTransform(translation=(10, 10)), cval=-10) assert np.sum(warped < 0) == (2 * 100 * 10 - 10 * 10) def test_warp_identity(): lena = img_as_float(rgb2gray(data.lena())) assert len(lena.shape) == 2 assert np.allclose(lena, warp(lena, AffineTransform(rotation=0))) assert not np.allclose(lena, warp(lena, AffineTransform(rotation=0.1))) rgb_lena = np.transpose(np.asarray([lena, np.zeros_like(lena), lena]), (1, 2, 0)) warped_rgb_lena = warp(rgb_lena, AffineTransform(rotation=0.1)) assert np.allclose(rgb_lena, warp(rgb_lena, AffineTransform(rotation=0))) assert not np.allclose(rgb_lena, warped_rgb_lena) # assert no cross-talk between bands assert np.all(0 == warped_rgb_lena[:, :, 1]) def test_warp_coords_example(): image = data.lena().astype(np.float32) assert 3 == image.shape[2] tform = SimilarityTransform(translation=(0, -10)) coords = warp_coords(30, 30, 3, tform) warped_image1 = map_coordinates(image[:, :, 0], coords[:2]) if __name__ == "__main__": run_module_suite()
bsd-3-clause
ajros/openplotter
graph.py
1
2117
#!/usr/bin/env python # This file is part of Openplotter. # Copyright (C) 2015 by sailoog <https://github.com/sailoog/openplotter> # # Openplotter is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # any later version. # Openplotter is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Openplotter. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import matplotlib.dates as mdates import os, sys, datetime, csv from matplotlib.widgets import Cursor pathname = os.path.dirname(sys.argv[0]) currentpath = os.path.abspath(pathname) ifile = open(currentpath+'/weather_log.csv', "r") reader = csv.reader(ifile) log_list = [] for row in reader: log_list.append(row) ifile.close() dates=[] pressure=[] temperature=[] for i in range(0,len(log_list)): dates.append(datetime.datetime.fromtimestamp(float(log_list[i][0]))) pressure.append(round(float(log_list[i][1]),1)) temperature.append(round(float(log_list[i][2]),1)) if len(dates)==0: dates.append(datetime.datetime.now()) pressure.append(0) temperature.append(0) fig=plt.figure() plt.rc("font", size=10) fig.canvas.set_window_title('Thermograph / Barograph') ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212, sharex=ax1) ax1.plot(dates,temperature,'ro-') ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M')) ax1.set_title('Temperature (Cel)') ax1.grid(True) ax2.plot(dates,pressure,'go-') ax2.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M')) ax2.set_title('Pressure (hPa)') ax2.grid(True) plt.tight_layout() cursor = Cursor(ax1, useblit=True, color='gray', linewidth=1 ) cursor2 = Cursor(ax2, useblit=True, color='gray', linewidth=1 ) fig.autofmt_xdate() plt.show()
gpl-2.0
JohanComparat/pySU
spm/bin_SMF/pdf_repeat.py
1
3569
import sys import os import numpy as n import astropy.io.fits as fits import matplotlib matplotlib.rcParams['agg.path.chunksize'] = 2000000 matplotlib.rcParams.update({'font.size': 13}) #matplotlib.use('Agg') import matplotlib.pyplot as p from cycler import cycler from scipy.spatial import KDTree from scipy.stats import norm # ADD FILTER ON CHI2/NDOF """ Plots stellar mass error and stellar mass vs. mass and redshift """ z_bins = n.arange(0, 4.1, 0.1) m_bins = n.arange(8.5,12.6,1.) sn_bins = n.array([0, 0.5, 1, 2, 10, 100]) # n.logspace(-1.,2,6) err_bins = n.arange(-2., 2.2, 0.1) x_err_bins = (err_bins[1:] + err_bins[:-1])/2. #n.hstack(( n.array([-10000., -10., -5.]), n.arange(-2.5, 2.5, 0.1), n.array([5., 10., 10000.]) )) #prefix = 'SDSS' #hdus = fits.open(os.path.join(os.environ['DATA_DIR'], 'spm', 'firefly', 'FireflyGalaxySdss26.fits')) #redshift_reliable = (hdus[1].data['Z'] >= 0) & ( hdus[1].data['Z_ERR'] >= 0) & (hdus[1].data['ZWARNING'] == 0) & (hdus[1].data['Z'] > hdus[1].data['Z_ERR'] ) prefix = 'BOSS' out_dir = os.path.join(os.environ['DATA_DIR'], 'spm', 'results', 'catalogs') hdus = fits.open(os.path.join(os.environ['DATA_DIR'], 'spm', 'firefly', 'FireflyGalaxyEbossDR14.fits')) NN, bb = n.histogram(hdus[1].data['PLATE'], bins = n.arange(0, 11000,1)) repeat_plates = bb[:-1][(NN>4000)] rp = repeat_plates[4] sel_rp = (hdus[1].data['PLATE'] == rp) data = hdus[1].data[sel_rp] tree = KDTree(n.transpose([hdus[1].data['PLUG_RA'][sel_rp], hdus[1].data['PLUG_DEC'][sel_rp]])) ids = n.array(tree.query_ball_tree(tree, 0.0001)) mjds = n.array(list(set(hdus[1].data['MJD'][sel_rp]))) mjd_sel = (hdus[1].data['MJD'][sel_rp] == mjds[-1]) id_sort = ids[mjd_sel] imf = 'Chabrier' diff = [] for jj in range(len(id_sort)): ids = list(n.copy(id_sort[jj])) id_highest_snr = n.argmax(data[ids]['SN_MEDIAN_ALL']) del ids[id_highest_snr] M_1 = 10**data[imf+'_stellar_mass'][id_highest_snr] M_1_e = M_1 * (10**abs((data[imf+'_stellar_mass' + '_err_plus'][id_highest_snr] - data[imf+'_stellar_mass' + '_err_minus'][id_highest_snr])/2.)-1.) M_2s = 10**data[imf+'_stellar_mass'][ids] M_2_es = M_1 * (10**abs((data[imf+'_stellar_mass' + '_err_plus'][ids] - data[imf+'_stellar_mass' + '_err_minus'][ids])/2.)-1.) z_agree = (data['ZWARNING_NOQSO'][id_highest_snr]==0)&(abs(data['Z_NOQSO'][id_highest_snr] - data['Z_NOQSO'][ids]) < 0.05) if M_1 > M_1_e and M_1 > 0. and data['Z_ERR_NOQSO'][id_highest_snr]>0 and data['Z_NOQSO'][id_highest_snr]> data['Z_ERR_NOQSO'][id_highest_snr] : arr = (M_1 - M_2s)/(M_1_e**2. + M_2_es**2.)**0.5 #print arr[z_agree] diff.append( arr[z_agree] ) ps = [-0.15, -0.2, 0.05, 0.25, 0.65, 0.35] x_norm = n.arange(-2,2,0.01) out, xxx = n.histogram(n.hstack((diff)), bins = err_bins, normed=True) outN = n.histogram(n.hstack((diff)), bins = err_bins)[0] N100 = (outN>10) eb = p.errorbar(x_err_bins[N100], out[N100], xerr=(xxx[1:][N100]-xxx[:-1][N100])/2., yerr = out[N100]*outN[N100]**(-0.5), fmt='+', color='r') p.plot(x_norm, ps[4]*norm.pdf(x_norm, loc=ps[0], scale=ps[2]), label='N('+str(ps[0])+','+str(ps[2])+')', ls='dashed', lw=0.5) p.plot(x_norm, ps[5]*norm.pdf(x_norm, loc=ps[1], scale=ps[3]), label='N('+str(ps[1])+','+str(ps[3])+')', ls='dashed', lw=0.5) p.plot(x_norm, ps[5]*norm.pdf(x_norm, loc=ps[1], scale=ps[3]) + ps[4]*norm.pdf(x_norm, loc=ps[0], scale=ps[2]), lw=0.5) p.yscale('log') p.ylabel('pdf') p.xlim((-1.1, 1.1)) p.ylim((1e-2, 10.)) p.grid() p.xlabel(r'$(M_1-M_2)/\sqrt{\sigma^2_{M1}+\sigma^2_{M2}}$') p.savefig(os.path.join(out_dir, "pdf_diff_mass_repeat.jpg" )) p.show()
cc0-1.0
yaricom/SpaceNetBuildingDetector
src/python/spaceNet/geoTools.py
1
15559
from osgeo import gdal, osr, ogr from pandas import pandas as pd import numpy as np import os import csv import rtree import subprocess def importgeojson(geojsonfilename, removeNoBuildings=False): # driver = ogr.GetDriverByName('geojson') datasource = ogr.Open(geojsonfilename, 0) layer = datasource.GetLayer() print(layer.GetFeatureCount()) polys = [] for idx, feature in enumerate(layer): poly = feature.GetGeometryRef() if poly: polys.append({'ImageId': feature.GetField('ImageId'), 'BuildingId': feature.GetField('BuildingId'), 'poly': feature.GetGeometryRef().Clone()}) return polys def readwktcsv(csv_path): # # csv Format Expected = ['ImageId', 'BuildingId', 'PolygonWKT_Pix', 'PolygonWKT_Geo'] # returns list of Dictionaries {'ImageId': image_id, 'BuildingId': building_id, 'poly': poly} # image_id is a string, # BuildingId is an integer, # poly is a ogr.Geometry Polygon # buildinglist = [] # polys_df = pd.read_csv(csv_path) # image_ids = set(polys_df['ImageId'].tolist()) # for image_id in image_ids: # img_df = polys_df.loc[polys_df['ImageId'] == image_id] # building_ids = set(img_df['BuildingId'].tolist()) # for building_id in building_ids: # # building_df = img_df.loc[img_df['BuildingId'] == building_id] # poly = ogr.CreateGeometryFromWkt(building_df.iloc[0, 2]) # buildinglist.append({'ImageId': image_id, 'BuildingId': building_id, 'poly': poly}) buildinglist = [] with open(csv_path, 'rb') as csvfile: building_reader = csv.reader(csvfile, delimiter=',', quotechar='"') next(building_reader, None) # skip the headers for row in building_reader: poly = ogr.CreateGeometryFromWkt(row[2]) buildinglist.append({'ImageId': row[0], 'BuildingId': int(row[1]), 'poly': poly}) return buildinglist def exporttogeojson(geojsonfilename, buildinglist): # # geojsonname should end with .geojson # building list should be list of dictionaries # list of Dictionaries {'ImageId': image_id, 'BuildingId': building_id, 'poly': poly} # image_id is a string, # BuildingId is an integer, # poly is a ogr.Geometry Polygon # # returns geojsonfilename driver = ogr.GetDriverByName('geojson') if os.path.exists(geojsonfilename): driver.DeleteDataSource(geojsonfilename) datasource = driver.CreateDataSource(geojsonfilename) layer = datasource.CreateLayer('buildings', geom_type=ogr.wkbPolygon) field_name = ogr.FieldDefn("ImageId", ogr.OFTString) field_name.SetWidth(75) layer.CreateField(field_name) layer.CreateField(ogr.FieldDefn("BuildingId", ogr.OFTInteger)) # loop through buildings for building in buildinglist: # create feature feature = ogr.Feature(layer.GetLayerDefn()) feature.SetField("ImageId", building['ImageId']) feature.SetField("BuildingId", building['BuildingId']) feature.SetGeometry(building['poly']) # Create the feature in the layer (geojson) layer.CreateFeature(feature) # Destroy the feature to free resources feature.Destroy() datasource.Destroy() return geojsonfilename def createmaskfrompolygons(polygons): pass def latLonToPixel(lat, lon, input_raster='', targetsr='', geomTransform=''): sourcesr = osr.SpatialReference() sourcesr.ImportFromEPSG(4326) geom = ogr.Geometry(ogr.wkbPoint) geom.AddPoint(lon, lat) if targetsr == '': src_raster = gdal.Open(input_raster) targetsr = osr.SpatialReference() targetsr.ImportFromWkt(src_raster.GetProjectionRef()) coordTrans = osr.CoordinateTransformation(sourcesr, targetsr) if geomTransform == '': src_raster = gdal.Open(input_raster) transform = src_raster.GetGeoTransform() else: transform = geomTransform xOrigin = transform[0] # print xOrigin yOrigin = transform[3] # print yOrigin pixelWidth = transform[1] # print pixelWidth pixelHeight = transform[5] # print pixelHeight geom.Transform(coordTrans) # print geom.GetPoint() xPix = (geom.GetPoint()[0] - xOrigin) / pixelWidth yPix = (geom.GetPoint()[1] - yOrigin) / pixelHeight return (xPix, yPix) def pixelToLatLon(xPix, yPix, inputRaster, targetSR=''): if targetSR == '': targetSR = osr.SpatialReference() targetSR.ImportFromEPSG(4326) geom = ogr.Geometry(ogr.wkbPoint) srcRaster = gdal.Open(inputRaster) sourceSR = osr.SpatialReference() sourceSR.ImportFromWkt(srcRaster.GetProjectionRef()) coordTrans = osr.CoordinateTransformation(sourceSR, targetSR) transform = srcRaster.GetGeoTransform() xOrigin = transform[0] yOrigin = transform[3] pixelWidth = transform[1] pixelHeight = transform[5] xCoord = (xPix * pixelWidth) + xOrigin yCoord = (yPix * pixelHeight) + yOrigin geom.AddPoint(xCoord, yCoord) geom.Transform(coordTrans) return (geom.GetX(), geom.GetY()) def geoPolygonToPixelPolygonWKT(geom, inputRaster, targetSR, geomTransform): # Returns Pixel Coordinate List and GeoCoordinateList polygonPixBufferList = [] polygonPixBufferWKTList = [] if geom.GetGeometryName() == 'POLYGON': polygonPix = ogr.Geometry(ogr.wkbPolygon) for ring in geom: # GetPoint returns a tuple not a Geometry ringPix = ogr.Geometry(ogr.wkbLinearRing) for pIdx in xrange(ring.GetPointCount()): lon, lat, z = ring.GetPoint(pIdx) xPix, yPix = latLonToPixel(lat, lon, inputRaster, targetSR, geomTransform) ringPix.AddPoint(xPix, yPix) polygonPix.AddGeometry(ringPix) polygonPixBuffer = polygonPix.Buffer(0.0) polygonPixBufferList.append([polygonPixBuffer, geom]) elif geom.GetGeometryName() == 'MULTIPOLYGON': for poly in geom: polygonPix = ogr.Geometry(ogr.wkbPolygon) for ring in geom: # GetPoint returns a tuple not a Geometry ringPix = ogr.Geometry(ogr.wkbLinearRing) for pIdx in xrange(ring.GetPointCount()): lon, lat, z = ring.GetPoint(pIdx) xPix, yPix = latLonToPixel(lat, lon, inputRaster, targetSR, geomTransform) ringPix.AddPoint(xPix, yPix) polygonPix.AddGeometry(ringPix) polygonPixBuffer = polygonPix.Buffer(0.0) polygonPixBufferList.append([polygonPixBuffer, geom]) for polygonTest in polygonPixBufferList: if polygonTest[0].GetGeometryName() == 'POLYGON': polygonPixBufferWKTList.append([polygonTest[0].ExportToWkt(), polygonTest[1].ExportToWkt()]) elif polygonTest[0].GetGeometryName() == 'MULTIPOLYGON': for polygonTest2 in polygonTest[0]: polygonPixBufferWKTList.append([polygonTest2.ExportToWkt(), polygonTest[1].ExportToWkt()]) return polygonPixBufferWKTList def convert_wgs84geojson_to_pixgeojson(wgs84geojson, inputraster, image_id=[], pixelgeojson=[]): dataSource = ogr.Open(wgs84geojson, 0) layer = dataSource.GetLayer() print(layer.GetFeatureCount()) building_id = 0 # check if geoJsonisEmpty buildinglist = [] if not image_id: image_id = inputraster.replace(".tif", "") if layer.GetFeatureCount() > 0: srcRaster = gdal.Open(inputraster) targetSR = osr.SpatialReference() targetSR.ImportFromWkt(srcRaster.GetProjectionRef()) geomTransform = srcRaster.GetGeoTransform() for feature in layer: geom = feature.GetGeometryRef() ## Calculate 3 band polygonWKTList = geoPolygonToPixelPolygonWKT(geom, inputraster, targetSR, geomTransform) for polygonWKT in polygonWKTList: building_id += 1 buildinglist.append({'ImageId': image_id, 'BuildingId': building_id, 'poly': ogr.CreateGeometryFromWkt(polygonWKT)}) if pixelgeojson: exporttogeojson(pixelToLatLon, buildinglist=buildinglist) return buildinglist def create_rtreefromdict(buildinglist): # create index index = rtree.index.Index(interleaved=False) for idx, building in enumerate(buildinglist): index.insert(idx, building['poly'].GetEnvelope()) return index def create_rtree_from_poly(poly_list): # create index index = rtree.index.Index(interleaved=False) for idx, building in enumerate(poly_list): index.insert(idx, building.GetEnvelope()) return index def search_rtree(test_building, index): # input test poly ogr.Geometry and rtree index if test_building.GetGeometryName() == 'POLYGON' or \ test_building.GetGeometryName() == 'MULTIPOLYGON': fidlist = index.intersection(test_building.GetEnvelope()) else: fidlist = [] return fidlist def get_envelope(poly): env = poly.GetEnvelope() # Get Envelope returns a tuple (minX, maxX, minY, maxY) # Create ring ring = ogr.Geometry(ogr.wkbLinearRing) ring.AddPoint(env[0], env[2]) ring.AddPoint(env[0], env[3]) ring.AddPoint(env[1], env[3]) ring.AddPoint(env[1], env[2]) ring.AddPoint(env[0], env[2]) # Create polygon poly1 = ogr.Geometry(ogr.wkbPolygon) poly1.AddGeometry(ring) return poly1 def utm_getZone(longitude): return (int(1+(longitude+180.0)/6.0)) def utm_isNorthern(latitude): if (latitude < 0.0): return 0 else: return 1 def createUTMTransform(polyGeom): # pt = polyGeom.Boundary().GetPoint() utm_zone = utm_getZone(polyGeom.GetEnvelope()[0]) is_northern = utm_isNorthern(polyGeom.GetEnvelope()[2]) utm_cs = osr.SpatialReference() utm_cs.SetWellKnownGeogCS('WGS84') utm_cs.SetUTM(utm_zone, is_northern); wgs84_cs = osr.SpatialReference() wgs84_cs.ImportFromEPSG(4326) transform_WGS84_To_UTM = osr.CoordinateTransformation(wgs84_cs, utm_cs) transform_UTM_To_WGS84 = osr.CoordinateTransformation(utm_cs, wgs84_cs) return transform_WGS84_To_UTM, transform_UTM_To_WGS84, utm_cs def getRasterExtent(srcImage): geoTrans = srcImage.GetGeoTransform() ulX = geoTrans[0] ulY = geoTrans[3] xDist = geoTrans[1] yDist = geoTrans[5] rtnX = geoTrans[2] rtnY = geoTrans[4] cols = srcImage.RasterXSize rows = srcImage.RasterYSize lrX = ulX + xDist * cols lrY = ulY + yDist * rows # Create ring ring = ogr.Geometry(ogr.wkbLinearRing) ring.AddPoint(lrX, lrY) ring.AddPoint(lrX, ulY) ring.AddPoint(ulX, ulY) ring.AddPoint(ulX, lrY) ring.AddPoint(lrX, lrY) # Create polygon poly = ogr.Geometry(ogr.wkbPolygon) poly.AddGeometry(ring) return geoTrans, poly, ulX, ulY, lrX, lrY def createPolygonFromCorners(lrX,lrY,ulX, ulY): # Create ring ring = ogr.Geometry(ogr.wkbLinearRing) ring.AddPoint(lrX, lrY) ring.AddPoint(lrX, ulY) ring.AddPoint(ulX, ulY) ring.AddPoint(ulX, lrY) ring.AddPoint(lrX, lrY) # Create polygon poly = ogr.Geometry(ogr.wkbPolygon) poly.AddGeometry(ring) return poly def clipShapeFile(shapeSrc, outputFileName, polyToCut): source_layer = shapeSrc.GetLayer() source_srs = source_layer.GetSpatialRef() # Create the output Layer outGeoJSon = outputFileName.replace('.tif', '.geojson') outDriver = ogr.GetDriverByName("geojson") if os.path.exists(outGeoJSon): outDriver.DeleteDataSource(outGeoJSon) outDataSource = outDriver.CreateDataSource(outGeoJSon) outLayer = outDataSource.CreateLayer("groundTruth", source_srs, geom_type=ogr.wkbPolygon) # Add input Layer Fields to the output Layer inLayerDefn = source_layer.GetLayerDefn() for i in range(0, inLayerDefn.GetFieldCount()): fieldDefn = inLayerDefn.GetFieldDefn(i) outLayer.CreateField(fieldDefn) outLayer.CreateField(ogr.FieldDefn("partialBuilding", ogr.OFTInteger)) outLayerDefn = outLayer.GetLayerDefn() source_layer.SetSpatialFilter(polyToCut) for inFeature in source_layer: outFeature = ogr.Feature(outLayerDefn) for i in range (0, inLayerDefn.GetFieldCount()): outFeature.SetField(inLayerDefn.GetFieldDefn(i).GetNameRef(), inFeature.GetField(i)) geom = inFeature.GetGeometryRef() geomNew = geom.Intersection(polyToCut) if geomNew: if geom.GetArea() == geomNew.GetArea(): outFeature.SetField("partialBuilding", 0) else: outFeature.SetField("partialBuilding", 1) else: outFeature.SetField("partialBuilding", 1) outFeature.SetGeometry(geomNew) outLayer.CreateFeature(outFeature) def cutChipFromMosaic(rasterFile, shapeFileSrc, outlineSrc,outputDirectory='', outputPrefix='clip_', clipSizeMX=100, clipSizeMY=100): #rasterFile = '/Users/dlindenbaum/dataStorage/spacenet/mosaic_8band/013022223103.tif' srcImage = gdal.Open(rasterFile) geoTrans, poly, ulX, ulY, lrX, lrY = getRasterExtent(srcImage) rasterFileBase = os.path.basename(rasterFile) if outputDirectory=="": outputDirectory=os.path.dirname(rasterFile) transform_WGS84_To_UTM, transform_UTM_To_WGS84, utm_cs = createUTMTransform(poly) poly.Transform(transform_WGS84_To_UTM) env = poly.GetEnvelope() minX = env[0] minY = env[2] maxX = env[1] maxY = env[3] #return poly to WGS84 poly.Transform(transform_UTM_To_WGS84) shapeSrc = ogr.Open(shapeFileSrc) outline = ogr.Open(outlineSrc) layer = outline.GetLayer() for feature in layer: geom = feature.GetGeometryRef() for llX in np.arange(minX, maxX, clipSizeMX): for llY in np.arange(minY, maxY, clipSizeMY): uRX = llX+clipSizeMX uRY = llY+clipSizeMY polyCut = createPolygonFromCorners(llX, llY, uRX, uRY) polyCut.Transform(transform_UTM_To_WGS84) if (polyCut).Intersection(geom): print "Do it." envCut = polyCut.GetEnvelope() minXCut = envCut[0] minYCut = envCut[2] maxXCut = envCut[1] maxYCut = envCut[3] outputFileName = os.path.join(outputDirectory, outputPrefix+rasterFileBase.replace('.tif', "_{}_{}.tif".format(minXCut,minYCut))) ## Clip Image subprocess.call(["gdalwarp", "-te", "{}".format(minXCut), "{}".format(minYCut), "{}".format(maxXCut), "{}".format(maxYCut), rasterFile, outputFileName]) outGeoJSon = outputFileName.replace('.tif', '.geojson') ### Clip poly to cust to Raster Extent polyVectorCut=polyCut.Intersection(poly) clipShapeFile(shapeSrc, outputFileName, polyVectorCut) #subprocess.call(["ogr2ogr", "-f", "ESRI Shapefile", # "-spat", "{}".format(minXCut), "{}".format(minYCut), # "{}".format(maxXCut), "{}".format(maxYCut), "-clipsrc", outGeoJSon, shapeFileSrc]) ## ClipShapeFile else: print "Ain't nobody got time for that!"
apache-2.0
gfyoung/pandas
pandas/core/arrays/timedeltas.py
1
35624
from __future__ import annotations from datetime import timedelta from typing import List, Optional, Union import numpy as np from pandas._libs import lib, tslibs from pandas._libs.tslibs import ( BaseOffset, NaT, NaTType, Period, Tick, Timedelta, Timestamp, iNaT, to_offset, ) from pandas._libs.tslibs.conversion import precision_from_unit from pandas._libs.tslibs.fields import get_timedelta_field from pandas._libs.tslibs.timedeltas import ( array_to_timedelta64, ints_to_pytimedelta, parse_timedelta_unit, ) from pandas._typing import NpDtype from pandas.compat.numpy import function as nv from pandas.core.dtypes.cast import astype_td64_unit_conversion from pandas.core.dtypes.common import ( DT64NS_DTYPE, TD64NS_DTYPE, is_categorical_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_object_dtype, is_scalar, is_string_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.generic import ABCSeries, ABCTimedeltaIndex from pandas.core.dtypes.missing import isna from pandas.core import nanops from pandas.core.algorithms import checked_add_with_arr from pandas.core.arrays import IntegerArray, datetimelike as dtl from pandas.core.arrays._ranges import generate_regular_range import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.ops.common import unpack_zerodim_and_defer def _field_accessor(name: str, alias: str, docstring: str): def f(self) -> np.ndarray: values = self.asi8 result = get_timedelta_field(values, alias) if self._hasnans: result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = f"\n{docstring}\n" return property(f) class TimedeltaArray(dtl.TimelikeOps): """ Pandas ExtensionArray for timedelta data. .. versionadded:: 0.24.0 .. warning:: TimedeltaArray is currently experimental, and its API may change without warning. In particular, :attr:`TimedeltaArray.dtype` is expected to change to be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : array-like The timedelta data. dtype : numpy.dtype Currently, only ``numpy.dtype("timedelta64[ns]")`` is accepted. freq : Offset, optional copy : bool, default False Whether to copy the underlying array of data. Attributes ---------- None Methods ------- None """ _typ = "timedeltaarray" _scalar_type = Timedelta _recognized_scalars = (timedelta, np.timedelta64, Tick) _is_recognized_dtype = is_timedelta64_dtype _infer_matches = ("timedelta", "timedelta64") __array_priority__ = 1000 # define my properties & methods for delegation _other_ops: List[str] = [] _bool_ops: List[str] = [] _object_ops = ["freq"] _field_ops = ["days", "seconds", "microseconds", "nanoseconds"] _datetimelike_ops = _field_ops + _object_ops + _bool_ops _datetimelike_methods = [ "to_pytimedelta", "total_seconds", "round", "floor", "ceil", ] # Note: ndim must be defined to ensure NaT.__richcmp__(TimedeltaArray) # operates pointwise. def _box_func(self, x) -> Union[Timedelta, NaTType]: return Timedelta(x, unit="ns") @property def dtype(self) -> np.dtype: """ The dtype for the TimedeltaArray. .. warning:: A future version of pandas will change dtype to be an instance of a :class:`pandas.api.extensions.ExtensionDtype` subclass, not a ``numpy.dtype``. Returns ------- numpy.dtype """ return TD64NS_DTYPE # ---------------------------------------------------------------- # Constructors def __init__(self, values, dtype=TD64NS_DTYPE, freq=lib.no_default, copy=False): values = extract_array(values) inferred_freq = getattr(values, "_freq", None) explicit_none = freq is None freq = freq if freq is not lib.no_default else None if isinstance(values, type(self)): if explicit_none: # dont inherit from values pass elif freq is None: freq = values.freq elif freq and values.freq: freq = to_offset(freq) freq, _ = dtl.validate_inferred_freq(freq, values.freq, False) values = values._data if not isinstance(values, np.ndarray): msg = ( f"Unexpected type '{type(values).__name__}'. 'values' must be a " "TimedeltaArray ndarray, or Series or Index containing one of those." ) raise ValueError(msg) if values.ndim not in [1, 2]: raise ValueError("Only 1-dimensional input arrays are supported.") if values.dtype == "i8": # for compat with datetime/timedelta/period shared methods, # we can sometimes get here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view(TD64NS_DTYPE) _validate_td64_dtype(values.dtype) dtype = _validate_td64_dtype(dtype) if freq == "infer": msg = ( "Frequency inference not allowed in TimedeltaArray.__init__. " "Use 'pd.array()' instead." ) raise ValueError(msg) if copy: values = values.copy() if freq: freq = to_offset(freq) self._data = values self._dtype = dtype self._freq = freq if inferred_freq is None and freq is not None: type(self)._validate_frequency(self, freq) @classmethod def _simple_new( cls, values, freq: Optional[BaseOffset] = None, dtype=TD64NS_DTYPE ) -> TimedeltaArray: assert dtype == TD64NS_DTYPE, dtype assert isinstance(values, np.ndarray), type(values) if values.dtype != TD64NS_DTYPE: assert values.dtype == "i8" values = values.view(TD64NS_DTYPE) result = object.__new__(cls) result._data = values result._freq = to_offset(freq) result._dtype = TD64NS_DTYPE return result @classmethod def _from_sequence( cls, data, *, dtype=TD64NS_DTYPE, copy: bool = False ) -> TimedeltaArray: if dtype: _validate_td64_dtype(dtype) data, inferred_freq = sequence_to_td64ns(data, copy=copy, unit=None) freq, _ = dtl.validate_inferred_freq(None, inferred_freq, False) return cls._simple_new(data, freq=freq) @classmethod def _from_sequence_not_strict( cls, data, dtype=TD64NS_DTYPE, copy: bool = False, freq=lib.no_default, unit=None, ) -> TimedeltaArray: if dtype: _validate_td64_dtype(dtype) explicit_none = freq is None freq = freq if freq is not lib.no_default else None freq, freq_infer = dtl.maybe_infer_freq(freq) data, inferred_freq = sequence_to_td64ns(data, copy=copy, unit=unit) freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer) if explicit_none: freq = None result = cls._simple_new(data, freq=freq) if inferred_freq is None and freq is not None: # this condition precludes `freq_infer` cls._validate_frequency(result, freq) elif freq_infer: # Set _freq directly to bypass duplicative _validate_frequency # check. result._freq = to_offset(result.inferred_freq) return result @classmethod def _generate_range(cls, start, end, periods, freq, closed=None): periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) if start is not None: start = Timedelta(start) if end is not None: end = Timedelta(end) left_closed, right_closed = dtl.validate_endpoints(closed) if freq is not None: index = generate_regular_range(start, end, periods, freq) else: index = np.linspace(start.value, end.value, periods).astype("i8") if not left_closed: index = index[1:] if not right_closed: index = index[:-1] return cls._simple_new(index, freq=freq) # ---------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value, setitem: bool = False) -> np.timedelta64: if not isinstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timedelta.") self._check_compatible_with(value, setitem=setitem) return np.timedelta64(value.value, "ns") def _scalar_from_string(self, value): return Timedelta(value) def _check_compatible_with(self, other, setitem: bool = False): # we don't have anything to validate. pass # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def astype(self, dtype, copy: bool = True): # We handle # --> timedelta64[ns] # --> timedelta64 # DatetimeLikeArrayMixin super call handles other cases dtype = pandas_dtype(dtype) if dtype.kind == "m": return astype_td64_unit_conversion(self._data, dtype, copy=copy) return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy=copy) def __iter__(self): if self.ndim > 1: for i in range(len(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = (length // chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = ints_to_pytimedelta(data[start_i:end_i], box=True) yield from converted # ---------------------------------------------------------------- # Reductions def sum( self, *, axis=None, dtype: Optional[NpDtype] = None, out=None, keepdims: bool = False, initial=None, skipna: bool = True, min_count: int = 0, ): nv.validate_sum( (), {"dtype": dtype, "out": out, "keepdims": keepdims, "initial": initial} ) result = nanops.nansum( self._ndarray, axis=axis, skipna=skipna, min_count=min_count ) return self._wrap_reduction_result(axis, result) def std( self, *, axis=None, dtype: Optional[NpDtype] = None, out=None, ddof: int = 1, keepdims: bool = False, skipna: bool = True, ): nv.validate_stat_ddof_func( (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std" ) result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) if axis is None or self.ndim == 1: return self._box_func(result) return self._from_backing_data(result) # ---------------------------------------------------------------- # Rendering Methods def _formatter(self, boxed=False): from pandas.io.formats.format import get_format_timedelta64 return get_format_timedelta64(self, box=True) @dtl.ravel_compat def _format_native_types(self, na_rep="NaT", date_format=None, **kwargs): from pandas.io.formats.format import get_format_timedelta64 formatter = get_format_timedelta64(self._data, na_rep) return np.array([formatter(x) for x in self._data]) # ---------------------------------------------------------------- # Arithmetic Methods def _add_offset(self, other): assert not isinstance(other, Tick) raise TypeError( f"cannot add the type {type(other).__name__} to a {type(self).__name__}" ) def _add_period(self, other: Period): """ Add a Period object. """ # We will wrap in a PeriodArray and defer to the reversed operation from .period import PeriodArray i8vals = np.broadcast_to(other.ordinal, self.shape) oth = PeriodArray(i8vals, freq=other.freq) return oth + self def _add_datetime_arraylike(self, other): """ Add DatetimeArray/Index or ndarray[datetime64] to TimedeltaArray. """ if isinstance(other, np.ndarray): # At this point we have already checked that dtype is datetime64 from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) # defer to implementation in DatetimeArray return other + self def _add_datetimelike_scalar(self, other): # adding a timedeltaindex to a datetimelike from pandas.core.arrays import DatetimeArray assert other is not NaT other = Timestamp(other) if other is NaT: # In this case we specifically interpret NaT as a datetime, not # the timedelta interpretation we would get by returning self + NaT result = self.asi8.view("m8[ms]") + NaT.to_datetime64() return DatetimeArray(result) i8 = self.asi8 result = checked_add_with_arr(i8, other.value, arr_mask=self._isnan) result = self._maybe_mask_results(result) dtype = DatetimeTZDtype(tz=other.tz) if other.tz else DT64NS_DTYPE return DatetimeArray(result, dtype=dtype, freq=self.freq) def _addsub_object_array(self, other, op): # Add or subtract Array-like of objects try: # TimedeltaIndex can only operate with a subset of DateOffset # subclasses. Incompatible classes will raise AttributeError, # which we re-raise as TypeError return super()._addsub_object_array(other, op) except AttributeError as err: raise TypeError( f"Cannot add/subtract non-tick DateOffset to {type(self).__name__}" ) from err @unpack_zerodim_and_defer("__mul__") def __mul__(self, other) -> TimedeltaArray: if is_scalar(other): # numpy will accept float and int, raise TypeError for others result = self._data * other freq = None if self.freq is not None and not isna(other): freq = self.freq * other return type(self)(result, freq=freq) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self) and not is_timedelta64_dtype(other.dtype): # Exclude timedelta64 here so we correctly raise TypeError # for that instead of ValueError raise ValueError("Cannot multiply with unequal lengths") if is_object_dtype(other.dtype): # this multiplication will succeed only if all elements of other # are int or float scalars, so we will end up with # timedelta64[ns]-dtyped result result = [self[n] * other[n] for n in range(len(self))] result = np.array(result) return type(self)(result) # numpy will accept float or int dtype, raise TypeError for others result = self._data * other return type(self)(result) __rmul__ = __mul__ @unpack_zerodim_and_defer("__truediv__") def __truediv__(self, other): # timedelta / X is well-defined for timedelta-like or numeric X if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # specifically timedelta64-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # otherwise, dispatch to Timedelta implementation return self._data / other elif lib.is_scalar(other): # assume it is numeric result = self._data / other freq = None if self.freq is not None: # Tick division is not implemented, so operate on Timedelta freq = self.freq.delta / other return type(self)(result, freq=freq) if not hasattr(other, "dtype"): # e.g. list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide vectors with unequal lengths") elif is_timedelta64_dtype(other.dtype): # let numpy handle it return self._data / other elif is_object_dtype(other.dtype): # We operate on raveled arrays to avoid problems in inference # on NaT srav = self.ravel() orav = other.ravel() result = [srav[n] / orav[n] for n in range(len(srav))] result = np.array(result).reshape(self.shape) # We need to do dtype inference in order to keep DataFrame ops # behavior consistent with Series behavior inferred = lib.infer_dtype(result) if inferred == "timedelta": flat = result.ravel() result = type(self)._from_sequence(flat).reshape(result.shape) elif inferred == "floating": result = result.astype(float) return result else: result = self._data / other return type(self)(result) @unpack_zerodim_and_defer("__rtruediv__") def __rtruediv__(self, other): # X / timedelta is defined only for timedelta-like X if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # specifically timedelta64-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # otherwise, dispatch to Timedelta implementation return other / self._data elif lib.is_scalar(other): raise TypeError( f"Cannot divide {type(other).__name__} by {type(self).__name__}" ) if not hasattr(other, "dtype"): # e.g. list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide vectors with unequal lengths") elif is_timedelta64_dtype(other.dtype): # let numpy handle it return other / self._data elif is_object_dtype(other.dtype): # Note: unlike in __truediv__, we do not _need_ to do type # inference on the result. It does not raise, a numeric array # is returned. GH#23829 result = [other[n] / self[n] for n in range(len(self))] return np.array(result) else: raise TypeError( f"Cannot divide {other.dtype} data by {type(self).__name__}" ) @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): if is_scalar(other): if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # treat this specifically as timedelta-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # dispatch to Timedelta implementation result = other.__rfloordiv__(self._data) return result # at this point we should only have numeric scalars; anything # else will raise result = self.asi8 // other np.putmask(result, self._isnan, iNaT) freq = None if self.freq is not None: # Note: freq gets division, not floor-division freq = self.freq / other if freq.nanos == 0 and self.freq.nanos != 0: # e.g. if self.freq is Nano(1) then dividing by 2 # rounds down to zero freq = None return type(self)(result.view("m8[ns]"), freq=freq) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide with unequal lengths") elif is_timedelta64_dtype(other.dtype): other = type(self)(other) # numpy timedelta64 does not natively support floordiv, so operate # on the i8 values result = self.asi8 // other.asi8 mask = self._isnan | other._isnan if mask.any(): result = result.astype(np.float64) np.putmask(result, mask, np.nan) return result elif is_object_dtype(other.dtype): result = [self[n] // other[n] for n in range(len(self))] result = np.array(result) if lib.infer_dtype(result, skipna=False) == "timedelta": result, _ = sequence_to_td64ns(result) return type(self)(result) return result elif is_integer_dtype(other.dtype) or is_float_dtype(other.dtype): result = self._data // other return type(self)(result) else: dtype = getattr(other, "dtype", type(other).__name__) raise TypeError(f"Cannot divide {dtype} by {type(self).__name__}") @unpack_zerodim_and_defer("__rfloordiv__") def __rfloordiv__(self, other): if is_scalar(other): if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # treat this specifically as timedelta-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # dispatch to Timedelta implementation result = other.__floordiv__(self._data) return result raise TypeError( f"Cannot divide {type(other).__name__} by {type(self).__name__}" ) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide with unequal lengths") elif is_timedelta64_dtype(other.dtype): other = type(self)(other) # numpy timedelta64 does not natively support floordiv, so operate # on the i8 values result = other.asi8 // self.asi8 mask = self._isnan | other._isnan if mask.any(): result = result.astype(np.float64) np.putmask(result, mask, np.nan) return result elif is_object_dtype(other.dtype): result = [other[n] // self[n] for n in range(len(self))] result = np.array(result) return result else: dtype = getattr(other, "dtype", type(other).__name__) raise TypeError(f"Cannot divide {dtype} by {type(self).__name__}") @unpack_zerodim_and_defer("__mod__") def __mod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return self - (self // other) * other @unpack_zerodim_and_defer("__rmod__") def __rmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return other - (other // self) * self @unpack_zerodim_and_defer("__divmod__") def __divmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = self // other res2 = self - res1 * other return res1, res2 @unpack_zerodim_and_defer("__rdivmod__") def __rdivmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = other // self res2 = other - res1 * self return res1, res2 def __neg__(self) -> TimedeltaArray: if self.freq is not None: return type(self)(-self._data, freq=-self.freq) return type(self)(-self._data) def __pos__(self) -> TimedeltaArray: return type(self)(self._data, freq=self.freq) def __abs__(self) -> TimedeltaArray: # Note: freq is not preserved return type(self)(np.abs(self._data)) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timedelta methods def total_seconds(self) -> np.ndarray: """ Return total duration of each element expressed in seconds. This method is available directly on TimedeltaArray, TimedeltaIndex and on Series containing timedelta values under the ``.dt`` namespace. Returns ------- seconds : [ndarray, Float64Index, Series] When the calling object is a TimedeltaArray, the return type is ndarray. When the calling object is a TimedeltaIndex, the return type is a Float64Index. When the calling object is a Series, the return type is Series of type `float64` whose index is the same as the original. See Also -------- datetime.timedelta.total_seconds : Standard library version of this method. TimedeltaIndex.components : Return a DataFrame with components of each Timedelta. Examples -------- **Series** >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d')) >>> s 0 0 days 1 1 days 2 2 days 3 3 days 4 4 days dtype: timedelta64[ns] >>> s.dt.total_seconds() 0 0.0 1 86400.0 2 172800.0 3 259200.0 4 345600.0 dtype: float64 **TimedeltaIndex** >>> idx = pd.to_timedelta(np.arange(5), unit='d') >>> idx TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) >>> idx.total_seconds() Float64Index([0.0, 86400.0, 172800.0, 259200.00000000003, 345600.0], dtype='float64') """ return self._maybe_mask_results(1e-9 * self.asi8, fill_value=None) def to_pytimedelta(self) -> np.ndarray: """ Return Timedelta Array/Index as object ndarray of datetime.timedelta objects. Returns ------- datetimes : ndarray """ return tslibs.ints_to_pytimedelta(self.asi8) days = _field_accessor("days", "days", "Number of days for each element.") seconds = _field_accessor( "seconds", "seconds", "Number of seconds (>= 0 and less than 1 day) for each element.", ) microseconds = _field_accessor( "microseconds", "microseconds", "Number of microseconds (>= 0 and less than 1 second) for each element.", ) nanoseconds = _field_accessor( "nanoseconds", "nanoseconds", "Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.", ) @property def components(self): """ Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns ------- a DataFrame """ from pandas import DataFrame columns = [ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", "nanoseconds", ] hasnans = self._hasnans if hasnans: def f(x): if isna(x): return [np.nan] * len(columns) return x.components else: def f(x): return x.components result = DataFrame([f(x) for x in self], columns=columns) if not hasnans: result = result.astype("int64") return result # --------------------------------------------------------------------- # Constructor Helpers def sequence_to_td64ns(data, copy=False, unit=None, errors="raise"): """ Parameters ---------- data : list-like copy : bool, default False unit : str, optional The timedelta unit to treat integers as multiples of. For numeric data this defaults to ``'ns'``. Must be un-specified if the data contains a str and ``errors=="raise"``. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- converted : numpy.ndarray The sequence converted to a numpy array with dtype ``timedelta64[ns]``. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ inferred_freq = None if unit is not None: unit = parse_timedelta_unit(unit) # Unwrap whatever we have into a np.ndarray if not hasattr(data, "dtype"): # e.g. list, tuple if np.ndim(data) == 0: # i.e. generator data = list(data) data = np.array(data, copy=False) elif isinstance(data, ABCSeries): data = data._values elif isinstance(data, (ABCTimedeltaIndex, TimedeltaArray)): inferred_freq = data.freq data = data._data elif isinstance(data, IntegerArray): data = data.to_numpy("int64", na_value=tslibs.iNaT) elif is_categorical_dtype(data.dtype): data = data.categories.take(data.codes, fill_value=NaT)._values copy = False # Convert whatever we have into timedelta64[ns] dtype if is_object_dtype(data.dtype) or is_string_dtype(data.dtype): # no need to make a copy, need to convert if string-dtyped data = objects_to_td64ns(data, unit=unit, errors=errors) copy = False elif is_integer_dtype(data.dtype): # treat as multiples of the given unit data, copy_made = ints_to_td64ns(data, unit=unit) copy = copy and not copy_made elif is_float_dtype(data.dtype): # cast the unit, multiply base/frac separately # to avoid precision issues from float -> int mask = np.isnan(data) m, p = precision_from_unit(unit or "ns") base = data.astype(np.int64) frac = data - base if p: frac = np.round(frac, p) data = (base * m + (frac * m).astype(np.int64)).view("timedelta64[ns]") data[mask] = iNaT copy = False elif is_timedelta64_dtype(data.dtype): if data.dtype != TD64NS_DTYPE: # non-nano unit # TODO: watch out for overflows data = data.astype(TD64NS_DTYPE) copy = False else: # This includes datetime64-dtype, see GH#23539, GH#29794 raise TypeError(f"dtype {data.dtype} cannot be converted to timedelta64[ns]") data = np.array(data, copy=copy) assert data.dtype == "m8[ns]", data return data, inferred_freq def ints_to_td64ns(data, unit="ns"): """ Convert an ndarray with integer-dtype to timedelta64[ns] dtype, treating the integers as multiples of the given timedelta unit. Parameters ---------- data : numpy.ndarray with integer-dtype unit : str, default "ns" The timedelta unit to treat integers as multiples of. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data bool : whether a copy was made """ copy_made = False unit = unit if unit is not None else "ns" if data.dtype != np.int64: # converting to int64 makes a copy, so we can avoid # re-copying later data = data.astype(np.int64) copy_made = True if unit != "ns": dtype_str = f"timedelta64[{unit}]" data = data.view(dtype_str) # TODO: watch out for overflows when converting from lower-resolution data = data.astype("timedelta64[ns]") # the astype conversion makes a copy, so we can avoid re-copying later copy_made = True else: data = data.view("timedelta64[ns]") return data, copy_made def objects_to_td64ns(data, unit=None, errors="raise"): """ Convert a object-dtyped or string-dtyped array into an timedelta64[ns]-dtyped array. Parameters ---------- data : ndarray or Index unit : str, default "ns" The timedelta unit to treat integers as multiples of. Must not be specified if the data contains a str. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting `errors=ignore` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ # coerce Index to np.ndarray, converting string-dtype if necessary values = np.array(data, dtype=np.object_, copy=False) result = array_to_timedelta64(values, unit=unit, errors=errors) return result.view("timedelta64[ns]") def _validate_td64_dtype(dtype): dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, np.dtype("timedelta64")): # no precision disallowed GH#24806 msg = ( "Passing in 'timedelta' dtype with no precision is not allowed. " "Please pass in 'timedelta64[ns]' instead." ) raise ValueError(msg) if not is_dtype_equal(dtype, TD64NS_DTYPE): raise ValueError(f"dtype {dtype} cannot be converted to timedelta64[ns]") return dtype
bsd-3-clause
qiudebo/13learn
code/matplotlib/aqy/aqy_lines_bars3.py
1
1499
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'qiudebo' import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': plt.rcdefaults() fig, ax = plt.subplots() labels = (u"硕士以上", u"本科", u"大专", u"高中-中专", u"初中", u"小学") x = (0.13, 0.22, 0.25, 0.18, 0.13, 0.10) x1 = (-0.11, -0.19, -0.23, -0.20, -0.17, -0.10) width = 0.35 # 条形图的宽度 y = np.arange(len(labels)) ax.barh(y, x, width, align='center', color='g', label=u'我的前半生') ax.barh(y, x1, width, align='center', color='b', label=u'三生三世十里桃花') ax.set_yticks(y + width/2) ax.set_yticklabels(labels) ax.invert_yaxis() ax.set_xlabel('') ax.set_title('') # ax.yaxis.grid(True) # 水平网格 ax.xaxis.grid(True) plt.xlim(-0.3, 0.3) plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 #ax.set_xticks(()) # 隐藏y轴 # 设置图例 # plt.legend(loc="lower right", bbox_to_anchor=[1, 0.95],shadow=True, # ncol=1, title="Legend", fancybox=True) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=6) # 去除样例周边的边框 # plt.legend(frameon=False) ax.get_legend().get_title().set_color("red") plt.show()
mit
LEX2016WoKaGru/pyClamster
scripts/cam_kite/cam_kite_doppel_all.py
1
9888
#!/usr/bin/env python3 import pyclamster from pyclamster.coordinates import Coordinates3d import numpy as np import matplotlib.pyplot as plt import logging import pickle import datetime logging.basicConfig(level=logging.DEBUG) def read_theo_data(file_list): m = [] for measure_files in file_list: time1 = [] star1 = [] azim1 = [] elev1 = [] for k in range(len(measure_files)): time1.append([]) star1.append([]) azim1.append([]) elev1.append([]) with open(measure_files[k]) as f: f.readline() eof = False while not eof: line = f.readline() if line[0]=='E': eof = True time1[-1].append(int(line[3:6])) star1[-1].append(1 if line[6:7]=='*' else 0) azim1[-1].append(pyclamster.utils.deg2rad(float(line[7:13]))) elev1[-1].append(pyclamster.utils.deg2rad(float(line[15:20]))) time = [] star = [] azim = [] elev = [] for i in range(len(measure_files)): time.append(np.array(time1[i])) star.append(np.array(star1[i])) azim.append(np.array(azim1[i])) elev.append(np.array(elev1[i])) maxlen = min([len(time[i]) for i in [0,1]]) m1 = np.empty([6,maxlen]) m1[0,:] = time[0][:maxlen] m1[1,:] = star[0][:maxlen]+star[1][:maxlen] m1[2,:] = azim[0][:maxlen] m1[3,:] = azim[1][:maxlen] m1[4,:] = elev[0][:maxlen] m1[5,:] = elev[1][:maxlen] m.append(m1) return m #t3m1,t4m1,t3m2,t4m2 datafiles = [["scripts/theo_kite/Theo_daten/rot/000R_20160901_110235.td4", "scripts/theo_kite/Theo_daten/gelb/000G_20160901_110235.td4"], ["scripts/theo_kite/Theo_daten/rot/000R_20160901_112343.td4", "scripts/theo_kite/Theo_daten/gelb/000G_20160901_112344.td4"]] data = read_theo_data(datafiles) theo3_gk = Coordinates3d(x=4450909.840, y=6040800.456, z=6 ,azimuth_offset=3/2*np.pi,azimuth_clockwise=True) theo4_gk = Coordinates3d(x=4450713.646, y=6040934.273, z=1 ,azimuth_offset=3/2*np.pi,azimuth_clockwise=True) hotel_gk = Coordinates3d(x=4449525.439, y=6041088.713 ,azimuth_offset=3/2*np.pi,azimuth_clockwise=True) nordcorr3 = -np.arctan2(hotel_gk.y-theo3_gk.y,hotel_gk.x-theo3_gk.x)+np.pi*0.5 nordcorr4 = -np.arctan2(hotel_gk.y-theo4_gk.y,hotel_gk.x-theo4_gk.x)+np.pi*0.5 # first measurements theo3_1 = Coordinates3d( azimuth = pyclamster.pos_rad(data[0][2,:]+nordcorr3), elevation = data[0][4,:], azimuth_clockwise = True, azimuth_offset = 3/2*np.pi, elevation_type = "ground" ) theo4_1 = Coordinates3d( azimuth = pyclamster.pos_rad(data[0][3,:]+nordcorr4), elevation = data[0][5,:], azimuth_clockwise = True, azimuth_offset = 3/2*np.pi, elevation_type = "ground" ) # second measurements theo3_2 = Coordinates3d( azimuth = pyclamster.pos_rad(data[1][2,:]+nordcorr3), elevation = data[1][4,:], azimuth_clockwise = True, azimuth_offset = 3/2*np.pi, elevation_type = "ground" ) theo4_2 = Coordinates3d( azimuth = pyclamster.pos_rad(data[1][3,:]+nordcorr4), elevation = data[1][5,:], azimuth_clockwise = True, azimuth_offset = 3/2*np.pi, elevation_type = "ground" ) # calculate 3d positions via doppelanschnitt doppel1,var_list1 = pyclamster.doppelanschnitt_Coordinates3d( aziele1 = theo3_1, aziele2 = theo4_1, pos1 = theo3_gk, pos2 = theo4_gk,plot_info=True ) doppel2,var_list2 = pyclamster.doppelanschnitt_Coordinates3d( aziele1 = theo3_2, aziele2 = theo4_2, pos1 = theo3_gk, pos2 = theo4_gk,plot_info=True ) session3_old = pickle.load(open('data/sessions/FE3_session.pk','rb')) session4_old = pickle.load(open('data/sessions/FE4_session.pk','rb')) session3_new = pickle.load(open('data/sessions/FE3_session_new.pk','rb')) session4_new = pickle.load(open('data/sessions/FE4_session_new.pk','rb')) cam3_old,time3_old=pickle.load(open("data/cam_kite/FE3_cam_kite.pk","rb")) cam4_old,time4_old=pickle.load(open("data/cam_kite/FE4_cam_kite.pk","rb")) time4_old = time3_old cam3_new,time3_new=pickle.load(open("data/cam_kite/FE3_cam_kite_new.pk","rb")) cam3_new.elevation = np.pi/2 - cam3_new.elevation cam4_new,time4_new=pickle.load(open("data/cam_kite/FE4_cam_kite_new.pk","rb")) cam4_new.elevation = np.pi/2 - cam4_new.elevation # calculate 3d positions via doppelanschnitt doppel_cam_old,var_list_old = pyclamster.doppelanschnitt_Coordinates3d( aziele1 = cam3_old, aziele2 = cam4_old, pos1 = session3_old.position, pos2 = session4_old.position,plot_info=True ) # calculate 3d positions via doppelanschnitt new doppel_cam_new,var_list_new = pyclamster.doppelanschnitt_Coordinates3d( aziele1 = cam3_new, aziele2 = cam4_new, pos1 = session3_new.position, pos2 = session4_new.position,plot_info=True ) if 0:# plot results doppelanschnitt_plot function pyclamster.doppelanschnitt_plot('theo1',doppel1,var_list1,theo3_gk,theo4_gk, plot_view=1,plot_position=1,plot_n=1) pyclamster.doppelanschnitt_plot('theo2',doppel2,var_list2,theo3_gk,theo4_gk, plot_view=1,plot_position=1,plot_n=1) pyclamster.doppelanschnitt_plot('cam_old',doppel_cam_old,var_list_old, session3_old.position,session4_old.position, plot_view=1,plot_position=1,plot_n=1) pyclamster.doppelanschnitt_plot('cam_new',doppel_cam_new,var_list_new, session3_new.position,session4_new.position, plot_view=1,plot_position=1,plot_n=1) if 0:# plot results theo plt.style.use("fivethirtyeight") ax = doppel1.plot3d(method="line") ax.set_title("THEO first measurement") ax.scatter3D(theo3_gk.x,theo3_gk.y,theo3_gk.z,label="Theo 3",c='r') ax.scatter3D(theo4_gk.x,theo4_gk.y,theo4_gk.z,label="Theo 4",c='g') ax.set_zlim(0,200) plt.legend() ax = doppel2.plot3d(method="line") ax.set_title("THEO second measurement") ax.scatter3D(theo3_gk.x,theo3_gk.y,theo3_gk.z,label="Theo 3",c='r') ax.scatter3D(theo4_gk.x,theo4_gk.y,theo4_gk.z,label="Theo 4",c='g') ax.set_zlim(0,200) plt.legend() if 0:# plot results cam ax = doppel_cam_old.plot3d(method="line") ax.scatter3D(session3_old.position.x,session3_old.position.y, session3_old.position.z,label="Cam 3",c='r') ax.scatter3D(session4_old.position.x,session4_old.position.y, session4_old.position.z,label="Cam 4",c='g') ax.set_title("CAM all with bad calibration [BUG, DON'T INTERPRET THIS!]") ax.set_zlim(0,300) plt.legend() ax = doppel_cam_new.plot3d(method="line") ax.scatter3D(session3_new.position.x,session3_new.position.y, session3_old.position.z,label="Cam 3",c='r') ax.scatter3D(session4_new.position.x,session4_new.position.y, session4_old.position.z,label="Cam 4",c='g') ax.set_title("CAM all with new calibration") ax.set_zlim(0,300) plt.legend() if 1:# plot time series #fig, ax = plt.subplots() #ax.plot(time3_old,cam3_old.elevation,label="cam3 old elevation") #ax.plot(time3_old,cam3_old.azimuth,label="cam3 old azimuth") #ax.plot(time4_old,cam4_old.elevation,label="cam4 old elevation") #ax.plot(time4_old,cam4_old.azimuth,label="cam4 old azimuth") #plt.legend(loc="best") fig, ax = plt.subplots() ax.plot(time3_new,cam3_new.azimuth/np.pi*180,label="cam3 new azimuth") ax.plot(time4_new,cam4_new.azimuth/np.pi*180,label="cam4 new azimuth") plt.legend(loc="best") ax.set_title("Drachen Doppelanschnitt Azimuth") ax.set_xlabel("Zeit [Uhr]") ax.set_ylabel("Winkel [°]") starttime1 = datetime.datetime(2016,9,1,11+1,2,35) #utc +1 timeseries1 = np.array([starttime1+datetime.timedelta(seconds = data[0][0,i]) for i in range(len(data[0][0,:]))]) ax.plot(timeseries1,theo3_1.azimuth/np.pi*180,'x',label="theo3 (first) azimuth") ax.plot(timeseries1,theo4_1.azimuth/np.pi*180,'x',label="theo4 (first) azimuth") plt.legend(loc="best") starttime2 = datetime.datetime(2016,9,1,11+1,23,44) #utc +1 timeseries2 = np.array([starttime2+datetime.timedelta(seconds = data[1][0,i]) for i in range(len(data[1][0,:]))]) ax.plot(timeseries2,theo3_2.azimuth/np.pi*180,'x',label="theo3 (second) azimuth") ax.plot(timeseries2,theo4_2.azimuth/np.pi*180,'x',label="theo4 (second) azimuth") plt.legend(loc="best") fig, ax = plt.subplots() ax.plot(time3_new,cam3_new.elevation/np.pi*180,label="cam3 new elevation") ax.plot(time4_new,cam4_new.elevation/np.pi*180,label="cam4 new elevation") plt.legend(loc="best") ax.set_title("Drachen Doppelanschnitt Elevation") ax.set_xlabel("Zeit [Uhr]") ax.set_ylabel("Winkel [°]") starttime1 = datetime.datetime(2016,9,1,11+1,2,35) #utc +1 timeseries1 = np.array([starttime1+datetime.timedelta(seconds = data[0][0,i]) for i in range(len(data[0][0,:]))]) ax.plot(timeseries1,theo3_1.elevation/np.pi*180,'x',label="theo3 (first) elevation") ax.plot(timeseries1,theo4_1.elevation/np.pi*180,'x',label="theo4 (first) elevation") plt.legend(loc="best") starttime2 = datetime.datetime(2016,9,1,11+1,23,44) #utc +1 timeseries2 = np.array([starttime2+datetime.timedelta(seconds = data[1][0,i]) for i in range(len(data[1][0,:]))]) ax.plot(timeseries2,theo3_2.elevation/np.pi*180,'x',label="theo3 (second) elevation") ax.plot(timeseries2,theo4_2.elevation/np.pi*180,'x',label="theo4 (second) elevation") plt.legend(loc="best") plt.show()
gpl-3.0
BennettLandman/pyPheWAS
Novelty_PheDAS/novelty_pubmed_reg_preproc.py
1
4578
import pandas as pd import argparse import os import numpy as np import os.path as osp from ast import literal_eval from tqdm import tqdm def parse_args(): parser = argparse.ArgumentParser(description="Add PubMED results to pyPheWAS stat file") parser.add_argument('--statfile', required=True, type=str, help='Name of the stat file (e.g. regressions.csv)') parser.add_argument('--dx_pm', required=True, type=str, help='Name of the Dx PubMED file (e.g. dx_PubMED_results.csv)') parser.add_argument('--pm_dir', required=True, type=str, help ='Path to PheCode PubMED directory') parser.add_argument('--path', required=False, default='.', type=str, help='Path to all input files and destination of output files') parser.add_argument('--outfile', required=False, default=None, type=str, help='Name of the updated regression output file (default: same as statfile)') args = parser.parse_args() return args def main(): ### Get Args ### args = parse_args() if args.outfile is None: outfile = osp.join(args.path, args.statfile) else: outfile = osp.join(args.path, args.outfile) reg_f = open(osp.join(args.path, args.statfile)) reg_hdr = reg_f.readline() # TODO: Add str back in - fix saving of reg file reg = pd.read_csv(reg_f) # , dtype={"PheWAS Code":str}) reg_f.close() reg.rename(columns={'Conf-interval beta':'beta.ci','std_error':'beta.se'},inplace=True) dx_pubmed = pd.read_csv(osp.join(args.path, args.dx_pm)) pubmed_dir = args.pm_dir ### Set-up Dx list of UIDs ### dx_set = set(literal_eval(dx_pubmed.loc[0, "IdsList"])) dx_count = len(dx_set) reg["AD.PM.count"] = dx_count ### Get PheCode PubMED counts & joint PubMED counts ### reg["phe.PM.count"] = np.nan reg["joint.PM.count"] = np.nan reg["P.PM.phe.given.AD"] = np.nan reg["P.PM.AD.given.phe"] = np.nan tmp = open("tmp.txt","w+") pubmed_file_list = os.listdir(pubmed_dir) for j in tqdm(range(0,1856)): fname = "phewas_counts_%d.csv" % j if fname in pubmed_file_list: try: tmp.write("%s\n" % fname) phecode_pubmed = pd.read_csv(osp.join(pubmed_dir, fname)) # , dtype={"phewas_code": str}) except Exception as e: ef = open("novelty_pubmed_errors.csv", 'a+') ef.write("error opening%s,%s" % (fname, e.args[0])) ef.close() for ix, data in phecode_pubmed.iterrows(): phe = data["phewas_code"] tmp.write("%s\n" % phe) if phe in reg["PheWAS Code"].values: phe_ix = reg["PheWAS Code"] == phe phe_set = set(literal_eval(data["IdsList"])) reg.loc[phe_ix, "phe.PM.count"] = len(phe_set) joint_set = dx_set.intersection(phe_set) reg.loc[phe_ix, "joint.PM.count"] = len(joint_set) if len(dx_set) != 0: reg.loc[phe_ix, "P.PM.phe.given.AD"] = len(joint_set) / len(dx_set) if len(phe_set) != 0: reg.loc[phe_ix, "P.PM.AD.given.phe"] = len(joint_set) / len(phe_set) for j in tqdm(['','2','3']): fname = "phewas_counts_missed%s.csv" % j if fname in pubmed_file_list: try: tmp.write("%s\n" % fname) phecode_pubmed = pd.read_csv(osp.join(pubmed_dir, fname)) # , dtype={"phewas_code": str}) except Exception as e: ef = open("novelty_pubmed_errors.csv", 'a+') ef.write("error opening%s,%s" % (fname, e.args[0])) ef.close() for ix, data in phecode_pubmed.iterrows(): phe = data["phewas_code"] tmp.write("%s\n" % phe) if phe in reg["PheWAS Code"].values: phe_ix = reg["PheWAS Code"] == phe phe_set = set(literal_eval(data["IdsList"])) reg.loc[phe_ix, "phe.PM.count"] = len(phe_set) joint_set = dx_set.intersection(phe_set) reg.loc[phe_ix, "joint.PM.count"] = len(joint_set) if len(dx_set) != 0: reg.loc[phe_ix, "P.PM.phe.given.AD"] = len(joint_set) / len(dx_set) if len(phe_set) != 0: reg.loc[phe_ix, "P.PM.AD.given.phe"] = len(joint_set) / len(phe_set) tmp.close() reg.to_csv(outfile,index=False) if __name__ == '__main__': main()
mit
alexcritschristoph/VICA
identify_host.py
4
11633
''' Alex Crits-Christoph License: GPL3 Identifies closest GenBank prokaryote genomes by euclidean distance between tetranucleotide frequencies of query sequences. ''' import json from scipy.spatial import distance import sys from Bio import SeqIO from marker_genes import meta_marker import operator import argparse import os.path from sklearn import manifold import matplotlib.pyplot as plt import numpy as np from collections import Counter ##Calculates the tetramer counts for an input sequence def calc_tetra(seqs): #Create tetramers dict tetramers = {} for a in ['A', 'C', 'G', 'T']: for b in ['A', 'C', 'G', 'T']: for c in ['A', 'C', 'G', 'T']: for d in ['A', 'C', 'G', 'T']: tetramers[a+b+c+d] = 0 #Count tetramers across sequence in a 4 bp sliding window start = 0 end = 4 for i in range(0,len(str(seqs.seq))): if len(str(seqs.seq[start:end])) == 4: try: tetramers[str(seqs.seq[start:end])] += 1 except: pass start += 1 end += 1 #Return tetramers dictionary return tetramers ## ## def read_data(tetramers, data): #Normalize total = sum(tetramers.values()) for k in tetramers.keys(): tetramers[k] = float(tetramers[k]) / float(total) for species in data.keys(): total = sum(data[species].values()) for k in data[species].keys(): data[species][k] = float(data[species][k]) / float(total) #compare query_dat = [] for d in sorted(tetramers.keys()): query_dat.append(tetramers[d]) distances = {} for species in data.keys(): subject_data = [] for d in sorted(data[species].keys()): subject_data.append(data[species][d]) distances[species] = round(distance.euclidean(query_dat, subject_data),5) count = 0 result_string = '' for w in sorted(distances, key=distances.get): if count <= 3: result_string += "(" + w + ", " + str(distances[w]) + "), " count += 1 else: break return result_string def tetrat_compare(tetramers1, results): #Normalize distances = {} real_names = {} for tets in results[0]: tetramers2 = results[0][tets] name = results[1][tets] + " (" + tets + ")" real_names[results[1][tets] + " (" + tets + ")"] = tets total = sum(tetramers1.values()) for k in tetramers1.keys(): tetramers1[k] = float(tetramers1[k]) / float(total) total = sum(tetramers2.values()) for k in tetramers2.keys(): tetramers2[k] = float(tetramers2[k]) / float(total) query_dat = [] for d in sorted(tetramers1.keys()): query_dat.append(tetramers1[d]) subject_dat = [] for d in sorted(tetramers2.keys()): subject_dat.append(tetramers2[d]) distances[name] = round(distance.euclidean(query_dat, subject_dat),5) return [real_names, sorted(distances.items(), key=operator.itemgetter(1))] def visualize(data, file_name): tetramer_array = [] names = data[0][1] sizes = data[0][2] contig_count = 0 name_pos = [] for t in sorted(data[0][0].keys()): name_pos.append(t) contig_count += 1 temp = [] for tet in sorted(data[0][0][t].keys()): temp.append(data[0][0][t][tet]) tetramer_array.append(temp) for t in sorted(data[1].keys()): temp = [] for tet in sorted(data[1][t].keys()): temp.append(data[1][t][tet]) tetramer_array.append(temp) tetramers_np = np.array(tetramer_array) seed = np.random.RandomState(seed=3) mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="euclidean", n_jobs=1) fit = mds.fit_transform(tetramers_np) #Contig sizing for contig in sizes: sizes[contig] = float(sizes[contig]) / float(max(sizes.values())) * 250 + 35 sizes_list = [] for contig in sorted(sizes.keys()): sizes_list.append(sizes[contig]) #Contig colors color_assigned = {} color_list = [] color_brewer = ['#1f78b4', '#33a02c', '#e31a1c', '#ff7f00', '#6a3d9a', '#b15928', '#a6cee3', '#b2df8a', '#fb9a99', '#fdbf6f', '#cab2d6', '#ffff99'] i = 0 #assign colors most_common_names = Counter(names.values()).most_common() for name in most_common_names: if len(name) > 1: n = name[0] if n not in color_assigned: if i < len(color_brewer)-1: color_assigned[n] = color_brewer[i] i += 1 else: color_assigned[n] = color_brewer[i] else: color_assigned[n] = '#ffff99' #create color list for name in sorted(names.keys()): color_list.append(color_assigned[names[name]]) #plot it plt.scatter(fit[0:contig_count,0], fit[0:contig_count:,1], s=sizes_list, c=color_list, marker= 'o', alpha=0.9) plt.scatter(fit[contig_count:,0], fit[contig_count:,1], marker= 'x', s=50, c="#ef1a1a", alpha=1) #Output graphical data to file f = open('./pca_data.txt', 'w') f.write("Host contigs:\n") f.write("Contig name, BLAST hit, x coord, y coord\n") i = 0 for t in sorted(data[0][0].keys()): f.write(str(t) + "," + str(names[t]) + "," + str(fit[i,0]) + "," + str(fit[i,1]) + "\n") i += 1 f.write("Viral contigs:\n") f.write("Contig name, closest host contig, closest host name, x coord, y coord\n") for t in sorted(data[1].keys()): name = data[2][t] f.write(str(t) + "," + str(name) + "," + str(names[name]) + "," + str(fit[i,0]) + "," + str(fit[i,1]) + "\n") i += 1 f.close() #Add labels positions = {} i = 0 avg_size = sum(sizes.values()) / len(sizes.values()) for name in sorted(names.keys()): if len(names.keys()) > 5 and sizes[name] > avg_size: positions[names[name]] = [fit[i,0], fit[i,1]] i += 1 #Plot virus - closest host lines i = 0 for t in sorted(data[1].keys()): #get pos of name in fit name = name_pos.index(data[2][t]) #plot line plt.plot([fit[contig_count+i,0], fit[name,0]], [fit[contig_count+i,1], fit[name,1]], alpha=0.5) # plt.annotate( # t, # xy = (fit[contig_count+i,0], fit[contig_count+i,1]), xytext = (0, -20), # textcoords = 'offset points', ha = 'right', va = 'bottom', # fontsize = 8, # bbox = dict(boxstyle = 'round,pad=0.2', fc = 'white', alpha = 0.5), # arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')) i += 1 for name in positions.keys(): x = positions[name][0] y = positions[name][1] plt.annotate( name, xy = (x, y), xytext = (-30, 30), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize = 10, bbox = dict(boxstyle = 'round,pad=0.2', fc = 'white', alpha = 0.5), arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')) plt.savefig(file_name) plt.show() ## Main Function if __name__ == "__main__": ## Handle arguments. __author__ = "Alex Crits-Christoph" parser = argparse.ArgumentParser(description='Predicts host(s) for a contig through tetranucleotide similarity.') parser.add_argument('-i','--input', help='Viral contig(s) fasta file',required=True) parser.add_argument('-a','--assembly',help='Cellular metagenome assembly FASTA file (to search for host marker genes).', required=False) parser.add_argument('-v', '--visualize', help="Visualizes NMDS of tetranucleotide frequencies for host contigs and viral contigs.", required=False, action='store_true') parser.add_argument('-b', '--blast_path', help="Path to the BLASTP executable (default: blastp).", required=False) parser.add_argument('-hm', '--hmmsearch_path', help="Path to the hmmsearch executable (default: hmmsearch).", required=False) parser.add_argument('-o', '--output', help="Path to the directory to store output (will create if does not exist).", required=False) args = parser.parse_args() #Check to see if output directory exists if args.output: if os.path.isdir(args.output): output_dir = args.output else: os.system("mkdir " + args.output) if os.path.isdir(args.output): output_dir = args.output else: print "[ERROR] Could not create output directory." sys.exit(1) else: output_dir = './' blast_path = 'blastp' if args.blast_path: blast_path = args.blast_path hmmsearch_path = 'hmmsearch' if args.hmmsearch_path: hmmsearch_path = args.hmmsearch_path if args.input: if os.path.isfile(args.input): contigs = args.input else: print "[ERROR] The provided viral contig FASTA file was not found" sys.exit() else: print "[ERROR] No viral contig FASTA file was provided" sys.exit() database = './data/tetramer_database.dat' if os.path.isfile('./data/tetramer_database.dat'): print "[SETUP] Found tetramer database file, using " + database + "." else: print "[ERROR] could not find tetramer database. Check for ./data/tetramer_database.dat in the local directory" sys.exit() if args.assembly: if os.path.isfile(args.input): print "[SETUP] Assembly included. Will search for host marker genes in the assembly and compare viral contigs to genomes of identified hosts" metagenome = args.assembly else: print "[ERROR] The provided metagenome assembly contig FASTA file was not found" sys.exit() else: print "[SETUP] No assembly file included. Will compare viral contigs to all host genomes in GenBank" #Read in viral queries handle = open(contigs, "rU") records = list(SeqIO.parse(handle, "fasta")) handle.close() print "[EXEC] Loading database" with open(database) as data_file: data = json.load(data_file) if args.assembly: print "[EXEC] Searching for marker contigs in metagenome assembly" results = meta_marker.find_markers(metagenome, blast_path, hmmsearch_path, output_dir) # #Compare with database # print "[EXEC] Comparing query tetranucleotide frequencies to entire database" # f = open(output_dir.rstrip("/") + "/" + contigs.split("/")[-1] + "_genbank.txt", 'w+') # f.write("Viral contig name: (Closest GenBank match, Euclidean Distance)\n") # for seqs in records: # tetramers = calc_tetra(seqs) # result_string = read_data(tetramers, data) # f.write(seqs.id + ": " + result_string + "\n") # f.close() if args.assembly: #Compare with contigs print "[EXEC] Comparing query tetranucleotide frequencies to contigs with marker proteins" f = open(output_dir.rstrip("/") + "/" + contigs.split("/")[-1].split(".")[0] + "_markercontigs.txt", 'w+') f.write("Viral contig name: (Closest contig identity (contig name), Euclidean Distance to marker contig)\n") combined_results = [results, {}, {}] for seqs in records: tetramers = calc_tetra(seqs) tetrats = tetrat_compare(tetramers, results) top_three = tetrats[1][:3] f.write(seqs.id + ": " + str(top_three).replace("]","").replace("[","") + "\n") combined_results[1][seqs.id] = tetramers combined_results[2][seqs.id] = tetrats[0][top_three[0][0]] f.close() #Compare with closest BLAST matches in the database print "[EXEC] Comparing query tetranucleotide frequencies to genomes of species identified in metagenome" f = open(output_dir.rstrip("/") + "/" + contigs.split("/")[-1].split(".")[0] + "_markergenbank.txt", 'w+') f.write("Viral contig name: (Identified species (marker contig name), Euclidean Distance to GenBank genome)\n") #Create subset of genomes which were found in this assembly genomes_in_metagenome = {} species_to_contigs = {} for contig in results[1]: genus = results[1][contig] for species in data.keys(): if genus in species: genomes_in_metagenome[species + " (" + contig + ")"] = data[species] species_to_contigs[species] = contig for seqs in records: tetramers = calc_tetra(seqs) result_string = read_data(tetramers, genomes_in_metagenome) f.write(seqs.id + ": " + result_string + "\n") f.close() #Visualization print "[EXEC] Visualizing results" if args.visualize: visualize(combined_results, output_dir.rstrip("/") + "/" + contigs.split("/")[-1].split(".")[0] + ".png")
gpl-2.0
radk0s/pathfinding
algorithm/adaptation.py
1
4143
import numpy as np import matplotlib.pyplot as plt import scipy.interpolate import random import copy import yaml from datetime import datetime from cost import cost as costNorm import annealing def prepareElevationFunction(file, x, y, z): with open(file, 'r') as file: for line in file.readlines(): val = line.split('\t') x.append(float(val[0])) y.append(float(val[1])) z.append(float(val[2])) x = np.array(x) y = np.array(y) z = np.array(z) xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100) xi, yi = np.meshgrid(xi, yi) rbf = scipy.interpolate.Rbf(x, y, z, function='linear') return (rbf(xi, yi), rbf) def calculateSegmentCost(start, end): return cost(start, end) def calculateTotalCost(path, elevationFn): total_cost= 0 for i in xrange(len(path) - 1): total_cost += costNorm(path[i][0], path[i][1], elevationFn(path[i][0], path[i][1]), path[i + 1][0], path[i + 1][1], elevationFn(path[i + 1][0], path[i + 1][1])) return total_cost # generate initial solution # TODO jak punkty sa zdefiniowane w ten sposob (czyt na odwrot (lon,lat) zamiast (lat,lon)) -> 'from geopy.distance import vincenty' bedzie zle przeliczalo odleglosci! def generateRandomPoints(start, end, x, y, z, randomPoints): points = [start, end] return points[:1] + zip(random.sample(x, randomPoints), random.sample(y, randomPoints)) + points[1:] def generatePoints(start, end, parts): randomPoints = 0 points = [start, end] diff_x = end[0] - start[0] diff_y = end[1] - start[1] step_x = diff_x/parts step_y = diff_y/parts return points[:1] + [(start[0] + step_x * i, start[1] + step_y * i) for i in range(parts)] + points[1:] def drawPlot(filename, points, x, y, z, mesh, totalCost, steps, elapsed =0): xx, yy = zip(*points) plt.imshow(mesh, vmin=np.array(z).min(), vmax=np.array(z).max(), origin='lower', extent=[np.array(x).min(), np.array(x).max(), np.array(y).min(), np.array(y).max()], cmap='terrain') plt.plot(xx, yy, color='red', lw=2) plt.colorbar() text = 'path cost: ' + str(totalCost) + '\n' + \ 'steps: ' + str(steps) + '\n' +\ 'time: ' + str(elapsed) plt.suptitle(text, fontsize=14, fontweight='bold') plt.savefig(filename + '.png') plt.close() # plt.show() def adaptation_path(configfile, pointsD = None): start_time = datetime.now() points = copy.deepcopy(pointsD); config = None with open(configfile, 'r') as stream: config = yaml.load(stream) steps = None print(points) if config['steps'] != None: steps = int(config['steps']) x, y, z = [], [], [] mesh, getElevation = prepareElevationFunction(config['data_file'], x, y, z) if points == None: if config['random_points'] == 1: points = generateRandomPoints( (config['start_lon'], config['start_lat']), (config['end_lon'], config['end_lat']), x, y, z, int(config['initial_points_count'])) else: points = generatePoints( (config['start_lon'], config['start_lat']), (config['end_lon'], config['end_lat']), int(config['initial_points_count'])) pathCost = calculateTotalCost(points, getElevation) elapsed = datetime.now() - start_time drawPlot('initial_path', points, x, y, z, mesh, calculateTotalCost(points, getElevation), 0, elapsed) tsp = annealing.TSP(points, getElevation, calculateTotalCost, 200, np.array(x).min(), np.array(x).max(), np.array(y).min(), np.array(y).max() ) if steps != None: tsp.steps = steps; tsp.copy_strategy = "slice" state, e = tsp.anneal() elapsed = datetime.now() - start_time drawPlot('optimized_path_' + (str(steps) if steps != None else 'covergence'), state, x, y, z, mesh, calculateTotalCost(state, getElevation), tsp.currentStep, elapsed)
mit
RobertABT/heightmap
build/matplotlib/examples/widgets/span_selector.py
9
1091
#!/usr/bin/env python """ The SpanSelector is a mouse widget to select a xmin/xmax range and plot the detail view of the selected region in the lower axes """ import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import SpanSelector fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(211, axisbg='#FFFFCC') x = np.arange(0.0, 5.0, 0.01) y = np.sin(2*np.pi*x) + 0.5*np.random.randn(len(x)) ax.plot(x, y, '-') ax.set_ylim(-2,2) ax.set_title('Press left mouse button and drag to test') ax2 = fig.add_subplot(212, axisbg='#FFFFCC') line2, = ax2.plot(x, y, '-') def onselect(xmin, xmax): indmin, indmax = np.searchsorted(x, (xmin, xmax)) indmax = min(len(x)-1, indmax) thisx = x[indmin:indmax] thisy = y[indmin:indmax] line2.set_data(thisx, thisy) ax2.set_xlim(thisx[0], thisx[-1]) ax2.set_ylim(thisy.min(), thisy.max()) fig.canvas.draw() # set useblit True on gtkagg for enhanced performance span = SpanSelector(ax, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red') ) plt.show()
mit
Chemcy/vnpy
vn.trader/ctaStrategy/ctaBacktesting.py
3
40071
# encoding: UTF-8 ''' 本文件中包含的是CTA模块的回测引擎,回测引擎的API和CTA引擎一致, 可以使用和实盘相同的代码进行回测。 ''' from __future__ import division from datetime import datetime, timedelta from collections import OrderedDict from itertools import product import multiprocessing import pymongo from ctaBase import * from vtConstant import * from vtGateway import VtOrderData, VtTradeData from vtFunction import loadMongoSetting ######################################################################## class BacktestingEngine(object): """ CTA回测引擎 函数接口和策略引擎保持一样, 从而实现同一套代码从回测到实盘。 """ TICK_MODE = 'tick' BAR_MODE = 'bar' #---------------------------------------------------------------------- def __init__(self): """Constructor""" # 本地停止单编号计数 self.stopOrderCount = 0 # stopOrderID = STOPORDERPREFIX + str(stopOrderCount) # 本地停止单字典 # key为stopOrderID,value为stopOrder对象 self.stopOrderDict = {} # 停止单撤销后不会从本字典中删除 self.workingStopOrderDict = {} # 停止单撤销后会从本字典中删除 # 引擎类型为回测 self.engineType = ENGINETYPE_BACKTESTING # 回测相关 self.strategy = None # 回测策略 self.mode = self.BAR_MODE # 回测模式,默认为K线 self.startDate = '' self.initDays = 0 self.endDate = '' self.slippage = 0 # 回测时假设的滑点 self.rate = 0 # 回测时假设的佣金比例(适用于百分比佣金) self.size = 1 # 合约大小,默认为1 self.priceTick = 0 # 价格最小变动 self.dbClient = None # 数据库客户端 self.dbCursor = None # 数据库指针 #self.historyData = [] # 历史数据的列表,回测用 self.initData = [] # 初始化用的数据 #self.backtestingData = [] # 回测用的数据 self.dbName = '' # 回测数据库名 self.symbol = '' # 回测集合名 self.dataStartDate = None # 回测数据开始日期,datetime对象 self.dataEndDate = None # 回测数据结束日期,datetime对象 self.strategyStartDate = None # 策略启动日期(即前面的数据用于初始化),datetime对象 self.limitOrderDict = OrderedDict() # 限价单字典 self.workingLimitOrderDict = OrderedDict() # 活动限价单字典,用于进行撮合用 self.limitOrderCount = 0 # 限价单编号 self.tradeCount = 0 # 成交编号 self.tradeDict = OrderedDict() # 成交字典 self.logList = [] # 日志记录 # 当前最新数据,用于模拟成交用 self.tick = None self.bar = None self.dt = None # 最新的时间 #---------------------------------------------------------------------- def setStartDate(self, startDate='20100416', initDays=10): """设置回测的启动日期""" self.startDate = startDate self.initDays = initDays self.dataStartDate = datetime.strptime(startDate, '%Y%m%d') initTimeDelta = timedelta(initDays) self.strategyStartDate = self.dataStartDate + initTimeDelta #---------------------------------------------------------------------- def setEndDate(self, endDate=''): """设置回测的结束日期""" self.endDate = endDate if endDate: self.dataEndDate= datetime.strptime(endDate, '%Y%m%d') # 若不修改时间则会导致不包含dataEndDate当天数据 self.dataEndDate.replace(hour=23, minute=59) #---------------------------------------------------------------------- def setBacktestingMode(self, mode): """设置回测模式""" self.mode = mode #---------------------------------------------------------------------- def setDatabase(self, dbName, symbol): """设置历史数据所用的数据库""" self.dbName = dbName self.symbol = symbol #---------------------------------------------------------------------- def loadHistoryData(self): """载入历史数据""" host, port, logging = loadMongoSetting() self.dbClient = pymongo.MongoClient(host, port) collection = self.dbClient[self.dbName][self.symbol] self.output(u'开始载入数据') # 首先根据回测模式,确认要使用的数据类 if self.mode == self.BAR_MODE: dataClass = CtaBarData func = self.newBar else: dataClass = CtaTickData func = self.newTick # 载入初始化需要用的数据 flt = {'datetime':{'$gte':self.dataStartDate, '$lt':self.strategyStartDate}} initCursor = collection.find(flt) # 将数据从查询指针中读取出,并生成列表 self.initData = [] # 清空initData列表 for d in initCursor: data = dataClass() data.__dict__ = d self.initData.append(data) # 载入回测数据 if not self.dataEndDate: flt = {'datetime':{'$gte':self.strategyStartDate}} # 数据过滤条件 else: flt = {'datetime':{'$gte':self.strategyStartDate, '$lte':self.dataEndDate}} self.dbCursor = collection.find(flt) self.output(u'载入完成,数据量:%s' %(initCursor.count() + self.dbCursor.count())) #---------------------------------------------------------------------- def runBacktesting(self): """运行回测""" # 载入历史数据 self.loadHistoryData() # 首先根据回测模式,确认要使用的数据类 if self.mode == self.BAR_MODE: dataClass = CtaBarData func = self.newBar else: dataClass = CtaTickData func = self.newTick self.output(u'开始回测') self.strategy.inited = True self.strategy.onInit() self.output(u'策略初始化完成') self.strategy.trading = True self.strategy.onStart() self.output(u'策略启动完成') self.output(u'开始回放数据') for d in self.dbCursor: data = dataClass() data.__dict__ = d func(data) self.output(u'数据回放结束') #---------------------------------------------------------------------- def newBar(self, bar): """新的K线""" self.bar = bar self.dt = bar.datetime self.crossLimitOrder() # 先撮合限价单 self.crossStopOrder() # 再撮合停止单 self.strategy.onBar(bar) # 推送K线到策略中 #---------------------------------------------------------------------- def newTick(self, tick): """新的Tick""" self.tick = tick self.dt = tick.datetime self.crossLimitOrder() self.crossStopOrder() self.strategy.onTick(tick) #---------------------------------------------------------------------- def initStrategy(self, strategyClass, setting=None): """ 初始化策略 setting是策略的参数设置,如果使用类中写好的默认设置则可以不传该参数 """ self.strategy = strategyClass(self, setting) self.strategy.name = self.strategy.className #---------------------------------------------------------------------- def sendOrder(self, vtSymbol, orderType, price, volume, strategy): """发单""" self.limitOrderCount += 1 orderID = str(self.limitOrderCount) order = VtOrderData() order.vtSymbol = vtSymbol order.price = self.roundToPriceTick(price) order.totalVolume = volume order.status = STATUS_NOTTRADED # 刚提交尚未成交 order.orderID = orderID order.vtOrderID = orderID order.orderTime = str(self.dt) # CTA委托类型映射 if orderType == CTAORDER_BUY: order.direction = DIRECTION_LONG order.offset = OFFSET_OPEN elif orderType == CTAORDER_SELL: order.direction = DIRECTION_SHORT order.offset = OFFSET_CLOSE elif orderType == CTAORDER_SHORT: order.direction = DIRECTION_SHORT order.offset = OFFSET_OPEN elif orderType == CTAORDER_COVER: order.direction = DIRECTION_LONG order.offset = OFFSET_CLOSE # 保存到限价单字典中 self.workingLimitOrderDict[orderID] = order self.limitOrderDict[orderID] = order return orderID #---------------------------------------------------------------------- def cancelOrder(self, vtOrderID): """撤单""" if vtOrderID in self.workingLimitOrderDict: order = self.workingLimitOrderDict[vtOrderID] order.status = STATUS_CANCELLED order.cancelTime = str(self.dt) del self.workingLimitOrderDict[vtOrderID] #---------------------------------------------------------------------- def sendStopOrder(self, vtSymbol, orderType, price, volume, strategy): """发停止单(本地实现)""" self.stopOrderCount += 1 stopOrderID = STOPORDERPREFIX + str(self.stopOrderCount) so = StopOrder() so.vtSymbol = vtSymbol so.price = self.roundToPriceTick(price) so.volume = volume so.strategy = strategy so.stopOrderID = stopOrderID so.status = STOPORDER_WAITING if orderType == CTAORDER_BUY: so.direction = DIRECTION_LONG so.offset = OFFSET_OPEN elif orderType == CTAORDER_SELL: so.direction = DIRECTION_SHORT so.offset = OFFSET_CLOSE elif orderType == CTAORDER_SHORT: so.direction = DIRECTION_SHORT so.offset = OFFSET_OPEN elif orderType == CTAORDER_COVER: so.direction = DIRECTION_LONG so.offset = OFFSET_CLOSE # 保存stopOrder对象到字典中 self.stopOrderDict[stopOrderID] = so self.workingStopOrderDict[stopOrderID] = so return stopOrderID #---------------------------------------------------------------------- def cancelStopOrder(self, stopOrderID): """撤销停止单""" # 检查停止单是否存在 if stopOrderID in self.workingStopOrderDict: so = self.workingStopOrderDict[stopOrderID] so.status = STOPORDER_CANCELLED del self.workingStopOrderDict[stopOrderID] #---------------------------------------------------------------------- def crossLimitOrder(self): """基于最新数据撮合限价单""" # 先确定会撮合成交的价格 if self.mode == self.BAR_MODE: buyCrossPrice = self.bar.low # 若买入方向限价单价格高于该价格,则会成交 sellCrossPrice = self.bar.high # 若卖出方向限价单价格低于该价格,则会成交 buyBestCrossPrice = self.bar.open # 在当前时间点前发出的买入委托可能的最优成交价 sellBestCrossPrice = self.bar.open # 在当前时间点前发出的卖出委托可能的最优成交价 else: buyCrossPrice = self.tick.askPrice1 sellCrossPrice = self.tick.bidPrice1 buyBestCrossPrice = self.tick.askPrice1 sellBestCrossPrice = self.tick.bidPrice1 # 遍历限价单字典中的所有限价单 for orderID, order in self.workingLimitOrderDict.items(): # 判断是否会成交 buyCross = (order.direction==DIRECTION_LONG and order.price>=buyCrossPrice and buyCrossPrice > 0) # 国内的tick行情在涨停时askPrice1为0,此时买无法成交 sellCross = (order.direction==DIRECTION_SHORT and order.price<=sellCrossPrice and sellCrossPrice > 0) # 国内的tick行情在跌停时bidPrice1为0,此时卖无法成交 # 如果发生了成交 if buyCross or sellCross: # 推送成交数据 self.tradeCount += 1 # 成交编号自增1 tradeID = str(self.tradeCount) trade = VtTradeData() trade.vtSymbol = order.vtSymbol trade.tradeID = tradeID trade.vtTradeID = tradeID trade.orderID = order.orderID trade.vtOrderID = order.orderID trade.direction = order.direction trade.offset = order.offset # 以买入为例: # 1. 假设当根K线的OHLC分别为:100, 125, 90, 110 # 2. 假设在上一根K线结束(也是当前K线开始)的时刻,策略发出的委托为限价105 # 3. 则在实际中的成交价会是100而不是105,因为委托发出时市场的最优价格是100 if buyCross: trade.price = min(order.price, buyBestCrossPrice) self.strategy.pos += order.totalVolume else: trade.price = max(order.price, sellBestCrossPrice) self.strategy.pos -= order.totalVolume trade.volume = order.totalVolume trade.tradeTime = str(self.dt) trade.dt = self.dt self.strategy.onTrade(trade) self.tradeDict[tradeID] = trade # 推送委托数据 order.tradedVolume = order.totalVolume order.status = STATUS_ALLTRADED self.strategy.onOrder(order) # 从字典中删除该限价单 del self.workingLimitOrderDict[orderID] #---------------------------------------------------------------------- def crossStopOrder(self): """基于最新数据撮合停止单""" # 先确定会撮合成交的价格,这里和限价单规则相反 if self.mode == self.BAR_MODE: buyCrossPrice = self.bar.high # 若买入方向停止单价格低于该价格,则会成交 sellCrossPrice = self.bar.low # 若卖出方向限价单价格高于该价格,则会成交 bestCrossPrice = self.bar.open # 最优成交价,买入停止单不能低于,卖出停止单不能高于 else: buyCrossPrice = self.tick.lastPrice sellCrossPrice = self.tick.lastPrice bestCrossPrice = self.tick.lastPrice # 遍历停止单字典中的所有停止单 for stopOrderID, so in self.workingStopOrderDict.items(): # 判断是否会成交 buyCross = so.direction==DIRECTION_LONG and so.price<=buyCrossPrice sellCross = so.direction==DIRECTION_SHORT and so.price>=sellCrossPrice # 如果发生了成交 if buyCross or sellCross: # 推送成交数据 self.tradeCount += 1 # 成交编号自增1 tradeID = str(self.tradeCount) trade = VtTradeData() trade.vtSymbol = so.vtSymbol trade.tradeID = tradeID trade.vtTradeID = tradeID if buyCross: self.strategy.pos += so.volume trade.price = max(bestCrossPrice, so.price) else: self.strategy.pos -= so.volume trade.price = min(bestCrossPrice, so.price) self.limitOrderCount += 1 orderID = str(self.limitOrderCount) trade.orderID = orderID trade.vtOrderID = orderID trade.direction = so.direction trade.offset = so.offset trade.volume = so.volume trade.tradeTime = str(self.dt) trade.dt = self.dt self.strategy.onTrade(trade) self.tradeDict[tradeID] = trade # 推送委托数据 so.status = STOPORDER_TRIGGERED order = VtOrderData() order.vtSymbol = so.vtSymbol order.symbol = so.vtSymbol order.orderID = orderID order.vtOrderID = orderID order.direction = so.direction order.offset = so.offset order.price = so.price order.totalVolume = so.volume order.tradedVolume = so.volume order.status = STATUS_ALLTRADED order.orderTime = trade.tradeTime self.strategy.onOrder(order) self.limitOrderDict[orderID] = order # 从字典中删除该限价单 if stopOrderID in self.workingStopOrderDict: del self.workingStopOrderDict[stopOrderID] #---------------------------------------------------------------------- def insertData(self, dbName, collectionName, data): """考虑到回测中不允许向数据库插入数据,防止实盘交易中的一些代码出错""" pass #---------------------------------------------------------------------- def loadBar(self, dbName, collectionName, startDate): """直接返回初始化数据列表中的Bar""" return self.initData #---------------------------------------------------------------------- def loadTick(self, dbName, collectionName, startDate): """直接返回初始化数据列表中的Tick""" return self.initData #---------------------------------------------------------------------- def writeCtaLog(self, content): """记录日志""" log = str(self.dt) + ' ' + content self.logList.append(log) #---------------------------------------------------------------------- def output(self, content): """输出内容""" print str(datetime.now()) + "\t" + content #---------------------------------------------------------------------- def calculateBacktestingResult(self): """ 计算回测结果 """ self.output(u'计算回测结果') # 首先基于回测后的成交记录,计算每笔交易的盈亏 resultList = [] # 交易结果列表 longTrade = [] # 未平仓的多头交易 shortTrade = [] # 未平仓的空头交易 tradeTimeList = [] # 每笔成交时间戳 posList = [0] # 每笔成交后的持仓情况 for trade in self.tradeDict.values(): # 多头交易 if trade.direction == DIRECTION_LONG: # 如果尚无空头交易 if not shortTrade: longTrade.append(trade) # 当前多头交易为平空 else: while True: entryTrade = shortTrade[0] exitTrade = trade # 清算开平仓交易 closedVolume = min(exitTrade.volume, entryTrade.volume) result = TradingResult(entryTrade.price, entryTrade.dt, exitTrade.price, exitTrade.dt, -closedVolume, self.rate, self.slippage, self.size) resultList.append(result) posList.extend([-1,0]) tradeTimeList.extend([result.entryDt, result.exitDt]) # 计算未清算部分 entryTrade.volume -= closedVolume exitTrade.volume -= closedVolume # 如果开仓交易已经全部清算,则从列表中移除 if not entryTrade.volume: shortTrade.pop(0) # 如果平仓交易已经全部清算,则退出循环 if not exitTrade.volume: break # 如果平仓交易未全部清算, if exitTrade.volume: # 且开仓交易已经全部清算完,则平仓交易剩余的部分 # 等于新的反向开仓交易,添加到队列中 if not shortTrade: longTrade.append(exitTrade) break # 如果开仓交易还有剩余,则进入下一轮循环 else: pass # 空头交易 else: # 如果尚无多头交易 if not longTrade: shortTrade.append(trade) # 当前空头交易为平多 else: while True: entryTrade = longTrade[0] exitTrade = trade # 清算开平仓交易 closedVolume = min(exitTrade.volume, entryTrade.volume) result = TradingResult(entryTrade.price, entryTrade.dt, exitTrade.price, exitTrade.dt, closedVolume, self.rate, self.slippage, self.size) resultList.append(result) posList.extend([1,0]) tradeTimeList.extend([result.entryDt, result.exitDt]) # 计算未清算部分 entryTrade.volume -= closedVolume exitTrade.volume -= closedVolume # 如果开仓交易已经全部清算,则从列表中移除 if not entryTrade.volume: longTrade.pop(0) # 如果平仓交易已经全部清算,则退出循环 if not exitTrade.volume: break # 如果平仓交易未全部清算, if exitTrade.volume: # 且开仓交易已经全部清算完,则平仓交易剩余的部分 # 等于新的反向开仓交易,添加到队列中 if not longTrade: shortTrade.append(exitTrade) break # 如果开仓交易还有剩余,则进入下一轮循环 else: pass # 检查是否有交易 if not resultList: self.output(u'无交易结果') return {} # 然后基于每笔交易的结果,我们可以计算具体的盈亏曲线和最大回撤等 capital = 0 # 资金 maxCapital = 0 # 资金最高净值 drawdown = 0 # 回撤 totalResult = 0 # 总成交数量 totalTurnover = 0 # 总成交金额(合约面值) totalCommission = 0 # 总手续费 totalSlippage = 0 # 总滑点 timeList = [] # 时间序列 pnlList = [] # 每笔盈亏序列 capitalList = [] # 盈亏汇总的时间序列 drawdownList = [] # 回撤的时间序列 winningResult = 0 # 盈利次数 losingResult = 0 # 亏损次数 totalWinning = 0 # 总盈利金额 totalLosing = 0 # 总亏损金额 for result in resultList: capital += result.pnl maxCapital = max(capital, maxCapital) drawdown = capital - maxCapital pnlList.append(result.pnl) timeList.append(result.exitDt) # 交易的时间戳使用平仓时间 capitalList.append(capital) drawdownList.append(drawdown) totalResult += 1 totalTurnover += result.turnover totalCommission += result.commission totalSlippage += result.slippage if result.pnl >= 0: winningResult += 1 totalWinning += result.pnl else: losingResult += 1 totalLosing += result.pnl # 计算盈亏相关数据 winningRate = winningResult/totalResult*100 # 胜率 averageWinning = 0 # 这里把数据都初始化为0 averageLosing = 0 profitLossRatio = 0 if winningResult: averageWinning = totalWinning/winningResult # 平均每笔盈利 if losingResult: averageLosing = totalLosing/losingResult # 平均每笔亏损 if averageLosing: profitLossRatio = -averageWinning/averageLosing # 盈亏比 # 返回回测结果 d = {} d['capital'] = capital d['maxCapital'] = maxCapital d['drawdown'] = drawdown d['totalResult'] = totalResult d['totalTurnover'] = totalTurnover d['totalCommission'] = totalCommission d['totalSlippage'] = totalSlippage d['timeList'] = timeList d['pnlList'] = pnlList d['capitalList'] = capitalList d['drawdownList'] = drawdownList d['winningRate'] = winningRate d['averageWinning'] = averageWinning d['averageLosing'] = averageLosing d['profitLossRatio'] = profitLossRatio d['posList'] = posList d['tradeTimeList'] = tradeTimeList return d #---------------------------------------------------------------------- def showBacktestingResult(self): """显示回测结果""" d = self.calculateBacktestingResult() # 输出 self.output('-' * 30) self.output(u'第一笔交易:\t%s' % d['timeList'][0]) self.output(u'最后一笔交易:\t%s' % d['timeList'][-1]) self.output(u'总交易次数:\t%s' % formatNumber(d['totalResult'])) self.output(u'总盈亏:\t%s' % formatNumber(d['capital'])) self.output(u'最大回撤: \t%s' % formatNumber(min(d['drawdownList']))) self.output(u'平均每笔盈利:\t%s' %formatNumber(d['capital']/d['totalResult'])) self.output(u'平均每笔滑点:\t%s' %formatNumber(d['totalSlippage']/d['totalResult'])) self.output(u'平均每笔佣金:\t%s' %formatNumber(d['totalCommission']/d['totalResult'])) self.output(u'胜率\t\t%s%%' %formatNumber(d['winningRate'])) self.output(u'盈利交易平均值\t%s' %formatNumber(d['averageWinning'])) self.output(u'亏损交易平均值\t%s' %formatNumber(d['averageLosing'])) self.output(u'盈亏比:\t%s' %formatNumber(d['profitLossRatio'])) # 绘图 import matplotlib.pyplot as plt import numpy as np try: import seaborn as sns # 如果安装了seaborn则设置为白色风格 sns.set_style('whitegrid') except ImportError: pass pCapital = plt.subplot(4, 1, 1) pCapital.set_ylabel("capital") pCapital.plot(d['capitalList'], color='r', lw=0.8) pDD = plt.subplot(4, 1, 2) pDD.set_ylabel("DD") pDD.bar(range(len(d['drawdownList'])), d['drawdownList'], color='g') pPnl = plt.subplot(4, 1, 3) pPnl.set_ylabel("pnl") pPnl.hist(d['pnlList'], bins=50, color='c') pPos = plt.subplot(4, 1, 4) pPos.set_ylabel("Position") if d['posList'][-1] == 0: del d['posList'][-1] tradeTimeIndex = [item.strftime("%m/%d %H:%M:%S") for item in d['tradeTimeList']] xindex = np.arange(0, len(tradeTimeIndex), np.int(len(tradeTimeIndex)/10)) tradeTimeIndex = map(lambda i: tradeTimeIndex[i], xindex) pPos.plot(d['posList'], color='k', drawstyle='steps-pre') pPos.set_ylim(-1.2, 1.2) plt.sca(pPos) plt.tight_layout() plt.xticks(xindex, tradeTimeIndex, rotation=30) # 旋转15 plt.show() #---------------------------------------------------------------------- def putStrategyEvent(self, name): """发送策略更新事件,回测中忽略""" pass #---------------------------------------------------------------------- def setSlippage(self, slippage): """设置滑点点数""" self.slippage = slippage #---------------------------------------------------------------------- def setSize(self, size): """设置合约大小""" self.size = size #---------------------------------------------------------------------- def setRate(self, rate): """设置佣金比例""" self.rate = rate #---------------------------------------------------------------------- def setPriceTick(self, priceTick): """设置价格最小变动""" self.priceTick = priceTick #---------------------------------------------------------------------- def runOptimization(self, strategyClass, optimizationSetting): """优化参数""" # 获取优化设置 settingList = optimizationSetting.generateSetting() targetName = optimizationSetting.optimizeTarget # 检查参数设置问题 if not settingList or not targetName: self.output(u'优化设置有问题,请检查') # 遍历优化 resultList = [] for setting in settingList: self.clearBacktestingResult() self.output('-' * 30) self.output('setting: %s' %str(setting)) self.initStrategy(strategyClass, setting) self.runBacktesting() d = self.calculateBacktestingResult() try: targetValue = d[targetName] except KeyError: targetValue = 0 resultList.append(([str(setting)], targetValue)) # 显示结果 resultList.sort(reverse=True, key=lambda result:result[1]) self.output('-' * 30) self.output(u'优化结果:') for result in resultList: self.output(u'%s: %s' %(result[0], result[1])) return result #---------------------------------------------------------------------- def clearBacktestingResult(self): """清空之前回测的结果""" # 清空限价单相关 self.limitOrderCount = 0 self.limitOrderDict.clear() self.workingLimitOrderDict.clear() # 清空停止单相关 self.stopOrderCount = 0 self.stopOrderDict.clear() self.workingStopOrderDict.clear() # 清空成交相关 self.tradeCount = 0 self.tradeDict.clear() #---------------------------------------------------------------------- def runParallelOptimization(self, strategyClass, optimizationSetting): """并行优化参数""" # 获取优化设置 settingList = optimizationSetting.generateSetting() targetName = optimizationSetting.optimizeTarget # 检查参数设置问题 if not settingList or not targetName: self.output(u'优化设置有问题,请检查') # 多进程优化,启动一个对应CPU核心数量的进程池 pool = multiprocessing.Pool(multiprocessing.cpu_count()) l = [] for setting in settingList: l.append(pool.apply_async(optimize, (strategyClass, setting, targetName, self.mode, self.startDate, self.initDays, self.endDate, self.slippage, self.rate, self.size, self.dbName, self.symbol))) pool.close() pool.join() # 显示结果 resultList = [res.get() for res in l] resultList.sort(reverse=True, key=lambda result:result[1]) self.output('-' * 30) self.output(u'优化结果:') for result in resultList: self.output(u'%s: %s' %(result[0], result[1])) #---------------------------------------------------------------------- def roundToPriceTick(self, price): """取整价格到合约最小价格变动""" if not self.priceTick: return price newPrice = round(price/self.priceTick, 0) * self.priceTick return newPrice ######################################################################## class TradingResult(object): """每笔交易的结果""" #---------------------------------------------------------------------- def __init__(self, entryPrice, entryDt, exitPrice, exitDt, volume, rate, slippage, size): """Constructor""" self.entryPrice = entryPrice # 开仓价格 self.exitPrice = exitPrice # 平仓价格 self.entryDt = entryDt # 开仓时间datetime self.exitDt = exitDt # 平仓时间 self.volume = volume # 交易数量(+/-代表方向) self.turnover = (self.entryPrice+self.exitPrice)*size*abs(volume) # 成交金额 self.commission = self.turnover*rate # 手续费成本 self.slippage = slippage*2*size*abs(volume) # 滑点成本 self.pnl = ((self.exitPrice - self.entryPrice) * volume * size - self.commission - self.slippage) # 净盈亏 ######################################################################## class OptimizationSetting(object): """优化设置""" #---------------------------------------------------------------------- def __init__(self): """Constructor""" self.paramDict = OrderedDict() self.optimizeTarget = '' # 优化目标字段 #---------------------------------------------------------------------- def addParameter(self, name, start, end=None, step=None): """增加优化参数""" if end is None and step is None: self.paramDict[name] = [start] return if end < start: print u'参数起始点必须不大于终止点' return if step <= 0: print u'参数布进必须大于0' return l = [] param = start while param <= end: l.append(param) param += step self.paramDict[name] = l #---------------------------------------------------------------------- def generateSetting(self): """生成优化参数组合""" # 参数名的列表 nameList = self.paramDict.keys() paramList = self.paramDict.values() # 使用迭代工具生产参数对组合 productList = list(product(*paramList)) # 把参数对组合打包到一个个字典组成的列表中 settingList = [] for p in productList: d = dict(zip(nameList, p)) settingList.append(d) return settingList #---------------------------------------------------------------------- def setOptimizeTarget(self, target): """设置优化目标字段""" self.optimizeTarget = target #---------------------------------------------------------------------- def formatNumber(n): """格式化数字到字符串""" rn = round(n, 2) # 保留两位小数 return format(rn, ',') # 加上千分符 #---------------------------------------------------------------------- def optimize(strategyClass, setting, targetName, mode, startDate, initDays, endDate, slippage, rate, size, dbName, symbol): """多进程优化时跑在每个进程中运行的函数""" engine = BacktestingEngine() engine.setBacktestingMode(mode) engine.setStartDate(startDate, initDays) engine.setEndDate(endDate) engine.setSlippage(slippage) engine.setRate(rate) engine.setSize(size) engine.setDatabase(dbName, symbol) engine.initStrategy(strategyClass, setting) engine.runBacktesting() d = engine.calculateBacktestingResult() try: targetValue = d[targetName] except KeyError: targetValue = 0 return (str(setting), targetValue) if __name__ == '__main__': # 以下内容是一段回测脚本的演示,用户可以根据自己的需求修改 # 建议使用ipython notebook或者spyder来做回测 # 同样可以在命令模式下进行回测(一行一行输入运行) from strategy.strategyEmaDemo import * # 创建回测引擎 engine = BacktestingEngine() # 设置引擎的回测模式为K线 engine.setBacktestingMode(engine.BAR_MODE) # 设置回测用的数据起始日期 engine.setStartDate('20110101') # 载入历史数据到引擎中 engine.setDatabase(MINUTE_DB_NAME, 'IF0000') # 设置产品相关参数 engine.setSlippage(0.2) # 股指1跳 engine.setRate(0.3/10000) # 万0.3 engine.setSize(300) # 股指合约大小 # 在引擎中创建策略对象 engine.initStrategy(EmaDemoStrategy, {}) # 开始跑回测 engine.runBacktesting() # 显示回测结果 # spyder或者ipython notebook中运行时,会弹出盈亏曲线图 # 直接在cmd中回测则只会打印一些回测数值 engine.showBacktestingResult()
mit
dingocuster/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
chayapan/pyfolio
pyfolio/tests/test_timeseries.py
2
12272
from __future__ import division import os from unittest import TestCase from nose_parameterized import parameterized from numpy.testing import assert_allclose, assert_almost_equal from pandas.util.testing import assert_series_equal import numpy as np import pandas as pd from .. import timeseries from pyfolio.utils import to_utc, to_series import gzip DECIMAL_PLACES = 8 class TestDrawdown(TestCase): drawdown_list = np.array( [100, 90, 75] ) / 10. dt = pd.date_range('2000-1-3', periods=3, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie,) ]) def test_get_max_drawdown_begins_first_day(self, px): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=1) self.assertEqual(drawdowns.loc[0, 'Net drawdown in %'], 25) drawdown_list = np.array( [100, 110, 120, 150, 180, 200, 100, 120, 160, 180, 200, 300, 400, 500, 600, 800, 900, 1000, 650, 600] ) / 10. dt = pd.date_range('2000-1-3', periods=20, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie, pd.Timestamp('2000-01-08'), pd.Timestamp('2000-01-09'), pd.Timestamp('2000-01-13'), 50, pd.Timestamp('2000-01-20'), pd.Timestamp('2000-01-22'), None, 40 ) ]) def test_gen_drawdown_table_relative( self, px, first_expected_peak, first_expected_valley, first_expected_recovery, first_net_drawdown, second_expected_peak, second_expected_valley, second_expected_recovery, second_net_drawdown ): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=2) self.assertEqual(np.round(drawdowns.loc[0, 'Net drawdown in %']), first_net_drawdown) self.assertEqual(drawdowns.loc[0, 'Peak date'], first_expected_peak) self.assertEqual(drawdowns.loc[0, 'Valley date'], first_expected_valley) self.assertEqual(drawdowns.loc[0, 'Recovery date'], first_expected_recovery) self.assertEqual(np.round(drawdowns.loc[1, 'Net drawdown in %']), second_net_drawdown) self.assertEqual(drawdowns.loc[1, 'Peak date'], second_expected_peak) self.assertEqual(drawdowns.loc[1, 'Valley date'], second_expected_valley) self.assertTrue(pd.isnull(drawdowns.loc[1, 'Recovery date'])) px_list_1 = np.array( [100, 120, 100, 80, 70, 110, 180, 150]) / 100. # Simple px_list_2 = np.array( [100, 120, 100, 80, 70, 80, 90, 90]) / 100. # Ends in drawdown dt = pd.date_range('2000-1-3', periods=8, freq='D') @parameterized.expand([ (pd.Series(px_list_1, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), pd.Timestamp('2000-1-9')), (pd.Series(px_list_2, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), None) ]) def test_get_max_drawdown( self, px, expected_peak, expected_valley, expected_recovery): rets = px.pct_change().iloc[1:] peak, valley, recovery = timeseries.get_max_drawdown(rets) # Need to use isnull because the result can be NaN, NaT, etc. self.assertTrue( pd.isnull(peak)) if expected_peak is None else self.assertEqual( peak, expected_peak) self.assertTrue( pd.isnull(valley)) if expected_valley is None else \ self.assertEqual( valley, expected_valley) self.assertTrue( pd.isnull(recovery)) if expected_recovery is None else \ self.assertEqual( recovery, expected_recovery) @parameterized.expand([ (pd.Series(px_list_2, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), None, None), (pd.Series(px_list_1, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), pd.Timestamp('2000-1-9'), 4) ]) def test_gen_drawdown_table(self, px, expected_peak, expected_valley, expected_recovery, expected_duration): rets = px.pct_change().iloc[1:] drawdowns = timeseries.gen_drawdown_table(rets, top=1) self.assertTrue( pd.isnull( drawdowns.loc[ 0, 'Peak date'])) if expected_peak is None \ else self.assertEqual(drawdowns.loc[0, 'Peak date'], expected_peak) self.assertTrue( pd.isnull( drawdowns.loc[0, 'Valley date'])) \ if expected_valley is None else self.assertEqual( drawdowns.loc[0, 'Valley date'], expected_valley) self.assertTrue( pd.isnull( drawdowns.loc[0, 'Recovery date'])) \ if expected_recovery is None else self.assertEqual( drawdowns.loc[0, 'Recovery date'], expected_recovery) self.assertTrue( pd.isnull(drawdowns.loc[0, 'Duration'])) \ if expected_duration is None else self.assertEqual( drawdowns.loc[0, 'Duration'], expected_duration) def test_drawdown_overlaps(self): rand = np.random.RandomState(1337) n_samples = 252 * 5 spy_returns = pd.Series( rand.standard_t(3.1, n_samples), pd.date_range('2005-01-02', periods=n_samples), ) spy_drawdowns = timeseries.gen_drawdown_table( spy_returns, top=20).sort_values(by='Peak date') # Compare the recovery date of each drawdown with the peak of the next # Last pair might contain a NaT if drawdown didn't finish, so ignore it pairs = list(zip(spy_drawdowns['Recovery date'], spy_drawdowns['Peak date'].shift(-1)))[:-1] self.assertGreater(len(pairs), 0) for recovery, peak in pairs: if not pd.isnull(recovery): self.assertLessEqual(recovery, peak) @parameterized.expand([ (pd.Series(px_list_1, index=dt), 1, [(pd.Timestamp('2000-01-03 00:00:00'), pd.Timestamp('2000-01-03 00:00:00'), pd.Timestamp('2000-01-03 00:00:00'))]) ]) def test_top_drawdowns(self, returns, top, expected): self.assertEqual( timeseries.get_top_drawdowns( returns, top=top), expected) class TestVariance(TestCase): @parameterized.expand([ (1e7, 0.5, 1, 1, -10000000.0) ]) def test_var_cov_var_normal(self, P, c, mu, sigma, expected): self.assertEqual( timeseries.var_cov_var_normal( P, c, mu, sigma), expected) class TestNormalize(TestCase): dt = pd.date_range('2000-1-3', periods=8, freq='D') px_list = [1.0, 1.2, 1.0, 0.8, 0.7, 0.8, 0.8, 0.8] @parameterized.expand([ (pd.Series(np.array(px_list) * 100, index=dt), pd.Series(px_list, index=dt)) ]) def test_normalize(self, returns, expected): self.assertTrue(timeseries.normalize(returns).equals(expected)) class TestStats(TestCase): simple_rets = pd.Series( [0.1] * 3 + [0] * 497, pd.date_range( '2000-1-3', periods=500, freq='D')) simple_week_rets = pd.Series( [0.1] * 3 + [0] * 497, pd.date_range( '2000-1-31', periods=500, freq='W')) simple_month_rets = pd.Series( [0.1] * 3 + [0] * 497, pd.date_range( '2000-1-31', periods=500, freq='M')) simple_benchmark = pd.Series( [0.03] * 4 + [0] * 496, pd.date_range( '2000-1-1', periods=500, freq='D')) px_list = np.array( [10, -10, 10]) / 100. # Ends in drawdown dt = pd.date_range('2000-1-3', periods=3, freq='D') px_list_2 = [1.0, 1.2, 1.0, 0.8, 0.7, 0.8, 0.8, 0.8] dt_2 = pd.date_range('2000-1-3', periods=8, freq='D') @parameterized.expand([ (simple_rets[:5], 2, [np.nan, np.inf, np.inf, 11.224972160321, np.inf]) ]) def test_sharpe_2(self, returns, rolling_sharpe_window, expected): np.testing.assert_array_almost_equal( timeseries.rolling_sharpe(returns, rolling_sharpe_window).values, np.asarray(expected)) @parameterized.expand([ (simple_rets[:5], simple_benchmark, 2, 0) ]) def test_beta(self, returns, benchmark_rets, rolling_window, expected): actual = timeseries.rolling_beta( returns, benchmark_rets, rolling_window=rolling_window, ).values.tolist()[2] np.testing.assert_almost_equal(actual, expected) class TestCone(TestCase): def test_bootstrap_cone_against_linear_cone_normal_returns(self): random_seed = 100 np.random.seed(random_seed) days_forward = 200 cone_stdevs = (1., 1.5, 2.) mu = .005 sigma = .002 rets = pd.Series(np.random.normal(mu, sigma, 10000)) midline = np.cumprod(1 + (rets.mean() * np.ones(days_forward))) stdev = rets.std() * midline * np.sqrt(np.arange(days_forward)+1) normal_cone = pd.DataFrame(columns=pd.Float64Index([])) for s in cone_stdevs: normal_cone[s] = midline + s * stdev normal_cone[-s] = midline - s * stdev bootstrap_cone = timeseries.forecast_cone_bootstrap( rets, days_forward, cone_stdevs, starting_value=1, random_seed=random_seed, num_samples=10000) for col, vals in bootstrap_cone.iteritems(): expected = normal_cone[col].values assert_allclose(vals.values, expected, rtol=.005) class TestBootstrap(TestCase): @parameterized.expand([ (0., 1., 1000), (1., 2., 500), (-1., 0.1, 10), ]) def test_calc_bootstrap(self, true_mean, true_sd, n): """Compare bootstrap distribution of the mean to sampling distribution of the mean. """ np.random.seed(123) func = np.mean returns = pd.Series((np.random.randn(n) * true_sd) + true_mean) samples = timeseries.calc_bootstrap(func, returns, n_samples=10000) # Calculate statistics of sampling distribution of the mean mean_of_mean = np.mean(returns) sd_of_mean = np.std(returns) / np.sqrt(n) assert_almost_equal( np.mean(samples), mean_of_mean, 3, 'Mean of bootstrap does not match theoretical mean of' 'sampling distribution') assert_almost_equal( np.std(samples), sd_of_mean, 3, 'SD of bootstrap does not match theoretical SD of' 'sampling distribution') class TestGrossLev(TestCase): __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) test_pos = to_utc(pd.read_csv( gzip.open(__location__ + '/test_data/test_pos.csv.gz'), index_col=0, parse_dates=True)) test_gross_lev = pd.read_csv( gzip.open( __location__ + '/test_data/test_gross_lev.csv.gz'), index_col=0, parse_dates=True) test_gross_lev = to_series(to_utc(test_gross_lev)) def test_gross_lev_calculation(self): assert_series_equal( timeseries.gross_lev(self.test_pos)['2004-02-01':], self.test_gross_lev['2004-02-01':], check_names=False)
apache-2.0
c11/yatsm
yatsm/algorithms/yatsm.py
1
11153
""" Yet Another TimeSeries Model baseclass """ import numpy as np import patsy import sklearn import sklearn.linear_model from .._cyprep import get_valid_mask from ..regression.diagnostics import rmse from ..regression.transforms import harm # noqa class YATSM(object): """ Yet Another TimeSeries Model baseclass .. note:: When ``YATSM`` objects are fit, the intended order of method calls is: 1. Setup the model with :func:`~setup` 2. Preprocess a time series for one unit area with :func:`~preprocess` 3. Fit the time series with the YATSM model using :func:`~fit` 4. A fitted model can be used to * Predict on additional design matrixes with :func:`~predict` * Plot diagnostic information with :func:`~plot` * Return goodness of fit diagnostic metrics with :func:`~score` .. note:: Record structured arrays must contain the following: * ``start`` (`int`): starting dates of timeseries segments * ``end`` (`int`): ending dates of timeseries segments * ``break`` (`int`): break dates of timeseries segments * ``coef`` (`double (n x p shape)`): number of bands x number of features coefficients matrix for predictions * ``rmse`` (`double (n length)`): Root Mean Squared Error for each band * ``px`` (`int`): pixel X coordinate * ``py`` (`int`): pixel Y coordinate Args: test_indices (numpy.ndarray): Test for changes with these indices of ``Y``. If not provided, all series in ``Y`` will be used as test indices estimator (dict): dictionary containing estimation model from ``scikit-learn`` used to fit and predict timeseries and, optionally, a dict of options for the estimation model ``fit`` method (default: ``{'object': Lasso(alpha=20), 'fit': {}}``) kwargs (dict): dictionary of addition keyword arguments (for sub-classes) Attributes: record_template (numpy.ndarray): An empty NumPy structured array that is a template for the model's ``record`` models (numpy.ndarray): prediction model objects record (numpy.ndarray): NumPy structured array containing timeseries model attribute information n_record (int): number of recorded segments in time series model n_series (int): number of bands in ``Y`` px (int): pixel X location or index n_features (int): number of coefficients in ``X`` design matrix py (int): pixel Y location or index """ def __init__(self, test_indices=None, estimator={'object': sklearn.linear_model.Lasso(alpha=20), 'fit': {}}, **kwargs): self.test_indices = np.asarray(test_indices) self.estimator = sklearn.clone(estimator['object']) self.estimator_fit = estimator.get('fit', {}) self.models = [] # leave empty, fill in during `fit` self.n_record = 0 self.record = [] self.n_series, self.n_features = 0, 0 self.px = kwargs.get('px', 0) self.py = kwargs.get('py', 0) @property def record_template(self): """ YATSM record template for features in X and series in Y Record template will set ``px`` and ``py`` if defined as class attributes. Otherwise ``px`` and ``py`` coordinates will default to 0. Returns: numpy.ndarray: NumPy structured array containing a template of a YATSM record """ record_template = np.zeros(1, dtype=[ ('start', 'i4'), ('end', 'i4'), ('break', 'i4'), ('coef', 'float32', (self.n_coef, self.n_series)), ('rmse', 'float32', (self.n_series)), ('px', 'u2'), ('py', 'u2') ]) record_template['px'] = self.px record_template['py'] = self.py return record_template # SETUP & PREPROCESSING def setup(self, df, **config): """ Setup model for input dataset and (optionally) return design matrix Args: df (pandas.DataFrame): Pandas dataframe containing dataset attributes (e.g., dates, image ID, path/row, metadata, etc.) config (dict): YATSM configuration dictionary from user, including 'dataset' and 'YATSM' sub-configurations Returns: numpy.ndarray or None: return design matrix if used by algorithm """ X = patsy.dmatrix(config['YATSM']['design_matrix'], data=df) return X def preprocess(self, X, Y, dates, min_values=None, max_values=None, mask_band=None, mask_values=None, **kwargs): """ Preprocess a unit area of data (e.g., pixel, segment, etc.) This preprocessing step will remove all observations that either fall outside of the minimum/maximum range of the data or are flagged for masking in the ``mask_band`` variable in ``Y``. If ``min_values`` or ``max_values`` are not specified, this masking step is skipped. Similarly, masking based on a QA/QC or cloud mask will not be performed if ``mask_band`` or ``mask_values`` are not provided. Args: X (numpy.ndarray): design matrix (number of observations x number of features) Y (numpy.ndarray): independent variable matrix (number of series x number of observations) dates (numpy.ndarray): ordinal dates for each observation in X/Y min_values (np.ndarray): Minimum possible range of values for each variable in Y (optional) max_values (np.ndarray): Maximum possible range of values for each variable in Y (optional) mask_band (int): The mask band in Y (optional) mask_values (sequence): A list or np.ndarray of values in the ``mask_band`` to mask (optional) Returns: tuple (np.ndarray, np.ndarray, np.ndarray): X, Y, and dates after being preprocessed and masked """ if min_values is None or max_values is None: valid = np.ones(dates.shape[0], dtype=np.bool) else: # Mask range of data valid = get_valid_mask(Y, min_values, max_values).astype(bool) # Apply mask band if mask_band is not None and mask_values is not None: idx_mask = mask_band - 1 valid *= np.in1d(Y.take(idx_mask, axis=0), mask_values, invert=True).astype(np.bool) Y = np.delete(Y, idx_mask, axis=0)[:, valid] X = X[valid, :] dates = dates[valid] return X, Y, dates # TIMESERIES ENSEMBLE FIT/PREDICT def fit(self, X, Y, dates): """ Fit timeseries model Args: X (numpy.ndarray): design matrix (number of observations x number of features) Y (numpy.ndarray): independent variable matrix (number of series x number of observations) dates (numpy.ndarray): ordinal dates for each observation in X/Y Returns: cls: Return ``self`` """ raise NotImplementedError('Subclasses should implement fit method') def fit_models(self, X, Y, bands=None): """ Fit timeseries models for `bands` within `Y` for a given `X` Updates or initializes fit for ``self.models`` Args: X (numpy.ndarray): design matrix (number of observations x number of features) Y (numpy.ndarray): independent variable matrix (number of series x number of observations) observation in the X design matrix bands (iterable): Subset of bands of `Y` to fit. If None are provided, fit all bands in Y """ if bands is None: bands = np.arange(self.n_series) for b in bands: y = Y[b, :] model = self.models[b] model.fit(X, y, **self.estimator_fit) # Add in RMSE calculation model.rmse = rmse(y, model.predict(X)) # Add intercept to intercept term of design matrix model.coef = model.coef_.copy() model.coef[0] += model.intercept_ def predict(self, X, dates, series=None): """ Return a 2D NumPy array of y-hat predictions for a given X Predictions are made from ensemble of timeseries models such that predicted values are generated for each date using the model from the timeseries segment that intersects each date. Args: X (numpy.ndarray): Design matrix (number of observations x number of features) dates (int or numpy.ndarray): A single ordinal date or a np.ndarray of length X.shape[0] specifying the ordinal dates for each prediction series (iterable, optional): Return prediction for subset of series within timeseries model. If None is provided, returns predictions from all series Returns: numpy.ndarray: Prediction for given X (number of series x number of observations) """ raise NotImplementedError('Subclasses should implement "predict" ' 'method') # DIAGNOSTICS def score(self, X, Y, dates): """ Return timeseries model performance scores Args: X (numpy.ndarray): design matrix (number of observations x number of features) Y (numpy.ndarray): independent variable matrix (number of series x number of observations) dates (numpy.ndarray): ordinal dates for each observation in X/Y Returns: namedtuple: performance summary statistics """ raise NotImplementedError('Subclasses should implement "score" method') def plot(self, X, Y, dates, **config): """ Plot the timeseries model results Args: X (numpy.ndarray): design matrix (number of observations x number of features) Y (numpy.ndarray): independent variable matrix (number of series x number of observations) dates (numpy.ndarray): ordinal dates for each observation in X/Y config (dict): YATSM configuration dictionary from user, including 'dataset' and 'YATSM' sub-configurations """ raise NotImplementedError('Subclasses should implement "plot" method') # MAKE ITERABLE def __iter__(self): """ Iterate over the timeseries segment records """ for record in self.record: yield record def __len__(self): """ Return the number of segments in this timeseries model """ return len(self.record)
mit
lizardsystem/threedilib
threedilib/modeling/addheight.py
1
22410
# -*- coding: utf-8 -*- # (c) Nelen & Schuurmans. GPL licensed, see LICENSE.rst. from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from __future__ import division import argparse import os import re from osgeo import gdal from osgeo import ogr from scipy import ndimage import numpy as np from threedilib.modeling import progress from threedilib.modeling import vector from threedilib import config DESCRIPTION = """ Convert a shapefile containing 2D linestrings to a shapefile with embedded elevation from an elevation map. Target shapefile can have two layouts: A 'point' layout where the elevation is stored in the third coordinate of a 3D linestring, and a 'line' layout where a separate feature is created in the target shapefile for each segment of each feature in the source shapefile, with two extra attributes compared to the original shapefile, one to store the elevation, and another to store an arbitrary feature id referring to the source feature in the source shapefile. For the script to work, a configuration variable AHN_PATH must be set in threedilib/localconfig.py pointing to the location of the elevation map, and a variable INDEX_PATH pointing to the .shp file that contains the index to the elevation map. """ LAYOUT_POINT = 'point' LAYOUT_LINE = 'line' PIXELSIZE = 0.5 # AHN2 STEPSIZE = 0.5 # For looking perpendicular to line. LINESTRINGS = ogr.wkbLineString, ogr.wkbLineString25D MULTILINESTRINGS = ogr.wkbMultiLineString, ogr.wkbMultiLineString25D SHEET = re.compile('^(?P<unit>[0-9]{2}[a-z])[a-z][0-9]_[0-9]{2}$') def get_parser(): """ Return arguments dictionary. """ parser = argparse.ArgumentParser( description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('source_path', metavar='SOURCE', help='Path to shapefile with 2D linestrings.') parser.add_argument('target_path', metavar='TARGET', help='Path to target shapefile.') parser.add_argument('-o', '--overwrite', action='store_true', help='Overwrite TARGET if it exists.') parser.add_argument('-d', '--distance', metavar='DISTANCE', type=float, default=0, help=('Distance (half-width) to look ' 'perpendicular to the segments to ' 'find the highest (or lowest, with ' ' --inverse) points on the elevation ' ' map. Defaults to 0.0.')) parser.add_argument('-w', '--width', metavar='WIDTH', type=float, default=0, help=('Guaranteed width of maximum. ' 'Defaults to 0.0.')) parser.add_argument('-m', '--modify', action='store_true', help='Change horizontal geometry.') parser.add_argument('-a', '--average', metavar='AMOUNT', type=int, default=0, help='Average of points and minimum of values.') parser.add_argument('-l', '--layout', metavar='LAYOUT', choices=[LAYOUT_POINT, LAYOUT_LINE], default=LAYOUT_POINT, help="Target shapefile layout.") parser.add_argument('-f', '--feature-id-attribute', metavar='FEATURE_ID_ATTRIBUTE', default='_feat_id', help='Attribute name for the feature id.') parser.add_argument('-e', '--elevation-attribute', metavar='ELEVATION_ATTRIBUTE', default='_elevation', help='Attribute name for the elevation.') parser.add_argument('-i', '--inverse', #metavar='INVERSE', action='store_true', help='Look for lowest points instead of highest.') return parser def get_index(): """ Return index from container or open from config location. """ key = 'index' if key not in cache: if os.path.exists(config.INDEX_PATH): dataset = ogr.Open(config.INDEX_PATH) else: raise OSError('File not found :{}'.format(config.INDEX_PATH)) cache[key] = dataset return cache[key][0] def get_dataset(leafno): """ Return gdal_dataset from cache or file. """ if leafno in cache: return cache[leafno] if len(cache) > 10: for key in cache.keys(): if SHEET.match(key): del cache[key] # Maybe unnecessary, see top and lsof. # Add to cache and return. unit = SHEET.match(leafno).group('unit') try: prefix = config.AHN_PREFIX except AttributeError: prefix = 'i' path = os.path.join(config.AHN_PATH, unit, prefix + leafno + '.tif') dataset = gdal.Open(path) cache[leafno] = Dataset(dataset) dataset = None return cache[leafno] def get_carpet(mline, distance, step=None): """ Return MxNx2 numpy array. It contains the first point of the first line, the centers, and the last point of the last line of the MagicLine, but perpendicularly repeated along the normals to the segments of the MagicLine, up to distance, with step. """ # Determine the offsets from the points on the line if step is None or step == 0: length = 2 else: # Length must be uneven, and no less than 2 * distance / step + 1 # Take a look at np.around() (round to even values)! length = 2 * np.round(0.5 + distance / step) + 1 offsets_1d = np.mgrid[-distance:distance:length * 1j] # Normalize and rotate the vectors of the linesegments vectors = vector.normalize(vector.rotate(mline.vectors, 270)) # Extend vectors and centers. evectors = np.concatenate([[vectors[0]], vectors[:], [vectors[-1]]]) ecenters = np.concatenate([[mline.points[0]], mline.centers[:], [mline.points[-1]]]) offsets_2d = evectors.reshape(-1, 1, 2) * offsets_1d.reshape(1, -1, 1) points = offsets_2d + ecenters.reshape(-1, 1, 2) return points def get_leafnos(mline, distance): """ Return the leafnos for the outermost lines of the carpet. """ # Convert magic line to carpet to linestring around carpet pline = mline.pixelize(size=PIXELSIZE, endsonly=True) points = get_carpet(mline=pline, distance=distance) # Create polygon containing outermost lines linering = np.vstack([ points[:, 0], points[::-1, -1], points[:1, 0] ]) linestring = vector.polygon2geometry(linering) # Query the index with it index = get_index() index.SetSpatialFilter(linestring) return [feature[b'BLADNR'] for feature in index] def paste_values(points, values, leafno): """ Paste values of evelation pixels at points. """ dataset = get_dataset(leafno) xmin, ymin, xmax, ymax = dataset.get_extent() cellsize = dataset.get_cellsize() origin = dataset.get_origin() # Determine which points are outside leaf's extent. # '=' added for the corner where the index origin is. index = np.logical_and(np.logical_and(points[..., 0] >= xmin, points[..., 0] < xmax), np.logical_and(points[..., 1] > ymin, points[..., 1] <= ymax)) # Determine indices for these points indices = tuple(np.uint64( (points[index] - origin) / cellsize, ).transpose())[::-1] # Assign data for these points to corresponding values. values[index] = dataset.data[indices] def average_result(amount, lines, centers, values): """ Return dictionary of numpy arrays. Points and values are averaged in groups of amount, but lines are converted per group to a line from the start point of the first line in the group to the end point of the last line in the group. """ # Determine the size needed to fit an integer multiple of amount oldsize = values.size newsize = int(np.ceil(values.size / amount) * amount) # Determine lines ma_lines = np.ma.array(np.empty((newsize, 2, 2)), mask=True) ma_lines[:oldsize] = lines ma_lines[oldsize:] = lines[-1] # Repeat last line result_lines = np.array([ ma_lines.reshape(-1, amount, 2, 2)[:, 0, 0], ma_lines.reshape(-1, amount, 2, 2)[:, -1, 1], ]).transpose(1, 0, 2) # Calculate points and values by averaging ma_centers = np.ma.array(np.empty((newsize, 2)), mask=True) ma_centers[:oldsize] = centers ma_values = np.ma.array(np.empty(newsize), mask=True) ma_values[:oldsize] = values return dict(lines=result_lines, values=ma_values.reshape(-1, amount).min(1), centers=ma_centers.reshape(-1, amount, 2).mean(1)) class Dataset(object): def __init__(self, dataset): """ Initialize from gdal dataset. """ # There exist datasets with slightly offset origins. # Here origin is rounded to whole meters. a, b, c, d, e, f = dataset.GetGeoTransform() self.geotransform = round(a), b, c, round(d), e, f self.size = dataset.RasterXSize, dataset.RasterYSize self.data = dataset.ReadAsArray() # Check for holes in the data nodatavalue = dataset.GetRasterBand(1).GetNoDataValue() if nodatavalue in self.data: raise ValueError('Dataset {} contains nodatavalues!'.format( dataset.GetFileList()[0] )) def get_extent(self): """ Return tuple of xmin, ymin, xmax, ymax. """ return (self.geotransform[0], self.geotransform[3] + self.size[1] * self.geotransform[5], self.geotransform[0] + self.size[0] * self.geotransform[1], self.geotransform[3]) def get_cellsize(self): """ Return numpy array. """ return np.array([[self.geotransform[1], self.geotransform[5]]]) def get_origin(self): """ Return numpy array. """ return np.array([[self.geotransform[0], self.geotransform[3]]]) class BaseWriter(object): """ Base class for common writer methods. """ def __init__(self, path, **kwargs): self.path = path for key, value in kwargs.items(): setattr(self, key, value) def __enter__(self): """ Creates or replaces the target shapefile. """ driver = ogr.GetDriverByName(b'ESRI Shapefile') if os.path.exists(self.path): driver.DeleteDataSource(str(self.path)) self.dataset = driver.CreateDataSource(str(self.path)) return self def __exit__(self, type, value, traceback): """ Close dataset. """ self.layer = None self.dataset = None def _modify(self, points, values, mline, step): """ Return dictionary of numpy arrays. """ # First a minimum or maximum filter with requested width filtersize = np.round(self.width / step) if filtersize > 0: # Choices based on inverse or not cval = values.max() if self.inverse else values.min() if self.inverse: extremum_filter = ndimage.maximum_filter else: extremum_filter = ndimage.minimum_filter # Filtering fpoints = ndimage.convolve( points, np.ones((1, filtersize, 1)) / filtersize, ) # Moving average for the points fvalues = extremum_filter( values, size=(1, filtersize), mode='constant', cval=cval, ) # Moving extremum for the values else: fpoints = points fvalues = values if self.inverse: # Find the minimum per filtered line index = (np.arange(len(fvalues)), fvalues.argmin(axis=1)) else: # Find the maximum per filtered line index = (np.arange(len(fvalues)), fvalues.argmax(axis=1)) mpoints = fpoints[index] mvalues = fvalues[index] # Sorting points and values according to projection on mline parameters = mline.project(mpoints) ordering = parameters.argsort() spoints = mpoints[ordering] svalues = mvalues[ordering] # Quick 'n dirty way of getting to result dict rlines = np.array([spoints[:-1], spoints[1:]]).transpose(1, 0, 2) rcenters = spoints[1:] rvalues = svalues[1:] return dict(lines=rlines, centers=rcenters, values=rvalues) def _calculate(self, wkb_line_string): """ Return lines, points, values tuple of numpy arrays. """ # Determine the leafnos mline = vector.MagicLine(np.array(wkb_line_string.GetPoints())[:, :2]) leafnos = get_leafnos(mline=mline, distance=self.distance) # Determine the point and values carpets pline = mline.pixelize(size=PIXELSIZE) points = get_carpet( mline=pline, distance=self.distance, step=STEPSIZE, ) values = np.ma.array( np.empty(points.shape[:2]), mask=True, ) # Get the values into the carpet per leafno for leafno in leafnos: paste_values(points, values, leafno) # Debugging plotcode #from matplotlib.backends import backend_agg #from matplotlib import figure #from PIL import Image #fig = figure.Figure() #backend_agg.FigureCanvasAgg(fig) #axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) #axes.axis('equal') #axes.plot( #points[~values.mask][..., 0], points[~values.mask][..., 1], #'.g', #) #axes.plot( #points[values.mask][..., 0], points[values.mask][..., 1], #'.r', #) #buf, size = axes.figure.canvas.print_to_buffer() #Image.fromstring('RGBA', size, buf).show() # End debugging plotcode if values.mask.any(): raise ValueError('Masked values remaining after filling!') # Return lines, centers, values if self.modify: result = self._modify(points=points, values=values, mline=mline, step=STEPSIZE) else: result = dict(lines=pline.lines, centers=pline.centers, values=values.data[1:-1].max(1)) if self.average: return average_result(amount=self.average, **result) else: return result def _add_layer(self, layer): """ Add empty copy of layer. """ # Create layer self.layer = self.dataset.CreateLayer(layer.GetName()) # Copy field definitions layer_definition = layer.GetLayerDefn() for i in range(layer_definition.GetFieldCount()): self.layer.CreateField(layer_definition.GetFieldDefn(i)) class CoordinateWriter(BaseWriter): """ Writes a shapefile with height in z coordinate. """ def _convert_wkb_line_string(self, source_wkb_line_string): """ Return a wkb line string. """ result = self._calculate(wkb_line_string=source_wkb_line_string) target_wkb_line_string = ogr.Geometry(ogr.wkbLineString) # Add the first point of the first line (x, y), z = result['lines'][0, 0], result['values'][0] target_wkb_line_string.AddPoint(float(x), float(y), float(z)) # Add the centers (x, y) and values (z) for (x, y), z in zip(result['centers'], result['values']): target_wkb_line_string.AddPoint(float(x), float(y), float(z)) # Add the last point of the last line (x, y), z = result['lines'][-1, 1], result['values'][-1] target_wkb_line_string.AddPoint(float(x), float(y), float(z)) return target_wkb_line_string def _convert(self, source_geometry): """ Return converted linestring or multiline. """ geometry_type = source_geometry.GetGeometryType() if geometry_type in LINESTRINGS: return self._convert_wkb_line_string(source_geometry) if geometry_type in MULTILINESTRINGS: target_geometry = ogr.Geometry(source_geometry.GetGeometryType()) for source_wkb_line_string in source_geometry: target_geometry.AddGeometry( self._convert_wkb_line_string(source_wkb_line_string), ) return target_geometry raise ValueError('Unexpected geometry type: {}'.format( source_geometry.GetGeometryName(), )) def _add_feature(self, feature): """ Add converted feature. """ # Create feature layer_definition = self.layer.GetLayerDefn() new_feature = ogr.Feature(layer_definition) # Copy attributes for key, value in feature.items().items(): new_feature[key] = value # Set geometry and add to layer geometry = self._convert(source_geometry=feature.geometry()) new_feature.SetGeometry(geometry) self.layer.CreateFeature(new_feature) self.indicator.update() def add(self, path, **kwargs): """ Convert dataset at path. """ dataset = ogr.Open(path) count = sum(layer.GetFeatureCount() for layer in dataset) self.indicator = progress.Indicator(count) for layer in dataset: self._add_layer(layer) for feature in layer: try: self._add_feature(feature) except Exception as e: with open('errors.txt', 'a') as errorfile: errorfile.write(unicode(e) + '\n') errorfile.write(unicode(feature.items()) + '\n') dataset = None class AttributeWriter(BaseWriter): """ Writes a shapefile with height in z attribute. """ def _convert(self, source_geometry): """ Return generator of (geometry, height) tuples. """ geometry_type = source_geometry.GetGeometryType() if geometry_type in LINESTRINGS: source_wkb_line_strings = [source_geometry] elif geometry_type in MULTILINESTRINGS: source_wkb_line_strings = [line for line in source_geometry] else: raise ValueError('Unexpected geometry type: {}'.format( source_geometry.GetGeometryName(), )) for source_wkb_line_string in source_wkb_line_strings: result = self._calculate(wkb_line_string=source_wkb_line_string) for line, value in zip(result['lines'], result['values']): yield vector.line2geometry(line), str(value) def _add_fields(self): """ Create extra fields. """ for name, kind in ((str(self.elevation_attribute), ogr.OFTReal), (str(self.feature_id_attribute), ogr.OFTInteger)): definition = ogr.FieldDefn(name, kind) self.layer.CreateField(definition) def _add_feature(self, feature_id, feature): """ Add converted features. """ layer_definition = self.layer.GetLayerDefn() generator = self._convert(source_geometry=feature.geometry()) for geometry, elevation in generator: # Create feature new_feature = ogr.Feature(layer_definition) # Copy attributes for key, value in feature.items().items(): new_feature[key] = value # Add special attributes new_feature[str(self.elevation_attribute)] = elevation new_feature[str(self.feature_id_attribute)] = feature_id # Set geometry and add to layer new_feature.SetGeometry(geometry) self.layer.CreateFeature(new_feature) self.indicator.update() def add(self, path): """ Convert dataset at path. """ dataset = ogr.Open(path) count = sum(layer.GetFeatureCount() for layer in dataset) self.indicator = progress.Indicator(count) for layer in dataset: self._add_layer(layer) self._add_fields() for feature_id, feature in enumerate(layer): try: self._add_feature(feature_id=feature_id, feature=feature) except Exception as e: with open('errors.txt', 'a') as errorfile: errorfile.write(unicode(e) + '\n') errorfile.write(unicode(feature.items()) + '\n') dataset = None def addheight(source_path, target_path, overwrite, distance, width, modify, average, inverse, layout, elevation_attribute, feature_id_attribute): """ Take linestrings from source and create target with height added. Source and target are both shapefiles. """ if os.path.exists(target_path) and not overwrite: print("'{}' already exists. Use --overwrite.".format(target_path)) return 1 if modify and not distance: print('Warning: --modify used with zero distance.') Writer = CoordinateWriter if layout == LAYOUT_POINT else AttributeWriter with Writer(target_path, distance=distance, width=width, modify=modify, average=average, inverse=inverse, elevation_attribute=elevation_attribute, feature_id_attribute=feature_id_attribute) as writer: writer.add(source_path) return 0 def main(): """ Call addheight() with commandline args. """ addheight(**vars(get_parser().parse_args())) cache = {} # Contains leafno's and the index if __name__ == '__main__': exit(main())
gpl-3.0
cwu2011/seaborn
doc/conf.py
6
9112
# -*- coding: utf-8 -*- # # seaborn documentation build configuration file, created by # sphinx-quickstart on Mon Jul 29 23:25:46 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import sphinx_bootstrap_theme import matplotlib as mpl mpl.use("Agg") # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('sphinxext')) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.autosummary', 'plot_generator', 'plot_directive', 'numpydoc', 'ipython_directive', 'ipython_console_highlighting', ] # Generate the API documentation when building autosummary_generate = True numpydoc_show_class_members = False # Include the example source for plots in API docs plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'seaborn' copyright = u'2012-2015, Michael Waskom' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. sys.path.insert(0, os.path.abspath(os.path.pardir)) import seaborn version = seaborn.__version__ # The full version, including alpha/beta/rc tags. release = seaborn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'source_link_position': "footer", 'bootswatch_theme': "flatly", 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [("Tutorial", "tutorial"), ("Gallery", "examples/index")], } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', 'example_thumbs'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'seaborndoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'seaborn.tex', u'seaborn Documentation', u'Michael Waskom', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'seaborn', u'seaborn Documentation', [u'Michael Waskom'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'seaborn', u'seaborn Documentation', u'Michael Waskom', 'seaborn', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Add the 'copybutton' javascript, to hide/show the prompt in code # examples, originally taken from scikit-learn's doc/conf.py def setup(app): app.add_javascript('copybutton.js') app.add_stylesheet('style.css')
bsd-3-clause
MatthieuBizien/scikit-learn
sklearn/metrics/setup.py
24
1059
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
shoyer/numpy
numpy/lib/twodim_base.py
4
27413
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function import functools from numpy.core.numeric import ( absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, nonzero ) from numpy.core.overrides import set_module from numpy.core import overrides from numpy.core import iinfo, transpose __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def _flip_dispatcher(m): return (m,) @array_function_dispatch(_flip_dispatcher) def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.fliplr(A) array([[0., 0., 1.], [0., 2., 0.], [3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] @array_function_dispatch(_flip_dispatcher) def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.flipud(A) array([[0., 0., 3.], [0., 2., 0.], [1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] @set_module('numpy') def eye(N, M=None, k=0, dtype=float, order='C'): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def _diag_dispatcher(v, k=None): return (v,) @array_function_dispatch(_diag_dispatcher) def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @array_function_dispatch(_diag_dispatcher) def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) @set_module('numpy') def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def _trilu_dispatcher(m, k=None): return (m,) @array_function_dispatch(_trilu_dispatcher) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) @array_function_dispatch(_trilu_dispatcher) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) def _vander_dispatcher(x, N=None, increasing=None): return (x,) # Originally borrowed from John Hunter and matplotlib @array_function_dispatch(_vander_dispatcher) def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 # may vary >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, weights=None, density=None): return (x, y, bins, weights) @array_function_dispatch(_histogram2d_dispatcher) def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_area``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx+1,) The bin edges along the first dimension. yedges : ndarray, shape(ny+1,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> from matplotlib.image import NonUniformImage >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) <matplotlib.image.AxesImage object at 0x...> :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) <matplotlib.collections.QuadMesh object at 0x...> :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights, density) return hist, edges[0], edges[1] @set_module('numpy') def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return nonzero(a != 0) @set_module('numpy') def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, ..., 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return nonzero(tri(n, m, k=k, dtype=bool)) def _trilu_indices_form_dispatcher(arr, k=None): return (arr,) @array_function_dispatch(_trilu_indices_form_dispatcher) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) @set_module('numpy') def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return nonzero(~tri(n, m, k=k-1, dtype=bool)) @array_function_dispatch(_trilu_indices_form_dispatcher) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
bkloppenborg/simtoi
src/scripts/plot_histogram.py
3
7152
#!/usr/bin/python from numpy import loadtxt from optparse import OptionParser import matplotlib.pyplot as plt import re from scipy.stats import norm, cauchy import matplotlib.mlab as mlab import os def plot_histogram(filename, column_names=[], skip_cols=[], nbins=10, trimends=False, autosave=False, save_directory='', save_format='svg', delimiter=None): """ Plots a histogram formed from the columns of the specified file. If column_names is specified, the titles of the plots will be renamed accordingly. Otherwise "Title" is inserted instead. skip_cols specifies any columns in the data that should be skipped. Columns at the end of the line may be skipped by using negative numbers. In this scheme the last column in a row is -1. """ infile = open(filename, 'r') if(delimiter): data = loadtxt(infile, dtype=float, delimiter=',') else: data = loadtxt(infile, dtype=float) infile.close() end_col = data.shape[1] norm_stats = list() cauchy_stats = list() # Reinterpret any negative numbers in skip_cols to be at the end of the line for column in range(0, len(skip_cols)): if skip_cols[column] < 0: skip_cols[column] = end_col + skip_cols[column] namecol = 0 for column in range(0, end_col): # Skip the column if instructed to do so: if(column in skip_cols): continue; # extract the data column: temp = data[:,column] if(trimends): minval = min(temp) maxval = max(temp) temp = filter(lambda x: x > minval, temp) temp = filter(lambda x: x < maxval, temp) # plot a histogram of the data: [n, bins, patches] = plt.hist(temp, bins=nbins, normed=True, label='Binned data') # fit a normal distribution: [norm_mu, norm_sigma] = norm.fit(temp) y = mlab.normpdf(bins, norm_mu, norm_sigma) legend_gauss = r'Normal: $\mu=%.3f,\ \sigma=%.3f$' % (norm_mu, norm_sigma) l = plt.plot(bins, y, 'r--', linewidth=2, label=legend_gauss) # fit a Lorentz/Cauchy distribution: # bug workaround for http://projects.scipy.org/scipy/ticket/1530 # - specify a starting centroid value for the fit [cauchy_mu, cauchy_gamma] = cauchy.fit(temp, loc=norm_mu) y = cauchy.pdf(bins, loc=cauchy_mu, scale=cauchy_gamma) legend_cauchy = r'Cauchy: $\mu=%.3f,\ \gamma=%.3f$' % (cauchy_mu, cauchy_gamma) l = plt.plot(bins, y, 'g--', linewidth=2, label=legend_cauchy) # now setup the axes labels: try: title = column_names[namecol] namecol += 1 except: title = "Title" plt.title(title) plt.xlabel("Value") plt.ylabel("Frequency") plt.legend(loc='best') if autosave: plt.savefig(save_directory + '/stats_hist_' + title + '.' + save_format, transparent=True, format=save_format) plt.close() else: plt.show() # Add in the statistical information. norm_stats.append([title, norm_mu, norm_sigma]) cauchy_stats.append([title, cauchy_mu, cauchy_gamma]) # Now either print out or save the statistical information if(not autosave): print "Normal Statistics:" write_statistics(save_directory + '/stats_normal.txt', norm_stats, autosave) if(not autosave): print "Cauchy Statistics:" write_statistics(save_directory + '/stats_cauchy.txt', cauchy_stats, autosave) def col_names(filename): """ Reads in the column names from the `best_fit.txt` files. Column names will always occur on the first non-comment line in the file. """ columns = list() try: infile = open(filename, 'r') for line in infile: if re.match('#', line): continue line = line.strip() columns = line.split(',') break except: print "Could not find best_fit.txt file. No graph titles will be created." return columns def main(): filename = "" usage = "Usage: %prog [options] filename" parser = OptionParser(usage=usage) parser.add_option("--nbins", dest="nbins", action="store", type="int", default=10, help="Number of binning columns. [default: 10]") parser.add_option("--autosave", dest="autosave", action="store_true", default=False, help="Automatically save the plots. [default: False]") parser.add_option("--savefmt", dest="savefmt", action="store", type="string", default="svg", help="Automatic save file format. [default: %default]") parser.add_option("--trimends", dest="trimends", action="store_true", default=False, help="Remove the minimum and maximum bins from the histogram [default: %default]") (options, args) = parser.parse_args() # now read the filenames filename = args[0] # Set parameters specifying columns that should not be plotted # and attempt to find the namefile: skip_cols=[] directory = os.path.dirname(os.path.realpath(filename)) delimiter = None if re.search('bootstrap_levmar', filename): skip_cols = [-1] delimiter = ',' print "Found bootstrap file." elif re.search('multinest.txt', filename): skip_cols = [0,1] print "Found MultiNest file." else: print "Unknown file format found, I'll do the best I can." column_names = [] if len(directory) > 1: column_names = col_names(directory + '/best_fit.txt') plot_histogram(filename, column_names=column_names, skip_cols=skip_cols, nbins=options.nbins, autosave=options.autosave, save_directory=directory, save_format=options.savefmt, trimends=options.trimends, delimiter=delimiter) def write_statistics(filename, statistics, save_to_file): """ Writes the statistical information as rows formatted as: title, mu, sigma to the specified file. statistics should be a list of triplets: [[title, mu, sigma], ..., [title, mu, sigma] ] Data will be written as follows: # col1, sig_col1, ..., colN, sig_colN val1, sig_val1, ..., valN, sig_valN """ # first do the title line titles = list() values = list() for [title, value, sigma] in statistics: titles.append(title) titles.append("sig_" + title) values.append(value) values.append(sigma) titles = map(str, titles) values = map(str, values) title_line = "# " + ', '.join(titles) value_line = ', '.join(values) if(save_to_file): outfile = open(filename, 'w') outfile.write(title_line + "\n") outfile.write(value_line) outfile.close() else: print title_line print value_line # Run the main function if this is a top-level script: if __name__ == "__main__": main()
gpl-3.0
loli/sklearn-ensembletrees
sklearn/linear_model/tests/test_sparse_coordinate_descent.py
1
10006
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV) def test_sparse_coef(): """ Check that the sparse_coef propery works """ clf = ElasticNet() clf.coef_ = [1, 2, 3] assert_true(sp.isspmatrix(clf.sparse_coef_)) assert_equal(clf.sparse_coef_.todense().tolist()[0], clf.coef_) def test_normalize_option(): """ Check that the normalize option in enet works """ X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_) def test_lasso_zero(): """Check that the sparse lasso can handle zero data without crashing""" X = sp.csc_matrix((3, 1)) y = [0, 0, 0] T = np.array([[1], [2], [3]]) clf = Lasso().fit(X, y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_list_input(): """Test ElasticNet for various values of alpha and l1_ratio with list X""" X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_explicit_sparse_input(): """Test ElasticNet for various values of alpha and l1_ratio with sparse X""" f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def make_sparse_data(n_samples=100, n_features=100, n_informative=10, seed=42, positive=False, n_targets=1): random_state = np.random.RandomState(seed) # build an ill-posed linear regression problem with many noisy features and # comparatively few samples # generate a ground truth model w = random_state.randn(n_features, n_targets) w[n_informative:] = 0.0 # only the top features are impacting the model if positive: w = np.abs(w) X = random_state.randn(n_samples, n_features) rnd = random_state.uniform(size=(n_samples, n_features)) X[rnd > 0.5] = 0.0 # 50% of zeros in input signal # generate training ground truth labels y = np.dot(X, w) X = sp.csc_matrix(X) if n_targets == 1: y = np.ravel(y) return X, y def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples / 2:], X[:n_samples / 2] y_train, y_test = y[n_samples / 2:], y[:n_samples / 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.todense(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) def test_sparse_enet_not_as_toy_dataset(): _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=False, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=True, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=False, positive=True) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=True, positive=True) def test_sparse_lasso_not_as_toy_dataset(): n_samples = 100 max_iter = 1000 n_informative = 10 X, y = make_sparse_data(n_samples=n_samples, n_informative=n_informative) X_train, X_test = X[n_samples / 2:], X[:n_samples / 2] y_train, y_test = y[n_samples / 2:], y[:n_samples / 2] s_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train.todense(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) # check that the coefs are sparse assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative) def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_path_parameters(): X, y = make_sparse_data() max_iter = 50 n_alphas = 10 clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False) ignore_warnings(clf.fit)(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(n_alphas, clf.n_alphas) assert_equal(n_alphas, len(clf.alphas_)) sparse_mse_path = clf.mse_path_ ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data assert_almost_equal(clf.mse_path_, sparse_mse_path) def test_same_output_sparse_dense_lasso_and_enet_cv(): X, y = make_sparse_data(n_samples=40, n_features=10) for normalize in [True, False]: clfs = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfd.fit)(X.todense(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_) clfs = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfd.fit)(X.todense(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_)
bsd-3-clause
sawsimeon/PCM
Descriptors_Selection.py
3
5025
# -*- coding: utf-8 -*- """ Created on Thu Jul 17 09:19:41 2014 @author: Fujitsu """ def VIP(X, Y, H, NumDes): from sklearn.cross_decomposition import PLSRegression import numpy as np from sklearn.cross_validation import KFold import PCM_workflow as PW print '############## VIP is being processed ###############' M = list(X.viewkeys()) H_VIP, X_VIP, Y_VIP, HArray = {},{},{},{} NumDesVIP = np.zeros((13,6), dtype=int) for kk in M: Xtrain, Ytrain = X[kk], Y kf = KFold(len(Ytrain), 10, indices=True, shuffle=True, random_state=1) HH = H[kk] nrow, ncol = np.shape(Xtrain) ArrayYpredCV, Q2, RMSE_CV, OptimalPC = PW.CV_Processing(Xtrain,Ytrain,kf) plsmodel = PLSRegression(n_components=OptimalPC) plsmodel.fit(Xtrain,Ytrain) x_scores = plsmodel.x_scores_ x_weighted = plsmodel.x_weights_ m, p = nrow, ncol m, h = np.shape(x_scores) p, h = np.shape(x_weighted) X_S, X_W = x_scores, x_weighted co=[] for i in range(h): corr = np.corrcoef(np.squeeze(Ytrain), X_S[:,i]) co.append(corr[0][1]**2) s = sum(co) vip=[] for j in range(p): d=[] for k in range(h): d.append(co[k]*X_W[j,k]**2) q=sum(d) vip.append(np.sqrt(p*q/s)) idx_keep = [idx for idx, val in enumerate(vip) if vip[idx] >= 1] idxDes = NumDes[int(kk[6:])-1,:] L,P,LxP,LxL,PxP = [],[],[],[],[] for idx in idx_keep: if idx >= 0 and idx < np.sum(idxDes[0:1]): L.append(idx) elif idx >= np.sum(idxDes[0:1]) and idx < np.sum(idxDes[0:2]): P.append(idx) elif idx >= np.sum(idxDes[0:2]) and idx < np.sum(idxDes[0:3]): LxP.append(idx) elif idx >= np.sum(idxDes[0:3]) and idx < np.sum(idxDes[0:4]): LxL.append(idx) elif idx >= np.sum(idxDes[0:4]) and idx < np.sum(idxDes): PxP.append(idx) NVIP= np.array([len(L),len(P),len(LxP),len(LxL),len(PxP),len(idx_keep)]) NumDesVIP[int(kk[6:])-1,:] = NumDesVIP[int(kk[6:])-1,:]+NVIP hvip = np.array(HH)[idx_keep] vvip = np.array(vip)[idx_keep] H_VIP[kk] = hvip X_VIP[kk] = Xtrain[:,idx_keep] Y_VIP = Ytrain hvip = np.reshape(hvip,(len(hvip),1)) vvip = np.reshape(vvip, (len(vvip),1)) HArray[kk] = np.append(hvip, vvip, axis=1) return X_VIP, Y_VIP, H_VIP, HArray, NumDesVIP def VarinceThreshold(X): import numpy as np STDEV = np.std(X, axis=0) return [idx for idx, val in enumerate(STDEV) if val > 0.1] def Correlation(X, Y): from scipy.stats import pearsonr nrow, ncol = X.shape Corr_XY = [] for i in range(ncol): Corr_XY.append(pearsonr(X[:,i],Y)[1]) A = [j[0] for j in sorted(enumerate(Corr_XY), key=lambda x:x[1])] AA = [] while A != []: i_keep = [] for k in range(len(A)): if k == 0: i_keep.append(1) else: p = pearsonr(X[:,A[0]], X[:,A[k]])[1] if p <= 0.05: #highly correlation i_keep.append(0) else: i_keep.append(1) A = [A[ind]for ind,val in enumerate(i_keep) if val == 1] AA.append(A.pop(0)) return AA def VIP_origin(X, Y, H): from sklearn.cross_decomposition import PLSRegression import numpy as np from sklearn.cross_validation import KFold import PCM_workflow as PW print '############## VIP is being processed ###############' Y = Y.astype(np.float) Xtrain, Ytrain = X, Y kf = KFold(len(Ytrain), 10, indices=True, shuffle=True, random_state=1) nrow, ncol = np.shape(Xtrain) ArrayYpredCV, Q2, RMSE_CV, OptimalPC = PW.CV_Processing(Xtrain,Ytrain,kf) plsmodel = PLSRegression(n_components=OptimalPC) plsmodel.fit(Xtrain,Ytrain) x_scores = plsmodel.x_scores_ x_weighted = plsmodel.x_weights_ m, p = nrow, ncol m, h = np.shape(x_scores) p, h = np.shape(x_weighted) X_S, X_W = x_scores, x_weighted co=[] for i in range(h): corr = np.corrcoef(np.squeeze(Ytrain), X_S[:,i]) co.append(corr[0][1]**2) s = sum(co) vip=[] for j in range(p): d=[] for k in range(h): d.append(co[k]*X_W[j,k]**2) q=sum(d) vip.append(np.sqrt(p*q/s)) idx_keep = [idx for idx, val in enumerate(vip) if vip[idx] >= 1] H_VIP = np.squeeze(np.array(H))[idx_keep] X_VIP = Xtrain[:,idx_keep] Y_VIP = Ytrain return X_VIP, Y_VIP, H_VIP
gpl-2.0
DGrady/pandas
pandas/tests/indexing/test_timedelta.py
7
1913
import pytest import pandas as pd from pandas.util import testing as tm class TestTimedeltaIndexing(object): def test_boolean_indexing(self): # GH 14946 df = pd.DataFrame({'x': range(10)}) df.index = pd.to_timedelta(range(10), unit='s') conditions = [df['x'] > 3, df['x'] == 3, df['x'] < 3] expected_data = [[0, 1, 2, 3, 10, 10, 10, 10, 10, 10], [0, 1, 2, 10, 4, 5, 6, 7, 8, 9], [10, 10, 10, 3, 4, 5, 6, 7, 8, 9]] for cond, data in zip(conditions, expected_data): result = df.assign(x=df.mask(cond, 10).astype('int64')) expected = pd.DataFrame(data, index=pd.to_timedelta(range(10), unit='s'), columns=['x'], dtype='int64') tm.assert_frame_equal(expected, result) @pytest.mark.parametrize( "indexer, expected", [(0, [20, 1, 2, 3, 4, 5, 6, 7, 8, 9]), (slice(4, 8), [0, 1, 2, 3, 20, 20, 20, 20, 8, 9]), ([3, 5], [0, 1, 2, 20, 4, 20, 6, 7, 8, 9])]) def test_list_like_indexing(self, indexer, expected): # GH 16637 df = pd.DataFrame({'x': range(10)}, dtype="int64") df.index = pd.to_timedelta(range(10), unit='s') df.loc[df.index[indexer], 'x'] = 20 expected = pd.DataFrame(expected, index=pd.to_timedelta(range(10), unit='s'), columns=['x'], dtype="int64") tm.assert_frame_equal(expected, df) def test_string_indexing(self): # GH 16896 df = pd.DataFrame({'x': range(3)}, index=pd.to_timedelta(range(3), unit='days')) expected = df.iloc[0] sliced = df.loc['0 days'] tm.assert_series_equal(sliced, expected)
bsd-3-clause
lyoshiwo/resume_job_matching
Step8_basal_classifier_save.py
1
17377
# encoding=utf8 from sklearn import cross_validation import pandas as pd import os import time from keras.preprocessing import sequence import util print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) tree_test = False xgb_test = False cnn_test = False rf_test = False lstm_test = False # max_depth=12 0.433092948718 # rn>200,rh=21 0.537 to 0.541; rh=21,rn=400; 0.542 CV_FLAG = 1 param = {} param['objective'] = 'multi:softmax' param['eta'] = 0.03 param['max_depth'] = 6 param['eval_metric'] = 'merror' param['silent'] = 1 param['min_child_weight'] = 10 param['subsample'] = 0.7 param['colsample_bytree'] = 0.2 param['nthread'] = 4 param['num_class'] = -1 keys = {'salary': [353, 2, 7], 'size': [223, 3, 6], 'degree': [450, 4, 8], 'position': [390, 7, 16]} # keys = {'salary': [1,1,1], 'size': [1,1,1], 'degree': [1,1,1], 'position': [1,1,1]} def get_all_by_name(name): import numpy as np if os.path.exists(util.features_prefix + name + "_XY.pkl") is False: print name + 'file does not exist' exit() if os.path.exists(util.features_prefix + name + '_XXXYYY.pkl') is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') X_train, X_test, y_train, y_test = cross_validation.train_test_split(train_X, train_Y, test_size=0.33, random_state=0) X_train, X_validate, y_train, y_validate = cross_validation.train_test_split(X_train, y_train, test_size=0.33, random_state=0) X_train = np.array(X_train) y_train = np.array(y_train) y_test = np.array(y_test) X_test = np.array(X_test) X_validate = np.array(X_validate) y_validate = np.array(y_validate) pd.to_pickle([X_train, X_validate, X_test, y_train, y_validate, y_test], util.features_prefix + name + '_XXXYYY.pkl') if os.path.exists(util.features_prefix + name + '_XXXYYY.pkl'): from sklearn.ensemble import RandomForestClassifier if rf_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') [X_train, X_validate, X_test, y_train, y_validate, y_test] = pd.read_pickle( util.features_prefix + name + '_XXXYYY.pkl') x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) print 'rf' print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # for max in range(12, 23, 5): clf = RandomForestClassifier(n_jobs=4, n_estimators=400, max_depth=22) clf.fit(x, y) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) pd.to_pickle(clf, util.models_prefix + name + '_rf.pkl') y_p = clf.predict(X_test) print name + ' score:' + util.score_lists(y_test, y_p) if xgb_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') [X_train, X_validate, X_test, y_train, y_validate, y_test] = pd.read_pickle( util.features_prefix + name + '_XXXYYY.pkl') x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) print 'xg' import xgboost as xgb print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) set_y = set(train_Y) param["num_class"] = len(set_y) x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) dtrain = xgb.DMatrix(x, label=y) param['objective'] = 'multi:softmax' xgb_2 = xgb.train(param, dtrain, keys[name][0]) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) xgb_2.save_model(util.models_prefix + name + '_xgb.pkl') dtest = xgb.DMatrix(X_test) y_p = xgb_2.predict(dtest) print name + ' score:' + util.score_lists(y_test, y_p) param['objective'] = 'multi:softprob' dtrain = xgb.DMatrix(x, label=y) xgb_1 = xgb.train(param, dtrain, keys[name][0]) xgb_1.save_model(util.models_prefix + name + '_xgb_prob.pkl') if cnn_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') [X_train, X_validate, X_test, y_train, y_validate, y_test] = pd.read_pickle( util.features_prefix + name + '_XXXYYY.pkl') print 'cnn' import copy import numpy as np from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.layers.convolutional import Convolution1D print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) label_dict = LabelEncoder().fit(train_Y) label_num = len(label_dict.classes_) x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) train_Y = np_utils.to_categorical(y, label_num) # x = np.concatenate([X_train, X_validate], axis=0) X_train = x X_semantic = np.array(copy.deepcopy(X_train[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_train[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_train[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_train[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() dic_num_cluster = X_cluster.max() dic_num_manual = train_X.max() dic_num_document = X_document[:, [0]].max() from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.core import Merge from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.recurrent import LSTM X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) model_semantic = Sequential() model_lstm = Sequential() model_lstm.add(LSTM(output_dim=30, input_shape=X_semantic_1.shape[1:], go_backwards=True)) model_semantic.add(Convolution1D(nb_filter=32, filter_length=2, border_mode='valid', activation='relu', input_shape=X_semantic_1.shape[1:])) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Convolution1D(nb_filter=8, filter_length=2, border_mode='valid', activation='relu')) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Flatten()) # we use standard max pooling (halving the output of the previous layer): model_manual = Sequential() model_manual.add(Embedding(input_dim=dic_num_manual + 1, output_dim=20, input_length=X_manual.shape[1])) # model_manual.add(Convolution1D(nb_filter=2, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) # model_manual.add(Convolution1D(nb_filter=8, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) model_manual.add(Flatten()) model_document = Sequential() model_document.add( Embedding(input_dim=dic_num_document + 1, output_dim=2, input_length=X_document.shape[1])) model_document.add(Flatten()) model_cluster = Sequential() model_cluster.add(Embedding(input_dim=dic_num_cluster + 1, output_dim=5, input_length=X_cluster.shape[1])) model_cluster.add(Flatten()) model = Sequential() # model = model_cluster model.add(Merge([model_document, model_cluster, model_manual, model_semantic], mode='concat', concat_axis=1)) model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Dropout(0.5)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(label_num)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta') # model.fit(X_cluster_1, train_Y, batch_size=100, # nb_epoch=100, validation_split=0.33, verbose=1) model.fit([X_document, X_cluster, X_manual, X_semantic_1], train_Y, batch_size=100, nb_epoch=keys[name][1]) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) json_string = model.to_json() pd.to_pickle(json_string, util.models_prefix + name + '_json_string_cnn.pkl') model.save_weights(util.models_prefix + name + '_nn_weight_cnn.h5') X_semantic = np.array(copy.deepcopy(X_test[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_test[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_test[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_test[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) cnn_list = model.predict_classes([X_document, X_cluster, X_manual, X_semantic_1]) print name + ' score:' + util.score_lists(y_test, cnn_list) if lstm_test is False: import numpy as np [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') [X_train, X_validate, X_test, y_train, y_validate, y_test] = pd.read_pickle( util.features_prefix + name + '_XXXYYY.pkl') x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) print 'lstm' import copy import numpy as np from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.layers.convolutional import Convolution1D label_dict = LabelEncoder().fit(train_Y) label_num = len(label_dict.classes_) x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) train_Y = np_utils.to_categorical(y, label_num) # x = np.concatenate([X_train, X_validate], axis=0) X_train = x X_semantic = np.array(copy.deepcopy(X_train[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_train[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_train[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_train[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() dic_num_cluster = X_cluster.max() dic_num_manual = train_X.max() dic_num_document = X_document[:, [0]].max() from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.core import Merge from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.recurrent import LSTM X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) model_semantic = Sequential() model_lstm = Sequential() model_lstm.add(LSTM(output_dim=30, input_shape=X_semantic_1.shape[1:], go_backwards=True)) model_semantic.add(Convolution1D(nb_filter=32, filter_length=2, border_mode='valid', activation='relu', input_shape=X_semantic_1.shape[1:])) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Convolution1D(nb_filter=8, filter_length=2, border_mode='valid', activation='relu')) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Flatten()) # we use standard max pooling (halving the output of the previous layer): model_manual = Sequential() model_manual.add(Embedding(input_dim=dic_num_manual + 1, output_dim=20, input_length=X_manual.shape[1])) # model_manual.add(Convolution1D(nb_filter=2, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) # model_manual.add(Convolution1D(nb_filter=8, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) model_manual.add(Flatten()) model_document = Sequential() model_document.add( Embedding(input_dim=dic_num_document + 1, output_dim=2, input_length=X_document.shape[1])) model_document.add(Flatten()) model_cluster = Sequential() model_cluster.add(Embedding(input_dim=dic_num_cluster + 1, output_dim=5, input_length=X_cluster.shape[1])) model_cluster.add(Flatten()) model = Sequential() # model = model_cluster model.add(Merge([model_document, model_cluster, model_manual, model_lstm], mode='concat', concat_axis=1)) model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Dropout(0.5)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(label_num)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta') # model.fit(X_cluster_1, train_Y, batch_size=100, # nb_epoch=100, validation_split=0.33, verbose=1) model.fit([X_document, X_cluster, X_manual, X_semantic_1], train_Y, batch_size=100, nb_epoch=keys[name][2]) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) json_string = model.to_json() pd.to_pickle(json_string, util.models_prefix + name + '_json_string_lstm.pkl') model.save_weights(util.models_prefix + name + '_nn_weight_lstm.h5') X_semantic = np.array(copy.deepcopy(X_test[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_test[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_test[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_test[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) lstm_list = model.predict_classes([X_document, X_cluster, X_manual, X_semantic_1]) print name + ' score:' + util.score_lists(y_test, lstm_list) if __name__ == "__main__": for name in ['salary', 'size', 'degree', 'position']: print name get_all_by_name(name)
apache-2.0
jakobworldpeace/scikit-learn
sklearn/cross_decomposition/pls_.py
21
30770
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from distutils.version import LooseVersion from sklearn.utils.extmath import svd_flip from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted, FLOAT_DTYPES __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] import scipy pinv2_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 pinv2_args = {'check_finite': False} def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: # We use slower pinv2 (same as np.linalg.pinv) for stability # reasons X_pinv = linalg.pinv2(X, **pinv2_args) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # If y_score only has zeros x_weights will only have zeros. In # this case add an epsilon to converge to a more acceptable # solution if np.dot(x_weights.T, x_weights) < eps: x_weights += eps # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv2(Y, **pinv2_args) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights : boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_ : array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ = ( _center_scale_xy(X, Y, self.scale)) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # Forces sign stability of x_weights and y_weights # Sign undeterminacy issue from svd if algorithm == "svd" # and from platform dependent computation if algorithm == 'nipals' x_weights, y_weights = svd_flip(x_weights, y_weights.T) y_weights = y_weights.T # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv2(np.dot(self.x_loadings_.T, self.x_weights_), **pinv2_args)) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv2(np.dot(self.y_loadings_.T, self.y_weights_), **pinv2_args)) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_ : array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- Matrices:: T: x_scores_ U: y_scores_ W: x_weights_ C: y_weights_ P: x_loadings_ Q: y_loadings__ Are computed such that:: X = T P.T + Err and Y = U Q.T + Err T[:, k] = Xk W[:, k] for k in range(n_components) U[:, k] = Yk C[:, k] for k in range(n_components) x_rotations_ = W (P.T W)^(-1) y_rotations_ = C (Q.T C)^(-1) where Xk and Yk are residual matrices at iteration k. `Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>` For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * std(Xk u) std(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): super(PLSRegression, self).__init__( n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- Matrices:: T: x_scores_ U: y_scores_ W: x_weights_ C: y_weights_ P: x_loadings_ Q: y_loadings__ Are computed such that:: X = T P.T + Err and Y = U Q.T + Err T[:, k] = Xk W[:, k] for k in range(n_components) U[:, k] = Yk C[:, k] for k in range(n_components) x_rotations_ = W (P.T W)^(-1) y_rotations_ = C (Q.T C)^(-1) where Xk and Yk are residual matrices at iteration k. `Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>` For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * std(Xk u) std(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): super(PLSCanonical, self).__init__( n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ = ( _center_scale_xy(X, Y, self.scale)) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) # Deterministic output U, V = svd_flip(U, V) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
CVML/scikit-learn
sklearn/utils/tests/test_shortest_path.py
88
2828
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW)
bsd-3-clause
wzbozon/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
lungetech/luigi
examples/pyspark_wc.py
21
3380
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import luigi from luigi.s3 import S3Target from luigi.contrib.spark import SparkSubmitTask, PySparkTask class InlinePySparkWordCount(PySparkTask): """ This task runs a :py:class:`luigi.contrib.spark.PySparkTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.PySparkTask.main`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 # py-packages: numpy, pandas """ driver_memory = '2g' executor_memory = '3g' def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') def main(self, sc, *args): sc.textFile(self.input().path) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(self.output().path) class PySparkWordCount(SparkSubmitTask): """ This task is the same as :py:class:`InlinePySparkWordCount` above but uses an external python driver file specified in :py:meth:`app` It runs a :py:class:`luigi.contrib.spark.SparkSubmitTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.SparkSubmitTask.run`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 deploy-mode: client """ driver_memory = '2g' executor_memory = '3g' total_executor_cores = luigi.IntParameter(default=100, significant=False) name = "PySpark Word Count" app = 'wordcount.py' def app_options(self): # These are passed to the Spark main args in the defined order. return [self.input().path, self.output().path] def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') ''' // Corresponding example Spark Job, running Word count with Spark's Python API // This file would have to be saved into wordcount.py import sys from pyspark import SparkContext if __name__ == "__main__": sc = SparkContext() sc.textFile(sys.argv[1]) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(sys.argv[2]) '''
apache-2.0
ChinaQuants/zipline
zipline/history/history_container.py
12
33513
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from bisect import insort_left from collections import namedtuple from itertools import groupby, product import logbook import numpy as np import pandas as pd from six import itervalues, iteritems, iterkeys from . history import HistorySpec from zipline.utils.data import RollingPanel, _ensure_index from zipline.utils.munge import ffill, bfill logger = logbook.Logger('History Container') # The closing price is referred to by multiple names, # allow both for price rollover logic etc. CLOSING_PRICE_FIELDS = frozenset({'price', 'close_price'}) def ffill_buffer_from_prior_values(freq, field, buffer_frame, digest_frame, pv_frame, raw=False): """ Forward-fill a buffer frame, falling back to the end-of-period values of a digest frame if the buffer frame has leading NaNs. """ # convert to ndarray if necessary digest_values = digest_frame if raw and isinstance(digest_frame, pd.DataFrame): digest_values = digest_frame.values buffer_values = buffer_frame if raw and isinstance(buffer_frame, pd.DataFrame): buffer_values = buffer_frame.values nan_sids = pd.isnull(buffer_values[0]) if np.any(nan_sids) and len(digest_values): # If we have any leading nans in the buffer and we have a non-empty # digest frame, use the oldest digest values as the initial buffer # values. buffer_values[0, nan_sids] = digest_values[-1, nan_sids] nan_sids = pd.isnull(buffer_values[0]) if np.any(nan_sids): # If we still have leading nans, fall back to the last known values # from before the digest. key_loc = pv_frame.index.get_loc((freq.freq_str, field)) filler = pv_frame.values[key_loc, nan_sids] buffer_values[0, nan_sids] = filler if raw: filled = ffill(buffer_values) return filled return buffer_frame.ffill() def ffill_digest_frame_from_prior_values(freq, field, digest_frame, pv_frame, raw=False): """ Forward-fill a digest frame, falling back to the last known prior values if necessary. """ # convert to ndarray if necessary values = digest_frame if raw and isinstance(digest_frame, pd.DataFrame): values = digest_frame.values nan_sids = pd.isnull(values[0]) if np.any(nan_sids): # If we have any leading nans in the frame, use values from pv_frame to # seed values for those sids. key_loc = pv_frame.index.get_loc((freq.freq_str, field)) filler = pv_frame.values[key_loc, nan_sids] values[0, nan_sids] = filler if raw: filled = ffill(values) return filled return digest_frame.ffill() def freq_str_and_bar_count(history_spec): """ Helper for getting the frequency string and bar count from a history spec. """ return (history_spec.frequency.freq_str, history_spec.bar_count) def next_bar(spec, env): """ Returns a function that will return the next bar for a given datetime. """ if spec.frequency.unit_str == 'd': if spec.frequency.data_frequency == 'minute': return lambda dt: env.get_open_and_close( env.next_trading_day(dt), )[1] else: return env.next_trading_day else: return env.next_market_minute def compute_largest_specs(history_specs): """ Maps a Frequency to the largest HistorySpec at that frequency from an iterable of HistorySpecs. """ return {key: max(group, key=lambda f: f.bar_count) for key, group in groupby( sorted(history_specs, key=freq_str_and_bar_count), key=lambda spec: spec.frequency)} # tuples to store a change to the shape of a HistoryContainer FrequencyDelta = namedtuple( 'FrequencyDelta', ['freq', 'buffer_delta'], ) LengthDelta = namedtuple( 'LengthDelta', ['freq', 'delta'], ) HistoryContainerDeltaSuper = namedtuple( 'HistoryContainerDelta', ['field', 'frequency_delta', 'length_delta'], ) class HistoryContainerDelta(HistoryContainerDeltaSuper): """ A class representing a resize of the history container. """ def __new__(cls, field=None, frequency_delta=None, length_delta=None): """ field is a new field that was added. frequency is a FrequencyDelta representing a new frequency was added. length is a bar LengthDelta which is a frequency and a bar_count. If any field is None, then no change occurred of that type. """ return super(HistoryContainerDelta, cls).__new__( cls, field, frequency_delta, length_delta, ) @property def empty(self): """ Checks if the delta is empty. """ return (self.field is None and self.frequency_delta is None and self.length_delta is None) def normalize_to_data_freq(data_frequency, dt): if data_frequency == 'minute': return dt return pd.tslib.normalize_date(dt) class HistoryContainer(object): """ Container for all history panels and frames used by an algoscript. To be used internally by TradingAlgorithm, but *not* passed directly to the algorithm. Entry point for the algoscript is the result of `get_history`. """ VALID_FIELDS = { 'price', 'open_price', 'volume', 'high', 'low', 'close_price', } def __init__(self, history_specs, initial_sids, initial_dt, data_frequency, env, bar_data=None): """ A container to hold a rolling window of historical data within a user's algorithm. Args: history_specs (dict[Frequency:HistorySpec]): The starting history specs that this container should be able to service. initial_sids (set[Asset or Int]): The starting sids to watch. initial_dt (datetime): The datetime to start collecting history from. bar_data (BarData): If this container is being constructed during handle_data, this is the BarData for the current bar to fill the buffer with. If this is constructed elsewhere, it is None. Returns: An instance of a new HistoryContainer """ # Store a reference to the env self.env = env # History specs to be served by this container. self.history_specs = history_specs self.largest_specs = compute_largest_specs( itervalues(self.history_specs) ) # The set of fields specified by all history specs self.fields = pd.Index( sorted(set(spec.field for spec in itervalues(history_specs))) ) self.sids = pd.Index( sorted(set(initial_sids or [])) ) self.data_frequency = data_frequency initial_dt = normalize_to_data_freq(self.data_frequency, initial_dt) # This panel contains raw minutes for periods that haven't been fully # completed. When a frequency period rolls over, these minutes are # digested using some sort of aggregation call on the panel (e.g. `sum` # for volume, `max` for high, `min` for low, etc.). self.buffer_panel = self.create_buffer_panel(initial_dt, bar_data) # Dictionaries with Frequency objects as keys. self.digest_panels, self.cur_window_starts, self.cur_window_closes = \ self.create_digest_panels(initial_sids, initial_dt) # Helps prop up the prior day panel against having a nan, when the data # has been seen. self.last_known_prior_values = pd.DataFrame( data=None, index=self.prior_values_index, columns=self.prior_values_columns, # Note: For bizarre "intricacies of the spaghetti that is pandas # indexing logic" reasons, setting this dtype prevents indexing # errors in update_last_known_values. This is safe for the time # being because our only forward-fillable fields are floats. If we # need to add a non-float-typed forward-fillable field, then we may # find ourselves having to track down and fix a pandas bug. dtype=np.float64, ) _ffillable_fields = None @property def ffillable_fields(self): if self._ffillable_fields is None: fillables = self.fields.intersection(HistorySpec.FORWARD_FILLABLE) self._ffillable_fields = fillables return self._ffillable_fields @property def prior_values_index(self): index_values = list( product( (freq.freq_str for freq in self.unique_frequencies), # Only store prior values for forward-fillable fields. self.ffillable_fields, ) ) if index_values: return pd.MultiIndex.from_tuples(index_values) else: # MultiIndex doesn't gracefully support empty input, so we return # an empty regular Index if we have values. return pd.Index(index_values) @property def prior_values_columns(self): return self.sids @property def all_panels(self): yield self.buffer_panel for panel in self.digest_panels.values(): yield panel @property def unique_frequencies(self): """ Return an iterator over all the unique frequencies serviced by this container. """ return iterkeys(self.largest_specs) def _add_frequency(self, spec, dt, data): """ Adds a new frequency to the container. This reshapes the buffer_panel if needed. """ freq = spec.frequency self.largest_specs[freq] = spec new_buffer_len = 0 if freq.max_bars > self.buffer_panel.window_length: # More bars need to be held in the buffer_panel to support this # freq if freq.data_frequency \ != self.buffer_spec.frequency.data_frequency: # If the data_frequencies are not the same, then we need to # create a fresh buffer. self.buffer_panel = self.create_buffer_panel( dt, bar_data=data, ) new_buffer_len = None else: # The frequencies are the same, we just need to add more bars. self._resize_panel( self.buffer_panel, freq.max_bars, dt, self.buffer_spec.frequency, ) new_buffer_len = freq.max_minutes # update the current buffer_spec to reflect the new lenght. self.buffer_spec.bar_count = new_buffer_len + 1 if spec.bar_count > 1: # This spec has more than one bar, construct a digest panel for it. self.digest_panels[freq] = self._create_digest_panel(dt, spec=spec) else: self.cur_window_starts[freq] = dt self.cur_window_closes[freq] = freq.window_close( self.cur_window_starts[freq] ) self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) return FrequencyDelta(freq, new_buffer_len) def _add_field(self, field): """ Adds a new field to the container. """ # self.fields is already sorted, so we just need to insert the new # field in the correct index. ls = list(self.fields) insort_left(ls, field) self.fields = pd.Index(ls) # unset fillable fields cache self._ffillable_fields = None self._realign_fields() self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) return field def _add_length(self, spec, dt): """ Increases the length of the digest panel for spec.frequency. If this does not have a panel, and one is needed; a digest panel will be constructed. """ old_count = self.largest_specs[spec.frequency].bar_count self.largest_specs[spec.frequency] = spec delta = spec.bar_count - old_count panel = self.digest_panels.get(spec.frequency) if panel is None: # The old length for this frequency was 1 bar, meaning no digest # panel was held. We must construct a new one here. panel = self._create_digest_panel(dt, spec=spec) else: self._resize_panel(panel, spec.bar_count - 1, dt, freq=spec.frequency) self.digest_panels[spec.frequency] = panel return LengthDelta(spec.frequency, delta) def _resize_panel(self, panel, size, dt, freq): """ Resizes a panel, fills the date_buf with the correct values. """ # This is the oldest datetime that will be shown in the current window # of the panel. oldest_dt = pd.Timestamp(panel.start_date, tz='utc',) delta = size - panel.window_length # Construct the missing dates. missing_dts = self._create_window_date_buf( delta, freq.unit_str, freq.data_frequency, oldest_dt, ) panel.extend_back(missing_dts) def _create_window_date_buf(self, window, unit_str, data_frequency, dt): """ Creates a window length date_buf looking backwards from dt. """ if unit_str == 'd': # Get the properly key'd datetime64 out of the pandas Timestamp if data_frequency != 'daily': arr = self.env.open_close_window( dt, window, offset=-window, ).market_close.astype('datetime64[ns]').values else: arr = self.env.open_close_window( dt, window, offset=-window, ).index.values return arr else: return self.env.market_minute_window( self.env.previous_market_minute(dt), window, step=-1, )[::-1].values def _create_panel(self, dt, spec): """ Constructs a rolling panel with a properly aligned date_buf. """ dt = normalize_to_data_freq(spec.frequency.data_frequency, dt) window = spec.bar_count - 1 date_buf = self._create_window_date_buf( window, spec.frequency.unit_str, spec.frequency.data_frequency, dt, ) panel = RollingPanel( window=window, items=self.fields, sids=self.sids, initial_dates=date_buf, ) return panel def _create_digest_panel(self, dt, spec, window_starts=None, window_closes=None): """ Creates a digest panel, setting the window_starts and window_closes. If window_starts or window_closes are None, then self.cur_window_starts or self.cur_window_closes will be used. """ freq = spec.frequency window_starts = window_starts if window_starts is not None \ else self.cur_window_starts window_closes = window_closes if window_closes is not None \ else self.cur_window_closes window_starts[freq] = freq.normalize(dt) window_closes[freq] = freq.window_close(window_starts[freq]) return self._create_panel(dt, spec) def ensure_spec(self, spec, dt, bar_data): """ Ensure that this container has enough space to hold the data for the given spec. This returns a HistoryContainerDelta to represent the changes in shape that the container made to support the new HistorySpec. """ updated = {} if spec.field not in self.fields: updated['field'] = self._add_field(spec.field) if spec.frequency not in self.largest_specs: updated['frequency_delta'] = self._add_frequency( spec, dt, bar_data, ) if spec.bar_count > self.largest_specs[spec.frequency].bar_count: updated['length_delta'] = self._add_length(spec, dt) return HistoryContainerDelta(**updated) def add_sids(self, to_add): """ Add new sids to the container. """ self.sids = pd.Index( sorted(self.sids.union(_ensure_index(to_add))), ) self._realign_sids() def drop_sids(self, to_drop): """ Remove sids from the container. """ self.sids = pd.Index( sorted(self.sids.difference(_ensure_index(to_drop))), ) self._realign_sids() def _realign_sids(self): """ Realign our constituent panels after adding or removing sids. """ self.last_known_prior_values = self.last_known_prior_values.reindex( columns=self.sids, ) for panel in self.all_panels: panel.set_minor_axis(self.sids) def _realign_fields(self): self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) for panel in self.all_panels: panel.set_items(self.fields) def create_digest_panels(self, initial_sids, initial_dt): """ Initialize a RollingPanel for each unique panel frequency being stored by this container. Each RollingPanel pre-allocates enough storage space to service the highest bar-count of any history call that it serves. """ # Map from frequency -> first/last minute of the next digest to be # rolled for that frequency. first_window_starts = {} first_window_closes = {} # Map from frequency -> digest_panels. panels = {} for freq, largest_spec in iteritems(self.largest_specs): if largest_spec.bar_count == 1: # No need to allocate a digest panel; this frequency will only # ever use data drawn from self.buffer_panel. first_window_starts[freq] = freq.normalize(initial_dt) first_window_closes[freq] = freq.window_close( first_window_starts[freq] ) continue dt = initial_dt rp = self._create_digest_panel( dt, spec=largest_spec, window_starts=first_window_starts, window_closes=first_window_closes, ) panels[freq] = rp return panels, first_window_starts, first_window_closes def create_buffer_panel(self, initial_dt, bar_data): """ Initialize a RollingPanel containing enough minutes to service all our frequencies. """ max_bars_needed = max( freq.max_bars for freq in self.unique_frequencies ) freq = '1m' if self.data_frequency == 'minute' else '1d' spec = HistorySpec( max_bars_needed + 1, freq, None, None, self.env, self.data_frequency, ) rp = self._create_panel( initial_dt, spec, ) self.buffer_spec = spec if bar_data is not None: frame = self.frame_from_bardata(bar_data, initial_dt) rp.add_frame(initial_dt, frame) return rp def convert_columns(self, values): """ If columns have a specific type you want to enforce, overwrite this method and return the transformed values. """ return values def digest_bars(self, history_spec, do_ffill): """ Get the last (history_spec.bar_count - 1) bars from self.digest_panel for the requested HistorySpec. """ bar_count = history_spec.bar_count if bar_count == 1: # slicing with [1 - bar_count:] doesn't work when bar_count == 1, # so special-casing this. res = pd.DataFrame(index=[], columns=self.sids, dtype=float) return res.values, res.index field = history_spec.field # Panel axes are (field, dates, sids). We want just the entries for # the requested field, the last (bar_count - 1) data points, and all # sids. digest_panel = self.digest_panels[history_spec.frequency] frame = digest_panel.get_current(field, raw=True) if do_ffill: # Do forward-filling *before* truncating down to the requested # number of bars. This protects us from losing data if an illiquid # stock has a gap in its price history. filled = ffill_digest_frame_from_prior_values( history_spec.frequency, history_spec.field, frame, self.last_known_prior_values, raw=True # Truncate only after we've forward-filled ) indexer = slice(1 - bar_count, None) return filled[indexer], digest_panel.current_dates()[indexer] else: indexer = slice(1 - bar_count, None) return frame[indexer, :], digest_panel.current_dates()[indexer] def buffer_panel_minutes(self, buffer_panel, earliest_minute=None, latest_minute=None, raw=False): """ Get the minutes in @buffer_panel between @earliest_minute and @latest_minute, inclusive. @buffer_panel can be a RollingPanel or a plain Panel. If a RollingPanel is supplied, we call `get_current` to extract a Panel object. If no value is specified for @earliest_minute, use all the minutes we have up until @latest minute. If no value for @latest_minute is specified, use all values up until the latest minute. """ if isinstance(buffer_panel, RollingPanel): buffer_panel = buffer_panel.get_current(start=earliest_minute, end=latest_minute, raw=raw) return buffer_panel # Using .ix here rather than .loc because loc requires that the keys # are actually in the index, whereas .ix returns all the values between # earliest_minute and latest_minute, which is what we want. return buffer_panel.ix[:, earliest_minute:latest_minute, :] def frame_from_bardata(self, data, algo_dt): """ Create a DataFrame from the given BarData and algo dt. """ data = data._data frame_data = np.empty((len(self.fields), len(self.sids))) * np.nan for j, sid in enumerate(self.sids): sid_data = data.get(sid) if not sid_data: continue if algo_dt != sid_data['dt']: continue for i, field in enumerate(self.fields): frame_data[i, j] = sid_data.get(field, np.nan) return pd.DataFrame( frame_data, index=self.fields.copy(), columns=self.sids.copy(), ) def update(self, data, algo_dt): """ Takes the bar at @algo_dt's @data, checks to see if we need to roll any new digests, then adds new data to the buffer panel. """ frame = self.frame_from_bardata(data, algo_dt) self.update_last_known_values() self.update_digest_panels(algo_dt, self.buffer_panel) self.buffer_panel.add_frame(algo_dt, frame) def update_digest_panels(self, algo_dt, buffer_panel, freq_filter=None): """ Check whether @algo_dt is greater than cur_window_close for any of our frequencies. If so, roll a digest for that frequency using data drawn from @buffer panel and insert it into the appropriate digest panels. If @freq_filter is specified, only use the given data to update frequencies on which the filter returns True. This takes `buffer_panel` as an argument rather than using self.buffer_panel so that this method can be used to add supplemental data from an external source. """ for frequency in filter(freq_filter, self.unique_frequencies): # We don't keep a digest panel if we only have a length-1 history # spec for a given frequency digest_panel = self.digest_panels.get(frequency, None) while algo_dt > self.cur_window_closes[frequency]: earliest_minute = self.cur_window_starts[frequency] latest_minute = self.cur_window_closes[frequency] minutes_to_process = self.buffer_panel_minutes( buffer_panel, earliest_minute=earliest_minute, latest_minute=latest_minute, raw=True ) if digest_panel is not None: # Create a digest from minutes_to_process and add it to # digest_panel. digest_frame = self.create_new_digest_frame( minutes_to_process, self.fields, self.sids ) digest_panel.add_frame( latest_minute, digest_frame, self.fields, self.sids ) # Update panel start/close for this frequency. self.cur_window_starts[frequency] = \ frequency.next_window_start(latest_minute) self.cur_window_closes[frequency] = \ frequency.window_close(self.cur_window_starts[frequency]) def frame_to_series(self, field, frame, columns=None): """ Convert a frame with a DatetimeIndex and sid columns into a series with a sid index, using the aggregator defined by the given field. """ if isinstance(frame, pd.DataFrame): columns = frame.columns frame = frame.values if not len(frame): return pd.Series( data=(0 if field == 'volume' else np.nan), index=columns, ).values if field in ['price', 'close_price']: # shortcircuit for full last row vals = frame[-1] if np.all(~np.isnan(vals)): return vals return ffill(frame)[-1] elif field == 'open_price': return bfill(frame)[0] elif field == 'volume': return np.nansum(frame, axis=0) elif field == 'high': return np.nanmax(frame, axis=0) elif field == 'low': return np.nanmin(frame, axis=0) else: raise ValueError("Unknown field {}".format(field)) def aggregate_ohlcv_panel(self, fields, ohlcv_panel, items=None, minor_axis=None): """ Convert an OHLCV Panel into a DataFrame by aggregating each field's frame into a Series. """ vals = ohlcv_panel if isinstance(ohlcv_panel, pd.Panel): vals = ohlcv_panel.values items = ohlcv_panel.items minor_axis = ohlcv_panel.minor_axis data = [ self.frame_to_series( field, vals[items.get_loc(field)], minor_axis ) for field in fields ] return np.array(data) def create_new_digest_frame(self, buffer_minutes, items=None, minor_axis=None): """ Package up minutes in @buffer_minutes into a single digest frame. """ return self.aggregate_ohlcv_panel( self.fields, buffer_minutes, items=items, minor_axis=minor_axis ) def update_last_known_values(self): """ Store the non-NaN values from our oldest frame in each frequency. """ ffillable = self.ffillable_fields if not len(ffillable): return for frequency in self.unique_frequencies: digest_panel = self.digest_panels.get(frequency, None) if digest_panel: oldest_known_values = digest_panel.oldest_frame(raw=True) else: oldest_known_values = self.buffer_panel.oldest_frame(raw=True) oldest_vals = oldest_known_values oldest_columns = self.fields for field in ffillable: f_idx = oldest_columns.get_loc(field) field_vals = oldest_vals[f_idx] # isnan would be fast, possible to use? non_nan_sids = np.where(pd.notnull(field_vals)) key = (frequency.freq_str, field) key_loc = self.last_known_prior_values.index.get_loc(key) self.last_known_prior_values.values[ key_loc, non_nan_sids ] = field_vals[non_nan_sids] def get_history(self, history_spec, algo_dt): """ Main API used by the algoscript is mapped to this function. Selects from the overarching history panel the values for the @history_spec at the given @algo_dt. """ field = history_spec.field do_ffill = history_spec.ffill # Get our stored values from periods prior to the current period. digest_frame, index = self.digest_bars(history_spec, do_ffill) # Get minutes from our buffer panel to build the last row of the # returned frame. buffer_panel = self.buffer_panel_minutes( self.buffer_panel, earliest_minute=self.cur_window_starts[history_spec.frequency], raw=True ) buffer_frame = buffer_panel[self.fields.get_loc(field)] if do_ffill: buffer_frame = ffill_buffer_from_prior_values( history_spec.frequency, field, buffer_frame, digest_frame, self.last_known_prior_values, raw=True ) last_period = self.frame_to_series(field, buffer_frame, self.sids) return fast_build_history_output(digest_frame, last_period, algo_dt, index=index, columns=self.sids) def fast_build_history_output(buffer_frame, last_period, algo_dt, index=None, columns=None): """ Optimized concatenation of DataFrame and Series for use in HistoryContainer.get_history. Relies on the fact that the input arrays have compatible shapes. """ buffer_values = buffer_frame if isinstance(buffer_frame, pd.DataFrame): buffer_values = buffer_frame.values index = buffer_frame.index columns = buffer_frame.columns return pd.DataFrame( data=np.vstack( [ buffer_values, last_period, ] ), index=fast_append_date_to_index( index, pd.Timestamp(algo_dt) ), columns=columns, ) def fast_append_date_to_index(index, timestamp): """ Append a timestamp to a DatetimeIndex. DatetimeIndex.append does not appear to work. """ return pd.DatetimeIndex( np.hstack( [ index.values, [timestamp.asm8], ] ), tz='UTC', )
apache-2.0
BhallaLab/moose-core
python/rdesigneur/moogul.py
2
12667
# Moogul.py: MOOSE Graphics Using Lines # This is a fallback graphics interface for displaying neurons using # regular matplotlib routines. # Put in because the GL versions like moogli need all sorts of difficult # libraries and dependencies. # Copyright (C) Upinder S. Bhalla NCBS 2018 # This program is licensed under the GNU Public License version 3. # import moose import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Line3DCollection class MoogulError( Exception ): def __init__( self, value ): self.value = value def __str__( self ): return repr( self.value ) class MooView: ''' The MooView class is a window in which to display one or more moose cells, using the MooCell class.''' def __init__( self, swx = 10, swy = 12, hideAxis = True ): plt.ion() self.fig_ = plt.figure( figsize = (swx, swy) ) self.ax = self.fig_.add_subplot(111, projection='3d' ) self.drawables_ = [] self.fig_.canvas.mpl_connect("key_press_event", self.moveView ) plt.rcParams['keymap.xscale'] = '' plt.rcParams['keymap.yscale'] = '' plt.rcParams['keymap.zoom'] = '' plt.rcParams['keymap.back'] = '' plt.rcParams['keymap.home'] = '' plt.rcParams['keymap.forward'] = '' plt.rcParams['keymap.all_axes'] = '' self.hideAxis = hideAxis if self.hideAxis: self.ax.set_axis_off() #self.ax.margins( tight = True ) self.ax.margins() self.sensitivity = 7.0 # degrees rotation self.zoom = 1.05 def addDrawable( self, n ): self.drawables_.append( n ) def firstDraw( self, rotation = 0.0, elev = 0.0, azim = 0.0 ): self.coordMax = 0.0 self.coordMin = 0.0 if rotation == 0.0: self.doRotation = False self.rotation = 7 # default rotation per frame, in degrees. else: self.doRotation = True self.rotation = rotation * 180/np.pi # arg units: radians/frame self.azim = azim * 180/np.pi self.elev = elev * 180/np.pi for i in self.drawables_: cmax, cmin = i.drawForTheFirstTime( self.ax ) self.coordMax = max( cmax, self.coordMax ) self.coordMin = min( cmin, self.coordMin ) if self.coordMin == self.coordMax: self.coordMax = 1+self.coordMin self.ax.set_xlim3d( self.coordMin, self.coordMax ) self.ax.set_ylim3d( self.coordMin, self.coordMax ) self.ax.set_zlim3d( self.coordMin, self.coordMax ) self.ax.view_init( elev = self.elev, azim = self.azim ) #self.ax.view_init( elev = -80.0, azim = 90.0 ) #self.colorbar = plt.colorbar( self.drawables_[0].segments ) self.colorbar = self.fig_.colorbar( self.drawables_[0].segments ) self.colorbar.set_label( self.drawables_[0].fieldInfo[3]) self.timeStr = self.ax.text2D( 0.05, 0.05, "Time= 0.0", transform=self.ax.transAxes) self.fig_.canvas.draw() plt.show() def updateValues( self ): time = moose.element( '/clock' ).currentTime self.timeStr.set_text( "Time= " + str(time) ) for i in self.drawables_: i.updateValues() if self.doRotation and abs( self.rotation ) < 120: self.ax.azim += self.rotation #self.fig_.canvas.draw() plt.pause(0.001) def moveView(self, event): x0 = self.ax.get_xbound()[0] x1 = self.ax.get_xbound()[1] xk = (x0 - x1) / self.sensitivity y0 = self.ax.get_ybound()[0] y1 = self.ax.get_ybound()[1] yk = (y0 - y1) / self.sensitivity z0 = self.ax.get_zbound()[0] z1 = self.ax.get_zbound()[1] zk = (z0 - z1) / self.sensitivity if event.key == "up" or event.key == "k": self.ax.set_ybound( y0 + yk, y1 + yk ) if event.key == "down" or event.key == "j": self.ax.set_ybound( y0 - yk, y1 - yk ) if event.key == "left" or event.key == "h": self.ax.set_xbound( x0 + xk, x1 + xk ) if event.key == "right" or event.key == "l": self.ax.set_xbound( x0 - xk, x1 - xk ) if event.key == "ctrl+up": self.ax.set_zbound( z0 + zk, z1 + zk ) if event.key == "ctrl+down": self.ax.set_zbound( z0 - zk, z1 - zk ) if event.key == "." or event.key == ">": # zoom in, bigger self.ax.set_xbound( x0/self.zoom, x1/self.zoom ) self.ax.set_ybound( y0/self.zoom, y1/self.zoom ) self.ax.set_zbound( z0/self.zoom, z1/self.zoom ) if event.key == "," or event.key == "<": # zoom out, smaller self.ax.set_xbound( x0*self.zoom, x1*self.zoom ) self.ax.set_ybound( y0*self.zoom, y1*self.zoom ) self.ax.set_zbound( z0*self.zoom, z1*self.zoom ) if event.key == "a": # autoscale to fill view. self.ax.set_xlim3d( self.coordMin, self.coordMax ) self.ax.set_ylim3d( self.coordMin, self.coordMax ) self.ax.set_zlim3d( self.coordMin, self.coordMax ) if event.key == "p": # pitch self.ax.elev += self.sensitivity if event.key == "P": self.ax.elev -= self.sensitivity if event.key == "y": # yaw self.ax.azim += self.sensitivity if event.key == "Y": self.ax.azim -= self.sensitivity # Don't have anything for roll if event.key == "g": self.hideAxis = not self.hideAxis if self.hideAxis: self.ax.set_axis_off() else: self.ax.set_axis_on() if event.key == "t": # Turn on/off twisting/autorotate self.doRotation = not self.doRotation if event.key == "?": # Print out help for these commands self.printMoogulHelp() self.fig_.canvas.draw() def printMoogulHelp( self ): print( ''' Key bindings for Moogul: Up or k: pan object up Down or j: pan object down left or h: pan object left. Bug: direction depends on azimuth. right or l: pan object right Bug: direction depends on azimuth . or >: Zoom in: make object appear bigger , or <: Zoom out: make object appear smaller a: Autoscale to fill view p: Pitch down P: Pitch up y: Yaw counterclockwise Y: Yaw counterclockwise g: Toggle visibility of grid t: Toggle turn (rotation along long axis of cell) ?: Print this help page. ''') ##################################################################### class MooDrawable: ''' Base class for drawing things''' def __init__( self, fieldInfo, field, relativeObj, maxLineWidth, colormap, lenScale, diaScale, autoscale, valMin, valMax ): self.field = field self.relativeObj = relativeObj self.maxLineWidth = maxLineWidth self.lenScale = lenScale self.diaScale = diaScale self.colormap = colormap self.autoscale = autoscale self.valMin = valMin self.valMax = valMax self.fieldInfo = fieldInfo self.fieldScale = fieldInfo[2] #FieldInfo = [baseclass, fieldGetFunc, scale, axisText, min, max] def updateValues( self ): ''' Obtains values from the associated cell''' self.val = np.array([moose.getField(i, self.field) for i in self.activeObjs]) * self.fieldScale cmap = plt.get_cmap( self.colormap ) if self.autoscale: valMin = min( self.val ) valMax = max( self.val ) else: valMin = self.valMin valMax = self.valMax scaleVal = (self.val - valMin) / (valMax - valMin) self.rgba = [ cmap(i) for i in scaleVal ] self.segments.set_color( self.rgba ) return def drawForTheFirstTime( self, ax ): self.segments = Line3DCollection( self.activeCoords, linewidths = self.linewidth, cmap = plt.get_cmap(self.colormap) ) self.cax = ax.add_collection3d( self.segments ) self.segments.set_array( self.valMin + np.array( range( len(self.activeCoords) ) ) * (self.valMax-self.valMin)/len(self.activeCoords) ) return self.coordMax, self.coordMin ##################################################################### class MooNeuron( MooDrawable ): ''' Draws collection of line segments of defined dia and color''' def __init__( self, neuronId, fieldInfo, field = 'Vm', relativeObj = '.', maxLineWidth = 20, colormap = 'jet', lenScale = 1e6, diaScale = 1e6, autoscale = False, valMin = -0.1, valMax = 0.05, ): #self.isFieldOnCompt = #field in ( 'Vm', 'Im', 'Rm', 'Cm', 'Ra', 'inject', 'diameter' ) MooDrawable.__init__( self, fieldInfo, field = field, relativeObj = relativeObj, maxLineWidth = maxLineWidth, colormap = colormap, lenScale = lenScale, diaScale = diaScale, autoscale = autoscale, valMin = valMin, valMax = valMax ) self.neuronId = neuronId self.updateCoords() def updateCoords( self ): ''' Obtains coords from the associated cell''' self.compts_ = moose.wildcardFind( self.neuronId.path + "/#[ISA=CompartmentBase]" ) # Matplotlib3d isn't able to do full rotations about an y axis, # which is what the NeuroMorpho models use, so # here we shuffle the axes around. Should be an option. #coords = np.array([[[i.x0,i.y0,i.z0],[i.x,i.y,i.z]] #for i in self.compts_]) coords = np.array([[[i.z0,i.x0,i.y0],[i.z,i.x,i.y]] for i in self.compts_]) dia = np.array([i.diameter for i in self.compts_]) if self.relativeObj == '.': self.activeCoords = coords self.activeDia = dia self.activeObjs = self.compts_ else: self.activeObjs = [] self.activeCoords = [] self.activeDia = [] for i,j,k in zip( self.compts_, coords, dia ): if moose.exists( i.path + '/' + self.relativeObj ): elm = moose.element( i.path + '/' + self.relativeObj ) self.activeObjs.append( elm ) self.activeCoords.append( j ) self.activeDia.append( k ) self.activeCoords = np.array( self.activeCoords ) * self.lenScale self.coordMax = np.amax( self.activeCoords ) self.coordMin = np.amin( self.activeCoords ) self.linewidth = np.array( [ min(self.maxLineWidth, 1 + int(i * self.diaScale )) for i in self.activeDia ] ) return ##################################################################### class MooReacSystem( MooDrawable ): ''' Draws collection of line segments of defined dia and color''' def __init__( self, mooObj, fieldInfo, field = 'conc', relativeObj = '.', maxLineWidth = 100, colormap = 'jet', lenScale = 1e6, diaScale = 20e6, autoscale = False, valMin = 0.0, valMax = 1.0 ): MooDrawable.__init__( self, fieldInfo, field = field, relativeObj = relativeObj, maxLineWidth = maxLineWidth, colormap = colormap, lenScale = lenScale, diaScale = diaScale, autoscale = autoscale, valMin = valMin, valMax = valMax ) self.mooObj = mooObj self.updateCoords() def updateCoords( self ): ''' For now a dummy cylinder ''' dx = 1e-6 dummyDia = 20e-6 numObj = len( self.mooObj ) x = np.arange( 0, (numObj+1) * dx, dx ) y = np.zeros( numObj + 1) z = np.zeros( numObj + 1) coords = np.array([[[i*dx,0,0],[(i+1)*dx,0,0]] for i in range( numObj )] ) dia = np.ones( numObj ) * dummyDia self.activeCoords = coords self.activeDia = dia self.activeObjs = self.mooObj self.activeCoords = np.array( self.activeCoords ) * self.lenScale self.coordMax = np.amax( self.activeCoords ) self.coordMin = np.amin( self.activeCoords ) self.linewidth = np.array( [ min(self.maxLineWidth, 1 + int(i * self.diaScale )) for i in self.activeDia ] ) return
gpl-3.0
harshaneelhg/scikit-learn
sklearn/linear_model/tests/test_randomized_l1.py
214
4690
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import center_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered X, y, _, _, _ = center_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
samueljackson92/elo
elo.py
1
4699
import numpy as np import pandas as pd class Elo(object): def __init__(self, teams, **kwargs): self.set_parameters(**kwargs) self.ratings = self._initalise_ratings(teams) def set_parameters(self, mean_rating=1500, k=20, home_advantage=0): if mean_rating < 0: raise ValueError("Mean rating must be >= 0") self._mean_rating = mean_rating if k <= 0: raise ValueError("K parameter must be > 0") self._k = k if home_advantage < 0: raise ValueError("Home advantage must be > 0") self._home_advantage = home_advantage def _initalise_ratings(self, teams): inital_values = np.empty(teams.size) inital_values.fill(self._mean_rating) return pd.Series(data=inital_values, index=teams) def calculate_likelihood(self, rating_a, rating_b, mov_multiplier=1, bias=0): """ Compute the expected score for team A given team A's rating (r_a) and team B's rating (r_b) """ if rating_a < 0 or rating_b < 0: raise ValueError("Ratings must be positive") diff = (rating_b - (rating_a + bias)) likelihood = 1.0 / (1.0 + 10**(diff / 400.0)) return likelihood def _marign_of_victory_multiplier(self, rating_a, rating_b, mov): return np.log(np.fabs(mov)+1) * (2.2/((rating_a-rating_b)*.001+2.2)) def update_rating(self, rating, score, likelihood, mov_multiplier=1): """ Compute the new rating from team A given their old rating (r_a) their actual score (s_a) and there expected score (e_a) """ if rating < 0 or score < 0 or likelihood < 0: raise ValueError("Parameters must be positive") if likelihood > 1: raise ValueError("likelihood must be between 0 < likelihood < 1") rating = rating + self._k * mov_multiplier * (score - likelihood) return int(rating) def predict(self, games): if any([not isinstance(el, tuple) for el in games]): games = [games] predictions = [self._predict_single_game(game) for game in games] df = pd.concat(predictions, axis=1).T df.columns = ['Team A', 'Elo Score', 'Win %', 'Team B', 'Elo Score', 'Win %', 'Predicted Winner'] return df def _predict_single_game(self, game): home_team, away_team = game if home_team not in self.ratings: raise KeyError('Team %s is not found in the ratings' % home_team) if away_team not in self.ratings: raise KeyError('Team %s is not found in the ratings' % away_team) home_rating = self.ratings[home_team] away_rating = self.ratings[away_team] likelihood_home = self.calculate_likelihood(home_rating, away_rating, bias=self._home_advantage) likelihood_away = self.calculate_likelihood(away_rating, home_rating, bias=-self._home_advantage) winner = home_team if likelihood_home > likelihood_away else away_team return pd.Series([home_team, home_rating, likelihood_home, away_team, away_rating, likelihood_away, winner]) def train(self, game): home_team, home_pts, away_team, away_pts = game home_rating = self.ratings[home_team] away_rating = self.ratings[away_team] home_score, away_score = self._calculate_game_points(home_pts, away_pts) prediction = self.predict((home_team, away_team)) home_likelihood = prediction.ix[:, 2][0] away_likelihood = prediction.ix[:, 5][0] mov = (home_pts-away_pts) mov_multiplier = self._marign_of_victory_multiplier(home_rating, away_rating, mov) self.ratings[home_team] = self.update_rating(home_rating, home_score, home_likelihood, mov_multiplier) self.ratings[away_team] = self.update_rating(away_rating, away_score, away_likelihood, mov_multiplier) def _calculate_game_points(self, home_pts, away_pts): if home_pts == away_pts: # game was a draw, no gain for either team. return 0.5, 0.5 elif home_pts > away_pts: # home team beat away team return 1, 0 elif home_pts < away_pts: # away team beat home team return 0, 1 def revert_ratings_to_mean(self, reversion_weight): if reversion_weight < 0 or reversion_weight > 1: raise ValueError('Reversion weight must be 0 < w < 1') self.ratings = (reversion_weight * self.ratings) + ((1-reversion_weight) * self._mean_rating) self.ratings = self.ratings.astype(int)
mit
fuzzy-id/midas
midas/plots.py
1
9460
# -*- coding: utf-8 -*- import collections import datetime import os.path import string import matplotlib.dates import matplotlib.pyplot as plt import numpy import operator import pandas from midas.compat import imap from midas.compat import str_type from midas.see5 import calculate_recall_precision from midas.see5 import calculate_tpr from midas.see5 import calculate_fpr from midas.tools import iter_files_content from midas.pig_schema import FLATTENED_PARSER from midas.pig_schema import SITES_W_COMPANY_PARSER def iter_sites_w_company(directory_or_file): contents = iter_files_content(directory_or_file) for swc in imap(SITES_W_COMPANY_PARSER, contents): ranks = map(operator.attrgetter('rank'), swc.ranking) index = pandas.DatetimeIndex(map(operator.attrgetter('tstamp'), swc.ranking)) ts = pandas.Series(ranks, index=index) tstamp = pandas.Timestamp(swc.tstamp) yield (swc.site, ts, swc.company, swc.code, tstamp) ################################## ## Funding Rounds per date Plot ## ################################## def make_fr_per_date_plot(companies, plot_file=None): contents = iter_files_content(companies) d = collections.defaultdict(list) min_date = datetime.date(2011, 3, 1) months = set() for c in imap(FLATTENED_PARSER, contents): if c.tstamp >= min_date: d[c.code].append(matplotlib.dates.date2num(c.tstamp)) months.add(datetime.date(c.tstamp.year, c.tstamp.month, 1)) months = sorted(months) right_border = months[-1] + datetime.timedelta(31) right_border = datetime.date(right_border.year, right_border.month, 1) months.append(right_border) fig = plt.figure(figsize=(4*1.4, 3*1.4)) ax = fig.add_subplot(111) ax.hist(d.values(), label=map(str.title, d.keys()), bins=matplotlib.dates.date2num(months)) ax.set_xlim(matplotlib.dates.date2num(months[0]), matplotlib.dates.date2num(months[-1])) ax.legend() ax.xaxis.set_major_locator( matplotlib.dates.MonthLocator(bymonthday=15, interval=2) ) ax.xaxis.set_major_formatter( matplotlib.ticker.FuncFormatter( lambda d, _: matplotlib.dates.num2date(d).strftime('%B %Y') ) ) fig.autofmt_xdate() ax.set_ylabel('Number of Funding Rounds') ax.grid(True, axis='y') if plot_file: fig.savefig(plot_file) return fig ######################################### ## Available Days Before Funding Round ## ######################################### def get_available_days_before_fr(ts, fr): site, date, code = fr date = pandas.Timestamp(date) ts_site = ts[site].dropna() return code, (ts_site.index[0] - date).days def make_available_days_before_funding_rounds_plot_data(sites_w_company): collected = collections.defaultdict(list) for site, ts, company, code, tstamp in sites_w_company: ts = ts.dropna() available_days = (ts.index[0] - tstamp).days if available_days > 365: available_days = 400 elif available_days < 0: available_days = -40 collected[code].append(available_days) return collected def make_available_days_before_funding_rounds_plot(sites_w_company, plot_file=None): data = make_available_days_before_funding_rounds_plot_data( sites_w_company ) fig = plt.figure() ax = fig.add_subplot('111') res = ax.hist(data.values(), bins=10, histtype='bar', label=map(string.capitalize, data.keys()), log=True) ax.legend(loc='best') ax.set_ylabel('Number of Funding Rounds') ax.set_xlabel('Number of Days') ax.grid(which='both') if plot_file: fig.savefig(plot_file) return fig ######################################### ## Median of Rank before Funding Round ## ######################################### def make_final_rank_before_funding_plot(sites_w_company): before_days = [5, 95, 215] offset_days = 10 data = [ make_rank_before_funding_plot_data(sites_w_company, days, offset_days) for days in before_days ] fig = plt.figure() axes = [ fig.add_subplot(len(before_days), 1, i) for i in range(1, len(before_days) + 1) ] bins = range(0, 1000001, 100000) for ax, d, days in zip(axes, data, before_days): ax.hist(d.values(), bins=bins, label=map(string.capitalize, d.keys())) ax.legend(loc='best') ax.grid(True) title = make_rank_before_funding_plot_title(days, offset_days) ax.set_title(title, fontsize='medium') axes[1].set_ylabel('Number of Funding Rounds', fontsize='x-large') axes[2].set_xlabel('Rank', fontsize='x-large') return fig def make_rank_before_funding_plot(sites_w_company, before_days, offset_days=10, plot_file=None): collected = make_rank_before_funding_plot_data(sites_w_company, before_days, offset_days) fig = plt.figure() ax = fig.add_subplot('111') res = ax.hist(collected.values(), bins=9, label=map(string.capitalize, collected.keys())) ax.legend(loc='best') ax.grid(True) ax.set_xlabel('Rank') ax.set_ylabel('Number of Funding Rounds') ax.set_title(make_rank_before_funding_plot_title(before_days, offset_days)) if plot_file: fig.savefig(plot_file) return fig def make_rank_before_funding_plot_fname(directory, before_days, days_offset=10, prefix='rank_before_funding_plot'): return os.path.join(directory, '{0}_-_before_days_{1}_-_days_offset_{2}.png'\ .format(prefix, before_days, days_offset)) def make_rank_before_funding_plot_data(sites_w_company, before_days, days_offset=10): offset = pandas.DateOffset(days=days_offset) start = pandas.DateOffset(days=before_days) collected = collections.defaultdict(list) for site, ts, company, code, tstamp in sites_w_company: try: median = median_rank_of_ts_in_period(ts, tstamp - start, offset) except KeyError: continue if numpy.isnan(median): continue collected[code].append(median) return collected def median_rank_of_ts_in_period(ts, start_date, offset): period = ts[start_date:(start_date + offset)].dropna() return period.median() def make_rank_before_funding_plot_title(before_days, offset_days): end_days = before_days - offset_days if 0 > offset_days: raise ValueError('offset_days must greater than zero') elif 0 < end_days < before_days: first = before_days snd = '{} days before'.format(end_days) elif end_days < 0 < before_days: first = '{0} days before'.format(before_days) snd = '{0} days after'.format(-1*end_days) elif end_days < 0 == before_days: first = 'Fund Raise' snd = '{} days after'.format(end_days * -1) elif end_days == 0 < before_days: first = '{} days before'.format(before_days) snd = '' title = 'Median of Rank from {} to {} Fund Raise'.format(first, snd) return title ########################### ## Recall Precision Plot ## ########################### def make_recall_precision_plot(results, plot_file=None): """ ``results`` should be the result of `midas.see5.main` """ fig = plt.figure() ax = fig.add_subplot('111') ax.set_ylabel('Precision') ax.set_xlabel('Recall') for args, per_cost_result in results.items(): xs = [] ys = [] for cm in per_cost_result.values(): x, y = calculate_recall_precision(cm) if numpy.isnan(y): continue xs.append(x) ys.append(y) if not isinstance(args, str_type): args = ' '.join(args) ax.plot(xs, ys, 'o', label=args) ax.legend(loc='best') ax.grid(True) if plot_file: fig.savefig(plot_file) return fig def make_tpr_fpr_plot(results, plot_file=None): """ ``results`` should be the result of `midas.see5.main` """ fig = plt.figure() ax = fig.add_subplot('111') ax.set_ylabel('True Positive Rate') ax.set_xlabel('False Positive Rate') for args, per_cost_result in results.items(): xs = [] ys = [] for confusion_matrix in per_cost_result.values(): xs.append(calculate_fpr(confusion_matrix)) ys.append(calculate_tpr(confusion_matrix)) if not isinstance(args, str_type): args = ' '.join(args) ax.plot(xs, ys, 'o', label=args) ax.legend(loc='best') ax.grid(True) ax.plot([0.0, 0.5, 1.0], [0.0, 0.5, 1.0], ':k') if plot_file: fig.savefig(plot_file) return fig
bsd-3-clause
florian-wagner/gimli
doc/tutorials/modelling/develop/divergenceTest.py
1
2822
#!/usr/bin/env python # -*- coding: utf-8 -*- """ """ import pygimli as pg from pygimli.viewer import show import matplotlib.pyplot as plt import numpy as np from solverFVM import boundaryToCellDistances from solverFVM import cellDataToCellGrad, cellDataToCellGrad2 from solverFVM import cellDataToBoundaryData, cellDataToBoundaryGrad def divergenceCell(c, F): ret = 0 for bi in range(c.boundaryCount()): b = pg.findBoundary(c.boundaryNodes(bi)) #print(b.norm(c).dot(F[b.id()])) ret += b.norm(c).dot(F[b.id()]) * b.size() return ret def divergence(mesh, F): div = pg.RVector(mesh.cellCount()) for c in mesh.cells(): div[c.id()] = divergenceCell(c, F) return div grid = pg.createGrid(x=np.arange(3.+1), y=np.arange(2.+1)) pot = np.arange(3.*2) print(grid, pot) plt.ion() show(grid,pot) pN = pg.cellDataToPointData(grid, pot) ax, cbar = show(grid, pN) ax, cbar = show(grid, axes=ax) vF = np.zeros((grid.boundaryCount(), 2)) cellGrad = cellDataToCellGrad(grid, pot) print(cellGrad) cellGrad = cellDataToCellGrad2(grid, pot) print(cellGrad) boundGrad = cellDataToBoundaryGrad(grid, pot) boundGrad2 = cellDataToBoundaryGrad(grid, pot, 1) for c in grid.cells(): #gr = c.grad(c.center(), pN) gr = cellGrad[c.id()] ax.arrow(c.center()[0], c.center()[1], gr[0], gr[1]) for b in grid.boundaries(): #gr = c.grad(c.center(), pN) gr = boundGrad[b.id()] ax.arrow(b.center()[0], b.center()[1], gr[0], gr[1], color='red') for b in grid.boundaries(): #gr = c.grad(c.center(), pN) gr = boundGrad2[b.id()] ax.arrow(b.center()[0], b.center()[1], gr[0], gr[1], color='green') ax.set_xlim([-0.5, 3.5]) ax.set_ylim([-0.5, 3.1]) #F = grid.grad(pot) #print(F) print("div:", divergence(grid, boundGrad)) import sys sys.path.append('/home/carsten/src/fipy') from fipy.meshes import Grid2D from fipy.variables.cellVariable import CellVariable mesh = Grid2D(nx=3, ny=2) val = np.arange(3*2.) var = CellVariable(mesh=mesh, value=val) print(var.faceGrad._calcValueNoInline()) print('-____________') #print(var.faceGrad) print(var.faceGrad.divergence) #print(var.__pos__) ##[ 4. 3. 2. -2. -3. -4.] ax, cbar = show(grid, np.array(var)) show(grid, axes=ax) X, Y = mesh.getCellCenters() gr = var.grad.numericValue m = 1 for i in range(len(X)): ax.arrow(X[i], Y[i], gr[0][i], gr[1][i]) gr = var.faceGrad #gr = var.faceGrad._calcValueInline() X, Y = mesh.getFaceCenters() m = 1 for i in range(len(X)): ax.arrow(X[i], Y[i], gr[0][i], gr[1][i], color='red') #from fipy.variables.faceGradVariable import _FaceGradVariable #gr = _FaceGradVariable(var) #for i in range(len(X)): #ax.arrow(X[i], Y[i], gr[0][i], gr[1][i], color='green') ax.set_xlim([-0.5,3.5]) ax.set_ylim([-0.5,3.1]) plt.ioff() plt.show()
gpl-3.0
rvraghav93/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
mojoboss/scikit-learn
sklearn/svm/tests/test_svm.py
11
31158
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_trick_proba(): # Test that the right error message is thrown when self.probability is manually set to be True G = svm.SVC() G.fit(iris.data, iris.target) G.probability = True msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(AttributeError, msg, getattr, G, "predict_proba")
bsd-3-clause
mblondel/scikit-learn
sklearn/linear_model/ridge.py
4
38949
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import compute_sample_weight, compute_class_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _deprecate_dense_cholesky(solver): if solver == 'dense_cholesky': warnings.warn(DeprecationWarning( "The name 'dense_cholesky' is deprecated and will " "be removed in 0.17. Use 'cholesky' instead. ")) solver = 'cholesky' return solver def _rescale_data(X, y, sample_weight): """Rescale data so as to support sample_weight""" n_samples = X.shape[0] sample_weight = sample_weight * np.ones(n_samples) sample_weight = np.sqrt(sample_weight) sw_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) X = safe_sparse_dot(sw_matrix, X) y = safe_sparse_dot(sw_matrix, y) return X, y def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0): """Solve the ridge equation by the method of normal equations. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is set, then the solver will automatically be set to 'cholesky' solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None solver = _deprecate_dense_cholesky(solver) if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr'): raise ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) solver = _deprecate_dense_cholesky(self.solver) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Singular value decomposition to obtain the solution, 'cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: # get the class weight corresponding to each sample sample_weight = compute_sample_weight(self.class_weight, y) else: sample_weight = None super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=[0.1, 1.0, 10.0], fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} # FIXME: sample_weight must be split into training/validation data # too! #fit_params = {'sample_weight' : sample_weight} fit_params = {} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. If an integer is passed, it is the number of folds for KFold cross validation. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter. intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ if sample_weight is None: sample_weight = 1. self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
rubikloud/scikit-learn
examples/applications/plot_tomography_l1_reconstruction.py
81
5461
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x].astype(np.float64) center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36. x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return res - ndimage.binary_erosion(res) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
Akshay0724/scikit-learn
benchmarks/bench_glm.py
100
1515
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import matplotlib.pyplot as plt n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) plt.figure('scikit-learn GLM benchmark results') plt.xlabel('Dimensions') plt.ylabel('Time (s)') plt.plot(dimensions, time_ridge, color='r') plt.plot(dimensions, time_ols, color='g') plt.plot(dimensions, time_lasso, color='b') plt.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') plt.axis('tight') plt.show()
bsd-3-clause
jigargandhi/UdemyMachineLearning
Machine Learning A-Z Template Folder/Part 2 - Regression/Section 5 - Multiple Linear Regression/j_multiple_linear_regression.py
1
1546
# Multiple Linear Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[: ,: -1].values y = dataset.iloc[:,4].values from sklearn.preprocessing import LabelEncoder, OneHotEncoder # convert label to numbers labelEncoder_X = LabelEncoder() X[:,3]= labelEncoder_X.fit_transform(X[:,3]) #encode labels as different values in columns #in array use index of column onehotencoder = OneHotEncoder(categorical_features=[3]) X = onehotencoder.fit_transform(X).toarray() #avoiding the dummy variable X = X[: ,1:] #splitting training and test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state=0) # fitting multiple from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) #predict the regressor y_pred = regressor.predict(X_test) # backward elimination import statsmodels.formula.api as sm X = np.append(arr = np.ones((50,1)).astype(int), values = X, axis = 1) X_opt = X[:, [0, 1, 2, 3, 4, 5]] regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() X_opt = X[:, [0, 3, 4, 5]] regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() X_opt = X[:, [0, 3, 5]] regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary() X_opt = X[:, [0, 3]] regressor_ols = sm.OLS(endog = y, exog = X_opt).fit() regressor_ols.summary()
mit
GoogleCloudPlatform/keras-idiomatic-programmer
zoo/dcgan/dcgan_c.py
1
8985
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DCGAN + composable (2016) # Paper: https://arxiv.org/pdf/1511.06434.pdf from tensorflow.keras import Input, Model from tensorflow.keras.layers import Flatten, Reshape, Dropout, Dense, ReLU from tensorflow.keras.layers import LeakyReLU, Activation, ZeroPadding2D from tensorflow.keras.layers import Conv2D, Conv2DTranspose, BatchNormalization from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../') from models_c import Composable class DCGAN(Composable): # Initial Hyperparameters hyperparameters = { 'initializer': 'glorot_uniform', 'regularizer': None, 'relu_clip' : None, 'bn_epsilon' : None, 'use_bias' : False } def __init__(self, latent=100, input_shape=(28, 28, 1), **hyperparameters): """ Construct a Deep Convolutional GAN (DC-GAN) latent : dimension of latent space input_shape : input shape initializer : kernel initializer regularizer : kernel regularizer relu_clip : max value for ReLU bn_epsilon : epsilon for batch normalization use_bias : whether to include bias """ Composable.__init__(self, input_shape, None, self.hyperparameters, **hyperparameters) # Construct the generator self.g = self.generator(latent=latent, height=input_shape[0], channels=input_shape[2]) # Construct the discriminator self.d = self.discriminator(input_shape=input_shape, optimizer=Adam(0.0002, 0.5)) # Construct the combined (stacked) generator/discriminator model (GAN) self.model = self.gan(latent=latent, optimizer=Adam(0.0002, 0.5)) def generator(self, latent=100, height=28, channels=1): """ Construct the Generator latent : dimension of latent space channels : number of channels """ def stem(inputs): factor = height // 4 x = self.Dense(inputs, 128 * factor * factor) x = self.ReLU(x) x = Reshape((factor, factor, 128))(x) return x def learner(x): x = self.Conv2DTranspose(x, 128, (3, 3), strides=2, padding='same') x = self.Conv2D(x, 128, (3, 3), padding="same") x = self.BatchNormalization(x, momentum=0.8) x = self.ReLU(x) x = self.Conv2DTranspose(x, 64, (3, 3), strides=2, padding='same') x = self.Conv2D(x, 64, (3, 3), padding="same") x = self.BatchNormalization(x, momentum=0.8) x = self.ReLU(x) return x def classifier(x): outputs = self.Conv2D(x, channels, (3, 3), activation='tanh', padding="same") return outputs # Construct the Generator inputs = Input(shape=(latent,)) x = stem(inputs) x = learner(x) outputs = classifier(x) return Model(inputs, outputs) def discriminator(self, input_shape=(28, 28, 1), optimizer=Adam(0.0002, 0.5)): """ Construct the discriminator input_shape : the input shape of the images optimizer : the optimizer """ def stem(inputs): x = self.Conv2D(inputs, 32, (3, 3), strides=2, padding="same") x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) return x def learner(x): x = self.Conv2D(x, 64, (3, 3), strides=2, padding="same") x = ZeroPadding2D(padding=((0,1),(0,1)))(x) x = self.BatchNormalization(x, momentum=0.8) x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) x = self.Conv2D(x, 128, (3, 3), strides=2, padding="same") x = self.BatchNormalization(x, momentum=0.8) x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) x = self.Conv2D(x, 256, (3, 3), strides=1, padding="same") x = self.BatchNormalization(x, momentum=0.8) x = LeakyReLU(alpha=0.2)(x) x = Dropout(0.25)(x) return x def classifier(x): x = Flatten()(x) outputs = self.Dense(x, 1, activation='sigmoid') return outputs # Construct the discriminator inputs = Input(shape=input_shape) x = stem(inputs) x = learner(x) outputs = classifier(x) model = Model(inputs, outputs) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # For the combined model we will only train the generator model.trainable = False return model def gan(self, latent=100, optimizer=Adam(0.0002, 0.5)): """ Construct the Combined Generator/Discrimator (GAN) latent : the latent space dimension optimizer : the optimizer """ # The generator takes noise as input and generates fake images noise = Input(shape=(latent,)) fake = self.g(noise) # The discriminator takes generated images as input and determines if real or fake valid = self.d(fake) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator model = Model(noise, valid) model.compile(loss='binary_crossentropy', optimizer=optimizer) return model def train(self, images, latent=100, epochs=4000, batch_size=128, save_interval=50): """ Train the GAN images : images from the training data latent : dimension of the latent space credit: https://github.com/eriklindernoren """ # Adversarial ground truths valid_labels = np.ones ((batch_size, 1)) fake_labels = np.zeros((batch_size, 1)) for epoch in range(epochs): # Train the Discriminator # Select a random half of the images idx = np.random.randint(0, images.shape[0], batch_size) batch = images[idx] # Sample noise and generate a batch of new images noise = np.random.normal(0, 1, (batch_size, latent)) fakes = self.g.predict(noise) # Train the discriminator (real classified as ones and generated as zeros) d_loss_real = self.d.train_on_batch(batch, valid_labels) d_loss_fake = self.d.train_on_batch(fakes, fake_labels) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # Train the Generator # Train the generator (wants discriminator to mistake images as real) g_loss = self.model.train_on_batch(noise, valid_labels) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % save_interval == 0: self.save_imgs(epoch) def save_imgs(self, epoch, latent=100): import os if not os.path.isdir('images'): os.mkdir('images') r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, latent)) gen_imgs = self.g.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): #MNIST: axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].imshow(gen_imgs[cnt, :,:,0]) axs[i,j].axis('off') cnt += 1 fig.savefig("images/mnist_%d.png" % epoch) plt.close() # Example # model = DCGAN() def example(): # Build/Train a DCGAN for CIFAR-10 gan = DCGAN(input_shape=(32, 32, 3)) gan.model.summary() from tensorflow.keras.datasets import cifar10 (x_train, _), (_, _) = cifar10.load_data() x_train, _ = gan.normalization(x_train, centered=True) gan.train(x_train, latent=100, epochs=6000) # example()
apache-2.0
philouc/pyhrf
python/pyhrf/jde/beta.py
1
252614
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import numpy as _np import scipy.interpolate from pyhrf.boldsynth.pottsfield.swendsenwang import * from pyhrf.boldsynth.field import * import pyhrf from pyhrf.stats.random import truncRandn, erf from pyhrf.tools import resampleToGrid, get_2Dtable_string from pyhrf import xmlio from pyhrf.xmlio.xmlnumpy import NumpyXMLHandler from pyhrf.ndarray import xndarray from samplerbase import * if hasattr(_np, 'float96'): float_hires = np.float96 elif hasattr(_np, 'float128'): float_hires = np.float128 else: float_hires = np.float64 ################################# # Partition Function estimation # ################################# def Cpt_Expected_U_graph(RefGraph,beta,LabelsNb,SamplesNb,GraphWeight=None,GraphNodesLabels=None,GraphLinks=None,RefGrphNgbhPosi=None): """ Useless now! Estimates the expectation of U for a given normalization constant Beta and a given mask shape. Swendsen-Wang sampling is used to assess the expectation on significant images depending of beta. input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * beta: normalization constant * LabelsNb: Labels number * SamplesNb: Samples number for the U expectation estimation * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. * GraphNodesLabels: Optional list containing the nodes labels. The sampler aims to modify its values in function of beta and NbLabels. At this level this variable is seen as temporary and will be modified. Defining it slightly increases the calculation times. * GraphLinks: Same shape as RefGraph. Each entry indicates if the link of the corresponding edge in RefGraph is considered (if yes ...=1 else ...=0). At this level this variable is seen as temporary and will be modified. Defining it slightly increases the calculation times. * RefGrphNgbhPosi: Same shape as RefGraph. RefGrphNgbhPosi[i][j] indicates for which k is the link to i in RefGraph[RefGraph[i][j]][k]. This optional list is never modified. output: * ExpectU: U expectation """ #initialization SumU=0. if GraphWeight==None: GraphWeight=CptDefaultGraphWeight(RefGraph) if GraphNodesLabels==None: GraphNodesLabels=CptDefaultGraphNodesLabels(RefGraph) if GraphLinks==None: GraphLinks=CptDefaultGraphLinks(RefGraph) if RefGrphNgbhPosi==None: RefGrphNgbhPosi=CptRefGrphNgbhPosi(RefGraph) #all estimates of ImagLoc will then be significant in the expectation calculation for i in xrange(len(GraphNodesLabels)): GraphNodesLabels[i]=0 SwendsenWangSampler_graph(RefGraph,GraphNodesLabels,beta,LabelsNb, GraphLinks=GraphLinks, RefGrphNgbhPosi=RefGrphNgbhPosi) #estimation for i in xrange(SamplesNb): SwendsenWangSampler_graph(RefGraph,GraphNodesLabels,beta,LabelsNb, GraphLinks=GraphLinks, RefGrphNgbhPosi=RefGrphNgbhPosi) Utemp=Cpt_U_graph(RefGraph,GraphNodesLabels,GraphWeight=GraphWeight) SumU=SumU+Utemp ExpectU=SumU/SamplesNb return ExpectU def Estim_lnZ_ngbhd_graph(RefGraph,beta_Ngbhd,beta_Ref,lnZ_ref,VecU_ref, LabelsNb): """ Estimates ln(Z) for beta=betaNgbhd. beta_Ngbhd is supposed close to beta_Ref for which ln(Z) is known (lnZ_ref) and the energy U of fields generated according to it have already been computed (VecU_ref). input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * beta_Ngbhd: normalization constant for which ln(Z) will be estimated * beta_Ref: normalization constant close to beta_Ngbhd for which ln(Z) already known * lnZ_ref: ln(Z) for beta=beta_Ref * VecU_ref: energy U of fields generated according to beta_Ref * LabelsNb: Labels number output: * lnZ_Ngbhd: ln(Z) for beta=beta_Ngbhd """ #print 'VecU_ref:' #print VecU_ref LocSum = 0. #reference formulation #for i in xrange(VecU_ref.shape[0]): # LocSum=LocSum+(np.exp(beta_Ngbhd*VecU_ref[i])/np.exp(beta_Ref*VecU_ref[i])) #LocSum=np.log(LocSum/VecU_ref.shape[0]) #equivalent and numericaly more stable formulation for i in xrange(VecU_ref.shape[0]): LocSum = LocSum + (np.exp((beta_Ngbhd - beta_Ref) * VecU_ref[i] - np.log(VecU_ref.shape[0]))) LocSum = np.log(LocSum) lnZ_Ngbhd = lnZ_ref + LocSum #print 'lnZ_Ngbhd:', lnZ_Ngbhd return lnZ_Ngbhd def Cpt_Vec_Estim_lnZ_Graph_fast3(RefGraph,LabelsNb,MaxErrorAllowed=5, BetaMax=1.4,BetaStep=0.05): """ Estimate ln(Z(beta)) of Potts fields. The default Beta grid is between 0. and 1.4 with a step of 0.05. Extrapolation algorithm is used. Fast estimates are only performed for Ising fields (2 labels). Reference partition functions were pre-computed on Ising fields designed on regular and non-regular grids. They all respect a 6-connectivity system. input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * LabelsNb: possible number of labels in each site of the graph * MaxErrorAllowed: maximum error allowed in the graph estimation (in percents). * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax. Maximum considered value is 1.4 * BetaStep: gap between two considered values of beta. Actual gaps are not exactly those asked but very close. output: * Est_lnZ: Vector containing the ln(Z(beta)) estimates * V_Beta: Vector of the same size as VecExpectZ containing the corresponding beta value """ #launch a more general algorithm if the inputs are not appropriate if (LabelsNb!=2 and LabelsNb!=3) or BetaMax>1.4: [Est_lnZ,V_Beta]=Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=30,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) return Est_lnZ,V_Beta #initialisation #...default returned values V_Beta=np.array([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4]) Est_lnZ=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) #...load reference partition functions [BaseLogPartFctRef,V_Beta_Ref]=LoadBaseLogPartFctRef() NbSites=[len(RefGraph)] NbCliques=[sum( [len(nl) for nl in RefGraph] ) ] #...NbSites s=len(RefGraph) #...NbCliques NbCliquesTmp=0 for j in xrange(len(RefGraph)): NbCliquesTmp=NbCliquesTmp+len(RefGraph[j]) c=NbCliquesTmp/2 NbCliques.append(c) #...StdVal Nb neighbors / Moy Nb neighbors StdValCliquesPerSiteTmp=0. nc = NbCliques[-1] + 0. ns = NbSites[-1] + 0. for j in xrange(len(RefGraph)): if ns==1: #HACK ns_1 = 1. else: ns_1 = ns-1. StdValCliquesPerSiteTmp = StdValCliquesPerSiteTmp \ + ( (nc/ns-len(RefGraph[j])/2.)**2. ) / ns StdNgbhDivMoyNgbh = np.sqrt(StdValCliquesPerSiteTmp) \ / ( nc/(ns_1) ) #extrapolation algorithm Best_MaxError=10000000. logN2=np.log(2.) logN3=np.log(3.) if LabelsNb==2: for i in BaseLogPartFctRef.keys(): if BaseLogPartFctRef[i]['NbLabels']==2: MaxError=np.abs((BaseLogPartFctRef[i]['NbSites']-1.)*((1.*c)/(1.*BaseLogPartFctRef[i]['NbCliques']))-(s-1.))*logN2 #error at beta=0 MaxError=MaxError+(np.abs(BaseLogPartFctRef[i]['StdNgbhDivMoyNgbh']-StdNgbhDivMoyNgbh)) #penalty added to the error at zero to penalyze different homogeneities of the neighboroud (a bareer function would be cleaner for the conversion in percents) MaxError=MaxError*100./(s*logN2) #to have a percentage of error if MaxError<Best_MaxError: Best_MaxError=MaxError BestI=i if Best_MaxError<MaxErrorAllowed: Est_lnZ=((c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*BaseLogPartFctRef[BestI]['LogPF']+(1-(c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*logN2 V_Beta=V_Beta_Ref.copy() else: pyhrf.verbose(1, 'LnZ: path sampling') [Est_lnZ,V_Beta] = Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=30,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) if LabelsNb==3: for i in BaseLogPartFctRef.keys(): if BaseLogPartFctRef[i]['NbLabels']==3: MaxError=np.abs((BaseLogPartFctRef[i]['NbSites']-1.)*((1.*c)/(1.*BaseLogPartFctRef[i]['NbCliques']))-(s-1.))*logN3 #error at beta=0 MaxError=MaxError+(np.abs(BaseLogPartFctRef[i]['StdNgbhDivMoyNgbh']-StdNgbhDivMoyNgbh)) #penalty added to the error at zero to penalyze different homogeneities of the neighboroud (a bareer function would be cleaner for the conversion in percents) MaxError=MaxError*100./(s*logN3) #to have a percentage of error if MaxError<Best_MaxError: Best_MaxError=MaxError BestI=i if Best_MaxError<MaxErrorAllowed: Est_lnZ=((c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*BaseLogPartFctRef[BestI]['LogPF']+(1-(c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*logN3 V_Beta=V_Beta_Ref.copy() else: pyhrf.verbose(1, 'LnZ: path sampling') [Est_lnZ,V_Beta] = Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=30,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) #reduction of the domain if (BetaMax<1.4): temp=0 while V_Beta[temp]<BetaMax and temp<V_Beta.shape[0]-2: temp=temp+1 V_Beta=V_Beta[:temp] Est_lnZ=Est_lnZ[:temp] #domain resampling if (abs(BetaStep-0.05)>0.0001): v_Beta_Resample=[] cpt=0. while cpt<BetaMax+0.0001: v_Beta_Resample.append(cpt) cpt=cpt+BetaStep Est_lnZ=resampleToGrid(np.array(V_Beta),np.array(Est_lnZ),np.array(v_Beta_Resample)) V_Beta=v_Beta_Resample return Est_lnZ,V_Beta def Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=40,BetaMax=1.4, BetaStep=0.05,GraphWeight=None): """ Estimates ln(Z) for fields of a given size and Beta values between 0 and BetaMax. Estimates of ln(Z) are first computed on a coarse grid of Beta values. They are then computed and returned on a fine grid. No approximation using precomputed partition function is performed here. input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * LabelsNb: number of labels * SamplesNb: number of fields estimated for each beta * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax * BetaStep: gap between two considered values of beta (...in the fine grid. This gap in the coarse grid is automatically fixed and depends on the graph size.) * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. output: * VecEstim_lnZ: Vector containing the ln(Z(beta,mask)) estimates * VecBetaVal: Vector of the same size as VecExpectZ containing the corresponding beta value """ #initialization if GraphWeight is None: GraphWeight=CptDefaultGraphWeight(RefGraph) GraphNodesLabels=CptDefaultGraphNodesLabels(RefGraph) GraphLinks=CptDefaultGraphLinks(RefGraph) RefGrphNgbhPosi=CptRefGrphNgbhPosi(RefGraph) if LabelsNb==2: if len(RefGraph)<20: BetaStepCoarse=0.01 elif len(RefGraph)<50: BetaStepCoarse=0.05 else: BetaStepCoarse=0.1 else: # 3 in particular if len(RefGraph)<20: BetaStepCoarse=0.005 elif len(RefGraph)<50: BetaStepCoarse=0.025 else: BetaStepCoarse=0.05 #BetaStepCoarse = BetaStep BetaLoc=0. ListEstim_lnZ=[] ListBetaVal=[] VecU=[] ListEstim_lnZ.append(len(RefGraph)*np.log(LabelsNb)) ListBetaVal.append(BetaLoc) #print 'RefGraph:', len(RefGraph) #print 'GraphWeight:', len(GraphWeight) #compute the Z(beta_i) at a coarse resolution while BetaLoc<BetaMax+0.000001: VecU.append(Cpt_Vec_U_graph(RefGraph,BetaLoc,LabelsNb,SamplesNb, GraphWeight=GraphWeight, GraphNodesLabels=GraphNodesLabels, GraphLinks=GraphLinks, RefGrphNgbhPosi=RefGrphNgbhPosi)) BetaLoc=BetaLoc+BetaStepCoarse Estim_lnZ=Estim_lnZ_ngbhd_graph(RefGraph,BetaLoc,ListBetaVal[-1], ListEstim_lnZ[-1],VecU[-1],LabelsNb) ListEstim_lnZ.append(Estim_lnZ) ListBetaVal.append(BetaLoc) pyhrf.verbose(4, 'beta=%1.4f -> ln(Z)=%1.4f' \ %(ListBetaVal[-1],ListEstim_lnZ[-1])) VecU.append(Cpt_Vec_U_graph(RefGraph,BetaLoc,LabelsNb,SamplesNb, GraphWeight=GraphWeight, GraphNodesLabels=GraphNodesLabels, GraphLinks=GraphLinks, RefGrphNgbhPosi=RefGrphNgbhPosi)) #compute the Z(beta_j) at a fine resolution BetaLoc=0. ListEstim_lnZ_f=[] ListBetaVal_f=[] while BetaLoc < BetaMax + 0.000001: ListBetaVal_f.append(BetaLoc) i_cor = int(ListBetaVal_f[-1] / BetaStepCoarse) LEZnew = Estim_lnZ_ngbhd_graph(RefGraph, ListBetaVal_f[-1], ListBetaVal[i_cor], ListEstim_lnZ[i_cor], VecU[i_cor],LabelsNb) * \ (ListBetaVal[i_cor+1] - ListBetaVal_f[-1])/BetaStepCoarse LEZnew = LEZnew + Estim_lnZ_ngbhd_graph(RefGraph,ListBetaVal_f[-1], ListBetaVal[i_cor+1], ListEstim_lnZ[i_cor+1], VecU[i_cor+1],LabelsNb) * \ (-ListBetaVal[i_cor]+ListBetaVal_f[-1])/BetaStepCoarse ListEstim_lnZ_f.append(LEZnew) BetaLoc = BetaLoc + BetaStep #cast the lists into vectors VecEstim_lnZ=np.zeros(len(ListEstim_lnZ_f)) VecBetaVal=np.zeros(len(ListBetaVal_f)) for i in xrange(len(ListBetaVal_f)): VecBetaVal[i]=ListBetaVal_f[i] VecEstim_lnZ[i]=ListEstim_lnZ_f[i] return np.array(VecEstim_lnZ),np.array(VecBetaVal) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def LoadBaseLogPartFctRef(): """ output: * BaseLogPartFctRef: dictionnary that contains the data base of log-PF (first value = nb labels / second value = nb. sites / third value = nb. cliques) * V_Beta_Ref: Beta grid corresponding to the log-PF values in 'Est_lnZ_Ref' """ BaseLogPartFctRef={} #non-regular grids: Graphes10_02.pickle BaseLogPartFctRef[0]={} BaseLogPartFctRef[0]['LogPF']=np.array([16.64,17.29,17.97,18.66,19.37,20.09,20.82,21.58,22.36,23.15,23.95,24.77,25.61,26.46,27.32,28.21,29.12,30.03,30.97,31.92,32.88,33.86,34.85,35.86,36.88,37.91,38.95,40.02,41.08,42.17]) BaseLogPartFctRef[0]['NbLabels']=2 BaseLogPartFctRef[0]['NbCliques']=26 BaseLogPartFctRef[0]['NbSites']=24 BaseLogPartFctRef[0]['StdNgbhDivMoyNgbh']=0.3970 BaseLogPartFctRef[1]={} BaseLogPartFctRef[1]['LogPF']=np.array([17.33,18.22,19.12,20.05,21.01,21.98,22.98,24.00,25.04,26.11,27.21,28.33,29.49,30.67,31.88,33.11,34.38,35.69,37.02,38.38,39.78,41.19,42.64,44.11,45.61,47.13,48.68,50.25,51.83,53.44]) BaseLogPartFctRef[1]['NbLabels']=2 BaseLogPartFctRef[1]['NbCliques']=35 BaseLogPartFctRef[1]['NbSites']=25 BaseLogPartFctRef[1]['StdNgbhDivMoyNgbh']=0.4114 BaseLogPartFctRef[2]={} BaseLogPartFctRef[2]['LogPF']=np.array([15.94,16.63,17.34,18.05,18.79,19.53,20.30,21.08,21.88,22.70,23.54,24.38,25.25,26.13,27.04,27.97,28.91,29.88,30.85,31.86,32.87,33.90,34.94,36.00,37.08,38.17,39.28,40.40,41.54,42.69]) BaseLogPartFctRef[2]['NbLabels']=2 BaseLogPartFctRef[2]['NbCliques']=27 BaseLogPartFctRef[2]['NbSites']=23 BaseLogPartFctRef[2]['StdNgbhDivMoyNgbh']=0.4093 BaseLogPartFctRef[3]={} BaseLogPartFctRef[3]['LogPF']=np.array([19.41,20.47,21.56,22.67,23.81,24.99,26.18,27.41,28.67,29.95,31.28,32.64,34.03,35.46,36.93,38.45,39.99,41.58,43.21,44.89,46.61,48.37,50.16,51.98,53.82,55.69,57.60,59.50,61.44,63.39]) BaseLogPartFctRef[3]['NbLabels']=2 BaseLogPartFctRef[3]['NbCliques']=42 BaseLogPartFctRef[3]['NbSites']=28 BaseLogPartFctRef[3]['StdNgbhDivMoyNgbh']=0.3542 BaseLogPartFctRef[4]={} BaseLogPartFctRef[4]['LogPF']=np.array([16.64,17.47,18.33,19.21,20.11,21.02,21.96,22.92,23.90,24.91,25.94,27.00,28.08,29.19,30.33,31.47,32.66,33.88,35.14,36.40,37.70,39.02,40.37,41.74,43.15,44.58,46.03,47.49,48.98,50.48]) BaseLogPartFctRef[4]['NbLabels']=2 BaseLogPartFctRef[4]['NbCliques']=33 BaseLogPartFctRef[4]['NbSites']=24 BaseLogPartFctRef[4]['StdNgbhDivMoyNgbh']=0.4527 BaseLogPartFctRef[5]={} BaseLogPartFctRef[5]['LogPF']=np.array([9.01,9.42,9.84,10.26,10.69,11.14,11.59,12.06,12.54,13.03,13.53,14.04,14.56,15.09,15.63,16.18,16.75,17.33,17.91,18.51,19.12,19.74,20.38,21.01,21.66,22.32,22.99,23.67,24.36,25.06]) BaseLogPartFctRef[5]['NbLabels']=2 BaseLogPartFctRef[5]['NbCliques']=16 BaseLogPartFctRef[5]['NbSites']=13 BaseLogPartFctRef[5]['StdNgbhDivMoyNgbh']=0.3160 BaseLogPartFctRef[6]={} BaseLogPartFctRef[6]['LogPF']=np.array([20.10,21.04,21.99,22.98,23.99,25.02,26.08,27.15,28.26,29.38,30.54,31.72,32.93,34.17,35.42,36.70,38.02,39.36,40.73,42.12,43.53,44.99,46.46,47.97,49.49,51.03,52.60,54.18,55.79,57.42]) BaseLogPartFctRef[6]['NbLabels']=2 BaseLogPartFctRef[6]['NbCliques']=37 BaseLogPartFctRef[6]['NbSites']=29 BaseLogPartFctRef[6]['StdNgbhDivMoyNgbh']=0.3663 BaseLogPartFctRef[7]={} BaseLogPartFctRef[7]['LogPF']=np.array([17.33,18.11,18.91,19.73,20.58,21.44,22.32,23.22,24.15,25.10,26.07,27.06,28.07,29.09,30.14,31.22,32.31,33.43,34.58,35.75,36.94,38.14,39.37,40.62,41.90,43.19,44.50,45.83,47.16,48.51]) BaseLogPartFctRef[7]['NbLabels']=2 BaseLogPartFctRef[7]['NbCliques']=31 BaseLogPartFctRef[7]['NbSites']=25 BaseLogPartFctRef[7]['StdNgbhDivMoyNgbh']=0.4257 BaseLogPartFctRef[8]={} BaseLogPartFctRef[8]['LogPF']=np.array([27.03,28.52,30.05,31.61,33.21,34.85,36.53,38.26,40.04,41.84,43.68,45.58,47.54,49.53,51.58,53.68,55.84,58.06,60.35,62.69,65.07,67.51,70.02,72.56,75.14,77.75,80.42,83.12,85.83,88.56]) BaseLogPartFctRef[8]['NbLabels']=2 BaseLogPartFctRef[8]['NbCliques']=59 BaseLogPartFctRef[8]['NbSites']=39 BaseLogPartFctRef[8]['StdNgbhDivMoyNgbh']=0.3682 BaseLogPartFctRef[9]={} BaseLogPartFctRef[9]['LogPF']=np.array([16.64,17.47,18.33,19.20,20.10,21.02,21.95,22.92,23.91,24.92,25.95,27.00,28.08,29.19,30.32,31.48,32.66,33.88,35.12,36.38,37.68,39.00,40.35,41.73,43.12,44.53,45.97,47.43,48.90,50.39]) BaseLogPartFctRef[9]['NbLabels']=2 BaseLogPartFctRef[9]['NbCliques']=33 BaseLogPartFctRef[9]['NbSites']=24 BaseLogPartFctRef[9]['StdNgbhDivMoyNgbh']=0.3521 BaseLogPartFctRef[10]={} BaseLogPartFctRef[10]['LogPF']=np.array([15.25,15.93,16.62,17.34,18.07,18.83,19.60,20.38,21.18,22.00,22.85,23.70,24.58,25.48,26.40,27.33,28.28,29.25,30.25,31.26,32.28,33.33,34.40,35.48,36.58,37.70,38.83,39.98,41.14,42.32]) BaseLogPartFctRef[10]['NbLabels']=2 BaseLogPartFctRef[10]['NbCliques']=27 BaseLogPartFctRef[10]['NbSites']=22 BaseLogPartFctRef[10]['StdNgbhDivMoyNgbh']=0.4344 BaseLogPartFctRef[11]={} BaseLogPartFctRef[11]['LogPF']=np.array([11.09,11.59,12.11,12.65,13.19,13.74,14.31,14.90,15.49,16.10,16.73,17.36,18.01,18.67,19.36,20.05,20.77,21.49,22.23,22.98,23.74,24.52,25.33,26.14,26.97,27.81,28.66,29.52,30.39,31.27]) BaseLogPartFctRef[11]['NbLabels']=2 BaseLogPartFctRef[11]['NbCliques']=20 BaseLogPartFctRef[11]['NbSites']=16 BaseLogPartFctRef[11]['StdNgbhDivMoyNgbh']=0.3508 BaseLogPartFctRef[12]={} BaseLogPartFctRef[12]['LogPF']=np.array([18.02,18.96,19.91,20.91,21.92,22.95,24.00,25.08,26.18,27.32,28.47,29.66,30.87,32.11,33.38,34.67,36.01,37.37,38.77,40.20,41.66,43.15,44.68,46.23,47.79,49.39,51.02,52.67,54.34,56.03]) BaseLogPartFctRef[12]['NbLabels']=2 BaseLogPartFctRef[12]['NbCliques']=37 BaseLogPartFctRef[12]['NbSites']=26 BaseLogPartFctRef[12]['StdNgbhDivMoyNgbh']=0.3712 BaseLogPartFctRef[13]={} BaseLogPartFctRef[13]['LogPF']=np.array([22.87,23.89,24.93,25.99,27.08,28.20,29.34,30.51,31.70,32.91,34.16,35.43,36.72,38.03,39.39,40.77,42.17,43.60,45.05,46.55,48.05,49.59,51.16,52.76,54.38,56.02,57.68,59.37,61.08,62.81]) BaseLogPartFctRef[13]['NbLabels']=2 BaseLogPartFctRef[13]['NbCliques']=40 BaseLogPartFctRef[13]['NbSites']=33 BaseLogPartFctRef[13]['StdNgbhDivMoyNgbh']=0.4181 BaseLogPartFctRef[14]={} BaseLogPartFctRef[14]['LogPF']=np.array([17.33,18.19,19.07,19.97,20.90,21.85,22.81,23.81,24.82,25.86,26.92,28.02,29.13,30.27,31.45,32.65,33.88,35.14,36.42,37.75,39.09,40.46,41.86,43.28,44.72,46.18,47.66,49.17,50.68,52.21]) BaseLogPartFctRef[14]['NbLabels']=2 BaseLogPartFctRef[14]['NbCliques']=34 BaseLogPartFctRef[14]['NbSites']=25 BaseLogPartFctRef[14]['StdNgbhDivMoyNgbh']=0.4057 BaseLogPartFctRef[15]={} BaseLogPartFctRef[15]['LogPF']=np.array([15.94,16.75,17.58,18.43,19.30,20.19,21.10,22.04,22.99,23.97,24.97,25.99,27.04,28.10,29.20,30.31,31.46,32.63,33.83,35.06,36.31,37.59,38.90,40.22,41.57,42.95,44.34,45.75,47.19,48.63]) BaseLogPartFctRef[15]['NbLabels']=2 BaseLogPartFctRef[15]['NbCliques']=32 BaseLogPartFctRef[15]['NbSites']=23 BaseLogPartFctRef[15]['StdNgbhDivMoyNgbh']=0.3787 BaseLogPartFctRef[16]={} BaseLogPartFctRef[16]['LogPF']=np.array([32.58,34.22,35.91,37.63,39.40,41.20,43.06,44.95,46.90,48.89,50.92,52.99,55.13,57.32,59.56,61.85,64.19,66.59,69.06,71.59,74.17,76.79,79.47,82.21,84.96,87.77,90.63,93.50,96.41,99.35]) BaseLogPartFctRef[16]['NbLabels']=2 BaseLogPartFctRef[16]['NbCliques']=65 BaseLogPartFctRef[16]['NbSites']=47 BaseLogPartFctRef[16]['StdNgbhDivMoyNgbh']=0.3945 BaseLogPartFctRef[17]={} BaseLogPartFctRef[17]['LogPF']=np.array([21.49,22.62,23.79,24.99,26.21,27.46,28.75,30.07,31.40,32.78,34.19,35.64,37.11,38.63,40.18,41.78,43.42,45.11,46.85,48.62,50.44,52.30,54.20,56.13,58.09,60.09,62.11,64.14,66.20,68.28]) BaseLogPartFctRef[17]['NbLabels']=2 BaseLogPartFctRef[17]['NbCliques']=45 BaseLogPartFctRef[17]['NbSites']=31 BaseLogPartFctRef[17]['StdNgbhDivMoyNgbh']=0.4178 BaseLogPartFctRef[18]={} BaseLogPartFctRef[18]['LogPF']=np.array([13.17,13.78,14.40,15.04,15.69,16.36,17.05,17.75,18.47,19.19,19.94,20.70,21.48,22.29,23.10,23.93,24.77,25.64,26.52,27.43,28.35,29.28,30.24,31.21,32.19,33.20,34.21,35.25,36.30,37.36]) BaseLogPartFctRef[18]['NbLabels']=2 BaseLogPartFctRef[18]['NbCliques']=24 BaseLogPartFctRef[18]['NbSites']=19 BaseLogPartFctRef[18]['StdNgbhDivMoyNgbh']=0.3724 BaseLogPartFctRef[19]={} BaseLogPartFctRef[19]['LogPF']=np.array([13.86,14.45,15.04,15.66,16.29,16.92,17.57,18.24,18.93,19.63,20.34,21.07,21.82,22.59,23.36,24.15,24.96,25.79,26.63,27.48,28.36,29.25,30.15,31.06,31.99,32.93,33.89,34.86,35.84,36.83]) BaseLogPartFctRef[19]['NbLabels']=2 BaseLogPartFctRef[19]['NbCliques']=23 BaseLogPartFctRef[19]['NbSites']=20 BaseLogPartFctRef[19]['StdNgbhDivMoyNgbh']=0.3940 BaseLogPartFctRef[20]={} BaseLogPartFctRef[20]['LogPF']=np.array([20.10,21.11,22.15,23.22,24.30,25.42,26.56,27.72,28.92,30.14,31.39,32.68,34.00,35.36,36.73,38.14,39.59,41.09,42.63,44.19,45.79,47.42,49.07,50.75,52.46,54.21,55.98,57.75,59.56,61.37]) BaseLogPartFctRef[20]['NbLabels']=2 BaseLogPartFctRef[20]['NbCliques']=40 BaseLogPartFctRef[20]['NbSites']=29 BaseLogPartFctRef[20]['StdNgbhDivMoyNgbh']=0.3970 BaseLogPartFctRef[21]={} BaseLogPartFctRef[21]['LogPF']=np.array([16.64,17.34,18.07,18.82,19.58,20.36,21.16,21.97,22.80,23.65,24.52,25.41,26.32,27.24,28.18,29.15,30.13,31.12,32.13,33.17,34.23,35.31,36.39,37.50,38.63,39.76,40.92,42.10,43.29,44.49]) BaseLogPartFctRef[21]['NbLabels']=2 BaseLogPartFctRef[21]['NbCliques']=28 BaseLogPartFctRef[21]['NbSites']=24 BaseLogPartFctRef[21]['StdNgbhDivMoyNgbh']=0.3872 BaseLogPartFctRef[22]={} BaseLogPartFctRef[22]['LogPF']=np.array([22.87,24.03,25.22,26.43,27.68,28.96,30.27,31.61,32.97,34.38,35.81,37.28,38.78,40.32,41.87,43.48,45.13,46.81,48.52,50.29,52.11,53.93,55.82,57.73,59.66,61.64,63.64,65.67,67.71,69.79]) BaseLogPartFctRef[22]['NbLabels']=2 BaseLogPartFctRef[22]['NbCliques']=46 BaseLogPartFctRef[22]['NbSites']=33 BaseLogPartFctRef[22]['StdNgbhDivMoyNgbh']=0.4085 BaseLogPartFctRef[23]={} BaseLogPartFctRef[23]['LogPF']=np.array([13.86,14.52,15.19,15.88,16.59,17.31,18.05,18.81,19.59,20.38,21.19,22.02,22.87,23.74,24.63,25.53,26.46,27.40,28.38,29.37,30.38,31.41,32.46,33.52,34.60,35.70,36.82,37.95,39.09,40.24]) BaseLogPartFctRef[23]['NbLabels']=2 BaseLogPartFctRef[23]['NbCliques']=26 BaseLogPartFctRef[23]['NbSites']=20 BaseLogPartFctRef[23]['StdNgbhDivMoyNgbh']=0.3543 BaseLogPartFctRef[24]={} BaseLogPartFctRef[24]['LogPF']=np.array([15.25,15.98,16.73,17.49,18.28,19.09,19.91,20.75,21.61,22.50,23.40,24.32,25.25,26.22,27.21,28.21,29.25,30.31,31.38,32.48,33.60,34.74,35.91,37.10,38.30,39.52,40.76,42.02,43.31,44.60]) BaseLogPartFctRef[24]['NbLabels']=2 BaseLogPartFctRef[24]['NbCliques']=29 BaseLogPartFctRef[24]['NbSites']=22 BaseLogPartFctRef[24]['StdNgbhDivMoyNgbh']=0.3709 BaseLogPartFctRef[25]={} BaseLogPartFctRef[25]['LogPF']=np.array([30.50,31.97,33.47,35.02,36.60,38.20,39.86,41.55,43.28,45.04,46.84,48.68,50.57,52.50,54.46,56.47,58.51,60.60,62.75,64.94,67.18,69.45,71.76,74.12,76.51,78.93,81.40,83.92,86.46,89.03]) BaseLogPartFctRef[25]['NbLabels']=2 BaseLogPartFctRef[25]['NbCliques']=58 BaseLogPartFctRef[25]['NbSites']=44 BaseLogPartFctRef[25]['StdNgbhDivMoyNgbh']=0.3879 BaseLogPartFctRef[26]={} BaseLogPartFctRef[26]['LogPF']=np.array([20.10,21.04,21.99,22.97,23.98,25.01,26.07,27.13,28.23,29.36,30.51,31.68,32.89,34.12,35.37,36.66,37.98,39.31,40.69,42.08,43.50,44.96,46.43,47.96,49.49,51.05,52.63,54.23,55.85,57.49]) BaseLogPartFctRef[26]['NbLabels']=2 BaseLogPartFctRef[26]['NbCliques']=37 BaseLogPartFctRef[26]['NbSites']=29 BaseLogPartFctRef[26]['StdNgbhDivMoyNgbh']=0.4167 BaseLogPartFctRef[27]={} BaseLogPartFctRef[27]['LogPF']=np.array([14.56,15.16,15.78,16.42,17.07,17.74,18.43,19.12,19.83,20.56,21.30,22.06,22.83,23.62,24.42,25.25,26.09,26.94,27.81,28.69,29.58,30.50,31.42,32.36,33.31,34.27,35.26,36.25,37.25,38.27]) BaseLogPartFctRef[27]['NbLabels']=2 BaseLogPartFctRef[27]['NbCliques']=24 BaseLogPartFctRef[27]['NbSites']=21 BaseLogPartFctRef[27]['StdNgbhDivMoyNgbh']=0.3669 BaseLogPartFctRef[28]={} BaseLogPartFctRef[28]['LogPF']=np.array([30.50,32.10,33.73,35.41,37.11,38.86,40.65,42.50,44.39,46.32,48.29,50.32,52.39,54.51,56.67,58.89,61.18,63.52,65.94,68.40,70.91,73.47,76.10,78.79,81.53,84.31,87.12,89.97,92.82,95.71]) BaseLogPartFctRef[28]['NbLabels']=2 BaseLogPartFctRef[28]['NbCliques']=63 BaseLogPartFctRef[28]['NbSites']=44 BaseLogPartFctRef[28]['StdNgbhDivMoyNgbh']=0.4089 BaseLogPartFctRef[29]={} BaseLogPartFctRef[29]['LogPF']=np.array([20.79,21.70,22.64,23.60,24.58,25.59,26.62,27.67,28.74,29.83,30.95,32.11,33.28,34.46,35.68,36.92,38.20,39.50,40.82,42.17,43.54,44.93,46.36,47.80,49.26,50.74,52.24,53.77,55.31,56.88]) BaseLogPartFctRef[29]['NbLabels']=2 BaseLogPartFctRef[29]['NbCliques']=36 BaseLogPartFctRef[29]['NbSites']=30 BaseLogPartFctRef[29]['StdNgbhDivMoyNgbh']=0.3835 #non-regular grids: Graphes10_04.pickle BaseLogPartFctRef[30]={} BaseLogPartFctRef[30]['LogPF']=np.array([487.3,527.2,568.2,610.1,653.1,697.1,742.2,788.6,836.3,885.4,936.2,989.5,1045.,1106.,1170.,1238.,1308.,1379.,1453.,1527.,1602.,1678.,1754.,1831.,1908.,1985.,2063.,2141.,2219.,2297.]) BaseLogPartFctRef[30]['NbLabels']=2 BaseLogPartFctRef[30]['NbCliques']=1578 BaseLogPartFctRef[30]['NbSites']=703 BaseLogPartFctRef[30]['StdNgbhDivMoyNgbh']=0.2508 BaseLogPartFctRef[31]={} BaseLogPartFctRef[31]['LogPF']=np.array([463.0,500.5,539.0,578.3,618.7,660.0,702.4,745.9,790.7,836.8,884.5,934.4,987.0,1044.,1104.,1167.,1233.,1300.,1368.,1437.,1507.,1578.,1649.,1721.,1793.,1866.,1938.,2011.,2084.,2157.]) BaseLogPartFctRef[31]['NbLabels']=2 BaseLogPartFctRef[31]['NbCliques']=1481 BaseLogPartFctRef[31]['NbSites']=668 BaseLogPartFctRef[31]['StdNgbhDivMoyNgbh']=0.2677 BaseLogPartFctRef[32]={} BaseLogPartFctRef[32]['LogPF']=np.array([310.5,333.2,356.4,380.2,404.5,429.4,454.9,481.1,508.0,535.6,564.1,593.4,623.9,655.7,688.8,723.7,760.2,798.1,837.2,877.4,918.3,959.8,1002.,1044.,1087.,1130.,1173.,1217.,1261.,1304.]) BaseLogPartFctRef[32]['NbLabels']=2 BaseLogPartFctRef[32]['NbCliques']=894 BaseLogPartFctRef[32]['NbSites']=448 BaseLogPartFctRef[32]['StdNgbhDivMoyNgbh']=0.2893 BaseLogPartFctRef[33]={} BaseLogPartFctRef[33]['LogPF']=np.array([470.0,508.6,548.3,589.0,630.6,673.3,717.0,762.1,808.3,856.0,905.5,957.6,1013.,1072.,1135.,1201.,1269.,1339.,1410.,1482.,1554.,1628.,1702.,1776.,1850.,1925.,2000.,2076.,2151.,2227.]) BaseLogPartFctRef[33]['NbLabels']=2 BaseLogPartFctRef[33]['NbCliques']=1529 BaseLogPartFctRef[33]['NbSites']=678 BaseLogPartFctRef[33]['StdNgbhDivMoyNgbh']=0.2701 BaseLogPartFctRef[34]={} BaseLogPartFctRef[34]['LogPF']=np.array([496.3,536.3,577.4,619.4,662.5,706.6,751.9,798.3,846.0,895.1,945.9,998.5,1054.,1113.,1175.,1242.,1312.,1383.,1456.,1530.,1606.,1681.,1758.,1835.,1912.,1990.,2067.,2145.,2224.,2302.]) BaseLogPartFctRef[34]['NbLabels']=2 BaseLogPartFctRef[34]['NbCliques']=1582 BaseLogPartFctRef[34]['NbSites']=716 BaseLogPartFctRef[34]['StdNgbhDivMoyNgbh']=0.2517 BaseLogPartFctRef[35]={} BaseLogPartFctRef[35]['LogPF']=np.array([512.2,554.6,597.9,642.5,688.0,734.6,782.4,831.6,882.0,933.8,987.8,1044.,1103.,1166.,1234.,1305.,1379.,1456.,1534.,1613.,1692.,1773.,1854.,1936.,2018.,2100.,2183.,2265.,2348.,2431.]) BaseLogPartFctRef[35]['NbLabels']=2 BaseLogPartFctRef[35]['NbCliques']=1672 BaseLogPartFctRef[35]['NbSites']=739 BaseLogPartFctRef[35]['StdNgbhDivMoyNgbh']=0.2348 BaseLogPartFctRef[36]={} BaseLogPartFctRef[36]['LogPF']=np.array([520.6,563.0,606.6,651.1,696.7,743.5,791.4,840.6,891.1,943.3,997.2,1053.,1112.,1175.,1243.,1315.,1389.,1465.,1542.,1621.,1701.,1781.,1862.,1944.,2026.,2108.,2191.,2273.,2356.,2439.]) BaseLogPartFctRef[36]['NbLabels']=2 BaseLogPartFctRef[36]['NbCliques']=1677 BaseLogPartFctRef[36]['NbSites']=751 BaseLogPartFctRef[36]['StdNgbhDivMoyNgbh']=0.2473 BaseLogPartFctRef[37]={} BaseLogPartFctRef[37]['LogPF']=np.array([499.8,540.1,581.3,623.6,667.0,711.4,756.9,803.6,851.6,901.0,952.0,1005.,1061.,1120.,1183.,1250.,1320.,1392.,1465.,1539.,1615.,1691.,1768.,1845.,1923.,2001.,2079.,2157.,2236.,2315.]) BaseLogPartFctRef[37]['NbLabels']=2 BaseLogPartFctRef[37]['NbCliques']=1591 BaseLogPartFctRef[37]['NbSites']=721 BaseLogPartFctRef[37]['StdNgbhDivMoyNgbh']=0.2585 BaseLogPartFctRef[38]={} BaseLogPartFctRef[38]['LogPF']=np.array([526.8,570.6,615.6,661.6,708.8,757.1,806.7,857.6,910.0,964.1,1020.,1079.,1141.,1208.,1280.,1355.,1432.,1511.,1592.,1674.,1756.,1839.,1923.,2008.,2093.,2178.,2263.,2348.,2434.,2520.]) BaseLogPartFctRef[38]['NbLabels']=2 BaseLogPartFctRef[38]['NbCliques']=1732 BaseLogPartFctRef[38]['NbSites']=760 BaseLogPartFctRef[38]['StdNgbhDivMoyNgbh']=0.2602 BaseLogPartFctRef[39]={} BaseLogPartFctRef[39]['LogPF']=np.array([497.7,537.3,577.9,619.5,662.1,705.8,750.5,796.4,843.6,892.2,942.3,994.2,1049.,1106.,1168.,1233.,1301.,1371.,1443.,1516.,1590.,1665.,1741.,1816.,1893.,1969.,2046.,2123.,2201.,2278.]) BaseLogPartFctRef[39]['NbLabels']=2 BaseLogPartFctRef[39]['NbCliques']=1565 BaseLogPartFctRef[39]['NbSites']=718 BaseLogPartFctRef[39]['StdNgbhDivMoyNgbh']=0.2564 BaseLogPartFctRef[40]={} BaseLogPartFctRef[40]['LogPF']=np.array([455.4,492.3,530.1,568.9,608.7,649.3,691.0,733.9,777.9,823.2,870.0,919.0,970.3,1025.,1084.,1146.,1210.,1276.,1344.,1412.,1481.,1551.,1622.,1692.,1764.,1835.,1907.,1979.,2051.,2123.]) BaseLogPartFctRef[40]['NbLabels']=2 BaseLogPartFctRef[40]['NbCliques']=1459 BaseLogPartFctRef[40]['NbSites']=657 BaseLogPartFctRef[40]['StdNgbhDivMoyNgbh']=0.2619 BaseLogPartFctRef[41]={} BaseLogPartFctRef[41]['LogPF']=np.array([499.1,540.3,582.6,626.1,670.5,716.0,762.7,810.6,859.8,910.6,963.4,1018.,1076.,1139.,1205.,1276.,1348.,1423.,1498.,1575.,1653.,1732.,1811.,1890.,1970.,2050.,2131.,2211.,2292.,2373.]) BaseLogPartFctRef[41]['NbLabels']=2 BaseLogPartFctRef[41]['NbCliques']=1631 BaseLogPartFctRef[41]['NbSites']=720 BaseLogPartFctRef[41]['StdNgbhDivMoyNgbh']=0.2496 BaseLogPartFctRef[42]={} BaseLogPartFctRef[42]['LogPF']=np.array([429.1,463.3,498.4,534.3,571.2,608.9,647.6,687.4,728.3,770.3,813.9,859.3,907.0,957.9,1012.,1069.,1128.,1188.,1250.,1313.,1377.,1441.,1506.,1571.,1637.,1703.,1770.,1836.,1903.,1970.]) BaseLogPartFctRef[42]['NbLabels']=2 BaseLogPartFctRef[42]['NbCliques']=1353 BaseLogPartFctRef[42]['NbSites']=619 BaseLogPartFctRef[42]['StdNgbhDivMoyNgbh']=0.2770 BaseLogPartFctRef[43]={} BaseLogPartFctRef[43]['LogPF']=np.array([445.7,481.0,517.2,554.3,592.3,631.2,671.1,712.1,754.1,797.4,842.2,888.8,937.8,989.9,1046.,1104.,1164.,1227.,1290.,1355.,1421.,1487.,1554.,1621.,1689.,1757.,1825.,1894.,1963.,2031.]) BaseLogPartFctRef[43]['NbLabels']=2 BaseLogPartFctRef[43]['NbCliques']=1395 BaseLogPartFctRef[43]['NbSites']=643 BaseLogPartFctRef[43]['StdNgbhDivMoyNgbh']=0.2785 BaseLogPartFctRef[44]={} BaseLogPartFctRef[44]['LogPF']=np.array([501.1,541.7,583.2,625.7,669.2,713.8,759.6,806.5,854.8,904.5,955.8,1009.,1065.,1125.,1190.,1258.,1328.,1401.,1475.,1550.,1626.,1702.,1779.,1857.,1935.,2013.,2092.,2171.,2250.,2329.]) BaseLogPartFctRef[44]['NbLabels']=2 BaseLogPartFctRef[44]['NbCliques']=1599 BaseLogPartFctRef[44]['NbSites']=723 BaseLogPartFctRef[44]['StdNgbhDivMoyNgbh']=0.2602 BaseLogPartFctRef[45]={} BaseLogPartFctRef[45]['LogPF']=np.array([473.4,512.1,551.7,592.2,633.8,676.3,720.0,764.8,811.0,858.5,907.6,958.8,1013.,1071.,1133.,1199.,1266.,1335.,1406.,1477.,1550.,1623.,1697.,1771.,1845.,1920.,1995.,2070.,2146.,2221.]) BaseLogPartFctRef[45]['NbLabels']=2 BaseLogPartFctRef[45]['NbCliques']=1526 BaseLogPartFctRef[45]['NbSites']=683 BaseLogPartFctRef[45]['StdNgbhDivMoyNgbh']=0.2644 BaseLogPartFctRef[46]={} BaseLogPartFctRef[46]['LogPF']=np.array([388.9,418.0,447.8,478.4,509.8,541.8,574.7,608.4,643.1,678.7,715.5,753.6,793.4,835.3,879.7,926.1,974.4,1025.,1076.,1129.,1182.,1236.,1291.,1346.,1401.,1457.,1513.,1569.,1626.,1682.]) BaseLogPartFctRef[46]['NbLabels']=2 BaseLogPartFctRef[46]['NbCliques']=1151 BaseLogPartFctRef[46]['NbSites']=561 BaseLogPartFctRef[46]['StdNgbhDivMoyNgbh']=0.3102 BaseLogPartFctRef[47]={} BaseLogPartFctRef[47]['LogPF']=np.array([555.9,603.4,652.0,701.8,752.9,805.1,858.9,913.8,970.6,1029.,1090.,1154.,1222.,1296.,1375.,1457.,1541.,1628.,1716.,1805.,1895.,1985.,2076.,2168.,2260.,2352.,2445.,2538.,2630.,2723.]) BaseLogPartFctRef[47]['NbLabels']=2 BaseLogPartFctRef[47]['NbCliques']=1874 BaseLogPartFctRef[47]['NbSites']=802 BaseLogPartFctRef[47]['StdNgbhDivMoyNgbh']=0.2385 BaseLogPartFctRef[48]={} BaseLogPartFctRef[48]['LogPF']=np.array([454.7,490.6,527.3,564.9,603.6,643.1,683.6,725.2,767.9,811.8,857.2,904.3,953.5,1005.,1061.,1119.,1180.,1243.,1308.,1374.,1441.,1508.,1576.,1645.,1714.,1783.,1852.,1922.,1992.,2062.]) BaseLogPartFctRef[48]['NbLabels']=2 BaseLogPartFctRef[48]['NbCliques']=1417 BaseLogPartFctRef[48]['NbSites']=656 BaseLogPartFctRef[48]['StdNgbhDivMoyNgbh']=0.2654 BaseLogPartFctRef[49]={} BaseLogPartFctRef[49]['LogPF']=np.array([441.5,477.3,514.0,551.5,590.0,629.5,669.8,711.4,754.0,798.0,843.6,891.3,942.0,996.0,1054.,1114.,1177.,1241.,1306.,1373.,1440.,1507.,1575.,1644.,1712.,1781.,1851.,1920.,1990.,2059.]) BaseLogPartFctRef[49]['NbLabels']=2 BaseLogPartFctRef[49]['NbCliques']=1413 BaseLogPartFctRef[49]['NbSites']=637 BaseLogPartFctRef[49]['StdNgbhDivMoyNgbh']=0.2899 BaseLogPartFctRef[50]={} BaseLogPartFctRef[50]['LogPF']=np.array([547.6,595.0,643.5,693.2,744.2,796.4,850.0,905.1,961.7,1020.,1081.,1145.,1214.,1289.,1369.,1451.,1536.,1623.,1711.,1801.,1891.,1982.,2073.,2165.,2257.,2350.,2442.,2535.,2628.,2721.]) BaseLogPartFctRef[50]['NbLabels']=2 BaseLogPartFctRef[50]['NbCliques']=1872 BaseLogPartFctRef[50]['NbSites']=790 BaseLogPartFctRef[50]['StdNgbhDivMoyNgbh']=0.2272 BaseLogPartFctRef[51]={} BaseLogPartFctRef[51]['LogPF']=np.array([396.5,427.5,459.3,491.9,525.3,559.6,594.7,630.6,667.6,705.6,745.0,785.8,828.7,874.6,923.2,974.3,1027.,1081.,1137.,1194.,1251.,1309.,1368.,1427.,1486.,1546.,1606.,1666.,1727.,1787.]) BaseLogPartFctRef[51]['NbLabels']=2 BaseLogPartFctRef[51]['NbCliques']=1226 BaseLogPartFctRef[51]['NbSites']=572 BaseLogPartFctRef[51]['StdNgbhDivMoyNgbh']=0.2877 BaseLogPartFctRef[52]={} BaseLogPartFctRef[52]['LogPF']=np.array([469.3,507.6,547.1,587.6,628.9,671.4,714.9,759.5,805.5,852.7,901.9,953.3,1007.,1066.,1129.,1194.,1262.,1331.,1402.,1473.,1545.,1618.,1691.,1765.,1839.,1914.,1988.,2063.,2138.,2213.]) BaseLogPartFctRef[52]['NbLabels']=2 BaseLogPartFctRef[52]['NbCliques']=1520 BaseLogPartFctRef[52]['NbSites']=677 BaseLogPartFctRef[52]['StdNgbhDivMoyNgbh']=0.2647 BaseLogPartFctRef[53]={} BaseLogPartFctRef[53]['LogPF']=np.array([445.0,481.0,517.9,555.7,594.5,634.1,674.9,716.6,759.5,803.9,849.8,897.8,948.8,1004.,1061.,1122.,1185.,1249.,1314.,1381.,1448.,1516.,1584.,1653.,1722.,1792.,1861.,1931.,2001.,2071.]) BaseLogPartFctRef[53]['NbLabels']=2 BaseLogPartFctRef[53]['NbCliques']=1422 BaseLogPartFctRef[53]['NbSites']=642 BaseLogPartFctRef[53]['StdNgbhDivMoyNgbh']=0.2876 BaseLogPartFctRef[54]={} BaseLogPartFctRef[54]['LogPF']=np.array([474.8,512.9,551.9,591.9,632.9,674.8,717.9,762.1,807.4,854.2,902.4,952.7,1005.,1061.,1121.,1184.,1250.,1317.,1387.,1457.,1528.,1600.,1673.,1746.,1819.,1893.,1967.,2041.,2115.,2190.]) BaseLogPartFctRef[54]['NbLabels']=2 BaseLogPartFctRef[54]['NbCliques']=1504 BaseLogPartFctRef[54]['NbSites']=685 BaseLogPartFctRef[54]['StdNgbhDivMoyNgbh']=0.2660 BaseLogPartFctRef[55]={} BaseLogPartFctRef[55]['LogPF']=np.array([448.5,484.6,521.7,559.7,598.6,638.5,679.4,721.3,764.5,809.0,855.0,903.1,953.8,1008.,1065.,1125.,1188.,1252.,1318.,1385.,1452.,1521.,1589.,1659.,1728.,1798.,1869.,1939.,2010.,2080.]) BaseLogPartFctRef[55]['NbLabels']=2 BaseLogPartFctRef[55]['NbCliques']=1429 BaseLogPartFctRef[55]['NbSites']=647 BaseLogPartFctRef[55]['StdNgbhDivMoyNgbh']=0.2674 BaseLogPartFctRef[56]={} BaseLogPartFctRef[56]['LogPF']=np.array([488.7,528.1,568.6,610.1,652.5,695.9,740.6,786.3,833.4,881.9,932.0,984.3,1039.,1098.,1161.,1227.,1295.,1366.,1438.,1511.,1584.,1659.,1734.,1810.,1886.,1962.,2039.,2115.,2192.,2269.]) BaseLogPartFctRef[56]['NbLabels']=2 BaseLogPartFctRef[56]['NbCliques']=1559 BaseLogPartFctRef[56]['NbSites']=705 BaseLogPartFctRef[56]['StdNgbhDivMoyNgbh']=0.2582 BaseLogPartFctRef[57]={} BaseLogPartFctRef[57]['LogPF']=np.array([478.3,517.6,557.9,599.3,641.5,684.7,729.1,774.7,821.6,870.0,920.0,972.4,1028.,1087.,1151.,1217.,1286.,1357.,1429.,1502.,1575.,1650.,1725.,1800.,1876.,1952.,2029.,2105.,2182.,2259.]) BaseLogPartFctRef[57]['NbLabels']=2 BaseLogPartFctRef[57]['NbCliques']=1552 BaseLogPartFctRef[57]['NbSites']=690 BaseLogPartFctRef[57]['StdNgbhDivMoyNgbh']=0.2564 BaseLogPartFctRef[58]={} BaseLogPartFctRef[58]['LogPF']=np.array([486.6,526.0,566.4,607.8,650.3,693.7,738.3,784.0,831.1,879.5,929.6,981.8,1037.,1096.,1159.,1225.,1293.,1364.,1436.,1509.,1583.,1658.,1733.,1808.,1884.,1960.,2037.,2114.,2190.,2267.]) BaseLogPartFctRef[58]['NbLabels']=2 BaseLogPartFctRef[58]['NbCliques']=1557 BaseLogPartFctRef[58]['NbSites']=702 BaseLogPartFctRef[58]['StdNgbhDivMoyNgbh']=0.2720 BaseLogPartFctRef[59]={} BaseLogPartFctRef[59]['LogPF']=np.array([417.3,450.5,484.7,519.6,555.5,592.2,629.8,668.4,708.2,749.1,791.4,835.6,882.3,932.6,986.0,1042.,1099.,1158.,1219.,1280.,1342.,1404.,1467.,1530.,1594.,1658.,1723.,1787.,1852.,1917.]) BaseLogPartFctRef[59]['NbLabels']=2 BaseLogPartFctRef[59]['NbCliques']=1316 BaseLogPartFctRef[59]['NbSites']=602 BaseLogPartFctRef[59]['StdNgbhDivMoyNgbh']=0.2885 #non-regular grids: Graphes10_03.pickle BaseLogPartFctRef[90]={} BaseLogPartFctRef[90]['LogPF']=np.array([59.61,62.87,66.21,69.64,73.14,76.75,80.43,84.19,88.05,92.00,96.03,100.2,104.4,108.7,113.2,117.8,122.5,127.3,132.2,137.2,142.4,147.7,153.1,158.6,164.2,169.9,175.6,181.5,187.4,193.3]) BaseLogPartFctRef[90]['NbLabels']=2 BaseLogPartFctRef[90]['NbCliques']=129 BaseLogPartFctRef[90]['NbSites']=86 BaseLogPartFctRef[90]['StdNgbhDivMoyNgbh']=0.3588 BaseLogPartFctRef[91]={} BaseLogPartFctRef[91]['LogPF']=np.array([270.3,289.0,308.1,327.7,347.7,368.3,389.3,410.9,433.0,455.7,479.0,503.1,528.0,553.8,580.8,608.9,638.2,668.8,700.3,732.6,765.5,799.0,833.0,867.4,902.1,937.1,972.4,1008.,1043.,1079.]) BaseLogPartFctRef[91]['NbLabels']=2 BaseLogPartFctRef[91]['NbCliques']=737 BaseLogPartFctRef[91]['NbSites']=390 BaseLogPartFctRef[91]['StdNgbhDivMoyNgbh']=0.3378 BaseLogPartFctRef[92]={} BaseLogPartFctRef[92]['LogPF']=np.array([71.39,75.52,79.74,84.08,88.51,93.04,97.70,102.5,107.3,112.3,117.4,122.7,128.1,133.7,139.4,145.2,151.3,157.5,164.0,170.5,177.3,184.1,191.1,198.3,205.6,212.9,220.4,227.9,235.5,243.2]) BaseLogPartFctRef[92]['NbLabels']=2 BaseLogPartFctRef[92]['NbCliques']=163 BaseLogPartFctRef[92]['NbSites']=103 BaseLogPartFctRef[92]['StdNgbhDivMoyNgbh']=0.4274 BaseLogPartFctRef[93]={} BaseLogPartFctRef[93]['LogPF']=np.array([207.3,220.6,234.3,248.4,262.8,277.5,292.6,308.1,323.9,340.2,356.9,374.0,391.7,409.8,428.6,448.0,468.1,489.0,510.6,533.0,555.8,579.2,603.1,627.3,651.8,676.6,701.6,726.8,752.2,777.6]) BaseLogPartFctRef[93]['NbLabels']=2 BaseLogPartFctRef[93]['NbCliques']=529 BaseLogPartFctRef[93]['NbSites']=299 BaseLogPartFctRef[93]['StdNgbhDivMoyNgbh']=0.3502 BaseLogPartFctRef[94]={} BaseLogPartFctRef[94]['LogPF']=np.array([94.27,99.47,104.8,110.2,115.8,121.5,127.4,133.4,139.5,145.8,152.2,158.8,165.5,172.5,179.5,186.8,194.3,202.0,209.9,218.0,226.2,234.7,243.3,252.1,261.1,270.2,279.4,288.7,298.1,307.6]) BaseLogPartFctRef[94]['NbLabels']=2 BaseLogPartFctRef[94]['NbCliques']=205 BaseLogPartFctRef[94]['NbSites']=136 BaseLogPartFctRef[94]['StdNgbhDivMoyNgbh']=0.3809 BaseLogPartFctRef[95]={} BaseLogPartFctRef[95]['LogPF']=np.array([88.03,93.55,99.21,105.0,111.0,117.1,123.3,129.6,136.2,142.9,149.8,156.9,164.2,171.8,179.5,187.5,195.8,204.4,213.3,222.5,231.8,241.4,251.1,261.0,271.0,281.1,291.3,301.6,312.0,322.4]) BaseLogPartFctRef[95]['NbLabels']=2 BaseLogPartFctRef[95]['NbCliques']=218 BaseLogPartFctRef[95]['NbSites']=127 BaseLogPartFctRef[95]['StdNgbhDivMoyNgbh']=0.3673 BaseLogPartFctRef[96]={} BaseLogPartFctRef[96]['LogPF']=np.array([117.1,124.4,131.8,139.4,147.1,155.1,163.2,171.5,180.1,188.8,197.8,207.0,216.4,226.1,236.1,246.5,257.2,268.1,279.5,291.2,303.3,315.6,328.2,341.1,354.1,367.3,380.6,394.1,407.6,421.2]) BaseLogPartFctRef[96]['NbLabels']=2 BaseLogPartFctRef[96]['NbCliques']=285 BaseLogPartFctRef[96]['NbSites']=169 BaseLogPartFctRef[96]['StdNgbhDivMoyNgbh']=0.3804 BaseLogPartFctRef[97]={} BaseLogPartFctRef[97]['LogPF']=np.array([64.46,68.38,72.40,76.53,80.75,85.06,89.51,94.03,98.66,103.4,108.3,113.3,118.5,123.7,129.2,134.8,140.5,146.5,152.7,159.0,165.5,172.1,178.9,185.8,192.9,200.0,207.2,214.5,221.8,229.1]) BaseLogPartFctRef[97]['NbLabels']=2 BaseLogPartFctRef[97]['NbCliques']=155 BaseLogPartFctRef[97]['NbSites']=93 BaseLogPartFctRef[97]['StdNgbhDivMoyNgbh']=0.3436 BaseLogPartFctRef[98]={} BaseLogPartFctRef[98]['LogPF']=np.array([94.96,100.3,105.8,111.4,117.1,123.0,129.0,135.2,141.5,147.9,154.6,161.3,168.3,175.5,182.8,190.4,198.2,206.3,214.5,222.9,231.6,240.5,249.6,258.7,268.1,277.5,287.1,296.8,306.5,316.3]) BaseLogPartFctRef[98]['NbLabels']=2 BaseLogPartFctRef[98]['NbCliques']=211 BaseLogPartFctRef[98]['NbSites']=137 BaseLogPartFctRef[98]['StdNgbhDivMoyNgbh']=0.4104 BaseLogPartFctRef[99]={} BaseLogPartFctRef[99]['LogPF']=np.array([86.64,91.87,97.23,102.7,108.3,114.0,119.9,126.0,132.1,138.5,145.0,151.6,158.4,165.5,172.7,180.2,187.9,195.9,204.1,212.6,221.2,230.1,239.1,248.3,257.5,267.0,276.5,286.1,295.7,305.5]) BaseLogPartFctRef[99]['NbLabels']=2 BaseLogPartFctRef[99]['NbCliques']=206 BaseLogPartFctRef[99]['NbSites']=125 BaseLogPartFctRef[99]['StdNgbhDivMoyNgbh']=0.3692 BaseLogPartFctRef[100]={} BaseLogPartFctRef[100]['LogPF']=np.array([94.96,101.0,107.1,113.5,119.9,126.6,133.4,140.3,147.5,154.8,162.2,169.9,177.8,185.9,194.3,203.0,212.0,221.3,230.9,240.8,251.0,261.4,272.0,282.8,293.7,304.8,316.0,327.3,338.7,350.1]) BaseLogPartFctRef[100]['NbLabels']=2 BaseLogPartFctRef[100]['NbCliques']=238 BaseLogPartFctRef[100]['NbSites']=137 BaseLogPartFctRef[100]['StdNgbhDivMoyNgbh']=0.3203 BaseLogPartFctRef[101]={} BaseLogPartFctRef[101]['LogPF']=np.array([115.8,122.9,130.2,137.6,145.3,153.1,161.1,169.3,177.7,186.3,195.1,204.2,213.6,223.2,233.2,243.5,254.2,265.1,276.4,288.1,300.0,312.3,324.7,337.3,350.1,363.0,376.1,389.3,402.6,416.0]) BaseLogPartFctRef[101]['NbLabels']=2 BaseLogPartFctRef[101]['NbCliques']=281 BaseLogPartFctRef[101]['NbSites']=167 BaseLogPartFctRef[101]['StdNgbhDivMoyNgbh']=0.3747 BaseLogPartFctRef[102]={} BaseLogPartFctRef[102]['LogPF']=np.array([160.1,170.5,181.1,192.0,203.1,214.5,226.2,238.1,250.4,262.9,275.8,289.1,302.7,316.8,331.4,346.7,362.4,378.6,395.5,412.9,430.7,448.9,467.4,486.2,505.1,524.3,543.7,563.1,582.6,602.3]) BaseLogPartFctRef[102]['NbLabels']=2 BaseLogPartFctRef[102]['NbCliques']=409 BaseLogPartFctRef[102]['NbSites']=231 BaseLogPartFctRef[102]['StdNgbhDivMoyNgbh']=0.3669 BaseLogPartFctRef[103]={} BaseLogPartFctRef[103]['LogPF']=np.array([105.4,112.0,118.9,125.9,133.1,140.5,148.0,155.7,163.6,171.7,180.0,188.6,197.4,206.5,215.9,225.7,235.8,246.2,257.0,268.0,279.3,290.9,302.7,314.7,326.8,339.1,351.5,363.9,376.5,389.1]) BaseLogPartFctRef[103]['NbLabels']=2 BaseLogPartFctRef[103]['NbCliques']=264 BaseLogPartFctRef[103]['NbSites']=152 BaseLogPartFctRef[103]['StdNgbhDivMoyNgbh']=0.3455 BaseLogPartFctRef[104]={} BaseLogPartFctRef[104]['LogPF']=np.array([90.80,96.28,101.9,107.6,113.5,119.5,125.7,132.0,138.5,145.1,151.9,158.9,166.1,173.4,181.0,188.8,196.9,205.2,213.8,222.7,231.8,241.1,250.6,260.3,270.1,280.1,290.1,300.2,310.4,320.6]) BaseLogPartFctRef[104]['NbLabels']=2 BaseLogPartFctRef[104]['NbCliques']=216 BaseLogPartFctRef[104]['NbSites']=131 BaseLogPartFctRef[104]['StdNgbhDivMoyNgbh']=0.3877 BaseLogPartFctRef[105]={} BaseLogPartFctRef[105]['LogPF']=np.array([84.56,89.31,94.17,99.15,104.2,109.4,114.7,120.2,125.8,131.5,137.3,143.4,149.5,155.8,162.3,168.9,175.7,182.7,189.8,197.1,204.7,212.4,220.2,228.2,236.4,244.6,253.1,261.6,270.2,278.9]) BaseLogPartFctRef[105]['NbLabels']=2 BaseLogPartFctRef[105]['NbCliques']=187 BaseLogPartFctRef[105]['NbSites']=122 BaseLogPartFctRef[105]['StdNgbhDivMoyNgbh']=0.3629 BaseLogPartFctRef[106]={} BaseLogPartFctRef[106]['LogPF']=np.array([53.37,56.03,58.75,61.54,64.39,67.32,70.31,73.36,76.49,79.70,82.98,86.34,89.76,93.27,96.83,100.5,104.2,108.0,112.0,116.0,120.1,124.2,128.5,132.8,137.1,141.6,146.1,150.7,155.3,160.0]) BaseLogPartFctRef[106]['NbLabels']=2 BaseLogPartFctRef[106]['NbCliques']=105 BaseLogPartFctRef[106]['NbSites']=77 BaseLogPartFctRef[106]['StdNgbhDivMoyNgbh']=0.3897 BaseLogPartFctRef[107]={} BaseLogPartFctRef[107]['LogPF']=np.array([83.18,88.08,93.10,98.22,103.5,108.9,114.4,120.0,125.7,131.7,137.7,143.9,150.3,156.9,163.6,170.6,177.7,185.0,192.6,200.4,208.3,216.5,224.8,233.3,241.9,250.6,259.5,268.4,277.4,286.4]) BaseLogPartFctRef[107]['NbLabels']=2 BaseLogPartFctRef[107]['NbCliques']=193 BaseLogPartFctRef[107]['NbSites']=120 BaseLogPartFctRef[107]['StdNgbhDivMoyNgbh']=0.3673 BaseLogPartFctRef[108]={} BaseLogPartFctRef[108]['LogPF']=np.array([135.9,144.3,153.0,161.8,170.9,180.2,189.7,199.5,209.5,219.8,230.3,241.1,252.3,263.7,275.5,287.7,300.3,313.3,326.7,340.6,354.7,369.1,383.9,398.9,414.1,429.5,445.1,460.8,476.6,492.6]) BaseLogPartFctRef[108]['NbLabels']=2 BaseLogPartFctRef[108]['NbCliques']=334 BaseLogPartFctRef[108]['NbSites']=196 BaseLogPartFctRef[108]['StdNgbhDivMoyNgbh']=0.3608 BaseLogPartFctRef[109]={} BaseLogPartFctRef[109]['LogPF']=np.array([123.4,131.5,139.9,148.5,157.3,166.3,175.5,185.0,194.7,204.6,214.8,225.4,236.3,247.5,259.1,271.2,283.7,296.8,310.4,324.2,338.5,353.0,367.7,382.6,397.7,412.9,428.3,443.7,459.2,474.8]) BaseLogPartFctRef[109]['NbLabels']=2 BaseLogPartFctRef[109]['NbCliques']=323 BaseLogPartFctRef[109]['NbSites']=178 BaseLogPartFctRef[109]['StdNgbhDivMoyNgbh']=0.3482 BaseLogPartFctRef[110]={} BaseLogPartFctRef[110]['LogPF']=np.array([64.46,67.91,71.46,75.12,78.83,82.65,86.53,90.54,94.63,98.82,103.1,107.5,112.0,116.7,121.4,126.3,131.4,136.5,141.8,147.3,152.8,158.5,164.3,170.1,176.1,182.1,188.2,194.4,200.7,206.9]) BaseLogPartFctRef[110]['NbLabels']=2 BaseLogPartFctRef[110]['NbCliques']=137 BaseLogPartFctRef[110]['NbSites']=93 BaseLogPartFctRef[110]['StdNgbhDivMoyNgbh']=0.4218 BaseLogPartFctRef[111]={} BaseLogPartFctRef[111]['LogPF']=np.array([161.5,172.4,183.5,194.9,206.5,218.5,230.7,243.2,256.1,269.3,282.8,296.8,311.2,326.1,341.5,357.5,374.1,391.4,409.3,427.6,446.5,465.8,485.4,505.2,525.3,545.6,566.0,586.6,607.2,628.0]) BaseLogPartFctRef[111]['NbLabels']=2 BaseLogPartFctRef[111]['NbCliques']=428 BaseLogPartFctRef[111]['NbSites']=233 BaseLogPartFctRef[111]['StdNgbhDivMoyNgbh']=0.3430 BaseLogPartFctRef[112]={} BaseLogPartFctRef[112]['LogPF']=np.array([63.77,67.94,72.22,76.58,81.09,85.70,90.42,95.26,100.2,105.3,110.5,115.9,121.5,127.2,133.2,139.4,146.0,152.7,159.7,166.8,174.1,181.5,189.0,196.7,204.4,212.2,220.0,227.9,235.8,243.7]) BaseLogPartFctRef[112]['NbLabels']=2 BaseLogPartFctRef[112]['NbCliques']=165 BaseLogPartFctRef[112]['NbSites']=92 BaseLogPartFctRef[112]['StdNgbhDivMoyNgbh']=0.3796 BaseLogPartFctRef[113]={} BaseLogPartFctRef[113]['LogPF']=np.array([261.3,279.8,298.7,318.1,338.0,358.4,379.2,400.7,422.6,445.2,468.3,492.4,517.3,543.1,570.2,598.5,628.2,658.9,690.5,723.0,756.1,789.7,823.8,858.1,892.8,927.8,962.9,998.1,1034.,1069.]) BaseLogPartFctRef[113]['NbLabels']=2 BaseLogPartFctRef[113]['NbCliques']=730 BaseLogPartFctRef[113]['NbSites']=377 BaseLogPartFctRef[113]['StdNgbhDivMoyNgbh']=0.3418 BaseLogPartFctRef[114]={} BaseLogPartFctRef[114]['LogPF']=np.array([94.96,100.3,105.8,111.4,117.2,123.1,129.1,135.3,141.7,148.1,154.8,161.6,168.6,175.7,183.1,190.6,198.4,206.4,214.6,223.0,231.7,240.5,249.6,258.8,268.1,277.5,287.1,296.8,306.6,316.4]) BaseLogPartFctRef[114]['NbLabels']=2 BaseLogPartFctRef[114]['NbCliques']=212 BaseLogPartFctRef[114]['NbSites']=137 BaseLogPartFctRef[114]['StdNgbhDivMoyNgbh']=0.3695 BaseLogPartFctRef[115]={} BaseLogPartFctRef[115]['LogPF']=np.array([77.63,82.91,88.35,93.92,99.60,105.4,111.4,117.5,123.8,130.2,136.8,143.7,150.8,158.1,165.8,173.7,182.1,190.6,199.5,208.6,217.9,227.4,237.0,246.7,256.5,266.4,276.4,286.4,296.5,306.6]) BaseLogPartFctRef[115]['NbLabels']=2 BaseLogPartFctRef[115]['NbCliques']=209 BaseLogPartFctRef[115]['NbSites']=112 BaseLogPartFctRef[115]['StdNgbhDivMoyNgbh']=0.3290 BaseLogPartFctRef[116]={} BaseLogPartFctRef[116]['LogPF']=np.array([110.9,117.5,124.3,131.2,138.2,145.5,152.9,160.5,168.3,176.3,184.5,192.9,201.5,210.3,219.4,228.7,238.4,248.3,258.5,268.9,279.7,290.7,302.0,313.5,325.2,337.0,349.0,361.1,373.3,385.6]) BaseLogPartFctRef[116]['NbLabels']=2 BaseLogPartFctRef[116]['NbCliques']=260 BaseLogPartFctRef[116]['NbSites']=160 BaseLogPartFctRef[116]['StdNgbhDivMoyNgbh']=0.3698 BaseLogPartFctRef[117]={} BaseLogPartFctRef[117]['LogPF']=np.array([59.61,63.17,66.80,70.53,74.33,78.24,82.22,86.32,90.50,94.80,99.20,103.7,108.4,113.2,118.1,123.2,128.4,133.9,139.4,145.2,151.0,157.0,163.1,169.3,175.6,181.9,188.4,194.9,201.4,208.0]) BaseLogPartFctRef[117]['NbLabels']=2 BaseLogPartFctRef[117]['NbCliques']=140 BaseLogPartFctRef[117]['NbSites']=86 BaseLogPartFctRef[117]['StdNgbhDivMoyNgbh']=0.3851 BaseLogPartFctRef[118]={} BaseLogPartFctRef[118]['LogPF']=np.array([141.4,150.6,160.1,169.8,179.7,189.8,200.2,210.9,221.8,233.0,244.5,256.4,268.6,281.2,294.3,307.9,322.1,336.7,351.9,367.5,383.4,399.7,416.2,432.9,449.8,466.8,484.0,501.4,518.8,536.3]) BaseLogPartFctRef[118]['NbLabels']=2 BaseLogPartFctRef[118]['NbCliques']=364 BaseLogPartFctRef[118]['NbSites']=204 BaseLogPartFctRef[118]['StdNgbhDivMoyNgbh']=0.3663 BaseLogPartFctRef[119]={} BaseLogPartFctRef[119]['LogPF']=np.array([108.1,115.3,122.7,130.3,138.1,146.0,154.1,162.5,171.0,179.8,188.8,198.1,207.7,217.7,228.1,239.0,250.2,261.8,273.8,286.1,298.7,311.5,324.5,337.7,351.0,364.5,378.0,391.6,405.4,419.1]) BaseLogPartFctRef[119]['NbLabels']=2 BaseLogPartFctRef[119]['NbCliques']=285 BaseLogPartFctRef[119]['NbSites']=156 BaseLogPartFctRef[119]['StdNgbhDivMoyNgbh']=0.3677 #non-regular grids: Graphes10_06.pickle BaseLogPartFctRef[120]={} BaseLogPartFctRef[120]['LogPF']=np.array([638.4,698.4,760.0,822.9,887.6,953.8,1022.,1092.,1164.,1239.,1319.,1406.,1501.,1602.,1708.,1817.,1928.,2041.,2155.,2270.,2386.,2503.,2620.,2737.,2854.,2972.,3090.,3208.,3326.,3444.]) BaseLogPartFctRef[120]['NbLabels']=2 BaseLogPartFctRef[120]['NbCliques']=2370 BaseLogPartFctRef[120]['NbSites']=921 BaseLogPartFctRef[120]['StdNgbhDivMoyNgbh']=0.1781 BaseLogPartFctRef[121]={} BaseLogPartFctRef[121]['LogPF']=np.array([642.5,702.6,764.1,827.2,891.9,958.2,1026.,1096.,1168.,1243.,1323.,1409.,1503.,1604.,1710.,1818.,1929.,2042.,2156.,2272.,2388.,2504.,2621.,2739.,2856.,2974.,3092.,3210.,3328.,3446.]) BaseLogPartFctRef[121]['NbLabels']=2 BaseLogPartFctRef[121]['NbCliques']=2373 BaseLogPartFctRef[121]['NbSites']=927 BaseLogPartFctRef[121]['StdNgbhDivMoyNgbh']=0.1773 BaseLogPartFctRef[122]={} BaseLogPartFctRef[122]['LogPF']=np.array([641.9,701.9,763.5,826.5,891.2,957.5,1026.,1096.,1168.,1243.,1322.,1409.,1504.,1605.,1710.,1819.,1930.,2043.,2157.,2272.,2388.,2505.,2622.,2739.,2857.,2975.,3093.,3211.,3329.,3448.]) BaseLogPartFctRef[122]['NbLabels']=2 BaseLogPartFctRef[122]['NbCliques']=2374 BaseLogPartFctRef[122]['NbSites']=926 BaseLogPartFctRef[122]['StdNgbhDivMoyNgbh']=0.1803 BaseLogPartFctRef[123]={} BaseLogPartFctRef[123]['LogPF']=np.array([640.5,700.8,762.5,825.8,890.7,957.1,1025.,1096.,1168.,1244.,1324.,1411.,1507.,1609.,1715.,1824.,1936.,2050.,2165.,2280.,2397.,2514.,2631.,2749.,2867.,2985.,3104.,3222.,3341.,3459.]) BaseLogPartFctRef[123]['NbLabels']=2 BaseLogPartFctRef[123]['NbCliques']=2381 BaseLogPartFctRef[123]['NbSites']=924 BaseLogPartFctRef[123]['StdNgbhDivMoyNgbh']=0.1770 BaseLogPartFctRef[124]={} BaseLogPartFctRef[124]['LogPF']=np.array([652.3,714.1,777.4,842.4,909.0,977.2,1047.,1119.,1194.,1271.,1353.,1442.,1541.,1646.,1755.,1868.,1983.,2100.,2218.,2336.,2456.,2576.,2697.,2818.,2939.,3060.,3182.,3303.,3425.,3547.]) BaseLogPartFctRef[124]['NbLabels']=2 BaseLogPartFctRef[124]['NbCliques']=2442 BaseLogPartFctRef[124]['NbSites']=941 BaseLogPartFctRef[124]['StdNgbhDivMoyNgbh']=0.1680 BaseLogPartFctRef[125]={} BaseLogPartFctRef[125]['LogPF']=np.array([641.9,702.3,764.1,827.5,892.4,959.0,1027.,1098.,1170.,1246.,1326.,1413.,1509.,1611.,1717.,1826.,1938.,2051.,2166.,2282.,2399.,2516.,2633.,2751.,2869.,2987.,3106.,3224.,3343.,3462.]) BaseLogPartFctRef[125]['NbLabels']=2 BaseLogPartFctRef[125]['NbCliques']=2383 BaseLogPartFctRef[125]['NbSites']=926 BaseLogPartFctRef[125]['StdNgbhDivMoyNgbh']=0.1770 BaseLogPartFctRef[126]={} BaseLogPartFctRef[126]['LogPF']=np.array([637.0,696.6,757.7,820.3,884.4,950.1,1018.,1087.,1159.,1233.,1312.,1397.,1491.,1592.,1696.,1805.,1915.,2027.,2140.,2255.,2370.,2485.,2602.,2718.,2835.,2951.,3068.,3185.,3303.,3420.]) BaseLogPartFctRef[126]['NbLabels']=2 BaseLogPartFctRef[126]['NbCliques']=2354 BaseLogPartFctRef[126]['NbSites']=919 BaseLogPartFctRef[126]['StdNgbhDivMoyNgbh']=0.1802 BaseLogPartFctRef[127]={} BaseLogPartFctRef[127]['LogPF']=np.array([650.9,712.3,775.1,839.6,905.6,973.4,1043.,1114.,1188.,1265.,1346.,1435.,1533.,1637.,1745.,1857.,1971.,2086.,2203.,2321.,2439.,2558.,2678.,2798.,2918.,3039.,3159.,3280.,3401.,3521.]) BaseLogPartFctRef[127]['NbLabels']=2 BaseLogPartFctRef[127]['NbCliques']=2424 BaseLogPartFctRef[127]['NbSites']=939 BaseLogPartFctRef[127]['StdNgbhDivMoyNgbh']=0.1725 BaseLogPartFctRef[128]={} BaseLogPartFctRef[128]['LogPF']=np.array([643.2,703.9,765.9,829.6,894.9,961.7,1030.,1101.,1174.,1250.,1331.,1419.,1515.,1618.,1725.,1835.,1947.,2062.,2177.,2294.,2411.,2528.,2647.,2765.,2884.,3003.,3122.,3241.,3360.,3480.]) BaseLogPartFctRef[128]['NbLabels']=2 BaseLogPartFctRef[128]['NbCliques']=2395 BaseLogPartFctRef[128]['NbSites']=928 BaseLogPartFctRef[128]['StdNgbhDivMoyNgbh']=0.1779 BaseLogPartFctRef[129]={} BaseLogPartFctRef[129]['LogPF']=np.array([628.0,686.2,745.7,806.6,869.2,933.3,999.1,1067.,1137.,1209.,1286.,1368.,1459.,1556.,1658.,1762.,1869.,1978.,2088.,2199.,2311.,2424.,2537.,2651.,2764.,2878.,2992.,3107.,3221.,3335.]) BaseLogPartFctRef[129]['NbLabels']=2 BaseLogPartFctRef[129]['NbCliques']=2296 BaseLogPartFctRef[129]['NbSites']=906 BaseLogPartFctRef[129]['StdNgbhDivMoyNgbh']=0.1849 BaseLogPartFctRef[130]={} BaseLogPartFctRef[130]['LogPF']=np.array([648.1,708.9,771.4,835.3,900.9,968.1,1037.,1108.,1181.,1257.,1338.,1425.,1522.,1624.,1732.,1842.,1955.,2070.,2186.,2303.,2421.,2539.,2658.,2776.,2896.,3015.,3135.,3254.,3374.,3494.]) BaseLogPartFctRef[130]['NbLabels']=2 BaseLogPartFctRef[130]['NbCliques']=2405 BaseLogPartFctRef[130]['NbSites']=935 BaseLogPartFctRef[130]['StdNgbhDivMoyNgbh']=0.1743 BaseLogPartFctRef[131]={} BaseLogPartFctRef[131]['LogPF']=np.array([643.9,704.5,766.6,830.3,895.5,962.2,1031.,1101.,1174.,1250.,1330.,1419.,1514.,1616.,1723.,1833.,1945.,2059.,2175.,2291.,2408.,2525.,2643.,2762.,2880.,2999.,3118.,3237.,3356.,3476.]) BaseLogPartFctRef[131]['NbLabels']=2 BaseLogPartFctRef[131]['NbCliques']=2392 BaseLogPartFctRef[131]['NbSites']=929 BaseLogPartFctRef[131]['StdNgbhDivMoyNgbh']=0.1722 BaseLogPartFctRef[132]={} BaseLogPartFctRef[132]['LogPF']=np.array([630.8,689.2,749.0,810.3,873.0,937.5,1004.,1072.,1142.,1215.,1291.,1375.,1466.,1563.,1665.,1770.,1878.,1987.,2098.,2210.,2322.,2435.,2549.,2663.,2777.,2891.,3006.,3120.,3235.,3350.]) BaseLogPartFctRef[132]['NbLabels']=2 BaseLogPartFctRef[132]['NbCliques']=2306 BaseLogPartFctRef[132]['NbSites']=910 BaseLogPartFctRef[132]['StdNgbhDivMoyNgbh']=0.1862 BaseLogPartFctRef[133]={} BaseLogPartFctRef[133]['LogPF']=np.array([651.6,713.5,776.9,842.0,908.6,977.0,1047.,1119.,1194.,1271.,1354.,1444.,1543.,1649.,1758.,1871.,1987.,2104.,2222.,2341.,2461.,2581.,2702.,2823.,2944.,3066.,3187.,3309.,3431.,3553.]) BaseLogPartFctRef[133]['NbLabels']=2 BaseLogPartFctRef[133]['NbCliques']=2446 BaseLogPartFctRef[133]['NbSites']=940 BaseLogPartFctRef[133]['StdNgbhDivMoyNgbh']=0.1669 BaseLogPartFctRef[134]={} BaseLogPartFctRef[134]['LogPF']=np.array([650.2,711.4,774.3,838.7,904.6,972.4,1042.,1113.,1187.,1264.,1345.,1434.,1532.,1635.,1743.,1855.,1969.,2084.,2201.,2319.,2437.,2557.,2676.,2796.,2916.,3036.,3157.,3278.,3398.,3519.]) BaseLogPartFctRef[134]['NbLabels']=2 BaseLogPartFctRef[134]['NbCliques']=2422 BaseLogPartFctRef[134]['NbSites']=938 BaseLogPartFctRef[134]['StdNgbhDivMoyNgbh']=0.1660 BaseLogPartFctRef[135]={} BaseLogPartFctRef[135]['LogPF']=np.array([639.1,699.6,761.7,825.3,890.5,957.4,1026.,1096.,1169.,1245.,1326.,1414.,1511.,1614.,1721.,1831.,1943.,2057.,2173.,2289.,2406.,2524.,2642.,2760.,2879.,2998.,3117.,3236.,3355.,3474.]) BaseLogPartFctRef[135]['NbLabels']=2 BaseLogPartFctRef[135]['NbCliques']=2392 BaseLogPartFctRef[135]['NbSites']=922 BaseLogPartFctRef[135]['StdNgbhDivMoyNgbh']=0.1761 BaseLogPartFctRef[136]={} BaseLogPartFctRef[136]['LogPF']=np.array([635.6,694.9,755.6,817.8,881.6,946.9,1014.,1083.,1154.,1228.,1307.,1391.,1484.,1583.,1687.,1795.,1904.,2015.,2128.,2242.,2356.,2471.,2586.,2702.,2817.,2934.,3050.,3166.,3283.,3399.]) BaseLogPartFctRef[136]['NbLabels']=2 BaseLogPartFctRef[136]['NbCliques']=2340 BaseLogPartFctRef[136]['NbSites']=917 BaseLogPartFctRef[136]['StdNgbhDivMoyNgbh']=0.1841 BaseLogPartFctRef[137]={} BaseLogPartFctRef[137]['LogPF']=np.array([647.4,708.3,770.8,834.9,900.3,967.6,1037.,1108.,1181.,1257.,1338.,1427.,1523.,1627.,1734.,1845.,1958.,2073.,2189.,2306.,2423.,2542.,2660.,2779.,2899.,3018.,3138.,3257.,3377.,3497.]) BaseLogPartFctRef[137]['NbLabels']=2 BaseLogPartFctRef[137]['NbCliques']=2406 BaseLogPartFctRef[137]['NbSites']=934 BaseLogPartFctRef[137]['StdNgbhDivMoyNgbh']=0.1698 BaseLogPartFctRef[138]={} BaseLogPartFctRef[138]['LogPF']=np.array([638.4,698.2,759.3,821.9,886.1,952.0,1020.,1089.,1161.,1235.,1314.,1400.,1494.,1594.,1698.,1806.,1917.,2029.,2143.,2257.,2373.,2489.,2605.,2722.,2838.,2956.,3073.,3190.,3308.,3425.]) BaseLogPartFctRef[138]['NbLabels']=2 BaseLogPartFctRef[138]['NbCliques']=2359 BaseLogPartFctRef[138]['NbSites']=921 BaseLogPartFctRef[138]['StdNgbhDivMoyNgbh']=0.1759 BaseLogPartFctRef[139]={} BaseLogPartFctRef[139]['LogPF']=np.array([652.9,714.5,777.7,842.4,908.7,976.8,1047.,1119.,1193.,1270.,1352.,1442.,1540.,1644.,1753.,1865.,1979.,2096.,2213.,2332.,2451.,2571.,2691.,2812.,2932.,3053.,3174.,3296.,3417.,3539.]) BaseLogPartFctRef[139]['NbLabels']=2 BaseLogPartFctRef[139]['NbCliques']=2436 BaseLogPartFctRef[139]['NbSites']=942 BaseLogPartFctRef[139]['StdNgbhDivMoyNgbh']=0.1721 BaseLogPartFctRef[140]={} BaseLogPartFctRef[140]['LogPF']=np.array([636.3,695.6,756.4,818.7,882.6,948.0,1015.,1084.,1156.,1230.,1308.,1393.,1486.,1586.,1690.,1797.,1907.,2018.,2131.,2245.,2359.,2474.,2590.,2705.,2821.,2938.,3054.,3171.,3287.,3404.]) BaseLogPartFctRef[140]['NbLabels']=2 BaseLogPartFctRef[140]['NbCliques']=2343 BaseLogPartFctRef[140]['NbSites']=918 BaseLogPartFctRef[140]['StdNgbhDivMoyNgbh']=0.1785 BaseLogPartFctRef[141]={} BaseLogPartFctRef[141]['LogPF']=np.array([628.0,686.7,746.7,808.2,871.4,936.2,1003.,1071.,1141.,1215.,1292.,1377.,1470.,1568.,1671.,1777.,1885.,1995.,2107.,2219.,2332.,2446.,2560.,2675.,2789.,2904.,3019.,3135.,3250.,3365.]) BaseLogPartFctRef[141]['NbLabels']=2 BaseLogPartFctRef[141]['NbCliques']=2316 BaseLogPartFctRef[141]['NbSites']=906 BaseLogPartFctRef[141]['StdNgbhDivMoyNgbh']=0.1839 BaseLogPartFctRef[142]={} BaseLogPartFctRef[142]['LogPF']=np.array([643.2,703.3,765.0,828.1,892.7,959.1,1027.,1097.,1170.,1245.,1324.,1411.,1506.,1607.,1712.,1821.,1932.,2045.,2160.,2275.,2391.,2508.,2625.,2742.,2860.,2978.,3096.,3214.,3332.,3450.]) BaseLogPartFctRef[142]['NbLabels']=2 BaseLogPartFctRef[142]['NbCliques']=2374 BaseLogPartFctRef[142]['NbSites']=928 BaseLogPartFctRef[142]['StdNgbhDivMoyNgbh']=0.1787 BaseLogPartFctRef[143]={} BaseLogPartFctRef[143]['LogPF']=np.array([638.4,697.8,758.6,821.0,884.9,950.6,1018.,1087.,1159.,1233.,1311.,1396.,1489.,1588.,1693.,1800.,1910.,2022.,2135.,2249.,2363.,2479.,2594.,2710.,2827.,2943.,3060.,3177.,3294.,3411.]) BaseLogPartFctRef[143]['NbLabels']=2 BaseLogPartFctRef[143]['NbCliques']=2348 BaseLogPartFctRef[143]['NbSites']=921 BaseLogPartFctRef[143]['StdNgbhDivMoyNgbh']=0.1739 BaseLogPartFctRef[144]={} BaseLogPartFctRef[144]['LogPF']=np.array([622.4,680.0,739.0,799.6,861.6,925.1,990.3,1057.,1126.,1198.,1274.,1356.,1446.,1542.,1642.,1746.,1852.,1960.,2069.,2179.,2290.,2401.,2513.,2626.,2738.,2851.,2964.,3077.,3190.,3303.]) BaseLogPartFctRef[144]['NbLabels']=2 BaseLogPartFctRef[144]['NbCliques']=2274 BaseLogPartFctRef[144]['NbSites']=898 BaseLogPartFctRef[144]['StdNgbhDivMoyNgbh']=0.1871 BaseLogPartFctRef[145]={} BaseLogPartFctRef[145]['LogPF']=np.array([642.5,702.9,764.9,828.3,893.3,959.9,1028.,1099.,1171.,1247.,1327.,1414.,1509.,1611.,1717.,1827.,1939.,2053.,2168.,2284.,2401.,2518.,2636.,2754.,2873.,2991.,3110.,3229.,3348.,3467.]) BaseLogPartFctRef[145]['NbLabels']=2 BaseLogPartFctRef[145]['NbCliques']=2387 BaseLogPartFctRef[145]['NbSites']=927 BaseLogPartFctRef[145]['StdNgbhDivMoyNgbh']=0.1717 BaseLogPartFctRef[146]={} BaseLogPartFctRef[146]['LogPF']=np.array([619.0,675.5,733.5,792.9,853.7,916.0,980.1,1046.,1114.,1184.,1257.,1336.,1423.,1516.,1615.,1716.,1820.,1926.,2033.,2141.,2250.,2359.,2469.,2579.,2689.,2800.,2911.,3022.,3133.,3244.]) BaseLogPartFctRef[146]['NbLabels']=2 BaseLogPartFctRef[146]['NbCliques']=2233 BaseLogPartFctRef[146]['NbSites']=893 BaseLogPartFctRef[146]['StdNgbhDivMoyNgbh']=0.1868 BaseLogPartFctRef[147]={} BaseLogPartFctRef[147]['LogPF']=np.array([642.5,702.4,763.8,826.8,891.4,957.7,1026.,1095.,1167.,1242.,1321.,1407.,1502.,1602.,1707.,1816.,1927.,2039.,2153.,2269.,2384.,2501.,2617.,2734.,2852.,2969.,3087.,3205.,3323.,3441.]) BaseLogPartFctRef[147]['NbLabels']=2 BaseLogPartFctRef[147]['NbCliques']=2369 BaseLogPartFctRef[147]['NbSites']=927 BaseLogPartFctRef[147]['StdNgbhDivMoyNgbh']=0.1785 BaseLogPartFctRef[148]={} BaseLogPartFctRef[148]['LogPF']=np.array([637.0,696.7,757.7,820.3,884.5,950.3,1018.,1087.,1159.,1233.,1312.,1398.,1492.,1592.,1697.,1805.,1915.,2027.,2141.,2255.,2370.,2486.,2602.,2718.,2835.,2952.,3069.,3186.,3303.,3421.]) BaseLogPartFctRef[148]['NbLabels']=2 BaseLogPartFctRef[148]['NbCliques']=2355 BaseLogPartFctRef[148]['NbSites']=919 BaseLogPartFctRef[148]['StdNgbhDivMoyNgbh']=0.1801 BaseLogPartFctRef[149]={} BaseLogPartFctRef[149]['LogPF']=np.array([643.9,704.3,766.1,829.5,894.4,961.0,1029.,1099.,1172.,1247.,1327.,1414.,1509.,1610.,1716.,1825.,1936.,2050.,2164.,2280.,2397.,2514.,2631.,2749.,2867.,2985.,3104.,3222.,3341.,3460.]) BaseLogPartFctRef[149]['NbLabels']=2 BaseLogPartFctRef[149]['NbCliques']=2382 BaseLogPartFctRef[149]['NbSites']=929 BaseLogPartFctRef[149]['StdNgbhDivMoyNgbh']=0.1741 #non-regular grids: Graphes15_02.pickle BaseLogPartFctRef[150]={} BaseLogPartFctRef[150]['LogPF']=np.array([25.65,26.93,28.25,29.60,30.99,32.41,33.86,35.35,36.87,38.44,40.04,41.67,43.34,45.05,46.79,48.59,50.45,52.32,54.24,56.22,58.24,60.28,62.37,64.50,66.68,68.87,71.09,73.35,75.62,77.93]) BaseLogPartFctRef[150]['NbLabels']=2 BaseLogPartFctRef[150]['NbCliques']=51 BaseLogPartFctRef[150]['NbSites']=37 BaseLogPartFctRef[150]['StdNgbhDivMoyNgbh']=0.4217 BaseLogPartFctRef[151]={} BaseLogPartFctRef[151]['LogPF']=np.array([20.10,21.17,22.25,23.37,24.51,25.68,26.87,28.10,29.35,30.64,31.97,33.31,34.69,36.11,37.55,39.02,40.54,42.09,43.68,45.31,46.99,48.72,50.47,52.23,54.04,55.89,57.76,59.66,61.56,63.50]) BaseLogPartFctRef[151]['NbLabels']=2 BaseLogPartFctRef[151]['NbCliques']=42 BaseLogPartFctRef[151]['NbSites']=29 BaseLogPartFctRef[151]['StdNgbhDivMoyNgbh']=0.3948 BaseLogPartFctRef[152]={} BaseLogPartFctRef[152]['LogPF']=np.array([24.26,25.45,26.66,27.91,29.19,30.50,31.84,33.21,34.61,36.04,37.50,39.00,40.55,42.12,43.73,45.37,47.04,48.76,50.51,52.30,54.13,55.99,57.89,59.84,61.81,63.80,65.83,67.90,69.98,72.09]) BaseLogPartFctRef[152]['NbLabels']=2 BaseLogPartFctRef[152]['NbCliques']=47 BaseLogPartFctRef[152]['NbSites']=35 BaseLogPartFctRef[152]['StdNgbhDivMoyNgbh']=0.4034 BaseLogPartFctRef[153]={} BaseLogPartFctRef[153]['LogPF']=np.array([39.51,41.33,43.21,45.11,47.06,49.06,51.11,53.21,55.35,57.54,59.77,62.05,64.39,66.78,69.21,71.67,74.20,76.77,79.40,82.08,84.81,87.59,90.41,93.30,96.21,99.17,102.2,105.2,108.3,111.4]) BaseLogPartFctRef[153]['NbLabels']=2 BaseLogPartFctRef[153]['NbCliques']=72 BaseLogPartFctRef[153]['NbSites']=57 BaseLogPartFctRef[153]['StdNgbhDivMoyNgbh']=0.3793 BaseLogPartFctRef[154]={} BaseLogPartFctRef[154]['LogPF']=np.array([30.50,31.89,33.32,34.77,36.27,37.81,39.37,40.97,42.61,44.28,45.99,47.74,49.53,51.36,53.23,55.14,57.08,59.06,61.09,63.16,65.27,67.41,69.59,71.81,74.05,76.33,78.65,80.99,83.36,85.77]) BaseLogPartFctRef[154]['NbLabels']=2 BaseLogPartFctRef[154]['NbCliques']=55 BaseLogPartFctRef[154]['NbSites']=44 BaseLogPartFctRef[154]['StdNgbhDivMoyNgbh']=0.3953 BaseLogPartFctRef[155]={} BaseLogPartFctRef[155]['LogPF']=np.array([22.87,23.99,25.13,26.30,27.50,28.73,29.99,31.27,32.58,33.91,35.28,36.68,38.10,39.57,41.07,42.59,44.15,45.75,47.38,49.04,50.73,52.47,54.23,56.02,57.85,59.70,61.57,63.47,65.41,67.37]) BaseLogPartFctRef[155]['NbLabels']=2 BaseLogPartFctRef[155]['NbCliques']=44 BaseLogPartFctRef[155]['NbSites']=33 BaseLogPartFctRef[155]['StdNgbhDivMoyNgbh']=0.3655 BaseLogPartFctRef[156]={} BaseLogPartFctRef[156]['LogPF']=np.array([34.66,36.61,38.60,40.65,42.75,44.88,47.07,49.32,51.63,53.99,56.41,58.90,61.43,64.04,66.73,69.50,72.34,75.27,78.27,81.36,84.51,87.73,91.00,94.34,97.73,101.2,104.6,108.2,111.7,115.3]) BaseLogPartFctRef[156]['NbLabels']=2 BaseLogPartFctRef[156]['NbCliques']=77 BaseLogPartFctRef[156]['NbSites']=50 BaseLogPartFctRef[156]['StdNgbhDivMoyNgbh']=0.3297 BaseLogPartFctRef[157]={} BaseLogPartFctRef[157]['LogPF']=np.array([35.35,37.22,39.15,41.12,43.14,45.20,47.30,49.46,51.67,53.94,56.24,58.61,61.04,63.55,66.12,68.75,71.45,74.23,77.05,79.94,82.92,85.96,89.06,92.23,95.45,98.70,102.0,105.3,108.7,112.1]) BaseLogPartFctRef[157]['NbLabels']=2 BaseLogPartFctRef[157]['NbCliques']=74 BaseLogPartFctRef[157]['NbSites']=51 BaseLogPartFctRef[157]['StdNgbhDivMoyNgbh']=0.4138 BaseLogPartFctRef[158]={} BaseLogPartFctRef[158]['LogPF']=np.array([15.94,16.75,17.59,18.44,19.30,20.19,21.10,22.03,22.99,23.96,24.97,25.99,27.04,28.12,29.21,30.34,31.51,32.69,33.90,35.13,36.39,37.68,39.00,40.33,41.69,43.08,44.48,45.91,47.36,48.81]) BaseLogPartFctRef[158]['NbLabels']=2 BaseLogPartFctRef[158]['NbCliques']=32 BaseLogPartFctRef[158]['NbSites']=23 BaseLogPartFctRef[158]['StdNgbhDivMoyNgbh']=0.3505 BaseLogPartFctRef[159]={} BaseLogPartFctRef[159]['LogPF']=np.array([38.82,40.84,42.91,45.04,47.22,49.44,51.71,54.04,56.44,58.89,61.38,63.94,66.57,69.27,72.03,74.84,77.74,80.71,83.73,86.83,90.00,93.25,96.57,99.94,103.3,106.8,110.3,113.9,117.5,121.1]) BaseLogPartFctRef[159]['NbLabels']=2 BaseLogPartFctRef[159]['NbCliques']=80 BaseLogPartFctRef[159]['NbSites']=56 BaseLogPartFctRef[159]['StdNgbhDivMoyNgbh']=0.4079 BaseLogPartFctRef[160]={} BaseLogPartFctRef[160]['LogPF']=np.array([22.18,23.27,24.39,25.54,26.71,27.91,29.13,30.39,31.67,32.98,34.33,35.71,37.11,38.55,40.02,41.54,43.09,44.68,46.31,47.97,49.67,51.39,53.15,54.94,56.76,58.61,60.48,62.38,64.30,66.24]) BaseLogPartFctRef[160]['NbLabels']=2 BaseLogPartFctRef[160]['NbCliques']=43 BaseLogPartFctRef[160]['NbSites']=32 BaseLogPartFctRef[160]['StdNgbhDivMoyNgbh']=0.4074 BaseLogPartFctRef[161]={} BaseLogPartFctRef[161]['LogPF']=np.array([31.19,32.66,34.17,35.71,37.28,38.89,40.54,42.23,43.95,45.71,47.51,49.36,51.24,53.17,55.13,57.14,59.19,61.26,63.38,65.55,67.76,70.01,72.30,74.63,76.99,79.38,81.83,84.29,86.80,89.34]) BaseLogPartFctRef[161]['NbLabels']=2 BaseLogPartFctRef[161]['NbCliques']=58 BaseLogPartFctRef[161]['NbSites']=45 BaseLogPartFctRef[161]['StdNgbhDivMoyNgbh']=0.3792 BaseLogPartFctRef[162]={} BaseLogPartFctRef[162]['LogPF']=np.array([21.49,22.58,23.69,24.83,26.00,27.20,28.41,29.66,30.94,32.26,33.60,34.97,36.38,37.82,39.30,40.81,42.35,43.94,45.57,47.24,48.93,50.65,52.43,54.24,56.06,57.92,59.81,61.71,63.63,65.57]) BaseLogPartFctRef[162]['NbLabels']=2 BaseLogPartFctRef[162]['NbCliques']=43 BaseLogPartFctRef[162]['NbSites']=31 BaseLogPartFctRef[162]['StdNgbhDivMoyNgbh']=0.4579 BaseLogPartFctRef[163]={} BaseLogPartFctRef[163]['LogPF']=np.array([33.27,34.93,36.65,38.40,40.19,42.03,43.90,45.83,47.80,49.81,51.87,53.99,56.15,58.37,60.64,62.97,65.34,67.79,70.27,72.82,75.44,78.13,80.86,83.65,86.46,89.32,92.22,95.17,98.12,101.1]) BaseLogPartFctRef[163]['NbLabels']=2 BaseLogPartFctRef[163]['NbCliques']=66 BaseLogPartFctRef[163]['NbSites']=48 BaseLogPartFctRef[163]['StdNgbhDivMoyNgbh']=0.4269 BaseLogPartFctRef[164]={} BaseLogPartFctRef[164]['LogPF']=np.array([26.34,27.64,28.96,30.31,31.71,33.13,34.58,36.07,37.60,39.16,40.76,42.39,44.06,45.76,47.51,49.29,51.12,52.97,54.86,56.78,58.75,60.76,62.81,64.89,67.01,69.16,71.34,73.54,75.78,78.04]) BaseLogPartFctRef[164]['NbLabels']=2 BaseLogPartFctRef[164]['NbCliques']=51 BaseLogPartFctRef[164]['NbSites']=38 BaseLogPartFctRef[164]['StdNgbhDivMoyNgbh']=0.4086 BaseLogPartFctRef[165]={} BaseLogPartFctRef[165]['LogPF']=np.array([31.88,33.32,34.80,36.31,37.87,39.46,41.08,42.75,44.44,46.17,47.94,49.75,51.60,53.49,55.42,57.40,59.42,61.47,63.57,65.71,67.88,70.10,72.35,74.65,76.96,79.32,81.70,84.13,86.58,89.07]) BaseLogPartFctRef[165]['NbLabels']=2 BaseLogPartFctRef[165]['NbCliques']=57 BaseLogPartFctRef[165]['NbSites']=46 BaseLogPartFctRef[165]['StdNgbhDivMoyNgbh']=0.3925 BaseLogPartFctRef[166]={} BaseLogPartFctRef[166]['LogPF']=np.array([29.81,31.35,32.93,34.55,36.21,37.90,39.64,41.42,43.24,45.10,47.01,48.97,50.96,53.01,55.10,57.25,59.43,61.66,63.96,66.30,68.69,71.13,73.62,76.16,78.73,81.34,84.01,86.69,89.40,92.15]) BaseLogPartFctRef[166]['NbLabels']=2 BaseLogPartFctRef[166]['NbCliques']=61 BaseLogPartFctRef[166]['NbSites']=43 BaseLogPartFctRef[166]['StdNgbhDivMoyNgbh']=0.3632 BaseLogPartFctRef[167]={} BaseLogPartFctRef[167]['LogPF']=np.array([27.03,28.45,29.90,31.39,32.91,34.47,36.07,37.71,39.38,41.10,42.86,44.67,46.52,48.41,50.35,52.33,54.36,56.45,58.57,60.76,63.02,65.31,67.66,70.05,72.47,74.93,77.42,79.93,82.48,85.05]) BaseLogPartFctRef[167]['NbLabels']=2 BaseLogPartFctRef[167]['NbCliques']=56 BaseLogPartFctRef[167]['NbSites']=39 BaseLogPartFctRef[167]['StdNgbhDivMoyNgbh']=0.4150 BaseLogPartFctRef[168]={} BaseLogPartFctRef[168]['LogPF']=np.array([41.59,43.57,45.59,47.67,49.80,51.96,54.20,56.47,58.80,61.17,63.61,66.09,68.63,71.23,73.89,76.61,79.37,82.21,85.12,88.09,91.13,94.22,97.35,100.6,103.8,107.1,110.4,113.8,117.2,120.7]) BaseLogPartFctRef[168]['NbLabels']=2 BaseLogPartFctRef[168]['NbCliques']=78 BaseLogPartFctRef[168]['NbSites']=60 BaseLogPartFctRef[168]['StdNgbhDivMoyNgbh']=0.4212 BaseLogPartFctRef[169]={} BaseLogPartFctRef[169]['LogPF']=np.array([36.04,37.77,39.53,41.34,43.18,45.06,47.00,48.97,51.00,53.07,55.18,57.35,59.55,61.82,64.14,66.52,68.95,71.42,73.96,76.56,79.20,81.90,84.65,87.44,90.26,93.14,96.06,99.00,102.0,105.0]) BaseLogPartFctRef[169]['NbLabels']=2 BaseLogPartFctRef[169]['NbCliques']=68 BaseLogPartFctRef[169]['NbSites']=52 BaseLogPartFctRef[169]['StdNgbhDivMoyNgbh']=0.3902 BaseLogPartFctRef[170]={} BaseLogPartFctRef[170]['LogPF']=np.array([38.12,40.25,42.43,44.67,46.95,49.29,51.70,54.15,56.67,59.24,61.88,64.59,67.36,70.21,73.14,76.15,79.24,82.40,85.67,89.02,92.45,95.95,99.51,103.1,106.8,110.6,114.4,118.2,122.1,126.1]) BaseLogPartFctRef[170]['NbLabels']=2 BaseLogPartFctRef[170]['NbCliques']=84 BaseLogPartFctRef[170]['NbSites']=55 BaseLogPartFctRef[170]['StdNgbhDivMoyNgbh']=0.3897 BaseLogPartFctRef[171]={} BaseLogPartFctRef[171]['LogPF']=np.array([33.96,35.58,37.24,38.94,40.68,42.46,44.29,46.15,48.06,50.01,52.00,54.05,56.14,58.26,60.45,62.68,64.97,67.30,69.69,72.12,74.60,77.14,79.72,82.32,84.98,87.66,90.40,93.16,95.96,98.79]) BaseLogPartFctRef[171]['NbLabels']=2 BaseLogPartFctRef[171]['NbCliques']=64 BaseLogPartFctRef[171]['NbSites']=49 BaseLogPartFctRef[171]['StdNgbhDivMoyNgbh']=0.4340 BaseLogPartFctRef[172]={} BaseLogPartFctRef[172]['LogPF']=np.array([24.26,25.32,26.41,27.53,28.67,29.84,31.03,32.26,33.52,34.80,36.11,37.43,38.80,40.19,41.61,43.06,44.54,46.04,47.59,49.15,50.75,52.37,54.02,55.69,57.39,59.12,60.86,62.62,64.42,66.23]) BaseLogPartFctRef[172]['NbLabels']=2 BaseLogPartFctRef[172]['NbCliques']=42 BaseLogPartFctRef[172]['NbSites']=35 BaseLogPartFctRef[172]['StdNgbhDivMoyNgbh']=0.4128 BaseLogPartFctRef[173]={} BaseLogPartFctRef[173]['LogPF']=np.array([42.98,45.15,47.38,49.66,51.99,54.38,56.82,59.33,61.88,64.50,67.18,69.93,72.73,75.62,78.57,81.58,84.68,87.85,91.09,94.42,97.82,101.3,104.8,108.4,112.1,115.8,119.5,123.3,127.2,131.1]) BaseLogPartFctRef[173]['NbLabels']=2 BaseLogPartFctRef[173]['NbCliques']=86 BaseLogPartFctRef[173]['NbSites']=62 BaseLogPartFctRef[173]['StdNgbhDivMoyNgbh']=0.3737 BaseLogPartFctRef[174]={} BaseLogPartFctRef[174]['LogPF']=np.array([22.87,23.98,25.12,26.29,27.48,28.70,29.96,31.23,32.55,33.89,35.27,36.67,38.10,39.58,41.07,42.60,44.17,45.78,47.43,49.10,50.81,52.56,54.33,56.13,57.97,59.84,61.73,63.66,65.61,67.58]) BaseLogPartFctRef[174]['NbLabels']=2 BaseLogPartFctRef[174]['NbCliques']=44 BaseLogPartFctRef[174]['NbSites']=33 BaseLogPartFctRef[174]['StdNgbhDivMoyNgbh']=0.4262 BaseLogPartFctRef[175]={} BaseLogPartFctRef[175]['LogPF']=np.array([58.92,61.86,64.87,67.95,71.11,74.34,77.66,81.05,84.50,88.03,91.63,95.36,99.13,103.0,107.0,111.0,115.2,119.4,123.8,128.2,132.7,137.3,142.0,146.8,151.6,156.6,161.6,166.6,171.7,176.9]) BaseLogPartFctRef[175]['NbLabels']=2 BaseLogPartFctRef[175]['NbCliques']=116 BaseLogPartFctRef[175]['NbSites']=85 BaseLogPartFctRef[175]['StdNgbhDivMoyNgbh']=0.4058 BaseLogPartFctRef[176]={} BaseLogPartFctRef[176]['LogPF']=np.array([26.34,27.94,29.57,31.24,32.96,34.71,36.51,38.36,40.24,42.18,44.16,46.22,48.32,50.50,52.74,55.05,57.42,59.86,62.39,64.97,67.61,70.32,73.08,75.89,78.74,81.63,84.55,87.50,90.47,93.46]) BaseLogPartFctRef[176]['NbLabels']=2 BaseLogPartFctRef[176]['NbCliques']=63 BaseLogPartFctRef[176]['NbSites']=38 BaseLogPartFctRef[176]['StdNgbhDivMoyNgbh']=0.3238 BaseLogPartFctRef[177]={} BaseLogPartFctRef[177]['LogPF']=np.array([33.27,35.14,37.06,39.03,41.04,43.10,45.21,47.38,49.60,51.88,54.21,56.62,59.05,61.58,64.19,66.88,69.65,72.49,75.44,78.46,81.53,84.66,87.85,91.10,94.39,97.73,101.1,104.5,107.9,111.4]) BaseLogPartFctRef[177]['NbLabels']=2 BaseLogPartFctRef[177]['NbCliques']=74 BaseLogPartFctRef[177]['NbSites']=48 BaseLogPartFctRef[177]['StdNgbhDivMoyNgbh']=0.4340 BaseLogPartFctRef[178]={} BaseLogPartFctRef[178]['LogPF']=np.array([24.95,26.22,27.52,28.84,30.20,31.60,33.02,34.48,35.98,37.51,39.07,40.67,42.32,44.00,45.72,47.48,49.28,51.14,53.03,54.96,56.94,58.94,61.00,63.08,65.20,67.35,69.54,71.75,73.99,76.25]) BaseLogPartFctRef[178]['NbLabels']=2 BaseLogPartFctRef[178]['NbCliques']=50 BaseLogPartFctRef[178]['NbSites']=36 BaseLogPartFctRef[178]['StdNgbhDivMoyNgbh']=0.3966 BaseLogPartFctRef[179]={} BaseLogPartFctRef[179]['LogPF']=np.array([27.03,28.32,29.64,31.00,32.38,33.81,35.26,36.74,38.26,39.82,41.41,43.02,44.68,46.38,48.11,49.88,51.69,53.55,55.43,57.36,59.31,61.31,63.36,65.44,67.52,69.67,71.83,74.03,76.25,78.49]) BaseLogPartFctRef[179]['NbLabels']=2 BaseLogPartFctRef[179]['NbCliques']=51 BaseLogPartFctRef[179]['NbSites']=39 BaseLogPartFctRef[179]['StdNgbhDivMoyNgbh']=0.3922 #non-regular grids: Graphes15_03.pickle BaseLogPartFctRef[180]={} BaseLogPartFctRef[180]['LogPF']=np.array([701.5,748.9,797.5,847.2,898.2,950.3,1004.,1059.,1115.,1172.,1232.,1293.,1355.,1420.,1488.,1558.,1632.,1708.,1787.,1868.,1951.,2036.,2122.,2209.,2297.,2386.,2475.,2565.,2655.,2746.]) BaseLogPartFctRef[180]['NbLabels']=2 BaseLogPartFctRef[180]['NbCliques']=1872 BaseLogPartFctRef[180]['NbSites']=1012 BaseLogPartFctRef[180]['StdNgbhDivMoyNgbh']=0.3409 BaseLogPartFctRef[181]={} BaseLogPartFctRef[181]['LogPF']=np.array([385.4,410.2,435.7,461.8,488.4,515.8,543.8,572.5,601.9,632.1,663.0,694.9,727.6,761.4,796.2,832.3,869.8,908.5,948.6,989.9,1032.,1076.,1120.,1165.,1210.,1256.,1303.,1349.,1396.,1444.]) BaseLogPartFctRef[181]['NbLabels']=2 BaseLogPartFctRef[181]['NbCliques']=981 BaseLogPartFctRef[181]['NbSites']=556 BaseLogPartFctRef[181]['StdNgbhDivMoyNgbh']=0.3564 BaseLogPartFctRef[182]={} BaseLogPartFctRef[182]['LogPF']=np.array([524.7,560.5,597.2,634.8,673.2,712.6,752.9,794.3,836.7,880.2,925.0,971.0,1019.,1068.,1119.,1173.,1229.,1287.,1348.,1410.,1473.,1537.,1602.,1668.,1734.,1801.,1869.,1937.,2005.,2074.]) BaseLogPartFctRef[182]['NbLabels']=2 BaseLogPartFctRef[182]['NbCliques']=1414 BaseLogPartFctRef[182]['NbSites']=757 BaseLogPartFctRef[182]['StdNgbhDivMoyNgbh']=0.3404 BaseLogPartFctRef[183]={} BaseLogPartFctRef[183]['LogPF']=np.array([406.9,432.3,458.4,485.1,512.5,540.6,569.3,598.7,628.8,659.7,691.4,723.9,757.5,792.2,827.9,865.0,903.4,943.1,984.1,1026.,1069.,1113.,1158.,1204.,1250.,1297.,1344.,1391.,1439.,1487.]) BaseLogPartFctRef[183]['NbLabels']=2 BaseLogPartFctRef[183]['NbCliques']=1006 BaseLogPartFctRef[183]['NbSites']=587 BaseLogPartFctRef[183]['StdNgbhDivMoyNgbh']=0.3831 BaseLogPartFctRef[184]={} BaseLogPartFctRef[184]['LogPF']=np.array([262.0,279.4,297.2,315.5,334.1,353.2,372.7,392.8,413.4,434.5,456.1,478.4,501.4,525.3,550.1,575.8,602.4,630.1,658.6,688.0,718.1,748.7,779.9,811.5,843.5,875.7,908.2,940.9,973.8,1007.]) BaseLogPartFctRef[184]['NbLabels']=2 BaseLogPartFctRef[184]['NbCliques']=686 BaseLogPartFctRef[184]['NbSites']=378 BaseLogPartFctRef[184]['StdNgbhDivMoyNgbh']=0.3491 BaseLogPartFctRef[185]={} BaseLogPartFctRef[185]['LogPF']=np.array([492.1,524.5,557.6,591.5,626.2,661.7,698.2,735.5,773.7,813.0,853.2,894.6,937.3,981.3,1027.,1074.,1123.,1174.,1227.,1281.,1337.,1394.,1452.,1511.,1570.,1630.,1691.,1751.,1813.,1874.]) BaseLogPartFctRef[185]['NbLabels']=2 BaseLogPartFctRef[185]['NbCliques']=1276 BaseLogPartFctRef[185]['NbSites']=710 BaseLogPartFctRef[185]['StdNgbhDivMoyNgbh']=0.3444 BaseLogPartFctRef[186]={} BaseLogPartFctRef[186]['LogPF']=np.array([256.5,273.2,290.3,307.8,325.8,344.2,363.0,382.3,402.1,422.4,443.3,464.7,486.7,509.5,533.1,557.7,583.2,609.7,637.1,665.4,694.4,723.9,754.0,784.4,815.1,846.2,877.5,908.9,940.5,972.3]) BaseLogPartFctRef[186]['NbLabels']=2 BaseLogPartFctRef[186]['NbCliques']=660 BaseLogPartFctRef[186]['NbSites']=370 BaseLogPartFctRef[186]['StdNgbhDivMoyNgbh']=0.3615 BaseLogPartFctRef[187]={} BaseLogPartFctRef[187]['LogPF']=np.array([407.6,434.7,462.6,491.1,520.3,550.3,581.0,612.4,644.7,677.7,711.7,746.7,782.8,820.2,858.9,899.2,941.1,984.8,1030.,1076.,1123.,1172.,1221.,1270.,1321.,1371.,1422.,1473.,1525.,1577.]) BaseLogPartFctRef[187]['NbLabels']=2 BaseLogPartFctRef[187]['NbCliques']=1074 BaseLogPartFctRef[187]['NbSites']=588 BaseLogPartFctRef[187]['StdNgbhDivMoyNgbh']=0.3498 BaseLogPartFctRef[188]={} BaseLogPartFctRef[188]['LogPF']=np.array([283.5,299.9,316.7,334.0,351.7,369.7,388.3,407.2,426.6,446.5,466.9,487.9,509.3,531.4,554.0,577.3,601.3,625.9,651.3,677.4,704.1,731.3,759.1,787.4,816.1,845.2,874.7,904.5,934.6,965.0]) BaseLogPartFctRef[188]['NbLabels']=2 BaseLogPartFctRef[188]['NbCliques']=649 BaseLogPartFctRef[188]['NbSites']=409 BaseLogPartFctRef[188]['StdNgbhDivMoyNgbh']=0.3758 BaseLogPartFctRef[189]={} BaseLogPartFctRef[189]['LogPF']=np.array([263.4,281.2,299.4,318.1,337.2,356.8,376.8,397.4,418.5,440.2,462.4,485.3,509.1,533.7,559.2,585.8,613.6,642.5,672.3,702.9,734.2,766.0,798.3,831.0,864.0,897.3,930.8,964.5,998.4,1032.]) BaseLogPartFctRef[189]['NbLabels']=2 BaseLogPartFctRef[189]['NbCliques']=703 BaseLogPartFctRef[189]['NbSites']=380 BaseLogPartFctRef[189]['StdNgbhDivMoyNgbh']=0.3573 BaseLogPartFctRef[190]={} BaseLogPartFctRef[190]['LogPF']=np.array([467.9,499.4,531.7,564.7,598.6,633.3,668.8,705.2,742.6,780.9,820.3,860.8,902.7,946.0,991.0,1038.,1087.,1138.,1191.,1245.,1300.,1356.,1413.,1471.,1529.,1588.,1647.,1707.,1767.,1827.]) BaseLogPartFctRef[190]['NbLabels']=2 BaseLogPartFctRef[190]['NbCliques']=1244 BaseLogPartFctRef[190]['NbSites']=675 BaseLogPartFctRef[190]['StdNgbhDivMoyNgbh']=0.3489 BaseLogPartFctRef[191]={} BaseLogPartFctRef[191]['LogPF']=np.array([519.2,553.9,589.5,625.8,663.2,701.5,740.7,780.8,821.9,864.1,907.5,952.2,998.2,1046.,1095.,1147.,1201.,1257.,1315.,1374.,1435.,1497.,1559.,1623.,1687.,1752.,1817.,1883.,1949.,2015.]) BaseLogPartFctRef[191]['NbLabels']=2 BaseLogPartFctRef[191]['NbCliques']=1371 BaseLogPartFctRef[191]['NbSites']=749 BaseLogPartFctRef[191]['StdNgbhDivMoyNgbh']=0.3458 BaseLogPartFctRef[192]={} BaseLogPartFctRef[192]['LogPF']=np.array([434.6,462.4,490.8,520.0,549.9,580.4,611.7,643.8,676.6,710.4,745.0,780.6,817.3,855.1,894.2,934.8,976.9,1020.,1065.,1112.,1159.,1207.,1256.,1306.,1357.,1408.,1459.,1511.,1564.,1616.]) BaseLogPartFctRef[192]['NbLabels']=2 BaseLogPartFctRef[192]['NbCliques']=1097 BaseLogPartFctRef[192]['NbSites']=627 BaseLogPartFctRef[192]['StdNgbhDivMoyNgbh']=0.3576 BaseLogPartFctRef[193]={} BaseLogPartFctRef[193]['LogPF']=np.array([264.8,283.0,301.6,320.6,340.2,360.2,380.7,401.7,423.3,445.5,468.2,491.7,516.0,541.4,567.8,595.3,624.2,653.9,684.5,715.9,748.0,780.6,813.7,847.1,880.9,914.9,949.2,983.7,1018.,1053.]) BaseLogPartFctRef[193]['NbLabels']=2 BaseLogPartFctRef[193]['NbCliques']=717 BaseLogPartFctRef[193]['NbSites']=382 BaseLogPartFctRef[193]['StdNgbhDivMoyNgbh']=0.3624 BaseLogPartFctRef[194]={} BaseLogPartFctRef[194]['LogPF']=np.array([480.4,513.2,546.8,581.3,616.6,652.7,689.7,727.7,766.7,806.7,848.0,890.5,934.5,980.4,1028.,1078.,1131.,1185.,1241.,1298.,1356.,1415.,1475.,1536.,1597.,1659.,1720.,1783.,1845.,1908.]) BaseLogPartFctRef[194]['NbLabels']=2 BaseLogPartFctRef[194]['NbCliques']=1297 BaseLogPartFctRef[194]['NbSites']=693 BaseLogPartFctRef[194]['StdNgbhDivMoyNgbh']=0.3674 BaseLogPartFctRef[195]={} BaseLogPartFctRef[195]['LogPF']=np.array([228.7,242.7,257.0,271.7,286.7,302.1,317.9,334.0,350.5,367.4,384.8,402.7,420.9,439.7,459.2,479.2,499.9,521.3,543.3,566.1,589.4,613.2,637.5,662.3,687.4,712.9,738.5,764.4,790.5,816.7]) BaseLogPartFctRef[195]['NbLabels']=2 BaseLogPartFctRef[195]['NbCliques']=552 BaseLogPartFctRef[195]['NbSites']=330 BaseLogPartFctRef[195]['StdNgbhDivMoyNgbh']=0.3641 BaseLogPartFctRef[196]={} BaseLogPartFctRef[196]['LogPF']=np.array([406.9,433.7,461.2,489.4,518.2,547.8,578.0,609.0,640.7,673.4,706.9,741.3,776.9,813.5,851.5,891.0,932.2,974.7,1019.,1064.,1111.,1158.,1207.,1255.,1305.,1355.,1405.,1456.,1507.,1558.]) BaseLogPartFctRef[196]['NbLabels']=2 BaseLogPartFctRef[196]['NbCliques']=1060 BaseLogPartFctRef[196]['NbSites']=587 BaseLogPartFctRef[196]['StdNgbhDivMoyNgbh']=0.3567 BaseLogPartFctRef[197]={} BaseLogPartFctRef[197]['LogPF']=np.array([381.2,406.3,431.9,458.2,485.1,512.6,540.8,569.7,599.3,629.7,660.9,693.0,726.1,760.3,795.6,832.3,870.4,910.0,951.0,993.2,1036.,1080.,1125.,1171.,1217.,1263.,1310.,1357.,1404.,1452.]) BaseLogPartFctRef[197]['NbLabels']=2 BaseLogPartFctRef[197]['NbCliques']=988 BaseLogPartFctRef[197]['NbSites']=550 BaseLogPartFctRef[197]['StdNgbhDivMoyNgbh']=0.3431 BaseLogPartFctRef[198]={} BaseLogPartFctRef[198]['LogPF']=np.array([544.1,580.1,617.0,654.8,693.6,733.2,773.9,815.4,858.0,901.7,946.5,992.7,1040.,1089.,1140.,1193.,1248.,1305.,1364.,1425.,1488.,1552.,1617.,1683.,1749.,1816.,1884.,1952.,2020.,2089.]) BaseLogPartFctRef[198]['NbLabels']=2 BaseLogPartFctRef[198]['NbCliques']=1423 BaseLogPartFctRef[198]['NbSites']=785 BaseLogPartFctRef[198]['StdNgbhDivMoyNgbh']=0.3462 BaseLogPartFctRef[199]={} BaseLogPartFctRef[199]['LogPF']=np.array([262.7,279.9,297.6,315.7,334.2,353.2,372.7,392.6,413.0,433.9,455.5,477.7,500.4,524.1,548.5,574.1,600.5,627.9,656.1,685.2,714.9,745.3,776.2,807.4,839.0,871.0,903.2,935.5,968.1,1001.]) BaseLogPartFctRef[199]['NbLabels']=2 BaseLogPartFctRef[199]['NbCliques']=681 BaseLogPartFctRef[199]['NbSites']=379 BaseLogPartFctRef[199]['StdNgbhDivMoyNgbh']=0.3542 BaseLogPartFctRef[200]={} BaseLogPartFctRef[200]['LogPF']=np.array([150.4,159.8,169.4,179.3,189.4,199.7,210.3,221.1,232.2,243.6,255.3,267.3,279.6,292.4,305.6,319.1,333.2,347.7,362.6,378.1,393.8,410.0,426.6,443.4,460.4,477.6,494.9,512.5,530.1,547.8]) BaseLogPartFctRef[200]['NbLabels']=2 BaseLogPartFctRef[200]['NbCliques']=371 BaseLogPartFctRef[200]['NbSites']=217 BaseLogPartFctRef[200]['StdNgbhDivMoyNgbh']=0.3551 BaseLogPartFctRef[201]={} BaseLogPartFctRef[201]['LogPF']=np.array([286.3,305.2,324.6,344.5,364.8,385.7,407.0,428.9,451.4,474.4,498.1,522.4,547.6,573.5,600.8,629.2,658.7,689.5,720.9,753.3,786.3,819.8,853.9,888.4,923.2,958.3,993.7,1029.,1065.,1101.]) BaseLogPartFctRef[201]['NbLabels']=2 BaseLogPartFctRef[201]['NbCliques']=748 BaseLogPartFctRef[201]['NbSites']=413 BaseLogPartFctRef[201]['StdNgbhDivMoyNgbh']=0.3603 BaseLogPartFctRef[202]={} BaseLogPartFctRef[202]['LogPF']=np.array([490.1,522.9,556.7,591.2,626.5,662.8,699.9,738.0,776.9,817.0,858.1,900.5,944.0,989.1,1036.,1084.,1135.,1187.,1242.,1298.,1355.,1413.,1473.,1533.,1594.,1656.,1718.,1780.,1843.,1906.]) BaseLogPartFctRef[202]['NbLabels']=2 BaseLogPartFctRef[202]['NbCliques']=1300 BaseLogPartFctRef[202]['NbSites']=707 BaseLogPartFctRef[202]['StdNgbhDivMoyNgbh']=0.3424 BaseLogPartFctRef[203]={} BaseLogPartFctRef[203]['LogPF']=np.array([433.9,461.4,489.6,518.5,548.1,578.3,609.4,641.2,673.7,707.1,741.4,776.6,812.9,850.3,889.1,929.2,970.8,1014.,1058.,1104.,1151.,1198.,1247.,1296.,1346.,1397.,1448.,1499.,1551.,1603.]) BaseLogPartFctRef[203]['NbLabels']=2 BaseLogPartFctRef[203]['NbCliques']=1087 BaseLogPartFctRef[203]['NbSites']=626 BaseLogPartFctRef[203]['StdNgbhDivMoyNgbh']=0.3691 BaseLogPartFctRef[204]={} BaseLogPartFctRef[204]['LogPF']=np.array([287.7,306.4,325.5,345.1,365.2,385.8,406.8,428.4,450.5,473.2,496.6,520.7,545.5,571.2,598.0,625.7,654.5,684.3,715.0,746.4,778.5,811.2,844.6,878.3,912.4,946.9,981.8,1017.,1052.,1088.]) BaseLogPartFctRef[204]['NbLabels']=2 BaseLogPartFctRef[204]['NbCliques']=738 BaseLogPartFctRef[204]['NbSites']=415 BaseLogPartFctRef[204]['StdNgbhDivMoyNgbh']=0.3716 BaseLogPartFctRef[205]={} BaseLogPartFctRef[205]['LogPF']=np.array([294.6,314.1,334.1,354.5,375.6,397.0,419.0,441.5,464.5,488.3,512.7,537.8,563.8,590.7,618.6,647.9,678.3,709.6,741.9,775.1,808.9,843.4,878.3,913.8,949.6,985.7,1022.,1059.,1096.,1133.]) BaseLogPartFctRef[205]['NbLabels']=2 BaseLogPartFctRef[205]['NbCliques']=770 BaseLogPartFctRef[205]['NbSites']=425 BaseLogPartFctRef[205]['StdNgbhDivMoyNgbh']=0.3628 BaseLogPartFctRef[206]={} BaseLogPartFctRef[206]['LogPF']=np.array([334.1,356.8,380.0,403.8,428.1,453.0,478.6,504.8,531.7,559.3,587.6,616.7,646.9,678.1,710.3,743.9,779.0,815.4,853.2,892.2,932.0,972.6,1014.,1056.,1098.,1140.,1183.,1226.,1270.,1313.]) BaseLogPartFctRef[206]['NbLabels']=2 BaseLogPartFctRef[206]['NbCliques']=895 BaseLogPartFctRef[206]['NbSites']=482 BaseLogPartFctRef[206]['StdNgbhDivMoyNgbh']=0.3485 BaseLogPartFctRef[207]={} BaseLogPartFctRef[207]['LogPF']=np.array([627.3,669.2,712.2,756.2,801.3,847.4,894.7,943.2,992.8,1044.,1096.,1150.,1205.,1263.,1322.,1384.,1448.,1515.,1584.,1655.,1728.,1802.,1878.,1955.,2032.,2110.,2189.,2268.,2348.,2428.]) BaseLogPartFctRef[207]['NbLabels']=2 BaseLogPartFctRef[207]['NbCliques']=1656 BaseLogPartFctRef[207]['NbSites']=905 BaseLogPartFctRef[207]['StdNgbhDivMoyNgbh']=0.3428 BaseLogPartFctRef[208]={} BaseLogPartFctRef[208]['LogPF']=np.array([339.6,362.1,385.1,408.7,432.8,457.5,482.9,508.8,535.4,562.7,590.7,619.4,649.0,679.5,711.3,744.3,778.6,814.3,851.3,889.5,928.4,968.2,1009.,1049.,1091.,1133.,1175.,1217.,1260.,1302.]) BaseLogPartFctRef[208]['NbLabels']=2 BaseLogPartFctRef[208]['NbCliques']=887 BaseLogPartFctRef[208]['NbSites']=490 BaseLogPartFctRef[208]['StdNgbhDivMoyNgbh']=0.3409 BaseLogPartFctRef[209]={} BaseLogPartFctRef[209]['LogPF']=np.array([333.4,356.1,379.3,403.0,427.4,452.3,477.9,504.1,530.9,558.5,586.8,616.0,646.2,677.5,710.2,744.3,779.8,816.7,854.8,894.1,934.2,974.8,1016.,1058.,1100.,1142.,1185.,1228.,1271.,1314.]) BaseLogPartFctRef[209]['NbLabels']=2 BaseLogPartFctRef[209]['NbCliques']=895 BaseLogPartFctRef[209]['NbSites']=481 BaseLogPartFctRef[209]['StdNgbhDivMoyNgbh']=0.3583 #non-regular grids: Graphes15_05.pickle BaseLogPartFctRef[210]={} BaseLogPartFctRef[210]['LogPF']=np.array([2086.,2284.,2487.,2694.,2907.,3125.,3349.,3579.,3817.,4070.,4350.,4649.,4971.,5308.,5659.,6020.,6388.,6761.,7138.,7518.,7901.,8285.,8670.,9057.,9444.,9832.,10220.,10609.,10998.,11387.]) BaseLogPartFctRef[210]['NbLabels']=2 BaseLogPartFctRef[210]['NbCliques']=7810 BaseLogPartFctRef[210]['NbSites']=3010 BaseLogPartFctRef[210]['StdNgbhDivMoyNgbh']=0.1767 BaseLogPartFctRef[211]={} BaseLogPartFctRef[211]['LogPF']=np.array([1987.,2171.,2360.,2554.,2753.,2956.,3165.,3380.,3602.,3836.,4095.,4368.,4663.,4974.,5298.,5631.,5972.,6318.,6668.,7021.,7377.,7735.,8094.,8454.,8814.,9176.,9538.,9900.,10263.,10626.]) BaseLogPartFctRef[211]['NbLabels']=2 BaseLogPartFctRef[211]['NbCliques']=7288 BaseLogPartFctRef[211]['NbSites']=2866 BaseLogPartFctRef[211]['StdNgbhDivMoyNgbh']=0.1894 BaseLogPartFctRef[212]={} BaseLogPartFctRef[212]['LogPF']=np.array([2013.,2199.,2389.,2584.,2784.,2988.,3199.,3415.,3638.,3871.,4129.,4407.,4702.,5012.,5337.,5672.,6015.,6363.,6715.,7070.,7428.,7787.,8148.,8511.,8874.,9237.,9602.,9966.,10332.,10697.]) BaseLogPartFctRef[212]['NbLabels']=2 BaseLogPartFctRef[212]['NbCliques']=7335 BaseLogPartFctRef[212]['NbSites']=2904 BaseLogPartFctRef[212]['StdNgbhDivMoyNgbh']=0.1867 BaseLogPartFctRef[213]={} BaseLogPartFctRef[213]['LogPF']=np.array([2043.,2233.,2427.,2627.,2832.,3041.,3257.,3478.,3707.,3952.,4217.,4501.,4807.,5127.,5461.,5805.,6156.,6513.,6874.,7239.,7605.,7974.,8344.,8715.,9086.,9459.,9832.,10205.,10579.,10953.]) BaseLogPartFctRef[213]['NbLabels']=2 BaseLogPartFctRef[213]['NbCliques']=7509 BaseLogPartFctRef[213]['NbSites']=2947 BaseLogPartFctRef[213]['StdNgbhDivMoyNgbh']=0.1871 BaseLogPartFctRef[214]={} BaseLogPartFctRef[214]['LogPF']=np.array([2050.,2242.,2438.,2639.,2845.,3056.,3273.,3496.,3726.,3970.,4236.,4527.,4836.,5161.,5498.,5846.,6201.,6561.,6926.,7293.,7663.,8034.,8407.,8781.,9156.,9531.,9907.,10284.,10660.,11037.]) BaseLogPartFctRef[214]['NbLabels']=2 BaseLogPartFctRef[214]['NbCliques']=7564 BaseLogPartFctRef[214]['NbSites']=2958 BaseLogPartFctRef[214]['StdNgbhDivMoyNgbh']=0.1783 BaseLogPartFctRef[215]={} BaseLogPartFctRef[215]['LogPF']=np.array([2028.,2218.,2412.,2612.,2816.,3025.,3240.,3461.,3690.,3934.,4197.,4483.,4788.,5109.,5443.,5787.,6138.,6495.,6857.,7221.,7587.,7955.,8324.,8695.,9066.,9438.,9811.,10184.,10557.,10931.]) BaseLogPartFctRef[215]['NbLabels']=2 BaseLogPartFctRef[215]['NbCliques']=7496 BaseLogPartFctRef[215]['NbSites']=2926 BaseLogPartFctRef[215]['StdNgbhDivMoyNgbh']=0.1825 BaseLogPartFctRef[216]={} BaseLogPartFctRef[216]['LogPF']=np.array([2044.,2234.,2429.,2628.,2832.,3042.,3257.,3478.,3706.,3948.,4211.,4497.,4803.,5123.,5457.,5801.,6152.,6509.,6870.,7234.,7600.,7969.,8338.,8709.,9080.,9452.,9825.,10198.,10572.,10945.]) BaseLogPartFctRef[216]['NbLabels']=2 BaseLogPartFctRef[216]['NbCliques']=7504 BaseLogPartFctRef[216]['NbSites']=2949 BaseLogPartFctRef[216]['StdNgbhDivMoyNgbh']=0.1890 BaseLogPartFctRef[217]={} BaseLogPartFctRef[217]['LogPF']=np.array([2076.,2271.,2471.,2675.,2885.,3101.,3321.,3549.,3783.,4032.,4306.,4603.,4919.,5250.,5594.,5948.,6310.,6677.,7048.,7423.,7800.,8178.,8558.,8939.,9321.,9703.,10086.,10469.,10853.,11237.]) BaseLogPartFctRef[217]['NbLabels']=2 BaseLogPartFctRef[217]['NbCliques']=7703 BaseLogPartFctRef[217]['NbSites']=2995 BaseLogPartFctRef[217]['StdNgbhDivMoyNgbh']=0.1787 BaseLogPartFctRef[218]={} BaseLogPartFctRef[218]['LogPF']=np.array([2070.,2264.,2464.,2668.,2877.,3092.,3312.,3538.,3772.,4023.,4298.,4597.,4911.,5243.,5587.,5940.,6301.,6667.,7037.,7411.,7786.,8164.,8543.,8923.,9304.,9685.,10067.,10449.,10832.,11215.]) BaseLogPartFctRef[218]['NbLabels']=2 BaseLogPartFctRef[218]['NbCliques']=7683 BaseLogPartFctRef[218]['NbSites']=2986 BaseLogPartFctRef[218]['StdNgbhDivMoyNgbh']=0.1788 BaseLogPartFctRef[219]={} BaseLogPartFctRef[219]['LogPF']=np.array([2069.,2263.,2461.,2665.,2873.,3087.,3306.,3531.,3765.,4015.,4283.,4574.,4885.,5214.,5555.,5906.,6265.,6629.,6998.,7369.,7743.,8119.,8496.,8874.,9253.,9633.,10013.,10394.,10775.,11156.]) BaseLogPartFctRef[219]['NbLabels']=2 BaseLogPartFctRef[219]['NbCliques']=7650 BaseLogPartFctRef[219]['NbSites']=2985 BaseLogPartFctRef[219]['StdNgbhDivMoyNgbh']=0.1807 BaseLogPartFctRef[220]={} BaseLogPartFctRef[220]['LogPF']=np.array([2023.,2210.,2402.,2599.,2801.,3008.,3220.,3439.,3664.,3902.,4165.,4447.,4745.,5061.,5389.,5727.,6073.,6423.,6779.,7138.,7499.,7862.,8226.,8592.,8958.,9326.,9693.,10062.,10430.,10799.]) BaseLogPartFctRef[220]['NbLabels']=2 BaseLogPartFctRef[220]['NbCliques']=7408 BaseLogPartFctRef[220]['NbSites']=2918 BaseLogPartFctRef[220]['StdNgbhDivMoyNgbh']=0.1983 BaseLogPartFctRef[221]={} BaseLogPartFctRef[221]['LogPF']=np.array([2014.,2202.,2393.,2590.,2791.,2998.,3210.,3428.,3654.,3891.,4153.,4437.,4738.,5054.,5383.,5722.,6068.,6419.,6775.,7134.,7496.,7859.,8224.,8589.,8956.,9323.,9691.,10059.,10428.,10796.]) BaseLogPartFctRef[221]['NbLabels']=2 BaseLogPartFctRef[221]['NbCliques']=7401 BaseLogPartFctRef[221]['NbSites']=2906 BaseLogPartFctRef[221]['StdNgbhDivMoyNgbh']=0.1820 BaseLogPartFctRef[222]={} BaseLogPartFctRef[222]['LogPF']=np.array([1992.,2176.,2365.,2559.,2757.,2961.,3170.,3385.,3607.,3840.,4096.,4371.,4664.,4975.,5298.,5631.,5972.,6318.,6668.,7021.,7376.,7733.,8092.,8452.,8813.,9174.,9536.,9898.,10261.,10624.]) BaseLogPartFctRef[222]['NbLabels']=2 BaseLogPartFctRef[222]['NbCliques']=7285 BaseLogPartFctRef[222]['NbSites']=2874 BaseLogPartFctRef[222]['StdNgbhDivMoyNgbh']=0.1896 BaseLogPartFctRef[223]={} BaseLogPartFctRef[223]['LogPF']=np.array([2059.,2253.,2451.,2654.,2862.,3075.,3294.,3519.,3752.,3998.,4271.,4563.,4875.,5202.,5543.,5894.,6252.,6616.,6984.,7355.,7728.,8104.,8480.,8858.,9236.,9615.,9995.,10375.,10755.,11136.]) BaseLogPartFctRef[223]['NbLabels']=2 BaseLogPartFctRef[223]['NbCliques']=7636 BaseLogPartFctRef[223]['NbSites']=2971 BaseLogPartFctRef[223]['StdNgbhDivMoyNgbh']=0.1798 BaseLogPartFctRef[224]={} BaseLogPartFctRef[224]['LogPF']=np.array([2071.,2265.,2463.,2667.,2875.,3089.,3308.,3534.,3767.,4014.,4283.,4578.,4890.,5219.,5560.,5911.,6270.,6635.,7003.,7375.,7749.,8125.,8502.,8880.,9259.,9639.,10019.,10400.,10781.,11163.]) BaseLogPartFctRef[224]['NbLabels']=2 BaseLogPartFctRef[224]['NbCliques']=7652 BaseLogPartFctRef[224]['NbSites']=2988 BaseLogPartFctRef[224]['StdNgbhDivMoyNgbh']=0.1819 BaseLogPartFctRef[225]={} BaseLogPartFctRef[225]['LogPF']=np.array([2053.,2245.,2442.,2644.,2851.,3064.,3281.,3506.,3737.,3983.,4254.,4545.,4855.,5182.,5521.,5870.,6227.,6588.,6954.,7324.,7695.,8068.,8443.,8818.,9195.,9572.,9949.,10327.,10706.,11085.]) BaseLogPartFctRef[225]['NbLabels']=2 BaseLogPartFctRef[225]['NbCliques']=7599 BaseLogPartFctRef[225]['NbSites']=2962 BaseLogPartFctRef[225]['StdNgbhDivMoyNgbh']=0.1821 BaseLogPartFctRef[226]={} BaseLogPartFctRef[226]['LogPF']=np.array([2075.,2269.,2468.,2673.,2882.,3097.,3317.,3543.,3778.,4029.,4302.,4597.,4909.,5239.,5581.,5934.,6295.,6661.,7032.,7405.,7781.,8158.,8537.,8917.,9298.,9680.,10062.,10444.,10827.,11210.]) BaseLogPartFctRef[226]['NbLabels']=2 BaseLogPartFctRef[226]['NbCliques']=7685 BaseLogPartFctRef[226]['NbSites']=2993 BaseLogPartFctRef[226]['StdNgbhDivMoyNgbh']=0.1803 BaseLogPartFctRef[227]={} BaseLogPartFctRef[227]['LogPF']=np.array([2066.,2260.,2459.,2663.,2872.,3086.,3306.,3532.,3766.,4014.,4288.,4582.,4896.,5227.,5570.,5923.,6283.,6649.,7018.,7391.,7766.,8143.,8522.,8901.,9281.,9662.,10044.,10425.,10808.,11190.]) BaseLogPartFctRef[227]['NbLabels']=2 BaseLogPartFctRef[227]['NbCliques']=7673 BaseLogPartFctRef[227]['NbSites']=2980 BaseLogPartFctRef[227]['StdNgbhDivMoyNgbh']=0.1807 BaseLogPartFctRef[228]={} BaseLogPartFctRef[228]['LogPF']=np.array([2075.,2270.,2470.,2676.,2886.,3101.,3323.,3550.,3786.,4041.,4316.,4614.,4930.,5261.,5607.,5963.,6325.,6693.,7065.,7440.,7818.,8197.,8577.,8959.,9342.,9725.,10108.,10492.,10877.,11262.]) BaseLogPartFctRef[228]['NbLabels']=2 BaseLogPartFctRef[228]['NbCliques']=7718 BaseLogPartFctRef[228]['NbSites']=2993 BaseLogPartFctRef[228]['StdNgbhDivMoyNgbh']=0.1810 BaseLogPartFctRef[229]={} BaseLogPartFctRef[229]['LogPF']=np.array([2049.,2240.,2436.,2637.,2843.,3055.,3271.,3494.,3725.,3971.,4239.,4529.,4835.,5158.,5495.,5841.,6195.,6555.,6919.,7286.,7655.,8026.,8399.,8773.,9147.,9522.,9898.,10274.,10651.,11027.]) BaseLogPartFctRef[229]['NbLabels']=2 BaseLogPartFctRef[229]['NbCliques']=7560 BaseLogPartFctRef[229]['NbSites']=2956 BaseLogPartFctRef[229]['StdNgbhDivMoyNgbh']=0.1824 BaseLogPartFctRef[230]={} BaseLogPartFctRef[230]['LogPF']=np.array([2041.,2231.,2427.,2628.,2834.,3044.,3261.,3483.,3713.,3955.,4226.,4512.,4821.,5146.,5483.,5830.,6184.,6544.,6907.,7274.,7643.,8014.,8386.,8759.,9133.,9508.,9883.,10259.,10635.,11011.]) BaseLogPartFctRef[230]['NbLabels']=2 BaseLogPartFctRef[230]['NbCliques']=7546 BaseLogPartFctRef[230]['NbSites']=2944 BaseLogPartFctRef[230]['StdNgbhDivMoyNgbh']=0.1754 BaseLogPartFctRef[231]={} BaseLogPartFctRef[231]['LogPF']=np.array([2075.,2270.,2470.,2676.,2886.,3102.,3323.,3550.,3785.,4036.,4313.,4612.,4929.,5262.,5608.,5964.,6327.,6695.,7067.,7442.,7820.,8199.,8580.,8962.,9344.,9727.,10111.,10495.,10880.,11265.]) BaseLogPartFctRef[231]['NbLabels']=2 BaseLogPartFctRef[231]['NbCliques']=7720 BaseLogPartFctRef[231]['NbSites']=2993 BaseLogPartFctRef[231]['StdNgbhDivMoyNgbh']=0.1826 BaseLogPartFctRef[232]={} BaseLogPartFctRef[232]['LogPF']=np.array([2065.,2258.,2456.,2659.,2867.,3080.,3299.,3524.,3757.,4002.,4273.,4564.,4875.,5201.,5542.,5893.,6250.,6614.,6981.,7352.,7725.,8100.,8476.,8853.,9231.,9610.,9990.,10370.,10750.,11130.]) BaseLogPartFctRef[232]['NbLabels']=2 BaseLogPartFctRef[232]['NbCliques']=7633 BaseLogPartFctRef[232]['NbSites']=2979 BaseLogPartFctRef[232]['StdNgbhDivMoyNgbh']=0.1800 BaseLogPartFctRef[233]={} BaseLogPartFctRef[233]['LogPF']=np.array([2031.,2219.,2412.,2610.,2813.,3021.,3235.,3454.,3680.,3920.,4180.,4460.,4760.,5076.,5407.,5748.,6096.,6449.,6806.,7167.,7531.,7896.,8262.,8630.,8998.,9368.,9737.,10108.,10478.,10849.]) BaseLogPartFctRef[233]['NbLabels']=2 BaseLogPartFctRef[233]['NbCliques']=7442 BaseLogPartFctRef[233]['NbSites']=2930 BaseLogPartFctRef[233]['StdNgbhDivMoyNgbh']=0.1851 BaseLogPartFctRef[234]={} BaseLogPartFctRef[234]['LogPF']=np.array([2073.,2268.,2468.,2673.,2883.,3098.,3320.,3547.,3782.,4035.,4313.,4610.,4925.,5257.,5602.,5958.,6320.,6688.,7060.,7435.,7813.,8192.,8572.,8954.,9336.,9719.,10103.,10486.,10871.,11255.]) BaseLogPartFctRef[234]['NbLabels']=2 BaseLogPartFctRef[234]['NbCliques']=7713 BaseLogPartFctRef[234]['NbSites']=2990 BaseLogPartFctRef[234]['StdNgbhDivMoyNgbh']=0.1761 BaseLogPartFctRef[235]={} BaseLogPartFctRef[235]['LogPF']=np.array([2075.,2269.,2469.,2673.,2882.,3097.,3318.,3544.,3779.,4025.,4296.,4593.,4905.,5235.,5579.,5932.,6292.,6659.,7030.,7403.,7779.,8157.,8536.,8916.,9297.,9679.,10061.,10444.,10826.,11210.]) BaseLogPartFctRef[235]['NbLabels']=2 BaseLogPartFctRef[235]['NbCliques']=7686 BaseLogPartFctRef[235]['NbSites']=2993 BaseLogPartFctRef[235]['StdNgbhDivMoyNgbh']=0.1758 BaseLogPartFctRef[236]={} BaseLogPartFctRef[236]['LogPF']=np.array([2070.,2266.,2466.,2672.,2883.,3099.,3321.,3550.,3786.,4039.,4316.,4614.,4931.,5266.,5613.,5971.,6335.,6705.,7079.,7455.,7834.,8215.,8597.,8980.,9363.,9748.,10133.,10518.,10904.,11289.]) BaseLogPartFctRef[236]['NbLabels']=2 BaseLogPartFctRef[236]['NbCliques']=7741 BaseLogPartFctRef[236]['NbSites']=2986 BaseLogPartFctRef[236]['StdNgbhDivMoyNgbh']=0.1784 BaseLogPartFctRef[237]={} BaseLogPartFctRef[237]['LogPF']=np.array([2054.,2246.,2443.,2644.,2850.,3062.,3279.,3502.,3733.,3979.,4247.,4536.,4842.,5165.,5503.,5850.,6204.,6564.,6929.,7296.,7666.,8037.,8410.,8785.,9160.,9535.,9911.,10288.,10665.,11042.]) BaseLogPartFctRef[237]['NbLabels']=2 BaseLogPartFctRef[237]['NbCliques']=7569 BaseLogPartFctRef[237]['NbSites']=2964 BaseLogPartFctRef[237]['StdNgbhDivMoyNgbh']=0.1798 BaseLogPartFctRef[238]={} BaseLogPartFctRef[238]['LogPF']=np.array([2076.,2272.,2472.,2678.,2889.,3105.,3326.,3554.,3790.,4044.,4318.,4618.,4933.,5266.,5612.,5968.,6331.,6700.,7073.,7449.,7828.,8208.,8589.,8972.,9355.,9739.,10124.,10509.,10894.,11279.]) BaseLogPartFctRef[238]['NbLabels']=2 BaseLogPartFctRef[238]['NbCliques']=7732 BaseLogPartFctRef[238]['NbSites']=2995 BaseLogPartFctRef[238]['StdNgbhDivMoyNgbh']=0.1768 BaseLogPartFctRef[239]={} BaseLogPartFctRef[239]['LogPF']=np.array([2066.,2261.,2460.,2664.,2873.,3088.,3308.,3535.,3769.,4019.,4292.,4586.,4898.,5229.,5573.,5926.,6287.,6652.,7022.,7395.,7771.,8148.,8526.,8906.,9286.,9668.,10049.,10431.,10814.,11197.]) BaseLogPartFctRef[239]['NbLabels']=2 BaseLogPartFctRef[239]['NbCliques']=7679 BaseLogPartFctRef[239]['NbSites']=2981 BaseLogPartFctRef[239]['StdNgbhDivMoyNgbh']=0.1819 #regular grids: lines - squares - cubes BaseLogPartFctRef[240]={} BaseLogPartFctRef[240]['LogPF']=np.array([693.1,718.2,743.9,770.3,797.6,825.2,853.6,882.7,912.4,942.8,973.6,1005.,1037.,1070.,1103.,1137.,1171.,1206.,1241.,1277.,1314.,1351.,1388.,1426.,1464.,1503.,1543.,1583.,1623.,1663.]) BaseLogPartFctRef[240]['NbLabels']=2 BaseLogPartFctRef[240]['NbCliques']=999 BaseLogPartFctRef[240]['NbSites']=1000 BaseLogPartFctRef[240]['StdNgbhDivMoyNgbh']=0.0223 BaseLogPartFctRef[241]={} BaseLogPartFctRef[241]['LogPF']=np.array([693.1,761.6,831.6,903.3,977.0,1052.,1130.,1211.,1295.,1386.,1485.,1592.,1708.,1828.,1953.,2080.,2209.,2340.,2471.,2603.,2736.,2870.,3004.,3138.,3272.,3407.,3541.,3676.,3811.,3946.]) BaseLogPartFctRef[241]['NbLabels']=2 BaseLogPartFctRef[241]['NbCliques']=2700 BaseLogPartFctRef[241]['NbSites']=1000 BaseLogPartFctRef[241]['StdNgbhDivMoyNgbh']=0.1282 BaseLogPartFctRef[242]={} BaseLogPartFctRef[242]['LogPF']=np.array([1198.,1318.,1441.,1567.,1697.,1830.,1966.,2107.,2257.,2425.,2606.,2805.,3012.,3227.,3449.,3674.,3903.,4134.,4366.,4600.,4835.,5070.,5306.,5543.,5779.,6016.,6253.,6490.,6727.,6964.]) BaseLogPartFctRef[242]['NbLabels']=2 BaseLogPartFctRef[242]['NbCliques']=4752 BaseLogPartFctRef[242]['NbSites']=1728 BaseLogPartFctRef[242]['StdNgbhDivMoyNgbh']=0.1173 BaseLogPartFctRef[243]={} BaseLogPartFctRef[243]['LogPF']=np.array([10830.,11614.,12417.,13239.,14084.,14952.,15845.,16763.,17713.,18690.,19705.,20756.,21857.,23002.,24195.,25449.,26770.,28140.,29560.,31007.,32472.,33955.,35452.,36961.,38477.,39999.,41528.,43061.,44598.,46135.]) BaseLogPartFctRef[243]['NbLabels']=2 BaseLogPartFctRef[243]['NbCliques']=31000 BaseLogPartFctRef[243]['NbSites']=15625 BaseLogPartFctRef[243]['StdNgbhDivMoyNgbh']=0.0447 BaseLogPartFctRef[244]={} BaseLogPartFctRef[244]['LogPF']=np.array([2339.,2578.,2822.,3074.,3332.,3596.,3869.,4156.,4468.,4810.,5192.,5597.,6014.,6449.,6894.,7347.,7804.,8265.,8729.,9195.,9663.,10132.,10601.,11071.,11541.,12013.,12484.,12956.,13428.,13900.]) BaseLogPartFctRef[244]['NbLabels']=2 BaseLogPartFctRef[244]['NbCliques']=9450 BaseLogPartFctRef[244]['NbSites']=3375 BaseLogPartFctRef[244]['StdNgbhDivMoyNgbh']=0.1051 BaseLogPartFctRef[245]={} BaseLogPartFctRef[245]['LogPF']=np.array([10830.,11227.,11632.,12049.,12475.,12913.,13359.,13818.,14285.,14763.,15254.,15754.,16263.,16785.,17315.,17853.,18401.,18959.,19524.,20101.,20686.,21278.,21875.,22482.,23097.,23719.,24348.,24982.,25627.,26275.]) BaseLogPartFctRef[245]['NbLabels']=2 BaseLogPartFctRef[245]['NbCliques']=15624 BaseLogPartFctRef[245]['NbSites']=15625 BaseLogPartFctRef[245]['StdNgbhDivMoyNgbh']=0.0057 BaseLogPartFctRef[246]={} BaseLogPartFctRef[246]['LogPF']=np.array([1198.,1241.,1286.,1332.,1379.,1427.,1476.,1526.,1578.,1630.,1684.,1739.,1794.,1851.,1908.,1967.,2026.,2086.,2147.,2210.,2273.,2337.,2402.,2467.,2534.,2601.,2669.,2738.,2807.,2877.]) BaseLogPartFctRef[246]['NbLabels']=2 BaseLogPartFctRef[246]['NbCliques']=1727 BaseLogPartFctRef[246]['NbSites']=1728 BaseLogPartFctRef[246]['StdNgbhDivMoyNgbh']=0.0170 BaseLogPartFctRef[247]={} BaseLogPartFctRef[247]['LogPF']=np.array([5545.,6122.,6715.,7322.,7946.,8585.,9250.,9949.,10720.,11592.,12535.,13531.,14569.,15629.,16710.,17808.,18917.,20035.,21158.,22285.,23414.,24546.,25680.,26815.,27952.,29090.,30228.,31367.,32505.,33645.]) BaseLogPartFctRef[247]['NbLabels']=2 BaseLogPartFctRef[247]['NbCliques']=22800 BaseLogPartFctRef[247]['NbSites']=8000 BaseLogPartFctRef[247]['StdNgbhDivMoyNgbh']=0.0911 BaseLogPartFctRef[248]={} BaseLogPartFctRef[248]['LogPF']=np.array([10830.,11968.,13133.,14329.,15560.,16832.,18149.,19549.,21106.,22849.,24742.,26729.,28789.,30902.,33054.,35232.,37428.,39637.,41856.,44085.,46317.,48554.,50795.,53037.,55282.,57528.,59775.,62022.,64270.,66519.]) BaseLogPartFctRef[248]['NbLabels']=2 BaseLogPartFctRef[248]['NbCliques']=45000 BaseLogPartFctRef[248]['NbSites']=15625 BaseLogPartFctRef[248]['StdNgbhDivMoyNgbh']=0.0816 BaseLogPartFctRef[249]={} BaseLogPartFctRef[249]['LogPF']=np.array([666.1,713.0,761.3,810.8,861.5,913.5,966.7,1021.,1077.,1134.,1193.,1254.,1317.,1382.,1449.,1518.,1591.,1667.,1746.,1828.,1914.,2000.,2088.,2177.,2266.,2357.,2447.,2539.,2631.,2723.]) BaseLogPartFctRef[249]['NbLabels']=2 BaseLogPartFctRef[249]['NbCliques']=1860 BaseLogPartFctRef[249]['NbSites']=961 BaseLogPartFctRef[249]['StdNgbhDivMoyNgbh']=0.0897 BaseLogPartFctRef[250]={} BaseLogPartFctRef[250]['LogPF']=np.array([2339.,2425.,2512.,2603.,2694.,2788.,2884.,2982.,3083.,3185.,3290.,3396.,3505.,3616.,3729.,3843.,3960.,4079.,4199.,4320.,4444.,4570.,4698.,4828.,4958.,5089.,5223.,5357.,5494.,5631.]) BaseLogPartFctRef[250]['NbLabels']=2 BaseLogPartFctRef[250]['NbCliques']=3374 BaseLogPartFctRef[250]['NbSites']=3375 BaseLogPartFctRef[250]['StdNgbhDivMoyNgbh']=0.0122 BaseLogPartFctRef[251]={} BaseLogPartFctRef[251]['LogPF']=np.array([1165.,1248.,1333.,1420.,1509.,1601.,1695.,1791.,1890.,1991.,2095.,2203.,2314.,2429.,2548.,2674.,2806.,2943.,3086.,3234.,3385.,3539.,3695.,3853.,4012.,4172.,4333.,4494.,4656.,4818.]) BaseLogPartFctRef[251]['NbLabels']=2 BaseLogPartFctRef[251]['NbCliques']=3280 BaseLogPartFctRef[251]['NbSites']=1681 BaseLogPartFctRef[251]['StdNgbhDivMoyNgbh']=0.0780 BaseLogPartFctRef[252]={} BaseLogPartFctRef[252]['LogPF']=np.array([2332.,2499.,2671.,2846.,3026.,3210.,3400.,3594.,3794.,4000.,4213.,4433.,4661.,4895.,5142.,5403.,5674.,5955.,6250.,6553.,6861.,7173.,7491.,7811.,8133.,8456.,8781.,9107.,9434.,9761.]) BaseLogPartFctRef[252]['NbLabels']=2 BaseLogPartFctRef[252]['NbCliques']=6612 BaseLogPartFctRef[252]['NbSites']=3364 BaseLogPartFctRef[252]['StdNgbhDivMoyNgbh']=0.0656 BaseLogPartFctRef[253]={} BaseLogPartFctRef[253]['LogPF']=np.array([5545.,5747.,5956.,6168.,6386.,6609.,6837.,7069.,7307.,7551.,7799.,8053.,8311.,8575.,8844.,9117.,9394.,9677.,9964.,10256.,10552.,10852.,11156.,11463.,11775.,12090.,12409.,12730.,13056.,13384.]) BaseLogPartFctRef[253]['NbLabels']=2 BaseLogPartFctRef[253]['NbCliques']=7999 BaseLogPartFctRef[253]['NbSites']=8000 BaseLogPartFctRef[253]['StdNgbhDivMoyNgbh']=0.0079 BaseLogPartFctRef[254]={} BaseLogPartFctRef[254]['LogPF']=np.array([5490.,5888.,6294.,6711.,7139.,7577.,8028.,8489.,8964.,9455.,9963.,10495.,11038.,11610.,12207.,12837.,13496.,14183.,14893.,15616.,16352.,17099.,17852.,18611.,19376.,20143.,20914.,21689.,22464.,23241.]) BaseLogPartFctRef[254]['NbLabels']=2 BaseLogPartFctRef[254]['NbCliques']=15664 BaseLogPartFctRef[254]['NbSites']=7921 BaseLogPartFctRef[254]['StdNgbhDivMoyNgbh']=0.0530 #ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+0),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=10,NBY=10,NBZ=10,BetaGeneration=0.2) BaseLogPartFctRef[255 ]={} BaseLogPartFctRef[255]['LogPF']=np.array([71.41,73.01,74.72,76.50,78.23,80.06,81.98,84.04,86.13,88.26,90.30,92.47,94.95,97.21,99.74,102.3,104.9,107.9,111.0,114.0,117.1,120.1,123.3,126.7,130.4,134.2,138.0,142.0,146.0,150.2]) BaseLogPartFctRef[ 255 ]['NbLabels']= 3 BaseLogPartFctRef[ 255 ]['NbCliques']= 96 BaseLogPartFctRef[ 255 ]['NbSites']= 65 BaseLogPartFctRef[ 255 ]['StdNgbhDivMoyNgbh']= 0.357726769776 BaseLogPartFctRef[ 256 ]={} BaseLogPartFctRef[256]['LogPF']=np.array([32.96,33.70,34.47,35.25,36.05,36.87,37.72,38.60,39.52,40.50,41.49,42.56,43.62,44.72,45.88,47.08,48.31,49.59,50.87,52.31,53.77,55.33,56.95,58.62,60.30,61.95,63.72,65.55,67.39,69.26]) BaseLogPartFctRef[ 256 ]['NbLabels']= 3 BaseLogPartFctRef[ 256 ]['NbCliques']= 43 BaseLogPartFctRef[ 256 ]['NbSites']= 30 BaseLogPartFctRef[ 256 ]['StdNgbhDivMoyNgbh']= 0.405898164708 BaseLogPartFctRef[ 257 ]={} BaseLogPartFctRef[257]['LogPF']=np.array([24.17,24.63,25.11,25.59,26.13,26.67,27.22,27.82,28.42,29.01,29.68,30.34,31.00,31.67,32.40,33.15,33.94,34.74,35.59,36.46,37.35,38.27,39.19,40.20,41.17,42.22,43.29,44.34,45.43,46.60]) BaseLogPartFctRef[ 257 ]['NbLabels']= 3 BaseLogPartFctRef[ 257 ]['NbCliques']= 28 BaseLogPartFctRef[ 257 ]['NbSites']= 22 BaseLogPartFctRef[ 257 ]['StdNgbhDivMoyNgbh']= 0.352639105663 BaseLogPartFctRef[ 258 ]={} BaseLogPartFctRef[258]['LogPF']=np.array([18.68,19.04,19.41,19.78,20.18,20.62,21.08,21.55,22.02,22.52,23.01,23.52,24.07,24.58,25.15,25.78,26.40,27.05,27.69,28.38,29.06,29.80,30.55,31.31,32.10,32.93,33.78,34.68,35.60,36.48]) BaseLogPartFctRef[ 258 ]['NbLabels']= 3 BaseLogPartFctRef[ 258 ]['NbCliques']= 22 BaseLogPartFctRef[ 258 ]['NbSites']= 17 BaseLogPartFctRef[ 258 ]['StdNgbhDivMoyNgbh']= 0.414774747159 BaseLogPartFctRef[ 259 ]={} BaseLogPartFctRef[259]['LogPF']=np.array([28.56,29.17,29.80,30.44,31.12,31.84,32.54,33.30,34.07,34.86,35.71,36.54,37.37,38.28,39.24,40.22,41.27,42.36,43.51,44.69,45.91,47.20,48.49,49.81,51.21,52.62,54.08,55.63,57.09,58.60]) BaseLogPartFctRef[ 259 ]['NbLabels']= 3 BaseLogPartFctRef[ 259 ]['NbCliques']= 36 BaseLogPartFctRef[ 259 ]['NbSites']= 26 BaseLogPartFctRef[ 259 ]['StdNgbhDivMoyNgbh']= 0.433976410504 BaseLogPartFctRef[ 260 ]={} BaseLogPartFctRef[260]['LogPF']=np.array([40.65,41.50,42.37,43.26,44.18,45.13,46.15,47.21,48.26,49.41,50.52,51.70,52.89,54.14,55.44,56.79,58.17,59.56,61.13,62.71,64.21,65.97,67.69,69.47,71.31,73.24,75.22,77.21,79.28,81.33]) BaseLogPartFctRef[ 260 ]['NbLabels']= 3 BaseLogPartFctRef[ 260 ]['NbCliques']= 50 BaseLogPartFctRef[ 260 ]['NbSites']= 37 BaseLogPartFctRef[ 260 ]['StdNgbhDivMoyNgbh']= 0.400221998294 BaseLogPartFctRef[261 ]={} BaseLogPartFctRef[261]['LogPF']=np.array([29.66,30.27,30.92,31.58,32.25,32.96,33.71,34.48,35.25,36.09,36.92,37.84,38.75,39.69,40.66,41.64,42.68,43.76,44.86,46.07,47.29,48.55,49.86,51.17,52.56,54.01,55.47,56.95,58.54,60.07]) BaseLogPartFctRef[ 261 ]['NbLabels']= 3 BaseLogPartFctRef[ 261 ]['NbCliques']= 37 BaseLogPartFctRef[ 261 ]['NbSites']= 27 BaseLogPartFctRef[ 261 ]['StdNgbhDivMoyNgbh']= 0.401087998191 BaseLogPartFctRef[262 ]={} BaseLogPartFctRef[262]['LogPF']=np.array([42.85,43.63,44.46,45.36,46.28,47.20,48.17,49.18,50.21,51.25,52.33,53.43,54.61,55.82,57.10,58.39,59.74,61.03,62.41,63.81,65.31,66.85,68.44,70.07,71.76,73.44,75.17,76.89,78.64,80.45]) BaseLogPartFctRef[ 262 ]['NbLabels']= 3 BaseLogPartFctRef[ 262 ]['NbCliques']= 48 BaseLogPartFctRef[ 262 ]['NbSites']= 39 BaseLogPartFctRef[ 262 ]['StdNgbhDivMoyNgbh']= 0.367913258811 BaseLogPartFctRef[263 ]={} BaseLogPartFctRef[263]['LogPF']=np.array([37.35,38.18,39.02,39.88,40.77,41.70,42.68,43.68,44.71,45.78,46.92,48.05,49.21,50.47,51.76,53.06,54.47,55.90,57.39,59.03,60.57,62.21,63.98,65.79,67.55,69.39,71.34,73.24,75.26,77.30]) BaseLogPartFctRef[ 263 ]['NbLabels']= 3 BaseLogPartFctRef[ 263 ]['NbCliques']= 48 BaseLogPartFctRef[ 263 ]['NbSites']= 34 BaseLogPartFctRef[ 263 ]['StdNgbhDivMoyNgbh']= 0.367881359164 BaseLogPartFctRef[264 ]={} BaseLogPartFctRef[264]['LogPF']=np.array([38.45,39.27,40.13,41.00,41.87,42.84,43.86,44.86,45.91,47.01,48.13,49.30,50.51,51.79,53.04,54.41,55.81,57.23,58.77,60.41,62.10,63.77,65.56,67.33,69.16,71.09,73.08,75.09,77.19,79.23]) BaseLogPartFctRef[ 264 ]['NbLabels']= 3 BaseLogPartFctRef[ 264 ]['NbCliques']= 49 BaseLogPartFctRef[ 264 ]['NbSites']= 35 BaseLogPartFctRef[ 264 ]['StdNgbhDivMoyNgbh']= 0.437276577262 BaseLogPartFctRef[265 ]={} BaseLogPartFctRef[265]['LogPF']=np.array([25.27,25.70,26.15,26.63,27.10,27.60,28.12,28.64,29.18,29.75,30.32,30.92,31.57,32.23,32.88,33.60,34.30,35.01,35.79,36.58,37.32,38.14,38.98,39.83,40.65,41.53,42.45,43.38,44.37,45.29]) BaseLogPartFctRef[ 265 ]['NbLabels']= 3 BaseLogPartFctRef[ 265 ]['NbCliques']= 26 BaseLogPartFctRef[ 265 ]['NbSites']= 23 BaseLogPartFctRef[ 265 ]['StdNgbhDivMoyNgbh']= 0.417846099022 BaseLogPartFctRef[266 ]={} BaseLogPartFctRef[266]['LogPF']=np.array([30.76,31.43,32.09,32.77,33.51,34.27,35.04,35.82,36.63,37.47,38.28,39.17,40.10,41.08,42.07,43.13,44.12,45.24,46.37,47.57,48.83,50.09,51.39,52.74,54.17,55.67,57.14,58.70,60.24,61.78]) BaseLogPartFctRef[ 266 ]['NbLabels']= 3 BaseLogPartFctRef[ 266 ]['NbCliques']= 38 BaseLogPartFctRef[ 266 ]['NbSites']= 28 BaseLogPartFctRef[ 266 ]['StdNgbhDivMoyNgbh']= 0.412310219784 BaseLogPartFctRef[267 ]={} BaseLogPartFctRef[267]['LogPF']=np.array([26.37,26.93,27.53,28.17,28.81,29.47,30.12,30.84,31.56,32.31,33.04,33.86,34.71,35.55,36.45,37.40,38.33,39.35,40.37,41.47,42.58,43.75,45.01,46.26,47.52,48.83,50.16,51.57,52.99,54.45]) BaseLogPartFctRef[ 267 ]['NbLabels']= 3 BaseLogPartFctRef[ 267 ]['NbCliques']= 34 BaseLogPartFctRef[ 267 ]['NbSites']= 24 BaseLogPartFctRef[ 267 ]['StdNgbhDivMoyNgbh']= 0.34750373056 BaseLogPartFctRef[268 ]={} BaseLogPartFctRef[268]['LogPF']=np.array([23.07,23.53,23.99,24.44,24.93,25.42,25.92,26.44,26.98,27.53,28.13,28.76,29.39,30.07,30.73,31.41,32.10,32.88,33.62,34.38,35.23,36.05,36.90,37.82,38.73,39.66,40.66,41.67,42.68,43.68]) BaseLogPartFctRef[ 268 ]['NbLabels']= 3 BaseLogPartFctRef[ 268 ]['NbCliques']= 26 BaseLogPartFctRef[ 268 ]['NbSites']= 21 BaseLogPartFctRef[ 268 ]['StdNgbhDivMoyNgbh']= 0.348466988836 BaseLogPartFctRef[269 ]={} BaseLogPartFctRef[269]['LogPF']=np.array([36.25,37.01,37.78,38.56,39.37,40.22,41.11,42.02,42.97,43.99,45.00,46.02,47.11,48.19,49.35,50.50,51.67,52.91,54.27,55.67,57.06,58.50,59.98,61.52,63.14,64.79,66.47,68.15,69.86,71.66]) BaseLogPartFctRef[ 269 ]['NbLabels']= 3 BaseLogPartFctRef[ 269 ]['NbCliques']= 44 BaseLogPartFctRef[ 269 ]['NbSites']= 33 BaseLogPartFctRef[ 269 ]['StdNgbhDivMoyNgbh']= 0.416697970274 BaseLogPartFctRef[270 ]={} BaseLogPartFctRef[270]['LogPF']=np.array([35.16,35.90,36.66,37.41,38.23,39.07,39.95,40.85,41.75,42.75,43.71,44.75,45.82,46.94,48.06,49.26,50.47,51.75,53.08,54.46,55.90,57.39,58.92,60.48,62.14,63.77,65.54,67.27,69.03,70.90]) BaseLogPartFctRef[ 270 ]['NbLabels']= 3 BaseLogPartFctRef[ 270 ]['NbCliques']= 44 BaseLogPartFctRef[ 270 ]['NbSites']= 32 BaseLogPartFctRef[ 270 ]['StdNgbhDivMoyNgbh']= 0.32952096304 BaseLogPartFctRef[271 ]={} BaseLogPartFctRef[271]['LogPF']=np.array([24.17,24.63,25.12,25.61,26.10,26.62,27.18,27.74,28.33,28.96,29.62,30.32,31.01,31.71,32.46,33.23,33.99,34.81,35.64,36.44,37.32,38.26,39.19,40.18,41.21,42.21,43.31,44.40,45.48,46.59]) BaseLogPartFctRef[ 271 ]['NbLabels']= 3 BaseLogPartFctRef[ 271 ]['NbCliques']= 28 BaseLogPartFctRef[ 271 ]['NbSites']= 22 BaseLogPartFctRef[ 271 ]['StdNgbhDivMoyNgbh']= 0.387198296305 BaseLogPartFctRef[272 ]={} BaseLogPartFctRef[272]['LogPF']=np.array([31.86,32.54,33.22,33.93,34.67,35.44,36.24,37.08,37.90,38.74,39.64,40.56,41.47,42.44,43.50,44.60,45.70,46.82,48.02,49.23,50.53,51.86,53.26,54.70,56.12,57.62,59.06,60.57,62.12,63.79]) BaseLogPartFctRef[ 272 ]['NbLabels']= 3 BaseLogPartFctRef[ 272 ]['NbCliques']= 39 BaseLogPartFctRef[ 272 ]['NbSites']= 29 BaseLogPartFctRef[ 272 ]['StdNgbhDivMoyNgbh']= 0.354031644642 BaseLogPartFctRef[273 ]={} BaseLogPartFctRef[273]['LogPF']=np.array([54.93,56.03,57.20,58.37,59.63,60.90,62.29,63.57,64.88,66.47,68.00,69.60,71.18,72.81,74.67,76.56,78.53,80.31,82.27,84.29,86.25,88.65,90.88,93.13,95.45,97.80,100.3,102.8,105.6,108.1]) BaseLogPartFctRef[ 273 ]['NbLabels']= 3 BaseLogPartFctRef[ 273 ]['NbCliques']= 66 BaseLogPartFctRef[ 273 ]['NbSites']= 50 BaseLogPartFctRef[ 273 ]['StdNgbhDivMoyNgbh']= 0.361888983479 BaseLogPartFctRef[274 ]={} BaseLogPartFctRef[274]['LogPF']=np.array([27.47,28.01,28.58,29.16,29.78,30.42,31.06,31.72,32.43,33.17,33.92,34.68,35.49,36.31,37.19,38.06,39.03,40.03,41.00,42.04,43.06,44.15,45.23,46.40,47.66,48.96,50.28,51.63,52.94,54.31]) BaseLogPartFctRef[ 274 ]['NbLabels']= 3 BaseLogPartFctRef[ 274 ]['NbCliques']= 33 BaseLogPartFctRef[ 274 ]['NbSites']= 25 BaseLogPartFctRef[ 274 ]['StdNgbhDivMoyNgbh']= 0.383183705377 BaseLogPartFctRef[275 ]={} BaseLogPartFctRef[275]['LogPF']=np.array([46.14,47.08,48.05,49.03,50.02,51.06,52.20,53.34,54.49,55.73,56.92,58.22,59.53,60.95,62.37,63.82,65.39,66.98,68.60,70.35,72.06,73.84,75.68,77.53,79.47,81.40,83.46,85.55,87.65,89.83]) BaseLogPartFctRef[ 275 ]['NbLabels']= 3 BaseLogPartFctRef[ 275 ]['NbCliques']= 55 BaseLogPartFctRef[ 275 ]['NbSites']= 42 BaseLogPartFctRef[ 275 ]['StdNgbhDivMoyNgbh']= 0.398066719122 BaseLogPartFctRef[276 ]={} BaseLogPartFctRef[276]['LogPF']=np.array([40.65,41.41,42.22,43.07,43.92,44.78,45.66,46.57,47.49,48.50,49.52,50.60,51.69,52.75,53.95,55.12,56.35,57.64,58.98,60.33,61.73,63.13,64.58,66.08,67.61,69.15,70.72,72.40,74.08,75.80]) BaseLogPartFctRef[ 276 ]['NbLabels']= 3 BaseLogPartFctRef[ 276 ]['NbCliques']= 45 BaseLogPartFctRef[ 276 ]['NbSites']= 37 BaseLogPartFctRef[ 276 ]['StdNgbhDivMoyNgbh']= 0.411095207391 BaseLogPartFctRef[277 ]={} BaseLogPartFctRef[277]['LogPF']=np.array([24.17,24.63,25.11,25.60,26.09,26.60,27.15,27.69,28.26,28.84,29.47,30.09,30.77,31.43,32.14,32.87,33.62,34.37,35.14,36.03,36.84,37.68,38.58,39.47,40.42,41.41,42.45,43.47,44.55,45.62]) BaseLogPartFctRef[ 277 ]['NbLabels']= 3 BaseLogPartFctRef[ 277 ]['NbCliques']= 27 BaseLogPartFctRef[ 277 ]['NbSites']= 22 BaseLogPartFctRef[ 277 ]['StdNgbhDivMoyNgbh']= 0.384037694133 BaseLogPartFctRef[278 ]={} BaseLogPartFctRef[278]['LogPF']=np.array([26.37,26.94,27.53,28.15,28.80,29.45,30.13,30.84,31.56,32.26,33.01,33.83,34.69,35.57,36.52,37.49,38.48,39.45,40.53,41.64,42.78,43.98,45.17,46.43,47.75,49.14,50.50,51.94,53.37,54.83]) BaseLogPartFctRef[ 278 ]['NbLabels']= 3 BaseLogPartFctRef[ 278 ]['NbCliques']= 34 BaseLogPartFctRef[ 278 ]['NbSites']= 24 BaseLogPartFctRef[ 278 ]['StdNgbhDivMoyNgbh']= 0.318891293476 BaseLogPartFctRef[279 ]={} BaseLogPartFctRef[279]['LogPF']=np.array([23.07,23.58,24.09,24.62,25.15,25.75,26.32,26.92,27.52,28.16,28.81,29.51,30.22,31.00,31.76,32.55,33.38,34.21,35.12,35.98,36.96,37.93,38.92,39.94,41.01,42.03,43.13,44.27,45.47,46.67]) BaseLogPartFctRef[ 279 ]['NbLabels']= 3 BaseLogPartFctRef[ 279 ]['NbCliques']= 29 BaseLogPartFctRef[ 279 ]['NbSites']= 21 BaseLogPartFctRef[ 279 ]['StdNgbhDivMoyNgbh']= 0.382280680684 BaseLogPartFctRef[280 ]={} BaseLogPartFctRef[280]['LogPF']=np.array([32.96,33.53,34.13,34.73,35.36,36.02,36.69,37.40,38.11,38.82,39.59,40.40,41.22,42.08,43.00,43.90,44.79,45.76,46.76,47.77,48.83,49.91,50.98,52.11,53.29,54.48,55.73,56.90,58.16,59.46]) BaseLogPartFctRef[ 280 ]['NbLabels']= 3 BaseLogPartFctRef[ 280 ]['NbCliques']= 34 BaseLogPartFctRef[ 280 ]['NbSites']= 30 BaseLogPartFctRef[ 280 ]['StdNgbhDivMoyNgbh']= 0.46630918092 BaseLogPartFctRef[281 ]={} BaseLogPartFctRef[281]['LogPF']=np.array([37.35,38.11,38.92,39.74,40.61,41.50,42.42,43.35,44.36,45.37,46.44,47.47,48.63,49.78,50.99,52.29,53.56,54.96,56.33,57.82,59.44,61.03,62.69,64.38,66.12,67.90,69.71,71.51,73.48,75.41]) BaseLogPartFctRef[ 281 ]['NbLabels']= 3 BaseLogPartFctRef[ 281 ]['NbCliques']= 46 BaseLogPartFctRef[ 281 ]['NbSites']= 34 BaseLogPartFctRef[ 281 ]['StdNgbhDivMoyNgbh']= 0.456457258658 BaseLogPartFctRef[282 ]={} BaseLogPartFctRef[282]['LogPF']=np.array([35.16,35.87,36.61,37.39,38.20,39.01,39.88,40.80,41.73,42.67,43.63,44.64,45.73,46.82,48.01,49.14,50.38,51.68,53.10,54.45,55.85,57.28,58.81,60.36,62.01,63.72,65.40,67.16,68.90,70.67]) BaseLogPartFctRef[ 282 ]['NbLabels']= 3 BaseLogPartFctRef[ 282 ]['NbCliques']= 43 BaseLogPartFctRef[ 282 ]['NbSites']= 32 BaseLogPartFctRef[ 282 ]['StdNgbhDivMoyNgbh']= 0.480561482005 BaseLogPartFctRef[283 ]={} BaseLogPartFctRef[283]['LogPF']=np.array([50.54,51.68,52.87,54.09,55.33,56.64,58.01,59.43,60.84,62.36,63.89,65.42,67.07,68.75,70.60,72.39,74.33,76.30,78.40,80.55,82.84,85.17,87.65,90.19,92.89,95.61,98.32,101.2,104.0,106.9]) BaseLogPartFctRef[ 283 ]['NbLabels']= 3 BaseLogPartFctRef[ 283 ]['NbCliques']= 67 BaseLogPartFctRef[ 283 ]['NbSites']= 46 BaseLogPartFctRef[ 283 ]['StdNgbhDivMoyNgbh']= 0.413234085927 BaseLogPartFctRef[284 ]={} BaseLogPartFctRef[284]['LogPF']=np.array([59.33,60.63,61.96,63.41,64.85,66.36,67.91,69.51,71.22,72.97,74.82,76.62,78.46,80.45,82.41,84.47,86.59,88.69,91.15,93.66,96.40,99.02,101.9,104.7,107.8,110.8,113.8,117.0,120.2,123.4]) BaseLogPartFctRef[ 284 ]['NbLabels']= 3 BaseLogPartFctRef[ 284 ]['NbCliques']= 78 BaseLogPartFctRef[ 284 ]['NbSites']= 54 BaseLogPartFctRef[ 284 ]['StdNgbhDivMoyNgbh']= 0.41179611259 #In [3]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+30),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=10,NBY=10,NBZ=10,BetaGeneration=0.4) BaseLogPartFctRef[285 ]={} BaseLogPartFctRef[285]['LogPF']=np.array([691.0,713.8,737.8,762.5,787.5,814.1,842.4,870.4,899.3,929.5,964.6,1003.7,1042.4,1086.1,1136.3,1186.0,1242.4,1299.1,1359.9,1418.3,1479.8,1542.0,1605.7,1669.4,1734.8,1799.7,1865.2,1931.2,1997.7,2063.7]) BaseLogPartFctRef[ 285 ]['NbLabels']= 3 BaseLogPartFctRef[ 285 ]['NbCliques']= 1358 BaseLogPartFctRef[ 285 ]['NbSites']= 629 BaseLogPartFctRef[ 285 ]['StdNgbhDivMoyNgbh']= 0.282723872571 BaseLogPartFctRef[286 ]={} BaseLogPartFctRef[286]['LogPF']=np.array([793.2,822.3,851.8,882.8,914.5,947.4,981.4,1017.1,1055.9,1095.6,1145.2,1198.3,1258.3,1323.9,1390.5,1461.3,1533.9,1609.2,1686.6,1765.6,1844.5,1925.2,2006.7,2088.6,2171.4,2253.6,2336.5,2420.1,2503.7,2587.5]) BaseLogPartFctRef[ 286 ]['NbLabels']= 3 BaseLogPartFctRef[ 286 ]['NbCliques']= 1697 BaseLogPartFctRef[ 286 ]['NbSites']= 722 BaseLogPartFctRef[ 286 ]['StdNgbhDivMoyNgbh']= 0.239718877916 BaseLogPartFctRef[287 ]={} BaseLogPartFctRef[287]['LogPF']=np.array([725.1,750.1,775.7,801.8,829.4,857.8,886.6,917.0,949.6,983.0,1020.9,1063.2,1108.6,1160.3,1216.3,1275.8,1340.0,1402.5,1466.5,1532.7,1600.4,1667.7,1736.5,1806.4,1876.5,1946.3,2017.4,2088.5,2160.6,2232.1]) BaseLogPartFctRef[ 287 ]['NbLabels']= 3 BaseLogPartFctRef[ 287 ]['NbCliques']= 1464 BaseLogPartFctRef[ 287 ]['NbSites']= 660 BaseLogPartFctRef[ 287 ]['StdNgbhDivMoyNgbh']= 0.268932478729 BaseLogPartFctRef[288 ]={} BaseLogPartFctRef[288]['LogPF']=np.array([695.4,719.2,743.1,768.0,793.4,820.1,848.3,876.3,906.9,940.0,975.5,1016.8,1063.1,1111.4,1164.1,1217.2,1276.1,1335.6,1396.4,1459.0,1522.7,1587.6,1651.9,1717.0,1783.6,1850.8,1918.5,1986.1,2053.6,2121.8]) BaseLogPartFctRef[ 288 ]['NbLabels']= 3 BaseLogPartFctRef[ 288 ]['NbCliques']= 1389 BaseLogPartFctRef[ 288 ]['NbSites']= 633 BaseLogPartFctRef[ 288 ]['StdNgbhDivMoyNgbh']= 0.276406948361 BaseLogPartFctRef[289 ]={} BaseLogPartFctRef[289]['LogPF']=np.array([643.8,665.3,688.0,711.9,737.0,762.2,787.8,814.7,843.0,874.0,907.4,945.1,984.6,1032.2,1081.8,1133.2,1186.8,1243.0,1297.5,1357.5,1418.3,1479.2,1539.5,1600.7,1663.3,1725.9,1788.4,1851.3,1915.2,1979.0]) BaseLogPartFctRef[ 289 ]['NbLabels']= 3 BaseLogPartFctRef[ 289 ]['NbCliques']= 1301 BaseLogPartFctRef[ 289 ]['NbSites']= 586 BaseLogPartFctRef[ 289 ]['StdNgbhDivMoyNgbh']= 0.279615990334 BaseLogPartFctRef[290 ]={} BaseLogPartFctRef[290]['LogPF']=np.array([718.5,742.9,767.6,793.0,819.4,847.2,874.9,904.7,938.0,969.5,1008.4,1050.2,1097.8,1144.1,1195.6,1250.4,1308.7,1369.6,1433.3,1495.9,1560.2,1624.7,1691.5,1757.6,1825.9,1892.4,1960.9,2029.5,2098.6,2167.3]) BaseLogPartFctRef[ 290 ]['NbLabels']= 3 BaseLogPartFctRef[ 290 ]['NbCliques']= 1415 BaseLogPartFctRef[ 290 ]['NbSites']= 654 BaseLogPartFctRef[ 290 ]['StdNgbhDivMoyNgbh']= 0.280427716308 BaseLogPartFctRef[291 ]={} BaseLogPartFctRef[291]['LogPF']=np.array([705.3,729.4,753.6,778.9,804.8,832.3,860.4,889.2,918.8,950.8,987.0,1027.1,1073.6,1124.6,1176.8,1231.5,1290.1,1351.3,1412.8,1475.9,1538.5,1603.1,1669.9,1735.8,1802.1,1869.1,1936.2,2004.5,2072.6,2140.9]) BaseLogPartFctRef[ 291 ]['NbLabels']= 3 BaseLogPartFctRef[ 291 ]['NbCliques']= 1396 BaseLogPartFctRef[ 291 ]['NbSites']= 642 BaseLogPartFctRef[ 291 ]['StdNgbhDivMoyNgbh']= 0.274809819809 BaseLogPartFctRef[292 ]={} BaseLogPartFctRef[292]['LogPF']=np.array([637.2,658.2,680.2,703.0,726.4,751.1,776.2,802.6,830.1,859.6,891.8,925.9,965.3,1007.4,1054.7,1105.5,1155.1,1211.0,1266.0,1323.3,1381.2,1439.5,1498.0,1557.5,1617.6,1678.1,1739.1,1800.3,1861.1,1922.2]) BaseLogPartFctRef[ 292 ]['NbLabels']= 3 BaseLogPartFctRef[ 292 ]['NbCliques']= 1262 BaseLogPartFctRef[ 292 ]['NbSites']= 580 BaseLogPartFctRef[ 292 ]['StdNgbhDivMoyNgbh']= 0.286430368058 BaseLogPartFctRef[293 ]={} BaseLogPartFctRef[293]['LogPF']=np.array([695.4,719.2,744.0,769.0,795.0,822.2,850.3,878.7,909.8,941.2,980.0,1020.3,1068.5,1116.8,1170.0,1222.6,1282.8,1342.1,1403.7,1466.6,1532.0,1596.1,1659.9,1726.3,1793.2,1861.2,1928.1,1996.4,2064.9,2133.1]) BaseLogPartFctRef[ 293 ]['NbLabels']= 3 BaseLogPartFctRef[ 293 ]['NbCliques']= 1399 BaseLogPartFctRef[ 293 ]['NbSites']= 633 BaseLogPartFctRef[ 293 ]['StdNgbhDivMoyNgbh']= 0.270857570679 BaseLogPartFctRef[294 ]={} BaseLogPartFctRef[294]['LogPF']=np.array([692.1,716.0,740.7,766.5,793.2,820.1,847.7,876.7,907.6,939.6,976.2,1015.5,1057.5,1110.7,1163.0,1220.8,1279.5,1339.6,1402.3,1466.0,1530.7,1596.2,1662.3,1728.9,1795.3,1862.7,1930.2,1998.1,2067.1,2135.7]) BaseLogPartFctRef[ 294 ]['NbLabels']= 3 BaseLogPartFctRef[ 294 ]['NbCliques']= 1404 BaseLogPartFctRef[ 294 ]['NbSites']= 630 BaseLogPartFctRef[ 294 ]['StdNgbhDivMoyNgbh']= 0.279144327234 BaseLogPartFctRef[295 ]={} BaseLogPartFctRef[295]['LogPF']=np.array([798.7,826.6,855.5,885.4,916.9,949.1,982.2,1018.0,1054.9,1095.1,1142.6,1196.1,1252.8,1309.6,1371.3,1438.1,1509.6,1580.3,1654.1,1729.5,1806.4,1883.6,1963.0,2042.2,2122.5,2202.1,2282.2,2363.7,2445.2,2527.2]) BaseLogPartFctRef[ 295 ]['NbLabels']= 3 BaseLogPartFctRef[ 295 ]['NbCliques']= 1662 BaseLogPartFctRef[ 295 ]['NbSites']= 727 BaseLogPartFctRef[ 295 ]['StdNgbhDivMoyNgbh']= 0.2566648115 BaseLogPartFctRef[296 ]={} BaseLogPartFctRef[296]['LogPF']=np.array([705.3,729.0,754.1,778.7,804.5,831.5,859.6,889.0,920.4,953.5,987.2,1029.2,1078.3,1131.1,1184.6,1238.4,1297.3,1356.8,1417.6,1479.6,1543.2,1608.1,1673.6,1739.0,1805.9,1871.9,1938.9,2006.7,2074.3,2142.3]) BaseLogPartFctRef[ 296 ]['NbLabels']= 3 BaseLogPartFctRef[ 296 ]['NbCliques']= 1392 BaseLogPartFctRef[ 296 ]['NbSites']= 642 BaseLogPartFctRef[ 296 ]['StdNgbhDivMoyNgbh']= 0.27311390062 BaseLogPartFctRef[297 ]={} BaseLogPartFctRef[297]['LogPF']=np.array([635.0,655.5,677.2,699.1,721.6,745.1,769.6,795.2,821.9,849.5,882.6,918.9,959.2,1000.9,1047.3,1095.1,1143.5,1194.9,1247.7,1300.9,1356.3,1411.4,1468.1,1525.7,1583.8,1641.7,1700.5,1759.6,1819.4,1878.6]) BaseLogPartFctRef[ 297 ]['NbLabels']= 3 BaseLogPartFctRef[ 297 ]['NbCliques']= 1224 BaseLogPartFctRef[ 297 ]['NbSites']= 578 BaseLogPartFctRef[ 297 ]['StdNgbhDivMoyNgbh']= 0.282448665186 BaseLogPartFctRef[298 ]={} BaseLogPartFctRef[298]['LogPF']=np.array([785.5,812.7,841.2,869.8,900.0,930.6,962.7,996.0,1031.0,1070.1,1109.6,1158.4,1211.2,1267.9,1329.5,1393.6,1460.4,1531.4,1600.3,1674.2,1748.4,1822.5,1898.3,1974.0,2051.2,2129.3,2207.3,2285.4,2364.5,2443.6]) BaseLogPartFctRef[ 298 ]['NbLabels']= 3 BaseLogPartFctRef[ 298 ]['NbCliques']= 1606 BaseLogPartFctRef[ 298 ]['NbSites']= 715 BaseLogPartFctRef[ 298 ]['StdNgbhDivMoyNgbh']= 0.248105993557 BaseLogPartFctRef[299 ]={} BaseLogPartFctRef[299]['LogPF']=np.array([821.8,851.0,881.0,912.3,944.9,978.2,1011.8,1048.7,1087.3,1130.1,1179.6,1230.6,1292.4,1356.2,1425.2,1498.2,1571.9,1650.6,1730.7,1811.3,1892.3,1974.6,2056.5,2139.6,2223.2,2307.8,2392.5,2477.5,2562.8,2647.9]) BaseLogPartFctRef[ 299 ]['NbLabels']= 3 BaseLogPartFctRef[ 299 ]['NbCliques']= 1737 BaseLogPartFctRef[ 299 ]['NbSites']= 748 BaseLogPartFctRef[ 299 ]['StdNgbhDivMoyNgbh']= 0.247301841432 BaseLogPartFctRef[300 ]={} BaseLogPartFctRef[300]['LogPF']=np.array([680.0,702.3,725.2,748.8,773.8,799.1,825.5,853.3,881.6,911.1,944.8,981.5,1024.2,1070.1,1116.8,1169.2,1223.4,1278.1,1335.7,1394.8,1455.3,1517.1,1578.5,1641.8,1705.5,1769.7,1833.2,1897.3,1961.5,2026.6]) BaseLogPartFctRef[ 300 ]['NbLabels']= 3 BaseLogPartFctRef[ 300 ]['NbCliques']= 1324 BaseLogPartFctRef[ 300 ]['NbSites']= 619 BaseLogPartFctRef[ 300 ]['StdNgbhDivMoyNgbh']= 0.279879197433 BaseLogPartFctRef[301 ]={} BaseLogPartFctRef[301]['LogPF']=np.array([717.4,741.6,766.7,793.1,820.1,847.6,876.9,907.6,940.3,973.4,1008.9,1052.1,1099.0,1151.2,1206.4,1262.7,1323.0,1386.4,1451.9,1516.0,1582.6,1649.5,1718.2,1787.1,1857.5,1927.3,1997.9,2068.4,2139.1,2210.3]) BaseLogPartFctRef[ 301 ]['NbLabels']= 3 BaseLogPartFctRef[ 301 ]['NbCliques']= 1454 BaseLogPartFctRef[ 301 ]['NbSites']= 653 BaseLogPartFctRef[ 301 ]['StdNgbhDivMoyNgbh']= 0.273239438847 BaseLogPartFctRef[302 ]={} BaseLogPartFctRef[302]['LogPF']=np.array([767.9,793.9,820.2,848.1,876.3,905.6,936.0,967.7,1000.3,1037.5,1078.4,1124.2,1169.1,1222.9,1281.6,1342.7,1405.4,1470.1,1536.5,1604.9,1674.2,1744.6,1814.9,1887.2,1960.5,2034.0,2107.1,2180.7,2255.0,2329.8]) BaseLogPartFctRef[ 302 ]['NbLabels']= 3 BaseLogPartFctRef[ 302 ]['NbCliques']= 1522 BaseLogPartFctRef[ 302 ]['NbSites']= 699 BaseLogPartFctRef[ 302 ]['StdNgbhDivMoyNgbh']= 0.26619523446 BaseLogPartFctRef[303 ]={} BaseLogPartFctRef[303]['LogPF']=np.array([776.7,802.8,829.5,856.9,885.3,915.4,946.1,977.9,1011.9,1049.4,1089.0,1136.3,1185.0,1240.0,1294.5,1355.0,1419.1,1484.6,1553.0,1621.9,1692.8,1763.6,1836.2,1908.5,1982.6,2056.2,2131.3,2205.6,2280.9,2356.7]) BaseLogPartFctRef[ 303 ]['NbLabels']= 3 BaseLogPartFctRef[ 303 ]['NbCliques']= 1543 BaseLogPartFctRef[ 303 ]['NbSites']= 707 BaseLogPartFctRef[ 303 ]['StdNgbhDivMoyNgbh']= 0.267395399121 BaseLogPartFctRef[304 ]={} BaseLogPartFctRef[304]['LogPF']=np.array([732.8,756.7,780.8,806.5,832.7,859.8,888.2,916.8,948.3,979.0,1012.2,1050.8,1092.5,1137.1,1187.5,1240.7,1296.8,1354.0,1411.7,1474.4,1536.6,1599.0,1663.5,1729.1,1794.2,1859.9,1926.7,1994.4,2061.7,2128.6]) BaseLogPartFctRef[ 304 ]['NbLabels']= 3 BaseLogPartFctRef[ 304 ]['NbCliques']= 1392 BaseLogPartFctRef[ 304 ]['NbSites']= 667 BaseLogPartFctRef[ 304 ]['StdNgbhDivMoyNgbh']= 0.288462266949 BaseLogPartFctRef[305 ]={} BaseLogPartFctRef[305]['LogPF']=np.array([777.8,804.6,832.3,860.1,889.5,920.5,951.0,983.6,1017.3,1054.0,1092.3,1136.0,1186.0,1237.7,1295.7,1359.9,1427.7,1492.2,1560.4,1632.3,1703.8,1777.0,1851.3,1925.5,2001.1,2076.9,2153.1,2229.3,2305.9,2383.1]) BaseLogPartFctRef[ 305 ]['NbLabels']= 3 BaseLogPartFctRef[ 305 ]['NbCliques']= 1569 BaseLogPartFctRef[ 305 ]['NbSites']= 708 BaseLogPartFctRef[ 305 ]['StdNgbhDivMoyNgbh']= 0.248564683861 BaseLogPartFctRef[306 ]={} BaseLogPartFctRef[306]['LogPF']=np.array([717.4,741.8,767.4,793.5,820.5,848.9,877.9,908.9,941.5,977.4,1020.3,1063.1,1114.2,1165.5,1224.0,1283.2,1341.8,1405.3,1469.5,1535.1,1600.5,1668.8,1738.2,1807.5,1878.3,1948.9,2019.4,2090.6,2162.3,2234.2]) BaseLogPartFctRef[ 306 ]['NbLabels']= 3 BaseLogPartFctRef[ 306 ]['NbCliques']= 1461 BaseLogPartFctRef[ 306 ]['NbSites']= 653 BaseLogPartFctRef[ 306 ]['StdNgbhDivMoyNgbh']= 0.270948215172 BaseLogPartFctRef[307 ]={} BaseLogPartFctRef[307]['LogPF']=np.array([683.3,705.6,729.7,753.7,779.3,805.0,831.9,859.1,887.9,920.0,954.9,989.1,1030.9,1080.2,1128.5,1180.2,1236.2,1293.2,1350.4,1410.1,1470.1,1532.4,1594.8,1656.7,1719.0,1783.2,1847.7,1912.5,1977.1,2042.2]) BaseLogPartFctRef[ 307 ]['NbLabels']= 3 BaseLogPartFctRef[ 307 ]['NbCliques']= 1335 BaseLogPartFctRef[ 307 ]['NbSites']= 622 BaseLogPartFctRef[ 307 ]['StdNgbhDivMoyNgbh']= 0.276450145133 BaseLogPartFctRef[308 ]={} BaseLogPartFctRef[308]['LogPF']=np.array([795.4,822.3,850.0,879.0,908.8,939.8,971.2,1004.6,1039.0,1076.4,1119.3,1165.3,1217.1,1272.0,1332.9,1395.5,1457.3,1526.3,1598.1,1673.1,1746.4,1821.0,1896.0,1972.1,2048.6,2125.5,2203.4,2280.9,2358.8,2436.9]) BaseLogPartFctRef[ 308 ]['NbLabels']= 3 BaseLogPartFctRef[ 308 ]['NbCliques']= 1596 BaseLogPartFctRef[ 308 ]['NbSites']= 724 BaseLogPartFctRef[ 308 ]['StdNgbhDivMoyNgbh']= 0.258224305712 BaseLogPartFctRef[309 ]={} BaseLogPartFctRef[309]['LogPF']=np.array([630.6,652.1,674.3,697.5,720.8,745.3,770.7,797.4,824.6,854.6,886.3,917.6,959.0,1003.4,1050.4,1100.6,1153.0,1206.7,1262.5,1318.7,1377.1,1435.3,1495.1,1554.9,1616.1,1677.4,1738.2,1800.3,1862.1,1924.1]) BaseLogPartFctRef[ 309 ]['NbLabels']= 3 BaseLogPartFctRef[ 309 ]['NbCliques']= 1266 BaseLogPartFctRef[ 309 ]['NbSites']= 574 BaseLogPartFctRef[ 309 ]['StdNgbhDivMoyNgbh']= 0.269653103733 BaseLogPartFctRef[310 ]={} BaseLogPartFctRef[310]['LogPF']=np.array([662.5,684.0,707.2,729.6,753.8,778.7,804.8,831.8,859.7,890.6,922.5,957.7,994.7,1040.6,1085.4,1133.4,1183.9,1238.8,1296.3,1353.7,1412.4,1471.2,1532.0,1591.9,1653.2,1714.8,1776.5,1838.3,1900.4,1963.1]) BaseLogPartFctRef[ 310 ]['NbLabels']= 3 BaseLogPartFctRef[ 310 ]['NbCliques']= 1285 BaseLogPartFctRef[ 310 ]['NbSites']= 603 BaseLogPartFctRef[ 310 ]['StdNgbhDivMoyNgbh']= 0.291932109486 BaseLogPartFctRef[311 ]={} BaseLogPartFctRef[311]['LogPF']=np.array([560.3,578.7,597.1,616.5,636.8,657.4,678.4,700.5,724.9,750.9,776.2,803.5,836.3,871.2,910.5,952.4,995.3,1040.0,1086.9,1134.4,1182.1,1230.0,1280.0,1329.8,1380.5,1431.6,1483.0,1534.7,1586.4,1638.9]) BaseLogPartFctRef[ 311 ]['NbLabels']= 3 BaseLogPartFctRef[ 311 ]['NbCliques']= 1071 BaseLogPartFctRef[ 311 ]['NbSites']= 510 BaseLogPartFctRef[ 311 ]['StdNgbhDivMoyNgbh']= 0.289240565804 BaseLogPartFctRef[312 ]={} BaseLogPartFctRef[312]['LogPF']=np.array([785.5,811.6,839.6,867.6,897.5,928.4,960.1,993.0,1028.3,1068.4,1109.9,1154.2,1201.7,1256.7,1318.9,1384.1,1450.8,1521.5,1593.2,1665.4,1738.5,1811.0,1885.7,1960.7,2037.2,2114.2,2191.1,2268.1,2346.0,2424.1]) BaseLogPartFctRef[ 312 ]['NbLabels']= 3 BaseLogPartFctRef[ 312 ]['NbCliques']= 1592 BaseLogPartFctRef[ 312 ]['NbSites']= 715 BaseLogPartFctRef[ 312 ]['StdNgbhDivMoyNgbh']= 0.260541184501 BaseLogPartFctRef[313 ]={} BaseLogPartFctRef[313]['LogPF']=np.array([660.3,681.9,704.7,727.9,751.9,776.3,802.6,829.2,857.4,888.0,920.6,957.8,997.8,1039.2,1087.7,1138.6,1188.3,1245.0,1302.1,1357.6,1416.1,1473.3,1533.7,1593.5,1654.2,1715.4,1776.8,1838.2,1900.7,1962.7]) BaseLogPartFctRef[ 313 ]['NbLabels']= 3 BaseLogPartFctRef[ 313 ]['NbCliques']= 1281 BaseLogPartFctRef[ 313 ]['NbSites']= 601 BaseLogPartFctRef[ 313 ]['StdNgbhDivMoyNgbh']= 0.29667269453 BaseLogPartFctRef[314 ]={} BaseLogPartFctRef[314]['LogPF']=np.array([691.0,714.6,739.7,765.2,792.1,819.1,847.7,877.1,907.2,939.6,979.4,1022.9,1067.5,1119.7,1177.0,1233.5,1292.5,1355.9,1418.8,1482.8,1548.4,1613.4,1679.4,1745.9,1813.0,1881.1,1949.5,2018.5,2087.6,2157.0]) BaseLogPartFctRef[ 314 ]['NbLabels']= 3 BaseLogPartFctRef[ 314 ]['NbCliques']= 1410 BaseLogPartFctRef[ 314 ]['NbSites']= 629 BaseLogPartFctRef[ 314 ]['StdNgbhDivMoyNgbh']= 0.269776205412 #In [4]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+60),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=10,NBY=10,NBZ=10,BetaGeneration=0.3) BaseLogPartFctRef[315 ]={} BaseLogPartFctRef[315]['LogPF']=np.array([366.9,377.2,388.1,398.9,410.4,422.2,434.2,446.5,460.3,474.5,489.2,503.9,520.8,538.1,557.1,576.7,599.0,621.6,643.0,667.7,694.0,719.3,746.0,772.9,800.3,828.1,856.0,884.2,912.6,941.5]) BaseLogPartFctRef[ 315 ]['NbLabels']= 3 BaseLogPartFctRef[ 315 ]['NbCliques']= 615 BaseLogPartFctRef[ 315 ]['NbSites']= 334 BaseLogPartFctRef[ 315 ]['StdNgbhDivMoyNgbh']= 0.36598110595 BaseLogPartFctRef[316 ]={} BaseLogPartFctRef[316]['LogPF']=np.array([114.3,116.9,119.8,122.8,125.8,128.8,132.1,135.5,139.1,142.6,146.4,150.4,154.4,158.6,163.0,167.6,172.3,177.2,182.2,187.7,193.1,198.6,204.7,210.9,217.8,224.6,231.4,238.4,245.5,253.1]) BaseLogPartFctRef[ 316 ]['NbLabels']= 3 BaseLogPartFctRef[ 316 ]['NbCliques']= 164 BaseLogPartFctRef[ 316 ]['NbSites']= 104 BaseLogPartFctRef[ 316 ]['StdNgbhDivMoyNgbh']= 0.363742189418 BaseLogPartFctRef[317 ]={} BaseLogPartFctRef[317]['LogPF']=np.array([80.20,82.09,84.00,86.03,88.18,90.30,92.55,94.90,97.13,99.55,102.1,104.7,107.5,110.3,113.3,116.3,119.6,123.1,126.6,130.2,134.0,138.1,141.8,146.1,150.5,154.9,159.2,163.5,168.2,173.0]) BaseLogPartFctRef[ 317 ]['NbLabels']= 3 BaseLogPartFctRef[ 317 ]['NbCliques']= 110 BaseLogPartFctRef[ 317 ]['NbSites']= 73 BaseLogPartFctRef[ 317 ]['StdNgbhDivMoyNgbh']= 0.39988429009 BaseLogPartFctRef[318 ]={} BaseLogPartFctRef[318]['LogPF']=np.array([81.30,83.19,85.15,87.18,89.26,91.49,93.68,95.88,98.28,100.7,103.2,105.9,108.7,111.7,114.7,118.2,121.3,124.7,128.2,131.8,135.7,139.9,144.1,148.3,152.5,157.3,162.1,166.7,171.5,176.4]) BaseLogPartFctRef[ 318 ]['NbLabels']= 3 BaseLogPartFctRef[ 318 ]['NbCliques']= 111 BaseLogPartFctRef[ 318 ]['NbSites']= 74 BaseLogPartFctRef[ 318 ]['StdNgbhDivMoyNgbh']= 0.40813745446 BaseLogPartFctRef[319 ]={} BaseLogPartFctRef[319]['LogPF']=np.array([147.2,151.0,154.9,158.9,163.1,167.5,171.8,176.3,181.1,186.1,191.2,196.8,202.6,208.6,214.6,221.3,228.2,235.8,243.3,251.4,259.8,268.4,277.1,286.4,295.4,304.8,314.3,324.0,334.0,344.0]) BaseLogPartFctRef[ 319 ]['NbLabels']= 3 BaseLogPartFctRef[ 319 ]['NbCliques']= 221 BaseLogPartFctRef[ 319 ]['NbSites']= 134 BaseLogPartFctRef[ 319 ]['StdNgbhDivMoyNgbh']= 0.38560906263 BaseLogPartFctRef[320 ]={} BaseLogPartFctRef[320]['LogPF']=np.array([126.3,129.5,132.7,136.0,139.6,143.2,147.0,150.7,154.6,158.7,163.0,167.4,171.9,177.0,182.2,187.6,193.3,199.2,205.5,211.2,218.0,225.3,232.5,240.2,247.6,255.3,263.2,271.5,280.0,288.5]) BaseLogPartFctRef[ 320 ]['NbLabels']= 3 BaseLogPartFctRef[ 320 ]['NbCliques']= 187 BaseLogPartFctRef[ 320 ]['NbSites']= 115 BaseLogPartFctRef[ 320 ]['StdNgbhDivMoyNgbh']= 0.350072864142 BaseLogPartFctRef[321 ]={} BaseLogPartFctRef[321]['LogPF']=np.array([104.4,107.1,110.0,113.1,116.1,119.2,122.4,125.7,129.1,132.8,136.6,140.4,144.9,149.1,153.4,158.0,162.7,168.0,173.0,179.2,185.3,191.9,198.2,205.1,212.3,219.4,226.8,234.0,241.6,249.3]) BaseLogPartFctRef[ 321 ]['NbLabels']= 3 BaseLogPartFctRef[ 321 ]['NbCliques']= 163 BaseLogPartFctRef[ 321 ]['NbSites']= 95 BaseLogPartFctRef[ 321 ]['StdNgbhDivMoyNgbh']= 0.382651352394 BaseLogPartFctRef[322 ]={} BaseLogPartFctRef[322]['LogPF']=np.array([316.4,325.0,333.7,343.1,352.7,362.8,372.6,382.7,393.4,405.2,417.6,430.3,443.3,457.4,473.8,489.8,508.4,527.1,546.6,566.8,585.9,607.1,628.4,650.9,673.5,696.5,719.9,743.6,767.5,791.6]) BaseLogPartFctRef[ 322 ]['NbLabels']= 3 BaseLogPartFctRef[ 322 ]['NbCliques']= 515 BaseLogPartFctRef[ 322 ]['NbSites']= 288 BaseLogPartFctRef[ 322 ]['StdNgbhDivMoyNgbh']= 0.365049934797 BaseLogPartFctRef[323 ]={} BaseLogPartFctRef[323]['LogPF']=np.array([207.6,213.5,219.6,225.8,232.2,238.9,245.9,253.2,260.8,268.4,276.5,285.0,294.3,303.8,313.4,323.7,335.3,346.9,358.8,371.5,385.4,399.8,414.2,429.6,444.7,460.4,476.3,492.3,508.4,524.7]) BaseLogPartFctRef[ 323 ]['NbLabels']= 3 BaseLogPartFctRef[ 323 ]['NbCliques']= 345 BaseLogPartFctRef[ 323 ]['NbSites']= 189 BaseLogPartFctRef[ 323 ]['StdNgbhDivMoyNgbh']= 0.331011355529 BaseLogPartFctRef[324 ]={} BaseLogPartFctRef[324]['LogPF']=np.array([209.8,214.8,220.0,225.4,231.0,236.9,242.9,249.0,255.3,261.9,268.8,275.9,283.3,291.0,299.2,308.0,316.9,326.8,336.6,347.1,357.7,368.8,380.0,391.6,403.6,416.4,429.0,441.9,455.2,468.8]) BaseLogPartFctRef[ 324 ]['NbLabels']= 3 BaseLogPartFctRef[ 324 ]['NbCliques']= 301 BaseLogPartFctRef[ 324 ]['NbSites']= 191 BaseLogPartFctRef[ 324 ]['StdNgbhDivMoyNgbh']= 0.368659147247 BaseLogPartFctRef[325 ]={} BaseLogPartFctRef[325]['LogPF']=np.array([141.7,145.5,149.4,153.4,157.4,161.7,166.2,170.9,175.4,180.3,185.4,190.6,196.1,201.7,208.1,214.7,221.5,228.4,236.0,243.8,252.0,260.6,269.4,278.8,288.1,297.5,307.2,317.1,327.0,337.1]) BaseLogPartFctRef[ 325 ]['NbLabels']= 3 BaseLogPartFctRef[ 325 ]['NbCliques']= 218 BaseLogPartFctRef[ 325 ]['NbSites']= 129 BaseLogPartFctRef[ 325 ]['StdNgbhDivMoyNgbh']= 0.387193491953 BaseLogPartFctRef[326 ]={} BaseLogPartFctRef[326]['LogPF']=np.array([234.0,240.5,247.3,254.3,261.4,269.2,277.0,284.9,293.4,301.9,310.5,319.7,329.8,340.7,352.1,365.1,378.7,393.0,407.6,423.3,439.0,455.2,471.6,488.5,505.5,523.3,541.6,559.4,577.8,595.9]) BaseLogPartFctRef[ 326 ]['NbLabels']= 3 BaseLogPartFctRef[ 326 ]['NbCliques']= 389 BaseLogPartFctRef[ 326 ]['NbSites']= 213 BaseLogPartFctRef[ 326 ]['StdNgbhDivMoyNgbh']= 0.325694986108 BaseLogPartFctRef[327 ]={} BaseLogPartFctRef[327]['LogPF']=np.array([294.4,302.2,310.4,318.8,327.3,336.3,345.4,355.0,365.2,375.8,386.5,397.3,409.4,422.6,437.2,451.3,466.8,481.4,498.5,515.5,534.0,553.3,572.9,592.7,613.4,634.3,654.9,675.4,696.5,718.1]) BaseLogPartFctRef[ 327 ]['NbLabels']= 3 BaseLogPartFctRef[ 327 ]['NbCliques']= 465 BaseLogPartFctRef[ 327 ]['NbSites']= 268 BaseLogPartFctRef[ 327 ]['StdNgbhDivMoyNgbh']= 0.365667449166 BaseLogPartFctRef[328 ]={} BaseLogPartFctRef[328]['LogPF']=np.array([292.2,300.2,308.6,317.1,326.0,335.1,344.7,354.2,364.2,374.8,386.1,397.0,408.9,422.2,436.4,450.6,465.8,482.3,499.2,517.6,536.7,555.6,576.0,596.3,617.8,639.7,661.3,683.4,705.4,727.8]) BaseLogPartFctRef[ 328 ]['NbLabels']= 3 BaseLogPartFctRef[ 328 ]['NbCliques']= 476 BaseLogPartFctRef[ 328 ]['NbSites']= 266 BaseLogPartFctRef[ 328 ]['StdNgbhDivMoyNgbh']= 0.337418413588 BaseLogPartFctRef[329 ]={} BaseLogPartFctRef[329]['LogPF']=np.array([107.7,110.5,113.4,116.4,119.4,122.7,126.0,129.4,133.0,136.5,140.5,144.9,148.9,153.2,157.6,162.5,167.1,172.0,177.4,182.9,188.9,195.2,201.6,208.3,215.1,222.4,229.4,236.9,244.4,251.8]) BaseLogPartFctRef[ 329 ]['NbLabels']= 3 BaseLogPartFctRef[ 329 ]['NbCliques']= 164 BaseLogPartFctRef[ 329 ]['NbSites']= 98 BaseLogPartFctRef[ 329 ]['StdNgbhDivMoyNgbh']= 0.363676245603 BaseLogPartFctRef[330 ]={} BaseLogPartFctRef[330]['LogPF']=np.array([130.7,134.0,137.4,140.8,144.4,148.2,151.9,155.8,159.6,163.9,168.5,173.2,178.0,183.0,188.3,193.8,199.5,206.0,212.3,219.2,226.3,233.1,240.2,247.9,256.0,264.0,272.2,280.8,289.3,297.9]) BaseLogPartFctRef[ 330 ]['NbLabels']= 3 BaseLogPartFctRef[ 330 ]['NbCliques']= 192 BaseLogPartFctRef[ 330 ]['NbSites']= 119 BaseLogPartFctRef[ 330 ]['StdNgbhDivMoyNgbh']= 0.372511651842 BaseLogPartFctRef[331 ]={} BaseLogPartFctRef[331]['LogPF']=np.array([336.2,346.0,356.4,366.7,377.6,388.6,400.1,412.2,424.8,437.5,451.2,466.2,481.2,496.8,515.9,535.2,555.4,576.3,598.7,621.3,644.9,670.5,695.7,722.1,748.8,775.6,803.3,830.4,857.7,885.8]) BaseLogPartFctRef[ 331 ]['NbLabels']= 3 BaseLogPartFctRef[ 331 ]['NbCliques']= 580 BaseLogPartFctRef[ 331 ]['NbSites']= 306 BaseLogPartFctRef[ 331 ]['StdNgbhDivMoyNgbh']= 0.329518283642 BaseLogPartFctRef[332 ]={} BaseLogPartFctRef[332]['LogPF']=np.array([167.0,171.1,175.3,179.6,184.2,188.9,193.9,198.8,204.0,209.3,214.8,220.6,226.4,232.9,239.3,246.4,253.6,261.1,269.1,277.1,285.7,294.4,303.2,312.6,322.6,332.2,342.1,352.7,363.4,374.2]) BaseLogPartFctRef[ 332 ]['NbLabels']= 3 BaseLogPartFctRef[ 332 ]['NbCliques']= 242 BaseLogPartFctRef[ 332 ]['NbSites']= 152 BaseLogPartFctRef[ 332 ]['StdNgbhDivMoyNgbh']= 0.360403372577 BaseLogPartFctRef[333 ]={} BaseLogPartFctRef[333]['LogPF']=np.array([218.6,223.9,229.4,235.2,241.2,247.3,253.5,260.2,267.0,274.3,281.6,289.2,296.9,305.0,313.8,323.0,332.1,342.0,352.2,363.0,374.5,385.9,398.4,410.6,423.3,436.7,449.9,463.6,477.6,491.5]) BaseLogPartFctRef[ 333 ]['NbLabels']= 3 BaseLogPartFctRef[ 333 ]['NbCliques']= 316 BaseLogPartFctRef[ 333 ]['NbSites']= 199 BaseLogPartFctRef[ 333 ]['StdNgbhDivMoyNgbh']= 0.391555179039 BaseLogPartFctRef[334 ]={} BaseLogPartFctRef[334]['LogPF']=np.array([151.6,155.6,159.7,163.8,168.2,172.5,177.2,181.9,186.7,192.0,197.5,202.9,208.6,214.5,220.9,227.3,233.9,241.1,248.7,256.9,265.4,274.4,283.7,293.1,302.5,312.3,322.3,332.7,342.6,353.1]) BaseLogPartFctRef[ 334 ]['NbLabels']= 3 BaseLogPartFctRef[ 334 ]['NbCliques']= 229 BaseLogPartFctRef[ 334 ]['NbSites']= 138 BaseLogPartFctRef[ 334 ]['StdNgbhDivMoyNgbh']= 0.354636934759 BaseLogPartFctRef[335 ]={} BaseLogPartFctRef[335]['LogPF']=np.array([99.97,102.7,105.4,108.3,111.4,114.4,117.5,120.9,124.4,127.9,131.5,135.4,139.5,143.5,147.7,152.0,157.2,162.3,168.0,173.8,179.5,185.6,191.7,198.1,204.9,211.9,218.9,226.0,233.4,240.7]) BaseLogPartFctRef[ 335 ]['NbLabels']= 3 BaseLogPartFctRef[ 335 ]['NbCliques']= 159 BaseLogPartFctRef[ 335 ]['NbSites']= 91 BaseLogPartFctRef[ 335 ]['StdNgbhDivMoyNgbh']= 0.33924306586 BaseLogPartFctRef[336 ]={} BaseLogPartFctRef[336]['LogPF']=np.array([90.09,92.50,95.06,97.71,100.3,103.1,105.9,108.8,111.9,115.3,118.7,122.1,125.8,129.5,133.6,138.1,143.2,148.2,153.6,159.0,164.4,170.0,176.1,182.3,188.6,195.0,201.6,208.2,215.0,221.6]) BaseLogPartFctRef[ 336 ]['NbLabels']= 3 BaseLogPartFctRef[ 336 ]['NbCliques']= 144 BaseLogPartFctRef[ 336 ]['NbSites']= 82 BaseLogPartFctRef[ 336 ]['StdNgbhDivMoyNgbh']= 0.362854513411 BaseLogPartFctRef[337 ]={} BaseLogPartFctRef[337]['LogPF']=np.array([60.42,61.87,63.44,65.10,66.80,68.56,70.46,72.47,74.42,76.39,78.39,80.60,82.91,85.38,87.92,90.45,93.06,96.24,99.38,102.4,105.6,108.6,112.4,116.2,120.0,124.1,127.9,131.8,135.9,140.1]) BaseLogPartFctRef[ 337 ]['NbLabels']= 3 BaseLogPartFctRef[ 337 ]['NbCliques']= 90 BaseLogPartFctRef[ 337 ]['NbSites']= 55 BaseLogPartFctRef[ 337 ]['StdNgbhDivMoyNgbh']= 0.38569460792 BaseLogPartFctRef[338 ]={} BaseLogPartFctRef[338]['LogPF']=np.array([148.3,152.3,156.4,160.6,165.1,169.9,174.6,179.6,184.7,190.0,195.4,201.2,207.5,213.8,220.5,228.0,236.1,244.7,253.4,262.4,272.1,281.4,291.0,301.2,311.9,322.6,333.4,344.1,354.9,366.0]) BaseLogPartFctRef[ 338 ]['NbLabels']= 3 BaseLogPartFctRef[ 338 ]['NbCliques']= 239 BaseLogPartFctRef[ 338 ]['NbSites']= 135 BaseLogPartFctRef[ 338 ]['StdNgbhDivMoyNgbh']= 0.378058229611 BaseLogPartFctRef[339 ]={} BaseLogPartFctRef[339]['LogPF']=np.array([81.30,83.23,85.26,87.31,89.42,91.62,93.94,96.20,98.54,101.0,103.7,106.6,109.4,112.3,115.7,118.9,122.2,126.2,130.0,133.8,137.8,141.9,146.2,150.6,155.1,159.6,164.5,169.4,174.2,179.3]) BaseLogPartFctRef[ 339 ]['NbLabels']= 3 BaseLogPartFctRef[ 339 ]['NbCliques']= 115 BaseLogPartFctRef[ 339 ]['NbSites']= 74 BaseLogPartFctRef[ 339 ]['StdNgbhDivMoyNgbh']= 0.367360929892 BaseLogPartFctRef[340 ]={} BaseLogPartFctRef[340]['LogPF']=np.array([450.4,463.6,477.2,490.9,506.0,521.2,536.5,553.1,569.8,587.4,607.3,626.7,648.5,671.8,696.1,725.1,751.4,779.6,811.0,841.8,875.1,910.3,945.5,981.5,1016.7,1052.5,1089.4,1126.5,1163.5,1200.9]) BaseLogPartFctRef[ 340 ]['NbLabels']= 3 BaseLogPartFctRef[ 340 ]['NbCliques']= 785 BaseLogPartFctRef[ 340 ]['NbSites']= 410 BaseLogPartFctRef[ 340 ]['StdNgbhDivMoyNgbh']= 0.312518467356 BaseLogPartFctRef[341 ]={} BaseLogPartFctRef[341]['LogPF']=np.array([232.9,238.6,245.0,251.7,258.4,265.5,272.8,280.4,288.2,296.5,304.7,313.2,322.4,331.9,342.2,353.8,364.3,376.2,390.3,403.4,417.1,432.4,446.9,462.4,477.5,493.5,510.3,526.5,543.3,560.2]) BaseLogPartFctRef[ 341 ]['NbLabels']= 3 BaseLogPartFctRef[ 341 ]['NbCliques']= 363 BaseLogPartFctRef[ 341 ]['NbSites']= 212 BaseLogPartFctRef[ 341 ]['StdNgbhDivMoyNgbh']= 0.332688757734 BaseLogPartFctRef[342 ]={} BaseLogPartFctRef[342]['LogPF']=np.array([260.4,267.7,275.2,283.0,290.9,299.5,308.5,317.6,327.1,337.0,347.4,358.4,371.1,384.1,398.4,412.2,426.8,441.6,458.6,475.6,494.2,513.5,532.0,550.8,570.7,590.9,610.7,631.1,652.0,672.6]) BaseLogPartFctRef[ 342 ]['NbLabels']= 3 BaseLogPartFctRef[ 342 ]['NbCliques']= 441 BaseLogPartFctRef[ 342 ]['NbSites']= 237 BaseLogPartFctRef[ 342 ]['StdNgbhDivMoyNgbh']= 0.386940124834 BaseLogPartFctRef[343 ]={} BaseLogPartFctRef[343]['LogPF']=np.array([236.2,242.1,248.4,254.9,261.7,268.9,276.3,283.8,291.4,299.5,308.3,317.7,327.4,337.2,347.3,357.6,369.6,381.1,394.4,406.4,420.4,435.3,450.0,465.2,480.3,496.3,512.2,529.1,545.7,562.9]) BaseLogPartFctRef[ 343 ]['NbLabels']= 3 BaseLogPartFctRef[ 343 ]['NbCliques']= 365 BaseLogPartFctRef[ 343 ]['NbSites']= 215 BaseLogPartFctRef[ 343 ]['StdNgbhDivMoyNgbh']= 0.357302435905 BaseLogPartFctRef[344 ]={} BaseLogPartFctRef[344]['LogPF']=np.array([107.7,110.4,113.1,115.9,118.9,121.9,125.1,128.1,131.5,135.1,138.8,142.5,146.4,150.7,154.9,159.2,164.3,169.3,174.4,180.0,185.6,191.6,197.9,204.3,210.7,217.8,225.0,231.8,238.9,246.2]) BaseLogPartFctRef[ 344 ]['NbLabels']= 3 BaseLogPartFctRef[ 344 ]['NbCliques']= 159 BaseLogPartFctRef[ 344 ]['NbSites']= 98 BaseLogPartFctRef[ 344 ]['StdNgbhDivMoyNgbh']= 0.385003124456 #In [5]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+90),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=10,NBY=10,NBZ=10,BetaGeneration=0.6) BaseLogPartFctRef[345 ]={} BaseLogPartFctRef[345]['LogPF']=np.array([1004.1,1043.5,1084.2,1126.3,1171.2,1215.7,1263.0,1314.5,1368.5,1427.8,1494.6,1571.3,1659.2,1759.1,1857.7,1962.2,2068.9,2176.0,2285.6,2397.1,2509.4,2622.9,2737.1,2851.6,2966.1,3081.3,3196.6,3312.4,3428.2,3544.1]) BaseLogPartFctRef[ 345 ]['NbLabels']= 3 BaseLogPartFctRef[ 345 ]['NbCliques']= 2334 BaseLogPartFctRef[ 345 ]['NbSites']= 914 BaseLogPartFctRef[ 345 ]['StdNgbhDivMoyNgbh']= 0.184520051268 BaseLogPartFctRef[346 ]={} BaseLogPartFctRef[346]['LogPF']=np.array([1018.4,1058.8,1100.6,1143.0,1187.3,1233.0,1280.8,1332.5,1388.4,1453.6,1523.1,1605.0,1687.7,1781.5,1884.0,1987.9,2095.0,2204.2,2316.2,2428.8,2541.4,2655.9,2771.3,2887.1,3004.2,3120.9,3237.6,3354.9,3472.2,3589.8]) BaseLogPartFctRef[ 346 ]['NbLabels']= 3 BaseLogPartFctRef[ 346 ]['NbCliques']= 2366 BaseLogPartFctRef[ 346 ]['NbSites']= 927 BaseLogPartFctRef[ 346 ]['StdNgbhDivMoyNgbh']= 0.177286604214 BaseLogPartFctRef[347 ]={} BaseLogPartFctRef[347]['LogPF']=np.array([1008.5,1048.1,1088.7,1131.6,1176.0,1220.9,1267.1,1319.5,1376.9,1439.5,1511.0,1587.1,1672.6,1765.5,1865.3,1965.9,2072.0,2182.1,2293.7,2404.4,2516.8,2629.5,2742.6,2857.0,2971.9,3087.2,3203.1,3319.3,3435.2,3551.8]) BaseLogPartFctRef[ 347 ]['NbLabels']= 3 BaseLogPartFctRef[ 347 ]['NbCliques']= 2337 BaseLogPartFctRef[ 347 ]['NbSites']= 918 BaseLogPartFctRef[ 347 ]['StdNgbhDivMoyNgbh']= 0.182266929196 BaseLogPartFctRef[348 ]={} BaseLogPartFctRef[348]['LogPF']=np.array([1030.5,1070.9,1113.3,1157.0,1201.8,1248.9,1297.8,1348.1,1404.8,1466.7,1541.0,1630.4,1724.4,1819.8,1924.2,2031.6,2140.2,2253.0,2367.4,2483.5,2600.4,2717.9,2837.0,2955.8,3075.2,3194.0,3314.3,3435.2,3556.1,3676.8]) BaseLogPartFctRef[ 348 ]['NbLabels']= 3 BaseLogPartFctRef[ 348 ]['NbCliques']= 2424 BaseLogPartFctRef[ 348 ]['NbSites']= 938 BaseLogPartFctRef[ 348 ]['StdNgbhDivMoyNgbh']= 0.173444289427 BaseLogPartFctRef[349 ]={} BaseLogPartFctRef[349]['LogPF']=np.array([1027.2,1067.7,1109.3,1152.4,1196.8,1242.8,1290.4,1342.5,1396.1,1456.1,1535.3,1614.4,1706.5,1800.5,1905.4,2010.0,2119.2,2232.0,2345.8,2460.5,2575.3,2692.3,2810.1,2928.8,3047.8,3166.5,3285.7,3405.2,3524.6,3644.6]) BaseLogPartFctRef[ 349 ]['NbLabels']= 3 BaseLogPartFctRef[ 349 ]['NbCliques']= 2409 BaseLogPartFctRef[ 349 ]['NbSites']= 935 BaseLogPartFctRef[ 349 ]['StdNgbhDivMoyNgbh']= 0.173752738849 BaseLogPartFctRef[350 ]={} BaseLogPartFctRef[350]['LogPF']=np.array([1022.8,1063.4,1106.2,1148.6,1193.7,1240.6,1288.8,1340.4,1393.8,1453.9,1530.0,1615.0,1705.3,1806.4,1908.8,2018.0,2125.8,2238.3,2351.2,2465.9,2580.9,2697.8,2815.6,2932.9,3051.1,3169.4,3288.2,3407.4,3526.4,3645.8]) BaseLogPartFctRef[ 350 ]['NbLabels']= 3 BaseLogPartFctRef[ 350 ]['NbCliques']= 2396 BaseLogPartFctRef[ 350 ]['NbSites']= 931 BaseLogPartFctRef[ 350 ]['StdNgbhDivMoyNgbh']= 0.16981940557 BaseLogPartFctRef[351 ]={} BaseLogPartFctRef[351]['LogPF']=np.array([1021.7,1061.8,1103.3,1147.2,1190.6,1236.9,1284.7,1335.0,1390.6,1451.2,1524.1,1607.1,1699.5,1798.5,1901.5,2006.8,2117.9,2228.8,2338.2,2451.9,2565.9,2681.6,2797.6,2915.2,3031.5,3149.0,3266.8,3384.5,3503.0,3621.3]) BaseLogPartFctRef[ 351 ]['NbLabels']= 3 BaseLogPartFctRef[ 351 ]['NbCliques']= 2384 BaseLogPartFctRef[ 351 ]['NbSites']= 930 BaseLogPartFctRef[ 351 ]['StdNgbhDivMoyNgbh']= 0.178554698558 BaseLogPartFctRef[352 ]={} BaseLogPartFctRef[352]['LogPF']=np.array([1049.2,1091.5,1134.9,1179.9,1225.7,1273.2,1323.6,1376.8,1435.2,1497.8,1577.9,1669.8,1763.4,1861.3,1966.6,2077.1,2192.3,2309.9,2426.2,2543.6,2663.2,2784.4,2906.2,3028.3,3151.2,3274.3,3397.4,3520.4,3644.0,3768.0]) BaseLogPartFctRef[ 352 ]['NbLabels']= 3 BaseLogPartFctRef[ 352 ]['NbCliques']= 2487 BaseLogPartFctRef[ 352 ]['NbSites']= 955 BaseLogPartFctRef[ 352 ]['StdNgbhDivMoyNgbh']= 0.162737513894 BaseLogPartFctRef[353 ]={} BaseLogPartFctRef[353]['LogPF']=np.array([1021.7,1062.4,1105.4,1148.4,1193.4,1239.0,1287.2,1337.1,1390.0,1447.7,1519.0,1604.4,1693.9,1788.3,1893.0,2002.7,2112.3,2223.2,2336.6,2452.1,2566.7,2682.0,2798.1,2915.4,3033.0,3150.7,3269.5,3388.2,3507.1,3625.8]) BaseLogPartFctRef[ 353 ]['NbLabels']= 3 BaseLogPartFctRef[ 353 ]['NbCliques']= 2393 BaseLogPartFctRef[ 353 ]['NbSites']= 930 BaseLogPartFctRef[ 353 ]['StdNgbhDivMoyNgbh']= 0.171279097606 BaseLogPartFctRef[354 ]={} BaseLogPartFctRef[354]['LogPF']=np.array([1043.7,1085.0,1127.2,1171.5,1217.8,1265.0,1313.9,1365.6,1421.8,1487.5,1563.7,1648.9,1741.8,1838.0,1945.5,2053.4,2166.7,2279.3,2395.2,2511.9,2631.0,2750.0,2869.0,2989.3,3110.5,3231.9,3353.8,3475.5,3597.8,3720.1]) BaseLogPartFctRef[ 354 ]['NbLabels']= 3 BaseLogPartFctRef[ 354 ]['NbCliques']= 2458 BaseLogPartFctRef[ 354 ]['NbSites']= 950 BaseLogPartFctRef[ 354 ]['StdNgbhDivMoyNgbh']= 0.16747255202 BaseLogPartFctRef[355 ]={} BaseLogPartFctRef[355]['LogPF']=np.array([1020.6,1060.3,1102.0,1145.4,1190.1,1235.7,1284.4,1334.7,1391.5,1450.2,1527.6,1607.0,1702.3,1800.2,1903.8,2008.4,2118.9,2229.3,2342.7,2457.0,2571.6,2688.0,2804.9,2921.9,3040.0,3158.3,3276.3,3394.6,3513.5,3632.5]) BaseLogPartFctRef[ 355 ]['NbLabels']= 3 BaseLogPartFctRef[ 355 ]['NbCliques']= 2391 BaseLogPartFctRef[ 355 ]['NbSites']= 929 BaseLogPartFctRef[ 355 ]['StdNgbhDivMoyNgbh']= 0.177453346132 BaseLogPartFctRef[356 ]={} BaseLogPartFctRef[356]['LogPF']=np.array([1037.1,1078.0,1121.0,1165.6,1211.4,1258.6,1308.4,1359.7,1415.6,1478.1,1555.0,1639.7,1736.0,1836.0,1942.7,2053.9,2169.2,2285.1,2402.9,2519.1,2637.8,2758.7,2877.9,2998.6,3119.3,3240.6,3361.9,3483.4,3605.5,3727.7]) BaseLogPartFctRef[ 356 ]['NbLabels']= 3 BaseLogPartFctRef[ 356 ]['NbCliques']= 2455 BaseLogPartFctRef[ 356 ]['NbSites']= 944 BaseLogPartFctRef[ 356 ]['StdNgbhDivMoyNgbh']= 0.167934586556 BaseLogPartFctRef[357 ]={} BaseLogPartFctRef[357]['LogPF']=np.array([1044.8,1087.0,1130.1,1174.7,1221.5,1268.5,1318.0,1369.8,1427.7,1494.3,1565.5,1657.4,1755.9,1858.6,1969.6,2077.3,2187.7,2303.5,2420.9,2540.2,2657.8,2779.0,2899.9,3021.3,3143.2,3264.7,3387.0,3509.8,3632.6,3755.5]) BaseLogPartFctRef[ 357 ]['NbLabels']= 3 BaseLogPartFctRef[ 357 ]['NbCliques']= 2474 BaseLogPartFctRef[ 357 ]['NbSites']= 951 BaseLogPartFctRef[ 357 ]['StdNgbhDivMoyNgbh']= 0.159926437281 BaseLogPartFctRef[358 ]={} BaseLogPartFctRef[358]['LogPF']=np.array([1027.2,1068.7,1110.8,1154.3,1199.3,1246.3,1294.3,1345.3,1398.9,1463.1,1530.8,1614.8,1707.3,1805.0,1907.5,2012.8,2122.8,2235.2,2348.0,2460.8,2575.3,2690.8,2807.7,2925.6,3043.4,3161.9,3281.1,3399.8,3519.0,3638.4]) BaseLogPartFctRef[ 358 ]['NbLabels']= 3 BaseLogPartFctRef[ 358 ]['NbCliques']= 2398 BaseLogPartFctRef[ 358 ]['NbSites']= 935 BaseLogPartFctRef[ 358 ]['StdNgbhDivMoyNgbh']= 0.168424957433 BaseLogPartFctRef[359 ]={} BaseLogPartFctRef[359]['LogPF']=np.array([1005.2,1044.5,1084.6,1126.3,1169.2,1214.1,1261.3,1310.8,1367.8,1429.1,1494.6,1579.2,1660.0,1752.5,1853.8,1953.7,2062.1,2171.8,2281.7,2394.6,2506.9,2620.5,2734.9,2848.5,2963.6,3078.8,3194.5,3309.9,3426.2,3542.5]) BaseLogPartFctRef[ 359 ]['NbLabels']= 3 BaseLogPartFctRef[ 359 ]['NbCliques']= 2335 BaseLogPartFctRef[ 359 ]['NbSites']= 915 BaseLogPartFctRef[ 359 ]['StdNgbhDivMoyNgbh']= 0.185181218268 BaseLogPartFctRef[360 ]={} BaseLogPartFctRef[360]['LogPF']=np.array([999.7,1039.3,1078.8,1119.7,1163.3,1208.3,1254.9,1302.4,1352.9,1416.3,1486.6,1566.9,1656.7,1753.3,1852.5,1955.1,2059.3,2166.0,2274.1,2384.5,2496.6,2608.4,2721.7,2835.1,2949.3,3063.8,3178.6,3293.4,3408.5,3524.1]) BaseLogPartFctRef[ 360 ]['NbLabels']= 3 BaseLogPartFctRef[ 360 ]['NbCliques']= 2318 BaseLogPartFctRef[ 360 ]['NbSites']= 910 BaseLogPartFctRef[ 360 ]['StdNgbhDivMoyNgbh']= 0.178226331535 BaseLogPartFctRef[361 ]={} BaseLogPartFctRef[361]['LogPF']=np.array([1044.8,1087.3,1130.7,1174.9,1221.0,1270.3,1321.3,1375.1,1434.9,1498.8,1575.2,1663.4,1757.9,1861.7,1970.0,2081.3,2198.2,2313.7,2432.1,2551.0,2672.0,2793.0,2915.0,3037.7,3160.5,3283.9,3408.2,3531.9,3656.0,3779.9]) BaseLogPartFctRef[ 361 ]['NbLabels']= 3 BaseLogPartFctRef[ 361 ]['NbCliques']= 2492 BaseLogPartFctRef[ 361 ]['NbSites']= 951 BaseLogPartFctRef[ 361 ]['StdNgbhDivMoyNgbh']= 0.154629683739 BaseLogPartFctRef[362 ]={} BaseLogPartFctRef[362]['LogPF']=np.array([1004.1,1044.2,1085.4,1128.0,1172.5,1217.5,1264.9,1314.3,1366.5,1429.4,1504.5,1584.0,1675.4,1770.6,1869.5,1974.5,2081.1,2188.0,2298.1,2408.1,2521.4,2636.5,2750.5,2865.0,2980.4,3096.1,3211.6,3328.1,3444.3,3560.7]) BaseLogPartFctRef[ 362 ]['NbLabels']= 3 BaseLogPartFctRef[ 362 ]['NbCliques']= 2339 BaseLogPartFctRef[ 362 ]['NbSites']= 914 BaseLogPartFctRef[ 362 ]['StdNgbhDivMoyNgbh']= 0.181130100505 BaseLogPartFctRef[363 ]={} BaseLogPartFctRef[363]['LogPF']=np.array([1009.6,1049.8,1091.4,1134.6,1178.4,1223.9,1271.1,1321.1,1374.6,1433.9,1502.3,1590.1,1682.6,1775.7,1875.2,1981.6,2088.9,2197.8,2310.8,2423.5,2537.7,2653.5,2768.6,2885.0,3001.2,3118.2,3236.1,3353.0,3470.8,3589.1]) BaseLogPartFctRef[ 363 ]['NbLabels']= 3 BaseLogPartFctRef[ 363 ]['NbCliques']= 2376 BaseLogPartFctRef[ 363 ]['NbSites']= 919 BaseLogPartFctRef[ 363 ]['StdNgbhDivMoyNgbh']= 0.180711050403 BaseLogPartFctRef[364 ]={} BaseLogPartFctRef[364]['LogPF']=np.array([1014.0,1053.8,1095.0,1138.0,1182.2,1228.5,1275.0,1325.0,1378.9,1439.9,1512.2,1599.5,1691.3,1790.0,1891.0,1997.1,2108.1,2218.1,2328.8,2443.4,2558.0,2673.3,2789.9,2905.9,3022.7,3139.8,3257.0,3374.3,3491.9,3609.7]) BaseLogPartFctRef[ 364 ]['NbLabels']= 3 BaseLogPartFctRef[ 364 ]['NbCliques']= 2374 BaseLogPartFctRef[ 364 ]['NbSites']= 923 BaseLogPartFctRef[ 364 ]['StdNgbhDivMoyNgbh']= 0.180087914656 BaseLogPartFctRef[365 ]={} BaseLogPartFctRef[365]['LogPF']=np.array([1012.9,1052.3,1093.5,1135.2,1179.2,1225.4,1273.5,1322.0,1373.3,1438.5,1509.5,1584.3,1672.8,1768.1,1867.5,1972.7,2081.4,2193.3,2303.3,2414.5,2525.7,2640.6,2755.1,2871.2,2987.2,3103.1,3219.7,3336.3,3453.1,3570.2]) BaseLogPartFctRef[ 365 ]['NbLabels']= 3 BaseLogPartFctRef[ 365 ]['NbCliques']= 2352 BaseLogPartFctRef[ 365 ]['NbSites']= 922 BaseLogPartFctRef[ 365 ]['StdNgbhDivMoyNgbh']= 0.17804221797 BaseLogPartFctRef[366 ]={} BaseLogPartFctRef[366]['LogPF']=np.array([1027.2,1068.6,1110.9,1154.2,1198.9,1246.0,1294.5,1344.1,1401.2,1461.7,1535.7,1617.1,1710.3,1809.3,1915.5,2024.9,2134.3,2247.4,2361.0,2475.1,2591.2,2709.6,2827.3,2945.2,3063.6,3182.9,3302.5,3422.2,3542.0,3662.0]) BaseLogPartFctRef[ 366 ]['NbLabels']= 3 BaseLogPartFctRef[ 366 ]['NbCliques']= 2413 BaseLogPartFctRef[ 366 ]['NbSites']= 935 BaseLogPartFctRef[ 366 ]['StdNgbhDivMoyNgbh']= 0.168958832152 BaseLogPartFctRef[367 ]={} BaseLogPartFctRef[367]['LogPF']=np.array([1036.0,1077.8,1120.3,1164.2,1209.2,1256.6,1305.3,1356.4,1412.5,1475.1,1552.1,1631.2,1722.6,1822.1,1927.6,2035.9,2149.2,2262.2,2377.2,2494.6,2612.6,2730.9,2849.3,2967.6,3087.9,3208.2,3328.8,3449.7,3570.7,3692.0]) BaseLogPartFctRef[ 367 ]['NbLabels']= 3 BaseLogPartFctRef[ 367 ]['NbCliques']= 2435 BaseLogPartFctRef[ 367 ]['NbSites']= 943 BaseLogPartFctRef[ 367 ]['StdNgbhDivMoyNgbh']= 0.158793113095 BaseLogPartFctRef[368 ]={} BaseLogPartFctRef[368]['LogPF']=np.array([998.6,1037.1,1077.1,1118.4,1161.1,1204.5,1249.7,1297.4,1349.4,1406.2,1470.2,1548.3,1634.2,1725.1,1818.8,1921.9,2021.0,2123.5,2229.0,2337.9,2448.8,2559.5,2670.2,2782.3,2894.4,3006.7,3119.6,3233.2,3346.4,3460.0]) BaseLogPartFctRef[ 368 ]['NbLabels']= 3 BaseLogPartFctRef[ 368 ]['NbCliques']= 2284 BaseLogPartFctRef[ 368 ]['NbSites']= 909 BaseLogPartFctRef[ 368 ]['StdNgbhDivMoyNgbh']= 0.184650972235 BaseLogPartFctRef[369 ]={} BaseLogPartFctRef[369]['LogPF']=np.array([1010.7,1050.8,1091.9,1134.4,1178.6,1224.2,1272.4,1321.7,1374.5,1437.9,1508.8,1588.6,1678.4,1777.1,1876.9,1980.7,2088.4,2197.7,2307.4,2418.2,2530.8,2645.3,2759.8,2874.8,2991.0,3106.5,3222.6,3339.4,3455.9,3572.2]) BaseLogPartFctRef[ 369 ]['NbLabels']= 3 BaseLogPartFctRef[ 369 ]['NbCliques']= 2350 BaseLogPartFctRef[ 369 ]['NbSites']= 920 BaseLogPartFctRef[ 369 ]['StdNgbhDivMoyNgbh']= 0.174309545746 BaseLogPartFctRef[370 ]={} BaseLogPartFctRef[370]['LogPF']=np.array([1016.2,1055.7,1097.0,1140.2,1184.0,1229.6,1278.0,1327.4,1381.6,1443.0,1512.4,1594.6,1685.4,1782.4,1886.0,1991.3,2096.8,2207.3,2319.9,2431.5,2545.3,2659.3,2774.2,2890.0,3006.1,3122.2,3238.5,3355.4,3472.5,3589.9]) BaseLogPartFctRef[ 370 ]['NbLabels']= 3 BaseLogPartFctRef[ 370 ]['NbCliques']= 2360 BaseLogPartFctRef[ 370 ]['NbSites']= 925 BaseLogPartFctRef[ 370 ]['StdNgbhDivMoyNgbh']= 0.177824088142 BaseLogPartFctRef[371 ]={} BaseLogPartFctRef[371]['LogPF']=np.array([1036.0,1076.9,1119.4,1163.3,1209.1,1256.1,1305.3,1355.9,1412.8,1477.0,1551.5,1633.0,1724.9,1823.6,1927.3,2037.1,2146.0,2258.9,2373.7,2489.9,2606.5,2723.6,2842.0,2960.9,3080.3,3199.9,3320.0,3440.1,3560.0,3680.2]) BaseLogPartFctRef[ 371 ]['NbLabels']= 3 BaseLogPartFctRef[ 371 ]['NbCliques']= 2420 BaseLogPartFctRef[ 371 ]['NbSites']= 943 BaseLogPartFctRef[ 371 ]['StdNgbhDivMoyNgbh']= 0.163616515935 BaseLogPartFctRef[372 ]={} BaseLogPartFctRef[372]['LogPF']=np.array([1017.3,1056.9,1098.5,1141.1,1184.6,1231.2,1279.4,1330.7,1383.6,1441.7,1512.0,1595.1,1683.0,1779.5,1881.6,1986.2,2095.9,2208.2,2318.7,2431.9,2545.7,2659.9,2775.8,2892.3,3009.2,3126.3,3243.6,3361.1,3478.7,3596.3]) BaseLogPartFctRef[ 372 ]['NbLabels']= 3 BaseLogPartFctRef[ 372 ]['NbCliques']= 2369 BaseLogPartFctRef[ 372 ]['NbSites']= 926 BaseLogPartFctRef[ 372 ]['StdNgbhDivMoyNgbh']= 0.169912475535 BaseLogPartFctRef[373 ]={} BaseLogPartFctRef[373]['LogPF']=np.array([1015.1,1055.1,1095.8,1138.5,1183.0,1229.0,1275.3,1324.3,1375.4,1435.9,1511.5,1587.4,1679.3,1775.9,1875.5,1981.3,2087.8,2198.5,2308.9,2421.6,2534.0,2648.0,2762.4,2878.7,2994.5,3110.9,3227.6,3344.7,3462.3,3579.2]) BaseLogPartFctRef[ 373 ]['NbLabels']= 3 BaseLogPartFctRef[ 373 ]['NbCliques']= 2361 BaseLogPartFctRef[ 373 ]['NbSites']= 924 BaseLogPartFctRef[ 373 ]['StdNgbhDivMoyNgbh']= 0.170465756475 BaseLogPartFctRef[374 ]={} BaseLogPartFctRef[374]['LogPF']=np.array([1017.3,1057.8,1099.8,1142.6,1186.0,1232.0,1280.3,1330.6,1385.5,1447.7,1525.9,1606.6,1694.2,1787.5,1888.3,1995.2,2100.7,2211.0,2322.1,2435.0,2548.7,2662.5,2777.4,2893.5,3010.1,3126.9,3243.7,3361.0,3478.7,3596.3]) BaseLogPartFctRef[ 374 ]['NbLabels']= 3 BaseLogPartFctRef[ 374 ]['NbCliques']= 2365 BaseLogPartFctRef[ 374 ]['NbSites']= 926 BaseLogPartFctRef[ 374 ]['StdNgbhDivMoyNgbh']= 0.176840058158 #In [6]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+120),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=15,NBY=15,NBZ=15,BetaGeneration=0.2) BaseLogPartFctRef[ 375 ]={} BaseLogPartFctRef[375]['LogPF']=np.array([50.54,51.58,52.63,53.71,54.85,56.04,57.22,58.50,59.78,61.13,62.51,63.94,65.41,66.99,68.57,70.17,71.92,73.66,75.43,77.24,79.19,81.18,83.15,85.28,87.42,89.62,91.80,94.13,96.51,98.91]) BaseLogPartFctRef[ 375 ]['NbLabels']= 3 BaseLogPartFctRef[ 375 ]['NbCliques']= 60 BaseLogPartFctRef[ 375 ]['NbSites']= 46 BaseLogPartFctRef[ 375 ]['StdNgbhDivMoyNgbh']= 0.43870513197 BaseLogPartFctRef[376 ]={} BaseLogPartFctRef[376]['LogPF']=np.array([29.66,30.30,30.98,31.67,32.39,33.12,33.91,34.67,35.48,36.31,37.15,38.05,38.98,39.96,40.95,41.99,43.08,44.31,45.50,46.72,48.03,49.35,50.72,52.21,53.69,55.27,56.84,58.46,60.05,61.74]) BaseLogPartFctRef[ 376 ]['NbLabels']= 3 BaseLogPartFctRef[ 376 ]['NbCliques']= 38 BaseLogPartFctRef[ 376 ]['NbSites']= 27 BaseLogPartFctRef[ 376 ]['StdNgbhDivMoyNgbh']= 0.475103961735 BaseLogPartFctRef[377 ]={} BaseLogPartFctRef[377]['LogPF']=np.array([32.96,33.53,34.14,34.76,35.42,36.10,36.81,37.52,38.25,39.04,39.80,40.64,41.46,42.32,43.19,44.11,45.07,46.04,47.02,48.02,49.10,50.21,51.29,52.50,53.65,54.85,56.08,57.41,58.69,59.98]) BaseLogPartFctRef[ 377 ]['NbLabels']= 3 BaseLogPartFctRef[ 377 ]['NbCliques']= 35 BaseLogPartFctRef[ 377 ]['NbSites']= 30 BaseLogPartFctRef[ 377 ]['StdNgbhDivMoyNgbh']= 0.37565966167 BaseLogPartFctRef[378 ]={} BaseLogPartFctRef[378]['LogPF']=np.array([98.88,101.2,103.6,106.1,108.5,111.2,113.9,116.9,119.7,122.8,126.1,129.2,132.8,136.3,139.8,143.7,147.7,151.9,156.3,160.6,165.2,170.1,175.2,180.7,186.0,191.4,197.1,202.7,208.6,214.4]) BaseLogPartFctRef[ 378 ]['NbLabels']= 3 BaseLogPartFctRef[ 378 ]['NbCliques']= 137 BaseLogPartFctRef[ 378 ]['NbSites']= 90 BaseLogPartFctRef[ 378 ]['StdNgbhDivMoyNgbh']= 0.407746584779 BaseLogPartFctRef[379 ]={} BaseLogPartFctRef[379]['LogPF']=np.array([51.63,52.93,54.28,55.68,57.12,58.61,60.17,61.82,63.49,65.20,67.05,68.93,70.87,72.87,74.96,77.12,79.37,81.78,84.48,87.16,89.92,92.77,95.83,98.92,102.1,105.4,108.7,112.0,115.6,119.0]) BaseLogPartFctRef[ 379 ]['NbLabels']= 3 BaseLogPartFctRef[ 379 ]['NbCliques']= 77 BaseLogPartFctRef[ 379 ]['NbSites']= 47 BaseLogPartFctRef[ 379 ]['StdNgbhDivMoyNgbh']= 0.346934416658 BaseLogPartFctRef[380 ]={} BaseLogPartFctRef[380]['LogPF']=np.array([36.25,37.00,37.78,38.62,39.51,40.39,41.31,42.27,43.25,44.29,45.32,46.45,47.58,48.78,49.94,51.18,52.49,53.91,55.23,56.72,58.17,59.75,61.39,63.03,64.66,66.42,68.23,69.97,71.83,73.79]) BaseLogPartFctRef[ 380 ]['NbLabels']= 3 BaseLogPartFctRef[ 380 ]['NbCliques']= 46 BaseLogPartFctRef[ 380 ]['NbSites']= 33 BaseLogPartFctRef[ 380 ]['StdNgbhDivMoyNgbh']= 0.370858752796 BaseLogPartFctRef[381 ]={} BaseLogPartFctRef[381]['LogPF']=np.array([34.06,34.81,35.62,36.43,37.26,38.13,39.02,39.93,40.85,41.84,42.90,43.97,45.06,46.22,47.35,48.58,49.87,51.19,52.62,54.01,55.53,57.08,58.70,60.45,62.20,63.93,65.73,67.53,69.41,71.40]) BaseLogPartFctRef[ 381 ]['NbLabels']= 3 BaseLogPartFctRef[ 381 ]['NbCliques']= 45 BaseLogPartFctRef[ 381 ]['NbSites']= 31 BaseLogPartFctRef[ 381 ]['StdNgbhDivMoyNgbh']= 0.409167690117 BaseLogPartFctRef[382 ]={} BaseLogPartFctRef[382]['LogPF']=np.array([35.16,35.88,36.63,37.39,38.21,39.03,39.91,40.77,41.67,42.62,43.64,44.69,45.75,46.88,48.05,49.23,50.43,51.73,53.02,54.41,55.86,57.31,58.82,60.44,62.04,63.77,65.46,67.19,68.94,70.75]) BaseLogPartFctRef[ 382 ]['NbLabels']= 3 BaseLogPartFctRef[ 382 ]['NbCliques']= 43 BaseLogPartFctRef[ 382 ]['NbSites']= 32 BaseLogPartFctRef[ 382 ]['StdNgbhDivMoyNgbh']= 0.407396352413 BaseLogPartFctRef[383 ]={} BaseLogPartFctRef[383]['LogPF']=np.array([50.54,51.54,52.59,53.65,54.78,55.95,57.15,58.41,59.70,61.00,62.39,63.79,65.25,66.76,68.29,69.94,71.61,73.26,75.07,76.99,78.84,80.80,82.91,84.98,87.19,89.43,91.74,94.09,96.48,98.88]) BaseLogPartFctRef[ 383 ]['NbLabels']= 3 BaseLogPartFctRef[ 383 ]['NbCliques']= 60 BaseLogPartFctRef[ 383 ]['NbSites']= 46 BaseLogPartFctRef[ 383 ]['StdNgbhDivMoyNgbh']= 0.417276648654 BaseLogPartFctRef[384 ]={} BaseLogPartFctRef[384]['LogPF']=np.array([36.25,37.14,38.06,39.05,40.01,41.02,42.09,43.16,44.28,45.40,46.59,47.83,49.22,50.58,52.02,53.47,55.09,56.86,58.73,60.73,62.68,64.65,66.74,68.90,71.10,73.26,75.61,77.96,80.31,82.71]) BaseLogPartFctRef[ 384 ]['NbLabels']= 3 BaseLogPartFctRef[ 384 ]['NbCliques']= 53 BaseLogPartFctRef[ 384 ]['NbSites']= 33 BaseLogPartFctRef[ 384 ]['StdNgbhDivMoyNgbh']= 0.398545837133 BaseLogPartFctRef[385 ]={} BaseLogPartFctRef[385]['LogPF']=np.array([47.24,48.18,49.15,50.18,51.23,52.32,53.49,54.67,55.89,57.15,58.46,59.81,61.20,62.63,64.17,65.71,67.29,68.95,70.64,72.30,74.08,75.95,77.88,79.88,81.93,83.98,86.14,88.33,90.59,92.91]) BaseLogPartFctRef[ 385 ]['NbLabels']= 3 BaseLogPartFctRef[ 385 ]['NbCliques']= 57 BaseLogPartFctRef[ 385 ]['NbSites']= 43 BaseLogPartFctRef[ 385 ]['StdNgbhDivMoyNgbh']= 0.345278070397 BaseLogPartFctRef[386 ]={} BaseLogPartFctRef[386]['LogPF']=np.array([48.34,49.42,50.57,51.76,52.99,54.25,55.56,56.89,58.28,59.72,61.21,62.73,64.36,66.00,67.85,69.61,71.54,73.53,75.61,77.82,80.07,82.35,84.82,87.16,89.76,92.33,94.97,97.78,100.7,103.5]) BaseLogPartFctRef[ 386 ]['NbLabels']= 3 BaseLogPartFctRef[ 386 ]['NbCliques']= 65 BaseLogPartFctRef[ 386 ]['NbSites']= 44 BaseLogPartFctRef[ 386 ]['StdNgbhDivMoyNgbh']= 0.410925150947 BaseLogPartFctRef[387 ]={} BaseLogPartFctRef[387]['LogPF']=np.array([28.56,29.15,29.75,30.38,31.01,31.68,32.36,33.07,33.79,34.54,35.34,36.12,36.92,37.79,38.69,39.64,40.62,41.59,42.57,43.57,44.59,45.67,46.83,48.00,49.29,50.50,51.72,52.99,54.32,55.66]) BaseLogPartFctRef[ 387 ]['NbLabels']= 3 BaseLogPartFctRef[ 387 ]['NbCliques']= 34 BaseLogPartFctRef[ 387 ]['NbSites']= 26 BaseLogPartFctRef[ 387 ]['StdNgbhDivMoyNgbh']= 0.323685609227 BaseLogPartFctRef[388 ]={} BaseLogPartFctRef[388]['LogPF']=np.array([46.14,47.17,48.23,49.32,50.46,51.62,52.84,54.10,55.35,56.71,58.15,59.66,61.15,62.72,64.31,65.97,67.69,69.65,71.55,73.47,75.60,77.79,80.02,82.35,84.83,87.33,89.76,92.35,94.89,97.53]) BaseLogPartFctRef[ 388 ]['NbLabels']= 3 BaseLogPartFctRef[ 388 ]['NbCliques']= 61 BaseLogPartFctRef[ 388 ]['NbSites']= 42 BaseLogPartFctRef[ 388 ]['StdNgbhDivMoyNgbh']= 0.438847523211 BaseLogPartFctRef[389 ]={} BaseLogPartFctRef[389]['LogPF']=np.array([60.42,61.70,63.00,64.34,65.71,67.20,68.64,70.16,71.77,73.35,74.97,76.66,78.52,80.33,82.13,84.36,86.35,88.49,90.66,92.96,95.15,97.76,100.5,103.1,105.7,108.7,111.7,114.7,117.8,120.9]) BaseLogPartFctRef[ 389 ]['NbLabels']= 3 BaseLogPartFctRef[ 389 ]['NbCliques']= 74 BaseLogPartFctRef[ 389 ]['NbSites']= 55 BaseLogPartFctRef[ 389 ]['StdNgbhDivMoyNgbh']= 0.404940094816 BaseLogPartFctRef[390 ]={} BaseLogPartFctRef[390]['LogPF']=np.array([40.65,41.46,42.30,43.15,44.04,44.97,45.91,46.92,47.95,49.04,50.10,51.24,52.38,53.58,54.85,56.14,57.44,58.81,60.24,61.66,63.15,64.75,66.43,68.17,69.91,71.71,73.55,75.41,77.31,79.25]) BaseLogPartFctRef[ 390 ]['NbLabels']= 3 BaseLogPartFctRef[ 390 ]['NbCliques']= 48 BaseLogPartFctRef[ 390 ]['NbSites']= 37 BaseLogPartFctRef[ 390 ]['StdNgbhDivMoyNgbh']= 0.448472572091 BaseLogPartFctRef[391 ]={} BaseLogPartFctRef[391]['LogPF']=np.array([39.55,40.31,41.09,41.92,42.75,43.62,44.50,45.43,46.37,47.34,48.38,49.47,50.60,51.74,52.90,54.11,55.33,56.65,57.92,59.28,60.72,62.14,63.61,65.08,66.62,68.21,69.83,71.49,73.21,74.98]) BaseLogPartFctRef[ 391 ]['NbLabels']= 3 BaseLogPartFctRef[ 391 ]['NbCliques']= 45 BaseLogPartFctRef[ 391 ]['NbSites']= 36 BaseLogPartFctRef[ 391 ]['StdNgbhDivMoyNgbh']= 0.324074074074 BaseLogPartFctRef[392 ]={} BaseLogPartFctRef[392]['LogPF']=np.array([28.56,29.12,29.69,30.29,30.92,31.57,32.22,32.88,33.57,34.30,35.04,35.82,36.62,37.41,38.30,39.16,40.04,40.97,41.96,43.00,44.01,45.06,46.19,47.30,48.50,49.67,50.90,52.13,53.45,54.76]) BaseLogPartFctRef[ 392 ]['NbLabels']= 3 BaseLogPartFctRef[ 392 ]['NbCliques']= 33 BaseLogPartFctRef[ 392 ]['NbSites']= 26 BaseLogPartFctRef[ 392 ]['StdNgbhDivMoyNgbh']= 0.319185639572 BaseLogPartFctRef[393 ]={} BaseLogPartFctRef[393]['LogPF']=np.array([62.62,64.15,65.75,67.37,69.06,70.77,72.51,74.38,76.36,78.34,80.38,82.36,84.41,86.77,89.12,91.65,94.23,96.95,99.79,102.9,106.0,109.5,113.0,116.8,120.4,124.4,128.5,132.5,136.6,140.8]) BaseLogPartFctRef[ 393 ]['NbLabels']= 3 BaseLogPartFctRef[ 393 ]['NbCliques']= 91 BaseLogPartFctRef[ 393 ]['NbSites']= 57 BaseLogPartFctRef[ 393 ]['StdNgbhDivMoyNgbh']= 0.361955295314 BaseLogPartFctRef[394 ]={} BaseLogPartFctRef[394]['LogPF']=np.array([51.63,52.79,53.99,55.20,56.44,57.73,59.06,60.47,61.88,63.36,64.90,66.51,68.16,69.83,71.62,73.54,75.46,77.41,79.53,81.70,83.96,86.38,88.72,91.15,93.74,96.27,99.02,101.8,104.5,107.4]) BaseLogPartFctRef[ 394 ]['NbLabels']= 3 BaseLogPartFctRef[ 394 ]['NbCliques']= 67 BaseLogPartFctRef[ 394 ]['NbSites']= 47 BaseLogPartFctRef[ 394 ]['StdNgbhDivMoyNgbh']= 0.406664275469 BaseLogPartFctRef[395 ]={} BaseLogPartFctRef[395]['LogPF']=np.array([49.44,50.53,51.64,52.82,54.01,55.24,56.48,57.81,59.25,60.68,62.10,63.64,65.22,66.87,68.57,70.33,72.06,73.93,75.99,78.07,80.20,82.38,84.61,87.04,89.48,92.07,94.68,97.28,99.96,102.7]) BaseLogPartFctRef[ 395 ]['NbLabels']= 3 BaseLogPartFctRef[ 395 ]['NbCliques']= 64 BaseLogPartFctRef[ 395 ]['NbSites']= 45 BaseLogPartFctRef[ 395 ]['StdNgbhDivMoyNgbh']= 0.389957608886 BaseLogPartFctRef[396 ]={} BaseLogPartFctRef[396]['LogPF']=np.array([43.94,45.08,46.20,47.35,48.56,49.77,51.03,52.34,53.71,55.15,56.62,58.16,59.76,61.44,63.13,64.89,66.86,68.91,71.15,73.28,75.53,77.93,80.42,82.88,85.60,88.37,91.23,94.02,96.82,99.69]) BaseLogPartFctRef[ 396 ]['NbLabels']= 3 BaseLogPartFctRef[ 396 ]['NbCliques']= 64 BaseLogPartFctRef[ 396 ]['NbSites']= 40 BaseLogPartFctRef[ 396 ]['StdNgbhDivMoyNgbh']= 0.386605096936 BaseLogPartFctRef[397 ]={} BaseLogPartFctRef[397]['LogPF']=np.array([54.93,56.00,57.14,58.31,59.45,60.72,62.02,63.29,64.62,66.07,67.50,68.99,70.43,72.02,73.64,75.42,77.15,78.99,80.83,82.72,84.45,86.30,88.33,90.62,92.97,95.32,97.73,100.1,102.4,104.8]) BaseLogPartFctRef[ 397 ]['NbLabels']= 3 BaseLogPartFctRef[ 397 ]['NbCliques']= 64 BaseLogPartFctRef[ 397 ]['NbSites']= 50 BaseLogPartFctRef[ 397 ]['StdNgbhDivMoyNgbh']= 0.384035546247 BaseLogPartFctRef[398 ]={} BaseLogPartFctRef[398]['LogPF']=np.array([49.44,50.34,51.28,52.24,53.27,54.33,55.38,56.48,57.64,58.84,60.09,61.38,62.68,64.04,65.39,66.78,68.28,69.80,71.33,72.96,74.60,76.30,78.09,79.84,81.71,83.62,85.60,87.63,89.59,91.66]) BaseLogPartFctRef[ 398 ]['NbLabels']= 3 BaseLogPartFctRef[ 398 ]['NbCliques']= 54 BaseLogPartFctRef[ 398 ]['NbSites']= 45 BaseLogPartFctRef[ 398 ]['StdNgbhDivMoyNgbh']= 0.387929445501 BaseLogPartFctRef[399 ]={} BaseLogPartFctRef[399]['LogPF']=np.array([76.90,78.46,80.09,81.77,83.51,85.39,87.25,89.14,91.11,93.21,95.36,97.66,100.1,102.6,105.1,107.6,110.3,113.1,116.0,118.8,121.6,124.8,128.1,131.5,135.0,138.6,142.0,145.6,149.3,152.9]) BaseLogPartFctRef[ 399 ]['NbLabels']= 3 BaseLogPartFctRef[ 399 ]['NbCliques']= 95 BaseLogPartFctRef[ 399 ]['NbSites']= 70 BaseLogPartFctRef[ 399 ]['StdNgbhDivMoyNgbh']= 0.369039376788 BaseLogPartFctRef[400 ]={} BaseLogPartFctRef[400]['LogPF']=np.array([64.82,66.29,67.82,69.35,70.93,72.55,74.29,76.10,77.90,79.79,81.64,83.70,85.96,88.21,90.46,92.78,95.13,97.77,100.2,103.0,105.8,108.7,111.9,115.0,118.4,121.7,125.0,128.5,131.8,135.4]) BaseLogPartFctRef[ 400 ]['NbLabels']= 3 BaseLogPartFctRef[ 400 ]['NbCliques']= 86 BaseLogPartFctRef[ 400 ]['NbSites']= 59 BaseLogPartFctRef[ 400 ]['StdNgbhDivMoyNgbh']= 0.358206345182 BaseLogPartFctRef[401 ]={} BaseLogPartFctRef[401]['LogPF']=np.array([73.61,75.16,76.75,78.41,80.19,81.91,83.69,85.65,87.56,89.45,91.46,93.83,96.00,98.55,101.0,103.5,106.0,108.7,111.6,114.4,117.3,120.5,123.8,127.0,130.5,133.8,137.6,141.3,144.8,148.6]) BaseLogPartFctRef[ 401 ]['NbLabels']= 3 BaseLogPartFctRef[ 401 ]['NbCliques']= 93 BaseLogPartFctRef[ 401 ]['NbSites']= 67 BaseLogPartFctRef[ 401 ]['StdNgbhDivMoyNgbh']= 0.377028770411 BaseLogPartFctRef[402 ]={} BaseLogPartFctRef[402]['LogPF']=np.array([38.45,39.21,40.00,40.84,41.68,42.56,43.47,44.40,45.35,46.35,47.34,48.39,49.49,50.61,51.76,52.97,54.20,55.53,56.95,58.35,59.81,61.36,62.91,64.46,66.08,67.73,69.45,71.14,72.91,74.74]) BaseLogPartFctRef[ 402 ]['NbLabels']= 3 BaseLogPartFctRef[ 402 ]['NbCliques']= 45 BaseLogPartFctRef[ 402 ]['NbSites']= 35 BaseLogPartFctRef[ 402 ]['StdNgbhDivMoyNgbh']= 0.3861653904 BaseLogPartFctRef[403 ]={} BaseLogPartFctRef[403]['LogPF']=np.array([34.06,34.76,35.46,36.20,36.99,37.76,38.59,39.42,40.29,41.19,42.14,43.13,44.11,45.12,46.23,47.34,48.51,49.76,51.02,52.32,53.69,55.11,56.55,58.03,59.60,61.18,62.85,64.51,66.21,67.92]) BaseLogPartFctRef[ 403 ]['NbLabels']= 3 BaseLogPartFctRef[ 403 ]['NbCliques']= 41 BaseLogPartFctRef[ 403 ]['NbSites']= 31 BaseLogPartFctRef[ 403 ]['StdNgbhDivMoyNgbh']= 0.478807146541 BaseLogPartFctRef[404 ]={} BaseLogPartFctRef[404]['LogPF']=np.array([53.83,55.20,56.57,58.01,59.45,60.95,62.56,64.17,65.88,67.65,69.48,71.35,73.29,75.31,77.53,79.74,82.01,84.41,87.14,89.82,92.62,95.69,98.77,101.9,105.2,108.6,112.0,115.5,119.1,122.6]) BaseLogPartFctRef[ 404 ]['NbLabels']= 3 BaseLogPartFctRef[ 404 ]['NbCliques']= 79 BaseLogPartFctRef[ 404 ]['NbSites']= 49 BaseLogPartFctRef[ 404 ]['StdNgbhDivMoyNgbh']= 0.389463364081 #In [7]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+150),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=15,NBY=15,NBZ=15,BetaGeneration=0.3) BaseLogPartFctRef[405 ]={} BaseLogPartFctRef[405]['LogPF']=np.array([508.7,523.6,538.6,554.7,570.8,587.1,604.1,621.4,640.4,660.1,681.2,702.8,728.3,753.8,783.3,811.6,842.0,875.1,908.3,944.1,980.3,1016.5,1053.4,1091.6,1131.5,1171.4,1211.5,1250.7,1290.6,1331.0]) BaseLogPartFctRef[ 405 ]['NbLabels']= 3 BaseLogPartFctRef[ 405 ]['NbCliques']= 863 BaseLogPartFctRef[ 405 ]['NbSites']= 463 BaseLogPartFctRef[ 405 ]['StdNgbhDivMoyNgbh']= 0.351784832347 BaseLogPartFctRef[406 ]={} BaseLogPartFctRef[406]['LogPF']=np.array([738.3,760.5,782.7,806.4,830.6,855.2,881.3,907.9,936.5,967.3,998.2,1030.5,1067.6,1106.7,1148.7,1192.9,1240.5,1289.2,1341.6,1394.4,1449.9,1507.0,1565.2,1624.1,1684.5,1744.5,1805.6,1867.4,1930.2,1992.1]) BaseLogPartFctRef[ 406 ]['NbLabels']= 3 BaseLogPartFctRef[ 406 ]['NbCliques']= 1299 BaseLogPartFctRef[ 406 ]['NbSites']= 672 BaseLogPartFctRef[ 406 ]['StdNgbhDivMoyNgbh']= 0.33520591512 BaseLogPartFctRef[407 ]={} BaseLogPartFctRef[407]['LogPF']=np.array([195.6,200.8,206.2,211.6,217.4,223.4,229.7,236.0,242.6,249.3,256.3,263.7,271.3,279.4,287.8,296.8,306.9,317.1,327.3,338.5,349.6,361.5,374.2,387.3,400.7,414.0,427.6,441.6,455.2,469.2]) BaseLogPartFctRef[ 407 ]['NbLabels']= 3 BaseLogPartFctRef[ 407 ]['NbCliques']= 306 BaseLogPartFctRef[ 407 ]['NbSites']= 178 BaseLogPartFctRef[ 407 ]['StdNgbhDivMoyNgbh']= 0.377850658458 BaseLogPartFctRef[408 ]={} BaseLogPartFctRef[408]['LogPF']=np.array([522.9,537.2,552.1,567.6,583.3,599.7,617.0,634.7,653.3,671.9,692.6,714.9,736.2,761.5,788.9,817.2,845.1,875.4,908.1,942.4,976.8,1013.6,1049.7,1087.4,1126.1,1164.3,1202.8,1242.2,1281.7,1322.0]) BaseLogPartFctRef[ 408 ]['NbLabels']= 3 BaseLogPartFctRef[ 408 ]['NbCliques']= 859 BaseLogPartFctRef[ 408 ]['NbSites']= 476 BaseLogPartFctRef[ 408 ]['StdNgbhDivMoyNgbh']= 0.347821584232 BaseLogPartFctRef[409 ]={} BaseLogPartFctRef[409]['LogPF']=np.array([551.5,566.4,581.7,597.7,614.2,630.9,648.6,667.5,687.0,706.8,728.1,749.6,773.2,798.2,824.4,853.3,882.0,913.2,946.0,980.2,1013.0,1049.1,1086.2,1123.2,1161.0,1199.8,1240.2,1280.0,1320.1,1360.7]) BaseLogPartFctRef[ 409 ]['NbLabels']= 3 BaseLogPartFctRef[ 409 ]['NbCliques']= 883 BaseLogPartFctRef[ 409 ]['NbSites']= 502 BaseLogPartFctRef[ 409 ]['StdNgbhDivMoyNgbh']= 0.356185598361 BaseLogPartFctRef[410 ]={} BaseLogPartFctRef[410]['LogPF']=np.array([927.2,955.0,983.8,1013.0,1043.9,1074.9,1106.5,1139.9,1174.8,1212.6,1254.0,1296.0,1339.7,1389.9,1440.6,1496.7,1555.2,1616.5,1683.7,1752.2,1820.8,1889.9,1961.5,2033.1,2108.2,2181.8,2256.7,2332.7,2408.5,2485.0]) BaseLogPartFctRef[ 410 ]['NbLabels']= 3 BaseLogPartFctRef[ 410 ]['NbCliques']= 1602 BaseLogPartFctRef[ 410 ]['NbSites']= 844 BaseLogPartFctRef[ 410 ]['StdNgbhDivMoyNgbh']= 0.330651445748 BaseLogPartFctRef[411 ]={} BaseLogPartFctRef[411]['LogPF']=np.array([432.9,444.3,456.5,468.7,481.7,494.7,508.2,522.3,538.1,553.1,568.7,585.2,603.3,621.5,641.0,661.0,684.2,709.9,737.3,763.5,791.6,818.2,846.4,876.5,906.1,937.2,968.5,999.4,1030.5,1062.5]) BaseLogPartFctRef[ 411 ]['NbLabels']= 3 BaseLogPartFctRef[ 411 ]['NbCliques']= 688 BaseLogPartFctRef[ 411 ]['NbSites']= 394 BaseLogPartFctRef[ 411 ]['StdNgbhDivMoyNgbh']= 0.387826059151 BaseLogPartFctRef[412 ]={} BaseLogPartFctRef[412]['LogPF']=np.array([189.0,193.6,198.4,203.4,208.6,213.9,219.4,225.2,231.3,237.3,243.7,250.3,257.4,264.9,272.0,280.1,288.7,297.2,306.1,315.8,326.2,336.6,347.3,358.3,370.0,381.8,394.0,406.3,418.6,431.1]) BaseLogPartFctRef[ 412 ]['NbLabels']= 3 BaseLogPartFctRef[ 412 ]['NbCliques']= 279 BaseLogPartFctRef[ 412 ]['NbSites']= 172 BaseLogPartFctRef[ 412 ]['StdNgbhDivMoyNgbh']= 0.373680618184 BaseLogPartFctRef[413 ]={} BaseLogPartFctRef[413]['LogPF']=np.array([512.0,526.0,540.3,554.7,570.0,585.9,602.9,620.0,637.5,656.9,675.9,696.5,717.4,740.2,765.5,790.2,818.8,849.8,881.9,913.0,947.5,981.7,1016.8,1052.4,1088.2,1125.4,1162.4,1199.6,1238.6,1277.1]) BaseLogPartFctRef[ 413 ]['NbLabels']= 3 BaseLogPartFctRef[ 413 ]['NbCliques']= 825 BaseLogPartFctRef[ 413 ]['NbSites']= 466 BaseLogPartFctRef[ 413 ]['StdNgbhDivMoyNgbh']= 0.376500894395 BaseLogPartFctRef[414 ]={} BaseLogPartFctRef[414]['LogPF']=np.array([206.5,212.2,218.1,224.0,230.1,236.4,242.7,249.5,256.4,263.5,271.3,279.2,287.4,295.9,305.0,314.4,324.5,335.0,346.0,357.9,369.9,382.6,395.8,409.6,423.1,437.0,451.7,466.6,481.8,496.8]) BaseLogPartFctRef[ 414 ]['NbLabels']= 3 BaseLogPartFctRef[ 414 ]['NbCliques']= 325 BaseLogPartFctRef[ 414 ]['NbSites']= 188 BaseLogPartFctRef[ 414 ]['StdNgbhDivMoyNgbh']= 0.347733632011 BaseLogPartFctRef[415 ]={} BaseLogPartFctRef[415]['LogPF']=np.array([370.2,380.2,390.2,400.8,411.8,423.0,434.6,446.9,459.3,472.1,485.9,500.2,515.4,531.2,548.4,567.2,586.4,605.6,626.5,647.6,669.6,693.2,717.3,741.0,766.4,791.7,817.7,843.9,870.2,896.8]) BaseLogPartFctRef[ 415 ]['NbLabels']= 3 BaseLogPartFctRef[ 415 ]['NbCliques']= 579 BaseLogPartFctRef[ 415 ]['NbSites']= 337 BaseLogPartFctRef[ 415 ]['StdNgbhDivMoyNgbh']= 0.368270578511 BaseLogPartFctRef[416 ]={} BaseLogPartFctRef[416]['LogPF']=np.array([466.9,480.1,493.9,507.8,522.4,537.4,552.7,569.0,585.7,603.0,621.1,640.8,661.5,683.7,709.4,732.9,760.5,789.6,821.0,853.3,886.0,918.9,952.1,987.2,1021.7,1056.8,1093.6,1130.1,1166.2,1202.7]) BaseLogPartFctRef[ 416 ]['NbLabels']= 3 BaseLogPartFctRef[ 416 ]['NbCliques']= 780 BaseLogPartFctRef[ 416 ]['NbSites']= 425 BaseLogPartFctRef[ 416 ]['StdNgbhDivMoyNgbh']= 0.355694695333 BaseLogPartFctRef[417 ]={} BaseLogPartFctRef[417]['LogPF']=np.array([1316.1,1355.1,1395.9,1437.3,1479.8,1523.6,1570.1,1618.1,1666.9,1722.6,1779.0,1838.6,1900.8,1968.1,2038.2,2117.3,2201.7,2289.6,2383.0,2477.3,2578.4,2679.5,2783.4,2885.1,2990.8,3097.2,3204.4,3312.3,3420.5,3530.0]) BaseLogPartFctRef[ 417 ]['NbLabels']= 3 BaseLogPartFctRef[ 417 ]['NbCliques']= 2283 BaseLogPartFctRef[ 417 ]['NbSites']= 1198 BaseLogPartFctRef[ 417 ]['StdNgbhDivMoyNgbh']= 0.329917495293 BaseLogPartFctRef[418 ]={} BaseLogPartFctRef[418]['LogPF']=np.array([329.6,338.8,348.1,357.9,368.3,379.4,390.0,401.8,413.6,425.9,438.5,452.0,466.8,482.0,497.8,516.7,535.6,556.5,574.5,596.1,618.3,640.6,664.2,688.1,712.2,736.9,761.7,786.7,812.0,837.8]) BaseLogPartFctRef[ 418 ]['NbLabels']= 3 BaseLogPartFctRef[ 418 ]['NbCliques']= 546 BaseLogPartFctRef[ 418 ]['NbSites']= 300 BaseLogPartFctRef[ 418 ]['StdNgbhDivMoyNgbh']= 0.363634442206 BaseLogPartFctRef[419 ]={} BaseLogPartFctRef[419]['LogPF']=np.array([483.4,495.9,508.6,522.6,536.8,551.3,566.0,581.0,597.3,613.4,630.8,648.2,666.5,686.2,707.4,731.8,756.4,780.4,807.6,835.7,864.6,894.2,924.2,956.0,988.6,1021.2,1053.7,1087.2,1119.8,1153.7]) BaseLogPartFctRef[ 419 ]['NbLabels']= 3 BaseLogPartFctRef[ 419 ]['NbCliques']= 741 BaseLogPartFctRef[ 419 ]['NbSites']= 440 BaseLogPartFctRef[ 419 ]['StdNgbhDivMoyNgbh']= 0.377967091594 BaseLogPartFctRef[420 ]={} BaseLogPartFctRef[420]['LogPF']=np.array([565.8,581.5,597.8,614.3,632.0,649.8,668.4,687.5,708.1,728.4,751.1,775.3,801.0,829.1,857.6,885.8,918.2,951.8,988.2,1023.6,1061.1,1100.1,1138.6,1179.8,1220.4,1261.5,1303.5,1345.9,1388.7,1431.6]) BaseLogPartFctRef[ 420 ]['NbLabels']= 3 BaseLogPartFctRef[ 420 ]['NbCliques']= 926 BaseLogPartFctRef[ 420 ]['NbSites']= 515 BaseLogPartFctRef[ 420 ]['StdNgbhDivMoyNgbh']= 0.368924387478 BaseLogPartFctRef[421 ]={} BaseLogPartFctRef[421]['LogPF']=np.array([672.4,691.0,711.1,731.8,752.7,774.0,797.0,819.8,845.4,871.2,897.1,924.9,956.1,989.2,1026.3,1066.4,1106.1,1147.0,1191.4,1237.7,1285.0,1334.0,1382.6,1432.9,1483.7,1535.2,1587.3,1639.8,1692.8,1745.9]) BaseLogPartFctRef[ 421 ]['NbLabels']= 3 BaseLogPartFctRef[ 421 ]['NbCliques']= 1128 BaseLogPartFctRef[ 421 ]['NbSites']= 612 BaseLogPartFctRef[ 421 ]['StdNgbhDivMoyNgbh']= 0.354709146661 BaseLogPartFctRef[422 ]={} BaseLogPartFctRef[422]['LogPF']=np.array([588.9,604.9,621.8,639.7,658.0,676.1,695.9,716.0,735.9,757.0,780.8,804.8,832.4,860.7,890.8,922.0,956.8,994.2,1032.0,1071.2,1111.3,1153.3,1195.5,1238.8,1283.1,1326.5,1371.7,1417.5,1463.3,1509.1]) BaseLogPartFctRef[ 422 ]['NbLabels']= 3 BaseLogPartFctRef[ 422 ]['NbCliques']= 978 BaseLogPartFctRef[ 422 ]['NbSites']= 536 BaseLogPartFctRef[ 422 ]['StdNgbhDivMoyNgbh']= 0.351271838626 BaseLogPartFctRef[423 ]={} BaseLogPartFctRef[423]['LogPF']=np.array([586.7,603.2,619.5,637.1,654.6,673.5,692.6,712.6,733.6,754.2,777.0,800.9,825.9,852.5,879.6,910.3,943.8,977.1,1013.6,1052.4,1090.7,1132.2,1173.0,1214.9,1257.9,1301.0,1344.7,1388.1,1431.7,1476.2]) BaseLogPartFctRef[ 423 ]['NbLabels']= 3 BaseLogPartFctRef[ 423 ]['NbCliques']= 956 BaseLogPartFctRef[ 423 ]['NbSites']= 534 BaseLogPartFctRef[ 423 ]['StdNgbhDivMoyNgbh']= 0.367098803098 BaseLogPartFctRef[424 ]={} BaseLogPartFctRef[424]['LogPF']=np.array([337.3,345.7,354.3,363.6,373.2,383.1,393.5,404.2,415.3,426.7,438.5,451.1,464.6,478.6,492.8,507.3,521.9,537.5,554.6,573.5,592.7,612.6,631.9,653.4,674.4,696.6,718.6,741.2,764.5,788.3]) BaseLogPartFctRef[ 424 ]['NbLabels']= 3 BaseLogPartFctRef[ 424 ]['NbCliques']= 511 BaseLogPartFctRef[ 424 ]['NbSites']= 307 BaseLogPartFctRef[ 424 ]['StdNgbhDivMoyNgbh']= 0.344224972374 BaseLogPartFctRef[425 ]={} BaseLogPartFctRef[425]['LogPF']=np.array([448.2,460.6,473.5,487.0,500.3,514.0,528.6,543.8,559.2,575.4,592.7,611.4,630.3,650.9,672.1,694.1,719.0,747.5,777.2,805.5,835.9,867.5,898.4,930.5,961.9,993.2,1025.7,1058.0,1090.7,1124.1]) BaseLogPartFctRef[ 425 ]['NbLabels']= 3 BaseLogPartFctRef[ 425 ]['NbCliques']= 727 BaseLogPartFctRef[ 425 ]['NbSites']= 408 BaseLogPartFctRef[ 425 ]['StdNgbhDivMoyNgbh']= 0.385626302272 BaseLogPartFctRef[426 ]={} BaseLogPartFctRef[426]['LogPF']=np.array([307.6,316.1,324.7,333.0,342.5,352.0,361.7,372.0,382.8,393.6,405.2,416.6,430.9,445.8,461.1,477.4,493.4,512.3,528.5,545.9,565.4,585.7,607.2,628.5,650.3,672.3,694.5,716.4,739.1,762.3]) BaseLogPartFctRef[ 426 ]['NbLabels']= 3 BaseLogPartFctRef[ 426 ]['NbCliques']= 493 BaseLogPartFctRef[ 426 ]['NbSites']= 280 BaseLogPartFctRef[ 426 ]['StdNgbhDivMoyNgbh']= 0.381837528918 BaseLogPartFctRef[427 ]={} BaseLogPartFctRef[427]['LogPF']=np.array([767.9,788.8,810.4,832.0,855.1,879.6,903.7,930.1,957.2,983.9,1014.0,1043.4,1076.3,1110.2,1149.5,1187.2,1228.3,1270.4,1318.0,1369.0,1418.9,1469.4,1523.3,1574.8,1629.0,1684.0,1741.4,1798.5,1856.3,1914.9]) BaseLogPartFctRef[ 427 ]['NbLabels']= 3 BaseLogPartFctRef[ 427 ]['NbCliques']= 1233 BaseLogPartFctRef[ 427 ]['NbSites']= 699 BaseLogPartFctRef[ 427 ]['StdNgbhDivMoyNgbh']= 0.346283953722 BaseLogPartFctRef[428 ]={} BaseLogPartFctRef[428]['LogPF']=np.array([557.0,572.9,589.4,606.3,624.2,642.2,660.9,680.6,700.6,722.2,744.5,770.9,798.4,824.6,854.7,886.0,921.5,955.9,993.0,1031.1,1070.2,1110.0,1150.1,1191.1,1232.9,1275.5,1318.4,1361.5,1405.6,1449.7]) BaseLogPartFctRef[ 428 ]['NbLabels']= 3 BaseLogPartFctRef[ 428 ]['NbCliques']= 939 BaseLogPartFctRef[ 428 ]['NbSites']= 507 BaseLogPartFctRef[ 428 ]['StdNgbhDivMoyNgbh']= 0.356102461985 BaseLogPartFctRef[429 ]={} BaseLogPartFctRef[429]['LogPF']=np.array([332.9,341.1,349.8,358.9,368.0,377.5,387.0,396.9,407.4,418.4,429.3,441.5,454.5,467.6,480.7,494.4,509.2,523.6,539.4,555.9,573.7,592.1,611.1,630.9,651.4,671.1,692.0,714.0,735.9,758.5]) BaseLogPartFctRef[ 429 ]['NbLabels']= 3 BaseLogPartFctRef[ 429 ]['NbCliques']= 489 BaseLogPartFctRef[ 429 ]['NbSites']= 303 BaseLogPartFctRef[ 429 ]['StdNgbhDivMoyNgbh']= 0.376854102508 BaseLogPartFctRef[430 ]={} BaseLogPartFctRef[430]['LogPF']=np.array([581.2,595.9,611.6,627.8,644.3,661.5,680.1,698.8,718.3,739.5,760.4,783.2,808.9,834.1,860.8,888.1,919.9,950.2,983.1,1018.2,1054.5,1090.4,1128.9,1167.4,1205.6,1246.5,1287.0,1328.0,1368.0,1409.5]) BaseLogPartFctRef[ 430 ]['NbLabels']= 3 BaseLogPartFctRef[ 430 ]['NbCliques']= 906 BaseLogPartFctRef[ 430 ]['NbSites']= 529 BaseLogPartFctRef[ 430 ]['StdNgbhDivMoyNgbh']= 0.37396580405 BaseLogPartFctRef[431 ]={} BaseLogPartFctRef[431]['LogPF']=np.array([438.3,450.1,462.4,475.4,488.5,502.0,515.5,530.0,544.5,559.7,575.5,593.3,612.5,632.0,653.3,673.8,699.2,723.6,748.3,774.2,801.9,830.4,859.2,888.5,919.7,951.4,983.6,1014.9,1046.8,1079.4]) BaseLogPartFctRef[ 431 ]['NbLabels']= 3 BaseLogPartFctRef[ 431 ]['NbCliques']= 700 BaseLogPartFctRef[ 431 ]['NbSites']= 399 BaseLogPartFctRef[ 431 ]['StdNgbhDivMoyNgbh']= 0.387604113959 BaseLogPartFctRef[432 ]={} BaseLogPartFctRef[432]['LogPF']=np.array([414.2,426.8,439.8,453.1,466.6,480.6,495.2,511.3,527.2,544.1,563.5,583.1,605.2,627.7,653.3,680.1,707.9,735.1,764.4,796.9,829.7,862.1,895.4,929.8,963.4,998.3,1033.0,1068.0,1103.3,1138.5]) BaseLogPartFctRef[ 432 ]['NbLabels']= 3 BaseLogPartFctRef[ 432 ]['NbCliques']= 739 BaseLogPartFctRef[ 432 ]['NbSites']= 377 BaseLogPartFctRef[ 432 ]['StdNgbhDivMoyNgbh']= 0.351961232139 BaseLogPartFctRef[433 ]={} BaseLogPartFctRef[433]['LogPF']=np.array([472.4,485.9,499.6,513.8,528.4,543.4,559.0,575.0,591.4,609.2,627.9,647.6,668.6,691.5,715.8,739.4,767.4,795.7,824.0,856.6,888.3,921.9,954.9,988.6,1022.6,1057.7,1093.9,1129.4,1165.7,1201.7]) BaseLogPartFctRef[ 433 ]['NbLabels']= 3 BaseLogPartFctRef[ 433 ]['NbCliques']= 778 BaseLogPartFctRef[ 433 ]['NbSites']= 430 BaseLogPartFctRef[ 433 ]['StdNgbhDivMoyNgbh']= 0.356626926853 BaseLogPartFctRef[434 ]={} BaseLogPartFctRef[434]['LogPF']=np.array([640.5,659.2,678.7,698.1,718.2,739.3,761.1,783.4,806.8,830.9,855.9,883.8,916.8,947.4,983.6,1018.9,1058.7,1100.9,1144.3,1188.8,1234.1,1280.0,1328.0,1376.1,1425.7,1474.4,1524.0,1573.2,1623.7,1674.4]) BaseLogPartFctRef[ 434 ]['NbLabels']= 3 BaseLogPartFctRef[ 434 ]['NbCliques']= 1083 BaseLogPartFctRef[ 434 ]['NbSites']= 583 BaseLogPartFctRef[ 434 ]['StdNgbhDivMoyNgbh']= 0.362779359663 #In [8]: ComputeBaseLogPartFctRef_NonReg(FirstIndex=(255+180),NbExtraIndex=30,BetaMax=1.45,DeltaBeta=0.05,NbLabels=3,NBX=15,NBY=15,NBZ=15,BetaGeneration=0.5) BaseLogPartFctRef[435 ]={} BaseLogPartFctRef[435]['LogPF']=np.array([3246.4,3372.1,3503.8,3639.8,3778.6,3926.2,4081.7,4244.7,4424.1,4614.2,4838.0,5097.4,5388.1,5699.5,6018.5,6356.4,6703.3,7051.5,7405.2,7761.2,8123.4,8485.1,8848.1,9216.1,9584.6,9953.5,10322.0,10693.0,11064.9,11436.4]) BaseLogPartFctRef[ 435 ]['NbLabels']= 3 BaseLogPartFctRef[ 435 ]['NbCliques']= 7487 BaseLogPartFctRef[ 435 ]['NbSites']= 2955 BaseLogPartFctRef[ 435 ]['StdNgbhDivMoyNgbh']= 0.190295523564 BaseLogPartFctRef[436 ]={} BaseLogPartFctRef[436]['LogPF']=np.array([3299.1,3430.6,3566.7,3706.0,3848.8,4000.4,4158.9,4323.0,4506.5,4713.0,4964.8,5240.2,5547.9,5874.9,6212.9,6558.0,6913.2,7271.6,7642.4,8015.9,8391.9,8769.6,9147.9,9528.3,9910.8,10293.5,10677.1,11062.5,11447.8,11834.2]) BaseLogPartFctRef[ 436 ]['NbLabels']= 3 BaseLogPartFctRef[ 436 ]['NbCliques']= 7755 BaseLogPartFctRef[ 436 ]['NbSites']= 3003 BaseLogPartFctRef[ 436 ]['StdNgbhDivMoyNgbh']= 0.177143540895 BaseLogPartFctRef[437 ]={} BaseLogPartFctRef[437]['LogPF']=np.array([3228.8,3354.9,3484.2,3620.1,3761.2,3908.5,4060.7,4222.6,4397.8,4586.3,4806.9,5076.8,5369.9,5678.4,6010.0,6356.2,6707.0,7055.3,7409.4,7767.3,8130.5,8497.9,8865.2,9234.5,9604.5,9975.2,10347.6,10720.5,11093.2,11467.1]) BaseLogPartFctRef[ 437 ]['NbLabels']= 3 BaseLogPartFctRef[ 437 ]['NbCliques']= 7520 BaseLogPartFctRef[ 437 ]['NbSites']= 2939 BaseLogPartFctRef[ 437 ]['StdNgbhDivMoyNgbh']= 0.190823564003 BaseLogPartFctRef[438 ]={} BaseLogPartFctRef[438]['LogPF']=np.array([3173.9,3296.5,3423.2,3555.4,3690.7,3831.4,3978.9,4137.3,4311.5,4507.1,4723.6,4979.9,5251.6,5536.4,5844.6,6171.9,6510.2,6852.1,7197.1,7547.5,7897.5,8252.1,8608.4,8967.4,9326.2,9686.4,10047.6,10408.7,10770.4,11132.8]) BaseLogPartFctRef[ 438 ]['NbLabels']= 3 BaseLogPartFctRef[ 438 ]['NbCliques']= 7298 BaseLogPartFctRef[ 438 ]['NbSites']= 2889 BaseLogPartFctRef[ 438 ]['StdNgbhDivMoyNgbh']= 0.188896482419 BaseLogPartFctRef[439 ]={} BaseLogPartFctRef[439]['LogPF']=np.array([3234.3,3360.1,3491.4,3626.2,3767.1,3911.2,4063.2,4231.0,4400.4,4602.5,4845.9,5110.4,5401.3,5709.5,6034.0,6371.5,6712.4,7066.9,7423.3,7784.4,8147.7,8512.0,8879.5,9247.3,9616.6,9986.5,10358.8,10731.7,11104.2,11477.8]) BaseLogPartFctRef[ 439 ]['NbLabels']= 3 BaseLogPartFctRef[ 439 ]['NbCliques']= 7516 BaseLogPartFctRef[ 439 ]['NbSites']= 2944 BaseLogPartFctRef[ 439 ]['StdNgbhDivMoyNgbh']= 0.187317659209 BaseLogPartFctRef[440 ]={} BaseLogPartFctRef[440]['LogPF']=np.array([3276.1,3407.1,3541.9,3679.2,3822.7,3972.1,4130.9,4300.6,4481.3,4682.1,4920.1,5198.0,5500.4,5825.0,6159.3,6505.0,6857.4,7214.1,7572.6,7938.2,8309.2,8683.1,9057.7,9432.1,9809.5,10187.0,10565.6,10945.0,11324.8,11704.9]) BaseLogPartFctRef[ 440 ]['NbLabels']= 3 BaseLogPartFctRef[ 440 ]['NbCliques']= 7649 BaseLogPartFctRef[ 440 ]['NbSites']= 2982 BaseLogPartFctRef[ 440 ]['StdNgbhDivMoyNgbh']= 0.178045474733 BaseLogPartFctRef[441 ]={} BaseLogPartFctRef[441]['LogPF']=np.array([3202.5,3325.7,3452.9,3586.0,3723.3,3866.2,4013.7,4180.0,4350.2,4542.0,4768.4,5017.3,5297.2,5604.2,5918.9,6250.4,6584.7,6930.0,7277.4,7629.9,7983.4,8339.0,8699.3,9059.3,9421.0,9782.5,10146.6,10511.9,10876.1,11241.6]) BaseLogPartFctRef[ 441 ]['NbLabels']= 3 BaseLogPartFctRef[ 441 ]['NbCliques']= 7359 BaseLogPartFctRef[ 441 ]['NbSites']= 2915 BaseLogPartFctRef[ 441 ]['StdNgbhDivMoyNgbh']= 0.193835579538 BaseLogPartFctRef[442 ]={} BaseLogPartFctRef[442]['LogPF']=np.array([3248.6,3377.4,3507.9,3644.8,3787.5,3932.5,4083.0,4247.3,4422.7,4637.9,4872.3,5143.2,5441.7,5754.0,6079.6,6421.7,6766.7,7123.1,7485.2,7846.0,8213.2,8580.5,8952.3,9324.4,9697.2,10071.3,10445.2,10820.9,11196.7,11573.7]) BaseLogPartFctRef[ 442 ]['NbLabels']= 3 BaseLogPartFctRef[ 442 ]['NbCliques']= 7576 BaseLogPartFctRef[ 442 ]['NbSites']= 2957 BaseLogPartFctRef[ 442 ]['StdNgbhDivMoyNgbh']= 0.184386902331 BaseLogPartFctRef[443 ]={} BaseLogPartFctRef[443]['LogPF']=np.array([3197.0,3321.4,3452.2,3586.4,3723.9,3869.1,4020.5,4178.0,4350.9,4550.1,4779.6,5037.7,5323.7,5637.9,5962.0,6296.9,6632.2,6981.5,7332.1,7686.7,8044.1,8404.5,8767.6,9130.0,9495.5,9860.6,10226.0,10593.4,10960.6,11328.4]) BaseLogPartFctRef[ 443 ]['NbLabels']= 3 BaseLogPartFctRef[ 443 ]['NbCliques']= 7402 BaseLogPartFctRef[ 443 ]['NbSites']= 2910 BaseLogPartFctRef[ 443 ]['StdNgbhDivMoyNgbh']= 0.185876474335 BaseLogPartFctRef[444 ]={} BaseLogPartFctRef[444]['LogPF']=np.array([3218.9,3348.0,3479.1,3614.7,3754.2,3900.8,4053.5,4214.5,4389.3,4592.9,4823.4,5085.7,5374.7,5676.4,6004.2,6341.0,6682.7,7032.1,7386.5,7746.8,8107.7,8472.3,8839.3,9207.4,9576.5,9946.5,10317.3,10687.8,11059.5,11432.2]) BaseLogPartFctRef[ 444 ]['NbLabels']= 3 BaseLogPartFctRef[ 444 ]['NbCliques']= 7491 BaseLogPartFctRef[ 444 ]['NbSites']= 2930 BaseLogPartFctRef[ 444 ]['StdNgbhDivMoyNgbh']= 0.188793217594 BaseLogPartFctRef[445 ]={} BaseLogPartFctRef[445]['LogPF']=np.array([3276.1,3405.3,3539.7,3679.7,3822.3,3971.0,4126.7,4288.0,4475.9,4677.3,4922.6,5209.6,5505.6,5816.0,6149.9,6498.9,6854.2,7212.8,7578.4,7945.7,8316.7,8691.4,9068.0,9446.2,9825.6,10205.6,10586.8,10969.3,11351.6,11734.7]) BaseLogPartFctRef[ 445 ]['NbLabels']= 3 BaseLogPartFctRef[ 445 ]['NbCliques']= 7693 BaseLogPartFctRef[ 445 ]['NbSites']= 2982 BaseLogPartFctRef[ 445 ]['StdNgbhDivMoyNgbh']= 0.180774156288 BaseLogPartFctRef[446 ]={} BaseLogPartFctRef[446]['LogPF']=np.array([3201.4,3327.5,3456.8,3590.9,3729.2,3875.2,4025.3,4190.0,4367.6,4559.8,4793.6,5058.7,5340.1,5647.4,5973.2,6309.0,6649.2,6997.9,7350.3,7703.5,8063.1,8422.9,8786.4,9149.0,9514.0,9881.2,10248.7,10617.1,10986.4,11355.6]) BaseLogPartFctRef[ 446 ]['NbLabels']= 3 BaseLogPartFctRef[ 446 ]['NbCliques']= 7436 BaseLogPartFctRef[ 446 ]['NbSites']= 2914 BaseLogPartFctRef[ 446 ]['StdNgbhDivMoyNgbh']= 0.188007135336 BaseLogPartFctRef[447 ]={} BaseLogPartFctRef[447]['LogPF']=np.array([3194.8,3320.0,3448.9,3582.9,3723.9,3868.6,4022.5,4182.7,4357.8,4549.8,4760.5,5023.1,5324.8,5641.1,5965.8,6302.4,6645.5,6990.8,7343.7,7702.0,8058.5,8421.5,8784.8,9150.9,9518.0,9885.3,10253.6,10623.0,10992.4,11362.6]) BaseLogPartFctRef[ 447 ]['NbLabels']= 3 BaseLogPartFctRef[ 447 ]['NbCliques']= 7448 BaseLogPartFctRef[ 447 ]['NbSites']= 2908 BaseLogPartFctRef[ 447 ]['StdNgbhDivMoyNgbh']= 0.190136547931 BaseLogPartFctRef[448 ]={} BaseLogPartFctRef[448]['LogPF']=np.array([3268.4,3396.3,3530.5,3667.4,3808.6,3954.7,4108.8,4269.6,4446.9,4639.4,4875.9,5147.9,5447.2,5764.9,6092.5,6431.7,6781.7,7142.8,7503.9,7867.8,8234.6,8606.3,8979.3,9352.1,9727.5,10104.4,10481.8,10860.0,11238.3,11616.9]) BaseLogPartFctRef[ 448 ]['NbLabels']= 3 BaseLogPartFctRef[ 448 ]['NbCliques']= 7624 BaseLogPartFctRef[ 448 ]['NbSites']= 2975 BaseLogPartFctRef[ 448 ]['StdNgbhDivMoyNgbh']= 0.187188178033 BaseLogPartFctRef[449 ]={} BaseLogPartFctRef[449]['LogPF']=np.array([3284.9,3414.7,3548.6,3686.3,3829.8,3978.2,4134.3,4302.9,4485.8,4687.8,4922.4,5192.6,5486.0,5790.9,6118.6,6462.1,6814.8,7174.7,7539.7,7908.1,8278.6,8652.0,9026.0,9404.1,9782.3,10162.6,10543.6,10923.5,11304.6,11685.6]) BaseLogPartFctRef[ 449 ]['NbLabels']= 3 BaseLogPartFctRef[ 449 ]['NbCliques']= 7681 BaseLogPartFctRef[ 449 ]['NbSites']= 2990 BaseLogPartFctRef[ 449 ]['StdNgbhDivMoyNgbh']= 0.179728652519 BaseLogPartFctRef[450 ]={} BaseLogPartFctRef[450]['LogPF']=np.array([3189.3,3313.5,3444.1,3576.7,3713.4,3855.6,4006.1,4168.8,4340.7,4528.2,4758.5,5022.5,5308.8,5619.4,5940.4,6267.4,6605.6,6951.5,7298.7,7653.0,8009.4,8370.8,8732.5,9096.7,9459.4,9824.6,10190.9,10556.6,10924.3,11292.2]) BaseLogPartFctRef[ 450 ]['NbLabels']= 3 BaseLogPartFctRef[ 450 ]['NbCliques']= 7399 BaseLogPartFctRef[ 450 ]['NbSites']= 2903 BaseLogPartFctRef[ 450 ]['StdNgbhDivMoyNgbh']= 0.19326362073 BaseLogPartFctRef[451 ]={} BaseLogPartFctRef[451]['LogPF']=np.array([3247.5,3376.0,3507.8,3643.6,3786.9,3932.4,4089.3,4254.6,4434.9,4633.5,4859.4,5131.3,5435.8,5749.9,6080.5,6428.3,6777.0,7130.5,7489.8,7850.9,8216.3,8586.0,8955.8,9329.3,9703.7,10078.8,10453.8,10829.5,11206.6,11583.9]) BaseLogPartFctRef[ 451 ]['NbLabels']= 3 BaseLogPartFctRef[ 451 ]['NbCliques']= 7590 BaseLogPartFctRef[ 451 ]['NbSites']= 2956 BaseLogPartFctRef[ 451 ]['StdNgbhDivMoyNgbh']= 0.184517318445 BaseLogPartFctRef[452 ]={} BaseLogPartFctRef[452]['LogPF']=np.array([3228.8,3356.3,3485.7,3621.0,3761.3,3909.7,4059.5,4221.9,4396.6,4595.5,4822.8,5088.9,5379.4,5698.5,6030.3,6363.4,6709.9,7060.6,7419.8,7782.6,8142.1,8507.5,8875.6,9243.1,9612.2,9983.1,10354.9,10726.1,11099.1,11471.8]) BaseLogPartFctRef[ 452 ]['NbLabels']= 3 BaseLogPartFctRef[ 452 ]['NbCliques']= 7500 BaseLogPartFctRef[ 452 ]['NbSites']= 2939 BaseLogPartFctRef[ 452 ]['StdNgbhDivMoyNgbh']= 0.182635741583 BaseLogPartFctRef[453 ]={} BaseLogPartFctRef[453]['LogPF']=np.array([3284.9,3413.8,3547.5,3686.1,3829.4,3978.0,4133.6,4303.0,4487.5,4688.3,4919.4,5179.1,5473.2,5790.5,6125.7,6466.6,6821.5,7185.8,7553.7,7921.9,8291.8,8666.3,9040.8,9417.7,9795.6,10174.2,10554.7,10934.9,11316.7,11698.6]) BaseLogPartFctRef[ 453 ]['NbLabels']= 3 BaseLogPartFctRef[ 453 ]['NbCliques']= 7674 BaseLogPartFctRef[ 453 ]['NbSites']= 2990 BaseLogPartFctRef[ 453 ]['StdNgbhDivMoyNgbh']= 0.177543041584 BaseLogPartFctRef[454 ]={} BaseLogPartFctRef[454]['LogPF']=np.array([3186.0,3310.2,3438.2,3571.8,3707.3,3850.0,3997.3,4155.2,4330.9,4538.3,4765.1,5017.3,5298.8,5598.4,5913.2,6240.5,6578.6,6925.8,7271.4,7620.9,7975.4,8330.6,8687.6,9048.2,9408.4,9770.0,10132.7,10495.8,10859.6,11224.0]) BaseLogPartFctRef[ 454 ]['NbLabels']= 3 BaseLogPartFctRef[ 454 ]['NbCliques']= 7337 BaseLogPartFctRef[ 454 ]['NbSites']= 2900 BaseLogPartFctRef[ 454 ]['StdNgbhDivMoyNgbh']= 0.188337653603 BaseLogPartFctRef[455 ]={} BaseLogPartFctRef[455]['LogPF']=np.array([3248.6,3373.7,3506.3,3643.3,3784.2,3931.3,4085.1,4249.7,4427.4,4617.6,4853.3,5132.5,5425.4,5740.6,6069.6,6406.2,6752.3,7109.4,7463.9,7822.5,8187.2,8553.2,8919.9,9290.3,9661.8,10033.2,10406.1,10780.3,11154.6,11528.9]) BaseLogPartFctRef[ 455 ]['NbLabels']= 3 BaseLogPartFctRef[ 455 ]['NbCliques']= 7534 BaseLogPartFctRef[ 455 ]['NbSites']= 2957 BaseLogPartFctRef[ 455 ]['StdNgbhDivMoyNgbh']= 0.181601409976 BaseLogPartFctRef[456 ]={} BaseLogPartFctRef[456]['LogPF']=np.array([3193.7,3318.8,3447.5,3579.9,3717.8,3863.1,4009.1,4167.0,4343.3,4533.5,4760.0,5007.1,5299.8,5606.9,5919.3,6242.7,6583.8,6928.4,7276.8,7633.5,7991.1,8350.2,8710.9,9072.6,9435.8,9801.2,10167.6,10533.9,10900.9,11269.2]) BaseLogPartFctRef[ 456 ]['NbLabels']= 3 BaseLogPartFctRef[ 456 ]['NbCliques']= 7394 BaseLogPartFctRef[ 456 ]['NbSites']= 2907 BaseLogPartFctRef[ 456 ]['StdNgbhDivMoyNgbh']= 0.18430088024 BaseLogPartFctRef[457 ]={} BaseLogPartFctRef[457]['LogPF']=np.array([3267.3,3397.3,3530.6,3670.7,3812.5,3964.1,4122.8,4285.3,4470.0,4670.4,4906.2,5182.3,5485.5,5803.4,6132.0,6478.7,6827.4,7187.7,7550.2,7921.7,8292.4,8661.7,9035.2,9409.8,9787.1,10164.6,10542.1,10920.6,11300.4,11680.3]) BaseLogPartFctRef[ 457 ]['NbLabels']= 3 BaseLogPartFctRef[ 457 ]['NbCliques']= 7639 BaseLogPartFctRef[ 457 ]['NbSites']= 2974 BaseLogPartFctRef[ 457 ]['StdNgbhDivMoyNgbh']= 0.181737755074 BaseLogPartFctRef[458 ]={} BaseLogPartFctRef[458]['LogPF']=np.array([3206.8,3332.3,3462.2,3598.1,3737.9,3881.7,4031.3,4191.1,4375.1,4570.4,4805.7,5066.9,5351.0,5662.8,5990.8,6323.3,6663.8,7013.8,7363.3,7722.3,8082.5,8442.8,8809.3,9175.4,9543.2,9912.0,10280.9,10651.4,11022.2,11392.9]) BaseLogPartFctRef[ 458 ]['NbLabels']= 3 BaseLogPartFctRef[ 458 ]['NbCliques']= 7468 BaseLogPartFctRef[ 458 ]['NbSites']= 2919 BaseLogPartFctRef[ 458 ]['StdNgbhDivMoyNgbh']= 0.182857692166 BaseLogPartFctRef[459 ]={} BaseLogPartFctRef[459]['LogPF']=np.array([3251.9,3380.2,3512.2,3650.0,3794.5,3943.3,4102.2,4267.4,4450.3,4656.9,4888.6,5160.7,5453.6,5767.8,6107.2,6449.7,6802.8,7160.3,7525.8,7892.2,8261.2,8631.8,9006.4,9381.9,9760.1,10137.9,10516.0,10895.5,11275.2,11655.8]) BaseLogPartFctRef[ 459 ]['NbLabels']= 3 BaseLogPartFctRef[ 459 ]['NbCliques']= 7644 BaseLogPartFctRef[ 459 ]['NbSites']= 2960 BaseLogPartFctRef[ 459 ]['StdNgbhDivMoyNgbh']= 0.18019317349 BaseLogPartFctRef[460 ]={} BaseLogPartFctRef[460]['LogPF']=np.array([3298.0,3429.9,3565.3,3704.0,3850.9,4000.8,4159.4,4324.6,4506.0,4712.3,4948.8,5228.2,5528.9,5863.0,6205.0,6558.1,6911.7,7274.6,7643.9,8016.0,8391.0,8768.7,9150.1,9532.8,9916.1,10299.9,10684.6,11069.3,11455.1,11841.2]) BaseLogPartFctRef[ 460 ]['NbLabels']= 3 BaseLogPartFctRef[ 460 ]['NbCliques']= 7761 BaseLogPartFctRef[ 460 ]['NbSites']= 3002 BaseLogPartFctRef[ 460 ]['StdNgbhDivMoyNgbh']= 0.175609354911 BaseLogPartFctRef[461 ]={} BaseLogPartFctRef[461]['LogPF']=np.array([3256.3,3383.5,3516.4,3653.7,3795.6,3943.7,4099.6,4263.6,4439.1,4638.1,4885.2,5152.7,5439.5,5758.8,6092.7,6437.8,6785.5,7146.4,7501.6,7865.9,8232.9,8601.0,8970.8,9344.1,9718.3,10093.2,10469.5,10845.5,11221.9,11599.4]) BaseLogPartFctRef[ 461 ]['NbLabels']= 3 BaseLogPartFctRef[ 461 ]['NbCliques']= 7590 BaseLogPartFctRef[ 461 ]['NbSites']= 2964 BaseLogPartFctRef[ 461 ]['StdNgbhDivMoyNgbh']= 0.179845616885 BaseLogPartFctRef[462 ]={} BaseLogPartFctRef[462]['LogPF']=np.array([3172.8,3294.7,3422.6,3553.8,3691.1,3830.1,3978.7,4137.5,4305.3,4492.3,4721.5,4975.7,5257.2,5551.4,5861.3,6181.5,6517.3,6859.0,7200.4,7545.4,7894.4,8245.6,8601.4,8958.2,9316.9,9674.2,10033.6,10393.7,10754.7,11116.5]) BaseLogPartFctRef[ 462 ]['NbLabels']= 3 BaseLogPartFctRef[ 462 ]['NbCliques']= 7272 BaseLogPartFctRef[ 462 ]['NbSites']= 2888 BaseLogPartFctRef[ 462 ]['StdNgbhDivMoyNgbh']= 0.192011604121 BaseLogPartFctRef[463 ]={} BaseLogPartFctRef[463]['LogPF']=np.array([3245.3,3371.0,3502.2,3638.7,3780.3,3927.4,4079.9,4247.1,4427.2,4628.6,4868.6,5137.0,5439.6,5749.4,6073.5,6407.1,6752.9,7106.4,7464.9,7827.4,8192.5,8559.9,8930.8,9301.3,9672.3,10045.1,10418.6,10792.9,11168.0,11543.7]) BaseLogPartFctRef[ 463 ]['NbLabels']= 3 BaseLogPartFctRef[ 463 ]['NbCliques']= 7558 BaseLogPartFctRef[ 463 ]['NbSites']= 2954 BaseLogPartFctRef[ 463 ]['StdNgbhDivMoyNgbh']= 0.188403104636 BaseLogPartFctRef[464 ]={} BaseLogPartFctRef[464]['LogPF']=np.array([3224.4,3351.2,3482.4,3617.1,3758.1,3904.4,4055.5,4217.8,4394.6,4599.1,4831.0,5104.9,5405.5,5722.0,6053.2,6389.7,6734.4,7087.1,7446.2,7809.8,8172.7,8539.6,8906.5,9274.7,9645.1,10017.0,10389.3,10763.0,11137.1,11511.9]) BaseLogPartFctRef[ 464 ]['NbLabels']= 3 BaseLogPartFctRef[ 464 ]['NbCliques']= 7535 BaseLogPartFctRef[ 464 ]['NbSites']= 2935 BaseLogPartFctRef[ 464 ]['StdNgbhDivMoyNgbh']= 0.183660633269 V_Beta_Ref=np.array([0.,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.,1.05,1.1,1.15,1.2,1.25,1.3,1.35,1.4,1.45]) return BaseLogPartFctRef,V_Beta_Ref #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Vec_Estim_lnZ_Graph_fast(RefGraph,LabelsNb,MaxErrorAllowed=5,BetaMax=1.4,BetaStep=0.05): """ Estimate ln(Z(beta)) of Potts fields. The default Beta grid is between 0. and 1.4 with a step of 0.05. Extrapolation algorithm is used. Fast estimates are only performed for Ising fields (2 labels). Reference partition functions were pre-computed on Ising fields designed on regular and non-regular grids. They all respect a 6-connectivity system. input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * LabelsNb: possible number of labels in each site of the graph * MaxErrorAllowed: maximum error allowed in the graph estimation (in percents). * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax. Maximum considered value is 1.4 * BetaStep: gap between two considered values of beta. Actual gaps are not exactly those asked but very close. output: * Est_lnZ: Vector containing the ln(Z(beta)) estimates * V_Beta: Vector of the same size as VecExpectZ containing the corresponding beta value """ #launch a more general algorithm if the inputs are not appropriate if (LabelsNb!=2 and LabelsNb!=3) or BetaMax>1.4: [Est_lnZ,V_Beta]=Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=30,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) return Est_lnZ,V_Beta #initialisation #...default returned values V_Beta=np.array([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4]) Est_lnZ=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) #...load reference partition functions [BaseLogPartFctRef,V_Beta_Ref]=LoadBaseLogPartFctRef() NbSites=[len(RefGraph)] NbCliques=[sum( [len(nl) for nl in RefGraph] ) ] #...NbSites s=len(RefGraph) #...NbCliques NbCliquesTmp=0 for j in xrange(len(RefGraph)): NbCliquesTmp=NbCliquesTmp+len(RefGraph[j]) c=NbCliquesTmp/2 NbCliques.append(c) #...StdVal Nb neighbors / Moy Nb neighbors StdValCliquesPerSiteTmp=0. nc = NbCliques[-1] + 0. ns = NbSites[-1] + 0. for j in xrange(len(RefGraph)): StdValCliquesPerSiteTmp = StdValCliquesPerSiteTmp \ + ( (nc/ns-len(RefGraph[j])/2.)**2. ) / ns StdNgbhDivMoyNgbh = np.sqrt(StdValCliquesPerSiteTmp) \ / ( nc/(ns-1.) ) #extrapolation algorithm Best_MaxError=10000000. for i in BaseLogPartFctRef.keys(): if BaseLogPartFctRef[i]['NbLabels']==LabelsNb: MaxError=np.abs((BaseLogPartFctRef[i]['NbSites']-1.)*((1.*c)/(1.*BaseLogPartFctRef[i]['NbCliques']))-(s-1.))*np.log(LabelsNb*1.) #error at beta=0 MaxError=MaxError+(np.abs(BaseLogPartFctRef[i]['StdNgbhDivMoyNgbh']-StdNgbhDivMoyNgbh)) #penalty added to the error at zero to penalyze different homogeneities of the neighboroud (a bareer function would be cleaner for the conversion in percents) MaxError=MaxError*100./(s*np.log(LabelsNb*1.)) #to have a percentage of error if MaxError<Best_MaxError: Best_MaxError=MaxError BestI=i if Best_MaxError<MaxErrorAllowed: Est_lnZ=((c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*BaseLogPartFctRef[BestI]['LogPF']+(1-(c*1.)/(BaseLogPartFctRef[BestI]['NbCliques']*1.))*np.log(LabelsNb*1.) V_Beta=V_Beta_Ref.copy() else: #print 'launch an adapted function' [Est_lnZ,V_Beta] = Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=30,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) #print 'V_Beta be4 resampling:', V_Beta #reduction of the domain if (BetaMax<1.4): temp=0 while V_Beta[temp]<BetaMax and temp<V_Beta.shape[0]-2: temp=temp+1 V_Beta=V_Beta[:temp] Est_lnZ=Est_lnZ[:temp] #domain resampling resamplingMethod = 'ply' if (abs(BetaStep-0.05)>0.0001): if resamplingMethod == 'linear': v_Beta_Resample = [] cpt=0. while cpt<BetaMax+0.0001: v_Beta_Resample.append(cpt) cpt=cpt+BetaStep Est_lnZ = resampleToGrid(np.array(V_Beta),np.array(Est_lnZ), np.array(v_Beta_Resample)) V_Beta = v_Beta_Resample elif resamplingMethod == 'ply': interpolator = scipy.interpolate.interp1d(V_Beta, Est_lnZ, kind='cubic') #print 'V_Beta[-1]+BetaStep:', V_Beta[-1],'+',BetaStep targetBeta = np.arange(0, BetaMax + BetaStep, BetaStep) Est_lnZ = interpolator(targetBeta) #Est_lnZ = scipy.interpolate.spline(V_Beta, Est_lnZ, targetBeta, # order=3) #Est_lnZ = scipy.interpolate.krogh_interpolate(V_Beta, Est_lnZ, # targetBeta) #print 'Est_lnZ:', Est_lnZ #print 'targetBeta:', targetBeta V_Beta = targetBeta else: raise Exception('Unknown resampling method: %s' %resamplingMethod) return Est_lnZ,V_Beta #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Vec_Estim_lnZ_Graph_fast2(RefGraph,BetaMax=1.4,BetaStep=0.05): """ Estimate ln(Z(beta)) of Ising fields (2 labels). The default Beta grid is between 0. and 1.4 with a step of 0.05. Bilinar estimation with the number of sites and cliques is used. The bilinear functions were estimated using bilinear regression on reference partition functions on 240 non-regular grids and with respect to a 6-connectivity system. (Pfs are found in LoadBaseLogPartFctRef -> PFs 0:239) input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax. Maximum considered value is 1.4 * BetaStep: gap between two considered values of beta. Actual gaps are not exactly those asked but very close. output: * Est_lnZ: Vector containing the ln(Z(beta)) estimates * V_Beta: Vector of the same size as VecExpectZ containing the corresponding beta value """ #launch a more general algorithm if the inputs are not appropriate if LabelsNb!=2 or BetaMax>1.4: [Est_lnZ,V_Beta]=Cpt_Vec_Estim_lnZ_Graph(RefGraph,LabelsNb,SamplesNb=20,BetaMax=BetaMax,BetaStep=BetaStep,GraphWeight=None) return Est_lnZ,V_Beta #initialisation #...default returned values V_Beta=np.array([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4]) Est_lnZ=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) #...NbSites s=len(RefGraph) #...NbCliques NbCliquesTmp=0 for j in xrange(len(RefGraph)): NbCliquesTmp=NbCliquesTmp+len(RefGraph[j]) c=NbCliquesTmp/2 #extrapolation algorithm Est_lnZ[0]= 0.051 * c + 0.693 * s - 0.0004 Est_lnZ[1]= 0.105 * c + 0.692 * s + 0.003 Est_lnZ[2]= 0.162 * c + 0.691 * s + 0.012 Est_lnZ[3]= 0.224 * c + 0.686 * s + 0.058 Est_lnZ[4]= 0.298 * c + 0.663 * s + 0.314 Est_lnZ[5]= 0.406 * c + 0.580 * s + 1.26 Est_lnZ[6]= 0.537 * c + 0.467 * s + 2.34 Est_lnZ[7]= 0.669 * c + 0.363 * s + 3.07 Est_lnZ[8]= 0.797 * c + 0.281 * s + 3.39 Est_lnZ[9]= 0.919 * c + 0.219 * s + 3.41 Est_lnZ[10]=1.035 * c + 0.173 * s + 3.28 Est_lnZ[11]=1.148 * c + 0.137 * s + 3.08 Est_lnZ[12]=1.258 * c + 0.110 * s + 2.87 Est_lnZ[13]=1.366 * c + 0.089 * s + 2.66 #reduction of the domain if (BetaMax<1.4): temp=0 while V_Beta[temp]<BetaMax and temp<V_Beta.shape[0]-2: temp=temp+1 V_Beta=V_Beta[:temp] Est_lnZ=Est_lnZ[:temp] #domain resampling if (abs(BetaStep-0.05)>0.0001): v_Beta_Resample=[] cpt=0. while cpt<BetaMax+0.0001: v_Beta_Resample.append(cpt) cpt=cpt+BetaStep Est_lnZ=resampleToGrid(np.array(V_Beta),np.array(Est_lnZ),np.array(v_Beta_Resample)) V_Beta=v_Beta_Resample return Est_lnZ,V_Beta def logpf_ising_onsager(size, beta): """ Calculate log partition function in terms of beta for an Ising field of size 'size'. 'beta' can be scalar or numpy.array. Assumptions: the field is 2D, squared, toroidal and has 4-connectivity """ coshb = np.cosh(beta) u = 2 * np.sinh(beta) / (coshb*coshb) if np.isscalar(beta): psi = np.zeros(1) u = [u] else: psi = np.zeros(len(beta)) for iu,vu in enumerate(u): x = np.arange(0, np.pi, 0.01) sinx = np.sin(x) y = np.log( (1 + (1 - vu*vu*sinx*sinx)**.5)/2 ) psi[iu] = 1/(2*np.pi) * np.trapz(y,x) if np.isscalar(beta): return size * (beta + np.log(2*coshb + psi[0])) else: return size * (beta + np.log(2*coshb + psi)) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Estim_lnZ_Onsager(n,beta): """ Estimate ln(Z(beta)) using Onsager technique (2D periodic fields - 2 labels - 4 connectivity) input: * n: number of sites * beta: beta output: * LogZ: ln(Z(beta)) estimate """ #estimate u(beta) u=2.*scipy.sinh(beta)/(scipy.cosh(beta)*scipy.cosh(beta)) #estimate psi(u(beta)) NbSteps=1000 DeltaX=scipy.pi/NbSteps integra=0. for i in xrange(NbSteps): x=scipy.pi*(i+0.5)/NbSteps integra+=(scipy.log((1.+scipy.sqrt(1-u*u*scipy.sin(x)*scipy.sin(x)))/2.))*DeltaX Psi=integra/(2.*scipy.pi) #estimate Log(Z) LogZ=n*(beta+scipy.log(2.*scipy.cosh(beta))+Psi) return LogZ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Vec_Estim_lnZ_Onsager(n,BetaMax=1.2,BetaStep=0.05): """ Estimate ln(Z(beta)) Onsager using Onsager technique (2D periodic fields - 2 labels - 4 connectivity) input: * n: number of sites * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax. Maximum considered value is 1.2. * BetaStep: gap between two considered values of beta. Actual gaps are not exactly those asked but very close. output: * Est_lnZ: Vector containing the ln(Z(beta)) estimates * V_Beta: Vector of the same size as VecExpectZ containing the corresponding beta value """ #initialization BetaLoc=0. ListBetaVal=[] ListLnZ=[] #compute the values of beta and lnZ while BetaLoc<BetaMax: LnZLoc=Estim_lnZ_Onsager(n,BetaLoc) ListLnZ.append(LnZLoc) ListBetaVal.append(BetaLoc) BetaLoc=BetaLoc+BetaStep #cast the result into an array Est_lnZ=_N.array(ListLnZ) V_Beta=_N.array(ListBetaVal) #return the estimated values return Est_lnZ,V_Beta #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Vec_Estim_lnZ_OLD_Graph(RefGraph,LabelsNb,SamplesNb=50,BetaMax=1.0,BetaStep=0.01,GraphWeight=None): """ Useless now! Estimates ln(Z) for fields of a given size and Beta values between 0 and BetaMax input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * LabelsNb: number of labels * BetaMax: Z(beta,mask) will be computed for beta between 0 and BetaMax * BetaStep: gap between two considered values of bseta * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. output: * VecEstim_lnZ: Vector containing the ln(Z(beta,mask)) estimates * VecBetaVal: Vector of the same size as VecExpectZ containing the corresponding beta value """ #initialization BetaLoc=0 ListExpectU=[] ListBetaVal=[] if GraphWeight==None: GraphWeight=CptDefaultGraphWeight(RefGraph) GraphNodesLabels=CptDefaultGraphNodesLabels(RefGraph) GraphLinks=CptDefaultGraphLinks(RefGraph) RefGrphNgbhPosi=CptRefGrphNgbhPosi(RefGraph) #compute all E(U|beta)... while BetaLoc<BetaMax: BetaLoc=BetaLoc+BetaStep ExpU_loc=Cpt_Expected_U_graph(RefGraph,BetaLoc,LabelsNb,SamplesNb,GraphWeight=GraphWeight,GraphNodesLabels=GraphNodesLabels,GraphLinks=GraphLinks,RefGrphNgbhPosi=RefGrphNgbhPosi) ListExpectU.append(ExpU_loc) ListBetaVal.append(BetaLoc) pyhrf.verbose(2, 'beta=%1.4f -> exp(U)=%1.4f' \ %(BetaLoc,ExpU_loc)) VecEstim_lnZ=np.zeros(len(ListExpectU)) VecBetaVal=np.zeros(len(ListExpectU)) for i in xrange(len(ListExpectU)): VecBetaVal[i]=ListBetaVal[i] if i==0: VecEstim_lnZ[i]=len(RefGraph)*np.log(LabelsNb)+ListExpectU[0]*BetaStep/2 else: VecEstim_lnZ[i]=VecEstim_lnZ[i-1]+(ListExpectU[i-1]+ListExpectU[i])*BetaStep/2 return VecEstim_lnZ,VecBetaVal #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Exact_lnZ_graph(RefGraph,beta,LabelsNb,GraphWeight=None): """ Computes the logarithm of the exact partition function Z(\beta). input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * beta: spatial regularization parameter * LabelsNb: number of labels in each site (typically 2 or 3) * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. output: * exact_lnZ: exact value of ln(Z) """ #initialization if GraphWeight==None: GraphWeight=CptDefaultGraphWeight(RefGraph) GraphNodesLabels=CptDefaultGraphNodesLabels(RefGraph) VoxelsNb=len(RefGraph) #sum of the energies U for all possible configurations of GraphNodesLabels Config_ID_max=LabelsNb**VoxelsNb Z_exact=0 if LabelsNb==2: #use of np.binary_repr instead of np.base_repr because it is far faster but only designed for base two numbers for Config_ID in xrange(Config_ID_max): if Config_ID==0: #handle a problem with 'binary_repr' which write binary_repr(0,VoxelsNb)='0' for i in xrange(VoxelsNb): GraphNodesLabels[i]=0 else: for i in xrange(VoxelsNb): GraphNodesLabels[i]=int(np.binary_repr(Config_ID,VoxelsNb)[i]) #print GraphNodesLabels Z_exact=Z_exact+np.exp(beta*Cpt_U_graph(RefGraph,GraphNodesLabels,GraphWeight=GraphWeight)) else: for Config_ID in xrange(Config_ID_max): for i in xrange(VoxelsNb): GraphNodesLabels[i]=int(np.base_repr(Config_ID,base=LabelsNb,padding=VoxelsNb)[-1-i]) #print GraphNodesLabels Z_exact=Z_exact+np.exp(beta*Cpt_U_graph(RefGraph,GraphNodesLabels,GraphWeight=GraphWeight)) exact_lnZ=np.log(Z_exact) return exact_lnZ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_Distrib_P_beta_graph(RefGraph,GraphNodesLabels,VecEstim_lnZ,VecBetaVal, thresh=1.5,GraphWeight=None): """ Computes the distribution P(beta|q) input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * GraphNodesLabels: Nodes labels. GraphNodesLabels[i] is the node i label. * VecEstim_lnZ: Vector containing the ln(Z(beta,mask)) estimates (in accordance with the defined graph). * VecBetaVal: Vector of the same size as VecExpectZ containing the corresponding beta value (in accordance with the defined graph). * thresh: the prior on beta is uniform between 0 and thresh and linearly decrease between thresh and VecBetaVal[-1] * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. output: * Vec_P_Beta: contains the P(beta|q) values (consistant with VecBetaVal). """ #initialization if GraphWeight==None: GraphWeight=CptDefaultGraphWeight(RefGraph) BetaStep=VecBetaVal[1]-VecBetaVal[0] BetaLoc=0 Vec_P_Beta=VecEstim_lnZ*0.0 #computes all P(beta_i|q_i) #cpt the Energy Energy=Cpt_U_graph(RefGraph,GraphNodesLabels,GraphWeight=GraphWeight) #print 'Energy:', Energy #prior normalization if thresh>VecBetaVal[-1]: thresh=VecBetaVal[-1] PriorDenomi=(thresh)+((VecBetaVal[-1]-thresh)/2.) #print "PriorDenomi:", PriorDenomi for i in xrange(VecEstim_lnZ.shape[0]): #print 'VecBetaVal:', VecBetaVal[i] #print thresh if VecBetaVal[i] < thresh: log_P_Beta = -VecEstim_lnZ[i]+Energy*VecBetaVal[i] #print 'log_P_Beta:', log_P_Beta Vec_P_Beta[i]=np.exp(log_P_Beta.astype(float_hires)) elif (VecBetaVal[-1] - VecBetaVal[i]) == 0.: Vec_P_Beta[i] = 0. else: P_beta = (VecBetaVal[-1] - VecBetaVal[i]) / (VecBetaVal[-1]-thresh) #print 'P_beta:', P_beta log_P_Beta = -VecEstim_lnZ[i]+Energy*VecBetaVal[i] + \ np.log(P_beta/PriorDenomi) #print 'log_P_Beta:', log_P_Beta Vec_P_Beta[i]=np.exp(log_P_Beta.astype(float_hires)) if np.isnan(Vec_P_Beta[i]): Vec_P_Beta[i] = 0. #print 'Vec_P_Beta[i]', Vec_P_Beta[i] #print 'BetaStep:', BetaStep #print 'Vec_P_Beta:', Vec_P_Beta, Vec_P_Beta.sum() #print '(BetaStep*Vec_P_Beta.sum())', (BetaStep*Vec_P_Beta.sum()) #Vec_P_Beta normalization Vec_P_Beta=Vec_P_Beta/(BetaStep*Vec_P_Beta.sum()) return Vec_P_Beta #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def Cpt_AcceptNewBeta_Graph(RefGraph,GraphNodesLabels,VecEstim_lnZ,VecBetaVal,CurrentBeta,sigma,thresh=1.2,GraphWeight=None): """ Starting from a given Beta vector (1 value for each condition) 'CurrentBeta', computes new Beta values in 'NewBeta' using a Metropolis-Hastings step. input: * RefGraph: List which contains the connectivity graph. Each entry represents a node of the graph and contains the list of its neighbors entry location in the graph. ex: RefGraph[2][3]=10 means 3rd neighbour of the 2nd node is the 10th node. => There exists i such that RefGraph[10][i]=2 * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. * GraphNodesLabels: Nodes labels. GraphNodesLabels[i] is the node i label. * VecEstim_lnZ: Vector containing the ln(Z(beta,mask)) estimates (in accordance with the defined mask). * VecBetaVal: Vector of the same size as VecExpectZ containing the corresponding beta value (in accordance with the defined mask). * CurrentBeta: Beta at the current iteration * sigma: such as NewBeta = CurrentBeta + N(0,sigma) * thresh: the prior on beta is uniform between 0 and thresh and linearly decrease between thresh and VecBetaVal[-1] * GraphWeight: Same shape as RefGraph. Each entry is the weight of the corresponding edge in RefGraph. If not defined the weights are set to 1.0. output: * NewBeta: Contains the accepted beta value at the next iteration """ #1) initialization betaMax = VecBetaVal[-1] betaMin = VecBetaVal[0] priorBetaMax = betaMax BetaStep=VecBetaVal[1]-VecBetaVal[0] if thresh>betaMax or thresh<0: thresh = betaMax if GraphWeight==None: GraphWeight=CptDefaultGraphWeight(RefGraph) bInf = (betaMin-CurrentBeta)/sigma bSup = (betaMax-CurrentBeta)/sigma ## print 'betaMax :', betaMax, 'CurrentBeta :', CurrentBeta, 'sigma:', sigma ## print 'cur beta :', CurrentBeta ## print ' bInf =', bInf, 'bSup =', bSup u = truncRandn(1, a=bInf, b=bSup) #print ' u = ', u, 'sigma = ', sigma, '-> u*s=', u*sigma dBeta = sigma*u[0] NewBeta = CurrentBeta + dBeta #print '-> proposed beta:', NewBeta assert (NewBeta <= betaMax) and (NewBeta >= betaMin) #3.1) computes ln(Z(CurrentBeta|Mask)) estimation i=0 while VecBetaVal[i]<CurrentBeta: i=i+1 # First order interpolation of precomputed log-PF at currentBeta: ln_Z1_estim= VecEstim_lnZ[i-1] * (VecBetaVal[i]-CurrentBeta)/(VecBetaVal[i]-VecBetaVal[i-1]) \ +VecEstim_lnZ[i] * (CurrentBeta-VecBetaVal[i-1])/(VecBetaVal[i]-VecBetaVal[i-1]) #3.1.b) compute the prior P(CurrentBeta) thresh=VecBetaVal[-1] #prior normalization if thresh>betaMax: thresh=betaMax PriorDenomi=(thresh)+((betaMax-thresh)/2.) if CurrentBeta<thresh: P_cur_beta=1. elif CurrentBeta<betaMax: P_cur_beta=(betaMax-CurrentBeta)/(betaMax-thresh) else: P_cur_beta=0.000001 #3.2) computes ln(P(CurrentBeta|q,Mask)) estimation Energy=Cpt_U_graph(RefGraph,GraphNodesLabels,GraphWeight=GraphWeight) log_P_CurrentBeta = -ln_Z1_estim + Energy*CurrentBeta + np.log(P_cur_beta/PriorDenomi) #4.1) computes ln(Z(NewBeta|Mask)) estimation i=0 while VecBetaVal[i]<NewBeta: i=i+1 # First order interpolation of precomputed log-PF at NewBeta: ln_Z2_estim=VecEstim_lnZ[i-1]*(VecBetaVal[i]-NewBeta)/(VecBetaVal[i]-VecBetaVal[i-1])+VecEstim_lnZ[i]*(NewBeta-VecBetaVal[i-1])/(VecBetaVal[i]-VecBetaVal[i-1]) #4.1.b) compute the prior P(NewBeta) if NewBeta<thresh: P_new_beta=1. elif NewBeta<betaMax: P_new_beta=(betaMax-NewBeta)/(betaMax-thresh) else: P_new_beta=0.000001 #4.2) computes ln(P(NewBeta|q,Mask)) estimation log_P_NewBeta=-ln_Z2_estim+Energy*NewBeta+np.log(P_new_beta/PriorDenomi) #5) compute A_NewBeta and accept or not the new beta value sigsqrt2 = sigma*2**.5 log_g_new = erf((betaMax-NewBeta)/sigsqrt2) - erf((betaMin-NewBeta)/sigsqrt2) log_g_cur = erf((betaMax-CurrentBeta)/sigsqrt2) - erf((betaMin-CurrentBeta)/sigsqrt2) temp = np.exp(log_P_NewBeta - log_P_CurrentBeta + log_g_cur - log_g_new) A_NewBeta=min(1,temp) #print 'Accept ratio :', A_NewBeta if np.random.rand() > A_NewBeta: #print ' -> rejected !' NewBeta = CurrentBeta return NewBeta, dBeta, A_NewBeta def beta_estim_obs_field(graph, labels, gridLnz, method='MAP',weights=None): """ Estimate the amount of spatial correlation of an Ising observed field. 'graph' is the neighbours list defining the topology 'labels' is the field realisation 'gridLnz' is the log-partition function associated to the topology, ie a grid where gridLnz[0] stores values of lnz and gridLnz[1] stores corresponding values of beta. Return : - estimated beta - tabulated distribution p(beta|labels) """ if method == 'MAP': # p(beta | labels): pBeta = Cpt_Distrib_P_beta_graph(graph, labels, gridLnz[0], gridLnz[1]) #print 'pBeta:', pBeta/pBeta.sum() #print 'gridLnz:', gridLnz[1] pBeta /= pBeta.sum() postMean = (gridLnz[1]*pBeta).sum() #varBetaEstim = (gridLnz[1]*gridLnz[1]*pBeta).sum() - postMean*postMean return postMean, pBeta elif method == 'ML': hc = count_homo_cliques(graph, labels, weights) #print 'hc:', hc logll = gridLnz[1] * hc - gridLnz[0] #print 'log likelihood:', logll.dtype #print logll pBeta = np.exp(logll.astype(float_hires)) #print 'pBeta unnorm:', pBeta pBeta = pBeta/pBeta.sum() #print 'pBeta:', pBeta betaML = gridLnz[1][np.argmax(logll)] #dlpf = np.diff(lpf) / dbeta #gamma = dlpf/lpf[1:] #print 'gamma:', gamma #dbetaGrid = betaGrid[1:] #print 'dbetaGrid:', dbetaGrid #betaML = dbetaGrid[closestsorted(gamma, hc)] return betaML, pBeta else: raise Exception('Unknown method %s' %method) ################# # Beta Sampling # ################# class BetaSampler(xmlio.XMLParamDrivenClass, GibbsSamplerVariable): P_VAL_INI = 'initialValue' P_SAMPLE_FLAG = 'sampleFlag' P_USE_TRUE_VALUE = 'useTrueValue' P_PR_BETA_CUT = 'priorBetaCut' P_SIGMA = 'MH_sigma' P_PARTITION_FUNCTION = 'partitionFunction' P_PARTITION_FUNCTION_METH = 'partitionFunctionMethod' # parameters definitions and default values : defaultParameters = { P_SAMPLE_FLAG : True, P_USE_TRUE_VALUE : False, P_VAL_INI : np.array([0.7]), P_SIGMA : 0.05, P_PR_BETA_CUT : 1.2, P_PARTITION_FUNCTION_METH : 'es', P_PARTITION_FUNCTION : None, } if pyhrf.__usemode__ == pyhrf.DEVEL: parametersToSghow = [P_SAMPLE_FLAG, P_VAL_INI, P_SIGMA, P_PR_BETA_CUT, P_USE_TRUE_VALUE, P_PARTITION_FUNCTION, P_PARTITION_FUNCTION_METH,] elif pyhrf.__usemode__ == pyhrf.ENDUSER: parametersToShow = [P_SAMPLE_FLAG, P_VAL_INI] parametersComments = { P_PARTITION_FUNCTION_METH : \ 'either "es" (extrapolation scheme) or "ps" (path sampling)', } #P_BETA : 'Amount of spatial correlation.\n Recommanded between 0.0 and'\ # ' 0.7', def __init__(self, parameters=None, xmlHandler=NumpyXMLHandler(), xmlLabel=None, xmlComment=None): xmlio.XMLParamDrivenClass.__init__(self, parameters, xmlHandler, xmlLabel, xmlComment) sampleFlag = self.parameters[self.P_SAMPLE_FLAG] valIni = self.parameters[self.P_VAL_INI] useTrueValue = self.parameters[self.P_USE_TRUE_VALUE] an = ['condition'] GibbsSamplerVariable.__init__(self,'beta', valIni=valIni, sampleFlag=sampleFlag, useTrueValue=useTrueValue, axes_names=an, value_label='PM Beta') self.priorBetaCut = self.parameters[self.P_PR_BETA_CUT] self.gridLnZ = self.parameters[self.P_PARTITION_FUNCTION] self.pfMethod = self.parameters[self.P_PARTITION_FUNCTION_METH] self.currentDB = None self.currentAcceptRatio = None def linkToData(self, dataInput): self.dataInput = dataInput nbc = self.nbConditions = self.dataInput.nbConditions self.sigma = np.zeros(nbc, dtype=float) + self.parameters[self.P_SIGMA] self.nbClasses = self.samplerEngine.getVariable('nrl').nbClasses self.nbVox = dataInput.nbVoxels self.pBeta = [ [] for c in xrange(self.nbConditions) ] self.betaWalk = [ [] for c in xrange(self.nbConditions) ] self.acceptBeta = [ [] for c in xrange(self.nbConditions) ] self.valIni = self.parameters[self.P_VAL_INI] def checkAndSetInitValue(self, variables): if self.useTrueValue : if self.trueValue is not None: self.currentValue = self.trueValue elif self.valIni is not None: self.currentValue = self.valIni else: raise Exception('Needed a true value for drift init but '\ 'None defined') if self.currentValue is not None: self.currentValue = np.zeros(self.nbConditions, dtype=float) \ + self.currentValue[0] def samplingWarmUp(self, variables): if self.sampleFlag: self.loadBetaGrid() def loadBetaGrid(self): if self.gridLnZ is None: g = self.dataInput.neighboursIndexes g = np.array([l[l!=-1] for l in g],dtype=object) if self.pfMethod == 'es': self.gridLnZ = Cpt_Vec_Estim_lnZ_Graph_fast3(g, self.nbClasses) pyhrf.verbose(2, 'lnz ES ...') #print self.gridLnZ elif self.pfMethod == 'ps': self.gridLnZ = Cpt_Vec_Estim_lnZ_Graph(g, self.nbClasses) pyhrf.verbose(2, 'lnz PS ...') #HACK #import matplotlib.pyplot as plt #print 'nbClasses:', self.nbClasses #print 'g:', g #lnz_ps = Cpt_Vec_Estim_lnZ_Graph(g, self.nbClasses) #lnz_es = Cpt_Vec_Estim_lnZ_Graph_fast3(g, self.nbClasses) #plt.plot(lnz_es[1][:29],lnz_es[0][:29],'r-') #plt.plot(lnz_ps[1],lnz_ps[0],'b-') #plt.show() #sys.exit(0) #HACK def sampleNextInternal(self, variables): snrls = self.samplerEngine.getVariable('nrl') for cond in xrange(self.nbConditions): vlnz, vb = self.gridLnZ g = self.dataInput.neighboursIndexes labs = self.samplerEngine.getVariable('nrl').labels[cond,:] t = self.priorBetaCut b, db, a = Cpt_AcceptNewBeta_Graph(g, labs, vlnz, vb, self.currentValue[cond], self.sigma[0], thresh=t) self.currentDB = db self.currentAcceptRatio = a self.currentValue[cond] = b msg = "beta cond %d: %f" %(cond, self.currentValue[cond]) pyhrf.verbose.printNdarray(5, msg) def get_string_value(self, v): return get_2Dtable_string(v, self.dataInput.cNames, ['pm_beta']) def saveCurrentValue(self, it): GibbsSamplerVariable.saveCurrentValue(self,it) if 0 and self.sampleFlag and self.currentDB is not None: for cond in xrange(self.nbConditions): vlnz, vb = self.gridLnZ g = self.dataInput.neighboursIndexes labs = self.samplerEngine.getVariable('nrl').labels[cond,:] t = self.priorBetaCut self.betaWalk[cond].append(self.currentDB) self.pBeta[cond].append(Cpt_Distrib_P_beta_graph(g, labs, vlnz, vb, thresh=t)) self.acceptBeta[cond].append(self.currentAcceptRatio) def getOutputs(self): outputs = {} if pyhrf.__usemode__ == pyhrf.DEVEL: outputs = GibbsSamplerVariable.getOutputs(self) cn = self.dataInput.cNames axes_names = ['condition', 'voxel'] axes_domains = {'condition' : cn} nbv, nbc = self.nbVox, self.nbConditions repeatedBeta = np.repeat(self.mean, nbv).reshape(nbc, nbv) outputs['pm_beta_mapped'] = xndarray(repeatedBeta, axes_names=axes_names, axes_domains=axes_domains, value_label="pm Beta") if self.sampleFlag: if self.pBeta is not None and len(self.pBeta[0])>0: axes_names = ['condition', 'iteration', 'beta'] axes_domains = {'beta':self.gridLnZ[1], 'condition':cn, 'iteration':self.smplHistoryIts[1:]} pBeta = np.array(self.pBeta) #print 'pBeta.shape:', pBeta.shape outputs['pBetaApost'] = xndarray(pBeta, axes_names=axes_names, value_label="proba", axes_domains=axes_domains) if self.betaWalk is not None and len(self.betaWalk[0])>0: axes_names = ['condition', 'iteration'] axes_domains = {'condition' : cn, 'iteration':self.smplHistoryIts[1:]} betaWalks = np.array(self.betaWalk) #print 'betaWalk hist :', betaWalks.shape outputs['betaWalkHist'] = xndarray(betaWalks, axes_names=axes_names, value_label="dBeta", axes_domains=axes_domains) if self.acceptBeta is not None and len(self.acceptBeta[0])>0: axes_names = ['condition', 'iteration'] axes_domains = {'condition' : cn, 'iteration':self.smplHistoryIts[1:]} acceptBetaHist = np.array(self.acceptBeta) #print 'acceptBeta hist :', acceptBetaHist.shape outputs['acceptBetaHist'] = xndarray(acceptBetaHist, axes_names=axes_names, value_label="Accept", axes_domains=axes_domains) axes_names = ['beta'] axes_domains = {'beta':self.gridLnZ[1]} nc = self.dataInput.nbCliques outputs['lnZ_div_NbCliques'] = xndarray(self.gridLnZ[0]/nc, axes_names=axes_names, value_label="lnZ/#cliques", axes_domains=axes_domains) return outputs
gpl-3.0
elijah513/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
vybstat/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
244
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
XuhanLiu/lemp
lemp.py
1
4850
#! /usr/bin/env python # -*- coding: utf-8 -*- import getopt import os import sys from collections import Counter import numpy as np from keras.models import load_model from sklearn.externals import joblib AA = 'ARNDCQEGHILKMFPSTWYV' CFG = joblib.load('model/config.pkl') USAGE = """ USAGE python lemp.py -i <input_file> [-o <output_file>] [-h] [-v] OPTIONAL ARGUMENTS -i <input_file> : dataset file containing protein sequences as FASTA file format. -o <output_file> : a directory containing the results of prediction of each sample. -v : version information of this software. -h : Help information, print USAGE and ARGUMENTS messages. Note: Please designate each protein sequence in FASTA file with distinct name! """ VERSION = """ DESCRIPTION Name : LEMP (LSTM-based Ensemble Malonylation Predictor) Version : 1.0 Update Time : 2017-07-01 Author : Xuhan Liu & Zhen Chen """ def Snippet(fasta): fas = open(fasta).read().replace('\r\n', '\n')[1:].split('>') dic = {} for fa in fas: lines = fa.split('\n') kb = lines[0].split()[0] seq = ''.join(lines[1:]).upper() frags = [] for i, res in enumerate(seq): if res != 'K': continue frag = [i+1] for j in range(i - 15, i + 16): if j < 0 or j >= len(seq): frag.append(20) else: frag.append(AA.index(seq[j]) if seq[j] in AA else 20) frags.append(frag) # print(str(i+1) + '\t' + tmpStr + '\n') dic[kb] = np.array(frags) return dic def EAAC(frags): eaacs = [] for frag in frags: eaac = [] for i in range(24): count = Counter(frag[i: i + 8]) if 20 in count: count.pop(20) sums = sum(count.values()) + 1e-6 aac = [count[i] / sums for i in range(20)] eaac += aac eaacs.append(eaac) return np.array(eaacs) def ScoreEAAC(dic): model = joblib.load('model/eaac.pkl') scores = {} for kb, frags in dic.items(): score = np.zeros((len(frags), 2)) score[:, 0] = frags[:, 0] score[:, 1] = model.predict_proba(EAAC(frags[:, 1:]))[:, 1] scores[kb] = score return scores def ScoreLSTM(dic): scores = {} models = [load_model('model/lstm.%d.h5' % i) for i in range(5)] for kb, frags in dic.items(): score = np.zeros((len(frags), 2)) for model in models: score[:, 0] += frags[:, 0] score[:, 1] += model.predict_proba(frags[:, 1:])[:, 0] scores[kb] = score / 5 return scores def Predict(EAACscores, LSTMscores): scores = {} for kb in LSTMscores: EAACscore = EAACscores[kb] LSTMscore = LSTMscores[kb] score = np.zeros(LSTMscores[kb].shape) score[:, 0] = LSTMscore[:, 0] score[:, 1] = 1 / (1 + np.exp(-EAACscore[:, 1] * CFG['w_eaac'] - LSTMscore[:, 1] * CFG['w_lstm'] - CFG['bias'])) scores[kb] = score return scores if __name__ == '__main__': try: opts, args = getopt.getopt(sys.argv[1:], "hvi:o:") OPT = dict(opts) except getopt.GetoptError: print('ERROR: Invalid arguments usage. Please type \'-h\' for help.') sys.exit(2) if '-h' in OPT: print(USAGE + '\n') elif '-v' in OPT: print(VERSION + '\n') else: if '-i' not in OPT: print('ERROR: Input file is missing. Please type \'-h\' for help.') sys.exit(2) elif not os.path.exists(OPT['-i']): print('ERROR: Input file cannot be found. Please type \'-h\' for help.') sys.exit(2) # Process train and predict submit else: dic = Snippet(OPT['-i']) LSTMscores = ScoreLSTM(dic) EAACscores = ScoreEAAC(dic) scores = Predict(LSTMscores=LSTMscores, EAACscores=EAACscores) results = 'ID\tSite\tResidue\tScore\tY/N(Sp=90%)\tY/N(Sp=95%)\tY/N(Sp=99%)\n' for kb, score in scores.items(): for i in score: flag90 = 'Y' if i[1] > CFG['cut90'] else 'N' flag95 = 'Y' if i[1] > CFG['cut95'] else 'N' flag99 = 'Y' if i[1] > CFG['cut99'] else 'N' results += '%s\t%d\tK\t%f\t%s\t%s\t%s\n' % (kb, i[0], i[1], flag90, flag95, flag99) if '-o' not in OPT: print(results) else: output = open(OPT['-o'], 'w') output.write(results) output.close() print('=== SUCCESS ===')
gpl-3.0
r-mart/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
MTG/sms-tools
lectures/04-STFT/plots-code/windows-2.py
24
1026
import matplotlib.pyplot as plt import numpy as np import time, os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DF import utilFunctions as UF import math (fs, x) = UF.wavread('../../../sounds/violin-B3.wav') N = 1024 pin = 5000 w = np.ones(801) hM1 = int(math.floor((w.size+1)/2)) hM2 = int(math.floor(w.size/2)) x1 = x[pin-hM1:pin+hM2] plt.figure(1, figsize=(9.5, 5)) plt.subplot(3,1,1) plt.plot(np.arange(-hM1, hM2), x1, lw=1.5) plt.axis([-hM1, hM2, min(x1), max(x1)]) plt.title('x (violin-B3.wav)') mX, pX = DF.dftAnal(x1, w, N) mX = mX - max(mX) plt.subplot(3,1,2) plt.plot(np.arange(mX.size), mX, 'r', lw=1.5) plt.axis([0,N/4,-70,0]) plt.title ('mX (rectangular window)') w = np.blackman(801) mX, pX = DF.dftAnal(x1, w, N) mX = mX - max(mX) plt.subplot(3,1,3) plt.plot(np.arange(mX.size), mX, 'r', lw=1.5) plt.axis([0,N/4,-70,0]) plt.title ('mX (blackman window)') plt.tight_layout() plt.savefig('windows-2.png') plt.show()
agpl-3.0
ucd-cws/arcproject-wq-processing
arcproject/scripts/mapping.py
1
11152
import calendar import datetime import os import logging log = logging.getLogger("arcproject") import arcpy from sqlalchemy import extract import pandas as pd import amaptor from arcproject.waterquality.classes import get_new_session, WaterQuality from .exceptions import NoRecordsError, SpatialReferenceError from .wqt_timestamp_match import pd2np from arcproject.waterquality import classes from arcproject.scripts import funcs as wq_funcs _BASE_FOLDER = os.path.split(os.path.dirname(__file__))[0] _TEMPLATES_FOLDER = os.path.join(_BASE_FOLDER, "templates", ) _LAYERS_FOLDER = os.path.join(_TEMPLATES_FOLDER, "layers") arcgis_10_template = os.path.join(_TEMPLATES_FOLDER, "base_template.mxd") arcgis_pro_template = os.path.join(_TEMPLATES_FOLDER, "arcproject_template_pro", "arcproject_template_pro.aprx") arcgis_pro_layout_template = os.path.join(_TEMPLATES_FOLDER, "arcproject_template_pro", "main_layout.pagx") arcgis_pro_layer_symbology = os.path.join(_LAYERS_FOLDER, "wq_points.lyrx") arcgis_10_layer_symbology = os.path.join(_LAYERS_FOLDER, "wq_points.lyr") def set_output_symbology(parameter): ## Output symbology if arcpy.GetInstallInfo()["ProductName"] == "ArcGISPro": parameter.symbology = arcgis_pro_layer_symbology else: parameter.symbology = arcgis_10_layer_symbology return parameter def layer_from_date(date_to_use, output_location): """ Given a date and output location, exports records to a feature class :param date_to_use: date in MM/DD/YYYY format or a datetime object :param output_location: full path to output feature class :return: returns nothing """ wq = classes.WaterQuality session = classes.get_new_session() try: arcpy.AddMessage("Using Date {}".format(date_to_use)) upper_bound = date_to_use.date() + datetime.timedelta(days=1) query = session.query(wq).filter(wq.date_time > date_to_use.date(), wq.date_time < upper_bound, wq.x_coord != None, wq.y_coord != None) # add 1 day's worth of nanoseconds try: query_to_features(query, output_location) except NoRecordsError: arcpy.AddWarning("No records for date {}".format(date_to_use)) raise finally: session.close() def generate_layer_for_month(month_to_use, year_to_use, output_location): wq = classes.WaterQuality session = classes.get_new_session() try: lower_bound = datetime.date(year_to_use, month_to_use, 1) upper_bound = datetime.date(year_to_use, month_to_use, int(calendar.monthrange(year_to_use, month_to_use)[1])) arcpy.AddMessage("Pulling data for {} through {}".format(lower_bound, upper_bound)) query = session.query(wq).filter(wq.date_time > lower_bound, wq.date_time < upper_bound, wq.x_coord != None, wq.y_coord != None) # add 1 day's worth of nanoseconds query_to_features(query, output_location) finally: session.close() def generate_layer_for_site(siteid, output_location): wq = classes.WaterQuality session = classes.get_new_session() try: query = session.query(wq).filter(wq.site_id == siteid, wq.x_coord != None, wq.y_coord != None) query_to_features(query, output_location) finally: session.close() def replaceDefaultNull(fc, placeholder=-9999): if fc.endswith(".shp"): # skip shapefiles because they don't support null return try: with arcpy.da.UpdateCursor(fc, '*') as cursor: for row in cursor: for i in range(len(row)): if row[i] == placeholder or row[i] == str(placeholder): row[i] = None cursor.updateRow(row) except Exception as e: print(e.message) def query_to_features(query, export_path): """ Given a SQLAlchemy query for water quality data, exports it to a feature class :param query: a SQLAlchemy query object :param export_path: the path to write out a feature class to :return: """ # read the SQLAlchemy query into a Pandas Data Frame since that can talk to ArcGIS df = pd.read_sql(query.statement, query.session.bind) # confirm that all of the items are in the same spatial reference - this should always be the case, but we should # make sure so nothing weird happens sr_code = wq_funcs.get_wq_df_spatial_reference(df) sr = arcpy.SpatialReference(int(sr_code)) # make a spatial reference object arcpy.da.NumPyArrayToFeatureClass( in_array=pd2np(df), out_table=export_path, shape_fields=["x_coord", "y_coord"], spatial_reference=sr, ) # replace -9999 with <null> for geodatabase. Shapefile no data will remain -9999 replaceDefaultNull(export_path) def map_missing_segments(summary_file, loaded_data, output_location, template=os.path.join(_TEMPLATES_FOLDER, "base_template.mxd")): """ A mapping function used by data validation code to create maps when data is invalid :param summary_file: :param loaded_data: :param output_location: :param template: :return: """ transect_template = os.path.join(_LAYERS_FOLDER, "added_data.lyr") summary_file_template = os.path.join(_LAYERS_FOLDER, "summary_file_review.lyr") project = amaptor.Project(template) map = project.maps[0] map.insert_feature_class_with_symbology(summary_file, layer_file=summary_file_template, layer_name="Summary File", near_name="Arc_DeltaWaterways_0402", insert_position="BEFORE") map.insert_feature_class_with_symbology(loaded_data, layer_file=transect_template, layer_name="Loaded Transects", near_name="Arc_DeltaWaterways_0402", insert_position="BEFORE") project.save_a_copy(output_location) return project class WQMappingBase(object): """ A base class for tools that want to provide a choice for how to symbolize water quality data. To use, subclass it for any of the other tools, add the defined parameter to the list of params, and make sure the tool init includes a call to super(NewClassName, self).__init__() at the beginning of __init__ """ def __init__(self): self.table_workspace = "in_memory" self.table_name = "arcproject_temp_date_table" self.temporary_date_table = "{}\\{}".format(self.table_workspace, self.table_name) self.select_wq_param = arcpy.Parameter( displayName="Symbolize Data by", name="symbology", datatype="GPString", multiValue=False, direction="Input", ) self.year_to_generate = arcpy.Parameter( # optional to use, but available displayName="Year", name="year_to_generate", datatype="GPString", multiValue=False, direction="Input" ) self.month_to_generate = arcpy.Parameter( # optional to use, but available displayName="Month", name="month_to_generate", datatype="GPString", multiValue=False, direction="Input" ) self.month_to_generate.filter.type = 'ValueList' t = list(calendar.month_name) t.pop(0) self.month_to_generate.filter.list = t self._filter_to_layer_mapping = { "CHL": "CHL_regular.lyr", "CHL Corrected": "CHL_corrected.lyr", "Dissolved Oxygen": "DO_v2.lyr", "DO Percent Saturation": "DOPerCentSat_v2.lyr", "pH": "pH.lyr", "RPAR": "RPAR_v2.lyr", "Salinity": "Sal.lyr", "SpCond": "SpCond.lyr", "Temperature": "Temp.lyr", "Turbidity": "Turbid.lyr", } self.select_wq_param.filter.type = "ValueList" self.select_wq_param.filter.list = ["CHL", "Corrected CHL", "Dissolved Oxygen", "DO Percent Saturation", "pH", "RPAR", "Salinity", "SpCond", "Temperature", "Turbidity"] def insert_layer(self, data_path, symbology_param, map_or_project="CURRENT"): """ Symbolizes a WQ layer based on the specified parameter and then inserts it into a map :param data_path: :param symbology_param: :param map_or_project: a reference to a map document (including "CURRENT"), an instance of amaptor.Project, or and instance of amaptor.Map :return: """ if isinstance(map_or_project, amaptor.Project): project = map_or_project l_map = project.get_active_map() elif isinstance(map_or_project, amaptor.Map): l_map = map_or_project else: project = amaptor.Project(map_or_project) l_map = project.get_active_map() layer_name = self._filter_to_layer_mapping[symbology_param.valueAsText] layer_path = os.path.join(_LAYERS_FOLDER, layer_name) layer = amaptor.functions.make_layer_with_file_symbology(data_path, layer_path) layer.name = os.path.split(data_path)[1] l_map.add_layer(layer) def cleanup(self): if arcpy.Exists(self.temporary_date_table): arcpy.Delete_management(self.temporary_date_table) def update_month_fields(self, parameters, year_field_index=0, month_field_index=1): """ Retrieve months from the temporary data table in memory :param parameters: :param year_field_index: :param month_field_index: :return: """ if parameters[year_field_index].filter.list is None or parameters[year_field_index].filter.list == "" or len(parameters[year_field_index].filter.list) == 0: # if this is our first time through, set it all up self.initialize_year_and_month_fields(parameters, year_field_index) if not arcpy.Exists(self.temporary_date_table): return # this seems to occur in Pro, when running the tool - the data doesn't get loaded, but it is calling this function - may be a bug to squash somewhere here. year = int(parameters[year_field_index].value) months = arcpy.SearchCursor(self.temporary_date_table, where_clause="data_year={}".format(year)) filter_months = [] for month in months: filter_months.append(month.getValue("data_month")) parameters[month_field_index].filter.type = 'ValueList' parameters[month_field_index].filter.list = filter_months def initialize_year_and_month_fields(self, parameters, year_field_index=0): """ Used on Generate Month and Generate Map :param parameters: :return: """ self.cleanup() # cleans up the temporary table. If it exists, it's stale arcpy.CreateTable_management(self.table_workspace, self.table_name) arcpy.AddField_management(self.temporary_date_table, "data_year", "LONG") arcpy.AddField_management(self.temporary_date_table, "data_month", "TEXT") # load the data from the DB session = get_new_session() try: # get years with data from the database to use as selection for tool input curs = arcpy.InsertCursor(self.temporary_date_table) q = session.query(extract('year', WaterQuality.date_time), extract('month', WaterQuality.date_time)).distinct() years = {} month_names = list(calendar.month_name) # helps translate numeric months to for row in q: # translate the results to the temporary table new_record = curs.newRow() new_record.setValue("data_year", row[0]) new_record.setValue("data_month", month_names[row[1]]) curs.insertRow(new_record) years[row[0]] = True # indicate we have data for a year parameters[year_field_index].filter.type = 'ValueList' parameters[year_field_index].filter.list = sorted(list(years.keys())) # get the distinct set of years finally: session.close() return self.temporary_date_table def convert_year_and_month(self, year, month): year_to_use = int(year.value) month = month.valueAsText # look up index position in calender.monthname t = list(calendar.month_name) month_to_use = int(t.index(month)) return year_to_use, month_to_use
mit
tectronics/ambhas
ambhas/soil_texture.py
3
8180
# -*- coding: utf-8 -*- """ Created on Tue Nov 1 18:57:30 2011 @author: Sat Kumar Tomer @website: www.ambhas.com @email: [email protected] http://nowlin.css.msu.edu/software/triangle_form.html http://ag.arizona.edu/research/rosetta/rosetta.html#download """ import matplotlib.nxutils as nx import numpy as np from matplotlib.path import Path class soil_texture: """ Input: sand: percentage sand clay: percentage clay output: """ def __init__(self, sand, clay, warning=True): self.sand = sand self.clay = clay soil_names = ['silty_loam', 'sand', 'silty_clay_loam', 'loam', 'clay_loam', 'sandy_loam', 'silty_clay', 'sandy_clay_loam', 'loamy_sand ', 'clay', 'silt', 'sandy_clay'] self.soil_names = soil_names # sand, clay t0 = np.array([ [0,12], [0,27], [23,27], [50,0], [20,0], [8,12]], float) t1 = np.array([ [85,0], [90,10], [100,0]], float) t2 = np.array([ [0,27], [0,40], [20,40], [20,27]], float) t3 = np.array([ [43,7], [23,27], [45,27], [52,20], [52,7]], float) t4 = np.array([ [20,27], [20,40], [45,40], [45,27]], float) t5 = np.array([ [50,0], [43,7], [52,7], [52,20], [80,20], [85,15], [70,0]], float) t6 = np.array([ [0,40], [0,60], [20,40]], float) t7 = np.array([ [52,20], [45,27], [45,35], [65,35], [80,20]], float) t8 = np.array([ [70,0], [85,15], [90,10], [85,0]], float) t9 = np.array([ [20,40], [0,60], [0,100], [45,55], [45,40]], float) t10 = np.array([ [0,0], [0,12], [8,12], [20,0]], float) t11 = np.array([ [45,35], [45,55], [65,35]], float) #N θr θs log(α) log(n) Ks Ko L #-- θr -- cm3/cm3 #-- θs -- cm3/cm3 #-- log(α) -- log10(1/cm) #-- log(n) -- log10 #-- Ks -- log(cm/day) #-- Ko -- log(cm/day) #-- L -- shp = [[330, 0.065, 0.073, 0.439, 0.093, -2.296, 0.57, 0.221, 0.14, 1.261, 0.74, 0.243, 0.26, 0.365, 1.42], [308, 0.053, 0.029, 0.375, 0.055, -1.453, 0.25, 0.502, 0.18, 2.808, 0.59, 1.389, 0.24, -0.930, 0.49], [172, 0.090, 0.082, 0.482, 0.086, -2.076, 0.59, 0.182, 0.13, 1.046, 0.76, 0.349, 0.26, -0.156, 1.23], [242, 0.061, 0.073, 0.399, 0.098, -1.954, 0.73, 0.168, 0.13, 1.081, 0.92, 0.568, 0.21, -0.371, 0.84], [140, 0.079, 0.076, 0.442, 0.079, -1.801, 0.69, 0.151, 0.12, 0.913, 1.09, 0.699, 0.23, -0.763, 0.90], [476, 0.039, 0.054, 0.387, 0.085, -1.574, 0.56, 0.161, 0.11, 1.583, 0.66, 1.190, 0.21, -0.861, 0.73], [28, 0.111, 0.119, 0.481, 0.080, -1.790, 0.64, 0.121, 0.10, 0.983, 0.57, 0.501, 0.27, -1.287, 1.23], [87, 0.063, 0.078, 0.384, 0.061, -1.676, 0.71, 0.124, 0.12, 1.120, 0.85, 0.841, 0.24, -1.280, 0.99], [201, 0.049, 0.042, 0.390, 0.070, -1.459, 0.47, 0.242, 0.16, 2.022, 0.64, 1.386, 0.24, -0.874, 0.59], [84, 0.098, 0.107, 0.459, 0.079, -1.825, 0.68, 0.098, 0.07, 1.169, 0.92, 0.472, 0.26, 1.561, 1.39], [6, 0.050, 0.041, 0.489, 0.078, -2.182, 0.30, 0.225, 0.13, 1.641, 0.27, 0.524, 0.32, 0.624, 1.57], [11, 0.117, 0.114, 0.385, 0.046, -1.476, 0.57, 0.082, 0.06, 1.055, 0.89, 0.637, 0.34, -3.665, 1.80]] for i in range(12): exec("path = Path(t%i)"%i) if path.contains_point((sand,clay)): tt=i #exec("if nx.pnpoly(sand, clay, t0):tt=i").replace('0',str(i)) if ~np.isnan(sand*clay): if sand+clay<100: self.soil_type = soil_names[tt] self.theta_r = shp[tt][1] self.theta_s = shp[tt][3] self.alpha = 10**shp[tt][5]*100 self.n = 10**shp[tt][7] self.ks= np.exp(shp[tt][9])/100/86400 self.l= shp[tt][13] else: if warning: print("sand+clay is more than 100 percent") self.soil_type = np.nan self.theta_r = np.nan self.theta_s = np.nan self.alpha = np.nan self.n = np.nan self.ks= np.nan self.l= np.nan else: if warning: print("sand or clay contains nan") self.soil_type = np.nan self.theta_r = np.nan self.theta_s = np.nan self.alpha = np.nan self.n = np.nan self.ks= np.nan self.l= np.nan def get_color(self, scaling=1.0): """ gives the standard soil color sand---> yellow clay---> magenta silt---> cyan based on the article, "TOWARDS A STANDARDISED APPROACH FOR THE SELECTION OF COLOURS IN SOIL MAPS BASED ON THEIR TEXTURAL COMPOSITION AND ROCK FRAGMENT ABUNDANCE: AN IMPLEMENTATION WITHIN MACROMEDIA FREEHAND" by Graciela Metternicht and Jasmin Goetting """ # yellow magenta cyan ymc = {'silty_loam':(17,14,69), 'sand':(92,3,5), 'silty_clay_loam':(10,33,57), 'loam':(43,18,39), 'clay_loam':(33,33,34), 'sandy_loam':(65,10,25), 'silty_clay':(7,46,47), 'sandy_clay_loam':(58,28,14), 'loamy_sand':(83,6,11), 'clay':(22,59,19), 'silt':(7,6,87), 'sandy_clay':(51,42,7)} y, m, c = ymc[self.soil_type] self.y = y/100.0 self.m = m/100.0 self.c = c/100.0 self._ymc_to_rgb(scaling) return self.r, self.g, self.b def _ymc_to_rgb(self, scaling): """ converts ymc(yellow, magenta, cyan) to rgb (red, green, blue) """ g = 0.5*(self.c+self.m+self.y - self.m) r = 0.5*(self.c+self.m+self.y - self.c) b = 0.5*(self.c+self.m+self.y - self.y) self.g = scaling*g/(r+g+b) self.r = scaling*r/(r+g+b) self.b = scaling*b/(r+g+b) def se_fun(psi,alpha,n): """ psi: pressure head n: shape index """ m = 1-1/n se = (1+(np.abs(psi/alpha))**n)**(-m) return se def wp_fun(f,qr,alpha,n): wp = qr+(f-qr)*se_fun(-150,alpha,n) return wp def fc_fun(f,qr,alpha,n): fc = qr+(f-qr)*se_fun(-3.3,alpha,n) return fc class saxton_rawls: """ Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions Input: sand: percentage sand clay: percentage clay output: """ def __init__(self, sand, clay, organic_matter): self.S = sand self.C = clay self.OM = organic_matter def sm_33(self): S = self.S C = self.C OM = self.OM theta_33t = -0.251*S + 0.195*C + 0.011*OM + 0.006*(S*OM) - 0.027*(C*OM) + 0.452*(S*C) +.299 theta_33 = theta_33t + 1.283*theta_33t*2 - 0.374*theta_33t - 0.015 print theta_33 return theta_33 def sm_s_33(self): S = self.S C = self.C OM = self.OM theta_s_33t = 0.278*S + 0.034*C + 0.022*OM -0.018*(S*OM) - 0.027*(C*OM) -0.584*(S*C) +0.078 theta_s_33 = theta_s_33t + 0.636*theta_s_33t - 0.107 return theta_s_33 def sm_s(self): S = self.S C = self.C theta_33 = self.sm_33() theta_s_33 = self.sm_s_33() theta_s = theta_33 + theta_s_33 - 0.097*S + 0.043 return theta_s def sm_s_df(self, density): theta_s = self.sm_s() theta_s_df = theta_s*(1-density/2.65) return theta_s_df if __name__=='__main__': sand = 20.0 clay = 10.0 foo = soil_texture(sand,clay) print foo.soil_type print("theta_r = %.3f"%foo.theta_r) wp = wp_fun(foo.theta_s, foo.theta_r, foo.alpha, foo.n) print("theta_wp = %.3f"%wp) sand = 49 clay = 23 organic_matter = 2 foo = saxton_rawls(sand, clay, organic_matter) #print foo.sm_s_df(1.49)
lgpl-2.1
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/pandas/tests/io/test_packers.py
3
32058
import pytest from warnings import catch_warnings import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u, PY3 from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, Categorical) from pandas.errors import PerformanceWarning from pandas.io.packers import to_msgpack, read_msgpack import pandas.util.testing as tm from pandas.util.testing import (ensure_clean, assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, patch) from pandas.tests.test_panel import assert_panel_equal import pandas from pandas import Timestamp, NaT from pandas._libs.tslib import iNaT nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True @pytest.fixture(scope='module') def current_packers_data(): # our current version packers data from pandas.tests.io.generate_legacy_storage_files import ( create_msgpack_data) return create_msgpack_data() @pytest.fixture(scope='module') def all_packers_data(): # our all of our current version packers data from pandas.tests.io.generate_legacy_storage_files import ( create_data) return create_data() def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) elif isinstance(a, Categorical): # Temp, # Categorical.categories is changed from str to bytes in PY3 # maybe the same as GH 13591 if PY3 and b.categories.inferred_type == 'string': pass else: tm.assert_categorical_equal(a, b) elif a is NaT: assert b is NaT elif isinstance(a, Timestamp): assert a == b assert a.freq == b.freq else: assert(a == b) class TestPackers(object): def setup_method(self, method): self.path = '__%s__.msg' % tm.rands(10) def teardown_method(self, method): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(compat.BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() fh = open(p, 'wb') fh.write(s) fh.close() result = read_msgpack(p) tm.assert_frame_equal(result, df) @pytest.mark.xfail(reason="msgpack currently doesn't work with pathlib") def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) @pytest.mark.xfail(reason="msgpack currently doesn't work with localpath") def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A(object): def __init__(self): self.read = 0 pytest.raises(ValueError, read_msgpack, path_or_buf=None) pytest.raises(ValueError, read_msgpack, path_or_buf={}) pytest.raises(ValueError, read_msgpack, path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): pytest.skip('numpy cant handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="complex value") def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="numpy complex128") def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32', 'float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) assert (all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo')] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) assert i == i_rec def test_nat(self): nat_rec = self.encode_decode(NaT) assert NaT is nat_rec def test_datetimes(self): # fails under 2.6/win32 (np.datetime64 seems broken) if LooseVersion(sys.version) < '2.7': pytest.skip('2.6 with np.datetime64 is broken') for i in [datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) assert i == i_rec def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) assert i == i_rec class TestIndex(TestPackers): def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100) } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with no freq (GH5506) i = Index([Timestamp('20130101'), Timestamp('20130103')]) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with timezone i = Index([Timestamp('20130101 9:00:00'), Timestamp( '20130103 11:00:00')]).tz_localize('US/Eastern') i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_unicode(self): i = tm.makeUnicodeIndex(100) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def categorical_index(self): # GH15487 df = DataFrame(np.random.randn(10, 2)) df = df.astype({0: 'category'}).set_index(0) result = self.encode_decode(df) tm.assert_frame_equal(result, df) class TestSeries(TestPackers): def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) class TestCategorical(TestPackers): def setup_method(self, method): super(TestCategorical, self).setup_method(method) self.d = {} self.d['plain_str'] = Categorical(['a', 'b', 'c', 'd', 'e']) self.d['plain_str_ordered'] = Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True) self.d['plain_int'] = Categorical([5, 6, 7, 8]) self.d['plain_int_ordered'] = Categorical([5, 6, 7, 8], ordered=True) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_categorical_equal(i, i_rec) class TestNDFrame(TestPackers): def setup_method(self, method): super(TestNDFrame, self).setup_method(method) data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 5, 'G': [Timestamp('20130603', tz='CET')] * 5, 'H': Categorical(['a', 'b', 'c', 'd', 'e']), 'I': Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True), } self.frame = { 'float': DataFrame(dict(A=data['A'], B=Series(data['A']) + 1)), 'int': DataFrame(dict(A=data['B'], B=Series(data['B']) + 1)), 'mixed': DataFrame(data)} with catch_warnings(record=True): self.panel = { 'float': Panel(dict(ItemA=self.frame['float'], ItemB=self.frame['float'] + 1))} def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_basic_panel(self): with catch_warnings(record=True): for s, i in self.panel.items(): i_rec = self.encode_decode(i) assert_panel_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) l = tuple([self.frame['float'], self.frame['float'].A, self.frame['float'].B, None]) l_rec = self.encode_decode(l) check_arbitrary(l, l_rec) # this is an oddity in that packed lists will be returned as tuples l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] l_rec = self.encode_decode(l) assert isinstance(l_rec, tuple) check_arbitrary(l, l_rec) def test_iterator(self): l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] with ensure_clean(self.path) as path: to_msgpack(path, *l) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, l[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range('1/1/2013', '1/3/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range('1/1/2013', '1/2/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=['a', 'a']) expected_2 = DataFrame(columns=[1] * 100) expected_2.loc[0] = np.random.randn(100) expected_3 = DataFrame(columns=[1, 1]) expected_3.loc[0] = ['abc', np.nan] result_1 = self.encode_decode(expected_1) result_2 = self.encode_decode(expected_2) result_3 = self.encode_decode(expected_3) assert_frame_equal(result_1, expected_1) assert_frame_equal(result_2, expected_2) assert_frame_equal(result_3, expected_3) class TestSparse(TestPackers): def _check_roundtrip(self, obj, comparator, **kwargs): # currently these are not implemetned # i_rec = self.encode_decode(obj) # comparator(obj, i_rec, **kwargs) pytest.raises(NotImplementedError, self.encode_decode, obj) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.loc[3:5, 1:3] = np.nan s.loc[8:10, -2] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) class TestCompression(TestPackers): """See https://github.com/pandas-dev/pandas/pull/9783 """ def setup_method(self, method): try: from sqlalchemy import create_engine self._create_sql_engine = create_engine except ImportError: self._SQLALCHEMY_INSTALLED = False else: self._SQLALCHEMY_INSTALLED = True super(TestCompression, self).setup_method(method) data = { 'A': np.arange(1000, dtype=np.float64), 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } def test_plain(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def _test_compression(self, compress): i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames for block in value._data.blocks: assert block.values.flags.writeable def test_compression_zlib(self): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_compression('zlib') def test_compression_blosc(self): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_compression('blosc') def _test_compression_warns_when_decompress_caches(self, compress): not_garbage = [] control = [] # copied data compress_module = globals()[compress] real_decompress = compress_module.decompress def decompress(ob): """mock decompress function that delegates to the real decompress but caches the result and a copy of the result. """ res = real_decompress(ob) not_garbage.append(res) # hold a reference to this bytes object control.append(bytearray(res)) # copy the data here to check later return res # types mapped to values to add in place. rhs = { np.dtype('float64'): 1.0, np.dtype('int32'): 1, np.dtype('object'): 'a', np.dtype('datetime64[ns]'): np.timedelta64(1, 'ns'), np.dtype('timedelta64[ns]'): np.timedelta64(1, 'ns'), } with patch(compress_module, 'decompress', decompress), \ tm.assert_produces_warning(PerformanceWarning) as ws: i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames even though # we needed to copy the data for block in value._data.blocks: assert block.values.flags.writeable # mutate the data in some way block.values[0] += rhs[block.dtype] for w in ws: # check the messages from our warnings assert str(w.message) == ('copying data after decompressing; ' 'this may mean that decompress is ' 'caching its result') for buf, control_buf in zip(not_garbage, control): # make sure none of our mutations above affected the # original buffers assert buf == control_buf def test_compression_warns_when_decompress_caches_zlib(self): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_compression_warns_when_decompress_caches('zlib') def test_compression_warns_when_decompress_caches_blosc(self): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_compression_warns_when_decompress_caches('blosc') def _test_small_strings_no_warn(self, compress): empty = np.array([], dtype='uint8') with tm.assert_produces_warning(None): empty_unpacked = self.encode_decode(empty, compress=compress) tm.assert_numpy_array_equal(empty_unpacked, empty) assert empty_unpacked.flags.writeable char = np.array([ord(b'a')], dtype='uint8') with tm.assert_produces_warning(None): char_unpacked = self.encode_decode(char, compress=compress) tm.assert_numpy_array_equal(char_unpacked, char) assert char_unpacked.flags.writeable # if this test fails I am sorry because the interpreter is now in a # bad state where b'a' points to 98 == ord(b'b'). char_unpacked[0] = ord(b'b') # we compare the ord of bytes b'a' with unicode u'a' because the should # always be the same (unless we were able to mutate the shared # character singleton in which case ord(b'a') == ord(b'b'). assert ord(b'a') == ord(u'a') tm.assert_numpy_array_equal( char_unpacked, np.array([ord(b'b')], dtype='uint8'), ) def test_small_strings_no_warn_zlib(self): if not _ZLIB_INSTALLED: pytest.skip('no zlib') self._test_small_strings_no_warn('zlib') def test_small_strings_no_warn_blosc(self): if not _BLOSC_INSTALLED: pytest.skip('no blosc') self._test_small_strings_no_warn('blosc') def test_readonly_axis_blosc(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip('no blosc') df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) assert 1 in self.encode_decode(df1['A'], compress='blosc') assert 1. in self.encode_decode(df2['A'], compress='blosc') def test_readonly_axis_zlib(self): # GH11880 df1 = DataFrame({'A': list('abcd')}) df2 = DataFrame(df1, index=[1., 2., 3., 4.]) assert 1 in self.encode_decode(df1['A'], compress='zlib') assert 1. in self.encode_decode(df2['A'], compress='zlib') def test_readonly_axis_blosc_to_sql(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip('no blosc') if not self._SQLALCHEMY_INSTALLED: pytest.skip('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='blosc') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) def test_readonly_axis_zlib_to_sql(self): # GH11880 if not _ZLIB_INSTALLED: pytest.skip('no zlib') if not self._SQLALCHEMY_INSTALLED: pytest.skip('no sqlalchemy') expected = DataFrame({'A': list('abcd')}) df = self.encode_decode(expected, compress='zlib') eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql('test', eng, if_exists='append') result = pandas.read_sql_table('test', eng, index_col='index') result.index.names = [None] assert_frame_equal(expected, result) class TestEncoding(TestPackers): def setup_method(self, method): super(TestEncoding, self).setup_method(method) data = { 'A': [compat.u('\u2019')] * 1000, 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], 'G': [400] * 1000 } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } self.utf_encodings = ['utf8', 'utf16', 'utf32'] def test_utf(self): # GH10581 for encoding in self.utf_encodings: for frame in compat.itervalues(self.frame): result = self.encode_decode(frame, encoding=encoding) assert_frame_equal(result, frame) def test_default_encoding(self): for frame in compat.itervalues(self.frame): result = frame.to_msgpack() expected = frame.to_msgpack(encoding='utf8') assert result == expected result = self.encode_decode(frame) assert_frame_equal(result, frame) def legacy_packers_versions(): # yield the packers versions path = tm.get_data_path('legacy_msgpack') for v in os.listdir(path): p = os.path.join(path, v) if os.path.isdir(p): yield v class TestMsgpack(object): """ How to add msgpack tests: 1. Install pandas version intended to output the msgpack. TestPackers 2. Execute "generate_legacy_storage_files.py" to create the msgpack. $ python generate_legacy_storage_files.py <output_dir> msgpack 3. Move the created pickle to "data/legacy_msgpack/<version>" directory. """ minimum_structure = {'series': ['float', 'int', 'mixed', 'ts', 'mi', 'dup'], 'frame': ['float', 'int', 'mixed', 'mi'], 'panel': ['float'], 'index': ['int', 'date', 'period'], 'mi': ['reg2']} def check_min_structure(self, data, version): for typ, v in self.minimum_structure.items(): assert typ in data, '"{0}" not found in unpacked data'.format(typ) for kind in v: msg = '"{0}" not found in data["{1}"]'.format(kind, typ) assert kind in data[typ], msg def compare(self, current_data, all_data, vf, version): # GH12277 encoding default used to be latin-1, now utf-8 if LooseVersion(version) < '0.18.0': data = read_msgpack(vf, encoding='latin-1') else: data = read_msgpack(vf) self.check_min_structure(data, version) for typ, dv in data.items(): assert typ in all_data, ('unpacked data contains ' 'extra key "{0}"' .format(typ)) for dt, result in dv.items(): assert dt in current_data[typ], ('data["{0}"] contains extra ' 'key "{1}"'.format(typ, dt)) try: expected = current_data[typ][dt] except KeyError: continue # use a specific comparator # if available comp_method = "compare_{typ}_{dt}".format(typ=typ, dt=dt) comparator = getattr(self, comp_method, None) if comparator is not None: comparator(result, expected, typ, version) else: check_arbitrary(result, expected) return data def compare_series_dt_tz(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_series_equal(result, expected) else: tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_frame_equal(result, expected) else: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('version', legacy_packers_versions()) def test_msgpacks_legacy(self, current_packers_data, all_packers_data, version): pth = tm.get_data_path('legacy_msgpack/{0}'.format(version)) n = 0 for f in os.listdir(pth): # GH12142 0.17 files packed in P2 can't be read in P3 if (compat.PY3 and version.startswith('0.17.') and f.split('.')[-4][-1] == '2'): continue vf = os.path.join(pth, f) try: with catch_warnings(record=True): self.compare(current_packers_data, all_packers_data, vf, version) except ImportError: # blosc not installed continue n += 1 assert n > 0, 'Msgpack files are not tested'
mit
jstraub/rtmf
python/evaluateGravityOrientation.py
1
5661
import numpy as np import os.path, re, sys import scipy.io as scio from scipy.linalg import det import cv2 import itertools from js.data.rgbd.rgbdframe import * import mayavi.mlab as mlab import matplotlib.pyplot as plt def plotMF(fig,R,col=None): mfColor = [] mfColor.append((232/255.0,65/255.0,32/255.0)) # red mfColor.append((32/255.0,232/255.0,59/255.0)) # green mfColor.append((32/255.0,182/255.0,232/255.0)) # tuerkis pts = np.zeros((3,6)) for i in range(0,3): pts[:,i*2] = -R[:,i] pts[:,i*2+1] = R[:,i] if col is None: mlab.plot3d(pts[0,0:2],pts[1,0:2],pts[2,0:2],figure=fig,color=mfColor[0]) mlab.plot3d(pts[0,2:4],pts[1,2:4],pts[2,2:4],figure=fig,color=mfColor[1]) mlab.plot3d(pts[0,4:6],pts[1,4:6],pts[2,4:6],figure=fig,color=mfColor[2]) else: mlab.plot3d(pts[0,0:2],pts[1,0:2],pts[2,0:2],figure=fig,color=col) mlab.plot3d(pts[0,2:4],pts[1,2:4],pts[2,2:4],figure=fig,color=col) mlab.plot3d(pts[0,4:6],pts[1,4:6],pts[2,4:6],figure=fig,color=col) def ExtractFloorDirection(pathLabelImage, nImg, lFloor=11): errosionSize=8 print pathLabelImage L = cv2.imread(pathLabelImage,cv2.CV_LOAD_IMAGE_UNCHANGED) floorMap = ((L==lFloor)*255).astype(np.uint8) kernel = np.ones((errosionSize, errosionSize),np.uint8) floorMapE = cv2.erode(floorMap,kernel,iterations=1) # plt.imshow(np.concatenate((floorMap,floorMapE),axis=1)) # plt.show() print L.shape print nImg.shape nFloor = nImg[floorMapE>128,:].T print nFloor.shape, np.isnan(nFloor).sum() nFloor = nFloor[:,np.logical_not(np.isnan(nFloor[0,:]))] print nFloor.shape, np.isnan(nFloor).sum() nMean = nFloor.sum(axis=1) nMean /= np.sqrt((nMean**2).sum()) return nMean mode = "approx" mode = "vmf" mode = "vmfCF" mode = "approxGD" mode = "directGD" mode = "direct" mode = "mmfvmf" nyuPath = "/data/vision/fisher/data1/nyu_depth_v2/" rtmfPath = "/data/vision/scratch/fisher/jstraub/rtmf/nyu/" if False and os.path.isfile("./angularFloorDeviations_rtmf_"+mode+".csv"): error = np.loadtxt("./angularFloorDeviations_rtmf_"+mode+".csv") print "nans: ", np.isnan(error[1,:]).sum(), "of", error[1,:].size error = error[:,np.logical_not(np.isnan(error[1,:]))] print error.shape labels = ["unaligned","RTMF "+mode] plt.figure() for i in range(2): errorS = error[i,:].tolist() errorS.sort() plt.plot(errorS,1.*np.arange(len(errorS))/(len(errorS)-1),label=labels[i]) plt.ylim([0,1]) plt.xlim([0,25]) plt.legend(loc="best") plt.ylabel("precentage of scenes") plt.xlabel("degrees from vertical") plt.grid(True) plt.show() with open(os.path.join(nyuPath,"labels.txt")) as f: labels = [label[:-1] for label in f.readlines()] print labels[:20] lFloor = 0 for i,label in enumerate(labels): if label == "floor": lFloor = i+1 break print "label of floor: ", lFloor if os.path.isfile("./rtmfPaths_"+mode+".txt"): with open("./rtmfPaths_"+mode+".txt","r") as f: rtmfPaths = [path[:-1] for path in f.readlines()] else: rtmfPaths = [] for root, dirs, files in os.walk(rtmfPath): for f in files: if re.search("[a-z_]+_[0-9]+_[0-9]+_mode_"+mode+"-[-_.0-9a-zA-Z]+_cRmf.csv", f): rtmfPaths.append(os.path.join(root,f)) rtmfPaths.sort() with open("./rtmfPaths_"+mode+".txt","w") as f: f.writelines([path+"\n" for path in rtmfPaths]) print len(rtmfPaths) labelImgPaths = [] for root, dirs, files in os.walk(nyuPath): for f in files: if re.search("[a-z_]+_[0-9]+_[0-9]+_l.png", f): labelImgPaths.append(os.path.join(root,f)) labelImgPaths.sort() print len(labelImgPaths) #import matplotlib.pyplot as plt #plt.figure() error = np.zeros((2,len(rtmfPaths))) for i,rtmfPath in enumerate(rtmfPaths): rtmfName = re.sub("_mode_"+mode+"-[-_.0-9a-zA-Z]+_cRmf.csv","",os.path.split(rtmfPath)[1]) labelImgPathMatch = "" for labelImgPath in labelImgPaths: labelName = re.sub("_l.png","",os.path.split(labelImgPath)[1]) if labelName == rtmfName: labelImgPathMatch = labelImgPath break labelName = re.sub("_l.png","",os.path.split(labelImgPathMatch)[1]) if not rtmfName == labelName: print " !!!!!!!!!!!! " print os.path.split(rtmfPath)[1], rtmfName print os.path.split(labelImgPathMatch)[1], labelName raw_input() continue # try: R = np.loadtxt(rtmfPath) rgbd = RgbdFrame(540.) rgbd.load(re.sub("_l.png","",labelImgPathMatch )) nMean = ExtractFloorDirection(labelImgPathMatch,rgbd.getNormals()) error[0,i] = np.arccos(np.abs(nMean[1]))*180./np.pi print "direction of floor surface normals: ", nMean print "R_rtmf", R pcC = rgbd.getPc()[rgbd.mask,:].T anglesToY = [] M = np.concatenate((R, -R),axis=1) # print M for ids in itertools.combinations(np.arange(6),3): Rc = np.zeros((3,3)) for l in range(3): Rc[:,l] = M[:,ids[l]] if det(Rc) > 0: Rn = Rc.T.dot(nMean) anglesToY.append(np.arccos(np.abs(Rn[1]))*180./np.pi) print anglesToY[-1], Rn # figm = mlab.figure(bgcolor=(1,1,1)) # pc = Rc.T.dot(pcC) # mlab.points3d(pc[0,:],pc[1,:],pc[2,:], # rgbd.gray[rgbd.mask],colormap='gray',scale_factor=0.01, # figure=figm,mode='point',mask_points=1) # mlab.show(stop=True) # mlab.close(figm) error[1,i] = min(anglesToY) print error[:,i] if False: n = rgbd.getNormals()[rgbd.mask,:] figm = mlab.figure(bgcolor=(1,1,1)) mlab.points3d(n[:,0],n[:,1],n[:,2], color=(0.5,0.5,0.5),mode="point") plotMF(figm,R) mlab.show(stop=True) # except: # print "Unexpected error:", sys.exc_info()[0] # error[i] = np.nan np.savetxt("./angularFloorDeviations_rtmf_"+mode+".csv",error)
mit
nsdf/nsdf
examples/moose_Multi/minchan.py
3
12176
# minimal.py --- # Upi Bhalla, NCBS Bangalore 2014. # # Commentary: # # Minimal model for loading rdesigneur: reac-diff elec signaling in neurons # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth # Floor, Boston, MA 02110-1301, USA. # # Code: import sys sys.path.append('../../python') import os os.environ['NUMPTHREADS'] = '1' import math import numpy import matplotlib.pyplot as plt import moose import proto18 EREST_ACT = -70e-3 def loadElec(): library = moose.Neutral( '/library' ) moose.setCwe( '/library' ) proto18.make_Ca() proto18.make_Ca_conc() proto18.make_K_AHP() proto18.make_K_C() proto18.make_Na() proto18.make_K_DR() proto18.make_K_A() proto18.make_glu() proto18.make_NMDA() proto18.make_Ca_NMDA() proto18.make_NMDA_Ca_conc() proto18.make_axon() moose.setCwe( '/library' ) model = moose.Neutral( '/model' ) cellId = moose.loadModel( 'mincell2.p', '/model/elec', "Neutral" ) return cellId def loadChem( diffLength ): chem = moose.Neutral( '/model/chem' ) neuroCompt = moose.NeuroMesh( '/model/chem/kinetics' ) neuroCompt.separateSpines = 1 neuroCompt.geometryPolicy = 'cylinder' spineCompt = moose.SpineMesh( '/model/chem/compartment_1' ) moose.connect( neuroCompt, 'spineListOut', spineCompt, 'spineList', 'OneToOne' ) psdCompt = moose.PsdMesh( '/model/chem/compartment_2' ) #print 'Meshvolume[neuro, spine, psd] = ', neuroCompt.mesh[0].volume, spineCompt.mesh[0].volume, psdCompt.mesh[0].volume moose.connect( neuroCompt, 'psdListOut', psdCompt, 'psdList', 'OneToOne' ) modelId = moose.loadModel( 'minimal.g', '/model/chem', 'ee' ) neuroCompt.name = 'dend' spineCompt.name = 'spine' psdCompt.name = 'psd' def makeNeuroMeshModel(): diffLength = 6e-6 # Aim for 2 soma compartments. elec = loadElec() loadChem( diffLength ) neuroCompt = moose.element( '/model/chem/dend' ) neuroCompt.diffLength = diffLength neuroCompt.cellPortion( elec, '/model/elec/#' ) for x in moose.wildcardFind( '/model/chem/##[ISA=PoolBase]' ): if (x.diffConst > 0): x.diffConst = 1e-11 for x in moose.wildcardFind( '/model/chem/##/Ca' ): x.diffConst = 1e-10 # Put in dend solvers ns = neuroCompt.numSegments ndc = neuroCompt.numDiffCompts print 'ns = ', ns, ', ndc = ', ndc assert( neuroCompt.numDiffCompts == neuroCompt.mesh.num ) assert( ns == 1 ) # soma/dend only assert( ndc == 2 ) # split into 2. nmksolve = moose.Ksolve( '/model/chem/dend/ksolve' ) nmdsolve = moose.Dsolve( '/model/chem/dend/dsolve' ) nmstoich = moose.Stoich( '/model/chem/dend/stoich' ) nmstoich.compartment = neuroCompt nmstoich.ksolve = nmksolve nmstoich.dsolve = nmdsolve nmstoich.path = "/model/chem/dend/##" print 'done setting path, numPools = ', nmdsolve.numPools assert( nmdsolve.numPools == 1 ) assert( nmdsolve.numAllVoxels == 2 ) assert( nmstoich.numAllPools == 1 ) # oddly, numLocalFields does not work. ca = moose.element( '/model/chem/dend/DEND/Ca' ) assert( ca.numData == ndc ) # Put in spine solvers. Note that these get info from the neuroCompt spineCompt = moose.element( '/model/chem/spine' ) sdc = spineCompt.mesh.num print 'sdc = ', sdc assert( sdc == 1 ) smksolve = moose.Ksolve( '/model/chem/spine/ksolve' ) smdsolve = moose.Dsolve( '/model/chem/spine/dsolve' ) smstoich = moose.Stoich( '/model/chem/spine/stoich' ) smstoich.compartment = spineCompt smstoich.ksolve = smksolve smstoich.dsolve = smdsolve smstoich.path = "/model/chem/spine/##" assert( smstoich.numAllPools == 3 ) assert( smdsolve.numPools == 3 ) assert( smdsolve.numAllVoxels == 1 ) # Put in PSD solvers. Note that these get info from the neuroCompt psdCompt = moose.element( '/model/chem/psd' ) pdc = psdCompt.mesh.num assert( pdc == 1 ) pmksolve = moose.Ksolve( '/model/chem/psd/ksolve' ) pmdsolve = moose.Dsolve( '/model/chem/psd/dsolve' ) pmstoich = moose.Stoich( '/model/chem/psd/stoich' ) pmstoich.compartment = psdCompt pmstoich.ksolve = pmksolve pmstoich.dsolve = pmdsolve pmstoich.path = "/model/chem/psd/##" assert( pmstoich.numAllPools == 3 ) assert( pmdsolve.numPools == 3 ) assert( pmdsolve.numAllVoxels == 1 ) foo = moose.element( '/model/chem/psd/Ca' ) print 'PSD: numfoo = ', foo.numData print 'PSD: numAllVoxels = ', pmksolve.numAllVoxels # Put in junctions between the diffusion solvers nmdsolve.buildNeuroMeshJunctions( smdsolve, pmdsolve ) """ CaNpsd = moose.vec( '/model/chem/psdMesh/PSD/PP1_PSD/CaN' ) print 'numCaN in PSD = ', CaNpsd.nInit, ', vol = ', CaNpsd.volume CaNspine = moose.vec( '/model/chem/spine/SPINE/CaN_BULK/CaN' ) print 'numCaN in spine = ', CaNspine.nInit, ', vol = ', CaNspine.volume """ # set up adaptors aCa = moose.Adaptor( '/model/chem/dend/DEND/adaptCa', ndc ) adaptCa = moose.vec( '/model/chem/dend/DEND/adaptCa' ) chemCa = moose.vec( '/model/chem/dend/DEND/Ca' ) print 'aCa = ', aCa, ' foo = ', foo, "len( ChemCa ) = ", len( chemCa ), ", numData = ", chemCa.numData, "len( adaptCa ) = ", len( adaptCa ) assert( len( adaptCa ) == ndc ) assert( len( chemCa ) == ndc ) path = '/model/elec/soma/Ca_conc' elecCa = moose.element( path ) print "==========" print elecCa print adaptCa print chemCa moose.connect( elecCa, 'concOut', adaptCa[0], 'input', 'Single' ) moose.connect( adaptCa, 'output', chemCa, 'setConc', 'OneToOne' ) adaptCa.inputOffset = 0.0 # adaptCa.outputOffset = 0.00008 # 80 nM offset in chem. adaptCa.scale = 1e-3 # 520 to 0.0052 mM #print adaptCa.outputOffset #print adaptCa.scale def addPlot( objpath, field, plot ): #assert moose.exists( objpath ) if moose.exists( objpath ): tab = moose.Table( '/graphs/' + plot ) obj = moose.element( objpath ) if obj.className == 'Neutral': print "addPlot failed: object is a Neutral: ", objpath return moose.element( '/' ) else: #print "object was found: ", objpath, obj.className moose.connect( tab, 'requestOut', obj, field ) return tab else: print "addPlot failed: object not found: ", objpath return moose.element( '/' ) def makeElecPlots(): graphs = moose.Neutral( '/graphs' ) elec = moose.Neutral( '/graphs/elec' ) addPlot( '/model/elec/soma', 'getVm', 'elec/somaVm' ) addPlot( '/model/elec/spine_head', 'getVm', 'elec/spineVm' ) addPlot( '/model/elec/soma/Ca_conc', 'getCa', 'elec/somaCa' ) def makeChemPlots(): graphs = moose.Neutral( '/graphs' ) chem = moose.Neutral( '/graphs/chem' ) addPlot( '/model/chem/psd/Ca_CaM', 'getConc', 'chem/psdCaCam' ) addPlot( '/model/chem/psd/Ca', 'getConc', 'chem/psdCa' ) addPlot( '/model/chem/spine/Ca_CaM', 'getConc', 'chem/spineCaCam' ) addPlot( '/model/chem/spine/Ca', 'getConc', 'chem/spineCa' ) addPlot( '/model/chem/dend/DEND/Ca', 'getConc', 'chem/dendCa' ) def testNeuroMeshMultiscale(): elecDt = 50e-6 chemDt = 0.01 ePlotDt = 0.5e-3 cPlotDt = 0.01 plotName = 'nm.plot' makeNeuroMeshModel() print "after model is completely done" for i in moose.wildcardFind( '/model/chem/#/#/#/transloc#' ): print i[0].name, i[0].Kf, i[0].Kb, i[0].kf, i[0].kb """ for i in moose.wildcardFind( '/model/chem/##[ISA=PoolBase]' ): if ( i[0].diffConst > 0 ): grandpaname = i.parent[0].parent.name + '/' paname = i.parent[0].name + '/' print grandpaname + paname + i[0].name, i[0].diffConst print 'Neighbors:' for t in moose.element( '/model/chem/spine/ksolve/junction' ).neighbors['masterJunction']: print 'masterJunction <-', t.path for t in moose.wildcardFind( '/model/chem/#/ksolve' ): k = moose.element( t[0] ) print k.path + ' localVoxels=', k.numLocalVoxels, ', allVoxels= ', k.numAllVoxels """ ''' moose.useClock( 4, '/model/chem/dend/dsolve', 'process' ) moose.useClock( 5, '/model/chem/dend/ksolve', 'process' ) moose.useClock( 5, '/model/chem/spine/ksolve', 'process' ) moose.useClock( 5, '/model/chem/psd/ksolve', 'process' ) ''' makeChemPlots() makeElecPlots() moose.setClock( 0, elecDt ) moose.setClock( 1, elecDt ) moose.setClock( 2, elecDt ) moose.setClock( 4, chemDt ) moose.setClock( 5, chemDt ) moose.setClock( 6, chemDt ) moose.setClock( 7, cPlotDt ) moose.setClock( 8, ePlotDt ) moose.useClock( 0, '/model/elec/##[ISA=Compartment]', 'init' ) moose.useClock( 1, '/model/elec/##[ISA=Compartment]', 'process' ) moose.useClock( 1, '/model/elec/##[ISA=SpikeGen]', 'process' ) moose.useClock( 2, '/model/elec/##[ISA=ChanBase],/model/##[ISA=SynBase],/model/##[ISA=CaConc]','process') #moose.useClock( 5, '/model/chem/##[ISA=PoolBase],/model/##[ISA=ReacBase],/model/##[ISA=EnzBase]', 'process' ) #moose.useClock( 4, '/model/chem/##[ISA=Adaptor]', 'process' ) moose.useClock( 4, '/model/chem/#/dsolve', 'process' ) moose.useClock( 5, '/model/chem/#/ksolve', 'process' ) moose.useClock( 6, '/model/chem/dend/DEND/adaptCa', 'process' ) moose.useClock( 7, '/graphs/chem/#', 'process' ) moose.useClock( 8, '/graphs/elec/#', 'process' ) #hsolve = moose.HSolve( '/model/elec/hsolve' ) #moose.useClock( 1, '/model/elec/hsolve', 'process' ) #hsolve.dt = elecDt #hsolve.target = '/model/elec/compt' #moose.reinit() moose.element( '/model/elec/spine_head' ).inject = 5e-12 moose.element( '/model/chem/psd/Ca' ).concInit = 0.001 moose.element( '/model/chem/spine/Ca' ).concInit = 0.002 moose.element( '/model/chem/dend/DEND/Ca' ).concInit = 0.003 moose.reinit() """ print 'pre' eca = moose.vec( '/model/chem/psd/PSD/CaM/Ca' ) for i in range( 3 ): print eca[i].concInit, eca[i].conc, eca[i].nInit, eca[i].n, eca[i].volume print 'dend' eca = moose.vec( '/model/chem/dend/DEND/Ca' ) #for i in ( 0, 1, 2, 30, 60, 90, 120, 144 ): for i in range( 13 ): print i, eca[i].concInit, eca[i].conc, eca[i].nInit, eca[i].n, eca[i].volume print 'PSD' eca = moose.vec( '/model/chem/psd/PSD/CaM/Ca' ) for i in range( 3 ): print eca[i].concInit, eca[i].conc, eca[i].nInit, eca[i].n, eca[i].volume print 'spine' eca = moose.vec( '/model/chem/spine/SPINE/CaM/Ca' ) for i in range( 3 ): print eca[i].concInit, eca[i].conc, eca[i].nInit, eca[i].n, eca[i].volume """ moose.start( 0.5 ) plt.ion() fig = plt.figure( figsize=(8,8) ) chem = fig.add_subplot( 211 ) chem.set_ylim( 0, 0.004 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'time (seconds)' ) for x in moose.wildcardFind( '/graphs/chem/#[ISA=Table]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * cPlotDt line1, = chem.plot( pos, x.vector, label=x.name ) plt.legend() elec = fig.add_subplot( 212 ) plt.ylabel( 'Vm (V)' ) plt.xlabel( 'time (seconds)' ) for x in moose.wildcardFind( '/graphs/elec/#[ISA=Table]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * ePlotDt line1, = elec.plot( pos, x.vector, label=x.name ) plt.legend() fig.canvas.draw() raw_input() ''' for x in moose.wildcardFind( '/graphs/##[ISA=Table]' ): t = numpy.arange( 0, x.vector.size, 1 ) pylab.plot( t, x.vector, label=x.name ) pylab.legend() pylab.show() ''' pylab.show() print 'All done' def main(): testNeuroMeshMultiscale() if __name__ == '__main__': main() # # minimal.py ends here.
gpl-3.0
LarsDu/DeepNuc
deepnuc/nucinference.py
2
29422
import tensorflow as tf import numpy as np import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pprint import numpy as np import os import sys import glob import dubiotools as dbt from onehotseqmutator import OnehotSeqMutator sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from duseqlogo import LogoTools import nucheatmap import nucconvmodel from collections import OrderedDict import pickle class NucInference(object): """ Base class for NucBinaryClassifier and NucRegressor This class should contain all methods that work for both child classes. This includes train(),save(),and load(). Child classes must contain method eval_model_metrics() build_model() should be different due to different loss functions and lack of classification metrics. """ use_onehot_labels = True def __init__(self, sess, train_batcher, test_batcher, num_epochs, learning_rate, batch_size, seq_len, save_dir, keep_prob, beta1, concat_revcom_input, nn_method_key): self.sess = sess self.train_batcher = train_batcher self.test_batcher = test_batcher self.seq_len = self.train_batcher.seq_len self.num_epochs = num_epochs self.learning_rate = learning_rate self.batch_size = batch_size self.seq_len = seq_len self.save_dir = save_dir self.summary_dir = self.save_dir+os.sep+'summaries' self.checkpoint_dir = self.save_dir+os.sep+'checkpoints' self.metrics_dir = self.save_dir+os.sep+'metrics' #One minus the dropout_probability if dropout is enabled for a particular model self.keep_prob = 0.5 #beta1 is a parameter for the AdamOptimizer self.beta1 = beta1 #This flag will tell the inference method to concatenate #the reverse complemented version of the input sequence #to the input vector self.concat_revcom_input = concat_revcom_input self.nn_method_key = nn_method_key self.nn_method = nucconvmodel.methods_dict[nn_method_key] self.train_steps_per_epoch = int(self.train_batcher.num_records//self.batch_size) if self.test_batcher: self.test_steps_per_epoch = int(self.test_batcher.num_records//self.batch_size) self.num_steps = int(self.train_steps_per_epoch*self.num_epochs) self.save_on_epoch = 5 #This will be overrided in child class __init__ self.train_metrics_vector = [] #a list of metrics recorded on each save_on_epoch self.test_metrics_vector =[] self.epoch = 0 self.step=0 #http://stackoverflow.com/questions/43218731/ #Deprecated method of saving step on graph #self.global_step = tf.Variable(0, trainable=False,name='global_step') #Saver should be set in build_model() after all ops are declared self.saver = None def save(self): if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) #Save checkpoint in tensorflow checkpoint_name = self.checkpoint_dir+os.sep+'checkpoints' self.saver.save(self.sess,checkpoint_name,global_step=self.step) #Save metrics using pickle in the metrics folder if not os.path.exists(self.metrics_dir): os.makedirs(self.metrics_dir) metrics_file = self.metrics_dir+os.sep+'metrics-'+str(self.step)+'.p' with open(metrics_file,'w') as of: pickle.dump(self.train_metrics_vector,of) pickle.dump(self.test_metrics_vector,of) #Clean the metrics directory of old pickle files (to save storage space) flist = glob.glob('*.p') flist_steps = [int(f.strip('.p').split('-')[1]) for f in flist] max_metric = max(flist_steps+[0]) for f in flist: if max_metric != int(f.strip('.p').split('-')[1]): os.remove(f) def load(self,checkpoint_dir): ''' Load saved model from checkpoint directory. ''' print(" Retrieving checkpoints from", checkpoint_dir) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: self.saver.restore(self.sess,ckpt.model_checkpoint_path) print "\n\n\n\nSuccessfully loaded checkpoint from",ckpt.model_checkpoint_path #Extract step from checkpoint filename self.step = int(os.path.basename(ckpt.model_checkpoint_path).split('-')[1]) self.epoch = int(self.step//self.train_steps_per_epoch) self.load_pickle_metrics(self.step) return True else: print ("Failed to load checkpoint",checkpoint_dir) return False def load_pickle_metrics(self,step): #Load metrics from pickled metrics file metrics_file = self.metrics_dir+os.sep+'metrics-'+str(self.step)+'.p' with open(metrics_file,'r') as of: self.train_metrics_vector = pickle.load(of) if self.test_batcher: self.test_metrics_vector = pickle.load(of) print "Successfully loaded recorded metrics data from {}".\ format(metrics_file) def train(self): """ Train a model :returns: Tuple of two dicts: training metrics, and testing metrics Note: This method was designed to work for both nucregressor and nucclassifier However, those objects should have different eval_model_metrics() methods, since classification and regression produce different metrics """ #coord = tf.train.Coordinator() #threads = tf.train.start_queue_runners(self.sess.coord) start_time = time.time() #If model already finished training, just return last metrics if self.step >= self.num_steps or self.epoch>self.num_epochs: print "Loaded model already finished training" print "Model was loaded at step {} epoch {} and num_steps set to {} and num epochs set to {}".format(self.step,self.epoch,self.num_steps,self.num_epochs) #Important note: epochs go from 1 to num_epochs inclusive. The # last epoch index is equal to num_epochs for _ in xrange(self.epoch,self.num_epochs): self.epoch += 1 for _ in xrange(self.train_steps_per_epoch): self.step += 1 (labels_batch,dna_seq_batch) = self.train_batcher.pull_batch(self.batch_size) feed_dict={ self.dna_seq_placeholder:dna_seq_batch, self.labels_placeholder:labels_batch, self.keep_prob_placeholder:self.keep_prob } _,loss_value,_ =self.sess.run([self.train_op, self.loss, self.logits], feed_dict=feed_dict) assert not np.isnan(loss_value), 'Model diverged with loss = NaN' duration = time.time() - start_time # Write the summaries and print an overview fairly often. if (self.step % self.train_steps_per_epoch == 0): # Print status to stdout. print('Epoch %d Step %d loss = %.4f (%.3f sec)' % (self.epoch, self.step, loss_value, duration)) #Writer summary summary_str = self.sess.run(self.summary_op, feed_dict=feed_dict) self.summary_writer.add_summary(summary_str, self.step) self.summary_writer.flush() #ensure summaries written to disk #Save checkpoint and evaluate training and test sets if ( self.epoch % self.save_on_epoch == 0 and self.epoch > 0 and self.epoch !=self.num_epochs and self.step % self.train_steps_per_epoch == 0): print('Training data eval:') train_metrics=self.eval_model_metrics(self.train_batcher) self.print_metrics(train_metrics) self.train_metrics_vector.append(train_metrics) if self.test_batcher != None: print('Testing data eval:') test_metrics=self.eval_model_metrics(self.test_batcher) self.test_metrics_vector.append(test_metrics) self.print_metrics(test_metrics) print "Saving checkpoints" #self.save() if (self.epoch == self.num_epochs and self.step % self.train_steps_per_epoch ==0): # This is the final step and epoch, save metrics # Evaluate the entire training set. print('Training data eval:') #self.eval_model_accuracy(self.train_batcher) self.train_metrics_vector.append( self.eval_model_metrics(self.train_batcher, save_plots=True, image_name='train_metrics.png')) if self.test_batcher != None: print('Testing data eval:') self.test_metrics_vector.append(self.eval_model_metrics(self.test_batcher, save_plots=True, image_name='test_metrics.png')) print "Saving final checkpoint" self.save() #Set return values ret_metrics = [] if self.train_metrics_vector != []: ret_metrics.append(self.train_metrics_vector[-1]) else: ret_metrics.append([]) if self.test_metrics_vector != []: ret_metrics.append(self.test_metrics_vector[-1]) else: ret_metrics.append([]) return ret_metrics def eval_batchers(self,save_plots=True): # Evaluate training and test batcher data. print('Training data eval:') #self.eval_model_accuracy(self.train_batcher) train_results_dict = self.eval_model_metrics(self.train_batcher, save_plots=save_plots) self.print_metrics(train_results_dict) if self.test_batcher != None: print('Testing data eval:') test_results_dict = self.eval_model_metrics(self.test_batcher, save_plots=save_plots) self.print_metrics(test_results_dict) def print_metrics(self,metrics_dict): for key,value in metrics_dict.viewitems(): #Do not print out arrays! if type(value) != np.ndarray: print '\t',key,":\t",value def eval_batch(self,dna_seq_batch,labels_batch): """ Evaluate a single batch of labels and data """ feed_dict = { self.dna_seq_placeholder: dna_seq_batch, self.labels_placeholder: labels_batch, self.keep_prob_placeholder: 1.0 } batch_logits,batch_network = self.sess.run(self.nn_method,feed_dict=feed_dict) return batch_logits,batch_network def plot_test_epoch_vs_metric(self, metric_key="auroc", suffix = '', save_plot=True, xmin = 0.0, ymin=0.5): format_dict= {"auroc":"auROC","auPRC":"auprc","f1_score":"F1-Score"} num_mets = len(self.test_metrics_vector) if num_mets == 0: print "Test metrics vector is empty!" return None met_y = [m[metric_key] for m in self.test_metrics_vector] ep_x = [m["epoch"] for m in self.test_metrics_vector] fig,ax = plt.subplots(1) ax.plot(ep_x,met_y) ax.set_xlabel("Number of epochs") ax.set_xlim(xmin,ep_x[-1]+5) ax.set_ylim(ymin,1.0) if metric_key in format_dict: ax.set_title("Epoch vs. {} {}".format(format_dict[metric_key],suffix)) ax.set_ylabel("{}".format(format_dict[metric_key])) else: ax.set_title("Epoch vs.{} {}".format(metric_key,suffix)) ax.set_ylabel("{}".format(metric_key)) if save_plot: plot_file = self.save_dir+os.sep+"epoch_vs_{}_{}.png".format(metric_key,suffix) fig.savefig(plot_file) ###Relevance batch methods### def relevance_from_nucs(self,nucs,label): """ Return the relevance of a nucleotide sequence and corresponding label :nuc_seq: string nucleotide sequence :label: 1 x num_classes numpy indicator array :returns: 4xn relevance matrix :rtype: numpy array """ return self.run_relevance(dbt.seq_to_onehot(nuc_seq),label) def run_relevance(self,onehot_seq,label): """ Return the relevance of a onehot encoded sequence and corresponding label :onehot_seq: nx4 onehot representation of a nucleotide sequence :label: 1 x num_classes numpy indicator array :returns: 4xn relevance matrix :rtype: numpy array """ feed_dict = { self.dna_seq_placeholder: np.expand_dims(onehot_seq,axis=0), self.labels_placeholder: np.expand_dims(label,axis=0), self.keep_prob_placeholder: 1.0 } relevance_batch = self.sess.run(self.relevance,feed_dict=feed_dict) relevance = np.squeeze(relevance_batch[0],axis=0).T return relevance def relevance_from_batcher(self,batcher,index): """ :param batcher: DataBatcher object :param index: integer index of item in DataBatcher object :returns: 4xn relevance matrix :rtype: numpy array """ batch_size=1 #Needs to be 1 for now due to conv2d_transpose issue label, onehot_seq = batcher.pull_batch_by_index(index,batch_size) rel_mat = self.run_relevance(onehot_seq[0],label[0]) return rel_mat def plot_relevance_logo_from_batcher(self,batcher,index): batch_size=1 #Needs to be 1 for now due to conv2d_transpose issue label, onehot_seq = batcher.pull_batch_by_index(index,batch_size) numeric_label = labels_batch[0].tolist().index(1) save_fig = self.save_dir+os.sep+'relevance_logo_ind{}_lab{}.png'.format(index, numeric_label) self.plot_relevance_logo(onehot_seq,label,save_fig) def plot_relevance_heatmap_from_batcher(self,batcher,index): batch_size=1 #Needs to be 1 for now due to conv2d_transpose issue labels_batch,dna_batch = batcher.pull_batch_by_index(index,batch_size) numeric_label = labels_batch[0].tolist().index(1) save_fig = self.save_dir+os.sep+'relevance_heat_ind{}_lab{}.png'.format(index, numeric_label) self.plot_relevance_heatmap(dna_batch[0], labels_batch[0], save_fig) def plot_relevance_heatmap(self,onehot_seq,label,save_fig): relevance = self.run_relevance(onehot_seq,label) seq = dbt.onehot_to_nuc(onehot_seq.T) fig,ax = nucheatmap.nuc_heatmap(seq, relevance, save_fig=save_fig, clims = [0,np.max(relevance)], cmap='Blues') def plot_relevance_logo(self,onehot_seq,label,save_fig): logosheets=[] input_seqs=[] np.set_printoptions(linewidth=500,precision=4) save_file = self.save_dir+save_fig relevance = self.relevance(onehot_seq,label) r_img = np.squeeze(relevance).T ###Build a "relevance scaled position weight matrix" #Convert each position to a position probability matrix r_ppm = r_img/np.sum(r_img,axis=0) lh = LogoTools.PwmTools.ppm_to_logo_heights(r_ppm) #Relevance scale logo_heights r_rel =np.sum(r_img,axis=0) #relavance by position max_relevance = np.max(r_rel) min_relevance = np.min(r_rel) #print "r_rel max", max_relevance #print "r_rel min", min_relevance #lh is in bits of information #Rescale logo_heights to r_rel scaled_lh = lh * r_rel/(max_relevance - min_relevance) logosheets.append(scaled_lh*25) input_seqs.append(onehot_seq.T) rel_sheet = LogoTools.LogoNucSheet(logosheets,input_seqs,input_type='heights') rel_sheet.write_to_png(save_file) #plt.pcolor(r_img,cmap=plt.cm.Reds) #print "A relevance" #plt.plot(r_img[0,:]) #print "Relevance by position" #plt.plot(np.sum(r_img,axis=0)) #logits_np = self.sess.run(self.logits, # feed_dict=feed_dict) #Print actual label and inference if classification #guess = logits_np.tolist() #guess = guess[0].index(max(guess[0])) #actual = labels_batch[0].tolist().index(1.) #print logits_np #print self.sess.run(self.probs,feed_dict=feed_dict) #print ("Guess:",(guess)) #print ("Actual:",(actual)) ##Alipanahi mut map methods### def alipanahi_mutmap(self,onehot_seq,label): """ Create an matrix representing the effects of every possible mutation on classification score as described in Alipanahi et al 2015 :onehot_seq: nx4 onehot representation of a nucleotide sequence :label: 1 x num_classes numpy indicator array :returns: nx4 mutation map numpy array """ #Mutate the pulled batch sequence. #OnehotSeqMutator will produce every SNP for the input sequence oh_iter = OnehotSeqMutator(onehot_seq.T) #4xn inputs eval_batch_size = 75 #Number of generated examples to process in parallel # with each step single_pulls = oh_iter.n%eval_batch_size num_whole_batches = int(oh_iter.n//eval_batch_size+single_pulls) num_pulls = num_whole_batches+single_pulls all_probs = np.zeros((oh_iter.n,self.num_classes)) for i in range(num_pulls): if i<num_whole_batches: iter_batch_size = eval_batch_size else: iter_batch_size=1 labels_batch = np.asarray(iter_batch_size*[label]) dna_seq_batch = oh_iter.pull_batch(iter_batch_size) feed_dict = { self.dna_seq_placeholder: dna_seq_batch, self.labels_placeholder: labels_batch, self.keep_prob_placeholder: 1.0 } cur_probs = self.sess.run(self.probs,feed_dict=feed_dict) #TODO: Map these values back to the original nuc array if iter_batch_size > 1: start_ind = iter_batch_size*i elif iter_batch_size == 1: start_ind = num_whole_batches*eval_batch_size+(i-num_whole_batches) else: print "Never reach this condition" start_ind = iter_batch_size*i all_probs[start_ind:start_ind+iter_batch_size,:] = cur_probs #print "OHseqshape",onehot_seq.shape seq_len = onehot_seq.shape[0] amutmap_ds=np.zeros((seq_len,4)) label_index = label.tolist().index(1) #Onehot seq mutator created SNPs in order #Fill output matrix with logits except where nucleotides unchanged #Remember onehot_seq is nx4 while nuc_heatmap takes inputs that are 4xn ps_feed_dict = { self.dna_seq_placeholder:np.expand_dims(onehot_seq,axis=0), self.labels_placeholder: np.expand_dims(label,axis=0), self.keep_prob_placeholder: 1.0 } #ps is the original score of the original input sequence ps = self.sess.run(self.probs,feed_dict=ps_feed_dict)[0][label_index] k=0 for i in range(seq_len): for j in range(4): if onehot_seq[i,j] == 1: amutmap_ds[i,j] = 0 #Set original letter to 0 else: #ps_hat is the score for a given snp ps_hat = all_probs[k,label_index] amutmap_ds[i,j] = (ps_hat - ps)*max(0,ps_hat,ps) k+=1 #amutmap_ds is nx4 return amutmap_ds def alipanahi_mutmap_from_batcher(self,batcher,index): label,onehot_seq = batcher.pull_batch_by_index(index,batch_size) return self.alipanahi_mutmap(onehot_seq,label) def plot_alipanahi_mutmap(self,onehot_seq,label,save_fig): seq = dbt.onehot_to_nuc(onehot_seq.T) amut_onehot = self.alipanahi_mutmap(onehot_seq,label) nucheatmap.nuc_heatmap(seq,amut_onehot.T,save_fig=save_fig) def plot_alipanahi_mutmap_from_batcher(self,batcher,index): batch_size = 1 labels_batch, dna_seq_batch = batcher.pull_batch_by_index(index,batch_size) #print "Index {} has label {}".format(index,labels_batch[0]) numeric_label = labels_batch[0].tolist().index(1) save_fig = self.save_dir+os.sep+'alipanahi_mut_map_ind{}_lab{}.png'.format(index, numeric_label) self.plot_alipanahi_mutmap(dna_seq_batch[0],labels_batch[0],save_fig) def avg_alipanahi_mutmap_of_batcher(self,batcher): """Get every mutmap from a given batcher, then average over all mutation maps, Works for num_classes = 2""" all_labels, all_dna_seqs = batcher.pull_batch_by_index(0,batcher.num_records) amutmaps = [np.zeros((batcher.num_records,self.seq_len,4))]*self.num_classes for ci in range(self.num_classes): for ri in range(batcher.num_records): #double check this for errors #amutmap is nx4 amutmaps[ci][ri,:,:] = self.alipanahi_mutmap(all_dna_seqs[ri,:,:],all_labels[ri,:]) return [np.mean(amutmap,axis=0) for amutmap in amutmaps] def plot_avg_alipanahi_mutmap_of_batcher(self,batcher,fsuffix=''): amutmaps = self.avg_alipanahi_mutmap_of_batcher(batcher) for i,amap in enumerate(amutmaps): # Note: amax(arr, axis=1) give greatest val for each row (nuc for nx4) max_avg_nuc =(amap == np.amax(amap,axis=1,keepdims=True)).astype(np.float32) seq = dbt.onehot_to_nuc(max_avg_nuc.T) alipanahi_mutmap_dir = self.save_dir + os.sep+'alipanahi_mutmap_dir' if not os.path.exists(alipanahi_mutmap_dir): os.makedirs(alipanahi_mutmap_dir) save_fname = alipanahi_mutmap_dir+os.sep+'avg_batcher_mutmap_{}recs_class{}{}.png'.\ format(batcher.num_records,i,fsuffix) nucheatmap.nuc_heatmap(seq,amap.T,save_fig=save_fname) ###Mutmap methods### # generate every possible snp and measure change in logit def mutmap(self,onehot_seq,label): """ :onehot_seq: nx4 onehot representation of a nucleotide sequence :label: integer numeric label (ie: 0 or 1 for a NucBinaryClassifier) Create an matrix representing the effects of every possible mutation on classification score as described in Alipanahi et al 2015 """ #Mutate the pulled batch sequence. #OnehotSeqMutator will produce every SNP for the input sequence oh_iter = OnehotSeqMutator(onehot_seq.T) #4xn inputs eval_batch_size = 75 #Number of generated examples to process in parallel # with each step single_pulls = oh_iter.n%eval_batch_size num_whole_batches = int(oh_iter.n//eval_batch_size+single_pulls) num_pulls = num_whole_batches+single_pulls all_logits = np.zeros((oh_iter.n,self.num_classes)) for i in range(num_pulls): if i<num_whole_batches: iter_batch_size = eval_batch_size else: iter_batch_size=1 labels_batch = np.asarray(iter_batch_size*[label]) dna_seq_batch = oh_iter.pull_batch(iter_batch_size) feed_dict = { self.dna_seq_placeholder: dna_seq_batch, self.labels_placeholder: labels_batch, self.keep_prob_placeholder: 1.0 } cur_logits = self.sess.run(self.logits,feed_dict=feed_dict) #TODO: Map these values back to the original nuc array if iter_batch_size > 1: start_ind = iter_batch_size*i elif iter_batch_size == 1: start_ind = num_whole_batches*eval_batch_size+(i-num_whole_batches) else: print "Never reach this condition" start_ind = iter_batch_size*i all_logits[start_ind:start_ind+iter_batch_size,:] = cur_logits #print "OHseqshape",onehot_seq.shape seq_len = onehot_seq.shape[0] mutmap_ds=np.zeros((seq_len,4)) k=0 label_index = label.tolist().index(1) #Onehot seq mutator created SNPs in order #Fill output matrix with logits except where nucleotides unchanged #Remember onehot_seq is nx4 while nuc_heatmap takes inputs that are 4xn for i in range(seq_len): for j in range(4): if onehot_seq[i,j] == 1: mutmap_ds[i,j] = 0 #Set original letter to 0 else: mutmap_ds[i,j] = all_logits[k,label_index] k+=1 return mutmap_ds.T def mutmap_from_batcher(self,batcher,index): """ Create an matrix representing the effects of every possible mutation on classification score as described in Alipanahi et al 2015. Retrieve this data from a databatcher """ label, onehot_seq = batcher.pull_batch_by_index(index,batch_size=1) return self.mutmap(onehot_seq,label) def plot_mutmap(self,onehot_seq,label,save_fig): """ :param onehot_seq: nx4 matrix :param label: :returns: :rtype: """ seq = dbt.onehot_to_nuc(onehot_seq.T) mut_onehot = self.mutmap(onehot_seq,label) #print "mut_onehot",mut_onehot.shape #print mut_onehot return nucheatmap.nuc_heatmap(seq,mut_onehot,save_fig=save_fig) def plot_mutmap_from_batcher(self,batcher,index): batch_size = 1 labels_batch, dna_seq_batch = batcher.pull_batch_by_index(index,batch_size) #print "Index {} has label {}".format(index,labels_batch[0]) numeric_label = labels_batch[0].tolist().index(1) save_fig = self.save_dir+os.sep+'mut_map_ind{}_lab{}.png'.format(index,numeric_label) return self.plot_mutmap(dna_seq_batch[0],labels_batch[0],save_fig) ################# def print_global_variables(self): """Print all variable names from the current graph""" print "Printing global_variables" gvars = list(tf.global_variables()) for var in gvars: print "Variable name",var.name print self.sess.run(var) def get_optimal_metrics(self,metrics_vector, metric_key="auroc"): """ Get the metrics from the epoch where a given metric was at it maximum """ best_val = 0 for metric in metrics_vector: best_val = max(metric[metric_key],best_val) for metric in metrics_vector: #metric here is an OrderedDict of metrics if metric[metric_key]==best_val: return metric
gpl-3.0
giorgiop/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
ehocchen/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
IndraVikas/scikit-learn
sklearn/utils/tests/test_murmurhash.py
261
2836
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
gotomypc/scikit-learn
examples/mixture/plot_gmm_sin.py
248
2747
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
IraKorshunova/kaggle-seizure-detection
merger/avg_patients.py
1
1049
from pandas import read_csv, merge import csv import sys from pandas.core.frame import DataFrame def average_csv_data(patients, filename, target, *data_path): data_path = data_path[0] df_list = [] for p in data_path: df = DataFrame(columns=['clip',target]) for patient in patients: d = read_csv(p + '/' + patient + target + '.csv') df = df.append(d) df_list.append(df) avg_df = DataFrame(columns=['clip', target]) avg_df['clip'] = df_list[0]['clip'] avg_df[target] = 0 for df in df_list: avg_df[target] += df[target] avg_df[target] /= 1.0 * len(df_list) with open(filename+'.csv', 'wb') as f: avg_df.to_csv(f, header=True, index=False) if __name__ == '__main__': path = sys.argv[1:] print path patients = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Patient_1', 'Patient_2', 'Patient_3', 'Patient_4', 'Patient_5', 'Patient_6', 'Patient_7', 'Patient_8'] average_csv_data(patients, 'submission_early', 'early', path)
mit
mayblue9/scikit-learn
sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
bsd-3-clause
sangwook236/sangwook-library
python/src/swl/language_processing/util.py
2
45164
import math, random, functools import numpy as np from PIL import Image, ImageDraw, ImageFont import cv2 #-------------------------------------------------------------------- # NOTE [info] >> In order to deal with "Can't pickle local object" error. def decorate_token(x, prefix_ids, suffix_ids): return prefix_ids + x + suffix_ids class TokenConverterBase(object): def __init__(self, tokens, unknown='<UNK>', sos=None, eos=None, pad=None, prefixes=None, suffixes=None, additional_tokens=None): """ Inputs: tokens (list of tokens): Tokens to be regarded as individual units. unknown (token): Unknown token. sos (token or None): A special token to use as <SOS> token. If None, <SOS> token is not used. All token sequences may start with the Start-Of-Sequence (SOS) token. eos (token or None): A special token to use as <EOS> token. If None, <EOS> token is not used. All token sequences may end with the End-Of-Sequence (EOS) token. pad (token, int, or None): A special token or integer token ID for padding, which may be not an actual token. If None, the pad token is not used. prefixes (list of tokens): Special tokens to be used as prefix. suffixes (list of tokens): Special tokens to be used as suffix. """ assert unknown is not None self.unknown, self.sos, self.eos = unknown, sos, eos if prefixes is None: prefixes = list() if suffixes is None: suffixes = list() if self.sos: prefixes = [self.sos] + prefixes if self.eos: suffixes += [self.eos] self._num_affixes = len(prefixes + suffixes) if additional_tokens: extended_tokens = tokens + additional_tokens + prefixes + suffixes + [self.unknown] else: extended_tokens = tokens + prefixes + suffixes + [self.unknown] #self._tokens = tokens self._tokens = extended_tokens self.unknown_id = extended_tokens.index(self.unknown) prefix_ids, suffix_ids = [extended_tokens.index(tok) for tok in prefixes], [extended_tokens.index(tok) for tok in suffixes] default_pad_id = -1 #len(extended_tokens) if pad is None: self._pad_id = default_pad_id self.pad = None elif isinstance(pad, int): self._pad_id = pad try: self.pad = extended_tokens[pad] except IndexError: self.pad = None else: try: self._pad_id = extended_tokens.index(pad) self.pad = pad except ValueError: self._pad_id = default_pad_id self.pad = None self.auxiliary_token_ids = [self._pad_id] + prefix_ids + suffix_ids self.decoration_functor = functools.partial(decorate_token, prefix_ids=prefix_ids, suffix_ids=suffix_ids) if self.eos: eos_id = extended_tokens.index(self.eos) #self.auxiliary_token_ids.remove(self.eos) # TODO [decide] >> self.decode_functor = functools.partial(self._decode_with_eos, eos_id=eos_id) else: self.decode_functor = self._decode @property def num_tokens(self): return len(self._tokens) @property def tokens(self): return self._tokens @property def UNKNOWN(self): return self.unknown @property def SOS(self): return self.sos @property def EOS(self): return self.eos @property def PAD(self): return self.pad @property def pad_id(self): return self._pad_id @property def num_affixes(self): return self._num_affixes # Token sequence -> token ID sequence. def encode(self, seq, is_bare_output=False, *args, **kwargs): """ Inputs: seq (list of tokens): A sequence of tokens to encode. is_bare_output (bool): Specifies whether an encoded token ID sequence without prefixes and suffixes is returned or not. """ def tok2id(tok): try: return self._tokens.index(tok) except ValueError: #print('[SWL] Error: Failed to encode a token, {} in {}.'.format(tok, seq)) return self.unknown_id id_seq = [tok2id(tok) for tok in seq] return id_seq if is_bare_output else self.decoration_functor(id_seq) # Token ID sequence -> token sequence. def decode(self, id_seq, is_string_output=True, *args, **kwargs): """ Inputs: id_seq (list of token IDs): A sequence of integer token IDs to decode. is_string_output (bool): Specifies whether the decoded output is a string or not. """ return self.decode_functor(id_seq, is_string_output, *args, **kwargs) # Token ID sequence -> token sequence. def _decode(self, id_seq, is_string_output=True, *args, **kwargs): def id2tok(tok): try: return self._tokens[tok] except IndexError: #print('[SWL] Error: Failed to decode a token ID, {} in {}.'.format(tok, id_seq)) return self.unknown # TODO [check] >> Is it correct? seq = [id2tok(tok) for tok in id_seq if tok not in self.auxiliary_token_ids] return ''.join(seq) if is_string_output else seq # Token ID sequence -> token sequence. def _decode_with_eos(self, id_seq, is_string_output=True, eos_id=None, *args, **kwargs): def id2tok(tok): try: return self._tokens[tok] except IndexError: #print('[SWL] Error: Failed to decode a token ID, {} in {}.'.format(tok, id_seq)) return self.unknown # TODO [check] >> Is it correct? """ try: id_seq = id_seq[:id_seq.index(eos_id)] # NOTE [info] >> It is applied to list only. except ValueError: pass return self._decode(id_seq, is_string_output, *args, **kwargs) """ tokens = list() for tok in id_seq: if tok == eos_id: break elif tok in self.auxiliary_token_ids: continue else: tokens.append(id2tok(tok)) return ''.join(tokens) if is_string_output else tokens """ def ff(tok): if tok == eos_id: raise StopIteration elif tok in self.auxiliary_token_ids: pass # Error: return None. else: return id2tok(tok) try: tokens = map(ff, id_seq) #tokens = map(ff, filter(lambda tok: tok in self.auxiliary_token_ids, id_seq)) except StopIteration: pass """ class TokenConverter(TokenConverterBase): def __init__(self, tokens, unknown='<UNK>', sos=None, eos=None, pad=None, prefixes=None, suffixes=None): super().__init__(tokens, unknown, sos, eos, pad, prefixes, suffixes) class JamoTokenConverter(TokenConverterBase): #def __init__(self, tokens, hangeul2jamo_functor, jamo2hangeul_functor, unknown='<UNK>', sos=None, eos=None, soj=None, eoj='<EOJ>', pad=None, prefixes=None, suffixes=None): def __init__(self, tokens, hangeul2jamo_functor, jamo2hangeul_functor, unknown='<UNK>', sos=None, eos=None, eoj='<EOJ>', pad=None, prefixes=None, suffixes=None): """ Inputs: tokens (list of tokens): Tokens to be regarded as individual units. hangeul2jamo_functor (functor): A functor to convert a Hangeul letter to a sequence of Jamos. jamo2hangeul_functor (functor): A functor to convert a sequence of Jamos to a Hangeul letter. unknown (token): Unknown token. sos (token or None): A special token to use as <SOS> token. If None, <SOS> token is not used. All token sequences may start with the Start-Of-Sequence (SOS) token. eos (token or None): A special token to use as <EOS> token. If None, <EOS> token is not used. All token sequences may end with the End-Of-Sequence (EOS) token. soj (token or None): A special token to use as <SOJ> token. If None, <SOJ> token is not used. All Hangeul jamo sequences may start with the Start-Of-Jamo-Sequence (SOJ) token. eoj (token or None): A special token to use as <EOJ> token. If None, <EOJ> token is not used. All Hangeul jamo sequences may end with the End-Of-Jamo-Sequence (EOJ) token. pad (token, int, or None): A special token or integer token ID for padding, which may be not an actual token. If None, the pad token is not used. prefixes (list of tokens): Special tokens to be used as prefix. suffixes (list of tokens): Special tokens to be used as suffix. """ #assert soj is not None and eoj is not None assert eoj is not None #super().__init__(tokens, unknown, sos, eos, pad, prefixes, suffixes, additional_tokens=[soj, eoj]) super().__init__(tokens, unknown, sos, eos, pad, prefixes, suffixes, additional_tokens=[eoj]) #self.soj, self.eoj = soj, eoj self.soj, self.eoj = None, eoj # TODO [check] >> This implementation using itertools.chain() may be slow. import itertools #self.hangeul2jamo_functor = hangeul2jamo_functor self.hangeul2jamo_functor = lambda hgstr: list(itertools.chain(*[[tt] if len(tt) > 1 else hangeul2jamo_functor(tt) for tt in hgstr])) self.jamo2hangeul_functor = jamo2hangeul_functor #self.jamo2hangeul_functor = lambda jmstr: list(itertools.chain(*[[tt] if len(tt) > 1 else jamo2hangeul_functor(tt) for tt in jmstr])) @property def SOJ(self): return self.soj @property def EOJ(self): return self.eoj # Token sequence -> token ID sequence. def encode(self, seq, is_bare_output=False, *args, **kwargs): """ Inputs: seq (list of tokens): A sequence of tokens to encode. is_bare_output (bool): Specifies whether an encoded token ID sequence without prefixes and suffixes is returned or not. """ try: return super().encode(self.hangeul2jamo_functor(seq), is_bare_output, *args, **kwargs) except Exception as ex: print('[SWL] Error: Failed to encode a token sequence: {}.'.format(seq)) raise # Token ID sequence -> token sequence. def decode(self, id_seq, is_string_output=True, *args, **kwargs): """ Inputs: id_seq (list of token IDs): A sequence of integer token IDs to decode. is_string_output (bool): Specifies whether the decoded output is a string or not. """ try: return self.jamo2hangeul_functor(super().decode(id_seq, is_string_output, *args, **kwargs)) except Exception as ex: print('[SWL] Error: Failed to decode a token ID sequence: {}.'.format(id_seq)) raise #-------------------------------------------------------------------- def compute_simple_text_matching_accuracy(text_pairs): total_text_count = len(text_pairs) correct_text_count = len(list(filter(lambda x: x[0] == x[1], text_pairs))) correct_word_count, total_word_count, correct_char_count, total_char_count = 0, 0, 0, 0 for inf_text, gt_text in text_pairs: inf_words, gt_words = inf_text.split(' '), gt_text.split(' ') total_word_count += max(len(inf_words), len(gt_words)) correct_word_count += len(list(filter(lambda x: x[0] == x[1], zip(inf_words, gt_words)))) total_char_count += max(len(inf_text), len(gt_text)) correct_char_count += len(list(filter(lambda x: x[0] == x[1], zip(inf_text, gt_text)))) return correct_text_count, total_text_count, correct_word_count, total_word_count, correct_char_count, total_char_count def compute_sequence_matching_ratio(seq_pairs, isjunk=None): import difflib return functools.reduce(lambda total_ratio, pair: total_ratio + difflib.SequenceMatcher(isjunk, pair[0], pair[1]).ratio(), seq_pairs, 0) / len(seq_pairs) """ total_ratio = 0 for inf, gt in seq_pairs: matcher = difflib.SequenceMatcher(isjunk, inf, gt) # sum(matched sequence lengths) / len(G/T). total_ratio += functools.reduce(lambda matched_len, mth: matched_len + mth.size, matcher.get_matching_blocks(), 0) / len(gt) if len(gt) > 0 else 0 return total_ratio / len(seq_pairs) """ def compute_string_distance(text_pairs): import jellyfish #string_distance_functor = jellyfish.hamming_distance string_distance_functor = jellyfish.levenshtein_distance #string_distance_functor = jellyfish.damerau_levenshtein_distance #string_distance_functor = jellyfish.jaro_distance #string_distance_functor = functools.partial(jellyfish.jaro_winkler, long_tolerance=False) #string_distance_functor = jellyfish.match_rating_comparison total_text_count = len(text_pairs) text_distance = functools.reduce(lambda ss, x: ss + string_distance_functor(x[0], x[1]), text_pairs, 0) word_distance, total_word_count, char_distance, total_char_count = 0, 0, 0, 0 for inf_text, gt_text in text_pairs: inf_words, gt_words = inf_text.split(' '), gt_text.split(' ') total_word_count += max(len(inf_words), len(gt_words)) word_distance += functools.reduce(lambda ss, x: ss + string_distance_functor(x[0], x[1]), zip(inf_words, gt_words), 0) total_char_count += max(len(inf_text), len(gt_text)) char_distance += functools.reduce(lambda ss, x: ss + string_distance_functor(x[0], x[1]), zip(inf_text, gt_text), 0) return text_distance, word_distance, char_distance, total_text_count, total_word_count, total_char_count def compute_sequence_precision_and_recall(seq_pairs, classes=None, isjunk=None): import difflib if classes is None: classes = list(zip(*seq_pairs)) classes = sorted(functools.reduce(lambda x, txt: x.union(txt), classes[0] + classes[1], set())) """ # Too slow. def compute_metric(seq_pairs, cls): TP_FP, TP_FN, TP = 0, 0, 0 for inf, gt in seq_pairs: TP_FP += inf.count(cls) # Retrieved examples. TP + FP. TP_FN += gt.count(cls) # Relevant examples. TP + FN. #TP += len(list(filter(lambda ig: ig[0] == ig[1] == cls, zip(inf, gt)))) # Too simple. #TP += sum([inf[mth.a:mth.a+mth.size].count(cls) for mth in difflib.SequenceMatcher(isjunk, inf, gt).get_matching_blocks() if mth.size > 0]) TP = functools.reduce(lambda tot, mth: tot + inf[mth.a:mth.a+mth.size].count(cls) if mth.size > 0 else tot, difflib.SequenceMatcher(isjunk, inf, gt).get_matching_blocks(), TP) return TP_FP, TP_FN, TP # A list of (TP + FP, TP + FN, TP)'s. #return list(map(lambda cls: compute_metric(seq_pairs, cls), classes)), classes # A dictionary of {class: (TP + FP, TP + FN, TP)} pairs. return {cls: metric for cls, metric in zip(classes, map(lambda cls: compute_metric(seq_pairs, cls), classes))} """ metrics = {cls: [0, 0, 0] for cls in classes} # A dictionary of {class: (TP + FP, TP + FN, TP)} pairs. for inf, gt in seq_pairs: #for cls in set(inf): metrics[cls][0] += inf.count(cls) # Retrieved examples. TP + FP. #for cls in set(gt): metrics[cls][1] += gt.count(cls) # Relevant examples. TP + FN. for cls in inf: metrics[cls][0] += 1 # Retrieved examples. TP + FP. for cls in gt: metrics[cls][1] += 1 # Relevant examples. TP + FN. matches = difflib.SequenceMatcher(isjunk, inf, gt).get_matching_blocks() for mth in matches: if mth.size > 0: #for cls in set(inf[mth.a:mth.a+mth.size]): metrics[cls][2] += inf[mth.a:mth.a+mth.size].count(cls) for cls in inf[mth.a:mth.a+mth.size]: metrics[cls][2] += 1 return metrics #-------------------------------------------------------------------- def compute_text_size(text, font_type, font_index, font_size): font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) text_size = font.getsize(text) # (width, height). font_offset = font.getoffset(text) # (x, y). return text_size[0] + font_offset[0], text_size[1] + font_offset[1] def generate_text_image(text, font_type, font_index, font_size, font_color, bg_color, image_size=None, text_offset=None, crop_text_area=True, draw_text_border=False, char_space_ratio=None, mode='RGB', mask=False, mask_mode='1'): if char_space_ratio is None or 1 == char_space_ratio: if mask: return generate_simple_text_image_and_mask(text, font_type, font_index, font_size, font_color, bg_color, image_size, text_offset, crop_text_area, draw_text_border, mode, mask_mode) else: return generate_simple_text_image(text, font_type, font_index, font_size, font_color, bg_color, image_size, text_offset, crop_text_area, draw_text_border, mode) else: if mask: return generate_per_character_text_image_and_mask(text, font_type, font_index, font_size, font_color, bg_color, image_size, text_offset, crop_text_area, draw_text_border, char_space_ratio, mode, mask_mode) else: return generate_per_character_text_image(text, font_type, font_index, font_size, font_color, bg_color, image_size, text_offset, crop_text_area, draw_text_border, char_space_ratio, mode) def generate_simple_text_image(text, font_type, font_index, font_size, font_color, bg_color, image_size=None, text_offset=None, crop_text_area=True, draw_text_border=False, mode='RGB'): if image_size is None: image_size = (math.ceil(len(text) * font_size * 1.1), math.ceil((text.count('\n') + 1) * font_size * 1.1)) if text_offset is None: text_offset = (0, 0) # TODO [improve] >> Other color modes have to be supported. if 'L' == mode or '1' == mode: image_depth = 1 elif 'RGBA' == mode: image_depth = 4 else: image_depth = 3 if font_color is None: #font_color = (random.randrange(256),) * image_depth # Uses a random grayscale font color. font_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random RGB font color. if bg_color is None: #bg_color = (random.randrange(256),) * image_depth # Uses a random grayscale background color. bg_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random RGB background color. font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) img = Image.new(mode=mode, size=image_size, color=bg_color) #img = Image.new(mode='RGB', size=image_size, color=bg_color) #img = Image.new(mode='RGBA', size=image_size, color=bg_color) #img = Image.new(mode='L', size=image_size, color=bg_color) #img = Image.new(mode='1', size=image_size, color=bg_color) draw = ImageDraw.Draw(img) # Draws text. draw.text(xy=text_offset, text=text, font=font, fill=font_color) if draw_text_border or crop_text_area: #text_size = font.getsize(text) # (width, height). This is erroneous for multiline text. text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). text_rect = (text_offset[0], text_offset[1], text_offset[0] + text_size[0] + font_offset[0], text_offset[1] + text_size[1] + font_offset[1]) # Draws a rectangle surrounding text. if draw_text_border: draw.rectangle(text_rect, outline='red', width=5) # Crops text area. if crop_text_area: img = img.crop(text_rect) return img def generate_simple_text_image_and_mask(text, font_type, font_index, font_size, font_color, bg_color, image_size=None, text_offset=None, crop_text_area=True, draw_text_border=False, mode='RGB', mask_mode='1'): if image_size is None: image_size = (math.ceil(len(text) * font_size * 1.1), math.ceil((text.count('\n') + 1) * font_size * 1.1)) if text_offset is None: text_offset = (0, 0) # TODO [improve] >> Other color modes have to be supported. if 'L' == mode or '1' == mode: image_depth = 1 elif 'RGBA' == mode: image_depth = 4 else: image_depth = 3 if font_color is None: #font_color = (random.randrange(256),) * image_depth # Uses a random grayscale font color. font_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random RGB font color. if bg_color is None: #bg_color = (random.randrange(256),) * image_depth # Uses a random grayscale background color. bg_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random RGB background color. font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) img = Image.new(mode=mode, size=image_size, color=bg_color) #img = Image.new(mode='RGB', size=image_size, color=bg_color) #img = Image.new(mode='RGBA', size=image_size, color=bg_color) #img = Image.new(mode='L', size=image_size, color=bg_color) #img = Image.new(mode='1', size=image_size, color=bg_color) draw_img = ImageDraw.Draw(img) msk = Image.new(mode=mask_mode, size=image_size, color=0) #msk = Image.new(mode='1', size=image_size, color=0) # {0, 1}, bool. #msk = Image.new(mode='L', size=image_size, color=0) # [0, 255], uint8. draw_msk = ImageDraw.Draw(msk) # Draws text. draw_img.text(xy=text_offset, text=text, font=font, fill=font_color) draw_msk.text(xy=text_offset, text=text, font=font, fill=255) if draw_text_border or crop_text_area: #text_size = font.getsize(text) # (width, height). This is erroneous for multiline text. text_size = draw_img.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). text_rect = (text_offset[0], text_offset[1], text_offset[0] + text_size[0] + font_offset[0], text_offset[1] + text_size[1] + font_offset[1]) # Draws a rectangle surrounding text. if draw_text_border: draw_img.rectangle(text_rect, outline='red', width=5) # Crops text area. if crop_text_area: img = img.crop(text_rect) msk = msk.crop(text_rect) return img, msk def generate_per_character_text_image(text, font_type, font_index, font_size, font_color, bg_color, image_size=None, text_offset=None, crop_text_area=True, draw_text_border=False, char_space_ratio=None, mode='RGB'): num_chars, num_newlines = len(text), text.count('\n') if image_size is None: image_size = (math.ceil(num_chars * font_size * char_space_ratio * 1.1), math.ceil((num_newlines + 1) * font_size * 1.1)) if text_offset is None: text_offset = (0, 0) # TODO [improve] >> Other color modes have to be supported. if 'L' == mode or '1' == mode: image_depth = 1 elif 'RGBA' == mode: image_depth = 4 else: image_depth = 3 if bg_color is None: #bg_color = (random.randrange(256),) * image_depth # Uses a random grayscale background color. bg_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random background color. font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) img = Image.new(mode=mode, size=image_size, color=bg_color) #img = Image.new(mode='RGB', size=image_size, color=bg_color) #img = Image.new(mode='RGBA', size=image_size, color=bg_color) #img = Image.new(mode='L', size=image_size, color=bg_color) #img = Image.new(mode='1', size=image_size, color=bg_color) draw = ImageDraw.Draw(img) # Draws text. char_offset = list(text_offset) char_space = math.ceil(font_size * char_space_ratio) if font_color is None: for ch in text: if '\n' == ch: char_offset[0] = text_offset[0] char_offset[1] += font_size continue draw.text(xy=char_offset, text=ch, font=font, fill=tuple(random.randrange(256) for _ in range(image_depth))) # Random font color. char_offset[0] += char_space #elif len(font_colors) == num_chars: # for idx, (ch, fcolor) in enumerate(zip(text, font_colors)): # char_offset[0] = text_offset[0] + char_space * idx # draw.text(xy=char_offset, text=ch, font=font, fill=fcolor) else: for ch in text: if '\n' == ch: char_offset[0] = text_offset[0] char_offset[1] += font_size continue draw.text(xy=char_offset, text=ch, font=font, fill=font_color) char_offset[0] += char_space if draw_text_border or crop_text_area: #text_size = list(font.getsize(text)) # (width, height). This is erroneous for multiline text. text_size = list(draw.textsize(text, font=font)) # (width, height). if num_chars > 1: max_chars_in_line = functools.reduce(lambda ll, line: max(ll, len(line)), text.splitlines(), 0) #text_size[0] = char_space * (max_chars_in_line - 1) + font_size text_size[0] = char_space * (max_chars_in_line - 1) + font.getsize(text[-1])[0] text_size[1] = (num_newlines + 1) * font_size font_offset = font.getoffset(text) # (x, y). text_rect = (text_offset[0], text_offset[1], text_offset[0] + text_size[0] + font_offset[0], text_offset[1] + text_size[1] + font_offset[1]) # Draws a rectangle surrounding text. if draw_text_border: draw.rectangle(text_rect, outline='red', width=5) # Crops text area. if crop_text_area: img = img.crop(text_rect) return img def generate_per_character_text_image_and_mask(text, font_type, font_index, font_size, font_color, bg_color, image_size=None, text_offset=None, crop_text_area=True, draw_text_border=False, char_space_ratio=None, mode='RGB', mask_mode='1'): num_chars, num_newlines = len(text), text.count('\n') if image_size is None: image_size = (math.ceil(num_chars * font_size * char_space_ratio * 1.1), math.ceil((num_newlines + 1) * font_size * 1.1)) if text_offset is None: text_offset = (0, 0) # TODO [improve] >> Other color modes have to be supported. if 'L' == mode or '1' == mode: image_depth = 1 elif 'RGBA' == mode: image_depth = 4 else: image_depth = 3 if bg_color is None: #bg_color = (random.randrange(256),) * image_depth # Uses a random grayscale background color. bg_color = tuple(random.randrange(256) for _ in range(image_depth)) # Uses a random background color. font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) img = Image.new(mode=mode, size=image_size, color=bg_color) #img = Image.new(mode='RGB', size=image_size, color=bg_color) #img = Image.new(mode='RGBA', size=image_size, color=bg_color) #img = Image.new(mode='L', size=image_size, color=bg_color) #img = Image.new(mode='1', size=image_size, color=bg_color) draw_img = ImageDraw.Draw(img) msk = Image.new(mode=mask_mode, size=image_size, color=0) #msk = Image.new(mode='1', size=image_size, color=0) # {0, 1}, bool. #msk = Image.new(mode='L', size=image_size, color=0) # [0, 255], uint8. draw_msk = ImageDraw.Draw(msk) # Draws text. char_offset = list(text_offset) char_space = math.ceil(font_size * char_space_ratio) if font_color is None: for ch in text: if '\n' == ch: char_offset[0] = text_offset[0] char_offset[1] += font_size continue draw_img.text(xy=char_offset, text=ch, font=font, fill=tuple(random.randrange(256) for _ in range(image_depth))) # Random font color. draw_msk.text(xy=char_offset, text=ch, font=font, fill=255) char_offset[0] += char_space #elif len(font_colors) == num_chars: # for idx, (ch, fcolor) in enumerate(zip(text, font_colors)): # char_offset[0] = text_offset[0] + char_space * idx # draw_img.text(xy=char_offset, text=ch, font=font, fill=fcolor) # draw_msk.text(xy=char_offset, text=ch, font=font, fill=255) else: for ch in text: if '\n' == ch: char_offset[0] = text_offset[0] char_offset[1] += font_size continue draw_img.text(xy=char_offset, text=ch, font=font, fill=font_color) draw_msk.text(xy=char_offset, text=ch, font=font, fill=255) char_offset[0] += char_space if draw_text_border or crop_text_area: #text_size = list(font.getsize(text)) # (width, height). This is erroneous for multiline text. text_size = list(draw_img.textsize(text, font=font)) # (width, height). if num_chars > 1: max_chars_in_line = functools.reduce(lambda ll, line: max(ll, len(line)), text.splitlines(), 0) #text_size[0] = char_space * (max_chars_in_line - 1) + font_size text_size[0] = char_space * (max_chars_in_line - 1) + font.getsize(text[-1])[0] text_size[1] = (num_newlines + 1) * font_size font_offset = font.getoffset(text) # (x, y). text_rect = (text_offset[0], text_offset[1], text_offset[0] + text_size[0] + font_offset[0], text_offset[1] + text_size[1] + font_offset[1]) # Draws a rectangle surrounding text. if draw_text_border: draw_img.rectangle(text_rect, outline='red', width=5) # Crops text area. if crop_text_area: img = img.crop(text_rect) msk = msk.crop(text_rect) return img, msk def generate_text_mask_and_distribution(text, font, rotation_angle=None): import scipy.stats text_size = font.getsize(text) # (width, height). This is erroneous for multiline text. #text_size = (math.ceil(len(text) * font_size * 1.1), math.ceil((text.count('\n') + 1) * font_size * 1.1)) # Draw a distribution of character centers. text_pil = Image.new('L', text_size, 0) text_draw = ImageDraw.Draw(text_pil) text_draw.text(xy=(0, 0), text=text, font=font, fill=255) x, y = np.mgrid[0:text_pil.size[0], 0:text_pil.size[1]] #x, y = np.mgrid[0:text_pil.size[0]:0.5, 0:text_pil.size[1]:0.5] pos = np.dstack((x, y)) text_pdf = np.zeros(x.shape, dtype=np.float32) offset = [0, 0] for ch in text: #char_size = font.getsize(ch) # (width, height). This is erroneous for multiline text. char_size = text_draw.textsize(ch, font=font) # (width, height). font_offset = font.getoffset(ch) # (x, y). char_rect = (offset[0], offset[1], offset[0] + char_size[0] + font_offset[0], offset[1] + char_size[1] + font_offset[1]) if not ch.isspace(): # TODO [decide] >> Which one is better? pts = cv2.findNonZero(np.array(text_pil)[char_rect[1]:char_rect[3],char_rect[0]:char_rect[2]]) if pts is not None: pts += offset center, axis, angle = cv2.minAreaRect(pts) angle = math.radians(angle) """ try: pts = np.squeeze(pts, axis=1) center = np.mean(pts, axis=0) size = np.max(pts, axis=0) - np.min(pts, axis=0) pts = pts - center # Centering. u, s, vh = np.linalg.svd(pts, full_matrices=True) center = center + offset #axis = s * max(size) / max(s) axis = s * math.sqrt((size[0] * size[0] + size[1] * size[1]) / (s[0] * s[0] + s[1] * s[1])) angle = math.atan2(vh[0,1], vh[0,0]) except np.linalg.LinAlgError: print('np.linalg.LinAlgError raised.') raise """ cos_theta, sin_theta = math.cos(angle), math.sin(angle) R = np.array([[cos_theta, -sin_theta], [sin_theta, cos_theta]]) # TODO [decide] >> Which one is better? #cov = np.diag(np.array(axis)) # 1 * sigma. cov = np.diag(np.array(axis) * 2) # 2 * sigma. cov = np.matmul(R, np.matmul(cov, R.T)) try: char_pdf = scipy.stats.multivariate_normal(center, cov, allow_singular=False).pdf(pos) #char_pdf = scipy.stats.multivariate_normal(center, cov, allow_singular=True).pdf(pos) # TODO [decide] >> char_pdf /= np.max(char_pdf) text_pdf = np.where(text_pdf >= char_pdf, text_pdf, char_pdf) #text_pdf += char_pdf except np.linalg.LinAlgError: print('[SWL] Warning: Singular covariance, {} of {}.'.format(ch, text)) else: print('[SWL] Warning: No non-zero point in {} of {}.'.format(ch, text)) offset[0] += char_size[0] + font_offset[0] #text_pdf /= np.sum(text_pdf) # sum(text_pdf) = 1. #text_pdf /= np.max(text_pdf) text_pdf_pil = Image.fromarray(text_pdf.T) text_mask_pil = Image.new('L', text_size, 0) text_mask_draw = ImageDraw.Draw(text_mask_pil) text_mask_draw.text(xy=(0, 0), text=text, font=font, fill=255) if rotation_angle is not None: # Rotates the image around the top-left corner point. text_mask_pil = text_mask_pil.rotate(rotation_angle, expand=1) text_pdf_pil = text_pdf_pil.rotate(rotation_angle, expand=1) return np.asarray(text_mask_pil), np.asarray(text_pdf_pil) #-------------------------------------------------------------------- def draw_text_on_image(img, text, font_type, font_index, font_size, font_color, text_offset=(0, 0), rotation_angle=None): font = ImageFont.truetype(font=font_type, size=font_size, index=font_index) text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). text_rect = (text_offset[0], text_offset[1], text_offset[0] + text_size[0] + font_offset[0], text_offset[1] + text_size[1] + font_offset[1]) bg_img = Image.fromarray(img) # Draws text. if rotation_angle is None: bg_draw = ImageDraw.Draw(bg_img) bg_draw.text(xy=text_offset, text=text, font=font, fill=font_color) text_mask = Image.new('L', bg_img.size, (0,)) mask_draw = ImageDraw.Draw(text_mask) mask_draw.text(xy=text_offset, text=text, font=font, fill=(255,)) x1, y1, x2, y2 = text_rect text_bbox = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] else: #text_img = Image.new('RGBA', text_size, (0, 0, 0, 0)) text_img = Image.new('RGBA', text_size, (255, 255, 255, 0)) sx0, sy0 = text_img.size text_draw = ImageDraw.Draw(text_img) text_draw.text(xy=(0, 0), text=text, font=font, fill=font_color) text_img = text_img.rotate(rotation_angle, expand=1) # Rotates the image around the top-left corner point. sx, sy = text_img.size bg_img.paste(text_img, (text_offset[0], text_offset[1], text_offset[0] + sx, text_offset[1] + sy), text_img) text_mask = Image.new('L', bg_img.size, (0,)) text_mask.paste(text_img, (text_offset[0], text_offset[1], text_offset[0] + sx, text_offset[1] + sy), text_img) dx, dy = (sx0 - sx) / 2, (sy0 - sy) / 2 x1, y1, x2, y2 = text_rect rect = (((x1 + x2) / 2, (y1 + y2) / 2), (x2 - x1, y2 - y1), -rotation_angle) text_bbox = cv2.boxPoints(rect) text_bbox = list(map(lambda xy: [xy[0] - dx, xy[1] - dy], text_bbox)) img = np.asarray(bg_img, dtype=img.dtype) text_mask = np.asarray(text_mask, dtype=np.uint8) return img, text_mask, text_bbox def transform_text(text, tx, ty, rotation_angle, font, text_offset=None): cos_angle, sin_angle = math.cos(math.radians(rotation_angle)), math.sin(math.radians(rotation_angle)) def transform(x, z): return int(round(x * cos_angle - z * sin_angle)) + tx, int(round(x * sin_angle + z * cos_angle)) - ty if text_offset is None: text_offset = (0, 0) # The coordinates (x, y) before transformation. text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xmin, zmax = min([x1, x2, x3, x4]), max([z1, z2, z3, z4]) ##x0, y0 = xmin, -zmax #text_bbox = np.array([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) dx, dy = xmin - tx, -zmax - ty #x0, y0 = xmin - dx, -zmax - dy text_bbox = np.array([[x1 - dx, -z1 - dy], [x2 - dx, -z2 - dy], [x3 - dx, -z3 - dy], [x4 - dx, -z4 - dy]]) return text_bbox def transform_text_on_image(text, tx, ty, rotation_angle, img, font, font_color, bg_color, text_offset=None): cos_angle, sin_angle = math.cos(math.radians(rotation_angle)), math.sin(math.radians(rotation_angle)) def transform(x, z): return int(round(x * cos_angle - z * sin_angle)) + tx, int(round(x * sin_angle + z * cos_angle)) - ty if text_offset is None: text_offset = (0, 0) # The coordinates (x, y) before transformation. text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xmin, zmax = min([x1, x2, x3, x4]), max([z1, z2, z3, z4]) #x0, y0 = xmin, -zmax #text_bbox = np.array([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) dx, dy = xmin - tx, -zmax - ty x0, y0 = xmin - dx, -zmax - dy text_bbox = np.array([[x1 - dx, -z1 - dy], [x2 - dx, -z2 - dy], [x3 - dx, -z3 - dy], [x4 - dx, -z4 - dy]]) #text_img = Image.new('RGBA', text_size, (0, 0, 0, 0)) text_img = Image.new('RGBA', text_size, (255, 255, 255, 0)) text_draw = ImageDraw.Draw(text_img) text_draw.text(xy=(0, 0), text=text, font=font, fill=font_color) text_img = text_img.rotate(rotation_angle, expand=1) # Rotates the image around the top-left corner point. text_rect = (x0, y0, x0 + text_img.size[0], y0 + text_img.size[1]) bg_img = Image.fromarray(img) bg_img.paste(text_img, text_rect, text_img) text_mask = Image.new('L', bg_img.size, (0,)) text_mask.paste(text_img, text_rect, text_img) img = np.asarray(bg_img, dtype=img.dtype) text_mask = np.asarray(text_mask, dtype=np.uint8) return text_bbox, img, text_mask def transform_texts(texts, tx, ty, rotation_angle, font, text_offsets=None): cos_angle, sin_angle = math.cos(math.radians(rotation_angle)), math.sin(math.radians(rotation_angle)) def transform(x, z): return int(round(x * cos_angle - z * sin_angle)) + tx, int(round(x * sin_angle + z * cos_angle)) - ty if text_offsets is None: text_offsets, text_sizes = list(), list() max_text_height = 0 for idx, text in enumerate(texts): if 0 == idx: text_offset = (0, 0) # The coordinates (x, y) before transformation. else: prev_texts = ' '.join(texts[:idx]) + ' ' text_size = font.getsize(prev_texts) # (width, height). text_offset = (text_size[0], 0) # (x, y). text_offsets.append(text_offset) text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). sx, sy = text_size[0] + font_offset[0], text_size[1] + font_offset[1] text_sizes.append((sx, sy)) if sy > max_text_height: max_text_height = sy tmp_text_offsets = list() for offset, sz in zip(text_offsets, text_sizes): dy = int(round((max_text_height - sz[1]) / 2)) tmp_text_offsets.append((offset[0], offset[1] + dy)) text_offsets = tmp_text_offsets else: if len(texts) != len(text_offsets): print('[SWL] Error: Unmatched lengths of texts and text offsets {} != {}.'.format(len(texts), len(text_offsets))) return None text_sizes = list() for text in texts: text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). text_sizes.append((text_size[0] + font_offset[0], text_size[1] + font_offset[1])) text_bboxes = list() """ for text, text_offset, text_size in zip(texts, text_offsets, text_sizes): # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xmin, zmax = min([x1, x2, x3, x4]), max([z1, z2, z3, z4]) #x0, y0 = xmin, -zmax text_bboxes.append([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) return np.array(text_bboxes) """ xy0_list = list() for text_offset, text_size in zip(text_offsets, text_sizes): # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xy0_list.append((min([x1, x2, x3, x4]), -max([z1, z2, z3, z4]))) text_bboxes.append([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) text_bboxes = np.array(text_bboxes) dxy = functools.reduce(lambda xym, xy0: (min(xym[0], xy0[0] - tx), min(xym[1], xy0[1] - ty)), xy0_list, (0, 0)) text_bboxes[:,:] -= dxy return text_bboxes def transform_texts_on_image(texts, tx, ty, rotation_angle, img, font, font_color, bg_color, text_offsets=None): cos_angle, sin_angle = math.cos(math.radians(rotation_angle)), math.sin(math.radians(rotation_angle)) def transform(x, z): return int(round(x * cos_angle - z * sin_angle)) + tx, int(round(x * sin_angle + z * cos_angle)) - ty if text_offsets is None: text_offsets, text_sizes = list(), list() max_text_height = 0 for idx, text in enumerate(texts): if 0 == idx: text_offset = (0, 0) # The coordinates (x, y) before transformation. else: prev_texts = ' '.join(texts[:idx]) + ' ' text_size = font.getsize(prev_texts) # (width, height). text_offset = (text_size[0], 0) # (x, y). text_offsets.append(text_offset) text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). sx, sy = text_size[0] + font_offset[0], text_size[1] + font_offset[1] text_sizes.append((sx, sy)) if sy > max_text_height: max_text_height = sy tmp_text_offsets = list() for offset, sz in zip(text_offsets, text_sizes): dy = int(round((max_text_height - sz[1]) / 2)) tmp_text_offsets.append((offset[0], offset[1] + dy)) text_offsets = tmp_text_offsets else: if len(texts) != len(text_offsets): print('[SWL] Error: Unmatched lengths of texts and text offsets {} != {}.'.format(len(texts), len(text_offsets))) return None, None, None text_sizes = list() for text in texts: text_size = font.getsize(text) # (width, height). #text_size = draw.textsize(text, font=font) # (width, height). font_offset = font.getoffset(text) # (x, y). text_sizes.append((text_size[0] + font_offset[0], text_size[1] + font_offset[1])) bg_img = Image.fromarray(img) text_mask = Image.new('L', bg_img.size, (0,)) text_bboxes = list() """ for text, text_offset, text_size in zip(texts, text_offsets, text_sizes): # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xmin, zmax = min([x1, x2, x3, x4]), max([z1, z2, z3, z4]) x0, y0 = xmin, -zmax text_bboxes.append([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) #text_img = Image.new('RGBA', text_size, (0, 0, 0, 0)) text_img = Image.new('RGBA', text_size, (255, 255, 255, 0)) text_draw = ImageDraw.Draw(text_img) text_draw.text(xy=(0, 0), text=text, font=font, fill=font_color) text_img = text_img.rotate(rotation_angle, expand=1) # Rotates the image around the top-left corner point. text_rect = (x0, y0, x0 + text_img.size[0], y0 + text_img.size[1]) bg_img.paste(text_img, text_rect, text_img) text_mask.paste(text_img, text_rect, text_img) """ xy0_list = list() for text_offset, text_size in zip(text_offsets, text_sizes): # z = -y. # xy: left-handed, xz: right-handed. x1, z1 = transform(text_offset[0], -text_offset[1]) x2, z2 = transform(text_offset[0] + text_size[0], -text_offset[1]) x3, z3 = transform(text_offset[0] + text_size[0], -(text_offset[1] + text_size[1])) x4, z4 = transform(text_offset[0], -(text_offset[1] + text_size[1])) xy0_list.append((min([x1, x2, x3, x4]), -max([z1, z2, z3, z4]))) text_bboxes.append([[x1, -z1], [x2, -z2], [x3, -z3], [x4, -z4]]) text_bboxes = np.array(text_bboxes) dxy = functools.reduce(lambda xym, xy0: (min(xym[0], xy0[0] - tx), min(xym[1], xy0[1] - ty)), xy0_list, (0, 0)) text_bboxes[:,:] -= dxy for text, text_size, xy0 in zip(texts, text_sizes, xy0_list): x0, y0 = xy0[0] - dxy[0], xy0[1] - dxy[1] #text_img = Image.new('RGBA', text_size, (0, 0, 0, 0)) text_img = Image.new('RGBA', text_size, (255, 255, 255, 0)) text_draw = ImageDraw.Draw(text_img) text_draw.text(xy=(0, 0), text=text, font=font, fill=font_color) text_img = text_img.rotate(rotation_angle, expand=1) # Rotates the image around the top-left corner point. text_rect = (x0, y0, x0 + text_img.size[0], y0 + text_img.size[1]) bg_img.paste(text_img, text_rect, text_img) text_mask.paste(text_img, text_rect, text_img) img = np.asarray(bg_img, dtype=img.dtype) text_mask = np.asarray(text_mask, dtype=np.uint8) return text_bboxes, img, text_mask #-------------------------------------------------------------------- def draw_character_histogram(texts, charset=None): if charset is None: import string if True: charset = \ string.ascii_uppercase + \ string.ascii_lowercase + \ string.digits + \ string.punctuation + \ ' ' else: hangul_letter_filepath = '../../data/language_processing/hangul_ksx1001.txt' #hangul_letter_filepath = '../../data/language_processing/hangul_ksx1001_1.txt' #hangul_letter_filepath = '../../data/language_processing/hangul_unicode.txt' with open(hangul_letter_filepath, 'r', encoding='UTF-8') as fd: #hangeul_charset = fd.read().strip('\n') # A strings. hangeul_charset = fd.read().replace(' ', '').replace('\n', '') # A string. #hangeul_charset = fd.readlines() # A list of string. #hangeul_charset = fd.read().splitlines() # A list of strings. #hangeul_jamo_charset = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕㅖㅗㅛㅜㅠㅡㅣ' #hangeul_jamo_charset = 'ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅃㅄㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕㅖㅗㅛㅜㅠㅡㅣ' hangeul_jamo_charset = 'ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅃㅄㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ' charset = \ hangeul_charset + \ hangeul_jamo_charset + \ string.ascii_uppercase + \ string.ascii_lowercase + \ string.digits + \ string.punctuation + \ ' ' charset = sorted(charset) #charset = ''.join(sorted(charset)) #-------------------- char_dict = dict() for ch in charset: char_dict[ch] = 0 for txt in texts: if not txt: continue for ch in txt: try: char_dict[ch] += 1 except KeyError: print('[SWL] Warning: Invalid character, {} in {}.'.format(ch, txt)) #-------------------- import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 6)) x_label = np.arange(len(char_dict.keys())) plt.bar(x_label, char_dict.values(), align='center', alpha=0.5) plt.xticks(x_label, char_dict.keys()) plt.show() fig.savefig('./character_frequency.png') plt.close(fig)
gpl-2.0
rohanp/scikit-learn
benchmarks/bench_plot_randomized_svd.py
12
17567
""" Benchmarks on the power iterations phase in randomized SVD. We test on various synthetic and real datasets the effect of increasing the number of power iterations in terms of quality of approximation and running time. A number greater than 0 should help with noisy matrices, which are characterized by a slow spectral decay. We test several policy for normalizing the power iterations. Normalization is crucial to avoid numerical issues. The quality of the approximation is measured by the spectral norm discrepancy between the original input matrix and the reconstructed one (by multiplying the randomized_svd's outputs). The spectral norm is always equivalent to the largest singular value of a matrix. (3) justifies this choice. However, one can notice in these experiments that Frobenius and spectral norms behave very similarly in a qualitative sense. Therefore, we suggest to run these benchmarks with `enable_spectral_norm = False`, as Frobenius' is MUCH faster to compute. The benchmarks follow. (a) plot: time vs norm, varying number of power iterations data: many datasets goal: compare normalization policies and study how the number of power iterations affect time and norm (b) plot: n_iter vs norm, varying rank of data and number of components for randomized_SVD data: low-rank matrices on which we control the rank goal: study whether the rank of the matrix and the number of components extracted by randomized SVD affect "the optimal" number of power iterations (c) plot: time vs norm, varing datasets data: many datasets goal: compare default configurations We compare the following algorithms: - randomized_svd(..., power_iteration_normalizer='none') - randomized_svd(..., power_iteration_normalizer='LU') - randomized_svd(..., power_iteration_normalizer='QR') - randomized_svd(..., power_iteration_normalizer='auto') - fbpca.pca() from https://github.com/facebook/fbpca (if installed) Conclusion ---------- - n_iter=2 appears to be a good default value - power_iteration_normalizer='none' is OK if n_iter is small, otherwise LU gives similar errors to QR but is cheaper. That's what 'auto' implements. References ---------- (1) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 (2) A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert (3) An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ # Author: Giorgio Patrini import numpy as np import scipy as sp import matplotlib.pyplot as plt import gc import pickle from time import time from collections import defaultdict import os.path from sklearn.utils import gen_batches from sklearn.utils.validation import check_random_state from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import (make_low_rank_matrix, make_sparse_uncorrelated) from sklearn.datasets import (fetch_lfw_people, fetch_mldata, fetch_20newsgroups_vectorized, fetch_olivetti_faces, fetch_rcv1) try: import fbpca fbpca_available = True except ImportError: fbpca_available = False # If this is enabled, tests are much slower and will crash with the large data enable_spectral_norm = False # TODO: compute approximate spectral norms with the power method as in # Estimating the largest eigenvalues by the power and Lanczos methods with # a random start, Jacek Kuczynski and Henryk Wozniakowski, SIAM Journal on # Matrix Analysis and Applications, 13 (4): 1094-1122, 1992. # This approximation is a very fast estimate of the spectral norm, but depends # on starting random vectors. # Determine when to switch to batch computation for matrix norms, # in case the reconstructed (dense) matrix is too large MAX_MEMORY = np.int(2e9) # The following datasets can be dowloaded manually from: # CIFAR 10: http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz # SVHN: http://ufldl.stanford.edu/housenumbers/train_32x32.mat CIFAR_FOLDER = "./cifar-10-batches-py/" SVHN_FOLDER = "./SVHN/" datasets = ['low rank matrix', 'lfw_people', 'olivetti_faces', '20newsgroups', 'MNIST original', 'CIFAR', 'a1a', 'SVHN', 'uncorrelated matrix'] big_sparse_datasets = ['big sparse matrix', 'rcv1'] def unpickle(file): fo = open(file, 'rb') dict = pickle.load(fo, encoding='latin1') fo.close() return dict['data'] def handle_missing_dataset(file_folder): if not os.path.isdir(file_folder): print("%s file folder not found. Test skipped." % file_folder) return 0 def get_data(dataset_name): print("Getting dataset: %s" % dataset_name) if dataset_name == 'lfw_people': X = fetch_lfw_people().data elif dataset_name == '20newsgroups': X = fetch_20newsgroups_vectorized().data[:, :100000] elif dataset_name == 'olivetti_faces': X = fetch_olivetti_faces().data elif dataset_name == 'rcv1': X = fetch_rcv1().data elif dataset_name == 'CIFAR': if handle_missing_dataset(CIFAR_FOLDER) == "skip": return X1 = [unpickle("%sdata_batch_%d" % (CIFAR_FOLDER, i + 1)) for i in range(5)] X = np.vstack(X1) del X1 elif dataset_name == 'SVHN': if handle_missing_dataset(SVHN_FOLDER) == 0: return X1 = sp.io.loadmat("%strain_32x32.mat" % SVHN_FOLDER)['X'] X2 = [X1[:, :, :, i].reshape(32 * 32 * 3) for i in range(X1.shape[3])] X = np.vstack(X2) del X1 del X2 elif dataset_name == 'low rank matrix': X = make_low_rank_matrix(n_samples=500, n_features=np.int(1e4), effective_rank=100, tail_strength=.5, random_state=random_state) elif dataset_name == 'uncorrelated matrix': X, _ = make_sparse_uncorrelated(n_samples=500, n_features=10000, random_state=random_state) elif dataset_name == 'big sparse matrix': sparsity = np.int(1e6) size = np.int(1e6) small_size = np.int(1e4) data = np.random.normal(0, 1, np.int(sparsity/10)) data = np.repeat(data, 10) row = np.random.uniform(0, small_size, sparsity) col = np.random.uniform(0, small_size, sparsity) X = sp.sparse.csr_matrix((data, (row, col)), shape=(size, small_size)) del data del row del col else: X = fetch_mldata(dataset_name).data return X def plot_time_vs_s(time, norm, point_labels, title): plt.figure() colors = ['g', 'b', 'y'] for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.plot(time[l], norm[l], label=l, marker='o', c=colors.pop()) else: plt.plot(time[l], norm[l], label=l, marker='^', c='red') for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -20), textcoords='offset points', ha='right', va='bottom') plt.legend(loc="upper right") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def scatter_time_vs_s(time, norm, point_labels, title): plt.figure() size = 100 for i, l in enumerate(sorted(norm.keys())): if l is not "fbpca": plt.scatter(time[l], norm[l], label=l, marker='o', c='b', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, -80), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) else: plt.scatter(time[l], norm[l], label=l, marker='^', c='red', s=size) for label, x, y in zip(point_labels, list(time[l]), list(norm[l])): plt.annotate(label, xy=(x, y), xytext=(0, 30), textcoords='offset points', ha='right', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), va='bottom', size=11, rotation=90) plt.legend(loc="best") plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("running time [s]") def plot_power_iter_vs_s(power_iter, s, title): plt.figure() for l in sorted(s.keys()): plt.plot(power_iter, s[l], label=l, marker='o') plt.legend(loc="lower right", prop={'size': 10}) plt.suptitle(title) plt.ylabel("norm discrepancy") plt.xlabel("n_iter") def svd_timing(X, n_comps, n_iter, n_oversamples, power_iteration_normalizer='auto', method=None): """ Measure time for decomposition """ print("... running SVD ...") if method is not 'fbpca': gc.collect() t0 = time() U, mu, V = randomized_svd(X, n_comps, n_oversamples, n_iter, power_iteration_normalizer, random_state=random_state, transpose=False) call_time = time() - t0 else: gc.collect() t0 = time() # There is a different convention for l here U, mu, V = fbpca.pca(X, n_comps, raw=True, n_iter=n_iter, l=n_oversamples+n_comps) call_time = time() - t0 return U, mu, V, call_time def norm_diff(A, norm=2, msg=True): """ Compute the norm diff with the original matrix, when randomized SVD is called with *params. norm: 2 => spectral; 'fro' => Frobenius """ if msg: print("... computing %s norm ..." % norm) if norm == 2: # s = sp.linalg.norm(A, ord=2) # slow value = sp.sparse.linalg.svds(A, k=1, return_singular_vectors=False) else: if sp.sparse.issparse(A): value = sp.sparse.linalg.norm(A, ord=norm) else: value = sp.linalg.norm(A, ord=norm) return value def scalable_frobenius_norm_discrepancy(X, U, s, V): # if the input is not too big, just call scipy if X.shape[0] * X.shape[1] < MAX_MEMORY: A = X - U.dot(np.diag(s).dot(V)) return norm_diff(A, norm='fro') print("... computing fro norm by batches...") batch_size = 1000 Vhat = np.diag(s).dot(V) cum_norm = .0 for batch in gen_batches(X.shape[0], batch_size): M = X[batch, :] - U[batch, :].dot(Vhat) cum_norm += norm_diff(M, norm='fro', msg=False) return np.sqrt(cum_norm) def bench_a(X, dataset_name, power_iter, n_oversamples, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) X_spectral_norm = norm_diff(X, norm=2, msg=False) all_frobenius = defaultdict(list) X_fro_norm = norm_diff(X, norm='fro', msg=False) for pi in power_iter: for pm in ['none', 'LU', 'QR']: print("n_iter = %d on sklearn - %s" % (pi, pm)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples) label = "sklearn - %s" % pm all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: print("n_iter = %d on fbca" % (pi)) U, s, V, time = svd_timing(X, n_comps, n_iter=pi, power_iteration_normalizer=pm, n_oversamples=n_oversamples, method='fbpca') label = "fbpca" all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_spectral, power_iter, title) title = "%s: Frobenius norm diff vs running time" % (dataset_name) plot_time_vs_s(all_time, all_frobenius, power_iter, title) def bench_b(power_list): n_samples, n_features = 1000, 10000 data_params = {'n_samples': n_samples, 'n_features': n_features, 'tail_strength': .7, 'random_state': random_state} dataset_name = "low rank matrix %d x %d" % (n_samples, n_features) ranks = [10, 50, 100] if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for rank in ranks: X = make_low_rank_matrix(effective_rank=rank, **data_params) if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) for n_comp in [np.int(rank/2), rank, rank*2]: label = "rank=%d, n_comp=%d" % (rank, n_comp) print(label) for pi in power_list: U, s, V, _ = svd_timing(X, n_comp, n_iter=pi, n_oversamples=2, power_iteration_normalizer='LU') if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if enable_spectral_norm: title = "%s: spectral norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_spectral, title) title = "%s: frobenius norm diff vs n power iteration" % (dataset_name) plot_power_iter_vs_s(power_iter, all_frobenius, title) def bench_c(datasets, n_comps): all_time = defaultdict(list) if enable_spectral_norm: all_spectral = defaultdict(list) all_frobenius = defaultdict(list) for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue if enable_spectral_norm: X_spectral_norm = norm_diff(X, norm=2, msg=False) X_fro_norm = norm_diff(X, norm='fro', msg=False) n_comps = np.minimum(n_comps, np.min(X.shape)) label = "sklearn" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=10, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if fbpca_available: label = "fbpca" print("%s %d x %d - %s" % (dataset_name, X.shape[0], X.shape[1], label)) U, s, V, time = svd_timing(X, n_comps, n_iter=2, n_oversamples=2, method=label) all_time[label].append(time) if enable_spectral_norm: A = U.dot(np.diag(s).dot(V)) all_spectral[label].append(norm_diff(X - A, norm=2) / X_spectral_norm) f = scalable_frobenius_norm_discrepancy(X, U, s, V) all_frobenius[label].append(f / X_fro_norm) if len(all_time) == 0: raise ValueError("No tests ran. Aborting.") if enable_spectral_norm: title = "normalized spectral norm diff vs running time" scatter_time_vs_s(all_time, all_spectral, datasets, title) title = "normalized Frobenius norm diff vs running time" scatter_time_vs_s(all_time, all_frobenius, datasets, title) if __name__ == '__main__': random_state = check_random_state(1234) power_iter = np.linspace(0, 6, 7, dtype=int) n_comps = 50 for dataset_name in datasets: X = get_data(dataset_name) if X is None: continue print(" >>>>>> Benching sklearn and fbpca on %s %d x %d" % (dataset_name, X.shape[0], X.shape[1])) bench_a(X, dataset_name, power_iter, n_oversamples=2, n_comps=np.minimum(n_comps, np.min(X.shape))) print(" >>>>>> Benching on simulated low rank matrix with variable rank") bench_b(power_iter) print(" >>>>>> Benching sklearn and fbpca default configurations") bench_c(datasets + big_sparse_datasets, n_comps) plt.show()
bsd-3-clause
chrisburr/scikit-learn
sklearn/metrics/regression.py
9
17386
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d from ..externals.six import string_types import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', this behaviour is deprecated since version 0.17 and will be changed to 'uniform_average' starting from 0.19. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value which is deprecated since " "0.17, it will be changed to 'uniform_average' " "starting from 0.19.", DeprecationWarning) multioutput = 'variance_weighted' if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
Eric89GXL/scikit-learn
sklearn/cluster/bicluster/spectral.py
4
19538
"""Implements spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.externals import six from sklearn.utils.arpack import svds from sklearn.utils.arpack import eigsh from sklearn.cluster import KMeans from sklearn.cluster import MiniBatchKMeans from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.extmath import make_nonnegative from sklearn.utils.extmath import norm from sklearn.utils.validation import assert_all_finite from sklearn.utils.validation import check_arrays from .utils import check_array_ndim def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{}'. svd_method must be" " one of {}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X, = check_arrays(X, sparse_format='csr', dtype=np.float64) check_array_ndim(X) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- `rows_` : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. `columns_` : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. `row_labels_` : array-like, shape (n_rows,) The bicluster label of each row. `column_labels_` : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- `rows_` : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. `columns_` : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. `row_labels_` : array-like, shape (n_rows,) Row partition labels. `column_labels_` : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{}'. method must be" " one of {}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
JoeBartelmo/goddard
gui/BeamGapWidget.py
2
4545
# Copyright (c) 2016, Jeffrey Maggio and Joseph Bartelmo # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import matplotlib matplotlib.use('TkAgg') import numpy from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure import Tkinter as tk from multiprocessing import Process from Queue import Queue, Empty import sys from Threads import TelemetryThread class BeamGapWidget(tk.Toplevel): ''' Widget designed to display incoming beamgap data parent is the root container queue is a custom queue where each object contains only necessary information for this widget: Valmar data from telemetry json ''' def __init__(self, parent, queue, **kwargs): tk.Toplevel.__init__(self, parent, **kwargs) self.queue = queue self.parent = parent self.protocol("WM_DELETE_WINDOW", self.onDelete) self._init_ui() self.updateloop() def onDelete(self): ''' Destroy callback ''' self.destroy() def _init_ui(self): # Image display label self.fig = Figure() self.gap = self.fig.add_subplot(111) self.canvas = FigureCanvasTkAgg(self.fig, master=self) self.canvas.draw() self.canvas.get_tk_widget().grid(row=0, column = 0, rowspan = 2, sticky = 'nsew') self.label = tk.Label(self, text='Std. Dev.: None\t\tBeam Number: 0',justify='left') self.label.grid(row=2, column=0, sticky='sew') self.grid_columnconfigure(0, weight=1) self.grid_rowconfigure(0, weight=1) def beamGapDisplay(self, data): line = numpy.zeros(len(data)) + (data/2) lineLength = numpy.arange(0,len(data)) std = numpy.std(data) stdL = line - std return line, lineLength, std, stdL def updateloop(self): try: data = self.queue.get(False) ibeamNum = data['IbeamCounter'] ibeamDist = numpy.asarray(data['BeamGap']) print len(ibeamDist) #pipe that data to the beamGapDisplay function below line, lineLength, std, stdL = self.beamGapDisplay(ibeamDist) self.gap.cla() self.gap.plot(line, lineLength, 'r', \ -line, lineLength, 'r', \ stdL, lineLength, 'g--', \ -stdL, lineLength, 'g--') #TODO: set to default beam gap width within some margin self.gap.set_xlabel('Distance (pix)') self.gap.set_ylabel('Beam Data Length (pix)') #self.gap.set_xlim() self.gap.set_ylim(0,len(ibeamDist)) self.label['text'] = 'Std. Dev:' + str(std) + '\t\tBeam Num:' + str(ibeamNum) self.canvas.draw() except Empty: pass self.after(100, self.updateloop) if __name__ == '__main__': from Queue import Queue from MarsTestHarness import MarsTestHarness from threading import Thread telem_q = Queue() beam_q = Queue() mth = MarsTestHarness(telem_q, beam_q) Thread(target=mth.generateQueueData).start() Thread(target=mth.generateQueueData).run() #data = numpy.arange(0,1,0.05) root = tk.Tk() #t = BeamGapWidget(root, Queue()) t = BeamGapWidget(root, beam_q) #t = BeamGapWidget(root, data) t.grid() root.update() print t.winfo_height(), t.winfo_width() root.mainloop() sys.exit()
mit
joernhees/scikit-learn
sklearn/linear_model/ransac.py
12
19391
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np import warnings from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression from ..utils.validation import has_fit_parameter _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <ransac_regression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. max_skips : int, optional Maximum number of iterations that can be skipped due to finding zero inliers or invalid data defined by ``is_data_valid`` or invalid models defined by ``is_model_valid``. .. versionadded:: 0.19 stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) .. deprecated:: 0.18 ``residual_metric`` is deprecated from 0.18 and will be removed in 0.20. Use ``loss`` instead. loss : string, callable, optional, default "absolute_loss" String inputs, "absolute_loss" and "squared_loss" are supported which find the absolute loss and squared loss per sample respectively. If ``loss`` is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the ``i``th value of the array corresponding to the loss on `X[i]`. If the loss on a sample is greater than the ``residual_threshold``, then this sample is classified as an outlier. random_state : int, RandomState instance or None, optional, default None The generator used to initialize the centers. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. n_skips_no_inliers_ : int Number of iterations skipped due to finding zero inliers. .. versionadded:: 0.19 n_skips_invalid_data_ : int Number of iterations skipped due to invalid data defined by ``is_data_valid``. .. versionadded:: 0.19 n_skips_invalid_model_ : int Number of iterations skipped due to an invalid model defined by ``is_model_valid``. .. versionadded:: 0.19 References ---------- .. [1] https://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=np.inf, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, loss='absolute_loss', random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.max_skips = max_skips self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state self.loss = loss def fit(self, X, y, sample_weight=None): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. sample_weight : array-like, shape = [n_samples] Individual weights for each sample raises error if sample_weight is passed and base_estimator fit method does not support it. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is not None: warnings.warn( "'residual_metric' was deprecated in version 0.18 and " "will be removed in version 0.20. Use 'loss' instead.", DeprecationWarning) if self.loss == "absolute_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) else: loss_function = lambda \ y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1) elif self.loss == "squared_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 else: loss_function = lambda \ y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1) elif callable(self.loss): loss_function = self.loss else: raise ValueError( "loss should be 'absolute_loss', 'squared_loss' or a callable." "Got %s. " % self.loss) random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass estimator_fit_has_sample_weight = has_fit_parameter(base_estimator, "sample_weight") estimator_name = type(base_estimator).__name__ if (sample_weight is not None and not estimator_fit_has_sample_weight): raise ValueError("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) if sample_weight is not None: sample_weight = np.asarray(sample_weight) n_inliers_best = 1 score_best = -np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None self.n_skips_no_inliers_ = 0 self.n_skips_invalid_data_ = 0 self.n_skips_invalid_model_ = 0 # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape self.n_trials_ = 0 max_trials = self.max_trials while self.n_trials_ < max_trials: self.n_trials_ += 1 if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: break # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): self.n_skips_invalid_data_ += 1 continue # fit model for current random sample set if sample_weight is None: base_estimator.fit(X_subset, y_subset) else: base_estimator.fit(X_subset, y_subset, sample_weight=sample_weight[subset_idxs]) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): self.n_skips_invalid_model_ += 1 continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) # XXX: Deprecation: Remove this if block in 0.20 if self.residual_metric is not None: diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = self.residual_metric(diff) else: residuals_subset = loss_function(y, y_pred) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: self.n_skips_no_inliers_ += 1 continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset max_trials = min( max_trials, _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)) # break if sufficient number of inliers or score is reached if n_inliers_best >= self.stop_n_inliers or \ score_best >= self.stop_score: break # if none of the iterations met the required criteria if inlier_mask_best is None: if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips): raise ValueError( "RANSAC skipped more iterations than `max_skips` without" " finding a valid consensus set. Iterations were skipped" " because each randomly chosen sub-sample failed the" " passing criteria. See estimator attributes for" " diagnostics (n_skips*).") else: raise ValueError( "RANSAC could not find a valid consensus set. All" " `max_trials` iterations were skipped because each" " randomly chosen sub-sample failed the passing criteria." " See estimator attributes for diagnostics (n_skips*).") else: if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_) > self.max_skips: warnings.warn("RANSAC found a valid consensus set but exited" " early due to skipping more iterations than" " `max_skips`. See estimator attributes for" " diagnostics (n_skips*).", UserWarning) # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
aberaud/opendht
python/tools/dht/tests.py
3
34950
# -*- coding: utf-8 -*- # Copyright (C) 2015 Savoir-Faire Linux Inc. # Author(s): Adrien Béraud <[email protected]> # Simon Désaulniers <[email protected]> import sys import os import threading import random import string import time import subprocess import re import collections from matplotlib.ticker import FuncFormatter import math import numpy as np import matplotlib.pyplot as plt import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout from opendht import * from dht.network import DhtNetwork, DhtNetworkSubProcess ############ # Common # ############ # matplotlib display format for bits (b, Kb, Mb) bit_format = None Kbit_format = FuncFormatter(lambda x, pos: '%1.1f' % (x*1024**-1) + 'Kb') Mbit_format = FuncFormatter(lambda x, pos: '%1.1f' % (x*1024**-2) + 'Mb') def random_str_val(size=1024): """Creates a random string value of specified size. @param size: Size, in bytes, of the value. @type size: int @return: Random string value @rtype : str """ return ''.join(random.choice(string.hexdigits) for _ in range(size)) def random_hash(): """Creates random InfoHash. """ return InfoHash(random_str_val(size=40).encode()) def timer(f, *args): """ Start a timer which count time taken for execute function f @param f : Function to time @type f : function @param args : Arguments of the function f @type args : list @rtype : timer @return : Time taken by the function f """ start = time.time() f(*args) return time.time() - start def reset_before_test(featureTestMethod): """ This is a decorator for all test methods needing reset(). @param featureTestMethod: The method to be decorated. All decorated methods must have 'self' object as first arg. @type featureTestMethod: function """ def call(*args, **kwargs): self = args[0] if isinstance(self, FeatureTest): self._reset() return featureTestMethod(*args, **kwargs) return call def display_plot(yvals, xvals=None, yformatter=None, display_time=3, **kwargs): """ Displays a plot of data in interactive mode. This method is made to be called successively for plot refreshing. @param yvals: Ordinate values (float). @type yvals: list @param xvals: Abscissa values (float). @type xvals: list @param yformatter: The matplotlib FuncFormatter to use for y values. @type yformatter: matplotlib.ticker.FuncFormatter @param displaytime: The time matplotlib can take to refresht the plot. @type displaytime: int """ plt.ion() plt.clf() plt.show() if yformatter: plt.axes().yaxis.set_major_formatter(Kbit_format) if xvals: plt.plot(xvals, yvals, **kwargs) else: plt.plot(yvals, **kwargs) plt.pause(display_time) def display_traffic_plot(ifname): """Displays the traffic plot for a given interface name. @param ifname: Interface name. @type ifname: string """ ydata = [] xdata = [] # warning: infinite loop interval = 2 for rate in iftop_traffic_data(ifname, interval=interval): ydata.append(rate) xdata.append((xdata[-1] if len(xdata) > 0 else 0) + interval) display_plot(ydata, xvals=xdata, yformatter=Kbit_format, color='blue') def iftop_traffic_data(ifname, interval=2, rate_type='send_receive'): """ Generator (yields data) function collecting traffic data from iftop subprocess. @param ifname: Interface to listen to. @type ifname: string @param interval: Interval of time between to data collections. Possible values are 2, 10 or 40. @type interval: int @param rates: (default: send_receive) Wether to pick "send", "receive" or "send and receive" rates. Possible values : "send", "receive" and "send_receive". @type rates: string @param _format: Format in which to display data on the y axis. Possible values: Mb, Kb or b. @type _format: string """ # iftop stdout string format SEND_RATE_STR = "Total send rate" RECEIVE_RATE_STR = "Total receive rate" SEND_RECEIVE_RATE_STR = "Total send and receive rate" RATE_STR = { "send" : SEND_RATE_STR, "receive" : RECEIVE_RATE_STR, "send_receive" : SEND_RECEIVE_RATE_STR } TWO_SECONDS_RATE_COL = 0 TEN_SECONDS_RATE_COL = 1 FOURTY_SECONDS_RATE_COL = 2 COLS = { 2 : TWO_SECONDS_RATE_COL, 10 : TEN_SECONDS_RATE_COL, 40 : FOURTY_SECONDS_RATE_COL } FLOAT_REGEX = "[0-9]+[.]*[0-9]*" BIT_REGEX = "[KM]*b" iftop = subprocess.Popen(["iftop", "-i", ifname, "-t"], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) while True: line = iftop.stdout.readline().decode() if RATE_STR[rate_type] in line: rate, unit = re.findall("("+FLOAT_REGEX+")("+BIT_REGEX+")", line)[COLS[interval]] rate = float(rate) if unit == "Kb": rate *= 1024 elif unit == "Mb": rate *= 1024**2 yield rate ########### # Tests # ########### class FeatureTest(object): """ This is a base test. """ done = 0 lock = None def __init__(self, test, workbench): """ @param test: The test string indicating the test to run. This string is determined in the child classes. @type test: string @param workbench: A WorkBench object to use inside this test. @type workbench: WorkBench """ self._test = test self._workbench = workbench self._bootstrap = self._workbench.get_bootstrap() def _reset(self): """ Resets some static variables. This method is most likely going to be called before each tests. """ FeatureTest.done = 0 FeatureTest.lock = threading.Condition() def run(self): raise NotImplementedError('This method must be implemented.') ################################## # PHT # ################################## class PhtTest(FeatureTest): """TODO """ indexEntries = None prefix = None key = None def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'insert': indexes a considerable amount of data in the PHT structure. TODO @type test: string @param opts: Dictionnary containing options for the test. Allowed options are: - 'num_keys': this specifies the number of keys to insert in the PHT during the test. @type opts: dict """ super(PhtTest, self).__init__(test, workbench) self._num_keys = opts['num_keys'] if 'num_keys' in opts else 32 self._timer = True if 'timer' in opts else False def _reset(self): super(PhtTest, self)._reset() PhtTest.indexEntries = [] @staticmethod def lookupCb(vals, prefix): PhtTest.indexEntries = list(vals) PhtTest.prefix = prefix.decode() DhtNetwork.log('Index name: <todo>') DhtNetwork.log('Leaf prefix:', prefix) for v in vals: DhtNetwork.log('[ENTRY]:', v) @staticmethod def lookupDoneCb(ok): DhtNetwork.log('[LOOKUP]:', PhtTest.key, "--", "success!" if ok else "Fail...") with FeatureTest.lock: FeatureTest.lock.notify() @staticmethod def insertDoneCb(ok): DhtNetwork.log('[INSERT]:', PhtTest.key, "--", "success!" if ok else "Fail...") with FeatureTest.lock: FeatureTest.lock.notify() @staticmethod def drawTrie(trie_dict): """ Draws the trie structure of the PHT from dictionnary. @param trie_dict: Dictionnary of index entries (prefix -> entry). @type trie_dict: dict """ prefixes = list(trie_dict.keys()) if len(prefixes) == 0: return edges = list([]) for prefix in prefixes: for i in range(-1, len(prefix)-1): u = prefix[:i+1] x = ("." if i == -1 else u, u+"0") y = ("." if i == -1 else u, u+"1") if x not in edges: edges.append(x) if y not in edges: edges.append(y) # TODO: use a binary tree position layout... # UPDATE : In a better way [change lib] G = nx.Graph(sorted(edges, key=lambda x: len(x[0]))) plt.title("PHT: Tree") pos=graphviz_layout(G,prog='dot') nx.draw(G, pos, with_labels=True, node_color='white') plt.show() def run(self): try: if self._test == 'insert': self._insertTest() except Exception as e: print(e) finally: self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _insertTest(self): """TODO: Docstring for _massIndexTest. """ bootstrap = self._bootstrap bootstrap.resize(2) dht = bootstrap.get(1) NUM_DIG = max(math.log(self._num_keys, 2)/4, 5) # at least 5 digit keys. keyspec = collections.OrderedDict([('foo', NUM_DIG)]) pht = Pht(b'foo_index', keyspec, dht) DhtNetwork.log('PHT has', pht.MAX_NODE_ENTRY_COUNT, 'node'+ ('s' if pht.MAX_NODE_ENTRY_COUNT > 1 else ''), 'per leaf bucket.') keys = [{ [_ for _ in keyspec.keys()][0] : ''.join(random.SystemRandom().choice(string.hexdigits) for _ in range(NUM_DIG)).encode() } for n in range(self._num_keys)] all_entries = {} # Index all entries. for key in keys: PhtTest.key = key with FeatureTest.lock: time_taken = timer(pht.insert, key, IndexValue(random_hash()), PhtTest.insertDoneCb) if self._timer: DhtNetwork.log('This insert step took : ', time_taken, 'second') FeatureTest.lock.wait() time.sleep(1) # Recover entries now that the trie is complete. for key in keys: PhtTest.key = key with FeatureTest.lock: time_taken = timer(pht.lookup, key, PhtTest.lookupCb, PhtTest.lookupDoneCb) if self._timer: DhtNetwork.log('This lookup step took : ', time_taken, 'second') FeatureTest.lock.wait() all_entries[PhtTest.prefix] = [e.__str__() for e in PhtTest.indexEntries] for p in all_entries.keys(): DhtNetwork.log('All entries under prefix', p, ':') DhtNetwork.log(all_entries[p]) PhtTest.drawTrie(all_entries) ################################## # DHT # ################################## class DhtFeatureTest(FeatureTest): """ This is a base dht test. """ #static variables used by class callbacks successfullTransfer = lambda lv,fv: len(lv) == len(fv) foreignNodes = None foreignValues = None def __init__(self, test, workbench): super(DhtFeatureTest, self).__init__(test, workbench) def _reset(self): super(DhtFeatureTest, self)._reset() DhtFeatureTest.foreignNodes = [] DhtFeatureTest.foreignValues = [] @staticmethod def getcb(value): vstr = value.__str__()[:100] DhtNetwork.Log.log('[GET]: %s' % vstr + ("..." if len(vstr) > 100 else "")) DhtFeatureTest.foreignValues.append(value) return True @staticmethod def putDoneCb(ok, nodes): with FeatureTest.lock: if not ok: DhtNetwork.Log.log("[PUT]: failed!") FeatureTest.done -= 1 FeatureTest.lock.notify() @staticmethod def getDoneCb(ok, nodes): with FeatureTest.lock: if not ok: DhtNetwork.Log.log("[GET]: failed!") else: for node in nodes: if not node.getNode().isExpired(): DhtFeatureTest.foreignNodes.append(node.getId().toString()) FeatureTest.done -= 1 FeatureTest.lock.notify() def _dhtPut(self, producer, _hash, *values): with FeatureTest.lock: for val in values: vstr = val.__str__()[:100] DhtNetwork.Log.log('[PUT]:', _hash.toString(), '->', vstr + ("..." if len(vstr) > 100 else "")) FeatureTest.done += 1 producer.put(_hash, val, DhtFeatureTest.putDoneCb) while FeatureTest.done > 0: FeatureTest.lock.wait() def _dhtGet(self, consumer, _hash): DhtFeatureTest.foreignValues = [] DhtFeatureTest.foreignNodes = [] with FeatureTest.lock: FeatureTest.done += 1 DhtNetwork.Log.log('[GET]:', _hash.toString()) consumer.get(_hash, DhtFeatureTest.getcb, DhtFeatureTest.getDoneCb) while FeatureTest.done > 0: FeatureTest.lock.wait() def _gottaGetThemAllPokeNodes(self, consumer, hashes, nodes=None): for h in hashes: self._dhtGet(consumer, h) if nodes is not None: for n in DhtFeatureTest.foreignNodes: nodes.add(n) class PersistenceTest(DhtFeatureTest): """ This tests persistence of data on the network. """ def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'mult_time': test persistence of data based on internal OpenDHT storage maintenance timings. - 'delete': test persistence of data upon deletion of nodes. - 'replace': replacing cluster successively. @type test: string OPTIONS - dump_str_log: Enables storage log at test ending. - keep_alive: Keeps the test running indefinately. This may be useful to manually analyse the network traffic during a longer period. - num_producers: Number of producers of data during a DHT test. - num_values: Number of values to initialize the DHT with. """ # opts super(PersistenceTest, self).__init__(test, workbench) self._traffic_plot = True if 'traffic_plot' in opts else False self._dump_storage = True if 'dump_str_log' in opts else False self._op_plot = True if 'op_plot' in opts else False self._keep_alive = True if 'keep_alive' in opts else False self._num_producers = opts['num_producers'] if 'num_producers' in opts else None self._num_values = opts['num_values'] if 'num_values' in opts else None def _trigger_dp(self, trigger_nodes, _hash, count=1): """ Triggers the data persistence over time. In order to this, `count` nodes are created with an id around the hash of a value. @param trigger_nodes: List of created nodes. The nodes created in this function are append to this list. @type trigger_nodes: list @param _hash: Is the id of the value around which creating nodes. @type _hash: InfoHash @param count: The number of nodes to create with id around the id of value. @type count: int """ _hash_str = _hash.toString().decode() _hash_int = int(_hash_str, 16) for i in range(int(-count/2), int(count/2)+1): _hash_str = '{:40x}'.format(_hash_int + i) config = DhtConfig() config.setNodeId(InfoHash(_hash_str.encode())) n = DhtRunner() n.run(config=config) n.bootstrap(self._bootstrap.ip4, str(self._bootstrap.port)) DhtNetwork.log('Node','['+_hash_str+']', 'started around', _hash.toString().decode() if n.isRunning() else 'failed to start...' ) trigger_nodes.append(n) def _result(self, local_values, new_nodes): bootstrap = self._bootstrap if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): DhtNetwork.Log.log('[GET]: Only %s on %s values persisted.' % (len(DhtFeatureTest.foreignValues), len(local_values))) else: DhtNetwork.Log.log('[GET]: All values successfully persisted.') if DhtFeatureTest.foreignValues: if new_nodes: DhtNetwork.Log.log('Values are newly found on:') for node in new_nodes: DhtNetwork.Log.log(node) if self._dump_storage: DhtNetwork.Log.log('Dumping all storage log from '\ 'hosting nodes.') for proc in self._workbench.procs: proc.sendClusterRequest(DhtNetworkSubProcess.DUMP_STORAGE_REQ, DhtFeatureTest.foreignNodes) else: DhtNetwork.Log.log("Values didn't reach new hosting nodes after shutdown.") def run(self): try: if self._test == 'normal': self._totallyNormalTest() elif self._test == 'delete': self._deleteTest() elif self._test == 'replace': self._replaceClusterTest() elif self._test == 'mult_time': self._multTimeTest() else: raise NameError("This test is not defined '" + self._test + "'") except Exception as e: traceback.print_tb(e.__traceback__) print(type(e).__name__+':', e, file=sys.stderr) finally: if self._traffic_plot or self._op_plot: plot_fname = "traffic-plot" print('plot saved to', plot_fname) plt.savefig(plot_fname) self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _totallyNormalTest(self): """ Reproduces a network in a realistic state. """ trigger_nodes = [] wb = self._workbench bootstrap = self._bootstrap # Value representing an ICE packet. Each ICE packet is around 1KB. VALUE_SIZE = 1024 num_values_per_hash = self._num_values/wb.node_num if self._num_values else 5 # nodes and values counters total_nr_values = 0 nr_nodes = wb.node_num op_cv = threading.Condition() # values string in string format. Used for sending cluster request. hashes = [random_hash() for _ in range(wb.node_num)] def normalBehavior(do, t): nonlocal total_nr_values, op_cv while True: with op_cv: do() time.sleep(random.uniform(0.0, float(t))) def putRequest(): nonlocal hashes, VALUE_SIZE, total_nr_values lock = threading.Condition() def dcb(success): nonlocal total_nr_values, lock if success: total_nr_values += 1 DhtNetwork.Log.log("INFO: "+ str(total_nr_values)+" values put on the dht since begining") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Random value put on the DHT...") random.choice(wb.procs).sendClusterPutRequest(random.choice(hashes).toString(), random_str_val(size=VALUE_SIZE).encode(), done_cb=dcb) lock.wait() puts = threading.Thread(target=normalBehavior, args=(putRequest, 30.0/wb.node_num)) puts.daemon = True puts.start() def newNodeRequest(): nonlocal nr_nodes lock = threading.Condition() def dcb(success): nonlocal nr_nodes, lock nr_nodes += 1 DhtNetwork.Log.log("INFO: now "+str(nr_nodes)+" nodes on the dht") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Node joining...") random.choice(wb.procs).sendClusterRequest(DhtNetworkSubProcess.NEW_NODE_REQ, done_cb=dcb) lock.wait() connections = threading.Thread(target=normalBehavior, args=(newNodeRequest, 1*50.0/wb.node_num)) connections.daemon = True connections.start() def shutdownNodeRequest(): nonlocal nr_nodes lock = threading.Condition() def dcb(success): nonlocal nr_nodes, lock if success: nr_nodes -= 1 DhtNetwork.Log.log("INFO: now "+str(nr_nodes)+" nodes on the dht") else: DhtNetwork.Log.err("Oops.. No node to shutodwn.") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Node shutting down...") random.choice(wb.procs).sendClusterRequest(DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, done_cb=dcb) lock.wait() shutdowns = threading.Thread(target=normalBehavior, args=(shutdownNodeRequest, 1*60.0/wb.node_num)) shutdowns.daemon = True shutdowns.start() if self._traffic_plot: display_traffic_plot('br'+wb.ifname) else: # blocks in matplotlib thread while True: plt.pause(3600) @reset_before_test def _deleteTest(self): """ It uses Dht shutdown call from the API to gracefuly finish the nodes one after the other. """ bootstrap = self._bootstrap ops_count = [] bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] self._dhtPut(producer, myhash, *local_values) #checking if values were transfered self._dhtGet(consumer, myhash) if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): if DhtFeatureTest.foreignValues: DhtNetwork.Log.log('[GET]: Only ', len(DhtFeatureTest.foreignValues) ,' on ', len(local_values), ' values successfully put.') else: DhtNetwork.Log.log('[GET]: 0 values successfully put') if DhtFeatureTest.foreignValues and DhtFeatureTest.foreignNodes: DhtNetwork.Log.log('Values are found on :') for node in DhtFeatureTest.foreignNodes: DhtNetwork.Log.log(node) for _ in range(max(1, int(self._workbench.node_num/32))): DhtNetwork.Log.log('Removing all nodes hosting target values...') cluster_ops_count = 0 for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending shutdown request to', proc) lock = threading.Condition() def dcb(success): nonlocal lock if not success: DhtNetwork.Log.err("Failed to shutdown.") with lock: lock.notify() with lock: proc.sendClusterRequest( DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, DhtFeatureTest.foreignNodes, done_cb=dcb ) lock.wait() DhtNetwork.Log.log('sending message stats request') def msg_dcb(stats): nonlocal cluster_ops_count, lock if stats: cluster_ops_count += sum(stats[1:]) with lock: lock.notify() with lock: proc.sendGetMessageStats(done_cb=msg_dcb) lock.wait() DhtNetwork.Log.log("5 seconds wait...") time.sleep(5) ops_count.append(cluster_ops_count/self._workbench.node_num) # checking if values were transfered to new nodes foreignNodes_before_delete = DhtFeatureTest.foreignNodes DhtNetwork.Log.log('[GET]: trying to fetch persistent values') self._dhtGet(consumer, myhash) new_nodes = set(DhtFeatureTest.foreignNodes) - set(foreignNodes_before_delete) self._result(local_values, new_nodes) if self._op_plot: display_plot(ops_count, color='blue') else: DhtNetwork.Log.log("[GET]: either couldn't fetch values or nodes hosting values...") if traffic_plot_thread: print("Traffic plot running for ever. Ctrl-c for stopping it.") traffic_plot_thread.join() @reset_before_test def _replaceClusterTest(self): """ It replaces all clusters one after the other. """ clusters = 8 bootstrap = self._bootstrap bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] self._dhtPut(producer, myhash, *local_values) self._dhtGet(consumer, myhash) initial_nodes = DhtFeatureTest.foreignNodes DhtNetwork.Log.log('Replacing', clusters, 'random clusters successively...') for n in range(clusters): i = random.randint(0, len(self._workbench.procs)-1) proc = self._workbench.procs[i] DhtNetwork.Log.log('Replacing', proc) proc.sendClusterRequest(DhtNetworkSubProcess.SHUTDOWN_CLUSTER_REQ) self._workbench.stop_cluster(i) self._workbench.start_cluster(i) DhtNetwork.Log.log('[GET]: trying to fetch persistent values') self._dhtGet(consumer, myhash) new_nodes = set(DhtFeatureTest.foreignNodes) - set(initial_nodes) self._result(local_values, new_nodes) @reset_before_test def _multTimeTest(self): """ Multiple put() calls are made from multiple nodes to multiple hashes after what a set of 8 nodes is created around each hashes in order to enable storage maintenance each nodes. Therefor, this tests will wait 10 minutes for the nodes to trigger storage maintenance. """ trigger_nodes = [] bootstrap = self._bootstrap N_PRODUCERS = self._num_producers if self._num_values else 16 DP_TIMEOUT = 1 hashes = [] # Generating considerable amount of values of size 1KB. VALUE_SIZE = 1024 NUM_VALUES = self._num_values if self._num_values else 50 values = [Value(random_str_val(size=VALUE_SIZE).encode()) for _ in range(NUM_VALUES)] bootstrap.resize(N_PRODUCERS+2) consumer = bootstrap.get(N_PRODUCERS+1) producers = (bootstrap.get(n) for n in range(1,N_PRODUCERS+1)) for p in producers: hashes.append(random_hash()) self._dhtPut(p, hashes[-1], *values) once = True while self._keep_alive or once: nodes = set([]) self._gottaGetThemAllPokeNodes(consumer, hashes, nodes=nodes) DhtNetwork.Log.log("Values are found on:") for n in nodes: DhtNetwork.Log.log(n) DhtNetwork.Log.log("Creating 8 nodes around all of these hashes...") for _hash in hashes: self._trigger_dp(trigger_nodes, _hash, count=8) DhtNetwork.Log.log('Waiting', DP_TIMEOUT+1, 'minutes for normal storage maintenance.') time.sleep((DP_TIMEOUT+1)*60) DhtNetwork.Log.log('Deleting old nodes from previous search.') for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending delete request to', proc) proc.sendClusterRequest( DhtNetworkSubProcess.REMOVE_NODE_REQ, nodes) # new consumer (fresh cache) bootstrap.resize(N_PRODUCERS+1) bootstrap.resize(N_PRODUCERS+2) consumer = bootstrap.get(N_PRODUCERS+1) nodes_after_time = set([]) self._gottaGetThemAllPokeNodes(consumer, hashes, nodes=nodes_after_time) self._result(values, nodes_after_time - nodes) once = False class PerformanceTest(DhtFeatureTest): """ Tests for general performance of dht operations. """ def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'gets': multiple get operations and statistical results. - 'delete': perform multiple put() operations followed by targeted deletion of nodes hosting the values. Doing so until half of the nodes on the network remain. @type test: string """ super(PerformanceTest, self).__init__(test, workbench) def run(self): try: if self._test == 'gets': self._getsTimesTest() elif self._test == 'delete': self._delete() else: raise NameError("This test is not defined '" + self._test + "'") except Exception as e: traceback.print_tb(e.__traceback__) print(type(e).__name__+':', e, file=sys.stderr) finally: self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _getsTimesTest(self): """ Tests for performance of the DHT doing multiple get() operation. """ bootstrap = self._bootstrap plt.ion() fig, axes = plt.subplots(2, 1) fig.tight_layout() lax = axes[0] hax = axes[1] lines = None#ax.plot([]) #plt.ylabel('time (s)') hax.set_ylim(0, 2) # let the network stabilise plt.pause(20) #start = time.time() times = [] lock = threading.Condition() done = 0 def getcb(v): nonlocal bootstrap DhtNetwork.Log.log("found", v) return True def donecb(ok, nodes, start): nonlocal bootstrap, lock, done, times t = time.time()-start with lock: if not ok: DhtNetwork.Log.log("failed !") times.append(t) done -= 1 lock.notify() def update_plot(): nonlocal lines while lines: l = lines.pop() l.remove() del l if len(times) > 1: n, bins, lines = hax.hist(times, 100, normed=1, histtype='stepfilled', color='g') hax.set_ylim(min(n), max(n)) lines.extend(lax.plot(times, color='blue')) plt.draw() def run_get(): nonlocal done done += 1 start = time.time() bootstrap.front().get(InfoHash.getRandom(), getcb, lambda ok, nodes: donecb(ok, nodes, start)) plt.pause(5) plt.show() update_plot() times = [] for n in range(10): self._workbench.replace_cluster() plt.pause(2) DhtNetwork.Log.log("Getting 50 random hashes succesively.") for i in range(50): with lock: for _ in range(1): run_get() while done > 0: lock.wait() update_plot() plt.pause(.1) update_plot() print("Took", np.sum(times), "mean", np.mean(times), "std", np.std(times), "min", np.min(times), "max", np.max(times)) print('GET calls timings benchmark test : DONE. ' \ 'Close Matplotlib window for terminating the program.') plt.ioff() plt.show() @reset_before_test def _delete(self): """ Tests for performance of get() and put() operations on the network while deleting around the target hash. """ bootstrap = self._bootstrap bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] for _ in range(max(1, int(self._workbench.node_num/32))): self._dhtGet(consumer, myhash) DhtNetwork.Log.log("Waiting 15 seconds...") time.sleep(15) self._dhtPut(producer, myhash, *local_values) #checking if values were transfered self._dhtGet(consumer, myhash) DhtNetwork.Log.log('Values are found on :') for node in DhtFeatureTest.foreignNodes: DhtNetwork.Log.log(node) if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): if DhtFeatureTest.foreignValues: DhtNetwork.Log.log('[GET]: Only ', len(DhtFeatureTest.foreignValues) ,' on ', len(local_values), ' values successfully put.') else: DhtNetwork.Log.log('[GET]: 0 values successfully put') DhtNetwork.Log.log('Removing all nodes hosting target values...') for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending shutdown request to', proc) proc.sendClusterRequest( DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, DhtFeatureTest.foreignNodes )
gpl-3.0
alceubissoto/gp-tcc
lessop/cgptk_mrlf.py
1
14446
import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import tkinter as tk import random import numpy as np from itertools import product import time import logging IND_MAX_SIZE = 1000 POP_SIZE = 5 MUTATION_CHANCE = 0.05 MAX_GENERATIONS = 100000 l_op = ['np.logical_and','np.logical_or','not np.logical_and','not np.logical_or'] N_INPUTS = 5 LARGE_FONT = ("Verdana", 12) SMALL_FONT = ("Verdana", 8) combList = [] answer = [] xListBest = [] yListBestFitness = [] xListAverage = [] yListAverageFitness = [] f = Figure(figsize=(6.7, 5), dpi=100) a = f.add_subplot(111) a.grid(True) moment = time.strftime("%Y-%b-%d__%H_%M_%S",time.localtime()) logging.basicConfig(filename='statistics_' + moment + '.log', level=logging.INFO) def animate(): global xListBest, xListAverage, yListBestFitness, yListAverageFitness, a a.clear() a.plot(xListBest, yListBestFitness, 'b-', label="Best") a.plot(xListAverage, yListAverageFitness, 'r-', label="Average") a.grid(True) a.get_xaxis().tick_bottom() a.get_yaxis().tick_left() a.set_xlabel('Number of Generations') a.set_ylabel('Cost') a.set_title('Population Evolution') f.canvas.draw() class Gui(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) label = tk.Label(self, text="Population Size", font=LARGE_FONT) label.grid(sticky=tk.W) label = tk.Label(self, text="Default: " + str(POP_SIZE), font=SMALL_FONT) label.grid(sticky=tk.W) self.entry0 = tk.Entry(self, bd=5) self.entry0.grid(row=0, column=0) label = tk.Label(self, text="Individual Max Size", font=LARGE_FONT) label.grid(sticky=tk.W, row=0, column=1) label = tk.Label(self, text="Default: " + str(IND_MAX_SIZE), font=SMALL_FONT) label.grid(sticky=tk.W, row=1, column=1) self.entry1 = tk.Entry(self, bd=5) self.entry1.grid(row=0, column=1) label = tk.Label(self, text="Number of Inputs", font=LARGE_FONT) label.grid(sticky=tk.W) label = tk.Label(self, text="Default: " + str(N_INPUTS), font=SMALL_FONT) label.grid(sticky=tk.W) self.entry2 = tk.Entry(self, bd=5) self.entry2.grid(row=2, column=0) label = tk.Label(self, text="Number of Generations", font=LARGE_FONT) label.grid(sticky=tk.W) label = tk.Label(self, text="Default: " + str(MAX_GENERATIONS), font=SMALL_FONT) label.grid(sticky=tk.W) self.entry4 = tk.Entry(self, bd=5) self.entry4.grid(row=4, column=0) label = tk.Label(self, text="Mutation Probability", font=LARGE_FONT) label.grid(sticky=tk.W, row=4, column=1) label = tk.Label(self, text="Default: " + str(MUTATION_CHANCE), font=SMALL_FONT) label.grid(sticky=tk.W, row=5, column=1) self.entry5 = tk.Entry(self, bd=5) self.entry5.grid(row=4, column=1) button = tk.Button(self, text="Start", command=self.startGeneticProgramming, font=LARGE_FONT) button.grid(row=12) canvas = FigureCanvasTkAgg(f, self) canvas.show() canvas.get_tk_widget().grid(row=13, column=0) self.text = tk.Text(self, wrap="word") self.text.grid(row=13, column=1) def write(self, txt): self.text.insert(tk.END, str(txt)) def startGeneticProgramming(self): # for index in range(0, 20): print (self.entry1.get(), self.entry2.get()) global IND_MAX_SIZE, POP_SIZE, N_INPUTS, MAX_GENERATIONS, MUTATION_CHANCE, l_op, l_in, combList, answer if self.entry0.get() != "": POP_SIZE = int(self.entry0.get()) if self.entry1.get() != "": IND_MAX_SIZE = int(self.entry1.get()) if self.entry2.get() != "": N_INPUTS = int(self.entry2.get()) if self.entry4.get() != "": MAX_GENERATIONS = int(self.entry4.get()) if self.entry5.get() != "": MUTATION_CHANCE = float(self.entry5.get()) print('ninputs', N_INPUTS) l_in = createTerminalList(N_INPUTS) combList = createCombList(N_INPUTS) answer = createParityAnswer() print(answer) l_op = ['np.logical_and','np.logical_or','not np.logical_and','not np.logical_or','np.logical_xor', 'not np.logical_xor'] #logging.info("\n\nTree Max Size: " + str(TREE_MAX_SIZE) + ", " + # "Populations Size: " + str(POPULATION_SIZE) + ", " + # "Number of Inputs: " + str(N_INPUTS) + ", " + # "Tournament Size: " + str(TOURNAMENT_SIZE) + ", " + # "Number of Generations: " + str(NUMBER_OF_GENERATIONS) + ", " + # "Mutation Probability: " + str(MUTATION_PROBABILITY) + ", " + # "Start Time: " + str(datetime.datetime.now())) best_individual = reproduction() self.write("\nBEST INDIVIDUAL: \n" + str(best_individual['genotype']) + "\nFITNESS: " + str(best_individual['fitness'])) def createCombList(number_inputs): return ["".join(seq) for seq in product("01", repeat=number_inputs)] def createTerminalList(number_inputs): lT = [] for i in range(number_inputs): lT.append('in' + str(i)) return lT def createParityAnswer(): PARITY_SIZE_M = 2 ** N_INPUTS inputs = [None] * PARITY_SIZE_M outputs = [None] * PARITY_SIZE_M for i in range(PARITY_SIZE_M): inputs[i] = [None] * N_INPUTS value = i dividor = PARITY_SIZE_M parity = 1 for j in range(N_INPUTS): dividor /= 2 if value >= dividor: inputs[i][j] = 1 parity = int(not parity) value -= dividor else: inputs[i][j] = 0 outputs[i] = parity return outputs def evaluateIndividual(used_nodes, output): result = list() i = 0 input_values = [] # For each combination of 1s and 0s, evaluate: for combination in combList: for j in range(len(combination)): # Prepare the array A to pass the correct value of combination. # Example: (0, 0, 0) # (0, 0, 1) ... input_values.append(int(combination[j])) # evaluateRec(A) is responsible for do the actual evaluation, with the A values passed that were crafted. result.append(decode(used_nodes, input_values, output)) input_values[:] = [] i += 1 return result def generateInd(): new_ind = {} new_ind['genotype'] = [] possible_values = list(range(0, len(l_in))) operators = list(range(0, len(l_op))) last = len(l_in)-1; for i in range(0, random.randrange(1,IND_MAX_SIZE)): new_ind['genotype'].append(random.choice(possible_values)) new_ind['genotype'].append(random.choice(possible_values)) new_ind['genotype'].append(random.choice(operators)) last+=1 possible_values.append(last) new_ind['output'] = random.choice(possible_values[N_INPUTS:]) return new_ind def selectUsedNodes(ind): out = ind['output'] gen = ind['genotype'] to_eval=[] to_eval.append(out) evaluated = list(range(0, len(l_in))) used_nodes = {} inicial_position = len(l_in) while(len(to_eval)>0): #print("to_eval", to_eval) if(to_eval[0] in evaluated): to_eval.pop(0) else: # node, (como obter seu valor (gen, gen, gen)) #used_nodesput.append(to_eval[0]) tmp = [] for i in range(0,3): value = gen[(to_eval[0]-inicial_position)*3 + i] tmp.append(value) if((value not in evaluated) and (i!=2)): to_eval.append(value) used_nodes[to_eval[0]] = tmp evaluated.append(to_eval[0]) return used_nodes def decode(used_nodes, input_values, output): tmp = [] iterations = int(len(used_nodes)) l_known = {} #inputs for i in range(0, len(input_values)): l_known[i]=bool(input_values[i]) #evaluations for key in sorted(used_nodes.keys()): l_known[key] = eval(str(l_op[used_nodes[key][2]])+'('+str(l_known[used_nodes[key][0]])\ +', '+str(l_known[used_nodes[key][1]])+')') #print(l_known) return l_known[output] def calcFitness(used_nodes, output_node): fitness = 0.0 evaluation = evaluateIndividual(used_nodes, output_node) #print(evaluation) for i in range(0, len(answer)): if answer[i] == evaluation[i]: fitness += 1.0 return fitness def createPopulation(): population = [] for i in range(0, POP_SIZE): temp_ind = generateInd() used_nodes = selectUsedNodes(temp_ind) temp_ind['fitness'] = calcFitness(used_nodes, temp_ind['output']) population.append(temp_ind) return population def sortPopulation(population): newlist = sorted(population, key=lambda k: k['fitness'], reverse=True) return newlist def mutate(individual): possible_values = list(range(0, int(len(individual['genotype'])/3))) operators = list(range(0, len(l_op))) ind = individual active_nodes = selectUsedNodes(individual) new_ind={} mutated_genotype = [] index = 0 # Mutate Genotype #print('IND', ind) node_to_change = random.choice(list(active_nodes.keys())) gene_to_change = random.randint(0, 2) #print('ntc: ', node_to_change) #print('gtc: ', gene_to_change) which_gene = -1 for i in range(0, len(ind['genotype'])): #print(ind['genotype'][i]) #print('ifclause: ', int(i/3)+N_INPUTS) #print('which_gene', which_gene) if (int(i/3)+N_INPUTS == node_to_change): which_gene+=1 if(which_gene == gene_to_change): if(gene_to_change==2): #print('ntc: ', node_to_change) #print('gtc: ', gene_to_change) value_op = random.choice(operators) #print('valueop', value_op) mutated_genotype.append(value_op) else: #print('ntc: ', node_to_change) #print('gtc: ', gene_to_change) value = random.choice(possible_values[0:int(i/3)+N_INPUTS]) #print('value', value) mutated_genotype.append(value) which_gene=1000 else: mutated_genotype.append(ind['genotype'][i]) else: if(random.random() < MUTATION_CHANCE): if((i+1)%3 == 0): mutated_genotype.append(random.choice(operators)) else: mutated_genotype.append(random.choice(possible_values[0:int((i+1)/3)+N_INPUTS])) else: mutated_genotype.append(ind['genotype'][i]) new_ind['genotype'] = mutated_genotype # Mutate Output if(random.random() < MUTATION_CHANCE): new_ind['output'] = random.choice(possible_values) else: new_ind['output'] = individual['output'] #print('NEW IND', new_ind) # Calculate new Fitness used_nodes = selectUsedNodes(new_ind) #print('output_m', individual['output']) #print('output_new', new_ind['output']) #print('un', used_nodes) #print('mutated', new_ind['genotype']) #print('before', individual['genotype']) new_ind['fitness'] = calcFitness(used_nodes, new_ind['output']) return new_ind def reproduction(): global IND_MAX_SIZE, POP_SIZE, N_INPUTS, MAX_GENERATIONS, MUTATION_CHANCE, l_op, l_in, combList, answer print(answer, combList, N_INPUTS) pop = createPopulation() sorted_pop = sortPopulation(pop) for i in range(0, MAX_GENERATIONS): new_pop=[] new_pop.append(sorted_pop[0]) for j in range(1, POP_SIZE): new_pop.append(mutate(sorted_pop[0])) sorted_pop = sortPopulation(new_pop) print('gen: ', i, ', fit: ', sorted_pop[0]['fitness']) #print(sorted_pop) # Animation control if i % 10 == 0: average = 0.0 for index in range(0, len(sorted_pop)): average += sorted_pop[index]['fitness'] average = average / POP_SIZE xListBest.append(i) xListAverage.append(i) yListBestFitness.append(sorted_pop[0]['fitness']) yListAverageFitness.append(average) animate() if (sorted_pop[0]['fitness']==len(answer)): xListBest.append(i) yListBestFitness.append(sorted_pop[0]['fitness']) average = 0.0 for index in range(0, len(sorted_pop)): average += sorted_pop[index]['fitness'] average = average / POP_SIZE xListAverage.append(i) yListAverageFitness.append(average) animate() print('generations to success: ', i) logging.info("Best Fitness: " + str(sorted_pop[0]['fitness']) + ", " + "Generations: " + str(i) + "\n") break return sorted_pop[0] ##l_in = createTerminalList(N_INPUTS) ##combList = createCombList(N_INPUTS) ##answer = createParityAnswer() #print('answer', answer) #new_ind = generateInd() #used_nodes = selectUsedNodes(new_ind) #selectUsedNodes #print(new_ind) #node_to_change = random.choice(list(used_nodes.keys())) #print('used_nodes', used_nodes) #print('keys', used_nodes.keys()) #print(node_to_change) #print('sorted', sorted(used_nodes.keys())) #print('output', new_ind['output']) #decode(used_nodes, new_ind['output']) #print('evaluation', evaluateIndividual(combList, used_nodes, new_ind['output'])) #print('fitness', calcFitness(used_nodes, new_ind['output'])) #population = createPopulation() #sortedpop = sortPopulation(population) #print('new_ind1', new_ind['genotype']) #mutated = mutate(new_ind) #print('new_ind2', new_ind['genotype']) #print('mutated1', mutated['genotype']) #print('mutated', mutated) ##best_individual = reproduction() ##print(best_individual) app = Gui() app.mainloop() #l_op = ['and','or','xor']
mit
qiu997018209/MachineLearning
机器学习常用算法公式推导及分析与代码实现/贝叶斯/Kaggle影评观众情绪分类/kaggle_movie_reviewer.py
1
4564
#coding:utf-8 ''' Created on Apr 10, 2017 @author: ubuntu ''' import re #正则表达式 from bs4 import BeautifulSoup #html标签处理 import pandas as pd def review_to_wordlist(review): ''' 把IMDB的评论转成词序列 ''' #去掉HTML标签,拿到内容 review_text = BeautifulSoup(review).getText() #用正则表达式获取符合规范的部分:^ 符号表示必须从文本开始处匹配 review_text = re.sub("[^a-zA-z]"," ",review_text) #小写化所有的词,并转成词list words = review_text.lower().split() return words #“header= 0”表示该文件的第一行包含列名称,“delimiter=\t”表示字段由\t分割, quoting=3告诉Python忽略双引号 train=pd.read_csv("labeledTrainData.tsv",header=0,delimiter="\t",quoting=3) test=pd.read_csv("testData.tsv",header=0,delimiter="\t",quoting=3) # 取出情感标签,positive/褒 或者 negative/贬 y_train = train['sentiment'] # 将训练和测试数据都转成词list train_data = [] for i in xrange(0,len(train["review"])): #列表中的每一个元素用空格连接起来 train_data.append(" ".join(review_to_wordlist(train["review"][i]))) test_data = [] for i in xrange(0,len(test["review"])): train_data.append(" ".join(review_to_wordlist(test["review"][i]))) ''' 特征处理 TF-IDF简介:TF-IDF倾向于过滤掉常见的词语,保留重要的词语,字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降 TF:term frequency词频 IDF:inverse document frequency逆向文件频率 词频 (TF) 是一词语出现的次数除以该文件的总词语数。 假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。 一个计算文件频率 (DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。 所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 log(10,000,000 / 1,000)=4。 最后的TF-IDF的分数为0.03 * 4=0.12 ''' from sklearn.feature_extraction.text import TfidfTransformer as TFIV # 初始化TFIV对象,去停用词,加2元语言模型 #让一个词语的概率依赖于它前面一个词语。我们将这种模型称作bigram(2-gram,二元语言模型 #各参数介绍http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html tfv = TFIV(min_df=3, max_features=None, strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}', ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1, stop_words = 'english') # 合并训练和测试集以便进行TFIDF向量化操作 X_all = train_data + test_data len_train = len(train_data) # 这一步有点慢,去喝杯茶刷会儿微博知乎歇会儿... tfv.fit(X_all) # X_all = tfv.transform(X_all) # 恢复成训练集和测试集部分 X = X_all[:len_train] X_test = X_all[len_train:] # 多项式朴素贝叶斯 from sklearn.naive_bayes import MultinomialNB as MNB model_NB = MNB() model_NB.fit(X, y_train) #特征数据直接灌进来 MNB(alpha=1.0, class_prior=None, fit_prior=True) from sklearn.cross_validation import cross_val_score import numpy as np print "多项式贝叶斯分类器20折交叉验证得分: ", np.mean(cross_val_score(model_NB, X, y_train, cv=20, scoring='roc_auc')) # 多项式贝叶斯分类器20折交叉验证得分: 0.950837239 ''' # 折腾一下逻辑回归,恩 from sklearn.linear_model import LogisticRegression as LR from sklearn.grid_search import GridSearchCV # 设定grid search的参数 grid_values = {'C':[30]} # 设定打分为roc_auc model_LR = GridSearchCV(LR(penalty = 'L2', dual = True, random_state = 0), grid_values, scoring = 'roc_auc', cv = 20) # 数据灌进来 model_LR.fit(X,y_train) # 20折交叉验证,开始漫长的等待... GridSearchCV(cv=20, estimator=LR(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, penalty='L2', random_state=0, tol=0.0001), fit_params={}, iid=True, loss_func=None, n_jobs=1, param_grid={'C': [30]}, pre_dispatch='2*n_jobs', refit=True, score_func=None, scoring='roc_auc', verbose=0) #输出结果 print model_LR.grid_scores_ ''' ''' 在这些问题中,朴素贝叶斯能取得和逻辑回归相近的成绩,但是训练速度远快于逻辑回归,真正的直接和高效。 '''
apache-2.0
acbart/megabus-wanderlust
analyze.py
1
3744
import sys, os import networkx as nx import matplotlib.pyplot as plt from heapq import heappop, heappush from random import randint import time, datetime from requests import ConnectionError from megabus import Trek, Stop, Trip from megabus import cache_search, report, day_range, report_append, long_trip from util import load_json, safe_str DATA = load_json("data/location_data.json") america = nx.Graph() for edge in DATA['weighted_destinations']: america.add_edge(edge["origin"], edge["destination"], weight=edge["duration"]) def find_route(source="Christiansburg, VA", target="Newark, DE", start= "12/20/2014", end = "12/27/2014"): route = nx.dijkstra_path(america,source,target) route = [str(r) for r in route] long_trip("{}-{}".format(source,target), route, (start, end)) return route find_route() sys.exit() def wander(start_date, end_date, start_city, no_loop_back=True, money_limit = None): filename = "{} _ {}.txt".format(start_city.replace(",",""), start_date.replace("/","-")) if type(start_date) == str: start_date, end_date = map(lambda x : datetime.datetime.strptime(x, "%m/%d/%Y"), (start_date, end_date)) incomplete_routes = [(0, Trek(Stop(start_date, start_city)))] #finished_routes = [] id = 0 file = open(filename, 'w') while incomplete_routes: try: cost, trek = heappop(incomplete_routes) print "Trying", trek.route(), cost next_stops = G[trek.arrival.city] next_trips = [] for stop, distance in next_stops.iteritems(): for date in day_range(trek.arrival.date, end_date, days=1): next_trips.extend(cache_search(trek.arrival.city, stop, date)) if trek.arrival.city == start_city and trek: report_append(file, id, trek) id+= 1 for trip in next_trips: if trip.arrival.date <= end_date and trek.arrival.date < trip.departure.date: if trek.arrival.city != trip.arrival.city: new_trek = trek.add_trip(trip) if money_limit is None or new_trek.cost <= money_limit: if not no_loop_back or (trek.departure.city not in [stop.city for stop in new_trek.route()[1:-1]]): if trip.arrival.city == start_city: #print "Found", new_trek.route() report_append(file, id, new_trek) id+= 1 heappush(incomplete_routes, (new_trek.value, new_trek)) except ConnectionError, c: print c heappush(incomplete_routes, (new_trek.value, trek)) time.sleep(1) #finished_routes.sort(key=lambda trek: trek.cost / float(len(trek))) file.close() #report("test", finished_routes) #return finished_routes # Given a starting point # Find all paths possible from that point # Wish to minimize cost # Wish to Maximize distance # Limit travel to certain time range # Must end where you started print wander("10/4/2013", "10/6/2013", "Christiansburg, VA", money_limit=30) #print nx.bfs_successors(G, "Newark, DE") #from megabus import long_trip #long_trip("test_route.txt", ROUTE, ("8/5/2013", "8/7/2013")) #pos=nx.spring_layout(G) #nx.draw_networkx_labels(G,pos,font_size=12,font_family='sans-serif') #nx.draw_networkx_nodes(G,pos,node_size=700) #nx.draw_networkx_edges(G,pos,width=6) #plt.axis('off') #plt.savefig("us-map.png") #plt.show()
lgpl-2.1
chenyyx/scikit-learn-doc-zh
examples/en/model_selection/plot_confusion_matrix.py
63
3231
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import itertools import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target class_names = iris.target_names # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()
gpl-3.0
marcocaccin/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
kambysese/mne-python
tutorials/sample-datasets/plot_brainstorm_auditory.py
3
16058
# -*- coding: utf-8 -*- """ .. _tut-brainstorm-auditory: ==================================== Brainstorm auditory tutorial dataset ==================================== Here we compute the evoked from raw for the auditory Brainstorm tutorial dataset. For comparison, see :footcite:`TadelEtAl2011` and the associated `brainstorm site <https://neuroimage.usc.edu/brainstorm/Tutorials/Auditory>`_. Experiment: - One subject, 2 acquisition runs 6 minutes each. - Each run contains 200 regular beeps and 40 easy deviant beeps. - Random ISI: between 0.7s and 1.7s seconds, uniformly distributed. - Button pressed when detecting a deviant with the right index finger. The specifications of this dataset were discussed initially on the `FieldTrip bug tracker <http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=2300>`__. References ---------- .. footbibliography:: """ # Authors: Mainak Jas <[email protected]> # Eric Larson <[email protected]> # Jaakko Leppakangas <[email protected]> # # License: BSD (3-clause) import os.path as op import pandas as pd import numpy as np import mne from mne import combine_evoked from mne.minimum_norm import apply_inverse from mne.datasets.brainstorm import bst_auditory from mne.io import read_raw_ctf print(__doc__) ############################################################################### # To reduce memory consumption and running time, some of the steps are # precomputed. To run everything from scratch change this to False. With # ``use_precomputed = False`` running time of this script can be several # minutes even on a fast computer. use_precomputed = True ############################################################################### # The data was collected with a CTF 275 system at 2400 Hz and low-pass # filtered at 600 Hz. Here the data and empty room data files are read to # construct instances of :class:`mne.io.Raw`. data_path = bst_auditory.data_path() subject = 'bst_auditory' subjects_dir = op.join(data_path, 'subjects') raw_fname1 = op.join(data_path, 'MEG', 'bst_auditory', 'S01_AEF_20131218_01.ds') raw_fname2 = op.join(data_path, 'MEG', 'bst_auditory', 'S01_AEF_20131218_02.ds') erm_fname = op.join(data_path, 'MEG', 'bst_auditory', 'S01_Noise_20131218_01.ds') ############################################################################### # In the memory saving mode we use ``preload=False`` and use the memory # efficient IO which loads the data on demand. However, filtering and some # other functions require the data to be preloaded in the memory. raw = read_raw_ctf(raw_fname1) n_times_run1 = raw.n_times mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2)]) raw_erm = read_raw_ctf(erm_fname) ############################################################################### # Data channel array consisted of 274 MEG axial gradiometers, 26 MEG reference # sensors and 2 EEG electrodes (Cz and Pz). # In addition: # # - 1 stim channel for marking presentation times for the stimuli # - 1 audio channel for the sent signal # - 1 response channel for recording the button presses # - 1 ECG bipolar # - 2 EOG bipolar (vertical and horizontal) # - 12 head tracking channels # - 20 unused channels # # The head tracking channels and the unused channels are marked as misc # channels. Here we define the EOG and ECG channels. raw.set_channel_types({'HEOG': 'eog', 'VEOG': 'eog', 'ECG': 'ecg'}) if not use_precomputed: # Leave out the two EEG channels for easier computation of forward. raw.pick(['meg', 'stim', 'misc', 'eog', 'ecg']).load_data() ############################################################################### # For noise reduction, a set of bad segments have been identified and stored # in csv files. The bad segments are later used to reject epochs that overlap # with them. # The file for the second run also contains some saccades. The saccades are # removed by using SSP. We use pandas to read the data from the csv files. You # can also view the files with your favorite text editor. annotations_df = pd.DataFrame() offset = n_times_run1 for idx in [1, 2]: csv_fname = op.join(data_path, 'MEG', 'bst_auditory', 'events_bad_0%s.csv' % idx) df = pd.read_csv(csv_fname, header=None, names=['onset', 'duration', 'id', 'label']) print('Events from run {0}:'.format(idx)) print(df) df['onset'] += offset * (idx - 1) annotations_df = pd.concat([annotations_df, df], axis=0) saccades_events = df[df['label'] == 'saccade'].values[:, :3].astype(int) # Conversion from samples to times: onsets = annotations_df['onset'].values / raw.info['sfreq'] durations = annotations_df['duration'].values / raw.info['sfreq'] descriptions = annotations_df['label'].values annotations = mne.Annotations(onsets, durations, descriptions) raw.set_annotations(annotations) del onsets, durations, descriptions ############################################################################### # Here we compute the saccade and EOG projectors for magnetometers and add # them to the raw data. The projectors are added to both runs. saccade_epochs = mne.Epochs(raw, saccades_events, 1, 0., 0.5, preload=True, baseline=(None, None), reject_by_annotation=False) projs_saccade = mne.compute_proj_epochs(saccade_epochs, n_mag=1, n_eeg=0, desc_prefix='saccade') if use_precomputed: proj_fname = op.join(data_path, 'MEG', 'bst_auditory', 'bst_auditory-eog-proj.fif') projs_eog = mne.read_proj(proj_fname)[0] else: projs_eog, _ = mne.preprocessing.compute_proj_eog(raw.load_data(), n_mag=1, n_eeg=0) raw.add_proj(projs_saccade) raw.add_proj(projs_eog) del saccade_epochs, saccades_events, projs_eog, projs_saccade # To save memory ############################################################################### # Visually inspect the effects of projections. Click on 'proj' button at the # bottom right corner to toggle the projectors on/off. EOG events can be # plotted by adding the event list as a keyword argument. As the bad segments # and saccades were added as annotations to the raw data, they are plotted as # well. raw.plot(block=True) ############################################################################### # Typical preprocessing step is the removal of power line artifact (50 Hz or # 60 Hz). Here we notch filter the data at 60, 120 and 180 to remove the # original 60 Hz artifact and the harmonics. The power spectra are plotted # before and after the filtering to show the effect. The drop after 600 Hz # appears because the data was filtered during the acquisition. In memory # saving mode we do the filtering at evoked stage, which is not something you # usually would do. if not use_precomputed: raw.plot_psd(tmax=np.inf, picks='meg') notches = np.arange(60, 181, 60) raw.notch_filter(notches, phase='zero-double', fir_design='firwin2') raw.plot_psd(tmax=np.inf, picks='meg') ############################################################################### # We also lowpass filter the data at 100 Hz to remove the hf components. if not use_precomputed: raw.filter(None, 100., h_trans_bandwidth=0.5, filter_length='10s', phase='zero-double', fir_design='firwin2') ############################################################################### # Epoching and averaging. # First some parameters are defined and events extracted from the stimulus # channel (UPPT001). The rejection thresholds are defined as peak-to-peak # values and are in T / m for gradiometers, T for magnetometers and # V for EOG and EEG channels. tmin, tmax = -0.1, 0.5 event_id = dict(standard=1, deviant=2) reject = dict(mag=4e-12, eog=250e-6) # find events events = mne.find_events(raw, stim_channel='UPPT001') ############################################################################### # The event timing is adjusted by comparing the trigger times on detected # sound onsets on channel UADC001-4408. sound_data = raw[raw.ch_names.index('UADC001-4408')][0][0] onsets = np.where(np.abs(sound_data) > 2. * np.std(sound_data))[0] min_diff = int(0.5 * raw.info['sfreq']) diffs = np.concatenate([[min_diff + 1], np.diff(onsets)]) onsets = onsets[diffs > min_diff] assert len(onsets) == len(events) diffs = 1000. * (events[:, 0] - onsets) / raw.info['sfreq'] print('Trigger delay removed (μ ± σ): %0.1f ± %0.1f ms' % (np.mean(diffs), np.std(diffs))) events[:, 0] = onsets del sound_data, diffs ############################################################################### # We mark a set of bad channels that seem noisier than others. This can also # be done interactively with ``raw.plot`` by clicking the channel name # (or the line). The marked channels are added as bad when the browser window # is closed. raw.info['bads'] = ['MLO52-4408', 'MRT51-4408', 'MLO42-4408', 'MLO43-4408'] ############################################################################### # The epochs (trials) are created for MEG channels. First we find the picks # for MEG and EOG channels. Then the epochs are constructed using these picks. # The epochs overlapping with annotated bad segments are also rejected by # default. To turn off rejection by bad segments (as was done earlier with # saccades) you can use keyword ``reject_by_annotation=False``. epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=['meg', 'eog'], baseline=(None, 0), reject=reject, preload=False, proj=True) ############################################################################### # We only use first 40 good epochs from each run. Since we first drop the bad # epochs, the indices of the epochs are no longer same as in the original # epochs collection. Investigation of the event timings reveals that first # epoch from the second run corresponds to index 182. epochs.drop_bad() epochs_standard = mne.concatenate_epochs([epochs['standard'][range(40)], epochs['standard'][182:222]]) epochs_standard.load_data() # Resampling to save memory. epochs_standard.resample(600, npad='auto') epochs_deviant = epochs['deviant'].load_data() epochs_deviant.resample(600, npad='auto') del epochs ############################################################################### # The averages for each conditions are computed. evoked_std = epochs_standard.average() evoked_dev = epochs_deviant.average() del epochs_standard, epochs_deviant ############################################################################### # Typical preprocessing step is the removal of power line artifact (50 Hz or # 60 Hz). Here we lowpass filter the data at 40 Hz, which will remove all # line artifacts (and high frequency information). Normally this would be done # to raw data (with :func:`mne.io.Raw.filter`), but to reduce memory # consumption of this tutorial, we do it at evoked stage. (At the raw stage, # you could alternatively notch filter with :func:`mne.io.Raw.notch_filter`.) for evoked in (evoked_std, evoked_dev): evoked.filter(l_freq=None, h_freq=40., fir_design='firwin') ############################################################################### # Here we plot the ERF of standard and deviant conditions. In both conditions # we can see the P50 and N100 responses. The mismatch negativity is visible # only in the deviant condition around 100-200 ms. P200 is also visible around # 170 ms in both conditions but much stronger in the standard condition. P300 # is visible in deviant condition only (decision making in preparation of the # button press). You can view the topographies from a certain time span by # painting an area with clicking and holding the left mouse button. evoked_std.plot(window_title='Standard', gfp=True, time_unit='s') evoked_dev.plot(window_title='Deviant', gfp=True, time_unit='s') ############################################################################### # Show activations as topography figures. times = np.arange(0.05, 0.301, 0.025) evoked_std.plot_topomap(times=times, title='Standard', time_unit='s') evoked_dev.plot_topomap(times=times, title='Deviant', time_unit='s') ############################################################################### # We can see the MMN effect more clearly by looking at the difference between # the two conditions. P50 and N100 are no longer visible, but MMN/P200 and # P300 are emphasised. evoked_difference = combine_evoked([evoked_dev, evoked_std], weights=[1, -1]) evoked_difference.plot(window_title='Difference', gfp=True, time_unit='s') ############################################################################### # Source estimation. # We compute the noise covariance matrix from the empty room measurement # and use it for the other runs. reject = dict(mag=4e-12) cov = mne.compute_raw_covariance(raw_erm, reject=reject) cov.plot(raw_erm.info) del raw_erm ############################################################################### # The transformation is read from a file: trans_fname = op.join(data_path, 'MEG', 'bst_auditory', 'bst_auditory-trans.fif') trans = mne.read_trans(trans_fname) ############################################################################### # To save time and memory, the forward solution is read from a file. Set # ``use_precomputed=False`` in the beginning of this script to build the # forward solution from scratch. The head surfaces for constructing a BEM # solution are read from a file. Since the data only contains MEG channels, we # only need the inner skull surface for making the forward solution. For more # information: :ref:`CHDBBCEJ`, :func:`mne.setup_source_space`, # :ref:`bem-model`, :func:`mne.bem.make_watershed_bem`. if use_precomputed: fwd_fname = op.join(data_path, 'MEG', 'bst_auditory', 'bst_auditory-meg-oct-6-fwd.fif') fwd = mne.read_forward_solution(fwd_fname) else: src = mne.setup_source_space(subject, spacing='ico4', subjects_dir=subjects_dir, overwrite=True) model = mne.make_bem_model(subject=subject, ico=4, conductivity=[0.3], subjects_dir=subjects_dir) bem = mne.make_bem_solution(model) fwd = mne.make_forward_solution(evoked_std.info, trans=trans, src=src, bem=bem) inv = mne.minimum_norm.make_inverse_operator(evoked_std.info, fwd, cov) snr = 3.0 lambda2 = 1.0 / snr ** 2 del fwd ############################################################################### # The sources are computed using dSPM method and plotted on an inflated brain # surface. For interactive controls over the image, use keyword # ``time_viewer=True``. # Standard condition. stc_standard = mne.minimum_norm.apply_inverse(evoked_std, inv, lambda2, 'dSPM') brain = stc_standard.plot(subjects_dir=subjects_dir, subject=subject, surface='inflated', time_viewer=False, hemi='lh', initial_time=0.1, time_unit='s') del stc_standard, brain ############################################################################### # Deviant condition. stc_deviant = mne.minimum_norm.apply_inverse(evoked_dev, inv, lambda2, 'dSPM') brain = stc_deviant.plot(subjects_dir=subjects_dir, subject=subject, surface='inflated', time_viewer=False, hemi='lh', initial_time=0.1, time_unit='s') del stc_deviant, brain ############################################################################### # Difference. stc_difference = apply_inverse(evoked_difference, inv, lambda2, 'dSPM') brain = stc_difference.plot(subjects_dir=subjects_dir, subject=subject, surface='inflated', time_viewer=False, hemi='lh', initial_time=0.15, time_unit='s')
bsd-3-clause
adbuerger/tsysblend
examples/k_bau_temperatures.py
1
3923
import sys import os sys.path.append(os.path.join(os.environ["HOME"], "tsysblend")) import bpy from tsysblend.state import LayerState, CubeState from mathutils import Vector from tsysblend.flow import MassFlow, HeatFlow import tsysblend.config as tc import pandas as pd import numpy as np import pdb tc.clearScene() tc.setColorBounds(20,35) tc.setBackgroundColor((1,1,1)) from_time = "2015-08-24 00:00:00" # hier Betrachungszeitraum festlegen to_time = "2015-08-24 23:59:59" df = pd.read_table(os.path.join(os.environ["HOME"], "tsysblend/examples/temp_kbau_remastered.csv"), delimiter = "\t") df["Time"]= pd.to_datetime(df["Time"]) df =df.set_index("Time") datafr = np.round(df[from_time:to_time],1) dtime = datafr.reset_index() tc.createLegend((0,15,12),"Legende","°C",elements=7, text_size=0.8) tc.animateSingleElement((0,-5,16),dtime, "Time", text_size=0.8) tc.animateSingleElement((0,-5,14),datafr,"KIT Temperature", unit="°C", text_size=0.8) a= 2 b = 3 c = 0.3 z = 5 # 0.Stock k0aso = CubeState(datafr, "k0aso", location=(-a,-b,0), scale=(a,b,c), unit="°C") k0asw = CubeState(datafr, "k0asw", location=(-a,b,0), scale=(a,b,c), unit="°C") k0ano = CubeState(datafr, "k0ano", location=(a,-b,0), scale=(a,b,c), unit="°C") k0anw = CubeState(datafr, "k0anw", location=(a,b,0), scale=(a,b,c), unit="°C") k0to = CubeState(datafr, "k0to", location=(0,-2.5*b,0), scale=(2*a,0.5*b,c), unit="°C") k0tw = CubeState(datafr, "k0tw", location=(0,2.5*b,0), scale=(2*a,0.5*b,c), unit="°C") k002m = CubeState(datafr, "k002m", location=(-3*a,-b,0), scale=(a,b,c), unit="°C") k003 = CubeState(datafr, "k003", location=(-3*a,b,0), scale=(a,b,c), unit="°C") k009 = CubeState(datafr, "k009", location=(3*a,-b,0), scale=(a,b,c), unit="°C") k008m = CubeState(datafr, "k008m", location=(3*a,b,0), scale=(a,b,c), unit="°C") # 1.Stock k1aso = CubeState(datafr, "k1aso", location=(-a,-b,z), scale=(a,b,c), unit="°C") k1asw = CubeState(datafr, "k1asw", location=(-a,b,z), scale=(a,b,c), unit="°C") k1ano = CubeState(datafr, "k1ano", location=(a,-b,z), scale=(a,b,c), unit="°C") k1anw = CubeState(datafr, "k1anw", location=(a,b,z), scale=(a,b,c), unit="°C") k1to = CubeState(datafr, "k1to" , location=(0,-2.5*b,z), scale=(2*a,0.5*b,c), unit="°C") k1tw = CubeState(datafr, "k1tw", location=(0,2.5*b,z), scale=(2*a,0.5*b,c), unit="°C" ) k102a = CubeState(datafr, "k102a", location=(-3*a,-b,z), scale=(a,b,c), unit="°C") k103 = CubeState(datafr, "k103", location=(-2.5*a,1.5*b,z), scale=(0.5*a,0.5*b,c), unit="°C") k103a = CubeState(datafr, "k103a", location=(-3*a,0.5*b,z), scale=(a,0.5*b,c), unit="°C") k103b = CubeState(datafr, "k103b", location=(-3.5*a,1.5*b,z), scale=(0.5*a,0.5*b,c), unit="°C") k109 = CubeState(datafr, "k109", location=(3*a,-b,z), scale=(a,b,c), unit="°C") k108m = CubeState(datafr, "k108m", location=(3*a,b,z), scale=(a,b,c), unit="°C") # 2.Stock #k2aso = CubeState((-a,-b,1.8*z), text_location=text_location, "k2aso", (a,b,c), "°C", datafr) k2asw = CubeState(datafr, "k2asw", location=(-a,b,1.8*z), scale=(a,b,c), unit="°C") k2ano = CubeState(datafr, "k2ano", location=(a,-b,1.8*z), scale=(a,b,c), unit="°C") k2anw = CubeState(datafr, "k2anw", location=(a,b,1.8*z), scale=(a,b,c), unit="°C") k2to = CubeState(datafr, "k2to", location=(0,-2.5*b,1.8*z), scale=(2*a,0.5*b,c), unit="°C") k2tw = CubeState(datafr, "k2tw", location=(0,2.5*b,1.8*z), scale=(2*a,0.5*b,c), unit="°C") k202m = CubeState(datafr, "k202m", location=(-3*a,-b,1.8*z), scale=(a,b,c), unit="°C") k203 = CubeState(datafr, "k203", location=(-3*a,b,1.8*z), scale=(a,b,c), unit="°C") k208 = CubeState(datafr, "k208", location=(3*a,-b,1.8*z), scale=(a,b,c), unit="°C") k207m = CubeState(datafr, "k207m", location=(3*a,b,1.8*z), scale=(a,b,c), unit="°C") tc.animateColor() tc.setEndFrame(len(datafr.index)) tc.addCamera((40.0, 2, 15), (1.4, 0, 1.578)) tc.addLamp((25.0, 30.0, 6.5), (0,0.698, 0.349))
lgpl-3.0
blink1073/scikit-image
doc/examples/edges/plot_convex_hull.py
9
1487
""" =========== Convex Hull =========== The convex hull of a binary image is the set of pixels included in the smallest convex polygon that surround all white pixels in the input. In this example, we show how the input pixels (white) get filled in by the convex hull (white and grey). A good overview of the algorithm is given on `Steve Eddin's blog <http://blogs.mathworks.com/steve/2011/10/04/binary-image-convex-hull-algorithm-notes/>`__. """ import numpy as np import matplotlib.pyplot as plt from skimage.morphology import convex_hull_image image = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=float) original_image = np.copy(image) chull = convex_hull_image(image) image[chull] += 1 # image is now: # [[ 0. 0. 0. 0. 0. 0. 0. 0. 0.] # [ 0. 0. 0. 0. 2. 0. 0. 0. 0.] # [ 0. 0. 0. 2. 1. 2. 0. 0. 0.] # [ 0. 0. 2. 1. 1. 1. 2. 0. 0.] # [ 0. 2. 1. 1. 1. 1. 1. 2. 0.] # [ 0. 0. 0. 0. 0. 0. 0. 0. 0.]] fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6)) ax1.set_title('Original picture') ax1.imshow(original_image, cmap=plt.cm.gray, interpolation='nearest') ax1.set_xticks([]), ax1.set_yticks([]) ax2.set_title('Transformed picture') ax2.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax2.set_xticks([]), ax2.set_yticks([]) plt.show()
bsd-3-clause
mikebenfield/scikit-learn
sklearn/tests/test_discriminant_analysis.py
37
11979
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.discriminant_analysis import _cov # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = _cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = _cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
mavenlin/tensorflow
tensorflow/examples/learn/text_classification_character_cnn.py
29
5666
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using convolutional networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_cnn_model(features, labels, mode): """Character level convolutional neural network model to predict classes.""" features_onehot = tf.one_hot(features[CHARS_FEATURE], 256) input_layer = tf.reshape( features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( input_layer, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) x_train = x_train.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) x_test = x_test.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) # Build model classifier = tf.estimator.Estimator(model_fn=char_cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
cangermueller/deepcpg
scripts/dcpg_train.py
1
28511
#!/usr/bin/env python """Train a DeepCpG model to predict DNA methylation. Trains a DeepCpG model on DNA (DNA model), neighboring methylation states (CpG model), or both (Joint model) to predict CpG methylation of multiple cells. Allows to fine-tune individual models or to train them from scratch. Examples -------- Train a DNA model on chromosome 1, 3, and 5, and use chromosome 13, 14, and 15 for validation: .. code:: bash dcpg_train.py ./data/c{1,3,5}_*.h5 --val_files ./data/c{13,14,15}_*.h5 --dna_model CnnL2h128 --out_dir ./models/dna Train a CpG model: .. code:: bash dcpg_train.py ./data/c{1,3,5}_*.h5 --val_files ./data/c{13,14,15}_*.h5 --cpg_model RnnL1 --out_dir ./models/cpg Train a Joint model using a pre-trained DNA and CpG model: .. code:: bash dcpg_train.py ./data/c{1,3,5}_*.h5 --val_files ./data/c{13,14,15}_*.h5 --dna_model ./models/dna --cpg_model ./models/cpg --joint_model JointL2h512 --train_models joint --out_dir ./models/joint See Also -------- * ``dcpg_eval.py``: For evaluating a trained model and imputing methylation profiles. """ from __future__ import print_function from __future__ import division from collections import OrderedDict import os import random import re import sys import argparse import h5py as h5 import logging import numpy as np import pandas as pd import six from six.moves import range from keras import callbacks as kcbk from keras.models import Model from keras.optimizers import Adam from deepcpg import callbacks as cbk from deepcpg import data as dat from deepcpg import metrics as met from deepcpg import models as mod from deepcpg.models.utils import is_input_layer, is_output_layer from deepcpg.data import hdf, OUTPUT_SEP from deepcpg.utils import format_table, make_dir, EPS LOG_PRECISION = 4 CLA_METRICS = [met.acc] REG_METRICS = [met.mse, met.mae] def remove_outputs(model): while is_output_layer(model.layers[-1], model): model.layers.pop() model.outputs = [model.layers[-1].output] model.layers[-1].outbound_nodes = [] model.output_names = None def rename_layers(model, scope=None): if not scope: scope = model.scope for layer in model.layers: if is_input_layer(layer) or layer.name.startswith(scope): continue layer.name = '%s/%s' % (scope, layer.name) def get_output_stats(output): stats = OrderedDict() output = np.ma.masked_values(output, dat.CPG_NAN) stats['nb_tot'] = len(output) stats['nb_obs'] = np.sum(output != dat.CPG_NAN) stats['frac_obs'] = stats['nb_obs'] / stats['nb_tot'] stats['mean'] = float(np.mean(output)) stats['var'] = float(np.var(output)) return stats def get_output_weights(output_names, weight_patterns): regex_weights = dict() for weight_pattern in weight_patterns: tmp = [tmp.strip() for tmp in weight_pattern.split('=')] if len(tmp) != 2: raise ValueError('Invalid weight pattern "%s"!' % (weight_pattern)) regex_weights[tmp[0]] = float(tmp[1]) output_weights = dict() for output_name in output_names: for regex, weight in six.iteritems(regex_weights): if re.match(regex, output_name): output_weights[output_name] = weight if output_name not in output_weights: output_weights[output_name] = 1.0 return output_weights def get_class_weights(labels, nb_class=None): freq = np.bincount(labels) / len(labels) if nb_class is None: nb_class = len(freq) if len(freq) < nb_class: tmp = np.zeros(nb_class, dtype=freq.dtype) tmp[:len(freq)] = freq freq = tmp weights = 1 / (freq + EPS) weights /= weights.sum() return weights def get_output_class_weights(output_name, output): output = output[output != dat.CPG_NAN] _output_name = output_name.split(OUTPUT_SEP) if _output_name[0] == 'cpg': weights = get_class_weights(output, 2) elif _output_name[-1] == 'cat_var': weights = get_class_weights(output, 3) elif _output_name[-1] in ['cat2_var', 'diff', 'mode']: weights = get_class_weights(output, 2) else: return None weights = OrderedDict(zip(range(len(weights)), weights)) return weights def perf_logs_str(logs): t = logs.to_csv(None, sep='\t', float_format='%.4f', index=False) return t def get_metrics(output_name): _output_name = output_name.split(OUTPUT_SEP) if _output_name[0] == 'cpg': metrics = CLA_METRICS elif _output_name[0] == 'bulk': metrics = REG_METRICS + CLA_METRICS elif _output_name[-1] in ['diff', 'mode', 'cat2_var']: metrics = CLA_METRICS elif _output_name[-1] == 'mean': metrics = REG_METRICS + CLA_METRICS elif _output_name[-1] == 'var': metrics = REG_METRICS elif _output_name[-1] == 'cat_var': metrics = [met.cat_acc] else: raise ValueError('Invalid output name "%s"!' % output_name) return metrics class App(object): def run(self, args): name = os.path.basename(args[0]) parser = self.create_parser(name) opts = parser.parse_args(args[1:]) return self.main(name, opts) def create_parser(self, name): p = argparse.ArgumentParser( prog=name, formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Trains model on DNA (DNA model), neighboring ' 'methylation states (CpG model), or both (Joint model) to predict ' 'CpG methylation of multiple cells.') # IO g = p.add_argument_group('input-output arguments') g.add_argument( 'train_files', nargs='+', help='Training data files') g.add_argument( '--val_files', nargs='+', help='Validation data files') g.add_argument( '-o', '--out_dir', default='./train', help='Output directory') g = p.add_argument_group('arguments to define the model architecture') models = sorted(list(mod.dna.list_models().keys())) g.add_argument( '--dna_model', help='Name of DNA model or files of existing model.' ' Available models: %s' % ', '.join(models), nargs='+') g.add_argument( '--dna_wlen', help='DNA window length', type=int) models = sorted(list(mod.cpg.list_models().keys())) g.add_argument( '--cpg_model', help='Name of CpG model or files of existing model.' ' Available models: %s' % ', '.join(models), nargs='+') g.add_argument( '--cpg_wlen', help='CpG window length', type=int) models = sorted(list(mod.joint.list_models().keys())) g.add_argument( '--joint_model', help='Name of Joint model.' ' Available models: %s' % ', '.join(models), default='JointL2h512') g.add_argument( '--model_files', help='Files of existing model', nargs='+') g = p.add_argument_group('arguments to define which model components ' 'are trained') g.add_argument( '--fine_tune', help='Only train output layers', action='store_true') g.add_argument( '--train_models', help='Only train the specified models', choices=['dna', 'cpg', 'joint'], nargs='+') g.add_argument( '--trainable', help='Regex of layers that should be trained', nargs='+') g.add_argument( '--not_trainable', help='Regex of layers that should not be trained', nargs='+') g.add_argument( '--freeze_filter', help='Exclude filter weights of first convolutional layer from ' 'training', action='store_true') g.add_argument( '--filter_weights', help='HDF5 file with weights to be used for initializing filters', nargs='+') g = p.add_argument_group('training arguments') g.add_argument( '--learning_rate', help='Learning rate', type=float, default=0.0001) g.add_argument( '--learning_rate_decay', help='Exponential learning rate decay factor', type=float, default=0.975) g.add_argument( '--nb_epoch', help='Maximum # training epochs', type=int, default=30) g.add_argument( '--nb_train_sample', help='Maximum # training samples', type=int) g.add_argument( '--nb_val_sample', help='Maximum # validation samples', type=int) g.add_argument( '--batch_size', help='Batch size', type=int, default=128) g.add_argument( '--early_stopping', help='Early stopping patience', type=int, default=5) g.add_argument( '--dropout', help='Dropout rate', type=float, default=0.0) g.add_argument( '--l1_decay', help='L1 weight decay', type=float, default=0.0001) g.add_argument( '--l2_decay', help='L2 weight decay', type=float, default=0.0001) g.add_argument( '--no_tensorboard', help='Do not store Tensorboard summaries', action='store_true') g = p.add_argument_group('arguments to select outputs and weights') g.add_argument( '--output_names', help='Regex to select outputs', nargs='+', default=['cpg/.*']) g.add_argument( '--nb_output', type=int, help='Maximum number of outputs') g.add_argument( '--no_class_weights', help='Do not weight classes', action='store_true') g.add_argument( '--output_weights', help='Output weights defined as a list of `output`=`weight` ' 'patterns, where `output` is a regex of output names, and ' '`weight` the weight that is assigned to them', nargs='+') g.add_argument( '--replicate_names', help='Regex to select replicates', nargs='+') g.add_argument( '--nb_replicate', type=int, help='Maximum number of replicates') g = p.add_argument_group('advanced arguments') g.add_argument( '--max_time', help='Maximum training time in hours', type=float) g.add_argument( '--stop_file', help='File that terminates training if it exists') g.add_argument( '--seed', help='Seed of random number generator', type=int, default=0) g.add_argument( '--no_log_outputs', help='Do not log performance metrics of individual outputs', action='store_true') g.add_argument( '--verbose', help='More detailed log messages', action='store_true') g.add_argument( '--log_file', help='Write log messages to file') g.add_argument( '--data_q_size', help='Size of data generator queue', type=int, default=10) g.add_argument( '--data_nb_worker', help='Number of worker for data generator queue', type=int, default=1) return p def get_callbacks(self): opts = self.opts callbacks = [] if opts.val_files: callbacks.append(kcbk.EarlyStopping( 'val_loss' if opts.val_files else 'loss', patience=opts.early_stopping, verbose=1 )) callbacks.append(kcbk.ModelCheckpoint( os.path.join(opts.out_dir, 'model_weights_train.h5'), save_best_only=False)) monitor = 'val_loss' if opts.val_files else 'loss' callbacks.append(kcbk.ModelCheckpoint( os.path.join(opts.out_dir, 'model_weights_val.h5'), monitor=monitor, save_best_only=True, verbose=1 )) max_time = int(opts.max_time * 3600) if opts.max_time else None callbacks.append(cbk.TrainingStopper( max_time=max_time, stop_file=opts.stop_file, verbose=1 )) def learning_rate_schedule(epoch): lr = opts.learning_rate * opts.learning_rate_decay**epoch print('Learning rate: %.3g' % lr) return lr callbacks.append(kcbk.LearningRateScheduler(learning_rate_schedule)) def save_lc(epoch, epoch_logs, val_epoch_logs): logs = {'lc_train.tsv': epoch_logs, 'lc_val.tsv': val_epoch_logs} for name, logs in six.iteritems(logs): if not logs: continue logs = pd.DataFrame(logs) with open(os.path.join(opts.out_dir, name), 'w') as f: f.write(perf_logs_str(logs)) metrics = OrderedDict() for metric_funs in six.itervalues(self.metrics): for metric_fun in metric_funs: metrics[metric_fun.__name__] = True metrics = ['loss'] + list(metrics.keys()) self.perf_logger = cbk.PerformanceLogger( callbacks=[save_lc], metrics=metrics, precision=LOG_PRECISION, verbose=not opts.no_log_outputs ) callbacks.append(self.perf_logger) if not opts.no_tensorboard: callbacks.append(kcbk.TensorBoard( log_dir=opts.out_dir, histogram_freq=0, write_graph=True, write_images=True )) return callbacks def print_output_stats(self, output_stats): table = OrderedDict() for name, stats in six.iteritems(output_stats): table.setdefault('name', []).append(name) for key in stats: table.setdefault(key, []).append(stats[key]) print('Output statistics:') print(format_table(table)) print() def print_class_weights(self, class_weights): table = OrderedDict() for name, class_weight in six.iteritems(class_weights): if not class_weight: continue column = [] for cla, weight in six.iteritems(class_weight): column.append('%s=%.2f' % (cla, weight)) table[name] = column if table: print('Class weights:') print(format_table(table)) print() def build_dna_model(self): opts = self.opts log = self.log if os.path.exists(opts.dna_model[0]): log.info('Loading existing DNA model ...') dna_model = mod.load_model(opts.dna_model, log=log.info) remove_outputs(dna_model) rename_layers(dna_model, 'dna') else: log.info('Building DNA model ...') dna_model_builder = mod.dna.get(opts.dna_model[0])( l1_decay=opts.l1_decay, l2_decay=opts.l2_decay, dropout=opts.dropout) dna_wlen = dat.get_dna_wlen(opts.train_files[0], opts.dna_wlen) dna_inputs = dna_model_builder.inputs(dna_wlen) dna_model = dna_model_builder(dna_inputs) return dna_model def build_cpg_model(self): opts = self.opts log = self.log replicate_names = dat.get_replicate_names( opts.train_files[0], regex=opts.replicate_names, nb_key=opts.nb_replicate) if not replicate_names: raise ValueError('No replicates found!') print('Replicate names:') print(', '.join(replicate_names)) print() cpg_wlen = dat.get_cpg_wlen(opts.train_files[0], opts.cpg_wlen) if os.path.exists(opts.cpg_model[0]): log.info('Loading existing CpG model ...') src_cpg_model = mod.load_model(opts.cpg_model, log=log.info) remove_outputs(src_cpg_model) rename_layers(src_cpg_model, 'cpg') nb_replicate = src_cpg_model.input_shape[0][1] if nb_replicate != len(replicate_names): tmp = 'CpG model was trained with %d replicates but %d' 'replicates provided. Copying weight to new model ...' tmp %= (nb_replicate, len(replicate_names)) log.info('Replicate names differ: ' 'Copying weights to new model ...') cpg_model_builder = mod.cpg.get(src_cpg_model.name)( l1_decay=opts.l1_decay, l2_decay=opts.l2_decay, dropout=opts.dropout) cpg_inputs = cpg_model_builder.inputs(cpg_wlen, replicate_names) cpg_model = cpg_model_builder(cpg_inputs) mod.copy_weights(src_cpg_model, cpg_model) else: cpg_model = src_cpg_model else: log.info('Building CpG model ...') cpg_model_builder = mod.cpg.get(opts.cpg_model[0])( l1_decay=opts.l1_decay, l2_decay=opts.l2_decay, dropout=opts.dropout) cpg_inputs = cpg_model_builder.inputs(cpg_wlen, replicate_names) cpg_model = cpg_model_builder(cpg_inputs) return cpg_model def build_model(self): opts = self.opts log = self.log output_names = dat.get_output_names(opts.train_files[0], regex=opts.output_names, nb_key=opts.nb_output) if not output_names: raise ValueError('No outputs found!') dna_model = None if opts.dna_model: dna_model = self.build_dna_model() cpg_model = None if opts.cpg_model: cpg_model = self.build_cpg_model() if dna_model is not None and cpg_model is not None: log.info('Joining models ...') joint_model_builder = mod.joint.get(opts.joint_model)( l1_decay=opts.l1_decay, l2_decay=opts.l2_decay, dropout=opts.dropout) stem = joint_model_builder([dna_model, cpg_model]) stem.name = '_'.join([stem.name, dna_model.name, cpg_model.name]) elif dna_model is not None: stem = dna_model elif cpg_model is not None: stem = cpg_model else: log.info('Loading existing model ...') stem = mod.load_model(opts.model_files, log=log.info) if sorted(output_names) == sorted(stem.output_names): return stem log.info('Removing existing output layers ...') remove_outputs(stem) outputs = mod.add_output_layers(stem.outputs[0], output_names) model = Model(inputs=stem.inputs, outputs=outputs, name=stem.name) return model def set_trainability(self, model): opts = self.opts trainable = [] not_trainable = [] if opts.fine_tune: not_trainable.append('.*') elif opts.train_models: not_trainable.append('.*') for name in opts.train_models: trainable.append('%s/' % name) if opts.freeze_filter: not_trainable.append(mod.get_first_conv_layer(model.layers).name) if not trainable and opts.trainable: trainable = opts.trainable if not not_trainable and opts.not_trainable: not_trainable = opts.not_trainable if not trainable and not not_trainable: return table = OrderedDict() table['layer'] = [] table['trainable'] = [] for layer in model.layers: if is_input_layer(layer) or is_output_layer(layer, model): continue if not hasattr(layer, 'trainable'): continue for regex in not_trainable: if re.match(regex, layer.name): layer.trainable = False for regex in trainable: if re.match(regex, layer.name): layer.trainable = True table['layer'].append(layer.name) table['trainable'].append(layer.trainable) print('Layer trainability:') print(format_table(table)) print() def init_filter_weights(self, filename, conv_layer): h5_file = h5.File(filename[0], 'r') group = h5_file if len(filename) > 1: group = h5_file[filename[1]] weights = group['weights'].value bias = None if 'bias' in group: bias = group['bias'].value h5_file.close() assert weights.ndim == 4 if weights.shape[1] != 1: weights = weights[:, :, :, 0] weights = np.swapaxes(weights, 0, 2) weights = np.expand_dims(weights, 1) # filter_size x 1 x 4 x nb_filter cur_weights, cur_bias = conv_layer.get_weights() # Adapt number of filters tmp = min(weights.shape[-1], cur_weights.shape[-1]) weights = weights[:, :, :, :tmp] # Adapt filter size if len(weights) > len(cur_weights): # Truncate weights idx = (len(weights) - len(cur_weights)) // 2 weights = weights[idx:(idx + len(cur_weights))] elif len(weights) < len(cur_weights): # Pad weights shape = [len(cur_weights)] + list(weights.shape[1:]) pad_weights = np.random.uniform(0, 1, shape) * 1e-2 idx = (len(cur_weights) - len(weights)) // 2 pad_weights[idx:(idx + len(weights))] = weights weights = pad_weights assert np.all(weights.shape[:-1] == cur_weights.shape[:-1]) cur_weights[:, :, :, :weights.shape[-1]] = weights if bias is not None: bias = bias[:len(cur_bias)] cur_bias[:len(bias)] = bias conv_layer.set_weights((cur_weights, cur_bias)) print('%d filters initialized' % weights.shape[-1]) def main(self, name, opts): logging.basicConfig(filename=opts.log_file, format='%(levelname)s (%(asctime)s): %(message)s') log = logging.getLogger(name) if opts.verbose: log.setLevel(logging.DEBUG) else: log.setLevel(logging.INFO) if opts.seed is not None: np.random.seed(opts.seed) random.seed(opts.seed) self.log = log self.opts = opts make_dir(opts.out_dir) log.info('Building model ...') model = self.build_model() model.summary() self.set_trainability(model) if opts.filter_weights: conv_layer = mod.get_first_conv_layer(model.layers) log.info('Initializing filters of %s ...' % conv_layer.name) self.init_filter_weights(opts.filter_weights, conv_layer) mod.save_model(model, os.path.join(opts.out_dir, 'model.json')) log.info('Computing output statistics ...') output_names = model.output_names output_stats = OrderedDict() if opts.no_class_weights: class_weights = None else: class_weights = OrderedDict() for name in output_names: output = hdf.read(opts.train_files, 'outputs/%s' % name, nb_sample=opts.nb_train_sample) output = list(output.values())[0] output_stats[name] = get_output_stats(output) if class_weights is not None: class_weights[name] = get_output_class_weights(name, output) self.print_output_stats(output_stats) if class_weights: self.print_class_weights(class_weights) output_weights = None if opts.output_weights: log.info('Initializing output weights ...') output_weights = get_output_weights(output_names, opts.output_weights) print('Output weights:') for output_name in output_names: if output_name in output_weights: print('%s: %.2f' % (output_name, output_weights[output_name])) print() self.metrics = dict() for output_name in output_names: self.metrics[output_name] = get_metrics(output_name) optimizer = Adam(lr=opts.learning_rate) model.compile(optimizer=optimizer, loss=mod.get_objectives(output_names), loss_weights=output_weights, metrics=self.metrics) log.info('Loading data ...') replicate_names = dat.get_replicate_names( opts.train_files[0], regex=opts.replicate_names, nb_key=opts.nb_replicate) data_reader = mod.data_reader_from_model( model, replicate_names=replicate_names) nb_train_sample = dat.get_nb_sample(opts.train_files, opts.nb_train_sample) train_data = data_reader(opts.train_files, class_weights=class_weights, batch_size=opts.batch_size, nb_sample=nb_train_sample, shuffle=True, loop=True) if opts.val_files: nb_val_sample = dat.get_nb_sample(opts.val_files, opts.nb_val_sample) val_data = data_reader(opts.val_files, batch_size=opts.batch_size, nb_sample=nb_val_sample, shuffle=False, loop=True) else: val_data = None nb_val_sample = None log.info('Initializing callbacks ...') callbacks = self.get_callbacks() log.info('Training model ...') print() print('Training samples: %d' % nb_train_sample) if nb_val_sample: print('Validation samples: %d' % nb_val_sample) model.fit_generator( train_data, steps_per_epoch=nb_train_sample // opts.batch_size, epochs=opts.nb_epoch, callbacks=callbacks, validation_data=val_data, validation_steps=nb_val_sample // opts.batch_size, max_queue_size=opts.data_q_size, workers=opts.data_nb_worker, verbose=0) print('\nTraining set performance:') print(format_table(self.perf_logger.epoch_logs, precision=LOG_PRECISION)) if self.perf_logger.val_epoch_logs: print('\nValidation set performance:') print(format_table(self.perf_logger.val_epoch_logs, precision=LOG_PRECISION)) # Restore model with highest validation performance filename = os.path.join(opts.out_dir, 'model_weights_val.h5') if os.path.isfile(filename): model.load_weights(filename) # Delete metrics since they cause problems when loading the model # from HDF5 file. Metrics can be loaded from json + weights file. model.metrics = None model.metrics_names = None model.metrics_tensors = None model.save(os.path.join(opts.out_dir, 'model.h5')) log.info('Done!') return 0 if __name__ == '__main__': app = App() app.run(sys.argv)
mit
Arn-O/kadenze-deep-creative-apps
session-4/libs/inception.py
13
4890
""" Creative Applications of Deep Learning w/ Tensorflow. Kadenze, Inc. Copyright Parag K. Mital, June 2016. """ import os import numpy as np from tensorflow.python.platform import gfile import tensorflow as tf import matplotlib.pyplot as plt from skimage.transform import resize as imresize from .utils import download_and_extract_tar, download_and_extract_zip def inception_download(data_dir='inception', version='v5'): """Download a pretrained inception network. Parameters ---------- data_dir : str, optional Location of the pretrained inception network download. version : str, optional Version of the model: ['v3'] or 'v5'. """ if version == 'v3': download_and_extract_tar( 'https://s3.amazonaws.com/cadl/models/inception-2015-12-05.tgz', data_dir) return (os.path.join(data_dir, 'classify_image_graph_def.pb'), os.path.join(data_dir, 'imagenet_synset_to_human_label_map.txt')) else: download_and_extract_zip( 'https://s3.amazonaws.com/cadl/models/inception5h.zip', data_dir) return (os.path.join(data_dir, 'tensorflow_inception_graph.pb'), os.path.join(data_dir, 'imagenet_comp_graph_label_strings.txt')) def get_inception_model(data_dir='inception', version='v5'): """Get a pretrained inception network. Parameters ---------- data_dir : str, optional Location of the pretrained inception network download. version : str, optional Version of the model: ['v3'] or 'v5'. Returns ------- net : dict {'graph_def': graph_def, 'labels': synsets} where the graph_def is a tf.GraphDef and the synsets map an integer label from 0-1000 to a list of names """ # Download the trained net model, labels = inception_download(data_dir, version) # Parse the ids and synsets txt = open(labels).readlines() synsets = [(key, val.strip()) for key, val in enumerate(txt)] # Load the saved graph with gfile.GFile(model, 'rb') as f: graph_def = tf.GraphDef() try: graph_def.ParseFromString(f.read()) except: print('try adding PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python' + 'to environment. e.g.:\n' + 'PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python ipython\n' + 'See here for info: ' + 'https://github.com/tensorflow/tensorflow/issues/582') return { 'graph_def': graph_def, 'labels': synsets, 'preprocess': preprocess, 'deprocess': deprocess } def preprocess(img, crop=True, resize=True, dsize=(299, 299)): if img.dtype != np.uint8: img *= 255.0 if crop: crop = np.min(img.shape[:2]) r = (img.shape[0] - crop) // 2 c = (img.shape[1] - crop) // 2 cropped = img[r: r + crop, c: c + crop] else: cropped = img if resize: rsz = imresize(cropped, dsize, preserve_range=True) else: rsz = cropped if rsz.ndim == 2: rsz = rsz[..., np.newaxis] rsz = rsz.astype(np.float32) # subtract imagenet mean return (rsz - 117) def deprocess(img): return np.clip(img + 117, 0, 255).astype(np.uint8) def test_inception(): """Loads the inception network and applies it to a test image. """ with tf.Session() as sess: net = get_inception_model() tf.import_graph_def(net['graph_def'], name='inception') g = tf.get_default_graph() names = [op.name for op in g.get_operations()] x = g.get_tensor_by_name(names[0] + ':0') softmax = g.get_tensor_by_name(names[-3] + ':0') from skimage import data img = preprocess(data.coffee())[np.newaxis] res = np.squeeze(softmax.eval(feed_dict={x: img})) print([(res[idx], net['labels'][idx]) for idx in res.argsort()[-5:][::-1]]) """Let's visualize the network's gradient activation when backpropagated to the original input image. This is effectively telling us which pixels contribute to the predicted class or given neuron""" pools = [name for name in names if 'pool' in name.split('/')[-1]] fig, axs = plt.subplots(1, len(pools)) for pool_i, poolname in enumerate(pools): pool = g.get_tensor_by_name(poolname + ':0') pool.get_shape() neuron = tf.reduce_max(pool, 1) saliency = tf.gradients(neuron, x) neuron_idx = tf.arg_max(pool, 1) this_res = sess.run([saliency[0], neuron_idx], feed_dict={x: img}) grad = this_res[0][0] / np.max(np.abs(this_res[0])) axs[pool_i].imshow((grad * 128 + 128).astype(np.uint8)) axs[pool_i].set_title(poolname)
apache-2.0
zorojean/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
slizb/swag-bag
python/swagbag/precompute_colors.py
1
2390
import json import pandas as pd import numpy as np # todo: scrape ncaa teams from here http://dynasties.operationsports.com/team-colors.php?sport=ncaa # todo: hook in colormath def hex_to_rgb(value): lv = len(value) rgb_list = [int(value[i:i + lv // 3], 16) for i in range(0, lv, lv // 3)] rgb_str = ' '.join(str(x) for x in rgb_list) return rgb_str def add_hash_to_hex_codes(hex_list): hashed = [] for i, unhashed in enumerate(hex_list): hashed.append('#' + unhashed) return hashed def rgb_to_hex(rgb_string): red, green, blue = unpack_rgb(rgb_string) return '%02x%02x%02x' % (red, green, blue) def unpack_rgb(rgb_string): rgb_list = rgb_string.split() red = int(rgb_list[0]) green = int(rgb_list[1]) blue = int(rgb_list[2]) return (red, green, blue) def rgb_to_cmyk(rgb_string): # formula taken from http://www.rapidtables.com/convert/color/rgb-to-cmyk.htm red, green, blue = unpack_rgb(rgb_string) r = red / 255 g = green / 255 b = blue / 255 if r == 0 and g == 0 and b == 0: c = m = y = k = 0 else: k = 1 - max(r, g, b) c = (1 - r - k) / (1 - k) * 100 m = (1 - g - k) / (1 - k) * 100 y = (1 - b - k) / (1 - k) * 100 cmyk_string = ' '.join([str(c), str(m), str(y), str(k)]) return cmyk_string def fill_color_styles(): with open('../data/teams.json') as data_file: data = json.load(data_file) df = pd.DataFrame(data) df['hex'] = np.nan df['rgb'] = np.nan df['cmyk'] = np.nan for i, row in enumerate(df.colors): # hex try: df.hex[i] = row['hex'] except KeyError: hex_conversion = [rgb_to_hex(r) for r in row['rgb']] df.hex[i] = hex_conversion # rgb try: df.rgb[i] = row['rgb'] except KeyError: rgb_conversion = [hex_to_rgb(h) for h in row['hex']] df.rgb[i] = rgb_conversion # cmyk try: df.cmyk[i] = row['cmyk'] except KeyError: cmyk_conversion = [rgb_to_cmyk(r) for r in df.rgb[i]] df.cmyk[i] = cmyk_conversion df = df.drop('colors', axis=1) df['hex'] = df['hex'].apply(lambda x: add_hash_to_hex_codes(x)) df.to_pickle('../data/team_color_frame.pkl') if __name__ == "__main__": fill_color_styles()
mit
nhuntwalker/astroML
book_figures/chapter6/fig_great_wall_KDE.py
3
5422
""" Great Wall KDE -------------- Figure 6.3 Kernel density estimation for galaxies within the SDSS "Great Wall." The top-left panel shows points that are galaxies, projected by their spatial locations (right ascension and distance determined from redshift measurement) onto the equatorial plane (declination ~ 0 degrees). The remaining panels show estimates of the density of these points using kernel density estimation with a Gaussian kernel (upper right), a top-hat kernel (lower left), and an exponential kernel (lower right). Compare also to figure 6.4. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from scipy.spatial import cKDTree from scipy.stats import gaussian_kde from astroML.datasets import fetch_great_wall # Scikit-learn 0.14 added sklearn.neighbors.KernelDensity, which is a very # fast kernel density estimator based on a KD Tree. We'll use this if # available (and raise a warning if it isn't). try: from sklearn.neighbors import KernelDensity use_sklearn_KDE = True except: import warnings warnings.warn("KDE will be removed in astroML version 0.3. Please " "upgrade to scikit-learn 0.14+ and use " "sklearn.neighbors.KernelDensity.", DeprecationWarning) from astroML.density_estimation import KDE use_sklearn_KDE = False #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the great wall data X = fetch_great_wall() #------------------------------------------------------------ # Create the grid on which to evaluate the results Nx = 50 Ny = 125 xmin, xmax = (-375, -175) ymin, ymax = (-300, 200) #------------------------------------------------------------ # Evaluate for several models Xgrid = np.vstack(map(np.ravel, np.meshgrid(np.linspace(xmin, xmax, Nx), np.linspace(ymin, ymax, Ny)))).T kernels = ['gaussian', 'tophat', 'exponential'] dens = [] if use_sklearn_KDE: kde1 = KernelDensity(5, kernel='gaussian') log_dens1 = kde1.fit(X).score_samples(Xgrid) dens1 = X.shape[0] * np.exp(log_dens1).reshape((Ny, Nx)) kde2 = KernelDensity(5, kernel='tophat') log_dens2 = kde2.fit(X).score_samples(Xgrid) dens2 = X.shape[0] * np.exp(log_dens2).reshape((Ny, Nx)) kde3 = KernelDensity(5, kernel='exponential') log_dens3 = kde3.fit(X).score_samples(Xgrid) dens3 = X.shape[0] * np.exp(log_dens3).reshape((Ny, Nx)) else: kde1 = KDE(metric='gaussian', h=5) dens1 = kde1.fit(X).eval(Xgrid).reshape((Ny, Nx)) kde2 = KDE(metric='tophat', h=5) dens2 = kde2.fit(X).eval(Xgrid).reshape((Ny, Nx)) kde3 = KDE(metric='exponential', h=5) dens3 = kde3.fit(X).eval(Xgrid).reshape((Ny, Nx)) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 2.2)) fig.subplots_adjust(left=0.12, right=0.95, bottom=0.2, top=0.9, hspace=0.01, wspace=0.01) # First plot: scatter the points ax1 = plt.subplot(221, aspect='equal') ax1.scatter(X[:, 1], X[:, 0], s=1, lw=0, c='k') ax1.text(0.95, 0.9, "input", ha='right', va='top', transform=ax1.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Second plot: gaussian kernel ax2 = plt.subplot(222, aspect='equal') ax2.imshow(dens1.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax2.text(0.95, 0.9, "Gaussian $(h=5)$", ha='right', va='top', transform=ax2.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Third plot: top-hat kernel ax3 = plt.subplot(223, aspect='equal') ax3.imshow(dens2.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax3.text(0.95, 0.9, "top-hat $(h=5)$", ha='right', va='top', transform=ax3.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) ax3.images[0].set_clim(0.01, 0.8) # Fourth plot: exponential kernel ax4 = plt.subplot(224, aspect='equal') ax4.imshow(dens3.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax4.text(0.95, 0.9, "exponential $(h=5)$", ha='right', va='top', transform=ax4.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) for ax in [ax1, ax2, ax3, ax4]: ax.set_xlim(ymin, ymax - 0.01) ax.set_ylim(xmin, xmax) for ax in [ax1, ax2]: ax.xaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax3, ax4]: ax.set_xlabel('$y$ (Mpc)') for ax in [ax2, ax4]: ax.yaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax1, ax3]: ax.set_ylabel('$x$ (Mpc)') plt.show()
bsd-2-clause
mfjb/scikit-learn
sklearn/learning_curve.py
27
13650
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <example_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <example_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
fraricci/pymatgen
pymatgen/apps/battery/plotter.py
5
3385
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides plotting capabilities for battery related applications. """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "Jul 12, 2012" from collections import OrderedDict from pymatgen.util.plotting import pretty_plot class VoltageProfilePlotter: """ A plotter to make voltage profile plots for batteries. Args: xaxis: The quantity to use as the xaxis. Can be either capacity (the default), or the frac_x. """ def __init__(self, xaxis="capacity"): self._electrodes = OrderedDict() self.xaxis = xaxis def add_electrode(self, electrode, label=None): """ Add an electrode to the plot. Args: electrode: An electrode. All electrodes satisfying the AbstractElectrode interface should work. label: A label for the electrode. If None, defaults to a counting system, i.e. 'Electrode 1', 'Electrode 2', ... """ if not label: label = "Electrode {}".format(len(self._electrodes) + 1) self._electrodes[label] = electrode def get_plot_data(self, electrode): x = [] y = [] cap = 0 most_discharged = electrode[-1].frac_discharge norm = most_discharged / (1 - most_discharged) for vpair in electrode: if self.xaxis == "capacity": x.append(cap) cap += vpair.mAh / electrode.normalization_mass x.append(cap) else: x.append(vpair.frac_charge / (1 - vpair.frac_charge) / norm) x.append(vpair.frac_discharge / (1 - vpair.frac_discharge) / norm) y.extend([vpair.voltage] * 2) x.append(x[-1]) y.append(0) return x, y def get_plot(self, width=8, height=8): """ Returns a plot object. Args: width: Width of the plot. Defaults to 8 in. height: Height of the plot. Defaults to 6 in. Returns: A matplotlib plot object. """ plt = pretty_plot(width, height) for label, electrode in self._electrodes.items(): (x, y) = self.get_plot_data(electrode) plt.plot(x, y, '-', linewidth=2, label=label) plt.legend() if self.xaxis == "capacity": plt.xlabel('Capacity (mAh/g)') else: plt.xlabel('Fraction') plt.ylabel('Voltage (V)') plt.tight_layout() return plt def show(self, width=8, height=6): """ Show the voltage profile plot. Args: width: Width of the plot. Defaults to 8 in. height: Height of the plot. Defaults to 6 in. """ self.get_plot(width, height).show() def save(self, filename, image_format="eps", width=8, height=6): """ Save the plot to an image file. Args: filename: Filename to save to. image_format: Format to save to. Defaults to eps. """ self.get_plot(width, height).savefig(filename, format=image_format)
mit
laurent-george/bokeh
examples/compat/mpl/polycollection.py
34
1276
from matplotlib.collections import PolyCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show # Generate data. In this case, we'll make a bunch of center-points and generate # verticies by subtracting random offsets from those center-points numpoly, numverts = 100, 4 centers = 100 * (np.random.random((numpoly, 2)) - 0.5) offsets = 10 * (np.random.random((numverts, numpoly, 2)) - 0.5) verts = centers + offsets verts = np.swapaxes(verts, 0, 1) # In your case, "verts" might be something like: # verts = zip(zip(lon1, lat1), zip(lon2, lat2), ...) # If "data" in your case is a numpy array, there are cleaner ways to reorder # things to suit. facecolors = ['red', 'green', 'blue', 'cyan', 'yellow', 'magenta', 'black'] edgecolors = ['cyan', 'yellow', 'magenta', 'black', 'red', 'green', 'blue'] widths = [5, 10, 20, 10, 5] # Make the collection and add it to the plot. col = PolyCollection(verts, facecolor=facecolors, edgecolor=edgecolors, linewidth=widths, linestyle='--', alpha=0.5) ax = plt.axes() ax.add_collection(col) plt.xlim([-60, 60]) plt.ylim([-60, 60]) plt.title("MPL-PolyCollection support in Bokeh") output_file("polycollection.html") show(mpl.to_bokeh())
bsd-3-clause
glennq/scikit-learn
sklearn/semi_supervised/label_propagation.py
39
16726
# coding=utf8 """ Label propagation in the context of this module refers to a set of semi-supervised classification algorithms. At a high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supports RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # License: BSD from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from ..base import BaseEstimator, ClassifierMixin from ..externals import six from ..metrics.pairwise import rbf_kernel from ..neighbors.unsupervised import NearestNeighbors from ..utils.extmath import safe_sparse_dot from ..utils.graph import graph_laplacian from ..utils.multiclass import check_classification_targets from ..utils.validation import check_X_y, check_is_fitted, check_array # Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3, n_jobs=1): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha self.n_jobs = n_jobs def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors, n_jobs=self.n_jobs).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) elif callable(self.kernel): if y is None: return self.kernel(X, X) else: return self.kernel(X, y) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " or an explicit function " " are supported at this time." % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') X_2d = check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia']) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3, n_jobs=1): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
liangz0707/scikit-learn
examples/ensemble/plot_partial_dependence.py
249
4456
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show()
bsd-3-clause
loopdigga98/quora-kaggle
models/keras_predict.py
1
6001
# coding: utf-8 # In[1]: # fit word2vec on full/test questions # fit tokenizer on full/test questions # In[2]: import pandas as pd import numpy as np import seaborn as sns import nltk import sklearn as sk from sklearn.feature_extraction.text import TfidfVectorizer from keras.models import Sequential from keras.layers import Dense, Input, Flatten from keras.layers import Conv1D, MaxPooling1D, Embedding from keras.models import Model from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import load_model from sklearn.model_selection import train_test_split from sklearn.metrics import log_loss, accuracy_score from nltk.corpus import stopwords import gensim, logging import json import os.path MAX_NUM_WORDS = 125 # In[3]: def submit(y_pred, test, filename): sub = pd.DataFrame() sub = pd.DataFrame() sub['test_id'] = test['test_id'] sub['is_duplicate'] = y_pred sub.to_csv(filename, index=False) def save_sparse_csr(filename,array): np.savez(filename,data = array.data ,indices=array.indices, indptr =array.indptr, shape=array.shape ) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix(( loader['data'], loader['indices'], loader['indptr']), shape = loader['shape']) def correct_dataset(dataset): dataset.loc[(dataset['question1'] == dataset['question2']), 'is_duplicate'] = 1 return dataset def process_dataset(dataset, correct_dataset=False): dataset['question1'].fillna(' ', inplace=True) dataset['question2'].fillna(' ', inplace=True) #delete punctuation dataset['question1'] = dataset['question1'].str.replace('[^\w\s]','') dataset['question2'] = dataset['question2'].str.replace('[^\w\s]','') #lower questions dataset['question1'] = dataset['question1'].str.lower() dataset['question2'] = dataset['question2'].str.lower() #union questions dataset['union'] = pd.Series(dataset['question1']).str.cat(dataset['question2'], sep=' ') if correct_dataset: return correct_dataset(dataset) else: return dataset def split_and_rem_stop_words(line): cachedStopWords = stopwords.words("english") return [word for word in line.split() if word not in cachedStopWords] def create_word_to_vec(sentences, embedding_path, verbose=0, save=1, **params_for_w2v): if verbose: logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) model = gensim.models.Word2Vec(sentences, **params_for_w2v) if save: model.save(embedding_path) return model def create_embeddings(sentences, embeddings_path='embeddings/embedding.npz', verbose=0, **params): """ Generate embeddings from a batch of text :param embeddings_path: where to save the embeddings :param vocab_path: where to save the word-index map """ if verbose: logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) model = gensim.models.Word2Vec(sentences, **params) weights = model.wv.syn0 np.save(open(embeddings_path, 'wb'), weights) def load_vocab(vocab_path): """ Load word -> index and index -> word mappings :param vocab_path: where the word-index map is saved :return: word2idx, idx2word """ with open(vocab_path, 'r') as f: data = json.loads(f.read()) word2idx = data idx2word = dict([(v, k) for k, v in data.items()]) return word2idx, idx2word def get_word2vec_embedding_layer(embeddings_path): """ Generate an embedding layer word2vec embeddings :param embeddings_path: where the embeddings are saved (as a numpy file) :return: the generated embedding layer """ weights = np.load(open(embeddings_path, 'rb')) layer = Embedding(input_dim=weights.shape[0], output_dim=weights.shape[1], weights=[weights], trainable=False) return layer # In[4]: #Load train print 'Loading datasets' if os.path.isfile('dataframes/train.h5'): train = pd.read_pickle('dataframes/train.h5') else: train = pd.read_csv('../datasets/train.csv') train = process_dataset(train) train['union_splitted'] = train['union'].apply(lambda sentence: split_and_rem_stop_words(sentence)) train.to_pickle('dataframes/train.h5') # In[5]: # Load test if all([os.path.isfile('dataframes/test_0.h5'), os.path.isfile('dataframes/test_1.h5'), os.path.isfile('dataframes/test_2.h5'), os.path.isfile('dataframes/test_3.h5')]): test = pd.read_csv('../datasets/test.csv') test = process_dataset(test) # test_0 = pd.read_pickle('dataframes/test_0.h5') # test_1 = pd.read_pickle('dataframes/test_1.h5') # test_2 = pd.read_pickle('dataframes/test_2.h5') # test_3 = pd.read_pickle('dataframes/test_3.h5') # test_0.columns = ['union_splitted'] # test_1.columns = ['union_splitted'] # test_2.columns = ['union_splitted'] # test_3.columns = ['union_splitted'] # test_full_splitted = test_0.append( # test_1.append( # test_2.append( # test_3))) # test['union_splitted'] = test_full_splitted['union_splitted'].values else: print 'Not enough files for test' # In[ ]: print 'Tokenizing' #Tokenize test tokenizer = Tokenizer(nb_words=MAX_NUM_WORDS, split=' ') tokenizer.fit_on_texts(train['union']) sequences = tokenizer.texts_to_sequences(test['union']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) X_test = pad_sequences(sequences, maxlen=MAX_NUM_WORDS) print('Shape of data tensor:', X_test.shape) # In[9]: #Load model model = load_model('keras_models/new_model_6_epochs.h5') # In[ ]: #predict y_preds = model.predict(X_test, batch_size=128, verbose=1) submit(y_preds, test, '../submissions/keras_6_epochs_1_dropout.csv')
apache-2.0
craigulmer/airline-plotters
gap_plot.py
1
5452
# This plotter is a tool for discovering locations where there isn't # much coverage. It inspects each flight and looks for segments that # had a longer travel time than we expected. If the duration is above # a threshold, we plot the segment. # # eg. if you grabbed data every 6 minutes, you'd hope that each segment # in a track would be about 6 minutes (plus some for extra for book # keeping). If a segment was 12 or 18 minutes, you'd suspect that # 2 or 3 samples were missing. import sys from math import * from collections import defaultdict import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from numpy import * import gzip import bz2 # Globals crop_region='world' #'usa_main' #sfbay, world, ukraine #color='b' #Line color. Can also do '-ob' for line w/ points alpha='0.09' #How faint to make the line. resolution='l' #Set level-of-detail on maps: c,l,h linewidth=1.0 #How thick to make the line sampleperiod=400 #every 6minutes with some gap num_periods=4 altitude_thresh=1000.0 #ignore everything below this height # Parse our wkt (well-known text) format. Technically, I think we're not # wkt compliant because our individual data values are # (lon, lat, alt, seconds_since_epoc). Other parsers seem to choke on # more than 2 or 3 values, which seems simple-minded to me. def parseWkt(s): s2 = s.replace("LINESTRING (","").replace(")",""); vals = s2.split(",") array2d = [[float(digit) for digit in line.split()] for line in vals] return array2d; # Computing distance based on coordinates isn't easy. Remember, lon # gets smaller as you get near the poles. Haversine is the standard # op people do to convert to angles and map to distance. This version is # all based at sea level, and doesn't take into account altitude. def haversine(lon1, lat1, lon2, lat2): degree_to_rad = float(pi/180.0) d_lat = (lat2 - lat1) * degree_to_rad d_lon = (lon2 - lon1) * degree_to_rad a=pow(sin(d_lat/2),2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_lon/2),2) c=2*atan2(sqrt(a),sqrt(1-a)) mi = 3956 * c return mi if len(sys.argv) > 1: filename = sys.argv[1] else: filename = raw_input('Enter data filename: ') # Set up the plt window fig = plt.figure() ax=fig.add_axes([0.1,0.1,0.8,0.8]) # Some regions of interest lon1,lat1, lon2,lat2 lims = defaultdict(list) lims['sfbay'] = [-126.0, 36.0, -119.0, 40.0] lims['ukraine'] = [ 19.0, 42.0, 43.0, 54.0] lims['mediterranean'] = [ -70.0, 5.0, 75.0, 55.0] lims['world'] = [-180.0,-60.0, 180.0, 80.0] lims['nscamerica'] = [-180.0,-60.0, -30.0, 80.0] lims['usa_con'] = [-175.0, 24.0, -40.0, 72.0] lims['usa_main'] = [-130.0, 23.0, -62.0, 50.0] lm = lims[crop_region] m = Basemap(projection='merc', lat_0 = 0, lon_0 = 0, lat_ts=20., resolution = resolution, area_thresh = 0.1, llcrnrlon=lm[0], llcrnrlat=lm[1], urcrnrlon=lm[2], urcrnrlat=lm[3]) # Map options #m.bluemarble() #Use images for backgound. Hard to see routes m.drawlsmask() #Nice grey outlines #m.drawcoastlines(linewidth=0.2) #Unfortunately, has lakes too m.drawcountries() #plt.show() #Just to test out lengths=[] start_loc=[] val=0; toss_count=0 if filename.endswith(".gz"): file = gzip.open(filename) elif filename.endswith(".bz2"): file = bz2.BZ2File(filename) else: file = open(filename) for line in file: #print line (np,tag,swkt)=line.split('\t'); (plane,airline,src,dst)=tag.split('|') #if(np<4): # continue data = parseWkt(swkt) d=0.0 dist=[] alt=[] speed=[] for i in range(len(data)): if (i==0): continue lon1=data[i][0] lon2=data[i-1][0] lat1=data[i][1] lat2=data[i-1][1] mi = haversine(lon1, lat1, lon2, lat2) t=data[i][3]-data[i-1][3] #Look for segments that were longer than a certain #duration, and were actually in the air #if((t>2*sampleperiod) and (t<4*sampleperiod) if 0: # Try plotting good and bad using different colors color='b' if((t>=num_periods*sampleperiod) and (data[i-1][2]>altitude_thresh) and (data[i][2]>altitude_thresh)): color='r' tmpx=(data[i-1][0], data[i][0]) if( abs(tmpx[1]-tmpx[0]) < 180.0): tmpy=(data[i-1][1], data[i][1]) mx,my=m(tmpx,tmpy) m.plot(mx, my, color, alpha=alpha, lw=linewidth) else: if((t>=num_periods*sampleperiod) and (data[i-1][2]>altitude_thresh) and (data[i][2]>altitude_thresh)): color='r' tmpx=(data[i-1][0], data[i][0]) if( abs(tmpx[1]-tmpx[0]) < 180.0): tmpy=(data[i-1][1], data[i][1]) mx,my=m(tmpx,tmpy) m.plot(mx, my, color, alpha=alpha, lw=linewidth) if(t==0): print "Bad time at ",i t=1 mph = (3600.0*mi)/t d=d+mi dmi=d #d*0.000189394; dist.append(dmi) alt.append(data[i][2]/5280.0) speed.append(mph) lengths.append(dmi) speed_max=max(speed) val=val+1 #if(val>100): # break plt.show()
mit
zhenv5/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
ARM-software/lisa
external/workload-automation/wa/workloads/deepbench/__init__.py
5
5650
# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=E1101,W0201 import os import re import pandas as pd from wa import Workload, Parameter, Alias, Executable from wa.utils.types import numeric class Deepbench(Workload): name = 'deepbench' description = """ Benchmarks operations that are important to deep learning. Including GEMM and convolution. The benchmark and its documentation are available here: https://github.com/baidu-research/DeepBench .. note:: parameters of matrices used in each sub-test are added as classifiers to the metrics. See the benchmark documentation for the explanation of the various parameters .. note:: at the moment only the "Arm Benchmarks" subset of DeepBench is supported. """ parameters = [ Parameter('test', default='gemm', allowed_values=['gemm', 'conv', 'sparse'], description=''' Specifies which of the available benchmarks will be run. gemm Performs GEneral Matrix Multiplication of dense matrices of varying sizes. conv Performs convolutions on inputs in NCHW format. sparse Performs GEneral Matrix Multiplication of sparse matrices of varying sizes, and compares them to corresponding dense operations. '''), ] aliases = [ Alias('deep-gemm', test='gemm'), Alias('deep-conv', test='conv'), Alias('deep-sparse', test='sparse'), ] test_metrics = { 'gemm': ['time (msec)', 'GOPS'], 'conv': ['fwd_time (usec)'], 'sparse': ['sparse time (usec)', 'dense time (usec)', 'speedup'], } lower_is_better = { 'time (msec)': True, 'GOPS': False, 'fwd_time (usec)': True, 'sparse time (usec)': True, 'dense time (usec)': True, 'speedup': False, } installed = {} def initialize(self, context): self.exe_name = '{}_bench'.format(self.test) if self.exe_name not in self.installed: resource = Executable(self, self.target.abi, self.exe_name) host_exe = context.get_resource(resource) self.target.killall(self.exe_name) self.installed[self.exe_name] = self.target.install(host_exe) self.target_exe = self.installed[self.exe_name] def setup(self, context): self.target.killall(self.exe_name) def run(self, context): self.output = None try: timeout = 10800 self.output = self.target.execute(self.target_exe, timeout=timeout) except KeyboardInterrupt: self.target.killall(self.exe_name) raise def extract_results(self, context): if self.output: outfile = os.path.join(context.output_directory, '{}.output'.format(self.test)) with open(outfile, 'w') as wfh: wfh.write(self.output) context.add_artifact('deepbench-output', outfile, 'raw', "deepbench's stdout") def update_output(self, context): raw_file = context.get_artifact_path('deepbench-output') if not raw_file: return table = read_result_table(raw_file) for _, row in table.iterrows(): items = dict(row) metrics = [] for metric_name in self.test_metrics[self.test]: metrics.append((metric_name, items.pop(metric_name))) for name, value in metrics: context.add_metric(name, value, lower_is_better=self.lower_is_better[name], classifiers=items) def finalize(self, context): if self.cleanup_assets: if self.exe_name in self.installed: self.target.uninstall(self.exe_name) del self.installed[self.exe_name] def numeric_best_effort(value): try: return numeric(value) except ValueError: return value def read_result_table(filepath): columns = [] entries = [] with open(filepath) as fh: try: # fast-forward to the header line = next(fh) while not line.startswith('----'): line = next(fh) header_line = next(fh) haader_sep = re.compile(r'(?<=[) ]) ') # Since headers can contain spaces, use two spaces as column separator parts = [p.strip() for p in haader_sep.split(header_line)] columns = [p for p in parts if p] line = next(fh) while line.strip(): if line.startswith('----'): line = next(fh) row = [numeric_best_effort(i) for i in line.strip().split()] entries.append(row) line = next(fh) except StopIteration: pass return pd.DataFrame(entries, columns=columns)
apache-2.0
wackymaster/QTClock
Libraries/matplotlib/testing/jpl_units/__init__.py
8
3266
#======================================================================= """ This is a sample set of units for use with testing unit conversion of matplotlib routines. These are used because they use very strict enforcement of unitized data which will test the entire spectrum of how unitized data might be used (it is not always meaningful to convert to a float without specific units given). UnitDbl is essentially a unitized floating point number. It has a minimal set of supported units (enough for testing purposes). All of the mathematical operation are provided to fully test any behaviour that might occur with unitized data. Remeber that unitized data has rules as to how it can be applied to one another (a value of distance cannot be added to a value of time). Thus we need to guard against any accidental "default" conversion that will strip away the meaning of the data and render it neutered. Epoch is different than a UnitDbl of time. Time is something that can be measured where an Epoch is a specific moment in time. Epochs are typically referenced as an offset from some predetermined epoch. A difference of two epochs is a Duration. The distinction between a Duration and a UnitDbl of time is made because an Epoch can have different frames (or units). In the case of our test Epoch class the two allowed frames are 'UTC' and 'ET' (Note that these are rough estimates provided for testing purposes and should not be used in production code where accuracy of time frames is desired). As such a Duration also has a frame of reference and therefore needs to be called out as different that a simple measurement of time since a delta-t in one frame may not be the same in another. """ #======================================================================= from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from .Duration import Duration from .Epoch import Epoch from .UnitDbl import UnitDbl from .Duration import Duration from .Epoch import Epoch from .UnitDbl import UnitDbl from .StrConverter import StrConverter from .EpochConverter import EpochConverter from .UnitDblConverter import UnitDblConverter from .UnitDblFormatter import UnitDblFormatter #======================================================================= __version__ = "1.0" __all__ = [ 'register', 'Duration', 'Epoch', 'UnitDbl', 'UnitDblFormatter', ] #======================================================================= def register(): """Register the unit conversion classes with matplotlib.""" import matplotlib.units as mplU mplU.registry[ str ] = StrConverter() mplU.registry[ Epoch ] = EpochConverter() mplU.registry[ UnitDbl ] = UnitDblConverter() #======================================================================= # Some default unit instances # Distances m = UnitDbl( 1.0, "m" ) km = UnitDbl( 1.0, "km" ) mile = UnitDbl( 1.0, "mile" ) # Angles deg = UnitDbl( 1.0, "deg" ) rad = UnitDbl( 1.0, "rad" ) # Time sec = UnitDbl( 1.0, "sec" ) min = UnitDbl( 1.0, "min" ) hr = UnitDbl( 1.0, "hour" ) day = UnitDbl( 24.0, "hour" ) sec = UnitDbl( 1.0, "sec" )
mit
bbcdli/xuexi
vid_ana_k/eva_vid_newer_wait_cap_done_for_full_vid.py
1
12535
#eva_vid.py # keras c3d eva_model # !/usr/bin/env python import matplotlib matplotlib.use('Agg') from keras.models import model_from_json import os import cv2 import numpy as np import matplotlib.pyplot as plt import c3d_keras_model as c3d_model import sys import keras.backend as K import time # import gizeh ############################## # hy for saving video clips from moviepy.editor import * from moviepy.video.VideoClip import VideoClip from moviepy.Clip import Clip ############################## LOG_ON = False PROJ_DIR = os.path.dirname(os.path.abspath(__file__)) NUM_CLASSES = 2 CLIP_LENGTH = 16 TEST_VIDEO_LOAD_PATH = os.path.join(PROJ_DIR,'..','aggr_vids/') EVA_SAVE_PATH_NO_AGGR = os.path.join(PROJ_DIR,'save_no_aggr/') if not os.path.exists(EVA_SAVE_PATH_NO_AGGR): os.makedirs(EVA_SAVE_PATH_NO_AGGR) EVA_SAVE_PATH = os.path.join(PROJ_DIR,'save_aggr/') if not os.path.exists(EVA_SAVE_PATH): os.makedirs(EVA_SAVE_PATH) v_dirs = sorted([s for s in os.listdir(TEST_VIDEO_LOAD_PATH) if '.mp4' in s and ('02_Tweety im Zug105_115_F' in s)]) #01_fight_in_train_T #04_Tweety im Zug_29_49_F TEST_VIDEOS = [] for dir in v_dirs: v = TEST_VIDEO_LOAD_PATH + dir TEST_VIDEOS.append(v) dim_ordering = K.image_dim_ordering() print "[Info] image_dim_order (from default ~/.keras/keras.json)={}".format( dim_ordering) backend = dim_ordering log_path = os.path.join(PROJ_DIR,'logs_hy/') if not os.path.exists(log_path): os.makedirs(log_path) str_log = '' class Logger(object): def __init__(self, log_path, str_log): self.terminal = sys.stdout from datetime import datetime self.str_log = str_log self.log_path = log_path self.log = open(datetime.now().strftime(log_path + '%Y_%m_%d_%H_%M' + str_log + '.log'), "a") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): # this flush method is needed for python 3 compatibility. # this handles the flush command by doing nothing. # you might want to specify some extra behavior here. pass if LOG_ON: sys.stdout = Logger(log_path, str_log) def diagnose(data, verbose=True, label='input', plots=False, backend='tf'): if data.ndim > 2: if backend == 'th': data = np.transpose(data, (1, 2, 3, 0)) # else: # data = np.transpose(data, (0, 2, 1, 3)) min_num_spatial_axes = 10 max_outputs_to_show = 3 ndim = data.ndim print "[Info] {}.ndim={}".format(label, ndim) print "[Info] {}.shape={}".format(label, data.shape) for d in range(ndim): num_this_dim = data.shape[d] if num_this_dim >= min_num_spatial_axes: # check for spatial axes # just first, center, last indices range_this_dim = [0, num_this_dim / 2, num_this_dim - 1] else: # sweep all indices for non-spatial axes range_this_dim = range(num_this_dim) for i in range_this_dim: new_dim = tuple([d] + range(d) + range(d + 1, ndim)) sliced = np.transpose(data, new_dim)[i, ...] print("[Info] {}, dim:{} {}-th slice: " "(min, max, mean, std)=({}, {}, {}, {})".format( label, d, i, np.min(sliced), np.max(sliced), np.mean(sliced), np.std(sliced))) if plots: # assume (l, h, w, c)-shaped input if data.ndim != 4: print("[Error] data (shape={}) is not 4-dim. Check data".format( data.shape)) return l, h, w, c = data.shape if l >= min_num_spatial_axes or \ h < min_num_spatial_axes or \ w < min_num_spatial_axes: print("[Error] data (shape={}) does not look like in (l,h,w,c) " "format. Do reshape/transpose.".format(data.shape)) return nrows = int(np.ceil(np.sqrt(data.shape[0]))) # BGR if c == 3: for i in range(l): mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.subplot(nrows, nrows, i + 1) # doh, one-based! im = np.squeeze(data[i, ...]).astype(np.float32) im = im[:, :, ::-1] # BGR to RGB # force it to range [0,1] im_min, im_max = im.min(), im.max() if im_max > im_min: im_std = (im - im_min) / (im_max - im_min) else: print "[Warning] image is constant!" im_std = np.zeros_like(im) plt.imshow(im_std) plt.axis('off') plt.title("{}: t={}".format(label, i)) plt.show() # plt.waitforbuttonpress() else: for j in range(min(c, max_outputs_to_show)): for i in range(l): mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.subplot(nrows, nrows, i + 1) # doh, one-based! im = np.squeeze(data[i, ...]).astype(np.float32) im = im[:, :, j] # force it to range [0,1] im_min, im_max = im.min(), im.max() if im_max > im_min: im_std = (im - im_min) / (im_max - im_min) else: print "[Warning] image is constant!" im_std = np.zeros_like(im) plt.imshow(im_std) plt.axis('off') plt.title("{}: o={}, t={}".format(label, j, i)) plt.show() # plt.waitforbuttonpress() elif data.ndim == 1: print("[Info] {} (min, max, mean, std)=({}, {}, {}, {})".format( label, np.min(data), np.max(data), np.mean(data), np.std(data))) print("[Info] data[:10]={}".format(data[:10])) return def main(model_name): show_images = False diagnose_plots = False count_correct = 0 model_dir = os.path.join(PROJ_DIR,'log_models') global backend # override backend if provided as an input arg if len(sys.argv) > 1: if 'tf' in sys.argv[1].lower(): backend = 'tf' else: backend = 'th' print "[Info] Using backend={}".format(backend) model_weight_filename = os.path.join(model_dir, model_name) model_json_filename = os.path.join(model_dir, 'sports1M_model_custom_2l.json') print("[Info] Reading model architecture...") model = model_from_json(open(model_json_filename, 'r').read()) # visualize model model_img_filename = os.path.join(model_dir, 'c3d_model_custom.png') if not os.path.exists(model_img_filename): from keras.utils import plot_model plot_model(model, to_file=model_img_filename) model.load_weights(model_weight_filename) #print("[Info] Loading model weights -- DONE!") model.compile(loss='mean_squared_error', optimizer='sgd') #print("[Info] Loading labels...") with open('labels_aggr.txt', 'r') as f: labels_txt = [line.strip() for line in f.readlines()] print('Total labels: {}'.format(len(labels_txt))) for TEST_VIDEO in TEST_VIDEOS: print 'Test video path name:', TEST_VIDEO cap = cv2.VideoCapture(TEST_VIDEO) fps = cap.get(cv2.cv.CV_CAP_PROP_FPS) print 'frame per second:', fps vid, vid_view, frame_i = [], [], 0 while True: ret, img = cap.read() if ret: frame_i += 1 if frame_i % 1 == 0: vid_view.append(img) vid.append(cv2.resize(img, (171, 128))) else: break total_video_frames = len(vid) print 'vid len', total_video_frames vid = np.array(vid, dtype=np.float32) # plt.imshow(vid[2000]/256) # plt.show() # sample 16-frame clip STOP = False total_test_clips = int(total_video_frames / CLIP_LENGTH) while not STOP: for num in xrange(total_test_clips): # start_frame = 2000 start_frame = num * CLIP_LENGTH # 0x16,1x16 offset_time = start_frame / fps print '\nstart frame:{}, offset:{}'.format(start_frame,offset_time) X = vid[start_frame:(start_frame + CLIP_LENGTH), :, :, :] def eva_one_clip(X, start_frame, model, EVA_SAVE_PATH_NO_AGGR, EVA_SAVE_PATH,count_correct): # subtract mean do_sub_mean = False if do_sub_mean: mean_cube = np.load('models/train01_16_128_171_mean.npy') mean_cube = np.transpose(mean_cube, (1, 2, 3, 0)) # diagnose(mean_cube, verbose=True, label='Mean cube', plots=show_images) X -= mean_cube # center crop X = X[:, 8:120, 30:142, :] # (l, h, w, c) # diagnose(X, verbose=True, label='Center-cropped X', plots=show_images) if backend == 'th': X = np.transpose(X, (3, 0, 1, 2)) # input_shape = (3,16,112,112) else: pass # input_shape = (16,112,112,3) # get activations for intermediate layers if needed inspect = False if inspect: inspect_layers = [ # 'fc6', # 'fc7', ] for layer in inspect_layers: int_model = c3d_model.get_int_model(model=model, layer=layer, backend=backend) int_output = int_model.predict_on_batch(np.array([X])) int_output = int_output[0, ...] print "[Debug] at layer={}: output.shape={}".format(layer, int_output.shape) diagnose(int_output, verbose=True, label='{} activation'.format(layer), plots=diagnose_plots, backend=backend) # inference start_p = time.time() output = model.predict_on_batch(np.array([X])) end_p = time.time() print 'time elapsed for model.predict:{:.5} s'.format(end_p - start_p) max_output = max(output[0]) # if max_output < 0.5: # EVA_SAVE_PATH = EVA_SAVE_PATH_NO_AGGR # EVA_SAVE_PATH = EVA_SAVE_PATH_NO_AGGR #setting save type v_str = os.path.splitext(os.path.basename(TEST_VIDEO))[0] clip_name = EVA_SAVE_PATH + v_str + '_' + str(start_frame) + '_' + "%.3f" % max_output + '.mp4' filename_f = EVA_SAVE_PATH + v_str + '_' + str(start_frame) + '_' + "%.3f" % max_output + '.jpg' # pred_label = output[0].argmax() indx_of_interest = start_frame print 'index of interest:', indx_of_interest def save_current_subclips_to_frames(v_str): for frame, i in zip(vid_view[start_frame:start_frame + 16], xrange(CLIP_LENGTH)): filename_f_i = EVA_SAVE_PATH + 'eva_' + v_str + '_' + str(start_frame) + '_' + "%.3f" % max_output + str( i) + '.png' cv2.imwrite(filename_f_i, frame) # if max_output > 0.4: # save_current_subclips_to_frames() def save_start_frame_of_interest(vid_view, indx_of_interest, filename_f): frame_save = vid_view[indx_of_interest] # cv2.imshow(filename_f,frame_save) cv2.imwrite(filename_f, frame_save) def save_subclip(TEST_VIDEO, indx_of_interest, fps): clip = VideoFileClip(TEST_VIDEO) v_time = indx_of_interest / fps print 'Position of maximum probability:{}'.format(indx_of_interest) print 'aggr high time point: {}'.format(v_time) subclip = clip.subclip(v_time - 8, v_time + 2) # 74.6-8, 76 set an interval around frame of interest subclip.write_videofile(clip_name) cv2.waitKey(130) if max_output > 0.3 or max_output < 0.1: # if max_output > 0.2 or max_output < 0.08: #for no aggr # save_subclip(TEST_VIDEO,indx_of_interest,fps) # save_start_frame_of_interest(vid_view,indx_of_interest,filename_f) #save_current_subclips_to_frames(v_str) pass # show results save_probability_to_png = False if save_probability_to_png: print('Saving class probabilities in probabilities.png') plt.plot(output[0]) plt.title('Probability') plt.savefig('probabilities_'+v_str+'.png') print('Maximum probability: {:.5f}'.format(max(output[0]))) print('Predicted label: {}'.format(labels_txt[output[0].argmax()])) # sort top five predictions from softmax output top_inds = output[0].argsort()[::-1][:5] # reverse sort and take five largest items top_inds_list = top_inds.tolist() print '\nTop probabilities and labels:',top_inds #array([0, 1]) print 'out[0][0]:{:0.4f}'.format(output[0][0]) print 'out[0][1]:{:0.4f}'.format(output[0][1]) ''' for i,index in zip(top_inds,xrange(NUM_CLASSES)): #[1,0] [0,1] #print('{1}: {0:.5f} other'.format(int(output[0][i]), labels_txt[i])) if index == 0: if i == gt_label: count_correct += 1 print labels_txt[i],': {:0.4f}'.format(output[0][i]),' top1 correct ',count_correct else: print labels_txt[i],': {:0.4f}'.format(output[0][i]),' top1' else: #print('{1}: {0:.5f} other'.format(int(output[0][i]), labels_txt[i])) print labels_txt[i], ': {:0.4f}'.format(output[0][i]), ' other' ''' return count_correct count_correct = eva_one_clip(X, start_frame, model, EVA_SAVE_PATH_NO_AGGR, EVA_SAVE_PATH,count_correct) print 'Precision:{:.3f}'.format(count_correct/float(total_test_clips)) if (total_video_frames - start_frame) < CLIP_LENGTH * 2: print 'set STOP-True' STOP = True break print 'TEST end.' if __name__ == '__main__': #model_name = 'k_01-0.46.hdf5'#offi model_name = 'No1_k_01-0.62_0.27.hdf5' main(model_name)
apache-2.0
developerator/Maturaarbeit
GenerativeAdversarialNets/CelebA32 with DCGAN/CelebA32_dcgan.py
1
6898
''' By Tim Ehrensberger The base of the functions for the network's training is taken from https://github.com/Zackory/Keras-MNIST-GAN/blob/master/mnist_gan.py by Zackory Erickson The network structure is inspired by https://github.com/aleju/face-generator by Alexander Jung ''' import os import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt from keras.layers import Input, BatchNormalization, Activation, MaxPooling2D from keras.models import Model, Sequential from keras.layers.core import Reshape, Dense, Dropout, Flatten from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Convolution2D, UpSampling2D from keras.datasets import cifar10 from keras.optimizers import Adam from keras.regularizers import l1_l2 #------ # DATA #------ from keras import backend as K K.set_image_dim_ordering('th') import h5py # Get hdf5 file hdf5_file = os.path.join("PATH TO DATASET", "CelebA_32_data.h5") with h5py.File(hdf5_file, "r") as hf: X_train = hf["data"] [()] #[()] makes it read the whole thing X_train = X_train.astype(np.float32) / 255 #---------------- # HYPERPARAMETERS #---------------- randomDim = 100 adam = Adam(lr=0.0002, beta_1=0.5) reg = lambda: l1_l2(l1=1e-7, l2=1e-7) #dropout = 0.4 #----------- # Generator #----------- h = 5 generator = Sequential() #In: 100 generator.add(Dense(256 * 4 * 4, input_dim=100, kernel_regularizer=reg())) generator.add(BatchNormalization()) generator.add(Reshape((256, 4, 4))) #generator.add(Dropout(dropout)) #Out: 256 x 4 x 4 #In: 256 x 4 x 4 generator.add(UpSampling2D(size=(2, 2))) generator.add(Convolution2D(128, (h, h), padding='same', kernel_regularizer=reg())) #1 generator.add(BatchNormalization(axis=1)) generator.add(LeakyReLU(0.2)) #generator.add(Dropout(dropout)) #Out: 128 x 8 x 8 #In: 128 x 8 x 8 generator.add(UpSampling2D(size=(2, 2))) generator.add(Convolution2D(128, (h, h), padding='same', kernel_regularizer=reg())) #2 generator.add(BatchNormalization(axis=1)) generator.add(LeakyReLU(0.2)) #generator.add(Dropout(dropout)) #Out: 128 x 16 x 16 #In: 128 x 16 x 16 generator.add(UpSampling2D(size=(2, 2))) generator.add(Convolution2D(64, (h, h), padding='same', kernel_regularizer=reg())) #3 generator.add(BatchNormalization(axis=1)) generator.add(LeakyReLU(0.2)) #generator.add(Dropout(dropout)) #Out: 64 x 32 x 32 #In: 64 x 32 x 32 generator.add(Convolution2D(3, (h, h), padding='same', kernel_regularizer=reg())) #4 generator.add(Activation('sigmoid')) #Out: 3 x 32 x 32 generator.compile(loss='binary_crossentropy', optimizer=adam) #-------------- # Discriminator #-------------- discriminator = Sequential() #In: 3 x 32 x 32 discriminator.add(Convolution2D(64, (h, h), padding='same', input_shape=(3, 32, 32), kernel_regularizer=reg())) discriminator.add(MaxPooling2D(pool_size=(2, 2))) discriminator.add(LeakyReLU(0.2)) #Out: 64 x 16 x 16 #In: 64 x 16 x 16 discriminator.add(Convolution2D(128, (h, h), padding='same', kernel_regularizer=reg())) discriminator.add(MaxPooling2D(pool_size=(2, 2))) discriminator.add(LeakyReLU(0.2)) #Out: 128 x 8 x 8 #In: 128 x 8 x 8 discriminator.add(Convolution2D(256, (h, h), padding='same', kernel_regularizer=reg())) discriminator.add(MaxPooling2D(pool_size=(2, 2)))#Average? discriminator.add(LeakyReLU(0.2)) #Out: 256 x 4 x 4 #In: 256 x 4 x 4 discriminator.add(Flatten()) discriminator.add(Dense(512)) discriminator.add(LeakyReLU(0.2)) #discriminator.add(Dropout(dropout)) discriminator.add(Dense(1)) discriminator.add(Activation('sigmoid')) #Out: 1 (Probability) discriminator.compile(loss='binary_crossentropy', optimizer=adam) #----- # GAN #----- discriminator.trainable = False ganInput = Input(shape=(randomDim,)) x = generator(ganInput) ganOutput = discriminator(x) gan = Model(inputs=ganInput, outputs=ganOutput) gan.compile(loss='binary_crossentropy', optimizer=adam) #----------- # FUNCTIONS #----------- dLosses = [] gLosses = [] def plotLoss(epoch): assertExists('images') plt.figure(figsize=(10, 8)) plt.plot(dLosses, label='Discriminative loss') plt.plot(gLosses, label='Generative loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.savefig('images/dcgan_loss_epoch_%d.png' % epoch) # Create a wall of generated images noise = np.random.normal(0, 1, size=[examples, randomDim]) def plotGeneratedImages(epoch, examples=100, dim=(10, 10), figsize=(10, 10)): generatedImages = generator.predict(noise) generatedImages = generatedImages.transpose(0, 2, 3, 1) #transpose is crucial assertExists('images') plt.figure(figsize=figsize) for i in range(generatedImages.shape[0]): plt.subplot(dim[0], dim[1], i+1) plt.imshow(generatedImages[i, :, :, :], interpolation='nearest') plt.axis('off') plt.tight_layout() plt.savefig('images/dcgan_generated_image_epoch_%d.png' % epoch) # Save the generator and discriminator networks (and weights) for later use def savemodels(epoch): assertExists('models') generator.save('models/dcgan_generator_epoch_%d.h5' % epoch) discriminator.save('models/dcgan_discriminator_epoch_%d.h5' % epoch) def train(epochs=1, batchSize=128): batchCount = X_train.shape[0] // batchSize print('Epochs:', epochs) print('Batch size:', batchSize) print('Batches per epoch:', batchCount) for e in range(1, epochs+1): print('-'*15, 'Epoch %d' % e, '-'*15) for _ in tqdm(range(batchCount)): # Get a random set of input noise and images noise = np.random.normal(0, 1, size=[batchSize, randomDim]) imageBatch = X_train[np.random.randint(0, X_train.shape[0], size=batchSize)] # Generate fake images generatedImages = generator.predict(noise) X = np.concatenate([imageBatch, generatedImages]) # Labels for generated and real data yDis = np.zeros(2*batchSize) # One-sided label smoothing = not exactly 1 yDis[:batchSize] = 0.9 # Train discriminator discriminator.trainable = True dloss = discriminator.train_on_batch(X, yDis) # here only D is trained # Train generator noise = np.random.normal(0, 1, size=[batchSize, randomDim]) yGen = np.ones(batchSize) discriminator.trainable = False gloss = gan.train_on_batch(noise, yGen) # here only G is trained because D is not trainable # Store loss of most recent batch from this epoch dLosses.append(dloss) gLosses.append(gloss) #plot after every epoch plotGeneratedImages(e) savemodels(e) # Plot losses from every epoch plotLoss(e) def assertExists(path): if not os.path.exists(path): os.makedirs(path) if __name__ == '__main__': train(100, 128)
mit
rs2/pandas
pandas/tests/groupby/transform/test_transform.py
1
39695
""" test with the .transform """ from io import StringIO import numpy as np import pytest from pandas._libs.groupby import group_cumprod_float64, group_cumsum from pandas.core.dtypes.common import ensure_platform_int, is_timedelta64_dtype import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, concat, date_range, ) import pandas._testing as tm from pandas.core.groupby.groupby import DataError def assert_fp_equal(a, b): assert (np.abs(a - b) < 1e-12).all() def test_transform(): data = Series(np.arange(9) // 3, index=np.arange(9)) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 # GH 8046 # make sure that we preserve the input order df = DataFrame( np.arange(6, dtype="int64").reshape(3, 2), columns=["a", "b"], index=[0, 2, 1] ) key = [0, 0, 1] expected = ( df.sort_index() .groupby(key) .transform(lambda x: x - x.mean()) .groupby(key) .mean() ) result = df.groupby(key).transform(lambda x: x - x.mean()).groupby(key).mean() tm.assert_frame_equal(result, expected) def demean(arr): return arr - arr.mean() people = DataFrame( np.random.randn(5, 5), columns=["a", "b", "c", "d", "e"], index=["Joe", "Steve", "Wes", "Jim", "Travis"], ) key = ["one", "two", "one", "two", "one"] result = people.groupby(key).transform(demean).groupby(key).mean() expected = people.groupby(key).apply(demean).groupby(key).mean() tm.assert_frame_equal(result, expected) # GH 8430 df = tm.makeTimeDataFrame() g = df.groupby(pd.Grouper(freq="M")) g.transform(lambda x: x - 1) # GH 9700 df = DataFrame({"a": range(5, 10), "b": range(5)}) result = df.groupby("a").transform(max) expected = DataFrame({"b": range(5)}) tm.assert_frame_equal(result, expected) def test_transform_fast(): df = DataFrame({"id": np.arange(100000) / 3, "val": np.random.randn(100000)}) grp = df.groupby("id")["val"] values = np.repeat(grp.mean().values, ensure_platform_int(grp.count().values)) expected = pd.Series(values, index=df.index, name="val") result = grp.transform(np.mean) tm.assert_series_equal(result, expected) result = grp.transform("mean") tm.assert_series_equal(result, expected) # GH 12737 df = pd.DataFrame( { "grouping": [0, 1, 1, 3], "f": [1.1, 2.1, 3.1, 4.5], "d": pd.date_range("2014-1-1", "2014-1-4"), "i": [1, 2, 3, 4], }, columns=["grouping", "f", "i", "d"], ) result = df.groupby("grouping").transform("first") dates = [ pd.Timestamp("2014-1-1"), pd.Timestamp("2014-1-2"), pd.Timestamp("2014-1-2"), pd.Timestamp("2014-1-4"), ] expected = pd.DataFrame( {"f": [1.1, 2.1, 2.1, 4.5], "d": dates, "i": [1, 2, 2, 4]}, columns=["f", "i", "d"], ) tm.assert_frame_equal(result, expected) # selection result = df.groupby("grouping")[["f", "i"]].transform("first") expected = expected[["f", "i"]] tm.assert_frame_equal(result, expected) # dup columns df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["g", "a", "a"]) result = df.groupby("g").transform("first") expected = df.drop("g", axis=1) tm.assert_frame_equal(result, expected) def test_transform_broadcast(tsframe, ts): grouped = ts.groupby(lambda x: x.month) result = grouped.transform(np.mean) tm.assert_index_equal(result.index, ts.index) for _, gp in grouped: assert_fp_equal(result.reindex(gp.index), gp.mean()) grouped = tsframe.groupby(lambda x: x.month) result = grouped.transform(np.mean) tm.assert_index_equal(result.index, tsframe.index) for _, gp in grouped: agged = gp.mean() res = result.reindex(gp.index) for col in tsframe: assert_fp_equal(res[col], agged[col]) # group columns grouped = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1) result = grouped.transform(np.mean) tm.assert_index_equal(result.index, tsframe.index) tm.assert_index_equal(result.columns, tsframe.columns) for _, gp in grouped: agged = gp.mean(1) res = result.reindex(columns=gp.columns) for idx in gp.index: assert_fp_equal(res.xs(idx), agged[idx]) def test_transform_axis(tsframe): # make sure that we are setting the axes # correctly when on axis=0 or 1 # in the presence of a non-monotonic indexer # GH12713 base = tsframe.iloc[0:5] r = len(base.index) c = len(base.columns) tso = DataFrame( np.random.randn(r, c), index=base.index, columns=base.columns, dtype="float64" ) # monotonic ts = tso grouped = ts.groupby(lambda x: x.weekday()) result = ts - grouped.transform("mean") expected = grouped.apply(lambda x: x - x.mean()) tm.assert_frame_equal(result, expected) ts = ts.T grouped = ts.groupby(lambda x: x.weekday(), axis=1) result = ts - grouped.transform("mean") expected = grouped.apply(lambda x: (x.T - x.mean(1)).T) tm.assert_frame_equal(result, expected) # non-monotonic ts = tso.iloc[[1, 0] + list(range(2, len(base)))] grouped = ts.groupby(lambda x: x.weekday()) result = ts - grouped.transform("mean") expected = grouped.apply(lambda x: x - x.mean()) tm.assert_frame_equal(result, expected) ts = ts.T grouped = ts.groupby(lambda x: x.weekday(), axis=1) result = ts - grouped.transform("mean") expected = grouped.apply(lambda x: (x.T - x.mean(1)).T) tm.assert_frame_equal(result, expected) def test_transform_dtype(): # GH 9807 # Check transform dtype output is preserved df = DataFrame([[1, 3], [2, 3]]) result = df.groupby(1).transform("mean") expected = DataFrame([[1.5], [1.5]]) tm.assert_frame_equal(result, expected) def test_transform_bug(): # GH 5712 # transforming on a datetime column df = DataFrame(dict(A=Timestamp("20130101"), B=np.arange(5))) result = df.groupby("A")["B"].transform(lambda x: x.rank(ascending=False)) expected = Series(np.arange(5, 0, step=-1), name="B") tm.assert_series_equal(result, expected) def test_transform_numeric_to_boolean(): # GH 16875 # inconsistency in transforming boolean values expected = pd.Series([True, True], name="A") df = pd.DataFrame({"A": [1.1, 2.2], "B": [1, 2]}) result = df.groupby("B").A.transform(lambda x: True) tm.assert_series_equal(result, expected) df = pd.DataFrame({"A": [1, 2], "B": [1, 2]}) result = df.groupby("B").A.transform(lambda x: True) tm.assert_series_equal(result, expected) def test_transform_datetime_to_timedelta(): # GH 15429 # transforming a datetime to timedelta df = DataFrame(dict(A=Timestamp("20130101"), B=np.arange(5))) expected = pd.Series([Timestamp("20130101") - Timestamp("20130101")] * 5, name="A") # this does date math without changing result type in transform base_time = df["A"][0] result = ( df.groupby("A")["A"].transform(lambda x: x.max() - x.min() + base_time) - base_time ) tm.assert_series_equal(result, expected) # this does date math and causes the transform to return timedelta result = df.groupby("A")["A"].transform(lambda x: x.max() - x.min()) tm.assert_series_equal(result, expected) def test_transform_datetime_to_numeric(): # GH 10972 # convert dt to float df = DataFrame({"a": 1, "b": date_range("2015-01-01", periods=2, freq="D")}) result = df.groupby("a").b.transform( lambda x: x.dt.dayofweek - x.dt.dayofweek.mean() ) expected = Series([-0.5, 0.5], name="b") tm.assert_series_equal(result, expected) # convert dt to int df = DataFrame({"a": 1, "b": date_range("2015-01-01", periods=2, freq="D")}) result = df.groupby("a").b.transform( lambda x: x.dt.dayofweek - x.dt.dayofweek.min() ) expected = Series([0, 1], name="b") tm.assert_series_equal(result, expected) def test_transform_casting(): # 13046 data = """ idx A ID3 DATETIME 0 B-028 b76cd912ff "2014-10-08 13:43:27" 1 B-054 4a57ed0b02 "2014-10-08 14:26:19" 2 B-076 1a682034f8 "2014-10-08 14:29:01" 3 B-023 b76cd912ff "2014-10-08 18:39:34" 4 B-023 f88g8d7sds "2014-10-08 18:40:18" 5 B-033 b76cd912ff "2014-10-08 18:44:30" 6 B-032 b76cd912ff "2014-10-08 18:46:00" 7 B-037 b76cd912ff "2014-10-08 18:52:15" 8 B-046 db959faf02 "2014-10-08 18:59:59" 9 B-053 b76cd912ff "2014-10-08 19:17:48" 10 B-065 b76cd912ff "2014-10-08 19:21:38" """ df = pd.read_csv( StringIO(data), sep=r"\s+", index_col=[0], parse_dates=["DATETIME"] ) result = df.groupby("ID3")["DATETIME"].transform(lambda x: x.diff()) assert is_timedelta64_dtype(result.dtype) result = df[["ID3", "DATETIME"]].groupby("ID3").transform(lambda x: x.diff()) assert is_timedelta64_dtype(result.DATETIME.dtype) def test_transform_multiple(ts): grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) grouped.transform(lambda x: x * 2) grouped.transform(np.mean) def test_dispatch_transform(tsframe): df = tsframe[::5].reindex(tsframe.index) grouped = df.groupby(lambda x: x.month) filled = grouped.fillna(method="pad") fillit = lambda x: x.fillna(method="pad") expected = df.groupby(lambda x: x.month).transform(fillit) tm.assert_frame_equal(filled, expected) def test_transform_transformation_func(transformation_func): # GH 30918 df = DataFrame( { "A": ["foo", "foo", "foo", "foo", "bar", "bar", "baz"], "B": [1, 2, np.nan, 3, 3, np.nan, 4], }, index=pd.date_range("2020-01-01", "2020-01-07"), ) if transformation_func == "cumcount": test_op = lambda x: x.transform("cumcount") mock_op = lambda x: Series(range(len(x)), x.index) elif transformation_func == "fillna": test_op = lambda x: x.transform("fillna", value=0) mock_op = lambda x: x.fillna(value=0) elif transformation_func == "tshift": msg = ( "Current behavior of groupby.tshift is inconsistent with other " "transformations. See GH34452 for more details" ) pytest.xfail(msg) else: test_op = lambda x: x.transform(transformation_func) mock_op = lambda x: getattr(x, transformation_func)() result = test_op(df.groupby("A")) groups = [df[["B"]].iloc[:4], df[["B"]].iloc[4:6], df[["B"]].iloc[6:]] expected = concat([mock_op(g) for g in groups]) if transformation_func == "cumcount": tm.assert_series_equal(result, expected) else: tm.assert_frame_equal(result, expected) def test_transform_select_columns(df): f = lambda x: x.mean() result = df.groupby("A")[["C", "D"]].transform(f) selection = df[["C", "D"]] expected = selection.groupby(df["A"]).transform(f) tm.assert_frame_equal(result, expected) def test_transform_exclude_nuisance(df): # this also tests orderings in transform between # series/frame to make sure it's consistent expected = {} grouped = df.groupby("A") expected["C"] = grouped["C"].transform(np.mean) expected["D"] = grouped["D"].transform(np.mean) expected = DataFrame(expected) result = df.groupby("A").transform(np.mean) tm.assert_frame_equal(result, expected) def test_transform_function_aliases(df): result = df.groupby("A").transform("mean") expected = df.groupby("A").transform(np.mean) tm.assert_frame_equal(result, expected) result = df.groupby("A")["C"].transform("mean") expected = df.groupby("A")["C"].transform(np.mean) tm.assert_series_equal(result, expected) def test_series_fast_transform_date(): # GH 13191 df = pd.DataFrame( {"grouping": [np.nan, 1, 1, 3], "d": pd.date_range("2014-1-1", "2014-1-4")} ) result = df.groupby("grouping")["d"].transform("first") dates = [ pd.NaT, pd.Timestamp("2014-1-2"), pd.Timestamp("2014-1-2"), pd.Timestamp("2014-1-4"), ] expected = pd.Series(dates, name="d") tm.assert_series_equal(result, expected) def test_transform_length(): # GH 9697 df = pd.DataFrame({"col1": [1, 1, 2, 2], "col2": [1, 2, 3, np.nan]}) expected = pd.Series([3.0] * 4) def nsum(x): return np.nansum(x) results = [ df.groupby("col1").transform(sum)["col2"], df.groupby("col1")["col2"].transform(sum), df.groupby("col1").transform(nsum)["col2"], df.groupby("col1")["col2"].transform(nsum), ] for result in results: tm.assert_series_equal(result, expected, check_names=False) def test_transform_coercion(): # 14457 # when we are transforming be sure to not coerce # via assignment df = pd.DataFrame(dict(A=["a", "a"], B=[0, 1])) g = df.groupby("A") expected = g.transform(np.mean) result = g.transform(lambda x: np.mean(x)) tm.assert_frame_equal(result, expected) def test_groupby_transform_with_int(): # GH 3740, make sure that we might upcast on item-by-item transform # floats df = DataFrame( dict( A=[1, 1, 1, 2, 2, 2], B=Series(1, dtype="float64"), C=Series([1, 2, 3, 1, 2, 3], dtype="float64"), D="foo", ) ) with np.errstate(all="ignore"): result = df.groupby("A").transform(lambda x: (x - x.mean()) / x.std()) expected = DataFrame( dict(B=np.nan, C=Series([-1, 0, 1, -1, 0, 1], dtype="float64")) ) tm.assert_frame_equal(result, expected) # int case df = DataFrame(dict(A=[1, 1, 1, 2, 2, 2], B=1, C=[1, 2, 3, 1, 2, 3], D="foo")) with np.errstate(all="ignore"): result = df.groupby("A").transform(lambda x: (x - x.mean()) / x.std()) expected = DataFrame(dict(B=np.nan, C=[-1, 0, 1, -1, 0, 1])) tm.assert_frame_equal(result, expected) # int that needs float conversion s = Series([2, 3, 4, 10, 5, -1]) df = DataFrame(dict(A=[1, 1, 1, 2, 2, 2], B=1, C=s, D="foo")) with np.errstate(all="ignore"): result = df.groupby("A").transform(lambda x: (x - x.mean()) / x.std()) s1 = s.iloc[0:3] s1 = (s1 - s1.mean()) / s1.std() s2 = s.iloc[3:6] s2 = (s2 - s2.mean()) / s2.std() expected = DataFrame(dict(B=np.nan, C=concat([s1, s2]))) tm.assert_frame_equal(result, expected) # int downcasting result = df.groupby("A").transform(lambda x: x * 2 / 2) expected = DataFrame(dict(B=1, C=[2, 3, 4, 10, 5, -1])) tm.assert_frame_equal(result, expected) def test_groupby_transform_with_nan_group(): # GH 9941 df = pd.DataFrame({"a": range(10), "b": [1, 1, 2, 3, np.nan, 4, 4, 5, 5, 5]}) result = df.groupby(df.b)["a"].transform(max) expected = pd.Series( [1.0, 1.0, 2.0, 3.0, np.nan, 6.0, 6.0, 9.0, 9.0, 9.0], name="a" ) tm.assert_series_equal(result, expected) def test_transform_mixed_type(): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]]) df = DataFrame( { "d": [1.0, 1.0, 1.0, 2.0, 2.0, 2.0], "c": np.tile(["a", "b", "c"], 2), "v": np.arange(1.0, 7.0), }, index=index, ) def f(group): group["g"] = group["d"] * 2 return group[:1] grouped = df.groupby("c") result = grouped.apply(f) assert result["d"].dtype == np.float64 # this is by definition a mutating operation! with pd.option_context("mode.chained_assignment", None): for key, group in grouped: res = f(group) tm.assert_frame_equal(res, result.loc[key]) def _check_cython_group_transform_cumulative(pd_op, np_op, dtype): """ Check a group transform that executes a cumulative function. Parameters ---------- pd_op : callable The pandas cumulative function. np_op : callable The analogous one in NumPy. dtype : type The specified dtype of the data. """ is_datetimelike = False data = np.array([[1], [2], [3], [4]], dtype=dtype) ans = np.zeros_like(data) labels = np.array([0, 0, 0, 0], dtype=np.int64) ngroups = 1 pd_op(ans, data, labels, ngroups, is_datetimelike) tm.assert_numpy_array_equal(np_op(data), ans[:, 0], check_dtype=False) def test_cython_group_transform_cumsum(any_real_dtype): # see gh-4095 dtype = np.dtype(any_real_dtype).type pd_op, np_op = group_cumsum, np.cumsum _check_cython_group_transform_cumulative(pd_op, np_op, dtype) def test_cython_group_transform_cumprod(): # see gh-4095 dtype = np.float64 pd_op, np_op = group_cumprod_float64, np.cumproduct _check_cython_group_transform_cumulative(pd_op, np_op, dtype) def test_cython_group_transform_algos(): # see gh-4095 is_datetimelike = False # with nans labels = np.array([0, 0, 0, 0, 0], dtype=np.int64) ngroups = 1 data = np.array([[1], [2], [3], [np.nan], [4]], dtype="float64") actual = np.zeros_like(data) actual.fill(np.nan) group_cumprod_float64(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 2, 6, np.nan, 24], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) actual = np.zeros_like(data) actual.fill(np.nan) group_cumsum(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 3, 6, np.nan, 10], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) # timedelta is_datetimelike = True data = np.array([np.timedelta64(1, "ns")] * 5, dtype="m8[ns]")[:, None] actual = np.zeros_like(data, dtype="int64") group_cumsum(actual, data.view("int64"), labels, ngroups, is_datetimelike) expected = np.array( [ np.timedelta64(1, "ns"), np.timedelta64(2, "ns"), np.timedelta64(3, "ns"), np.timedelta64(4, "ns"), np.timedelta64(5, "ns"), ] ) tm.assert_numpy_array_equal(actual[:, 0].view("m8[ns]"), expected) @pytest.mark.parametrize( "op, args, targop", [ ("cumprod", (), lambda x: x.cumprod()), ("cumsum", (), lambda x: x.cumsum()), ("shift", (-1,), lambda x: x.shift(-1)), ("shift", (1,), lambda x: x.shift()), ], ) def test_cython_transform_series(op, args, targop): # GH 4095 s = Series(np.random.randn(1000)) s_missing = s.copy() s_missing.iloc[2:10] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) # series for data in [s, s_missing]: # print(data.head()) expected = data.groupby(labels).transform(targop) tm.assert_series_equal(expected, data.groupby(labels).transform(op, *args)) tm.assert_series_equal(expected, getattr(data.groupby(labels), op)(*args)) @pytest.mark.parametrize("op", ["cumprod", "cumsum"]) @pytest.mark.parametrize("skipna", [False, True]) @pytest.mark.parametrize( "input, exp", [ # When everything is NaN ({"key": ["b"] * 10, "value": np.nan}, pd.Series([np.nan] * 10, name="value")), # When there is a single NaN ( {"key": ["b"] * 10 + ["a"] * 2, "value": [3] * 3 + [np.nan] + [3] * 8}, { ("cumprod", False): [3.0, 9.0, 27.0] + [np.nan] * 7 + [3.0, 9.0], ("cumprod", True): [ 3.0, 9.0, 27.0, np.nan, 81.0, 243.0, 729.0, 2187.0, 6561.0, 19683.0, 3.0, 9.0, ], ("cumsum", False): [3.0, 6.0, 9.0] + [np.nan] * 7 + [3.0, 6.0], ("cumsum", True): [ 3.0, 6.0, 9.0, np.nan, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, 3.0, 6.0, ], }, ), ], ) def test_groupby_cum_skipna(op, skipna, input, exp): df = pd.DataFrame(input) result = df.groupby("key")["value"].transform(op, skipna=skipna) if isinstance(exp, dict): expected = exp[(op, skipna)] else: expected = exp expected = pd.Series(expected, name="value") tm.assert_series_equal(expected, result) @pytest.mark.arm_slow @pytest.mark.parametrize( "op, args, targop", [ ("cumprod", (), lambda x: x.cumprod()), ("cumsum", (), lambda x: x.cumsum()), ("shift", (-1,), lambda x: x.shift(-1)), ("shift", (1,), lambda x: x.shift()), ], ) def test_cython_transform_frame(op, args, targop): s = Series(np.random.randn(1000)) s_missing = s.copy() s_missing.iloc[2:10] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) strings = list("qwertyuiopasdfghjklz") strings_missing = strings[:] strings_missing[5] = np.nan df = DataFrame( { "float": s, "float_missing": s_missing, "int": [1, 1, 1, 1, 2] * 200, "datetime": pd.date_range("1990-1-1", periods=1000), "timedelta": pd.timedelta_range(1, freq="s", periods=1000), "string": strings * 50, "string_missing": strings_missing * 50, }, columns=[ "float", "float_missing", "int", "datetime", "timedelta", "string", "string_missing", ], ) df["cat"] = df["string"].astype("category") df2 = df.copy() df2.index = pd.MultiIndex.from_product([range(100), range(10)]) # DataFrame - Single and MultiIndex, # group by values, index level, columns for df in [df, df2]: for gb_target in [ dict(by=labels), dict(level=0), dict(by="string"), ]: # dict(by='string_missing')]: # dict(by=['int','string'])]: gb = df.groupby(**gb_target) # allowlisted methods set the selection before applying # bit a of hack to make sure the cythonized shift # is equivalent to pre 0.17.1 behavior if op == "shift": gb._set_group_selection() if op != "shift" and "int" not in gb_target: # numeric apply fastpath promotes dtype so have # to apply separately and concat i = gb[["int"]].apply(targop) f = gb[["float", "float_missing"]].apply(targop) expected = pd.concat([f, i], axis=1) else: expected = gb.apply(targop) expected = expected.sort_index(axis=1) tm.assert_frame_equal(expected, gb.transform(op, *args).sort_index(axis=1)) tm.assert_frame_equal(expected, getattr(gb, op)(*args).sort_index(axis=1)) # individual columns for c in df: if c not in ["float", "int", "float_missing"] and op != "shift": msg = "No numeric types to aggregate" with pytest.raises(DataError, match=msg): gb[c].transform(op) with pytest.raises(DataError, match=msg): getattr(gb[c], op)() else: expected = gb[c].apply(targop) expected.name = c tm.assert_series_equal(expected, gb[c].transform(op, *args)) tm.assert_series_equal(expected, getattr(gb[c], op)(*args)) def test_transform_with_non_scalar_group(): # GH 10165 cols = pd.MultiIndex.from_tuples( [ ("syn", "A"), ("mis", "A"), ("non", "A"), ("syn", "C"), ("mis", "C"), ("non", "C"), ("syn", "T"), ("mis", "T"), ("non", "T"), ("syn", "G"), ("mis", "G"), ("non", "G"), ] ) df = pd.DataFrame( np.random.randint(1, 10, (4, 12)), columns=cols, index=["A", "C", "G", "T"] ) msg = "transform must return a scalar value for each group.*" with pytest.raises(ValueError, match=msg): df.groupby(axis=1, level=1).transform(lambda z: z.div(z.sum(axis=1), axis=0)) @pytest.mark.parametrize( "cols,exp,comp_func", [ ("a", pd.Series([1, 1, 1], name="a"), tm.assert_series_equal), ( ["a", "c"], pd.DataFrame({"a": [1, 1, 1], "c": [1, 1, 1]}), tm.assert_frame_equal, ), ], ) @pytest.mark.parametrize("agg_func", ["count", "rank", "size"]) def test_transform_numeric_ret(cols, exp, comp_func, agg_func, request): if agg_func == "size" and isinstance(cols, list): # https://github.com/pytest-dev/pytest/issues/6300 # workaround to xfail fixture/param permutations reason = "'size' transformation not supported with NDFrameGroupy" request.node.add_marker(pytest.mark.xfail(reason=reason)) # GH 19200 df = pd.DataFrame( {"a": pd.date_range("2018-01-01", periods=3), "b": range(3), "c": range(7, 10)} ) result = df.groupby("b")[cols].transform(agg_func) if agg_func == "rank": exp = exp.astype("float") comp_func(result, exp) @pytest.mark.parametrize("mix_groupings", [True, False]) @pytest.mark.parametrize("as_series", [True, False]) @pytest.mark.parametrize("val1,val2", [("foo", "bar"), (1, 2), (1.0, 2.0)]) @pytest.mark.parametrize( "fill_method,limit,exp_vals", [ ( "ffill", None, [np.nan, np.nan, "val1", "val1", "val1", "val2", "val2", "val2"], ), ("ffill", 1, [np.nan, np.nan, "val1", "val1", np.nan, "val2", "val2", np.nan]), ( "bfill", None, ["val1", "val1", "val1", "val2", "val2", "val2", np.nan, np.nan], ), ("bfill", 1, [np.nan, "val1", "val1", np.nan, "val2", "val2", np.nan, np.nan]), ], ) def test_group_fill_methods( mix_groupings, as_series, val1, val2, fill_method, limit, exp_vals ): vals = [np.nan, np.nan, val1, np.nan, np.nan, val2, np.nan, np.nan] _exp_vals = list(exp_vals) # Overwrite placeholder values for index, exp_val in enumerate(_exp_vals): if exp_val == "val1": _exp_vals[index] = val1 elif exp_val == "val2": _exp_vals[index] = val2 # Need to modify values and expectations depending on the # Series / DataFrame that we ultimately want to generate if mix_groupings: # ['a', 'b', 'a, 'b', ...] keys = ["a", "b"] * len(vals) def interweave(list_obj): temp = list() for x in list_obj: temp.extend([x, x]) return temp _exp_vals = interweave(_exp_vals) vals = interweave(vals) else: # ['a', 'a', 'a', ... 'b', 'b', 'b'] keys = ["a"] * len(vals) + ["b"] * len(vals) _exp_vals = _exp_vals * 2 vals = vals * 2 df = DataFrame({"key": keys, "val": vals}) if as_series: result = getattr(df.groupby("key")["val"], fill_method)(limit=limit) exp = Series(_exp_vals, name="val") tm.assert_series_equal(result, exp) else: result = getattr(df.groupby("key"), fill_method)(limit=limit) exp = DataFrame({"val": _exp_vals}) tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("fill_method", ["ffill", "bfill"]) def test_pad_stable_sorting(fill_method): # GH 21207 x = [0] * 20 y = [np.nan] * 10 + [1] * 10 if fill_method == "bfill": y = y[::-1] df = pd.DataFrame({"x": x, "y": y}) expected = df.drop("x", 1) result = getattr(df.groupby("x"), fill_method)() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("test_series", [True, False]) @pytest.mark.parametrize( "freq", [ None, pytest.param( "D", marks=pytest.mark.xfail( reason="GH#23918 before method uses freq in vectorized approach" ), ), ], ) @pytest.mark.parametrize("periods", [1, -1]) @pytest.mark.parametrize("fill_method", ["ffill", "bfill", None]) @pytest.mark.parametrize("limit", [None, 1]) def test_pct_change(test_series, freq, periods, fill_method, limit): # GH 21200, 21621, 30463 vals = [3, np.nan, np.nan, np.nan, 1, 2, 4, 10, np.nan, 4] keys = ["a", "b"] key_v = np.repeat(keys, len(vals)) df = DataFrame({"key": key_v, "vals": vals * 2}) df_g = df if fill_method is not None: df_g = getattr(df.groupby("key"), fill_method)(limit=limit) grp = df_g.groupby(df.key) expected = grp["vals"].obj / grp["vals"].shift(periods) - 1 if test_series: result = df.groupby("key")["vals"].pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) tm.assert_series_equal(result, expected) else: result = df.groupby("key").pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) tm.assert_frame_equal(result, expected.to_frame("vals")) @pytest.mark.parametrize( "func, expected_status", [ ("ffill", ["shrt", "shrt", "lng", np.nan, "shrt", "ntrl", "ntrl"]), ("bfill", ["shrt", "lng", "lng", "shrt", "shrt", "ntrl", np.nan]), ], ) def test_ffill_bfill_non_unique_multilevel(func, expected_status): # GH 19437 date = pd.to_datetime( [ "2018-01-01", "2018-01-01", "2018-01-01", "2018-01-01", "2018-01-02", "2018-01-01", "2018-01-02", ] ) symbol = ["MSFT", "MSFT", "MSFT", "AAPL", "AAPL", "TSLA", "TSLA"] status = ["shrt", np.nan, "lng", np.nan, "shrt", "ntrl", np.nan] df = DataFrame({"date": date, "symbol": symbol, "status": status}) df = df.set_index(["date", "symbol"]) result = getattr(df.groupby("symbol")["status"], func)() index = MultiIndex.from_tuples( tuples=list(zip(*[date, symbol])), names=["date", "symbol"] ) expected = Series(expected_status, index=index, name="status") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", [np.any, np.all]) def test_any_all_np_func(func): # GH 20653 df = pd.DataFrame( [["foo", True], [np.nan, True], ["foo", True]], columns=["key", "val"] ) exp = pd.Series([True, np.nan, True], name="val") res = df.groupby("key")["val"].transform(func) tm.assert_series_equal(res, exp) def test_groupby_transform_rename(): # https://github.com/pandas-dev/pandas/issues/23461 def demean_rename(x): result = x - x.mean() if isinstance(x, pd.Series): return result result = result.rename(columns={c: "{c}_demeaned" for c in result.columns}) return result df = pd.DataFrame({"group": list("ababa"), "value": [1, 1, 1, 2, 2]}) expected = pd.DataFrame({"value": [-1.0 / 3, -0.5, -1.0 / 3, 0.5, 2.0 / 3]}) result = df.groupby("group").transform(demean_rename) tm.assert_frame_equal(result, expected) result_single = df.groupby("group").value.transform(demean_rename) tm.assert_series_equal(result_single, expected["value"]) @pytest.mark.parametrize("func", [min, max, np.min, np.max, "first", "last"]) def test_groupby_transform_timezone_column(func): # GH 24198 ts = pd.to_datetime("now", utc=True).tz_convert("Asia/Singapore") result = pd.DataFrame({"end_time": [ts], "id": [1]}) result["max_end_time"] = result.groupby("id").end_time.transform(func) expected = pd.DataFrame([[ts, 1, ts]], columns=["end_time", "id", "max_end_time"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "func, values", [ ("idxmin", ["1/1/2011"] * 2 + ["1/3/2011"] * 7 + ["1/10/2011"]), ("idxmax", ["1/2/2011"] * 2 + ["1/9/2011"] * 7 + ["1/10/2011"]), ], ) def test_groupby_transform_with_datetimes(func, values): # GH 15306 dates = pd.date_range("1/1/2011", periods=10, freq="D") stocks = pd.DataFrame({"price": np.arange(10.0)}, index=dates) stocks["week_id"] = dates.isocalendar().week result = stocks.groupby(stocks["week_id"])["price"].transform(func) expected = pd.Series(data=pd.to_datetime(values), index=dates, name="price") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", ["cumsum", "cumprod", "cummin", "cummax"]) def test_transform_absent_categories(func): # GH 16771 # cython transforms with more groups than rows x_vals = [1] x_cats = range(2) y = [1] df = DataFrame(dict(x=Categorical(x_vals, x_cats), y=y)) result = getattr(df.y.groupby(df.x), func)() expected = df.y tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", ["ffill", "bfill", "shift"]) @pytest.mark.parametrize("key, val", [("level", 0), ("by", Series([0]))]) def test_ffill_not_in_axis(func, key, val): # GH 21521 df = pd.DataFrame([[np.nan]]) result = getattr(df.groupby(**{key: val}), func)() expected = df tm.assert_frame_equal(result, expected) def test_transform_invalid_name_raises(): # GH#27486 df = DataFrame(dict(a=[0, 1, 1, 2])) g = df.groupby(["a", "b", "b", "c"]) with pytest.raises(ValueError, match="not a valid function name"): g.transform("some_arbitrary_name") # method exists on the object, but is not a valid transformation/agg assert hasattr(g, "aggregate") # make sure the method exists with pytest.raises(ValueError, match="not a valid function name"): g.transform("aggregate") # Test SeriesGroupBy g = df["a"].groupby(["a", "b", "b", "c"]) with pytest.raises(ValueError, match="not a valid function name"): g.transform("some_arbitrary_name") @pytest.mark.parametrize( "obj", [ DataFrame( dict(a=[0, 0, 0, 1, 1, 1], b=range(6)), index=["A", "B", "C", "D", "E", "F"] ), Series([0, 0, 0, 1, 1, 1], index=["A", "B", "C", "D", "E", "F"]), ], ) def test_transform_agg_by_name(reduction_func, obj): func = reduction_func g = obj.groupby(np.repeat([0, 1], 3)) if func == "ngroup": # GH#27468 pytest.xfail("TODO: g.transform('ngroup') doesn't work") if func == "size": # GH#27469 pytest.xfail("TODO: g.transform('size') doesn't work") if func == "corrwith" and isinstance(obj, Series): # GH#32293 pytest.xfail("TODO: implement SeriesGroupBy.corrwith") args = {"nth": [0], "quantile": [0.5], "corrwith": [obj]}.get(func, []) result = g.transform(func, *args) # this is the *definition* of a transformation tm.assert_index_equal(result.index, obj.index) if hasattr(obj, "columns"): tm.assert_index_equal(result.columns, obj.columns) # verify that values were broadcasted across each group assert len(set(DataFrame(result).iloc[-3:, -1])) == 1 def test_transform_lambda_with_datetimetz(): # GH 27496 df = DataFrame( { "time": [ Timestamp("2010-07-15 03:14:45"), Timestamp("2010-11-19 18:47:06"), ], "timezone": ["Etc/GMT+4", "US/Eastern"], } ) result = df.groupby(["timezone"])["time"].transform( lambda x: x.dt.tz_localize(x.name) ) expected = Series( [ Timestamp("2010-07-15 03:14:45", tz="Etc/GMT+4"), Timestamp("2010-11-19 18:47:06", tz="US/Eastern"), ], name="time", ) tm.assert_series_equal(result, expected) def test_transform_fastpath_raises(): # GH#29631 case where fastpath defined in groupby.generic _choose_path # raises, but slow_path does not df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]}) gb = df.groupby("A") def func(grp): # we want a function such that func(frame) fails but func.apply(frame) # works if grp.ndim == 2: # Ensure that fast_path fails raise NotImplementedError("Don't cross the streams") return grp * 2 # Check that the fastpath raises, see _transform_general obj = gb._obj_with_exclusions gen = gb.grouper.get_iterator(obj, axis=gb.axis) fast_path, slow_path = gb._define_paths(func) _, group = next(gen) with pytest.raises(NotImplementedError, match="Don't cross the streams"): fast_path(group) result = gb.transform(func) expected = pd.DataFrame([2, -2, 2, 4], columns=["B"]) tm.assert_frame_equal(result, expected) def test_transform_lambda_indexing(): # GH 7883 df = pd.DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "flux", "foo", "flux"], "B": ["one", "one", "two", "three", "two", "six", "five", "three"], "C": range(8), "D": range(8), "E": range(8), } ) df = df.set_index(["A", "B"]) df = df.sort_index() result = df.groupby(level="A").transform(lambda x: x.iloc[-1]) expected = DataFrame( { "C": [3, 3, 7, 7, 4, 4, 4, 4], "D": [3, 3, 7, 7, 4, 4, 4, 4], "E": [3, 3, 7, 7, 4, 4, 4, 4], }, index=MultiIndex.from_tuples( [ ("bar", "one"), ("bar", "three"), ("flux", "six"), ("flux", "three"), ("foo", "five"), ("foo", "one"), ("foo", "two"), ("foo", "two"), ], names=["A", "B"], ), ) tm.assert_frame_equal(result, expected) def test_categorical_and_not_categorical_key(observed): # Checks that groupby-transform, when grouping by both a categorical # and a non-categorical key, doesn't try to expand the output to include # non-observed categories but instead matches the input shape. # GH 32494 df_with_categorical = pd.DataFrame( { "A": pd.Categorical(["a", "b", "a"], categories=["a", "b", "c"]), "B": [1, 2, 3], "C": ["a", "b", "a"], } ) df_without_categorical = pd.DataFrame( {"A": ["a", "b", "a"], "B": [1, 2, 3], "C": ["a", "b", "a"]} ) # DataFrame case result = df_with_categorical.groupby(["A", "C"], observed=observed).transform("sum") expected = df_without_categorical.groupby(["A", "C"]).transform("sum") tm.assert_frame_equal(result, expected) expected_explicit = pd.DataFrame({"B": [4, 2, 4]}) tm.assert_frame_equal(result, expected_explicit) # Series case result = df_with_categorical.groupby(["A", "C"], observed=observed)["B"].transform( "sum" ) expected = df_without_categorical.groupby(["A", "C"])["B"].transform("sum") tm.assert_series_equal(result, expected) expected_explicit = pd.Series([4, 2, 4], name="B") tm.assert_series_equal(result, expected_explicit)
bsd-3-clause
xuewei4d/scikit-learn
sklearn/inspection/_plot/tests/test_plot_partial_dependence.py
10
23178
import numpy as np from scipy.stats.mstats import mquantiles import pytest from numpy.testing import assert_allclose from sklearn.datasets import load_diabetes from sklearn.datasets import load_iris from sklearn.datasets import make_classification, make_regression from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LinearRegression from sklearn.utils._testing import _convert_container from sklearn.inspection import plot_partial_dependence # TODO: Remove when https://github.com/numpy/numpy/issues/14397 is resolved pytestmark = pytest.mark.filterwarnings( "ignore:In future, it will be an error for 'np.bool_':DeprecationWarning:" "matplotlib.*") @pytest.fixture(scope="module") def diabetes(): return load_diabetes() @pytest.fixture(scope="module") def clf_diabetes(diabetes): clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(diabetes.data, diabetes.target) return clf @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("grid_resolution", [10, 20]) def test_plot_partial_dependence(grid_resolution, pyplot, clf_diabetes, diabetes): # Test partial dependence plot function. # Use columns 0 & 2 as 1 is not quantitative (sex) feature_names = diabetes.feature_names disp = plot_partial_dependence(clf_diabetes, diabetes.data, [0, 2, (0, 2)], grid_resolution=grid_resolution, feature_names=feature_names, contour_kw={"cmap": "jet"}) fig = pyplot.gcf() axs = fig.get_axes() assert disp.figure_ is fig assert len(axs) == 4 assert disp.bounding_ax_ is not None assert disp.axes_.shape == (1, 3) assert disp.lines_.shape == (1, 3) assert disp.contours_.shape == (1, 3) assert disp.deciles_vlines_.shape == (1, 3) assert disp.deciles_hlines_.shape == (1, 3) assert disp.lines_[0, 2] is None assert disp.contours_[0, 0] is None assert disp.contours_[0, 1] is None # deciles lines: always show on xaxis, only show on yaxis if 2-way PDP for i in range(3): assert disp.deciles_vlines_[0, i] is not None assert disp.deciles_hlines_[0, 0] is None assert disp.deciles_hlines_[0, 1] is None assert disp.deciles_hlines_[0, 2] is not None assert disp.features == [(0, ), (2, ), (0, 2)] assert np.all(disp.feature_names == feature_names) assert len(disp.deciles) == 2 for i in [0, 2]: assert_allclose(disp.deciles[i], mquantiles(diabetes.data[:, i], prob=np.arange(0.1, 1.0, 0.1))) single_feature_positions = [(0, (0, 0)), (2, (0, 1))] expected_ylabels = ["Partial dependence", ""] for i, (feat_col, pos) in enumerate(single_feature_positions): ax = disp.axes_[pos] assert ax.get_ylabel() == expected_ylabels[i] assert ax.get_xlabel() == diabetes.feature_names[feat_col] assert_allclose(ax.get_ylim(), disp.pdp_lim[1]) line = disp.lines_[pos] avg_preds = disp.pd_results[i] assert avg_preds.average.shape == (1, grid_resolution) target_idx = disp.target_idx line_data = line.get_data() assert_allclose(line_data[0], avg_preds["values"][0]) assert_allclose(line_data[1], avg_preds.average[target_idx].ravel()) # two feature position ax = disp.axes_[0, 2] coutour = disp.contours_[0, 2] expected_levels = np.linspace(*disp.pdp_lim[2], num=8) assert_allclose(coutour.levels, expected_levels) assert coutour.get_cmap().name == "jet" assert ax.get_xlabel() == diabetes.feature_names[0] assert ax.get_ylabel() == diabetes.feature_names[2] @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("kind, subsample, shape", [ ('average', None, (1, 3)), ('individual', None, (1, 3, 442)), ('both', None, (1, 3, 443)), ('individual', 50, (1, 3, 50)), ('both', 50, (1, 3, 51)), ('individual', 0.5, (1, 3, 221)), ('both', 0.5, (1, 3, 222)) ]) def test_plot_partial_dependence_kind(pyplot, kind, subsample, shape, clf_diabetes, diabetes): disp = plot_partial_dependence(clf_diabetes, diabetes.data, [0, 1, 2], kind=kind, subsample=subsample) assert disp.axes_.shape == (1, 3) assert disp.lines_.shape == shape assert disp.contours_.shape == (1, 3) assert disp.contours_[0, 0] is None assert disp.contours_[0, 1] is None assert disp.contours_[0, 2] is None @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize( "input_type, feature_names_type", [('dataframe', None), ('dataframe', 'list'), ('list', 'list'), ('array', 'list'), ('dataframe', 'array'), ('list', 'array'), ('array', 'array'), ('dataframe', 'series'), ('list', 'series'), ('array', 'series'), ('dataframe', 'index'), ('list', 'index'), ('array', 'index')] ) def test_plot_partial_dependence_str_features(pyplot, clf_diabetes, diabetes, input_type, feature_names_type): if input_type == 'dataframe': pd = pytest.importorskip("pandas") X = pd.DataFrame(diabetes.data, columns=diabetes.feature_names) elif input_type == 'list': X = diabetes.data.tolist() else: X = diabetes.data if feature_names_type is None: feature_names = None else: feature_names = _convert_container(diabetes.feature_names, feature_names_type) grid_resolution = 25 # check with str features and array feature names and single column disp = plot_partial_dependence(clf_diabetes, X, [('age', 'bmi'), 'bmi'], grid_resolution=grid_resolution, feature_names=feature_names, n_cols=1, line_kw={"alpha": 0.8}) fig = pyplot.gcf() axs = fig.get_axes() assert len(axs) == 3 assert disp.figure_ is fig assert disp.axes_.shape == (2, 1) assert disp.lines_.shape == (2, 1) assert disp.contours_.shape == (2, 1) assert disp.deciles_vlines_.shape == (2, 1) assert disp.deciles_hlines_.shape == (2, 1) assert disp.lines_[0, 0] is None assert disp.deciles_vlines_[0, 0] is not None assert disp.deciles_hlines_[0, 0] is not None assert disp.contours_[1, 0] is None assert disp.deciles_hlines_[1, 0] is None assert disp.deciles_vlines_[1, 0] is not None # line ax = disp.axes_[1, 0] assert ax.get_xlabel() == "bmi" assert ax.get_ylabel() == "Partial dependence" line = disp.lines_[1, 0] avg_preds = disp.pd_results[1] target_idx = disp.target_idx assert line.get_alpha() == 0.8 line_data = line.get_data() assert_allclose(line_data[0], avg_preds["values"][0]) assert_allclose(line_data[1], avg_preds.average[target_idx].ravel()) # contour ax = disp.axes_[0, 0] coutour = disp.contours_[0, 0] expect_levels = np.linspace(*disp.pdp_lim[2], num=8) assert_allclose(coutour.levels, expect_levels) assert ax.get_xlabel() == "age" assert ax.get_ylabel() == "bmi" @pytest.mark.filterwarnings("ignore:A Bunch will be returned") def test_plot_partial_dependence_custom_axes(pyplot, clf_diabetes, diabetes): grid_resolution = 25 fig, (ax1, ax2) = pyplot.subplots(1, 2) disp = plot_partial_dependence(clf_diabetes, diabetes.data, ['age', ('age', 'bmi')], grid_resolution=grid_resolution, feature_names=diabetes.feature_names, ax=[ax1, ax2]) assert fig is disp.figure_ assert disp.bounding_ax_ is None assert disp.axes_.shape == (2, ) assert disp.axes_[0] is ax1 assert disp.axes_[1] is ax2 ax = disp.axes_[0] assert ax.get_xlabel() == "age" assert ax.get_ylabel() == "Partial dependence" line = disp.lines_[0] avg_preds = disp.pd_results[0] target_idx = disp.target_idx line_data = line.get_data() assert_allclose(line_data[0], avg_preds["values"][0]) assert_allclose(line_data[1], avg_preds.average[target_idx].ravel()) # contour ax = disp.axes_[1] coutour = disp.contours_[1] expect_levels = np.linspace(*disp.pdp_lim[2], num=8) assert_allclose(coutour.levels, expect_levels) assert ax.get_xlabel() == "age" assert ax.get_ylabel() == "bmi" @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("kind, lines", [ ('average', 1), ('individual', 442), ('both', 443) ]) def test_plot_partial_dependence_passing_numpy_axes(pyplot, clf_diabetes, diabetes, kind, lines): grid_resolution = 25 feature_names = diabetes.feature_names disp1 = plot_partial_dependence(clf_diabetes, diabetes.data, ['age', 'bmi'], kind=kind, grid_resolution=grid_resolution, feature_names=feature_names) assert disp1.axes_.shape == (1, 2) assert disp1.axes_[0, 0].get_ylabel() == "Partial dependence" assert disp1.axes_[0, 1].get_ylabel() == "" assert len(disp1.axes_[0, 0].get_lines()) == lines assert len(disp1.axes_[0, 1].get_lines()) == lines lr = LinearRegression() lr.fit(diabetes.data, diabetes.target) disp2 = plot_partial_dependence(lr, diabetes.data, ['age', 'bmi'], kind=kind, grid_resolution=grid_resolution, feature_names=feature_names, ax=disp1.axes_) assert np.all(disp1.axes_ == disp2.axes_) assert len(disp2.axes_[0, 0].get_lines()) == 2 * lines assert len(disp2.axes_[0, 1].get_lines()) == 2 * lines @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("nrows, ncols", [(2, 2), (3, 1)]) def test_plot_partial_dependence_incorrent_num_axes(pyplot, clf_diabetes, diabetes, nrows, ncols): grid_resolution = 5 fig, axes = pyplot.subplots(nrows, ncols) axes_formats = [list(axes.ravel()), tuple(axes.ravel()), axes] msg = "Expected ax to have 2 axes, got {}".format(nrows * ncols) disp = plot_partial_dependence(clf_diabetes, diabetes.data, ['age', 'bmi'], grid_resolution=grid_resolution, feature_names=diabetes.feature_names) for ax_format in axes_formats: with pytest.raises(ValueError, match=msg): plot_partial_dependence(clf_diabetes, diabetes.data, ['age', 'bmi'], grid_resolution=grid_resolution, feature_names=diabetes.feature_names, ax=ax_format) # with axes object with pytest.raises(ValueError, match=msg): disp.plot(ax=ax_format) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") def test_plot_partial_dependence_with_same_axes(pyplot, clf_diabetes, diabetes): # The first call to plot_partial_dependence will create two new axes to # place in the space of the passed in axes, which results in a total of # three axes in the figure. # Currently the API does not allow for the second call to # plot_partial_dependence to use the same axes again, because it will # create two new axes in the space resulting in five axes. To get the # expected behavior one needs to pass the generated axes into the second # call: # disp1 = plot_partial_dependence(...) # disp2 = plot_partial_dependence(..., ax=disp1.axes_) grid_resolution = 25 fig, ax = pyplot.subplots() plot_partial_dependence(clf_diabetes, diabetes.data, ['age', 'bmi'], grid_resolution=grid_resolution, feature_names=diabetes.feature_names, ax=ax) msg = ("The ax was already used in another plot function, please set " "ax=display.axes_ instead") with pytest.raises(ValueError, match=msg): plot_partial_dependence(clf_diabetes, diabetes.data, ['age', 'bmi'], grid_resolution=grid_resolution, feature_names=diabetes.feature_names, ax=ax) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") def test_plot_partial_dependence_feature_name_reuse(pyplot, clf_diabetes, diabetes): # second call to plot does not change the feature names from the first # call feature_names = diabetes.feature_names disp = plot_partial_dependence(clf_diabetes, diabetes.data, [0, 1], grid_resolution=10, feature_names=feature_names) plot_partial_dependence(clf_diabetes, diabetes.data, [0, 1], grid_resolution=10, ax=disp.axes_) for i, ax in enumerate(disp.axes_.ravel()): assert ax.get_xlabel() == feature_names[i] @pytest.mark.filterwarnings("ignore:A Bunch will be returned") def test_plot_partial_dependence_multiclass(pyplot): grid_resolution = 25 clf_int = GradientBoostingClassifier(n_estimators=10, random_state=1) iris = load_iris() # Test partial dependence plot function on multi-class input. clf_int.fit(iris.data, iris.target) disp_target_0 = plot_partial_dependence(clf_int, iris.data, [0, 1], target=0, grid_resolution=grid_resolution) assert disp_target_0.figure_ is pyplot.gcf() assert disp_target_0.axes_.shape == (1, 2) assert disp_target_0.lines_.shape == (1, 2) assert disp_target_0.contours_.shape == (1, 2) assert disp_target_0.deciles_vlines_.shape == (1, 2) assert disp_target_0.deciles_hlines_.shape == (1, 2) assert all(c is None for c in disp_target_0.contours_.flat) assert disp_target_0.target_idx == 0 # now with symbol labels target = iris.target_names[iris.target] clf_symbol = GradientBoostingClassifier(n_estimators=10, random_state=1) clf_symbol.fit(iris.data, target) disp_symbol = plot_partial_dependence(clf_symbol, iris.data, [0, 1], target='setosa', grid_resolution=grid_resolution) assert disp_symbol.figure_ is pyplot.gcf() assert disp_symbol.axes_.shape == (1, 2) assert disp_symbol.lines_.shape == (1, 2) assert disp_symbol.contours_.shape == (1, 2) assert disp_symbol.deciles_vlines_.shape == (1, 2) assert disp_symbol.deciles_hlines_.shape == (1, 2) assert all(c is None for c in disp_symbol.contours_.flat) assert disp_symbol.target_idx == 0 for int_result, symbol_result in zip(disp_target_0.pd_results, disp_symbol.pd_results): assert_allclose(int_result.average, symbol_result.average) assert_allclose(int_result["values"], symbol_result["values"]) # check that the pd plots are different for another target disp_target_1 = plot_partial_dependence(clf_int, iris.data, [0, 1], target=1, grid_resolution=grid_resolution) target_0_data_y = disp_target_0.lines_[0, 0].get_data()[1] target_1_data_y = disp_target_1.lines_[0, 0].get_data()[1] assert any(target_0_data_y != target_1_data_y) multioutput_regression_data = make_regression(n_samples=50, n_targets=2, random_state=0) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("target", [0, 1]) def test_plot_partial_dependence_multioutput(pyplot, target): # Test partial dependence plot function on multi-output input. X, y = multioutput_regression_data clf = LinearRegression().fit(X, y) grid_resolution = 25 disp = plot_partial_dependence(clf, X, [0, 1], target=target, grid_resolution=grid_resolution) fig = pyplot.gcf() axs = fig.get_axes() assert len(axs) == 3 assert disp.target_idx == target assert disp.bounding_ax_ is not None positions = [(0, 0), (0, 1)] expected_label = ["Partial dependence", ""] for i, pos in enumerate(positions): ax = disp.axes_[pos] assert ax.get_ylabel() == expected_label[i] assert ax.get_xlabel() == "{}".format(i) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") def test_plot_partial_dependence_dataframe(pyplot, clf_diabetes, diabetes): pd = pytest.importorskip('pandas') df = pd.DataFrame(diabetes.data, columns=diabetes.feature_names) grid_resolution = 25 plot_partial_dependence( clf_diabetes, df, ['bp', 's1'], grid_resolution=grid_resolution, feature_names=df.columns.tolist() ) dummy_classification_data = make_classification(random_state=0) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize( "data, params, err_msg", [(multioutput_regression_data, {"target": None, 'features': [0]}, "target must be specified for multi-output"), (multioutput_regression_data, {"target": -1, 'features': [0]}, r'target must be in \[0, n_tasks\]'), (multioutput_regression_data, {"target": 100, 'features': [0]}, r'target must be in \[0, n_tasks\]'), (dummy_classification_data, {'features': ['foobar'], 'feature_names': None}, 'Feature foobar not in feature_names'), (dummy_classification_data, {'features': ['foobar'], 'feature_names': ['abcd', 'def']}, 'Feature foobar not in feature_names'), (dummy_classification_data, {'features': [(1, 2, 3)]}, 'Each entry in features must be either an int, '), (dummy_classification_data, {'features': [1, {}]}, 'Each entry in features must be either an int, '), (dummy_classification_data, {'features': [tuple()]}, 'Each entry in features must be either an int, '), (dummy_classification_data, {'features': [123], 'feature_names': ['blahblah']}, 'All entries of features must be less than '), (dummy_classification_data, {'features': [0, 1, 2], 'feature_names': ['a', 'b', 'a']}, 'feature_names should not contain duplicates'), (dummy_classification_data, {'features': [(1, 2)], 'kind': 'individual'}, 'It is not possible to display individual effects for more than one'), (dummy_classification_data, {'features': [(1, 2)], 'kind': 'both'}, 'It is not possible to display individual effects for more than one'), (dummy_classification_data, {'features': [1], 'subsample': -1}, 'When an integer, subsample=-1 should be positive.'), (dummy_classification_data, {'features': [1], 'subsample': 1.2}, r'When a floating-point, subsample=1.2 should be in the \(0, 1\) range')] ) def test_plot_partial_dependence_error(pyplot, data, params, err_msg): X, y = data estimator = LinearRegression().fit(X, y) with pytest.raises(ValueError, match=err_msg): plot_partial_dependence(estimator, X, **params) @pytest.mark.filterwarnings("ignore:A Bunch will be returned") @pytest.mark.parametrize("params, err_msg", [ ({'target': 4, 'features': [0]}, 'target not in est.classes_, got 4'), ({'target': None, 'features': [0]}, 'target must be specified for multi-class'), ({'target': 1, 'features': [4.5]}, 'Each entry in features must be either an int,'), ]) def test_plot_partial_dependence_multiclass_error(pyplot, params, err_msg): iris = load_iris() clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) with pytest.raises(ValueError, match=err_msg): plot_partial_dependence(clf, iris.data, **params) def test_plot_partial_dependence_does_not_override_ylabel(pyplot, clf_diabetes, diabetes): # Non-regression test to be sure to not override the ylabel if it has been # See https://github.com/scikit-learn/scikit-learn/issues/15772 _, axes = pyplot.subplots(1, 2) axes[0].set_ylabel("Hello world") plot_partial_dependence(clf_diabetes, diabetes.data, [0, 1], ax=axes) assert axes[0].get_ylabel() == "Hello world" assert axes[1].get_ylabel() == "Partial dependence" @pytest.mark.parametrize( "kind, expected_shape", [("average", (1, 2)), ("individual", (1, 2, 50)), ("both", (1, 2, 51))], ) def test_plot_partial_dependence_subsampling( pyplot, clf_diabetes, diabetes, kind, expected_shape ): # check that the subsampling is properly working # non-regression test for: # https://github.com/scikit-learn/scikit-learn/pull/18359 matplotlib = pytest.importorskip("matplotlib") grid_resolution = 25 feature_names = diabetes.feature_names disp1 = plot_partial_dependence( clf_diabetes, diabetes.data, ["age", "bmi"], kind=kind, grid_resolution=grid_resolution, feature_names=feature_names, subsample=50, random_state=0, ) assert disp1.lines_.shape == expected_shape assert all( [ isinstance(line, matplotlib.lines.Line2D) for line in disp1.lines_.ravel() ] ) @pytest.mark.parametrize( "kind, line_kw, label", [ ("individual", {}, None), ("individual", {"label": "xxx"}, None), ("average", {}, None), ("average", {"label": "xxx"}, "xxx"), ("both", {}, "average"), ("both", {"label": "xxx"}, "xxx"), ], ) def test_partial_dependence_overwrite_labels( pyplot, clf_diabetes, diabetes, kind, line_kw, label, ): """Test that make sure that we can overwrite the label of the PDP plot""" disp = plot_partial_dependence( clf_diabetes, diabetes.data, [0, 2], grid_resolution=25, feature_names=diabetes.feature_names, kind=kind, line_kw=line_kw, ) for ax in disp.axes_.ravel(): if label is None: assert ax.get_legend() is None else: legend_text = ax.get_legend().get_texts() assert len(legend_text) == 1 assert legend_text[0].get_text() == label
bsd-3-clause