repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
n-west/gnuradio
gr-filter/examples/chirp_channelize.py
58
7169
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 200000 # number of samples to use self._fs = 9000 # initial sampling rate self._M = 9 # Number of channels to channelize # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._fs, 500, 20, attenuation_dB=10, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc repeated = True if(repeated): self.vco_input = analog.sig_source_f(self._fs, analog.GR_SIN_WAVE, 0.25, 110) else: amp = 100 data = scipy.arange(0, amp, amp/float(self._N)) self.vco_input = blocks.vector_source_f(data, False) # Build a VCO controlled by either the sinusoid or single chirp tone # Then convert this to a complex signal self.vco = blocks.vco_f(self._fs, 225, 1) self.f2c = blocks.float_to_complex() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.vco_input, self.vco, self.f2c) self.connect(self.f2c, self.head, self.pfb) self.connect(self.f2c, self.snk_i) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") fig3 = pylab.figure(4, figsize=(16,9), facecolor="w") Ns = 650 Ne = 20000 fftlen = 8192 winfunc = scipy.blackman fs = tb._fs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs / tb._M Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = freq p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") sp3 = fig3.add_subplot(1,1,1) p3 = sp3.plot(t_o, x_o.real) sp3.set_xlim([min(t_o), max(t_o)+1]) sp3.set_ylim([-2, 2]) sp3.set_title("All Channels") sp3.set_xlabel("Time (s)") sp3.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
dl1ksv/gnuradio
gr-filter/examples/synth_filter.py
6
1806
#!/usr/bin/env python # # Copyright 2010,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # from gnuradio import gr from gnuradio import filter from gnuradio import blocks import sys import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: from matplotlib import pyplot except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) def main(): N = 1000000 fs = 8000 freqs = [100, 200, 300, 400, 500] nchans = 7 sigs = list() for fi in freqs: s = analog.sig_source_c(fs, analog.GR_SIN_WAVE, fi, 1) sigs.append(s) taps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print("Num. Taps = %d (taps per filter = %d)" % (len(taps), len(taps) / nchans)) filtbank = filter.pfb_synthesizer_ccf(nchans, taps) head = blocks.head(gr.sizeof_gr_complex, N) snk = blocks.vector_sink_c() tb = gr.top_block() tb.connect(filtbank, head, snk) for i,si in enumerate(sigs): tb.connect(si, (filtbank, i)) tb.run() if 1: f1 = pyplot.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(snk.data()[1000:]) fftlen = 2048 f2 = pyplot.figure(2) s2 = f2.add_subplot(1,1,1) winfunc = numpy.blackman s2.psd(snk.data()[10000:], NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen / 4, window = lambda d: d*winfunc(fftlen)) pyplot.show() if __name__ == "__main__": main()
gpl-3.0
wkfwkf/statsmodels
statsmodels/sandbox/tsa/examples/ex_mle_garch.py
31
10676
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 01:01:50 2010 Author: josef-pktd latest result ------------- all are very close garch0 has different parameterization of constant ordering of parameters is different seed 2780185 h.shape (2000,) Optimization terminated successfully. Current function value: 2093.813397 Iterations: 387 Function evaluations: 676 ggres.params [-0.6146253 0.1914537 0.01039355 0.78802188] Optimization terminated successfully. Current function value: 2093.972953 Iterations: 201 Function evaluations: 372 ggres0.params [-0.61537527 0.19635128 4.00706058] Warning: Desired error not necessarily achieveddue to precision loss Current function value: 2093.972953 Iterations: 51 Function evaluations: 551 Gradient evaluations: 110 ggres0.params [-0.61537855 0.19635265 4.00694669] Optimization terminated successfully. Current function value: 2093.751420 Iterations: 103 Function evaluations: 187 [ 0.78671519 0.19692222 0.61457171] -2093.75141963 Final Estimate: LLH: 2093.750 norm LLH: 2.093750 omega alpha1 beta1 0.7867438 0.1970437 0.6145467 long run variance comparison ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ R >>> 0.7867438/(1- 0.1970437- 0.6145467) 4.1757097302897526 Garch (gjr) asymetric, longrun var ? >>> 1/(1-0.6146253 - 0.1914537 - 0.01039355) * 0.78802188 4.2937548579245242 >>> 1/(1-0.6146253 - 0.1914537 + 0.01039355) * 0.78802188 3.8569053452140345 Garch0 >>> (1-0.61537855 - 0.19635265) * 4.00694669 0.7543830449902722 >>> errgjr4.var() #for different random seed 4.0924199964716106 todo: add code and verify, check for longer lagpolys """ from __future__ import print_function import numpy as np from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt import numdifftools as ndt import statsmodels.api as sm from statsmodels.sandbox import tsa from statsmodels.sandbox.tsa.garch import * # local import nobs = 1000 examples = ['garch', 'rpyfit'] if 'garch' in examples: err,h = generate_kindofgarch(nobs, [1.0, -0.95], [1.0, 0.1], mu=0.5) plt.figure() plt.subplot(211) plt.plot(err) plt.subplot(212) plt.plot(h) #plt.show() seed = 3842774 #91234 #8837708 seed = np.random.randint(9999999) print('seed', seed) np.random.seed(seed) ar1 = -0.9 err,h = generate_garch(nobs, [1.0, ar1], [1.0, 0.50], mu=0.0,scale=0.1) # plt.figure() # plt.subplot(211) # plt.plot(err) # plt.subplot(212) # plt.plot(h) # plt.figure() # plt.subplot(211) # plt.plot(err[-400:]) # plt.subplot(212) # plt.plot(h[-400:]) #plt.show() garchplot(err, h) garchplot(err[-400:], h[-400:]) np.random.seed(seed) errgjr,hgjr, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.5,0]], mu=0.0,scale=0.1) garchplot(errgjr[:nobs], hgjr[:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') garchplot(errgjr[-400:nobs], hgjr[-400:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') np.random.seed(seed) errgjr2,hgjr2, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr2[:nobs], hgjr2[:nobs], 'GJR-GARCH(1,1) Simulation') garchplot(errgjr2[-400:nobs], hgjr2[-400:nobs], 'GJR-GARCH(1,1) Simulation') np.random.seed(seed) errgjr3,hgjr3, etax3 = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9],[0.1,0.9],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr3[:nobs], hgjr3[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr3[-400:nobs], hgjr3[-400:nobs], 'GJR-GARCH(1,3) Simulation') np.random.seed(seed) errgjr4,hgjr4, etax4 = generate_gjrgarch(nobs, [1.0, ar1], [[1., 1,0],[0, 0.1,0.9],[0, 0.1,0.9],[0, 0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') varinno = np.zeros(100) varinno[0] = 1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -0.], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) garchplot(errgjr5[:20], hgjr5[:20], 'GJR-GARCH(1,3) Simulation') #garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') #plt.show() seed = np.random.randint(9999999) # 9188410 print('seed', seed) x = np.arange(20).reshape(10,2) x3 = np.column_stack((np.ones((x.shape[0],1)),x)) y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,0]]),x3) nobs = 1000 warmup = 1000 np.random.seed(seed) ar = [1.0, -0.7]#7, -0.16, -0.1] #ma = [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]] ma = [[1., 0, 0],[0, 0.8,0.0]] #,[0, 0.9,0.0]] # errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, [1.0, -0.99], # [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]], # mu=0.2, scale=0.25) errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, ar, ma, mu=0.4, scale=1.01) errgjr4,hgjr4, etax4 = errgjr4[warmup:], hgjr4[warmup:], etax4[warmup:] garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation - DGP') ggmod = Garch(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print('ggres.params', ggres.params) garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, maxiter=2000) print('ggres0.params', ggres0.params) ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, method='bfgs', maxiter=2000) print('ggres0.params', ggres0.params) g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, errgjr4-errgjr4.mean())[0], [0.93, 0.9, 0.2]) print(g11res) llf = loglike_GARCH11(g11res, errgjr4-errgjr4.mean()) print(llf[0]) if 'rpyfit' in examples: from rpy import r r.library('fGarch') f = r.formula('~garch(1, 1)') fit = r.garchFit(f, data = errgjr4-errgjr4.mean(), include_mean=False) if 'rpysim' in examples: from rpy import r f = r.formula('~garch(1, 1)') #fit = r.garchFit(f, data = errgjr4) x = r.garchSim( n = 500) print('R acf', tsa.acf(np.power(x,2))[:15]) arma3 = Arma(np.power(x,2)) arma3res = arma3.fit(start_params=[-0.2,0.1,0.5],maxiter=5000) print(arma3res.params) arma3b = Arma(np.power(x,2)) arma3bres = arma3b.fit(start_params=[-0.2,0.1,0.5],maxiter=5000, method='bfgs') print(arma3bres.params) xr = r.garchSim( n = 100) x = np.asarray(xr) ggmod = Garch(x-x.mean()) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print('ggres.params', ggres.params) g11res = optimize.fmin(lambda params: -loglike_GARCH11(params, x-x.mean())[0], [0.6, 0.6, 0.2]) print(g11res) llf = loglike_GARCH11(g11res, x-x.mean()) print(llf[0]) garchplot(ggmod.errorsest, ggmod.h, title='Garch estimated') fit = r.garchFit(f, data = x-x.mean(), include_mean=False, trace=False) print(r.summary(fit)) '''based on R default simulation model = list(omega = 1e-06, alpha = 0.1, beta = 0.8) nobs = 1000 (with nobs=500, gjrgarch doesn't do well >>> ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) Optimization terminated successfully. Current function value: -448.861335 Iterations: 385 Function evaluations: 690 >>> print('ggres.params', ggres.params ggres.params [ -7.75090330e-01 1.57714749e-01 -9.60223930e-02 8.76021411e-07] rearranged 8.76021411e-07 1.57714749e-01(-9.60223930e-02) 7.75090330e-01 >>> print(g11res [ 2.97459808e-06 7.83128600e-01 2.41110860e-01] >>> llf = loglike_GARCH11(g11res, x-x.mean()) >>> print(llf[0] 442.603541936 Log Likelihood: -448.9376 normalized: -4.489376 omega alpha1 beta1 1.01632e-06 1.02802e-01 7.57537e-01 ''' ''' the following is for errgjr4-errgjr4.mean() ggres.params [-0.54510407 0.22723132 0.06482633 0.82325803] Final Estimate: LLH: 2065.56 norm LLH: 2.06556 mu omega alpha1 beta1 0.07229732 0.83069480 0.26313883 0.53986167 ggres.params [-0.50779163 0.2236606 0.00700036 1.154832 Final Estimate: LLH: 2116.084 norm LLH: 2.116084 mu omega alpha1 beta1 -4.759227e-17 1.145404e+00 2.288348e-01 5.085949e-01 run3 DGP 0.4/?? 0.8 0.7 gjrgarch: ggres.params [-0.45196579 0.2569641 0.02201904 1.11942636] rearranged const/omega ma1/alpha1 ar1/beta1 1.11942636 0.2569641(+0.02201904) 0.45196579 g11: [ 1.10262688 0.26680468 0.45724957] -2055.73912687 R: Final Estimate: LLH: 2055.738 norm LLH: 2.055738 mu omega alpha1 beta1 -1.665226e-17 1.102396e+00 2.668712e-01 4.573224e-01 fit = r.garchFit(f, data = errgjr4-errgjr4.mean()) rpy.RPy_RException: Error in solve.default(fit$hessian) : Lapack routine dgesv: system is exactly singular run4 DGP: mu=0.4, scale=1.01 ma = [[1., 0, 0],[0, 0.8,0.0]], ar = [1.0, -0.7] maybe something wrong with simulation gjrgarch ggres.params [-0.50554663 0.24449867 -0.00521004 1.00796791] rearranged 1.00796791 0.24449867(-0.00521004) 0.50554663 garch11: [ 1.01258264 0.24149155 0.50479994] -2056.3877404 R include_constant=False Final Estimate: LLH: 2056.397 norm LLH: 2.056397 omega alpha1 beta1 1.0123560 0.2409589 0.5049154 ''' erro,ho, etaxo = generate_gjrgarch(20, ar, ma, mu=0.04, scale=0.01, varinnovation = np.ones(20)) if 'sp500' in examples: import tabular as tb import scikits.timeseries as ts a = tb.loadSV(r'C:\Josef\work-oth\gspc_table.csv') s = ts.time_series(a[0]['Close'][::-1], dates=ts.date_array(a[0]['Date'][::-1],freq="D")) sp500 = a[0]['Close'][::-1] sp500r = np.diff(np.log(sp500)) #plt.show()
bsd-3-clause
smjhnits/Praktikum_TU_D_16-17
Anfängerpraktikum/Protokolle/V503_Der_Milikan_Versuch/Python/auswertung.py
1
7943
import numpy as np import math from scipy.stats import sem from uncertainties import ufloat import uncertainties.unumpy as unp import matplotlib.pyplot as plt from scipy.optimize import curve_fit import scipy.constants as const from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) from pint import UnitRegistry u = UnitRegistry() Q_ = u.Quantity g = Q_(const.g, 'meter / (second**2)') e_0 = Q_(const.e, 'coulomb') dichte_oel = Q_(886, 'kilogram / meter**3') d_Kondensator = Q_(ufloat(7.6250, 0.0051), 'millimeter') print(const.e) ## Fitfunktionen def poly(x, a, b, c): return a * x**2 + b * x + c def linear(x, a, b): return a * x + b ## Messwerte widerstand_gemessen = np.array([1.96, 1.92, 1.87, 1.81, 1.78, 1.71, 1.75, 1.75, 1.75, 1.75, 1.74, 1.74, 1.73, 1.73, 1.73, 1.72, 1.73, 1.72, 1.72, 1.72, 1.71, 1.71, 1.71, 1.71, 1.71, 1.7, 1.7, 1.71, 1.7, 1.7]) t_0 = np.array([17.78, 29.26, 35.03, 15.76, 34, 23.2, 15.41, 6.83, 11.4, 6.61, 9.93, 18, 19.26, 13.78, 9.4, 20.3, 11.56, 6.84, 13.58, 15.49, 8.49, 9.55, 8.13, 15.55, 9.03, 12.13, 16.18, 12.67, 6.95, 14.95]) U_gleichgewicht = Q_(np.array([269, 96, 11, 58, 35, 147, 77, 187, 200, 112, 118, 53, 61, 41, 134, 92, 122, 113, 50, 40, 76, 76, 175, 140, 192, 140, 113, 118, 155, 90]), 'volt') temp = np.linspace(10, 39, 30) Widerstand = np.array([3.239, 3.118, 3.004, 2.897, 2.795, 2.7, 2.61, 2.526, 2.446, 2.371, 2.3, 2.233, 2.169, 2.11, 2.053, 2, 1.95, 1.902, 1.857, 1.815, 1.774, 1.736, 1.7, 1.666, 1.634, 1.603, 1.574, 1.547, 1.521, 1.496]) ## Temperatur params_temp, covariance_temp = curve_fit(poly, Widerstand, temp) print('Fitparameter Temperatur: ', 'ax**2 + bx + c', params_temp) temp_gemessen = poly(widerstand_gemessen, *params_temp) x_temp = np.linspace(1.65, 2, 1000) plt.clf() plt.plot(widerstand_gemessen, temp_gemessen, 'rx', label = r'Temperatur') plt.plot(x_temp, poly(x_temp, *params_temp), 'b-', label = r'Fit') plt.xlabel(r'Widerstand in M$\Omega$') plt.ylabel('Temperatur in C') plt.xlim(1.67, 1.97) plt.legend(loc='best') plt.tight_layout() plt.savefig('Temp.pdf') ## Viskosität von Luft pkt = np.array([[16, 30], [1.805, 1.882]]) # Punkte von der Geraden Abb. 3 params_visko, covaraince_visko = curve_fit(linear, pkt[0], pkt[1]) visko_gemessen = Q_(linear(temp_gemessen, *params_visko) * 10**(-5), 'newton * second * meters**(-2)') ## Geschwindigkeit ohne E-Feld v_0 = Q_(0.5/ t_0, 'millimeter / second') ## mm pro s ## Radius der Öltröpfchen ## dichte Luft vernachlässigen r_oel = np.sqrt(9 * visko_gemessen * v_0 / (2 * g * dichte_oel)) r_oel = r_oel.to('millimeter') #print(r_oel) ## korrigierte Ladung p = Q_(1.01325, 'bar') ## Druck während der Messung B = Q_(6.17 * 10**(-3), 'torr * cm') korrektur = (1 + B / (p * r_oel))**(-3/2) ## dimensionslos ##korrigierter Radius ### r_korrigiert = (np.sqrt((B / (2 * p))**2 + 9 * visko_gemessen * v_0 / (2 * g * dichte_oel)) - B / (2 * p)) r_oel = r_korrigiert.to('millimeter') E_feld = U_gleichgewicht / d_Kondensator ## Ladung bestimmen aus Kräftegleichgewicht q = 4 * np.pi / 3 * dichte_oel * r_korrigiert**3 * g * 1 / E_feld q = q.to('coulomb') q_korrigiert = q #* korrektur ## Ladungen im Vergleich zur Elementarladung plt.clf() ax1 = plt.subplot(2, 1, 2) plt.plot(range(1, len(noms(q_korrigiert.magnitude)) + 1), np.sort(noms(q_korrigiert.magnitude)), 'kx', label = r'Messdaten') #plt.axhline(y = e_0.magnitude, color = 'r', linewidth = 2, label = 'Elementarladung') plt.yticks([e_0.magnitude, 2 * e_0.magnitude, 3 * e_0.magnitude, 4 * e_0.magnitude, 5 * e_0.magnitude, 6 * e_0.magnitude, 7 * e_0.magnitude, 8 * e_0.magnitude, 9 * e_0.magnitude], [r"$e_0$", r"$2e_0$", r"$3e_0$" ,r"$4e_0$", r"$5e_0$", r"$6e_0$", r"$7e_0$", r"$8e_0$", r"$9e_0$"]) plt.grid() plt.xlabel('Messreihe') plt.ylabel('Elementaladungen') plt.legend(loc='best') plt.tight_layout() ax2 = plt.subplot(2, 1, 1, sharex = ax1) plt.plot(range(1, len(noms(q_korrigiert.magnitude)) + 1), noms(q_korrigiert.magnitude), 'kx', label = r'Messdaten') #plt.axhline(y = e_0.magnitude, color = 'r', linewidth = 2, label = 'Elementarladung') plt.yticks([e_0.magnitude, 2 * e_0.magnitude, 3 * e_0.magnitude, 4 * e_0.magnitude, 5 * e_0.magnitude, 6 * e_0.magnitude, 7 * e_0.magnitude, 8 * e_0.magnitude, 9 * e_0.magnitude], [r"$e_0$", r"$2e_0$", r"$3e_0$" ,r"$4e_0$", r"$5e_0$", r"$6e_0$", r"$7e_0$", r"$8e_0$", r"$9e_0$"]) plt.grid() plt.ylabel('Elementaladungen') plt.xlim(-1, 31) plt.legend(loc='best') plt.tight_layout() #plt.show() plt.savefig('Ladungen_E_0.pdf') ## Bestimmung der eigenen Elementarladung ## Abstand der Ladungen untereinander bestimmen. zu geringe Abstände ## weglassen, da Resultat aus Messungenauigkeit ##sortieren der Messdaten q_sortiert = Q_(np.sort(q_korrigiert), 'coulomb') q_sort = noms(q_sortiert.magnitude) # aus Grafik q_mittel = np.array([np.mean(q_sort[0:2]), np.mean(q_sort[3:7]), np.mean(q_sort[8:14]), np.mean(q_sort[15:19]), q_sort[20], np.mean(q_sort[21:24]), np.mean(q_sort[25:26]), q_sort[29], np.mean(q_sort[28:29])]) #print(np.argmin(abs(q_sortiert.magnitude / e_0.magnitude - 1))) n = q_sortiert[0] q_sortiert[0] = q_sortiert[2] q_sortiert[2] = n #def round_dist(q, q_test): # test = np.zeros(len(q)) # for i in range(len(q) - 1): # test[i] = np.round(q[i] / q_test) # return sum(test) #for i in range(len(noms(q_sortiert.magnitude)) - 1): # if np.abs(q_sortiert[i + 1] - q_sortiert[i]) < e_0/2: # q_sortiert[i + 1] = q_sortiert[i] #best_value = np.zeros(len(noms(q_sortiert.magnitude))) dist = 10**-19 e = const.e q_test = np.linspace(e - dist, e + dist, len(q_sort)) ## testladungsarray best_value = q_mittel #for i in range(len(q_sort) - 1): ## raussortieren der besten gemessenen werte # if np.abs(q_sort[i + 1] - q_sort[i]) > e_0.magnitude /2: # best_value = np.append(best_value, q_sort[i]) q_best = np.array([]) for i in range(len(best_value)): ## ladung mit geringestem abstand ist der Kandidat für die elementarladung q_best = np.append(q_best, np.abs(np.around(best_value[i] / q_test) - best_value[i] / q_test)) #if q_best = 0.000916822140607 #print(i, q_best[i], best_value[i]) print(len(q_best), len(best_value), len(q_test)) print(best_value) print(q_best[np.argmin(q_best)], np.argmin(q_best), np.abs(np.around(best_value[1] / q_test[13]) - best_value[1] / q_test[13])) print(q_test[13], best_value[1]) print('bester wert für e_0:', q_test[13]) print('absoluter Fehler: ', q_test[13] - const.e) print('relativer Fehler: ', np.abs(q_test[13] - const.e) / const.e) print(q_test[13] / e) #for i in range(len(noms(q_sortiert.magnitude))): # best_value[i] = round_dist(q_sortiert, q_sortiert[i]) # #print(np.argmin(best_value)) ### Avogadro-Konstante ## mit faradaykonstante N_a = 96485.33289 / q_test[13] print('Avogadro: ', N_a, const.N_A) print('absoluter Fehler: ', const.N_A - N_a) print('relativer Fehler: ', np.abs(N_a - const.N_A) / const.N_A) print(N_a / const.N_A - 1) plt.clf() plt.plot(range(0, len(noms(q_sortiert.magnitude))), noms(q_sortiert.magnitude), 'kx', label = r'Messdaten') #plt.axhline(y = e_0.magnitude, color = 'r', linewidth = 2, label = 'Elementarladung') plt.yticks([e_0.magnitude, 2 * e_0.magnitude, 3 * e_0.magnitude, 4 * e_0.magnitude, 5 * e_0.magnitude, 6 * e_0.magnitude, 7 * e_0.magnitude, 8 * e_0.magnitude, 9 * e_0.magnitude], [r"$e_0$", r"$2e_0$", r"$3e_0$" ,r"$4e_0$", r"$5e_0$", r"$6e_0$", r"$7e_0$", r"$8e_0$", r"$9e_0$"]) plt.grid() plt.xlabel('Nummer der Messung') plt.ylabel('Elementaladungen') plt.xlim(-1, 31) plt.legend(loc='best') plt.tight_layout() #plt.show() #plt.savefig('sortierte_Ladungen_E_0.pdf') ## Messdaten auslagern np.savetxt('Messdaten.txt', np.column_stack([widerstand_gemessen, t_0, U_gleichgewicht.magnitude, noms(r_oel.magnitude), stds(r_oel.magnitude), noms(q_korrigiert.magnitude), stds(q_korrigiert.magnitude)]), header = "widerstand t_0 U_g r_oel err q err")
mit
aditiiyer/CERR
CERR_core/ModelImplementationLibrary/SegmentationModels/ModelDependencies/CT_HeartSubStructures_DeepLab/dataloaders/utils.py
4
3279
import matplotlib.pyplot as plt import numpy as np import torch def decode_seg_map_sequence(label_masks, dataset='heart'): rgb_masks = [] for label_mask in label_masks: rgb_mask = decode_segmap(label_mask, dataset) rgb_masks.append(rgb_mask) rgb_masks = torch.from_numpy(np.array(rgb_masks).transpose([0, 3, 1, 2])) return rgb_masks def decode_segmap(label_mask, dataset, plot=False): """Decode segmentation class labels into a color image Args: label_mask (np.ndarray): an (M,N) array of integer values denoting the class label at each spatial location. plot (bool, optional): whether to show the resulting color image in a figure. Returns: (np.ndarray, optional): the resulting decoded color image. """ if dataset == 'heart': n_classes = 10 label_colours = get_heart_labels() elif dataset == 'validation': n_classes = 10 label_colours = get_heart_struct_labels() elif dataset == 'heart_struct' or dataset == 'heart_peri' or dataset == 'heart_ventricles' or dataset == 'heart_atria': n_classes = 2 label_colours = get_heart_labels() elif dataset == 'validation_struct' or dataset == 'validation_peri' or dataset == 'validation_ventricles' or dataset == 'validation_atria': n_classes = 2 label_colours = get_heart_struct_labels() else: raise NotImplementedError r = label_mask.copy() g = label_mask.copy() b = label_mask.copy() for ll in range(0, n_classes): r[label_mask == ll] = label_colours[ll, 0] g[label_mask == ll] = label_colours[ll, 1] b[label_mask == ll] = label_colours[ll, 2] rgb = np.zeros((label_mask.shape[0], label_mask.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 if plot: plt.imshow(rgb) plt.show() else: return rgb def encode_segmap(mask): """Encode segmentation label images as pascal classes Args: mask (np.ndarray): raw segmentation label image of dimension (M, N, 3), in which the Pascal classes are encoded as colours. Returns: (np.ndarray): class map with dimensions (M,N), where the value at a given location is the integer denoting the class index. """ mask = mask.astype(int) label_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.int16) for ii, label in enumerate(get_heart_labels()): label_mask[np.where(np.all(mask == label, axis=-1))[:2]] = ii label_mask = label_mask.astype(int) return label_mask def get_heart_labels(): # return np.array with dimensions (10,3) # [0,1,2,3,4,5,6,7,8,9] #['unlabelled', HEART', 'AORTA', 'LA', 'LV', 'RA', 'RV', 'IVC', 'SVC', 'PA'] return np.asarray([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0]]) def get_heart_struct_labels(): # return np.array with dimensions (2,3) # [0,1] #['unlabelled', HEART'] return np.asarray([[0, 0, 0], [128, 0, 0]])
lgpl-2.1
fredhusser/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
YerevaNN/mimic3-benchmarks
mimic3benchmark/scripts/create_decompensation.py
1
4620
from __future__ import absolute_import from __future__ import print_function import os import argparse import numpy as np import pandas as pd from datetime import datetime import random random.seed(49297) from tqdm import tqdm def process_partition(args, partition, sample_rate=1.0, shortest_length=4.0, eps=1e-6, future_time_interval=24.0): output_dir = os.path.join(args.output_path, partition) if not os.path.exists(output_dir): os.mkdir(output_dir) xty_triples = [] patients = list(filter(str.isdigit, os.listdir(os.path.join(args.root_path, partition)))) for patient in tqdm(patients, desc='Iterating over patients in {}'.format(partition)): patient_folder = os.path.join(args.root_path, partition, patient) patient_ts_files = list(filter(lambda x: x.find("timeseries") != -1, os.listdir(patient_folder))) stays_df = pd.read_csv(os.path.join(patient_folder, "stays.csv")) for ts_filename in patient_ts_files: with open(os.path.join(patient_folder, ts_filename)) as tsfile: lb_filename = ts_filename.replace("_timeseries", "") label_df = pd.read_csv(os.path.join(patient_folder, lb_filename)) # empty label file if label_df.shape[0] == 0: continue mortality = int(label_df.iloc[0]["Mortality"]) los = 24.0 * label_df.iloc[0]['Length of Stay'] # in hours if pd.isnull(los): print("(length of stay is missing)", patient, ts_filename) continue stay = stays_df[stays_df.ICUSTAY_ID == label_df.iloc[0]['Icustay']] deathtime = stay['DEATHTIME'].iloc[0] intime = stay['INTIME'].iloc[0] if pd.isnull(deathtime): lived_time = 1e18 else: lived_time = (datetime.strptime(deathtime, "%Y-%m-%d %H:%M:%S") - datetime.strptime(intime, "%Y-%m-%d %H:%M:%S")).total_seconds() / 3600.0 ts_lines = tsfile.readlines() header = ts_lines[0] ts_lines = ts_lines[1:] event_times = [float(line.split(',')[0]) for line in ts_lines] ts_lines = [line for (line, t) in zip(ts_lines, event_times) if -eps < t < los + eps] event_times = [t for t in event_times if -eps < t < los + eps] # no measurements in ICU if len(ts_lines) == 0: print("(no events in ICU) ", patient, ts_filename) continue sample_times = np.arange(0.0, min(los, lived_time) + eps, sample_rate) sample_times = list(filter(lambda x: x > shortest_length, sample_times)) # At least one measurement sample_times = list(filter(lambda x: x > event_times[0], sample_times)) output_ts_filename = patient + "_" + ts_filename with open(os.path.join(output_dir, output_ts_filename), "w") as outfile: outfile.write(header) for line in ts_lines: outfile.write(line) for t in sample_times: if mortality == 0: cur_mortality = 0 else: cur_mortality = int(lived_time - t < future_time_interval) xty_triples.append((output_ts_filename, t, cur_mortality)) print("Number of created samples:", len(xty_triples)) if partition == "train": random.shuffle(xty_triples) if partition == "test": xty_triples = sorted(xty_triples) with open(os.path.join(output_dir, "listfile.csv"), "w") as listfile: listfile.write('stay,period_length,y_true\n') for (x, t, y) in xty_triples: listfile.write('{},{:.6f},{:d}\n'.format(x, t, y)) def main(): parser = argparse.ArgumentParser(description="Create data for decompensation prediction task.") parser.add_argument('root_path', type=str, help="Path to root folder containing train and test sets.") parser.add_argument('output_path', type=str, help="Directory where the created data should be stored.") args, _ = parser.parse_known_args() if not os.path.exists(args.output_path): os.makedirs(args.output_path) process_partition(args, "test") process_partition(args, "train") if __name__ == '__main__': main()
mit
btabibian/scikit-learn
examples/svm/plot_svm_regression.py
120
1520
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results lw = 2 plt.scatter(X, y, color='darkorange', label='data') plt.hold('on') plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model') plt.plot(X, y_lin, color='c', lw=lw, label='Linear model') plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
amolkahat/pandas
pandas/tests/io/test_parquet.py
1
18660
""" test parquet compat """ import pytest import datetime from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pandas as pd from pandas.compat import PY3, is_platform_windows, is_platform_mac from pandas.io.parquet import (to_parquet, read_parquet, get_engine, PyArrowImpl, FastParquetImpl) from pandas.util import testing as tm try: import pyarrow # noqa _HAVE_PYARROW = True except ImportError: _HAVE_PYARROW = False try: import fastparquet # noqa _HAVE_FASTPARQUET = True except ImportError: _HAVE_FASTPARQUET = False # setup engines & skips @pytest.fixture(params=[ pytest.param('fastparquet', marks=pytest.mark.skipif(not _HAVE_FASTPARQUET, reason='fastparquet is ' 'not installed')), pytest.param('pyarrow', marks=pytest.mark.skipif(not _HAVE_PYARROW, reason='pyarrow is ' 'not installed'))]) def engine(request): return request.param @pytest.fixture def pa(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") return 'pyarrow' @pytest.fixture def pa_lt_070(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") if LooseVersion(pyarrow.__version__) >= LooseVersion('0.7.0'): pytest.skip("pyarrow is >= 0.7.0") return 'pyarrow' @pytest.fixture def pa_ge_070(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") if LooseVersion(pyarrow.__version__) < LooseVersion('0.7.0'): pytest.skip("pyarrow is < 0.7.0") return 'pyarrow' @pytest.fixture def fp(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") return 'fastparquet' @pytest.fixture def fp_lt_014(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") if LooseVersion(fastparquet.__version__) >= LooseVersion('0.1.4'): pytest.skip("fastparquet is >= 0.1.4") return 'fastparquet' @pytest.fixture def df_compat(): return pd.DataFrame({'A': [1, 2, 3], 'B': 'foo'}) @pytest.fixture def df_cross_compat(): df = pd.DataFrame({'a': list('abc'), 'b': list(range(1, 4)), # 'c': np.arange(3, 6).astype('u1'), 'd': np.arange(4.0, 7.0, dtype='float64'), 'e': [True, False, True], 'f': pd.date_range('20130101', periods=3), # 'g': pd.date_range('20130101', periods=3, # tz='US/Eastern'), # 'h': pd.date_range('20130101', periods=3, freq='ns') }) return df @pytest.fixture def df_full(): return pd.DataFrame( {'string': list('abc'), 'string_with_nan': ['a', np.nan, 'c'], 'string_with_none': ['a', None, 'c'], 'bytes': [b'foo', b'bar', b'baz'], 'unicode': [u'foo', u'bar', u'baz'], 'int': list(range(1, 4)), 'uint': np.arange(3, 6).astype('u1'), 'float': np.arange(4.0, 7.0, dtype='float64'), 'float_with_nan': [2., np.nan, 3.], 'bool': [True, False, True], 'datetime': pd.date_range('20130101', periods=3), 'datetime_with_nat': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')]}) def check_round_trip(df, engine=None, path=None, write_kwargs=None, read_kwargs=None, expected=None, check_names=True, repeat=2): """Verify parquet serializer and deserializer produce the same results. Performs a pandas to disk and disk to pandas round trip, then compares the 2 resulting DataFrames to verify equality. Parameters ---------- df: Dataframe engine: str, optional 'pyarrow' or 'fastparquet' path: str, optional write_kwargs: dict of str:str, optional read_kwargs: dict of str:str, optional expected: DataFrame, optional Expected deserialization result, otherwise will be equal to `df` check_names: list of str, optional Closed set of column names to be compared repeat: int, optional How many times to repeat the test """ write_kwargs = write_kwargs or {'compression': None} read_kwargs = read_kwargs or {} if expected is None: expected = df if engine: write_kwargs['engine'] = engine read_kwargs['engine'] = engine def compare(repeat): for _ in range(repeat): df.to_parquet(path, **write_kwargs) with catch_warnings(record=True): actual = read_parquet(path, **read_kwargs) tm.assert_frame_equal(expected, actual, check_names=check_names) if path is None: with tm.ensure_clean() as path: compare(repeat) else: compare(repeat) def test_invalid_engine(df_compat): with pytest.raises(ValueError): check_round_trip(df_compat, 'foo', 'bar') def test_options_py(df_compat, pa): # use the set option with pd.option_context('io.parquet.engine', 'pyarrow'): check_round_trip(df_compat) def test_options_fp(df_compat, fp): # use the set option with pd.option_context('io.parquet.engine', 'fastparquet'): check_round_trip(df_compat) def test_options_auto(df_compat, fp, pa): # use the set option with pd.option_context('io.parquet.engine', 'auto'): check_round_trip(df_compat) def test_options_get_engine(fp, pa): assert isinstance(get_engine('pyarrow'), PyArrowImpl) assert isinstance(get_engine('fastparquet'), FastParquetImpl) with pd.option_context('io.parquet.engine', 'pyarrow'): assert isinstance(get_engine('auto'), PyArrowImpl) assert isinstance(get_engine('pyarrow'), PyArrowImpl) assert isinstance(get_engine('fastparquet'), FastParquetImpl) with pd.option_context('io.parquet.engine', 'fastparquet'): assert isinstance(get_engine('auto'), FastParquetImpl) assert isinstance(get_engine('pyarrow'), PyArrowImpl) assert isinstance(get_engine('fastparquet'), FastParquetImpl) with pd.option_context('io.parquet.engine', 'auto'): assert isinstance(get_engine('auto'), PyArrowImpl) assert isinstance(get_engine('pyarrow'), PyArrowImpl) assert isinstance(get_engine('fastparquet'), FastParquetImpl) @pytest.mark.xfail(is_platform_windows() or is_platform_mac(), reason="reading pa metadata failing on Windows/mac", strict=True) def test_cross_engine_pa_fp(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=pa, compression=None) result = read_parquet(path, engine=fp) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=fp, columns=['a', 'd']) tm.assert_frame_equal(result, df[['a', 'd']]) def test_cross_engine_fp_pa(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=fp, compression=None) with catch_warnings(record=True): result = read_parquet(path, engine=pa) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=pa, columns=['a', 'd']) tm.assert_frame_equal(result, df[['a', 'd']]) class Base(object): def check_error_on_write(self, df, engine, exc): # check that we are raising the exception on writing with tm.ensure_clean() as path: with pytest.raises(exc): to_parquet(df, path, engine, compression=None) class TestBasic(Base): def test_error(self, engine): for obj in [pd.Series([1, 2, 3]), 1, 'foo', pd.Timestamp('20130101'), np.array([1, 2, 3])]: self.check_error_on_write(obj, engine, ValueError) def test_columns_dtypes(self, engine): df = pd.DataFrame({'string': list('abc'), 'int': list(range(1, 4))}) # unicode df.columns = [u'foo', u'bar'] check_round_trip(df, engine) def test_columns_dtypes_invalid(self, engine): df = pd.DataFrame({'string': list('abc'), 'int': list(range(1, 4))}) # numeric df.columns = [0, 1] self.check_error_on_write(df, engine, ValueError) if PY3: # bytes on PY3, on PY2 these are str df.columns = [b'foo', b'bar'] self.check_error_on_write(df, engine, ValueError) # python object df.columns = [datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 1, 1)] self.check_error_on_write(df, engine, ValueError) @pytest.mark.parametrize('compression', [None, 'gzip', 'snappy', 'brotli']) def test_compression(self, engine, compression): if compression == 'snappy': pytest.importorskip('snappy') elif compression == 'brotli': pytest.importorskip('brotli') df = pd.DataFrame({'A': [1, 2, 3]}) check_round_trip(df, engine, write_kwargs={'compression': compression}) def test_read_columns(self, engine): # GH18154 df = pd.DataFrame({'string': list('abc'), 'int': list(range(1, 4))}) expected = pd.DataFrame({'string': list('abc')}) check_round_trip(df, engine, expected=expected, read_kwargs={'columns': ['string']}) def test_write_index(self, engine): check_names = engine != 'fastparquet' if engine == 'pyarrow': import pyarrow if LooseVersion(pyarrow.__version__) < LooseVersion('0.7.0'): pytest.skip("pyarrow is < 0.7.0") df = pd.DataFrame({'A': [1, 2, 3]}) check_round_trip(df, engine) indexes = [ [2, 3, 4], pd.date_range('20130101', periods=3), list('abc'), [1, 3, 4], ] # non-default index for index in indexes: df.index = index check_round_trip(df, engine, check_names=check_names) # index with meta-data df.index = [0, 1, 2] df.index.name = 'foo' check_round_trip(df, engine) def test_write_multiindex(self, pa_ge_070): # Not suppoprted in fastparquet as of 0.1.3 or older pyarrow version engine = pa_ge_070 df = pd.DataFrame({'A': [1, 2, 3]}) index = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)]) df.index = index check_round_trip(df, engine) def test_write_column_multiindex(self, engine): # column multi-index mi_columns = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)]) df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns) self.check_error_on_write(df, engine, ValueError) def test_multiindex_with_columns(self, pa_ge_070): engine = pa_ge_070 dates = pd.date_range('01-Jan-2018', '01-Dec-2018', freq='MS') df = pd.DataFrame(np.random.randn(2 * len(dates), 3), columns=list('ABC')) index1 = pd.MultiIndex.from_product( [['Level1', 'Level2'], dates], names=['level', 'date']) index2 = index1.copy(names=None) for index in [index1, index2]: df.index = index check_round_trip(df, engine) check_round_trip(df, engine, read_kwargs={'columns': ['A', 'B']}, expected=df[['A', 'B']]) def test_write_ignoring_index(self, engine): # ENH 20768 # Ensure index=False omits the index from the written Parquet file. df = pd.DataFrame({'a': [1, 2, 3], 'b': ['q', 'r', 's']}) write_kwargs = { 'compression': None, 'index': False, } # Because we're dropping the index, we expect the loaded dataframe to # have the default integer index. expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore custom index df = pd.DataFrame({'a': [1, 2, 3], 'b': ['q', 'r', 's']}, index=['zyx', 'wvu', 'tsr']) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore multi-indexes as well. arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] df = pd.DataFrame({'one': [i for i in range(8)], 'two': [-i for i in range(8)]}, index=arrays) expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) class TestParquetPyArrow(Base): def test_basic(self, pa, df_full): df = df_full # additional supported types for pyarrow import pyarrow if LooseVersion(pyarrow.__version__) >= LooseVersion('0.7.0'): df['datetime_tz'] = pd.date_range('20130101', periods=3, tz='Europe/Brussels') df['bool_with_none'] = [True, None, True] check_round_trip(df, pa) # TODO: This doesn't fail on all systems; track down which @pytest.mark.xfail(reason="pyarrow fails on this (ARROW-1883)") def test_basic_subset_columns(self, pa, df_full): # GH18628 df = df_full # additional supported types for pyarrow df['datetime_tz'] = pd.date_range('20130101', periods=3, tz='Europe/Brussels') check_round_trip(df, pa, expected=df[['string', 'int']], read_kwargs={'columns': ['string', 'int']}) def test_duplicate_columns(self, pa): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list('aaa')).copy() self.check_error_on_write(df, pa, ValueError) @pytest.mark.xfail(reason="failing for pyarrow < 0.11.0") def test_unsupported(self, pa): # period df = pd.DataFrame({'a': pd.period_range('2013', freq='M', periods=3)}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_error_on_write(df, pa, Exception) # timedelta df = pd.DataFrame({'a': pd.timedelta_range('1 day', periods=3)}) self.check_error_on_write(df, pa, NotImplementedError) # mixed python objects df = pd.DataFrame({'a': ['a', 1, 2.0]}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_error_on_write(df, pa, Exception) def test_categorical(self, pa_ge_070): pa = pa_ge_070 # supported in >= 0.7.0 df = pd.DataFrame({'a': pd.Categorical(list('abc'))}) # de-serialized as object expected = df.assign(a=df.a.astype(object)) check_round_trip(df, pa, expected=expected) def test_categorical_unsupported(self, pa_lt_070): pa = pa_lt_070 # supported in >= 0.7.0 df = pd.DataFrame({'a': pd.Categorical(list('abc'))}) self.check_error_on_write(df, pa, NotImplementedError) def test_s3_roundtrip(self, df_compat, s3_resource, pa): # GH #19134 check_round_trip(df_compat, pa, path='s3://pandas-test/pyarrow.parquet') class TestParquetFastParquet(Base): def test_basic(self, fp, df_full): df = df_full # additional supported types for fastparquet if LooseVersion(fastparquet.__version__) >= LooseVersion('0.1.4'): df['datetime_tz'] = pd.date_range('20130101', periods=3, tz='US/Eastern') df['timedelta'] = pd.timedelta_range('1 day', periods=3) check_round_trip(df, fp) @pytest.mark.skip(reason="not supported") def test_duplicate_columns(self, fp): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list('aaa')).copy() self.check_error_on_write(df, fp, ValueError) def test_bool_with_none(self, fp): df = pd.DataFrame({'a': [True, None, False]}) expected = pd.DataFrame({'a': [1.0, np.nan, 0.0]}, dtype='float16') check_round_trip(df, fp, expected=expected) def test_unsupported(self, fp): # period df = pd.DataFrame({'a': pd.period_range('2013', freq='M', periods=3)}) self.check_error_on_write(df, fp, ValueError) # mixed df = pd.DataFrame({'a': ['a', 1, 2.0]}) self.check_error_on_write(df, fp, ValueError) def test_categorical(self, fp): if LooseVersion(fastparquet.__version__) < LooseVersion("0.1.3"): pytest.skip("CategoricalDtype not supported for older fp") df = pd.DataFrame({'a': pd.Categorical(list('abc'))}) check_round_trip(df, fp) def test_datetime_tz(self, fp_lt_014): # fastparquet<0.1.4 doesn't preserve tz df = pd.DataFrame({'a': pd.date_range('20130101', periods=3, tz='US/Eastern')}) # warns on the coercion with catch_warnings(record=True): check_round_trip(df, fp_lt_014, expected=df.astype('datetime64[ns]')) def test_filter_row_groups(self, fp): d = {'a': list(range(0, 3))} df = pd.DataFrame(d) with tm.ensure_clean() as path: df.to_parquet(path, fp, compression=None, row_group_offsets=1) result = read_parquet(path, fp, filters=[('a', '==', 0)]) assert len(result) == 1 def test_s3_roundtrip(self, df_compat, s3_resource, fp): # GH #19134 check_round_trip(df_compat, fp, path='s3://pandas-test/fastparquet.parquet')
bsd-3-clause
Srisai85/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
ishanic/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
hfegetude/EjerciciosMicroondas
tema3/ej11/parte1.py
1
6194
import numpy as np import matplotlib.pyplot as plt def cart2pol(x, y): theta = np.arctan2(y, x) rho = np.hypot(x, y) return theta, rho def pol2cart(theta, rho): x = rho * np.cos(theta) y = rho * np.sin(theta) return x, y def add_radius(x, y, r ): ang, mod = cart2pol(x, y) return pol2cart( ang, mod + r) def adjustFigAspect(fig,aspect=1): ''' Adjust the subplot parameters so that the figure has the correct aspect ratio. ''' xsize,ysize = fig.get_size_inches() minsize = min(xsize,ysize) xlim = .4*minsize/xsize ylim = .4*minsize/ysize if aspect < 1: xlim *= aspect else: ylim /= aspect fig.subplots_adjust(left=.5-xlim, right=.5+xlim, bottom=.5-ylim, top=.5+ylim) def colision(r0, r1, p1x, p1y, p2x, p2y): d=np.linalg.norm([p1x-p2x , p1y-p2y] ) a=(r0*r0 - r1*r1 + d*d)/(2*d) h = np.sqrt(r0*r0 - a*a) p3x = p1x + a*(p2x - p1x)/(d) p3y = p1y + a*(p2y - p1y)/d p4x = p3x - h*(p2y - p1y)/d p4y = p3y + h*(p2x - p1x)/d return p4x, p4y def colisionM(r0, r1, p1x, p1y, p2x, p2y): d=np.linalg.norm([p1x-p2x , p1y-p2y] ) a=(r0*r0 - r1*r1 + d*d)/(2*d) h = np.sqrt(r0*r0 - a*a) p3x = p1x + a*(p2x - p1x)/(d) p3y = p1y + a*(p2y - p1y)/d p4x = p3x + h*(p2y - p1y)/d p4y = p3y - h*(p2x - p1x)/d return p4x, p4y def line(i): x = 1 + (1/i) * np.cos(np.arange(0 , 2*np.pi , 0.0001)) y = (1/(i))+(1/(i)) * np.sin(np.arange(0 , 2*np.pi , 0.0001)) x_t , y_t = colision(1, 1/i, 0, 0, 1, 1/i) x_f = x[x < 1] y_f = y[x < 1] y_f = y_f[x_f > -1] x_f = x_f[x_f > -1] x_f = x_f[y_f < y_t ] y_f = y_f[y_f < y_t ] ax.plot(x_f, y_f , 'k', linewidth = 0.2) x_text , y_text = add_radius(x_t, y_t, 0.01) ax.text( x_text, y_text, str(i), verticalalignment='center', horizontalalignment='center', rotation=np.angle(x_t + y_t*1j, deg=True) - 90 , fontsize=3) ##ax.plot(x_text, y_text, 'ko') def line2(i): x = 1 + (1/(-1*i)) * np.cos(np.arange( -np.pi , np.pi, 0.0001)) y = (1/(i*-1))+(1/(i*-1)) * np.sin(np.arange(-np.pi , np.pi, 0.0001)) x_t , y_t = colisionM(1, 1/i, 0, 0, 1, -1/i) x_f = x[x < 1] y_f = y[x < 1] y_f = y_f[x_f > -1] x_f = x_f[x_f > -1] x_f = x_f[y_f > y_t ] y_f = y_f[y_f > y_t ] x_text , y_text = add_radius(x_t, y_t, 0.02) ax.text( x_text, y_text, str(i), verticalalignment='center', horizontalalignment='center', rotation=np.angle(x_t + y_t*1j, deg=True) - 90 , fontsize=3) #ax.plot(x_t, y_t, 'ko') ax.plot( x_f[20:] ,y_f[20:] , 'k', linewidth = 0.2) def paint_line(i, ax): x = i/(1+i) + (1/(1+i)) * np.cos(np.arange(0 , 2*np.pi , 0.001)) y = (1/(1+i)) * np.sin(np.arange(0 , 2*np.pi , 0.001)) ax.plot(x, y, 'k', linewidth = 0.2) ax.text( 1-2*(1/(1+i)), 0.02, str(i), verticalalignment='bottom', horizontalalignment='right', rotation=90, fontsize=3) line(i) line2(i) def paint_text_degrees(): positions = np.arange(0, np.pi*2, 2*np.pi / 36) for i, ang in enumerate(positions): x_t , y_t = pol2cart(ang, 1.04) ax.text( x_t, y_t, str(i*10), verticalalignment='center', horizontalalignment='center', rotation=np.angle(x_t + y_t*1j, deg=True) - 90 , fontsize=3) def paint_text_wavelength(): positions = np.arange(np.pi, 3*np.pi, 2*np.pi / 50) for i, ang in enumerate(positions): x_t , y_t = pol2cart(ang, 1.06) ax.text( x_t, y_t, str(i/100), verticalalignment='center', horizontalalignment='center', rotation=np.angle(x_t + y_t*1j, deg=True) - 90 , fontsize=3) def imp2point(v1, v2): reax = v1/(1+v1) reay = 0 rear = (1/(1+v1)) imgx = 1 imgy = 1/v2 imgr = 1/v2 return colision(rear, imgr, reax, reay, imgx, imgy) def move_wl(x, y , wl): ax_ang, modulos = cart2pol(x, y) ax_ang += 4*np.pi*wl return pol2cart(ax_ang, modulos) x_1= np.cos(np.arange(0 , 2*np.pi , 0.001)) y_1 = np.sin(np.arange(0, 2*np.pi, 0.001) ) fig = plt.figure() adjustFigAspect(fig,aspect=1) ax = fig.add_subplot(111) ax.set_ylim(-1.01 , 1.01) ax.set_xlim(-1.01, 1.01) ax.axis('off') ax.plot(x_1, y_1 , 'k', linewidth = 0.3) #fig.axhline(y=0, xmin=-0.99, xmax=0.99, color='k', hold=None, linewidth = 0.5) ax.plot([1, -1], [0, 0], 'k', linewidth = 0.3) ax.plot([0], [0], 'ko') #black big lines for i in np.arange(0.05, 0.2, 0.05): paint_line(i , ax) for i in np.arange(0.2, 1, 0.1): paint_line(i , ax) for i in np.arange(1, 2, 0.2): paint_line(i , ax) for i in np.arange(2, 5, 1): paint_line(i , ax) for i in np.array([5, 10, 20, 50]): paint_line(i , ax) paint_text_degrees() paint_text_wavelength() p1 , p2 = imp2point(0.4, 0.6) ax.plot(p1, p2, 'ko') ax.plot([0 ,p1], [0 ,p2], 'r') start, modd= cart2pol(p1, p2) p3, p4 = move_wl(p1, p2, 0.2) ax.plot(p3, p4, 'ko') end,modd = cart2pol(p3, p4) data_x = modd*np.cos(np.arange(start , end -2*np.pi, -0.0001)) data_y = modd*np.sin(np.arange(start , end - 2*np.pi, -0.0001)) print(start) print(end) ax.plot(data_x, data_y) i = 0.44 x = i/(1+i) + (1/(1+i)) * np.cos(np.arange(0 , 2*np.pi , 0.001)) y = (1/(1+i)) * np.sin(np.arange(0 , 2*np.pi , 0.001)) ax.plot(x, y, 'r', linewidth = 0.5) i = 0.68 x = 1 + (1/(-1*i)) * np.cos(np.arange( -np.pi , np.pi, 0.0001)) y = (1/(i*-1))+(1/(i*-1)) * np.sin(np.arange(-np.pi , np.pi, 0.0001)) x_t , y_t = colisionM(1, 1/i, 0, 0, 1, -1/i) x_f = x[x < 1] y_f = y[x < 1] y_f = y_f[x_f > -1] x_f = x_f[x_f > -1] x_f = x_f[y_f > y_t ] y_f = y_f[y_f > y_t ] ax.plot(x_f, y_f , 'r', linewidth = 0.5) fig.savefig('images/out1.pdf')
gpl-3.0
NDManh/numbbo
code-postprocessing/bbob_pproc/ppfigparam.py
3
9956
#! /usr/bin/env python # -*- coding: utf-8 -*- """Generate ERT vs param. figures. The figures will show the performance in terms of ERT on a log scale w.r.t. parameter. On the y-axis, data is represented as a number of function evaluations. Crosses (+) give the median number of function evaluations for the smallest reached target function value (also divided by dimension). Crosses (×) give the average number of overall conducted function evaluations in case the smallest target function value (1e-8) was not reached. """ from __future__ import absolute_import import os import sys import matplotlib.pyplot as plt import numpy as np from pdb import set_trace from . import toolsstats, bestalg from .ppfig import saveFigure, groupByRange __all__ = ['beautify', 'plot', 'main'] avgstyle = dict(color='r', marker='x', markersize=20) medmarker = dict(linestyle='', marker='+', markersize=30, markeredgewidth=5, zorder=-1) colors = ('k', 'b', 'c', 'g', 'y', 'm', 'r', 'k', 'k', 'c', 'r', 'm') # sort of rainbow style styles = [{'color': 'k', 'marker': 'o', 'markeredgecolor': 'k'}, {'color': 'b'}, {'color': 'c', 'marker': 'v', 'markeredgecolor': 'c'}, {'color': 'g'}, {'color': 'y', 'marker': '^', 'markeredgecolor': 'y'}, {'color': 'm'}, {'color': 'r', 'marker': 's', 'markeredgecolor': 'r'}] # sort of rainbow style refcolor = 'wheat' # should correspond with the colors in pprldistr. dimsBBOB = (2, 3, 5, 10, 20, 40) #Get benchmark short infos. def read_fun_infos(isBiobjective): try: funInfos = {} filename = 'biobj-benchmarkshortinfos.txt' if isBiobjective else 'benchmarkshortinfos.txt' infofile = os.path.join(os.path.split(__file__)[0], filename) f = open(infofile, 'r') for line in f: if len(line) == 0 or line.startswith('%') or line.isspace() : continue funcId, funcInfo = line[0:-1].split(None, 1) funInfos[int(funcId)] = funcId + ' ' + funcInfo f.close() return funInfos except IOError, (errno, strerror): print "I/O error(%s): %s" % (errno, strerror) print 'Could not find file', infofile, \ 'Titles in figures will not be displayed.' def beautify(): """Customize figure presentation.""" # Input checking # Get axis handle and set scale for each axis axisHandle = plt.gca() axisHandle.set_xscale("log") axisHandle.set_yscale("log") # Grid options axisHandle.grid(True) ymin, ymax = plt.ylim() xmin, xmax = plt.xlim() # quadratic and cubic "grid" #plt.plot((2,200), (1, 1e2), 'k:') #plt.plot((2,200), (1, 1e4), 'k:') #plt.plot((2,200), (1e3, 1e5), 'k:') #plt.plot((2,200), (1e3, 1e7), 'k:') #plt.plot((2,200), (1e6, 1e8), 'k:') #plt.plot((2,200), (1e6, 1e10), 'k:') # axes limits plt.ylim(ymin=10**-0.2, ymax=ymax) # Set back the previous maximum. # ticks on axes # axisHandle.invert_xaxis() # plt.xlim(1.8, 45) # TODO should become input arg? # dimticklist = (2, 3, 4, 5, 10, 20, 40) # TODO: should become input arg at some point? # dimannlist = (2, 3, '', 5, 10, 20, 40) # TODO: should become input arg at some point? # TODO: All these should depend on one given input (xlim, ylim) # axisHandle.set_xticks(dimticklist) # axisHandle.set_xticklabels([str(n) for n in dimannlist]) tmp = axisHandle.get_yticks() tmp2 = [] for i in tmp: tmp2.append('%d' % round(np.log10(i))) axisHandle.set_yticklabels(tmp2) plt.ylabel('Run Lengths') def plot(dsList, param='dim', targets=(10., 1., 1e-1, 1e-2, 1e-3, 1e-5, 1e-8)): """Generate plot of ERT vs param.""" dictparam = dsList.dictByParam(param) params = sorted(dictparam) # sorted because we draw lines # generate plot from dsList res = [] # collect data rawdata = {} for p in params: assert len(dictparam[p]) == 1 rawdata[p] = dictparam[p][0].detEvals(targets) # expect dictparam[p] to have only one element # plot lines for ERT xpltdata = params for i, t in enumerate(targets): ypltdata = [] for p in params: data = rawdata[p][i] unsucc = np.isnan(data) assert len(dictparam[p]) == 1 data[unsucc] = dictparam[p][0].maxevals # compute ERT ert, srate, succ = toolsstats.sp(data, issuccessful=(unsucc == False)) ypltdata.append(ert) res.extend(plt.plot(xpltdata, ypltdata, markersize=20, zorder=len(targets) - i, **styles[i])) # for the legend plt.plot([], [], markersize=10, label=' %+d' % (np.log10(targets[i])), **styles[i]) # plot median of successful runs for hardest target with a success for p in params: for i, t in enumerate(reversed(targets)): # targets has to be from hardest to easiest data = rawdata[p][i] data = data[np.isnan(data) == False] if len(data) > 0: median = toolsstats.prctile(data, 50.)[0] res.extend(plt.plot(p, median, styles[i]['color'], **medmarker)) break # plot average number of function evaluations for the hardest target xpltdata = [] ypltdata = [] for p in params: data = rawdata[p][0] # first target xpltdata.append(p) if (np.isnan(data) == False).all(): tmpdata = data.copy() assert len(dictparam[p]) == 1 tmpdata[np.isnan(data)] = dictparam[p][0].maxevals[np.isnan(data)] tmp = np.mean(tmpdata) else: tmp = np.nan # Check what happens when plotting NaN ypltdata.append(tmp) res.extend(plt.plot(xpltdata, ypltdata, **avgstyle)) # display numbers of successes for hardest target where there is still one success for p in params: for i, t in enumerate(targets): # targets has to be from hardest to easiest data = rawdata[p][i] unsucc = np.isnan(data) assert len(dictparam[p]) == 1 data[unsucc] = dictparam[p][0].maxevals # compute ERT ert, srate, succ = toolsstats.sp(data, issuccessful=(unsucc == False)) if srate == 1.: break elif succ > 0: res.append(plt.text(p, ert * 1.85, "%d" % succ, axes=plt.gca(), horizontalalignment="center", verticalalignment="bottom")) break return res def main(dsList, _targets=(10., 1., 1e-1, 1e-2, 1e-3, 1e-5, 1e-8), param=('dim', 'Dimension'), is_normalized=True, outputdir='.', verbose=True): """Generates figure of ERT vs. param. This script will generate as many figures as there are functions. For a given function and a given parameter value there should be only **one** data set. Crosses (+) give the median number of function evaluations of successful trials for the smallest reached target function value. Crosses (x) give the average number of overall conducted function evaluations in case the smallest target function value (1e-8) was not reached. :keyword DataSetList dsList: data sets :keyword seq _targets: target precisions :keyword tuple param: parameter on x-axis. The first element has to be a string corresponding to the name of an attribute common to elements of dsList. The second element has to be a string which will be used as label for the figures. The values of attribute param have to be sortable. :keyword bool is_normalized: if True the y values are normalized by x values :keyword string outputdir: name of output directory for the image files :keyword bool verbose: controls verbosity """ funInfos = read_fun_infos(dsList.isBiobjective()) # TODO check input parameter param for func, dictfunc in dsList.dictByFunc().iteritems(): filename = os.path.join(outputdir,'ppfigparam_%s_f%03d' % (param[0], func)) try: targets = list(j[func] for j in _targets) except TypeError: targets = _targets targets = sorted(targets) # from hard to easy handles = plot(dictfunc, param[0], targets) # # display best 2009 # if not bestalg.bestalgentries2009: # bestalg.loadBBOB2009() # bestalgdata = [] # for d in dimsBBOB: # entry = bestalg.bestalgentries2009[(d, func)] # tmp = entry.detERT([1e-8])[0] # if not np.isinf(tmp): # bestalgdata.append(tmp/d) # else: # bestalgdata.append(None) # plt.plot(dimsBBOB, bestalgdata, color=refcolor, linewidth=10, zorder=-2) # plt.plot(dimsBBOB, bestalgdata, ls='', marker='d', markersize=25, # color=refcolor, markeredgecolor=refcolor, zorder=-2) a = plt.gca() if is_normalized: for i in handles: try: plt.setp(i, 'ydata', plt.getp(i, 'ydata') / plt.getp(i, 'xdata')) except TypeError: pass a.relim() a.autoscale_view() beautify() plt.xlabel(param[1]) if is_normalized: plt.setp(plt.gca(), 'ylabel', plt.getp(a, 'ylabel') + ' / ' + param[1]) if func in (1, 24, 101, 130): plt.legend(loc="best") if func in funInfos.keys(): a.set_title(funInfos[func]) saveFigure(filename, verbose=verbose) plt.close()
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e203.py
2
6772
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate 178 refactored cost func (functionally equiv to 177) 0.1x learning rate e180 * mse e181 * back to scaled cost * different architecture: - convd1 at input (2x) - then 3 LSTM layers, each with a 2x conv in between - no diff input e189 * divide dominant appliance power * mse """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 def mask_and_mean_sq_error(mask): masked_sq_error = sq_error[mask.nonzero()] mean = masked_sq_error.mean() mean = ifelse(T.isnan(mean), 0.0, mean) return mean above_thresh_mean = mask_and_mean_sq_error(t > THRESHOLD) below_thresh_mean = mask_and_mean_sq_error(t <= THRESHOLD) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): # global source # source = RealApplianceSource( # filename='/data/dk3810/ukdale.h5', # appliances=[ # ['fridge freezer', 'fridge', 'freezer'], # 'hair straighteners', # 'television' # # 'dish washer', # # ['washer dryer', 'washing machine'] # ], # max_appliance_powers=[2500] * 5, # on_power_thresholds=[5] * 5, # max_input_power=2500, # min_on_durations=[60, 60, 60, 1800, 1800], # min_off_durations=[12, 12, 12, 1800, 600], # window=("2013-06-01", "2014-07-01"), # seq_length=1520, # output_one_appliance=False, # boolean_targets=False, # train_buildings=[1], # validation_buildings=[1], # skip_probability=0.7, # n_seq_per_batch=25, # input_padding=1, # include_diff=False, # clip_appliance_power=False # ) net = Net( experiment_name=name, source=source, save_plot_interval=1000, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=0.1, clip_range=(-1, 1)), layers_config=[ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 2, 'stride': 1, 'nonlinearity': sigmoid, 'W': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(1) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None # 'W': Uniform() } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
chugunovyar/factoryForBuild
env/lib/python2.7/site-packages/mpl_toolkits/axisartist/grid_helper_curvelinear.py
18
26105
""" An experimental support for curvilinear grid. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip from itertools import chain from .grid_finder import GridFinder from .axislines import AxisArtistHelper, GridHelperBase from .axis_artist import AxisArtist from matplotlib.transforms import Affine2D, IdentityTransform import numpy as np from matplotlib.path import Path class FixedAxisArtistHelper(AxisArtistHelper.Fixed): """ Helper class for a fixed axis. """ def __init__(self, grid_helper, side, nth_coord_ticks=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FixedAxisArtistHelper, self).__init__( \ loc=side, ) self.grid_helper = grid_helper if nth_coord_ticks is None: nth_coord_ticks = self.nth_coord self.nth_coord_ticks = nth_coord_ticks self.side = side self._limits_inverted = False def update_lim(self, axes): self.grid_helper.update_lim(axes) if self.nth_coord == 0: xy1, xy2 = axes.get_ylim() else: xy1, xy2 = axes.get_xlim() if xy1 > xy2: self._limits_inverted = True else: self._limits_inverted = False def change_tick_coord(self, coord_number=None): if coord_number is None: self.nth_coord_ticks = 1 - self.nth_coord_ticks elif coord_number in [0, 1]: self.nth_coord_ticks = coord_number else: raise Exception("wrong coord number") def get_tick_transform(self, axes): return axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" g = self.grid_helper if self._limits_inverted: side = {"left":"right","right":"left", "top":"bottom", "bottom":"top"}[self.side] else: side = self.side ti1 = g.get_tick_iterator(self.nth_coord_ticks, side) ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, side, minor=True) #ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True) return chain(ti1, ti2), iter([]) class FloatingAxisArtistHelper(AxisArtistHelper.Floating): def __init__(self, grid_helper, nth_coord, value, axis_direction=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FloatingAxisArtistHelper, self).__init__(nth_coord, value, ) self.value = value self.grid_helper = grid_helper self._extremes = None, None self._get_line_path = None # a method that returns a Path. self._line_num_points = 100 # number of points to create a line def set_extremes(self, e1, e2): self._extremes = e1, e2 def update_lim(self, axes): self.grid_helper.update_lim(axes) x1, x2 = axes.get_xlim() y1, y2 = axes.get_ylim() grid_finder = self.grid_helper.grid_finder extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy, x1, y1, x2, y2) extremes = list(extremes) e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: if e1 is not None: extremes[2] = max(e1, extremes[2]) if e2 is not None: extremes[3] = min(e2, extremes[3]) elif self.nth_coord == 1: if e1 is not None: extremes[0] = max(e1, extremes[0]) if e2 is not None: extremes[1] = min(e2, extremes[1]) grid_info = dict() lon_min, lon_max, lat_min, lat_max = extremes lon_levs, lon_n, lon_factor = \ grid_finder.grid_locator1(lon_min, lon_max) lat_levs, lat_n, lat_factor = \ grid_finder.grid_locator2(lat_min, lat_max) grid_info["extremes"] = extremes grid_info["lon_info"] = lon_levs, lon_n, lon_factor grid_info["lat_info"] = lat_levs, lat_n, lat_factor grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom", lon_factor, lon_levs) grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom", lat_factor, lat_levs) grid_finder = self.grid_helper.grid_finder #e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: xx0 = np.linspace(self.value, self.value, self._line_num_points) yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) elif self.nth_coord == 1: xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points) yy0 = np.linspace(self.value, self.value, self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) grid_info["line_xy"] = xx, yy self.grid_info = grid_info def get_axislabel_transform(self, axes): return Affine2D() #axes.transData def get_axislabel_pos_angle(self, axes): extremes = self.grid_info["extremes"] if self.nth_coord == 0: xx0 = self.value yy0 = (extremes[2]+extremes[3])/2. dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000. elif self.nth_coord == 1: xx0 = (extremes[0]+extremes[1])/2. yy0 = self.value dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0. grid_finder = self.grid_helper.grid_finder xx1, yy1 = grid_finder.transform_xy([xx0], [yy0]) trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]]) if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.): xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]]) xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy]) xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]]) return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180. else: return None, None def get_tick_transform(self, axes): return IdentityTransform() #axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label, (optionally) tick_label""" grid_finder = self.grid_helper.grid_finder lat_levs, lat_n, lat_factor = self.grid_info["lat_info"] lat_levs = np.asarray(lat_levs) if lat_factor is not None: yy0 = lat_levs / lat_factor dy = 0.01 / lat_factor else: yy0 = lat_levs dy = 0.01 lon_levs, lon_n, lon_factor = self.grid_info["lon_info"] lon_levs = np.asarray(lon_levs) if lon_factor is not None: xx0 = lon_levs / lon_factor dx = 0.01 / lon_factor else: xx0 = lon_levs dx = 0.01 if None in self._extremes: e0, e1 = self._extremes else: e0, e1 = sorted(self._extremes) if e0 is None: e0 = -np.inf if e1 is None: e1 = np.inf if self.nth_coord == 0: mask = (e0 <= yy0) & (yy0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] yy0 = yy0[mask] elif self.nth_coord == 1: mask = (e0 <= xx0) & (xx0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] xx0 = xx0[mask] def transform_xy(x, y): x1, y1 = grid_finder.transform_xy(x, y) x2y2 = axes.transData.transform(np.array([x1, y1]).transpose()) x2, y2 = x2y2.transpose() return x2, y2 # find angles if self.nth_coord == 0: xx0 = np.empty_like(yy0) xx0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx1a, yy1a = transform_xy(xx00, yy0) xx1b, yy1b = transform_xy(xx00+dx, yy0) xx2a, yy2a = transform_xy(xx0, yy0) xx2b, yy2b = transform_xy(xx0, yy0+dy) labels = self.grid_info["lat_labels"] labels = [l for l, m in zip(labels, mask) if m] elif self.nth_coord == 1: yy0 = np.empty_like(xx0) yy0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx1a, yy1a = transform_xy(xx0, yy0) xx1b, yy1b = transform_xy(xx0, yy0+dy) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx2a, yy2a = transform_xy(xx00, yy0) xx2b, yy2b = transform_xy(xx00+dx, yy0) labels = self.grid_info["lon_labels"] labels = [l for l, m in zip(labels, mask) if m] def f1(): dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined dd[mm] = dd2[mm]+3.14159/2. #dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal #dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent #mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined #dd[mm] = dd2[mm]+3.14159/2. #dd += 3.14159 #dd = np.arctan2(xx2-xx1, angle_tangent-yy1) trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels): c2 = tr2ax.transform_point((x, y)) delta=0.00001 if (0. -delta<= c2[0] <= 1.+delta) and \ (0. -delta<= c2[1] <= 1.+delta): d1 = d/3.14159*180. d2 = d2/3.14159*180. yield [x, y], d1, d2, lab return f1(), iter([]) def get_line_transform(self, axes): return axes.transData def get_line(self, axes): self.update_lim(axes) x, y = self.grid_info["line_xy"] if self._get_line_path is None: return Path(list(zip(x, y))) else: return self._get_line_path(axes, x, y) class GridHelperCurveLinear(GridHelperBase): def __init__(self, aux_trans, extreme_finder=None, grid_locator1=None, grid_locator2=None, tick_formatter1=None, tick_formatter2=None): """ aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects which defines the transform and its inverse. The callables need take two arguments of array of source coordinates and should return two target coordinates: e.g., x2, y2 = trans(x1, y1) """ super(GridHelperCurveLinear, self).__init__() self.grid_info = None self._old_values = None #self._grid_params = dict() self._aux_trans = aux_trans self.grid_finder = GridFinder(aux_trans, extreme_finder, grid_locator1, grid_locator2, tick_formatter1, tick_formatter2) def update_grid_finder(self, aux_trans=None, **kw): if aux_trans is not None: self.grid_finder.update_transform(aux_trans) self.grid_finder.update(**kw) self.invalidate() def _update(self, x1, x2, y1, y2): "bbox in 0-based image coordinates" # update wcsgrid if self.valid() and self._old_values == (x1, x2, y1, y2): return self._update_grid(x1, y1, x2, y2) self._old_values = (x1, x2, y1, y2) self._force_update = False def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None): if axes is None: axes = self.axes if axis_direction is None: axis_direction = loc _helper = FixedAxisArtistHelper(self, loc, #nth_coord, nth_coord_ticks=nth_coord, ) axisline = AxisArtist(axes, _helper, axis_direction=axis_direction) return axisline def new_floating_axis(self, nth_coord, value, axes=None, axis_direction="bottom" ): if axes is None: axes = self.axes _helper = FloatingAxisArtistHelper( \ self, nth_coord, value, axis_direction) axisline = AxisArtist(axes, _helper) #_helper = FloatingAxisArtistHelper(self, nth_coord, # value, # label_direction=label_direction, # ) #axisline = AxisArtistFloating(axes, _helper, # axis_direction=axis_direction) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) #axisline.major_ticklabels.set_visible(True) #axisline.minor_ticklabels.set_visible(False) #axisline.major_ticklabels.set_rotate_along_line(True) #axisline.set_rotate_label_along_line(True) return axisline def _update_grid(self, x1, y1, x2, y2): self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2) def get_gridlines(self, which="major", axis="both"): grid_lines = [] if axis in ["both", "x"]: for gl in self.grid_info["lon"]["lines"]: grid_lines.extend(gl) if axis in ["both", "y"]: for gl in self.grid_info["lat"]["lines"]: grid_lines.extend(gl) return grid_lines def get_tick_iterator(self, nth_coord, axis_side, minor=False): #axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side] angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side] #angle = [0, 90, 180, 270][axisnr] lon_or_lat = ["lon", "lat"][nth_coord] if not minor: # major ticks def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, l else: def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, "" #for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]: # yield xy, a, "" return f() def test3(): import numpy as np from matplotlib.transforms import Transform from matplotlib.path import Path class MyTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y-x), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MyTransformInv(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class MyTransformInv(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y+x), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MyTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() tr = MyTransform(1) grid_helper = GridHelperCurveLinear(tr) from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory from .axislines import Axes SubplotHost = host_subplot_class_factory(Axes) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) fig.add_subplot(ax1) ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") ax1.parasites.append(ax2) ax2.plot([3, 6], [5.0, 10.]) ax1.set_aspect(1.) ax1.set_xlim(0, 10) ax1.set_ylim(0, 10) ax1.grid(True) plt.draw() def curvelinear_test2(fig): """ polar projection, but in a rectangular box. """ global ax1 import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost, \ ParasiteAxesAuxTrans import matplotlib.cbook as cbook # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(5) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) # make ticklabels of right and top axis visible. ax1.axis["right"].major_ticklabels.set_visible(True) ax1.axis["top"].major_ticklabels.set_visible(True) # let right axis shows ticklabels for 1st coordinate (angle) ax1.axis["right"].get_helper().nth_coord_ticks=0 # let bottom axis shows ticklabels for 2nd coordinate (radius) ax1.axis["bottom"].get_helper().nth_coord_ticks=1 fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 60, axes=ax1) axis.label.set_text("Test") axis.label.set_visible(True) #axis._extremes = 2, 10 #axis.label.set_text("Test") #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.get_helper()._extremes=2, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1) #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.label.set_text("Test 2") axis.get_helper()._extremes=-180, 90 # A parasite axes with given transform ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # note that ax2.transData == tr + ax1.transData # Anthing you draw in ax2 will match the ticks and grids of ax1. ax1.parasites.append(ax2) intp = cbook.simple_linear_interpolation ax2.plot(intp(np.array([0, 30]), 50), intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) def curvelinear_test3(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(12) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) for axis in list(six.itervalues(ax1.axis)): axis.set_visible(False) fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(0, 130, axes=ax1, axis_direction="left" ) axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 grid_helper = ax1.get_grid_helper() ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(0, 50, axes=ax1, axis_direction="right") axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 10, axes=ax1, axis_direction="bottom") axis.label.set_text("Test 2") axis.get_helper()._extremes= 50, 130 axis.major_ticklabels.set_axis_direction("top") axis.label.set_axis_direction("top") grid_helper.grid_finder.grid_locator1.den = 5 grid_helper.grid_finder.grid_locator2._nbins = 5 # # A parasite axes with given transform # ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # # note that ax2.transData == tr + ax1.transData # # Anthing you draw in ax2 will match the ticks and grids of ax1. # ax1.parasites.append(ax2) # intp = cbook.simple_linear_interpolation # ax2.plot(intp(np.array([0, 30]), 50), # intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, figsize=(5, 5)) fig.clf() #test3() #curvelinear_test2(fig) curvelinear_test3(fig) #plt.draw() plt.show()
gpl-3.0
quheng/scikit-learn
sklearn/utils/arpack.py
265
64837
""" This contains a copy of the future version of scipy.sparse.linalg.eigen.arpack.eigsh It's an upgraded wrapper of the ARPACK library which allows the use of shift-invert mode for symmetric matrices. Find a few eigenvectors and eigenvalues of a matrix. Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/ """ # Wrapper implementation notes # # ARPACK Entry Points # ------------------- # The entry points to ARPACK are # - (s,d)seupd : single and double precision symmetric matrix # - (s,d,c,z)neupd: single,double,complex,double complex general matrix # This wrapper puts the *neupd (general matrix) interfaces in eigs() # and the *seupd (symmetric matrix) in eigsh(). # There is no Hermetian complex/double complex interface. # To find eigenvalues of a Hermetian matrix you # must use eigs() and not eigsh() # It might be desirable to handle the Hermetian case differently # and, for example, return real eigenvalues. # Number of eigenvalues returned and complex eigenvalues # ------------------------------------------------------ # The ARPACK nonsymmetric real and double interface (s,d)naupd return # eigenvalues and eigenvectors in real (float,double) arrays. # Since the eigenvalues and eigenvectors are, in general, complex # ARPACK puts the real and imaginary parts in consecutive entries # in real-valued arrays. This wrapper puts the real entries # into complex data types and attempts to return the requested eigenvalues # and eigenvectors. # Solver modes # ------------ # ARPACK and handle shifted and shift-inverse computations # for eigenvalues by providing a shift (sigma) and a solver. __docformat__ = "restructuredtext en" __all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence'] import warnings from scipy.sparse.linalg.eigen.arpack import _arpack import numpy as np from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator from scipy.sparse import identity, isspmatrix, isspmatrix_csr from scipy.linalg import lu_factor, lu_solve from scipy.sparse.sputils import isdense from scipy.sparse.linalg import gmres, splu import scipy from distutils.version import LooseVersion _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} _ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} DNAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found. IPARAM(5) " "returns the number of wanted converged Ritz values.", 2: "No longer an informational error. Deprecated starting " "with release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the " "Implicitly restarted Arnoldi iteration. One possibility " "is to increase the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation;", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible.", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated." } SNAUPD_ERRORS = DNAUPD_ERRORS ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." CNAUPD_ERRORS = ZNAUPD_ERRORS DSAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found.", 2: "No longer an informational error. Deprecated starting with " "release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the Implicitly " "restarted Arnoldi iteration. One possibility is to increase " "the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from trid. eigenvalue calculation; " "Informational error from LAPACK routine dsteqr .", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible. ", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated.", } SSAUPD_ERRORS = DSAUPD_ERRORS DNEUPD_ERRORS = { 0: "Normal exit.", 1: "The Schur form computed by LAPACK routine dlahqr " "could not be reordered by LAPACK routine dtrsen. " "Re-enter subroutine dneupd with IPARAM(5)NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least NCV " "columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from calculation of a real Schur form. " "Informational error from LAPACK routine dlahqr .", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine dtrevc.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "DNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "DNEUPD got a different count of the number of converged " "Ritz values than DNAUPD got. This indicates the user " "probably made an error in passing data from DNAUPD to " "DNEUPD or that the data was modified before entering " "DNEUPD", } SNEUPD_ERRORS = DNEUPD_ERRORS.copy() SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " "could not be reordered by LAPACK routine strsen . " "Re-enter subroutine dneupd with IPARAM(5)=NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.") SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " "accuracy.") SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " "converged Ritz values than SNAUPD got. This indicates " "the user probably made an error in passing data from " "SNAUPD to SNEUPD or that the data was modified before " "entering SNEUPD") ZNEUPD_ERRORS = {0: "Normal exit.", 1: "The Schur form computed by LAPACK routine csheqr " "could not be reordered by LAPACK routine ztrsen. " "Re-enter subroutine zneupd with IPARAM(5)=NCV and " "increase the size of the array D to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 1 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation. " "This should never happened.", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine ztrevc.", -10: "IPARAM(7) must be 1,2,3", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "ZNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "ZNEUPD got a different count of the number of " "converged Ritz values than ZNAUPD got. This " "indicates the user probably made an error in passing " "data from ZNAUPD to ZNEUPD or that the data was " "modified before entering ZNEUPD"} CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " "accuracy.") CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " "converged Ritz values than CNAUPD got. This indicates " "the user probably made an error in passing data from " "CNAUPD to CNEUPD or that the data was modified before " "entering CNEUPD") DSEUPD_ERRORS = { 0: "Normal exit.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: ("Error return from trid. eigenvalue calculation; " "Information error from LAPACK routine dsteqr."), -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "NEV and WHICH = 'BE' are incompatible.", -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", -16: "HOWMNY = 'S' not yet implemented", -17: ("DSEUPD got a different count of the number of converged " "Ritz values than DSAUPD got. This indicates the user " "probably made an error in passing data from DSAUPD to " "DSEUPD or that the data was modified before entering " "DSEUPD.") } SSEUPD_ERRORS = DSEUPD_ERRORS.copy() SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " "to sufficient accuracy.") SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " "converged " "Ritz values than SSAUPD got. This indicates the user " "probably made an error in passing data from SSAUPD to " "SSEUPD or that the data was modified before entering " "SSEUPD.") _SAUPD_ERRORS = {'d': DSAUPD_ERRORS, 's': SSAUPD_ERRORS} _NAUPD_ERRORS = {'d': DNAUPD_ERRORS, 's': SNAUPD_ERRORS, 'z': ZNAUPD_ERRORS, 'c': CNAUPD_ERRORS} _SEUPD_ERRORS = {'d': DSEUPD_ERRORS, 's': SSEUPD_ERRORS} _NEUPD_ERRORS = {'d': DNEUPD_ERRORS, 's': SNEUPD_ERRORS, 'z': ZNEUPD_ERRORS, 'c': CNEUPD_ERRORS} # accepted values of parameter WHICH in _SEUPD _SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] # accepted values of parameter WHICH in _NAUPD _NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] class ArpackError(RuntimeError): """ ARPACK error """ def __init__(self, info, infodict=_NAUPD_ERRORS): msg = infodict.get(info, "Unknown error") RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) class ArpackNoConvergence(ArpackError): """ ARPACK iteration did not converge Attributes ---------- eigenvalues : ndarray Partial result. Converged eigenvalues. eigenvectors : ndarray Partial result. Converged eigenvectors. """ def __init__(self, msg, eigenvalues, eigenvectors): ArpackError.__init__(self, -1, {-1: msg}) self.eigenvalues = eigenvalues self.eigenvectors = eigenvectors class _ArpackParams(object): def __init__(self, n, k, tp, mode=1, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): if k <= 0: raise ValueError("k must be positive, k=%d" % k) if maxiter is None: maxiter = n * 10 if maxiter <= 0: raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) if tp not in 'fdFD': raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") if v0 is not None: # ARPACK overwrites its initial resid, make a copy self.resid = np.array(v0, copy=True) info = 1 else: self.resid = np.zeros(n, tp) info = 0 if sigma is None: #sigma not used self.sigma = 0 else: self.sigma = sigma if ncv is None: ncv = 2 * k + 1 ncv = min(ncv, n) self.v = np.zeros((n, ncv), tp) # holds Ritz vectors self.iparam = np.zeros(11, "int") # set solver mode and parameters ishfts = 1 self.mode = mode self.iparam[0] = ishfts self.iparam[2] = maxiter self.iparam[3] = 1 self.iparam[6] = mode self.n = n self.tol = tol self.k = k self.maxiter = maxiter self.ncv = ncv self.which = which self.tp = tp self.info = info self.converged = False self.ido = 0 def _raise_no_convergence(self): msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" k_ok = self.iparam[4] num_iter = self.iparam[2] try: ev, vec = self.extract(True) except ArpackError as err: msg = "%s [%s]" % (msg, err) ev = np.zeros((0,)) vec = np.zeros((self.n, 0)) k_ok = 0 raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) class _SymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x : # A - symmetric # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the general eigenvalue problem: # A*x = lambda*M*x # A - symmetric # M - symmetric positive definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # # mode = 4: # Solve the general eigenvalue problem in Buckling mode: # A*x = lambda*AG*x # A - symmetric positive semi-definite # AG - symmetric indefinite # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = left multiplication by [A-sigma*AG]^-1 # # mode = 5: # Solve the general eigenvalue problem in Cayley-transformed mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode == 3: if matvec is not None: raise ValueError("matvec must not be specified for mode=3") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=3") if M_matvec is None: self.OP = Minv_matvec self.OPa = Minv_matvec self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(M_matvec(x)) self.OPa = Minv_matvec self.B = M_matvec self.bmat = 'G' elif mode == 4: if matvec is None: raise ValueError("matvec must be specified for mode=4") if M_matvec is not None: raise ValueError("M_matvec must not be specified for mode=4") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=4") self.OPa = Minv_matvec self.OP = lambda x: self.OPa(matvec(x)) self.B = matvec self.bmat = 'G' elif mode == 5: if matvec is None: raise ValueError("matvec must be specified for mode=5") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=5") self.OPa = Minv_matvec self.A_matvec = matvec if M_matvec is None: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x)) self.B = M_matvec self.bmat = 'G' else: raise ValueError("mode=%i not implemented" % mode) if which not in _SEUPD_WHICH: raise ValueError("which must be one of %s" % ' '.join(_SEUPD_WHICH)) if k >= n: raise ValueError("k must be less than rank(A), k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k: raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp) ltr = _type_conv[self.tp] if ltr not in ["s", "d"]: raise ValueError("Input matrix is not real-valued.") self._arpack_solver = _arpack.__dict__[ltr + 'saupd'] self._arpack_extract = _arpack.__dict__[ltr + 'seupd'] self.iterate_infodict = _SAUPD_ERRORS[ltr] self.extract_infodict = _SEUPD_ERRORS[ltr] self.ipntr = np.zeros(11, "int") def iterate(self): self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode == 1: self.workd[yslice] = self.OP(self.workd[xslice]) elif self.mode == 2: self.workd[xslice] = self.OPb(self.workd[xslice]) self.workd[yslice] = self.OPa(self.workd[xslice]) elif self.mode == 5: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) Ax = self.A_matvec(self.workd[xslice]) self.workd[yslice] = self.OPa(Ax + (self.sigma * self.workd[Bxslice])) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): rvec = return_eigenvectors ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam[0:7], self.ipntr, self.workd[0:2 * self.n], self.workl, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d class _UnsymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x # A - square matrix # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the generalized eigenvalue problem: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3,4: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # if A is real and mode==3, use the real part of Minv_matvec # if A is real and mode==4, use the imag part of Minv_matvec # if A is complex and mode==3, # use real and imag parts of Minv_matvec if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode in (3, 4): if matvec is None: raise ValueError("matvec must be specified " "for mode in (3,4)") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified " "for mode in (3,4)") self.matvec = matvec if tp in 'DF': # complex type if mode == 3: self.OPa = Minv_matvec else: raise ValueError("mode=4 invalid for complex A") else: # real type if mode == 3: self.OPa = lambda x: np.real(Minv_matvec(x)) else: self.OPa = lambda x: np.imag(Minv_matvec(x)) if M_matvec is None: self.B = lambda x: x self.bmat = 'I' self.OP = self.OPa else: self.B = M_matvec self.bmat = 'G' self.OP = lambda x: self.OPa(M_matvec(x)) else: raise ValueError("mode=%i not implemented" % mode) if which not in _NEUPD_WHICH: raise ValueError("Parameter which must be one of %s" % ' '.join(_NEUPD_WHICH)) if k >= n - 1: raise ValueError("k must be less than rank(A)-1, k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k + 1: raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp) ltr = _type_conv[self.tp] self._arpack_solver = _arpack.__dict__[ltr + 'naupd'] self._arpack_extract = _arpack.__dict__[ltr + 'neupd'] self.iterate_infodict = _NAUPD_ERRORS[ltr] self.extract_infodict = _NEUPD_ERRORS[ltr] self.ipntr = np.zeros(14, "int") if self.tp in 'FD': self.rwork = np.zeros(self.ncv, self.tp.lower()) else: self.rwork = None def iterate(self): if self.tp in 'fd': self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) else: self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode in (1, 2): self.workd[yslice] = self.OP(self.workd[xslice]) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): k, n = self.k, self.n ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused sigmar = np.real(self.sigma) sigmai = np.imag(self.sigma) workev = np.zeros(3 * self.ncv, self.tp) if self.tp in 'fd': dr = np.zeros(k + 1, self.tp) di = np.zeros(k + 1, self.tp) zr = np.zeros((n, k + 1), self.tp) dr, di, zr, ierr = \ self._arpack_extract( return_eigenvectors, howmny, sselect, sigmar, sigmai, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) nreturned = self.iparam[4] # number of good eigenvalues returned # Build complex eigenvalues from real and imaginary parts d = dr + 1.0j * di # Arrange the eigenvectors: complex eigenvectors are stored as # real,imaginary in consecutive columns z = zr.astype(self.tp.upper()) # The ARPACK nonsymmetric real and double interface (s,d)naupd # return eigenvalues and eigenvectors in real (float,double) # arrays. # Efficiency: this should check that return_eigenvectors == True # before going through this construction. if sigmai == 0: i = 0 while i <= k: # check if complex if abs(d[i].imag) != 0: # this is a complex conjugate pair with eigenvalues # in consecutive columns if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 else: # real matrix, mode 3 or 4, imag(sigma) is nonzero: # see remark 3 in <s,d>neupd.f # Build complex eigenvalues from real and imaginary parts i = 0 while i <= k: if abs(d[i].imag) == 0: d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) else: if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() d[i] = ((np.dot(zr[:, i], self.matvec(zr[:, i])) + np.dot(zr[:, i + 1], self.matvec(zr[:, i + 1]))) + 1j * (np.dot(zr[:, i], self.matvec(zr[:, i + 1])) - np.dot(zr[:, i + 1], self.matvec(zr[:, i])))) d[i + 1] = d[i].conj() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 # Now we have k+1 possible eigenvalues and eigenvectors # Return the ones specified by the keyword "which" if nreturned <= k: # we got less or equal as many eigenvalues we wanted d = d[:nreturned] z = z[:, :nreturned] else: # we got one extra eigenvalue (likely a cc pair, but which?) # cut at approx precision for sorting rd = np.round(d, decimals=_ndigits[self.tp]) if self.which in ['LR', 'SR']: ind = np.argsort(rd.real) elif self.which in ['LI', 'SI']: # for LI,SI ARPACK returns largest,smallest # abs(imaginary) why? ind = np.argsort(abs(rd.imag)) else: ind = np.argsort(abs(rd)) if self.which in ['LR', 'LM', 'LI']: d = d[ind[-k:]] z = z[:, ind[-k:]] if self.which in ['SR', 'SM', 'SI']: d = d[ind[:k]] z = z[:, ind[:k]] else: # complex is so much simpler... d, z, ierr =\ self._arpack_extract( return_eigenvectors, howmny, sselect, self.sigma, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d def _aslinearoperator_with_dtype(m): m = aslinearoperator(m) if not hasattr(m, 'dtype'): x = np.zeros(m.shape[1]) m.dtype = (m * x).dtype return m class SpLuInv(LinearOperator): """ SpLuInv: helper class to repeatedly solve M*x=b using a sparse LU-decopposition of M """ def __init__(self, M): self.M_lu = splu(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) self.isreal = not np.issubdtype(self.dtype, np.complexfloating) def _matvec(self, x): # careful here: splu.solve will throw away imaginary # part of x if M is real if self.isreal and np.issubdtype(x.dtype, np.complexfloating): return (self.M_lu.solve(np.real(x)) + 1j * self.M_lu.solve(np.imag(x))) else: return self.M_lu.solve(x) class LuInv(LinearOperator): """ LuInv: helper class to repeatedly solve M*x=b using an LU-decomposition of M """ def __init__(self, M): self.M_lu = lu_factor(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) def _matvec(self, x): return lu_solve(self.M_lu, x) class IterInv(LinearOperator): """ IterInv: helper class to repeatedly solve M*x=b using an iterative method. """ def __init__(self, M, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(M.dtype).eps self.M = M self.ifunc = ifunc self.tol = tol if hasattr(M, 'dtype'): dtype = M.dtype else: x = np.zeros(M.shape[1]) dtype = (M * x).dtype LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype) def _matvec(self, x): b, info = self.ifunc(self.M, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting M: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b class IterOpInv(LinearOperator): """ IterOpInv: helper class to repeatedly solve [A-sigma*M]*x = b using an iterative method """ def __init__(self, A, M, sigma, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(A.dtype).eps self.A = A self.M = M self.sigma = sigma self.ifunc = ifunc self.tol = tol x = np.zeros(A.shape[1]) if M is None: dtype = self.mult_func_M_None(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func_M_None, dtype=dtype) else: dtype = self.mult_func(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func, dtype=dtype) LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype) def mult_func(self, x): return self.A.matvec(x) - self.sigma * self.M.matvec(x) def mult_func_M_None(self, x): return self.A.matvec(x) - self.sigma * x def _matvec(self, x): b, info = self.ifunc(self.OP, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting [A-sigma*M]: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b def get_inv_matvec(M, symmetric=False, tol=0): if isdense(M): return LuInv(M).matvec elif isspmatrix(M): if isspmatrix_csr(M) and symmetric: M = M.T return SpLuInv(M).matvec else: return IterInv(M, tol=tol).matvec def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0): if sigma == 0: return get_inv_matvec(A, symmetric=symmetric, tol=tol) if M is None: #M is the identity matrix if isdense(A): if (np.issubdtype(A.dtype, np.complexfloating) or np.imag(sigma) == 0): A = np.copy(A) else: A = A + 0j A.flat[::A.shape[1] + 1] -= sigma return LuInv(A).matvec elif isspmatrix(A): A = A - sigma * identity(A.shape[0]) if symmetric and isspmatrix_csr(A): A = A.T return SpLuInv(A.tocsc()).matvec else: return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma, tol=tol).matvec else: if ((not isdense(A) and not isspmatrix(A)) or (not isdense(M) and not isspmatrix(M))): return IterOpInv(_aslinearoperator_with_dtype(A), _aslinearoperator_with_dtype(M), sigma, tol=tol).matvec elif isdense(A) or isdense(M): return LuInv(A - sigma * M).matvec else: OP = A - sigma * M if symmetric and isspmatrix_csr(OP): OP = OP.T return SpLuInv(OP.tocsc()).matvec def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None): """ Find k eigenvalues and eigenvectors of the square matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing \ the operation A * x, where A is a real or complex square matrix. k : int, default 6 The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. return_eigenvectors : boolean, default True Whether to return the eigenvectors along with the eigenvalues. M : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation M*x for the generalized eigenvalue problem ``A * x = w * M * x`` M must represent a real symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma==None, M is positive definite * If sigma is specified, M is positive semi-definite If sigma==None, eigs requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real or complex Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] * x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A, shift-invert can either be done in imaginary mode or real mode, specified by the parameter OPpart ('r' or 'i'). Note that when sigma is specified, the keyword 'which' (below) refers to the shifted eigenvalues w'[i] where: * If A is real and OPpart == 'r' (default), w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ] * If A is real and OPpart == 'i', w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ] * If A is complex, w'[i] = 1/(w[i]-sigma) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'] Which `k` eigenvectors and eigenvalues to find: - 'LM' : largest magnitude - 'SM' : smallest magnitude - 'LR' : largest real part - 'SR' : smallest real part - 'LI' : largest imaginary part - 'SI' : smallest imaginary part When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues Minv : N x N matrix, array, sparse matrix, or linear operator See notes in M, above. OPinv : N x N matrix, array, sparse matrix, or linear operator See notes in sigma, above. OPpart : 'r' or 'i'. See notes in sigma, above Returns ------- w : array Array of k eigenvalues. v : array An array of `k` eigenvectors. ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigsh : eigenvalues and eigenvectors for symmetric matrix A svds : singular value decomposition for a matrix A Examples -------- Find 6 eigenvectors of the identity matrix: >>> from sklearn.utils.arpack import eigs >>> id = np.identity(13) >>> vals, vecs = eigs(id, k=6) >>> vals array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> vecs.shape (13, 6) Notes ----- This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if OPpart is not None: raise ValueError("OPpart should not be specified with " "sigma = None or complex A") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: #sigma is not None: shift-invert mode if np.issubdtype(A.dtype, np.complexfloating): if OPpart is not None: raise ValueError("OPpart should not be specified " "with sigma=None or complex A") mode = 3 elif OPpart is None or OPpart.lower() == 'r': mode = 3 elif OPpart.lower() == 'i': if np.imag(sigma) == 0: raise ValueError("OPpart cannot be 'i' if sigma is real") mode = 4 else: raise ValueError("OPpart must be one of ('r','i')") matvec = _aslinearoperator_with_dtype(A).matvec if Minv is not None: raise ValueError("Minv should not be specified when sigma is") if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=False, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal'): """ Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation A * x, where A is a real symmetric matrix For buckling mode (see below) A must additionally be positive-definite k : integer The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. M : An N x N matrix, array, sparse matrix, or linear operator representing the operation M * x for the generalized eigenvalue problem ``A * x = w * M * x``. M must represent a real, symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma == None, M is symmetric positive definite * If sigma is specified, M is symmetric positive semi-definite * In buckling mode, M is symmetric indefinite. If sigma == None, eigsh requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues w'[i] where: - if mode == 'normal', w'[i] = 1 / (w[i] - sigma) - if mode == 'cayley', w'[i] = (w[i] + sigma) / (w[i] - sigma) - if mode == 'buckling', w'[i] = w[i] / (w[i] - sigma) (see further discussion in 'mode' below) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that ncv > 2*k which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] If A is a complex hermitian matrix, 'BE' is invalid. Which `k` eigenvectors and eigenvalues to find - 'LM' : Largest (in magnitude) eigenvalues - 'SM' : Smallest (in magnitude) eigenvalues - 'LA' : Largest (algebraic) eigenvalues - 'SA' : Smallest (algebraic) eigenvalues - 'BE' : Half (k/2) from each end of the spectrum When k is odd, return one more (k/2+1) from the high end When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. Minv : N x N matrix, array, sparse matrix, or LinearOperator See notes in M, above OPinv : N x N matrix, array, sparse matrix, or LinearOperator See notes in sigma, above. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues mode : string ['normal' | 'buckling' | 'cayley'] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem ``OP * x'[i] = w'[i] * B * x'[i]`` and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] into the desired eigenvectors and eigenvalues of the problem ``A * x[i] = w[i] * M * x[i]``. The modes are as follows: - 'normal' : OP = [A - sigma * M]^-1 * M B = M w'[i] = 1 / (w[i] - sigma) - 'buckling' : OP = [A - sigma * M]^-1 * A B = A w'[i] = w[i] / (w[i] - sigma) - 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M] B = M w'[i] = (w[i] + sigma) / (w[i] - sigma) The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion) Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors The v[i] is the eigenvector corresponding to the eigenvector w[i] Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2]_. Examples -------- >>> from sklearn.utils.arpack import eigsh >>> id = np.identity(13) >>> vals, vecs = eigsh(id, k=6) >>> vals # doctest: +SKIP array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> print(vecs.shape) (13, 6) References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ # complex hermitian matrices should be solved with eigs if np.issubdtype(A.dtype, np.complexfloating): if mode != 'normal': raise ValueError("mode=%s cannot be used with " "complex matrix A" % mode) if which == 'BE': raise ValueError("which='BE' cannot be used with complex matrix A") elif which == 'LA': which = 'LR' elif which == 'SA': which = 'SR' ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=return_eigenvectors, Minv=Minv, OPinv=OPinv) if return_eigenvectors: return ret[0].real, ret[1] else: return ret.real if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: A = _aslinearoperator_with_dtype(A) matvec = A.matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: # sigma is not None: shift-invert mode if Minv is not None: raise ValueError("Minv should not be specified when sigma is") # normal mode if mode == 'normal': mode = 3 matvec = None if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M = _aslinearoperator_with_dtype(M) M_matvec = M.matvec # buckling mode elif mode == 'buckling': mode = 4 if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec matvec = _aslinearoperator_with_dtype(A).matvec M_matvec = None # cayley-transform mode elif mode == 'cayley': mode = 5 matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec # unrecognized mode else: raise ValueError("unrecognized mode '%s'" % mode) params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _svds(A, k=6, ncv=None, tol=0): """Compute k singular values/vectors for a sparse matrix using ARPACK. Parameters ---------- A : sparse matrix Array to compute the SVD on k : int, optional Number of singular values and vectors to compute. ncv : integer The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k tol : float, optional Tolerance for singular values. Zero (default) means machine precision. Notes ----- This is a naive implementation using an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. """ if not (isinstance(A, np.ndarray) or isspmatrix(A)): A = np.asarray(A) n, m = A.shape if np.issubdtype(A.dtype, np.complexfloating): herm = lambda x: x.T.conjugate() eigensolver = eigs else: herm = lambda x: x.T eigensolver = eigsh if n > m: X = A XH = herm(A) else: XH = A X = herm(A) if hasattr(XH, 'dot'): def matvec_XH_X(x): return XH.dot(X.dot(x)) else: def matvec_XH_X(x): return np.dot(XH, np.dot(X, x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype, shape=(X.shape[1], X.shape[1])) # Ignore deprecation warnings here: dot on matrices is deprecated, # but this code is a backport anyhow with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2) s = np.sqrt(eigvals) if n > m: v = eigvec if hasattr(X, 'dot'): u = X.dot(v) / s else: u = np.dot(X, v) / s vh = herm(v) else: u = eigvec if hasattr(X, 'dot'): vh = herm(X.dot(u) / s) else: vh = herm(np.dot(X, u) / s) return u, s, vh # check if backport is actually needed: if scipy.version.version >= LooseVersion('0.10'): from scipy.sparse.linalg import eigs, eigsh, svds else: eigs, eigsh, svds = _eigs, _eigsh, _svds
bsd-3-clause
JeanKossaifi/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
TakayukiSakai/tensorflow
tensorflow/examples/skflow/boston.py
4
1596
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import datasets, cross_validation, metrics from sklearn import preprocessing from tensorflow.contrib import skflow # Load dataset boston = datasets.load_boston() X, y = boston.data, boston.target # Split dataset into train / test X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2, random_state=42) # Scale data (training set) to 0 mean and unit standard deviation. scaler = preprocessing.StandardScaler() X_train = scaler.fit_transform(X_train) # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = skflow.TensorFlowDNNRegressor(hidden_units=[10, 10], steps=5000, learning_rate=0.1, batch_size=1) # Fit regressor.fit(X_train, y_train) # Predict and score score = metrics.mean_squared_error(regressor.predict(scaler.transform(X_test)), y_test) print('MSE: {0:f}'.format(score))
apache-2.0
maheshakya/scikit-learn
sklearn/utils/testing.py
2
22085
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import sklearn from sklearn.base import BaseEstimator # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Py 2.6 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except Exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("Should have raised %r" % expected_exception(expected_regexp)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [warning.category is warning_class for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>." % (message, func.__name__)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exception, message, function, *args, **kwargs): """Helper function to test error messages in exceptions""" try: function(*args, **kwargs) raise AssertionError("Should have raised %r" % exception(message)) except exception as e: error_message = str(e) assert_in(message, error_message) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified matplotlib.pylab.figure() except: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
crisbarros/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/mpl_examples/pylab_examples/trigradient_demo.py
7
3075
""" Demonstrates computation of gradient with matplotlib.tri.CubicTriInterpolator. """ from matplotlib.tri import Triangulation, UniformTriRefiner,\ CubicTriInterpolator import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import math #----------------------------------------------------------------------------- # Electrical potential of a dipole #----------------------------------------------------------------------------- def dipole_potential(x, y): """ The electric dipole potential V """ r_sq = x**2 + y**2 theta = np.arctan2(y, x) z = np.cos(theta)/r_sq return (np.max(z)-z) / (np.max(z)-np.min(z)) #----------------------------------------------------------------------------- # Creating a Triangulation #----------------------------------------------------------------------------- # First create the x and y coordinates of the points. n_angles = 30 n_radii = 10 min_radius = 0.2 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2*math.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += math.pi/n_angles x = (radii*np.cos(angles)).flatten() y = (radii*np.sin(angles)).flatten() V = dipole_potential(x, y) # Create the Triangulation; no triangles specified so Delaunay triangulation # created. triang = Triangulation(x, y) # Mask off unwanted triangles. xmid = x[triang.triangles].mean(axis=1) ymid = y[triang.triangles].mean(axis=1) mask = np.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0) triang.set_mask(mask) #----------------------------------------------------------------------------- # Refine data - interpolates the electrical potential V #----------------------------------------------------------------------------- refiner = UniformTriRefiner(triang) tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3) #----------------------------------------------------------------------------- # Computes the electrical field (Ex, Ey) as gradient of electrical potential #----------------------------------------------------------------------------- tci = CubicTriInterpolator(triang, -V) # Gradient requested here at the mesh nodes but could be anywhere else: (Ex, Ey) = tci.gradient(triang.x, triang.y) E_norm = np.sqrt(Ex**2 + Ey**2) #----------------------------------------------------------------------------- # Plot the triangulation, the potential iso-contours and the vector field #----------------------------------------------------------------------------- plt.figure() plt.gca().set_aspect('equal') plt.triplot(triang, color='0.8') levels = np.arange(0., 1., 0.01) cmap = cm.get_cmap(name='hot', lut=None) plt.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap, linewidths=[2.0, 1.0, 1.0, 1.0]) # Plots direction of the electrical vector field plt.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm, units='xy', scale=10., zorder=3, color='blue', width=0.007, headwidth=3., headlength=4.) plt.title('Gradient plot: an electrical dipole') plt.show()
mit
iulian787/spack
var/spack/repos/builtin/packages/py-torch-geometric/package.py
2
3179
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyTorchGeometric(PythonPackage): """PyTorch Geometric (PyG) is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, multi gpu-support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.""" homepage = "https://github.com/rusty1s/pytorch_geometric" url = "https://github.com/rusty1s/pytorch_geometric/archive/1.6.0.tar.gz" version('1.6.0', sha256='7d5231cdcc2ebd4444f406cbf1537eb49bf90ab6f446eaf1b7af5cdbe105f3c9') variant('cuda', default=False, description="Enable CUDA support") depends_on('[email protected]:', type=('build', 'run')) depends_on('py-setuptools', type='build') depends_on('py-pytest-runner', type='build') depends_on('py-torch', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('py-tqdm', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-networkx', type=('build', 'run')) depends_on('py-scikit-learn', type=('build', 'run')) depends_on('py-numba', type=('build', 'run')) depends_on('py-requests', type=('build', 'run')) depends_on('py-pandas', type=('build', 'run')) depends_on('py-rdflib', type=('build', 'run')) depends_on('py-googledrivedownloader', type=('build', 'run')) depends_on('py-h5py~mpi', type=('build', 'run')) depends_on('py-ase', type=('build', 'run')) depends_on('py-jinja2', type=('build', 'run')) depends_on('py-torch-sparse+cuda', when='+cuda', type=('build', 'run')) depends_on('py-torch-scatter+cuda', when='+cuda', type=('build', 'run')) depends_on('py-torch-cluster+cuda', when='+cuda', type=('build', 'run')) depends_on('py-torch-spline-conv+cuda', when='+cuda', type=('build', 'run')) depends_on('py-torch-sparse~cuda', when='~cuda', type=('build', 'run')) depends_on('py-torch-scatter~cuda', when='~cuda', type=('build', 'run')) depends_on('py-torch-cluster~cuda', when='~cuda', type=('build', 'run')) depends_on('py-torch-spline-conv~cuda', when='~cuda', type=('build', 'run')) def setup_build_environment(self, env): if '+cuda' in self.spec: cuda_arches = list( self.spec['py-torch'].variants['cuda_arch'].value) for i, x in enumerate(cuda_arches): cuda_arches[i] = '{0}.{1}'.format(x[0:-1], x[-1]) env.set('TORCH_CUDA_ARCH_LIST', str.join(' ', cuda_arches)) env.set('FORCE_CUDA', '1') env.set('CUDA_HOME', self.spec['cuda'].prefix) else: env.set('FORCE_CUDA', '0')
lgpl-2.1
gdetor/SI-RF-Structure
Responses/DNF-2D-REF-Response.py
1
5461
# Copyright (c) 2014, Georgios Is. Detorakis ([email protected]) and # Nicolas P. Rougier ([email protected]) # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # This file is part of the source code accompany the peer-reviewed article: # [1] "Structure of Receptive Fields in a Computational Model of Area 3b of # Primary Sensory Cortex", Georgios Is. Detorakis and Nicolas P. Rougier, # Frontiers in Computational Neuroscience, 2014. # # DNF-2D-SOM-REF.py computes the responses of the model described in [1] # in normal case. ''' Model response. Calculates the response of the DNF-SOM-MultiDimInput model. ''' import math as mt import numpy as np from sys import stdout import matplotlib.pyplot as plt from numpy.fft import rfft2, irfft2, ifftshift def progress_bar(width, percent): marks = mt.floor(width * (percent/100.0)) spaces = mt.floor(width - marks) loader = '[' + ('#' * int(marks)) + (' ' * int(spaces)) + ']' stdout.write("%s %d%%\r" % (loader, percent)) if percent >= 100: stdout.write("\n") stdout.flush() def g(x, sigma=1.0): return np.exp(-0.5*(x/sigma)**2) def area_of_activity(data): return sum(1 for i in data.flatten() if i > 0.0) def dnfsom_activity(n, Rn, l, tau, T, alpha, folder): ms = 0.001 # ms definition dt = 35.0 * ms # Euler's time step # Files to be loaded filename = 'weights050000.npy' filenames = 'model_response_64_final' # Allocation of arrays and loading necessary files O = np.zeros((l*n, l*n)) W = np.load(folder+filename) Rx = np.load(folder+'gridxcoord.npy') Ry = np.load(folder+'gridycoord.npy') V = np.random.random((n, n)) * .01 U = np.random.random((n, n)) * .01 # FFT implementation mean = 0.5 Ke, Ki = 3.65, 2.40 sigma_e, sigma_i = 0.1, 1.0 x_inf, x_sup, y_inf, y_sup = 0.0, 1.0, 0.0, 1.0 X, Y = np.meshgrid(np.linspace(x_inf, x_sup, n+1)[1:], np.linspace(y_inf, y_sup, n+1)[1:]) D = np.sqrt((X-mean)**2 + (Y-mean)**2) We = Ke * g(D, sigma_e) * alpha * 960.0/(n*n) Wi = Ki * g(D, sigma_i) * alpha * 960.0/(n*n) We_fft = rfft2(ifftshift(We[::-1, ::-1])) Wi_fft = rfft2(ifftshift(Wi[::-1, ::-1])) # Stimuli generation S = np.zeros((l*l, 2)) for i, x in enumerate(np.linspace(0.0, 1.0, l)): for j, y in enumerate(np.linspace(0.0, 1.0, l)): S[i*l+j, 0] = x S[i*l+j, 1] = y dX = np.abs(Rx.reshape(1, Rn*Rn) - S[:, 0].reshape(l*l, 1)) dX = np.minimum(dX, 1-dX) dY = np.abs(Ry.reshape(1, Rn*Rn) - S[:, 1].reshape(l*l, 1)) dY = np.minimum(dY, 1-dY) samples = np.sqrt(dX*dX+dY*dY)/mt.sqrt(2.0) samples = g(samples, 0.08) # Calculation of model response step = 0 jj = 100.0/(float(l)) for i in range(l): for j in range(l): D = ((np.abs(W - samples[i*l+j])).sum(axis=-1))/float(Rn*Rn) I = (1.0 - D.reshape(n, n)) * alpha for k in range(int(T/dt)): Z = rfft2(V) Le = irfft2(Z * We_fft, (n, n)).real Li = irfft2(Z * Wi_fft, (n, n)).real U += (-U + (Le - Li) + I) * tau * dt V = np.maximum(U, 0) O[i*n:(i+1)*n, j*n:(j+1)*n] = V V = np.random.random((n, n)) * .01 U = np.random.random((n, n)) * .01 step += jj progress_bar(30, step) np.save(folder+filenames, O) plt.imshow(O, interpolation='bicubic', cmap=plt.cm.hot, extent=[0, l*n, 0, l*n]) plt.xticks(np.arange(0, l*n, n), []) plt.yticks(np.arange(0, l*n, n), []) plt.show() if __name__ == '__main__': np.random.seed(137) model_size = 32 rf_resolution = 64 num_receptors = 16 T = 10.0 tau = 1.0 alpha = 0.1 # Change the folder path!!! folder = '/home/Local/SOM/Parameters/25Noise/' dnfsom_activity(model_size, num_receptors, rf_resolution, tau, T, alpha, folder)
gpl-3.0
JorgeDeLosSantos/ubim
manuscript/images/ch4/code_mpl.py
1
1168
#-*- coding:utf-8 -*- import matplotlib.pyplot as plt import numpy as np __all__ = ["img_01", "img_02", "img_03", "img_04", "img_05", "img_06", "img_07"] def img_01(): x = np.linspace(0,10) y = np.cos(x) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) plt.savefig("img_01.png") def img_02(): T = [50, 60, 70, 80, 90, 100, 110, 120] P = [12, 20, 33, 54, 90, 148, 244, 403] fig = plt.figure() ax = fig.add_subplot(111) ax.plot(T, P) ax.set_xlabel(u"Temperatura (°C)") ax.set_ylabel(u"Presión (KPa)") ax.set_title(u"Relación P-T") plt.savefig("img_02.png") def img_03(): x = np.linspace(0,10) y = np.cos(x) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y, lw=2) ax.plot(x, y+1, lw=4) ax.plot(x, y+2, linewidth=6) plt.savefig("img_03c.png") def img_04(): theta = np.linspace(0,2*np.pi,1000) r = 0.25*np.cos(3*theta) fig = plt.figure() ax = fig.add_subplot(111, projection="polar") ax.plot(theta, r) plt.savefig("img_04.png") def img_05():pass def img_06():pass def img_07():pass def img_08():pass if __name__=='__main__': [eval(fun+"()") for fun in __all__]
mit
anirudhjayaraman/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
lyrixderaven/AdventOfCode
18.advent.py
1
1633
from inputs import EIGHTEENTH from pandas import DataFrame initial = EIGHTEENTH.initial class grid: grid = None def __init__(self, base): self.grid = DataFrame(index=range(0,100),columns=range(0,100)) self.grid = self.grid.fillna(False) for column,line in enumerate(initial): for index,c in enumerate(line): if c == '#': self.grid.loc[column,index] = True self.grid.iloc[0,0] = True self.grid.iloc[0,-1] = True self.grid.iloc[-1,-1] = True self.grid.iloc[-1,0] = True def iterate(self): new_grid = DataFrame(index=range(0,100),columns=range(0,100)) new_grid = new_grid.fillna(False) for col in self.grid.columns: for idx,val in enumerate(self.grid[col]): col_left = col - 1 if col > 1 else 0 col_right = col + 1 idx_left = idx - 1 if idx > 1 else 0 idx_right = idx + 1 num_neighbors = self.grid.loc[idx_left:idx_right,col_left:col_right].sum().sum() if self.grid.iloc[idx,col]: if num_neighbors in [3,4]: new_grid.loc[col][idx] = True else: if num_neighbors == 3: new_grid.loc[col][idx] = True new_grid.iloc[0,0] = True new_grid.iloc[0,-1] = True new_grid.iloc[-1,-1] = True new_grid.iloc[-1,0] = True self.grid = new_grid the_grid = grid(initial) for i in range(1,101): the_grid.iterate() print i, the_grid.grid.sum().sum()
gpl-2.0
code-sauce/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator.py
4
53699
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import copy import inspect import os import tempfile import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import summary_io from tensorflow.python.util import compat AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existance of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if contrib_framework.is_tensor(x) or (y is not None and contrib_framework.is_tensor(y)): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableOfTensors', 'MutableDenseHashTable' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError( 'Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ return ', '.join('%s = %s' % (k, v) for k, v in sorted(dictionary.items())) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = summary_io.SummaryWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue value = summary_proto.value.add() value.tag = key if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): value.simple_value = float(dictionary[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() class BaseEstimator( sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. Users should not instantiate or subclass this class. Instead, use `Estimator`. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overriden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: A RunConfig instance. """ # Model directory. self._model_dir = model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def partial_fit( self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True) ) def predict( self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated_arg_values( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate. ' 'input_fn (and in most cases, input_feature_key) will become required ' 'args, and use_deprecated_input_fn will default to False and be removed ' 'altogether.', use_deprecated_input_fn=True, input_fn=None) def export(self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) eval_dict = self._get_eval_ops(features, labels, metrics).eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps: hooks.append( evaluation.StopAfterNEvalsHook( steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=config_pb2.ConfigProto(allow_soft_placement=True)) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, config=config_pb2.ConfigProto(allow_soft_placement=True))) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) all_hooks.extend(hooks) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, defer_build=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=config_pb2.ConfigProto(allow_soft_placement=True) ) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) summary_io.SummaryWriterCache.clear() return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _get_arguments(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) has less than 4 ' 'arguments, but not None params (%s) are passed.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _get_arguments(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): return model_fn_results # Here model_fn_ops should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') return model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL) features, labels = self._feature_engineering_fn(features, labels) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update(_make_metrics_ops( metrics, features, labels, model_fn_ops.predictions)) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.streaming_mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel( self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None): """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') with ops.Graph().as_default() as g: contrib_variables.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) with tf_session.Session('') as session: variables.initialize_local_variables() data_flow_ops.tables_initializer() saver_for_restore = saver.Saver( variables.global_variables(), sharded=True) saver_for_restore.restore(session, checkpoint_path) init_op = control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables( session, [tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op) builder.save(as_text) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator.""" def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit(input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name='score') if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate( [output[key] for output in results], axis=0) for key in results[0] }
apache-2.0
mrshu/scikit-learn
sklearn/__check_build/__init__.py
8
1670
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError( """%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/core/computation/align.py
7
5835
"""Core eval alignment algorithms """ import warnings from functools import partial, wraps from pandas.compat import zip, range import numpy as np import pandas as pd from pandas import compat from pandas.errors import PerformanceWarning from pandas.core.common import flatten from pandas.core.computation.common import _result_type_many def _align_core_single_unary_op(term): if isinstance(term.value, np.ndarray): typ = partial(np.asanyarray, dtype=term.value.dtype) else: typ = type(term.value) ret = typ, if not hasattr(term.value, 'axes'): ret += None, else: ret += _zip_axes_from_type(typ, term.value.axes), return ret def _zip_axes_from_type(typ, new_axes): axes = {} for ax_ind, ax_name in compat.iteritems(typ._AXIS_NAMES): axes[ax_name] = new_axes[ax_ind] return axes def _any_pandas_objects(terms): """Check a sequence of terms for instances of PandasObject.""" return any(isinstance(term.value, pd.core.generic.PandasObject) for term in terms) def _filter_special_cases(f): @wraps(f) def wrapper(terms): # single unary operand if len(terms) == 1: return _align_core_single_unary_op(terms[0]) term_values = (term.value for term in terms) # we don't have any pandas objects if not _any_pandas_objects(terms): return _result_type_many(*term_values), None return f(terms) return wrapper @_filter_special_cases def _align_core(terms): term_index = [i for i, term in enumerate(terms) if hasattr(term.value, 'axes')] term_dims = [terms[i].value.ndim for i in term_index] ndims = pd.Series(dict(zip(term_index, term_dims))) # initial axes are the axes of the largest-axis'd term biggest = terms[ndims.idxmax()].value typ = biggest._constructor axes = biggest.axes naxes = len(axes) gt_than_one_axis = naxes > 1 for value in (terms[i].value for i in term_index): is_series = isinstance(value, pd.Series) is_series_and_gt_one_axis = is_series and gt_than_one_axis for axis, items in enumerate(value.axes): if is_series_and_gt_one_axis: ax, itm = naxes - 1, value.index else: ax, itm = axis, items if not axes[ax].is_(itm): axes[ax] = axes[ax].join(itm, how='outer') for i, ndim in compat.iteritems(ndims): for axis, items in zip(range(ndim), axes): ti = terms[i].value if hasattr(ti, 'reindex_axis'): transpose = isinstance(ti, pd.Series) and naxes > 1 reindexer = axes[naxes - 1] if transpose else items term_axis_size = len(ti.axes[axis]) reindexer_size = len(reindexer) ordm = np.log10(max(1, abs(reindexer_size - term_axis_size))) if ordm >= 1 and reindexer_size >= 10000: warnings.warn('Alignment difference on axis {0} is larger ' 'than an order of magnitude on term {1!r}, ' 'by more than {2:.4g}; performance may ' 'suffer'.format(axis, terms[i].name, ordm), category=PerformanceWarning, stacklevel=6) if transpose: f = partial(ti.reindex, index=reindexer, copy=False) else: f = partial(ti.reindex_axis, reindexer, axis=axis, copy=False) terms[i].update(f()) terms[i].update(terms[i].value.values) return typ, _zip_axes_from_type(typ, axes) def _align(terms): """Align a set of terms""" try: # flatten the parse tree (a nested list, really) terms = list(flatten(terms)) except TypeError: # can't iterate so it must just be a constant or single variable if isinstance(terms.value, pd.core.generic.NDFrame): typ = type(terms.value) return typ, _zip_axes_from_type(typ, terms.value.axes) return np.result_type(terms.type), None # if all resolved variables are numeric scalars if all(term.isscalar for term in terms): return _result_type_many(*(term.value for term in terms)).type, None # perform the main alignment typ, axes = _align_core(terms) return typ, axes def _reconstruct_object(typ, obj, axes, dtype): """Reconstruct an object given its type, raw value, and possibly empty (None) axes. Parameters ---------- typ : object A type obj : object The value to use in the type constructor axes : dict The axes to use to construct the resulting pandas object Returns ------- ret : typ An object of type ``typ`` with the value `obj` and possible axes `axes`. """ try: typ = typ.type except AttributeError: pass res_t = np.result_type(obj.dtype, dtype) if (not isinstance(typ, partial) and issubclass(typ, pd.core.generic.PandasObject)): return typ(obj, dtype=res_t, **axes) # special case for pathological things like ~True/~False if hasattr(res_t, 'type') and typ == np.bool_ and res_t != np.bool_: ret_value = res_t.type(obj) else: ret_value = typ(obj).astype(res_t) # The condition is to distinguish 0-dim array (returned in case of # scalar) and 1 element array # e.g. np.array(0) and np.array([0]) if len(obj.shape) == 1 and len(obj) == 1: if not isinstance(ret_value, np.ndarray): ret_value = np.array([ret_value]).astype(res_t) return ret_value
mit
Eric89GXL/mne-python
mne/tests/test_cov.py
6
33641
# Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import os.path as op import itertools as itt from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal, assert_allclose) import pytest import numpy as np from scipy import linalg from mne.cov import (regularize, whiten_evoked, _auto_low_rank_model, prepare_noise_cov, compute_whitener, _regularized_covariance) from mne import (read_cov, write_cov, Epochs, merge_events, find_events, compute_raw_covariance, compute_covariance, read_evokeds, compute_proj_raw, pick_channels_cov, pick_types, make_ad_hoc_cov, make_fixed_length_events, create_info) from mne.channels import equalize_channels from mne.datasets import testing from mne.fixes import _get_args from mne.io import read_raw_fif, RawArray, read_raw_ctf from mne.io.pick import _DATA_CH_TYPES_SPLIT from mne.preprocessing import maxwell_filter from mne.rank import _compute_rank_int from mne.utils import (requires_sklearn, run_tests_if_main, catch_logging, assert_snr) base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') cov_fname = op.join(base_dir, 'test-cov.fif') cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz') cov_km_fname = op.join(base_dir, 'test-km-cov.fif') raw_fname = op.join(base_dir, 'test_raw.fif') ave_fname = op.join(base_dir, 'test-ave.fif') erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif') hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif') ctf_fname = op.join(testing.data_path(download=False), 'CTF', 'testdata_ctf.ds') @pytest.mark.parametrize('proj', (True, False)) @pytest.mark.parametrize('pca', (True, 'white', False)) def test_compute_whitener(proj, pca): """Test properties of compute_whitener.""" raw = read_raw_fif(raw_fname).crop(0, 3).load_data() raw.pick_types(meg=True, eeg=True, exclude=()) if proj: raw.apply_proj() else: raw.del_proj() with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw) W, _, C = compute_whitener(cov, raw.info, pca=pca, return_colorer=True, verbose='error') n_channels = len(raw.ch_names) n_reduced = len(raw.ch_names) rank = n_channels - len(raw.info['projs']) n_reduced = rank if pca is True else n_channels assert W.shape == C.shape[::-1] == (n_reduced, n_channels) # round-trip mults round_trip = np.dot(W, C) if pca is True: assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7) elif pca == 'white': # Our first few rows/cols are zeroed out in the white space assert_allclose(round_trip[-rank:, -rank:], np.eye(rank), atol=1e-7) else: assert pca is False assert_allclose(round_trip, np.eye(n_channels), atol=0.05) def test_cov_mismatch(): """Test estimation with MEG<->Head mismatch.""" raw = read_raw_fif(raw_fname).crop(0, 5).load_data() events = find_events(raw, stim_channel='STI 014') raw.pick_channels(raw.ch_names[:5]) raw.add_proj([], remove_existing=True) epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0., preload=True) for kind in ('shift', 'None'): epochs_2 = epochs.copy() # This should be fine compute_covariance([epochs, epochs_2]) if kind == 'shift': epochs_2.info['dev_head_t']['trans'][:3, 3] += 0.001 else: # None epochs_2.info['dev_head_t'] = None pytest.raises(ValueError, compute_covariance, [epochs, epochs_2]) compute_covariance([epochs, epochs_2], on_mismatch='ignore') with pytest.raises(RuntimeWarning, match='transform mismatch'): compute_covariance([epochs, epochs_2], on_mismatch='warn') pytest.raises(ValueError, compute_covariance, epochs, on_mismatch='x') # This should work epochs.info['dev_head_t'] = None epochs_2.info['dev_head_t'] = None compute_covariance([epochs, epochs_2], method=None) def test_cov_order(): """Test covariance ordering.""" raw = read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True) info = raw.info # add MEG channel with low enough index number to affect EEG if # order is incorrect info['bads'] += ['MEG 0113'] ch_names = [info['ch_names'][pick] for pick in pick_types(info, meg=False, eeg=True)] cov = read_cov(cov_fname) # no avg ref present warning prepare_noise_cov(cov, info, ch_names, verbose='error') # big reordering cov_reorder = cov.copy() order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names))) cov_reorder['names'] = [cov['names'][ii] for ii in order] cov_reorder['data'] = cov['data'][order][:, order] # Make sure we did this properly _assert_reorder(cov_reorder, cov, order) # Now check some functions that should get the same result for both # regularize with pytest.raises(ValueError, match='rank, if str'): regularize(cov, info, rank='foo') with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=False) with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=1.) cov_reg = regularize(cov, info, rank='full') cov_reg_reorder = regularize(cov_reorder, info, rank='full') _assert_reorder(cov_reg_reorder, cov_reg, order) # prepare_noise_cov cov_prep = prepare_noise_cov(cov, info, ch_names) cov_prep_reorder = prepare_noise_cov(cov, info, ch_names) _assert_reorder(cov_prep, cov_prep_reorder, order=np.arange(len(cov_prep['names']))) # compute_whitener whitener, w_ch_names, n_nzero = compute_whitener( cov, info, return_rank=True) assert whitener.shape[0] == whitener.shape[1] whitener_2, w_ch_names_2, n_nzero_2 = compute_whitener( cov_reorder, info, return_rank=True) assert_array_equal(w_ch_names_2, w_ch_names) assert_allclose(whitener_2, whitener, rtol=1e-6) assert n_nzero == n_nzero_2 # with pca assert n_nzero < whitener.shape[0] whitener_pca, w_ch_names_pca, n_nzero_pca = compute_whitener( cov, info, pca=True, return_rank=True) assert_array_equal(w_ch_names_pca, w_ch_names) assert n_nzero_pca == n_nzero assert whitener_pca.shape == (n_nzero_pca, len(w_ch_names)) # whiten_evoked evoked = read_evokeds(ave_fname)[0] evoked_white = whiten_evoked(evoked, cov) evoked_white_2 = whiten_evoked(evoked, cov_reorder) assert_allclose(evoked_white_2.data, evoked_white.data, atol=1e-7) def _assert_reorder(cov_new, cov_orig, order): """Check that we get the same result under reordering.""" inv_order = np.argsort(order) assert_array_equal([cov_new['names'][ii] for ii in inv_order], cov_orig['names']) assert_allclose(cov_new['data'][inv_order][:, inv_order], cov_orig['data'], atol=1e-20) def test_ad_hoc_cov(tmpdir): """Test ad hoc cov creation and I/O.""" out_fname = tmpdir.join('test-cov.fif') evoked = read_evokeds(ave_fname)[0] cov = make_ad_hoc_cov(evoked.info) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6) cov = make_ad_hoc_cov(evoked.info, std) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() cov['diag'] = False cov._get_square() cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() def test_io_cov(tmpdir): """Test IO for noise covariance matrices.""" cov = read_cov(cov_fname) cov['method'] = 'empirical' cov['loglik'] = -np.inf cov.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(tmpdir.join('test-cov.fif')) assert_array_almost_equal(cov.data, cov2.data) assert_equal(cov['method'], cov2['method']) assert_equal(cov['loglik'], cov2['loglik']) assert 'Covariance' in repr(cov) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) cov['bads'] = ['EEG 039'] cov_sel = pick_channels_cov(cov, exclude=cov['bads']) assert cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])) assert cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']) cov_sel.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) # test warnings on bad filenames cov_badname = tmpdir.join('test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-cov.fif'): write_cov(cov_badname, cov) with pytest.warns(RuntimeWarning, match='-cov.fif'): read_cov(cov_badname) @pytest.mark.parametrize('method', (None, 'empirical', 'shrunk')) def test_cov_estimation_on_raw(method, tmpdir): """Test estimation from raw (typically empty room).""" if method == 'shrunk': try: import sklearn # noqa: F401 except Exception as exp: pytest.skip('sklearn is required, got %s' % (exp,)) raw = read_raw_fif(raw_fname, preload=True) cov_mne = read_cov(erm_cov_fname) method_params = dict(shrunk=dict(shrinkage=[0])) # The pure-string uses the more efficient numpy-based method, the # the list gets triaged to compute_covariance (should be equivalent # but use more memory) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance( raw, tstep=None, method=method, rank='full', method_params=method_params) assert_equal(cov.ch_names, cov_mne.ch_names) assert_equal(cov.nfree, cov_mne.nfree) assert_snr(cov.data, cov_mne.data, 1e6) # test equivalence with np.cov cov_np = np.cov(raw.copy().pick_channels(cov['names']).get_data(), ddof=1) if method != 'shrunk': # can check all off_diag = np.triu_indices(cov_np.shape[0]) else: # We explicitly zero out off-diag entries between channel types, # so let's just check MEG off-diag entries off_diag = np.triu_indices(len(pick_types(raw.info, meg=True, exclude=()))) for other in (cov_mne, cov): assert_allclose(np.diag(cov_np), np.diag(other.data), rtol=5e-6) assert_allclose(cov_np[off_diag], other.data[off_diag], rtol=4e-3) assert_snr(cov.data, other.data, 1e6) # tstep=0.2 (default) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance(raw, method=method, rank='full', method_params=method_params) assert_equal(cov.nfree, cov_mne.nfree - 120) # cutoff some samples assert_snr(cov.data, cov_mne.data, 170) # test IO when computation done in Python cov.save(tmpdir.join('test-cov.fif')) # test saving cov_read = read_cov(tmpdir.join('test-cov.fif')) assert cov_read.ch_names == cov.ch_names assert cov_read.nfree == cov.nfree assert_array_almost_equal(cov.data, cov_read.data) # test with a subset of channels raw_pick = raw.copy().pick_channels(raw.ch_names[:5]) raw_pick.info.normalize_proj() cov = compute_raw_covariance(raw_pick, tstep=None, method=method, rank='full', method_params=method_params) assert cov_mne.ch_names[:5] == cov.ch_names assert_snr(cov.data, cov_mne.data[:5, :5], 5e6) cov = compute_raw_covariance(raw_pick, method=method, rank='full', method_params=method_params) assert_snr(cov.data, cov_mne.data[:5, :5], 90) # cutoff samps # make sure we get a warning with too short a segment raw_2 = read_raw_fif(raw_fname).crop(0, 1) with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw_2, method=method, method_params=method_params) # no epochs found due to rejection pytest.raises(ValueError, compute_raw_covariance, raw, tstep=None, method='empirical', reject=dict(eog=200e-6)) # but this should work with pytest.warns(None): # sklearn cov = compute_raw_covariance( raw.copy().crop(0, 10.), tstep=None, method=method, reject=dict(eog=1000e-6), method_params=method_params, verbose='error') @pytest.mark.slowtest @requires_sklearn def test_cov_estimation_on_raw_reg(): """Test estimation from raw with regularization.""" raw = read_raw_fif(raw_fname, preload=True) raw.info['sfreq'] /= 10. raw = RawArray(raw._data[:, ::10].copy(), raw.info) # decimate for speed cov_mne = read_cov(erm_cov_fname) with pytest.warns(RuntimeWarning, match='Too few samples'): # XXX don't use "shrunk" here, for some reason it makes Travis 2.7 # hang... "diagonal_fixed" is much faster. Use long epochs for speed. cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed') assert_snr(cov.data, cov_mne.data, 5) def _assert_cov(cov, cov_desired, tol=0.005, nfree=True): assert_equal(cov.ch_names, cov_desired.ch_names) err = (linalg.norm(cov.data - cov_desired.data, ord='fro') / linalg.norm(cov.data, ord='fro')) assert err < tol, '%s >= %s' % (err, tol) if nfree: assert_equal(cov.nfree, cov_desired.nfree) @pytest.mark.slowtest @pytest.mark.parametrize('rank', ('full', None)) def test_cov_estimation_with_triggers(rank, tmpdir): """Test estimation from raw with triggers.""" raw = read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True).load_data() events = find_events(raw, stim_channel='STI 014') event_ids = [1, 2, 3, 4] reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6) # cov with merged events and keep_sample_mean=True events_merged = merge_events(events, event_ids, 1234) epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True) cov = compute_covariance(epochs, keep_sample_mean=True) cov_km = read_cov(cov_km_fname) # adjust for nfree bug cov_km['nfree'] -= 1 _assert_cov(cov, cov_km) # Test with tmin and tmax (different but not too much) cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01) assert np.all(cov.data != cov_tmin_tmax.data) err = (linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro') / linalg.norm(cov_tmin_tmax.data, ord='fro')) assert err < 0.05 # cov using a list of epochs and keep_sample_mean=True epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject) for ev_id in event_ids] cov2 = compute_covariance(epochs, keep_sample_mean=True) assert_array_almost_equal(cov.data, cov2.data) assert cov.ch_names == cov2.ch_names # cov with keep_sample_mean=False using a list of epochs cov = compute_covariance(epochs, keep_sample_mean=False) assert cov_km.nfree == cov.nfree _assert_cov(cov, read_cov(cov_fname), nfree=False) method_params = {'empirical': {'assume_centered': False}} pytest.raises(ValueError, compute_covariance, epochs, keep_sample_mean=False, method_params=method_params) pytest.raises(ValueError, compute_covariance, epochs, keep_sample_mean=False, method='shrunk', rank=rank) # test IO when computation done in Python cov.save(tmpdir.join('test-cov.fif')) # test saving cov_read = read_cov(tmpdir.join('test-cov.fif')) _assert_cov(cov, cov_read, 1e-5) # cov with list of epochs with different projectors epochs = [Epochs(raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True), Epochs(raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=False)] # these should fail pytest.raises(ValueError, compute_covariance, epochs) pytest.raises(ValueError, compute_covariance, epochs, projs=None) # these should work, but won't be equal to above with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_covariance(epochs, projs=epochs[0].info['projs']) with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_covariance(epochs, projs=[]) # test new dict support epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.01, tmax=0, proj=True, reject=reject, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): compute_covariance(epochs) with pytest.warns(RuntimeWarning, match='Too few samples'): compute_covariance(epochs, projs=[]) pytest.raises(TypeError, compute_covariance, epochs, projs='foo') pytest.raises(TypeError, compute_covariance, epochs, projs=['foo']) def test_arithmetic_cov(): """Test arithmetic with noise covariance matrices.""" cov = read_cov(cov_fname) cov_sum = cov + cov assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree) assert_array_almost_equal(2 * cov.data, cov_sum.data) assert cov.ch_names == cov_sum.ch_names cov += cov assert_array_almost_equal(cov_sum.nfree, cov.nfree) assert_array_almost_equal(cov_sum.data, cov.data) assert cov_sum.ch_names == cov.ch_names def test_regularize_cov(): """Test cov regularization.""" raw = read_raw_fif(raw_fname) raw.info['bads'].append(raw.ch_names[0]) # test with bad channels noise_cov = read_cov(cov_fname) # Regularize noise cov reg_noise_cov = regularize(noise_cov, raw.info, mag=0.1, grad=0.1, eeg=0.1, proj=True, exclude='bads', rank='full') assert noise_cov['dim'] == reg_noise_cov['dim'] assert noise_cov['data'].shape == reg_noise_cov['data'].shape assert np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08 # make sure all args are represented assert set(_DATA_CH_TYPES_SPLIT) - set(_get_args(regularize)) == set() def test_whiten_evoked(): """Test whitening of evoked data.""" evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True) cov = read_cov(cov_fname) ########################################################################### # Show result picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False, exclude='bads') noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1, exclude='bads', rank='full') evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True) whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0] mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1) assert np.all(mean_baseline < 1.) assert np.all(mean_baseline > 0.2) # degenerate cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10]) pytest.raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks) def test_regularized_covariance(): """Test unchanged data with regularized_covariance.""" evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True) data = evoked.data.copy() # check that input data remain unchanged. gh-5698 _regularized_covariance(data) assert_allclose(data, evoked.data, atol=1e-20) @requires_sklearn def test_auto_low_rank(): """Test probabilistic low rank estimators.""" n_samples, n_features, rank = 400, 10, 5 sigma = 0.1 def get_data(n_samples, n_features, rank, sigma): rng = np.random.RandomState(42) W = rng.randn(n_features, n_features) X = rng.randn(n_samples, rank) U, _, _ = linalg.svd(W.copy()) X = np.dot(X, U[:, :rank].T) sigmas = sigma * rng.rand(n_features) + sigma / 2. X += rng.randn(n_samples, n_features) * sigmas return X X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma) method_params = {'iter_n_components': [4, 5, 6]} cv = 3 n_jobs = 1 mode = 'factor_analysis' rescale = 1e8 X *= rescale est, info = _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv) assert_equal(info['best'], rank) X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma) method_params = {'iter_n_components': [n_features + 5]} msg = ('You are trying to estimate %i components on matrix ' 'with %i features.') % (n_features + 5, n_features) with pytest.warns(RuntimeWarning, match=msg): _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv) @pytest.mark.slowtest @pytest.mark.parametrize('rank', ('full', None, 'info')) @requires_sklearn def test_compute_covariance_auto_reg(rank): """Test automated regularization.""" raw = read_raw_fif(raw_fname, preload=True) raw.resample(100, npad='auto') # much faster estimation events = find_events(raw, stim_channel='STI 014') event_ids = [1, 2, 3, 4] reject = dict(mag=4e-12) # cov with merged events and keep_sample_mean=True events_merged = merge_events(events, event_ids, 1234) # we need a few channels for numerical reasons in PCA/FA picks = pick_types(raw.info, meg='mag', eeg=False)[:10] raw.pick_channels([raw.ch_names[pick] for pick in picks]) raw.info.normalize_proj() epochs = Epochs( raw, events_merged, 1234, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True) epochs = epochs.crop(None, 0)[:5] method_params = dict(factor_analysis=dict(iter_n_components=[3]), pca=dict(iter_n_components=[3])) covs = compute_covariance(epochs, method='auto', method_params=method_params, return_estimators=True, rank=rank) # make sure regularization produces structured differencess diag_mask = np.eye(len(epochs.ch_names)).astype(bool) off_diag_mask = np.invert(diag_mask) for cov_a, cov_b in itt.combinations(covs, 2): if (cov_a['method'] == 'diagonal_fixed' and # here we have diagnoal or no regularization. cov_b['method'] == 'empirical' and rank == 'full'): assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) # but the rest is the same assert_allclose(cov_a['data'][off_diag_mask], cov_b['data'][off_diag_mask], rtol=1e-12) else: # and here we have shrinkage everywhere. assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) logliks = [c['loglik'] for c in covs] assert np.diff(logliks).max() <= 0 # descending order methods = ['empirical', 'ledoit_wolf', 'oas', 'shrunk', 'shrinkage'] if rank == 'full': methods.extend(['factor_analysis', 'pca']) with catch_logging() as log: cov3 = compute_covariance(epochs, method=methods, method_params=method_params, projs=None, return_estimators=True, rank=rank, verbose=True) log = log.getvalue().split('\n') if rank is None: assert ' Setting small MAG eigenvalues to zero (without PCA)' in log assert 'Reducing data rank from 10 -> 7' in log else: assert 'Reducing' not in log method_names = [cov['method'] for cov in cov3] best_bounds = [-45, -35] bounds = [-55, -45] if rank == 'full' else best_bounds for method in set(methods) - {'empirical', 'shrunk'}: this_lik = cov3[method_names.index(method)]['loglik'] assert bounds[0] < this_lik < bounds[1] this_lik = cov3[method_names.index('shrunk')]['loglik'] assert best_bounds[0] < this_lik < best_bounds[1] this_lik = cov3[method_names.index('empirical')]['loglik'] bounds = [-110, -100] if rank == 'full' else best_bounds assert bounds[0] < this_lik < bounds[1] assert_equal({c['method'] for c in cov3}, set(methods)) cov4 = compute_covariance(epochs, method=methods, method_params=method_params, projs=None, return_estimators=False, rank=rank) assert cov3[0]['method'] == cov4['method'] # ordering # invalid prespecified method pytest.raises(ValueError, compute_covariance, epochs, method='pizza') # invalid scalings pytest.raises(ValueError, compute_covariance, epochs, method='shrunk', scalings=dict(misc=123)) def _cov_rank(cov, info, proj=True): # ignore warnings about rank mismatches: sometimes we will intentionally # violate the computed/info assumption, such as when using SSS with # `rank='full'` with pytest.warns(None): return _compute_rank_int(cov, info=info, proj=proj) @pytest.fixture(scope='module') def raw_epochs_events(): """Create raw, epochs, and events for tests.""" raw = read_raw_fif(raw_fname).set_eeg_reference(projection=True).crop(0, 3) raw = maxwell_filter(raw, regularize=None) # heavily reduce the rank assert raw.info['bads'] == [] # no bads events = make_fixed_length_events(raw) epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True) return (raw, epochs, events) @requires_sklearn @pytest.mark.parametrize('rank', (None, 'full', 'info')) def test_low_rank_methods(rank, raw_epochs_events): """Test low-rank covariance matrix estimation.""" epochs = raw_epochs_events[1] sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj n_ch = 366 methods = ('empirical', 'diagonal_fixed', 'oas') bounds = { 'None': dict(empirical=(-15000, -5000), diagonal_fixed=(-1500, -500), oas=(-700, -600)), 'full': dict(empirical=(-18000, -8000), diagonal_fixed=(-2000, -1600), oas=(-1600, -1000)), 'info': dict(empirical=(-15000, -5000), diagonal_fixed=(-700, -600), oas=(-700, -600)), } with pytest.warns(RuntimeWarning, match='Too few samples'): covs = compute_covariance( epochs, method=methods, return_estimators=True, rank=rank, verbose=True) for cov in covs: method = cov['method'] these_bounds = bounds[str(rank)][method] this_rank = _cov_rank(cov, epochs.info, proj=(rank != 'full')) if rank == 'full' and method != 'empirical': assert this_rank == n_ch else: assert this_rank == sss_proj_rank assert these_bounds[0] < cov['loglik'] < these_bounds[1], \ (rank, method) @requires_sklearn def test_low_rank_cov(raw_epochs_events): """Test additional properties of low rank computations.""" raw, epochs, events = raw_epochs_events sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj n_ch = 366 proj_rank = 365 # one EEG proj with pytest.warns(RuntimeWarning, match='Too few samples'): emp_cov = compute_covariance(epochs) # Test equivalence with mne.cov.regularize subspace with pytest.raises(ValueError, match='are dependent.*must equal'): regularize(emp_cov, epochs.info, rank=None, mag=0.1, grad=0.2) assert _cov_rank(emp_cov, epochs.info) == sss_proj_rank reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full') assert _cov_rank(reg_cov, epochs.info) == proj_rank with pytest.warns(RuntimeWarning, match='exceeds the theoretical'): _compute_rank_int(reg_cov, info=epochs.info) del reg_cov with catch_logging() as log: reg_r_cov = regularize(emp_cov, epochs.info, proj=True, rank=None, verbose=True) log = log.getvalue() assert 'jointly' in log assert _cov_rank(reg_r_cov, epochs.info) == sss_proj_rank reg_r_only_cov = regularize(emp_cov, epochs.info, proj=False, rank=None) assert _cov_rank(reg_r_only_cov, epochs.info) == sss_proj_rank assert_allclose(reg_r_only_cov['data'], reg_r_cov['data']) del reg_r_only_cov, reg_r_cov # test that rank=306 is same as rank='full' epochs_meg = epochs.copy().pick_types(meg=True) assert len(epochs_meg.ch_names) == 306 epochs_meg.info.update(bads=[], projs=[]) cov_full = compute_covariance(epochs_meg, method='oas', rank='full', verbose='error') assert _cov_rank(cov_full, epochs_meg.info) == 306 with pytest.warns(RuntimeWarning, match='few samples'): cov_dict = compute_covariance(epochs_meg, method='oas', rank=dict(meg=306)) assert _cov_rank(cov_dict, epochs_meg.info) == 306 assert_allclose(cov_full['data'], cov_dict['data']) cov_dict = compute_covariance(epochs_meg, method='oas', rank=dict(meg=306), verbose='error') assert _cov_rank(cov_dict, epochs_meg.info) == 306 assert_allclose(cov_full['data'], cov_dict['data']) # Work with just EEG data to simplify projection / rank reduction raw = raw.copy().pick_types(meg=False, eeg=True) n_proj = 2 raw.add_proj(compute_proj_raw(raw, n_eeg=n_proj)) n_ch = len(raw.ch_names) rank = n_ch - n_proj - 1 # plus avg proj assert len(raw.info['projs']) == 3 epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True) assert len(raw.ch_names) == n_ch emp_cov = compute_covariance(epochs, rank='full', verbose='error') assert _cov_rank(emp_cov, epochs.info) == rank reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full') assert _cov_rank(reg_cov, epochs.info) == rank reg_r_cov = regularize(emp_cov, epochs.info, proj=False, rank=None) assert _cov_rank(reg_r_cov, epochs.info) == rank dia_cov = compute_covariance(epochs, rank=None, method='diagonal_fixed', verbose='error') assert _cov_rank(dia_cov, epochs.info) == rank assert_allclose(dia_cov['data'], reg_cov['data']) epochs.pick_channels(epochs.ch_names[:103]) # degenerate with pytest.raises(ValueError, match='can.*only be used with rank="full"'): compute_covariance(epochs, rank=None, method='pca') with pytest.raises(ValueError, match='can.*only be used with rank="full"'): compute_covariance(epochs, rank=None, method='factor_analysis') @testing.requires_testing_data @requires_sklearn def test_cov_ctf(): """Test basic cov computation on ctf data with/without compensation.""" raw = read_raw_ctf(ctf_fname).crop(0., 2.).load_data() events = make_fixed_length_events(raw, 99999) assert len(events) == 2 ch_names = [raw.info['ch_names'][pick] for pick in pick_types(raw.info, meg=True, eeg=False, ref_meg=False)] for comp in [0, 1]: raw.apply_gradient_compensation(comp) epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): noise_cov = compute_covariance(epochs, tmax=0., method=['empirical']) prepare_noise_cov(noise_cov, raw.info, ch_names) raw.apply_gradient_compensation(0) epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): noise_cov = compute_covariance(epochs, tmax=0., method=['empirical']) raw.apply_gradient_compensation(1) # TODO This next call in principle should fail. prepare_noise_cov(noise_cov, raw.info, ch_names) # make sure comps matrices was not removed from raw assert raw.info['comps'], 'Comps matrices removed' def test_equalize_channels(): """Test equalization of channels for instances of Covariance.""" cov1 = make_ad_hoc_cov(create_info(['CH1', 'CH2', 'CH3', 'CH4'], sfreq=1.0, ch_types='eeg')) cov2 = make_ad_hoc_cov(create_info(['CH5', 'CH1', 'CH2'], sfreq=1.0, ch_types='eeg')) cov1, cov2 = equalize_channels([cov1, cov2]) assert cov1.ch_names == ['CH1', 'CH2'] assert cov2.ch_names == ['CH1', 'CH2'] run_tests_if_main()
bsd-3-clause
olakiril/pipeline
python/pipeline/reso.py
1
79661
""" Schemas for resonant scanners.""" import datajoint as dj from datajoint.jobs import key_hash import matplotlib.pyplot as plt import numpy as np import scanreader from . import experiment, notify, shared from .utils import galvo_corrections, signal, quality, mask_classification, performance from .exceptions import PipelineException schema = dj.schema('pipeline_reso', locals(), create_tables=False) CURRENT_VERSION = 1 @schema class Version(dj.Manual): definition = """ # versions for the reso pipeline -> shared.PipelineVersion --- description = '' : varchar(256) # any notes on this version date = CURRENT_TIMESTAMP : timestamp # automatic """ @schema class ScanInfo(dj.Imported): definition = """ # master table with general data about the scans -> experiment.Scan -> Version # reso version --- nfields : tinyint # number of fields nchannels : tinyint # number of channels nframes : int # number of recorded frames nframes_requested : int # number of requested frames (from header) px_height : smallint # lines per frame px_width : smallint # pixels per line um_height : float # height in microns um_width : float # width in microns x : float # (um) center of scan in the motor coordinate system y : float # (um) center of scan in the motor coordinate system fps : float # (Hz) frames per second zoom : decimal(5,2) # zoom factor bidirectional : boolean # true = bidirectional scanning usecs_per_line : float # microseconds per scan line fill_fraction : float # raster scan temporal fill fraction (see scanimage) valid_depth=false : boolean # whether depth has been manually check """ @property def key_source(self): rigs = [{'rig': '2P2'}, {'rig': '2P3'}, {'rig': '2P5'}, {'rig': '3P1'}] reso_scans = experiment.Scan() & (experiment.Session() & rigs) return reso_scans * (Version() & {'pipe_version': CURRENT_VERSION}) class Field(dj.Part): definition = """ # field-specific information -> ScanInfo -> shared.Field --- z : float # (um) absolute depth with respect to the surface of the cortex delay_image : longblob # (ms) delay between the start of the scan and pixels in this field """ def make(self, key): """ Read some scan parameters and compute FOV in microns.""" from decimal import Decimal # Read the scan print('Reading header...') scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) # Get attributes tuple_ = key.copy() # in case key is reused somewhere else tuple_['nfields'] = scan.num_fields tuple_['nchannels'] = scan.num_channels tuple_['nframes'] = scan.num_frames tuple_['nframes_requested'] = scan.num_requested_frames tuple_['px_height'] = scan.image_height tuple_['px_width'] = scan.image_width tuple_['x'] = scan.motor_position_at_zero[0] tuple_['y'] = scan.motor_position_at_zero[1] tuple_['fps'] = scan.fps tuple_['zoom'] = Decimal(str(scan.zoom)) tuple_['bidirectional'] = scan.is_bidirectional tuple_['usecs_per_line'] = scan.seconds_per_line * 1e6 tuple_['fill_fraction'] = scan.temporal_fill_fraction tuple_['valid_depth'] = True # Estimate height and width in microns using measured FOVs for similar setups fov_rel = (experiment.FOV() * experiment.Session() * experiment.Scan() & key & 'session_date>=fov_ts') zooms = fov_rel.fetch('mag').astype(np.float32) # zooms measured in same setup closest_zoom = zooms[np.argmin(np.abs(np.log(zooms / scan.zoom)))] dims = (fov_rel & 'ABS(mag - {}) < 1e-4'.format(closest_zoom)).fetch1('height', 'width') um_height, um_width = [float(um) * (closest_zoom / scan.zoom) for um in dims] tuple_['um_height'] = um_height * scan._y_angle_scale_factor tuple_['um_width'] = um_width * scan._x_angle_scale_factor # Insert in ScanInfo self.insert1(tuple_) # Compute field depths with respect to surface surf_z = (experiment.Scan() & key).fetch1('depth') # surface depth in motor coordinates motor_zero = surf_z - scan.motor_position_at_zero[2] if scan.is_slow_stack and not scan.is_slow_stack_with_fastZ: # using motor # Correct for motor and fastZ pointing in different directions initial_fastZ = scan.initial_secondary_z or 0 rel_field_depths = 2 * initial_fastZ - np.array(scan.field_depths) else: # using fastZ rel_field_depths = np.array(scan.field_depths) field_depths = motor_zero + rel_field_depths # Insert field information for field_id, (field_z, field_offsets) in enumerate(zip(field_depths, scan.field_offsets)): ScanInfo.Field().insert1({**key, 'field': field_id + 1, 'z': field_z, 'delay_image': field_offsets}) # Fill in CorrectionChannel if only one channel if scan.num_channels == 1: CorrectionChannel().fill(key) # Fill SegmentationTask if scan in autosegment if experiment.AutoProcessing() & key & {'autosegment': True}: SegmentationTask().fill(key) @property def microns_per_pixel(self): """ Returns an array with microns per pixel in height and width. """ um_height, px_height, um_width, px_width = self.fetch1('um_height', 'px_height', 'um_width', 'px_width') return np.array([um_height / px_height, um_width / px_width]) @schema class Quality(dj.Computed): definition = """ # different quality metrics for a scan (before corrections) -> ScanInfo """ @property def key_source(self): return ScanInfo() & {'pipe_version': CURRENT_VERSION} class MeanIntensity(dj.Part): definition = """ # mean intensity values across time -> Quality -> shared.Field -> shared.Channel --- intensities : longblob """ class SummaryFrames(dj.Part): definition = """ # 16-part summary of the scan (mean of 16 blocks) -> Quality -> shared.Field -> shared.Channel --- summary : longblob # h x w x 16 """ class Contrast(dj.Part): definition = """ # difference between 99 and 1 percentile across time -> Quality -> shared.Field -> shared.Channel --- contrasts : longblob """ class QuantalSize(dj.Part): definition = """ # quantal size in images -> Quality -> shared.Field -> shared.Channel --- min_intensity : int # min value in movie max_intensity : int # max value in movie quantal_size : float # variance slope, corresponds to quantal size zero_level : int # level corresponding to zero (computed from variance dependence) quantal_frame : longblob # average frame expressed in quanta """ class EpileptiformEvents(dj.Part): definition = """ # compute frequency of epileptiform events -> Quality -> shared.Field -> shared.Channel --- frequency : float # (events / sec) frequency of epileptiform events abn_indices : longblob # indices of epileptiform events (0-based) peak_indices : longblob # indices of all local maxima peaks (0-based) prominences : longblob # peak prominence for all peaks widths : longblob # (secs) width at half prominence for all peaks """ def make(self, key): # Read the scan scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) # Insert in Quality self.insert1(key) for field_id in range(scan.num_fields): print('Computing quality metrics for field', field_id + 1) for channel in range(scan.num_channels): # Map: Compute quality metrics in parallel results = performance.map_frames(performance.parallel_quality_metrics, scan, field_id=field_id, channel=channel) # Reduce mean_intensities = np.zeros(scan.num_frames) contrasts = np.zeros(scan.num_frames) for frames, chunk_mis, chunk_contrasts, _ in results: mean_intensities[frames] = chunk_mis contrasts[frames] = chunk_contrasts sorted_results = sorted(results, key=lambda res: res[0]) mean_groups = np.array_split([r[3] for r in sorted_results], 16) # 16 groups frames = np.stack([np.mean(g, axis=0) for g in mean_groups if g.any()], axis=-1) # Compute quantal size middle_frame = int(np.floor(scan.num_frames / 2)) mini_scan = scan[field_id, :, :, channel, max(middle_frame - 2000, 0): middle_frame + 2000] mini_scan = mini_scan.astype(np.float32) results = quality.compute_quantal_size(mini_scan) min_intensity, max_intensity, _, _, quantal_size, zero_level = results quantal_frame = (np.mean(mini_scan, axis=-1) - zero_level) / quantal_size # Compute abnormal event frequency deviations = (mean_intensities - mean_intensities.mean()) / mean_intensities.mean() peaks, prominences, widths = quality.find_peaks(deviations) widths = [w / scan.fps for w in widths] # in seconds abnormal = peaks[[p > 0.2 and w < 0.4 for p, w in zip(prominences, widths)]] abnormal_freq = len(abnormal) / (scan.num_frames / scan.fps) # Insert field_key = {**key, 'field': field_id + 1, 'channel': channel + 1} self.MeanIntensity().insert1({**field_key, 'intensities': mean_intensities}) self.Contrast().insert1({**field_key, 'contrasts': contrasts}) self.SummaryFrames().insert1({**field_key, 'summary': frames}) self.QuantalSize().insert1({**field_key, 'min_intensity': min_intensity, 'max_intensity': max_intensity, 'quantal_size': quantal_size, 'zero_level': zero_level, 'quantal_frame': quantal_frame}) self.EpileptiformEvents.insert1({**field_key, 'frequency': abnormal_freq, 'abn_indices': abnormal, 'peak_indices': peaks, 'prominences': prominences, 'widths': widths}) self.notify(field_key, frames, mean_intensities, contrasts) @notify.ignore_exceptions def notify(self, key, summary_frames, mean_intensities, contrasts): # Send summary frames import imageio video_filename = '/tmp/' + key_hash(key) + '.gif' percentile_99th = np.percentile(summary_frames, 99.5) summary_frames = np.clip(summary_frames, None, percentile_99th) summary_frames = signal.float2uint8(summary_frames).transpose([2, 0, 1]) imageio.mimsave(video_filename, summary_frames, duration=0.4) msg = ('summary frames for {animal_id}-{session}-{scan_idx} field {field} ' 'channel {channel}').format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=video_filename, file_title=msg) # Send intensity and contrasts fig, axes = plt.subplots(2, 1, figsize=(15, 8), sharex=True) axes[0].set_title('Mean intensity', size='small') axes[0].plot(mean_intensities) axes[0].set_ylabel('Pixel intensities') axes[1].set_title('Contrast (99 - 1 percentile)', size='small') axes[1].plot(contrasts) axes[1].set_xlabel('Frames') axes[1].set_ylabel('Pixel intensities') img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = ('quality traces for {animal_id}-{session}-{scan_idx} field {field} ' 'channel {channel}').format(**key) slack_user.notify(file=img_filename, file_title=msg) @schema class CorrectionChannel(dj.Manual): definition = """ # channel to use for raster and motion correction -> experiment.Scan -> shared.Field --- -> shared.Channel """ def fill(self, key, channel=1): for field_key in (ScanInfo.Field() & key).fetch(dj.key): self.insert1({**field_key, 'channel': channel}, ignore_extra_fields=True, skip_duplicates=True) @schema class RasterCorrection(dj.Computed): definition = """ # raster correction for bidirectional resonant scans -> ScanInfo # animal_id, session, scan_idx, version -> CorrectionChannel # animal_id, session, scan_idx, field --- raster_template : longblob # average frame from the middle of the movie raster_phase : float # difference between expected and recorded scan angle """ @property def key_source(self): return ScanInfo * CorrectionChannel & {'pipe_version': CURRENT_VERSION} def make(self, key): from scipy.signal import tukey # Read the scan scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename, dtype=np.float32) # Select correction channel channel = (CorrectionChannel() & key).fetch1('channel') - 1 field_id = key['field'] - 1 # Load some frames from the middle of the scan middle_frame = int(np.floor(scan.num_frames / 2)) frames = slice(max(middle_frame - 1000, 0), middle_frame + 1000) mini_scan = scan[field_id, :, :, channel, frames] # Create results tuple tuple_ = key.copy() # Create template (average frame tapered to avoid edge artifacts) taper = np.sqrt(np.outer(tukey(scan.image_height, 0.4), tukey(scan.image_width, 0.4))) anscombed = 2 * np.sqrt(mini_scan - mini_scan.min() + 3 / 8) # anscombe transform template = np.mean(anscombed, axis=-1) * taper tuple_['raster_template'] = template # Compute raster correction parameters if scan.is_bidirectional: tuple_['raster_phase'] = galvo_corrections.compute_raster_phase(template, scan.temporal_fill_fraction) else: tuple_['raster_phase'] = 0 # Insert self.insert1(tuple_) def get_correct_raster(self): """ Returns a function to perform raster correction on the scan. """ raster_phase = self.fetch1('raster_phase') fill_fraction = (ScanInfo() & self).fetch1('fill_fraction') if abs(raster_phase) < 1e-7: correct_raster = lambda scan: scan.astype(np.float32, copy=False) else: correct_raster = lambda scan: galvo_corrections.correct_raster(scan, raster_phase, fill_fraction) return correct_raster @schema class MotionCorrection(dj.Computed): definition = """ # motion correction for galvo scans -> RasterCorrection --- motion_template : longblob # image used as alignment template y_shifts : longblob # (pixels) y motion correction shifts x_shifts : longblob # (pixels) x motion correction shifts y_std : float # (pixels) standard deviation of y shifts x_std : float # (pixels) standard deviation of x shifts outlier_frames : longblob # mask with true for frames with outlier shifts (already corrected) align_time=CURRENT_TIMESTAMP : timestamp # automatic """ @property def key_source(self): return RasterCorrection() & {'pipe_version': CURRENT_VERSION} def make(self, key): """Computes the motion shifts per frame needed to correct the scan.""" from scipy import ndimage # Read the scan scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) # Get some params px_height, px_width = (ScanInfo() & key).fetch1('px_height', 'px_width') channel = (CorrectionChannel() & key).fetch1('channel') - 1 field_id = key['field'] - 1 # Load some frames from middle of scan to compute template skip_rows = int(round(px_height * 0.10)) # we discard some rows/cols to avoid edge artifacts skip_cols = int(round(px_width * 0.10)) middle_frame = int(np.floor(scan.num_frames / 2)) mini_scan = scan[field_id, skip_rows: -skip_rows, skip_cols: -skip_cols, channel, max(middle_frame - 1000, 0): middle_frame + 1000] mini_scan = mini_scan.astype(np.float32, copy=False) # Correct mini scan correct_raster = (RasterCorrection() & key).get_correct_raster() mini_scan = correct_raster(mini_scan) # Create template mini_scan = 2 * np.sqrt(mini_scan - mini_scan.min() + 3 / 8) # * template = np.mean(mini_scan, axis=-1) template = ndimage.gaussian_filter(template, 0.7) # ** # * Anscombe tranform to normalize noise, increase contrast and decrease outliers' leverage # ** Small amount of gaussian smoothing to get rid of high frequency noise # Map: compute motion shifts in parallel f = performance.parallel_motion_shifts # function to map raster_phase = (RasterCorrection() & key).fetch1('raster_phase') fill_fraction = (ScanInfo() & key).fetch1('fill_fraction') kwargs = {'raster_phase': raster_phase, 'fill_fraction': fill_fraction, 'template': template} results = performance.map_frames(f, scan, field_id=field_id, y=slice(skip_rows, -skip_rows), x=slice(skip_cols, -skip_cols), channel=channel, kwargs=kwargs) # Reduce y_shifts = np.zeros(scan.num_frames) x_shifts = np.zeros(scan.num_frames) for frames, chunk_y_shifts, chunk_x_shifts in results: y_shifts[frames] = chunk_y_shifts x_shifts[frames] = chunk_x_shifts # Detect outliers max_y_shift, max_x_shift = 20 / (ScanInfo() & key).microns_per_pixel y_shifts, x_shifts, outliers = galvo_corrections.fix_outliers(y_shifts, x_shifts, max_y_shift, max_x_shift) # Center shifts around zero y_shifts -= np.median(y_shifts) x_shifts -= np.median(x_shifts) # Create results tuple tuple_ = key.copy() tuple_['field'] = field_id + 1 tuple_['motion_template'] = template tuple_['y_shifts'] = y_shifts tuple_['x_shifts'] = x_shifts tuple_['outlier_frames'] = outliers tuple_['y_std'] = np.std(y_shifts) tuple_['x_std'] = np.std(x_shifts) # Insert self.insert1(tuple_) # Notify after all fields have been processed scan_key = {'animal_id': key['animal_id'], 'session': key['session'], 'scan_idx': key['scan_idx'], 'pipe_version': key['pipe_version']} if len(MotionCorrection - CorrectionChannel & scan_key) > 0: self.notify(scan_key, scan.num_frames, scan.num_fields) @notify.ignore_exceptions def notify(self, key, num_frames, num_fields): fps = (ScanInfo() & key).fetch1('fps') seconds = np.arange(num_frames) / fps fig, axes = plt.subplots(num_fields, 1, figsize=(15, 4 * num_fields), sharey=True) axes = [axes] if num_fields == 1 else axes # make list if single axis object for i in range(num_fields): y_shifts, x_shifts = (self & key & {'field': i + 1}).fetch1('y_shifts', 'x_shifts') axes[i].set_title('Shifts for field {}'.format(i + 1)) axes[i].plot(seconds, y_shifts, label='y shifts') axes[i].plot(seconds, x_shifts, label='x shifts') axes[i].set_ylabel('Pixels') axes[i].set_xlabel('Seconds') axes[i].legend() fig.tight_layout() img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = 'motion shifts for {animal_id}-{session}-{scan_idx}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg) def save_video(self, filename='galvo_corrections.mp4', channel=1, start_index=0, seconds=30, dpi=250): """ Creates an animation video showing the original vs corrected scan. :param string filename: Output filename (path + filename) :param int channel: What channel from the scan to use. Starts at 1 :param int start_index: Where in the scan to start the video. :param int seconds: How long in seconds should the animation run. :param int dpi: Dots per inch, controls the quality of the video. :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ # Get fps and total_num_frames fps = (ScanInfo() & self).fetch1('fps') num_video_frames = int(round(fps * seconds)) stop_index = start_index + num_video_frames # Load the scan scan_filename = (experiment.Scan() & self).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename, dtype=np.float32) scan_ = scan[self.fetch1('field') - 1, :, :, channel - 1, start_index: stop_index] original_scan = scan_.copy() # Correct the scan correct_raster = (RasterCorrection() & self).get_correct_raster() correct_motion = self.get_correct_motion() corrected_scan = correct_motion(correct_raster(scan_), slice(start_index, stop_index)) # Create animation import matplotlib.animation as animation ## Set the figure fig, axes = plt.subplots(1, 2, sharex=True, sharey=True) axes[0].set_title('Original') im1 = axes[0].imshow(original_scan[:, :, 0], vmin=original_scan.min(), vmax=original_scan.max()) # just a placeholder fig.colorbar(im1, ax=axes[0]) axes[0].axis('off') axes[1].set_title('Corrected') im2 = axes[1].imshow(corrected_scan[:, :, 0], vmin=corrected_scan.min(), vmax=corrected_scan.max()) # just a placeholder fig.colorbar(im2, ax=axes[1]) axes[1].axis('off') ## Make the animation def update_img(i): im1.set_data(original_scan[:, :, i]) im2.set_data(corrected_scan[:, :, i]) video = animation.FuncAnimation(fig, update_img, corrected_scan.shape[2], interval=1000 / fps) # Save animation if not filename.endswith('.mp4'): filename += '.mp4' print('Saving video at:', filename) print('If this takes too long, stop it and call again with dpi <', dpi, '(default)') video.save(filename, dpi=dpi) return fig def get_correct_motion(self): """ Returns a function to perform motion correction on scans. """ x_shifts, y_shifts = self.fetch1('x_shifts', 'y_shifts') return lambda scan, indices=slice(None): galvo_corrections.correct_motion(scan, x_shifts[indices], y_shifts[indices]) @schema class SummaryImages(dj.Computed): definition = """ # summary images for each field and channel after corrections -> MotionCorrection -> shared.Channel """ @property def key_source(self): return MotionCorrection() & {'pipe_version': CURRENT_VERSION} class Average(dj.Part): definition = """ # mean of each pixel across time -> master --- average_image : longblob """ class Correlation(dj.Part): definition = """ # average temporal correlation between each pixel and its eight neighbors -> master --- correlation_image : longblob """ class L6Norm(dj.Part): definition = """ # l6-norm of each pixel across time -> master --- l6norm_image : longblob """ def make(self, key): # Read the scan scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) for channel in range(scan.num_channels): # Map: Compute some statistics in different chunks of the scan f = performance.parallel_summary_images # function to map raster_phase = (RasterCorrection() & key).fetch1('raster_phase') fill_fraction = (ScanInfo() & key).fetch1('fill_fraction') y_shifts, x_shifts = (MotionCorrection() & key).fetch1('y_shifts', 'x_shifts') kwargs = {'raster_phase': raster_phase, 'fill_fraction': fill_fraction, 'y_shifts': y_shifts, 'x_shifts': x_shifts} results = performance.map_frames(f, scan, field_id=key['field'] - 1, channel=channel, kwargs=kwargs) # Reduce: Compute average images average_image = np.sum([r[0] for r in results], axis=0) / scan.num_frames l6norm_image = np.sum([r[1] for r in results], axis=0) ** (1 / 6) # Reduce: Compute correlation image sum_x = np.sum([r[2] for r in results], axis=0) # h x w sum_sqx = np.sum([r[3] for r in results], axis=0) # h x w sum_xy = np.sum([r[4] for r in results], axis=0) # h x w x 8 denom_factor = np.sqrt(scan.num_frames * sum_sqx - sum_x ** 2) corrs = np.zeros(sum_xy.shape) for k in [0, 1, 2, 3]: rotated_corrs = np.rot90(corrs, k=k) rotated_sum_x = np.rot90(sum_x, k=k) rotated_dfactor = np.rot90(denom_factor, k=k) rotated_sum_xy = np.rot90(sum_xy, k=k) # Compute correlation rotated_corrs[1:, :, k] = (scan.num_frames * rotated_sum_xy[1:, :, k] - rotated_sum_x[1:] * rotated_sum_x[:-1]) / \ (rotated_dfactor[1:] * rotated_dfactor[:-1]) rotated_corrs[1:, 1:, 4 + k] = ((scan.num_frames * rotated_sum_xy[1:, 1:, 4 + k] - rotated_sum_x[1:, 1:] * rotated_sum_x[:-1, : -1]) / (rotated_dfactor[1:, 1:] * rotated_dfactor[:-1, :-1])) # Return back to original orientation corrs = np.rot90(rotated_corrs, k=4 - k) correlation_image = np.sum(corrs, axis=-1) norm_factor = 5 * np.ones(correlation_image.shape) # edges norm_factor[[0, -1, 0, -1], [0, -1, -1, 0]] = 3 # corners norm_factor[1:-1, 1:-1] = 8 # center correlation_image /= norm_factor # Insert field_key = {**key, 'channel': channel + 1} self.insert1(field_key) SummaryImages.Average().insert1({**field_key, 'average_image': average_image}) SummaryImages.L6Norm().insert1({**field_key, 'l6norm_image': l6norm_image}) SummaryImages.Correlation().insert1({**field_key, 'correlation_image': correlation_image}) self.notify(key, scan.num_channels) @notify.ignore_exceptions def notify(self, key, num_channels): fig, axes = plt.subplots(num_channels, 2, squeeze=False, figsize=(12, 5 * num_channels)) axes[0, 0].set_title('L6-Norm', size='small') axes[0, 1].set_title('Correlation', size='small') for ax in axes.ravel(): ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) for channel in range(num_channels): axes[channel, 0].set_ylabel('Channel {}'.format(channel + 1), size='large', rotation='horizontal', ha='right') corr = (SummaryImages.Correlation() & key & {'channel': channel + 1}).fetch1('correlation_image') l6norm = (SummaryImages.L6Norm() & key & {'channel': channel + 1}).fetch1('l6norm_image') axes[channel, 0].imshow(l6norm) axes[channel, 1].imshow(corr) fig.tight_layout() img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = 'summary images for {animal_id}-{session}-{scan_idx} field {field}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg, channel='#pipeline_quality') @schema class SegmentationTask(dj.Manual): definition = """ # defines the target of segmentation and the channel to use -> experiment.Scan -> shared.Field -> shared.Channel -> shared.SegmentationMethod --- -> experiment.Compartment """ def fill(self, key, channel=1, segmentation_method=6, compartment='soma'): for field_key in (ScanInfo.Field() & key).fetch(dj.key): tuple_ = {**field_key, 'channel': channel, 'compartment': compartment, 'segmentation_method': segmentation_method} self.insert1(tuple_, ignore_extra_fields=True, skip_duplicates=True) def estimate_num_components(self): """ Estimates the number of components per field using simple rules of thumb. For somatic scans, estimate number of neurons based on: (100x100x100)um^3 = 1e6 um^3 -> 100 neurons; (1x1x1)mm^3 = 1e9 um^3 -> 100K neurons For axonal/dendritic scans, just ten times our estimate of neurons. :returns: Number of components :rtype: int """ # Get field dimensions (in microns) scan = (ScanInfo() & self & {'pipe_version': CURRENT_VERSION}) field_height, field_width = scan.fetch1('um_height', 'um_width') field_thickness = 10 # assumption field_volume = field_width * field_height * field_thickness # Estimate number of components compartment = self.fetch1('compartment') if compartment == 'soma': num_components = field_volume * 0.0001 elif compartment == 'axon': num_components = field_volume * 0.0005 # five times as many neurons elif compartment == 'bouton': num_components = field_volume * 0.001 # 10 times as many neurons else: PipelineException("Compartment type '{}' not recognized".format(compartment)) return int(round(num_components)) @schema class DoNotSegment(dj.Manual): definition = """ # field/channels that should not be segmented (used for web interface only) -> experiment.Scan -> shared.Field -> shared.Channel """ @schema class Segmentation(dj.Computed): definition = """ # Different mask segmentations. -> MotionCorrection # animal_id, session, scan_idx, version, field -> SegmentationTask # animal_id, session, scan_idx, field, channel, segmentation_method --- segmentation_time=CURRENT_TIMESTAMP : timestamp # automatic """ @property def key_source(self): return MotionCorrection() * SegmentationTask() & {'pipe_version': CURRENT_VERSION} class Mask(dj.Part): definition = """ # mask produced by segmentation. -> Segmentation mask_id : smallint --- pixels : longblob # indices into the image in column major (Fortran) order weights : longblob # weights of the mask at the indices above """ def get_mask_as_image(self): """ Return this mask as an image (2-d numpy array).""" # Get params pixels, weights = self.fetch('pixels', 'weights') image_height, image_width = (ScanInfo() & self).fetch1('px_height', 'px_width') # Reshape mask mask = Segmentation.reshape_masks(pixels, weights, image_height, image_width) return np.squeeze(mask) class Manual(dj.Part): definition = """ # masks created manually -> Segmentation """ def make(self, key): print('Warning: Manual segmentation is not implemented in Python.') # Copy any masks (and MaskClassification) that were there before # Delete key from Segmentation (this is needed for trace and ScanSet and Activity computation to restart when things are added) # Show GUI with the current masks # User modifies it somehow to produce the new set of masks # Insert info in Segmentation -> Segmentation.Manual -> Segmentation.Mask -> MaskClassification -> MaskClassification.Type class CNMF(dj.Part): definition = """ # source extraction using constrained non-negative matrix factorization -> Segmentation --- params : varchar(1024) # parameters send to CNMF as JSON array """ def make(self, key): """ Use CNMF to extract masks and traces. See caiman_interface.extract_masks for explanation of parameters """ from .utils import caiman_interface as cmn import json import uuid import os print('') print('*' * 85) print('Processing {}'.format(key)) # Get some parameters field_id = key['field'] - 1 channel = key['channel'] - 1 image_height, image_width = (ScanInfo() & key).fetch1('px_height', 'px_width') num_frames = (ScanInfo() & key).fetch1('nframes') # Read scan print('Reading scan...') scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) # Create memory mapped file (as expected by CaImAn) print('Creating memory mapped file...') filename = '/tmp/caiman-{}_d1_{}_d2_{}_d3_1_order_C_frames_{}_.mmap'.format( uuid.uuid4(), image_height, image_width, num_frames) mmap_shape = (image_height * image_width, num_frames) mmap_scan = np.memmap(filename, mode='w+', shape=mmap_shape, dtype=np.float32) # Map: Correct scan and save in memmap scan f = performance.parallel_save_memmap # function to map raster_phase = (RasterCorrection() & key).fetch1('raster_phase') fill_fraction = (ScanInfo() & key).fetch1('fill_fraction') y_shifts, x_shifts = (MotionCorrection() & key).fetch1('y_shifts', 'x_shifts') kwargs = {'raster_phase': raster_phase, 'fill_fraction': fill_fraction, 'y_shifts': y_shifts, 'x_shifts': x_shifts, 'mmap_scan': mmap_scan} results = performance.map_frames(f, scan, field_id=field_id, channel=channel, kwargs=kwargs) # Reduce: Use the minimum values to make memory mapped scan nonnegative mmap_scan -= np.min(results) # bit inefficient but necessary # Set CNMF parameters ## Set general parameters kwargs = {} kwargs['num_background_components'] = 1 kwargs['merge_threshold'] = 0.7 kwargs['fps'] = (ScanInfo() & key).fetch1('fps') # Set params specific to method and segmentation target target = (SegmentationTask() & key).fetch1('compartment') if key['segmentation_method'] == 2: # nmf if target == 'axon': kwargs['init_on_patches'] = True kwargs['proportion_patch_overlap'] = 0.2 # 20% overlap kwargs['num_components_per_patch'] = 15 kwargs['init_method'] = 'sparse_nmf' kwargs['snmf_alpha'] = 500 # 10^2 to 10^3.5 is a good range kwargs['patch_size'] = tuple(50 / (ScanInfo() & key).microns_per_pixel) # 50 x 50 microns elif target == 'bouton': kwargs['init_on_patches'] = False kwargs['num_components'] = (SegmentationTask() & key).estimate_num_components() kwargs['init_method'] = 'greedy_roi' kwargs['soma_diameter'] = tuple(2 / (ScanInfo() & key).microns_per_pixel) else: # soma kwargs['init_on_patches'] = False kwargs['num_components'] = (SegmentationTask() & key).estimate_num_components() kwargs['init_method'] = 'greedy_roi' kwargs['soma_diameter'] = tuple(14 / (ScanInfo() & key).microns_per_pixel) else: #nmf-new kwargs['init_on_patches'] = True kwargs['proportion_patch_overlap'] = 0.2 # 20% overlap if target == 'axon': kwargs['num_components_per_patch'] = 15 kwargs['init_method'] = 'sparse_nmf' kwargs['snmf_alpha'] = 500 # 10^2 to 10^3.5 is a good range kwargs['patch_size'] = tuple(50 / (ScanInfo() & key).microns_per_pixel) # 50 x 50 microns elif target == 'bouton': kwargs['num_components_per_patch'] = 5 kwargs['init_method'] = 'greedy_roi' kwargs['patch_size'] = tuple(20 / (ScanInfo() & key).microns_per_pixel) # 20 x 20 microns kwargs['soma_diameter'] = tuple(2 / (ScanInfo() & key).microns_per_pixel) else: # soma kwargs['num_components_per_patch'] = 6 kwargs['init_method'] = 'greedy_roi' kwargs['patch_size'] = tuple(50 / (ScanInfo() & key).microns_per_pixel) kwargs['soma_diameter'] = tuple(8 / (ScanInfo() & key).microns_per_pixel) ## Set performance/execution parameters (heuristically), decrease if memory overflows kwargs['num_processes'] = 8 # Set to None for all cores available kwargs['num_pixels_per_process'] = 10000 # Extract traces print('Extracting masks and traces (cnmf)...') scan_ = mmap_scan.reshape((image_height, image_width, num_frames), order='F') cnmf_result = cmn.extract_masks(scan_, mmap_scan, **kwargs) (masks, traces, background_masks, background_traces, raw_traces) = cnmf_result # Delete memory mapped scan print('Deleting memory mapped scan...') os.remove(mmap_scan.filename) # Insert CNMF results print('Inserting masks, background components and traces...') dj.conn() ## Insert in CNMF, Segmentation and Fluorescence self.insert1({**key, 'params': json.dumps(kwargs)}) Fluorescence().insert1(key, allow_direct_insert=True) # we also insert traces ## Insert background components Segmentation.CNMFBackground().insert1({**key, 'masks': background_masks, 'activity': background_traces}) ## Insert masks and traces (masks in Matlab format) num_masks = masks.shape[-1] masks = masks.reshape(-1, num_masks, order='F').T # [num_masks x num_pixels] in F order raw_traces = raw_traces.astype(np.float32, copy=False) for mask_id, mask, trace in zip(range(1, num_masks + 1), masks, raw_traces): mask_pixels = np.where(mask)[0] mask_weights = mask[mask_pixels] mask_pixels += 1 # matlab indices start at 1 Segmentation.Mask().insert1({**key, 'mask_id': mask_id, 'pixels': mask_pixels, 'weights': mask_weights}) Fluorescence.Trace().insert1({**key, 'mask_id': mask_id, 'trace': trace}) Segmentation().notify(key) def save_video(self, filename='cnmf_results.mp4', start_index=0, seconds=30, dpi=250, first_n=None): """ Creates an animation video showing the results of CNMF. :param string filename: Output filename (path + filename) :param int start_index: Where in the scan to start the video. :param int seconds: How long in seconds should the animation run. :param int dpi: Dots per inch, controls the quality of the video. :param int first_n: Draw only the first n components. :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ # Get fps and calculate total number of frames fps = (ScanInfo() & self).fetch1('fps') num_video_frames = int(round(fps * seconds)) stop_index = start_index + num_video_frames # Load the scan channel = self.fetch1('channel') - 1 field_id = self.fetch1('field') - 1 scan_filename = (experiment.Scan() & self).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename, dtype=np.float32) scan_ = scan[field_id, :, :, channel, start_index: stop_index] # Correct the scan correct_raster = (RasterCorrection() & self).get_correct_raster() correct_motion = (MotionCorrection() & self).get_correct_motion() scan_ = correct_motion(correct_raster(scan_), slice(start_index, stop_index)) # Get scan dimensions image_height, image_width, _ = scan_.shape num_pixels = image_height * image_width # Get masks and traces masks = (Segmentation() & self).get_all_masks() traces = (Fluorescence() & self).get_all_traces() # always there for CNMF background_masks, background_traces = (Segmentation.CNMFBackground() & self).fetch1('masks', 'activity') # Select first n components if first_n is not None: masks = masks[:, :, :first_n] traces = traces[:first_n, :] # Drop frames that won't be displayed traces = traces[:, start_index: stop_index] background_traces = background_traces[:, start_index: stop_index] # Create movies extracted = np.dot(masks.reshape(num_pixels, -1), traces) extracted = extracted.reshape(image_height, image_width, -1) background = np.dot(background_masks.reshape(num_pixels, -1), background_traces) background = background.reshape(image_height, image_width, -1) residual = scan_ - extracted - background # Create animation import matplotlib.animation as animation ## Set the figure fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) axes[0, 0].set_title('Original (Y)') im1 = axes[0, 0].imshow(scan_[:, :, 0], vmin=scan_.min(), vmax=scan_.max()) # just a placeholder fig.colorbar(im1, ax=axes[0, 0]) axes[0, 1].set_title('Extracted (A*C)') im2 = axes[0, 1].imshow(extracted[:, :, 0], vmin=extracted.min(), vmax=extracted.max()) fig.colorbar(im2, ax=axes[0, 1]) axes[1, 0].set_title('Background (B*F)') im3 = axes[1, 0].imshow(background[:, :, 0], vmin=background.min(), vmax=background.max()) fig.colorbar(im3, ax=axes[1, 0]) axes[1, 1].set_title('Residual (Y - A*C - B*F)') im4 = axes[1, 1].imshow(residual[:, :, 0], vmin=residual.min(), vmax=residual.max()) fig.colorbar(im4, ax=axes[1, 1]) for ax in axes.ravel(): ax.axis('off') ## Make the animation def update_img(i): im1.set_data(scan_[:, :, i]) im2.set_data(extracted[:, :, i]) im3.set_data(background[:, :, i]) im4.set_data(residual[:, :, i]) video = animation.FuncAnimation(fig, update_img, scan_.shape[2], interval=1000 / fps) # Save animation if not filename.endswith('.mp4'): filename += '.mp4' print('Saving video at:', filename) print('If this takes too long, stop it and call again with dpi <', dpi, '(default)') video.save(filename, dpi=dpi) return fig class CNMFBackground(dj.Part): definition = """ # inferred background components -> Segmentation.CNMF --- masks : longblob # array (im_height x im_width x num_background_components) activity : longblob # array (num_background_components x timesteps) """ def make(self, key): # Create masks if key['segmentation_method'] == 1: # manual Segmentation.Manual().make(key) elif key['segmentation_method'] in [2, 6]: # nmf and nmf-patches self.insert1(key) Segmentation.CNMF().make(key) elif key['segmentation_method'] in [3, 4]: # nmf_patches msg = 'This method has been deprecated, use segmentation_method 6' raise PipelineException(msg) else: msg = 'Unrecognized segmentation method {}'.format(key['segmentation_method']) raise PipelineException(msg) @notify.ignore_exceptions def notify(self, key): fig = (Segmentation() & key).plot_masks() img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = 'segmentation for {animal_id}-{session}-{scan_idx} field {field}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg) @staticmethod def reshape_masks(mask_pixels, mask_weights, image_height, image_width): """ Reshape masks into an image_height x image_width x num_masks array.""" masks = np.zeros([image_height, image_width, len(mask_pixels)], dtype=np.float32) # Reshape each mask for i, (mp, mw) in enumerate(zip(mask_pixels, mask_weights)): mask_as_vector = np.zeros(image_height * image_width) mask_as_vector[np.squeeze(mp - 1).astype(int)] = np.squeeze(mw) masks[:, :, i] = mask_as_vector.reshape(image_height, image_width, order='F') return masks def get_all_masks(self): """Returns an image_height x image_width x num_masks matrix with all masks.""" mask_rel = (Segmentation.Mask() & self) # Get masks image_height, image_width = (ScanInfo() & self).fetch1('px_height', 'px_width') mask_pixels, mask_weights = mask_rel.fetch('pixels', 'weights', order_by='mask_id') # Reshape masks masks = Segmentation.reshape_masks(mask_pixels, mask_weights, image_height, image_width) return masks def plot_masks(self, threshold=0.97, first_n=None): """ Draw contours of masks over the correlation image (if available). :param threshold: Threshold on the cumulative mass to define mask contours. Lower for tighter contours. :param first_n: Number of masks to plot. None for all. :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ # Get masks masks = self.get_all_masks() if first_n is not None: masks = masks[:, :, :first_n] # Get correlation image if defined, black background otherwise. image_rel = SummaryImages.Correlation() & self if image_rel: background_image = image_rel.fetch1('correlation_image') else: background_image = np.zeros(masks.shape[:-1]) # Plot background image_height, image_width, num_masks = masks.shape figsize = np.array([image_width, image_height]) / min(image_height, image_width) fig = plt.figure(figsize=figsize * 7) plt.imshow(background_image) # Draw contours cumsum_mask = np.empty([image_height, image_width]) for i in range(num_masks): mask = masks[:, :, i] ## Compute cumulative mass (similar to caiman) indices = np.unravel_index(np.flip(np.argsort(mask, axis=None), axis=0), mask.shape) # max to min value in mask cumsum_mask[indices] = np.cumsum(mask[indices]**2) / np.sum(mask**2) ## Plot contour at desired threshold (with random color) random_color = (np.random.rand(), np.random.rand(), np.random.rand()) plt.contour(cumsum_mask, [threshold], linewidths=0.8, colors=[random_color]) return fig @schema class Fluorescence(dj.Computed): definition = """ # fluorescence traces before spike extraction or filtering -> Segmentation # animal_id, session, scan_idx, pipe_version, field, channel, segmentation_method """ @property def key_source(self): return Segmentation() & {'pipe_version': CURRENT_VERSION} class Trace(dj.Part): definition = """ -> Fluorescence -> Segmentation.Mask --- trace : longblob """ def make(self, key): # Load scan print('Reading scan...') field_id = key['field'] - 1 channel = key['channel'] - 1 scan_filename = (experiment.Scan() & key).local_filenames_as_wildcard scan = scanreader.read_scan(scan_filename) # Map: Extract traces print('Creating fluorescence traces...') f = performance.parallel_fluorescence # function to map raster_phase = (RasterCorrection() & key).fetch1('raster_phase') fill_fraction = (ScanInfo() & key).fetch1('fill_fraction') y_shifts, x_shifts = (MotionCorrection() & key).fetch1('y_shifts', 'x_shifts') mask_ids, pixels, weights = (Segmentation.Mask() & key).fetch('mask_id', 'pixels', 'weights') kwargs = {'raster_phase': raster_phase, 'fill_fraction': fill_fraction, 'y_shifts': y_shifts, 'x_shifts': x_shifts, 'mask_pixels': pixels, 'mask_weights': weights} results = performance.map_frames(f, scan, field_id=field_id, channel=channel, kwargs=kwargs) # Reduce: Concatenate traces = np.zeros((len(mask_ids), scan.num_frames), dtype=np.float32) for frames, chunk_traces in results: traces[:, frames] = chunk_traces # Insert self.insert1(key) for mask_id, trace in zip(mask_ids, traces): Fluorescence.Trace().insert1({**key, 'mask_id': mask_id, 'trace': trace}) self.notify(key) @notify.ignore_exceptions def notify(self, key): fig = plt.figure(figsize=(15, 4)) plt.plot((Fluorescence() & key).get_all_traces().T) img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = 'calcium traces for {animal_id}-{session}-{scan_idx} field {field}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg) def get_all_traces(self): """ Returns a num_traces x num_timesteps matrix with all traces.""" traces = (Fluorescence.Trace() & self).fetch('trace', order_by='mask_id') return np.array([x.squeeze() for x in traces]) @schema class MaskClassification(dj.Computed): definition = """ # classification of segmented masks. -> Segmentation # animal_id, session, scan_idx, pipe_version, field, channel, segmentation_method -> shared.ClassificationMethod --- classif_time=CURRENT_TIMESTAMP : timestamp # automatic """ @property def key_source(self): return (Segmentation() * shared.ClassificationMethod() & {'pipe_version': CURRENT_VERSION}) class Type(dj.Part): definition = """ -> MaskClassification -> Segmentation.Mask --- -> shared.MaskType """ def make(self, key): # Skip axonal scans target = (SegmentationTask() & key).fetch1('compartment') if key['classification_method'] == 2 and target != 'soma': print('Warning: Skipping {}. Automatic classification works only with somatic ' 'scans'.format(key)) return # Get masks image_height, image_width = (ScanInfo() & key).fetch1('px_height', 'px_width') mask_ids, pixels, weights = (Segmentation.Mask() & key).fetch('mask_id', 'pixels', 'weights') masks = Segmentation.reshape_masks(pixels, weights, image_height, image_width) # Classify masks if key['classification_method'] == 1: # manual if not SummaryImages() & key: msg = 'Need to populate SummaryImages before manual mask classification' raise PipelineException(msg) template = (SummaryImages.Correlation() & key).fetch1('correlation_image') masks = masks.transpose([2, 0, 1]) # num_masks, image_height, image_width mask_types = mask_classification.classify_manual(masks, template) elif key['classification_method'] == 2: # cnn-caiman from .utils import caiman_interface as cmn soma_diameter = tuple(14 / (ScanInfo() & key).microns_per_pixel) probs = cmn.classify_masks(masks, soma_diameter) mask_types = ['soma' if prob > 0.75 else 'artifact' for prob in probs] else: msg = 'Unrecognized classification method {}'.format(key['classification_method']) raise PipelineException(msg) print('Generated types:', mask_types) # Insert results self.insert1(key) for mask_id, mask_type in zip(mask_ids, mask_types): MaskClassification.Type().insert1({**key, 'mask_id': mask_id, 'type': mask_type}) self.notify(key, mask_types) @notify.ignore_exceptions def notify(self, key, mask_types): fig = (MaskClassification() & key).plot_masks() img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = ('mask classification for {animal_id}-{session}-{scan_idx} field {field}: ' '{somas} somas and {arts} artifacts').format(**key, somas=mask_types.count('soma'), arts=mask_types.count('artifact')) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg, channel='#pipeline_quality') def plot_masks(self, threshold=0.99): """ Draw contours of masks over the correlation image (if available) with different colors per type :param threshold: Threshold on the cumulative mass to define mask contours. Lower for tighter contours. :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ # Get masks masks = (Segmentation() & self).get_all_masks() mask_types = (MaskClassification.Type() & self).fetch('type') colormap = {'soma': 'b', 'axon': 'k', 'dendrite': 'c', 'neuropil': 'y', 'artifact': 'r', 'unknown': 'w'} # Get correlation image if defined, black background otherwise. image_rel = SummaryImages.Correlation() & self if image_rel: background_image = image_rel.fetch1('correlation_image') else: background_image = np.zeros(masks.shape[:-1]) # Plot background image_height, image_width, num_masks = masks.shape figsize = np.array([image_width, image_height]) / min(image_height, image_width) fig = plt.figure(figsize=figsize * 7) plt.imshow(background_image) # Draw contours cumsum_mask = np.empty([image_height, image_width]) for i in range(num_masks): mask = masks[:, :, i] color = colormap[mask_types[i]] ## Compute cumulative mass (similar to caiman) indices = np.unravel_index(np.flip(np.argsort(mask, axis=None), axis=0), mask.shape) # max to min value in mask cumsum_mask[indices] = np.cumsum(mask[indices]**2) / np.sum(mask**2) ## Plot contour at desired threshold plt.contour(cumsum_mask, [threshold], linewidths=0.8, colors=[color]) return fig @schema class ScanSet(dj.Computed): definition = """ # set of all units in the same scan -> Fluorescence # processing done per field """ @property def key_source(self): return Fluorescence() & {'pipe_version': CURRENT_VERSION} class Unit(dj.Part): definition = """ # single unit in the scan -> ScanInfo -> shared.SegmentationMethod unit_id : int # unique per scan & segmentation method --- -> ScanSet # for it to act as a part table of ScanSet -> Fluorescence.Trace """ class UnitInfo(dj.Part): definition = """ # unit type and coordinates in x, y, z -> ScanSet.Unit --- um_x : smallint # x-coordinate of centroid in motor coordinate system um_y : smallint # y-coordinate of centroid in motor coordinate system um_z : smallint # z-coordinate of mask relative to surface of the cortex px_x : smallint # x-coordinate of centroid in the frame px_y : smallint # y-coordinate of centroid in the frame ms_delay = 0 : smallint # (ms) delay from start of frame to recording of this unit """ def _job_key(self, key): # Force reservation key to be per scan so diff fields are not run in parallel return {k: v for k, v in key.items() if k not in ['field', 'channel']} def make(self, key): from pipeline.utils import caiman_interface as cmn # Get masks image_height, image_width = (ScanInfo() & key).fetch1('px_height', 'px_width') mask_ids, pixels, weights = (Segmentation.Mask() & key).fetch('mask_id', 'pixels', 'weights') masks = Segmentation.reshape_masks(pixels, weights, image_height, image_width) # Compute units' coordinates px_center = [image_height / 2, image_width / 2] um_center = (ScanInfo() & key).fetch1('y', 'x') um_z = (ScanInfo.Field() & key).fetch1('z') px_centroids = cmn.get_centroids(masks) um_centroids = um_center + (px_centroids - px_center) * (ScanInfo() & key).microns_per_pixel # Compute units' delays delay_image = (ScanInfo.Field() & key).fetch1('delay_image') delays = (np.sum(masks * np.expand_dims(delay_image, -1), axis=(0, 1)) / np.sum(masks, axis=(0, 1))) delays = np.round(delays * 1e3).astype(np.int16) # in milliseconds # Get next unit_id for scan unit_rel = (ScanSet.Unit().proj() & key) unit_id = np.max(unit_rel.fetch('unit_id')) + 1 if unit_rel else 1 # Insert in ScanSet self.insert1(key) # Insert units unit_ids = range(unit_id, unit_id + len(mask_ids) + 1) for unit_id, mask_id, (um_y, um_x), (px_y, px_x), delay in zip(unit_ids, mask_ids, um_centroids, px_centroids, delays): ScanSet.Unit().insert1({**key, 'unit_id': unit_id, 'mask_id': mask_id}) unit_info = {**key, 'unit_id': unit_id, 'um_x': um_x, 'um_y': um_y, 'um_z': um_z, 'px_x': px_x, 'px_y': px_y, 'ms_delay': delay} ScanSet.UnitInfo().insert1(unit_info, ignore_extra_fields=True) def plot_centroids(self, first_n=None): """ Draw masks centroids over the correlation image. Works on a single field/channel :param first_n: Number of masks to plot. None for all :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ # Get centroids centroids = self.get_all_centroids(centroid_type='px') if first_n is not None: centroids = centroids[:, :first_n] # select first n components # Get correlation image if defined, black background otherwise. image_rel = SummaryImages.Correlation() & self if image_rel: background_image = image_rel.fetch1('correlation_image') else: image_height, image_width = (ScanInfo() & self).fetch1('px_height', 'px_width') background_image = np.zeros([image_height, image_width]) # Plot centroids image_height, image_width = background_image.shape figsize = np.array([image_width, image_height]) / min(image_height, image_width) fig = plt.figure(figsize=figsize * 7) plt.imshow(background_image) plt.plot(centroids[:, 0], centroids[:, 1], 'ow', markersize=3) return fig def plot_centroids3d(self): """ Plots the centroids of all units in the motor coordinate system (in microns) :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ from mpl_toolkits.mplot3d import Axes3D # Get centroids centroids = self.get_all_centroids() # Plot # TODO: Add different colors for different types, correlation image as 2-d planes # masks from diff channels with diff colors. fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(centroids[:, 0], centroids[:, 1], centroids[:, 2]) ax.invert_zaxis() ax.set_xlabel('x (um)') ax.set_ylabel('y (um)') ax.set_zlabel('z (um)') return fig def get_all_centroids(self, centroid_type='um'): """ Returns the centroids for all units in the scan. Could also be limited by field. Centroid type is either 'um' or 'px': 'um': Array (num_units x 3) with x, y, z in motor coordinate system (microns). 'px': Array (num_units x 2) with x, y pixel coordinates. """ units_rel = ScanSet.UnitInfo() & (ScanSet.Unit() & self) if centroid_type == 'um': xs, ys, zs = units_rel.fetch('um_x', 'um_y', 'um_z', order_by='unit_id') centroids = np.stack([xs, ys, zs], axis=1) else: xs, ys = units_rel.fetch('px_x', 'px_y', order_by='unit_id') centroids = np.stack([xs, ys], axis=1) return centroids @schema class Activity(dj.Computed): definition = """ # activity inferred from fluorescence traces -> ScanSet # processing done per field -> shared.SpikeMethod --- activity_time=CURRENT_TIMESTAMP : timestamp # automatic """ @property def key_source(self): return ScanSet() * shared.SpikeMethod() & {'pipe_version': CURRENT_VERSION} class Trace(dj.Part): definition = """ # deconvolved calcium acitivity -> ScanSet.Unit -> shared.SpikeMethod --- -> Activity # for it to act as part table of Activity trace : longblob """ class ARCoefficients(dj.Part): definition = """ # fitted parameters for the autoregressive process (nmf deconvolution) -> Activity.Trace --- g : blob # g1, g2, ... coefficients for the AR process """ def make(self, key): print('Creating activity traces for', key) # Get fluorescence fps = (ScanInfo() & key).fetch1('fps') unit_ids, traces = (ScanSet.Unit() * Fluorescence.Trace() & key).fetch('unit_id', 'trace') full_traces = [signal.fill_nans(np.squeeze(trace).copy()) for trace in traces] # Insert in Activity self.insert1(key) if key['spike_method'] == 2: # oopsie import pyfnnd # Install from https://github.com/cajal/PyFNND.git for unit_id, trace in zip(unit_ids, full_traces): spike_trace = pyfnnd.deconvolve(trace, dt=1 / fps)[0].astype(np.float32, copy=False) Activity.Trace().insert1({**key, 'unit_id': unit_id, 'trace': spike_trace}) elif key['spike_method'] == 3: # stm import c2s # Install from https://github.com/lucastheis/c2s for unit_id, trace in zip(unit_ids, full_traces): start = signal.notnan(trace) end = signal.notnan(trace, len(trace) - 1, increment=-1) trace_dict = {'calcium': np.atleast_2d(trace[start:end + 1]), 'fps': fps} data = c2s.predict(c2s.preprocess([trace_dict], fps=fps), verbosity=0) spike_trace = np.squeeze(data[0].pop('predictions')).astype(np.float32, copy=False) Activity.Trace().insert1({**key, 'unit_id': unit_id, 'trace': spike_trace}) elif key['spike_method'] == 5: # nmf from pipeline.utils import caiman_interface as cmn import multiprocessing as mp with mp.Pool(10) as pool: results = pool.map(cmn.deconvolve, full_traces) for unit_id, (spike_trace, ar_coeffs) in zip(unit_ids, results): spike_trace = spike_trace.astype(np.float32, copy=False) Activity.Trace().insert1({**key, 'unit_id': unit_id, 'trace': spike_trace}) Activity.ARCoefficients().insert1({**key, 'unit_id': unit_id, 'g': ar_coeffs}, ignore_extra_fields=True) else: msg = 'Unrecognized spike method {}'.format(key['spike_method']) raise PipelineException(msg) self.notify(key) @notify.ignore_exceptions def notify(self, key): fig = plt.figure(figsize=(15, 4)) plt.plot((Activity() & key).get_all_spikes().T) img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename, bbox_inches='tight') plt.close(fig) msg = 'spike traces for {animal_id}-{session}-{scan_idx} field {field}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg) def plot_impulse_responses(self, num_timepoints=100): """ Plots the impulse response functions for all traces. :param int num_timepoints: The number of points after impulse to use for plotting. :returns Figure. You can call show() on it. :rtype: matplotlib.figure.Figure """ ar_rel = Activity.ARCoefficients() & (Activity.Trace() & self) if ar_rel: # if an AR model was used # Get some params fps = (ScanInfo() & self).fetch1('fps') ar_coeffs = ar_rel.fetch('g') # Define the figure fig = plt.figure() x_axis = np.arange(num_timepoints) / fps # make it seconds # Over each trace for g in ar_coeffs: AR_order = len(g) # Calculate impulse response function irf = np.zeros(num_timepoints) irf[0] = 1 # initial spike for i in range(1, num_timepoints): if i <= AR_order: # start of the array needs special care irf[i] = np.sum(g[:i] * irf[i - 1:: -1]) else: irf[i] = np.sum(g * irf[i - 1: i - AR_order - 1: -1]) # Plot plt.plot(x_axis, irf) plt.xlabel('Seconds') return fig def get_all_spikes(self): """ Returns a num_traces x num_timesteps matrix with all spikes.""" spikes = (Activity.Trace() & self).fetch('trace', order_by='unit_id') return np.array([x.squeeze() for x in spikes]) @schema class ScanDone(dj.Computed): definition = """ # scans that are fully processed (updated every time a field is added) -> ScanInfo -> shared.SegmentationMethod -> shared.SpikeMethod """ @property def key_source(self): return Activity() & {'pipe_version': CURRENT_VERSION} @property def target(self): return ScanDone.Partial() # trigger make_tuples for fields in Activity that aren't in ScanDone.Partial def _job_key(self, key): # Force reservation key to be per scan so diff fields are not run in parallel return {k: v for k, v in key.items() if k not in ['field', 'channel']} class Partial(dj.Part): definition = """ # fields that have been processed in the current scan -> ScanDone -> Activity """ def make(self, key): scan_key = {k: v for k, v in key.items() if k in self.heading} # Delete current ScanDone entry with dj.config(safemode=False): (ScanDone() & scan_key).delete() # Reinsert in ScanDone self.insert1(scan_key) # Insert all processed fields in Partial ScanDone.Partial().insert((Activity() & scan_key).proj()) from . import stack @schema class StackCoordinates(dj.Computed): definition = """ # centroids of each unit in motor/stack coordinate system -> ScanSet # animal_id, session, scan_idx, channel, field, segmentation_method, pipe_version -> stack.Registration.proj(session='scan_session') # animal_id, stack_session, stack_idx, volume_id, session, scan_idx, field, stack_channel, scan_channel, registration_method """ class UnitInfo(dj.Part): definition = """ # ScanSet.UnitInfo centroids mapped to stack coordinates -> master # this will add field and channels back -> ScanSet.Unit --- stack_x : float stack_y : float stack_z : float """ def make(self, key): from scipy import ndimage # Get registration grid (px -> stack_coordinate) stack_key = {**key, 'scan_session': key['session']} field_res = (ScanInfo & key).microns_per_pixel grid = (stack.Registration & stack_key).get_grid(type='affine', desired_res=field_res) self.insert1(key) field_units = ScanSet.UnitInfo & (ScanSet.Unit & key) for unit_key, px_x, px_y in zip(*field_units.fetch('KEY', 'px_x', 'px_y')): px_coords = np.array([[px_y], [px_x]]) unit_x, unit_y, unit_z = [ndimage.map_coordinates(grid[..., i], px_coords, order=1)[0] for i in range(3)] StackCoordinates.UnitInfo.insert1({**key, **unit_key, 'stack_x': unit_x, 'stack_y': unit_y, 'stack_z': unit_z}) @schema class Func2StructMatching(dj.Computed): definition = """ # match functional masks to structural masks -> ScanSet # animal_id, session, scan_idx, pipe_version, field, channel -> stack.FieldSegmentation.proj(session='scan_session') # animal_id, stack_session, stack_idx, volume_id, session, scan_idx, field, stack_channel, scan_channel, registration_method, stacksegm_channel, stacksegm_method --- key_hash : varchar(32) # single attribute representation of the key (used to avoid going over 16 attributes in the key) """ class AllMatches(dj.Part): definition = """ # store all possible matches (one functional cell could match with more than one structural mask and viceversa) key_hash : varchar(32) # master key unit_id : int # functional unit id sunit_id : int # structural unit id --- iou : float # intersection-over-union of the 2-d masks """ # Used key_hash because key using ScanSet.Unit, FieldSegmentation.StackUnit has # more than 16 attributes and MySQL complains. I added the foreign key constraints # manually class Match(dj.Part): definition = """ # match of a functional mask to a structural mask (1:1 relation) -> master -> ScanSet.Unit --- -> stack.FieldSegmentation.StackUnit.proj(session='scan_session') iou : float # Intersection-over-Union of the 2-d masks distance2d : float # distance between centroid of 2-d masks distance3d : float # distance between functional centroid and structural centroid """ def make(self, key): from .utils import registration from scipy import ndimage # Get caiman masks and resize them field_dims = (ScanInfo & key).fetch1('um_height', 'um_width') masks = np.moveaxis((Segmentation & key).get_all_masks(), -1, 0) masks = np.stack([registration.resize(m, field_dims, desired_res=1) for m in masks]) scansetunit_keys = (ScanSet.Unit & key).fetch('KEY', order_by='mask_id') # Binarize masks binary_masks = np.zeros(masks.shape, dtype=bool) for i, mask in enumerate(masks): ## Compute cumulative mass (similar to caiman) indices = np.unravel_index(np.flip(np.argsort(mask, axis=None), axis=0), mask.shape) # max to min value in mask cumsum_mask = np.cumsum(mask[indices] ** 2) / np.sum(mask ** 2)# + 1e-9) binary_masks[i][indices] = cumsum_mask < 0.9 # Get structural segmentation and registration grid stack_key = {**key, 'scan_session': key['session']} segmented_field = (stack.FieldSegmentation & stack_key).fetch1('segm_field') grid = (stack.Registration & stack_key).get_grid(type='affine', desired_res=1) sunit_ids = (stack.FieldSegmentation.StackUnit & stack_key).fetch('sunit_id', order_by='sunit_id') # Create matrix with IOU values (rows for structural units, columns for functional units) ious = [] for sunit_id in sunit_ids: binary_sunit = segmented_field == sunit_id intersection = np.logical_and(binary_masks, binary_sunit).sum(axis=(1, 2)) # num_masks union = np.logical_or(binary_masks, binary_sunit).sum(axis=(1, 2)) # num_masks ious.append(intersection / union) iou_matrix = np.stack(ious) # Save all possible matches / iou_matrix > 0 self.insert1({**key, 'key_hash': key_hash(key)}) for mask_idx, func_idx in zip(*np.nonzero(iou_matrix)): self.AllMatches.insert1({'key_hash': key_hash(key), 'unit_id': scansetunit_keys[func_idx]['unit_id'], 'sunit_id': sunit_ids[mask_idx], 'iou': iou_matrix[mask_idx, func_idx]}) # Iterate over matches (from best to worst), insert while iou_matrix.max() > 0: # Get next best best_mask, best_func = np.unravel_index(np.argmax(iou_matrix), iou_matrix.shape) best_iou = iou_matrix[best_mask, best_func] # Get stack unit coordinates coords = (stack.FieldSegmentation.StackUnit & stack_key & {'sunit_id': sunit_ids[best_mask]}).fetch1('sunit_z', 'sunit_y', 'sunit_x', 'mask_z', 'mask_y', 'mask_x') sunit_z, sunit_y, sunit_x, mask_z, mask_y, mask_x = coords # Compute distance to 2-d and 3-d mask px_y, px_x = ndimage.measurements.center_of_mass(binary_masks[best_func]) px_coords = np.array([[px_y], [px_x]]) func_x, func_y, func_z = [ndimage.map_coordinates(grid[..., i], px_coords, order=1)[0] for i in range(3)] distance2d = np.sqrt((func_z - mask_z) ** 2 + (func_y - mask_y) ** 2 + (func_x - mask_x) ** 2) distance3d = np.sqrt((func_z - sunit_z) ** 2 + (func_y - sunit_y) ** 2 + (func_x - sunit_x) ** 2) self.Match.insert1({**key, **scansetunit_keys[best_func], 'sunit_id': sunit_ids[best_mask], 'iou': best_iou, 'distance2d': distance2d, 'distance3d': distance3d}) # Deactivate match iou_matrix[best_mask, :] = 0 iou_matrix[:, best_func] = 0
lgpl-3.0
hpparvi/PyTransit
pytransit/lpf/tesslpf.py
1
8500
# PyTransit: fast and easy exoplanet transit modelling in Python. # Copyright (C) 2010-2019 Hannu Parviainen # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from typing import Optional, Union, List import astropy.units as u from pathlib import Path from astropy.stats import sigma_clipped_stats from astropy.table import Table from astropy.time import Time from astropy.timeseries import TimeSeries from corner import corner from matplotlib.pyplot import setp from matplotlib.pyplot import subplots from numba import njit from numpy import zeros, squeeze, ceil, arange, digitize, full, nan, \ sqrt, percentile, isfinite, floor, argsort, ones_like, atleast_2d, median, ndarray, unique, nanmedian, concatenate from numpy.random import permutation from pytransit.utils.tess import read_tess_spoc from .loglikelihood import CeleriteLogLikelihood from .lpf import BaseLPF from .. import TransitModel from ..orbits import epoch from ..utils.keplerlc import KeplerLC from ..utils.misc import fold try: from ldtk import tess with_ldtk = True except ImportError: with_ldtk = False @njit def downsample_time(time, vals, inttime=1.): duration = time.max() - time.min() nbins = int(ceil(duration / inttime)) bins = arange(nbins) edges = time[0] + bins * inttime bids = digitize(time, edges) - 1 bt, bv, be = full(nbins, nan), zeros(nbins), zeros(nbins) for i, bid in enumerate(bins): bmask = bid == bids if bmask.sum() > 0: bt[i] = time[bmask].mean() bv[i] = vals[bmask].mean() if bmask.sum() > 2: be[i] = vals[bmask].std() / sqrt(bmask.sum()) else: be[i] = nan m = isfinite(be) return bt[m], bv[m], be[m] class TESSLPF(BaseLPF): bjdrefi = 2457000 def __init__(self, name: str, datadir: Path = None, tic: int = None, zero_epoch: float = None, period: float = None, nsamples: int = 2, trdur: float = 0.125, bldur: float = 0.3, use_pdc=True, sectors: Optional[Union[List[int], str]] = 'all', split_transits=True, separate_noise=False, tm: TransitModel = None, minpt=10): times, fluxes, sectors, wns = read_tess_spoc(tic, datadir, sectors=sectors, use_pdc=use_pdc) self.lc = KeplerLC(times, fluxes, sectors, zero_epoch, period, trdur, bldur) if split_transits: times = self.lc.time_per_transit fluxes = self.lc.normalized_flux_per_transit else: times = concatenate(self.lc.time_per_transit) fluxes = concatenate(self.lc.normalized_flux_per_transit) tref = floor(concatenate(times).min()) self.zero_epoch = zero_epoch self.period = period self.transit_duration = trdur self.baseline_duration = bldur wnids = arange(len(times)) if separate_noise else None BaseLPF.__init__(self, name, ['TESS'], times=times, fluxes=fluxes, nsamples=nsamples, exptimes=0.00139, wnids=wnids, tref=tref, tm=tm) self.tm.interpolate = False def _init_lnlikelihood(self): self._add_lnlikelihood_model(CeleriteLogLikelihood(self)) def add_ldtk_prior(teff, logg, z): if with_ldtk: super().add_ldtk_prior(teff, logg, z, passbands=(tess,)) else: raise ImportError('Could not import LDTk, cannot add an LDTk prior.') def plot_individual_transits(self, solution: str = 'de', pv: ndarray = None, ncols: int = 2, n_samples: int = 100, xlim: tuple = None, ylim: tuple = None, axs=None, figsize: tuple = None, remove_baseline: bool = False): solution = solution.lower() samples = None if pv is None: if solution == 'local': pv = self._local_minimization.x elif solution in ('de', 'global'): solution = 'global' pv = self.de.minimum_location elif solution in ('mcmc', 'mc'): solution = 'mcmc' samples = self.posterior_samples(derived_parameters=False) samples = permutation(samples.values)[:n_samples] pv = median(samples, 0) else: raise NotImplementedError("'solution' should be either 'local', 'global', or 'mcmc'") t0 = floor(self.times[0].min()) nrows = int(ceil(self.nlc / ncols)) if axs is None: fig, axs = subplots(nrows, ncols, figsize=figsize, sharey=True, constrained_layout=True) else: fig, axs = None, axs [ax.autoscale(enable=True, axis='x', tight=True) for ax in axs.flat] def baseline(pvp): pvp = atleast_2d(pvp) bl = zeros((pvp.shape[0], self.ofluxa.size)) for i, pv in enumerate(pvp): bl[i] = self._lnlikelihood_models[0].predict_baseline(pv) return bl if remove_baseline: if solution == 'mcmc': fbasel = median(baseline(samples), axis=0) fmodel, fmodm, fmodp = percentile(self.transit_model(samples), [50, 0.5, 99.5], axis=0) else: fbasel = squeeze(baseline(pv)) fmodel, fmodm, fmodp = squeeze(self.transit_model(pv)), None, None fobs = self.ofluxa / fbasel else: if solution == 'mcmc': fbasel = median(baseline(samples), axis=0) fmodel, fmodm, fmodp = percentile(self.flux_model(samples), [50, 1, 99], axis=0) else: fbasel = squeeze(baseline(pv)) fmodel, fmodm, fmodp = squeeze(self.flux_model(pv)), None, None fobs = self.ofluxa t0, p = pv[[0, 1]] for i, sl in enumerate(self.lcslices): ax = axs.flat[i] t = self.times[i] e = epoch(t.mean(), t0, p) tc = t0 + e * p tt = 24 * (t - tc) ax.plot(tt, fobs[sl], 'k.', alpha=0.2) ax.plot(tt, fmodel[sl], 'k') if solution == 'mcmc': ax.fill_between(tt, fmodm[sl], fmodp[sl], zorder=-100, alpha=0.2, fc='k') if not remove_baseline: ax.plot(tt, fbasel[sl], 'k--', alpha=0.2) setp(axs, xlim=xlim, ylim=ylim) setp(axs[-1, :], xlabel='Time - T$_c$ [h]') setp(axs[:, 0], ylabel='Normalised flux') return fig def plot_folded_transit(self, method='de', figsize=(13, 6), ylim=(0.9975, 1.002), xlim=None, binwidth=8, remove_baseline: bool = False): if method == 'de': pv = self.de.minimum_location tc, p = pv[[0, 1]] else: raise NotImplementedError phase = p * fold(self.timea, p, tc, 0.5) binwidth = binwidth / 24 / 60 sids = argsort(phase) tm = self.transit_model(pv) if remove_baseline: gp = self._lnlikelihood_models[0] bl = squeeze(gp.predict_baseline(pv)) else: bl = ones_like(self.ofluxa) bp, bfo, beo = downsample_time(phase[sids], (self.ofluxa / bl)[sids], binwidth) fig, ax = subplots(figsize=figsize) ax.plot(phase - 0.5 * p, self.ofluxa / bl, '.', alpha=0.15) ax.errorbar(bp - 0.5 * p, bfo, beo, fmt='ko') ax.plot(phase[sids] - 0.5 * p, tm[sids], 'k') xlim = xlim if xlim is not None else 1.01 * (bp[isfinite(bp)][[0, -1]] - 0.5 * p) setp(ax, ylim=ylim, xlim=xlim, xlabel='Time - Tc [d]', ylabel='Normalised flux') fig.tight_layout() return fig def plot_basic_posteriors(self): df = self.posterior_samples() corner(df['tc p rho b k'.split()], labels='Zero epoch, Period, Stellar density, impact parameter, radius ratio'.split(', '))
gpl-2.0
harshaneelhg/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
yunque/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/stochasticSynthesisFrame.py
24
2966
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time from scipy.fftpack import fft, ifft sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF def stochasticModelFrame(x, w, N, stocf) : # x: input array sound, w: analysis window, N: FFT size, # stocf: decimation factor of mag spectrum for stochastic analysis hN = N/2+1 # size of positive spectrum hM = (w.size)/2 # half analysis window size pin = hM # initialize sound pointer in middle of analysis window fftbuffer = np.zeros(N) # initialize buffer for FFT yw = np.zeros(w.size) # initialize output sound frame w = w / sum(w) # normalize analysis window #-----analysis----- xw = x[pin-hM:pin+hM] * w # window the input sound X = fft(xw) # compute FFT mX = 20 * np.log10( abs(X[:hN]) ) # magnitude spectrum of positive frequencies mXenv = resample(np.maximum(-200, mX), mX.size*stocf) # decimate the mag spectrum pX = np.angle(X[:hN]) #-----synthesis----- mY = resample(mXenv, hN) # interpolate to original size pY = 2*np.pi*np.random.rand(hN) # generate phase random values Y = np.zeros(N, dtype = complex) Y[:hN] = 10**(mY/20) * np.exp(1j*pY) # generate positive freq. Y[hN:] = 10**(mY[-2:0:-1]/20) * np.exp(-1j*pY[-2:0:-1]) # generate negative freq. fftbuffer = np.real( ifft(Y) ) # inverse FFT y = fftbuffer*N/2 return mX, pX, mY, pY, y # example call of stochasticModel function if __name__ == '__main__': (fs, x) = UF.wavread('../../../sounds/ocean.wav') w = np.hanning(1024) N = 1024 stocf = 0.1 maxFreq = 10000.0 lastbin = N*maxFreq/fs first = 1000 last = first+w.size mX, pX, mY, pY, y = stochasticModelFrame(x[first:last], w, N, stocf) plt.figure(1, figsize=(9, 5)) plt.subplot(3,1,1) plt.plot(float(fs)*np.arange(mY.size)/N, mY, 'r', lw=1.5, label="mY") plt.axis([0, maxFreq, -78, max(mX)+0.5]) plt.title('mY (stochastic approximation of mX)') plt.subplot(3,1,2) plt.plot(float(fs)*np.arange(pY.size)/N, pY-np.pi, 'c', lw=1.5, label="pY") plt.axis([0, maxFreq, -np.pi, np.pi]) plt.title('pY (random phases)') plt.subplot(3,1,3) plt.plot(np.arange(first, last)/float(fs), y, 'b', lw=1.5) plt.axis([first/float(fs), last/float(fs), min(y), max(y)]) plt.title('yst') plt.tight_layout() plt.savefig('stochasticSynthesisFrame.png') plt.show()
agpl-3.0
MoonRaker/pvlib-python
pvlib/spa.py
3
42425
""" Calculate the solar position using the NREL SPA algorithm either using numpy arrays or compiling the code to machine language with numba. """ # Contributors: # Created by Tony Lorenzo (@alorenzo175), Univ. of Arizona, 2015 from __future__ import division import os import threading import warnings import logging pvl_logger = logging.getLogger('pvlib') import numpy as np # this block is a way to use an environment variable to switch between # compiling the functions with numba or just use numpy def nocompile(*args, **kwargs): return lambda func: func if os.getenv('PVLIB_USE_NUMBA', '0') != '0': try: from numba import jit, __version__ except ImportError: warnings.warn('Could not import numba, falling back to numpy ' + 'calculation') jcompile = nocompile USE_NUMBA = False else: major, minor = __version__.split('.')[:2] if int(major + minor) >= 17: # need at least numba >= 0.17.0 jcompile = jit USE_NUMBA = True else: warnings.warn('Numba version must be >= 0.17.0, falling back to ' + 'numpy') jcompile = nocompile USE_NUMBA = False else: jcompile = nocompile USE_NUMBA = False TABLE_1_DICT = { 'L0': np.array( [[175347046.0, 0.0, 0.0], [3341656.0, 4.6692568, 6283.07585], [34894.0, 4.6261, 12566.1517], [3497.0, 2.7441, 5753.3849], [3418.0, 2.8289, 3.5231], [3136.0, 3.6277, 77713.7715], [2676.0, 4.4181, 7860.4194], [2343.0, 6.1352, 3930.2097], [1324.0, 0.7425, 11506.7698], [1273.0, 2.0371, 529.691], [1199.0, 1.1096, 1577.3435], [990.0, 5.233, 5884.927], [902.0, 2.045, 26.298], [857.0, 3.508, 398.149], [780.0, 1.179, 5223.694], [753.0, 2.533, 5507.553], [505.0, 4.583, 18849.228], [492.0, 4.205, 775.523], [357.0, 2.92, 0.067], [317.0, 5.849, 11790.629], [284.0, 1.899, 796.298], [271.0, 0.315, 10977.079], [243.0, 0.345, 5486.778], [206.0, 4.806, 2544.314], [205.0, 1.869, 5573.143], [202.0, 2.458, 6069.777], [156.0, 0.833, 213.299], [132.0, 3.411, 2942.463], [126.0, 1.083, 20.775], [115.0, 0.645, 0.98], [103.0, 0.636, 4694.003], [102.0, 0.976, 15720.839], [102.0, 4.267, 7.114], [99.0, 6.21, 2146.17], [98.0, 0.68, 155.42], [86.0, 5.98, 161000.69], [85.0, 1.3, 6275.96], [85.0, 3.67, 71430.7], [80.0, 1.81, 17260.15], [79.0, 3.04, 12036.46], [75.0, 1.76, 5088.63], [74.0, 3.5, 3154.69], [74.0, 4.68, 801.82], [70.0, 0.83, 9437.76], [62.0, 3.98, 8827.39], [61.0, 1.82, 7084.9], [57.0, 2.78, 6286.6], [56.0, 4.39, 14143.5], [56.0, 3.47, 6279.55], [52.0, 0.19, 12139.55], [52.0, 1.33, 1748.02], [51.0, 0.28, 5856.48], [49.0, 0.49, 1194.45], [41.0, 5.37, 8429.24], [41.0, 2.4, 19651.05], [39.0, 6.17, 10447.39], [37.0, 6.04, 10213.29], [37.0, 2.57, 1059.38], [36.0, 1.71, 2352.87], [36.0, 1.78, 6812.77], [33.0, 0.59, 17789.85], [30.0, 0.44, 83996.85], [30.0, 2.74, 1349.87], [25.0, 3.16, 4690.48]]), 'L1': np.array( [[628331966747.0, 0.0, 0.0], [206059.0, 2.678235, 6283.07585], [4303.0, 2.6351, 12566.1517], [425.0, 1.59, 3.523], [119.0, 5.796, 26.298], [109.0, 2.966, 1577.344], [93.0, 2.59, 18849.23], [72.0, 1.14, 529.69], [68.0, 1.87, 398.15], [67.0, 4.41, 5507.55], [59.0, 2.89, 5223.69], [56.0, 2.17, 155.42], [45.0, 0.4, 796.3], [36.0, 0.47, 775.52], [29.0, 2.65, 7.11], [21.0, 5.34, 0.98], [19.0, 1.85, 5486.78], [19.0, 4.97, 213.3], [17.0, 2.99, 6275.96], [16.0, 0.03, 2544.31], [16.0, 1.43, 2146.17], [15.0, 1.21, 10977.08], [12.0, 2.83, 1748.02], [12.0, 3.26, 5088.63], [12.0, 5.27, 1194.45], [12.0, 2.08, 4694.0], [11.0, 0.77, 553.57], [10.0, 1.3, 6286.6], [10.0, 4.24, 1349.87], [9.0, 2.7, 242.73], [9.0, 5.64, 951.72], [8.0, 5.3, 2352.87], [6.0, 2.65, 9437.76], [6.0, 4.67, 4690.48]]), 'L2': np.array( [[52919.0, 0.0, 0.0], [8720.0, 1.0721, 6283.0758], [309.0, 0.867, 12566.152], [27.0, 0.05, 3.52], [16.0, 5.19, 26.3], [16.0, 3.68, 155.42], [10.0, 0.76, 18849.23], [9.0, 2.06, 77713.77], [7.0, 0.83, 775.52], [5.0, 4.66, 1577.34], [4.0, 1.03, 7.11], [4.0, 3.44, 5573.14], [3.0, 5.14, 796.3], [3.0, 6.05, 5507.55], [3.0, 1.19, 242.73], [3.0, 6.12, 529.69], [3.0, 0.31, 398.15], [3.0, 2.28, 553.57], [2.0, 4.38, 5223.69], [2.0, 3.75, 0.98]]), 'L3': np.array( [[289.0, 5.844, 6283.076], [35.0, 0.0, 0.0], [17.0, 5.49, 12566.15], [3.0, 5.2, 155.42], [1.0, 4.72, 3.52], [1.0, 5.3, 18849.23], [1.0, 5.97, 242.73]]), 'L4': np.array( [[114.0, 3.142, 0.0], [8.0, 4.13, 6283.08], [1.0, 3.84, 12566.15]]), 'L5': np.array( [[1.0, 3.14, 0.0]]), 'B0': np.array( [[280.0, 3.199, 84334.662], [102.0, 5.422, 5507.553], [80.0, 3.88, 5223.69], [44.0, 3.7, 2352.87], [32.0, 4.0, 1577.34]]), 'B1': np.array( [[9.0, 3.9, 5507.55], [6.0, 1.73, 5223.69]]), 'R0': np.array( [[100013989.0, 0.0, 0.0], [1670700.0, 3.0984635, 6283.07585], [13956.0, 3.05525, 12566.1517], [3084.0, 5.1985, 77713.7715], [1628.0, 1.1739, 5753.3849], [1576.0, 2.8469, 7860.4194], [925.0, 5.453, 11506.77], [542.0, 4.564, 3930.21], [472.0, 3.661, 5884.927], [346.0, 0.964, 5507.553], [329.0, 5.9, 5223.694], [307.0, 0.299, 5573.143], [243.0, 4.273, 11790.629], [212.0, 5.847, 1577.344], [186.0, 5.022, 10977.079], [175.0, 3.012, 18849.228], [110.0, 5.055, 5486.778], [98.0, 0.89, 6069.78], [86.0, 5.69, 15720.84], [86.0, 1.27, 161000.69], [65.0, 0.27, 17260.15], [63.0, 0.92, 529.69], [57.0, 2.01, 83996.85], [56.0, 5.24, 71430.7], [49.0, 3.25, 2544.31], [47.0, 2.58, 775.52], [45.0, 5.54, 9437.76], [43.0, 6.01, 6275.96], [39.0, 5.36, 4694.0], [38.0, 2.39, 8827.39], [37.0, 0.83, 19651.05], [37.0, 4.9, 12139.55], [36.0, 1.67, 12036.46], [35.0, 1.84, 2942.46], [33.0, 0.24, 7084.9], [32.0, 0.18, 5088.63], [32.0, 1.78, 398.15], [28.0, 1.21, 6286.6], [28.0, 1.9, 6279.55], [26.0, 4.59, 10447.39]]), 'R1': np.array( [[103019.0, 1.10749, 6283.07585], [1721.0, 1.0644, 12566.1517], [702.0, 3.142, 0.0], [32.0, 1.02, 18849.23], [31.0, 2.84, 5507.55], [25.0, 1.32, 5223.69], [18.0, 1.42, 1577.34], [10.0, 5.91, 10977.08], [9.0, 1.42, 6275.96], [9.0, 0.27, 5486.78]]), 'R2': np.array( [[4359.0, 5.7846, 6283.0758], [124.0, 5.579, 12566.152], [12.0, 3.14, 0.0], [9.0, 3.63, 77713.77], [6.0, 1.87, 5573.14], [3.0, 5.47, 18849.23]]), 'R3': np.array( [[145.0, 4.273, 6283.076], [7.0, 3.92, 12566.15]]), 'R4': np.array( [[4.0, 2.56, 6283.08]]) } TABLE_1_DICT['L1'].resize((64, 3)) TABLE_1_DICT['L2'].resize((64, 3)) TABLE_1_DICT['L3'].resize((64, 3)) TABLE_1_DICT['L4'].resize((64, 3)) TABLE_1_DICT['L5'].resize((64, 3)) TABLE_1_DICT['B1'].resize((5, 3)) TABLE_1_DICT['R1'].resize((40, 3)) TABLE_1_DICT['R2'].resize((40, 3)) TABLE_1_DICT['R3'].resize((40, 3)) TABLE_1_DICT['R4'].resize((40, 3)) HELIO_LONG_TABLE = np.array([TABLE_1_DICT['L0'], TABLE_1_DICT['L1'], TABLE_1_DICT['L2'], TABLE_1_DICT['L3'], TABLE_1_DICT['L4'], TABLE_1_DICT['L5']]) HELIO_LAT_TABLE = np.array([TABLE_1_DICT['B0'], TABLE_1_DICT['B1']]) HELIO_RADIUS_TABLE = np.array([TABLE_1_DICT['R0'], TABLE_1_DICT['R1'], TABLE_1_DICT['R2'], TABLE_1_DICT['R3'], TABLE_1_DICT['R4']]) NUTATION_ABCD_ARRAY = np.array([ [-171996, -174.2, 92025, 8.9], [-13187, -1.6, 5736, -3.1], [-2274, -0.2, 977, -0.5], [2062, 0.2, -895, 0.5], [1426, -3.4, 54, -0.1], [712, 0.1, -7, 0], [-517, 1.2, 224, -0.6], [-386, -0.4, 200, 0], [-301, 0, 129, -0.1], [217, -0.5, -95, 0.3], [-158, 0, 0, 0], [129, 0.1, -70, 0], [123, 0, -53, 0], [63, 0, 0, 0], [63, 0.1, -33, 0], [-59, 0, 26, 0], [-58, -0.1, 32, 0], [-51, 0, 27, 0], [48, 0, 0, 0], [46, 0, -24, 0], [-38, 0, 16, 0], [-31, 0, 13, 0], [29, 0, 0, 0], [29, 0, -12, 0], [26, 0, 0, 0], [-22, 0, 0, 0], [21, 0, -10, 0], [17, -0.1, 0, 0], [16, 0, -8, 0], [-16, 0.1, 7, 0], [-15, 0, 9, 0], [-13, 0, 7, 0], [-12, 0, 6, 0], [11, 0, 0, 0], [-10, 0, 5, 0], [-8, 0, 3, 0], [7, 0, -3, 0], [-7, 0, 0, 0], [-7, 0, 3, 0], [-7, 0, 3, 0], [6, 0, 0, 0], [6, 0, -3, 0], [6, 0, -3, 0], [-6, 0, 3, 0], [-6, 0, 3, 0], [5, 0, 0, 0], [-5, 0, 3, 0], [-5, 0, 3, 0], [-5, 0, 3, 0], [4, 0, 0, 0], [4, 0, 0, 0], [4, 0, 0, 0], [-4, 0, 0, 0], [-4, 0, 0, 0], [-4, 0, 0, 0], [3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], [-3, 0, 0, 0], ]) NUTATION_YTERM_ARRAY = np.array([ [0, 0, 0, 0, 1], [-2, 0, 0, 2, 2], [0, 0, 0, 2, 2], [0, 0, 0, 0, 2], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [-2, 1, 0, 2, 2], [0, 0, 0, 2, 1], [0, 0, 1, 2, 2], [-2, -1, 0, 2, 2], [-2, 0, 1, 0, 0], [-2, 0, 0, 2, 1], [0, 0, -1, 2, 2], [2, 0, 0, 0, 0], [0, 0, 1, 0, 1], [2, 0, -1, 2, 2], [0, 0, -1, 0, 1], [0, 0, 1, 2, 1], [-2, 0, 2, 0, 0], [0, 0, -2, 2, 1], [2, 0, 0, 2, 2], [0, 0, 2, 2, 2], [0, 0, 2, 0, 0], [-2, 0, 1, 2, 2], [0, 0, 0, 2, 0], [-2, 0, 0, 2, 0], [0, 0, -1, 2, 1], [0, 2, 0, 0, 0], [2, 0, -1, 0, 1], [-2, 2, 0, 2, 2], [0, 1, 0, 0, 1], [-2, 0, 1, 0, 1], [0, -1, 0, 0, 1], [0, 0, 2, -2, 0], [2, 0, -1, 2, 1], [2, 0, 1, 2, 2], [0, 1, 0, 2, 2], [-2, 1, 1, 0, 0], [0, -1, 0, 2, 2], [2, 0, 0, 2, 1], [2, 0, 1, 0, 0], [-2, 0, 2, 2, 2], [-2, 0, 1, 2, 1], [2, 0, -2, 0, 1], [2, 0, 0, 0, 1], [0, -1, 1, 0, 0], [-2, -1, 0, 2, 1], [-2, 0, 0, 0, 1], [0, 0, 2, 2, 1], [-2, 0, 2, 0, 1], [-2, 1, 0, 2, 1], [0, 0, 1, -2, 0], [-1, 0, 1, 0, 0], [-2, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 1, 2, 0], [0, 0, -2, 2, 2], [-1, -1, 1, 0, 0], [0, 1, 1, 0, 0], [0, -1, 1, 2, 2], [2, -1, -1, 2, 2], [0, 0, 3, 2, 2], [2, -1, 0, 2, 2], ]) @jcompile('float64(int64, int64, int64, int64, int64, int64, int64)', nopython=True) def julian_day_dt(year, month, day, hour, minute, second, microsecond): """This is the original way to calculate the julian day from the NREL paper. However, it is much faster to convert to unix/epoch time and then convert to julian day. Note that the date must be UTC.""" if month <= 2: year = year-1 month = month+12 a = int(year/100) b = 2 - a + int(a * 0.25) frac_of_day = (microsecond + (second + minute * 60 + hour * 3600) ) * 1.0 / (3600*24) d = day + frac_of_day jd = (int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + d + b - 1524.5) return jd @jcompile('float64(float64)', nopython=True) def julian_day(unixtime): jd = unixtime * 1.0 / 86400 + 2440587.5 return jd @jcompile('float64(float64, float64)', nopython=True) def julian_ephemeris_day(julian_day, delta_t): jde = julian_day + delta_t * 1.0 / 86400 return jde @jcompile('float64(float64)', nopython=True) def julian_century(julian_day): jc = (julian_day - 2451545) * 1.0 / 36525 return jc @jcompile('float64(float64)', nopython=True) def julian_ephemeris_century(julian_ephemeris_day): jce = (julian_ephemeris_day - 2451545) * 1.0 / 36525 return jce @jcompile('float64(float64)', nopython=True) def julian_ephemeris_millennium(julian_ephemeris_century): jme = julian_ephemeris_century * 1.0 / 10 return jme @jcompile('float64(float64)', nopython=True) def heliocentric_longitude(jme): l0 = 0.0 l1 = 0.0 l2 = 0.0 l3 = 0.0 l4 = 0.0 l5 = 0.0 for row in range(HELIO_LONG_TABLE.shape[1]): l0 += (HELIO_LONG_TABLE[0, row, 0] * np.cos(HELIO_LONG_TABLE[0, row, 1] + HELIO_LONG_TABLE[0, row, 2] * jme) ) l1 += (HELIO_LONG_TABLE[1, row, 0] * np.cos(HELIO_LONG_TABLE[1, row, 1] + HELIO_LONG_TABLE[1, row, 2] * jme) ) l2 += (HELIO_LONG_TABLE[2, row, 0] * np.cos(HELIO_LONG_TABLE[2, row, 1] + HELIO_LONG_TABLE[2, row, 2] * jme) ) l3 += (HELIO_LONG_TABLE[3, row, 0] * np.cos(HELIO_LONG_TABLE[3, row, 1] + HELIO_LONG_TABLE[3, row, 2] * jme) ) l4 += (HELIO_LONG_TABLE[4, row, 0] * np.cos(HELIO_LONG_TABLE[4, row, 1] + HELIO_LONG_TABLE[4, row, 2] * jme) ) l5 += (HELIO_LONG_TABLE[5, row, 0] * np.cos(HELIO_LONG_TABLE[5, row, 1] + HELIO_LONG_TABLE[5, row, 2] * jme) ) l_rad = (l0 + l1 * jme + l2 * jme**2 + l3 * jme**3 + l4 * jme**4 + l5 * jme**5)/10**8 l = np.rad2deg(l_rad) return l % 360 @jcompile('float64(float64)', nopython=True) def heliocentric_latitude(jme): b0 = 0.0 b1 = 0.0 for row in range(HELIO_LAT_TABLE.shape[1]): b0 += (HELIO_LAT_TABLE[0, row, 0] * np.cos(HELIO_LAT_TABLE[0, row, 1] + HELIO_LAT_TABLE[0, row, 2] * jme) ) b1 += (HELIO_LAT_TABLE[1, row, 0] * np.cos(HELIO_LAT_TABLE[1, row, 1] + HELIO_LAT_TABLE[1, row, 2] * jme) ) b_rad = (b0 + b1 * jme)/10**8 b = np.rad2deg(b_rad) return b @jcompile('float64(float64)', nopython=True) def heliocentric_radius_vector(jme): r0 = 0.0 r1 = 0.0 r2 = 0.0 r3 = 0.0 r4 = 0.0 for row in range(HELIO_RADIUS_TABLE.shape[1]): r0 += (HELIO_RADIUS_TABLE[0, row, 0] * np.cos(HELIO_RADIUS_TABLE[0, row, 1] + HELIO_RADIUS_TABLE[0, row, 2] * jme) ) r1 += (HELIO_RADIUS_TABLE[1, row, 0] * np.cos(HELIO_RADIUS_TABLE[1, row, 1] + HELIO_RADIUS_TABLE[1, row, 2] * jme) ) r2 += (HELIO_RADIUS_TABLE[2, row, 0] * np.cos(HELIO_RADIUS_TABLE[2, row, 1] + HELIO_RADIUS_TABLE[2, row, 2] * jme) ) r3 += (HELIO_RADIUS_TABLE[3, row, 0] * np.cos(HELIO_RADIUS_TABLE[3, row, 1] + HELIO_RADIUS_TABLE[3, row, 2] * jme) ) r4 += (HELIO_RADIUS_TABLE[4, row, 0] * np.cos(HELIO_RADIUS_TABLE[4, row, 1] + HELIO_RADIUS_TABLE[4, row, 2] * jme) ) r = (r0 + r1 * jme + r2 * jme**2 + r3 * jme**3 + r4 * jme**4)/10**8 return r @jcompile('float64(float64)', nopython=True) def geocentric_longitude(heliocentric_longitude): theta = heliocentric_longitude + 180.0 return theta % 360 @jcompile('float64(float64)', nopython=True) def geocentric_latitude(heliocentric_latitude): beta = -1.0*heliocentric_latitude return beta @jcompile('float64(float64)', nopython=True) def mean_elongation(julian_ephemeris_century): x0 = (297.85036 + 445267.111480 * julian_ephemeris_century - 0.0019142 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 189474) return x0 @jcompile('float64(float64)', nopython=True) def mean_anomaly_sun(julian_ephemeris_century): x1 = (357.52772 + 35999.050340 * julian_ephemeris_century - 0.0001603 * julian_ephemeris_century**2 - julian_ephemeris_century**3 / 300000) return x1 @jcompile('float64(float64)', nopython=True) def mean_anomaly_moon(julian_ephemeris_century): x2 = (134.96298 + 477198.867398 * julian_ephemeris_century + 0.0086972 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 56250) return x2 @jcompile('float64(float64)', nopython=True) def moon_argument_latitude(julian_ephemeris_century): x3 = (93.27191 + 483202.017538 * julian_ephemeris_century - 0.0036825 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 327270) return x3 @jcompile('float64(float64)', nopython=True) def moon_ascending_longitude(julian_ephemeris_century): x4 = (125.04452 - 1934.136261 * julian_ephemeris_century + 0.0020708 * julian_ephemeris_century**2 + julian_ephemeris_century**3 / 450000) return x4 @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def longitude_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4): delta_psi_sum = 0 for row in range(NUTATION_YTERM_ARRAY.shape[0]): a = NUTATION_ABCD_ARRAY[row, 0] b = NUTATION_ABCD_ARRAY[row, 1] argsin = (NUTATION_YTERM_ARRAY[row, 0]*x0 + NUTATION_YTERM_ARRAY[row, 1]*x1 + NUTATION_YTERM_ARRAY[row, 2]*x2 + NUTATION_YTERM_ARRAY[row, 3]*x3 + NUTATION_YTERM_ARRAY[row, 4]*x4) term = (a + b * julian_ephemeris_century) * np.sin(np.radians(argsin)) delta_psi_sum += term delta_psi = delta_psi_sum*1.0/36000000 return delta_psi @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4): delta_eps_sum = 0.0 for row in range(NUTATION_YTERM_ARRAY.shape[0]): c = NUTATION_ABCD_ARRAY[row, 2] d = NUTATION_ABCD_ARRAY[row, 3] argcos = (NUTATION_YTERM_ARRAY[row, 0]*x0 + NUTATION_YTERM_ARRAY[row, 1]*x1 + NUTATION_YTERM_ARRAY[row, 2]*x2 + NUTATION_YTERM_ARRAY[row, 3]*x3 + NUTATION_YTERM_ARRAY[row, 4]*x4) term = (c + d * julian_ephemeris_century) * np.cos(np.radians(argcos)) delta_eps_sum += term delta_eps = delta_eps_sum*1.0/36000000 return delta_eps @jcompile('float64(float64)', nopython=True) def mean_ecliptic_obliquity(julian_ephemeris_millennium): U = 1.0*julian_ephemeris_millennium/10 e0 = (84381.448 - 4680.93 * U - 1.55 * U**2 + 1999.25 * U**3 - 51.38 * U**4 - 249.67 * U**5 - 39.05 * U**6 + 7.12 * U**7 + 27.87 * U**8 + 5.79 * U**9 + 2.45 * U**10) return e0 @jcompile('float64(float64, float64)', nopython=True) def true_ecliptic_obliquity(mean_ecliptic_obliquity, obliquity_nutation): e0 = mean_ecliptic_obliquity deleps = obliquity_nutation e = e0*1.0/3600 + deleps return e @jcompile('float64(float64)', nopython=True) def aberration_correction(earth_radius_vector): deltau = -20.4898 / (3600 * earth_radius_vector) return deltau @jcompile('float64(float64, float64, float64)', nopython=True) def apparent_sun_longitude(geocentric_longitude, longitude_nutation, aberration_correction): lamd = geocentric_longitude + longitude_nutation + aberration_correction return lamd @jcompile('float64(float64, float64)', nopython=True) def mean_sidereal_time(julian_day, julian_century): v0 = (280.46061837 + 360.98564736629 * (julian_day - 2451545) + 0.000387933 * julian_century**2 - julian_century**3 / 38710000) return v0 % 360.0 @jcompile('float64(float64, float64, float64)', nopython=True) def apparent_sidereal_time(mean_sidereal_time, longitude_nutation, true_ecliptic_obliquity): v = mean_sidereal_time + longitude_nutation * np.cos( np.radians(true_ecliptic_obliquity)) return v @jcompile('float64(float64, float64, float64)', nopython=True) def geocentric_sun_right_ascension(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude): num = (np.sin(np.radians(apparent_sun_longitude)) * np.cos(np.radians(true_ecliptic_obliquity)) - np.tan(np.radians(geocentric_latitude)) * np.sin(np.radians(true_ecliptic_obliquity))) alpha = np.degrees(np.arctan2(num, np.cos( np.radians(apparent_sun_longitude)))) return alpha % 360 @jcompile('float64(float64, float64, float64)', nopython=True) def geocentric_sun_declination(apparent_sun_longitude, true_ecliptic_obliquity, geocentric_latitude): delta = np.degrees(np.arcsin(np.sin(np.radians(geocentric_latitude)) * np.cos(np.radians(true_ecliptic_obliquity)) + np.cos(np.radians(geocentric_latitude)) * np.sin(np.radians(true_ecliptic_obliquity)) * np.sin(np.radians(apparent_sun_longitude)))) return delta @jcompile('float64(float64, float64, float64)', nopython=True) def local_hour_angle(apparent_sidereal_time, observer_longitude, sun_right_ascension): """Measured westward from south""" H = apparent_sidereal_time + observer_longitude - sun_right_ascension return H % 360 @jcompile('float64(float64)', nopython=True) def equatorial_horizontal_parallax(earth_radius_vector): xi = 8.794 / (3600 * earth_radius_vector) return xi @jcompile('float64(float64)', nopython=True) def uterm(observer_latitude): u = np.arctan(0.99664719 * np.tan(np.radians(observer_latitude))) return u @jcompile('float64(float64, float64, float64)', nopython=True) def xterm(u, observer_latitude, observer_elevation): x = (np.cos(u) + observer_elevation / 6378140 * np.cos(np.radians(observer_latitude))) return x @jcompile('float64(float64, float64, float64)', nopython=True) def yterm(u, observer_latitude, observer_elevation): y = (0.99664719 * np.sin(u) + observer_elevation / 6378140 * np.sin(np.radians(observer_latitude))) return y @jcompile('float64(float64, float64,float64, float64)', nopython=True) def parallax_sun_right_ascension(xterm, equatorial_horizontal_parallax, local_hour_angle, geocentric_sun_declination): num = (-xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.sin(np.radians(local_hour_angle))) denom = (np.cos(np.radians(geocentric_sun_declination)) - xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.cos(np.radians(local_hour_angle))) delta_alpha = np.degrees(np.arctan2(num, denom)) return delta_alpha @jcompile('float64(float64, float64)', nopython=True) def topocentric_sun_right_ascension(geocentric_sun_right_ascension, parallax_sun_right_ascension): alpha_prime = geocentric_sun_right_ascension + parallax_sun_right_ascension return alpha_prime @jcompile('float64(float64, float64, float64, float64, float64, float64)', nopython=True) def topocentric_sun_declination(geocentric_sun_declination, xterm, yterm, equatorial_horizontal_parallax, parallax_sun_right_ascension, local_hour_angle): num = ((np.sin(np.radians(geocentric_sun_declination)) - yterm * np.sin(np.radians(equatorial_horizontal_parallax))) * np.cos(np.radians(parallax_sun_right_ascension))) denom = (np.cos(np.radians(geocentric_sun_declination)) - xterm * np.sin(np.radians(equatorial_horizontal_parallax)) * np.cos(np.radians(local_hour_angle))) delta = np.degrees(np.arctan2(num, denom)) return delta @jcompile('float64(float64, float64)', nopython=True) def topocentric_local_hour_angle(local_hour_angle, parallax_sun_right_ascension): H_prime = local_hour_angle - parallax_sun_right_ascension return H_prime @jcompile('float64(float64, float64, float64)', nopython=True) def topocentric_elevation_angle_without_atmosphere(observer_latitude, topocentric_sun_declination, topocentric_local_hour_angle ): e0 = np.degrees(np.arcsin( np.sin(np.radians(observer_latitude)) * np.sin(np.radians(topocentric_sun_declination)) + np.cos(np.radians(observer_latitude)) * np.cos(np.radians(topocentric_sun_declination)) * np.cos(np.radians(topocentric_local_hour_angle)))) return e0 @jcompile('float64(float64, float64, float64, float64)', nopython=True) def atmospheric_refraction_correction(local_pressure, local_temp, topocentric_elevation_angle_wo_atmosphere, atmos_refract): # switch sets delta_e when the sun is below the horizon switch = topocentric_elevation_angle_wo_atmosphere >= -1.0 * ( 0.26667 + atmos_refract) delta_e = ((local_pressure / 1010.0) * (283.0 / (273 + local_temp)) * 1.02 / (60 * np.tan(np.radians( topocentric_elevation_angle_wo_atmosphere + 10.3 / (topocentric_elevation_angle_wo_atmosphere + 5.11))))) * switch return delta_e @jcompile('float64(float64, float64)', nopython=True) def topocentric_elevation_angle(topocentric_elevation_angle_without_atmosphere, atmospheric_refraction_correction): e = (topocentric_elevation_angle_without_atmosphere + atmospheric_refraction_correction) return e @jcompile('float64(float64)', nopython=True) def topocentric_zenith_angle(topocentric_elevation_angle): theta = 90 - topocentric_elevation_angle return theta @jcompile('float64(float64, float64, float64)', nopython=True) def topocentric_astronomers_azimuth(topocentric_local_hour_angle, topocentric_sun_declination, observer_latitude): num = np.sin(np.radians(topocentric_local_hour_angle)) denom = (np.cos(np.radians(topocentric_local_hour_angle)) * np.sin(np.radians(observer_latitude)) - np.tan(np.radians(topocentric_sun_declination)) * np.cos(np.radians(observer_latitude))) gamma = np.degrees(np.arctan2(num, denom)) return gamma % 360 @jcompile('float64(float64)', nopython=True) def topocentric_azimuth_angle(topocentric_astronomers_azimuth): phi = topocentric_astronomers_azimuth + 180 return phi % 360 @jcompile('float64(float64)', nopython=True) def sun_mean_longitude(julian_ephemeris_millennium): M = (280.4664567 + 360007.6982779 * julian_ephemeris_millennium + 0.03032028 * julian_ephemeris_millennium**2 + julian_ephemeris_millennium**3 / 49931 - julian_ephemeris_millennium**4 / 15300 - julian_ephemeris_millennium**5 / 2000000) return M @jcompile('float64(float64, float64, float64, float64)', nopython=True) def equation_of_time(sun_mean_longitude, geocentric_sun_right_ascension, longitude_nutation, true_ecliptic_obliquity): E = (sun_mean_longitude - 0.0057183 - geocentric_sun_right_ascension + longitude_nutation * np.cos(np.radians(true_ecliptic_obliquity))) # limit between 0 and 360 E = E % 360 # convert to minutes E *= 4 greater = E > 20 less = E < -20 other = (E <= 20) & (E >= -20) E = greater * (E - 1440) + less * (E + 1440) + other * E return E @jcompile('void(float64[:], float64[:], float64[:,:])', nopython=True, nogil=True) def solar_position_loop(unixtime, loc_args, out): """Loop through the time array and calculate the solar position""" lat = loc_args[0] lon = loc_args[1] elev = loc_args[2] pressure = loc_args[3] temp = loc_args[4] delta_t = loc_args[5] atmos_refract = loc_args[6] sst = loc_args[7] for i in range(unixtime.shape[0]): utime = unixtime[i] jd = julian_day(utime) jde = julian_ephemeris_day(jd, delta_t) jc = julian_century(jd) jce = julian_ephemeris_century(jde) jme = julian_ephemeris_millennium(jce) L = heliocentric_longitude(jme) B = heliocentric_latitude(jme) R = heliocentric_radius_vector(jme) Theta = geocentric_longitude(L) beta = geocentric_latitude(B) x0 = mean_elongation(jce) x1 = mean_anomaly_sun(jce) x2 = mean_anomaly_moon(jce) x3 = moon_argument_latitude(jce) x4 = moon_ascending_longitude(jce) delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4) delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4) epsilon0 = mean_ecliptic_obliquity(jme) epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon) delta_tau = aberration_correction(R) lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau) v0 = mean_sidereal_time(jd, jc) v = apparent_sidereal_time(v0, delta_psi, epsilon) alpha = geocentric_sun_right_ascension(lamd, epsilon, beta) delta = geocentric_sun_declination(lamd, epsilon, beta) if sst: out[0, i] = v out[1, i] = alpha out[2, i] = delta continue m = sun_mean_longitude(jme) eot = equation_of_time(m, alpha, delta_psi, epsilon) H = local_hour_angle(v, lon, alpha) xi = equatorial_horizontal_parallax(R) u = uterm(lat) x = xterm(u, lat, elev) y = yterm(u, lat, elev) delta_alpha = parallax_sun_right_ascension(x, xi, H, delta) alpha_prime = topocentric_sun_right_ascension(alpha, delta_alpha) delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H) H_prime = topocentric_local_hour_angle(H, delta_alpha) e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime, H_prime) delta_e = atmospheric_refraction_correction(pressure, temp, e0, atmos_refract) e = topocentric_elevation_angle(e0, delta_e) theta = topocentric_zenith_angle(e) theta0 = topocentric_zenith_angle(e0) gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat) phi = topocentric_azimuth_angle(gamma) out[0, i] = theta out[1, i] = theta0 out[2, i] = e out[3, i] = e0 out[4, i] = phi out[5, i] = eot def solar_position_numba(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst=False): """Calculate the solar position using the numba compiled functions and multiple threads. Very slow if functions are not numba compiled. """ loc_args = np.array([lat, lon, elev, pressure, temp, delta_t, atmos_refract, sst]) ulength = unixtime.shape[0] result = np.empty((6, ulength), dtype=np.float64) if unixtime.dtype != np.float64: unixtime = unixtime.astype(np.float64) if ulength < numthreads: pvl_logger.warning('The number of threads is more than the length of' + ' the time array. Only using %s threads.', ulength) numthreads = ulength if numthreads <= 1: pvl_logger.debug('Only using one thread for calculation') solar_position_loop(unixtime, loc_args, result) return result split0 = np.array_split(unixtime, numthreads) split2 = np.array_split(result, numthreads, axis=1) chunks = [[a0, loc_args, split2[i]] for i, a0 in enumerate(split0)] # Spawn one thread per chunk threads = [threading.Thread(target=solar_position_loop, args=chunk) for chunk in chunks] for thread in threads: thread.start() for thread in threads: thread.join() return result def solar_position_numpy(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst=False): """Calculate the solar position assuming unixtime is a numpy array. Note this function will not work if the solar position functions were compiled with numba. """ jd = julian_day(unixtime) jde = julian_ephemeris_day(jd, delta_t) jc = julian_century(jd) jce = julian_ephemeris_century(jde) jme = julian_ephemeris_millennium(jce) L = heliocentric_longitude(jme) B = heliocentric_latitude(jme) R = heliocentric_radius_vector(jme) Theta = geocentric_longitude(L) beta = geocentric_latitude(B) x0 = mean_elongation(jce) x1 = mean_anomaly_sun(jce) x2 = mean_anomaly_moon(jce) x3 = moon_argument_latitude(jce) x4 = moon_ascending_longitude(jce) delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4) delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4) epsilon0 = mean_ecliptic_obliquity(jme) epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon) delta_tau = aberration_correction(R) lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau) v0 = mean_sidereal_time(jd, jc) v = apparent_sidereal_time(v0, delta_psi, epsilon) alpha = geocentric_sun_right_ascension(lamd, epsilon, beta) delta = geocentric_sun_declination(lamd, epsilon, beta) if sst: return v, alpha, delta m = sun_mean_longitude(jme) eot = equation_of_time(m, alpha, delta_psi, epsilon) H = local_hour_angle(v, lon, alpha) xi = equatorial_horizontal_parallax(R) u = uterm(lat) x = xterm(u, lat, elev) y = yterm(u, lat, elev) delta_alpha = parallax_sun_right_ascension(x, xi, H, delta) alpha_prime = topocentric_sun_right_ascension(alpha, delta_alpha) delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H) H_prime = topocentric_local_hour_angle(H, delta_alpha) e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime, H_prime) delta_e = atmospheric_refraction_correction(pressure, temp, e0, atmos_refract) e = topocentric_elevation_angle(e0, delta_e) theta = topocentric_zenith_angle(e) theta0 = topocentric_zenith_angle(e0) gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat) phi = topocentric_azimuth_angle(gamma) return theta, theta0, e, e0, phi, eot def solar_position(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads=8, sst=False): """ Calculate the solar position using the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled and the code runs quickly. If not, the functions still evaluate but use numpy instead. Parameters ---------- unixtime : numpy array Array of unix/epoch timestamps to calculate solar position for. Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC. A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9 lat : float Latitude to calculate solar position for lon : float Longitude to calculate solar position for elev : float Elevation of location in meters pressure : int or float avg. yearly pressure at location in Pascals; used for atmospheric correction temp : int or float avg. yearly temperature at location in degrees C; used for atmospheric correction delta_t : float, optional Difference between terrestrial time and UT1. By default, use USNO historical data and predictions atmos_refrac : float, optional The approximate atmospheric refraction (in degrees) at sunrise and sunset. numthreads: int, optional Number of threads to use for computation if numba>=0.17 is installed. Returns ------- Numpy Array with elements: apparent zenith, zenith, elevation, apparent_elevation, azimuth, equation_of_time References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. """ if USE_NUMBA: do_calc = solar_position_numba else: do_calc = solar_position_numpy result = do_calc(unixtime, lat, lon, elev, pressure, temp, delta_t, atmos_refract, numthreads, sst) if not isinstance(result, np.ndarray): try: result = np.array(result) except Exception: pass return result def transit_sunrise_sunset(dates, lat, lon, delta_t, numthreads): """ Calculate the sun transit, sunrise, and sunset for a set of dates at a given location. Parameters ---------- dates : array Numpy array of ints/floats corresponding to the Unix time for the dates of interest, must be midnight UTC (00:00+00:00) on the day of interest. lat : float Latitude of location to perform calculation for lon : float Longitude of location delta_t : float Difference between terrestrial time and UT. USNO has tables. numthreads : int Number to threads to use for calculation (if using numba) Returns ------- tuple : (transit, sunrise, sunset) localized to UTC """ if ((dates % 86400) != 0.0).any(): raise ValueError('Input dates must be at 00:00 UTC') utday = (dates // 86400) * 86400 ttday0 = utday - delta_t ttdayn1 = ttday0 - 86400 ttdayp1 = ttday0 + 86400 # index 0 is v, 1 is alpha, 2 is delta utday_res = solar_position(utday, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) v = utday_res[0] ttday0_res = solar_position(ttday0, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) ttdayn1_res = solar_position(ttdayn1, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) ttdayp1_res = solar_position(ttdayp1, 0, 0, 0, 0, 0, delta_t, 0, numthreads, sst=True) m0 = (ttday0_res[1] - lon - v) / 360 cos_arg = ((np.sin(np.radians(-0.8333)) - np.sin(np.radians(lat)) * np.sin(np.radians(ttday0_res[2]))) / (np.cos(np.radians(lat)) * np.cos(np.radians(ttday0_res[2])))) cos_arg[abs(cos_arg) > 1] = np.nan H0 = np.degrees(np.arccos(cos_arg)) % 180 m = np.empty((3, len(utday))) m[0] = m0 % 1 m[1] = (m[0] - H0 / 360) m[2] = (m[0] + H0 / 360) # need to account for fractions of day that may be the next or previous # day in UTC add_a_day = m[2] >= 1 sub_a_day = m[1] < 0 m[1] = m[1] % 1 m[2] = m[2] % 1 vs = v + 360.985647 * m n = m + delta_t / 86400 a = ttday0_res[1] - ttdayn1_res[1] a[abs(a) > 2] = a[abs(a) > 2] % 1 ap = ttday0_res[2] - ttdayn1_res[2] ap[abs(ap) > 2] = ap[abs(ap) > 2] % 1 b = ttdayp1_res[1] - ttday0_res[1] b[abs(b) > 2] = b[abs(b) > 2] % 1 bp = ttdayp1_res[2] - ttday0_res[2] bp[abs(bp) > 2] = bp[abs(bp) > 2] % 1 c = b - a cp = bp - ap alpha_prime = ttday0_res[1] + (n * (a + b + c * n)) / 2 delta_prime = ttday0_res[2] + (n * (ap + bp + cp * n)) / 2 Hp = (vs + lon - alpha_prime) % 360 Hp[Hp >= 180] = Hp[Hp >= 180] - 360 h = np.degrees(np.arcsin(np.sin(np.radians(lat)) * np.sin(np.radians(delta_prime)) + np.cos(np.radians(lat)) * np.cos(np.radians(delta_prime)) * np.cos(np.radians(Hp)))) T = (m[0] - Hp[0] / 360) * 86400 R = (m[1] + (h[1] + 0.8333) / (360 * np.cos(np.radians(delta_prime[1])) * np.cos(np.radians(lat)) * np.sin(np.radians(Hp[1])))) * 86400 S = (m[2] + (h[2] + 0.8333) / (360 * np.cos(np.radians(delta_prime[2])) * np.cos(np.radians(lat)) * np.sin(np.radians(Hp[2])))) * 86400 S[add_a_day] += 86400 R[sub_a_day] -= 86400 transit = T + utday sunrise = R + utday sunset = S + utday return transit, sunrise, sunset
bsd-3-clause
hsuantien/scikit-learn
examples/svm/plot_iris.py
62
3251
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problem. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
Ledoux/ShareYourSystem
Pythonlogy/ShareYourSystem/Specials/Oldpredicters/Predispiker/draft/__init__ copy.py
1
16400
# -*- coding: utf-8 -*- """ <DefineSource> @Date : Fri Nov 14 13:20:38 2014 \n @Author : Erwan Ledoux \n\n </DefineSource> A Predispiker """ #<DefineAugmentation> import ShareYourSystem as SYS BaseModuleStr="ShareYourSystem.Specials.Predicters.Predicter" DecorationModuleStr="ShareYourSystem.Standards.Classors.Classer" SYS.setSubModule(globals()) #</DefineAugmentation> #<ImportSpecificModules> Predirater=BaseModule import numpy as np import scipy from matplotlib import pyplot #</ImportSpecificModules> #<DefineLocals> #</DefineLocals> #<DefineClass> @DecorationClass(**{ }) class PredispikerClass(BaseClass): def default_init(self, _PredispikingNeuronUnitsInt=0, _PredispikingSensorUnitsInt=0, _PredispikingPerturbativeWeightFloat=0.1, _PredispikingRestVoltageFloat=-60., _PredispikingThresholdVoltageFloatsArray=None, _PredispikingResetVoltageFloatsArray=None, _PredispikingConstantTimeFloat=10., _PredispikingDelayTimeFloat=0., _PredispikingRunTimeFloat=100., _PredispikingStepTimeFloat=0.1, _PredispikedTimeFloatsArray=None, _PredispikingInputRandomStatStr='norm', _PredispikingLateralRandomStatStr='norm', _PredispikedCommandFloatsArray=None, _PredispikedJacobianFloatsArray=None, _PredispikedInputRandomFloatsArray=None, _PredispikedPerturbativeInputWeigthFloatsArray=None, _PredispikedNullFloatsArray=None, _PredispikedExactLateralWeigthFloatsArray=None, _PredispikedLateralRandomFloatsArray=None, _PredispikedInitialSensorFloatsArray=None, _PredispikedInitialNeuronFloatsArray=None, _PredispikedSensorFloatsArray=None, _PredispikedPerturbativeNeuronFloatsArray=None, _PredispikedExactNeuronFloatsArray=None, _PredispikedLeakNeuronFloatsArray=None, _PredispikedPerturbativeDecoderFloatsArray=None, _PredispikedExactDecoderFloatsArray=None, _PredispikedLeakDecoderFloatsArray=None, **_KwargVariablesDict ): """ """ #Call the parent init method BaseClass.__init__(self,**_KwargVariablesDict) def do_predispike(self): #/#################/# # External care : Prepare time and the command # #arange self.PredispikedTimeFloatsArray=np.arange( 0., self.PredispikingRunTimeFloat, self.PredispikingStepTimeFloat ) #array self.PredispikedCommandFloatsArray=np.array( map( lambda __IndexInt: Predirater.getKrenelFloatsArray( [0.,1.], [self.PredispikingRunTimeFloat/4.,self.PredispikingRunTimeFloat/2.] ), xrange(self.PredispikingSensorUnitsInt) ) ) #debug ''' self.debug( [ 'We have prepared the time and the commands', ('self.',self,['PredispikedCommandFloatsArray']) ] ) ''' #/#################/# # Sensor care : Prepare the input weigth and the null matrix # self.PredispikedJacobianFloatsArray=-(1./self.PredispikingConstantTimeFloat)*np.diag( np.ones( self.PredispikingSensorUnitsInt ) ) #debug ''' self.debug( [ 'We have prepared the sensor jacobian', ('self.',self,['PredispikedJacobianFloatsArray']) ] ) ''' #/#################/# # Neuron care : Prepare the input weigth, null matrix, exact and perturbativ matrix # #random self.PredispikedExactDecoderWeigthFloatsArray=scipy.stats.uniform.rvs( size=( self.PredispikingSensorUnitsInt, self.PredispikingNeuronUnitsInt ) ) #find the null space self.PredispikedNullFloatsArray=Predirater.getNullFloatsArray( self.PredispikedExactDecoderWeigthFloatsArray ) #debug ''' PredispikedProductArray=np.dot( self.PredispikedExactDecoderWeigthFloatsArray, self.PredispikedNullFloatsArray ) self.debug( [ ('self.',self,[ 'PredispikedExactDecoderWeigthFloatsArray', 'PredispikingNeuronUnitsInt' ] ), ("locals()['",locals(),['PredispikedProductArray'],"']") ] ) ''' #random self.PredispikedInputRandomFloatsArray=self.PredispikingPerturbativeWeightFloat*getattr( scipy.stats, self.PredispikingInputRandomStatStr ).rvs( size=( np.shape(self.PredispikedNullFloatsArray)[1], self.PredispikingSensorUnitsInt ) ) #dot self.PredispikedPerturbativeInputWeigthFloatsArray=np.dot( self.PredispikedNullFloatsArray, self.PredispikedInputRandomFloatsArray ) #dot self.PredispikedExactLateralWeigthFloatsArray=np.dot( self.PredispikedExactDecoderWeigthFloatsArray.T, self.PredispikedExactDecoderWeigthFloatsArray ) #random self.PredispikedLateralRandomFloatsArray=self.PredispikingPerturbativeWeightFloat*getattr( scipy.stats, self.PredispikingLateralRandomStatStr ).rvs( size=( np.shape(self.PredispikedNullFloatsArray)[1], self.PredispikingNeuronUnitsInt ) ) #dot self.PredispikedPerturbativeLateralWeigthFloatsArray=np.dot( self.PredispikedNullFloatsArray, self.PredispikedLateralRandomFloatsArray ) #pinv self.PredispikedLeakDecoderWeigthFloatsArray=np.linalg.pinv( self.PredispikedExactDecoderWeigthFloatsArray.T ) #debug ''' PredispikedPinvFloatsArray=np.dot( self.PredispikedLeakDecoderWeigthFloatsArray, self.PredispikedExactDecoderWeigthFloatsArray.T ) self.debug( [ 'PredispikedPinvFloatsArray is ', str(PredispikedPinvFloatsArray) ] ) ''' #/#################/# # Prepare the initial conditions # #random sensors PredispikedInitialNeuronFloatsArray=scipy.stats.uniform.rvs( size=self.PredispikingNeuronUnitsInt ) #random rates PredispikedInitialSensorFloatsArray=scipy.stats.uniform.rvs( size=self.PredispikingSensorUnitsInt ) #/#################/# # Shape the size of all the runs # #init sensors self.PredispikedSensorFloatsArray=np.zeros( (self.PredispikingSensorUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedSensorFloatsArray[:,0]=PredispikedInitialSensorFloatsArray #init perturbative rates self.PredispikedPerturbativeNeuronFloatsArray=np.zeros( (self.PredispikingNeuronUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedPerturbativeNeuronFloatsArray[:,0]=PredispikedInitialNeuronFloatsArray #init exact rates self.PredispikedExactNeuronFloatsArray=np.zeros( (self.PredispikingNeuronUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedExactNeuronFloatsArray[:,0]=PredispikedInitialNeuronFloatsArray #init leak control rates self.PredispikedLeakNeuronFloatsArray=np.zeros( (self.PredispikingNeuronUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedLeakNeuronFloatsArray[:,0]=PredispikedInitialNeuronFloatsArray #init perturbative decoder self.PredispikedPerturbativeDecoderFloatsArray=np.zeros( (self.PredispikingSensorUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedPerturbativeDecoderFloatsArray[:,0]=np.dot( self.PredispikedExactDecoderWeigthFloatsArray, PredispikedInitialNeuronFloatsArray ) #init exact decoder self.PredispikedExactDecoderFloatsArray=np.zeros( (self.PredispikingSensorUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedExactDecoderFloatsArray[:,0]=np.dot( self.PredispikedExactDecoderWeigthFloatsArray, PredispikedInitialNeuronFloatsArray ) #init leak control decoder self.PredispikedLeakDecoderFloatsArray=np.zeros( (self.PredispikingSensorUnitsInt,len(self.PredispikedTimeFloatsArray)) ) self.PredispikedLeakDecoderFloatsArray[:,0]=np.dot( self.PredispikedLeakDecoderWeigthFloatsArray, PredispikedInitialNeuronFloatsArray ) #/#################/# # integrativ Loop # #for loop for __IndexInt in xrange(1,len(self.PredispikedTimeFloatsArray)): #/#################/# # Sensor part # #debug ''' self.debug( [ 'shape(self.PredispikedCommandFloatsArray) is '+str( np.shape(self.PredispikedCommandFloatsArray) ), 'shape(self.PredispikedSensorFloatsArray) is '+str( np.shape(self.PredispikedSensorFloatsArray) ), ('self.',self,[ 'PredispikedJacobianFloatsArray' ]) ] ) ''' #Current PredispikedSensorCurrentFloatsArray=np.dot( self.PredispikedJacobianFloatsArray, self.PredispikedSensorFloatsArray[:,__IndexInt-1] )+self.PredispikedCommandFloatsArray[:,__IndexInt] #/#################/# # Perturbative Neuron part # #Input Current PredispikedPerturbativeNeuronCurrentFloatsArray=np.dot( self.PredispikedExactDecoderWeigthFloatsArray.T+self.PredispikedPerturbativeInputWeigthFloatsArray, self.PredispikedCommandFloatsArray[:,__IndexInt-1] ) #Lateral Current PredispikedPerturbativeNeuronCurrentFloatsArray-=np.dot( self.PredispikedExactLateralWeigthFloatsArray+self.PredispikedPerturbativeLateralWeigthFloatsArray, self.PredispikedPerturbativeNeuronFloatsArray[:,__IndexInt-1] ) #/#################/# # Exact Neuron part # #Input Current PredispikedExactNeuronCurrentFloatsArray=np.dot( self.PredispikedExactDecoderWeigthFloatsArray.T, self.PredispikedCommandFloatsArray[:,__IndexInt-1] ) #Lateral Current PredispikedExactNeuronCurrentFloatsArray-=np.dot( self.PredispikedExactLateralWeigthFloatsArray, self.PredispikedExactNeuronFloatsArray[:,__IndexInt-1] ) #/#################/# # Leak Control Neuron part # #Input Current PredispikedLeakNeuronCurrentFloatsArray=np.dot( self.PredispikedExactDecoderWeigthFloatsArray.T+self.PredispikedPerturbativeInputWeigthFloatsArray, self.PredispikedCommandFloatsArray[:,__IndexInt-1] ) #Lateral Current PredispikedLeakNeuronCurrentFloatsArray-=np.dot( np.diag(np.ones(self.PredispikingNeuronUnitsInt)), self.PredispikedLeakNeuronFloatsArray[:,__IndexInt-1] ) #/#################/# # Euler part # #sensor self.PredispikedSensorFloatsArray[ :, __IndexInt ]=self.PredispikedSensorFloatsArray[ :, __IndexInt-1 ]+PredispikedSensorCurrentFloatsArray*self.PrediratingStepTimeFloat #set LocalDict=locals() #rate for __TagStr in ['Perturbative','Exact','Leak']: #set getattr( self, 'Predispiked'+__TagStr+'NeuronFloatsArray' )[:,__IndexInt]=getattr( self, 'Predispiked'+__TagStr+'NeuronFloatsArray' )[:,__IndexInt-1]+LocalDict[ 'Predispiked'+__TagStr+'NeuronCurrentFloatsArray' ]*self.PredispikingStepTimeFloat #/#################/# # Decoder part # #dot self.PredispikedPerturbativeDecoderFloatsArray[ :, __IndexInt ]=np.dot( self.PredispikedExactDecoderWeigthFloatsArray, self.PredispikedPerturbativeNeuronFloatsArray[:,__IndexInt-1] ) #exact control self.PredispikedExactDecoderFloatsArray[ :, __IndexInt ]=np.dot( self.PredispikedExactDecoderWeigthFloatsArray, self.PredispikedExactNeuronFloatsArray[:,__IndexInt-1] ) #leak control self.PredispikedLeakDecoderFloatsArray[ :, __IndexInt ]=np.dot( self.PredispikedLeakDecoderWeigthFloatsArray, self.PredispikedLeakNeuronFloatsArray[:,__IndexInt-1] ) #/#################/# # Plot # #debug self.debug( [ 'len(self.PredispikedTimeFloatsArray) is '+str(len(self.PredispikedTimeFloatsArray)), 'np.shape(self.PredispikedCommandFloatsArray) is '+str(np.shape(self.PredispikedCommandFloatsArray)) ] ) #init pyplot.figure() #/#################/# # Command and sensors # #subplot PredispikedSensorAxis=pyplot.subplot(3,1,1) #command map( lambda __IndexInt: PredispikedSensorAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedCommandFloatsArray[__IndexInt] ) if __IndexInt<len(self.PredispikedCommandFloatsArray) else None, [0] ) #sensor map( lambda __IndexInt: PredispikedSensorAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedSensorFloatsArray[__IndexInt,:], color='g', linewidth=3 ) if __IndexInt<len(self.PredispikedSensorFloatsArray) else None, [0,1] ) #set PredispikedSensorAxis.set_xlim([0.,self.PredispikingRunTimeFloat]) PredispikedSensorAxis.set_ylim([-0.1,3.]) #/#################/# # rates # #subplot PredispikedNeuronAxis=pyplot.subplot(3,1,2) #perturbative map( lambda __IndexInt: PredispikedNeuronAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedPerturbativeNeuronFloatsArray[__IndexInt,:], color='blue', linewidth=3 ) if __IndexInt<len(self.PredispikedPerturbativeNeuronFloatsArray) else None, [0,1] ) #exact map( lambda __IndexInt: PredispikedNeuronAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedExactNeuronFloatsArray[__IndexInt,:], color='violet', linewidth=2 ) if __IndexInt<len(self.PredispikedPerturbativeNeuronFloatsArray) else None, [0,1] ) #leak map( lambda __IndexInt: PredispikedNeuronAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedLeakNeuronFloatsArray[__IndexInt,:], color='brown', linewidth=1 ) if __IndexInt<len(self.PredispikedLeakNeuronFloatsArray) else None, [0,1] ) #set PredispikedNeuronAxis.set_xlim([0.,self.PredispikingRunTimeFloat]) #PredispikedNeuronAxis.set_ylim([-1.,1.]) PredispikedNeuronAxis.set_ylim( [ self.PredispikedPerturbativeNeuronFloatsArray.min(), self.PredispikedPerturbativeNeuronFloatsArray.max() ] ) #/#################/# # decoders # #subplot PredispikedDecoderAxis=pyplot.subplot(3,1,3) #sensor map( lambda __IndexInt: PredispikedDecoderAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedSensorFloatsArray[__IndexInt], color='g', linewidth=3 ) if __IndexInt<len(self.PredispikedSensorFloatsArray) else None, [0,1] ) #perturbative map( lambda __IndexInt: PredispikedDecoderAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedPerturbativeDecoderFloatsArray[__IndexInt,:], color='blue', linewidth=3 ) if __IndexInt<len(self.PredispikedPerturbativeDecoderFloatsArray) else None, [0,1] ) #exact map( lambda __IndexInt: PredispikedDecoderAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedExactDecoderFloatsArray[__IndexInt,:], color='violet', linewidth=2 ) if __IndexInt<len(self.PredispikedPerturbativeDecoderFloatsArray) else None, [0,1] ) #leak map( lambda __IndexInt: PredispikedDecoderAxis.plot( self.PredispikedTimeFloatsArray, self.PredispikedLeakDecoderFloatsArray[__IndexInt,:], color='brown', linewidth=1 ) if __IndexInt<len(self.PredispikedLeakDecoderFloatsArray) else None, [0,1] ) #set PredispikedDecoderAxis.set_xlim([0.,self.PredispikingRunTimeFloat]) PredispikedDecoderAxis.set_ylim([-0.1,3.]) #show pyplot.show() #</DefineClass> #</DefinePrint> PredispikerClass.PrintingClassSkipKeyStrsList.extend( [ 'PredispikingNeuronUnitsInt', 'PredispikingSensorUnitsInt', 'PredispikingPerturbativeWeightFloat', 'PredispikingRunTimeFloat', 'PredispikingStepTimeFloat', 'PredispikedTimeFloatsArray', 'PredispikedCommandFloatsArray', 'PredispikedJacobianFloatsArray', 'PredispikedExactDecoderWeigthFloatsArray', 'PredispikedInputRandomFloatsArray', 'PredispikedPerturbativeInputWeigthFloatsArray', 'PredispikedExactDecoderWeigthFloatsArray', 'PredispikedExactLateralWeigthFloatsArray', 'PredispikedLateralRandomFloatsArray', 'PredispikedExactLateralWeigthFloatsArray', 'PredispikedPerturbativeLateralWeigthFloatsArray', 'PredispikedNullFloatsArray', 'PredispikedInitialSensorFloatsArray', 'PredispikedInitialNeuronFloatsArray', 'PredispikedSensorFloatsArray', 'PredispikedPerturbativeNeuronFloatsArray', 'PredispikedExactNeuronFloatsArray', 'PredispikedLeakNeuronFloatsArray', 'PredispikedPerturbativeDecoderFloatsArray', 'PredispikedExactDecoderFloatsArray', 'PredispikedLeakDecoderWeigthFloatsArray', 'PredispikedLeakDecoderFloatsArray' ] ) #<DefinePrint>
mit
RPGOne/Skynet
imbalanced-learn-master/examples/over-sampling/plot_smote_bordeline_2.py
3
1892
""" ================== SMOTE borderline 2 ================== An illustration of the random SMOTE borderline 2 method. """ print(__doc__) import matplotlib.pyplot as plt import seaborn as sns sns.set() # Define some color for the plotting almost_black = '#262626' palette = sns.color_palette() from sklearn.datasets import make_classification from sklearn.decomposition import PCA from imblearn.over_sampling import SMOTE # Generate the dataset X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=10) # Instanciate a PCA object for the sake of easy visualisation pca = PCA(n_components=2) # Fit and transform x to visualise inside a 2D feature space X_vis = pca.fit_transform(X) # Apply Borderline SMOTE 2 sm = SMOTE(kind='borderline2') X_resampled, y_resampled = sm.fit_sample(X, y) X_res_vis = pca.transform(X_resampled) # Two subplots, unpack the axes array immediately f, (ax1, ax2) = plt.subplots(1, 2) ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #0", alpha=0.5, edgecolor=almost_black, facecolor=palette[0], linewidth=0.15) ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #1", alpha=0.5, edgecolor=almost_black, facecolor=palette[2], linewidth=0.15) ax1.set_title('Original set') ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1], label="Class #0", alpha=.5, edgecolor=almost_black, facecolor=palette[0], linewidth=0.15) ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1], label="Class #1", alpha=.5, edgecolor=almost_black, facecolor=palette[2], linewidth=0.15) ax2.set_title('SMOTE borderline 2') plt.show()
bsd-3-clause
elvandy/nltools
examples/01_DataOperations/plot_adjacency.py
2
6654
""" Adjacency Class =============== Nltools has an additional data structure class for working with two-dimensional square matrices. This can be helpful when working with similarity/distance matrices or directed or undirected graphs. Similar to the Brain_Data class, matrices are vectorized and can store multiple matrices in the same object. This might reflect different brain regions, subjects, or time. Most of the methods on the Adjacency class are consistent with those in the Brain_Data class. """ ######################################################################### # Load Data # ---------- # # Similar to the Brain_Data class, Adjacency instances can be initialized by passing in a numpy array or pandas data frame, or a path to a csv file or list of files. Here we will generate some fake data to demonstrate how to use this class. In addition to data, you must indicate the type of matrix. Currently, you can specify `['similarity','distance','directed']`. Similarity matrices are symmetrical with typically ones along diagonal, Distance matrices are symmetrical with zeros along diagonal, and Directed graph matrices are not symmetrical. Symmetrical matrices only store the upper triangle. The Adjacency class can also accommodate labels, but does not require them. from nltools.data import Adjacency from scipy.linalg import block_diag import numpy as np m1 = block_diag(np.ones((4,4)),np.zeros((4,4)),np.zeros((4,4))) m2 = block_diag(np.zeros((4,4)),np.ones((4,4)),np.zeros((4,4))) m3 = block_diag(np.zeros((4,4)),np.zeros((4,4)),np.ones((4,4)))*3 noisy = (m1*1+m2*2+m3*3) + np.random.randn(12,12)*.1 dat = Adjacency(noisy, matrix_type='similarity',labels=['C1']*4 + ['C2']*4 + ['C3']*4) ######################################################################### # Basic information about the object can be viewed by simply calling it. print(dat) ######################################################################### # Adjacency objects can easily be converted back into two-dimensional matrices with the `.squareform()` method. dat.squareform() ######################################################################### # Matrices can viewed as a heatmap using the `.plot()` method. f = dat.plot() ######################################################################### # The mean within a a grouping label can be calculated using the `.within_cluster_mean()` method. You must specify a group variable to group the data. Here we use the labels. print(dat.within_cluster_mean(clusters=dat.labels)) ######################################################################### # Regression # ---------- # # Adjacency objects can currently accommodate two different types of regression. Sometimes we might want to decompose an Adjacency matrix from a linear combination of other Adjacency matrices. Other times we might want to perform a regression at each pixel in a stack of Adjacency matrices. Here we provide an example of each method. We use the same data we generated above, but attempt to decompose it by each block of data. We create the design matrix by simply concatenating the matrices we used to create the data object. The regress method returns a dictionary containing all of the relevant information from the regression. Here we show that the model recovers the average weight in each block. X = Adjacency([m1,m2,m3],matrix_type='similarity') stats = dat.regress(X) print(stats['beta']) ######################################################################### # In addition to decomposing a single adjacency matrix, we can also estimate a model that predicts the variance over each voxel. This is equivalent to a univariate regression in imaging analyses. Remember that just like in imaging these tests are non-independent and may require correcting for multiple comparisons. Here we create some data that varies over matrices and identify pixels that follow a particular on-off-on pattern. We plot the t-values that exceed 2. from nltools.data import Design_Matrix import matplotlib.pyplot as plt data = Adjacency([m1 + np.random.randn(12,12)*.5 for x in range(5)] + [np.zeros((12,12)) + np.random.randn(12,12)*.5 for x in range(5)] + [m1 + np.random.randn(12,12)*.5 for x in range(5)]) X = Design_Matrix([1]*5 + [0]*5 + [1]*5) f = X.plot() f.set_title('Model',fontsize=18) stats = data.regress(X) t = stats['t'].plot(vmin=2) plt.title('Significant Pixels',fontsize=18) ######################################################################### # Similarity/Distance # ------------------- # # We can calculate similarity between two Adjacency matrices using `.similiarity()`. stats = dat.similarity(m1) print(stats) ######################################################################### # We can also calculate the distance between multiple matrices contained within a single Adjacency object. Any distance metric is available from the `sci-kit learn <http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances.html>`_ by specifying the `method` flag. This outputs an Adjacency matrix. In the example below we see that several matrices are more similar to each other (i.e., when the signal is on). Remember that the nodes here now represent each matrix from the original distance matrix. dist = data.distance(method='correlation') f = dist.plot() ######################################################################### # Similarity matrices can be converted to and from Distance matrices using `.similarity_to_distance()` and `.distance_to_similarity()`. f = dist.distance_to_similarity().plot() ######################################################################### # Multidimensional Scaling # ------------------------ # # We can perform additional analyses on distance matrices such as multidimensional scaling. Here we provide an example to create a 3D multidimensional scaling plot of our data to see if the on and off matrices might naturally group together. dat = Adjacency(noisy, matrix_type='similarity',labels=['C1']*4 + ['C2']*4 + ['C3']*4) dist.labels = ['On']*5 + ['Off']*5 + ['On']*5 f = dist.plot_mds(n_components=3) ######################################################################### # Graphs # ------ # # Adjacency matrices can be cast to networkx objects using `.to_graph()` if the optional dependency is installed. This allows any graph theoretic metrics or plots to be easily calculated from Adjacency objects. import networkx as nx dat = Adjacency(m1+m2+m3, matrix_type='similarity') g = dat.to_graph() print('Degree of each node: %s' % g.degree()) nx.draw_circular(g)
mit
imaculate/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
petroniocandido/pyFTS
pyFTS/tests/hyperparam.py
1
5416
import numpy as np import pandas as pd from pyFTS.hyperparam import GridSearch, Evolutionary, mvfts as deho_mv from pyFTS.models import pwfts from pyFTS.models.multivariate import mvfts, wmvfts from pyFTS.models.seasonal.common import DateTime def get_dataset(): #from pyFTS.data import SONDA from pyFTS.data import Malaysia #data = [k for k in SONDA.get_data('ws_10m') if k > 0.1 and k != np.nan and k is not None] #data = [np.nanmean(data[k:k+60]) for k in np.arange(0,len(data),60)] #data = pd.read_csv('https://query.data.world/s/6xfb5useuotbbgpsnm5b2l3wzhvw2i', sep=';') data = Malaysia.get_dataframe() data['time'] = pd.to_datetime(data["time"], format='%m/%d/%y %I:%M %p') #return 'SONDA.ws_10m', data return 'Malaysia', data.iloc[:2000] #train, test #return 'Malaysia.temperature', data # train, test ''' hyperparams = { 'order':[3], 'partitions': np.arange(10,100,3), 'partitioner': [1], 'mf': [1], #, 2, 3, 4], 'lags': np.arange(2, 7, 1), 'alpha': np.arange(.0, .5, .05) } hyperparams = { 'order':[3], #[1, 2], 'partitions': np.arange(10,100,10), 'partitioner': [1,2], 'mf': [1] ,#, 2, 3, 4], 'lags': np.arange(1, 10), 'alpha': [.0, .3, .5] } ''' nodes = ['192.168.0.106', '192.168.0.110', '192.168.0.107'] datsetname, dataset = get_dataset() #GridSearch.execute(hyperparams, datsetname, dataset, nodes=nodes, # window_size=10000, train_rate=.9, increment_rate=1,) explanatory_variables =[ {'name': 'Temperature', 'data_label': 'temperature', 'type': 'common'}, {'name': 'Daily', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.minute_of_day, 'npart': 24 }, {'name': 'Weekly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_week, 'npart': 7 }, {'name': 'Monthly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_month, 'npart': 4 }, {'name': 'Yearly', 'data_label': 'time', 'type': 'seasonal', 'seasonality': DateTime.day_of_year, 'npart': 12 } ] target_variable = {'name': 'Load', 'data_label': 'load', 'type': 'common'} nodes=['192.168.28.38'] deho_mv.random_search(datsetname, dataset, ngen=200, mgen=70, window_size=2000, train_rate=.9, increment_rate=1, experiments=1, fts_method=wmvfts.WeightedMVFTS, variables=explanatory_variables, target_variable=target_variable, #distributed='dispy', nodes=nodes, parameters=dict(num_batches=5) #parameters=dict(distributed='dispy', nodes=nodes, num_batches=5) ) ''' deho_mv.execute(datsetname, dataset, ngen=20, npop=15,psel=0.6, pcross=.5, pmut=.3, window_size=2000, train_rate=.9, increment_rate=1, experiments=1, fts_method=wmvfts.WeightedMVFTS, variables=explanatory_variables, target_variable=target_variable, #distributed='dispy', nodes=nodes, parameters=dict(num_batches=5) #parameters=dict(distributed='dispy', nodes=nodes, num_batches=5) ) ''' ''' ret = Evolutionary.execute(datsetname, dataset, ngen=30, npop=20,psel=0.6, pcross=.5, pmut=.3, window_size=10000, train_rate=.9, increment_rate=.3, experiments=1, fts_method=pwfts.ProbabilisticWeightedFTS, database_file='experiments.db', distributed='dispy', nodes=nodes) ''' #res = GridSearch.cluster_method({'mf':1, 'partitioner': 1, 'npart': 10, 'lags':[1], 'alpha': 0.0, 'order': 1}, # dataset, window_size = 10000, train_rate = .9, increment_rate = 1) #print(res) #Evolutionary.cluster_method(dataset, 70, 20, .8, .3, 1) """ from pyFTS.models import hofts from pyFTS.partitioners import Grid from pyFTS.benchmarks import Measures fs = Grid.GridPartitioner(data=dataset[:800], npart=30) model = hofts.WeightedHighOrderFTS(partitioner=fs, order=2) model.fit(dataset[:800]) model.predict(dataset[800:1000]) Measures.get_point_statistics(dataset[800:1000], model) print(model) ret = Evolutionary.execute(datsetname, dataset, ngen=30, npop=20, pcruz=.5, pmut=.3, window_size=800, experiments=30) parameters={'distributed': 'spark', 'url': 'spark://192.168.0.106:7077'}) print(ret) from pyFTS.hyperparam import Evolutionary from pyFTS.data import SONDA data = np.array(SONDA.get_data('glo_avg')) data = data[~(np.isnan(data) | np.equal(data, 0.0))] dataset = data[:1000000] del(data) import pandas as pd df = pd.read_csv('https://query.data.world/s/i7eb73c4rluf2luasppsyxaurx5ol7', sep=';') dataset = df['glo_avg'].values from pyFTS.models import hofts from pyFTS.partitioners import Grid from pyFTS.benchmarks import Measures from time import time t1 = time() Evolutionary.execute('SONDA', dataset, ngen=20, mgen=5, npop=15, pcruz=.5, pmut=.3, window_size=35000, train_rate=.6, increment_rate=1, collect_statistics=True, experiments=5) #distributed='dispy', nodes=['192.168.0.110','192.168.0.106','192.168.0.107']) t2 = time() print(t2 - t1) """
gpl-3.0
mozman/ezdxf
src/ezdxf/addons/text2path.py
1
12266
# Copyright (c) 2021, Manfred Moitzi # License: MIT License from typing import Union, List, Dict, Tuple import enum from matplotlib.textpath import TextPath from matplotlib.font_manager import FontProperties, findfont from ezdxf.entities import Text, Attrib, Hatch from ezdxf.lldxf import const from ezdxf.math import Matrix44, BoundingBox from ezdxf import path from ezdxf.path import Path from ezdxf.tools import fonts from ezdxf.query import EntityQuery __all__ = [ "make_path_from_str", "make_paths_from_str", "make_hatches_from_str", "make_path_from_entity", "make_paths_from_entity", "make_hatches_from_entity", "virtual_entities", "explode", "Kind", ] AnyText = Union[Text, Attrib] VALID_TYPES = ("TEXT", "ATTRIB") def make_path_from_str( s: str, font: fonts.FontFace, size: float = 1.0, align: str = "LEFT", length: float = 0, m: Matrix44 = None, ) -> Path: """Convert a single line string `s` into a :term:`Multi-Path` object. The text `size` is the height of the uppercase letter "X" (cap height). The paths are aligned about the insertion point at (0, 0). BASELINE means the bottom of the letter "X". Args: s: text to convert font: font face definition as :class:`~ezdxf.tools.fonts.FontFace` object size: text size (cap height) in drawing units align: alignment as string, default is "LEFT" length: target length for the "ALIGNED" and "FIT" alignments m: transformation :class:`~ezdxf.math.Matrix44` .. versionadded:: 0.17 """ if len(s) == 0: return Path() font_properties, font_measurements = _get_font_data(font) # scale font rendering units to drawing units: render_size = size / font_measurements.cap_height p = _str_to_path(s, font_properties, render_size) bbox = path.bbox([p], flatten=0) # Text is rendered in drawing units, # therefore do alignment in drawing units: draw_units_fm = font_measurements.scale_from_baseline(size) matrix = alignment_transformation(draw_units_fm, bbox, align, length) if m is not None: matrix *= m return p.transform(matrix) def make_paths_from_str( s: str, font: fonts.FontFace, size: float = 1.0, align: str = "LEFT", length: float = 0, m: Matrix44 = None, ) -> List[Path]: """Convert a single line string `s` into a list of :class:`~ezdxf.path.Path` objects. All paths are returned as a list of :term:`Single-Path` objects. The text `size` is the height of the uppercase letter "X" (cap height). The paths are aligned about the insertion point at (0, 0). BASELINE means the bottom of the letter "X". Args: s: text to convert font: font face definition as :class:`~ezdxf.tools.fonts.FontFace` object size: text size (cap height) in drawing units align: alignment as string, default is "LEFT" length: target length for the "ALIGNED" and "FIT" alignments m: transformation :class:`~ezdxf.math.Matrix44` """ if len(s) == 0: return [] p = make_path_from_str(s, font, size, align, length, m) return list(p.sub_paths()) def _get_font_data( font: fonts.FontFace, ) -> Tuple[FontProperties, fonts.FontMeasurements]: fp = FontProperties( family=font.family, style=font.style, stretch=font.stretch, weight=font.weight, ) ttf_path = findfont(fp) fonts.load() # not expensive if already loaded # The ttf file path is the cache key for font measurements: fm = fonts.get_font_measurements(ttf_path) return fp, fm def _str_to_path(s: str, fp: FontProperties, size: float = 1.0) -> Path: text_path = TextPath((0, 0), s, size=size, prop=fp, usetex=False) return path.multi_path_from_matplotlib_path(text_path) def alignment_transformation( fm: fonts.FontMeasurements, bbox: BoundingBox, align: str, length: float ) -> Matrix44: """Returns the alignment transformation matrix to transform a basic text path at location (0, 0) and alignment "LEFT" into the final text path of the given alignment. For the alignments FIT and ALIGNED defines the argument `length` the total length of the final text path. The given bounding box defines the rendering borders of the basic text path. """ halign, valign = const.TEXT_ALIGN_FLAGS[align.upper()] matrix = basic_alignment_transformation(fm, bbox, halign, valign) stretch_x = 1.0 stretch_y = 1.0 if align == "ALIGNED": stretch_x = length / bbox.size.x stretch_y = stretch_x elif align == "FIT": stretch_x = length / bbox.size.x if stretch_x != 1.0: matrix *= Matrix44.scale(stretch_x, stretch_y, 1.0) return matrix def basic_alignment_transformation( fm: fonts.FontMeasurements, bbox: BoundingBox, halign: int, valign: int ) -> Matrix44: if halign == const.LEFT: shift_x = 0 elif halign == const.RIGHT: shift_x = -bbox.extmax.x elif halign == const.CENTER or halign > 2: # ALIGNED, MIDDLE, FIT shift_x = -bbox.center.x else: raise ValueError(f"invalid halign argument: {halign}") cap_height = fm.cap_height descender_height = fm.descender_height if valign == const.BASELINE: shift_y = 0 elif valign == const.TOP: shift_y = -cap_height elif valign == const.MIDDLE: shift_y = -cap_height / 2 elif valign == const.BOTTOM: shift_y = descender_height else: raise ValueError(f"invalid valign argument: {valign}") if halign == 4: # MIDDLE shift_y = -cap_height + fm.total_height / 2.0 return Matrix44.translate(shift_x, shift_y, 0) def make_hatches_from_str( s: str, font: fonts.FontFace, size: float = 1.0, align: str = "LEFT", length: float = 0, dxfattribs: Dict = None, m: Matrix44 = None, ) -> List[Hatch]: """Convert a single line string `s` into a list of virtual :class:`~ezdxf.entities.Hatch` entities. The text `size` is the height of the uppercase letter "X" (cap height). The paths are aligned about the insertion point at (0, 0). The HATCH entities are aligned to this insertion point. BASELINE means the bottom of the letter "X". Args: s: text to convert font: font face definition as :class:`~ezdxf.tools.fonts.FontFace` object size: text size (cap height) in drawing units align: alignment as string, default is "LEFT" length: target length for the "ALIGNED" and "FIT" alignments dxfattribs: additional DXF attributes m: transformation :class:`~ezdxf.math.Matrix44` """ # HATCH is an OCS entity, transforming just the polyline paths # is not correct! The Hatch has to be created in the xy-plane! paths = make_paths_from_str(s, font, size, align, length) dxfattribs = dxfattribs or dict() dxfattribs.setdefault("solid_fill", 1) dxfattribs.setdefault("pattern_name", "SOLID") dxfattribs.setdefault("color", const.BYLAYER) hatches = path.to_hatches(paths, edge_path=True, dxfattribs=dxfattribs) if m is not None: # Transform HATCH entities as a unit: return [hatch.transform(m) for hatch in hatches] else: return list(hatches) def check_entity_type(entity): if entity is None: raise TypeError("entity is None") elif not entity.dxftype() in VALID_TYPES: raise TypeError(f"unsupported entity type: {entity.dxftype()}") def make_path_from_entity(entity: AnyText) -> Path: """Convert text content from DXF entities TEXT and ATTRIB into a :term:`Multi-Path` object. The paths are located at the location of the source entity. .. versionadded:: 0.17 """ check_entity_type(entity) fonts.load() text = entity.plain_text() p = make_path_from_str( text, fonts.get_font_face(entity.font_name()), size=entity.dxf.height, # cap height in drawing units align=entity.get_align(), length=entity.fit_length(), ) m = entity.wcs_transformation_matrix() return p.transform(m) def make_paths_from_entity(entity: AnyText) -> List[Path]: """Convert text content from DXF entities TEXT and ATTRIB into a list of :class:`~ezdxf.path.Path` objects. All paths are returned as a list of :term:`Single-Path` objects. The paths are located at the location of the source entity. """ return list(make_path_from_entity(entity).sub_paths()) def make_hatches_from_entity(entity: AnyText) -> List[Hatch]: """Convert text content from DXF entities TEXT and ATTRIB into a list of virtual :class:`~ezdxf.entities.Hatch` entities. The hatches are placed at the same location as the source entity and have the same DXF attributes as the source entity. """ check_entity_type(entity) extrusion = entity.dxf.extrusion attribs = entity.graphic_properties() paths = make_paths_from_entity(entity) return list( path.to_hatches( paths, edge_path=True, extrusion=extrusion, dxfattribs=attribs, ) ) @enum.unique class Kind(enum.IntEnum): """The :class:`Kind` enum defines the DXF types to create as bit flags, e.g. 1+2 to get HATCHES as filling and SPLINES and POLYLINES as outline: === =========== ============================== Int Enum Description === =========== ============================== 1 HATCHES :class:`~ezdxf.entities.Hatch` entities as filling 2 SPLINES :class:`~ezdxf.entities.Spline` and 3D :class:`~ezdxf.entities.Polyline` entities as outline 4 LWPOLYLINES :class:`~ezdxf.entities.LWPolyline` entities as approximated (flattened) outline === =========== ============================== """ HATCHES = 1 SPLINES = 2 LWPOLYLINES = 4 def virtual_entities(entity: AnyText, kind: int = Kind.HATCHES) -> EntityQuery: """Convert the text content of DXF entities TEXT and ATTRIB into virtual SPLINE and 3D POLYLINE entities or approximated LWPOLYLINE entities as outlines, or as HATCH entities as fillings. Returns the virtual DXF entities as an :class:`~ezdxf.query.EntityQuery` object. Args: entity: TEXT or ATTRIB entity kind: kind of entities to create as bit flags, see enum :class:`Kind` """ check_entity_type(entity) extrusion = entity.dxf.extrusion attribs = entity.graphic_properties() entities = [] if kind & Kind.HATCHES: entities.extend(make_hatches_from_entity(entity)) if kind & (Kind.SPLINES + Kind.LWPOLYLINES): paths = make_paths_from_entity(entity) if kind & Kind.SPLINES: entities.extend( path.to_splines_and_polylines(paths, dxfattribs=attribs) ) if kind & Kind.LWPOLYLINES: entities.extend( path.to_lwpolylines( paths, extrusion=extrusion, dxfattribs=attribs ) ) return EntityQuery(entities) def explode( entity: AnyText, kind: int = Kind.HATCHES, target=None ) -> EntityQuery: """Explode the text `entity` into virtual entities, see :func:`virtual_entities`. The source entity will be destroyed. The target layout is given by the `target` argument, if `target` is ``None``, the target layout is the source layout of the text entity. Returns the created DXF entities as an :class:`~ezdxf.query.EntityQuery` object. Args: entity: TEXT or ATTRIB entity to explode kind: kind of entities to create as bit flags, see enum :class:`Kind` target: target layout for new created DXF entities, ``None`` for the same layout as the source entity. """ entities = virtual_entities(entity, kind) # Explicit check for None is required, because empty layouts are also False if target is None: target = entity.get_layout() entity.destroy() if target is not None: for e in entities: target.add_entity(e) return EntityQuery(entities)
mit
flohorovicic/pygeomod
pygeomod/struct_data.py
3
17593
"""Analysis and modification of structural data exported from GeoModeller All structural data from an entire GeoModeller project can be exported into ASCII files using the function in the GUI: Export -> 3D Structural Data This method generates files for defined geological parameters: "Points" (i.e. formation contact points) and "Foliations" (i.e. orientations/ potential field gradients). Exported parameters include all those defined in sections as well as 3D data points. This package contains methods to check, visualise, and extract/modify parts of these exported data sets, for example to import them into a different Geomodeller project. """ # import os, sys import numpy as np import numpy.random import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D class Struct3DPoints(): """Class container for 3D structural points data sets""" def __init__(self, **kwds): """Structural points data set **Optional keywords**: - *filename* = string : filename of csv file with exported points to load """ # store point information in purpose defined numpy record self.ptype = np.dtype([('x', np.float32), ('y', np.float32), ('z', np.float32), ('formation', np.str_, 32)]) if kwds.has_key("filename"): self.filename = kwds['filename'] # read data self.parse() self.get_formation_names() self.get_range() def parse(self): """Parse filename and load data into numpy record The point information is stored in a purpose defined numpy record self.points """ f = open(self.filename, "r") lines = f.readlines() self.header = lines[0] # determine position of elements in header (for extension to foliations, etc.) h_elem = np.array(self.header.rstrip().split(',')) x_id = np.where(h_elem == 'X')[0] y_id = np.where(h_elem == 'Y')[0] z_id = np.where(h_elem == 'Z')[0] form_id = np.where(h_elem == 'formation')[0] # print x_id # create numpy array for points self.len = (len(lines)-1) self.points = np.ndarray(self.len, dtype = self.ptype) for i,line in enumerate(lines[1:]): l = line.rstrip().split(',') self.points[i]['x'] = float(l[x_id]) self.points[i]['y'] = float(l[y_id]) self.points[i]['z'] = float(l[z_id]) self.points[i]['formation'] = l[form_id] def get_formation_names(self): """Get names of all formations that have a point in this data set and store in: self.formation_names """ # self.formation_names = np.unique(self.formations) self.formation_names = np.unique(self.points[:]['formation']) def get_range(self): """Update min, max for all coordinate axes and store in self.xmin, self.xmax, ...""" self.xmin = np.min(self.points['x']) self.ymin = np.min(self.points['y']) self.zmin = np.min(self.points['z']) self.xmax = np.max(self.points['x']) self.ymax = np.max(self.points['y']) self.zmax = np.max(self.points['z']) def create_formation_subset(self, formation_names): """Create a subset (as another Struct3DPoints object) with specified formations only **Arguments**: - *formation_names* : list of formation names **Returns**: Struct3DPoints object with subset of points """ # create new object # reference to own class type for consistency with Struct3DFoliations pts_subset = self.__class__() # determine ids for all points of these formations: ids = np.ndarray((self.len), dtype='bool') ids[:] = False if type(formation_names) == list: for formation in formation_names: ids[self.points['formation'] == formation] = True else: ids[self.points['formation'] == formation_names] = True # new length is identical to sum of ids bool array (all True elements) pts_subset.len = np.sum(ids) # extract points pts_subset.points = self.points[ids] # update range pts_subset.get_range() # update formation names pts_subset.get_formation_names() # get header from original pts_subset.header = self.header return pts_subset def remove_formations(self, formation_names): """Remove points for specified formations from the point set This function can be useful, for example, to remove one formation, perform a thinning operation, and then add it back in with the `combine_with` function. **Arguments**: - *formation_names* = list of formations to be removed (or a single string to remove only one formation) """ # Note: implementation is very similar to create_formation_subset, only inverse # and changes in original point set! # determine ids for all points of these formations: ids = np.ndarray((self.len), dtype='bool') ids[:] = True if type(formation_names) == list: for formation in formation_names: ids[self.points['formation'] == formation] = False else: ids[self.points['formation'] == formation_names] = False self.len = np.sum(ids) # extract points self.points = self.points[ids] # update range self.get_range() # update formation names self.get_formation_names() def rename_formations(self, rename_dict): """Rename formation according to assignments in dictionary Mapping in dictionary is of the form: old_name_1 : new_name_1, old_name_2 : new_name_2, ... """ for k,v in rename_dict.items(): print("Change name from %s to %s" % (k,v)) for p in self.points: if p['formation'] == k: p['formation'] = v # update formation names self.get_formation_names() def extract_range(self, **kwds): """Extract subset for defined ranges Pass ranges as keywords: from_x, to_x, from_y, to_y, from_z, to_z All not defined ranges are simply kept as before **Returns**: pts_subset : Struct3DPoints data subset """ from_x = kwds.get("from_x", self.xmin) from_y = kwds.get("from_y", self.ymin) from_z = kwds.get("from_z", self.zmin) to_x = kwds.get("to_x", self.xmax) to_y = kwds.get("to_y", self.ymax) to_z = kwds.get("to_z", self.zmax) # create new object # pts_subset = Struct3DPoints() pts_subset = self.__class__() # determine ids for points in range ids = np.ndarray((self.len), dtype='bool') ids[:] = False ids[(self.points['x'] >= from_x) * (self.points['y'] >= from_y) * (self.points['z'] >= from_z) * (self.points['x'] <= to_x) * (self.points['y'] <= to_y) * (self.points['z'] <= to_z)] = True # new length is identical to sum of ids bool array (all True elements) pts_subset.len = np.sum(ids) # extract points pts_subset.points = self.points[ids] # update range pts_subset.get_range() # update formation names pts_subset.get_formation_names() # get header from original pts_subset.header = self.header return pts_subset def thin(self, nx, ny, nz, **kwds): """Thin data for one formations on grid with defined number of cells and store as subset **Arguments**: - *nx*, *ny*, *nz* = int : number of cells in each direction for thinning grid The thinning is performed on a raster and not 'formation-aware', following this simple procedure: (1) Iterate through grid (2) If multiple points for formation in this cell: thin (3a) If thin: Select one point in cell at random and keep this one! (3b) else: if one point in raneg, keep it! Note: Thinning is performed for all formations, so make sure to create a subset for a single formation first! **Returns**: pts_subset = Struct3DPoints : subset with thinned data for formation """ # DEVNOTE: This would be an awesome function to parallelise! Should be quite simple! # first step: generate subset # pts_subset = self.create_formation_subset([formation]) # create new pointset: # reference to own class type for consistency with Struct3DFoliations pts_subset = self.__class__() # determine cell boundaries of subset for thinning: delx = np.ones(nx) * (self.xmax - self.xmin) / nx bound_x = self.xmin + np.cumsum(delx) dely = np.ones(ny) * (self.ymax - self.ymin) / ny bound_y = self.ymin + np.cumsum(dely) delz = np.ones(nz) * (self.zmax - self.zmin) / nz bound_z = self.zmin + np.cumsum(delz) ids_to_keep = [] for i in range(nx-1): for j in range(ny-1): for k in range(nz-1): # determin number of points in this cell ids = np.ndarray((self.len), dtype='bool') ids[:] = False ids[(self.points['x'] > bound_x[i]) * (self.points['y'] > bound_y[j]) * (self.points['z'] > bound_z[k]) * (self.points['x'] < bound_x[i+1]) * (self.points['y'] < bound_y[j+1]) * (self.points['z'] < bound_z[k+1])] = True if np.sum(ids) > 1: # Thinning required! # keep random point ids_to_keep.append(numpy.random.choice(np.where(ids)[0])) # pts_subset.points[nx * ny * i + ny * j + k] = self.points[id_to_keep] # assign to new pointset: elif np.sum(ids) == 1: # keep the one point, of course! # pts_subset.points[nx * ny * i + ny * j + k] = self.points[ids[0]] ids_to_keep.append(ids[0]) # now get points for all those ids: # extract points pts_subset.points = self.points[np.array(ids_to_keep)] # update range pts_subset.get_range() # update length pts_subset.len = len(pts_subset.points) # update formation names pts_subset.get_formation_names() # get header from original pts_subset.header = self.header return pts_subset def combine_with(self, pts_set): """Combine this point set with another point set **Arguments**: - *pts_set* = Struct3DPoints : points set to combine """ self.points = np.concatenate((self.points, pts_set.points)) # update range and everything self.get_range() self.get_formation_names() self.len = len(self.points) def plot_plane(self, plane=('x','y'), **kwds): """Create 2-D plots for point distribution **Arguments**: - *plane* = tuple of plane axes directions, e.g. ('x','y') (default) **Optional Keywords**: - *ax* = matplotlib axis object: if provided, plot is attached to this axis - *formation_names* = list of formations : plot only points for specific formations """ color = kwds.get("color", 'b') if kwds.has_key("ax"): # axis is provided, attach here ax = kwds['ax'] else: fig = plt.figure() ax = fig.add_subplot(111) if kwds.has_key("formation_names"): pts_subset = self.create_formation_subset(kwds['formation_names']) ax.plot(pts_subset.points[:][plane[0]], pts_subset.points[:][plane[1]], '.', color = color) else: ax.plot(self.points[:][plane[0]], self.points[:][plane[1]], '.', color = color) def plot_3D(self, **kwds): """Create a plot of points in 3-D **Optional keywords**: - *ax* = matplotlib axis object: if provided, plot is attached to this axis - *formation_names* = list of formations : plot only points for specific formations """ if kwds.has_key("ax"): # axis is provided, attach here ax = kwds['ax'] else: fig = plt.figure(figsize = (10,8)) ax = fig.add_subplot(111, projection='3d') if kwds.has_key("formation_names"): # create a subset with speficied formations, only pts_subset = self.create_formation_subset(kwds['formation_names']) pts_subset.plot_3D(ax = ax) else: # plot all ax.scatter(self.points['x'], self.points['y'], self.points['z']) def save(self, filename): """Save points set to file **Arguments**: - *filename* = string : name of new file """ f = open(filename, 'w') f.write(self.header) for point in self.points: f.write("%.2f,%.2f,%.3f,%s\n" % (point['x'], point['y'], point['z'], point['formation'])) f.close() class Struct3DFoliations(Struct3DPoints): """Class container for foliations (i.e. orientations) exported from GeoModeller Mainly based on Struct3DPoints as must required functionality for location of elements - some functions overwritten, e.g. save and parse to read orientation data, as well! However, further methods might be added or adapted in the future, for example: - downsampling according to (eigen)vector methods, e.g. the work from the Monash guys, etc. - ploting of orientations in 2-D and 3-D """ def __init__(self, **kwds): """Structural points data set **Optional keywords**: - *filename* = string : filename of csv file with exported points to load """ # store point information in purpose defined numpy record self.ftype = np.dtype([('x', np.float32), ('y', np.float32), ('z', np.float32), ('azimuth', np.float32), ('dip', np.float32), ('polarity', np.int), ('formation', np.str_, 32)]) if kwds.has_key("filename"): self.filename = kwds['filename'] # read data self.parse() self.get_formation_names() self.get_range() def parse(self): """Parse filename and load data into numpy record The point information is stored in a purpose defined numpy record self.points """ f = open(self.filename, "r") lines = f.readlines() self.header = lines[0] # determine position of elements in header (for extension to foliations, etc.) h_elem = np.array(self.header.rstrip().split(',')) x_id = np.where(h_elem == 'X')[0] y_id = np.where(h_elem == 'Y')[0] z_id = np.where(h_elem == 'Z')[0] azi_id = np.where(h_elem == 'azimuth')[0] dip_id = np.where(h_elem == 'dip')[0] pol_id = np.where(h_elem == 'polarity')[0] form_id = np.where(h_elem == 'formation')[0] # print x_id # create numpy array for points self.len = (len(lines)-1) self.points = np.ndarray(self.len, dtype = self.ftype) for i,line in enumerate(lines[1:]): l = line.rstrip().split(',') self.points[i]['x'] = float(l[x_id]) self.points[i]['y'] = float(l[y_id]) self.points[i]['z'] = float(l[z_id]) self.points[i]['azimuth'] = float(l[azi_id]) self.points[i]['dip'] = float(l[dip_id]) self.points[i]['polarity'] = float(l[pol_id]) self.points[i]['formation'] = l[form_id] def save(self, filename): """Save points set to file **Arguments**: - *filename* = string : name of new file """ f = open(filename, 'w') f.write(self.header) for point in self.points: f.write("%.2f,%.2f,%.3f,%.3f,%.3f,%d,%s\n" % (point['x'], point['y'], point['z'], point['azimuth'], point['dip'], point['polarity'], point['formation'])) f.close() if __name__ == '__main__': pass
mit
BhallaLab/moose-core
python/moose/helper.py
4
2432
"""helper.py: Some helper functions which are compatible with both python2 and python3. """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2017-, Dilawar Singh" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import os import re import subprocess def execute(cmd): """execute: Execute a given command. :param cmd: string, given command. Return: ------ Return a iterator over output. """ popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def find_files( dirname, ext=None, name_contains=None, text_regex_search=None): files = [] for d, sd, fs in os.walk(dirname): for f in fs: fpath = os.path.join(d,f) include = True if ext is not None: if f.split('.')[-1] != ext: include = False if name_contains: if name_contains not in os.path.basename(f): include = False if text_regex_search: with open(fpath, 'r' ) as f: txt = f.read() if re.search(text_regex_search, txt) is None: include = False if include: files.append(fpath) return files # Matplotlib text for running simulation. It make sures at each figure is saved # to individual png files. matplotlibText = """ print( '>>>> saving all figues') import matplotlib.pyplot as plt def multipage(filename, figs=None, dpi=200): pp = PdfPages(filename) if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for fig in figs: fig.savefig(pp, format='pdf') pp.close() def saveall(prefix='results', figs=None): if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for i, fig in enumerate(figs): outfile = '%s.%d.png' % (prefix, i) fig.savefig(outfile) print( '>>>> %s saved.' % outfile ) plt.close() try: saveall() except Exception as e: print( '>>>> Error in saving: %s' % e ) quit(0) """
gpl-3.0
dseuss/pythonlibs
tools/plot.py
1
3843
#!/usr/bin/env python # encoding: utf-8 """Tools making everyday plotting tasks easier.""" from __future__ import division, print_function from math import ceil import numpy as np from matplotlib import pyplot as pl from mpl_toolkits.axes_grid1 import make_axes_locatable, ImageGrid def plot(function, intervall, num=500, axis=None, **kwargs): """Plots the function f on the axisis axis on the intervall (xmin, xmaxis) :param function: Functions or list of function to plot :param intervall: Intervall to plot function on (xmin, xmaxis) :param num: Number of points used for the plot (default 500) :param axis: Axis to plot on (default current axisis) :returns: Plot (or list of plots) """ if hasattr(function, '__iter__'): return [plot(f, intervall, num, axis, **kwargs) for f in function] else: x = np.linspace(*intervall, num=num) axis = pl.gca() if axis is None else axis return axis.plot(x, function(x), **kwargs) def _imshow_formater(arr): """Creates a formating function to show the values of imshow in the status bar. :param arr: Array to be shown :returns: function formater(x, y) that should be set to ax.format_coord """ def format_coord(x, y): col, row = int(x + .5), int(y + .5) if (col >= 0) and (col < arr.shape[1]) \ and (row >= 0) and (row < arr.shape[0]): return "x={}, y={}, val={}".format(col, row, arr[row, col]) else: return "x={}, y={}".format(col, row) return format_coord def imshow(img, fig=None, **kwargs): """Shows the image `img` passed as numpy array in a much prettier way :param np.ndarray img: Image to show passed as RGB or grayscale image :param ax: Axis to use for plot (default: current axis) :param bool show: Whether to call pl.show() afterwards :param kwargs: Keyword arguments passed to imshow """ assert 'interpolation' not in kwargs fig = fig if fig is not None else pl.gcf() ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') ax.imshow(img, interpolation='nearest', **kwargs) return fig def imsshow(images, grid=None, **kwargs): if grid is None: grid = (min(len(images), 5), -1) assert any(g > 0 for g in grid) grid_x = grid[0] if grid[0] > 0 else ceil(len(images) / grid[1]) grid_y = grid[1] if grid[1] > 0 else ceil(len(images) / grid[0]) axes = ImageGrid(pl.gcf(), "111", (grid_y, grid_x), share_all=True) for ax, img in zip(axes, images): ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.imshow(img, **kwargs) return axes def rgb2gray(img): """Converts a RGB encoded image to grayscale :param img: n-dim Array, with the last dimension of size 3 encoding RGB :returns: (n-1) dim Array of shape img.shape[:-1] """ return np.dot(img, (0.2989, 0.5870, 0.1140)) def matshow(mat, ax=None, show=True, **kwargs): """Shows the real matrix mat as img -- similar to imshow, but with different defaults :param np.ndarray img: Image to show passed as RGB or grayscale image :param ax: Axis to use for plot (default: current axis) :param bool show: Whether to call pl.show() afterwards :param kwargs: Keyword arguments passed to imshow """ if ax is None: ax = pl.gca() ax.grid(False) # ax.set_xticklabels([]) # ax.set_yticklabels([]) res = ax.imshow(mat, interpolation='nearest', **kwargs) ax.axis((-.5, mat.shape[1] - .5, mat.shape[0] - .5, -.5)) ax.format_coord = _imshow_formater(mat) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cb = pl.colorbar(res, cax=cax) cb.ax.tick_params(axis='y', direction='out') if show: pl.show() return res
unlicense
Srisai85/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
MechCoder/scikit-learn
examples/preprocessing/plot_function_transformer.py
158
1993
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.show()
bsd-3-clause
ofgulban/scikit-image
skimage/io/tests/test_plugin.py
11
3427
from contextlib import contextmanager from numpy.testing import assert_equal, raises from skimage import io from skimage.io import manage_plugins io.use_plugin('pil') priority_plugin = 'pil' def setup_module(): manage_plugins.use_plugin('test') # see ../_plugins/test_plugin.py def teardown_module(): io.reset_plugins() @contextmanager def protect_preferred_plugins(): """Contexts where `preferred_plugins` can be modified w/o side-effects.""" preferred_plugins = manage_plugins.preferred_plugins.copy() try: yield finally: manage_plugins.preferred_plugins = preferred_plugins def test_read(): io.imread('test.png', as_grey=True, dtype='i4', plugin='test') def test_save(): io.imsave('test.png', [1, 2, 3], plugin='test') def test_show(): io.imshow([1, 2, 3], plugin_arg=(1, 2), plugin='test') def test_collection(): ic = io.imread_collection('*.png', conserve_memory=False, plugin='test') io.imshow_collection(ic) def test_use(): manage_plugins.use_plugin('test') manage_plugins.use_plugin('test', 'imshow') @raises(ValueError) def test_failed_use(): manage_plugins.use_plugin('asd') def test_use_priority(): manage_plugins.use_plugin(priority_plugin) plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, priority_plugin) manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') def test_use_priority_with_func(): manage_plugins.use_plugin('pil') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test', 'imread') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'test') def test_plugin_order(): p = io.plugin_order() assert 'imread' in p assert 'test' in p['imread'] def test_available(): assert 'qt' in io.available_plugins assert 'test' in io.find_available_plugins(loaded=True) def test_load_preferred_plugins_all(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins = {'all': ['pil'], 'imshow': ['matplotlib']} manage_plugins.reset_plugins() for plugin_type in ('imread', 'imsave'): plug, func = manage_plugins.plugin_store[plugin_type][0] assert func == getattr(pil_plugin, plugin_type) plug, func = manage_plugins.plugin_store['imshow'][0] assert func == getattr(matplotlib_plugin, 'imshow') def test_load_preferred_plugins_imread(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins['imread'] = ['pil'] manage_plugins.reset_plugins() plug, func = manage_plugins.plugin_store['imread'][0] assert func == pil_plugin.imread plug, func = manage_plugins.plugin_store['imshow'][0] assert func == matplotlib_plugin.imshow, func.__module__ if __name__ == "__main__": from numpy.testing import run_module_suite run_module_suite()
bsd-3-clause
russel1237/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
madjelan/scikit-learn
sklearn/tests/test_pipeline.py
162
14875
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False) )) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
OlympusMonds/PTA
public_transport_analyser/database/db_analyser.py
1
7337
""" Mostly for debugging for now, this script uses matplotlib to plot origins, destinations, and their links. Eventually it will plot the ratio of driving vs. transit for various times. It is also a prototype for the website that will no double come later. """ import sys import os import pony.orm as pny from public_transport_analyser.database.database import Origin, Destination, Trip, init def mess(): with pny.db_session: o = Origin.select_random(limit=1)[0] print(o.location) def count_origins(): with pny.db_session: origins = pny.select(pny.count(o) for o in Origin).first() return origins def count_destinations(): with pny.db_session: destinations = pny.select(pny.count(d) for d in Destination).first() return destinations def count_trips(): with pny.db_session: trips = pny.select(pny.count(t) for t in Trip).first() return trips def delete_bad_routes(): num_bad_origins = 0 with pny.db_session: origins = pny.select(o for o in Origin)[:] for o in origins: if len(o.destinations) <= 1: num_bad_origins += 1 for d in o.destinations: for t in d.trips: t.delete() d.delete() o.delete() return num_bad_origins def count_bad_routes(): num_bad_origins = 0 with pny.db_session: origins = pny.select(o for o in Origin)[:] for o in origins: if len(o.destinations) <= 1: num_bad_origins += 1 return num_bad_origins def origin_bench(): lonlats = [] with pny.db_session: #origins = pny.select(o for o in Origin)[:] origins = pny.select((o.location, pny.count(o.destinations)) for o in Origin)[:] #for o in origins: # lat, lon = map(float, o.location.split(",")) # lonlats.append((lon, lat, len(o.destinations))) print(origins) for i in origins: print(i)#, len(i.destinations)) def origin_stats(): max_dests = -1 min_dests = 1e6 avg_dests = 0 count = 0 max_route = None with pny.db_session: origins = pny.select(o for o in Origin)[:] for o in origins: num_dests = len(o.destinations) if num_dests > max_dests: max_dests = num_dests max_route = "{}".format(o.location) min_dests = min(min_dests, num_dests) avg_dests += num_dests count += 1 return max_dests, min_dests, avg_dests/float(count), max_route def avg_ratio(): ratios = [] with pny.db_session: origins = pny.select(o for o in Origin)[:] for o in origins: for d in o.destinations: pt_avg = [] driving = None for t in d.trips: if t.mode == "transit": pt_avg.append(float(t.duration)) else: driving = float(t.duration) if pt_avg and driving: pt_avg = sum(pt_avg) / len(pt_avg) if pt_avg != 0: ratios.append(driving / pt_avg) else: print(" error: route {}_{} has an average transit duration of 0".format(o, d)) for t in d.trips: print(" mode: {}, duration: {}, distance: {}".format(t.mode, t.duration, t.distance)) return ratios def route_stats(): max_trips = -1 min_trips = 1e6 avg_trips = 0 count = 0 max_route = None min_route = None with pny.db_session: origins = pny.select(o for o in Origin)[:] for o in origins: for d in o.destinations: num_trips = len(d.trips) if num_trips > max_trips: max_trips = num_trips max_route = "{}_{}".format(o.location, d.location) if num_trips < min_trips: min_trips = num_trips min_route = "{}_{}".format(o.location, d.location) avg_trips += num_trips count += 1 return max_trips, min_trips, avg_trips/float(count), max_route, min_route def count_each_origins_destinations(): with pny.db_session: #oc = pny.select((o, pny.avg(t.duration)) for o in Origin ## for d in o.destinations # for t in d.trips if t.mode == "transit")[:] #dc = pny.select((d.origin, pny.avg(t.duration)) for d in Destination # for t in d.trips if t.mode == "transit").without_distinct()[:] #dc2 = pny.select((d.id, d.origin, pny.avg(t.duration)) for d in Destination # for t in d.trips if t.mode == "transit")[:] origins = pny.select(( d.origin.location, pny.avg(t.duration for t in d.trips if t.mode == "transit"), pny.avg(t.duration for t in d.trips if t.mode == "driving") ) for d in Destination)[:] print(len(origins)) origins = pny.select(( o.location, pny.avg(t.duration for d in o.destinations for t in d.trips if t.mode == "driving"), pny.avg(t.duration for d in o.destinations for t in d.trips if t.mode == "transit") ) for o in Origin )[:] print(len(origins)) # pny.select((d.id, d.origin, pny.avg(t.duration)) # for t in d.trips if t.mode == "transit"), # # pny.select((d.id, d.origin, t.duration) # for t in d.trips if t.mode == "driving") #print(len(oc)) #print(len(dc)) #print(len(dc2)) print("Query") fails = [] for i, o in enumerate(origins): print(i, o) print("\n".join(map(str, fails))) # for a, b in sorted(dc, key=lambda x: x[0]): # print(a) def analyser(): count_each_origins_destinations() #mess() """ print("Number of origins: {}".format(count_origins())) print("Number of destinations: {}".format(count_destinations())) print("Number of trips: {}".format(count_trips())) print("Number of bad origins: {}".format(count_bad_routes())) max_dests, min_dests, avg_dests, max_route = origin_stats() print("Max destinations on a route: {} ({})".format(max_dests, max_route)) print("Min destinations on a route: {}".format(min_dests)) print("Avg destinations on a route: {}".format(avg_dests)) ratios = avg_ratio() print("Avg ratio for all routes: {}".format(sum(ratios) / len(ratios))) delete_bad_routes() """ """ max_trips, min_trips, avg_trips, max_route, min_route = route_stats() print("Max trips on a route: {} ({})".format(max_trips, max_route)) print("Min trips on a route: {} ({})".format(min_trips, min_route)) print("Avg trips on a route: {}".format(avg_trips)) """ if __name__ == "__main__": init() sys.exit(analyser())
gpl-3.0
ssaeger/scikit-learn
examples/svm/plot_svm_nonlinear.py
268
1091
""" ============== Non-linear SVM ============== Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned by the SVC. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) np.random.seed(0) X = np.random.randn(300, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model clf = svm.NuSVC() clf.fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.show()
bsd-3-clause
binghongcha08/pyQMD
QMC/MC_exchange/permute4d/dissipation/2.5/en.py
15
1291
import numpy as np import pylab as plt import matplotlib.pyplot as plt import matplotlib as mpl #data = np.genfromtxt(fname='/home/bing/dissipation/energy.dat') data = np.genfromtxt(fname='energy.dat') fig, (ax1,ax2) = plt.subplots(ncols=1, nrows=2, sharex=True) #font = {'family' : 'ubuntu', # 'weight' : 'normal', # 'size' : '16'} #mpl.rc('font', **font) # pass in the font dict as kwargs mpl.rcParams['font.size'] = 12 #mpl.rcParams['figure.figsize'] = 8,6 #pl.title('two-steps fitting alg') ax1.set_ylabel('Energy [hartree]') ax1.plot(data[:,0],data[:,2],'b--',linewidth=2,label='Potential') #pl.plot(dat[:,0],dat[:,2],'r-',linewidth=2) ax1.plot(data[:,0],data[:,3],'g-.',linewidth=2,label='Quantum Potential') ax1.plot(data[:,0],data[:,4],'k-',linewidth=2,label='Energy') #pl.legend(bbox_to_anchor=(0.5, 0.38, 0.42, .302), loc=3,ncol=1, mode="expand", borderaxespad=0.) #ax1.set_yticks((0.4,0.6,0.8)) ax1.legend(loc=0) #ax1.set_ylim(0,5) ax2.set_xlabel('time [a.u.]') ax2.set_ylabel('Energy [hartree]') ax2.plot(data[:,0],data[:,1],'r--',linewidth=2,label='$Kinetic$') #pl.plot(dat[:,0],dat[:,1],'k-',linewidth=2) ax2.set_yscale('log') #ax2.set_xticks((0,4,8)) #ax2.set_yticks((1e-7,1e-5,1e-3)) plt.legend(loc=0) plt.subplots_adjust(hspace=0.) plt.show()
gpl-3.0
BigUtrecht/BigUtrecht
analysis/budget.py
1
2474
from sys import maxsize import matplotlib.pyplot as plt from pyspark.sql import functions as F from pyspark.sql.window import Window from constants.spark import * from etl import parquet def createOverallBudget(): """ Overall budget analysis function Calculates the overall budget :return: None """ with Session() as spark: flow = parquet.readResults(spark, "flow") flow.registerTempTable('flow') globalflow = spark.sql( "SELECT Timestamp, max(Datum) Datum, max(Tijd) Tijd, sum(Flow) Flow, sum(Volume) Volume FROM flow " "GROUP BY Timestamp ORDER BY Timestamp") budget = globalflow.select(globalflow.Timestamp, globalflow.Datum, globalflow.Tijd, globalflow.Flow, globalflow.Volume, F.sum(globalflow.Flow).over( Window.orderBy("Timestamp").rowsBetween(-maxsize, 0)).alias("Budget")) parquet.saveResults(spark, budget, 'overallbudget') def createDailyBudget(): """ Daily budget analysis function Calculates the daily budget :return: None """ with Session() as spark: flow = parquet.readResults(spark, "flow") flow.registerTempTable('flow') globalflow = spark.sql( "SELECT Timestamp, max(Datum) Datum, max(Tijd) Tijd, sum(Flow) Flow, sum(Volume) Volume FROM flow " "GROUP BY Timestamp ORDER BY Timestamp") budget = globalflow.select(globalflow.Timestamp, globalflow.Datum, globalflow.Tijd, globalflow.Flow, globalflow.Volume, F.sum(globalflow.Flow).over( Window.partitionBy("Datum").orderBy("Timestamp").rowsBetween(-maxsize, 0)).alias( "Budget")) parquet.saveResults(spark, budget, 'budget') if __name__ == '__main__': # createOverallBudget() # createDailyBudget() with Session() as spark: budget = parquet.readResults(spark, 'budget') budget.registerTempTable('budget') pdbudget = spark.sql( "SELECT Tijd, avg(Flow) Flow, min(Flow) MinFlow, max(Flow) MaxFlow, avg(Budget) Budget FROM budget " "GROUP BY Tijd ORDER BY max(Timestamp)").toPandas() pdbudget.plot(x="Tijd", y=["Flow", "MinFlow", "MaxFlow"], kind='line', color=["green", "red", "blue"]) plt.show()
gpl-3.0
r-mart/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
bundgus/python-playground
matplotlib-playground/examples/pylab_examples/usetex_baseline_test.py
1
2026
import matplotlib import matplotlib.pyplot as plt import matplotlib.axes as maxes from matplotlib import rcParams rcParams['text.usetex'] = True rcParams['text.latex.unicode'] = True class Axes(maxes.Axes): """ A hackish way to simultaneously draw texts w/ usetex=True and usetex=False in the same figure. It does not work in the ps backend. """ def __init__(self, *kl, **kw): self.usetex = kw.pop("usetex", "False") self.preview = kw.pop("preview", "False") maxes.Axes.__init__(self, *kl, **kw) def draw(self, renderer): usetex = plt.rcParams["text.usetex"] preview = plt.rcParams["text.latex.preview"] plt.rcParams["text.usetex"] = self.usetex plt.rcParams["text.latex.preview"] = self.preview maxes.Axes.draw(self, renderer) plt.rcParams["text.usetex"] = usetex plt.rcParams["text.latex.preview"] = preview subplot = maxes.subplot_class_factory(Axes) def test_window_extent(ax, usetex, preview): va = "baseline" ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) #t = ax.text(0., 0., r"mlp", va="baseline", size=150) text_kw = dict(va=va, size=50, bbox=dict(pad=0., ec="k", fc="none")) test_strings = ["lg", r"$\frac{1}{2}\pi$", r"$p^{3^A}$", r"$p_{3_2}$"] ax.axvline(0, color="r") for i, s in enumerate(test_strings): ax.axhline(i, color="r") ax.text(0., 3 - i, s, **text_kw) ax.set_xlim(-0.1, 1.1) ax.set_ylim(-.8, 3.9) ax.set_title("usetex=%s\npreview=%s" % (str(usetex), str(preview))) fig = plt.figure(figsize=(2.*3, 6.5)) for i, usetex, preview in [[0, False, False], [1, True, False], [2, True, True]]: ax = subplot(fig, 1, 3, i + 1, usetex=usetex, preview=preview) fig.add_subplot(ax) fig.subplots_adjust(top=0.85) test_window_extent(ax, usetex=usetex, preview=preview) plt.draw() plt.show()
mit
tlhallock/line-search-dfo
python/test/perf_plots/read_perf_plot_data.py
1
1345
import os import sys import numpy as np import matplotlib.pyplot as plt import pickle import re filePattern = re.compile('([^_]*)_([0-9]*).p'); algos = {} # point this at the output directory for root, subFolders, files in os.walk('./runtimes/'): for file in files: m = filePattern.match(file) if not m: continue algo = m.group(1) nprob = m.group(2) with open(os.path.join(root, file), "rb") as input: if nprob not in algos: algos[nprob] = {} data = pickle.load(input) algos[nprob][algo] = data probNdx = [-1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, 14, 15, 16, 17, -1, 19, 20, 21] algoIdx = { 'mine': 1, 'pyOpt': 2 } with open('../../octave/assign_to_matlab.m', 'w') as log: log.write('h = zeros(0,0,0);') for nprob in algos.keys(): print(nprob) for algo in algos[nprob].keys(): nfev = algos[nprob][algo]['nfev'] fvals = algos[nprob][algo]['fvals'] print('\t' + str(algo) + " " + str(nfev)) for i in range(len(fvals)): log.write('h(' + str(i + 1) + ', ' + str(probNdx[int(nprob)]) + ', ' + str(algoIdx[algo]) + ') = ' + str(fvals[i][0]) + ';\n') xs = np.asarray(range(nfev)) ys = np.zeros(nfev) for i in range(nfev): ys[i] = fvals[i][0] plt.plot(xs, ys, label=algo) plt.legend(loc='upper right') plt.savefig('plots/' + nprob + '_performance.png') plt.close()
gpl-3.0
akionakamura/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
rajat1994/scikit-learn
sklearn/utils/random.py
234
10510
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
JsNoNo/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
rmcgibbo/osprey
osprey/dataset_loaders.py
1
4548
from __future__ import print_function, absolute_import, division import glob import os import numpy as np from .utils import expand_path class BaseDatasetLoader(object): short_name = None def load(self): raise NotImplementedError('should be implemented in subclass') class MSMBuilderDatasetLoader(BaseDatasetLoader): short_name = 'msmbuilder' def __init__(self, path, fmt=None, verbose=False): self.path = path self.fmt = fmt self.verbose = verbose def load(self): from msmbuilder.dataset import dataset ds = dataset(self.path, mode='r', fmt=self.fmt, verbose=self.verbose) print('Dataset provenance:\n') print(ds.provenance) return ds, None class NumpyDatasetLoader(BaseDatasetLoader): short_name = 'numpy' def __init__(self, filenames): self.filenames = filenames def load(self): filenames = sorted(glob.glob(expand_path(self.filenames))) if len(filenames) == 0: raise RuntimeError('no filenames matched by pattern: %s' % self.filenames) ds = [np.load(f) for f in filenames] return ds, None class MDTrajDatasetLoader(BaseDatasetLoader): short_name = 'mdtraj' def __init__(self, trajectories, topology=None, stride=1, verbose=False): self.trajectories = trajectories self.topology = topology self.stride = stride self.verbose = verbose def load(self): import mdtraj filenames = sorted(glob.glob(expand_path(self.trajectories))) if len(filenames) == 0: raise RuntimeError('no filenames matched by pattern: %s' % self.trajectories) top = self.topology kwargs = {} if top is not None: top = expand_path(self.topology) kwargs = {'top': top} X = [] y = None for fn in filenames: if self.verbose: print('[mdtraj] loading %s' % fn) X.append(mdtraj.load(fn, stride=self.stride, **kwargs)) return X, y class FilenameDatasetLoader(BaseDatasetLoader): """Just pass a bunch of filenames to the first step of the pipeline The pipeline will do the loading. """ short_name = 'filename' def __init__(self, trajectories, abs_path=True): self.traj_glob = trajectories self.abs_path = abs_path def load(self): filenames = sorted(glob.glob(expand_path(self.traj_glob))) if len(filenames) == 0: raise RuntimeError('no filenames matched by pattern: %s' % self.traj_glob) if self.abs_path: filenames = [os.path.abspath(fn) for fn in filenames] return filenames, None class JoblibDatasetLoader(BaseDatasetLoader): short_name = 'joblib' def __init__(self, filenames, x_name=None, y_name=None, system_joblib=False): self.filenames = filenames self.x_name = x_name self.y_name = y_name self.system_joblib = system_joblib def load(self): if self.system_joblib: import joblib else: from sklearn.externals import joblib X, y = [], [] filenames = sorted(glob.glob(expand_path(self.filenames))) if len(filenames) == 0: raise RuntimeError('no filenames matched by pattern: %s' % self.filenames) for fn in filenames: obj = joblib.load(fn) if isinstance(obj, (list, np.ndarray)): X.append(obj) else: X.append(obj[self.x_name]) y.append(obj[self.y_name]) if len(X) == 1: X = X[0] if len(y) == 1: y = y[0] elif len(y) == 0: y = None return X, y class SklearnDatasetLoader(BaseDatasetLoader): short_name = 'sklearn_dataset' def __init__(self, method, x_name='data', y_name='target', **kwargs): self.method = method self.x_name = x_name self.y_name = y_name self.kwargs = kwargs def load(self): import sklearn.datasets try: loader = getattr(sklearn.datasets, self.method) except AttributeError: raise RuntimeError('no %s in sklearn.datasets' % self.method) bunch = loader(**self.kwargs) X = bunch[self.x_name] y = bunch[self.y_name] return X, y
apache-2.0
wllmtrng/ggplot
ggplot/geoms/geom_bar.py
1
3061
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import matplotlib.cbook as cbook from .geom import geom from ggplot.utils import is_string from ggplot.utils import is_categorical class geom_bar(geom): DEFAULT_AES = {'alpha': None, 'color': None, 'fill': '#333333', 'linetype': 'solid', 'size': 1.0, 'weight': None, 'y': None, 'width' : None} REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'stat': 'bin', 'position': 'stack'} _extra_requires = {'y', 'width'} _aes_renames = {'linetype': 'linestyle', 'size': 'linewidth', 'fill': 'color', 'color': 'edgecolor'} # NOTE: Currently, geom_bar does not support mapping # to alpha and linestyle. TODO: raise exception _units = {'edgecolor', 'color', 'alpha', 'linestyle', 'linewidth'} def __init__(self, *args, **kwargs): # TODO: Change self.__class__ to geom_bar super(geom_bar, self).__init__(*args, **kwargs) self.bottom = None self.ax = None def _plot_unit(self, pinfo, ax): categorical = is_categorical(pinfo['x']) pinfo.pop('weight') x = pinfo.pop('x') width_elem = pinfo.pop('width') # If width is unspecified, default is an array of 1's if width_elem == None: width = np.ones(len(x)) else : width = np.array(width_elem) # Make sure bottom is initialized and get heights. If we are working on # a new plot (using facet_wrap or grid), then reset bottom _reset = self.bottom is None or (self.ax != None and self.ax != ax) self.bottom = np.zeros(len(x)) if _reset else self.bottom self.ax = ax heights = np.array(pinfo.pop('y')) # layout and spacing # # matplotlib needs the left of each bin and it's width # if x has numeric values then: # - left = x - width/2 # otherwise x is categorical: # - left = cummulative width of previous bins starting # at zero for the first bin # # then add a uniform gap between each bin # - the gap is a fraction of the width of the first bin # and only applies when x is categorical _left_gap = 0 _spacing_factor = 0 # of the bin width if not categorical: left = np.array([x[i]-width[i]/2 for i in range(len(x))]) else: _left_gap = 0.2 _spacing_factor = 0.105 # of the bin width _breaks = np.append([0], width) left = np.cumsum(_breaks[:-1]) _sep = width[0] * _spacing_factor left = left + _left_gap + [_sep * i for i in range(len(left))] ax.bar(left, heights, width, bottom=self.bottom, **pinfo) ax.autoscale() if categorical: ax.set_xticks(left+width/2) ax.set_xticklabels(x) # Update bottom positions self.bottom = heights + self.bottom
bsd-2-clause
sergio2pi/NeuroDB
test/test5.py
1
2324
''' Created on Oct 21, 2014 @author: sergio ''' import numpy as np import ctypes import numpy.ctypeslib as npct import matplotlib.pyplot as plt #cfsfd = ctypes.cdll.LoadLibrary('/home/sergio/iibm/sandbox/t.so') #cfsfd.get_dc.restype = ctypes.c_float #dc = cfsfd.get_dc("dbname=demo host=192.168.2.2 user=postgres password=postgres", "54") #print dc array_1d_double = npct.ndpointer(dtype=np.double, ndim=1, flags='CONTIGUOUS') array_1d_int = npct.ndpointer(dtype=np.int64, ndim=1, flags='CONTIGUOUS') libcd = npct.load_library("cfsfdp", "/home/sergio/iibm/workspace/NeuroDB/NeuroDB/cfunctions/cfsfdp") libcd.get_local_density.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_float, array_1d_double, ctypes.c_char_p] libcd.get_local_density.restype = ctypes.c_int libcd.get_distance_to_higher_density.argtypes = [ctypes.c_char_p, ctypes.c_char_p, array_1d_double, array_1d_double, ctypes.c_int] libcd.get_distance_to_higher_density.restype = ctypes.c_int libcd.get_dc.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_float] libcd.get_dc.restype = ctypes.c_float libcd.get_cluster_dp.argtypes = [ctypes.c_char_p, ctypes.c_char_p, array_1d_double] libcd.get_cluster_dp.restype = array_1d_double dc = libcd.get_dc("dbname=demo host=192.168.2.2 user=postgres password=postgres", "54", 2.0) local_density = np.empty(1026) distance_to_higher_density = np.empty(1026) print "dc: ", dc, type(dc) libcd.get_local_density("dbname=demo host=192.168.2.2 user=postgres password=postgres", "54", dc, local_density, "gaussian") libcd.get_distance_to_higher_density("dbname=demo host=192.168.2.2 user=postgres password=postgres", "54", local_density, distance_to_higher_density, len(local_density)) gamma = local_density*distance_to_higher_density dp = distance_to_higher_density[local_density.argsort()] dp2 = np.empty(1026) for i in range(len(dp)): dp2[i] = i * dp[i] #gamma2 = libcd.get_cluster_dp("dbname=demo host=192.168.2.2 user=postgres password=postgres", "54") # plt.subplot(4,1,1) # plt.plot(local_density, 'o') # plt.subplot(4,1,2) # plt.plot(distance_to_higher_density, 'o') plt.subplot(2,1,1) plt.plot(local_density, distance_to_higher_density, 'o') plt.subplot(2,1,2) plt.plot(dp2, 'o') plt.show() #print dc("dbname=demo user=postgres password=postgres hostaddr=192.168.2.2 port=5432") pass
gpl-2.0
GitYiheng/reinforcement_learning_test
test03_monte_carlo/cartpole_mc_ann.py
1
4964
import tensorflow as tf # neural network for function approximation import gym # environment import numpy as np # matrix operation and math functions from gym import wrappers import gym_morph # customized environment for cart-pole import matplotlib.pyplot as plt import time test_num = 2 # Hyperparameters RANDOM_NUMBER_SEED = test_num ENVIRONMENT1 = "morph-v0" MAX_EPISODES = 2000 # number of episodes EPISODE_LENGTH = 200 # single episode length HIDDEN_SIZE = 6 DISPLAY_WEIGHTS = False # Help debug weight update gamma = 0.99 # Discount per step alpha = 0.1 # Learning rate RENDER = False # Render the cart-pole system VIDEO_INTERVAL = 100 # Generate a video at this interval CONSECUTIVE_TARGET = 100 # Including previous 100 rewards DIR_PATH_SAVEFIG = "/home/yh/cartpole_mc_ann/" file_name_savefig = "el" + str(EPISODE_LENGTH) \ + "_hn" + str(HIDDEN_SIZE) \ + "_clr" + str(alpha).replace(".", "p") \ + "_test" + str(test_num) \ + ".png" env = gym.make(ENVIRONMENT1) env.seed(RANDOM_NUMBER_SEED) np.random.seed(RANDOM_NUMBER_SEED) tf.set_random_seed(RANDOM_NUMBER_SEED) # Input and output sizes input_size = env.observation_space.shape[0] try: output_size = env.action_space.shape[0] except AttributeError: output_size = env.action_space.n # Tensorflow network setup x = tf.placeholder(tf.float32, shape=(None, input_size)) y = tf.placeholder(tf.float32, shape=(None, 1)) expected_returns = tf.placeholder(tf.float32, shape=(None, 1)) # Xavier (2010) weights initializer for uniform distribution: # x = sqrt(6. / (in + out)); [-x, x] w_init = tf.contrib.layers.xavier_initializer() hidden_W = tf.get_variable("W1", shape=[input_size, HIDDEN_SIZE], initializer=w_init) hidden_B = tf.Variable(tf.zeros(HIDDEN_SIZE)) dist_W = tf.get_variable("W2", shape=[HIDDEN_SIZE, output_size], initializer=w_init) dist_B = tf.Variable(tf.zeros(output_size)) hidden = tf.nn.elu(tf.matmul(x, hidden_W) + hidden_B) dist = tf.tanh(tf.matmul(hidden, dist_W) + dist_B) dist_soft = tf.nn.log_softmax(dist) dist_in = tf.matmul(dist_soft, tf.Variable([[1.], [0.]])) pi = tf.contrib.distributions.Bernoulli(dist_in) pi_sample = pi.sample() log_pi = pi.log_prob(y) optimizer = tf.train.RMSPropOptimizer(alpha) # global_step = tf.Variable() # optimizer = tf.train.RMSPropOptimizer(alpha) train = optimizer.minimize(-1.0 * expected_returns * log_pi) # saver = tf.train.Saver() # Create and initialize a session sess = tf.Session() sess.run(tf.global_variables_initializer()) def run_episode(environment, ep, render=False): raw_reward = 0 discounted_reward = 0 cumulative_reward = [] discount = 1.0 states = [] actions = [] obs = environment.reset() done = False while not done: states.append(obs) cumulative_reward.append(discounted_reward) if render and ((ep % VIDEO_INTERVAL) == 0): environment.render() action = sess.run(pi_sample, feed_dict={x: [obs]})[0] actions.append(action) obs, reward, done, info = env.step(action[0]) raw_reward += reward if reward > 0: discounted_reward += reward * discount else: discounted_reward += reward discount *= gamma return raw_reward, discounted_reward, cumulative_reward, states, actions def display_weights(session): w1 = session.run(hidden_W) b1 = session.run(hidden_B) w2 = session.run(dist_W) b2 = session.run(dist_B) print(w1, b1, w2, b2) returns = [] mean_returns = [] for ep in range(MAX_EPISODES): raw_G, discounted_G, cumulative_G, ep_states, ep_actions = \ run_episode(env, ep, RENDER) expected_R = np.transpose([discounted_G - np.array(cumulative_G)]) sess.run(train, feed_dict={x: ep_states, y: ep_actions, expected_returns: expected_R}) if DISPLAY_WEIGHTS: display_weights(sess) returns.append(raw_G) running_returns = returns[max(0, ep-CONSECUTIVE_TARGET):(ep+1)] mean_return = np.mean(running_returns) mean_returns.append(mean_return) msg = "Episode: {}, Return: {}, Last {} returns mean: {}" msg = msg.format(ep+1, raw_G, CONSECUTIVE_TARGET, mean_return) print(msg) env.close() # Plot # plt.style.use('ggplot') plt.style.use('dark_background') episodes_plot = np.arange(MAX_EPISODES) fig = plt.figure() ax = fig.add_subplot(111) fig.subplots_adjust(top=0.85) ax.set_title("The Cart-Pole Problem Test %i \n \ Episode Length: %i \ Discount Factor: %.2f \n \ Number of Hidden Neuron: %i \ Constant Learning Rate: %.5f" % (test_num, EPISODE_LENGTH, gamma, HIDDEN_SIZE, alpha)) ax.set_xlabel("Episode") ax.set_ylabel("Return") ax.set_ylim((0, 200)) ax.grid(linestyle='--') # ax.set_aspect(0.4) ax.plot(episodes_plot, returns, label='Instant return') ax.plot(episodes_plot, mean_returns, label='Averaged return') legend = ax.legend(loc='best', shadow=True) fig.savefig(DIR_PATH_SAVEFIG + file_name_savefig, dpi=500) # plt.show()
mit
leojohnthomas/ahkab
ahkab.py
1
14908
#!/usr/bin/env python2.7-32 # -*- coding: iso-8859-1 -*- # ahkab.py # The frontend of the simulator # Copyright 2006 Giuseppe Venturini # This file is part of the ahkab simulator. # # Ahkab is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 2 of the License. # # Ahkab is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License v2 # along with ahkab. If not, see <http://www.gnu.org/licenses/>. """ ahkab is a easy electronic circuit simulator. """ import sys import numpy import sympy import matplotlib from optparse import OptionParser # analyses import dc_analysis import transient import ac import shooting import bfpss import symbolic import netlist_parser import options import constants import utilities import plotting import printing __version__ = "0.06" def process_analysis(an_list, circ, outfile, verbose, cli_tran_method=None, guess=True, disable_step_control=False): """ Processes an analysis vector: an_list: the list of analysis to be performed, as returned by netlist_parser circ: the circuit instance, returned by netlist_parser outfile: a filename. Results will be written to it. If set to stdout, prints to stdout verbose: verbosity level cli_tran_method: force the specified method in each tran analysis (see transient.py) guess: use the builtin method get_dc_guess to guess x0 Returns: None """ x0_op = None x0_ic_dict = {} results = {} for directive in [ x for x in an_list if x["type"] == "ic" ]: x0_ic_dict.update({ directive["name"]:\ dc_analysis.build_x0_from_user_supplied_ic(circ, voltages_dict=directive["vdict"], currents_dict=directive["cdict"]) }) for an in an_list: if outfile != 'stdout': data_filename = outfile + "." + an["type"] else: data_filename = outfile if an["type"] == "ic": continue if an["type"] == "op": if an["guess_label"] is None: x0_op = dc_analysis.op_analysis(circ, guess=guess, data_filename=data_filename, verbose=verbose) else: if not an["guess_label"] in x0_ic_dict: printing.print_warning("op: guess is set but no matching .ic directive was found.") printing.print_warning("op: using built-in guess method: "+str(guess)) x0_op = dc_analysis.op_analysis(circ, guess=guess, verbose=verbose) else: x0_op = dc_analysis.op_analysis(circ, guess=False, x0=x0_ic_dict[an["guess_label"]], verbose=verbose) sol = x0_op elif an["type"] == "dc": if an["source_name"][0].lower() == "v": elem_type = "vsource" elif an["source_name"][0].lower() == "i": elem_type = "isource" else: printing.print_general_error("Type of sweep source is unknown: " + an[1][0]) sys.exit(1) sol = dc_analysis.dc_analysis( circ, start=an["start"], stop=an["stop"], step=an["step"], \ type_descr=(elem_type, an["source_name"][1:]), xguess=x0_op, data_filename=data_filename, guess=guess, stype=an['stype'], verbose=verbose) #{"type":"tran", "tstart":tstart, "tstop":tstop, "tstep":tstep, "uic":uic, "method":method, "ic_label":ic_label} elif an["type"] == "tran": if cli_tran_method is not None: tran_method = cli_tran_method.upper() elif an["method"] is not None: tran_method = an["method"].upper() else: tran_method = options.default_tran_method # setup the initial condition (t=0) according to uic # uic = 0 -> all node voltages and currents are zero # uic = 1 -> node voltages and currents are those computed in the last OP analysis # uic = 2 -> node voltages and currents are those computed in the last OP analysis # combined with the ic=XX directive found in capacitors and inductors # uic = 3 -> use a .ic directive defined by the user uic = an["uic"] if uic == 0: x0 = None elif uic == 1: if x0_op is None: printing.print_general_error("uic is set to 1, but no op has been calculated yet.") sys.exit(51) x0 = x0_op elif uic == 2: if x0_op is None: printing.print_general_error("uic is set to 2, but no op has been calculated yet.") sys.exit(51) x0 = dc_analysis.modify_x0_for_ic(circ, x0_op) elif uic == 3: if an["ic_label"] is None: printing.print_general_error("uic is set to 3, but param ic=<ic_label> was not defined.") sys.exit(53) elif not an["ic_label"] in x0_ic_dict: printing.print_general_error("uic is set to 3, but no .ic directive named %s was found." \ %(str(an["ic_label"]),)) sys.exit(54) x0 = x0_ic_dict[an["ic_label"]] sol = transient.transient_analysis(circ, \ tstart=an["tstart"], tstep=an["tstep"], tstop=an["tstop"], \ x0=x0, mna=None, N=None, verbose=verbose, data_filename=data_filename, \ use_step_control=(not disable_step_control), method=tran_method) elif an["type"] == "shooting": if an["method"]=="brute-force": sol = bfpss.bfpss(circ, period=an["period"], step=an["step"], mna=None, Tf=None, \ D=None, points=an["points"], autonomous=an["autonomous"], x0=x0_op, \ data_filename=data_filename, verbose=verbose) elif an["method"]=="shooting": sol = shooting.shooting(circ, period=an["period"], step=an["step"], mna=None, \ Tf=None, D=None, points=an["points"], autonomous=an["autonomous"], \ data_filename=data_filename, verbose=verbose) elif an["type"] == "symbolic": if not 'subs' in an.keys(): an.update({'subs':None}) sol = symbolic.solve(circ, an['source'], opts={'ac':an['ac']}, subs=an['subs'], verbose=verbose) elif an["type"] == "ac": sol = ac.ac_analysis(circ=circ, start=an['start'], nsteps=an['nsteps'], \ stop=an['stop'], step_type='LOG', xop=x0_op, mna=None,\ data_filename=data_filename, verbose=verbose) elif an["type"] == "temp": constants.T = utilities.Celsius2Kelvin(an['temp']) results.update({an["type"]:sol}) return results def process_postproc(postproc_list, title, results, outfilename, remote=False): """Runs the post-processing operations, such as plotting. postproc_list: list of post processing operations as returned by main() title: the deck title results: the results to be plotted (including the ones that are not needed) outfilename: if the plots are saved to disk, this is the filename without extension remote: boolean, do not show plots if True (such as ssh without X11 forwarding) Returns: None """ index = 0 if outfilename == 'stdout': printing.print_warning("Plotting and printing the results to stdout are incompatible options. Plotting skipped.") return for postproc in postproc_list: #print postproc["analysis"], results.keys(), results.has_key(postproc["analysis"]), results[postproc["analysis"]] is None #DEBUG plotting.plot_results(title, postproc["x"], postproc["l2l1"], results[postproc["analysis"]], "%s-%d.%s" % (outfilename, index, options.plotting_outtype)) index = index +1 if len(postproc_list) and not remote: plotting.show_plots() return None def main(filename, outfile="stdout", tran_method=transient.TRAP.lower(), no_step_control=False, dc_guess='guess', print_circuit=False, remote=True, verbose=3): """This method allows calling ahkab from a Python script. """ printing.print_info_line(("This is ahkab %s running with:" %(__version__),6), verbose) printing.print_info_line((" Python %s" % (sys.version.split('\n')[0],),6), verbose) printing.print_info_line((" Numpy %s" % (numpy.__version__),6), verbose) printing.print_info_line((" Sympy %s" % (sympy.__version__),6), verbose) printing.print_info_line((" Matplotlib %s" % (matplotlib.__version__),6), verbose) utilities._set_execution_lock() read_netlist_from_stdin = (filename is None or filename == "-") (circ, directives, postproc_direct) = netlist_parser.parse_circuit(filename, read_netlist_from_stdin) check, reason = dc_analysis.check_circuit(circ) if not check: printing.print_general_error(reason) printing.print_circuit(circ) sys.exit(3) if verbose > 3 or print_circuit: print "Parsed circuit:" printing.print_circuit(circ) elif verbose > 1: print circ.title.upper() an_list = netlist_parser.parse_analysis(circ, directives) postproc_list = netlist_parser.parse_postproc(circ, an_list, postproc_direct) if len(an_list) > 0: printing.print_info_line(("Requested an.:", 4), verbose) if verbose >= 4: map(printing.print_analysis, an_list) else: if verbose: printing.print_warning("No analysis requested.") if len(an_list) > 0: results = process_analysis(an_list, circ, outfile, verbose, guess=dc_guess.lower()=="guess", \ cli_tran_method=tran_method, disable_step_control=no_step_control) else: printing.print_warning("Nothing to do. Quitting.") if len(an_list) > 0 and len(postproc_list) > 0 and len(results): process_postproc(postproc_list, circ.title, results, outfile, remote) utilities._unset_execution_lock() return results if __name__ == "__main__": parser = OptionParser(usage="usage: \t%prog [options] <filename>\n\nThe filename is the netlist to be open. Use - (a dash) to read from stdin.", version="%prog "+__version__+u" (c) 2006-2013 Giuseppe Venturini") #general options parser.add_option("-v", "--verbose", action="store", type="string", dest="verbose", default="3", help="Verbose level: from 0 (almost silent) to 5 (debug)") parser.add_option("-p", "--print", action="store_true", dest="print_circuit", default=False, help="Print the parsed circuit") parser.add_option("-o", "--outfile", action="store", type="string", dest="outfile", default="stdout", help="Data output file. Defaults to stdout.") parser.add_option("", "--dc-guess", action="store", type="string", dest="dc_guess", default="guess", help="Guess to be used to start a op or dc analysis: none or guess. Defaults to guess.") parser.add_option("-t", "--tran-method", action="store", type="string", dest="method", default=transient.TRAP.lower(), help="Method to be used in transient analysis: " +transient.IMPLICIT_EULER.lower()+", "+transient.TRAP.lower()+", "+transient.GEAR2.lower()+", "+transient.GEAR3.lower()+", "+transient.GEAR4.lower()+", "+transient.GEAR5.lower()+" or "+transient.GEAR6.lower()+". Defaults to TRAP.") parser.add_option("", "--t-fixed-step", action="store_true", dest="no_step_control", default=False, help="Disables the step control in transient analysis. Useful if you want to perform a FFT on the results.") parser.add_option("", "--v-absolute-tolerance", action="store", type="string", dest="vea", default=None, help="Voltage absolute tolerance. Default: "+str(options.vea)+" V") parser.add_option("", "--v-relative-tolerance", action="store", type="string", dest="ver", default=None, help="Voltage relative tolerance. Default: "+str(options.ver)) parser.add_option("", "--i-absolute-tolerance", action="store", type="string", dest="iea", default=None, help="Current absolute tolerance. Default: "+str(options.iea)+" A") parser.add_option("", "--i-relative-tolerance", action="store", type="string", dest="ier", default=None, help="Current relative tolerance. Default: "+str(options.ier)) parser.add_option("", "--h-min", action="store", type="string", dest="hmin", default=None, help="Minimum time step. Default: "+str(options.hmin)) parser.add_option("", "--dc-max-nr", action="store", type="string", dest="dc_max_nr_iter", default=None, help="Maximum nr of NR iterations for dc analysis. Default: "+str(options.dc_max_nr_iter)) parser.add_option("", "--t-max-nr", action="store", type="string", dest="transient_max_nr_iter", default=None, help="Maximum nr of NR iterations for each time step during transient analysis. Default: "+str(options.transient_max_nr_iter)) parser.add_option("", "--t-max-time", action="store", type="string", dest="transient_max_time_iter", default=None, help="Maximum nr of time iterations during transient analysis. Setting it to 0 (zero) disables the limit. Default: "+str(options.transient_max_time_iter)) parser.add_option("", "--s-max-nr", action="store", type="string", dest="shooting_max_nr_iter", default=None, help="Maximum nr of NR iterations during shooting analysis. Setting it to 0 (zero) disables the limit. Default: "+str(options.shooting_max_nr_iter)) parser.add_option("", "--gmin", action="store", type="string", dest="gmin", default=None, help="The minimum conductance to ground. Inserted when requested. Default: "+str(options.gmin)) parser.add_option("", "--cmin", action="store", type="string", dest="cmin", default=None, help="The minimum capacitance to ground. Default: "+str(options.cmin)) parser.add_option("", "--eps", action="store_true", dest="eps", default=False, help="Calculate the machine precision. The machine precision defaults to "+str(utilities.EPS)) (cli_options, remaning_args) = parser.parse_args() verbose = int(cli_options.verbose) if cli_options.method is not None: method = cli_options.method.upper() if cli_options.vea is not None: options.vea = float(cli_options.vea) if cli_options.ver is not None: options.ver = float(cli_options.ver) if cli_options.iea is not None: options.iea = float(cli_options.iea) if cli_options.ier is not None: options.ier = float(cli_options.ier) if cli_options.hmin is not None: options.hmin = float(cli_options.hmin) if cli_options.dc_max_nr_iter is not None: options.dc_max_nr_iter = int(float(cli_options.dc_max_nr_iter)) if cli_options.transient_max_nr_iter is not None: options.transient_max_nr_iter = int(float(cli_options.transient_max_nr_iter)) if cli_options.transient_max_time_iter is not None: options.transient_max_time_iter = int(float(cli_options.transient_max_time_iter)) if cli_options.shooting_max_nr_iter is not None: options.shooting_max_nr_iter = int(float(cli_options.shooting_max_nr_iter)) if cli_options.gmin is not None: options.gmin = float(cli_options.gmin) if cli_options.cmin is not None: options.cmin = float(cli_options.cmin) if cli_options.eps: utilities.EPS = utilities.calc_eps() print "Detected machine precision: " + str(utilities.EPS) if not len(remaning_args) == 1: print "Usage: ./ahkab.py [options] <filename>\n./ahkab.py -h for help" sys.exit(1) if remaning_args[0] == '-': read_netlist_from_stdin = True else: read_netlist_from_stdin = False if not read_netlist_from_stdin and not utilities.check_file(remaning_args[0]): sys.exit(23) # Program execution main(filename=remaning_args[0], outfile=cli_options.outfile, tran_method=cli_options.method, \ no_step_control=cli_options.no_step_control, dc_guess=cli_options.dc_guess, \ print_circuit=cli_options.print_circuit, remote=False, verbose=verbose) sys.exit(0)
gpl-2.0
puotila/PORA-IP
HiroshisArcticTS.py
1
2451
#!/usr/bin/env python """ Read Hiroshis (AWI) Arctic T, S climatology based on recent cruises. Essentially replaces PHC3. As it is sparse, where a value is missing it is replaced by WOA13 value (which may be nonsense). """ import sys sys.path.append('/home/uotilap/tiede/ORA-IP/annual_mean') import numpy as np import netCDF4 as nc from plotAnnuaMeanProfile import LevelBounds class Hiroshis(object): def __init__(self,fn='./ts-clim/hiroshis-clim/archive_v12_QC2_3_DPL_checked_2d_season_int-remapbil-oraip.nc'): self.dset, self.syr, self.eyr = 'Sumata', 1980, 2015 fp = nc.Dataset(fn) self.olon = np.array(fp.variables['lon'][:]) # transfer negative lons to positive self.olon[np.where(self.olon<0.)] += 360. self.olat = np.array(fp.variables['lat'][:]) self.odepth = np.array(fp.variables['depth'][:]) self.temperature = np.ma.array(fp.variables['temperature'][:]) self.salinity = np.ma.array(fp.variables['salinity'][:]) fp.close() def getPoint(self,plon,plat,vname): """ get the closest point of (plon,plat) """ self.vname, self.lon, self.lat = vname, plon, plat iy = np.where(np.abs(plat-self.olat)==np.min(np.abs(plat-self.olat)))[0][0] ix = np.where(np.abs(plon-self.olon)==np.min(np.abs(plon-self.olon)))[0][0] print "Looking for (%f,%f), closest at (%f,%f)" % \ (plon,plat,self.olon[ix],self.olat[iy]) depth = self.odepth if vname=='S': data, level_bounds = self.salinity, LevelBounds['S'] else: data, level_bounds = self.temperature, LevelBounds['T'] tavg_data = np.ma.average(data,axis=0) # vertical layer averaging self.data = [] for lb in level_bounds: iz = np.where((depth>=lb[0])&(depth<lb[1])) self.data.append(tavg_data[iz].mean()) print "Averaged layer %d-%d" % (lb[0],lb[1]) self.depth = np.hstack((level_bounds[:,0],4000)) print "depth:", self.depth if __name__ == "__main__": lon, lat = 98., 83. hrs = Hiroshis() hrs.getPoint(lon,lat,'T') import matplotlib.pyplot as plt fig = plt.figure(figsize=(5,10)) ax = fig.add_subplot(1,1,1) ax.plot(np.ma.hstack((hrs.data,hrs.data[-1])),\ -hrs.depth,\ lw=2,drawstyle='steps-pre') ax.set_ylabel('depth [m]') plt.show() print "Finnished!"
gpl-3.0
chrhartm/SORN
chartmann/plot_cluster.py
2
72584
from __future__ import division from pylab import * from scipy.optimize import curve_fit from scipy import stats import tables import matplotlib.cm as mplcm import matplotlib.colors as colors import sys sys.path.insert(0,"..") import os import utils utils.backup(__file__) import cPickle as pickle import gzip from common.sources import TrialSource from utils.plotting import pretty_mpl_defaults matlab_comparison = True # for FF # Figure type (eps,pdf,png,...) ftype = 'pdf' # Data to plot path = r'/home/chartmann/Desktop/Meeting Plots/2015-12-10_weightdepfailure_alignment/cluster_long_06_01_2015-12-09_17-06-48/common' datafile = 'result.h5' ''' Label significant differences in bar plots Adapted from http://stackoverflow.com/questions/11517986/indicating-the-statistically-significant-difference-in-bar-graph Parameters: x1: x-value in plot to start bar from x2: x-value in plot to end bar at Y1: vector of datapoints corresponding to x1 Y2: vector of datapoints corresponding to x2 ax: axis to be plotted on ''' def label_diff(x1,x2,Y1,Y2,ax): # Testing assert(len(Y1)==len(Y2)) (t,pval) = stats.ttest_ind(Y1,Y2) if pval>0.05: return # If significant, draw bar N = len(Y1) x = mean([x1,x2]) # Estimate how high to draw y = max(mean(Y1)+1.*std(Y1)/sqrt(N),mean(Y2)+1.*std(Y2)/sqrt(N)) # Draw props = {'connectionstyle':'bar,fraction=0.15','arrowstyle':'-', 'lw':2,'color':'k'} ax.annotate('*', xy=(x,1.05*y), zorder=10, ha='center') ax.annotate('', xy=(x1,y), xytext=(x2,y), arrowprops=props) # Extend figure height if bar out of range ylimit = ax.get_ylim() maxy = 1.1*y if ylimit[1] < maxy: ax.set_ylim((ylimit[0],maxy)) def errorspan(x,y,yerr,**kwargs): # , gets first item in list line, = plot(x,y,**kwargs) fill_between(x,y-yerr,y+yerr,alpha=0.5,facecolor=line.get_color()) # This contains LOTS of code duplication with plot_single... def plot_results(result_path,result): pretty_mpl_defaults() final_path = os.path.join(result_path,result) print final_path h5 = tables.openFile(final_path,'r') data = h5.root if os.path.isdir(data.c.logfilepath[0]): pickle_dir = data.c.logfilepath[0] else: pickle_dir = result_path plots_path = os.path.join('..','plots') if not os.path.exists(plots_path): os.mkdir(plots_path) os.chdir(plots_path) # This ONLY works for the cluster when N_params == N_cores #N = shape(data.paramtracker[0])[0] #params = np.array([x/(10.0)+0.1 for x in range(10)])[:,None] params = data.paramtracker[0] N_params = shape(data.paramtracker)[1] N_iterations = shape(data.paramtracker)[0] param_name = data.c.cluster.vary_param[0] param_name_plot = param_name if param_name == 'source.prob': filename = os.path.join(pickle_dir, "source_plastic_%s_%.3f.pickle" %(param_name,params[0])) source_plastic = pickle.load(gzip.open(filename,"r")) if isinstance(source_plastic,TrialSource): source_plastic = source_plastic.source words = source_plastic.words param_name_plot = 'prior(%s)'%words[0] elif param_name == 'W_ee.p_failure': param_name_plot = 'Failure probability' elif param_name == 'W_ee.bias': param_name_plot = 'Pot. bias' param_name_u = param_name.replace(' ','_') print 'Iterations:', N_iterations ### Plot Activity Stats if data.__contains__('activity') and False: N = N_params activities = np.zeros(N) lookback = 3000 for i in range(N): for j in range(np.shape(data.activity)[0]): activities[i] += sum(data.activity[j][i][-lookback:])\ /(lookback*1.0) activities[i] /= 1.0*np.shape(data.activity)[0] figure() plot(params,activities,'o') title('Average activity vs. %s (%s)' %(data.c.cluster.vary_param[0], data.c.stats.file_suffix[0])) xlabel('%s'%(data.c.cluster.vary_param[0])) ylabel('Activity') utils.saveplot('Activity_%s.%s' %(data.c.stats.file_suffix[0],ftype)) if data.__contains__('meanactivity'): test_words = data.c.source.test_words[0] baseline = data.meanactivity[:,:,0] act = {} act_2nd = {} start = 1 for word in test_words: length = len(word) act[word] = mean(data.meanactivity[:,:,start:start+length], 2) act_2nd[word] = data.meanactivity[:,:,start+1] start += length # Colors from figures from paper c_gray = '#929496' c_blue = '#33348e' c_red = '#cc2229' c_green= '#33a457' # Colors from figures from paper ekw = dict(elinewidth=5,ecolor='k')#,capsize=0) col = {'ABCD':c_blue,'DCBA':c_red,'A_CD':c_red,'E_CD':c_green} if data.c.source.control: condition = 'Control' else: condition = 'Experimental' if data.c.cluster.vary_param[0] == 'source.control' \ and 'DCBA' in test_words: figure() bar(1,mean(baseline,0)[0], yerr=std(baseline,0)[0]/sqrt(N_iterations),color=c_gray, error_kw=ekw,label='Baseline',align='center') bar(2,mean(act['ABCD'],0)[0], yerr=std(act['ABCD'],0)[0]/sqrt(N_iterations), color=c_blue,error_kw=ekw,label='ABCD',align='center') bar(3,mean(act['DCBA'],0)[0], yerr=std(act['DCBA'],0)[0]/sqrt(N_iterations), color=c_red,error_kw=ekw,label='DCBA',align='center') bar(5,mean(baseline,0)[1], yerr=std(baseline,0)[1]/sqrt(N_iterations),color=c_gray, error_kw=ekw,align='center') bar(6,mean(act['ABCD'],0)[1], yerr=std(act['ABCD'],0)[1]/sqrt(N_iterations), color=c_blue,error_kw=ekw,align='center') bar(7,mean(act['DCBA'],0)[1], yerr=std(act['DCBA'],0)[1]/sqrt(N_iterations), color=c_red,error_kw=ekw,align='center') tick_params(axis='x',which='both',bottom='off',top='off') # Test significances label_diff(1,2,baseline[:,0],act['ABCD'][:,0],gca()) label_diff(2,3,act['ABCD'][:,0],act['DCBA'][:,0],gca()) label_diff(5,6,baseline[:,1],act['ABCD'][:,1],gca()) label_diff(6,7,act['ABCD'][:,1],act['DCBA'][:,1],gca()) xlim([0,8]) xticks([2,6],['Experiment','Control']) ylabel('Sequence magnitude') legend(loc='lower left') utils.saveplot('Mean_reverse_%s.%s' %(data.c.stats.file_suffix[0],ftype)) figure() errorbar(params,mean(act['ABCD'],0),yerr=std(act['ABCD'],0) /sqrt(N_iterations),c='k') xlabel(param_name_plot) ylabel('Magnitude') pdiff = (params[-1]-params[0])/10. xlim([params[0]-pdiff,params[-1]+pdiff]) utils.saveplot('Mean_vs_%s_%s.%s' %(param_name_u,data.c.stats.file_suffix[0],ftype)) for (p,param) in enumerate(params): figure() start = 1 for word in test_words: length = len(word) x = arange(1,length+1) errorbar(x,mean(data.meanactivity[:,p,start:start +length],0), yerr=std(data.meanactivity[:,p, start:start+length],0)/sqrt(N_iterations), c=col[word],label=word) start += length xlabel('Letter') ylabel('Magnitude') legend(loc='best') xlim([0,length+1]) title(param_name_plot+' = %.2f'%param) utils.saveplot('Mean_time_%s_%s_%.2f.%s'%\ (data.c.stats.file_suffix[0],param_name_u,param,ftype)) figure() bar(1,mean(baseline,0)[p], yerr=std(baseline,0)[p]/sqrt(N_iterations),color=c_gray, error_kw=ekw,label='Baseline',align='center') for (i,word) in enumerate(test_words): bar(i+2,mean(act[word],0)[p], yerr=std(act[word],0)[p]/sqrt(N_iterations), color=col[word],error_kw=ekw,label=word, align='center') tick_params(axis='x',which='both',bottom='off',top='off', labelbottom='off') xlim([0.5,i+2.5]) xlabel(param_name_plot+' = %.2f'%param) ylabel('Sequence magnitude') legend(loc='upper left') title(param_name_plot+' = %.2f'%param) utils.saveplot('Mean_reverse_%s_%s_%.2f.%s'%\ (data.c.stats.file_suffix[0],param_name_u,param,ftype)) figure() for (i,word) in enumerate(test_words): bar(i+1,mean(act[word],0)[p], yerr=std(act[word],0)[p]/sqrt(N_iterations), color=col[word],error_kw=ekw,align='center', label=word) # Test significance for (j,word_cp) in enumerate(test_words[i+1:]): label_diff(i+1,j+i+2,act[word][:,p], act[word_cp][:,p],gca()) l = i+1 for (i,word) in enumerate(test_words): bar(i+2+l,mean(act_2nd[word],0)[p], yerr=std(act_2nd[word],0)[p]/sqrt(N_iterations), color=col[word],error_kw=ekw,align='center') # Test significance for (j,word_cp) in enumerate(test_words[i+1:]): label_diff(i+2+l,j+i+3+l,act_2nd[word][:,p], act_2nd[word_cp][:,p],gca()) legend(loc='lower left') tick_params(axis='x',which='both',bottom='off',top='off') xticks([i//2+1,l+3],['Full sequence','Second element']) xlim([0,2*(i+1)+2]) ylabel('Magnitude') #~ title(param_name_plot+' = %.2f'%param) utils.saveplot('Mean_2nd_%s_%s_%.2f.%s'%\ (data.c.stats.file_suffix[0],param_name_u,param,ftype)) if (data.__contains__('meanpattern') and data.__contains__('meanactivity')): test_words = data.c.source.test_words[0] pats = {} start = 1 for word in test_words: length = len(word) pats[word] = data.meanpattern[:,:,start:start+length] start += length if ('ABCD' in test_words and 'A_CD' in test_words and 'E_CD' in test_words): for (p,param) in enumerate(params): figure() dist_con = sum(abs(pats['E_CD'][:,p,1,None] -pats['ABCD'][:,p,:]),2) dist_exp = sum(abs(pats['A_CD'][:,p,1,None] -pats['ABCD'][:,p,:]),2) bar(1,mean(dist_con[:,1]), yerr=std(dist_con[:,1])/sqrt(N_iterations), color=col['E_CD'],error_kw=ekw,align='center') bar(2,mean(dist_exp[:,1]), yerr=std(dist_exp[:,1])/sqrt(N_iterations), color=col['A_CD'],error_kw=ekw,align='center') label_diff(1,2,dist_con[:,1],dist_exp[:,1],gca()) xticks([1,2],['E_CD','A_CD']) y_lim = ylim() ylim([0,y_lim[1]*1.1]) ylabel('Manhattan distance') utils.saveplot('Mean_dist_%s_%s_%.2f.%s'% (data.c.stats.file_suffix[0],param_name_u,param, ftype)) ### Plot endweight Stat if False and data.__contains__('endweight'): # First the logweight: logweight = data.endweight[0][data.endweight[0]>0] figure() logbins = logspace(-2,0,10) (y,_) = histogram(logweight,bins=logbins) #fit data to lognormal x = logbins[:-1]+(logbins[0]+logbins[1])/2.0 semilogx(x,y,'.') # Do the fitting def lognormal(x,mue,var,scale): return scale * (exp(- ((log(x)-mue)*(log(x)-mue)) / (2*var)) / (x*sqrt(2*pi*var))) popt, pcov = curve_fit(lognormal, x, y) curve_x = logspace(-2,0,100) fitted_y = lognormal(curve_x,*popt) plot(curve_x,fitted_y) title('Final Weight Distribution (%s)' %(data.c.stats.file_suffix[0])) xlabel('Weight') ylabel('Frequency') legend(('data', 'lognormal fit (mue=%.3f var=%.3f scale=%.3f)' %(popt[0], popt[1], popt[2]))) utils.saveplot('LogWeights_%s.%s' %(data.c.stats.file_suffix[0],ftype)) # Now scale-free property tmp = data.endweight[0]>0.0+0.0 binary_connections = tmp+0.0 in_degree = sum(binary_connections,1) out_degree = sum(binary_connections,0) fig = figure() fig.add_subplot(131) hist(in_degree) ylabel('frequency') xlabel('in degree') fig.add_subplot(132) hist(out_degree) xlabel('out degree') fig.add_subplot(133) hist(in_degree+out_degree) xlabel('in+out degree') plt.suptitle('Degree distributions') utils.saveplot('Degree_Distributions_%s.%s' %(data.c.stats.file_suffix[0],ftype)) if False and (data.__contains__('Spikes') and data.__contains__('endweight') and data.__contains__('Bayes')): steps_plastic = data.c.steps_plastic[0] steps_noplastic_train = data.c.steps_noplastic_train[0] steps_noplastic_test = data.c.steps_noplastic_test[0] # TODO Plot response probabilities of input units from plot_single if data.__contains__('smallworld'): figure() gamma = np.zeros(N) lam = np.zeros(N) S_W = np.zeros(N) print data.smallworld for (i,item) in enumerate(data.smallworld): gamma += item.T[0][:N] lam += item.T[1][:N] S_W += item.T[2][:N] gamma /= (1.0*shape(data.smallworld)[0]) lam /= (1.0*shape(data.smallworld)[0]) S_W /= (1.0*shape(data.smallworld)[0]) for i in range(N): plot([1,2,3],[gamma[i],lam[i],S_W[i]],'o') plot([0,4],[1,1],'--') legend(params) xticks([1,2,3],['gamma','lambda','S_W']) title('Small-world-ness with respect to %s' %data.c.cluster.vary_param[0]) utils.saveplot('small_world_%s.%s' %(data.c.stats.file_suffix[0],ftype)) ### Plot ISIs if False and data.__contains__('ISIs'): figure() x = np.array(range(0,50)) plot(x,data.ISIs[0][:], '.') # Do the fitting def exponential(x, a, b): return a * np.exp(-b*x) popt, pcov = curve_fit(exponential, x, data.ISIs[0][:]) fitted_y = exponential(x,*popt) plot(x,fitted_y) title('Interspike Intervals (%s)'%(data.c.stats.file_suffix[0])) xlabel('ISI (Time Step)') ylabel('Frequency') legend(('data', 'exp fit (scale:%.3f exponent:%.3f)' %(popt[0],-popt[1]))) utils.saveplot('ISIs_%s.%s'%(data.c.stats.file_suffix[0],ftype)) ### Plot ConnectionFraction if (data.__contains__('ConnectionFraction') and data.c.stats.__contains__('only_last')): connections = np.zeros(N) lookback = 3000 for i in range(N): for j in range(np.shape(data.ConnectionFraction)[0]): connections[i] += sum(data.ConnectionFraction[j][i] [-lookback:])/(lookback*1.0) connections[i] /= 1.0*np.shape(data.activity)[0] figure() plot(params,connections,'o') title('Fraction of ex-ex connections for last 3000 steps (%s)' %(data.c.stats.file_suffix[0])) xlabel('%s'%data.c.cluster.vary_param[0]) ylabel('Connection fraction') utils.saveplot('Connections_%s.%s' %(data.c.stats.file_suffix[0],ftype)) figure() for i in range(N): #TODO average over all plot(data.ConnectionFraction[0][i]) legend(data.paramtracker[0]) xlabel('Steps') ylabel('Connection fraction') only_last = data.c.stats.only_last[0] N_steps = data.c.N_steps[0] stepsize = only_last//2 xticks([0,stepsize,2*stepsize,3*stepsize,4*stepsize], [0,N_steps//2,'<--timelapse | last---------->', N_steps-only_last//2,N_steps]) title('Connection fraction for %s = %.3f' %(data.c.cluster.vary_param[0],params[i])) utils.saveplot('Connections2_%s.%s' %(data.c.stats.file_suffix[0],ftype)) if (data.__contains__('ConnectionFraction') and not data.c.stats.__contains__('only_last')): figure() N_points = 1000 spacing = data.c.steps_plastic[0]//N_points x = linspace(0,data.c.steps_plastic[0],N_points) for p in range(N_params): fractions = data.ConnectionFraction[:,p, :data.c.steps_plastic[0]:spacing] errorspan(x,mean(fractions,0),yerr=std(fractions,0), label=params[p][0]) xlim([x[0]-0.05*x[-1],x[-1]]) legend(loc='upper right',title=param_name_plot) xlabel('Step') ylabel('Fraction of E-E connections') tight_layout() utils.saveplot('Connections_%s.%s'%\ (data.c.stats.file_suffix[0],ftype)) ### Plot effect of double_synapses if (data.__contains__('W_ee_history') and data.__contains__('W_ee_2_history')): W_ee_hs = data.W_ee_history W_ee2_hs = data.W_ee_2_history from plot_single import parallel_stats diffs = np.zeros((N_iterations,N_params,shape(W_ee_hs)[2])) cvs = np.zeros((N_iterations,N_params,shape(W_ee_hs)[2])) for (i) in range(N_params): for j in range(N_iterations): (diffs[j,i,:],cvs[j,i,:],_,_) = parallel_stats( W_ee_hs[j,i],W_ee2_hs[j,i]) figure() x = linspace(0,data.c.N_steps[0],shape(W_ee_hs)[2]) for (i,p) in enumerate(params): errorspan(x,mean(cvs[:,i],0),std(cvs[:,i],0), label=param_name_plot+" = %.2f"%p) plot([x[0],x[-1]],[0.083,0.083],'--k', label='CV from [Bartol et al.]') ylabel('Median CV between weight pairs') xlabel('Step') xlim([x[0]-0.05*x[-1],x[-1]]) legend(loc='best') tight_layout() utils.saveplot('DoubleSynapses_CV_%s.%s'\ %(data.c.stats.file_suffix[0],ftype)) if data.__contains__('weefail'): weefail = data.weefail N_steps = data.c.N_steps[0] x = arange(N_steps) N_points = 1000 spacing = data.c.steps_plastic[0]//N_points figure() for (i,p) in enumerate(params): errorspan(x[::spacing],mean(weefail[:,i,::spacing],0), std(weefail[:,i,::spacing],0)/N_iterations, label=param_name_plot+" = %.2f"%p) xlabel('Step') ylabel('Synaptic failure fraction') xlim([x[0]-0.05*x[-1],x[-1]]) legend(loc='best') tight_layout() utils.saveplot('weefail_%s.%s' %(data.c.stats.file_suffix[0],ftype)) ### Plot WeightLifetime if False and data.__contains__('WeightLifetime') and \ any(data.WeightLifetime[0][:] > 0): figure() logbins = logspace(2,4,20) (y,_) = histogram(data.WeightLifetime[0] [data.WeightLifetime[0]>0],bins=logbins) x = logbins[:-1]+(logbins[0]+logbins[1])/2.0 loglog(x,y,'.') def powerlaw(x,a,k): return a*x**k popt, pcov = curve_fit(powerlaw, x, y) fitted_y = powerlaw(x,*popt) plot(x,fitted_y) title('Weight Lifetime (%s)'%(data.c.stats.file_suffix[0])) xlabel('Lifetime (Steps)') ylabel('Frequency') legend(('data','powerlaw-fit (a=%.3f k=%.3f)' %(popt[0],popt[1]))) utils.saveplot('WeightLifetime_%s.%s' %(data.c.stats.file_suffix[0],ftype)) ### Plot WeightChangeStat if False and data.__contains__('WeightChange'): # 0:weights, 1:abschange, 2:relchange fig = figure() fig.add_subplot(211) plot(data.WeightChange[0][0][-(data.WeightChange[0][0]==0)], data.WeightChange[0][1][-(data.WeightChange[0][0]==0)],'.') ylabel('Absolute Change') fig.add_subplot(212) plot(data.WeightChange[0][0][-(data.WeightChange[0][0]==0)], data.WeightChange[0][2][-(data.WeightChange[0][0]==0)],'.') xlabel('Weight') ylabel('Relative Change') plt.suptitle('Change of Weights over %d Steps (%s)' %(3000,data.c.stats.file_suffix[0])) utils.saveplot('WeightChange_%s.%s' %(data.c.stats.file_suffix[0],ftype)) ### Plot InputWeightStat if data.__contains__('InputWeight'): figure() N_samples = shape(data.InputWeight)[4] ## Different colors NUM_COLORS = N_params cm = plt.get_cmap('gist_rainbow') cNorm = colors.Normalize(vmin=0, vmax=NUM_COLORS-1) scalarMap = mplcm.ScalarMappable(norm=cNorm, cmap=cm) plt.gca().set_color_cycle([scalarMap.to_rgba(i) for i in range(NUM_COLORS)]) sums_weights = np.zeros((N_params,N_iterations,N_samples)) for param in range(N_params): for iteration in range(N_iterations): sums_weights[param,iteration,:] = \ data.InputWeight[iteration,param].sum(0).sum(0) sums_weights[param,iteration,:] /= \ sums_weights[param,iteration,0] sums_weights[param,iteration, sums_weights[param,iteration]==0] = 1 #average over iterations plot((sums_weights.sum(1)/(1.0*N_iterations)).T) xlabel('Step') only_last = data.c.stats.only_last[0] N_steps = data.c.N_steps[0] stepsize = only_last//2 xticks([0,stepsize,2*stepsize,3*stepsize,4*stepsize], [0,N_steps//2,'<--timelapse | last---------->', N_steps-only_last//2,N_steps]) ylabel('Normalized sum of all input weights') legend(data.paramtracker[0,:]) title('Input weight influence with param %s' %data.c.cluster.vary_param[0]) utils.saveplot('InputWeight_%s.%s' %(data.c.stats.file_suffix[0],ftype)) ### Plot SpontPatterns if data.__contains__('SpontPattern'): # gather or gatherv? if shape(shape(data.SpontPattern[:]))[0] == 2: gatherv = True index_old = 0 else: N_indices = shape(data.SpontPattern)[3] gatherv = False indexfreqs_mean_cumm = np.zeros((N_params,N_indices)) indexfreqs_std_cumm = np.zeros((N_params,N_indices)) patternfreqs_mean_cumm = np.zeros((N_params,N_indices)) patternfreqs_std_cumm = np.zeros((N_params,N_indices)) for param in range(N_params): filename = os.path.join(pickle_dir, "source_plastic_%s_%.3f.pickle" %(param_name,params[param])) source_plastic = pickle.load(gzip.open(filename,"r")) if isinstance(source_plastic,TrialSource): source_plastic = source_plastic.source words = source_plastic.words word_string = ''.join(words) if gatherv: index_new = \ where(data.SpontPattern[:]==-1)[1][2*(param+1)-1] freqs = data.SpontPattern[:,index_old:index_new] index_old = index_new freqs = freqs[freqs>=0] freqs = reshape(freqs,(N_iterations,2,-1)) N_indices = shape(freqs)[2] else: freqs = data.SpontPattern[:,param,:,:] # Normalize to relative frequencies freqs /= (1.*data.NormLast[0,param,0]) # First index frequencies indexfreqs_mean = mean(freqs[:,0,:],0) indexfreqs_std= std(freqs[:,0,:],0)/sqrt(N_iterations) figure() x = arange(N_indices) bar(x,indexfreqs_mean,\ yerr=indexfreqs_std,\ align='center',label='Spontaneous freq.') #,color=repeat(['b','r'],[4,4])) #~ title('Spontaneous activity for %s=%.2f' #~ %(param_name,params[param])) # this assumes transition probabilities independent of # the precessor word_probs = source_plastic.probs[0] word_length = [len(x) for x in words] norm_probs = word_probs/sum(map(lambda x,y:x*y, word_probs,word_length)) lstart = 0 for (i,l) in enumerate(word_length): p = norm_probs[i] # default bar width is 0.8 plot([lstart-0.4,lstart+l-0.6],[p,p],'r--') lstart += l plot([],[],'r--',label='Presentation freq.') xlim([-2,len(indexfreqs_mean)+1]) ax = gca() ax.set_xticks(arange(len(word_string))) ax.set_xticklabels(array([x for x in word_string])) ylabel('Relative frequency') xlabel('Letter') tight_layout() legend(loc='best') utils.saveplot('SpontAct_%s_%s_%.2f.%s'\ %(data.c.stats.file_suffix[0],param_name_u, params[param],ftype)) # Then pattern frequencies # Normalize to relative occurances for i in range(N_iterations): freqs[i,1,:] /= sum(freqs[i,1,:]) patternfreqs_mean = mean(freqs[:,1,:],0) patternfreqs_std = std(freqs[:,1,:],0)/sqrt(N_iterations) figure() N_patterns = len(words)*2 bar(arange(N_patterns),patternfreqs_mean[:N_patterns],\ yerr=patternfreqs_std[:N_patterns],align='center') #~ title('Spontaneous patterns for %s=%.2f' #~ %(param_name,params[param])) xlim([-2,N_patterns+1]) ylim([0,1]) ax = gca() ax.set_xticks(arange(N_patterns)) ax.set_xticklabels(words + [x[::-1] for x in words], rotation=30,ha='right') ylabel('Relative frequency') xlabel('Pattern') tight_layout() utils.saveplot('SpontPat_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[param],ftype)) if not gatherv: indexfreqs_mean_cumm[param,:] = indexfreqs_mean indexfreqs_std_cumm[param,:] = indexfreqs_std patternfreqs_mean_cumm[param,:] = patternfreqs_mean patternfreqs_std_cumm[param,:] = patternfreqs_std if not gatherv: figure() for index in range(N_indices): errorbar(params,#+random(shape(params))*0.1*std(params), indexfreqs_mean_cumm[:,index], yerr=indexfreqs_std_cumm[:,index], label=word_string[index]) hold('on') legend(loc='center right') #~ title('Letter frequencies') xlabel(param_name_plot) minmax = [min(params).copy(),max(params).copy()] delta = (minmax[1]-minmax[0])*0.1 minmax[0] -= delta minmax[1] += delta xlim(minmax) ylabel('Relative frequency') tight_layout() utils.saveplot('change_freqs_%s.%s'%(param_name_u,ftype)) figure() allwords = words + [x[::-1] for x in words] for index in range(N_patterns): errorbar(params,#+random(shape(params))*0.1*std(params), patternfreqs_mean_cumm[:,index], yerr=patternfreqs_std_cumm[:,index], label=allwords[index]) hold('on') legend(loc='center right') #~ title('Pattern frequencies') xlabel(param_name_plot) xlim(minmax) ylabel('Relative frequency') tight_layout() utils.saveplot('change_patterns_%s.%s'%(param_name_u,ftype)) if data.__contains__('EvokedPred'): # Reps x Params x Words x Step x pinv/base max_step = shape(data.EvokedPred)[-2]#15 #-word_length pred_spont = data.EvokedPred[:,:,:,:,0] pred_base = data.EvokedPred[:,:,:,:,1] for p in range(N_params): inputi = data.InputIndex[0,p] filename = os.path.join(pickle_dir, "source_%s_%s_%.3f.pickle" %(data.c.stats.quenching[0], param_name,params[p])) source = pickle.load(gzip.open(filename,"r")) if isinstance(source,TrialSource): source = source.source word_lengths = [len(x) for x in source.words] word_length = max(word_lengths) figure() axvspan(0,word_length-1,color='#E6E6E6') secondstim_start = word_length # length of first word secondstim_stop = word_length # length of second word if data.c.stats.quenching[0] == 'test': secondstim_start += data.c.wait_min_test[0] secondstim_stop += data.c.wait_var_test[0] elif data.c.stats.quenching[0] == 'train': secondstim_start += data.c.wait_min_train[0] secondstim_stop += data.c.wait_var_train[0] else: secondstim_start = x.max() # ugly and I know it secondstim_stop = x.max()+secondstim_start secondstim_stop += secondstim_start axvspan(secondstim_start,secondstim_stop,facecolor='w', edgecolor='#E6E6E6', linewidth=0,hatch="x") from scipy.stats import nanmean pred_spont_p = nanmean(pred_spont[:,p,:,:max_step],1) pred_base_p = nanmean(pred_base[:,p,:,:max_step],1) x = arange(shape(pred_spont_p)[1]) errorbar(x,mean(pred_spont_p,0), std(pred_spont_p,0)/sqrt(N_iterations),color='b', label='Spont. pred.') hold('on') errorbar(x,mean(pred_base_p,0), std(pred_base_p,0)/sqrt(N_iterations), color='#808080',label='Baseline') y_lim = ylim() ylim(y_lim) xlim([x.min(),x.max()]) legend(loc='best') xlabel('Step after stimulus onset') ylabel('Pearson correlation to evoked response') #~ suptitle('%s = %.2f'%(param_name,params[p])) tight_layout() utils.saveplot('evokedpred_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[p],ftype)) # Assuming identical word length for shaded areas figure() axvspan(0,word_length-1,color='#E6E6E6') axvspan(secondstim_start,secondstim_stop,facecolor='w', edgecolor='#E6E6E6', linewidth=0,hatch="x") # Roll to get frac_A=1 to front (A first letter in alphabet and # evokedpred sorted by letters) frac_A = roll(data.c.frac_A[0],1) for (i,frac) in enumerate(frac_A): errorbar(x,mean(pred_spont[:,:,i],1).mean(0), mean(pred_spont[:,:,i],1).std(0)/sqrt(N_iterations), label='%.2fA'%frac) ylabel('Pearson correlation to evoked response') xlabel('Step after stimulus onset') legend(loc='best') tight_layout() utils.saveplot('evokedpred_byword_%s.%s' %(data.c.stats.file_suffix[0],ftype)) if data.__contains__('Bayes'): # Remove all-zero returned matrices and matrices with # values >+-10 from failed SVD and values==0 from failed SVD from scipy.interpolate import interp1d bayes = np.zeros(shape(data.Bayes)[1:]) bayes_std = np.zeros(shape(data.Bayes)[1:]) for p in range(N_params): tmp = [] for i in range(N_iterations): if not (any(data.Bayes[i,p]>10) or any(data.Bayes[i,p]<-10) or all(data.Bayes[i,p] == 0)): tmp.append(data.Bayes[i,p]) assert(not tmp == []) bayes[p] = mean(array(tmp),0) bayes_std[p] = std(array(tmp),0)/sqrt(N_iterations) frac_A = data.c.frac_A[0] ''' Linearly interpolate the crossing point between curve Y1 and Y2 This assumes that Y1 starts of smaller than Y2 It will return the first intersection point If there are no intersections, return the x-value at the end of the interval, where Y1 and Y2 are most similar ''' def get_crossing(x,Y1,Y2,N_points=1000): precise_x = np.linspace(x.min(),x.max(),N_points) f_y1 = interp1d(x,Y1) f_y2 = interp1d(x,Y2) y_y1 = f_y1(precise_x) y_y2 = f_y2(precise_x) crossing = where(y_y1>y_y2) if shape(crossing)[1]>0: crosspoint = crossing[0][0] else: if abs((Y1[-1]-Y2[-1])) < abs((Y1[0]-Y2[0])): crosspoint = N_points-1 else: crosspoint = 0 return precise_x[crosspoint] raw_crossings = zeros((N_params,N_iterations)) for i in range(N_params): for j in range(N_iterations): raw_crossings[i,j] = get_crossing(frac_A, data.Bayes[j,i,:,4],data.Bayes[j,i,:,5]) crossings = mean(raw_crossings,1) crossings_std = std(raw_crossings,1) # Fit optimal model from chartmann.spont.optimal_channels import OptimalChannels channels = OptimalChannels(N_u=data.c.N_u_e[0]) N_As = (frac_A*data.c.N_u_e[0]).round().astype(int) def opt_wrapper(x,p_uA_given_A,p_uA_given_B,p_A): channels.p_uA_given_A = p_uA_given_A channels.p_uB_given_B = p_uA_given_A channels.p_uA_given_B = p_uA_given_B channels.p_uB_given_A = p_uA_given_B return channels.optimal_inference(p_A=p_A,N_As=x, N_samples=10000) N_optprobs = int(round(0.9/0.05))+1 ps_uA_given_A = linspace(0.05,0.95,N_optprobs) ps_uA_given_B = linspace(0.05,0.95,N_optprobs) best_so_far = inf ''' Parameter symmetries: if: p_uA_given_A = a p_uA_given_B = b then the following combinations give the same result: p_uA_given_A = b p_uA_given_B = a and p_uA_given_A = 1-a p_uA_given_B = 1-b Intuitions for conservation of information: 1- -> just interpret the transmission as success when failed b=a -> just renaming of variables ''' for pAA in ps_uA_given_A: for pAB in ps_uA_given_B[ps_uA_given_B<=pAA]: dists = zeros((N_params,N_iterations)) for i in range(N_params): y_est = opt_wrapper(N_As,pAA,pAB,params[i]) for j in range(N_iterations): # least squares dists[i,j] = np.linalg.norm(data.Bayes[j,i,:,4]-y_est)**2 dist = mean(dists) if dist<best_so_far: p_uA_given_A = pAA p_uA_given_B = pAB best_so_far = dist #~ p_uA_given_A = 0.3 #~ p_uA_given_B = 0.05 fitted_channels = OptimalChannels(p_uA_given_A=p_uA_given_A, p_uA_given_B=p_uA_given_B, N_u=data.c.N_u_e[0]) opt_posteriors = zeros((N_params,len(frac_A))) opt_crossings = zeros(N_params) for i in range(N_params): # Many samples for pretty plots opt_posteriors[i,:] = fitted_channels.optimal_inference( p_A=params[i],N_As=N_As,N_samples=10000) opt_crossings[i] = get_crossing(frac_A,opt_posteriors[i], 1-opt_posteriors[i]) for i in range(N_params): fig, ax = plt.subplots() errorbar(frac_A,bayes[i,:,0],bayes_std[i,:,0],fmt='-b', label='Decision A') hold('on') errorbar(frac_A,bayes[i,:,1],bayes_std[i,:,1],fmt='-g', label='Decision B') ylim([0,1]) xlim([0,1]) #~ title('%s = %.2f'%(param_name,params[i])) tmp = 1-params[i] plot([tmp,tmp],[0,1],'--k',label='1-prior(A)') legend(loc='upper center') xlabel('Fraction of cue A in ambiguous cue') ylabel('Output gain +- stderr') utils.saveplot('bayes_drive_%s_%f.%s'%(param_name_u, params[i],ftype)) figure() # Lines for optimality explanation before data for overlap # Old/wrong optimal lines #~ tmp = 1-params[i] #~ plot([tmp,tmp],[0,1],'--k',label='1-prior(A)') #~ hold('on') #~ denom = frac_A*params[i]+frac_A[::-1]*(1-params[i]) #~ plot(frac_A,frac_A*params[i]/denom,'-', color='#808080', \ #~ label='Optimal') #~ plot(frac_A,frac_A[::-1]*(1-params[i])/denom,'-',\ #~ color='#808080') plot(frac_A,opt_posteriors[i],'--', color='#808080', label='Prob. model') plot(frac_A,1-opt_posteriors[i],'--', color='#808080') # Actual data here errorbar(frac_A,bayes[i,:,4],bayes_std[i,:,4],fmt='-b',\ label='Decision A') hold('on') errorbar(frac_A,bayes[i,:,5],bayes_std[i,:,5],fmt='-g',\ label='Decision B') ylim([0,1]) xlim([0,1]) #~ title('%s = %.2f'%(param_name,params[i])) # Reorder labels b/c ugly ax = gca() handles, labels = ax.get_legend_handles_labels() labels = [z for z in array(labels)[[1,2,0]]] handles = [z for z in array(handles)[[1,2,0]]] leg = ax.legend(handles, labels, loc='best') leg.get_frame().set_alpha(0.5) #~ legend(loc='best') xlabel('Fraction of A in ambiguous stimulus') ylabel('Fraction of decisions') #~ if i < (N_params-1): #~ utils.saveplot('bayes_dec_%s_%f.%s' #~ %(param_name_u,params[i],ftype)) utils.saveplot('bayes_dec_frac_%s_%f.%s' %(param_name_u,params[i],ftype)) figure() plot(1-params[:,0],opt_crossings,'--', color='#808080', label='Prob. model') errorbar(1-params[:,0],crossings, crossings_std/sqrt(N_iterations),fmt='o-', label='Intersection') #~ plot([tmp,tmp],[0,1],'--k') # Reorder labels b/c ugly ax = gca() handles, labels = ax.get_legend_handles_labels() labels = [x for x in array(labels)[[1,0]]] handles = [x for x in array(handles)[[1,0]]] leg = ax.legend(handles, labels, loc='best') leg.get_frame().set_alpha(0.5) ylim([0,1]) xlim([0,1]) xlabel('1 - ('+param_name_plot+')') ylabel('Intersection of decisions') tight_layout() # for suplot spacing utils.saveplot('bayes_dec_intersect_%s.%s' %(param_name_u,ftype)) figure() title('Fitted Parameters') text(2,7,'p(transmission|input) = %.2f'%p_uA_given_A, fontsize=20) text(2,3,'p(transmission|noinput) = %.2f'%p_uA_given_B, fontsize=20) ylim([0,10]) xlim([0,10]) ax = gca() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) utils.saveplot('parameters_channelmodel_%s.%s'%(param_name_u, ftype)) #~ import ipdb; ipdb.set_trace() if data.__contains__('SpontBayes'): sb = data.SpontBayes # over all conditions: check if higher-than-mean readout # corresponds to higher-than-mean activation of input units mean_readout = mean(mean(sb,0),2)[:,:,2:] mean_act = mean(mean(sb,0),2)[:,:,:2] n_conditions = shape(sb)[2] relative_effect = np.zeros((N_params,n_conditions,2)) excess = np.zeros((N_params,2)) for param in range(N_params): for i in range(n_conditions): indices_0 = where(sb[:,param,i,:,2] >mean_readout[param,i,0]) indices_1 = where(sb[:,param,i,:,3] >mean_readout[param,i,1]) # ugly mean computation vals_0 = [] vals_1 = [] for j in range(shape(indices_0)[1]): vals_0.append(sb[indices_0[0][j],param,i, indices_0[1][j],0]) for j in range(shape(indices_1)[1]): vals_1.append(sb[indices_1[0][j],param,i, indices_1[1][j],1]) relative_effect[param,i,0] = mean(array(vals_0))\ /mean_act[param,i,0] relative_effect[param,i,1] = mean(array(vals_1))\ /mean_act[param,i,1] excess[param,0] = mean((mean_act[param,:,0]- frac_A*data.c.N_u_e[0])) excess[param,1] = mean((mean_act[param,:,1]- frac_A[::-1]*data.c.N_u_e[0])) figure() boxplot(relative_effect.flatten()*100-100) hold('on') plot([0.75,1.25],[0,0],'--k') title('Effect of above-average readout on input activity') ylabel('Increased input activity [%]') xlabel('Collapsed over all values of the %s'%param_name_plot) xticks([]) xlim([0.75,1.25]) utils.saveplot('spontbayes_box_%s_%f.%s' %(param_name_u,params[param],ftype)) figure() plot(params,excess[:,0],'-b',label='A units') hold('on') plot(params,excess[:,1],'-g',label='B units') xlim([0,1]) legend(loc = 'upper center') xlabel(param_name_plot) ylabel('Mean excess activity over all stimuli') utils.saveplot('spontbayes_excess_%s_%f.%s' %(param_name_u,params[param],ftype)) if data.__contains__('TrialBayes'): filename = os.path.join(pickle_dir,"source_%s_%s_%.3f.pickle"\ %('test',param_name,params[0])) source = pickle.load(gzip.open(filename,"r")) if isinstance(source,TrialSource): source = source.source word_lengths = [len(x) for x in source.words] word_length = max(word_lengths) agreements = np.zeros((N_iterations*N_params,2,\ shape(data.TrialBayes)[3])) count = 0 ig = 30 # only use ig step # for the time being: forward_pred = data.c.stats.forward_pred[0] x = arange(-ig+forward_pred,forward_pred) for i in range(N_params): tmp = data.TrialBayes[:,i,0,:]*100 nonzero_set = set(where(tmp!=-100)[0]) nonzero_list = [n for n in nonzero_set] trials = len(nonzero_list) tmp = tmp[nonzero_list] agreements[count:count+trials,0,:] = tmp tmp = tmp[:,-ig:] agreement = mean(tmp,0) agreement_sem = std(tmp,0)/sqrt(trials) tmp_lstsq = data.TrialBayes[:,i,1,:]*100 tmp_lstsq = tmp_lstsq[nonzero_list] agreements[count:count+trials,1,:] = tmp_lstsq tmp_lstsq = tmp_lstsq[:,-ig:] # ignore the last stim agreement_lstsq = mean(tmp_lstsq,0) agreement_lstsq_sem = std(tmp_lstsq,0)/sqrt(trials) count += len(nonzero_list) figure() errorbar(x,agreement,agreement_sem,color='#808080', label='Baseline') hold('on') errorbar(x,agreement_lstsq,agreement_lstsq_sem,color='b', label='Spont. prediction') y_lim = ylim() x_lim = xlim() axvspan(0,word_length-1,color='#E6E6E6') plot([word_length-1,word_length-1],y_lim,'--g', label='Pred. position') ylim(y_lim) xlim(x_lim) xlabel('Step relative to stimulus onset') title('%s = %.2f'%(param_name_plot,params[i])) ylabel('Correct predictions [%]') utils.saveplot('trialbayes_%.2f_%s.%s'\ %(params[i],data.c.stats.file_suffix[0],ftype)) agreements = agreements[:count,:,-ig:] figure() errorbar(x,mean(agreements[:,0,:],0), std(agreements[:,0,:],0)/sqrt(count),color='#808080', label='Baseline') errorbar(x,mean(agreements[:,1,:],0), std(agreements[:,1,:],0)/sqrt(count),color='b', label='Spont. prediction') y_lim = ylim() axvspan(0,word_length-1,color='#E6E6E6') plot([word_length-1,word_length-1],y_lim,'--g', label='Pred. position') legend(loc='upper left') xlabel('Step relative to stimulus onset') ylabel('Correct predictions [%]') utils.saveplot('trialbayes_average_%s.%s'\ %(data.c.stats.file_suffix[0],ftype)) # quenching variability if data.__contains__('Spikes') and \ data.c.stats.quenching is not None: spikes_before = 10 spikes_after = 10 # number of bins left and right of t (2 -> boxwidth=5) window_width = data.c.stats.quenching_window[0] weighted_regression = True mode = data.c.stats.quenching[0] assert(mode == 'train' or mode == 'test') # Get N_words for array filename = os.path.join(pickle_dir,"source_%s_%s_%.3f.pickle"\ %(mode,param_name,params[0])) source = pickle.load(gzip.open(filename,"r")) if isinstance(source,TrialSource): source = source.source word_lengths = [len(x) for x in source.words] max_word_length = max(word_lengths) N_words = len(source.words) total_length = max_word_length + spikes_before + spikes_after # Look at last half of training set steps_plastic = data.c.steps_plastic[0] steps_noplastic_train = data.c.steps_noplastic_train[0] steps_noplastic_test = data.c.steps_noplastic_test[0] if mode == 'train': interval = [-steps_noplastic_train-steps_noplastic_test, -steps_noplastic_test] else: # test because of assert interval = [steps_plastic+steps_noplastic_train,-1] # same order as all: first it, then params FF = np.zeros((N_iterations,N_params,N_words, total_length-2*window_width)) means = np.zeros((N_iterations,N_params,N_words, total_length-2*window_width)) allvars = np.zeros((N_iterations,N_params,N_words, total_length-2*window_width)) if matlab_comparison: try: from mlabwrap import mlab except ImportError: matlab_comparison = False if matlab_comparison: mlab.addpath( '/home/chartmann/Desktop/sorn/py/chartmann/spont/') FFs_mlab = np.zeros((N_iterations,N_params,total_length-7)) means_mlab = np.zeros((N_iterations,N_params, total_length-7)) meansAll_mlab = np.zeros((N_iterations,N_params, total_length-7)) for p in range(N_params): for i in range(N_iterations): input_spikes = data.Spikes[i,p][:, interval[0]:interval[1]] input_index = data.InputIndex[i,p][ interval[0]:interval[1]] # Determine minimum number of trials min_trials = inf word_start = 0 for j in range(N_words): indices = find(input_index==word_start) tmp_trials = sum((indices >= spikes_before)*\ (indices <= shape(input_index)[0] -spikes_after)) if tmp_trials < min_trials: min_trials = tmp_trials word_start += word_lengths[j] # build trial matrix (condition x trial x t x spikes) N_e = shape(input_spikes)[0] trials = np.zeros((N_words,min_trials,total_length,N_e)) word_start = 0 for word in range(N_words): indices = find(input_index==word_start) indices = indices[((indices >= spikes_before) * (indices <= shape(input_index)[0] -(spikes_after +max_word_length)) )] indices = indices[-min_trials:] # take from end for (trial,j) in enumerate(indices): trials[word,trial,:,:] = input_spikes[:, j-spikes_before:j +max_word_length +spikes_after].T word_start += word_lengths[word] # Determine units that do not receive input noinput_units = arange(N_e)[data.InputUnits[i,p]==0] if matlab_comparison: result = mlab.VarVsMean_pythontomat_bulk(trials[:,:, :,noinput_units]) N = 1 FFs_mlab[i,p] = result[:,:N].T means_mlab[i,p] = result[:,3*N:4*N].T/1000. meansAll_mlab[i,p] = result[:,7*N:8*N].T/1000. for word in range(N_words): for (t_i,t) in enumerate(arange(0, total_length-2*window_width)): # Take this procedure from quenching variability # paper figure 4: # Regress between means and variances for all # neurons in small interval (in our case in # single step) over trials # This is summing over the window # This indexing reshapes to # (neurons x trials x window) count = sum(trials[word,:,t: t+2*window_width+1,noinput_units],2) meanss = mean(count,1) means[i,p,word,t_i] = mean(meanss) varss = std(count,1)**2 allvars[i,p,word,t_i] = mean(varss) weighting = eye(shape(meanss)[0]) if weighted_regression: for j in range(shape(meanss)[0]): weighting[j,j] = min_trials/\ ((meanss[j]+0.001)**2) slope = np.dot(np.dot(meanss.T,weighting),\ varss)/np.dot(meanss.T,\ np.dot(weighting,meanss)) FF[i,p,word,t_i] = slope x = linspace(-spikes_before+2*window_width, spikes_after+max_word_length-1, total_length-(window_width*2)) if matlab_comparison: x_mlab = x[:shape(FFs_mlab)[2]] def remove_axes(ax): ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.tick_params(axis='both', direction='out') ax.get_yaxis().tick_left() ax.get_xaxis().set_visible(False) import matplotlib.gridspec as gridspec lw = 3 figure() gs = gridspec.GridSpec(2, 1,height_ratios=[0.4,0.6]) subplot(gs[0]) #~ ax = axes(frameon=False) #~ ax.get_xaxis().set_visible(False) mmeanall = mean(meansAll_mlab[:,p],0) smeanall = std(meansAll_mlab[:,p],0)/sqrt(N_iterations) mmean = mean(means_mlab[:,p],0) smean = std(means_mlab[:,p],0)/sqrt(N_iterations) mFF = mean(FFs_mlab[:,p],0) sFF = std(FFs_mlab[:,p])/sqrt(N_iterations) errorbar(x_mlab,mmeanall,yerr=smeanall,c='0.5', label="Raw",lw=lw) errorbar(x_mlab,mmean,yerr=smean,fmt='k', label="'Matched'",lw=lw) minmax = [min(hstack((mmeanall,mmean))), max(hstack((mmeanall,mmean)))] minmax[0] = round(minmax[0]-0.0049,3) minmax[1] = round(minmax[1]+0.0049,3) minmaxx = [x_mlab[0]-1,max(x_mlab)+0.2] ylabel('Spikes/step') gca().locator_params(axis='y',nbins=4) # 4 ticks/axis remove_axes(gca()) legend(loc='best') ylim(minmax) xlim(minmaxx) tight_layout() subplot(gs[1]) plot(x_mlab,mFF,'k',label='FF',lw=lw) plot(x_mlab,mFF-sFF,c='0.5',label='SEM',lw=lw) plot(x_mlab,mFF+sFF,c='0.5',lw=lw) quiver(-3,ylim()[0],0,0.1,scale=1,label='Stim on') gca().locator_params(axis='y',nbins=4) # 4 ticks/axis remove_axes(gca()) legend(loc='best') ylabel('Fano Factor') ylim([min(mFF-sFF)-0.01,max(mFF+sFF)+0.01]) xlim(minmaxx) tight_layout() utils.saveplot('quenching_word_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0], param_name_u,params[p],ftype)) FF[isnan(FF)] = 0 # nans usually are around small values # Rearrange to match frequency FFnew = roll(FF,-1,axis=2) for p in range(N_params): for word in range(N_words): # This is AX* and BX* (word starting with index 0 and # index word_length because A,B first two letters in # alphabet) # This is accounted for in the Bayes stat by resorting if word == 0 or word==1: fig,axes = subplots(2, sharex=True) ax1 = axes[1] ax1.errorbar(x,mean(allvars[:,p,word,:],0), std(allvars[:,p,word,:],0)\ /sqrt(N_iterations),fmt='b') ax1.hold('on') ax1.set_xlabel('Step') ax1.yaxis.label.set_color('b') y_lim = [min(flatten(mean(allvars[:,:,word,:],0))), max(flatten(mean(allvars[:,:,word,:],0)))] ax1.set_ylim(y_lim) locator_params(axis='y',nbins=4) # 4 ticks/axis ax2 = ax1.twinx() ax2.errorbar(x,mean(means[:,p,word,:],0), std(means[:,p,word,:],0)\ /sqrt(N_iterations),fmt='r') ax2.yaxis.label.set_color('r') ax2.set_ylabel('Mean rate') locator_params(axis='y',nbins=4) # 4 ticks/axis y_lim = [min(flatten(mean(means[:,:,word,:],0))), max(flatten(mean(means[:,:,word,:],0)))] hold('on') ax1.axvspan(0,word_lengths[word]-1,color='#E6E6E6') ylim(y_lim) xlim([x.min(),x.max()]) ax1.set_ylabel('Variance') ax = axes[0] ax.errorbar(x,mean(FF[:,p,word,:],0), std(FF[:,p,word,:],0)/sqrt(N_iterations) ,fmt='k') ax.set_ylabel('Fano factor') ax.locator_params(axis='y',nbins=4) # 4 ticks/axis # yaxis identical for all parameters for each word y_lim = [min(flatten(mean(FF[:,:,word,:],0))), max(flatten(mean(FF[:,:,word,:],0)))] hold('on') ax.axvspan(0,word_lengths[word]-1,color='#E6E6E6') ax.set_ylim(y_lim) ax.legend(loc='lower left') tight_layout() # because tight_layout doesn't recognize twinx fig.subplots_adjust(right=0.9) utils.saveplot('quenching_word_%d_%s_%s_%.2f.%s' %(word,data.c.stats.file_suffix[0], param_name_u,params[p],ftype)) # suptitle('%s = %.2f'%(param_name,params[p])) # Plot ambiguity vs. FF for each condition if False: minFFs = mean(FFnew.min(axis=3)[:,p],0) stdminFFs = std(FFnew.min(axis=3)[:,p],0)/sqrt(N_iterations) figure() errorbar(frac_A,minFFs,stdminFFs,label='Fano factor') y_lim = ylim() axvline(1-params[p],color='k',linestyle='dashed', label='1-prior(A)') ylim(y_lim) gca().locator_params(axis='y',nbins=4) # 4 ticks/axis xlabel('Fraction of A in ambiguous stimulus') ylabel('Minimal Fano factor') legend(loc='best') tight_layout() xlim([-0.02,1.02]) utils.saveplot('quenching_vs_amb_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[p],ftype)) if False: # Plot prior vs. max. FF # For each stimulation condition: # For each iteration, take the word # that maximizes the minimal FF # Then average over these words frac_range = frac_A[-1]-frac_A[0] averagefrac = mean(argmax(FFnew.min(axis=3),2) /((len(frac_A)-1)/frac_range),0) stdfrac = std(argmax(FFnew.min(axis=3),2) /((len(frac_A)-1)/frac_range),0)/sqrt(N_iterations) # Assume even spacing of frac_A offset = frac_A[0] averagefrac += offset figure() plot([frac_A[0],frac_A[-1]],[frac_A[0],frac_A[-1]], color='#808080',label='Identity') # Reverse to match 1-(prior(A)) errorbar(params,averagefrac[::-1],stdfrac[::-1],fmt='o-', label='Fraction') xlabel('1 - ('+param_name_plot+')') ylabel('Fraction of A with highest variability') legend(loc='best') tight_layout() xlim([0,1]) ylim([0,1]) utils.saveplot('queisi_snching_vs_prior_%s.%s' %(data.c.stats.file_suffix[0],ftype)) if data.__contains__('AttractorDynamics'): frac_A = data.c.frac_A[0] for p in range(N_params): output_dists = data.AttractorDynamics figure() # This is now frac x step (from cue to target) mean_od = mean(output_dists[:,p,:,:],0).T[:,::-1] std_od = std(output_dists[:,p,:,:],0).T[:,::-1]\ /sqrt(N_iterations) x = arange(-shape(mean_od)[1]+1,1) for (i,frac) in enumerate(frac_A): errorbar(x,mean_od[i,:],std_od[i,:],label="%.2f"%frac) ylabel('Distance between output gains') xlabel('Steps before target') legend() utils.saveplot('attractordynamics_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[p],ftype)) if data.__contains__('OutputDist'): output_dist = data.OutputDist[:,:,0,:] output_std = data.OutputDist[:,:,1,:] frac_A = data.c.frac_A[0] for i in range(N_params): figure() errorbar(frac_A, mean(output_dist[:,i,:],0), std(output_dist[:,i,:],0), fmt='o-') ylim([0,1]) x_lim = xlim() xlim([x_lim[0]-0.1,x_lim[1]+0.1]) xlabel('Fraction of A in ambiguous stimulus') ylabel('Mean abs diff of normalized output gain +- std') title('%s = %.2f - mean(min) = %.2f' %(param_name_plot,params[i], # get min for each trial and av. mean(output_dist[:,i,:].min(1)))) utils.saveplot('outputdist_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[i],ftype)) figure() errorbar(params,mean(mean(output_dist,2),0), std(mean(output_dist,2),0)/sqrt(N_iterations),fmt='o-') x_lim = xlim() xlim([x_lim[0]-0.1,x_lim[1]+0.1]) xlabel(param_name_plot) ylabel('Attractor score') utils.saveplot('attractor_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[i],ftype)) # Plot evoked pred vs. FF (high FF should yield better ep) # first normalize each iteration and param if data.__contains__('EvokedPred') and 'FF' in locals(): diff = pred_spont[:,:,:,1] - pred_base[:,:,:,1] FFs = FF[:,:,:,11] for p in range(N_params): for i in range(N_iterations): diff[i,p] -= diff[i,p].min() diff[i,p] /= diff[i,p].max() FFs[i,p] -= FFs[i,p].min() FFs[i,p] /= FFs[i,p].max() FFs = FFs.flatten() diff = diff.flatten() figure() scatter(FFs,diff) (s,p) = stats.pearsonr(FFs,diff) xlabel('Normalized Fano factor after stimulus onset') ylabel('Normalized(spontpred - staticpred)') title('p = %.4f'%p) # Do linear regression fit A = vstack((FFs,ones(shape(FFs)[0]))).T w = pinv(A).dot(diff) y = FFs*w[0]+w[1] tmp = zip(FFs,y) tmp.sort() tmp = array(tmp) hold('on') plot(tmp.T[0],tmp.T[1]) utils.saveplot('evokedpred_FF_%s.%s'\ %(data.c.stats.file_suffix[0],ftype)) # Finally plot EP vs. condition at step 1 (indisting. at step0) # look at method for how predictions are sorted # --> almost sorted, but not averaged etc. if data.c.stats.quenching[0] == 'test' and False: frac_A = data.c.frac_A[0] for p in range(N_params): pred_p = pred_spont[:,p,:,1] # can mean here because order of means doesn't matter pred_p = mean(pred_p,0) # over iterations to_mean = pred_p[2:] meaned = [mean([x,y]) for (x,y) in zip(to_mean[::2], to_mean[1::2])] # B, C, D, ..., A pred_p = hstack((pred_p[1],array(meaned),pred_p[0])) pred_s = pred_base[:,p,:,1] pred_s = mean(pred_s,0) to_mean = pred_s[2:] meaned = [mean([x,y]) for (x,y) in zip(to_mean[::2], to_mean[1::2])] pred_s = hstack((pred_s[1],array(meaned),pred_s[0])) figure() plot(frac_A,pred_p,label='Pinv') hold('on') plot(frac_A,pred_s,label='STA') xlabel('Fraction of A in ambiguous stimulus') ylabel('Prediction') suptitle('%s = %.2f'%(param_name_plot,params[p])) legend() utils.saveplot('evokedpred_fracA_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0], param_name_u,params[p],ftype)) if data.__contains__('patternprobability'): def KL(p,q): # in case zero-correction was deactivated q = q[p>0] p = p[p>0] p = p[q>0] q = q[q>0] q /= sum(q) p /= sum(p) kl = sum(p*log2(p/q)) kl = np.sum(np.where(p != 0, p * np.log2(p / q), 0)) return kl kl_evoked1_spont = zeros((N_params,N_iterations)) kl_spont_evoked1 = zeros((N_params,N_iterations)) kl_evoked_12 = zeros((N_params,N_iterations)) kl_evoked_21 = zeros((N_params,N_iterations)) kl_spont_12 = zeros((N_params,N_iterations)) kl_spont_21 = zeros((N_params,N_iterations)) kl_exp_spont = zeros((N_params,N_iterations)) kl_con_spont = zeros((N_params,N_iterations)) for p in range(N_params): for i in range(N_iterations): p_evoked_1 = data.patternprobability[i,p][0] p_evoked_2 = data.patternprobability[i,p][1] p_spont_1 = data.patternprobability[i,p][2] p_spont_2 = data.patternprobability[i,p][3] p_spont = (p_spont_1+p_spont_2)/2 kl_evoked1_spont[p,i] = KL(p_evoked_1,p_spont) kl_spont_evoked1[p,i] = KL(p_spont,p_evoked_1) kl_evoked_12[p,i] = KL(p_evoked_1,p_evoked_2) kl_evoked_21[p,i] = KL(p_evoked_2,p_evoked_1) kl_spont_12[p,i] = KL(p_spont_1,p_spont_2) kl_spont_21[p,i] = KL(p_spont_2,p_spont_1) kl_exp_spont[p,i] = KL(p_evoked_1,p_spont) kl_con_spont[p,i] = KL(p_evoked_2,p_spont) figure() bar([1,2,3],[mean(kl_evoked1_spont[p]),mean(kl_evoked_12[p]), mean(kl_spont_12[p])],yerr=[ std(kl_evoked1_spont[p]),std(kl_evoked_12[p]), std(kl_spont_12[p])],align='center') xticks([1,2,3],['$D(e||s)$','$D(e||e)$','$D(s||s)$']) ylabel('KL-Divergence') title('%s = %s'%(param_name_u,params[p])) xlim([0.5,3.5]) utils.saveplot('KLdiv_%s_%s_%.2f.%s' %(data.c.stats.file_suffix[0],param_name_u, params[p],ftype)) figure() x = arange(len(params)) bar(x,mean(kl_evoked1_spont,1), yerr=std(kl_evoked1_spont,1)/sqrt(N_iterations), align='center') xticks(x,['%d'%p for p in params],rotation=30,ha='right') ylabel('KL-Divergence $D(e||s)$') xlabel(param_name_plot) utils.saveplot('KLdiv_%s.%s'\ %(data.c.stats.file_suffix[0],ftype)) # Figure assuming first and second half of evoked are # experiment and control, respectively figure() x = arange(len(params)*2)[::2] dx = 0.4 bar(x-dx,mean(kl_exp_spont,1), yerr=std(kl_exp_spont,1)/sqrt(N_iterations), align='center',color='r',linewidth=2,ecolor='k', label='Natural') bar(x+dx,mean(kl_con_spont,1), yerr=std(kl_con_spont,1)/sqrt(N_iterations), align='center',color='g',linewidth=2,ecolor='k', label='Control') for p in range(N_params): label_diff(x[p]-dx,x[p]+dx,kl_exp_spont[p], kl_con_spont[p],gca()) xticks(x[::2],[' %d'%(p//1000) for p in params[::2]], ha='center') ylabel('KL-Divergence $D(e||s)$') legend(loc='best') if param_name == 'steps_plastic': param_name_plotting = 'Steps with plasticity [$*10^3$]' else: param_name_plotting = param_name xlabel(param_name_plotting) tight_layout() utils.saveplot('KLdiv_new_%s.%s'\ %(data.c.stats.file_suffix[0],ftype)) if __name__ == '__main__': plot_results(path, datafile) show()
mit
jwlawson/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
76
2920
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def get_input_fn(data_set, num_epochs=None, shuffle=True): return tf.estimator.inputs.pandas_input_fn( x=pd.DataFrame({k: data_set[k].values for k in FEATURES}), y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs, shuffle=shuffle) def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Train regressor.train(input_fn=get_input_fn(training_set), steps=5000) # Evaluate loss over one epoch of test_set. ev = regressor.evaluate( input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False)) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions over a slice of prediction_set. y = regressor.predict( input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False)) # .predict() returns an iterator of dicts; convert to a list and print # predictions predictions = list(p["predictions"] for p in itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
permcody/libmesh
doc/statistics/libmesh_sflogos.py
7
6095
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Import stuff for working with dates from datetime import datetime from matplotlib.dates import date2num # SF.net pages and SFLogo Impressions. # On the site, located under "Sourceforge Traffic". Number of logos # (last column) seems to be the most useful one. # # This view should give you the last 12 months data # https://sourceforge.net/project/stats/detail.php?group_id=71130&ugn=libmesh&mode=12months&type=sfweb # This data has now changed to Google-analytics style... # After you select the proper date range, scroll down to the bottom # of the screen and it should show the totals for the two categories, # which are listed as "SF Logo" and "other" # Other SF Logo data = [ 'Jan 2003', 681, 479, 'Feb 2003', 659, 1939, 'Mar 2003', 488, 1754, 'Apr 2003', 667, 3202, 'May 2003', 608, 2552, 'Jun 2003', 562, 2190, 'Jul 2003', 997, 3097, 'Aug 2003', 745, 4708, 'Sep 2003', 906, 4937, 'Oct 2003', 892, 6834, 'Nov 2003', 1257, 8495, 'Dec 2003', 1147, 6439, 'Jan 2004', 823, 7791, 'Feb 2004', 906, 8787, 'Mar 2004', 979, 11309, 'Apr 2004', 835, 9393, 'May 2004', 851, 9796, 'Jun 2004', 750, 9961, 'Jul 2004', 618, 6337, 'Aug 2004', 912, 6647, 'Sep 2004', 554, 5736, 'Oct 2004', 524, 6144, 'Nov 2004', 685, 8122, 'Dec 2004', 583, 6136, 'Jan 2005', 215, 2668, 'Feb 2005', 732, 7618, 'Mar 2005', 944, 10283, 'Apr 2005', 837, 9605, 'May 2005', 1420, 9994, 'Jun 2005', 1691, 12031, 'Jul 2005', 849, 6740, 'Aug 2005', 1068, 11771, 'Sep 2005', 1119, 11459, 'Oct 2005', 772, 8614, 'Nov 2005', 845, 9383, 'Dec 2005', 814, 10606, 'Jan 2006', 1004, 11511, 'Feb 2006', 819, 10693, 'Mar 2006', 1097, 11925, 'Apr 2006', 960, 15664, 'May 2006', 1091, 14194, 'Jun 2006', 906, 12118, 'Jul 2006', 1022, 8935, 'Aug 2006', 914, 9370, 'Sep 2006', 1087, 11397, 'Oct 2006', 1311, 11516, 'Nov 2006', 1182, 10795, 'Dec 2006', 811, 9418, 'Jan 2007', 1236, 11522, 'Feb 2007', 1410, 10669, 'Mar 2007', 1568, 13141, 'Apr 2007', 1544, 12285, 'May 2007', 1362, 14992, 'Jun 2007', 2229, 17716, 'Jul 2007', 1822, 15192, 'Aug 2007', 1446, 12300, 'Sep 2007', 2045, 19599, 'Oct 2007', 2680, 14694, 'Nov 2007', 2344, 15211, 'Dec 2007', 2235, 10683, 'Jan 2008', 1582, 11290, 'Feb 2008', 1712, 12376, 'Mar 2008', 1908, 13204, 'Apr 2008', 2308, 13046, 'May 2008', 2013, 10312, 'Jun 2008', 2082, 11522, 'Jul 2008', 1880, 10859, 'Aug 2008', 2083, 11677, 'Sep 2008', 1739, 11446, 'Oct 2008', 2546, 13463, 'Nov 2008', 2152, 14491, 'Dec 2008', 2600, 15275, 'Jan 2009', 1897, 12910, 'Feb 2009', 1880, 12008, 'Mar 2009', 6348, 12696, 'Apr 2009', 1799, 14048, 'May 2009', 1771, 13122, 'Jun 2009', 1811, 12114, 'Jul 2009', 1878, 13600, 'Aug 2009', 2047, 10828, 'Sep 2009', 2807, 12914, 'Oct 2009', 4025, 17326, 'Nov 2009', 3702, 15648, 'Dec 2009', 3409, 12510, 'Jan 2010', 3737, 31211, 'Feb 2010', 5015, 28772, 'Mar 2010', 5652, 17882, 'Apr 2010', 4019, 17495, 'May 2010', 3336, 18117, 'Jun 2010', 2174, 21288, 'Jul 2010', 874, 13900, 'Aug 2010', 1160, 15153, 'Sep 2010', 1317, 13836, 'Oct 2010', 3543, 15279, 'Nov 2010', 3072, 18663, 'Dec 2010', 2257, 16381, 'Jan 2011', 2513, 19798, 'Feb 2011', 1678, 17870, 'Mar 2011', 1878, 17759, 'Apr 2011', 1948, 21264, 'May 2011', 2696, 15953, 'Jun 2011', 1514, 18409, 'Jul 2011', 1422, 13071, 'Aug 2011', 906, 7857, 'Sep 2011', 976, 9764, 'Oct 2011', 1699, 13285, 'Nov 2011', 1952, 16431, 'Dec 2011', 2735, 17849, 'Jan 2012', 1741, 14358, 'Feb 2012', 1017, 14262, 'Mar 2012', 1361, 14379, 'Apr 2012', 967, 15483, 'May 2012', 2384, 13656, 'Jun 2012', 1337, 14370, 'Jul 2012', 2107, 17286, 'Aug 2012', 8165, 53331, 'Sep 2012', 2268, 14704, 'Oct 2012', 738, 7333, # No data recorded from Oct 10 thru 28? 'Nov 2012', 6104, 39650, 'Dec 2012', 3439, 24706, # libmesh switched to github Dec 10, 2012 'Jan 2013', 2552, 31993, 'Feb 2013', 2107, 24913, 'Mar 2013', 1376, 23953, 'Apr 2013', 1582, 19285, 'May 2013', 1257, 16753, 'Jun 2013', 482, 14458, 'Jul 2013', 465, 11325, 'Aug 2013', 306, 7653, 'Sep 2013', 731, 11332, 'Oct 2013', 795, 15619, 'Nov 2013', 753, 16199, 'Dec 2013', 593, 11596, 'Jan 2014', 489, 11195, 'Feb 2014', 484, 14375, 'Mar 2014', 363, 13050, 'Apr 2014', 357, 15700, # As of June 1, 2014 the site above no longer exists... ] # Extract list of date strings date_strings = data[0::3] # Convert date strings into numbers date_nums = [] for d in date_strings: date_nums.append(date2num(datetime.strptime(d, '%b %Y'))) # Strip out number of logos/month for plotting n_logos_month = data[2::3] # Scale by 1000 n_logos_month = np.divide(n_logos_month, 1000.) # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Make the bar chart. One number/month, so width=30 # makes sense. ax.bar(date_nums, n_logos_month, width=30, color='b') # Set tick labels at desired locations xticklabels = ['Jan\n2003', 'Jan\n2005', 'Jan\n2007', 'Jan\n2009', 'Jan\n2011', 'Jan\n2013'] # Get numerical values for the tick labels tick_nums = [] for x in xticklabels: tick_nums.append(date2num(datetime.strptime(x, '%b\n%Y'))) ax.set_xticks(tick_nums) ax.set_xticklabels(xticklabels) # Make x-axis tick marks point outward ax.get_xaxis().set_tick_params(direction='out') # Set the xlimits plt.xlim(date_nums[0], date_nums[-1]+30); # Create title fig.suptitle('SFLogo Pages/Month (in Thousands)') # Save as PDF plt.savefig('libmesh_sflogos.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
btgorman/RISE-power-water-ss-1phase
data_water/supplemental/demands/annual/ver_averages.py
1
4214
import matplotlib.pyplot as plt import numpy as np import math monthly_annual_demand_scalar = { 1: 064., 2: 065., 3: 070., 4: 090., 5: 110., 6: 140., 7: 153., 8: 130., 9: 120., 10: 100., 11: 080., 12: 074., } monthly_seasonal_demand_scalar = { 1: 0., 2: 0., 3: 0., 4: 0., 5: 0., 6: 0., 7: 0., 8: 0., 9: 0., 10: 0., 11: 0., 12: 0., } monthly_summer_average = 0.01*(monthly_annual_demand_scalar[6] + monthly_annual_demand_scalar[7] + monthly_annual_demand_scalar[8]) / 3 monthly_winter_average = 0.01*(monthly_annual_demand_scalar[1] + monthly_annual_demand_scalar[2] + monthly_annual_demand_scalar[12]) / 3 monthly_spring_average = 0.01*(monthly_annual_demand_scalar[2] + monthly_annual_demand_scalar[4] + monthly_annual_demand_scalar[5]) / 3 monthly_fall_average = 0.01*(monthly_annual_demand_scalar[9] + monthly_annual_demand_scalar[10] + monthly_annual_demand_scalar[11]) / 3 for item in monthly_seasonal_demand_scalar: if item == 6 or item == 7 or item == 8: monthly_seasonal_demand_scalar[item] = monthly_annual_demand_scalar[item] / monthly_summer_average if item == 12 or item == 1 or item == 2: monthly_seasonal_demand_scalar[item] = monthly_annual_demand_scalar[item] / monthly_winter_average if item == 3 or item == 4 or item == 5: monthly_seasonal_demand_scalar[item] = monthly_annual_demand_scalar[item] / monthly_spring_average if item == 9 or item == 10 or item == 11: monthly_seasonal_demand_scalar[item] = monthly_annual_demand_scalar[item] / monthly_fall_average print(monthly_seasonal_demand_scalar) hourly_summer_demand_scalar = { 1: 100., 2: 095., 3: 090., 4: 100., 5: 110., 6: 130., 7: 150., 8: 175., 9: 200., 10: 210., 11: 200., 12: 175., 13: 150., 14: 147., 15: 145., 16: 170., 17: 200., 18: 225., 19: 250., 20: 263., 21: 275., 22: 263., 23: 250., 24: 100., } hourly_winter_demand_scalar = { 1: 050., 2: 045., 3: 040., 4: 045., 5: 050., 6: 058., 7: 065., 8: 073., 9: 080., 10: 073., 11: 065., 12: 058., 13: 050., 14: 045., 15: 040., 16: 045., 17: 050., 18: 058., 19: 065., 20: 073., 21: 080., 22: 073., 23: 065., 24: 050., } hourly_equinox_demand_scalar = { 1: 075., 2: 070., 3: 065., 4: 073., 5: 080., 6: 094., 7: 108., 8: 124., 9: 140., 10: 142., 11: 133., 12: 117., 13: 100., 14: 096., 15: 093., 16: 108., 17: 125., 18: 142., 19: 158., 20: 168., 21: 178., 22: 168., 23: 158., 24: 075., } avg_summer = 0. avg_winter = 0. avg_spring = 0. avg_fall = 0 for item in hourly_summer_demand_scalar: avg_summer += 0.01 * hourly_summer_demand_scalar[item] / len(hourly_summer_demand_scalar) for item in hourly_winter_demand_scalar: avg_winter += 0.01 * hourly_winter_demand_scalar[item] / len(hourly_winter_demand_scalar) for item in hourly_equinox_demand_scalar: avg_spring += 0.007225 * hourly_equinox_demand_scalar[item] / len(hourly_equinox_demand_scalar) for item in hourly_equinox_demand_scalar: avg_fall += 0.007225 * hourly_equinox_demand_scalar[item] / len(hourly_equinox_demand_scalar) avg_annual = (avg_summer + avg_winter + avg_spring + avg_fall) / 4 print('average summer:', avg_summer) print('average winter:', avg_winter) print('average spring:', avg_spring) print('average fall:', avg_fall) print('average annual:', avg_annual) print('') avg_monthly = 0. for item in monthly_annual_demand_scalar: avg_monthly += 0.01 * monthly_annual_demand_scalar[item] / len(monthly_annual_demand_scalar) print('average monthly:', avg_monthly) print('') avg_hourly = 0. num_hourly = 1./ (12 * 24) for item in monthly_seasonal_demand_scalar: for hour in range(1, 24+1): if item == 6 or item == 7 or item == 8: avg_hourly += monthly_seasonal_demand_scalar[item] * hourly_summer_demand_scalar[hour] * 0.01 * num_hourly if item == 12 or item == 1 or item == 2: avg_hourly += monthly_seasonal_demand_scalar[item] * hourly_winter_demand_scalar[hour] * 0.01 * num_hourly if item == 3 or item == 4 or item == 5: avg_hourly += monthly_seasonal_demand_scalar[item] * hourly_equinox_demand_scalar[hour] * 0.007225 * num_hourly if item == 9 or item == 10 or item == 11: avg_hourly += monthly_seasonal_demand_scalar[item] * hourly_equinox_demand_scalar[hour] * 0.007225 * num_hourly print('average hourly:', avg_hourly)
apache-2.0
akrherz/idep
scripts/tillage_timing/dump_mar10_tab1.py
2
1284
"""Dump for tab1 of requested 10 march 2020 spreadsheet. """ import datetime import glob from pyiem.dep import read_env from pyiem.util import logger import pandas as pd LOG = logger() def do_scenario(scenario, plantdate, hucs): """Process this scenario.""" envdfs = [] for huc12 in hucs: for fn in glob.glob( "/i/%s/env/%s/%s/*" % (scenario, huc12[:8], huc12[8:]) ): df = read_env(fn) if df.empty: continue envdfs.append(df.groupby(df["date"].dt.year).sum().copy()) envdf = pd.concat(envdfs).reset_index() res = envdf.groupby("date").mean() LOG.info(plantdate) for year in range(2008, 2019): print( "%s,%.2f,%.2f,M,%.2f" % ( year, res.at[year, "precip"], res.at[year, "runoff"], res.at[year, "av_det"], ) ) print() def main(): """Go Main Go.""" apr10 = datetime.date(2000, 4, 10) hucs = [x.strip() for x in open("myhucs.txt").readlines()] for scenario in range(59, 70): plantdate = apr10 + datetime.timedelta(days=(scenario - 59) * 5) do_scenario(scenario, plantdate, hucs) if __name__ == "__main__": main()
mit
humdings/zipline
zipline/pipeline/engine.py
1
22892
""" Compute Engine definitions for the Pipeline API. """ from abc import ( ABCMeta, abstractmethod, ) from uuid import uuid4 from six import ( iteritems, with_metaclass, ) from numpy import array from pandas import DataFrame, MultiIndex from toolz import groupby, juxt from toolz.curried.operator import getitem from zipline.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from zipline.errors import NoFurtherDataError from zipline.utils.numpy_utils import ( as_column, repeat_first_axis, repeat_last_axis, ) from zipline.utils.pandas_utils import explode from .term import AssetExists, InputDates, LoadableTerm from zipline.utils.date_utils import compute_date_range_chunks from zipline.utils.pandas_utils import categorical_df_concat from zipline.utils.sharedoc import copydoc class PipelineEngine(with_metaclass(ABCMeta)): @abstractmethod def run_pipeline(self, pipeline, start_date, end_date): """ Compute values for ``pipeline`` between ``start_date`` and ``end_date``. Returns a DataFrame with a MultiIndex of (date, asset) pairs. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ raise NotImplementedError("run_pipeline") @abstractmethod def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): """ Compute values for `pipeline` in number of days equal to `chunksize` and return stitched up result. Computing in chunks is useful for pipelines computed over a long period of time. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int The number of days to execute at a time. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` """ raise NotImplementedError("run_chunked_pipeline") class NoEngineRegistered(Exception): """ Raised if a user tries to call pipeline_output in an algorithm that hasn't set up a pipeline engine. """ class ExplodingPipelineEngine(PipelineEngine): """ A PipelineEngine that doesn't do anything. """ def run_pipeline(self, pipeline, start_date, end_date): raise NoEngineRegistered( "Attempted to run a pipeline but no pipeline " "resources were registered." ) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): raise NoEngineRegistered( "Attempted to run a chunked pipeline but no pipeline " "resources were registered." ) def default_populate_initial_workspace(initial_workspace, root_mask_term, execution_plan, dates, assets): """The default implementation for ``populate_initial_workspace``. This function returns the ``initial_workspace`` argument without making any modifications. Parameters ---------- initial_workspace : dict[array-like] The initial workspace before we have populated it with any cached terms. root_mask_term : Term The root mask term, normally ``AssetExists()``. This is needed to compute the dates for individual terms. execution_plan : ExecutionPlan The execution plan for the pipeline being run. dates : pd.DatetimeIndex All of the dates being requested in this pipeline run including the extra dates for look back windows. assets : pd.Int64Index All of the assets that exist for the window being computed. Returns ------- populated_initial_workspace : dict[term, array-like] The workspace to begin computations with. """ return initial_workspace class SimplePipelineEngine(PipelineEngine): """ PipelineEngine class that computes each term independently. Parameters ---------- get_loader : callable A function that is given a loadable term and returns a PipelineLoader to use to retrieve raw data for that term. calendar : DatetimeIndex Array of dates to consider as trading days when computing a range between a fixed start and end. asset_finder : zipline.assets.AssetFinder An AssetFinder instance. We depend on the AssetFinder to determine which assets are in the top-level universe at any point in time. populate_initial_workspace : callable, optional A function which will be used to populate the initial workspace when computing a pipeline. See :func:`zipline.pipeline.engine.default_populate_initial_workspace` for more info. See Also -------- :func:`zipline.pipeline.engine.default_populate_initial_workspace` """ __slots__ = ( '_get_loader', '_calendar', '_finder', '_root_mask_term', '_root_mask_dates_term', '_populate_initial_workspace', ) def __init__(self, get_loader, calendar, asset_finder, populate_initial_workspace=None): self._get_loader = get_loader self._calendar = calendar self._finder = asset_finder self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) def run_pipeline(self, pipeline, start_date, end_date): """ Compute a pipeline. The algorithm implemented here can be broken down into the following stages: 0. Build a dependency graph of all terms in `pipeline`. Topologically sort the graph to determine an order in which we can compute the terms. 1. Ask our AssetFinder for a "lifetimes matrix", which should contain, for each date between start_date and end_date, a boolean value for each known asset indicating whether the asset existed on that date. 2. Compute each term in the dependency order determined in (0), caching the results in a a dictionary to that they can be fed into future terms. 3. For each date, determine the number of assets passing pipeline.screen. The sum, N, of all these values is the total number of rows in our output frame, so we pre-allocate an output array of length N for each factor in `terms`. 4. Fill in the arrays allocated in (3) by copying computed values from our output cache into the corresponding rows. 5. Stick the values computed in (4) into a DataFrame and return it. Step 0 is performed by ``Pipeline.to_graph``. Step 1 is performed in ``SimplePipelineEngine._compute_root_mask``. Step 2 is performed in ``SimplePipelineEngine.compute_chunk``. Steps 3, 4, and 5 are performed in ``SimplePiplineEngine._to_narrow``. Parameters ---------- pipeline : zipline.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`zipline.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`zipline.pipeline.engine.PipelineEngine.run_pipeline` :meth:`zipline.pipeline.engine.PipelineEngine.run_chunked_pipeline` """ if end_date < start_date: raise ValueError( "start_date must be before or equal to end_date \n" "start_date=%s, end_date=%s" % (start_date, end_date) ) screen_name = uuid4().hex graph = pipeline.to_execution_plan( screen_name, self._root_mask_term, self._calendar, start_date, end_date, ) extra_rows = graph.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask(start_date, end_date, extra_rows) dates, assets, root_mask_values = explode(root_mask) initial_workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values) }, self._root_mask_term, graph, dates, assets, ) results = self.compute_chunk( graph, dates, assets, initial_workspace, ) return self._to_narrow( graph.outputs, results, results.pop(screen_name), dates[extra_rows:], assets, ) @copydoc(PipelineEngine.run_chunked_pipeline) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): ranges = compute_date_range_chunks( self._calendar, start_date, end_date, chunksize, ) chunks = [self.run_pipeline(pipeline, s, e) for s, e in ranges] if len(chunks) == 1: # OPTIMIZATION: Don't make an extra copy in `categorical_df_concat` # if we don't have to. return chunks[0] return categorical_df_concat(chunks, inplace=True) def _compute_root_mask(self, start_date, end_date, extra_rows): """ Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ calendar = self._calendar finder = self._finder start_idx, end_idx = self._calendar.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=calendar[0], lookback_start=start_date, lookback_length=extra_rows, ) # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` lifetimes = finder.lifetimes( calendar[start_idx - extra_rows:end_idx], include_start_date=False ) assert lifetimes.index[extra_rows] == start_date assert lifetimes.index[-1] == end_date if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist from the farthest look back # window through the end of the requested dates. existed = lifetimes.any() ret = lifetimes.loc[:, existed] shape = ret.shape assert shape[0] * shape[1] != 0, 'root mask cannot be empty' return ret @staticmethod def _inputs_for_term(term, workspace, graph): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in term.inputs: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in term.inputs: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] # OPTIMIZATION: Don't make a copy by doing input_data[0:] if # offset is zero. if offset: input_data = input_data[offset:] out.append(input_data) return out def get_loader(self, term): return self._get_loader(term) def compute_chunk(self, graph, dates, assets, initial_workspace): """ Compute the Pipeline terms in the graph for the requested start and end dates. Parameters ---------- graph : zipline.pipeline.graph.TermGraph dates : pd.DatetimeIndex Row labels for our root mask. assets : pd.Int64Index Column labels for our root mask. initial_workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(assets))`, but may contain additional pre-computed terms for testing or optimization purposes. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(dates, assets, initial_workspace) get_loader = self.get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = initial_workspace.copy() # If loadable terms share the same loader and extra_rows, load them all # together. loader_group_key = juxt(get_loader, getitem(graph.extra_rows)) loader_groups = groupby(loader_group_key, graph.loadable_terms) refcounts = graph.initial_refcounts(workspace) for term in graph.execution_order(refcounts): # `term` may have been supplied in `initial_workspace`, and in the # future we may pre-compute loadable terms coming from the same # dataset. In either case, we will already have an entry for this # term, which we shouldn't re-compute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) loader = get_loader(term) loaded = loader.load_adjusted_array( to_load, mask_dates, assets, mask, ) assert set(loaded) == set(to_load), ( 'loader did not return an AdjustedArray for each column\n' 'expected: %r\n' 'got: %r' % (sorted(to_load), sorted(loaded)) ) workspace.update(loaded) else: workspace[term] = term._compute( self._inputs_for_term(term, workspace, graph), mask_dates, assets, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms whose # refcounts hit 0. for garbage_term in graph.decref_dependencies(term, refcounts): del workspace[garbage_term] out = {} graph_extra_rows = graph.extra_rows for name, term in iteritems(graph.outputs): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term]:] return out def _to_narrow(self, terms, data, mask, dates, assets): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` assets : ndarray[int64, ndim=2] Column index for arrays `data` and `mask` Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. empty_dates = dates[:0] empty_assets = array([], dtype=object) return DataFrame( data={ name: array([], dtype=arr.dtype) for name, arr in iteritems(data) }, index=MultiIndex.from_arrays([empty_dates, empty_assets]), ) resolved_assets = array(self._finder.retrieve_all(assets)) dates_kept = repeat_last_axis(dates.values, len(assets))[mask] assets_kept = repeat_first_axis(resolved_assets, len(dates))[mask] final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # As of Mon May 2 15:38:47 2016, we only use this to convert # LabelArrays into categoricals. final_columns[name] = terms[name].postprocess(data[name][mask]) return DataFrame( data=final_columns, index=MultiIndex.from_arrays([dates_kept, assets_kept]), ).tz_localize('UTC', level=0) def _validate_compute_chunk_params(self, dates, assets, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(assets) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/assets " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) )
apache-2.0
kmike/scikit-learn
examples/svm/plot_svm_regression.py
8
1431
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynominial and RBF kernels. """ print(__doc__) ############################################################################### # Generate sample data import numpy as np X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model from sklearn.svm import SVR svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results import pylab as pl pl.scatter(X, y, c='k', label='data') pl.hold('on') pl.plot(X, y_rbf, c='g', label='RBF model') pl.plot(X, y_lin, c='r', label='Linear model') pl.plot(X, y_poly, c='b', label='Polynomial model') pl.xlabel('data') pl.ylabel('target') pl.title('Support Vector Regression') pl.legend() pl.show()
bsd-3-clause
mrklees/cy-automation-library
cyautomation/cyschoolhouse/ToT_audit.py
2
5757
import os import pandas as pd from StyleFrame import StyleFrame, Styler, utils from .config import get_sch_ref_df from . import simple_cysh as cysh sch_ref_df = get_sch_ref_df() def fix_T1T2ELT(sf=cysh.sf): """ Standardize common spellings of "T1" "T2" and "ELT" """ typo_map = { r'([Tt]([Ii][Ee]|[Ee][Ii])[Rr] ?|t)(1|[Oo]ne)':'T1', r'([Tt]([Ii][Ee]|[Ee][Ii])[Rr] ?|t)(2|[Tt]wo)':'T2', #r'([Aa]fter ?[Ss]chool|ASP)':'ELT', } all_typos = '|'.join(list(typo_map.keys())) df = cysh.get_object_df('Intervention_Session__c', ['Id', 'Comments__c'], rename_id=True) df['Comments__c'].fillna('', inplace=True) df = df.loc[df['Comments__c'].str.contains(all_typos)] df['Comments__c'].replace(typo_map, regex=True, inplace=True) print(f"Found {len(df)} T1, T2, or ELT labels that can be fixed") results = [] for index, row in df.iterrows(): result = sf.Intervention_Session__c.update(row['Intervention_Session__c'], {'Comments__c':row['Comments__c']}) results.append(results) return results def get_error_table(): ISR_df = cysh.get_object_df('Intervention_Session_Result__c', ['Amount_of_Time__c', 'IsDeleted', 'Intervention_Session_Date__c', 'Related_Student_s_Name__c', 'Intervention_Session__c', 'CreatedDate']) IS_df = cysh.get_object_df('Intervention_Session__c', ['Id', 'Name', 'Comments__c', 'Section__c'], rename_id=True, rename_name=True) section_df = cysh.get_object_df('Section__c', ['Id', 'School__c', 'Intervention_Primary_Staff__c', 'Program__c'], rename_id=True) school_df = cysh.get_object_df('Account', ['Id', 'Name']) school_df.rename(columns={'Id':'School__c', 'Name':'School_Name__c'}, inplace=True) staff_df = cysh.get_object_df('Staff__c', ['Id', 'Name'], where="Site__c = 'Chicago'", rename_id=True, rename_name=True) program_df = cysh.get_object_df('Program__c', ['Id', 'Name'], rename_id=True, rename_name=True) df = ISR_df.merge(IS_df, how='left', on='Intervention_Session__c'); del df['Intervention_Session__c'] df = df.merge(section_df, how='left', on='Section__c'); del df['Section__c'] df = df.merge(school_df, how='left', on='School__c'); del df['School__c'] df = df.merge(staff_df, how='left', left_on='Intervention_Primary_Staff__c', right_on='Staff__c'); del df['Intervention_Primary_Staff__c'], df['Staff__c'] df = df.merge(program_df, how='left', on='Program__c'); del df['Program__c'] df['Intervention_Session_Date__c'] = pd.to_datetime(df['Intervention_Session_Date__c']).dt.date df['CreatedDate'] = pd.to_datetime(df['CreatedDate']).dt.date df['Comments__c'].fillna('', inplace=True) df.loc[df['Program__c_Name'].str.contains('Tutoring') & ~df['Comments__c'].str.contains('T1|T2'), 'Missing T1/T2 Code'] = 'Missing T1/T2 Code' df.loc[df['Program__c_Name'].str.contains('Tutoring') & df['Comments__c'].str.contains('T1') & df['Comments__c'].str.contains('T2'), 'Listed T1 and T2'] = 'Listed T1 and T2' df.loc[df['Program__c_Name'].str.contains('Tutoring|SEL') & (df['Amount_of_Time__c'] < 10), '<10 Minutes'] = '<10 Minutes' df.loc[df['Program__c_Name'].str.contains('Tutoring') & (df['Amount_of_Time__c'] > 120), '>120 Minutes'] = '>120 Minutes' df.loc[df['Intervention_Session_Date__c'] > df['CreatedDate'], 'Logged in Future'] = 'Logged in Future' df.loc[df['Program__c_Name'].isin(['DESSA', 'Math Inventory', 'Reading Inventory']), 'Wrong Section'] = 'Wrong Section' error_cols = ['Missing T1/T2 Code', 'Listed T1 and T2', '<10 Minutes', '>120 Minutes', 'Logged in Future', 'Wrong Section'] df['Error'] = df[error_cols].apply(lambda x: x.str.cat(sep=' & '), axis=1) accepted_errors_df = pd.read_excel(( "Z:\\ChiPrivate\\Chicago Data and Evaluation\\SY19\\" "SY19 ToT Audit Accepted Errors.xlsx" )) df = df.loc[ (df['Error'] != '') & ~df['Intervention_Session__c_Name'].isin(accepted_errors_df['SESSION_ID']) ] col_friendly_names = { 'School_Name__c':'School', 'Staff__c_Name':'ACM', 'Program__c_Name':'Program', 'Intervention_Session__c_Name':'Session ID', 'Related_Student_s_Name__c':'Student', 'CreatedDate':'Submission Date', 'Intervention_Session_Date__c':'Session Date', 'Amount_of_Time__c':'ToT', #'Comments__c':'Comment', 'Error':'Error', } df = df.rename(columns=col_friendly_names) df = df.sort_values(list(col_friendly_names.values())) df = df[list(col_friendly_names.values())] return df def write_error_tables_to_cyconnect(df): for index, row in sch_ref_df.iterrows(): school_error_df = df.loc[df['School'] == row['School']].copy() del school_error_df['School'] write_path = f"Z:\\{row['Informal Name']} Team Documents\\SY19 ToT Audit Errors - {row['Informal Name']}.xlsx" if os.path.exists(write_path): os.remove(write_path) excel_writer = StyleFrame.ExcelWriter(write_path) sfr = StyleFrame(school_error_df) sfr.apply_column_style( cols_to_style=list(school_error_df), styler_obj=Styler( horizontal_alignment=utils.horizontal_alignments.left, #vertical_alignment=utils.vertical_alignments.top ), width=25, style_header=False, ) if len(school_error_df) > 0: freeze = 'A2' else: freeze = 'A1' sfr.to_excel( excel_writer=excel_writer, row_to_add_filters=0, columns_and_rows_to_freeze=freeze, ) excel_writer.save()
gpl-3.0
morrisonwudi/zipline
zipline/finance/performance/tracker.py
14
23349
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Performance Tracking ==================== +-----------------+----------------------------------------------------+ | key | value | +=================+====================================================+ | period_start | The beginning of the period to be tracked. datetime| | | in pytz.utc timezone. Will always be 0:00 on the | | | date in UTC. The fact that the time may be on the | | | prior day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | period_end | The end of the period to be tracked. datetime | | | in pytz.utc timezone. Will always be 23:59 on the | | | date in UTC. The fact that the time may be on the | | | next day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | progress | percentage of test completed | +-----------------+----------------------------------------------------+ | capital_base | The initial capital assumed for this tracker. | +-----------------+----------------------------------------------------+ | cumulative_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | +-----------------+----------------------------------------------------+ | todays_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker with datetime stamps between last_open| | | and last_close. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | | | TODO: adding this because we calculate it. May be | | | overkill. | +-----------------+----------------------------------------------------+ | cumulative_risk | A dictionary representing the risk metrics | | _metrics | calculated based on the positions aggregated | | | through all the events delivered to this tracker. | | | For details look at the comments for | | | :py:meth:`zipline.finance.risk.RiskMetrics.to_dict`| +-----------------+----------------------------------------------------+ """ from __future__ import division import logbook import pickle from six import iteritems from datetime import datetime import numpy as np import pandas as pd from pandas.tseries.tools import normalize_date import zipline.finance.risk as risk from zipline.finance.trading import TradingEnvironment from . period import PerformancePeriod from zipline.utils.serialization_utils import ( VERSION_LABEL ) from . position_tracker import PositionTracker log = logbook.Logger('Performance') class PerformanceTracker(object): """ Tracks the performance of the algorithm. """ def __init__(self, sim_params): self.sim_params = sim_params env = TradingEnvironment.instance() self.period_start = self.sim_params.period_start self.period_end = self.sim_params.period_end self.last_close = self.sim_params.last_close first_open = self.sim_params.first_open.tz_convert(env.exchange_tz) self.day = pd.Timestamp(datetime(first_open.year, first_open.month, first_open.day), tz='UTC') self.market_open, self.market_close = env.get_open_and_close(self.day) self.total_days = self.sim_params.days_in_period self.capital_base = self.sim_params.capital_base self.emission_rate = sim_params.emission_rate all_trading_days = env.trading_days mask = ((all_trading_days >= normalize_date(self.period_start)) & (all_trading_days <= normalize_date(self.period_end))) self.trading_days = all_trading_days[mask] self.dividend_frame = pd.DataFrame() self._dividend_count = 0 self.position_tracker = PositionTracker() self.perf_periods = [] if self.emission_rate == 'daily': self.all_benchmark_returns = pd.Series( index=self.trading_days) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params) elif self.emission_rate == 'minute': self.all_benchmark_returns = pd.Series(index=pd.date_range( self.sim_params.first_open, self.sim_params.last_close, freq='Min')) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params, create_first_day_stats=True) self.minute_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the # entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False ) self.minute_performance.position_tracker = self.position_tracker self.perf_periods.append(self.minute_performance) # this performance period will span the entire simulation from # inception. self.cumulative_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False, ) self.cumulative_performance.position_tracker = self.position_tracker self.perf_periods.append(self.cumulative_performance) # this performance period will span just the current market day self.todays_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the daily period will be calculated for the market day self.market_open, self.market_close, keep_transactions=True, keep_orders=True, serialize_positions=True, ) self.todays_performance.position_tracker = self.position_tracker self.perf_periods.append(self.todays_performance) self.saved_dt = self.period_start # one indexed so that we reach 100% self.day_count = 0.0 self.txn_count = 0 self.account_needs_update = True self._account = None def __repr__(self): return "%s(%r)" % ( self.__class__.__name__, {'simulation parameters': self.sim_params}) @property def progress(self): if self.emission_rate == 'minute': # Fake a value return 1.0 elif self.emission_rate == 'daily': return self.day_count / self.total_days def set_date(self, date): if self.emission_rate == 'minute': self.saved_dt = date self.todays_performance.period_close = self.saved_dt def update_dividends(self, new_dividends): """ Update our dividend frame with new dividends. @new_dividends should be a DataFrame with columns containing at least the entries in zipline.protocol.DIVIDEND_FIELDS. """ # Mark each new dividend with a unique integer id. This ensures that # we can differentiate dividends whose date/sid fields are otherwise # identical. new_dividends['id'] = np.arange( self._dividend_count, self._dividend_count + len(new_dividends), ) self._dividend_count += len(new_dividends) self.dividend_frame = pd.concat( [self.dividend_frame, new_dividends] ).sort(['pay_date', 'ex_date']).set_index('id', drop=False) def initialize_dividends_from_other(self, other): """ Helper for copying dividends to a new PerformanceTracker while preserving dividend count. Useful if a simulation needs to create a new PerformanceTracker mid-stream and wants to preserve stored dividend info. Note that this does not copy unpaid dividends. """ self.dividend_frame = other.dividend_frame self._dividend_count = other._dividend_count def handle_sid_removed_from_universe(self, sid): """ This method handles any behaviors that must occur when a SID leaves the universe of the TradingAlgorithm. Parameters __________ sid : int The sid of the Asset being removed from the universe. """ # Drop any dividends for the sid from the dividends frame self.dividend_frame = self.dividend_frame[ self.dividend_frame.sid != sid ] def update_performance(self): # calculate performance as of last trade for perf_period in self.perf_periods: perf_period.calculate_performance() def get_portfolio(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True return self.cumulative_performance.as_portfolio() def get_account(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True if self.account_needs_update: self._update_account() return self._account def _update_account(self): self._account = self.cumulative_performance.as_account() self.account_needs_update = False def to_dict(self, emission_type=None): """ Creates a dictionary representing the state of this tracker. Returns a dict object of the form described in header comments. """ # Default to the emission rate of this tracker if no type is provided if emission_type is None: emission_type = self.emission_rate _dict = { 'period_start': self.period_start, 'period_end': self.period_end, 'capital_base': self.capital_base, 'cumulative_perf': self.cumulative_performance.to_dict(), 'progress': self.progress, 'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict() } if emission_type == 'daily': _dict['daily_perf'] = self.todays_performance.to_dict() elif emission_type == 'minute': _dict['minute_perf'] = self.todays_performance.to_dict( self.saved_dt) else: raise ValueError("Invalid emission type: %s" % emission_type) return _dict def process_trade(self, event): # update last sale, and pay out a cash adjustment cash_adjustment = self.position_tracker.update_last_sale(event) if cash_adjustment != 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(cash_adjustment) def process_transaction(self, event): self.txn_count += 1 self.position_tracker.execute_transaction(event) for perf_period in self.perf_periods: perf_period.handle_execution(event) def process_dividend(self, dividend): log.info("Ignoring DIVIDEND event.") def process_split(self, event): leftover_cash = self.position_tracker.handle_split(event) if leftover_cash > 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(leftover_cash) def process_order(self, event): for perf_period in self.perf_periods: perf_period.record_order(event) def process_commission(self, event): self.position_tracker.handle_commission(event) for perf_period in self.perf_periods: perf_period.handle_commission(event) def process_benchmark(self, event): if self.sim_params.data_frequency == 'minute' and \ self.sim_params.emission_rate == 'daily': # Minute data benchmarks should have a timestamp of market # close, so that calculations are triggered at the right time. # However, risk module uses midnight as the 'day' # marker for returns, so adjust back to midnight. midnight = pd.tseries.tools.normalize_date(event.dt) else: midnight = event.dt if midnight not in self.all_benchmark_returns.index: raise AssertionError( ("Date %s not allocated in all_benchmark_returns. " "Calendar seems to mismatch with benchmark. " "Benchmark container is=%s" % (midnight, self.all_benchmark_returns.index))) self.all_benchmark_returns[midnight] = event.returns def process_close_position(self, event): # CLOSE_POSITION events that contain prices that must be handled as # a final trade event if 'price' in event: self.process_trade(event) txn = self.position_tracker.\ maybe_create_close_position_transaction(event) if txn: self.process_transaction(txn) def check_upcoming_dividends(self, next_trading_day): """ Check if we currently own any stocks with dividends whose ex_date is the next trading day. Track how much we should be payed on those dividends' pay dates. Then check if we are owed cash/stock for any dividends whose pay date is the next trading day. Apply all such benefits, then recalculate performance. """ if len(self.dividend_frame) == 0: # We don't currently know about any dividends for this simulation # period, so bail. return # Dividends whose ex_date is the next trading day. We need to check if # we own any of these stocks so we know to pay them out when the pay # date comes. ex_date_mask = (self.dividend_frame['ex_date'] == next_trading_day) dividends_earnable = self.dividend_frame[ex_date_mask] # Dividends whose pay date is the next trading day. If we held any of # these stocks on midnight before the ex_date, we need to pay these out # now. pay_date_mask = (self.dividend_frame['pay_date'] == next_trading_day) dividends_payable = self.dividend_frame[pay_date_mask] position_tracker = self.position_tracker if len(dividends_earnable): position_tracker.earn_dividends(dividends_earnable) if not len(dividends_payable): return net_cash_payment = position_tracker.pay_dividends(dividends_payable) for period in self.perf_periods: # notify periods to update their stats period.handle_dividends_paid(net_cash_payment) def check_asset_auto_closes(self, next_trading_day): """ Check if the position tracker currently owns any Assets with an auto-close date that is the next trading day. Close those positions. Parameters ---------- next_trading_day : pandas.Timestamp The next trading day of the simulation """ auto_close_events = self.position_tracker.auto_close_position_events( next_trading_day=next_trading_day ) for event in auto_close_events: self.process_close_position(event) def handle_minute_close(self, dt): """ Handles the close of the given minute. This includes handling market-close functions if the given minute is the end of the market day. Parameters __________ dt : Timestamp The minute that is ending Returns _______ (dict, dict/None) A tuple of the minute perf packet and daily perf packet. If the market day has not ended, the daily perf packet is None. """ self.update_performance() todays_date = normalize_date(dt) account = self.get_account(False) self.minute_performance.rollover() bench_returns = self.all_benchmark_returns.loc[todays_date:dt] # cumulative returns bench_since_open = (1. + bench_returns).prod() - 1 self.cumulative_risk_metrics.update(todays_date, self.todays_performance.returns, bench_since_open, account) minute_packet = self.to_dict(emission_type='minute') # if this is the close, update dividends for the next day. # Return the performance tuple if dt == self.market_close: return (minute_packet, self._handle_market_close(todays_date)) else: return (minute_packet, None) def handle_market_close_daily(self): """ Function called after handle_data when running with daily emission rate. """ self.update_performance() completed_date = self.day account = self.get_account(False) # update risk metrics for cumulative performance self.cumulative_risk_metrics.update( completed_date, self.todays_performance.returns, self.all_benchmark_returns[completed_date], account) return self._handle_market_close(completed_date) def _handle_market_close(self, completed_date): # increment the day counter before we move markers forward. self.day_count += 1.0 # Get the next trading day and, if it is past the bounds of this # simulation, return the daily perf packet next_trading_day = TradingEnvironment.instance().\ next_trading_day(completed_date) # Check if any assets need to be auto-closed before generating today's # perf period if next_trading_day: self.check_asset_auto_closes(next_trading_day=next_trading_day) # Take a snapshot of our current performance to return to the # browser. daily_update = self.to_dict(emission_type='daily') # On the last day of the test, don't create tomorrow's performance # period. We may not be able to find the next trading day if we're at # the end of our historical data if self.market_close >= self.last_close: return daily_update # move the market day markers forward env = TradingEnvironment.instance() self.market_open, self.market_close = \ env.next_open_and_close(self.day) self.day = env.next_trading_day(self.day) # Roll over positions to current day. self.todays_performance.rollover() self.todays_performance.period_open = self.market_open self.todays_performance.period_close = self.market_close # If the next trading day is irrelevant, then return the daily packet if (next_trading_day is None) or (next_trading_day >= self.last_close): return daily_update # Check for any dividends and auto-closes, then return the daily perf # packet self.check_upcoming_dividends(next_trading_day=next_trading_day) return daily_update def handle_simulation_end(self): """ When the simulation is complete, run the full period risk report and send it out on the results socket. """ log_msg = "Simulated {n} trading days out of {m}." log.info(log_msg.format(n=int(self.day_count), m=self.total_days)) log.info("first open: {d}".format( d=self.sim_params.first_open)) log.info("last close: {d}".format( d=self.sim_params.last_close)) bms = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.benchmark_returns_cont) ars = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.algorithm_returns_cont) acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages self.risk_report = risk.RiskReport( ars, self.sim_params, benchmark_returns=bms, algorithm_leverages=acl) risk_dict = self.risk_report.to_dict() return risk_dict def __getstate__(self): state_dict = \ {k: v for k, v in iteritems(self.__dict__) if not k.startswith('_')} state_dict['dividend_frame'] = pickle.dumps(self.dividend_frame) state_dict['_dividend_count'] = self._dividend_count # we already store perf periods as attributes del state_dict['perf_periods'] STATE_VERSION = 3 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 3 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("PerformanceTracker saved state is too old.") self.__dict__.update(state) # Handle the dividend frame specially self.dividend_frame = pickle.loads(state['dividend_frame']) # properly setup the perf periods self.perf_periods = [] p_types = ['cumulative', 'todays', 'minute'] for p_type in p_types: name = p_type + '_performance' period = getattr(self, name, None) if period is None: continue period._position_tracker = self.position_tracker self.perf_periods.append(period)
apache-2.0
sdh11/gnuradio
gr-digital/examples/example_fll.py
7
5704
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_arg import eng_float, intx from argparse import ArgumentParser import sys import numpy try: from matplotlib import pyplot except ImportError: print("Error: could not from matplotlib import pyplot (http://matplotlib.sourceforge.net/)") sys.exit(1) class example_fll(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*numpy.random.randint(0, 2, N) - 1.0 data = numpy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.fll = digital.fll_band_edge_cc(sps, rolloff, ntaps, bw) self.vsnk_src = blocks.vector_sink_c() self.vsnk_fll = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.vsnk_phs = blocks.vector_sink_f() self.vsnk_err = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.fll, self.vsnk_fll) self.connect(self.rrc, self.vsnk_src) self.connect((self.fll,1), self.vsnk_frq) self.connect((self.fll,2), self.vsnk_phs) self.connect((self.fll,3), self.vsnk_err) def main(): parser = ArgumentParser(conflict_handler="resolve") parser.add_argument("-N", "--nsamples", type=int, default=2000, help="Set the number of samples to process [default=%(default)r]") parser.add_argument("-S", "--sps", type=int, default=4, help="Set the samples per symbol [default=%(default)r]") parser.add_argument("-r", "--rolloff", type=eng_float, default=0.35, help="Set the rolloff factor [default=%(default)r]") parser.add_argument("-W", "--bandwidth", type=eng_float, default=2*numpy.pi/100.0, help="Set the loop bandwidth [default=%(default)r]") parser.add_argument("-n", "--ntaps", type=int, default=45, help="Set the number of taps in the filters [default=%(default)r]") parser.add_argument("--noise", type=eng_float, default=0.0, help="Set the simulation noise voltage [default=%(default)r]") parser.add_argument("-f", "--foffset", type=eng_float, default=0.2, help="Set the simulation's normalized frequency offset (in Hz) [default=%(default)r]") parser.add_argument("-t", "--toffset", type=eng_float, default=1.0, help="Set the simulation's timing offset [default=%(default)r]") parser.add_argument("-p", "--poffset", type=eng_float, default=0.0, help="Set the simulation's phase offset [default=%(default)r]") args = parser.parse_args() # Adjust N for the interpolation by sps args.nsamples = args.nsamples // args.sps # Set up the program-under-test put = example_fll(args.nsamples, args.sps, args.rolloff, args.ntaps, args.bandwidth, args.noise, args.foffset, args.toffset, args.poffset) put.run() data_src = numpy.array(put.vsnk_src.data()) data_err = numpy.array(put.vsnk_err.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = numpy.array(put.vsnk_frq.data()) / (2.0*numpy.pi) # adjust this to align with the data. There are 2 filters of # ntaps long and the channel introduces another 4 sample delay. data_fll = numpy.array(put.vsnk_fll.data()[2*args.ntaps-4:]) # Plot the FLL's LO frequency f1 = pyplot.figure(1, figsize=(12,10)) s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("FLL LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the FLL's error s2 = f1.add_subplot(2,2,2) s2.plot(data_err) s2.set_title("FLL Error") s2.set_xlabel("Samples") s2.set_ylabel("FLL Loop error") # Plot the IQ symbols s3 = f1.add_subplot(2,2,3) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_fll.real, data_fll.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") # Plot the symbols in time s4 = f1.add_subplot(2,2,4) s4.plot(data_src.real, "o-") s4.plot(data_fll.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pyplot.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
JPFrancoia/scikit-learn
sklearn/linear_model/bayes.py
50
16145
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : float estimated precision of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_offset, y_offset, X_scale) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): # Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset, y_offset, X_scale) return self
bsd-3-clause
wangkua1/sportvu
sportvu/vis/Game.py
1
1380
import pandas as pd from Event import Event from Team import Team from Constant import Constant import cPickle as pickle class Game: """A class for keeping info about the games""" def __init__(self, path_to_pickle, event_index): # self.events = None self.home_team = None self.guest_team = None self.event = None self.path_to_pickle = path_to_pickle self.event_index = event_index def read_json(self): # data_frame = pd.read_json(self.path_to_pickle) with open(self.path_to_pickle, 'rb') as handle: data_frame = pickle.load(handle) data_frame last_default_index = len(data_frame['events']) - 1 print ('...') print (last_default_index) self.event_index = min(self.event_index, last_default_index) index = self.event_index print(Constant.MESSAGE + str(last_default_index)) event = data_frame['events'][index] self.event = Event(event) self.home_team = Team(event['home']['teamid']) self.guest_team = Team(event['visitor']['teamid']) def start(self): self.event.show() def find_sequence(self, start_game_clock, end_game_clock): """ find [start_game_clock, end_game_clock] sequence in Game return a Event with moments truncated as specified """
mit
askielboe/JAVELIN
javelin/lcmodel.py
1
100414
#Last-modified: 08 Dec 2013 01:13:36 # generic packages import numpy as np #np.seterr(all='raise') from numpy.random import normal, multivariate_normal from scipy.optimize import fmin import matplotlib.pyplot as plt # internal packages from cholesky_utils import cholesky, trisolve, chosolve, chodet, chosolve_from_tri, chodet_from_tri from zylc import LightCurve, get_data from cov import get_covfunc_dict from spear import spear, spear_threading from predict import PredictSignal, PredictRmap, PredictPmap, PredictSPmap from gp import FullRankCovariance, NearlyFullRankCovariance from err import * from emcee import EnsembleSampler from graphic import figure_handler my_neg_inf = float(-1.0e+300) my_pos_inf = float( 1.0e+300) tau_floor = 1.e-6 tau_ceiling = 1.e+5 sigma_floor = 1.e-6 sigma_ceiling = 1.e+2 logtau_floor = np.log(tau_floor) logtau_ceiling = np.log(tau_ceiling) logsigma_floor = np.log(sigma_floor) logsigma_ceiling = np.log(sigma_ceiling) nu_floor = 1.e-6 lognu_floor = np.log(nu_floor) nu_ceiling = 1.e+3 lognu_ceiling = np.log(nu_ceiling) __all__ = ['Cont_Model', 'Rmap_Model', 'Pmap_Model', 'SPmap_Model'] """ Generic functions """ def _lnlike_from_U(U, zydata, set_retq=False, set_verbose=False): """ Calculate the log-likelihoods from the upper triangle of cholesky decomposition. """ # log determinant of C^-1 detC_log = chodet_from_tri(U, retlog=True) # solve for C a = y so that a = C^-1 y a = chosolve_from_tri(U, zydata.marr) # solve for C b = L so that b = C^-1 L b = chosolve_from_tri(U, zydata.larr) # multiply L^T and b so that C_p = L^T C^-1 L = C_q^-1 C_p = np.dot(zydata.larrTr, b) # for 'issingle is True' case, C_p is a scalar. if np.isscalar(C_p): # for single-mode, cholesky of C_p is simply squre-root of C_p W = np.sqrt(C_p) detCp_log = np.log(C_p.squeeze()) # for single-mode, simply devide L^T by C_p d = zydata.larrTr/C_p else: # cholesky decompose C_p so that W^T W = C_p W, info = cholesky(C_p, raiseinfo=False) if info > 0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: non positive-definite covariance W", set_verbose=set_verbose)) detCp_log = chodet_from_tri(W, retlog=True) # solve for C_p d = L^T so that d = C_p^-1 L^T = C_q L^T d = chosolve_from_tri(W, zydata.larrTr) # multiply b d and a so that e = C^-1 L C_p^-1 L^T C^-1 y e = np.dot(b, np.dot(d, a)) # a minus e so that f = a - e = C^-1 y - C^-1 L C_p^-1 L^T C^-1 y # thus f = C_v^-1 y f = a - e # multiply y^T and f so that h = y^T C_v^-1 y h = np.dot(zydata.marr, f) # chi2_PRH = -0.5*h _chi2 = -0.5*h # following Carl Rasmussen's term, a penalty on the complexity of # the model _compl_pen = -0.5*detC_log # penalty on blatant linear drift _wmean_pen = -0.5*detCp_log # final log_likelhood _log_like = _chi2 + _compl_pen + _wmean_pen if set_retq: q = np.dot(d, a) return(_log_like, _chi2, _compl_pen, _wmean_pen, q) else: return(_log_like) def _exit_with_retval(nlc, set_retq, errmsg=None, set_verbose=False): """ Return failure elegantly. When you are desperate and just want to leave the calculation with appropriate return values that quietly speak out your angst. """ if errmsg is not None: if set_verbose: print("Exit: %s"%errmsg) if set_retq : return(my_neg_inf, my_neg_inf, my_neg_inf, my_neg_inf, [my_neg_inf]*nlc) else: return(my_neg_inf) ########################################################### """ Cont_Model: Continuum Variability """ def unpacksinglepar(p, covfunc="drw", uselognu=False) : """ Internal Function: Unpack the physical parameters from input 1-d array for single mode. """ if p[0] > logsigma_ceiling : sigma = sigma_ceiling elif p[0] < logsigma_floor : sigma = sigma_floor else : sigma = np.exp(p[0]) if p[1] > logtau_ceiling : tau = tau_ceiling elif p[1] < logtau_floor : tau = tau_floor else : tau = np.exp(p[1]) if covfunc == "drw" : nu = None elif uselognu : if p[2] < lognu_floor : nu = nu_floor elif p[2] > lognu_ceiling : nu = nu_ceiling else : nu = np.exp(p[2]) else : nu = p[2] return(sigma, tau, nu) # try fix the order of arguments as they will be fed by sequence rather than keyword to methods under Cont_Model. def lnpostfn_single_p(p, zydata, covfunc, set_prior=True, conthpd=None, uselognu=False, rank="Full", set_retq=False, set_verbose=False) : """ Calculate the log posterior for parameter set `p`. Parameters ---------- p: list Parameter list. zydata: LightCurve Input LightCurve data. covfunc: str name of the covariance function. set_prior: bool, optional Turn on/off priors that are predefined in `lnpostfn_single_p` (default: True). conthpd: ndarray, optional Priors on sigma and tau as an ndarray with shape (3, 2), np.array([[log(sigma_low), log(tau_low)], [log(sigma_med), log(tau_med)], [log(sigma_hig), log(tau_hig)]]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. Here it is only used if the `covfunc` is 'kepler2_exp'. uselognu: bool, optional Whether to use lognu instead of nu (default: False). rank: str, optional Type of covariance matrix rank, "Full" or "NearlyFull" (default: "Full"). set_retq: bool, optional Whether to return all the components of the posterior (default: False). set_verbose: bool, optional Turn on/off verbose mode (default: True). Returns ------- retval: float (set_retq is False) or list (set_retq is True) if `retval` returns a list, then it contains the full posterior info as a list of [log_posterior, chi2_component, det_component, DC_penalty, correction_to_the_mean]. """ sigma, tau, nu = unpacksinglepar(p, covfunc, uselognu=uselognu) # log-likelihood if set_retq : vals = list(lnlikefn_single(zydata, covfunc=covfunc, rank=rank, sigma=sigma, tau=tau, nu=nu, set_retq=True, set_verbose=set_verbose)) else : logl = lnlikefn_single(zydata, covfunc=covfunc, rank=rank, sigma=sigma, tau=tau, nu=nu, set_retq=False, set_verbose=set_verbose) # prior prior = 0.0 if set_prior : if covfunc == "kepler2_exp" : if conthpd is None : raise RuntimeError("kepler2_exp prior requires conthpd") # for sigma if p[0] < conthpd[1,0] : prior0 = (p[0] - conthpd[1,0])/(conthpd[1,0]-conthpd[0,0]) else : prior0 = (p[0] - conthpd[1,0])/(conthpd[2,0]-conthpd[1,0]) # for tau if p[1] < conthpd[1,1] : prior1 = (p[1] - conthpd[1,1])/(conthpd[1,1]-conthpd[0,1]) else : prior1 = (p[1] - conthpd[1,1])/(conthpd[2,1]-conthpd[1,1]) # final prior += -0.5*(prior0*prior0+prior1*prior1) else : prior += - np.log(sigma) if tau > zydata.cont_cad : prior += - np.log(tau/zydata.cont_cad) elif tau < 0.001 : # 86.4 seconds if input is in days prior += my_neg_inf else : prior += - np.log(zydata.cont_cad/tau) # combine prior and log-likelihood if set_retq : vals[0] = vals[0] + prior vals.append(prior) return(vals) else : logp = logl + prior return(logp) def lnlikefn_single(zydata, covfunc="drw", rank="Full", set_retq=False, set_verbose=False, **covparams) : """ internal function to calculate the log likelihood, see `lnpostfn_single_p` for doc. """ covfunc_dict = get_covfunc_dict(covfunc, **covparams) sigma = covparams.pop("sigma") tau = covparams.pop("tau") nu = covparams.pop("nu", None) # set up covariance function if (sigma<=0.0 or tau<=0.0) : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters", set_verbose=set_verbose)) if covfunc == "pow_exp" : if nu <= 0.0 or nu >= 2.0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters in nu", set_verbose=set_verbose)) elif covfunc == "matern" : if nu <= 0.0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters in nu", set_verbose=set_verbose)) elif covfunc == "kepler_exp" : # here nu is the ratio if nu < 0.0 or nu >= 1.0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters in nu", set_verbose=set_verbose)) elif covfunc == "kepler2_exp" : # here nu is the cutoff time scale if nu < 0.0 or nu >= tau : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters in nu", set_verbose=set_verbose)) # choice of ranks if rank == "Full" : # using full-rank C = FullRankCovariance(**covfunc_dict) elif rank == "NearlyFull" : # using nearly full-rank C = NearlyFullRankCovariance(**covfunc_dict) else : raise InputError("No such option for rank "+rank) # cholesky decompose S+N so that U^T U = S+N = C # using intrinsic method of C without explicitly writing out cmatrix try : U = C.cholesky(zydata.jarr, observed=False, nugget=zydata.varr) except : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: non positive-definite covariance C", set_verbose=set_verbose)) # calculate RPH likelihood retval = _lnlike_from_U(U, zydata, set_retq=set_retq, set_verbose=set_verbose) return(retval) class Cont_Model(object) : def __init__(self, zydata=None, covfunc="drw") : """ Cont Model object. Parameters ---------- zydata: LightCurve object, optional Input LightCurve data, a null input means that `Cont_Model` will be loading existing chains (default: None). covfunc: str, optional Name of the covariance function for the continuum (default: drw) """ self.zydata = zydata self.covfunc = covfunc if zydata is None : pass else : self.nlc = zydata.nlc self.npt = zydata.npt self.cont_npt = zydata.nptlist[0] self.cont_cad = zydata.cont_cad self.cont_cad_min = zydata.cont_cad_min self.cont_cad_max = zydata.cont_cad_max self.cont_std = zydata.cont_std self.rj = zydata.rj self.jstart = zydata.jstart self.jend = zydata.jend self.names = zydata.names self.vars = ["sigma", "tau"] self.texs = [r"$\log\,\sigma$", r"$\log\,\tau$"] if covfunc == "drw" : self.uselognu = False self.ndim = 2 elif covfunc == "matern" or covfunc == "kepler2_exp" : self.uselognu = True self.ndim = 3 self.vars.append("nu") self.texs.append(r"$\log\,\nu$") else : self.uselognu = False self.ndim = 3 self.vars.append("nu") self.texs.append(r"$\nu$") def __call__(self, p, **lnpostparams): """ Calculate the posterior value given one parameter set `p`. See `lnpostfn_single_p` for doc. """ return(lnpostfn_single_p(p, self.zydata, covfunc=self.covfunc, uselognu=self.uselognu, **lnpostparams)) def do_map(self, p_ini, fixed=None, **lnpostparams) : """ Maximum A Posterior minimization. See `lnpostfn_single_p` for doc. Parameters ---------- p_ini: list Initial guess for the parameters. fixed: list Bit list indicating which parameters are to be fixed during minimization, `1` means varying, while `0` means fixed, so [1, 1, 0] means fixing only the third parameter, and `len(fixed)` equals the number of parameters (default: None, i.e., varying all the parameters simultaneously). lnpostparams: kwargs kwargs for `lnpostfn_single_p`. """ set_verbose = lnpostparams.pop("set_verbose", True) set_retq = lnpostparams.pop("set_retq", False) set_prior = lnpostparams.pop("set_prior", True) rank = lnpostparams.pop("rank", "Full") conthpd = lnpostparams.pop("conthpd", None) if set_retq is True : raise InputError("set_retq has to be False") p_ini = np.asarray(p_ini) if fixed is not None : fixed = np.asarray(fixed) func = lambda _p : -lnpostfn_single_p( _p*fixed+p_ini*(1.-fixed), self.zydata, self.covfunc, set_prior=set_prior, conthpd=conthpd, uselognu=self.uselognu, rank=rank, set_retq=False, set_verbose=set_verbose ) else : func = lambda _p : -lnpostfn_single_p( _p, self.zydata, self.covfunc, set_prior=set_prior, conthpd=conthpd, uselognu=self.uselognu, rank=rank, set_retq=False, set_verbose=set_verbose ) p_bst, v_bst = fmin(func, p_ini, full_output=True)[:2] sigma, tau, nu = unpacksinglepar(p_bst, covfunc=self.covfunc, uselognu=self.uselognu) if fixed is not None : p_bst = p_bst*fixed+p_ini*(1.-fixed) if set_verbose : print("Best-fit parameters are:") print("sigma %8.3f tau %8.3f"%(sigma, tau)) if nu is not None : print("nu %8.3f"%nu) print("with logp %10.5g "%-v_bst) return(p_bst, -v_bst) def do_grid1d(self, p_ini, fixed, rangex, dx, fgrid1d, **lnpostparams) : """ Minimization over a 1D grid. See `lnpostfn_single_p` for doc. Parameters ---------- p_ini : list Initial guess for the parameters. fixed : list Bit list indicating which parameters are to be fixed during minimization, `1` means varying, while `0` means fixed, so [1, 1, 0] means fixing only the third parameter, and `len(fixed)` equals the number of parameters (default: None, i.e., varying all the parameters simultaneously). rangex : tuple range of `x`, i.e., (xmin, xmax) dx : float bin size in `x`. fgrid1d: str filename for the output. lnpostparams: kwargs kwargs for `lnpostfn_single_p`. """ set_verbose = lnpostparams.pop("set_verbose", True) xs = np.arange(rangex[0], rangex[-1]+dx, dx) fixed = np.asarray(fixed) nfixed = np.sum(fixed == 0) if nfixed != 1 : raise InputError("wrong number of fixed pars ") f = open(fgrid1d, "w") for x in xs : _p_ini = p_ini*fixed + x*(1.-fixed) _p, _l = self.do_map(_p_ini, fixed=fixed, **lnpostparams) _line = "".join([format(_l, "20.10g"), " ".join([format(r, "10.5f") for r in _p]), "\n"]) f.write(_line) f.flush() f.close() if set_verbose : print("saved grid1d result to %s"%fgrid1d) def do_grid2d(self, p_ini, fixed, rangex, dx, rangey, dy, fgrid2d, **lnpostparams) : """ Minimization over a 2D grid. See `lnpostfn_single_p` for doc. Parameters ---------- p_ini : list Initial guess for the parameters. fixed : list Bit list indicating which parameters are to be fixed during minimization, `1` means varying, while `0` means fixed, so [1, 1, 0] means fixing only the third parameter, and `len(fixed)` equals the number of parameters (default: None, i.e., varying all the parameters simultaneously). rangex : tuple range of `x`, i.e., (xmin, xmax) dx : float bin size in `x`. rangey : tuple range of `y`, i.e., (ymin, ymax) dy : float bin size in `y`. fgrid2d: str filename for the output. lnpostparams: kwargs kwargs for `lnpostfn_single_p`. """ fixed = np.asarray(fixed) set_verbose = lnpostparams.pop("set_verbose", True) xs = np.arange(rangex[0], rangex[-1]+dx, dx) ys = np.arange(rangey[0], rangey[-1]+dy, dy) nfixed = np.sum(fixed == 0) if nfixed != 2 : raise InputError("wrong number of fixed pars ") posx, posy = np.nonzero(1-fixed)[0] dimx, dimy = len(xs),len(ys) header = " ".join(["#", str(posx), str(posy), str(dimx), str(dimy), "\n"]) print(header) f = open(fgrid2d, "w") f.write(header) for x in xs : for y in ys : _p_ini = p_ini*fixed _p_ini[posx] = x _p_ini[posy] = y _p, _l = self.do_map(_p_ini, fixed=fixed, **lnpostparams) _line = "".join([format(_l, "20.10g"), " ".join([format(r, "10.5f") for r in _p]), "\n"]) f.write(_line) f.flush() f.close() if set_verbose : print("saved grid2d result to %s"%fgrid2d) def read_logp_map(self, fgrid2d, set_verbose=True) : """ Read the output from `do_grid2d`. Parameters ---------- fgrid2d: str filename. set_verbose: bool, optional Turn on/off verbose mode (default: True). Returns ------- retdict: dict Grid returned as a dict. """ f = open(fgrid2d, "r") posx, posy, dimx, dimy = [int(r) for r in f.readline().lstrip("#").split()] if set_verbose : print("grid file %s is registered for"%fgrid2d) print("var_x = %10s var_y = %10s"%(self.vars[posx], self.vars[posy])) print("dim_x = %10d dim_y = %10d"%(dimx, dimy)) if self.covfunc != "drw" : logp, sigma, tau, nu = np.genfromtxt(f,unpack=True,usecols=(0,1,2,3)) else : logp, sigma, tau = np.genfromtxt(f,unpack=True,usecols=(0,1,2)) f.close() retdict = { 'logp' : logp.reshape(dimx, dimy).T, 'sigma' : sigma.reshape(dimx, dimy).T, 'tau' : tau.reshape(dimx, dimy).T, 'nu' : None, 'posx' : posx, 'posy' : posy, 'dimx' : dimx, 'dimy' : dimy, } if self.covfunc != "drw" : retdict['nu'] = nu.reshape(dimx, dimy).T return(retdict) def show_logp_map(self, fgrid2d, set_normalize=True, vmin=None, vmax=None, set_contour=True, clevels=None, set_verbose=True, figout=None, figext=None) : """ Display the grid output from `do_grid2d`. Parameters ---------- fgrid2d: str filename. set_normalize: bool, optional Whether to normalize the histogram. vmin: float, optional Minimum value of the histogram. set_contour: bool, optional Whether to overplot contours (default: True). clevels: list, optional Contour levels. `clevels` = None will set the levels as if the likelihood is for a Gaussian model with two parameters. set_verbose: bool, optional Turn on/off verbose mode (default: True). figout: str, optional Output figure name (default: None, i.e., using sequencial integers). figext: str, optional Output figure extension (default: None, i.e., using `show`). """ ln10 = np.log(10.0) fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) retdict = self.read_logp_map(fgrid2d, set_verbose=set_verbose) x = retdict[self.vars[retdict['posx']]]/ln10 y = retdict[self.vars[retdict['posy']]]/ln10 z = retdict['logp'] if x is None or y is None : raise InputError("incompatible fgrid2d file"+fgrid2d) xmin,xmax,ymin,ymax = np.min(x),np.max(x),np.min(y),np.max(y) extent = (xmin,xmax,ymin,ymax) if set_normalize : zmax = np.max(z) z = z - zmax if vmin is None: vmin = z.min() if vmax is None: vmax = z.max() im = ax.imshow(z, origin='lower', vmin=vmin, vmax=vmax, cmap='jet', interpolation="nearest", aspect="auto", extent=extent) if set_contour: if clevels is None: sigma3,sigma2,sigma1 = 11.8/2.0,6.17/2.0,2.30/2.0 levels = (vmax-sigma1, vmax-sigma2, vmax-sigma3) else: levels = clevels ax.set_autoscale_on(False) cs = ax.contour(z,levels, hold='on',colors='k', origin='lower',extent=extent) ax.set_xlabel(self.texs[retdict['posx']]) ax.set_ylabel(self.texs[retdict['posy']]) return(figure_handler(fig=fig, figout=figout, figext=figext)) def do_mcmc(self, conthpd=None, set_prior=True, rank="Full", nwalkers=100, nburn=50, nchain=50, fburn=None, fchain=None, flogp=None, threads=1, set_verbose=True): """ Run MCMC sampling over the parameter space. Parameters ---------- conthpd : ndarray, optional Usually the `hpd` array generated from the MCMC chain using `Cont_Model` (default: None). set_prior: bool, optional Turn on/off priors that are predefined in `lnpostfn_single_p` (default: True). rank: str, optional Type of covariance matrix rank, "Full" or "NearlyFull" (default: "Full"). nwalker : integer, optional Number of walkers for `emcee` (default: 100). nburn : integer, optional Number of burn-in steps for `emcee` (default: 50). nchain : integer, optional Number of chains for `emcee` (default: 50). fburn : str, optional filename for burn-in output (default: None). fchain : str, optional filename for MCMC chain output (default: None). flogp : str, optional filename for logp output (default: None). thread : integer Number of threads (default: 1). set_verbose: bool, optional Turn on/off verbose mode (default: True). """ # initialize a multi-dim random number array p0 = np.random.rand(nwalkers*self.ndim).reshape(nwalkers, self.ndim) # initial values of sigma to be scattering around cont_std p0[:,0] = p0[:,0] - 0.5 + np.log(self.cont_std) # initial values of tau filling 0 - 0.5rj p0[:,1] = np.log(self.rj*0.5*p0[:,1]) if self.covfunc == "pow_exp" : p0[:,2] = p0[:,2] * 1.99 elif self.covfunc == "matern" : p0[:,2] = np.log(p0[:,2] * 5) elif self.covfunc == "kepler2_exp" : p0[:,2] = np.log(self.rj*0.1*p0[:,2]) if set_verbose : print("start burn-in") print("nburn: %d nwalkers: %d --> number of burn-in iterations: %d"% (nburn, nwalkers, nburn*nwalkers)) sampler = EnsembleSampler(nwalkers, self.ndim, lnpostfn_single_p, args=(self.zydata, self.covfunc, set_prior, conthpd, self.uselognu, rank, False, False), threads=threads) pos, prob, state = sampler.run_mcmc(p0, nburn) if set_verbose : print("burn-in finished") if fburn is not None : if set_verbose : print("save burn-in chains to %s"%fburn) np.savetxt(fburn, sampler.flatchain) # reset sampler sampler.reset() if set_verbose : print("start sampling") sampler.run_mcmc(pos, nchain, rstate0=state) if set_verbose : print("sampling finished") af = sampler.acceptance_fraction if set_verbose : print("acceptance fractions for all walkers are") print(" ".join([format(r, "3.2f") for r in af])) if fchain is not None : if set_verbose : print("save MCMC chains to %s"%fchain) np.savetxt(fchain, sampler.flatchain) if flogp is not None : if set_verbose : print("save logp of MCMC chains to %s"%flogp) np.savetxt(flogp, np.ravel(sampler.lnprobability), fmt='%16.8f') # make chain an attritue self.flatchain = sampler.flatchain self.flatchain_whole = np.copy(self.flatchain) # get HPD self.get_hpd(set_verbose=set_verbose) def get_hpd(self, set_verbose=True): """ Get the 68% percentile range of each parameter to self.hpd. Parameters ---------- set_verbose: bool, optional Turn on/off verbose mode (default: True). """ hpd = np.zeros((3, self.ndim)) chain_len = self.flatchain.shape[0] pct1sig = chain_len*np.array([0.16, 0.50, 0.84]) medlowhig = pct1sig.astype(np.int32) for i in xrange(self.ndim): vsort = np.sort(self.flatchain[:,i]) hpd[:,i] = vsort[medlowhig] if set_verbose : print("HPD of %s"%self.vars[i]) if (self.vars[i] == "nu" and (not self.uselognu)) : print("low: %8.3f med %8.3f hig %8.3f"%tuple(hpd[:,i])) else : print("low: %8.3f med %8.3f hig %8.3f"%tuple(np.exp(hpd[:,i]))) # register hpd to attr self.hpd = hpd def show_hist(self, bins=100, figout=None, figext=None): """ Display histograms of the posterior distributions. Parameters ---------- bins: integer, optional Number of bins (default:100). figout: str, optional Output figure name (default: None, i.e., using sequencial integers). figext: str, optional Output figure extension (default: None, i.e., using `show`). """ if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) ln10 = np.log(10.0) fig = plt.figure(figsize=(8, 5)) for i in xrange(self.ndim) : ax = fig.add_subplot(1,self.ndim,i+1) if (self.vars[i] == "nu" and (not self.uselognu)) : ax.hist(self.flatchain[:,i], bins) if self.covfunc == "kepler2_exp" : ax.axvspan(self.cont_cad_min, self.cont_cad, color="g", alpha=0.2) else : ax.hist(self.flatchain[:,i]/ln10, bins) if self.vars[i] == "nu" and self.covfunc == "kepler2_exp" : ax.axvspan(np.log10(self.cont_cad_min), np.log10(self.cont_cad), color="g", alpha=0.2) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") #plt.get_current_fig_manager().toolbar.zoom() return(figure_handler(fig=fig, figout=figout, figext=figext)) def load_chain(self, fchain, set_verbose=True): """ Load an existing chain file. Parameters ---------- fchain : str filename for MCMC chain input. set_verbose: bool, optional Turn on/off verbose mode (default: True). """ if set_verbose : print("load MCMC chain from %s"%fchain) self.flatchain = np.genfromtxt(fchain) self.flatchain_whole = np.copy(self.flatchain) # get HPD self.get_hpd(set_verbose=set_verbose) def break_chain(self, covpar_segments): """ Break the chain into different segments. Parameters ---------- covpar_segments : list of lists. list with length that equals the number of dimensions of the parameter space. """ if (len(covpar_segments) != self.ndim) : print("Error: covpar_segments has to be a list of length %d"%(self.ndim)) return(1) if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) for i, covpar_seq in enumerate(covpar_segments) : if covpar_seq is None: continue indx = np.argsort(self.flatchain[:, i]) imin, imax = np.searchsorted(self.flatchain[indx, i], covpar_seq) indx_cut = indx[imin : imax] if len(indx_cut) < 10 : print("Warning: cut too aggressive!") return(1) self.flatchain = self.flatchain[indx_cut, :] def restore_chain(self) : """ Restore chain after `break_chain`. """ self.flatchain = np.copy(self.flatchain_whole) def get_qlist(self, p_bst) : """ get the best-fit linear responses. Parameters ---------- p_bst: list best-fit parameters. """ self.qlist = lnpostfn_single_p(p_bst, self.zydata, self.covfunc, uselognu=self.uselognu, rank="Full", set_retq=True)[4] def do_pred(self, p_bst, fpred=None, dense=10, rank="Full", set_overwrite=True) : """ Predict light curves using the best-fit parameters. Parameters ---------- p_bst: list best-fit parameters. fpred: str, optional filename for saving the predicted light curves. dense: integer, optional factors by which the desired sampling is compared to the original data sampling (default: 10). rank: str, optional Type of covariance matrix rank, "Full" or "NearlyFull" (default: "Full"). set_overwrite: bool, optional Whether to overwrite, if a `fpred` file already exists. Returns ------- zypred : LightCurve data. Predicted LightCurve. """ self.get_qlist(p_bst) self.zydata.update_qlist(self.qlist) sigma, tau, nu = unpacksinglepar(p_bst, self.covfunc, uselognu=self.uselognu) lcmean=self.zydata.blist[0] P = PredictSignal(zydata=self.zydata, lcmean=lcmean, rank=rank, covfunc=self.covfunc, sigma=sigma, tau=tau, nu=nu) nwant = dense*self.cont_npt jwant0 = self.jstart - 0.1*self.rj jwant1 = self.jend + 0.1*self.rj jwant = np.linspace(jwant0, jwant1, nwant) mve, var = P.mve_var(jwant) sig = np.sqrt(var) zylclist_pred = [[jwant, mve, sig],] zydata_pred = LightCurve(zylclist_pred) if fpred is not None : zydata_pred.save(fpred, set_overwrite=set_overwrite) return(zydata_pred) ########################################################### """ Rmap_Model: Spectroscopic RM """ def unpackspearpar(p, nlc=None, hascontlag=False) : """ Internal Function: unpack the physical parameters from input 1-d array for spear mode. """ if nlc is None: # possible to figure out nlc from the size of p nlc = (len(p) - 2)//3 + 1 sigma = np.exp(p[0]) tau = np.exp(p[1]) if hascontlag : lags = np.zeros(nlc) wids = np.zeros(nlc) scales = np.ones(nlc) for i in xrange(1, nlc) : lags[i] = p[2+(i-1)*3] wids[i] = p[3+(i-1)*3] scales[i] = p[4+(i-1)*3] return(sigma, tau, lags, wids, scales) else : llags = np.zeros(nlc-1) lwids = np.zeros(nlc-1) lscales = np.ones(nlc-1) for i in xrange(nlc-1) : llags[i] = p[2+i*3] lwids[i] = p[3+i*3] lscales[i] = p[4+i*3] return(sigma, tau, llags, lwids, lscales) def lnpostfn_spear_p(p, zydata, conthpd=None, lagtobaseline=0.3, laglimit=None, set_threading=False, blocksize=10000, set_retq=False, set_verbose=False): """ log-posterior function of p. Parameters ---------- p : array_like Rmap_Model parameters, [log(sigma), log(tau), lag1, wid1, scale1, ...] zydata: LightCurve object Input LightCurve data. conthpd: ndarray, optional Priors on sigma and tau as an ndarray with shape (3, 2), np.array([[log(sigma_low), log(tau_low)], [log(sigma_med), log(tau_med)], [log(sigma_hig), log(tau_hig)]]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. conthpd usually comes in as an attribute of the `Cont_Model` object `hpd` (default: None). lagtobaseline: float, optional Prior on lags. When input lag exceeds lagtobaseline*baseline, a logarithmic prior will be applied. laglimit: str or list of tuples. hard boundaries for the lag searching during MCMC sampling. 'baseline' means the boundaries are naturally determined by the duration of the light curves, or you can set them as a list with `nline` of tuples, with each tuple containing the (min, max) pair for each single line. set_threading: bool, optional True if you want threading in filling matrix. It conflicts with the 'threads' option in Rmap_Model.run_mcmc (default: False). blocksize: int, optional Maximum matrix block size in threading (default: 10000). set_retq: bool, optional Return the value(s) of q along with each component of the log-likelihood if True (default: False). set_verbose: bool, optional True if you want verbosity (default: False). Returns ------- retval: float (set_retq is False) or list (set_retq is True) if `retval` returns a list, then it contains the full posterior info as a list of [log_posterior, chi2_component, det_component, DC_penalty, correction_to_the_mean]. """ # unpack the parameters from p sigma, tau, llags, lwids, lscales = unpackspearpar(p, zydata.nlc, hascontlag=False) if set_retq : vals = list(lnlikefn_spear(zydata, sigma, tau, llags, lwids, lscales, set_retq=True, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize)) else : logl = lnlikefn_spear(zydata, sigma, tau, llags, lwids, lscales, set_retq=False, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize) # conthpd is in natural log if conthpd is not None : # for sigma if p[0] < conthpd[1,0] : prior0 = (p[0] - conthpd[1,0])/(conthpd[1,0]-conthpd[0,0]) else : prior0 = (p[0] - conthpd[1,0])/(conthpd[2,0]-conthpd[1,0]) # for tau if p[1] < conthpd[1,1] : prior1 = (p[1] - conthpd[1,1])/(conthpd[1,1]-conthpd[0,1]) else : prior1 = (p[1] - conthpd[1,1])/(conthpd[2,1]-conthpd[1,1]) else : prior0 = 0.0 prior1 = 0.0 # for each lag prior2 = 0.0 for i in xrange(zydata.nlc-1) : if lagtobaseline < 1.0 : if np.abs(llags[i]) > lagtobaseline*zydata.rj : # penalize long lags when they are larger than 0.3 times the baseline, # as it is too easy to fit the model with non-overlapping # signals in the light curves. prior2 += np.log(np.abs(llags[i])/(lagtobaseline*zydata.rj)) # penalize long lags to be impossible if laglimit is not None : if llags[i] > laglimit[i][1] or llags[i] < laglimit[i][0] : # try not stack priors prior2 = my_pos_inf # add logp of all the priors prior = -0.5*(prior0*prior0+prior1*prior1) - prior2 if set_retq : vals[0] = vals[0] + prior vals.extend([prior0, prior1, prior2]) return(vals) else : logp = logl + prior return(logp) def lnlikefn_spear(zydata, sigma, tau, llags, lwids, lscales, set_retq=False, set_verbose=False, set_threading=False, blocksize=10000): """ Internal function to calculate the log likelihood. """ if zydata.issingle: raise UsageError("lnlikefn_spear does not work for single mode") # impossible scenarios if (sigma<=0.0 or tau<=0.0 or np.min(lwids)<0.0 or np.min(lscales)<=0.0 or np.max(np.abs(llags))>zydata.rj) : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters", set_verbose=set_verbose)) # fill in lags/wids/scales lags = np.zeros(zydata.nlc) wids = np.zeros(zydata.nlc) scales = np.ones(zydata.nlc) lags[1:] = llags wids[1:] = lwids scales[1:] = lscales # calculate covariance matrix if set_threading : C = spear_threading(zydata.jarr,zydata.jarr, zydata.iarr,zydata.iarr,sigma,tau,lags,wids,scales, blocksize=blocksize) else : C = spear(zydata.jarr,zydata.jarr, zydata.iarr,zydata.iarr,sigma,tau,lags,wids,scales) # decompose C inplace U, info = cholesky(C, nugget=zydata.varr, inplace=True, raiseinfo=False) # handle exceptions here if info > 0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: non positive-definite covariance C", set_verbose=set_verbose)) retval = _lnlike_from_U(U, zydata, set_retq=set_retq, set_verbose=set_verbose) return(retval) class Rmap_Model(object) : def __init__(self, zydata=None) : """ Rmap Model object. Parameters ---------- zydata: LightCurve object, optional Light curve data. """ self.zydata = zydata if zydata is None : pass else : self.nlc = zydata.nlc self.npt = zydata.npt self.cont_npt = zydata.nptlist[0] self.cont_cad = zydata.cont_cad self.cont_std = zydata.cont_std self.rj = zydata.rj self.jstart = zydata.jstart self.jend = zydata.jend self.names = zydata.names # number of parameters self.ndim = 2 + (self.nlc-1)*3 self.vars = [ "sigma", "tau" ] self.texs = [r"$\log\,\sigma$", r"$\log\,\tau$"] for i in xrange(1, self.nlc) : self.vars.append("_".join(["lag", self.names[i]])) self.vars.append("_".join(["wid", self.names[i]])) self.vars.append("_".join(["scale", self.names[i]])) self.texs.append( "".join([r"$t_{", self.names[i].lstrip(r"$").rstrip(r"$") ,r"}$"])) self.texs.append( "".join([r"$w_{", self.names[i].lstrip(r"$").rstrip(r"$") ,r"}$"])) self.texs.append( "".join([r"$s_{", self.names[i].lstrip(r"$").rstrip(r"$") ,r"}$"])) def __call__(self, p, **lnpostparams) : """ Calculate the posterior value given one parameter set `p`. See `lnpostfn_spear_p` for doc. Parameters ---------- p : array_like Rmap_Model parameters, [log(sigma), log(tau), lag1, wid1, scale1, ...] lnpostparams: kwargs Keyword arguments for `lnpostfn_spear_p`. Returns ------- retval: float (set_retq is False) or list (set_retq is True) if `retval` returns a list, then it contains the full posterior info as a list of [log_posterior, chi2_component, det_component, DC_penalty, correction_to_the_mean]. """ return(lnpostfn_spear_p(p, self.zydata, **lnpostparams)) def do_map(self, p_ini, fixed=None, **lnpostparams) : """ Do an optimization to find the Maximum a Posterior estimates. See `lnpostfn_spear_p` for doc. Parameters ---------- p_ini: array_like Rmap_Model parameters, [log(sigma), log(tau), lag1, wid1, scale1, ...] fixed: array_like, optional Same dimension as p_ini, but with 0 for parameters that is fixed in the optimization, and with 1 for parameters that is varying, e.g., fixed = [0, 1, 1, 1, 1, ...] means sigma is fixed while others are varying. fixed=[1, 1, 1, 1, 1, ...] is equivalent to fixed=None (default: None). lnpostparams : kwargs Kewword arguments for `lnpostfn_spear_p`. Returns ------- p_bst : array_like Best-fit parameters. l: float The maximum log-posterior. """ set_verbose = lnpostparams.pop("set_verbose", True) set_retq = lnpostparams.pop("set_retq", False) if set_retq is True : raise InputError("set_retq has to be False") p_ini = np.asarray(p_ini) if fixed is not None : fixed = np.asarray(fixed) func = lambda _p : -lnpostfn_spear_p(_p*fixed+p_ini*(1.-fixed), self.zydata, **lnpostparams) else : func = lambda _p : -lnpostfn_spear_p(_p, self.zydata, **lnpostparams) p_bst, v_bst = fmin(func, p_ini, full_output=True)[:2] if fixed is not None : p_bst = p_bst*fixed+p_ini*(1.-fixed) sigma, tau, llags, lwids, lscales = unpackspearpar(p_bst, self.zydata.nlc, hascontlag=False) if set_verbose : print("Best-fit parameters are") print("sigma %8.3f tau %8.3f"%(sigma, tau)) for i in xrange(self.nlc-1) : ip = 2+i*3 print("%s %8.3f %s %8.3f %s %8.3f"%( self.vars[ip+0], llags[i], self.vars[ip+1], lwids[i], self.vars[ip+2], lscales[i], )) print("with logp %10.5g "%-v_bst) return(p_bst, -v_bst) def do_mcmc(self, conthpd=None, lagtobaseline=0.3, laglimit="baseline", nwalkers=100, nburn=100, nchain=100, threads=1, fburn=None, fchain=None, flogp=None, set_threading=False, blocksize=10000, set_verbose=True): """ Run MCMC sampling over the parameter space. Parameters ---------- conthpd: ndarray, optional Priors on sigma and tau as an ndarray with shape (3, 2), np.array([[log(sigma_low), log(tau_low)], [log(sigma_med), log(tau_med)], [log(sigma_hig), log(tau_hig)]]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. conthpd usually comes in as an attribute of the `Cont_Model` object `hpd` (default: None). lagtobaseline: float, optional Prior on lags. When input lag exceeds lagtobaseline*baseline, a logarithmic prior will be applied. laglimit: str or list of tuples. Hard boundaries for the lag searching during MCMC sampling. 'baseline' means the boundaries are naturally determined by the duration of the light curves, or you can set them as a list with `nline` of tuples, with each tuple containing the (min, max) pair for each single line. nwalker : integer, optional Number of walkers for `emcee` (default: 100). nburn : integer, optional Number of burn-in steps for `emcee` (default: 50). nchain : integer, optional Number of chains for `emcee` (default: 50). thread : integer Number of threads (default: 1). fburn : str, optional filename for burn-in output (default: None). fchain : str, optional filename for MCMC chain output (default: None). flogp : str, optional filename for logp output (default: None). set_threading: bool, optional True if you want threading in filling matrix. It conflicts with the 'threads' option in Rmap_Model.run_mcmc (default: False). blocksize: int, optional Maximum matrix block size in threading (default: 10000). set_verbose: bool, optional Turn on/off verbose mode (default: True). """ if (threads > 1 and (not set_threading)): if set_verbose: print("run parallel chains of number %2d "%threads) elif (threads == 1) : if set_verbose: if set_threading : print("run single chain in submatrix blocksize %10d "%blocksize) else : print("run single chain without subdividing matrix ") else : raise InputError("conflicting set_threading and threads setup") if laglimit == "baseline" : laglimit = [[-self.rj, self.rj],]*(self.nlc-1) elif len(laglimit) != (self.nlc - 1) : raise InputError("laglimit should be a list of lists matching number of lines") # generate array of random numbers p0 = np.random.rand(nwalkers*self.ndim).reshape(nwalkers, self.ndim) # initialize array if conthpd is None: p0[:, 0] += np.log(self.cont_std)-0.5 p0[:, 1] += np.log(np.sqrt(self.rj*self.cont_cad))-0.5 else : p0[:, 0] += conthpd[1,0]-0.5 p0[:, 1] += conthpd[1,1]-0.5 for i in xrange(self.nlc-1) : # p0[:, 2+i*3] = p0[:,2+i*3]*self.rj*lagtobaseline p0[:, 2+i*3] = p0[:,2+i*3]*(laglimit[i][1]-laglimit[i][0]) + laglimit[i][0] if set_verbose : print("start burn-in") if conthpd is None : print("no priors on sigma and tau") else : print("using priors on sigma and tau from the continuum fitting") print(np.exp(conthpd)) if lagtobaseline < 1.0 : print("penalize lags longer than %3.2f of the baseline"%lagtobaseline) else : print("no penalizing long lags, but only restrict to within the baseline") print("nburn: %d nwalkers: %d --> number of burn-in iterations: %d"% (nburn, nwalkers, nburn*nwalkers)) # initialize the ensemble sampler sampler = EnsembleSampler(nwalkers, self.ndim, lnpostfn_spear_p, args=(self.zydata, conthpd, lagtobaseline, laglimit, set_threading, blocksize, False, False), threads=threads) pos, prob, state = sampler.run_mcmc(p0, nburn) if set_verbose : print("burn-in finished") if fburn is not None : if set_verbose : print("save burn-in chains to %s"%fburn) np.savetxt(fburn, sampler.flatchain) # reset the sampler sampler.reset() if set_verbose : print("start sampling") sampler.run_mcmc(pos, nchain, rstate0=state) if set_verbose : print("sampling finished") af = sampler.acceptance_fraction if set_verbose : print("acceptance fractions are") print(" ".join([format(r, "3.2f") for r in af])) if fchain is not None : if set_verbose : print("save MCMC chains to %s"%fchain) np.savetxt(fchain, sampler.flatchain) if flogp is not None : if set_verbose : print("save logp of MCMC chains to %s"%flogp) np.savetxt(flogp, np.ravel(sampler.lnprobability), fmt='%16.8f') # make chain an attritue self.flatchain = sampler.flatchain self.flatchain_whole = np.copy(self.flatchain) # get HPD self.get_hpd(set_verbose=set_verbose) def get_hpd(self, set_verbose=True): """ Get the 68% percentile range of each parameter to self.hpd. Parameters ---------- set_verbose: bool, optional True if you want verbosity (default: True). """ hpd = np.zeros((3, self.ndim)) chain_len = self.flatchain.shape[0] pct1sig = chain_len*np.array([0.16, 0.50, 0.84]) medlowhig = pct1sig.astype(np.int32) for i in xrange(self.ndim): vsort = np.sort(self.flatchain[:,i]) hpd[:,i] = vsort[medlowhig] if set_verbose : print("HPD of %s"%self.vars[i]) if i < 2 : print("low: %8.3f med %8.3f hig %8.3f"%tuple(np.exp(hpd[:,i]))) else : print("low: %8.3f med %8.3f hig %8.3f"%tuple(hpd[:,i])) # register hpd to attr self.hpd = hpd def show_hist(self, bins=100, lagbinsize=1.0, figout=None, figext=None): """ Display histograms of the posterior distributions. Parameters ---------- bins: integer, optional Number of bins for parameters except for 'lag' (default:100). lagbinsize: integer, optional bin width for 'lag' (default:100). figout: str, optional Output figure name (default: None, i.e., using sequencial integers). figext: str, optional Output figure extension (default: None, i.e., using `show`). """ if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) ln10 = np.log(10.0) fig = plt.figure(figsize=(14, 2.8*self.nlc)) for i in xrange(2) : ax = fig.add_subplot(self.nlc,3,i+1) ax.hist(self.flatchain[:,i]/ln10, bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") for k in xrange(self.nlc-1): for i in xrange(2+k*3, 5+k*3) : ax = fig.add_subplot(self.nlc,3,i+1+1) if np.mod(i, 3) == 2 : # lag plots lagbins = np.arange(int(np.min(self.flatchain[:,i])), int(np.max(self.flatchain[:,i]))+lagbinsize, lagbinsize) ax.hist(self.flatchain[:,i], bins=lagbins) else : ax.hist(self.flatchain[:,i], bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") return(figure_handler(fig=fig, figout=figout, figext=figext)) def break_chain(self, llag_segments): """ Break the chain. Parameters ---------- llag_segments: list of lists list of length self.nlc-1, wich each element a two-element array bracketing the range of lags (usually the single most probable peak) you want to consider for each line. """ if (len(llag_segments) != self.nlc-1) : print("Error: llag_segments has to be a list of length %d"%(self.nlc-1)) return(1) if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) for i, llag_seq in enumerate(llag_segments) : if llag_seq is None: continue indx = np.argsort(self.flatchain[:, 2+i*3]) imin, imax = np.searchsorted(self.flatchain[indx, 2+i*3], llag_seq) indx_cut = indx[imin : imax] self.flatchain = self.flatchain[indx_cut, :] def restore_chain(self) : """ Restore chain after `break_chain`. """ self.flatchain = np.copy(self.flatchain_whole) def load_chain(self, fchain, set_verbose=True): """ Load stored MCMC chain. Parameters ---------- fchain: string Name for the chain file. set_verbose: bool, optional True if you want verbosity (default: True). """ if set_verbose : print("load MCMC chain from %s"%fchain) self.flatchain = np.genfromtxt(fchain) self.flatchain_whole = np.copy(self.flatchain) self.ndim = self.flatchain.shape[1] # get HPD self.get_hpd(set_verbose=set_verbose) def get_qlist(self, p_bst): """ get the best-fit linear responses. Parameters ---------- p_bst: list best-fit parameters. """ self.qlist = lnpostfn_spear_p(p_bst, self.zydata, set_retq=True, set_verbose=False)[4] def do_pred(self, p_bst, fpred=None, dense=10, set_overwrite=True) : """ Calculate the predicted mean and variance of each light curve on a densely sampled time axis. Parameters ---------- p_bst: array_like Input paraemeters. fpred: string, optional Name of the output file for the predicted light curves, set it to None if you do not want output (default: None). dense: int, optional The factor by which the predicted light curves should be more densely sampled than the original data (default: 10). set_overwrite: bool, optional True if you want to overwrite existing fpred (default: True). Returns ------- zydata_pred: LightCurve object Predicted light curves packaged as a LightCurve object. """ self.get_qlist(p_bst) sigma, tau, lags, wids, scales = unpackspearpar(p_bst, self.zydata.nlc, hascontlag=True) # update qlist self.zydata.update_qlist(self.qlist) # initialize PredictRmap object P = PredictRmap(zydata=self.zydata, sigma=sigma, tau=tau, lags=lags, wids=wids, scales=scales) nwant = dense*self.cont_npt jwant0 = self.jstart - 0.1*self.rj jwant1 = self.jend + 0.1*self.rj jwant = np.linspace(jwant0, jwant1, nwant) zylclist_pred = [] for i in xrange(self.nlc) : iwant = np.ones(nwant)*(i+1) mve, var = P.mve_var(jwant, iwant) sig = np.sqrt(var) zylclist_pred.append([jwant, mve, sig]) zydata_pred = LightCurve(zylclist_pred) if fpred is not None : zydata_pred.save(fpred, set_overwrite=set_overwrite) return(zydata_pred) ########################################################### """ Pmap_Model: Two-Band Spectroscopic RM """ def unpackphotopar(p, nlc=2, hascontlag=False) : """ Unpack the physical parameters from input 1-d array for photo mode. Currently only two bands, one on and on off the line emission. """ if nlc != 2 : raise InputError("Pmap_Model cannot cope with more than two bands yet") sigma = np.exp(p[0]) tau = np.exp(p[1]) if hascontlag : lags = np.zeros(3) wids = np.zeros(3) scales = np.ones(3) # line contribution lags[1] = p[2] wids[1] = p[3] scales[1] = p[4] # continuum contribution scales[2] = p[5] return(sigma, tau, lags, wids, scales) else : llags = np.zeros(2) lwids = np.zeros(2) lscales = np.ones(2) llags[0] = p[2] lwids[0] = p[3] lscales[0] = p[4] # continuum contribution lscales[1] = p[5] return(sigma, tau, llags, lwids, lscales) def lnpostfn_photo_p(p, zydata, conthpd=None, set_extraprior=False, lagtobaseline=0.3, laglimit=None, widtobaseline=0.2, widlimit=None, set_threading=False, blocksize=10000, set_retq=False, set_verbose=False): """ log-posterior function of p. Parameters ---------- p : array_like Pmap_Model parameters, [log(sigma), log(tau), lag1, wid1, scale1, alpha] zydata: LightCurve object Light curve data. conthpd: ndarray, optional Priors on sigma and tau as an ndarray with shape (3, 2), np.array([[log(sigma_low), log(tau_low)], [log(sigma_med), log(tau_med)], [log(sigma_hig), log(tau_hig)]]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. conthpd usually comes in as an attribute of the DRW_Model object DRW_Model.hpd (default: None). set_extraprior: bool, optional DEPRECATED, keep it for backward compatibilit and debugging purposes. lagtobaseline: float, optional Prior on lags. When input lag exceeds lagtobaseline*baseline, a logarithmic prior will be applied. laglimit: list of tuples. hard boundaries for the lag searching. widtobaseline: float, optional Prior on wids. When input wid exceeds widtobaseline*baseline, a logarithmic prior will be applied. widlimit: list of tuples, optional hard boundaries for the wid searching. set_threading: bool, optional True if you want threading in filling matrix. It conflicts with the 'threads' option in Pmap_Model.run_mcmc (default: False). blocksize: int, optional Maximum matrix block size in threading (default: 10000). set_retq: bool, optional Return the value(s) of q along with each component of the log-likelihood if True (default: False). set_verbose: bool, optional True if you want verbosity (default: False). """ # unpack the parameters from p sigma, tau, llags, lwids, lscales = unpackphotopar(p, zydata.nlc, hascontlag=False) if set_retq : vals = list(lnlikefn_photo(zydata, sigma, tau, llags, lwids, lscales, set_retq=True, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize)) else : logl = lnlikefn_photo(zydata, sigma, tau, llags, lwids, lscales, set_retq=False, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize) # conthpd is in natural log if conthpd is not None : # for sigma if p[0] < conthpd[1,0] : prior0 = (p[0] - conthpd[1,0])/(conthpd[1,0]-conthpd[0,0]) else : prior0 = (p[0] - conthpd[1,0])/(conthpd[2,0]-conthpd[1,0]) # for tau if p[1] < conthpd[1,1] : prior1 = (p[1] - conthpd[1,1])/(conthpd[1,1]-conthpd[0,1]) else : prior1 = (p[1] - conthpd[1,1])/(conthpd[2,1]-conthpd[1,1]) else : prior0 = 0.0 prior1 = 0.0 # for each lag prior2 = 0.0 if lagtobaseline < 1.0 : if np.abs(llags[0]) > lagtobaseline*zydata.rj : # penalize long lags when they are larger than 0.3 times the baseline, # as it is too easy to fit the model with non-overlapping # signals in the light curves. prior2 += np.log(np.abs(llags[0])/(lagtobaseline*zydata.rj)) # penalize long lags to be impossible if laglimit is not None : if llags[0] > laglimit[0][1] or llags[0] < laglimit[0][0] : prior2 += my_pos_inf # penalize on extremely large transfer function width if widtobaseline < 1.0 : if np.abs(lwids[0]) > widtobaseline*zydata.rj : prior2 += np.log(np.abs(lwids[0])/(widtobaseline*zydata.rj)) if widlimit is not None : if lwids[0] > widlimit[0][1] or lwids[0] < widlimit[0][0] : prior2 += my_pos_inf # if np.abs(lwids[0]) >= zydata.cont_cad : # prior2 += np.log(np.abs(lwids[0])/zydata.cont_cad) # else : # prior2 += np.log(zydata.cont_cad/np.abs(lwids[0])) if set_extraprior : # XXX {{{Extra penalizations. # penalize on extremely short lags (below median cadence). if np.abs(llags[0]) <= zydata.cont_cad or np.abs(llags[0]) <= np.abs(lwids[0]) : prior2 += my_pos_inf # penalize on extremely small line responses (below mean error level). if sigma * np.abs(lscales[0]) <= np.mean(zydata.elist[1]) : prior2 += my_pos_inf # }}} # add logp of all the priors prior = -0.5*(prior0*prior0+prior1*prior1) - prior2 # print p # print prior if set_retq : vals[0] = vals[0] + prior vals.extend([prior0, prior1, prior2]) return(vals) else : logp = logl + prior return(logp) def lnlikefn_photo(zydata, sigma, tau, llags, lwids, lscales, set_retq=False, set_verbose=False, set_threading=False, blocksize=10000): """ Log-likelihood function. """ if zydata.issingle: raise UsageError("lnlikefn_photo does not work for single mode") # impossible scenarios if (sigma<=0.0 or tau<=0.0 or np.min(lwids)<0.0 or np.min(lscales)<0.0 or np.max(np.abs(llags))>zydata.rj) : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters", set_verbose=set_verbose)) # set_pmap = True # fill in lags/wids/scales lags = np.zeros(3) wids = np.zeros(3) scales = np.ones(3) lags[1 :] = llags[:] wids[1 :] = lwids[:] scales[1 :] = lscales[:] if set_threading : C = spear_threading(zydata.jarr,zydata.jarr, zydata.iarr,zydata.iarr,sigma,tau,lags,wids,scales, set_pmap=True, blocksize=blocksize) else : C = spear(zydata.jarr,zydata.jarr, zydata.iarr,zydata.iarr,sigma,tau,lags,wids,scales, set_pmap=True) # decompose C inplace U, info = cholesky(C, nugget=zydata.varr, inplace=True, raiseinfo=False) # handle exceptions here if info > 0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: non positive-definite covariance C", set_verbose=set_verbose)) retval = _lnlike_from_U(U, zydata, set_retq=set_retq, set_verbose=set_verbose) return(retval) class Pmap_Model(object) : def __init__(self, zydata=None, linename="line") : """ Pmap Model object. Parameters ---------- zydata: LightCurve object, optional Light curve data. linename: str, optional Name of the emission line (default: 'line'). """ self.zydata = zydata if zydata is None : pass else : self.nlc = zydata.nlc self.npt = zydata.npt self.cont_npt = zydata.nptlist[0] self.cont_cad = zydata.cont_cad self.cont_std = zydata.cont_std self.rj = zydata.rj self.jstart = zydata.jstart self.jend = zydata.jend self.names = zydata.names # number of parameters self.ndim = 6 self.vars = [ "sigma", "tau" ] self.texs = [r"$\log\,\sigma$", r"$\log\,\tau$"] # self.vars.append("_".join(["lag", linename])) self.vars.append("_".join(["wid", linename])) self.vars.append("_".join(["scale", linename])) self.texs.append( "".join([r"$t_{", linename ,r"}$"])) self.texs.append( "".join([r"$w_{", linename ,r"}$"])) self.texs.append( "".join([r"$s_{", linename ,r"}$"])) # self.vars.append("alpha") self.texs.append(r"$\alpha$") def __call__(self, p, **lnpostparams) : """ Calculate the posterior value given one parameter set `p`. Parameters ---------- p : array_like Pmap_Model parameters, [log(sigma), log(tau), lag, wid, scale, alpha]. lnpostparams: kwargs Kewword arguments for `lnpostfn_photo_p`. Returns ------- retval: float (set_retq is False) or list (set_retq is True) if `retval` returns a list, then it contains the full posterior info as a list of [log_posterior, chi2_component, det_component, DC_penalty, correction_to_the_mean]. """ return(lnpostfn_photo_p(p, self.zydata, **lnpostparams)) def do_map(self, p_ini, fixed=None, **lnpostparams) : """ Do an optimization to find the Maximum a Posterior estimates. Parameters ---------- p_ini: array_like Pmap_Model parameters [log(sigma), log(tau), lag, wid, scale, alpha]. fixed: array_like, optional Same dimension as p_ini, but with 0 for parameters that is fixed in the optimization, and with 1 for parameters that is varying, e.g., fixed = [0, 1, 1, 1, 1, 1] means sigma is fixed while others are varying. fixed=[1, 1, 1, 1, 1,] is equivalent to fixed=None (default: None). Returns ------- p_bst : array_like Best-fit parameters. l: float The maximum log-posterior. """ set_verbose = lnpostparams.pop("set_verbose", True) set_retq = lnpostparams.pop("set_retq", False) if set_retq is True : raise InputError("set_retq has to be False") p_ini = np.asarray(p_ini) if fixed is not None : fixed = np.asarray(fixed) func = lambda _p : -lnpostfn_photo_p(_p*fixed+p_ini*(1.-fixed), self.zydata, **lnpostparams) else : func = lambda _p : -lnpostfn_photo_p(_p, self.zydata, **lnpostparams) p_bst, v_bst = fmin(func, p_ini, full_output=True)[:2] if fixed is not None : p_bst = p_bst*fixed+p_ini*(1.-fixed) sigma, tau, llags, lwids, lscales = unpackphotopar(p_bst, self.zydata.nlc, hascontlag=False) if set_verbose : print("Best-fit parameters are") print("sigma %8.3f tau %8.3f"%(sigma, tau)) print("%s %8.3f %s %8.3f %s %8.3f"%( self.vars[2], llags[0], self.vars[3], lwids[0], self.vars[4], lscales[0], )) print("alpha %8.3f"%(lscales[1])) print("with logp %10.5g "%-v_bst) return(p_bst, -v_bst) def do_mcmc(self, conthpd=None, set_extraprior=False, lagtobaseline=0.3, laglimit="baseline", widtobaseline=0.2, widlimit="nyquist", nwalkers=100, nburn=100, nchain=100, threads=1, fburn=None, fchain=None, flogp=None, set_threading=False, blocksize=10000, set_verbose=True): """ See `lnpostfn_photo_p` for doc, except for `laglimit` and `widlimit`, both of which have different default values ('baseline' / 'nyquist'). 'baseline' means the boundaries are naturally determined by the duration of the light curves, and 'nyquist' means the transfer function width has to be within two times the typical cadence of light curves. """ if (threads > 1 and (not set_threading)): if set_verbose: print("run parallel chains of number %2d "%threads) elif (threads == 1) : if set_verbose: if set_threading : print("run single chain in submatrix blocksize %10d "%blocksize) else : print("run single chain without subdividing matrix ") else : raise InputError("conflicting set_threading and threads setup") if laglimit == "baseline" : laglimit = [[-self.rj, self.rj],] elif len(laglimit) != 1 : raise InputError("laglimit should be a list of a single list") if widlimit == "nyquist" : # two times the cadence, resembling Nyquist sampling. widlimit = [[0.0, 2.0*self.cont_cad],] elif len(widlimit) != 1 : raise InputError("widlimit should be a list of a single list") # generate array of random numbers p0 = np.random.rand(nwalkers*self.ndim).reshape(nwalkers, self.ndim) # initialize array if conthpd is None: p0[:, 0] += np.log(self.cont_std)-0.5 p0[:, 1] += np.log(np.sqrt(self.rj*self.cont_cad))-0.5 else : # XXX stretch the range from (0,1) to ( conthpd[0,0], conthpd[2,0] ) p0[:, 0] = p0[:, 0] * (conthpd[2,0] - conthpd[0,0]) + conthpd[0,0] p0[:, 1] = p0[:, 1] * (conthpd[2,1] - conthpd[0,1]) + conthpd[0,1] # old way, just use 0.5 as the 1\sigma width. # p0[:, 0] += conthpd[1,0]-0.5 # p0[:, 1] += conthpd[1,1]-0.5 p0[:, 2] = p0[:,2]*(laglimit[0][1]-laglimit[0][0]) + laglimit[0][0] p0[:, 3] = p0[:,3]*(widlimit[0][1]-widlimit[0][0]) + widlimit[0][0] if set_verbose : print("start burn-in") if conthpd is None : print("no priors on sigma and tau") else : print("using priors on sigma and tau from the continuum fitting") print(np.exp(conthpd)) if lagtobaseline < 1.0 : print("penalize lags longer than %3.2f of the baseline"%lagtobaseline) else : print("no penalizing long lags, but only restrict to within the baseline") print("nburn: %d nwalkers: %d --> number of burn-in iterations: %d"% (nburn, nwalkers, nburn*nwalkers)) # initialize the ensemble sampler sampler = EnsembleSampler(nwalkers, self.ndim, lnpostfn_photo_p, args=(self.zydata, conthpd, set_extraprior, lagtobaseline, laglimit, widtobaseline, widlimit, set_threading, blocksize, False, False), threads=threads) pos, prob, state = sampler.run_mcmc(p0, nburn) if set_verbose : print("burn-in finished") if fburn is not None : if set_verbose : print("save burn-in chains to %s"%fburn) np.savetxt(fburn, sampler.flatchain) # reset the sampler sampler.reset() if set_verbose : print("start sampling") sampler.run_mcmc(pos, nchain, rstate0=state) if set_verbose : print("sampling finished") af = sampler.acceptance_fraction if set_verbose : print("acceptance fractions are") print(" ".join([format(r, "3.2f") for r in af])) if fchain is not None : if set_verbose : print("save MCMC chains to %s"%fchain) np.savetxt(fchain, sampler.flatchain) if flogp is not None : if set_verbose : print("save logp of MCMC chains to %s"%flogp) np.savetxt(flogp, np.ravel(sampler.lnprobability), fmt='%16.8f') # make chain an attritue self.flatchain = sampler.flatchain self.flatchain_whole = np.copy(self.flatchain) # get HPD self.get_hpd(set_verbose=set_verbose) def get_hpd(self, set_verbose=True): """ Get the 68% percentile range of each parameter to self.hpd. Parameters ---------- set_verbose: bool, optional True if you want verbosity (default: True). """ hpd = np.zeros((3, self.ndim)) chain_len = self.flatchain.shape[0] pct1sig = chain_len*np.array([0.16, 0.50, 0.84]) medlowhig = pct1sig.astype(np.int32) for i in xrange(self.ndim): vsort = np.sort(self.flatchain[:,i]) hpd[:,i] = vsort[medlowhig] if set_verbose : print("HPD of %s"%self.vars[i]) if i < 2 : print("low: %8.3f med %8.3f hig %8.3f"%tuple(np.exp(hpd[:,i]))) else : print("low: %8.3f med %8.3f hig %8.3f"%tuple(hpd[:,i])) # register hpd to attr self.hpd = hpd def show_hist(self, bins=100, lagbinsize=1.0, figout=None, figext=None): """ Display histograms of the posterior distributions. Parameters ---------- bins: integer, optional Number of bins for parameters except for 'lag' (default:100). lagbinsize: integer, optional bin width for 'lag' (default:100). figout: str, optional Output figure name (default: None, i.e., using sequencial integers). figext: str, optional Output figure extension (default: None, i.e., using `show`). """ if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) ln10 = np.log(10.0) fig = plt.figure(figsize=(14, 2.8*self.nlc)) for i in xrange(2) : ax = fig.add_subplot(self.nlc,3,i+1) ax.hist(self.flatchain[:,i]/ln10, bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") # alpha ax = fig.add_subplot(self.nlc,3,3) ax.hist(self.flatchain[:,5], bins) ax.set_xlabel(self.texs[5]) ax.set_ylabel("N") # line for i in xrange(2, 5) : ax = fig.add_subplot(self.nlc,3,i+1+1) if np.mod(i, 3) == 2 : # lag plots lagbins = np.arange(int(np.min(self.flatchain[:,i])), int(np.max(self.flatchain[:,i]))+lagbinsize, lagbinsize) ax.hist(self.flatchain[:,i], bins=lagbins) else : ax.hist(self.flatchain[:,i], bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") # plt.get_current_fig_manager().toolbar.zoom() return(figure_handler(fig=fig, figout=figout, figext=figext)) def break_chain(self, llag_segments): """ Break the chain. Parameters ---------- llag_segments: list of lists list of length 1, wich the single element a two-element array bracketing the range of lags (usually the single most probable peak) you want to consider for each line. """ if (len(llag_segments) != self.nlc-1) : print("Error: llag_segments has to be a list of length %d"%(self.nlc-1)) return(1) if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) llag_seq = llag_segments[0] if llag_seq is None: print("Warning: no rule to break chains with") else : indx = np.argsort(self.flatchain[:, 2]) imin, imax = np.searchsorted(self.flatchain[indx, 2], llag_seq) indx_cut = indx[imin : imax] self.flatchain = self.flatchain[indx_cut, :] def restore_chain(self) : """ Restore chain after `break_chain`. """ self.flatchain = np.copy(self.flatchain_whole) def load_chain(self, fchain, set_verbose=True): """ Load stored MCMC chain. Parameters ---------- fchain: string Name for the chain file. set_verbose: bool, optional True if you want verbosity (default: True). """ if set_verbose : print("load MCMC chain from %s"%fchain) self.flatchain = np.genfromtxt(fchain) self.flatchain_whole = np.copy(self.flatchain) self.ndim = self.flatchain.shape[1] # get HPD self.get_hpd(set_verbose=set_verbose) def do_pred(self, p_bst, fpred=None, dense=10, set_overwrite=True, set_decompose=False) : """ Calculate the predicted mean and variance of each light curve on a densely sampled time axis. Parameters ---------- p_bst: array_like Input paraemeters. fpred: string, optional Name of the output file for the predicted light curves, set it to None if you do not want output (default: None). dense: int, optional The factor by which the predicted light curves should be more densely sampled than the original data (default: 10). set_overwrite: bool, optional True if you want to overwrite existing fpred (default: True). Returns ------- zydata_pred: LightCurve object Predicted light curves packaged as a LightCurve object. """ qlist = lnpostfn_photo_p(p_bst, self.zydata, set_retq=True, set_verbose=False)[4] sigma, tau, lags, wids, scales = unpackphotopar(p_bst, self.zydata.nlc, hascontlag=True) # update qlist self.zydata.update_qlist(qlist) # initialize PredictRmap object P = PredictPmap(zydata=self.zydata, sigma=sigma, tau=tau, lags=lags, wids=wids, scales=scales) nwant = dense*self.cont_npt jwant0 = self.jstart - 0.1*self.rj jwant1 = self.jend + 0.1*self.rj jwant = np.linspace(jwant0, jwant1, nwant) zylclist_pred = [] for i in xrange(self.nlc) : iwant = np.ones(nwant)*(i+1) mve, var = P.mve_var(jwant, iwant) sig = np.sqrt(var) zylclist_pred.append([jwant, mve, sig]) if set_decompose : mve_band = ( zylclist_pred[0][1] - self.zydata.blist[0] ) *scales[-1] mve_line = ( zylclist_pred[1][1] - self.zydata.blist[1] ) - mve_band mve_nonv = jwant * 0.0 + self.zydata.blist[1] zydata_pred = LightCurve(zylclist_pred) if fpred is not None : zydata_pred.save(fpred, set_overwrite=set_overwrite) if set_decompose : return(zydata_pred, [jwant, mve_band, mve_line, mve_nonv]) else : return(zydata_pred) ########################################################### """ SPmap_Model: One-Band Photometric RM """ def unpacksbphotopar(p, nlc=1) : """ Unpack the physical parameters from input 1-d array for single band photo mode. """ if nlc != 1 : raise InputError("SPmap_Model cannot cope with more than one band.") sigma = np.exp(p[0]) tau = np.exp(p[1]) lag = p[2] wid = p[3] scale = p[4] return(sigma, tau, lag, wid, scale) def lnpostfn_sbphoto_p(p, zydata, conthpd=None, scalehpd=None, lagtobaseline=0.3, laglimit=None, widtobaseline=0.2, widlimit=None, set_threading=False, blocksize=10000, set_retq=False, set_verbose=False) : """ log-posterior function of p. Parameters ---------- p : array_like SPmap_Model parameters, [log(sigma), log(tau), lag1, wid1, scale1] zydata: LightCurve object Light curve data. conthpd: ndarray, optional Priors on sigma and tau as an ndarray with shape (3, 2), np.array([[log(sigma_low), log(tau_low)], [log(sigma_med), log(tau_med)], [log(sigma_hig), log(tau_hig)]]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. conthpd usually comes in as an attribute of the `Cont_Model` object `hpd` (default: None). scalehpd: ndarray, optional Prior on ln(scale) as an 1D ndarray with size 3. np.array([lnscale_low, lnscale_med, lnscale_hig]) where 'low', 'med', and 'hig' are defined as the 68% confidence limits around the median. Use scalehpd if you have a rough idea of how large the ratio of line variation over the underlying continuum is. lagtobaseline: float, optional Prior on lags. When input lag exceeds lagtobaseline*baseline, a logarithmic prior will be applied. laglimit: list of tuples. hard boundaries for the lag searching. widtobaseline: float, optional Prior on wids. When input wid exceeds widtobaseline*baseline, a logarithmic prior will be applied. widlimit: list of tuples, optional hard boundaries for the wid searching. set_threading: bool, optional True if you want threading in filling matrix. It conflicts with the 'threads' option in Pmap_Model.run_mcmc (default: False). blocksize: int, optional Maximum matrix block size in threading (default: 10000). set_retq: bool, optional Return the value(s) of q along with each component of the log-likelihood if True (default: False). set_verbose: bool, optional True if you want verbosity (default: False). """ sigma, tau, lag, wid, scale = unpacksbphotopar(p, zydata.nlc) if set_retq : vals = list(lnlikefn_sbphoto(zydata, sigma, tau, lag, wid, scale, set_retq=True, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize)) else : logl = lnlikefn_sbphoto(zydata, sigma, tau, lag, wid, scale, set_retq=False, set_verbose=set_verbose, set_threading=set_threading, blocksize=blocksize) # both conthpd and p[1-2] are in natural log if conthpd is not None : # for sigma if p[0] < conthpd[1,0] : prior0 = (p[0] - conthpd[1,0])/(conthpd[1,0]-conthpd[0,0]) else : prior0 = (p[0] - conthpd[1,0])/(conthpd[2,0]-conthpd[1,0]) # for tau if p[1] < conthpd[1,1] : prior1 = (p[1] - conthpd[1,1])/(conthpd[1,1]-conthpd[0,1]) else : prior1 = (p[1] - conthpd[1,1])/(conthpd[2,1]-conthpd[1,1]) else : prior0 = 0.0 prior1 = 0.0 # for scale if scalehpd is not None : lnscale = np.log(scale) if lnscale < scalehpd[1] : prior3 = (lnscale - scalehpd[1])/(scalehpd[1]-scalehpd[0]) else : prior3 = (lnscale - scalehpd[1])/(scalehpd[2]-scalehpd[1]) else : prior3 = 0.0 # for lags and wids prior2 = 0.0 # penalize on extremely long lags. if lagtobaseline < 1.0 : if np.abs(lag) > lagtobaseline*zydata.rj : prior2 += np.log(np.abs(lag)/(lagtobaseline*zydata.rj)) # penalize long lags to be impossible if laglimit is not None : if lag > laglimit[0][1] or lag < laglimit[0][0] : prior2 += my_pos_inf # penalize on extremely large transfer function width if widtobaseline < 1.0 : if np.abs(wid) > lagtobaseline*zydata.rj : prior2 += np.log(np.abs(wid)/(lagtobaseline*zydata.rj)) if widlimit is not None : if wid > widlimit[0][1] or wid < widlimit[0][0] : prior2 += my_pos_inf # add logp of all the priors prior = -0.5*(prior0*prior0+prior1*prior1+prior3*prior3) - prior2 if set_retq : vals[0] = vals[0] + prior vals.extend([prior0, prior1, prior2]) return(vals) else : logp = logl + prior return(logp) def lnlikefn_sbphoto(zydata, sigma, tau, lag, wid, scale, set_retq=False, set_verbose=False, set_threading=False, blocksize=10000): """ Log-likelihood function for the SBmap model. """ if not zydata.issingle: raise UsageError("lnlikefn_sbphoto expects a single input light curve.") # impossible scenarios if (sigma<=0.0 or tau<=0.0 or wid<0.0 or scale<0.0 or lag>zydata.rj) : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: illegal input of parameters", set_verbose=set_verbose)) # fill in lags/wids/scales so that we can use spear.py with set_pmap=True. lags = np.zeros(3) wids = np.zeros(3) scales = np.ones(3) lags[1] = lag wids[1] = wid scales[1] = scale # we know all elements in zydata.iarr are 1, so we want them to be 2 here. if set_threading : C = spear_threading(zydata.jarr,zydata.jarr, zydata.iarr+1,zydata.iarr+1,sigma,tau,lags,wids,scales, set_pmap=True, blocksize=blocksize) else : C = spear(zydata.jarr,zydata.jarr, zydata.iarr+1,zydata.iarr+1,sigma,tau,lags,wids,scales, set_pmap=True) # decompose C inplace U, info = cholesky(C, nugget=zydata.varr, inplace=True, raiseinfo=False) # handle exceptions here if info > 0 : return(_exit_with_retval(zydata.nlc, set_retq, errmsg="Warning: non positive-definite covariance C", set_verbose=set_verbose)) retval = _lnlike_from_U(U, zydata, set_retq=set_retq, set_verbose=set_verbose) return(retval) class SPmap_Model(object) : def __init__(self, zydata=None, linename="line") : """ SPmap Model object (Single-band Photometric mapping). Parameters ---------- zydata: LightCurve object, optional Light curve data. """ self.zydata = zydata if zydata is None : pass else : self.nlc = zydata.nlc self.npt = zydata.npt self.cont_npt = zydata.nptlist[0] self.cont_cad = zydata.cont_cad self.cont_std = zydata.cont_std self.rj = zydata.rj self.jstart = zydata.jstart self.jend = zydata.jend self.names = zydata.names # test if all elements in zydata.iarr are one. if not np.all(zydata.iarr == 1) : raise UsageError("Element ids in zydata should all be ones.") # number of parameters self.ndim = 5 self.vars = [ "sigma", "tau" ] self.texs = [r"$\log\,\sigma$", r"$\log\,\tau$"] # self.vars.append("_".join(["lag", linename])) self.vars.append("_".join(["wid", linename])) self.vars.append("_".join(["scale", linename])) self.texs.append( "".join([r"$t_{", linename ,r"}$"])) self.texs.append( "".join([r"$w_{", linename ,r"}$"])) self.texs.append( "".join([r"$s_{", linename ,r"}$"])) def __call__(self, p, **lnpostparams) : return(lnpostfn_sbphoto_p(p, self.zydata, **lnpostparams)) def do_map(self, p_ini, fixed=None, **lnpostparams) : """ Do an optimization to find the Maximum a Posterior estimates. Parameters ---------- p_ini: array_like Pmap_Model parameters [log(sigma), log(tau), lag, wid, scale]. fixed: array_like, optional Same dimension as p_ini, but with 0 for parameters that is fixed in the optimization, and with 1 for parameters that is varying, e.g., fixed = [0, 1, 1, 1, 1] means sigma is fixed while others are varying. fixed=[1, 1, 1, 1,] is equivalent to fixed=None (default: None). Returns ------- p_bst : array_like Best-fit parameters. l: float The maximum log-posterior. """ set_verbose = lnpostparams.pop("set_verbose", True) # either given or set to True set_retq = lnpostparams.pop("set_retq", False) if set_retq is True : raise InputError("set_retq has to be False") p_ini = np.asarray(p_ini) if fixed is not None : fixed = np.asarray(fixed) func = lambda _p : -lnpostfn_sbphoto_p(_p*fixed+p_ini*(1.-fixed), self.zydata, **lnpostparams) else : func = lambda _p : -lnpostfn_sbphoto_p(_p, self.zydata, **lnpostparams) p_bst, v_bst = fmin(func, p_ini, full_output=True)[:2] if fixed is not None : p_bst = p_bst*fixed+p_ini*(1.-fixed) sigma, tau, lag, wid, scale = unpacksbphotopar(p_bst, nlc=self.zydata.nlc) if set_verbose : print("Best-fit parameters are") print("sigma %8.3f tau %8.3f"%(sigma, tau)) print("%s %8.3f %s %8.3f %s %8.3f"%( self.vars[2], lag, self.vars[3], wid, self.vars[3], scale, )) print("with logp %10.5g "%-v_bst) return(p_bst, -v_bst) def do_mcmc(self, conthpd=None, scalehpd=None, lagtobaseline=0.3, laglimit="baseline", widtobaseline=0.2, widlimit="nyquist", nwalkers=100, nburn=100, nchain=100, threads=1, fburn=None, fchain=None, flogp=None, set_threading=False, blocksize=10000, set_verbose=True): """ See `lnpostfn_sbphoto_p` for doc, except for `laglimit` and `widlimit`, both of which have different default values ('baseline' / 'nyquist'). 'baseline' means the boundaries are naturally determined by the duration of the light curves, and 'nyquist' means the transfer function width has to be within two times the typical cadence of light curves. """ if (threads > 1 and (not set_threading)): if set_verbose: print("run parallel chains of number %2d "%threads) elif (threads == 1) : if set_verbose: if set_threading : print("run single chain in submatrix blocksize %10d "%blocksize) else : print("run single chain without subdividing matrix ") else : raise InputError("conflicting set_threading and threads setup: set_threading should be false when threads > 1") if laglimit == "baseline" : laglimit = [[-self.rj, self.rj],] elif len(laglimit) != 1 : raise InputError("laglimit should be a list of a single list") if widlimit == "nyquist" : # two times the cadence, resembling Nyquist sampling. widlimit = [[0.0, 2.0*self.cont_cad],] elif len(widlimit) != 1 : raise InputError("widlimit should be a list of a single list") # generate array of random numbers p0 = np.random.rand(nwalkers*self.ndim).reshape(nwalkers, self.ndim) # initialize array if conthpd is None: p0[:, 0] += np.log(self.cont_std)-0.5 p0[:, 1] += np.log(np.sqrt(self.rj*self.cont_cad))-0.5 else : # XXX stretch the range from (0,1) to ( conthpd[0,0], conthpd[2,0] ) p0[:, 0] = p0[:, 0] * (conthpd[2,0] - conthpd[0,0]) + conthpd[0,0] p0[:, 1] = p0[:, 1] * (conthpd[2,1] - conthpd[0,1]) + conthpd[0,1] # old way, just use 0.5 as the 1\sigma width. # p0[:, 0] += conthpd[1,0]-0.5 # p0[:, 1] += conthpd[1,1]-0.5 p0[:, 2] = p0[:, 2] * (laglimit[0][1] - laglimit[0][0]) + laglimit[0][0] p0[:, 3] = p0[:, 3] * (widlimit[0][1] - widlimit[0][0]) + widlimit[0][0] if scalehpd is None : pass # (0, 1) is adequate. else : # XXX scalehpd is in natural log-space p0[:, 4] = np.exp(p0[:, 4] * (scalehpd[2] - scalehpd[0]) + scalehpd[0]) if set_verbose : print("start burn-in") if conthpd is None : print("no priors on sigma and tau") else : print("using log-priors on sigma and tau from the continuum fitting") print(np.exp(conthpd)) if lagtobaseline < 1.0 : print("penalize lags longer than %3.2f of the baseline"%lagtobaseline) else : print("no penalizing long lags, but only restrict to within laglimit") if widtobaseline < 1.0 : print("penalize wids longer than %3.2f of the baseline"%widtobaseline) else : print("no penalizing long wids, but only restrict to within widlimit") if scalehpd is None : print("no priors on scale") else : print("using log-priors on scale") print(np.exp(scalehpd)) print("nburn: %d nwalkers: %d --> number of burn-in iterations: %d"% (nburn, nwalkers, nburn*nwalkers)) # initialize the ensemble sampler sampler = EnsembleSampler(nwalkers, self.ndim, lnpostfn_sbphoto_p, args=(self.zydata, conthpd, scalehpd, lagtobaseline, laglimit, widtobaseline, widlimit, set_threading, blocksize, False, False), threads=threads) pos, prob, state = sampler.run_mcmc(p0, nburn) if set_verbose : print("burn-in finished") if fburn is not None : if set_verbose : print("save burn-in chains to %s"%fburn) np.savetxt(fburn, sampler.flatchain) # reset the sampler sampler.reset() if set_verbose : print("start sampling") sampler.run_mcmc(pos, nchain, rstate0=state) if set_verbose : print("sampling finished") af = sampler.acceptance_fraction if set_verbose : print("acceptance fractions are") print(" ".join([format(r, "3.2f") for r in af])) if fchain is not None : if set_verbose : print("save MCMC chains to %s"%fchain) np.savetxt(fchain, sampler.flatchain) if flogp is not None : if set_verbose : print("save logp of MCMC chains to %s"%flogp) np.savetxt(flogp, np.ravel(sampler.lnprobability), fmt='%16.8f') # make chain an attritue self.flatchain = sampler.flatchain self.flatchain_whole = np.copy(self.flatchain) # get HPD self.get_hpd(set_verbose=set_verbose) def get_hpd(self, set_verbose=True): """ Get the 68% percentile range of each parameter to self.hpd. Parameters ---------- set_verbose: bool, optional True if you want verbosity (default: True). """ hpd = np.zeros((3, self.ndim)) chain_len = self.flatchain.shape[0] pct1sig = chain_len*np.array([0.16, 0.50, 0.84]) medlowhig = pct1sig.astype(np.int32) for i in xrange(self.ndim): vsort = np.sort(self.flatchain[:,i]) hpd[:,i] = vsort[medlowhig] if set_verbose : print("HPD of %s"%self.vars[i]) if i < 2 : print("low: %8.3f med %8.3f hig %8.3f"%tuple(np.exp(hpd[:,i]))) else : print("low: %8.3f med %8.3f hig %8.3f"%tuple(hpd[:,i])) # register hpd to attr self.hpd = hpd def show_hist(self, bins=100, lagbinsize=1.0, figout=None, figext=None): """ Display histograms of the posterior distributions. Parameters ---------- bins: integer, optional Number of bins for parameters except for 'lag' (default:100). lagbinsize: integer, optional bin width for 'lag' (default:100). figout: str, optional Output figure name (default: None, i.e., using sequencial integers). figext: str, optional Output figure extension (default: None, i.e., using `show`). """ if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) ln10 = np.log(10.0) fig = plt.figure(figsize=(14, 2.8*2)) for i in xrange(2) : ax = fig.add_subplot(2,3,i+1) ax.hist(self.flatchain[:,i]/ln10, bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") # line for i in xrange(2, 5) : ax = fig.add_subplot(2,3,i+1+1) if np.mod(i, 3) == 2 : # lag plots lagbins = np.arange(int(np.min(self.flatchain[:,i])), int(np.max(self.flatchain[:,i]))+lagbinsize, lagbinsize) ax.hist(self.flatchain[:,i], bins=lagbins) else : ax.hist(self.flatchain[:,i], bins) ax.set_xlabel(self.texs[i]) ax.set_ylabel("N") return(figure_handler(fig=fig, figout=figout, figext=figext)) def break_chain(self, llag_segments): """ Break the chain. Parameters ---------- llag_segments: list of lists list of a single list, which is a two-element array bracketing the range of lags (usually the single most probable peak). """ if (len(llag_segments) != 1) : print("Error: llag_segments has to be a list of length 1") return(1) if not hasattr(self, "flatchain"): print("Warning: need to run do_mcmc or load_chain first") return(1) llag_seq = llag_segments[0] if llag_seq is None: print("Warning: no rule to break chains with") else : indx = np.argsort(self.flatchain[:, 2]) imin, imax = np.searchsorted(self.flatchain[indx, 2], llag_seq) indx_cut = indx[imin : imax] self.flatchain = self.flatchain[indx_cut, :] def restore_chain(self) : self.flatchain = np.copy(self.flatchain_whole) def load_chain(self, fchain, set_verbose=True): """ Load stored MCMC chain. Parameters ---------- fchain: string Name for the chain file. set_verbose: bool, optional True if you want verbosity (default: True). """ if set_verbose : print("load MCMC chain from %s"%fchain) self.flatchain = np.genfromtxt(fchain) self.flatchain_whole = np.copy(self.flatchain) self.ndim = self.flatchain.shape[1] # get HPD self.get_hpd(set_verbose=set_verbose) def do_pred(self, p_bst, fpred=None, dense=10, set_overwrite=True) : """ Calculate the predicted mean and variance of each light curve on a densely sampled time axis. Parameters ---------- p_bst: array_like Input paraemeters. fpred: string, optional Name of the output file for the predicted light curves, set it to None if you do not want output (default: None). dense: int, optional The factor by which the predicted light curves should be more densely sampled than the original data (default: 10). set_overwrite: bool, optional True if you want to overwrite existing fpred (default: True). Returns ------- zydata_pred: LightCurve object Predicted light curves packaged as a LightCurve object. """ qlist = lnpostfn_sbphoto_p(p_bst, self.zydata, set_retq=True, set_verbose=False)[4] sigma, tau, lag, wid, scale = unpacksbphotopar(p_bst, self.zydata.nlc) # update qlist self.zydata.update_qlist(qlist) # initialize PredictRmap object P = PredictSPmap(zydata=self.zydata, sigma=sigma, tau=tau, lag=lag, wid=wid, scale=scale) nwant = dense*self.cont_npt jwant0 = self.jstart - 0.1*self.rj jwant1 = self.jend + 0.1*self.rj jwant = np.linspace(jwant0, jwant1, nwant) zylclist_pred = [] iwant = np.ones(nwant) mve, var = P.mve_var(jwant, iwant) sig = np.sqrt(var) zylclist_pred.append([jwant, mve, sig]) zydata_pred = LightCurve(zylclist_pred) if fpred is not None : zydata_pred.save(fpred, set_overwrite=set_overwrite) return(zydata_pred) ###########################################################
gpl-2.0
aflaxman/scikit-learn
sklearn/semi_supervised/label_propagation.py
12
18811
# coding=utf8 """ Label propagation in the context of this module refers to a set of semi-supervised classification algorithms. At a high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset given label assignments over an initial subset. In one variant, the algorithm does not allow for any errors in the initial assignment (hard-clamping) while in another variant, the algorithm allows for some wiggle room for the initial assignments, allowing them to change by a fraction alpha in each iteration (soft-clamping). Kernel: A function which projects a vector into some higher dimensional space. This implementation supports RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # Utkarsh Upadhyay <[email protected]> # License: BSD from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, ClassifierMixin from ..externals import six from ..metrics.pairwise import rbf_kernel from ..neighbors.unsupervised import NearestNeighbors from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import check_classification_targets from ..utils.validation import check_X_y, check_is_fitted, check_array from ..exceptions import ConvergenceWarning class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : integer Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3, n_jobs=1): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha self.n_jobs = n_jobs def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors, n_jobs=self.n_jobs).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) elif callable(self.kernel): if y is None: return self.kernel(X, X) else: return self.kernel(X, y) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " or an explicit function " " are supported at this time." % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') X_2d = check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia']) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) alpha = self.alpha if self._variant == 'spreading' and \ (alpha is None or alpha <= 0.0 or alpha >= 1.0): raise ValueError('alpha=%s is invalid: it must be inside ' 'the open interval (0, 1)' % alpha) y = np.asarray(y) unlabeled = y == -1 # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self._variant == 'propagation': # LabelPropagation y_static[unlabeled] = 0 else: # LabelSpreading y_static *= 1 - alpha l_previous = np.zeros((self.X_.shape[0], n_classes)) unlabeled = unlabeled[:, np.newaxis] if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() for self.n_iter_ in range(self.max_iter): if np.abs(self.label_distributions_ - l_previous).sum() < self.tol: break l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) if self._variant == 'propagation': normalizer = np.sum( self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer self.label_distributions_ = np.where(unlabeled, self.label_distributions_, y_static) else: # clamp self.label_distributions_ = np.multiply( alpha, self.label_distributions_) + y_static else: warnings.warn( 'max_iter=%d was reached without convergence.' % self.max_iter, category=ConvergenceWarning ) self.n_iter_ += 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor. .. deprecated:: 0.19 This parameter will be removed in 0.21. 'alpha' is fixed to zero in 'LabelPropagation'. max_iter : integer Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ _variant = 'propagation' def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=None, max_iter=1000, tol=1e-3, n_jobs=1): super(LabelPropagation, self).__init__( kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix def fit(self, X, y): if self.alpha is not None: warnings.warn( "alpha is deprecated since 0.19 and will be removed in 0.21.", DeprecationWarning ) self.alpha = None return super(LabelPropagation, self).fit(X, y) class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float Clamping factor. A value in [0, 1] that specifies the relative amount that an instance should adopt the information from its neighbors as opposed to its initial label. alpha=0 means keeping the initial label information; alpha=1 means replacing all initial information. max_iter : integer maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ _variant = 'spreading' def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3, n_jobs=1): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = sparse.csgraph.laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
harisbal/pandas
pandas/io/excel.py
1
62157
""" Module parse to/from Excel """ # --------------------------------------------------------------------- # ExcelFile class import abc from datetime import MINYEAR, date, datetime, time, timedelta from distutils.version import LooseVersion from io import UnsupportedOperation import os from textwrap import fill import warnings import numpy as np import pandas._libs.json as json import pandas.compat as compat from pandas.compat import ( OrderedDict, add_metaclass, lrange, map, range, reduce, string_types, u, zip) from pandas.errors import EmptyDataError from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import ( is_bool, is_float, is_integer, is_list_like) from pandas.core import config from pandas.core.frame import DataFrame from pandas.io.common import ( _NA_VALUES, _is_url, _stringify_path, _urlopen, _validate_header_arg, get_filepath_or_buffer) from pandas.io.formats.printing import pprint_thing from pandas.io.parsers import TextParser __all__ = ["read_excel", "ExcelWriter", "ExcelFile"] _writer_extensions = ["xlsx", "xls", "xlsm"] _writers = {} _read_excel_doc = """ Read an Excel table into a pandas DataFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0 .. deprecated:: 0.21.0 Use `sheet_name` instead header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. parse_cols : int or list, default None .. deprecated:: 0.21.0 Pass in `usecols` instead. usecols : int or list, default None * If None then parse all columns, * If int then indicates last column to be parsed * If list of ints then indicates list of column numbers to be parsed * If string then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. squeeze : boolean, default False If the parsed data only contains one column then return a Series dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 .. deprecated:: 0.23.0 Pass in `skipfooter` instead. skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a Dict of Dataframes is returned. Examples -------- An example DataFrame written to a local file >>> df_out = pd.DataFrame([('string1', 1), ... ('string2', 2), ... ('string3', 3)], ... columns=['Name', 'Value']) >>> df_out Name Value 0 string1 1 1 string2 2 2 string3 3 >>> df_out.to_excel('tmp.xlsx') The file can be read using the file name as string or an open file object: >>> pd.read_excel('tmp.xlsx') Name Value 0 string1 1 1 string2 2 2 string3 3 >>> pd.read_excel(open('tmp.xlsx','rb')) Name Value 0 string1 1 1 string2 2 2 string3 3 Index and header can be specified via the `index_col` and `header` arguments >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 string3 3 Column types are inferred but can be explicitly specified >>> pd.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float}) Name Value 0 string1 1.0 1 string2 2.0 2 string3 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pd.read_excel('tmp.xlsx', ... na_values=['string1', 'string2']) Name Value 0 NaN 1 1 NaN 2 2 string3 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> df = pd.DataFrame({'a': ['1', '#2'], 'b': ['2', '3']}) >>> df.to_excel('tmp.xlsx', index=False) >>> pd.read_excel('tmp.xlsx') a b 0 1 2 1 #2 3 >>> pd.read_excel('tmp.xlsx', comment='#') a b 0 1 2 """ def register_writer(klass): """Adds engine to the excel writer registry. You must use this method to integrate with ``to_excel``. Also adds config options for any new ``supported_extensions`` defined on the writer.""" if not compat.callable(klass): raise ValueError("Can only register callables as engines") engine_name = klass.engine _writers[engine_name] = klass for ext in klass.supported_extensions: if ext.startswith('.'): ext = ext[1:] if ext not in _writer_extensions: config.register_option("io.excel.{ext}.writer".format(ext=ext), engine_name, validator=str) _writer_extensions.append(ext) def _get_default_writer(ext): _default_writers = {'xlsx': 'openpyxl', 'xlsm': 'openpyxl', 'xls': 'xlwt'} try: import xlsxwriter # noqa _default_writers['xlsx'] = 'xlsxwriter' except ImportError: pass return _default_writers[ext] def get_writer(engine_name): try: return _writers[engine_name] except KeyError: raise ValueError("No Excel writer '{engine}'" .format(engine=engine_name)) @Appender(_read_excel_doc) @deprecate_kwarg("parse_cols", "usecols") @deprecate_kwarg("skip_footer", "skipfooter") def read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, **kwds): # Can't use _deprecate_kwarg since sheetname=None has a special meaning if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: warnings.warn("The `sheetname` keyword is deprecated, use " "`sheet_name` instead", FutureWarning, stacklevel=2) sheet_name = kwds.pop("sheetname") if 'sheet' in kwds: raise TypeError("read_excel() got an unexpected keyword argument " "`sheet`") if not isinstance(io, ExcelFile): io = ExcelFile(io, engine=engine) return io.parse( sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, dtype=dtype, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, **kwds) class ExcelFile(object): """ Class for parsing tabular excel sheets into DataFrame objects. Uses xlrd. See read_excel for more documentation Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object or xlrd workbook If a string or path object, expected to be a path to xls or xlsx file engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd """ def __init__(self, io, **kwds): err_msg = "Install xlrd >= 0.9.0 for Excel support" try: import xlrd except ImportError: raise ImportError(err_msg) else: ver = tuple(map(int, xlrd.__VERSION__.split(".")[:2])) if ver < (0, 9): # pragma: no cover raise ImportError(err_msg + ". Current version " + xlrd.__VERSION__) # could be a str, ExcelFile, Book, etc. self.io = io # Always a string self._io = _stringify_path(io) engine = kwds.pop('engine', None) if engine is not None and engine != 'xlrd': raise ValueError("Unknown engine: {engine}".format(engine=engine)) # If io is a url, want to keep the data as bytes so can't pass # to get_filepath_or_buffer() if _is_url(self._io): io = _urlopen(self._io) elif not isinstance(self.io, (ExcelFile, xlrd.Book)): io, _, _, _ = get_filepath_or_buffer(self._io) if engine == 'xlrd' and isinstance(io, xlrd.Book): self.book = io elif not isinstance(io, xlrd.Book) and hasattr(io, "read"): # N.B. xlrd.Book has a read attribute too if hasattr(io, 'seek'): try: # GH 19779 io.seek(0) except UnsupportedOperation: # HTTPResponse does not support seek() # GH 20434 pass data = io.read() self.book = xlrd.open_workbook(file_contents=data) elif isinstance(self._io, compat.string_types): self.book = xlrd.open_workbook(self._io) else: raise ValueError('Must explicitly set engine if not passing in' ' buffer or path for io.') def __fspath__(self): return self._io def parse(self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, **kwds): """ Parse specified sheet(s) into a DataFrame Equivalent to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters """ # Can't use _deprecate_kwarg since sheetname=None has a special meaning if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: warnings.warn("The `sheetname` keyword is deprecated, use " "`sheet_name` instead", FutureWarning, stacklevel=2) sheet_name = kwds.pop("sheetname") elif 'sheetname' in kwds: raise TypeError("Cannot specify both `sheet_name` " "and `sheetname`. Use just `sheet_name`") return self._parse_excel(sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, **kwds) def _should_parse(self, i, usecols): def _range2cols(areas): """ Convert comma separated list of column names and column ranges to a list of 0-based column indexes. >>> _range2cols('A:E') [0, 1, 2, 3, 4] >>> _range2cols('A,C,Z:AB') [0, 2, 25, 26, 27] """ def _excel2num(x): "Convert Excel column name like 'AB' to 0-based column index" return reduce(lambda s, a: s * 26 + ord(a) - ord('A') + 1, x.upper().strip(), 0) - 1 cols = [] for rng in areas.split(','): if ':' in rng: rng = rng.split(':') cols += lrange(_excel2num(rng[0]), _excel2num(rng[1]) + 1) else: cols.append(_excel2num(rng)) return cols if isinstance(usecols, int): return i <= usecols elif isinstance(usecols, compat.string_types): return i in _range2cols(usecols) else: return i in usecols def _parse_excel(self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, **kwds): _validate_header_arg(header) if 'chunksize' in kwds: raise NotImplementedError("chunksize keyword of read_excel " "is not implemented") if parse_dates is True and index_col is None: warnings.warn("The 'parse_dates=True' keyword of read_excel was " "provided without an 'index_col' keyword value.") import xlrd from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN, XL_CELL_NUMBER) epoch1904 = self.book.datemode def _parse_cell(cell_contents, cell_typ): """converts the contents of the cell into a pandas appropriate object""" if cell_typ == XL_CELL_DATE: if xlrd_0_9_3: # Use the newer xlrd datetime handling. try: cell_contents = \ xldate.xldate_as_datetime(cell_contents, epoch1904) except OverflowError: return cell_contents # Excel doesn't distinguish between dates and time, # so we treat dates on the epoch as times only. # Also, Excel supports 1900 and 1904 epochs. year = (cell_contents.timetuple())[0:3] if ((not epoch1904 and year == (1899, 12, 31)) or (epoch1904 and year == (1904, 1, 1))): cell_contents = time(cell_contents.hour, cell_contents.minute, cell_contents.second, cell_contents.microsecond) else: # Use the xlrd <= 0.9.2 date handling. try: dt = xldate.xldate_as_tuple(cell_contents, epoch1904) except xldate.XLDateTooLarge: return cell_contents if dt[0] < MINYEAR: cell_contents = time(*dt[3:]) else: cell_contents = datetime(*dt) elif cell_typ == XL_CELL_ERROR: cell_contents = np.nan elif cell_typ == XL_CELL_BOOLEAN: cell_contents = bool(cell_contents) elif convert_float and cell_typ == XL_CELL_NUMBER: # GH5394 - Excel 'numbers' are always floats # it's a minimal perf hit and less surprising val = int(cell_contents) if val == cell_contents: cell_contents = val return cell_contents # xlrd >= 0.9.3 can return datetime objects directly. if LooseVersion(xlrd.__VERSION__) >= LooseVersion("0.9.3"): xlrd_0_9_3 = True else: xlrd_0_9_3 = False ret_dict = False # Keep sheetname to maintain backwards compatibility. if isinstance(sheet_name, list): sheets = sheet_name ret_dict = True elif sheet_name is None: sheets = self.sheet_names ret_dict = True else: sheets = [sheet_name] # handle same-type duplicates. sheets = list(OrderedDict.fromkeys(sheets).keys()) output = OrderedDict() for asheetname in sheets: if verbose: print("Reading sheet {sheet}".format(sheet=asheetname)) if isinstance(asheetname, compat.string_types): sheet = self.book.sheet_by_name(asheetname) else: # assume an integer if not a string sheet = self.book.sheet_by_index(asheetname) data = [] should_parse = {} for i in range(sheet.nrows): row = [] for j, (value, typ) in enumerate(zip(sheet.row_values(i), sheet.row_types(i))): if usecols is not None and j not in should_parse: should_parse[j] = self._should_parse(j, usecols) if usecols is None or should_parse[j]: row.append(_parse_cell(value, typ)) data.append(row) if sheet.nrows == 0: output[asheetname] = DataFrame() continue if is_list_like(header) and len(header) == 1: header = header[0] # forward fill and pull out names for MultiIndex column header_names = None if header is not None: if is_list_like(header): header_names = [] control_row = [True] * len(data[0]) for row in header: if is_integer(skiprows): row += skiprows data[row], control_row = _fill_mi_header( data[row], control_row) header_name, data[row] = _pop_header_name( data[row], index_col) header_names.append(header_name) else: data[header] = _trim_excel_header(data[header]) if is_list_like(index_col): # forward fill values for MultiIndex index if not is_list_like(header): offset = 1 + header else: offset = 1 + max(header) for col in index_col: last = data[offset][col] for row in range(offset + 1, len(data)): if data[row][col] == '' or data[row][col] is None: data[row][col] = last else: last = data[row][col] has_index_names = is_list_like(header) and len(header) > 1 # GH 12292 : error when read one empty column from excel file try: parser = TextParser(data, header=header, index_col=index_col, has_index_names=has_index_names, squeeze=squeeze, dtype=dtype, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, **kwds) output[asheetname] = parser.read(nrows=nrows) if names is not None: output[asheetname].columns = names if not squeeze or isinstance(output[asheetname], DataFrame): output[asheetname].columns = output[ asheetname].columns.set_names(header_names) except EmptyDataError: # No Data, return an empty DataFrame output[asheetname] = DataFrame() if ret_dict: return output else: return output[asheetname] @property def sheet_names(self): return self.book.sheet_names() def close(self): """close io if necessary""" if hasattr(self.io, 'close'): self.io.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _validate_freeze_panes(freeze_panes): if freeze_panes is not None: if ( len(freeze_panes) == 2 and all(isinstance(item, int) for item in freeze_panes) ): return True raise ValueError("freeze_panes must be of form (row, column)" " where row and column are integers") # freeze_panes wasn't specified, return False so it won't be applied # to output sheet return False def _trim_excel_header(row): # trim header row so auto-index inference works # xlrd uses '' , openpyxl None while len(row) > 0 and (row[0] == '' or row[0] is None): row = row[1:] return row def _fill_mi_header(row, control_row): """Forward fills blank entries in row, but only inside the same parent index Used for creating headers in Multiindex. Parameters ---------- row : list List of items in a single row. control_row : list of boolean Helps to determine if particular column is in same parent index as the previous value. Used to stop propagation of empty cells between different indexes. Returns ---------- Returns changed row and control_row """ last = row[0] for i in range(1, len(row)): if not control_row[i]: last = row[i] if row[i] == '' or row[i] is None: row[i] = last else: control_row[i] = False last = row[i] return row, control_row # fill blank if index_col not None def _pop_header_name(row, index_col): """ (header, new_data) for header rows in MultiIndex parsing""" none_fill = lambda x: None if x == '' else x if index_col is None: # no index col specified, trim data for inference path return none_fill(row[0]), row[1:] else: # pop out header name and fill w/ blank i = index_col if not is_list_like(index_col) else max(index_col) return none_fill(row[i]), row[:i] + [''] + row[i + 1:] @add_metaclass(abc.ABCMeta) class ExcelWriter(object): """ Class for writing DataFrame objects into excel sheets, default is to use xlwt for xls, openpyxl for xlsx. See DataFrame.to_excel for typical usage. Parameters ---------- path : string Path to xls or xlsx file. engine : string (optional) Engine to use for writing. If None, defaults to ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword argument. date_format : string, default None Format string for dates written into Excel files (e.g. 'YYYY-MM-DD') datetime_format : string, default None Format string for datetime objects written into Excel files (e.g. 'YYYY-MM-DD HH:MM:SS') mode : {'w' or 'a'}, default 'w' File mode to use (write or append). .. versionadded:: 0.24.0 Notes ----- None of the methods and properties are considered public. For compatibility with CSV writers, ExcelWriter serializes lists and dicts to strings before writing. Examples -------- Default usage: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... df.to_excel(writer) To write to separate sheets in a single file: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... df1.to_excel(writer, sheet_name='Sheet1') ... df2.to_excel(writer, sheet_name='Sheet2') You can set the date format or datetime format: >>> with ExcelWriter('path_to_file.xlsx', date_format='YYYY-MM-DD', datetime_format='YYYY-MM-DD HH:MM:SS') as writer: ... df.to_excel(writer) You can also append to an existing Excel file: >>> with ExcelWriter('path_to_file.xlsx', mode='a') as writer: ... df.to_excel(writer, sheet_name='Sheet3') Attributes ---------- None Methods ------- None """ # Defining an ExcelWriter implementation (see abstract methods for more...) # - Mandatory # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)`` # --> called to write additional DataFrames to disk # - ``supported_extensions`` (tuple of supported extensions), used to # check that engine supports the given extension. # - ``engine`` - string that gives the engine name. Necessary to # instantiate class directly and bypass ``ExcelWriterMeta`` engine # lookup. # - ``save(self)`` --> called to save file to disk # - Mostly mandatory (i.e. should at least exist) # - book, cur_sheet, path # - Optional: # - ``__init__(self, path, engine=None, **kwargs)`` --> always called # with path as first argument. # You also need to register the class with ``register_writer()``. # Technically, ExcelWriter implementations don't need to subclass # ExcelWriter. def __new__(cls, path, engine=None, **kwargs): # only switch class if generic(ExcelWriter) if issubclass(cls, ExcelWriter): if engine is None or (isinstance(engine, string_types) and engine == 'auto'): if isinstance(path, string_types): ext = os.path.splitext(path)[-1][1:] else: ext = 'xlsx' try: engine = config.get_option('io.excel.{ext}.writer' .format(ext=ext)) if engine == 'auto': engine = _get_default_writer(ext) except KeyError: error = ValueError("No engine for filetype: '{ext}'" .format(ext=ext)) raise error cls = get_writer(engine) return object.__new__(cls) # declare external properties you can count on book = None curr_sheet = None path = None @abc.abstractproperty def supported_extensions(self): "extensions that writer engine supports" pass @abc.abstractproperty def engine(self): "name of engine" pass @abc.abstractmethod def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): """ Write given formatted cells into Excel an excel sheet Parameters ---------- cells : generator cell of formatted data to save to Excel sheet sheet_name : string, default None Name of Excel sheet, if None, then use self.cur_sheet startrow: upper left cell row to dump data frame startcol: upper left cell column to dump data frame freeze_panes: integer tuple of length 2 contains the bottom-most row and right-most column to freeze """ pass @abc.abstractmethod def save(self): """ Save workbook to disk. """ pass def __init__(self, path, engine=None, date_format=None, datetime_format=None, mode='w', **engine_kwargs): # validate that this engine can handle the extension if isinstance(path, string_types): ext = os.path.splitext(path)[-1] else: ext = 'xls' if engine == 'xlwt' else 'xlsx' self.check_extension(ext) self.path = path self.sheets = {} self.cur_sheet = None if date_format is None: self.date_format = 'YYYY-MM-DD' else: self.date_format = date_format if datetime_format is None: self.datetime_format = 'YYYY-MM-DD HH:MM:SS' else: self.datetime_format = datetime_format self.mode = mode def __fspath__(self): return _stringify_path(self.path) def _get_sheet_name(self, sheet_name): if sheet_name is None: sheet_name = self.cur_sheet if sheet_name is None: # pragma: no cover raise ValueError('Must pass explicit sheet_name or set ' 'cur_sheet property') return sheet_name def _value_with_fmt(self, val): """Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional format """ fmt = None if is_integer(val): val = int(val) elif is_float(val): val = float(val) elif is_bool(val): val = bool(val) elif isinstance(val, datetime): fmt = self.datetime_format elif isinstance(val, date): fmt = self.date_format elif isinstance(val, timedelta): val = val.total_seconds() / float(86400) fmt = '0' else: val = compat.to_str(val) return val, fmt @classmethod def check_extension(cls, ext): """checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.""" if ext.startswith('.'): ext = ext[1:] if not any(ext in extension for extension in cls.supported_extensions): msg = (u("Invalid extension for engine '{engine}': '{ext}'") .format(engine=pprint_thing(cls.engine), ext=pprint_thing(ext))) raise ValueError(msg) else: return True # Allow use as a contextmanager def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """synonym for save, to make it more file-like""" return self.save() class _OpenpyxlWriter(ExcelWriter): engine = 'openpyxl' supported_extensions = ('.xlsx', '.xlsm') def __init__(self, path, engine=None, mode='w', **engine_kwargs): # Use the openpyxl module as the Excel writer. from openpyxl.workbook import Workbook super(_OpenpyxlWriter, self).__init__(path, mode=mode, **engine_kwargs) if self.mode == 'a': # Load from existing workbook from openpyxl import load_workbook book = load_workbook(self.path) self.book = book else: # Create workbook object with default optimized_write=True. self.book = Workbook() if self.book.worksheets: try: self.book.remove(self.book.worksheets[0]) except AttributeError: # compat - for openpyxl <= 2.4 self.book.remove_sheet(self.book.worksheets[0]) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) @classmethod def _convert_to_style(cls, style_dict): """ converts a style_dict to an openpyxl style object Parameters ---------- style_dict: style dictionary to convert """ from openpyxl.style import Style xls_style = Style() for key, value in style_dict.items(): for nk, nv in value.items(): if key == "borders": (xls_style.borders.__getattribute__(nk) .__setattr__('border_style', nv)) else: xls_style.__getattribute__(key).__setattr__(nk, nv) return xls_style @classmethod def _convert_to_style_kwargs(cls, style_dict): """ Convert a style_dict to a set of kwargs suitable for initializing or updating-on-copy an openpyxl v2 style object Parameters ---------- style_dict : dict A dict with zero or more of the following keys (or their synonyms). 'font' 'fill' 'border' ('borders') 'alignment' 'number_format' 'protection' Returns ------- style_kwargs : dict A dict with the same, normalized keys as ``style_dict`` but each value has been replaced with a native openpyxl style object of the appropriate class. """ _style_key_map = { 'borders': 'border', } style_kwargs = {} for k, v in style_dict.items(): if k in _style_key_map: k = _style_key_map[k] _conv_to_x = getattr(cls, '_convert_to_{k}'.format(k=k), lambda x: None) new_v = _conv_to_x(v) if new_v: style_kwargs[k] = new_v return style_kwargs @classmethod def _convert_to_color(cls, color_spec): """ Convert ``color_spec`` to an openpyxl v2 Color object Parameters ---------- color_spec : str, dict A 32-bit ARGB hex string, or a dict with zero or more of the following keys. 'rgb' 'indexed' 'auto' 'theme' 'tint' 'index' 'type' Returns ------- color : openpyxl.styles.Color """ from openpyxl.styles import Color if isinstance(color_spec, str): return Color(color_spec) else: return Color(**color_spec) @classmethod def _convert_to_font(cls, font_dict): """ Convert ``font_dict`` to an openpyxl v2 Font object Parameters ---------- font_dict : dict A dict with zero or more of the following keys (or their synonyms). 'name' 'size' ('sz') 'bold' ('b') 'italic' ('i') 'underline' ('u') 'strikethrough' ('strike') 'color' 'vertAlign' ('vertalign') 'charset' 'scheme' 'family' 'outline' 'shadow' 'condense' Returns ------- font : openpyxl.styles.Font """ from openpyxl.styles import Font _font_key_map = { 'sz': 'size', 'b': 'bold', 'i': 'italic', 'u': 'underline', 'strike': 'strikethrough', 'vertalign': 'vertAlign', } font_kwargs = {} for k, v in font_dict.items(): if k in _font_key_map: k = _font_key_map[k] if k == 'color': v = cls._convert_to_color(v) font_kwargs[k] = v return Font(**font_kwargs) @classmethod def _convert_to_stop(cls, stop_seq): """ Convert ``stop_seq`` to a list of openpyxl v2 Color objects, suitable for initializing the ``GradientFill`` ``stop`` parameter. Parameters ---------- stop_seq : iterable An iterable that yields objects suitable for consumption by ``_convert_to_color``. Returns ------- stop : list of openpyxl.styles.Color """ return map(cls._convert_to_color, stop_seq) @classmethod def _convert_to_fill(cls, fill_dict): """ Convert ``fill_dict`` to an openpyxl v2 Fill object Parameters ---------- fill_dict : dict A dict with one or more of the following keys (or their synonyms), 'fill_type' ('patternType', 'patterntype') 'start_color' ('fgColor', 'fgcolor') 'end_color' ('bgColor', 'bgcolor') or one or more of the following keys (or their synonyms). 'type' ('fill_type') 'degree' 'left' 'right' 'top' 'bottom' 'stop' Returns ------- fill : openpyxl.styles.Fill """ from openpyxl.styles import PatternFill, GradientFill _pattern_fill_key_map = { 'patternType': 'fill_type', 'patterntype': 'fill_type', 'fgColor': 'start_color', 'fgcolor': 'start_color', 'bgColor': 'end_color', 'bgcolor': 'end_color', } _gradient_fill_key_map = { 'fill_type': 'type', } pfill_kwargs = {} gfill_kwargs = {} for k, v in fill_dict.items(): pk = gk = None if k in _pattern_fill_key_map: pk = _pattern_fill_key_map[k] if k in _gradient_fill_key_map: gk = _gradient_fill_key_map[k] if pk in ['start_color', 'end_color']: v = cls._convert_to_color(v) if gk == 'stop': v = cls._convert_to_stop(v) if pk: pfill_kwargs[pk] = v elif gk: gfill_kwargs[gk] = v else: pfill_kwargs[k] = v gfill_kwargs[k] = v try: return PatternFill(**pfill_kwargs) except TypeError: return GradientFill(**gfill_kwargs) @classmethod def _convert_to_side(cls, side_spec): """ Convert ``side_spec`` to an openpyxl v2 Side object Parameters ---------- side_spec : str, dict A string specifying the border style, or a dict with zero or more of the following keys (or their synonyms). 'style' ('border_style') 'color' Returns ------- side : openpyxl.styles.Side """ from openpyxl.styles import Side _side_key_map = { 'border_style': 'style', } if isinstance(side_spec, str): return Side(style=side_spec) side_kwargs = {} for k, v in side_spec.items(): if k in _side_key_map: k = _side_key_map[k] if k == 'color': v = cls._convert_to_color(v) side_kwargs[k] = v return Side(**side_kwargs) @classmethod def _convert_to_border(cls, border_dict): """ Convert ``border_dict`` to an openpyxl v2 Border object Parameters ---------- border_dict : dict A dict with zero or more of the following keys (or their synonyms). 'left' 'right' 'top' 'bottom' 'diagonal' 'diagonal_direction' 'vertical' 'horizontal' 'diagonalUp' ('diagonalup') 'diagonalDown' ('diagonaldown') 'outline' Returns ------- border : openpyxl.styles.Border """ from openpyxl.styles import Border _border_key_map = { 'diagonalup': 'diagonalUp', 'diagonaldown': 'diagonalDown', } border_kwargs = {} for k, v in border_dict.items(): if k in _border_key_map: k = _border_key_map[k] if k == 'color': v = cls._convert_to_color(v) if k in ['left', 'right', 'top', 'bottom', 'diagonal']: v = cls._convert_to_side(v) border_kwargs[k] = v return Border(**border_kwargs) @classmethod def _convert_to_alignment(cls, alignment_dict): """ Convert ``alignment_dict`` to an openpyxl v2 Alignment object Parameters ---------- alignment_dict : dict A dict with zero or more of the following keys (or their synonyms). 'horizontal' 'vertical' 'text_rotation' 'wrap_text' 'shrink_to_fit' 'indent' Returns ------- alignment : openpyxl.styles.Alignment """ from openpyxl.styles import Alignment return Alignment(**alignment_dict) @classmethod def _convert_to_number_format(cls, number_format_dict): """ Convert ``number_format_dict`` to an openpyxl v2.1.0 number format initializer. Parameters ---------- number_format_dict : dict A dict with zero or more of the following keys. 'format_code' : str Returns ------- number_format : str """ return number_format_dict['format_code'] @classmethod def _convert_to_protection(cls, protection_dict): """ Convert ``protection_dict`` to an openpyxl v2 Protection object. Parameters ---------- protection_dict : dict A dict with zero or more of the following keys. 'locked' 'hidden' Returns ------- """ from openpyxl.styles import Protection return Protection(**protection_dict) def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): # Write the frame cells using openpyxl. sheet_name = self._get_sheet_name(sheet_name) _style_cache = {} if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.create_sheet() wks.title = sheet_name self.sheets[sheet_name] = wks if _validate_freeze_panes(freeze_panes): wks.freeze_panes = wks.cell(row=freeze_panes[0] + 1, column=freeze_panes[1] + 1) for cell in cells: xcell = wks.cell( row=startrow + cell.row + 1, column=startcol + cell.col + 1 ) xcell.value, fmt = self._value_with_fmt(cell.val) if fmt: xcell.number_format = fmt style_kwargs = {} if cell.style: key = str(cell.style) style_kwargs = _style_cache.get(key) if style_kwargs is None: style_kwargs = self._convert_to_style_kwargs(cell.style) _style_cache[key] = style_kwargs if style_kwargs: for k, v in style_kwargs.items(): setattr(xcell, k, v) if cell.mergestart is not None and cell.mergeend is not None: wks.merge_cells( start_row=startrow + cell.row + 1, start_column=startcol + cell.col + 1, end_column=startcol + cell.mergeend + 1, end_row=startrow + cell.mergestart + 1 ) # When cells are merged only the top-left cell is preserved # The behaviour of the other cells in a merged range is # undefined if style_kwargs: first_row = startrow + cell.row + 1 last_row = startrow + cell.mergestart + 1 first_col = startcol + cell.col + 1 last_col = startcol + cell.mergeend + 1 for row in range(first_row, last_row + 1): for col in range(first_col, last_col + 1): if row == first_row and col == first_col: # Ignore first cell. It is already handled. continue xcell = wks.cell(column=col, row=row) for k, v in style_kwargs.items(): setattr(xcell, k, v) register_writer(_OpenpyxlWriter) class _XlwtWriter(ExcelWriter): engine = 'xlwt' supported_extensions = ('.xls',) def __init__(self, path, engine=None, encoding=None, mode='w', **engine_kwargs): # Use the xlwt module as the Excel writer. import xlwt engine_kwargs['engine'] = engine if mode == 'a': raise ValueError('Append mode is not supported with xlwt!') super(_XlwtWriter, self).__init__(path, mode=mode, **engine_kwargs) if encoding is None: encoding = 'ascii' self.book = xlwt.Workbook(encoding=encoding) self.fm_datetime = xlwt.easyxf(num_format_str=self.datetime_format) self.fm_date = xlwt.easyxf(num_format_str=self.date_format) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): # Write the frame cells using xlwt. sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.add_sheet(sheet_name) self.sheets[sheet_name] = wks if _validate_freeze_panes(freeze_panes): wks.set_panes_frozen(True) wks.set_horz_split_pos(freeze_panes[0]) wks.set_vert_split_pos(freeze_panes[1]) style_dict = {} for cell in cells: val, fmt = self._value_with_fmt(cell.val) stylekey = json.dumps(cell.style) if fmt: stylekey += fmt if stylekey in style_dict: style = style_dict[stylekey] else: style = self._convert_to_style(cell.style, fmt) style_dict[stylekey] = style if cell.mergestart is not None and cell.mergeend is not None: wks.write_merge(startrow + cell.row, startrow + cell.mergestart, startcol + cell.col, startcol + cell.mergeend, val, style) else: wks.write(startrow + cell.row, startcol + cell.col, val, style) @classmethod def _style_to_xlwt(cls, item, firstlevel=True, field_sep=',', line_sep=';'): """helper which recursively generate an xlwt easy style string for example: hstyle = {"font": {"bold": True}, "border": {"top": "thin", "right": "thin", "bottom": "thin", "left": "thin"}, "align": {"horiz": "center"}} will be converted to font: bold on; \ border: top thin, right thin, bottom thin, left thin; \ align: horiz center; """ if hasattr(item, 'items'): if firstlevel: it = ["{key}: {val}" .format(key=key, val=cls._style_to_xlwt(value, False)) for key, value in item.items()] out = "{sep} ".format(sep=(line_sep).join(it)) return out else: it = ["{key} {val}" .format(key=key, val=cls._style_to_xlwt(value, False)) for key, value in item.items()] out = "{sep} ".format(sep=(field_sep).join(it)) return out else: item = "{item}".format(item=item) item = item.replace("True", "on") item = item.replace("False", "off") return item @classmethod def _convert_to_style(cls, style_dict, num_format_str=None): """ converts a style_dict to an xlwt style object Parameters ---------- style_dict: style dictionary to convert num_format_str: optional number format string """ import xlwt if style_dict: xlwt_stylestr = cls._style_to_xlwt(style_dict) style = xlwt.easyxf(xlwt_stylestr, field_sep=',', line_sep=';') else: style = xlwt.XFStyle() if num_format_str is not None: style.num_format_str = num_format_str return style register_writer(_XlwtWriter) class _XlsxStyler(object): # Map from openpyxl-oriented styles to flatter xlsxwriter representation # Ordering necessary for both determinism and because some are keyed by # prefixes of others. STYLE_MAPPING = { 'font': [ (('name',), 'font_name'), (('sz',), 'font_size'), (('size',), 'font_size'), (('color', 'rgb',), 'font_color'), (('color',), 'font_color'), (('b',), 'bold'), (('bold',), 'bold'), (('i',), 'italic'), (('italic',), 'italic'), (('u',), 'underline'), (('underline',), 'underline'), (('strike',), 'font_strikeout'), (('vertAlign',), 'font_script'), (('vertalign',), 'font_script'), ], 'number_format': [ (('format_code',), 'num_format'), ((), 'num_format',), ], 'protection': [ (('locked',), 'locked'), (('hidden',), 'hidden'), ], 'alignment': [ (('horizontal',), 'align'), (('vertical',), 'valign'), (('text_rotation',), 'rotation'), (('wrap_text',), 'text_wrap'), (('indent',), 'indent'), (('shrink_to_fit',), 'shrink'), ], 'fill': [ (('patternType',), 'pattern'), (('patterntype',), 'pattern'), (('fill_type',), 'pattern'), (('start_color', 'rgb',), 'fg_color'), (('fgColor', 'rgb',), 'fg_color'), (('fgcolor', 'rgb',), 'fg_color'), (('start_color',), 'fg_color'), (('fgColor',), 'fg_color'), (('fgcolor',), 'fg_color'), (('end_color', 'rgb',), 'bg_color'), (('bgColor', 'rgb',), 'bg_color'), (('bgcolor', 'rgb',), 'bg_color'), (('end_color',), 'bg_color'), (('bgColor',), 'bg_color'), (('bgcolor',), 'bg_color'), ], 'border': [ (('color', 'rgb',), 'border_color'), (('color',), 'border_color'), (('style',), 'border'), (('top', 'color', 'rgb',), 'top_color'), (('top', 'color',), 'top_color'), (('top', 'style',), 'top'), (('top',), 'top'), (('right', 'color', 'rgb',), 'right_color'), (('right', 'color',), 'right_color'), (('right', 'style',), 'right'), (('right',), 'right'), (('bottom', 'color', 'rgb',), 'bottom_color'), (('bottom', 'color',), 'bottom_color'), (('bottom', 'style',), 'bottom'), (('bottom',), 'bottom'), (('left', 'color', 'rgb',), 'left_color'), (('left', 'color',), 'left_color'), (('left', 'style',), 'left'), (('left',), 'left'), ], } @classmethod def convert(cls, style_dict, num_format_str=None): """ converts a style_dict to an xlsxwriter format dict Parameters ---------- style_dict: style dictionary to convert num_format_str: optional number format string """ # Create a XlsxWriter format object. props = {} if num_format_str is not None: props['num_format'] = num_format_str if style_dict is None: return props if 'borders' in style_dict: style_dict = style_dict.copy() style_dict['border'] = style_dict.pop('borders') for style_group_key, style_group in style_dict.items(): for src, dst in cls.STYLE_MAPPING.get(style_group_key, []): # src is a sequence of keys into a nested dict # dst is a flat key if dst in props: continue v = style_group for k in src: try: v = v[k] except (KeyError, TypeError): break else: props[dst] = v if isinstance(props.get('pattern'), string_types): # TODO: support other fill patterns props['pattern'] = 0 if props['pattern'] == 'none' else 1 for k in ['border', 'top', 'right', 'bottom', 'left']: if isinstance(props.get(k), string_types): try: props[k] = ['none', 'thin', 'medium', 'dashed', 'dotted', 'thick', 'double', 'hair', 'mediumDashed', 'dashDot', 'mediumDashDot', 'dashDotDot', 'mediumDashDotDot', 'slantDashDot'].index(props[k]) except ValueError: props[k] = 2 if isinstance(props.get('font_script'), string_types): props['font_script'] = ['baseline', 'superscript', 'subscript'].index(props['font_script']) if isinstance(props.get('underline'), string_types): props['underline'] = {'none': 0, 'single': 1, 'double': 2, 'singleAccounting': 33, 'doubleAccounting': 34}[props['underline']] return props class _XlsxWriter(ExcelWriter): engine = 'xlsxwriter' supported_extensions = ('.xlsx',) def __init__(self, path, engine=None, date_format=None, datetime_format=None, mode='w', **engine_kwargs): # Use the xlsxwriter module as the Excel writer. import xlsxwriter if mode == 'a': raise ValueError('Append mode is not supported with xlsxwriter!') super(_XlsxWriter, self).__init__(path, engine=engine, date_format=date_format, datetime_format=datetime_format, mode=mode, **engine_kwargs) self.book = xlsxwriter.Workbook(path, **engine_kwargs) def save(self): """ Save workbook to disk. """ return self.book.close() def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): # Write the frame cells using xlsxwriter. sheet_name = self._get_sheet_name(sheet_name) if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.add_worksheet(sheet_name) self.sheets[sheet_name] = wks style_dict = {'null': None} if _validate_freeze_panes(freeze_panes): wks.freeze_panes(*(freeze_panes)) for cell in cells: val, fmt = self._value_with_fmt(cell.val) stylekey = json.dumps(cell.style) if fmt: stylekey += fmt if stylekey in style_dict: style = style_dict[stylekey] else: style = self.book.add_format( _XlsxStyler.convert(cell.style, fmt)) style_dict[stylekey] = style if cell.mergestart is not None and cell.mergeend is not None: wks.merge_range(startrow + cell.row, startcol + cell.col, startrow + cell.mergestart, startcol + cell.mergeend, cell.val, style) else: wks.write(startrow + cell.row, startcol + cell.col, val, style) register_writer(_XlsxWriter)
bsd-3-clause
mojoboss/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
WangWenjun559/Weiss
summary/sumy/sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
apache-2.0
desihub/desisim
py/desisim/qso_template/desi_qso_templ.py
1
19250
""" desisim.qso_template.desi_qso_templ =================================== Module for Fitting PCA to the BOSS QSOs 01-Dec-2014 by JXP """ from __future__ import print_function, absolute_import, division import numpy as np import os import imp import pdb from scipy.interpolate import interp1d from astropy.io import fits try: from scipy import constants C_LIGHT = constants.c/1000.0 except TypeError: # This can happen during documentation builds. C_LIGHT = 299792458.0/1000.0 from desisim.qso_template import fit_boss_qsos as fbq from desiutil.stats import perc import desisim.io from desispec.interpolation import resample_flux from desiutil.log import get_logger log = get_logger() #from xastropy.stats.basic import perc flg_xdb = True try: from xastropy.xutils import xdebug as xdb except ImportError: flg_xdb = False def mean_templ_zi(zimag, debug=False, i_wind=0.1, z_wind=0.05, boss_pca_fil=None): ''' Generate 'mean' templates at given z,i Parameters ---------- zimag: list of tuples Redshift, imag pairs for the templates i_wind: float (0.1 mag) Window for smoothing imag z_wind: float (0.05 mag) Window for smoothing redshift ''' # PCA values if boss_pca_fil is None: boss_pca_fil = 'BOSS_DR10Lya_PCA_values_nocut.fits.gz' hdu = fits.open(boss_pca_fil) pca_coeff = hdu[1].data # BOSS Eigenvectors eigen, eigen_wave = fbq.read_qso_eigen() npix = len(eigen_wave) # Open the BOSS catalog file boss_cat_fil = os.environ.get('BOSSPATH')+'/DR10/BOSSLyaDR10_cat_v2.1.fits.gz' bcat_hdu = fits.open(boss_cat_fil) t_boss = bcat_hdu[1].data zQSO = t_boss['z_pipe'] tmp = t_boss['PSFMAG'] imag = tmp[:,3] # i-band mag # Output array ntempl = len(zimag) out_spec = np.zeros( (ntempl, npix) ) # Iterate on z,imag for izi in zimag: tt = zimag.index(izi) # Find matches idx = np.where( (np.fabs(imag-izi[1]) < i_wind) & (np.fabs(zQSO-izi[0]) < z_wind))[0] if len(idx) < 50: raise ValueError('mean_templ_zi: Not enough QSOs! {:d}'.format(len(idx))) # Calculate median PCA values PCA0 = np.median(pca_coeff['PCA0'][idx]) PCA1 = np.median(pca_coeff['PCA1'][idx]) PCA2 = np.median(pca_coeff['PCA2'][idx]) PCA3 = np.median(pca_coeff['PCA3'][idx]) acoeff = np.array( [PCA0, PCA1, PCA2, PCA3] ) # Make the template out_spec[tt,:] = np.dot(eigen.T,acoeff) if debug is True: xdb.xplot(eigen_wave*(1.+izi[0]), out_spec[tt,:]) xdb.set_trace() # Return return out_spec # ##################### ##################### # ##################### ##################### # Plots DESI templates at a range of z and imag def fig_desi_templ_z_i(outfil=None, boss_fil=None, flg=0): ''' flg = 0: Redshift flg = 1: imag ''' # Todo # Include NHI on the label # Imports import matplotlib as mpl mpl.rcParams['font.family'] = 'stixgeneral' from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.colors import LogNorm # Eigen (for wavelengths) eigen, eigen_wave = fbq.read_qso_eigen() all_zi = [ [ (2.3, 18.5), (2.3, 19.5), (2.3, 20.5), (2.3, 21.5) ], [ (2.5, 18.5), (2.5, 19.5), (2.5, 20.5), (2.5, 21.5) ], [ (2.7, 19.5), (2.7, 20.5), (2.7, 21.5) ], [ (3.2, 19.5), (3.2, 20.5), (3.2, 21.5) ] ] xmnx = (3600., 9000.) # Start the plot if outfil != None: pp = PdfPages(outfil) plt.figure(figsize=(8, 5)) plt.clf() gs = gridspec.GridSpec(4, 1) # Looping for ii in range(4): # Get the templates ztempl = all_zi[ii][0][0] spec = mean_templ_zi(all_zi[ii]) # Axis ax = plt.subplot(gs[ii]) #ax = plt.subplot(gs[ii//2,ii%2]) # Labels if ii == 3: ax.set_xlabel('Wavelength') else: ax.get_xaxis().set_ticks([]) ax.set_ylabel('Flux') ax.set_xlim(xmnx) # Data # Values for jj in range(len(all_zi[ii])): ax.plot( eigen_wave*(1.+ ztempl), spec[jj,:], '-',drawstyle='steps-mid', linewidth=0.5) if jj == 0: ymx = 1.05*np.max(spec[jj,:]) ax.set_ylim((0., ymx)) # Label zlbl = 'z={:g}'.format(ztempl) ax.text(7000., ymx*0.7, zlbl) # Layout and save plt.tight_layout(pad=0.2,h_pad=0.0,w_pad=0.25) if outfil != None: pp.savefig(bbox_inches='tight') pp.close() else: plt.show() def desi_qso_templates(z_wind=0.2, zmnx=(0.4,4.), outfil=None, N_perz=500, boss_pca_fil=None, wvmnx=(3500., 10000.), rebin_wave=None, rstate=None, sdss_pca_fil=None, no_write=False, redshift=None, seed=None, old_read=False, ipad=40, cosmo=None): """ Generate QSO templates for DESI Rebins to input wavelength array (or log10 in wvmnx) Parameters ---------- z_wind : float, optional Window for sampling PCAs zmnx : tuple, optional Min/max for generation N_perz : int, optional Number of draws per redshift window old_read : bool, optional Read the files the old way seed : int, optional Seed for the random number state rebin_wave : ndarray, optional Input wavelengths for rebinning wvmnx : tuple, optional Wavelength limits for rebinning (not used with rebin_wave) redshift : ndarray, optional Redshifts desired for the templates ipad : int, optional Padding for enabling enough models cosmo: astropy.cosmology.core, optional Cosmology inistantiation from astropy.cosmology.code Returns ------- wave : ndarray Wavelengths that the spectra were rebinned to flux : ndarray (2D; flux vs. model) z : ndarray Redshifts """ # Cosmology if cosmo is None: from astropy import cosmology cosmo = cosmology.core.FlatLambdaCDM(70., 0.3) if old_read: # PCA values if boss_pca_fil is None: boss_pca_fil = 'BOSS_DR10Lya_PCA_values_nocut.fits.gz' hdu = fits.open(boss_pca_fil) boss_pca_coeff = hdu[1].data if sdss_pca_fil is None: sdss_pca_fil = 'SDSS_DR7Lya_PCA_values_nocut.fits.gz' hdu2 = fits.open(sdss_pca_fil) sdss_pca_coeff = hdu2[1].data # Open the BOSS catalog file boss_cat_fil = os.environ.get('BOSSPATH')+'/DR10/BOSSLyaDR10_cat_v2.1.fits.gz' bcat_hdu = fits.open(boss_cat_fil) t_boss = bcat_hdu[1].data boss_zQSO = t_boss['z_pipe'] # Open the SDSS catalog file sdss_cat_fil = os.environ.get('SDSSPATH')+'/DR7_QSO/dr7_qso.fits.gz' scat_hdu = fits.open(sdss_cat_fil) t_sdss = scat_hdu[1].data sdss_zQSO = t_sdss['z'] if len(sdss_pca_coeff) != len(sdss_zQSO): print('Need to finish running the SDSS models!') sdss_zQSO = sdss_zQSO[0:len(sdss_pca_coeff)] # Eigenvectors eigen, eigen_wave = fbq.read_qso_eigen() else: infile = desisim.io.find_basis_template('qso') with fits.open(infile) as hdus: hdu_names = [hdus[ii].name for ii in range(len(hdus))] boss_pca_coeff = hdus[hdu_names.index('BOSS_PCA')].data sdss_pca_coeff = hdus[hdu_names.index('SDSS_PCA')].data boss_zQSO = hdus[hdu_names.index('BOSS_Z')].data sdss_zQSO = hdus[hdu_names.index('SDSS_Z')].data eigen = hdus[hdu_names.index('SDSS_EIGEN')].data eigen_wave = hdus[hdu_names.index('SDSS_EIGEN_WAVE')].data # Fiddle with the eigen-vectors npix = len(eigen_wave) chkpix = np.where((eigen_wave > 900.) & (eigen_wave < 5000.) )[0] lambda_912 = 911.76 pix912 = np.argmin( np.abs(eigen_wave-lambda_912) ) # Loop on redshift. If the if redshift is None: z0 = np.arange(zmnx[0],zmnx[1],z_wind) z1 = z0 + z_wind else: if np.isscalar(redshift): z0 = np.array([redshift]) else: z0 = redshift.copy() z1 = z0.copy() #+ z_wind pca_list = ['PCA0', 'PCA1', 'PCA2', 'PCA3'] PCA_mean = np.zeros(4) PCA_sig = np.zeros(4) PCA_rand = np.zeros((4,N_perz*ipad)) final_spec = np.zeros((npix, N_perz * len(z0))) final_wave = np.zeros((npix, N_perz * len(z0))) final_z = np.zeros(N_perz * len(z0)) # Random state if rstate is None: rstate = np.random.RandomState(seed) for ii in range(len(z0)): # BOSS or SDSS? if z0[ii] > 2.15: zQSO = boss_zQSO pca_coeff = boss_pca_coeff else: zQSO = sdss_zQSO pca_coeff = sdss_pca_coeff # Random z values and wavelengths zrand = rstate.uniform( z0[ii], z1[ii], N_perz*ipad) wave = np.outer(eigen_wave, 1+zrand) # MFP (Worseck+14) mfp = 37. * ( (1+zrand)/5. )**(-5.4) # Physical Mpc # Grab PCA mean + sigma if redshift is None: idx = np.where( (zQSO >= z0[ii]) & (zQSO < z1[ii]) )[0] else: # Hack by @moustakas: add a little jitter to get the set of QSOs # that are *nearest* in redshift to the desired output redshift. idx = np.where( (zQSO >= z0[ii]-0.01) & (zQSO < z1[ii]+0.01) )[0] if len(idx) == 0: idx = np.array([(np.abs(zQSO-zrand[0])).argmin()]) #pdb.set_trace() log.debug('Making z=({:g},{:g}) with {:d} input quasars'.format(z0[ii],z1[ii],len(idx))) # Get PCA stats and random values for jj,ipca in enumerate(pca_list): if jj == 0: # Use bounds for PCA0 [avoids negative values] xmnx = perc(pca_coeff[ipca][idx], per=95) PCA_rand[jj, :] = rstate.uniform(xmnx[0], xmnx[1], N_perz*ipad) else: PCA_mean[jj] = np.mean(pca_coeff[ipca][idx]) PCA_sig[jj] = np.std(pca_coeff[ipca][idx]) # Draws PCA_rand[jj, :] = rstate.uniform( PCA_mean[jj] - 2*PCA_sig[jj], PCA_mean[jj] + 2*PCA_sig[jj], N_perz*ipad) # Generate the templates (ipad*N_perz) spec = np.dot(eigen.T, PCA_rand) # Take first good N_perz # Truncate, MFP, Fill ngd = 0 nbad = 0 for kk in range(ipad*N_perz): # Any zero values? mn = np.min(spec[chkpix, kk]) if mn < 0.: nbad += 1 continue # MFP if z0[ii] > 2.39: z912 = wave[0:pix912,kk]/lambda_912 - 1. phys_dist = np.fabs( cosmo.lookback_distance(z912) - cosmo.lookback_distance(zrand[kk]) ) # Mpc spec[0:pix912, kk] = spec[0:pix912,kk] * np.exp(-phys_dist.value/mfp[kk]) # Write final_spec[:, ii*N_perz+ngd] = spec[:,kk] final_wave[:, ii*N_perz+ngd] = wave[:,kk] final_z[ii*N_perz+ngd] = zrand[kk] ngd += 1 if ngd == N_perz: break if ngd != N_perz: print('Did not make enough!') #pdb.set_trace() log.warning('Did not make enough qso templates. ngd = {}, N_perz = {}'.format(ngd,N_perz)) # Rebin if rebin_wave is None: light = C_LIGHT # [km/s] velpixsize = 10. # [km/s] pixsize = velpixsize/light/np.log(10) # [pixel size in log-10 A] minwave = np.log10(wvmnx[0]) # minimum wavelength [log10-A] maxwave = np.log10(wvmnx[1]) # maximum wavelength [log10-A] r_npix = np.round((maxwave-minwave)/pixsize+1) log_wave = minwave+np.arange(r_npix)*pixsize # constant log-10 spacing else: log_wave = np.log10(rebin_wave) r_npix = len(log_wave) totN = N_perz * len(z0) rebin_spec = np.zeros((r_npix, totN)) for ii in range(totN): # Interpolate (in log space) rebin_spec[:, ii] = resample_flux(log_wave, np.log10(final_wave[:, ii]), final_spec[:, ii]) #f1d = interp1d(np.log10(final_wave[:,ii]), final_spec[:,ii]) #rebin_spec[:,ii] = f1d(log_wave) if outfil is None: return 10.**log_wave, rebin_spec, final_z # Transpose for consistency out_spec = np.array(rebin_spec.T, dtype='float32') # Write hdu = fits.PrimaryHDU(out_spec) hdu.header.set('PROJECT', 'DESI QSO TEMPLATES') hdu.header.set('VERSION', '1.1') hdu.header.set('OBJTYPE', 'QSO') hdu.header.set('DISPAXIS', 1, 'dispersion axis') hdu.header.set('CRPIX1', 1, 'reference pixel number') hdu.header.set('CRVAL1', minwave, 'reference log10(Ang)') hdu.header.set('CDELT1', pixsize, 'delta log10(Ang)') hdu.header.set('LOGLAM', 1, 'log10 spaced wavelengths?') hdu.header.set('AIRORVAC', 'vac', ' wavelengths in vacuum (vac) or air') hdu.header.set('VELSCALE', velpixsize, ' pixel size in km/s') hdu.header.set('WAVEUNIT', 'Angstrom', ' wavelength units') hdu.header.set('BUNIT', '1e-17 erg/s/cm2/A', ' flux unit') idval = list(range(totN)) col0 = fits.Column(name=str('TEMPLATEID'),format=str('J'), array=idval) col1 = fits.Column(name=str('Z'),format=str('E'),array=final_z) cols = fits.ColDefs([col0, col1]) tbhdu = fits.BinTableHDU.from_columns(cols) tbhdu.header.set('EXTNAME','METADATA') hdulist = fits.HDUList([hdu, tbhdu]) hdulist.writeto(outfil, overwrite=True) return final_wave, final_spec, final_z # ##################### ##################### # ##################### ##################### # Plots DESI templates at a range of z and imag def chk_desi_qso_templates(infil=None, outfil=None, N_perz=100): ''' ''' # Get the templates if infil is None: final_wave, final_spec, final_z = desi_qso_templates(N_perz=N_perz, #zmnx=(0.4,0.8), no_write=True) sz = final_spec.shape npage = sz[1] // N_perz # Imports import matplotlib as mpl mpl.rcParams['font.family'] = 'stixgeneral' from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.colors import LogNorm # Eigen (for wavelengths) xmnx = (3600., 10000.) # Start the plot if outfil != None: pp = PdfPages(outfil) # Looping for ii in range(npage): #for ii in range(1): i0 = ii * N_perz i1 = i0 + N_perz ymx = 0. plt.figure(figsize=(8, 5)) plt.clf() gs = gridspec.GridSpec(1, 1) # Axis ax = plt.subplot(gs[0]) #ax = plt.subplot(gs[ii//2,ii%2]) # Labels ax.set_xlabel('Wavelength') ax.set_ylabel('Flux') ax.set_xlim(xmnx) # Data #for jj in range(i0,i1): for jj in range(i0,i0+15): ax.plot( final_wave[:,jj], final_spec[:,jj], '-',drawstyle='steps-mid', linewidth=0.5) ymx = max( ymx, np.max(final_spec[:,jj]) ) ax.set_ylim( (0., ymx*1.05) ) # Label zmin = np.min(final_z[i0:i1]) zmax = np.max(final_z[i0:i1]) zlbl = 'z=[{:g},{:g}]'.format(zmin,zmax) ax.text(7000., ymx*0.7, zlbl) # Layout and save plt.tight_layout(pad=0.2,h_pad=0.0,w_pad=0.25) if outfil != None: pp.savefig()#bbox_inches='tight') plt.close() else: plt.show() pp.close() def repackage_coeff(boss_pca_fil=None, sdss_pca_fil=None, outfil='qso_templates_v2.0.fits'): """ Repackage the coefficients and redshifts into a single FITS file :return: """ # PCA values if boss_pca_fil is None: boss_pca_fil = 'BOSS_DR10Lya_PCA_values_nocut.fits.gz' hdu = fits.open(boss_pca_fil) boss_pca_coeff = hdu[1].data if sdss_pca_fil is None: sdss_pca_fil = 'SDSS_DR7Lya_PCA_values_nocut.fits.gz' hdu2 = fits.open(sdss_pca_fil) sdss_pca_coeff = hdu2[1].data # Redshifts boss_cat_fil = os.environ.get('BOSSPATH')+'/DR10/BOSSLyaDR10_cat_v2.1.fits.gz' bcat_hdu = fits.open(boss_cat_fil) t_boss = bcat_hdu[1].data boss_zQSO = np.array(t_boss['z_pipe']) # Open the SDSS catalog file sdss_cat_fil = os.environ.get('SDSSPATH')+'/DR7_QSO/dr7_qso.fits.gz' scat_hdu = fits.open(sdss_cat_fil) t_sdss = scat_hdu[1].data sdss_zQSO = t_sdss['z'] if len(sdss_pca_coeff) != len(sdss_zQSO): print('Need to finish running the SDSS models!') sdss_zQSO = sdss_zQSO[0:len(sdss_pca_coeff)] # Eigen vectors eigen, eigen_wave = fbq.read_qso_eigen() # Write phdu = fits.PrimaryHDU() bp_hdu = fits.BinTableHDU(boss_pca_coeff) bp_hdu.name = 'BOSS_PCA' bz_hdu = fits.ImageHDU(boss_zQSO) bz_hdu.name = 'BOSS_z' sp_hdu = fits.BinTableHDU(sdss_pca_coeff) sp_hdu.name = 'SDSS_PCA' sz_hdu = fits.ImageHDU(sdss_zQSO) sz_hdu.name = 'SDSS_z' e_hdu = fits.ImageHDU(eigen) e_hdu.name = 'SDSS_EIGEN' ew_hdu = fits.ImageHDU(eigen_wave) ew_hdu.name = 'SDSS_EIGEN_WAVE' hdulist = fits.HDUList([phdu, bp_hdu, bz_hdu, sp_hdu, sz_hdu, e_hdu, ew_hdu]) hdulist.writeto(outfil, overwrite=True) print('Wrote {:s}'.format(outfil)) def tst_random_set(): """ Generate a small set of random templates for testing :return: """ final_wave, final_spec, final_z = desi_qso_templates( outfil='test_random_set.fits', N_perz=100, seed=12345) ## ################################# ## ################################# ## TESTING ## ################################# if __name__ == '__main__': # Run flg_test = 0 #flg_test += 1 # Mean templates with z,imag #flg_test += 2 # Mean template fig #flg_test += 2**2 # v1.1 templates #flg_test += 2**3 # Check v1.1 templates #flg_test += 2**4 # PCA file flg_test += 2**5 # Generate a new random set # Make Mean templates if (flg_test % 2) == 1: zimag = [ (2.3, 19.) ] mean_templ_zi(zimag) # Mean template fig if (flg_test % 2**2) >= 2**1: fig_desi_templ_z_i(outfil='fig_desi_templ_z_i.pdf') # Make z=2-4 templates; v1.1 if (flg_test % 2**3) >= 2**2: aa,bb,cc = desi_qso_templates(outfil='DESI_QSO_Templates_v1.1.fits') # Check z=0.4-4 templates; v1.1 if (flg_test % 2**4) >= 2**3: chk_desi_qso_templates(outfil='chk_desi_qso_templates.pdf', N_perz=20) # Re-package PCA info if (flg_test % 2**5) >= 2**4: repackage_coeff() # Test random generation if (flg_test % 2**6) >= 2**5: tst_random_set() # Done print('All done')
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/setup.py
1
5669
import os from glob import glob from numpy.distutils.core import setup, Command from distutils.command.install import install as DistutilsInstall from distutils.sysconfig import get_python_lib,EXEC_PREFIX from subprocess import call import subprocess, re from distutils.command.sdist import sdist as _sdist from numpy.distutils.core import Extension #check for required modules try: try: import astropy.io.fits as pyfits except ImportError: import pyfits import ephem import pytz import pylab import psycopg2 except ImportError,e: print "ERROR! You are missing a dependency!" print e raise v=pylab.matplotlib.__version__.split('.') if float('.'.join(v[:2])) < 1.1: print "WARNING: matplotlib version > 1.1 recommended, and you have ",pylab.matplotlib.__version__ # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() packages = ['mwapy', 'mwapy.pb', 'mwapy.obssched', 'mwapy.catalog', 'mwapy.obssched.base', 'mwapy.obssched.utils', 'mwapy.eorpy'] #pythonlib=get_python_lib() pythonlib=EXEC_PREFIX print pythonlib VERSION_PY = """ # This file is originally generated from Git information by running 'setup.py # version'. Distribution tarballs contain a pre-generated copy of this file. __version__ = '%s' __date__ = '%s' """ def update_version_py(): if not os.path.isdir(".git"): print "This does not appear to be a Git repository." return try: #p = subprocess.Popen(["git", "log","-1","--pretty=format:%h"], # stdout=subprocess.PIPE) p = subprocess.Popen(["git", "describe"], stdout=subprocess.PIPE) except EnvironmentError: print "unable to run git, leaving mwapy/_version.py alone" return stdout = p.communicate()[0] if p.returncode != 0: print "unable to run git, leaving mwapy/_version.py alone" return # we use tags like "python-ecdsa-0.5", so strip the prefix #assert stdout.startswith("python-ecdsa-") #ver = stdout[len("python-ecdsa-"):].strip() ver=stdout.strip() try: p = subprocess.Popen(["git", "log","-1","--pretty=format:%ci"], stdout=subprocess.PIPE) except EnvironmentError: print "unable to run git, leaving mwapy/_version.py alone" return stdout = p.communicate()[0] if p.returncode != 0: print "unable to run git, leaving mwapy/_version.py alone" return date=stdout f = open("mwapy/_version.py", "w") f.write(VERSION_PY % (ver,date)) f.close() print "set mwapy/_version.py to '%s' with date '%s'" % (ver,date) def get_version(): try: f = open("mwapy/_version.py") except EnvironmentError: return None for line in f.readlines(): mo = re.match("__version__ = '([^']+)'", line) if mo: ver = mo.group(1) return ver return None def get_versiondate(): try: f = open("mwapy/_version.py") except EnvironmentError: return None for line in f.readlines(): mo = re.match("__date__ = '([^']+)'", line) if mo: date = mo.group(1) return date return None class Version(Command): description = "update _version.py from Git repo" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): update_version_py() print "Version is now", get_version() class sdist(_sdist): def run(self): update_version_py() # unless we update this, the sdist command will keep using the old # version self.distribution.metadata.version = get_version() return _sdist.run(self) setup( name = "mwapy", #version = "0.0.2", version=get_version(), author = "D. Jacobs", author_email = "[email protected]", description = ("Set of tools for using and developing the MWA."), license = "BSD", cmdclass={ "version": Version}, keywords = "MWA radio", url = "http://mwa-lfd.haystack.mit.edu", py_modules = ['mwa_32T_pb','mwaconfig'], packages=packages, package_dir={'mwapy':'mwapy','':'configs'}, scripts=glob('scripts/*')+['CONV2UVFITS/corr2uvfits'] + ['build_lfiles/build_lfiles'] + ['build_lfiles/read_mwac'], ext_modules=[ # Extension('SLALIB', # glob('mwapy/CONV2UVFITS/SLALIB_C/*.o') # ), # Extension('CONV2UVFITS', # ['mwapy/CONV2UVFITS/corr2uvfits.c', # 'mwapy/CONV2UVFITS/uvfits.c'], # libraries=['cfitsio','sla','m'], # library_dirs = ['mwapy/CONV2UVFITS/SLALIB_C'], # include_dirs = ['mwapy/CONV2UVFITS/SLALIB_C'], # ) # extra_compile_args=[' -O -Wall -D_FILE_OFFSET_BITS=64 -L. ']) Extension(name='mwapy.eorpy.igrf11_python', sources=['mwapy/eorpy/igrf11_python.f'], #f2py_options=['--f77flags="-ffixed-line-length-none"'] ) ], long_description=read('README'), classifiers=[ "Development Status :: 3 - Alpha", "Topic :: Utilities", "License :: OSI Approved :: BSD License", ], # data_files=[('',['configs/mwa.conf'])], package_data={'mwapy.pb':['*.txt','*.fits'], 'mwapy.catalog':['*.vot'],'mwapy':['../configs/mwa.conf','../configs/*.def','../configs/*.txt']})
gpl-2.0
sit23/Isca
src/extra/python/scripts/calculate_qflux/calculate_qflux.py
2
16618
"""A method for calculating seasonally-varying qfluxes, as described in Russell et al 1985 DOI:10.1016/0377-0265(85)90022-3""" import numpy as np import xarray from xarray import ufuncs as xruf import time from scipy import stats from mpl_toolkits.basemap import shiftgrid import area_average as aav import nc_file_io_xarray as io import matplotlib.pyplot as plt import os import pdb __author__='Stephen Thomson' def qflux_calc(dataset, model_params, output_file_name, ice_file_name=None, groupby_name='months'): if groupby_name=='months': time_varying_ice = ice_mask_calculation(dataset, dataset.land, ice_file_name) upper_ocean_heat_content(dataset, model_params, time_varying_ice) net_surf_energy_flux(dataset, model_params) deep_ocean_heat_content(dataset, model_params) ocean_transport(dataset, model_params) output_dict={'manual_grid_option':False, 'is_thd':False, 'num_years':1., 'time_spacing_days':12, 'file_name':output_file_name+'.nc', 'var_name':output_file_name} #Have specified that var name is the same as file name as this is what the fortran assumes. elif groupby_name=='dayofyear': time_varying_ice = ice_mask_calculation(dataset, dataset.land, ice_file_name) upper_ocean_heat_content(dataset, model_params, time_varying_ice, dayofyear_or_months='dayofyear') net_surf_energy_flux(dataset, model_params) deep_ocean_heat_content(dataset, model_params) ocean_transport(dataset, model_params) output_dict={'manual_grid_option':False, 'is_thd':False, 'num_years':1., 'time_spacing_days':12, 'file_name':output_file_name+'.nc', 'var_name':output_file_name} elif groupby_name=='all_time': time_varying_ice = ice_mask_calculation(dataset, dataset.land, ice_file_name, dayofyear_or_months=groupby_name) upper_ocean_heat_content(dataset, model_params, time_varying_ice, dayofyear_or_months=groupby_name) net_surf_energy_flux(dataset, model_params, dayofyear_or_months=groupby_name) deep_ocean_heat_content(dataset, model_params, dayofyear_or_months=groupby_name) ocean_transport(dataset, model_params, dayofyear_or_months=groupby_name) regrid_in_time(dataset, groupby_name) output_dict={'manual_grid_option':False, 'is_thd':False, 'num_years':1., 'time_spacing_days':12, 'file_name':output_file_name+'.nc', 'var_name':output_file_name} io.output_nc_file(dataset,'masked_ocean_transport', model_params, output_dict) def time_gradient(data_in, delta_t): data_out=np.gradient(data_in, delta_t) return data_out def ice_mask_calculation(dataset, land_array, ice_file_name, dayofyear_or_months='months'): try: ice_climatology=dataset['ice_conc'].groupby(dayofyear_or_months).mean('time').load() ice_array=ice_climatology.values ice_idx=ice_array !=0. ice_array[ice_idx]=1.0 time_varying_ice=True print('have gotten ice concentration from climatology') except KeyError: try: ice_data_temp = xarray.open_dataset(ice_file_name, decode_times=False) albedo_constant_value = ice_data_temp['albedo'] albedo_array = albedo_constant_value.values.squeeze() ice_idx = np.round(albedo_array, decimals=2) == 0.7 ice_array=np.zeros_like(albedo_array) ice_array[ice_idx] = 1.0 time_varying_ice = False print('have gotten ice concentration from one month albedo') except TypeError: ice_array=np.zeros_like(land_array) time_varying_ice = False print('no ice climatology') land_ice_mask=np.zeros_like(ice_array) if time_varying_ice: dataset['ice_mask']=((dayofyear_or_months+'_ax','lat','lon'),ice_array) for month_tick in range(12): land_ice_mask_temp=land_array.values+dataset['ice_mask'].values[month_tick,:,:] two_idx=land_ice_mask_temp>1. land_ice_mask_temp[two_idx]=1.0 land_ice_mask[month_tick,:,:]=land_ice_mask_temp dataset['land_ice_mask']=((dayofyear_or_months+'_ax','lat','lon'),land_ice_mask) else: dataset['ice_mask']=(('lat','lon'),ice_array) land_ice_mask_temp=land_array.values+dataset['ice_mask'].values two_idx=land_ice_mask_temp>1. land_ice_mask_temp[two_idx]=1.0 land_ice_mask[:,:]=land_ice_mask_temp dataset['land_ice_mask']=(('lat','lon'),land_ice_mask) return time_varying_ice def upper_ocean_heat_content(dataset, model_params, time_varying_ice, dayofyear_or_months='months'): """Calculating upper-ocean heat content assuming a constant mixed layer depth, unlike Russel 1985, who have a seasonally-varying mixed layer depth. Note that dayofyear_or_months was designed only so that the time derrivatives of surface temperature could be calculated in a more time-resolved way with dayofyear data, then time-averaged onto months, with months used throughout the rest of of the code. However, if all_time option is used, this negates the need for a rate-of-change calulation anyway. """ print('doing upper ocean heat content and rate of change calculation') sst_data=dataset['t_surf'].groupby(dayofyear_or_months).mean('time').load() if dayofyear_or_months=='months': dataset['sst_clim']=(('months_ax','lat','lon'),sst_data) sst_clim=dataset['sst_clim'] else: dataset['sst_clim_'+dayofyear_or_months]=((dayofyear_or_months+'_ax','lat','lon'),sst_data) sst_clim=dataset['sst_clim_'+dayofyear_or_months] dataset['sst_clim']=((dayofyear_or_months+'_ax','lat','lon'),sst_data) # weighted_sst_data=model_params['ocean_rho']*model_params['ocean_cp']*model_params['ml_depth']*sst_data*(1.0-dataset['land']) weighted_sst_data=model_params['ocean_rho']*model_params['ocean_cp']*model_params['ml_depth']*sst_clim*(1.0-dataset['land']) shape1=np.shape(weighted_sst_data) ny=shape1[1] nx=shape1[2] d_weighted_sst_data_dt=np.zeros_like(weighted_sst_data) if dayofyear_or_months=='dayofyear': delta_t=model_params['day_length'] elif dayofyear_or_months=='months': delta_t=model_params['day_length']*30. if dayofyear_or_months!='all_time': for x in range(nx): for y in range(ny): d_weighted_sst_data_dt[:,y,x]=time_gradient(weighted_sst_data[:,y,x], delta_t) for time_tick in range(shape1[0]): if time_varying_ice: d_weighted_sst_data_dt[time_tick,:,:]=d_weighted_sst_data_dt[time_tick,:,:]*(1.0-dataset['land_ice_mask'].values[time_tick,:,:]) else: d_weighted_sst_data_dt[time_tick,:,:]=d_weighted_sst_data_dt[time_tick,:,:]*(1.0-dataset['land_ice_mask'].values) if dayofyear_or_months=='dayofyear': dataset['d_weighted_sst_data_dt_days']=(('dayofyear_ax','lat','lon'), d_weighted_sst_data_dt) months_on_dayofyear_ax = dataset.months.groupby('dayofyear').mean('time').values dataset.coords['months_on_dayofyear_ax']=(('dayofyear_ax'),months_on_dayofyear_ax) monthly_values = dataset['d_weighted_sst_data_dt_days'].groupby('months_on_dayofyear_ax').mean('dayofyear_ax') dataset['d_weighted_sst_data_dt_months_from_days']=(('months_ax','lat','lon'), monthly_values) elif dayofyear_or_months=='months': dataset['d_weighted_sst_data_dt']=(('months_ax','lat','lon'), d_weighted_sst_data_dt) elif dayofyear_or_months=='all_time': dataset['d_weighted_sst_data_dt']=(('all_time_ax','lat','lon'), d_weighted_sst_data_dt) def net_surf_energy_flux(dataset, model_params, dayofyear_or_months='months'): """Calculates the net surface energy flux to be used in q-flux calcuation, but also calcualtes a scaling factor such that the annual average of the area-averaged surface flux is zero.""" print('doing net surf energy flux') flux_sw_data=dataset['flux_sw'].groupby(dayofyear_or_months).mean('time') dataset['flux_sw_clim']=((dayofyear_or_months+'_ax','lat','lon'),flux_sw_data) flux_lw_data=dataset['flux_lw'].groupby(dayofyear_or_months).mean('time') dataset['flux_lw_clim']=((dayofyear_or_months+'_ax','lat','lon'),flux_lw_data) flux_t_data=dataset['flux_t'].groupby(dayofyear_or_months).mean('time') dataset['flux_t_clim']=((dayofyear_or_months+'_ax','lat','lon'),flux_t_data) flux_lhe_data=dataset['flux_lhe'].groupby(dayofyear_or_months).mean('time') dataset['flux_lhe_clim']=((dayofyear_or_months+'_ax','lat','lon'),flux_lhe_data) aav.area_average(dataset, 'flux_sw_clim', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') aav.area_average(dataset, 'flux_lw_clim', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') aav.area_average(dataset, 'sigma_sb_sst_clim', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') aav.area_average(dataset, 'flux_t_clim', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') aav.area_average(dataset, 'flux_lhe_clim', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') scaling_factor_old=(((dataset['sigma_sb_sst_clim_area_av_ocean_non_ice']+dataset['flux_t_clim_area_av_ocean_non_ice']+dataset['flux_lhe_clim_area_av_ocean_non_ice']-dataset['flux_lw_clim_area_av_ocean_non_ice'])/dataset['flux_sw_clim_area_av_ocean_non_ice'])).mean(dayofyear_or_months+'_ax') scaling_factor=(((dataset['sigma_sb_sst_clim_area_av_ocean_non_ice'].mean(dayofyear_or_months+'_ax')+dataset['flux_t_clim_area_av_ocean_non_ice'].mean(dayofyear_or_months+'_ax')+dataset['flux_lhe_clim_area_av_ocean_non_ice'].mean(dayofyear_or_months+'_ax')-dataset['flux_lw_clim_area_av_ocean_non_ice'].mean(dayofyear_or_months+'_ax'))/dataset['flux_sw_clim_area_av_ocean_non_ice'].mean(dayofyear_or_months+'_ax'))) # scaling_factor=1.0 print('using scale factor for SW of '+ str(scaling_factor)) net_surf_energy_fl=(scaling_factor*dataset['flux_sw_clim']+dataset['flux_lw_clim']-(model_params['sigma_sb']*dataset['sst_clim']**4.0)-dataset['flux_t_clim']-dataset['flux_lhe_clim'])*(1.0-dataset['land_ice_mask']) dataset['net_surf_energy_fl']=((dayofyear_or_months+'_ax','lat','lon'), net_surf_energy_fl) aav.area_average(dataset, 'net_surf_energy_fl', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') def deep_ocean_heat_content(dataset, model_params, dayofyear_or_months='months'): print('doing deep ocean heat content') aav.area_average(dataset, 'd_weighted_sst_data_dt', model_params, land_ocean_all='ocean_non_ice', axis_in=dayofyear_or_months+'_ax') d_deep_ocean_dt=(dataset['net_surf_energy_fl_area_av_ocean_non_ice']-dataset['d_weighted_sst_data_dt_area_av_ocean_non_ice']) dataset['d_deep_ocean_dt']=(dataset['net_surf_energy_fl_area_av_ocean_non_ice'].dims, d_deep_ocean_dt) def ocean_transport(dataset, model_params, dayofyear_or_months='months'): ocean_transport=dataset['d_weighted_sst_data_dt']+dataset['d_deep_ocean_dt']-dataset['net_surf_energy_fl'] masked_ocean_transport=ocean_transport*(1.0-dataset['land_ice_mask']) masked_land_transport=ocean_transport*(dataset['land_ice_mask']) dataset['ocean_transport']=((dayofyear_or_months+'_ax','lat','lon'), ocean_transport) dataset['masked_ocean_transport']=((dayofyear_or_months+'_ax','lat','lon'), masked_ocean_transport) dataset['masked_land_transport']=((dayofyear_or_months+'_ax','lat','lon'), masked_land_transport) def regrid_in_time(dataset, groupby_name): """ Simple routine to repeat arrays in all_time-averaging situations, so that monthly data still output.""" ocean_heat_flux_shape = dataset['masked_ocean_transport'].shape if ocean_heat_flux_shape[0]!=12 and groupby_name=='all_time': dataset_to_repeat = dataset['masked_ocean_transport'].load() dataset_to_output = np.zeros((12, ocean_heat_flux_shape[1], ocean_heat_flux_shape[2])) for i in range(12): dataset_to_output[i,...] = dataset_to_repeat dataset['masked_ocean_transport'] = (('months_ax','lat','lon'), dataset_to_output) def check_surface_flux_dims(dataset): ''' This surface flux checker is designed to decide if we're using grey rad or not. If we're using grey rad then the definition of flux_sw and flux_lw are different to RRTM. The script was written to use RRTM output, so it changes variable names etc to be equivalent to RRTM definitions. ''' flux_dims = dataset['flux_sw'].dims if 'phalf' in flux_dims: dataset.rename({'flux_sw':'flux_sw'+'_3d'}, inplace=True) max_pressure = dataset.phalf.max() flux_at_bottom_phalf_level = dataset['flux_sw_3d'].sel(phalf=max_pressure) new_dims = ('time','lat','lon') dataset['flux_sw'] = (new_dims, flux_at_bottom_phalf_level) flux_dims_lw = dataset['flux_lw'].dims if 'phalf' in flux_dims_lw: dataset.rename({'flux_lw':'flux_lw'+'_3d'}, inplace=True) try: # Script assumes flux_lw is the surface lw down (i.e. not a net flux). This is the case with RRTM, but with # grey radiation 'flux_lw' is the net lw flux in 3D. So we take the lwdn_sfc output from grey rad and rename it # flux_lw. dataset['lwdn_sfc'] dataset.rename({'lwdn_sfc':'flux_lw'}, inplace=True) except: #If lwdn_sfc is not available, then we re-calculate it from flux_lw by adding back sigma*t_surf**4, then call it flux_lw print('lwdn_sfc not present when using grey radiation, so re-calculating it from flux_lw.') max_pressure = dataset.phalf.max() lwdn_sfc = dataset.flux_lw_3d.sel(phalf=max_pressure) + sigma_sb*dataset.t_surf**4. new_dims = ('time','lat','lon') dataset['flux_lw'] = (new_dims, lwdn_sfc) if __name__ == "__main__": import nc_file_io_xarray as io import set_and_get_params as sagp try: GFDL_BASE = os.environ['GFDL_BASE'] GFDL_WORK = os.environ['GFDL_WORK'] GFDL_DATA = os.environ['GFDL_DATA'] except Exception as e: print('Environment variables GFDL_BASE, GFDL_WORK, GFDL_DATA must be set') exit(0) input_dir=GFDL_BASE base_dir=GFDL_DATA land_file='input/land.nc' base_exp_name='annual_mean_ice_post_princeton_fixed_sst/' #Folder containing the python script and input files that ran the experiment exp_name='annual_mean_ice_post_princeton_fixed_sst_1' #Folder within the data directory where the files can be found # ice_file_name=base_dir+'annual_mean_ice_albedo_change_test_mk2_4320_dt_rad_4/'+'run360/'+'atmos_monthly.nc' ice_file_name = '/scratch/sit204/data_isca/realistic_continents_fixed_sst_test_experiment_albedo/run0001/atmos_daily.nc' output_file_name='ami_test_interp' #Proposed name of your output qflux file. Will also be qflux field name in q-flux netcdf file as the fortran assumes file-name = field name. No need to add '.nc' or any file paths in this variable as otherwise they will end up in the field name too. Output file will be stored in the same directory as this script. start_file=240 end_file=360 land_present=True use_interpolated_pressure_level_data = False #Conditions the script on whether to expect data on sigma levels (if False) or pressure levels (if True). Script should be insensitive to this choice if both sets of files exist. #Set time increments of input files (e.g. `monthly` for `atmos_monthly` files. avg_or_daily='monthly' #Set the time frequency of output data. Valid options are 'months', 'all_time' or 'dayofyear'. time_divisions_of_qflux_to_be_calculated='months' model_params = sagp.model_params_set(input_dir, delta_t=720., ml_depth=20., res=42) dataset, time_arr, size_list = io.read_data( base_dir,exp_name,start_file,end_file,avg_or_daily,use_interpolated_pressure_level_data) land_array, topo_array = io.read_land(input_dir,base_exp_name,land_present,use_interpolated_pressure_level_data,size_list,land_file) dataset['land'] = (('lat','lon'),land_array) check_surface_flux_dims(dataset) qflux_calc(dataset, model_params, output_file_name, ice_file_name, groupby_name=time_divisions_of_qflux_to_be_calculated)
gpl-3.0
klusta-team/klustaviewa
klustaviewa/views/tests/test_waveformview.py
2
1385
"""Unit tests for waveform view.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os import numpy as np import numpy.random as rnd import pandas as pd from klustaviewa.views.tests.mock_data import (setup, teardown, nspikes, nclusters, nsamples, nchannels, fetdim) from kwiklib.dataio import KlustersLoader from kwiklib.dataio.selection import select from kwiklib.dataio.tools import check_dtype, check_shape from klustaviewa import USERPREF from klustaviewa.views import WaveformView from klustaviewa.views.tests.utils import show_view, get_data # ----------------------------------------------------------------------------- # Tests # ----------------------------------------------------------------------------- def test_waveformview(): keys = ('waveforms,clusters,cluster_colors,clusters_selected,masks,' 'geometrical_positions' ).split(',') data = get_data() kwargs = {k: data[k] for k in keys} operators = [ lambda self: self.view.toggle_mask(), lambda self: (self.close() if USERPREF['test_auto_close'] != False else None), ] # Show the view. show_view(WaveformView, operators=operators, **kwargs)
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/stats/ols.py
7
40448
""" Ordinary least squares regression """ # pylint: disable-msg=W0201 # flake8: noqa from pandas.compat import zip, range, StringIO from itertools import starmap from pandas import compat import numpy as np from pandas.core.api import DataFrame, Series, isnull from pandas.core.base import StringMixin from pandas.types.common import _ensure_float64 from pandas.core.index import MultiIndex from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly import pandas.stats.common as scom import pandas.stats.math as math import pandas.stats.moments as moments _FP_ERR = 1e-8 class OLS(StringMixin): """ Runs a full sample ordinary least squares regression. Parameters ---------- y : Series x : Series, DataFrame, dict of Series intercept : bool True if you want an intercept. weights : array-like, optional 1d array of weights. If you supply 1/W then the variables are pre- multiplied by 1/sqrt(W). If no weights are supplied the default value is 1 and WLS reults are the same as OLS. nw_lags : None or int Number of Newey-West lags. nw_overlap : boolean, default False Assume data is overlapping when computing Newey-West estimator """ _panel_model = False def __init__(self, y, x, intercept=True, weights=None, nw_lags=None, nw_overlap=False): import warnings warnings.warn("The pandas.stats.ols module is deprecated and will be " "removed in a future version. We refer to external packages " "like statsmodels, see some examples here: " "http://www.statsmodels.org/stable/regression.html", FutureWarning, stacklevel=4) try: import statsmodels.api as sm except ImportError: import scikits.statsmodels.api as sm self._x_orig = x self._y_orig = y self._weights_orig = weights self._intercept = intercept self._nw_lags = nw_lags self._nw_overlap = nw_overlap (self._y, self._x, self._weights, self._x_filtered, self._index, self._time_has_obs) = self._prepare_data() if self._weights is not None: self._x_trans = self._x.mul(np.sqrt(self._weights), axis=0) self._y_trans = self._y * np.sqrt(self._weights) self.sm_ols = sm.WLS(self._y.get_values(), self._x.get_values(), weights=self._weights.values).fit() else: self._x_trans = self._x self._y_trans = self._y self.sm_ols = sm.OLS(self._y.get_values(), self._x.get_values()).fit() def _prepare_data(self): """ Cleans the input for single OLS. Parameters ---------- lhs: Series Dependent variable in the regression. rhs: dict, whose values are Series, DataFrame, or dict Explanatory variables of the regression. Returns ------- Series, DataFrame Cleaned lhs and rhs """ (filt_lhs, filt_rhs, filt_weights, pre_filt_rhs, index, valid) = _filter_data(self._y_orig, self._x_orig, self._weights_orig) if self._intercept: filt_rhs['intercept'] = 1. pre_filt_rhs['intercept'] = 1. if hasattr(filt_weights, 'to_dense'): filt_weights = filt_weights.to_dense() return (filt_lhs, filt_rhs, filt_weights, pre_filt_rhs, index, valid) @property def nobs(self): return self._nobs @property def _nobs(self): return len(self._y) @property def nw_lags(self): return self._nw_lags @property def x(self): """Returns the filtered x used in the regression.""" return self._x @property def y(self): """Returns the filtered y used in the regression.""" return self._y @cache_readonly def _beta_raw(self): """Runs the regression and returns the beta.""" return self.sm_ols.params @cache_readonly def beta(self): """Returns the betas in Series form.""" return Series(self._beta_raw, index=self._x.columns) @cache_readonly def _df_raw(self): """Returns the degrees of freedom.""" return math.rank(self._x.values) @cache_readonly def df(self): """Returns the degrees of freedom. This equals the rank of the X matrix. """ return self._df_raw @cache_readonly def _df_model_raw(self): """Returns the raw model degrees of freedom.""" return self.sm_ols.df_model @cache_readonly def df_model(self): """Returns the degrees of freedom of the model.""" return self._df_model_raw @cache_readonly def _df_resid_raw(self): """Returns the raw residual degrees of freedom.""" return self.sm_ols.df_resid @cache_readonly def df_resid(self): """Returns the degrees of freedom of the residuals.""" return self._df_resid_raw @cache_readonly def _f_stat_raw(self): """Returns the raw f-stat value.""" from scipy.stats import f cols = self._x.columns if self._nw_lags is None: F = self._r2_raw / (self._r2_raw - self._r2_adj_raw) q = len(cols) if 'intercept' in cols: q -= 1 shape = q, self.df_resid p_value = 1 - f.cdf(F, shape[0], shape[1]) return F, shape, p_value k = len(cols) R = np.eye(k) r = np.zeros((k, 1)) try: intercept = cols.get_loc('intercept') R = np.concatenate((R[0: intercept], R[intercept + 1:])) r = np.concatenate((r[0: intercept], r[intercept + 1:])) except KeyError: # no intercept pass return math.calc_F(R, r, self._beta_raw, self._var_beta_raw, self._nobs, self.df) @cache_readonly def f_stat(self): """Returns the f-stat value.""" return f_stat_to_dict(self._f_stat_raw) def f_test(self, hypothesis): """Runs the F test, given a joint hypothesis. The hypothesis is represented by a collection of equations, in the form A*x_1+B*x_2=C You must provide the coefficients even if they're 1. No spaces. The equations can be passed as either a single string or a list of strings. Examples -------- o = ols(...) o.f_test('1*x1+2*x2=0,1*x3=0') o.f_test(['1*x1+2*x2=0','1*x3=0']) """ x_names = self._x.columns R = [] r = [] if isinstance(hypothesis, str): eqs = hypothesis.split(',') elif isinstance(hypothesis, list): eqs = hypothesis else: # pragma: no cover raise Exception('hypothesis must be either string or list') for equation in eqs: row = np.zeros(len(x_names)) lhs, rhs = equation.split('=') for s in lhs.split('+'): ss = s.split('*') coeff = float(ss[0]) x_name = ss[1] if x_name not in x_names: raise Exception('no coefficient named %s' % x_name) idx = x_names.get_loc(x_name) row[idx] = coeff rhs = float(rhs) R.append(row) r.append(rhs) R = np.array(R) q = len(r) r = np.array(r).reshape(q, 1) result = math.calc_F(R, r, self._beta_raw, self._var_beta_raw, self._nobs, self.df) return f_stat_to_dict(result) @cache_readonly def _p_value_raw(self): """Returns the raw p values.""" from scipy.stats import t return 2 * t.sf(np.fabs(self._t_stat_raw), self._df_resid_raw) @cache_readonly def p_value(self): """Returns the p values.""" return Series(self._p_value_raw, index=self.beta.index) @cache_readonly def _r2_raw(self): """Returns the raw r-squared values.""" if self._use_centered_tss: return 1 - self.sm_ols.ssr / self.sm_ols.centered_tss else: return 1 - self.sm_ols.ssr / self.sm_ols.uncentered_tss @property def _use_centered_tss(self): # has_intercept = np.abs(self._resid_raw.sum()) < _FP_ERR return self._intercept @cache_readonly def r2(self): """Returns the r-squared values.""" return self._r2_raw @cache_readonly def _r2_adj_raw(self): """Returns the raw r-squared adjusted values.""" return self.sm_ols.rsquared_adj @cache_readonly def r2_adj(self): """Returns the r-squared adjusted values.""" return self._r2_adj_raw @cache_readonly def _resid_raw(self): """Returns the raw residuals.""" return self.sm_ols.resid @cache_readonly def resid(self): """Returns the residuals.""" return Series(self._resid_raw, index=self._x.index) @cache_readonly def _rmse_raw(self): """Returns the raw rmse values.""" return np.sqrt(self.sm_ols.mse_resid) @cache_readonly def rmse(self): """Returns the rmse value.""" return self._rmse_raw @cache_readonly def _std_err_raw(self): """Returns the raw standard err values.""" return np.sqrt(np.diag(self._var_beta_raw)) @cache_readonly def std_err(self): """Returns the standard err values of the betas.""" return Series(self._std_err_raw, index=self.beta.index) @cache_readonly def _t_stat_raw(self): """Returns the raw t-stat value.""" return self._beta_raw / self._std_err_raw @cache_readonly def t_stat(self): """Returns the t-stat values of the betas.""" return Series(self._t_stat_raw, index=self.beta.index) @cache_readonly def _var_beta_raw(self): """ Returns the raw covariance of beta. """ x = self._x.values y = self._y.values xx = np.dot(x.T, x) if self._nw_lags is None: return math.inv(xx) * (self._rmse_raw ** 2) else: resid = y - np.dot(x, self._beta_raw) m = (x.T * resid).T xeps = math.newey_west(m, self._nw_lags, self._nobs, self._df_raw, self._nw_overlap) xx_inv = math.inv(xx) return np.dot(xx_inv, np.dot(xeps, xx_inv)) @cache_readonly def var_beta(self): """Returns the variance-covariance matrix of beta.""" return DataFrame(self._var_beta_raw, index=self.beta.index, columns=self.beta.index) @cache_readonly def _y_fitted_raw(self): """Returns the raw fitted y values.""" if self._weights is None: X = self._x_filtered.values else: # XXX return self.sm_ols.fittedvalues b = self._beta_raw return np.dot(X, b) @cache_readonly def y_fitted(self): """Returns the fitted y values. This equals BX.""" if self._weights is None: index = self._x_filtered.index orig_index = index else: index = self._y.index orig_index = self._y_orig.index result = Series(self._y_fitted_raw, index=index) return result.reindex(orig_index) @cache_readonly def _y_predict_raw(self): """Returns the raw predicted y values.""" return self._y_fitted_raw @cache_readonly def y_predict(self): """Returns the predicted y values. For in-sample, this is same as y_fitted.""" return self.y_fitted def predict(self, beta=None, x=None, fill_value=None, fill_method=None, axis=0): """ Parameters ---------- beta : Series x : Series or DataFrame fill_value : scalar or dict, default None fill_method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None axis : {0, 1}, default 0 See DataFrame.fillna for more details Notes ----- 1. If both fill_value and fill_method are None then NaNs are dropped (this is the default behavior) 2. An intercept will be automatically added to the new_y_values if the model was fitted using an intercept Returns ------- Series of predicted values """ if beta is None and x is None: return self.y_predict if beta is None: beta = self.beta else: beta = beta.reindex(self.beta.index) if isnull(beta).any(): raise ValueError('Must supply betas for same variables') if x is None: x = self._x orig_x = x else: orig_x = x if fill_value is None and fill_method is None: x = x.dropna(how='any') else: x = x.fillna(value=fill_value, method=fill_method, axis=axis) if isinstance(x, Series): x = DataFrame({'x': x}) if self._intercept: x['intercept'] = 1. x = x.reindex(columns=self._x.columns) rs = np.dot(x.values, beta.values) return Series(rs, x.index).reindex(orig_x.index) RESULT_FIELDS = ['r2', 'r2_adj', 'df', 'df_model', 'df_resid', 'rmse', 'f_stat', 'beta', 'std_err', 't_stat', 'p_value', 'nobs'] @cache_readonly def _results(self): results = {} for result in self.RESULT_FIELDS: results[result] = getattr(self, result) return results @cache_readonly def _coef_table(self): buf = StringIO() buf.write('%14s %10s %10s %10s %10s %10s %10s\n' % ('Variable', 'Coef', 'Std Err', 't-stat', 'p-value', 'CI 2.5%', 'CI 97.5%')) buf.write(scom.banner('')) coef_template = '\n%14s %10.4f %10.4f %10.2f %10.4f %10.4f %10.4f' results = self._results beta = results['beta'] for i, name in enumerate(beta.index): if i and not (i % 5): buf.write('\n' + scom.banner('')) std_err = results['std_err'][name] CI1 = beta[name] - 1.96 * std_err CI2 = beta[name] + 1.96 * std_err t_stat = results['t_stat'][name] p_value = results['p_value'][name] line = coef_template % (name, beta[name], std_err, t_stat, p_value, CI1, CI2) buf.write(line) if self.nw_lags is not None: buf.write('\n') buf.write('*** The calculations are Newey-West ' 'adjusted with lags %5d\n' % self.nw_lags) return buf.getvalue() @cache_readonly def summary_as_matrix(self): """Returns the formatted results of the OLS as a DataFrame.""" results = self._results beta = results['beta'] data = {'beta': results['beta'], 't-stat': results['t_stat'], 'p-value': results['p_value'], 'std err': results['std_err']} return DataFrame(data, beta.index).T @cache_readonly def summary(self): """ This returns the formatted result of the OLS computation """ template = """ %(bannerTop)s Formula: Y ~ %(formula)s Number of Observations: %(nobs)d Number of Degrees of Freedom: %(df)d R-squared: %(r2)10.4f Adj R-squared: %(r2_adj)10.4f Rmse: %(rmse)10.4f F-stat %(f_stat_shape)s: %(f_stat)10.4f, p-value: %(f_stat_p_value)10.4f Degrees of Freedom: model %(df_model)d, resid %(df_resid)d %(bannerCoef)s %(coef_table)s %(bannerEnd)s """ coef_table = self._coef_table results = self._results f_stat = results['f_stat'] bracketed = ['<%s>' % str(c) for c in results['beta'].index] formula = StringIO() formula.write(bracketed[0]) tot = len(bracketed[0]) line = 1 for coef in bracketed[1:]: tot = tot + len(coef) + 3 if tot // (68 * line): formula.write('\n' + ' ' * 12) line += 1 formula.write(' + ' + coef) params = { 'bannerTop': scom.banner('Summary of Regression Analysis'), 'bannerCoef': scom.banner('Summary of Estimated Coefficients'), 'bannerEnd': scom.banner('End of Summary'), 'formula': formula.getvalue(), 'r2': results['r2'], 'r2_adj': results['r2_adj'], 'nobs': results['nobs'], 'df': results['df'], 'df_model': results['df_model'], 'df_resid': results['df_resid'], 'coef_table': coef_table, 'rmse': results['rmse'], 'f_stat': f_stat['f-stat'], 'f_stat_shape': '(%d, %d)' % (f_stat['DF X'], f_stat['DF Resid']), 'f_stat_p_value': f_stat['p-value'], } return template % params def __unicode__(self): return self.summary @cache_readonly def _time_obs_count(self): # XXX return self._time_has_obs.astype(int) @property def _total_times(self): return self._time_has_obs.sum() class MovingOLS(OLS): """ Runs a rolling/expanding simple OLS. Parameters ---------- y : Series x : Series, DataFrame, or dict of Series weights : array-like, optional 1d array of weights. If None, equivalent to an unweighted OLS. window_type : {'full sample', 'rolling', 'expanding'} Default expanding window : int size of window (for rolling/expanding OLS) min_periods : int Threshold of non-null data points to require. If None, defaults to size of window for window_type='rolling' and 1 otherwise intercept : bool True if you want an intercept. nw_lags : None or int Number of Newey-West lags. nw_overlap : boolean, default False Assume data is overlapping when computing Newey-West estimator """ def __init__(self, y, x, weights=None, window_type='expanding', window=None, min_periods=None, intercept=True, nw_lags=None, nw_overlap=False): self._args = dict(intercept=intercept, nw_lags=nw_lags, nw_overlap=nw_overlap) OLS.__init__(self, y=y, x=x, weights=weights, **self._args) self._set_window(window_type, window, min_periods) def _set_window(self, window_type, window, min_periods): self._window_type = scom._get_window_type(window_type) if self._is_rolling: if window is None: raise AssertionError("Must specify window.") if min_periods is None: min_periods = window else: window = len(self._x) if min_periods is None: min_periods = 1 self._window = int(window) self._min_periods = min_periods #------------------------------------------------------------------------------ # "Public" results @cache_readonly def beta(self): """Returns the betas in Series/DataFrame form.""" return DataFrame(self._beta_raw, index=self._result_index, columns=self._x.columns) @cache_readonly def rank(self): return Series(self._rank_raw, index=self._result_index) @cache_readonly def df(self): """Returns the degrees of freedom.""" return Series(self._df_raw, index=self._result_index) @cache_readonly def df_model(self): """Returns the model degrees of freedom.""" return Series(self._df_model_raw, index=self._result_index) @cache_readonly def df_resid(self): """Returns the residual degrees of freedom.""" return Series(self._df_resid_raw, index=self._result_index) @cache_readonly def f_stat(self): """Returns the f-stat value.""" f_stat_dicts = dict((date, f_stat_to_dict(f_stat)) for date, f_stat in zip(self.beta.index, self._f_stat_raw)) return DataFrame(f_stat_dicts).T def f_test(self, hypothesis): raise NotImplementedError('must use full sample') @cache_readonly def forecast_mean(self): return Series(self._forecast_mean_raw, index=self._result_index) @cache_readonly def forecast_vol(self): return Series(self._forecast_vol_raw, index=self._result_index) @cache_readonly def p_value(self): """Returns the p values.""" cols = self.beta.columns return DataFrame(self._p_value_raw, columns=cols, index=self._result_index) @cache_readonly def r2(self): """Returns the r-squared values.""" return Series(self._r2_raw, index=self._result_index) @cache_readonly def resid(self): """Returns the residuals.""" return Series(self._resid_raw[self._valid_obs_labels], index=self._result_index) @cache_readonly def r2_adj(self): """Returns the r-squared adjusted values.""" index = self.r2.index return Series(self._r2_adj_raw, index=index) @cache_readonly def rmse(self): """Returns the rmse values.""" return Series(self._rmse_raw, index=self._result_index) @cache_readonly def std_err(self): """Returns the standard err values.""" return DataFrame(self._std_err_raw, columns=self.beta.columns, index=self._result_index) @cache_readonly def t_stat(self): """Returns the t-stat value.""" return DataFrame(self._t_stat_raw, columns=self.beta.columns, index=self._result_index) @cache_readonly def var_beta(self): """Returns the covariance of beta.""" result = {} result_index = self._result_index for i in range(len(self._var_beta_raw)): dm = DataFrame(self._var_beta_raw[i], columns=self.beta.columns, index=self.beta.columns) result[result_index[i]] = dm return Panel.from_dict(result, intersect=False) @cache_readonly def y_fitted(self): """Returns the fitted y values.""" return Series(self._y_fitted_raw[self._valid_obs_labels], index=self._result_index) @cache_readonly def y_predict(self): """Returns the predicted y values.""" return Series(self._y_predict_raw[self._valid_obs_labels], index=self._result_index) #------------------------------------------------------------------------------ # "raw" attributes, calculations @property def _is_rolling(self): return self._window_type == 'rolling' @cache_readonly def _beta_raw(self): """Runs the regression and returns the beta.""" beta, indices, mask = self._rolling_ols_call return beta[indices] @cache_readonly def _result_index(self): return self._index[self._valid_indices] @property def _valid_indices(self): return self._rolling_ols_call[1] @cache_readonly def _rolling_ols_call(self): return self._calc_betas(self._x_trans, self._y_trans) def _calc_betas(self, x, y): N = len(self._index) K = len(self._x.columns) betas = np.empty((N, K), dtype=float) betas[:] = np.NaN valid = self._time_has_obs enough = self._enough_obs window = self._window # Use transformed (demeaned) Y, X variables cum_xx = self._cum_xx(x) cum_xy = self._cum_xy(x, y) for i in range(N): if not valid[i] or not enough[i]: continue xx = cum_xx[i] xy = cum_xy[i] if self._is_rolling and i >= window: xx = xx - cum_xx[i - window] xy = xy - cum_xy[i - window] betas[i] = math.solve(xx, xy) mask = ~np.isnan(betas).any(axis=1) have_betas = np.arange(N)[mask] return betas, have_betas, mask def _rolling_rank(self): dates = self._index window = self._window ranks = np.empty(len(dates), dtype=float) ranks[:] = np.NaN for i, date in enumerate(dates): if self._is_rolling and i >= window: prior_date = dates[i - window + 1] else: prior_date = dates[0] x_slice = self._x.truncate(before=prior_date, after=date).values if len(x_slice) == 0: continue ranks[i] = math.rank(x_slice) return ranks def _cum_xx(self, x): dates = self._index K = len(x.columns) valid = self._time_has_obs cum_xx = [] slicer = lambda df, dt: df.truncate(dt, dt).values if not self._panel_model: _get_index = x.index.get_loc def slicer(df, dt): i = _get_index(dt) return df.values[i:i + 1, :] last = np.zeros((K, K)) for i, date in enumerate(dates): if not valid[i]: cum_xx.append(last) continue x_slice = slicer(x, date) xx = last = last + np.dot(x_slice.T, x_slice) cum_xx.append(xx) return cum_xx def _cum_xy(self, x, y): dates = self._index valid = self._time_has_obs cum_xy = [] x_slicer = lambda df, dt: df.truncate(dt, dt).values if not self._panel_model: _get_index = x.index.get_loc def x_slicer(df, dt): i = _get_index(dt) return df.values[i:i + 1] _y_get_index = y.index.get_loc _values = y.values if isinstance(y.index, MultiIndex): def y_slicer(df, dt): loc = _y_get_index(dt) return _values[loc] else: def y_slicer(df, dt): i = _y_get_index(dt) return _values[i:i + 1] last = np.zeros(len(x.columns)) for i, date in enumerate(dates): if not valid[i]: cum_xy.append(last) continue x_slice = x_slicer(x, date) y_slice = y_slicer(y, date) xy = last = last + np.dot(x_slice.T, y_slice) cum_xy.append(xy) return cum_xy @cache_readonly def _rank_raw(self): rank = self._rolling_rank() return rank[self._valid_indices] @cache_readonly def _df_raw(self): """Returns the degrees of freedom.""" return self._rank_raw @cache_readonly def _df_model_raw(self): """Returns the raw model degrees of freedom.""" return self._df_raw - 1 @cache_readonly def _df_resid_raw(self): """Returns the raw residual degrees of freedom.""" return self._nobs - self._df_raw @cache_readonly def _f_stat_raw(self): """Returns the raw f-stat value.""" from scipy.stats import f items = self.beta.columns nobs = self._nobs df = self._df_raw df_resid = nobs - df # var_beta has not been newey-west adjusted if self._nw_lags is None: F = self._r2_raw / (self._r2_raw - self._r2_adj_raw) q = len(items) if 'intercept' in items: q -= 1 def get_result_simple(Fst, d): return Fst, (q, d), 1 - f.cdf(Fst, q, d) # Compute the P-value for each pair result = starmap(get_result_simple, zip(F, df_resid)) return list(result) K = len(items) R = np.eye(K) r = np.zeros((K, 1)) try: intercept = items.get_loc('intercept') R = np.concatenate((R[0: intercept], R[intercept + 1:])) r = np.concatenate((r[0: intercept], r[intercept + 1:])) except KeyError: # no intercept pass def get_result(beta, vcov, n, d): return math.calc_F(R, r, beta, vcov, n, d) results = starmap(get_result, zip(self._beta_raw, self._var_beta_raw, nobs, df)) return list(results) @cache_readonly def _p_value_raw(self): """Returns the raw p values.""" from scipy.stats import t result = [2 * t.sf(a, b) for a, b in zip(np.fabs(self._t_stat_raw), self._df_resid_raw)] return np.array(result) @cache_readonly def _resid_stats(self): uncentered_sst = [] sst = [] sse = [] Yreg = self._y Y = self._y_trans X = self._x_trans weights = self._weights dates = self._index window = self._window for n, index in enumerate(self._valid_indices): if self._is_rolling and index >= window: prior_date = dates[index - window + 1] else: prior_date = dates[0] date = dates[index] beta = self._beta_raw[n] X_slice = X.truncate(before=prior_date, after=date).values Y_slice = _y_converter(Y.truncate(before=prior_date, after=date)) resid = Y_slice - np.dot(X_slice, beta) if weights is not None: Y_slice = _y_converter(Yreg.truncate(before=prior_date, after=date)) weights_slice = weights.truncate(prior_date, date) demeaned = Y_slice - np.average(Y_slice, weights=weights_slice) SS_total = (weights_slice * demeaned ** 2).sum() else: SS_total = ((Y_slice - Y_slice.mean()) ** 2).sum() SS_err = (resid ** 2).sum() SST_uncentered = (Y_slice ** 2).sum() sse.append(SS_err) sst.append(SS_total) uncentered_sst.append(SST_uncentered) return { 'sse': np.array(sse), 'centered_tss': np.array(sst), 'uncentered_tss': np.array(uncentered_sst), } @cache_readonly def _rmse_raw(self): """Returns the raw rmse values.""" return np.sqrt(self._resid_stats['sse'] / self._df_resid_raw) @cache_readonly def _r2_raw(self): rs = self._resid_stats if self._use_centered_tss: return 1 - rs['sse'] / rs['centered_tss'] else: return 1 - rs['sse'] / rs['uncentered_tss'] @cache_readonly def _r2_adj_raw(self): """Returns the raw r-squared adjusted values.""" nobs = self._nobs factors = (nobs - 1) / (nobs - self._df_raw) return 1 - (1 - self._r2_raw) * factors @cache_readonly def _resid_raw(self): """Returns the raw residuals.""" return (self._y.values - self._y_fitted_raw) @cache_readonly def _std_err_raw(self): """Returns the raw standard err values.""" results = [] for i in range(len(self._var_beta_raw)): results.append(np.sqrt(np.diag(self._var_beta_raw[i]))) return np.array(results) @cache_readonly def _t_stat_raw(self): """Returns the raw t-stat value.""" return self._beta_raw / self._std_err_raw @cache_readonly def _var_beta_raw(self): """Returns the raw covariance of beta.""" x = self._x_trans y = self._y_trans dates = self._index nobs = self._nobs rmse = self._rmse_raw beta = self._beta_raw df = self._df_raw window = self._window cum_xx = self._cum_xx(self._x) results = [] for n, i in enumerate(self._valid_indices): xx = cum_xx[i] date = dates[i] if self._is_rolling and i >= window: xx = xx - cum_xx[i - window] prior_date = dates[i - window + 1] else: prior_date = dates[0] x_slice = x.truncate(before=prior_date, after=date) y_slice = y.truncate(before=prior_date, after=date) xv = x_slice.values yv = np.asarray(y_slice) if self._nw_lags is None: result = math.inv(xx) * (rmse[n] ** 2) else: resid = yv - np.dot(xv, beta[n]) m = (xv.T * resid).T xeps = math.newey_west(m, self._nw_lags, nobs[n], df[n], self._nw_overlap) xx_inv = math.inv(xx) result = np.dot(xx_inv, np.dot(xeps, xx_inv)) results.append(result) return np.array(results) @cache_readonly def _forecast_mean_raw(self): """Returns the raw covariance of beta.""" nobs = self._nobs window = self._window # x should be ones dummy = DataFrame(index=self._y.index) dummy['y'] = 1 cum_xy = self._cum_xy(dummy, self._y) results = [] for n, i in enumerate(self._valid_indices): sumy = cum_xy[i] if self._is_rolling and i >= window: sumy = sumy - cum_xy[i - window] results.append(sumy[0] / nobs[n]) return np.array(results) @cache_readonly def _forecast_vol_raw(self): """Returns the raw covariance of beta.""" beta = self._beta_raw window = self._window dates = self._index x = self._x results = [] for n, i in enumerate(self._valid_indices): date = dates[i] if self._is_rolling and i >= window: prior_date = dates[i - window + 1] else: prior_date = dates[0] x_slice = x.truncate(prior_date, date).values x_demeaned = x_slice - x_slice.mean(0) x_cov = np.dot(x_demeaned.T, x_demeaned) / (len(x_slice) - 1) B = beta[n] result = np.dot(B, np.dot(x_cov, B)) results.append(np.sqrt(result)) return np.array(results) @cache_readonly def _y_fitted_raw(self): """Returns the raw fitted y values.""" return (self._x.values * self._beta_matrix(lag=0)).sum(1) @cache_readonly def _y_predict_raw(self): """Returns the raw predicted y values.""" return (self._x.values * self._beta_matrix(lag=1)).sum(1) @cache_readonly def _results(self): results = {} for result in self.RESULT_FIELDS: value = getattr(self, result) if isinstance(value, Series): value = value[self.beta.index[-1]] elif isinstance(value, DataFrame): value = value.xs(self.beta.index[-1]) else: # pragma: no cover raise Exception('Problem retrieving %s' % result) results[result] = value return results @cache_readonly def _window_time_obs(self): window_obs = (Series(self._time_obs_count > 0) .rolling(self._window, min_periods=1) .sum() .values ) window_obs[np.isnan(window_obs)] = 0 return window_obs.astype(int) @cache_readonly def _nobs_raw(self): if self._is_rolling: window = self._window else: # expanding case window = len(self._index) result = Series(self._time_obs_count).rolling( window, min_periods=1).sum().values return result.astype(int) def _beta_matrix(self, lag=0): if lag < 0: raise AssertionError("'lag' must be greater than or equal to 0, " "input was {0}".format(lag)) betas = self._beta_raw labels = np.arange(len(self._y)) - lag indexer = self._valid_obs_labels.searchsorted(labels, side='left') indexer[indexer == len(betas)] = len(betas) - 1 beta_matrix = betas[indexer] beta_matrix[labels < self._valid_obs_labels[0]] = np.NaN return beta_matrix @cache_readonly def _valid_obs_labels(self): dates = self._index[self._valid_indices] return self._y.index.searchsorted(dates) @cache_readonly def _nobs(self): return self._nobs_raw[self._valid_indices] @property def nobs(self): return Series(self._nobs, index=self._result_index) @cache_readonly def _enough_obs(self): # XXX: what's the best way to determine where to start? return self._nobs_raw >= max(self._min_periods, len(self._x.columns) + 1) def _safe_update(d, other): """ Combine dictionaries with non-overlapping keys """ for k, v in compat.iteritems(other): if k in d: raise Exception('Duplicate regressor: %s' % k) d[k] = v def _filter_data(lhs, rhs, weights=None): """ Cleans the input for single OLS. Parameters ---------- lhs : Series Dependent variable in the regression. rhs : dict, whose values are Series, DataFrame, or dict Explanatory variables of the regression. weights : array-like, optional 1d array of weights. If None, equivalent to an unweighted OLS. Returns ------- Series, DataFrame Cleaned lhs and rhs """ if not isinstance(lhs, Series): if len(lhs) != len(rhs): raise AssertionError("length of lhs must equal length of rhs") lhs = Series(lhs, index=rhs.index) rhs = _combine_rhs(rhs) lhs = DataFrame({'__y__': lhs}, dtype=float) pre_filt_rhs = rhs.dropna(how='any') combined = rhs.join(lhs, how='outer') if weights is not None: combined['__weights__'] = weights valid = (combined.count(1) == len(combined.columns)).values index = combined.index combined = combined[valid] if weights is not None: filt_weights = combined.pop('__weights__') else: filt_weights = None filt_lhs = combined.pop('__y__') filt_rhs = combined if hasattr(filt_weights, 'to_dense'): filt_weights = filt_weights.to_dense() return (filt_lhs.to_dense(), filt_rhs.to_dense(), filt_weights, pre_filt_rhs.to_dense(), index, valid) def _combine_rhs(rhs): """ Glue input X variables together while checking for potential duplicates """ series = {} if isinstance(rhs, Series): series['x'] = rhs elif isinstance(rhs, DataFrame): series = rhs.copy() elif isinstance(rhs, dict): for name, value in compat.iteritems(rhs): if isinstance(value, Series): _safe_update(series, {name: value}) elif isinstance(value, (dict, DataFrame)): _safe_update(series, value) else: # pragma: no cover raise Exception('Invalid RHS data type: %s' % type(value)) else: # pragma: no cover raise Exception('Invalid RHS type: %s' % type(rhs)) if not isinstance(series, DataFrame): series = DataFrame(series, dtype=float) return series # A little kludge so we can use this method for both # MovingOLS and MovingPanelOLS def _y_converter(y): y = y.values.squeeze() if y.ndim == 0: # pragma: no cover return np.array([y]) else: return y def f_stat_to_dict(result): f_stat, shape, p_value = result result = {} result['f-stat'] = f_stat result['DF X'] = shape[0] result['DF Resid'] = shape[1] result['p-value'] = p_value return result
mit
galtay/data_sci_ale
project_1/geo_var_state_county.py
1
10041
""" CMS provides data on the geographic variation in the utilization and quality of health care services, https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Geographic-Variation/GV_PUF.html This module handles the State/County level table (more to be added). The class handles CSV files that are generated from the excel file (see `convert_geo_var_state_county_to_csv.py`) State level data includes all 50 states + - District of Columbia (DC) - Puerto Rico (PR) - US Virgin Islands (VI) - ??? (XX) maybe this means outside the US ? """ import os import time import pandas import us_states VALID_LEVELS = ['national', 'state', 'county'] DEFAULT_CSV_FNAME = './data/County_All_Table_2014.csv' class CmsGeoVarCountyTable: """Class to handle Geographic Variation Public Use Files (State/County)""" def __init__(self, csv_fname=DEFAULT_CSV_FNAME, verbose=False): """Initialize class with a CSV file name, it is read into a DataFrame. """ self.verbose = verbose if self.verbose: print('csv fname: {}'.format(csv_fname)) self.df = pandas.read_csv(csv_fname) def select_rows(self, level, exclude=None): """Return a selection of rows from the total DataFrame. Args: level (str): the selection of rows to return. One of ['national', 'state', 'county'] exclude (list of str): a list of either states or counties to exclude from the retuned DataFrame Returns: DataFrame: Selected rows from the full DataFrame """ if level not in VALID_LEVELS: raise ValueError('level must be one of {}'.format(VALID_LEVELS)) if exclude is None: exclude = [] if level == 'national': return self._select_national_row() elif level == 'state': return self._select_state_rows(exclude=exclude) elif level == 'county': return self._select_county_rows(exclude=exclude) def _select_national_row(self): """Select row that represents the national total.""" bmask = self.df['State']=='National' return self.df[bmask].iloc[0] def _select_state_rows(self, exclude=None): """Select rows that represent individual states. By default state abbreviations 'XX', 'DC', 'PR', and 'VI' will be included. The `exclude` keyword can be set to a list of strings to remove a set of state abbreviations from the return value. """ if exclude is None: exclude = [] bmask = self.df['County'] == 'STATE TOTAL' bmask = bmask & ~(self.df['State'].isin(exclude)) return self.df[bmask] def _select_county_rows(self, exclude=None): """Select rows that represent individual counties. By default state abbreviations 'XX', 'DC', 'PR', and 'VI' will be included. The `exclude` keyword can be set to a list of strings to remove a set of counties from the return value. Note that some states don't have county level data ('XX', 'PR', VI'). In that case the return value will contain the single state total row. """ if exclude is None: exclude = [] # get states that only have state level data grpd_df = self.df.groupby('State').size() single_row_states = grpd_df[grpd_df==1].index.tolist() single_row_states.remove('National') # is a single row state bmask1 = self.df['State'].isin(single_row_states) # is not a single row state and is not a state total bmask2 = ~bmask1 & (self.df['County'] != 'STATE TOTAL') # is not a national total bmask3 = self.df['State'] != 'National' # is not in county exclude list bmask4 = ~(self.df['County'].isin(exclude)) bmask = (bmask1 | bmask2) & bmask3 & bmask4 return self.df[bmask] def return_feature_cols(self): """Return a list of column names that could be plausible features for a learning model. For example we choose 'standardized' and 'per capita' type columns. """ #=========================================== # Demographics features #=========================================== demographics = [ 'MA Participation Rate', 'Average Age', 'Percent Female', 'Percent Male', 'Percent Eligible for Medicaid', 'Average HCC Score', ] #=========================================== # Total Cost features #=========================================== total_costs = [ 'Actual Per Capita Costs', 'Standardized Per Capita Costs', 'Standardized Risk-Adjusted Per Capita Costs', ] #=========================================== # Service-Level Costs and Utilization #=========================================== slcu_dict = {} # All categories have these columns #=========================================== slcu_categories = [ 'IP', 'PAC: LTCH', 'PAC: IRF', 'PAC: SNF', 'PAC: HH', 'Hospice', 'OP', 'FQHC/RHC', 'Outpatient Dialysis Facility', 'ASC', 'E&M', 'Procedures', 'Imaging', 'DME', 'Tests', 'Part B Drugs', 'Ambulance'] slcu_lines = [ '{} Standardized Costs as % of Total Standardized Costs', '{} Per Capita Standardized Costs', '{} Per User Standardized Costs', '% of Beneficiaries Using {}', ] for cat in slcu_categories: cols = [line.format(cat) for line in slcu_lines] slcu_dict[cat] = cols # Covered Stays #=========================================== slcu_categories = ['IP', 'PAC: LTCH', 'PAC: IRF', 'PAC: SNF', 'Hospice'] slcu_line = '{} Covered Stays Per 1000 Beneficiaries' for cat in slcu_categories: slcu_dict[cat].append(slcu_line.format(cat)) # Covered Days #=========================================== slcu_categories = ['IP', 'PAC: LTCH', 'PAC: IRF', 'PAC: SNF', 'Hospice'] slcu_line = '{} Covered Days Per 1000 Beneficiaries' for cat in slcu_categories: slcu_dict[cat].append(slcu_line.format(cat)) # Visits #=========================================== slcu_categories = ['PAC: HH', 'OP', 'FQHC/RHC'] slcu_line = '{} Visits Per 1000 Beneficiaries' for cat in slcu_categories: slcu_dict[cat].append(slcu_line.format(cat)) # Events #=========================================== slcu_categories = [ 'Outpatient Dialysis Facility', 'ASC', 'E&M', 'Procedures', 'Imaging', 'DME', 'Tests', 'Ambulance'] slcu_line = '{} Events Per 1000 Beneficiaries' for cat in slcu_categories: slcu_dict[cat].append(slcu_line.format(cat)) # fix plurality slcu_dict['Procedures'][-1] = ( slcu_dict['Procedures'][-1].replace('Procedures', 'Procedure')) slcu_dict['Tests'][-1] = ( slcu_dict['Tests'][-1].replace('Tests', 'Test')) #=========================================== # Readmissions and ED Visits #=========================================== readmission_ed = [ 'Hospital Readmission Rate', 'Emergency Department Visits per 1000 Beneficiaries', ] #=========================================== # Combine all into a list of feature columns #=========================================== feature_cols = [] feature_cols += demographics feature_cols += total_costs # Service-Level Costs and Utilization feature_cols += slcu_dict['IP'] feature_cols += slcu_dict['PAC: LTCH'] feature_cols += slcu_dict['PAC: IRF'] feature_cols += slcu_dict['PAC: SNF'] feature_cols += slcu_dict['PAC: HH'] feature_cols += slcu_dict['Hospice'] feature_cols += slcu_dict['OP'] feature_cols += slcu_dict['FQHC/RHC'] feature_cols += slcu_dict['Outpatient Dialysis Facility'] feature_cols += slcu_dict['ASC'] feature_cols += slcu_dict['E&M'] feature_cols += slcu_dict['Procedures'] feature_cols += slcu_dict['Imaging'] feature_cols += slcu_dict['DME'] feature_cols += slcu_dict['Tests'] feature_cols += slcu_dict['Part B Drugs'] feature_cols += slcu_dict['Ambulance'] # Readmissions and ED visits feature_cols += readmission_ed return feature_cols def check_state_totals_sum_to_national(df_state_totals, ser_national): """Check that summing the state level rows recovers the national total""" state_sum = df_state_totals['Total Actual Costs'].sum() national_total = ser_national['Total Actual Costs'] print('state sum vs national total') print('state sum: {}'.format(state_sum)) print('national: {}'.format(national_total)) print(state_sum/national_total) print() def check_county_totals_sum_to_national(df_county_totals, ser_national): """Check that summing the county level rows recovers the national total""" county_sum = df_county_totals['Total Actual Costs'].sum() national_total = ser_national['Total Actual Costs'] print('county sum vs national total') print('county sum: {}'.format(county_sum)) print('national: {}'.format(national_total)) print(county_sum/national_total) print() if __name__ == '__main__': fname = './data/County_All_Table_2014.csv' gvct = CmsGeoVarCountyTable(fname, verbose=True) st = gvct.select_rows('state') ct = gvct.select_rows('county') nt = gvct.select_rows('national') check_state_totals_sum_to_national(st, nt) check_county_totals_sum_to_national(ct, nt)
gpl-3.0
pypot/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
jpautom/scikit-learn
examples/decomposition/plot_faces_decomposition.py
103
4394
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - RandomizedPCA', decomposition.RandomizedPCA(n_components=n_components, whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ if hasattr(estimator, 'noise_variance_'): plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
rayNymous/nupic
src/nupic/research/monitor_mixin/monitor_mixin_base.py
27
5512
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ MonitorMixinBase class used in monitor mixin framework. """ import abc import numpy from prettytable import PrettyTable from nupic.research.monitor_mixin.plot import Plot class MonitorMixinBase(object): """ Base class for MonitorMixin. Each subclass will be a mixin for a particular algorithm. All arguments, variables, and methods in monitor mixin classes should be prefixed with "mm" (to avoid collision with the classes they mix in to). """ __metaclass__ = abc.ABCMeta def __init__(self, *args, **kwargs): """ Note: If you set the kwarg "mmName", then pretty-printing of traces and metrics will include the name you specify as a tag before every title. """ self.mmName = kwargs.get("mmName") if "mmName" in kwargs: del kwargs["mmName"] super(MonitorMixinBase, self).__init__(*args, **kwargs) # Mapping from key (string) => trace (Trace) self._mmTraces = None self._mmData = None self.mmClearHistory() def mmClearHistory(self): """ Clears the stored history. """ self._mmTraces = {} self._mmData = {} @staticmethod def mmPrettyPrintTraces(traces, breakOnResets=None): """ Returns pretty-printed table of traces. @param traces (list) Traces to print in table @param breakOnResets (BoolsTrace) Trace of resets to break table on @return (string) Pretty-printed table of traces. """ assert len(traces) > 0, "No traces found" table = PrettyTable(["#"] + [trace.prettyPrintTitle() for trace in traces]) for i in xrange(len(traces[0].data)): if breakOnResets and breakOnResets.data[i]: table.add_row(["<reset>"] * (len(traces) + 1)) table.add_row([i] + [trace.prettyPrintDatum(trace.data[i]) for trace in traces]) return table.get_string().encode("utf-8") @staticmethod def mmPrettyPrintMetrics(metrics, sigFigs=5): """ Returns pretty-printed table of metrics. @param metrics (list) Traces to print in table @param sigFigs (int) Number of significant figures to print @return (string) Pretty-printed table of metrics. """ assert len(metrics) > 0, "No metrics found" table = PrettyTable(["Metric", "mean", "standard deviation", "min", "max", "sum", ]) for metric in metrics: table.add_row([metric.prettyPrintTitle()] + metric.getStats()) return table.get_string().encode("utf-8") def mmGetDefaultTraces(self, verbosity=1): """ Returns list of default traces. (To be overridden.) @param verbosity (int) Verbosity level @return (list) Default traces """ return [] def mmGetDefaultMetrics(self, verbosity=1): """ Returns list of default metrics. (To be overridden.) @param verbosity (int) Verbosity level @return (list) Default metrics """ return [] def mmGetCellTracePlot(self, cellTrace, cellCount, activityType, title="", showReset=False, resetShading=0.25): """ Returns plot of the cell activity. Note that if many timesteps of activities are input, matplotlib's image interpolation may omit activities (columns in the image). @param cellTrace (list) a temporally ordered list of sets of cell activities @param cellCount (int) number of cells in the space being rendered @param activityType (string) type of cell activity being displayed @param title (string) an optional title for the figure @param showReset (bool) if true, the first set of cell activities after a reset will have a grayscale background @param resetShading (float) applicable if showReset is true, specifies the intensity of the reset background with 0.0 being white and 1.0 being black @return (Plot) plot """ plot = Plot(self, title) resetTrace = self.mmGetTraceResets().data data = numpy.zeros((cellCount, 1)) for i in xrange(len(cellTrace)): # Set up a "background" vector that is shaded or blank if showReset and resetTrace[i]: activity = numpy.ones((cellCount, 1)) * resetShading else: activity = numpy.zeros((cellCount, 1)) activeIndices = cellTrace[i] activity[list(activeIndices)] = 1 data = numpy.concatenate((data, activity), 1) plot.add2DArray(data, xlabel="Time", ylabel=activityType, name=title) return plot
agpl-3.0
apahl/cellpainting
cellpainting/processing.py
1
55494
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ########## Processing ########## *Created on Thu Jun 1 14:15 2017 by A. Pahl* Processing results from the CellPainting Assay in the Jupyter notebook. This module provides the DataSet class and its methods. Additional functions in this module act on pandas DataFrames.""" import time import glob import os.path as op from collections import Counter import xml.etree.ElementTree as ET import pickle import pandas as pd import numpy as np import matplotlib.pyplot as plt from rdkit.Chem import AllChem as Chem from rdkit import DataStructs from IPython.core.display import HTML from . import tools as cpt from .config import ACT_PROF_PARAMETERS from .config import LIMIT_SIMILARITY_L, LIMIT_CELL_COUNT_L, LIMIT_ACTIVITY_L try: from misc_tools import apl_tools AP_TOOLS = True #: Library version VERSION = apl_tools.get_commit(__file__) # I use this to keep track of the library versions I use in my project notebooks print("{:45s} (commit: {})".format(__name__, VERSION)) except ImportError: AP_TOOLS = False print("{:45s} ({})".format(__name__, time.strftime("%y%m%d-%H:%M", time.localtime(op.getmtime(__file__))))) try: from . import resource_paths as cprp except ImportError: from . import resource_paths_templ as cprp print("* Resource paths not found, stub loaded.") print(" Automatic loading of resources will not work,") print(" please have a look at resource_paths_templ.py") try: import holoviews as hv hv.extension("bokeh") HOLOVIEWS = True except ImportError: HOLOVIEWS = False print("* holoviews could not be import. heat_hv is not available.") FINAL_PARAMETERS = ['Metadata_Plate', 'Metadata_Well', 'plateColumn', 'plateRow', "Compound_Id", 'Container_Id', "Well_Id", "Producer", "Pure_Flag", "Toxic", "Rel_Cell_Count", "Known_Act", "Trivial_Name", 'WellType', 'Conc_uM', "Activity", "Act_Profile", "Plate", "Smiles"] DROP_FROM_NUMBERS = ['plateColumn', 'plateRow', 'Conc_uM', "Compound_Id"] DROP_GLOBAL = ["PathName_CellOutlines", "URL_CellOutlines", 'FileName_CellOutlines', 'ImageNumber', 'Metadata_Site', 'Metadata_Site_1', 'Metadata_Site_2'] QUANT = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] DEBUG = False def debug_print(txt, val): if DEBUG: txt = txt + ":" print("DEBUG {:20s}".format(txt), val) class DataSet(): def __init__(self, log=True): self.data = pd.DataFrame() self.fields = {"plateColumn": "Metadata_Plate", "WellType": "WellType", "ControlWell": "Control", "CompoundWell": "Compound"} self.log = log def __getitem__(self, item): res = self.data[item] if isinstance(res, pd.DataFrame): result = DataSet() result.data = res result.print_log("subset") else: result = res return result # def __getattr__(self, name): # """Try to call undefined methods on the underlying pandas DataFrame.""" # def method(*args, **kwargs): # res = getattr(self.data, name)(*args, **kwargs) # if isinstance(res, pd.DataFrame): # result = DataSet() # result.data = res # result.print_log(name) # else: # result = res # return result # return method def __getattr__(self, name): """Try to call undefined methods on the underlying pandas DataFrame.""" if hasattr(self.data, name): def method(*args, **kwargs): res = getattr(self.data, name)(*args, **kwargs) if isinstance(res, pd.DataFrame): result = self.new() result.data = res print_log(result.data, name) else: result = res return result return method else: raise AttributeError def new(self): result = DataSet() # self._pass_properties(result) return result def show(self): parameters = [k for k in FINAL_PARAMETERS if k in self.data] print("Shape: ", self.shape) print("Parameters:", parameters) return HTML(self.data[parameters]._repr_html_()) def head(self, n=5): parameters = [k for k in FINAL_PARAMETERS if k in self.data] res = self.data[parameters].head(n) result = DataSet() result.data = res result.print_log("head") return result def drop_cols(self, cols, inplace=False): """Drops the list of columns from the DataFrame. Listed columns that are not present in the DataFrame are simply ignored (no error is thrown).""" if inplace: drop_cols(self.data, cols, inplace=True) self.print_log("drop cols (inplace)") else: result = DataSet() result.data = drop_cols(self.data, cols, inplace=False) result.print_log("drop cols") return result def keep_cols(self, cols, inplace=False): if inplace: self.data = self.data[cols] self.print_log("keep cols (inplace)") else: result = DataSet() result.data = self.data[cols] result.print_log("keep cols") return result def print_log(self, component, add_info=""): if self.log: print_log(self.data, component, add_info) def load(self, fn, sep="\t"): """Read one or multiple result files and concatenate them into one dataset. `fn` is a single filename (string) or a list of filenames.""" self.data = load(fn, sep=sep).data self.print_log("load data") def write_csv(self, fn, parameters=None, sep="\t"): result = self.data.copy() if isinstance(parameters, list): result = result[parameters] result.to_csv(fn, sep=sep, index=False) def write_pkl(self, fn): self.data.to_pickle(fn) def write_parameters(self, fn="parameters.txt"): parameters = sorted(self.measurements) with open("parameters.txt", "w") as f: f.write('"') f.write('",\n"'.join(parameters)) f.write('"') print(len(parameters), "parameters written.") def describe(self, times_mad=3.0): df = numeric_parameters(self.data) stats = pd.DataFrame() stats["Min"] = df.min() stats["Max"] = df.max() stats["Median"] = df.median() stats["MAD"] = df.mad() stats["Outliers"] = df[(((df - df.median()).abs() - times_mad * df.mad()) > 0)].count() print(self.shape) return stats def well_type_from_position(self): """Assign the WellType from the position on the plate. Controls are in column 11 and 12""" result = DataSet(log=self.log) result.data = well_type_from_position(self.data) result.print_log("well type from pos") return result def well_from_position(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Assign Metadata_Well from plateRow, plateColumn""" result = DataSet(log=self.log) result.data = well_from_position(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("well from pos") return result def position_from_well(self, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Generate plateRow and plateColumn from Metatadata_Well""" result = DataSet(log=self.log) result.data = position_from_well(self.data, well_name=well_name, row_name=row_name, col_name=col_name) result.print_log("pos from well") return result def join_layout_384(self, layout_fn, on="Address_384"): result = DataSet(log=self.log) result.data = join_layout_384(self.data, layout_fn, on=on) result.print_log("join layout 384") return result def join_layout_1536(self, plate, quadrant, on="Address_384", how="inner"): """Cell Painting is always run in 384er plates. COMAS standard screening plates are format 1536. With this function, the 1536-to-384 reformatting file with the smiles added by join_smiles_to_layout_1536() can be used directly to join the layout to the individual 384er plates.""" result = DataSet(log=self.log) result.data = join_layout_1536(self.data, plate, quadrant, on=on, how=how) result.print_log("join layout 1536") return result def numeric_parameters(self): result = DataSet() result.data = numeric_parameters(self.data) return result def flag_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Flag data rows of toxic compounds""" result = DataSet() result.data = flag_toxic(self.data, cutoff=cutoff) flagged = result.data["Toxic"].sum() result.print_log("flag toxic", "{:3d} flagged".format(flagged)) return result def remove_toxic(self, cutoff=LIMIT_CELL_COUNT_L / 100): """Remove data rows of toxic compounds""" result = DataSet() toxic = DataSet() result.data, toxic.data = remove_toxic(self.data, cutoff=cutoff) result.print_log("remove toxic", "{:3d} removed".format(toxic.shape[0])) return result, toxic def remove_impure(self, strict=False, reset_index=True): """Remove entries with `Pure_Flag == "Fail"`""" result = DataSet() flagged = DataSet() result.data, flagged.data = remove_impure(self.data) result.print_log("remove impure", "{:3d} removed".format(flagged.shape[0])) return result, flagged def remove_outliers(self, times_dev=3.0, group_by=None, method="median"): """Returns the filtered dataframe as well as the outliers. method can be `median`or `mean` """ result = DataSet() outliers = DataSet() result.data, outliers.data = remove_outliers(self.data, times_dev=times_dev, group_by=group_by, method=method) result.print_log("remove outliers", "{:3d} removed".format(outliers.shape[0])) return result, outliers def remove_skipped_echo_direct_transfer(self, fn): """Remove wells that were reported as skipped in the Echo protocol (xml). This functions works with Echo direct transfer protocols. Function supports using wildcards in the filename, the first file will be used. Returns a new dataframe without the skipped wells.""" result = DataSet() result.data, skipped = remove_skipped_echo_direct_transfer(self.data, fn=fn) skipped_str = "(" + ", ".join(skipped) + ")" result.print_log("remove skipped", "{:3d} skipped {}".format(self.shape[0] - result.shape[0], skipped_str)) return result def drop_dups(self, cpd_id="Compound_Id"): """Drop duplicate Compound_Ids""" result = DataSet() result.data = self.data.drop_duplicates(cpd_id) result.print_log("drop dups") return result def group_on_well(self, group_by=FINAL_PARAMETERS): """Group results on well level.""" result = DataSet() result.data = group_on_well(self.data, group_by=group_by) result.print_log("group on well") return result def join_batch_data(self, df_data=None, how="left", fillna="n.d."): """Join data by Batch_Id.""" result = DataSet() result.data = join_batch_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join batch data") return result def join_container_data(self, df_data=None, how="left", fillna=""): """Join data by Container_Id.""" result = DataSet() result.data = join_container_data(self.data, df_data=df_data, how=how, fillna=fillna) result.print_log("join cntnr data") return result def join_container(self, cont_data=None, how="inner"): result = DataSet(log=self.log) result.data = join_container(self.data, cont_data=cont_data, how=how) result.print_log("join container") return result def join_smiles(self, df_smiles=None, how="left"): """Join Smiles from Compound_Id.""" result = DataSet() result.data = join_smiles(self.data, df_smiles=df_smiles, how=how) result.print_log("join smiles") return result def join_annotations(self): """Join Annotations from Compound_Id.""" result = DataSet() result.data = join_annotations(self.data) result.print_log("join annotations") return result def add_dmso(self): """Add DMSO to references.""" result = DataSet() result.data = add_dmso(self.data) result.print_log("add DMSO") return result def poc(self, group_by=None, well_type="WellType", control_name="Control"): """Normalize the data set to Percent-Of-Control per group (e.g. per plate) based on the median of the controls. Parameters: group_by (string or None): optional column by which the calculation should be grouped, e.g. the column with plate name.""" result = DataSet() result.data = poc(self.data, group_by=group_by) self.print_log("POC") return result def activity_profile(self, mad_mult=3.5, parameters=ACT_PROF_PARAMETERS, only_final=True): """Generates the `Act_Profile` column. The byte is set when the parameter's value is greater (or smaller) than parameter_ctrl.median() + (or -) `mad_mult`* parameter.mad() If a list of parameters is given, then the activity profile will be calculated for these parameters. If `only_final` == `True`, then only the parameters listed in `FINAL_PARAMETERS` are kept in the output_table. Returns a new Pandas DataFrame.""" result = DataSet() result.data = activity_profile(self.data, mad_mult=mad_mult, parameters=parameters, only_final=only_final) result.print_log("activity profile") return result def relevant_parameters(self, ctrls_std_rel_min=0.001, ctrls_std_rel_max=0.10): result = DataSet() result.data = relevant_parameters(self.data, ctrls_std_rel_min=ctrls_std_rel_min, ctrls_std_rel_max=ctrls_std_rel_max) num_parm = len(result.measurements) result.print_log("relevant parameters", "{:.3f}/{:.3f}/{:4d}" .format(ctrls_std_rel_min, ctrls_std_rel_max, num_parm)) return result def correlation_filter(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (mad)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def correlation_filter_std(self, cutoff=0.9, method="pearson"): """The correlation removes all highly correlated columns from the dataframe. The function was implemented according to the description of the corresponding KNIME component. Parameters: cutoff (float): correlation cutoff method (string): "pearson", "kendall", "spearman" (very slow) Returns a new DataFrame with only the non-correlated columns""" result = DataSet() result.data, iterations = correlation_filter_std(self.data, cutoff=cutoff, method=method) num_parm = len(result.measurements) result.print_log("correl. filter (std)", "{:3d} iterations/{:4d}" .format(iterations, num_parm)) return result def id_filter(self, cpd_ids, id_col="Compound_Id", reset_index=True, sort_by_input=False): result = self.new() result.data = id_filter(self.data, cpd_ids, id_col=id_col, reset_index=reset_index, sort_by_input=sort_by_input) return result def add_act_profile_for_control(self, parameters=ACT_PROF_PARAMETERS): # Compound_Id DMSO: 245754 control = {"Compound_Id": 245754, "Trivial_Name": "Control", "Activity": 0, "Act_Profile": "".join(["1"] * len(parameters))} ck = control.keys() for k in ck: if k not in self.data.keys(): control.pop(k) tmp = pd.DataFrame(control) result = DataSet() result.data = pd.concat(self.data, tmp) return result def update_similar_refs(self, mode="cpd", write=True): """Find similar compounds in references and update the export file. The export file of the dict object is in pkl format. In addition, a tsv file (or maybe JSON?) is written for use in PPilot. This method dpes not return anything, it just writes the result to fle.""" rem = "" if write else "write is off" update_similar_refs(self.data, mode=mode, write=write) self.print_log("update similar", rem) def update_datastore(self, mode="cpd", write=True): """Update the DataStore with the current DataFrame.""" update_datastore(self.data, mode=mode, write=write) def find_similar(self, act_profile, cutoff=0.5, max_num=5): """Filter the dataframe for activity profiles similar to the given one. `cutoff` gives the similarity threshold, default is 0.5.""" result = DataSet() result.data = find_similar(self.data, act_profile=act_profile, cutoff=cutoff, max_num=max_num) result.print_log("find similar") return result def well_id_similarity(self, well_id1, well_id2): """Calculate the similarity of the activity profiles from two compounds (identified by `Compound_Id`). Returns value between 0 .. 1""" return well_id_similarity(self.data, well_id1, self.data, well_id2) def count_active_parameters_occurrences(self, act_prof="Act_Profile", parameters=ACT_PROF_PARAMETERS): """Counts the number of times each parameter has been active in the dataset.""" return count_active_parameters_occurrences(self.data, act_prof=act_prof, parameters=ACT_PROF_PARAMETERS) def heat_mpl(self, id_prop="Compound_Id"): heat_mpl(self.data, id_prop) @property def shape(self): return self.data.shape @property def metadata(self): """Returns a list of the those parameters in the DataFrame that are NOT CellProfiler measurements.""" return metadata(self.data) @property def measurements(self): """Returns a list of the CellProfiler parameters that are in the DataFrame.""" return measurements(self.data) def load(fn, sep="\t"): """Read one or multiple result files and concatenate them into one dataset. `fn` is a single filename (string) or a list of filenames.""" result = DataSet() if isinstance(fn, list): result.data = pd.concat((pd.read_csv(f, sep=sep) for f in fn)) else: result.data = pd.read_csv(fn, sep=sep) drop = [d for d in DROP_GLOBAL if d in result.data.keys()] result.data.drop(drop, axis=1, inplace=True) result.print_log("load dataset") return result def load_pkl(fn): result = DataSet() result.data = pd.read_pickle(fn) result.print_log("load pickle") return result def print_log(df, component, add_info=""): component = component + ":" if len(add_info) > 0: add_info = " ({})".format(add_info) print("* {:22s} ({:5d} | {:4d}){}".format(component, df.shape[0], df.shape[1], add_info)) def read_smiles_file(fn, props=['Compound_Id', "Smiles"]): """Read in the file with the Compound_Ids and the Smiles. Return a DataFrame for fast access.""" result = pd.read_csv(fn, sep="\t") result = result[props] result = result.apply(pd.to_numeric, errors='ignore') return result def clear_resources(): try: del SMILES print("* deleted resource: SMILES") except NameError: pass try: del ANNOTATIONS print("* deleted resource: ANNOTATIONS") except NameError: pass try: del REFERENCES print("* deleted resource: REFERENCES") except NameError: pass try: del SIM_REFS print("* deleted resource: SIM_REFS") except NameError: pass try: del DATASTORE print("* deleted resource: DATASTORE") except NameError: pass try: del LAYOUTS print("* deleted resource: LAYOUTS") except NameError: pass def load_resource(resource, mode="cpd"): """Available resources: SMILES, ANNOTATIONS, SIM_REFS, REFERENCES, CONTAINER, CONTAINER_DATA, BATCH_DATA, DATASTORE, LAYOUTS""" res = resource.lower() glbls = globals() if "smi" in res: if "SMILES" not in glbls: # except NameError: global SMILES print("- loading resource: (SMILES)") SMILES = read_smiles_file(cprp.smiles_path, props=cprp.smiles_cols) SMILES = SMILES.apply(pd.to_numeric, errors='ignore') elif "annot" in res: if "ANNOTATIONS" not in glbls: global ANNOTATIONS print("- loading resource: (ANNOTATIONS)") ANNOTATIONS = pd.read_csv(cprp.annotations_path, sep="\t") ANNOTATIONS = ANNOTATIONS.apply(pd.to_numeric, errors='ignore') elif "sim" in res: if "SIM_REFS" not in glbls: global SIM_REFS print("- loading resource: (SIM_REFS)") if "ext" in mode.lower(): srp = cprp.sim_refs_ext_path else: srp = cprp.sim_refs_path try: SIM_REFS = pd.read_csv(srp, sep="\t") except FileNotFoundError: print(" * SIM_REFS not found, creating new one.") SIM_REFS = pd.DataFrame() elif "ref" in res: if "REFERENCES" not in glbls: global REFERENCES print("- loading resource: (REFERENCES)") REFERENCES = pd.read_csv(cprp.references_path, sep="\t") # .fillna("") elif "cont" in res: if "CONTAINER" not in glbls: global CONTAINER print("- loading resource: (CONTAINER)") CONTAINER = pd.read_csv(cprp.container_path, sep="\t") if len(cprp.container_data_cols) > 0: CONTAINER = CONTAINER[cprp.container_cols] CONTAINER = CONTAINER.apply(pd.to_numeric, errors='ignore') elif "container_d" in res: if "CONTAINER_DATA" not in glbls: global CONTAINER_DATA print("- loading resource: (CONTAINER)") CONTAINER_DATA = pd.read_csv(cprp.container_data_path, sep="\t") if len(cprp.container_data_cols) > 0: CONTAINER_DATA = CONTAINER_DATA[cprp.container_data_cols] CONTAINER_DATA = CONTAINER_DATA.apply(pd.to_numeric, errors='ignore') elif "batch_d" in res: if "BATCH_DATA" not in glbls: global BATCH_DATA print("- loading resource: (BATCH_DATA)") BATCH_DATA = pd.read_csv(cprp.batch_data_path, sep="\t") if len(cprp.batch_data_cols) > 0: BATCH_DATA = BATCH_DATA[cprp.batch_data_cols] BATCH_DATA = BATCH_DATA.apply(pd.to_numeric, errors='ignore') elif "datast" in res: if "DATASTORE" not in glbls: global DATASTORE print("- loading resource: (DATASTORE)") try: DATASTORE = pd.read_csv(cprp.datastore_path, sep="\t") except FileNotFoundError: print(" * DATASTORE not found, creating new one.") DATASTORE = pd.DataFrame() elif "layout" in res: if "LAYOUTS" not in glbls: global LAYOUTS print("- loading resource: (LAYOUTS)") LAYOUTS = pd.read_csv(cprp.layouts_path, sep="\t") else: raise FileNotFoundError("# unknown resource: {}".format(resource)) def well_type_from_position(df): """Assign the WellType from the position on the plate. Controls are in column 11 and 12""" result = df.copy() result["WellType"] = "Compound" result["WellType"][(result["plateColumn"] == 11) | (result["plateColumn"] == 12)] = "Control" return result def drop_cols(df, cols, inplace=False): """Drops the list of columns from the DataFrame. Listed columns that are not present in the DataFrame are simply ignored (no error is thrown).""" df_keys = df.keys() drop = [k for k in cols if k in df_keys] if inplace: df.drop(drop, axis=1, inplace=True) else: result = df.drop(drop, axis=1) return result def well_from_position(df, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Assign Metadata_Well from plateRow, plateColumn""" def _well_from_position_series(s): return cpt.well_from_position_single(s[0], s[1]) result = df.copy() result[well_name] = result[[row_name, col_name]].apply(_well_from_position_series, axis=1) return result def position_from_well(df, well_name="Metadata_Well", row_name="plateRow", col_name="plateColumn"): """Generate plateRow and plateColumn from Metatadata_Well""" def _position_from_well_series(well): return (pd.Series(cpt.position_from_well_single(well))) result = df.copy() result[[row_name, col_name]] = result[well_name].apply(_position_from_well_series) return result def join_layout_384(df, layout_fn, on="Address"): result = df.copy() result[on] = result["Metadata_Well"] layout = pd.read_csv(layout_fn) result = result.merge(layout, on=on) result.drop(on, axis=1, inplace=True) result = result.apply(pd.to_numeric, errors='ignore') return result def get_batch_from_container(df): result = df.copy() result["Batch_Id"] = result["Container_Id"].str[:9] return result def get_cpd_from_container(df): result = pd.concat([df, df["Container_Id"].str.split(":", expand=True)], axis=1) result.rename(columns={0: "Compound_Id"}, inplace=True) drop_cols(result, [1, 2, 3, 4], inplace=True) return result def join_layout_1536(df, plate, quadrant, on="Address_384", sep="\t", how="inner"): """Cell Painting is always run in 384er plates. COMAS standard screening plates are format 1536. With this function, the 1536-to-384 reformatting file can be used directly to join the layout to the individual 384er plates.""" load_resource("LAYOUTS") layout = LAYOUTS.copy() if not isinstance(quadrant, str): quadrant = str(quadrant) drop = ["Plate_name_384", "Plate_name_1536", "Address_1536", "Index", 1, 2] result = df.copy() layout[on] = layout["Plate_name_384"] + layout[on] if "Container_ID_1536" in layout.keys(): layout.rename(columns={"Container_ID_1536": "Container_Id"}, inplace=True) if "Conc" in layout.keys(): layout.rename(columns={"Conc": "Conc_uM"}, inplace=True) layout = join_container(layout) drop_cols(layout, drop, inplace=True) result[on] = plate + "." + quadrant[-1:] + result["Metadata_Well"] result = result.merge(layout, on=on, how=how) result.drop(on, axis=1, inplace=True) result["Well_Id"] = result["Container_Id"] + "_" + result["Metadata_Well"] result = result.apply(pd.to_numeric, errors='ignore') return result def write_datastore(): df = DATASTORE[cprp.datastore_cols] df = df.sort_values("Well_Id") df.to_csv(cprp.datastore_path, index=False, sep="\t") print_log(df, "write datastore") def update_datastore(df2, on="Well_Id", mode="cpd", write=False): global DATASTORE load_resource("DATASTORE") df1 = DATASTORE df2 = df2.copy() if "ref" in mode: df2["Is_Ref"] = True else: df2["Is_Ref"] = False df2 = df2[cprp.datastore_cols] df1 = df1.append(df2, ignore_index=True) rem = "" if write else "write is off" print_log(df2, "update datastore", rem) DATASTORE = df1.drop_duplicates(subset=on, keep="last") if write: write_datastore() def join_batch_data(df, df_data=None, how="Left", fillna="n.d."): """Join data from Batch_Id.""" if df_data is None: load_resource("BATCH_DATA") df_data = BATCH_DATA if "Batch_Id" not in df.keys(): df = get_batch_from_container(df) result = df.merge(df_data, on="Batch_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna(fillna) return result def join_container_data(df, df_data=None, how="Left", fillna=""): """Join data from Container_Id.""" if df_data is None: load_resource("CONTAINER_DATA") df_data = CONTAINER_DATA result = df.merge(df_data, on="Container_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna(fillna) return result def join_container(df, cont_data=None, how="inner"): if cont_data is None: load_resource("CONTAINER") cont_data = CONTAINER[["Container_Id", "Compound_Id"]] result = df.merge(cont_data, on="Container_Id", how=how) return result def join_smiles(df, df_smiles=None, how="left"): """Join Smiles from Compound_Id.""" if df_smiles is None: load_resource("SMILES") df_smiles = SMILES result = df.merge(df_smiles, on="Compound_Id", how=how) result = result.apply(pd.to_numeric, errors='ignore') result = result.fillna("*") return result def join_annotations(df): """Join Annotations from Compound_Id.""" load_resource("ANNOTATIONS") annotations = ANNOTATIONS drop_cols(df, ["Trivial_Name", "Known_Act"], inplace=True) result = df.merge(annotations, on="Compound_Id", how="left") result = result.fillna("") return result def add_dmso(df): if df[df["Compound_Id"] == 245754].shape[0] > 0: # DMSO already present result = df.copy() else: d = { "Compound_Id": [245754], "Container_Id": ["245754:01:01"], "Well_Id": ["245754:01:01_H11"], "Producer": ["DMSO"], "Conc_uM": [10], "Activity": [0.0], "Rel_Cell_Count": [100], "Pure_Flag": ["Ok"], "Toxic": [False], "Trivial_Name": ["DMSO"], "Known_Act": ["Control"], "Metadata_Well": ["H11"], "Plate": ["170523-S0195-1"], "Smiles": ["CS(C)=O"], "Act_Profile": [len(ACT_PROF_PARAMETERS) * "1"] } dmso = pd.DataFrame(d) result = pd.concat([df, dmso]) return result def metadata(df): """Returns a list of the those parameters in the DataFrame that are NOT CellProfiler measurements.""" parameters = [k for k in df.keys() if not (k.startswith("Count_") or k.startswith("Median_"))] return parameters def measurements(df): """Returns a list of the CellProfiler parameters that are in the DataFrame.""" parameters = [k for k in df.select_dtypes(include=[np.number]).keys() if k.startswith("Count_") or k.startswith("Median_")] return parameters def numeric_parameters(df): result = df.copy()[measurements(df)] return result def flag_toxic(df, cutoff=LIMIT_CELL_COUNT_L / 100): """Flag data rows of toxic compounds""" result = df.copy() median_cell_count_controls = df[df["WellType"] == "Control"]["Count_Cells"].median() result["Toxic"] = (result["Count_Cells"] < median_cell_count_controls * cutoff) result["Rel_Cell_Count"] = (100 * (result["Count_Cells"] / median_cell_count_controls)).astype(int) return result def remove_toxic(df, cutoff=LIMIT_CELL_COUNT_L / 100): """Remove data rows of toxic compounds""" if "Toxic" not in df.keys(): flagged = flag_toxic(df, cutoff=cutoff) else: flagged = df.copy() result = flagged[~flagged["Toxic"]] toxic = flagged[flagged["Toxic"]] return result, toxic def remove_skipped_echo_direct_transfer(df, fn): """Remove wells that were reported as skipped in the Echo protocol (xml). This functions works with Echo direct transfer protocols. Function supports using wildcards in the filename, the first file will be used. Returns a new dataframe without the skipped wells.""" assert fn.endswith(".xml"), "Echo file expected in XML format." skipped_wells = [] try: echo_fn = glob.glob(fn)[0] # use the first glob match except IndexError: raise FileNotFoundError("Echo file could not be found") echo_print = ET.parse(echo_fn).getroot() skipped = echo_print.find("skippedwells") for well in skipped.findall("w"): skipped_wells.append(cpt.format_well(well.get("dn"))) # print("Skipped wells (will be removed):", skipped_wells) # remove the rows with the skipped wells # i.e. keep the rows where Metadata_Well is not in the list skipped_wells result = df[~df["Metadata_Well"].isin(skipped_wells)] return result, skipped_wells def remove_impure(df, strict=False, reset_index=True): """Remove entries with `Pure_Flag == "Fail"` If `strict == True` compound with `Pure_Flag == Warn` are also removed.""" result = df.copy() outliers_list = [] try: outl = result[result["Pure_Flag"] == "Fail"] except TypeError: print(result["Pure_Flag"].dtype) raise result = result[result["Pure_Flag"] != "Fail"] outliers_list.append(outl) if strict: outl = result[result["Pure_Flag"] == "Warn"] result = result[result["Pure_Flag"] != "Warn"] outliers_list.append(outl) outliers = pd.concat(outliers_list) if reset_index: result = result.reset_index() outliers = outliers.reset_index() result.drop("index", axis=1, inplace=True) outliers.drop("index", axis=1, inplace=True) return result, outliers def remove_outliers(df, times_dev=3.0, group_by=None, method="median", reset_index=True): """Returns the filtered dataframe as well as the outliers. method can be `median`or `mean` """ include = [k for k in FINAL_PARAMETERS if k in df.keys()] input = df.copy() # input = numeric_parameters(df) if group_by is None: group_by = "temp_group" input[group_by] = "data" gdata_list = [] outliers_list = [] for group in df[group_by].unique(): gdata = input[input[group_by] == group] gdata = numeric_parameters(gdata) if method == "median": mask = (gdata - gdata.median()).abs() - times_dev * gdata.mad() <= 0 elif method == "mean": mask = (gdata - gdata.mean()).abs() - times_dev * gdata.std() <= 0 else: raise ValueError("Unknown method {}.".format(method)) good_data = gdata[(mask).all(axis=1)] outl_data = gdata[(~(mask).all(axis=1))] # outliers # print(group, ": ", good_data.shape, outl_data.shape) gdata_list.append(good_data) outliers_list.append(outl_data) result = pd.concat(gdata_list) outliers = pd.concat(outliers_list) if group_by == "temp_group": # remove the grouping temp col again result.drop(group_by, axis=1, inplace=True) outliers.drop(group_by, axis=1, inplace=True) for k in include: result[k] = df[k] outliers[k] = df[k] if reset_index: result = result.reset_index() outliers = outliers.reset_index() return result, outliers def group_on_well(df, group_by=FINAL_PARAMETERS): """Group results on well level.""" group_by = list(set(group_by).intersection(set(df.keys()))) result = df.groupby(by=group_by).median().reset_index() return result def poc(df, group_by=None): result = df.copy() if group_by is None: # create a temp grouping column group_by = "temp_group" result[group_by] = "data" plates = set(result[group_by]) for plate in plates: print("Normalizing {}... ".format(plate), end="") controls = result[(result[group_by] == plate) & (result["WellType"] == "Control")].select_dtypes(include=[np.number]) median = controls.median() for col in controls.keys(): if col in FINAL_PARAMETERS: continue result[col] = 100 * result[col] / median[col] print("done.") if group_by == "temp_group": # remove the grouping temp col again result.drop(group_by, axis=1, inplace=True) return result def activity_profile(df, mad_mult=3.5, parameters=ACT_PROF_PARAMETERS, only_final=True): """Generates the `Act_Profile` column. The byte is set when the parameter's value is greater (or smaller) than parameter_ctrl.median() + (or -) `mad_mult`* parameter.mad() If a list of parameters is given, then the activity profile will be calculated for these parameters. If `only_final` == `True`, then only the parameters listed in `FINAL_PARAMETERS` are kept in the output_table. Returns a new Pandas DataFrame.""" decimals = {"Activity": 1} result = df.copy() if parameters is None: # choose all numeric parameters act_parameters = measurements(df) else: act_parameters = parameters.copy() assert len(act_parameters) > 0 # sort parameters alphabetically act_parameters.sort() controls = df[act_parameters][df["WellType"] == "Control"] for key in act_parameters: median = controls[key].median() times_mad = mad_mult * controls[key].mad() lower_bound = median - times_mad upper_bound = median + times_mad result.loc[df[key].between(lower_bound, upper_bound, inclusive=True), [key]] = 1 result.loc[df[key] < lower_bound, [key]] = 0 result.loc[df[key] > upper_bound, [key]] = 2 result[act_parameters] = result[act_parameters].astype(int) result["Activity"] = 100 * (result[act_parameters] != 1).sum(axis=1) / len(act_parameters) result["Act_Profile"] = result[act_parameters].astype(str).apply(lambda x: "".join(x), axis=1) if only_final: drop = [] for k in result.keys(): if k not in FINAL_PARAMETERS: drop.append(k) result.drop(drop, axis=1, inplace=True) result = result.round(decimals) return result def relevant_parameters(df, ctrls_std_rel_min=0.001, ctrls_std_rel_max=0.1, group_by="Plate"): """...std_rel...: mad relative to the median value""" relevant_table = FINAL_PARAMETERS.copy() ctrl_set = set(df.keys()) plates = sorted(set(df[group_by])) for plate in plates: debug_print("Processing plate", plate) controls = df[(df[group_by] == plate) & (df["WellType"] == "Control")].select_dtypes(include=[np.number]) median = controls.median() std = controls.quantile(q=QUANT).std() ds = std / median >= ctrls_std_rel_min tmp_set = set([p for p in ds.keys() if ds[p]]) ctrl_set.intersection_update(tmp_set) debug_print("ctrl_set", len(ctrl_set)) ds = std / median <= ctrls_std_rel_max tmp_set = set([p for p in ds.keys() if ds[p]]) ctrl_set.intersection_update(tmp_set) # debug_print("tmp_set", len(tmp_set)) debug_print("ctrl_set", len(ctrl_set)) relevant_table.extend(list(ctrl_set)) debug_print("relevant_table", len(relevant_table)) result_keys = list(df.keys()) keep = [] for key in result_keys: if key in relevant_table: keep.append(key) result = df[keep] debug_print("keep", len(keep)) return result def correlation_filter(df, cutoff=0.9, method="pearson"): assert method in ["pearson", "kendall", "spearman"], 'method has to be one of ["pearson", "kendall", "spearman"]' df_copy = df.copy().select_dtypes(include=[np.number]) # init the list of the uncorrelated parameters, incl. some string param. parameters_uncorr = [p for p in FINAL_PARAMETERS if p in df] iteration = 0 while True: cm = df_copy.corr(method=method).abs() correlated = cm[cm > cutoff] ds = correlated.count().sort_values(ascending=False) if ds[0] == 1: break # no more correlations iteration += 1 # from all columns with the same number of correlated columns, # find the column with the highest value range # and keep that preferably num_correlated = ds[0] # number of correlated columns rnge = 0.0 rnge_key = "" for i in range(len(ds)): if ds[i] < num_correlated: break # only compare columns with the same highest correlation k = ds.keys()[i] debug_print(" k", k) r = df_copy[k].max() - df_copy[k].min() if r > rnge: rnge = r rnge_key = k keep_it = rnge_key parameters_uncorr.append(keep_it) debug_print("keep_it", keep_it) debug_print("num_corr.", num_correlated) # find the parameters actually correlated to `keep_it` parameters_to_remove = list(correlated[keep_it][correlated[keep_it].notnull()].keys()) # The uncorrelated parameter `keep_it` is also in this list and has to be removed from it: debug_print("param_to_rem", parameters_to_remove) # remove the correlated parameters: df_copy.drop(parameters_to_remove, axis=1, inplace=True) parameters_uncorr.extend(df_copy.keys()) parameters_uncorr = list(set(parameters_uncorr)) return df[parameters_uncorr], iteration def correlation_filter_std(df, cutoff=0.9, method="pearson"): """Reduce the parameter set to only uncorrelated parameters. From a set of correlated parameters only the one with the lowest variance in the controls is kept, all others are discarded.""" assert method in ["pearson", "kendall", "spearman"], 'method has to be one of ["pearson", "kendall", "spearman"]' assert "WellType" in df.keys() # init the list of the uncorrelated parameters, incl. some string param. parameters_uncorr = [p for p in FINAL_PARAMETERS if p in df] df_copy = df.copy() controls = df_copy[df_copy["WellType"] == "Control"] controls_rel_std = controls.quantile(q=QUANT).std() / controls.median() df_copy = df_copy.select_dtypes(include=[np.number]) iteration = 0 while True: cm = df_copy.corr(method=method) correlated = cm[cm > cutoff] ds = correlated.count().sort_values(ascending=False) if ds[0] == 1: break # no more correlations iteration += 1 equal_corr = ds[ds == ds[0]] eq_keys = equal_corr.keys() # from all columns with the same number of correlated columns, # find the column with the highest POC range # and keep that preferably keep_it = controls_rel_std[eq_keys].sort_values(ascending=True).keys()[0] parameters_uncorr.append(keep_it) debug_print("keep_it", keep_it) debug_print("num_corr.", ds[0]) # find the parameters actually correlated to `keep_it` parameters_to_remove = list(correlated[keep_it][correlated[keep_it].notnull()].keys()) debug_print("param_to_rem", parameters_to_remove) # remove the correlated parameters: df_copy.drop(parameters_to_remove, axis=1, inplace=True) parameters_uncorr.extend(df_copy.keys()) parameters_uncorr = list(set(parameters_uncorr)) # print("It took {} iterations to remove all correlated parameters.".format(iteration - 1)) return df[parameters_uncorr], iteration def correlation_filter_std_old(df, cutoff=0.9, method="pearson"): """Reduce the parameter set to only uncorrelated parameters. From a set of correlated parameters only the one with the lowest variance in the controls is kept, all others are discarded.""" assert method in ["pearson", "kendall", "spearman"], 'method has to be one of ["pearson", "kendall", "spearman"]' assert "WellType" in df.keys() # init the list of the uncorrelated parameters, incl. some string param. parameters_uncorr = [p for p in FINAL_PARAMETERS if p in df] df_copy = df.copy() controls = df_copy[df_copy["WellType"] == "Control"] controls_median = controls.median() df_copy = df_copy.select_dtypes(include=[np.number]) iteration = 0 while True: cm = df_copy.corr(method=method) correlated = cm[cm > cutoff] ds = correlated.count().sort_values(ascending=False) if ds[0] == 1: break # no more correlations iteration += 1 equal_corr = ds[ds == ds[0]] eq_keys = equal_corr.keys() # from all columns with the same number of correlated columns, # find the column with the highest POC range # and keep that preferably poc = (df_copy[eq_keys] / controls_median[eq_keys]) keep_it = (poc.max() - poc.min()).sort_values(ascending=False).keys()[0] parameters_uncorr.append(keep_it) debug_print("keep_it", keep_it) debug_print("num_corr.", ds[0]) # find the parameters actually correlated to `keep_it` parameters_to_remove = list(correlated[keep_it][correlated[keep_it].notnull()].keys()) debug_print("param_to_rem", parameters_to_remove) # remove the correlated parameters: df_copy.drop(parameters_to_remove, axis=1, inplace=True) parameters_uncorr.extend(df_copy.keys()) parameters_uncorr = list(set(parameters_uncorr)) # print("It took {} iterations to remove all correlated parameters.".format(iteration - 1)) return df[parameters_uncorr], iteration def id_filter(df, cpd_ids, id_col="Compound_Id", reset_index=True, sort_by_input=False): if not isinstance(cpd_ids, list): cpd_ids = [cpd_ids] result = df[df[id_col].isin(cpd_ids)] if reset_index: result.reset_index(inplace=True) result.drop("index", axis=1, inplace=True) if sort_by_input: result["_sort"] = pd.Categorical(result[id_col], categories=cpd_ids, ordered=True) result = result.sort_values("_sort") result.drop("_sort", axis=1, inplace=False) print_log(result, "id filter") return result def find_similar(df, act_profile, cutoff=0.5, max_num=5, ignore_direction=False, mask=""): """Filter the dataframe for activity profiles similar to the given one. `cutoff` gives the similarity threshold, default is 0.5.""" decimals = {"Similarity": 3} result = df.copy() result["Similarity"] = result["Act_Profile"].apply(lambda x: cpt.profile_sim( x, act_profile, ignore_direction=ignore_direction, mask=mask )) result = result[result["Similarity"] >= cutoff] result.drop("Act_Profile", axis=1, inplace=True) result = result.sort_values("Similarity", ascending=False).head(max_num) result = result.round(decimals) return result def write_obj(obj, fn): """Save a generic python object through pickling.""" with open(fn, "wb") as f: pickle.dump(obj, f) def write_sim_refs(mode="cpd"): """Export of sim_refs as pkl and as tsv for PPilot""" global SIM_REFS keep = ["Compound_Id", "Well_Id", "Is_Ref", "Ref_Id", "RefCpd_Id", "Similarity", "Tanimoto", "Times_Found"] if "ext" in mode.lower(): sim_fn = cprp.sim_refs_ext_path else: sim_fn = cprp.sim_refs_path sim_fn_pp = op.splitext(sim_fn)[0] + "_pp.tsv" SIM_REFS = SIM_REFS[keep] sim_refs = SIM_REFS sim_refs.to_csv(sim_fn, sep="\t", index=False) # the resource should be loaded at this point df = sim_refs.sort_values("Similarity", ascending=False) df = df.drop_duplicates(subset="Well_Id", keep="first") df = df.rename(columns={"Similarity": "Highest_Sim"}) df.to_csv(sim_fn_pp, sep="\t", index=False) # tsv for PPilot print("* {:22s} ({:5d} | -- )".format("write sim_refs", len(sim_refs))) def load_obj(fn): with open(fn, "rb") as f: obj = pickle.load(f) return obj def mol_from_smiles(smi): if not isinstance(smi, str): smi = "*" mol = Chem.MolFromSmiles(smi) if not mol: mol = Chem.MolFromSmiles("*") return mol def update_similar_refs(df, mode="cpd", write=True): """Find similar compounds in references and update the export file. The export file of the DataFrame object is in tsv format. In addition, another tsv file (or maybe JSON?) is written for use in PPilot. `mode` can be "cpd" or "ref". if `sim_refs`is not None, it has to be a dict of the correct format. With `write=False`, the writing of the file can be deferred to the end of the processing pipeline, but has to be done manually, then, with `write_sim_refs()`.""" def _chem_sim(mol_fp, query_smi): query = mol_from_smiles(query_smi) if len(query.GetAtoms()) > 1: query_fp = Chem.GetMorganFingerprint(query, 2) # ECFC4 return round(DataStructs.TanimotoSimilarity(mol_fp, query_fp), 3) return np.nan global SIM_REFS mode = mode.lower() load_resource("REFERENCES") load_resource("SIM_REFS", mode=mode) df_refs = REFERENCES sim_refs = SIM_REFS for _, rec in df.iterrows(): if rec["Activity"] < LIMIT_ACTIVITY_L or rec["Toxic"]: # no similarites for low active or toxic compounds continue act_profile = rec["Act_Profile"] max_num = 5 if "ref" in mode: max_num += 1 similar = find_similar(df_refs, act_profile, cutoff=LIMIT_SIMILARITY_L / 100, max_num=max_num) if "ref" in mode: similar.drop(similar.head(1).index, inplace=True) if len(similar) > 0: similar = similar[["Well_Id", "Compound_Id", "Similarity", "Smiles"]] similar = similar.rename(columns={"Well_Id": "Ref_Id", "Compound_Id": "RefCpd_Id"}) similar["Well_Id"] = rec["Well_Id"] if "ref" in mode: similar["Is_Ref"] = True else: similar["Is_Ref"] = False similar["Compound_Id"] = rec["Compound_Id"] mol = mol_from_smiles(rec.get("Smiles", "*")) if len(mol.GetAtoms()) > 1: mol_fp = Chem.GetMorganFingerprint(mol, 2) # ECFC4 similar["Tanimoto"] = similar["Smiles"].apply(lambda q: _chem_sim(mol_fp, q)) else: similar["Tanimoto"] = np.nan sim_refs = sim_refs.append(similar, ignore_index=True) sim_refs = sim_refs.drop_duplicates(subset=["Well_Id", "Ref_Id"], keep="last") # Assign the number of times a reference was found by a research compound drop_cols(sim_refs, ["Times_Found"], inplace=True) tmp = sim_refs.copy() tmp = tmp[~tmp["Is_Ref"]] tmp = tmp.groupby(by="Ref_Id").count().reset_index() # "Compound_Id" is just one field that contains the correct count: tmp = tmp[["Ref_Id", "Compound_Id"]] tmp = tmp.rename(columns={"Compound_Id": "Times_Found"}) sim_refs = pd.merge(sim_refs, tmp, on="Ref_Id", how="left") sim_refs = sim_refs.fillna(0) sim_refs["Times_Found"] = sim_refs["Times_Found"].astype(int) SIM_REFS = sim_refs if write: # with write=False, the writing can be deferred to the end of the processing pipeline, # but has to be done manually, then. write_sim_refs() def well_id_similarity(df1, well_id1, df2, well_id2): """Calculate the similarity of the activity profiles from two compounds (identified by `Well_Id`). Returns value between 0 .. 1""" act1 = df1[df1["Well_Id"] == well_id1]["Act_Profile"].values[0] act2 = df2[df2["Well_Id"] == well_id2]["Act_Profile"].values[0] return round(cpt.profile_sim(act1, act2), 3) def count_active_parameters_occurrences(df, act_prof="Act_Profile", parameters=ACT_PROF_PARAMETERS): """Counts the number of times each parameter has been active in the dataset.""" ctr_int = Counter() ctr_str = {} for _, rec in df.iterrows(): for idx, b in enumerate(rec[act_prof]): if b != "1": ctr_int[idx] += 1 for k, val in ctr_int.items(): ctr_str[parameters[k]] = val return ctr_str def heat_mpl(df, id_prop="Compound_Id"): plt.close() df_len = len(df) plt.style.use("seaborn-white") plt.style.use("seaborn-pastel") plt.style.use("seaborn-talk") plt.rcParams['axes.labelsize'] = 25 # plt.rcParams['legend.fontsize'] = 20 plt.rcParams['figure.figsize'] = (12, 1.1 + 0.47 * (df_len - 1)) plt.rcParams['axes.labelsize'] = 25 plt.rcParams['ytick.labelsize'] = 20 plt.rcParams['xtick.labelsize'] = 15 fs_text = 18 y_labels = [] fp_list = [] for _, rec in df.iterrows(): y_labels.append(rec[id_prop]) fp = cpt.prof_to_list(rec["Act_Profile"]) fp_list.append(fp) # invert y axis: y_labels = y_labels[::-1] fp_list = fp_list[::-1] Z = np.asarray(fp_list) plt.xticks([100, 186, 307]) plt.yticks(np.arange(df_len) + 0.5, y_labels) plt.pcolor(Z, cmap="bwr") plt.text(50, -1.1, "Cells", horizontalalignment='center', fontsize=fs_text) plt.text(143, -1.1, "Cytoplasm", horizontalalignment='center', fontsize=fs_text) plt.text(246, -1.1, "Nuclei", horizontalalignment='center', fontsize=fs_text) plt.tight_layout() plt.show() def heat_hv(df, id_prop="Compound_Id"): df_len = len(df) hm_opts = dict(width=870, height=40 + 25 * df_len, tools=['hover'], invert_yaxis=False, xrotation=90, labelled=[], toolbar='above', xaxis=None) hm_style = {"cmap": "bwr"} opts = {'HeatMap': {'plot': hm_opts, "style": hm_style}} df_heat = cpt.melt(df, id_prop=id_prop) heatmap = hv.HeatMap(df_heat) return heatmap(opts)
mit
itoledoc/gWTO2
wtoAlgorithm.py
1
40183
from datetime import datetime from datetime import timedelta import numpy as np import pandas as pd import ephem from lxml import objectify from wtoDatabase import WtoDatabase import ruvTest as rUV from scipy.stats import rayleigh """ wtoAlgorithm.py: the gWTO selector and scorer library. ====================================================== This library contains the classes and functions required to select and rank SBs from the information that is stored in a WtoDatabse object. """ __author__ = 'itoledo' confDf = pd.DataFrame( [('C34-1', 3.73, 2.49, 1.62, 1.08, 0.81, 0.57)], columns=['Conf', 'ALMA_RB_03', 'ALMA_RB_04', 'ALMA_RB_06', 'ALMA_RB_07', 'ALMA_RB_08', 'ALMA_RB_09'], index=['C34-1']) confDf.ix['C34-2'] = ('C34-2', 2.04, 1.36, 0.89, 0.59, 0.44, 0.31) confDf.ix['C34-3'] = ('C34-3', 1.4, 0.93, 0.61, 0.4, 0.3, 0.21) confDf.ix['C34-4'] = ('C34-4', 1.11, 0.74, 0.48, 0.32, 0.24, 0.17) confDf.ix['C34-5'] = ('C34-5', 0.75, 0.50, 0.33, 0.22, 0.16, 0.12) confDf.ix['C34-6'] = ('C34-6', 0.57, 0.38, 0.25, 0.16, 0.12, 0.09) confDf.ix['C34-7'] = ('C34-7', 0.41, 0.27, 0.18, 0.12, None, None) pwn = [0., 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1., 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2., 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8, 2.85, 2.9, 2.95, 3., 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 4., 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5., 5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6., 6.2, 6.4, 6.6, 6.8, 7., 7.2, 7.4, 7.6, 7.8, 8., 8.2, 8.4, 8.6, 8.8, 9., 9.2, 9.4, 9.6, 9.8, 10., 10.2, 10.4, 10.6, 10.8, 11., 11.2, 11.4, 11.6, 11.8, 12., 12.2, 12.4, 12.6, 12.8, 13., 13.2, 13.4, 13.6, 13.8, 14., 14.2, 14.4, 14.6, 14.8, 15., 15.2, 15.4, 15.6, 15.8, 16., 16.2, 16.4, 16.6, 16.8, 17., 17.2, 17.4, 17.6, 17.8, 18., 18.2, 18.4, 18.6, 18.8, 19., 19.2, 19.4, 19.6, 19.8, 20.] pd.options.display.width = 200 pd.options.display.max_columns = 55 SSO = ['Moon', 'Sun', 'Mercury', 'Venus', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto'] MOON = ['Ganymede', 'Europa', 'Callisto', 'Io', 'Titan'] alma1 = ephem.Observer() alma1.lat = '-23.0262015' alma1.long = '-67.7551257' alma1.elev = 5060 h = 6.6260755e-27 k = 1.380658e-16 c = 2.99792458e10 c_mks = 2.99792458e8 # J = hvkT / (np.exp(hvkT) - 1) # TebbSky = TebbSkyZenith*(1-np.exp(-airmass*(tau)))/(1-np.exp(-tau)) # TebbSky_Planck = TebbSky*J # tsys = (1+g)*(t_rx + t_sky*0.95 + 0.05*270) / (0.95 * np.exp(-tau*airmass)) # noinspection PyUnresolvedReferences,PyTypeChecker class WtoAlgorithm(WtoDatabase): """ Inherits from WtoDatabase, adds the methods for selection and scoring. It also sets the default parameters for these methods: pwv=1.2, date=now, array angular resolution, transmission=0.5, minha=-5, maxha=3, etc. :param path: A path, relative to $HOME, where the cache is stored. :type path: (default='/.wto/') String. :param source: See WtoDatabase definitions. :param forcenew: See WtoDatabase definitions. :return: A WtoAlgorithm instance. """ def __init__(self, path='/.wto/', source=None, forcenew=False): super(WtoAlgorithm, self).__init__(path, source, forcenew) self.pwv = 1.2 self.date = ephem.now() self.old_date = 0 self.array_ar = 0.94 self.transmission = 0.5 self.minha = -5.0 self.maxha = 3.0 self.minfrac = 0.75 self.maxfrac = 1.2 self.horizon = 20. self.maxblfrac = 1.5 self.exec_prio = {'EA': 10., 'NA': 10., 'EU': 10., 'CL': 10., 'OTHER': 10.} self.num_ant_user = 34 self.defarrays = ['C34-1', 'C34-2', 'C34-3', 'C34-4', 'C34-5', 'C34-6', 'C34-7'] self.arr_ar_def = {'C34-1': 3.73, 'C34-2': 2.04, 'C34-3': 1.4, 'C34-4': 1.11, 'C34-5': 0.75, 'C34-6': 0.57, 'C34-7': 0.41} self.array_name = None self.not_horizon = False self.tau = pd.read_csv( self.wto_path + 'conf/tau.csv', sep=',', header=0).set_index('freq') self.tsky = pd.read_csv( self.wto_path + 'conf/tskyR.csv', sep=',', header=0).set_index( 'freq') self.pwvdata = pd.read_pickle( self.wto_path + 'conf/' + self.preferences.pwv_data).set_index( 'freq') self.pwvdata.index = pd.Float64Index( pd.np.round(self.pwvdata.index, decimals=1), dtype='float64') self.alma = alma1 self.reciever = pd.DataFrame( [55., 45., 75., 110., 51., 150.], columns=['trx'], index=['ALMA_RB_06', 'ALMA_RB_03', 'ALMA_RB_07', 'ALMA_RB_09', 'ALMA_RB_04', 'ALMA_RB_08']) self.reciever['g'] = [0., 0., 0., 1., 0., 0.] io_file = open(self.wto_path + 'conf/ArrayConfiguration.xml') tree = objectify.parse(io_file) antfile = tree.getroot() io_file.close() self.antpad = pd.DataFrame(columns=['pad', 'antenna']) for n in range(len(antfile.AntennaOnPad)): p = antfile.AntennaOnPad[n].attrib['pad'] a = antfile.AntennaOnPad[n].attrib['antenna'] self.antpad.loc[n] = (p, a) self.query_arrays() # noinspection PyAugmentAssignment def selector(self, array): """ Selects SBs that can be observed given the current weather conditions, HA range, array type and array configuration (in the case of 12m array type) and SB/Project Status. See :ref:`Selection and Data preparation <selection>` :param array: '12m', '7m', 'tp' :type array: String. :return: Depending on the array type, creates tables select12m, select7m or selecttp. """ # TODO: add a 5% padding to fraction selection. # TODO: check with Jorge Garcia the rms fraction against reality. self.check_observability(array) if array not in ['12m', '7m', 'tp']: print("Use 12m, 7m or tp for array selection.") return None else: if array == '12m': array1 = ['TWELVE-M'] elif array == '7m': array1 = ['SEVEN-M', 'ACA'] else: array1 = ['TP-Array'] sel = self.sb_summary.copy() if array == '7m': sel = sel[ (sel.array == array1[0]) | (sel.array == array1[1])] else: sel = sel[sel.array == array1[0]] print("SBs for %s array: %d" % (array, len(sel))) pwvcol = self.pwvdata[[str(self.pwv)]] len_bf_cond = len(sel) sel = pd.merge( sel, pwvcol, left_on='repfreq', right_index=True) sel.rename(columns={str(self.pwv): 'transmission'}, inplace=True) ind1 = sel.repfreq ind2 = pd.np.around(sel.maxPWVC, decimals=1).astype(str) sel['tau_org'] = self.tau.lookup(ind1, ind2) sel['tsky_org'] = self.tsky.lookup(ind1, ind2) sel['airmass'] = 1 / pd.np.cos(pd.np.radians(-23.0262015 - sel.DEC)) sel = pd.merge(sel, self.reciever, left_on='band', right_index=True, how='left') tskycol = self.tsky[[str(self.pwv)]] sel = pd.merge(sel, tskycol, left_on='repfreq', right_index=True) taucol = self.tau[[str(self.pwv)]] sel.rename(columns={str(self.pwv): 'tsky'}, inplace=True) sel = pd.merge(sel, taucol, left_on='repfreq', right_index=True) sel.rename(columns={str(self.pwv): 'tau'}, inplace=True) print("SBs in sb_summary: %d. SBs merged with tau/tsky info: %d." % (len_bf_cond, len(sel))) sel['sel_array'] = False # Patch for hybrid configuration, C34-6 & C34-7 if array == '12m': self.ruv.sort() ruv6 = self.ruv[self.ruv < 1091.].copy() # x = np.linspace(0, ruv6.max() + 100., 1000) param = rayleigh.fit(ruv6) maxl6 = np.min([ruv6.max(), rayleigh.interval(0.992, loc=param[0], scale=param[1])[1]]) self.ruv6 = ruv6.copy() self.res6 = 61800 / (100. * maxl6) self.blnum6 = len(ruv6) if self.blnum6 < 591: self.ruv6 = self.ruv.copy() self.res6 = 0.571 print self.blnum6, self.res6 if array == '12m': sel.loc[ ((sel.arrayMinAR <= self.array_ar) & (sel.arrayMaxAR >= self.array_ar)) | ((sel.arrayMinAR <= self.res6) & (sel.arrayMaxAR >= self.res6)) | ((sel.arrayMinAR >= self.array_ar) & (sel.arrayMaxAR <= self.res6)), 'sel_array'] = True print("SBs for current 12m Array AR: %d. " "(AR=%.2f, #bl=%d, #ant=%d)" % (len(sel.query('sel_array == True')), self.array_ar, self.num_bl, self.num_ant)) sel['blmax'] = sel.apply( lambda row: rUV.computeBL(row['AR'], row['repfreq']), axis=1) sel['blmin'] = sel.apply( lambda row: rUV.computeBL(row['LAS'], row['repfreq']), axis=1) if self.array_name is not None: sel['blfrac'] = sel.apply( lambda row: (33. * 17) / (1. * len( self.ruv[(self.ruv <= row['blmax'])])) if (row['isPointSource'] == False) else (33. * 17) / (self.num_ant * (self.num_ant - 1) / 2.), axis=1) else: sel['blfrac'] = sel.apply( lambda row: (33. * 17) / (1. * len( self.ruv[self.ruv < row['blmax']])) if (row['isPointSource'] == False) else (33. * 17) / (34. * (34. - 1) / 2.), axis=1) if self.num_ant != 34: sel.loc[:, 'blfrac'] = sel.loc[:, 'blfrac'] * ( 33 * 17 / (self.num_ant * ( self.num_ant - 1) / 2.)) sel.loc[:, 'blfrac'] = sel.apply( lambda row: ret_cycle(row[u'CODE'], row['blfrac']), axis=1 ) elif array == '7m': sel['sel_array'] = True sel['blfrac'] = 1. if self.num_ant != 9: sel.loc[:, 'blfrac'] = sel.loc[:, 'blfrac'] * ( 9 * 4 / (self.num_ant * ( self.num_ant - 1) / 2.)) else: sel['sel_array'] = True sel['blfrac'] = 1. sel['tsys'] = ( 1 + sel['g']) * \ (sel['trx'] + sel['tsky'] * ((1 - pd.np.exp(-1 * sel['airmass'] * sel['tau'])) / (1 - pd.np.exp(-1. * sel['tau']))) * 0.95 + 0.05 * 270.) / \ (0.95 * pd.np.exp(-1 * sel['tau'] * sel['airmass'])) sel['tsys_org'] = ( 1 + sel['g']) * \ (sel['trx'] + sel['tsky_org'] * ((1 - pd.np.exp(-1 * sel['airmass'] * sel['tau_org'])) / (1 - pd.np.exp(-1. * sel['tau_org']))) * 0.95 + 0.05 * 270.) / \ (0.95 * pd.np.exp(-1 * sel['tau_org'] * sel['airmass'])) sel['sel_trans'] = False sel.loc[(sel.transmission > self.transmission) | (sel.maxPWVC >= self.pwv), 'sel_trans'] = True print("SBs with a transmission higher than %2.1f: %d" % (self.transmission, len(sel.query('sel_array == True and sel_trans == True')))) self.alma.date = self.date lst = pd.np.degrees(self.alma.sidereal_time()) ha = (lst - sel.RA) / 15. ha.loc[ha > 12] = ha.loc[ha > 12] - 24. ha.loc[ha < -12] = 24. + ha.loc[ha < -12] sel['HA'] = ha sel['sel_ha'] = False sel.loc[ ((sel.HA > self.minha) & (sel.HA < self.maxha)) | (sel.RA == 0.), 'sel_ha'] = True s3 = len(sel.query('sel_array == True and sel_trans == True and' ' sel_ha == True')) print("SBs within current HA limits (or RA=0): %d" % s3) sel['tsysfrac'] = (sel.tsys / sel.tsys_org) ** 2. sel = pd.merge(sel, self.obser_prop, left_on='SB_UID', right_index=True) sel['sel_el'] = False if self.not_horizon is False: sel.loc[(sel.up == 1) & (sel.etime > 1.5), 'sel_el'] = True s4 = len( sel.query('sel_array == True and sel_trans == True and' ' sel_ha == True and sel_el == True')) print("SBs over %d degrees, 1.5 hours: %d" % (self.horizon, s4)) sel['sel_st'] = False sel.loc[(sel.SB_state != "Phase2Submitted") & (sel.SB_state != "FullyObserved") & (sel.SB_state != "Deleted") & (sel.SB_state != "Canceled") & (sel.PRJ_state != "Phase2Submitted") & (sel.PRJ_state != "Completed"), 'sel_st'] = True sel.loc[ (sel.name.str.contains('not', case=False) == True), 'sel_st'] = False s5 = len( sel.query( 'sel_array == True and sel_trans == True and sel_ha == True ' 'and sel_el == True and sel_st == True')) print("SBs with Ok state: %d" % s5) sel['sel_exe'] = False sel.loc[sel.execount > sel.Total, 'sel_exe'] = True s6 = len( sel.query( 'sel_array == True and sel_trans == True and sel_ha == True ' 'and sel_el == True and sel_st == True and sel_exe == True')) print("SBs with missing exec: %d" % s6) sel['frac'] = sel.tsysfrac * sel.blfrac fg = self.fieldsource.query( 'isQuery == False and name == "Primary:"' ).groupby('SB_UID') p = pd.DataFrame( [fg.pointings.mean(), fg.pointings.count()], index=['mpointings', 'sources']).transpose() sel = pd.merge(sel, p, left_on='SB_UID', right_index=True, how='left') if array == '12m': self.select12m = sel.query( 'sel_array == True and sel_trans == True and sel_ha == True ' 'and sel_el == True and sel_st == True and sel_exe == True and ' 'tsysfrac < 2.1') # print sel.query( # 'sel_array == True and sel_trans == True and sel_ha == True ' # 'and sel_el == True and sel_st == True and sel_exe == True and ' # 'frac >= 2.1') self.all12m = sel print("SBs with 'frac' < 2.1: %d" % len(self.select12m)) elif array == '7m': self.select7m = sel.query( 'sel_array == True and sel_trans == True and sel_ha == True ' 'and sel_el == True and sel_st == True and sel_exe == True and ' 'frac < 2.1') self.all7m = sel print("SBs with 'frac' < 2.1: %d" % len(self.select7m)) else: self.selecttp = sel.query( 'sel_array == True and sel_trans == True and sel_ha == True ' 'and sel_el == True and sel_st == True and sel_exe == True and ' 'frac < 2.1') self.alltp = sel print("SBs with 'frac' < 2.1: %d" % len(self.selecttp)) def scorer(self, array): """ Method that handles the score calculation for each array type. It applies ``self.calculate_score()`` to the previously selected SBs using ``self.selector()`` :param array: '12m', '7m', 'tp' :type array: String. :return: Creates a score table for the instance, which will be named as ``score12m``, ``score7m`` or ``scoretp``. """ if array == '12m': try: df = self.select12m except AttributeError: print("Please execute method self.selector('12m') first.") return None elif array == '7m': try: df = self.select7m except AttributeError: print("Please execute method self.selector('7m') first.") return None elif array == 'tp': try: df = self.selecttp except AttributeError: print("Please execute method self.selector('tp') first.") return None else: print("array must be either 12m, 7m or tp.") return None self.max_scirank = df.scienceRank.max() if len(df) > 0: scores = df.apply( lambda r: self.calculate_score( r['execount'], r['Total'], r['scienceRank'], r['AR'], r['arrayMinAR'], r['arrayMaxAR'], r['LAS'], r['grade'], r['repfreq'], r['DEC'], r['EXEC'], array, r['frac'], r['maxPWVC'], r['CODE'], r['name'], r['HA']), axis=1) scores = pd.DataFrame(scores.values.tolist(), index=scores.index) scores.columns = pd.Index( [u'sb_cond_score', u'sb_array_score', u'sb_completion_score', u'sb_ha_scorer', u'sb_exec_score', u'sb_science_score', u'sb_grade_score', u'arcorr', u'score', u'lascorr']) else: scores = pd.DataFrame( columns=pd.Index( [u'sb_cond_score', u'sb_array_score', u'sb_completion_score', u'sb_ha_scorer', u'sb_exec_score', u'sb_science_score', u'sb_grade_score', u'arcorr', u'score', u'lascorr'])) if array == '12m': self.score12m = pd.merge( self.select12m, scores, left_on='SB_UID', right_index=True) elif array == '7m': self.score7m = pd.merge( self.select7m, scores, left_on='SB_UID', right_index=True) else: self.scoretp = pd.merge( self.selecttp, scores, left_on='SB_UID', right_index=True) # noinspection PyUnboundLocalVariable def calculate_score(self, ecount, tcount, srank, ar, aminar, amaxar, las, grade, repfreq, dec, execu, array, frac, maxpwvc, code, name, ha): """ Please go to the :ref:`Score and ranking <score>` section for an algorithm's description. :param ecount: Executions requested by the SB :type ecount: Integer. :param tcount: Total executions with QA0 Pass or Unset for the SB. :type tcount: Integer. :param srank: SB Science ranking. :type srank: Intenger :param ar: SB requested Angular Resolution, from the Science Goal. :type ar: Float. :param aminar: The minum angular resolution the SB can accept to be observed. :type aminar: Float. In arcsec. :param amaxar: The maximum angular resolution the SB can accept to be observed. :type amaxar: Float. In arcsec. :param las: SB requested Largest Angular Scale, from the Science Goal. :type las: Float. In arcsec. :param grade: SB's Project letter grade. :type grade: String, can be A, B or C. :param repfreq: SB's representative frequency. :type repfreq: Float, in GHz. :param dec: SB's representative declination coordinates, as determined by self.check_observability(). :type dec: Float, in degrees. :param execu: SB's Project Executive. :type execu: String, can be NA, EU, EA, CL or OTHER. :param array: Array type. :type array: String, can be 12m, 7m or tp. :param frac: Total time fraction calculated by self.selector() for the SB to reach the required sensitivity. :type frac: Float. :param maxpwvc: SB's maxPWVC variable. :type maxpwvc: Float, a value between 0 and 20. :param code: SB's project code. :type code: String. :return: Tuple with ... """ sb_completion = tcount / ecount sb_completion_score = 6. * sb_completion + 4. # set sb priority score if grade == 'A' and str(code).startswith('2013'): sb_grade_score = 10. elif str(code).startswith('2012'): sb_grade_score = 8. elif grade == 'B': sb_grade_score = 4. else: sb_grade_score = -100. # set science score sb_science_score = 10. * (self.max_scirank - srank) / self.max_scirank # set array score if array == '7m' or array == 'tp': sb_array_score = 10. arcorr_or = 0. lascorr = 0. else: c_bmax = 0.4001 / pd.np.cos(pd.np.radians(-23.0262015) - pd.np.radians(dec)) + 0.6103 c_freq = repfreq / 100. corr = c_freq / c_bmax arcorr = ar * corr arcorr_or = arcorr lascorr = las * corr if name.endswith('_TC'): arcorr = 0.9 * amaxar arcorr_or = arcorr if arcorr > 3.73: arcorr = 3.73 if arcorr < 0.41: arcorr = 0.41 if aminar > self.array_ar and amaxar >= self.res6: array_ar = self.res6 elif aminar > self.array_ar and amaxar < self.res6: array_ar = (self.res6 + self.array_ar) / 2. else: array_ar = self.array_ar if 0.9 * arcorr <= array_ar <= 1.1 * arcorr: sb_array_score = 10. elif 0.8 * arcorr < array_ar <= 1.2 * arcorr: sb_array_score = 8.0 elif array_ar < 0.8 * arcorr: # and not points: l = 0.8 * arcorr - aminar sb_array_score = ((array_ar - aminar) / l) * 8.0 # elif self.array_ar < 0.8 * arcorr and points: # sb_array_score = 8.0 elif array_ar > 1.2 * arcorr: l = arcorr * 1.2 - amaxar s = 8. / l sb_array_score = (array_ar - amaxar) * s else: print("What happened with?") sb_array_score = -1. narray = 0. for a in confDf['ALMA_RB_03'].values: if aminar < a < amaxar: narray += 1 if narray == 0: print "Warning, no official configuration for %s" % name elif narray == 1 and sb_array_score < 8.5: sb_array_score = 9. # set exec score: sb_exec_score = self.exec_prio[execu] # set condition score: pwv_corr = 1 - (abs(self.pwv - maxpwvc) / 4.) if pwv_corr < 0.1: pwv_corr = 0.1 if frac < 1: x = frac - 1. sb_cond_score = 10 * (1 - (x ** 10.)) * pwv_corr elif frac == 1: sb_cond_score = 10. else: x = frac - 1 if frac <= 1.3: sb_cond_score = (1. - (x / 0.3) ** 3.) * 10. * pwv_corr else: sb_cond_score = 0. sb_ha_scorer = ((np.cos(np.radians((ha + 1) * 15.)) - 0.3) / (1 - 0.3)) * 10. score = (0.35 * sb_cond_score + 0.05 * sb_array_score + 0.20 * sb_completion_score + 0.05 * sb_exec_score + 0.05 * sb_science_score + 0.20 * sb_grade_score + 0.10 * sb_ha_scorer) # 0.35, 0.20, 0.10, 0.05, 0.05, 0.15, 0.10 return (sb_cond_score, sb_array_score, sb_completion_score, sb_ha_scorer, sb_exec_score, sb_science_score, sb_grade_score, arcorr_or, score, lascorr) def check_observability(self, array): """ :param array: :return: """ if self.date == self.old_date: return None alma1.date = self.date print(alma1.date) if array == '12m': fs_arr = self.fieldsource.query( 'arraySB == "TWELVE-M" and isQuery == False') elif array == '7m': fs_arr = self.fieldsource.query('arraySB == "ACA" or ' 'arraySB == "SEVEN-M"') else: fs_arr = self.fieldsource.query('arraySB == "TP-Array"') print("Calculating observability for %d sources..." % len(fs_arr)) fs = fs_arr.apply( lambda r: observable( r['solarSystem'], r['sourcename'], r['RA'], r['DEC'], self.horizon, r['isQuery'], r['ephemeris'], alma=alma1), axis=1) df_fs = pd.DataFrame( fs.values.tolist(), index=fs.index, columns=['RA', 'DEC', 'elev', 'remaining', 'rise', 'sets', 'lstr', 'lsts', 'observable']) fs_1 = pd.merge( fs_arr[['fieldRef', 'SB_UID', 'isQuery', 'name', 'intendedUse']], df_fs, left_index=True, right_index=True, how='left') # Libes 636-654 + donotuse query, workaround for multiple field sources # noinspection PyUnusedLocal donotuse = [ 'Pointing Template (Cal Group)', 'Pointing Template (Science Group)', 'Amplitude', 'Phase', 'Bandpass', 'J0423 Bandpass', 'J2258 2nd Bandpass', 'Pointing', 'Check source', 'Phase calibrator', 'J1427-4206', 'Bandpass calibrator', 'AmpAux_3', 'AmpAux_1', 'PhaseCal', 'Calibrator: ', 'Polarization', 'AmpCheck1', 'AmpCheck2', 'Polarization calibrator', 'Delay', 'Focus', 'Amplitude query', 'calibrator_J1256', 'J192451-291428', 'J1911-2006', 'CheckSource', 'Check', 'check', 'J0854+201', 'phase_and_checksource', 'phase_and_checksource queries', 'phase+and_checksource', 'Bandpass_3C279', 'Field Check source ', 'Phase 2', 'Phase 3', 'Phase P', 'Bandpass (J1924-2914)', 'Pluto_May21-Jun01', 'Pluto_Jun01-11', 'Pluto_Jun11-Jun21', 'Pluto_Jun21-Jul01', 'Pluto_Jul11-21', 'Pluto_Jul21-Aug01', 'Pluto_Aug01-11', 'Pluto_Aug11-21', 'Pluto_Aug21-Sep01', 'Pluto_Sep01-11', 'Pluto_Sep11-Sep21', 'Pluto_Sep21-Oct01'] self.fs_1 = fs_1.query( 'isQuery == False and name not in @donotuse').copy() fs_1g = fs_1.query( 'isQuery == False and name not in @donotuse').groupby('SB_UID') allup = pd.DataFrame( fs_1g.observable.mean()) allup.columns = pd.Index([u'up']) fs_2 = pd.merge(fs_1, allup, left_on='SB_UID', right_index=True, how='left') fs_2g = fs_2.query( 'isQuery == False and name not in @donotuse').groupby('SB_UID') etime = pd.DataFrame( fs_2g.remaining.min()[fs_2g.remaining.min() > 1.5]) etime.columns = pd.Index([u'etime']) elevation = pd.DataFrame( fs_2g.elev.mean()) elevation.columns = pd.Index([u'elev']) lstr = pd.DataFrame( fs_2g.lstr.max()) lstr.columns = pd.Index([u'lstr']) lsts = pd.DataFrame( fs_2g.lsts.max()) lsts.columns = pd.Index([u'lsts']) dec = pd.DataFrame( fs_2g.DEC.mean()) dec.columns = pd.Index([u'DEC']) ra = pd.DataFrame( fs_2g.RA.mean()) ra.columns = pd.Index([u'RA']) fs_3 = pd.merge(allup, etime, right_index=True, left_index=True, how='left') fs_4 = pd.merge(fs_3, elevation, right_index=True, left_index=True, how='left') fs_5 = pd.merge(fs_4, lstr, right_index=True, left_index=True, how='left') self.sb_summary.loc[dec.index, 'DEC'] = dec.loc[dec.index, 'DEC'] self.sb_summary.loc[dec.index, 'RA'] = ra.loc[dec.index, 'RA'] self.obser_prop = pd.merge(fs_5, lsts, right_index=True, left_index=True, how='left') self.old_date = self.date print(self.old_date, self.date) def set_trans(self, transmission): """ :param transmission: """ self.transmission = transmission def set_pwv(self, pwv): """ :param pwv: """ self.pwv = min(pwn, key=lambda x: abs(x - pwv)) def set_date(self, date): """ :param date: """ self.date = date def set_arrayar(self, ar): """ :param ar: """ self.array_ar = ar def set_minha(self, ha): """ :param ha: """ self.minha = ha def set_maxha(self, ha): """ :param ha: """ self.maxha = ha def set_array_ar(self, ar): """ :param ar: """ self.array_ar = ar def query_arrays(self): """ """ a = str("select se.SE_TIMESTAMP ts1, sa.SLOG_ATTR_VALUE av1, " "se.SE_ARRAYNAME, se.SE_ID se1 from ALMA.SHIFTLOG_ENTRIES se, " "ALMA.SLOG_ENTRY_ATTR sa " "WHERE se.SE_TYPE=7 and se.SE_TIMESTAMP > SYSDATE - 1/1. " "and sa.SLOG_SE_ID = se.SE_ID and sa.SLOG_ATTR_TYPE = 31 " "and se.SE_LOCATION='OSF-AOS' and se.SE_CORRELATORTYPE = 'BL'") try: self.cursor.execute(a) self.bl_arrays = pd.DataFrame( self.cursor.fetchall(), columns=[rec[0] for rec in self.cursor.description] ).sort('TS1', ascending=False) except ValueError: self.bl_arrays = pd.DataFrame( columns=pd.Index( [u'TS1', u'AV1', u'SE_ARRAYNAME', u'SE1'], dtype='object')) print("No BL arrays have been created in the last 6 hours.") b = str("select se.SE_TIMESTAMP ts1, sa.SLOG_ATTR_VALUE av1, " "se.SE_ARRAYNAME, se.SE_ID se1 from ALMA.SHIFTLOG_ENTRIES se, " "ALMA.SLOG_ENTRY_ATTR sa " "WHERE se.SE_TYPE=7 and se.SE_TIMESTAMP > SYSDATE - 1/1. " "and sa.SLOG_SE_ID = se.SE_ID and sa.SLOG_ATTR_TYPE = 31 " "and se.SE_LOCATION='OSF-AOS' and se.SE_CORRELATORTYPE = 'ACA'") try: self.cursor.execute(b) self.aca_arrays = pd.DataFrame( self.cursor.fetchall(), columns=[rec[0] for rec in self.cursor.description] ).sort('TS1', ascending=False) except ValueError: self.aca_arrays = pd.DataFrame( columns=pd.Index( [u'TS1', u'AV1', u'SE_ARRAYNAME', u'SE1'], dtype='object')) print("No ACA arrays have been created in the last 6 hours.") def set_bl_prop(self, array_name): """ :param array_name: """ # In case a bl_array is selected if (array_name is not None and len(self.bl_arrays) != 0 and array_name not in self.defarrays): id1 = self.bl_arrays.query( 'SE_ARRAYNAME == "%s"' % array_name).iloc[0].SE1 # a = str("SELECT SLOG_ATTR_VALUE FROM ALMA.SLOG_ENTRY_ATTR " # "WHERE SLOG_ATTR_TYPE = 31 " # "AND SLOG_SE_ID=%d" % id1) # self.cursor.execute(a) # ap = pd.DataFrame(self.cursor.fetchall(), columns=['antenna']) ap = self.bl_arrays.query( 'SE_ARRAYNAME == "%s" and SE1 == %d' % (array_name, id1) )[['AV1']] ap.rename(columns={'AV1': 'antenna'}, inplace=True) ap = ap[ap.antenna.str.contains('CM') == False] conf = pd.merge(self.antpad, ap, left_on='antenna', right_on='antenna') conf_file = self.path + '%s.txt' % array_name conf.to_csv(conf_file, header=False, index=False, sep=' ') ac = rUV.ac.ArrayConfigurationCasaFile() ac.createCasaConfig(conf_file) self.ruv = rUV.computeRuv(conf_file + ".cfg") self.num_bl = len(self.ruv) self.num_ant = len(ap) # If default or C34 is selected else: if array_name is None: conf_file = self.wto_path + 'conf/default.txt' io_file = open( self.wto_path + 'conf/arrayConfigurationResults.txt') lines = io_file.readlines() self.array_ar = float(lines[13].split(':')[1]) self.num_ant = int(lines[3].split(':')[1]) print self.num_ant self.num_bl = self.num_ant * (self.num_ant - 1.) / 2. io_file.close() ac = rUV.ac.ArrayConfigurationCasaFile() ac.createCasaConfig(conf_file) self.ruv = rUV.computeRuv(conf_file + ".cfg") else: conf_file = self.wto_path + 'conf/%s.txt.cfg' % array_name self.ruv = rUV.computeRuv(conf_file) # noinspection PyTypeChecker self.array_ar = self.arr_ar_def[array_name] self.num_bl = self.num_ant * (self.num_ant - 1.) / 2. self.num_ant = 34 # if len(self.ruv) > 33. * 17.: # self.ruv = self.ruv[-561:] # self.num_bl = len(self.ruv) # self.num_ant = 34 # noinspection PyPep8Naming def observable(solarSystem, sourcename, RA, DEC, horizon, isQuery, ephemeris, alma): """ :param solarSystem: :param sourcename: :param RA: :param DEC: :param horizon: :param isQuery: :param ephemeris: :param alma: :return: """ dtemp = alma.date alma.horizon = ephem.degrees(str(horizon)) if isQuery: alma.date = dtemp return 0, 0, 0, 0, 0, 0, 0, 0, False if solarSystem != 'Unspecified': ra = 0 dec = 0 if solarSystem in SSO and solarSystem == sourcename: obj = eval('ephem.' + solarSystem + '()') obj.compute(alma) ra = obj.ra dec = obj.dec elev = obj.alt neverup = False elif solarSystem in MOON: obj = eval('ephem.' + solarSystem + '()') obj.compute(alma) ra = obj.ra dec = obj.dec elev = obj.alt obj.radius = 0. neverup = False elif solarSystem == 'Ephemeris': try: ra, dec, ephe = read_ephemeris(ephemeris, alma.date) except TypeError: # print(ephemeris, sourcename) ephe = False if not ephe: alma.date = dtemp print("Source %s doesn't have ephemeris for current's date" % sourcename) return 0, 0, 0, 0, 0, 0, 0, 0, False obj = ephem.FixedBody() obj._ra = pd.np.deg2rad(ra) obj._dec = pd.np.deg2rad(dec) obj.compute(alma) ra = obj.ra dec = obj.dec elev = obj.alt neverup = obj.neverup print sourcename, ra, dec, elev else: alma.date = dtemp return 0, 0, 0, 0, 0, 0, 0, 0, False else: obj = ephem.FixedBody() obj._ra = pd.np.deg2rad(RA) obj._dec = pd.np.deg2rad(DEC) obj.compute(alma) ra = obj.ra dec = obj.dec elev = obj.alt neverup = obj.neverup if obj.alt > ephem.degrees(str(horizon)): try: c2 = obj.circumpolar except AttributeError: c2 = False if not c2: sets = alma.next_setting(obj) rise = alma.previous_rising(obj) remaining = sets.datetime() - dtemp.datetime() alma.date = rise lstr = alma.sidereal_time() alma.date = sets lsts = alma.sidereal_time() obs = True else: remaining = timedelta(1) lstr = ephem.hours('0') lsts = ephem.hours('0') rise = ephem.hours('0') sets = ephem.hours('0') obs = True else: if neverup: print("Source %s is never over %d deg. of elev. (%s, %s, %s)" % (sourcename, horizon, obj.dec, obj.ra, alma.date)) remaining = timedelta(0) alma.horizon = ephem.degrees('0') obj.compute(alma) lstr = ephem.hours('0') lsts = ephem.hours('0') rise = ephem.hours('0') sets = ephem.hours('0') obs = False else: rise = alma.next_rising(obj) sets = alma.next_setting(obj) remaining = dtemp.datetime() - rise.datetime() alma.date = rise lstr = alma.sidereal_time() alma.date = sets lsts = alma.sidereal_time() obs = False alma.date = dtemp alma.horizon = ephem.degrees(str(horizon)) return pd.np.degrees(ra), pd.np.degrees(dec), pd.np.degrees(elev),\ remaining.total_seconds() / 3600., rise, sets, lstr, lsts, obs def read_ephemeris(ephemeris, date): # TODO: is the ephemeris file fixed in col positions? """ :param ephemeris: :param date: :return: """ in_data = False now = date month_ints = { 'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6, 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12} found = False for line in ephemeris.split('\n'): if line.startswith('$$SOE'): in_data = True c1 = 0 elif line.startswith('$$EOE') or line.startswith(' $$EOE'): if not found: ra = ephem.hours('00:00:00') dec = ephem.degrees('00:00:00') ephe = False return ra, dec, ephe elif in_data: datestr = line[1:6] + str(month_ints[line[6:9]]) + line[9:18] date = datetime.strptime(datestr, '%Y-%m-%d %H:%M') if now.datetime() > date: data = line found = False # noinspection PyUnboundLocalVariable c1 += 1 else: # noinspection PyUnboundLocalVariable if c1 == 0: ra = ephem.hours('00:00:00') dec = ephem.degrees('00:00:00') ephe = False return ra, dec, ephe # noinspection PyUnboundLocalVariable ra_temp = data[23:36].strip() dec_temp = data[37:50].strip() if len(ra_temp.split()) > 3: ra_temp = data[23:34].strip() dec_temp = data[35:46].strip() ra = ephem.hours(ra_temp.replace(' ', ':')) dec = ephem.degrees(dec_temp.replace(' ', ':')) ephe = True print(ra, dec, ephe, now) return pd.np.degrees(ra), pd.np.degrees(dec), ephe def ret_cycle(code, blfrac): if code[:4] == '2012': return blfrac * (31. * 16.) / (33. * 17) else: return blfrac * 1.
gpl-2.0
kevin-intel/scikit-learn
sklearn/metrics/pairwise.py
2
69283
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools from functools import partial import warnings import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from joblib import Parallel, effective_n_jobs from ..utils.validation import _num_samples from ..utils.validation import check_non_negative from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches, get_chunk_n_rows from ..utils import is_scalar_nan from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..utils._mask import _get_mask from ..utils.fixes import delayed from ..utils.fixes import sp_version, parse_version from ._pairwise_fast import _chi2_kernel_fast, _sparse_manhattan from ..exceptions import DataConversionWarning # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = float return X, Y, dtype def check_pairwise_arrays(X, Y, *, precomputed=False, dtype=None, accept_sparse='csr', force_all_finite=True, copy=False): """Set X and Y appropriately and checks inputs. If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats (or dtype if provided). Finally, the function checks that the size of the second dimension of the two arrays is equal, or the equivalent check for a precomputed distance matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) precomputed : bool, default=False True if X is to be treated as precomputed distances to the samples in Y. dtype : str, type, list of type, default=None Data type required for X and Y. If None, the dtype will be an appropriate float type selected by _return_float_dtype. .. versionadded:: 0.18 accept_sparse : str, bool or list/tuple of str, default='csr' String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.22 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. .. versionadded:: 0.22 Returns ------- safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype_float = _return_float_dtype(X, Y) estimator = 'check_pairwise_arrays' if dtype is None: dtype = dtype_float if Y is X or Y is None: X = Y = check_array(X, accept_sparse=accept_sparse, dtype=dtype, copy=copy, force_all_finite=force_all_finite, estimator=estimator) else: X = check_array(X, accept_sparse=accept_sparse, dtype=dtype, copy=copy, force_all_finite=force_all_finite, estimator=estimator) Y = check_array(Y, accept_sparse=accept_sparse, dtype=dtype, copy=copy, force_all_finite=force_all_finite, estimator=estimator) if precomputed: if X.shape[1] != Y.shape[0]: raise ValueError("Precomputed metric requires shape " "(n_queries, n_indexed). Got (%d, %d) " "for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0])) elif X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """Set X and Y appropriately and checks inputs for paired distances. All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) Returns ------- safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, *, Y_norm_squared=None, squared=False, X_norm_squared=None): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then `dot(x, x)` and/or `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, because this equation potentially suffers from "catastrophic cancellation". Also, the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \ default=None Y_norm_squared : array-like of shape (n_samples_Y,) or (n_samples_Y, 1) \ or (1, n_samples_Y), default=None Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) May be ignored in some cases, see the note below. squared : bool, default=False Return squared Euclidean distances. X_norm_squared : array-like of shape (n_samples_X,) or (n_samples_X, 1) \ or (1, n_samples_X), default=None Pre-computed dot-products of vectors in X (e.g., ``(X**2).sum(axis=1)``) May be ignored in some cases, see the note below. Notes ----- To achieve better accuracy, `X_norm_squared` and `Y_norm_squared` may be unused if they are passed as ``float32``. Returns ------- distances : ndarray of shape (n_samples_X, n_samples_Y) See Also -------- paired_distances : Distances betweens pairs of elements of X and Y. Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[0., 1.], [1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[1. ], [1.41421356]]) """ X, Y = check_pairwise_arrays(X, Y) if X_norm_squared is not None: X_norm_squared = check_array(X_norm_squared, ensure_2d=False) original_shape = X_norm_squared.shape if X_norm_squared.shape == (X.shape[0],): X_norm_squared = X_norm_squared.reshape(-1, 1) if X_norm_squared.shape == (1, X.shape[0]): X_norm_squared = X_norm_squared.T if X_norm_squared.shape != (X.shape[0], 1): raise ValueError( f"Incompatible dimensions for X of shape {X.shape} and " f"X_norm_squared of shape {original_shape}.") if Y_norm_squared is not None: Y_norm_squared = check_array(Y_norm_squared, ensure_2d=False) original_shape = Y_norm_squared.shape if Y_norm_squared.shape == (Y.shape[0],): Y_norm_squared = Y_norm_squared.reshape(1, -1) if Y_norm_squared.shape == (Y.shape[0], 1): Y_norm_squared = Y_norm_squared.T if Y_norm_squared.shape != (1, Y.shape[0]): raise ValueError( f"Incompatible dimensions for Y of shape {Y.shape} and " f"Y_norm_squared of shape {original_shape}.") return _euclidean_distances(X, Y, X_norm_squared, Y_norm_squared, squared) def _euclidean_distances(X, Y, X_norm_squared=None, Y_norm_squared=None, squared=False): """Computational part of euclidean_distances Assumes inputs are already checked. If norms are passed as float32, they are unused. If arrays are passed as float32, norms needs to be recomputed on upcast chunks. TODO: use a float64 accumulator in row_norms to avoid the latter. """ if X_norm_squared is not None: if X_norm_squared.dtype == np.float32: XX = None else: XX = X_norm_squared.reshape(-1, 1) elif X.dtype == np.float32: XX = None else: XX = row_norms(X, squared=True)[:, np.newaxis] if Y is X: YY = None if XX is None else XX.T else: if Y_norm_squared is not None: if Y_norm_squared.dtype == np.float32: YY = None else: YY = Y_norm_squared.reshape(1, -1) elif Y.dtype == np.float32: YY = None else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X.dtype == np.float32: # To minimize precision issues with float32, we compute the distance # matrix on chunks of X and Y upcast to float64 distances = _euclidean_distances_upcast(X, XX, Y, YY) else: # if dtype is already float64, no need to chunk and upcast distances = - 2 * safe_sparse_dot(X, Y.T, dense_output=True) distances += XX distances += YY np.maximum(distances, 0, out=distances) # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. if X is Y: np.fill_diagonal(distances, 0) return distances if squared else np.sqrt(distances, out=distances) def nan_euclidean_distances(X, Y=None, *, squared=False, missing_values=np.nan, copy=True): """Calculate the euclidean distances in the presence of missing values. Compute the euclidean distance between each pair of samples in X and Y, where Y=X is assumed if Y=None. When calculating the distance between a pair of samples, this formulation ignores feature coordinates with a missing value in either sample and scales up the weight of the remaining coordinates: dist(x,y) = sqrt(weight * sq. distance from present coordinates) where, weight = Total # of coordinates / # of present coordinates For example, the distance between ``[3, na, na, 6]`` and ``[1, na, 4, 5]`` is: .. math:: \\sqrt{\\frac{4}{2}((3-1)^2 + (6-5)^2)} If all the coordinates are missing or if there are no common present coordinates then NaN is returned for that pair. Read more in the :ref:`User Guide <metrics>`. .. versionadded:: 0.22 Parameters ---------- X : array-like of shape=(n_samples_X, n_features) Y : array-like of shape=(n_samples_Y, n_features), default=None squared : bool, default=False Return squared Euclidean distances. missing_values : np.nan or int, default=np.nan Representation of missing value. copy : bool, default=True Make and use a deep copy of X and Y (if Y exists). Returns ------- distances : ndarray of shape (n_samples_X, n_samples_Y) See Also -------- paired_distances : Distances between pairs of elements of X and Y. Examples -------- >>> from sklearn.metrics.pairwise import nan_euclidean_distances >>> nan = float("NaN") >>> X = [[0, 1], [1, nan]] >>> nan_euclidean_distances(X, X) # distance between rows of X array([[0. , 1.41421356], [1.41421356, 0. ]]) >>> # get distance to origin >>> nan_euclidean_distances(X, [[0, 0]]) array([[1. ], [1.41421356]]) References ---------- * John K. Dixon, "Pattern Recognition with Partly Missing Data", IEEE Transactions on Systems, Man, and Cybernetics, Volume: 9, Issue: 10, pp. 617 - 621, Oct. 1979. http://ieeexplore.ieee.org/abstract/document/4310090/ """ force_all_finite = 'allow-nan' if is_scalar_nan(missing_values) else True X, Y = check_pairwise_arrays(X, Y, accept_sparse=False, force_all_finite=force_all_finite, copy=copy) # Get missing mask for X missing_X = _get_mask(X, missing_values) # Get missing mask for Y missing_Y = missing_X if Y is X else _get_mask(Y, missing_values) # set missing values to zero X[missing_X] = 0 Y[missing_Y] = 0 distances = euclidean_distances(X, Y, squared=True) # Adjust distances for missing values XX = X * X YY = Y * Y distances -= np.dot(XX, missing_Y.T) distances -= np.dot(missing_X, YY.T) np.clip(distances, 0, None, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. np.fill_diagonal(distances, 0.0) present_X = 1 - missing_X present_Y = present_X if Y is X else ~missing_Y present_count = np.dot(present_X, present_Y.T) distances[present_count == 0] = np.nan # avoid divide by zero np.maximum(1, present_count, out=present_count) distances /= present_count distances *= X.shape[1] if not squared: np.sqrt(distances, out=distances) return distances def _euclidean_distances_upcast(X, XX=None, Y=None, YY=None, batch_size=None): """Euclidean distances between X and Y. Assumes X and Y have float32 dtype. Assumes XX and YY have float64 dtype or are None. X and Y are upcast to float64 by chunks, which size is chosen to limit memory increase by approximately 10% (at least 10MiB). """ n_samples_X = X.shape[0] n_samples_Y = Y.shape[0] n_features = X.shape[1] distances = np.empty((n_samples_X, n_samples_Y), dtype=np.float32) if batch_size is None: x_density = X.nnz / np.prod(X.shape) if issparse(X) else 1 y_density = Y.nnz / np.prod(Y.shape) if issparse(Y) else 1 # Allow 10% more memory than X, Y and the distance matrix take (at # least 10MiB) maxmem = max( ((x_density * n_samples_X + y_density * n_samples_Y) * n_features + (x_density * n_samples_X * y_density * n_samples_Y)) / 10, 10 * 2 ** 17) # The increase amount of memory in 8-byte blocks is: # - x_density * batch_size * n_features (copy of chunk of X) # - y_density * batch_size * n_features (copy of chunk of Y) # - batch_size * batch_size (chunk of distance matrix) # Hence x² + (xd+yd)kx = M, where x=batch_size, k=n_features, M=maxmem # xd=x_density and yd=y_density tmp = (x_density + y_density) * n_features batch_size = (-tmp + np.sqrt(tmp ** 2 + 4 * maxmem)) / 2 batch_size = max(int(batch_size), 1) x_batches = gen_batches(n_samples_X, batch_size) for i, x_slice in enumerate(x_batches): X_chunk = X[x_slice].astype(np.float64) if XX is None: XX_chunk = row_norms(X_chunk, squared=True)[:, np.newaxis] else: XX_chunk = XX[x_slice] y_batches = gen_batches(n_samples_Y, batch_size) for j, y_slice in enumerate(y_batches): if X is Y and j < i: # when X is Y the distance matrix is symmetric so we only need # to compute half of it. d = distances[y_slice, x_slice].T else: Y_chunk = Y[y_slice].astype(np.float64) if YY is None: YY_chunk = row_norms(Y_chunk, squared=True)[np.newaxis, :] else: YY_chunk = YY[:, y_slice] d = -2 * safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d += XX_chunk d += YY_chunk distances[x_slice, y_slice] = d.astype(np.float32, copy=False) return distances def _argmin_min_reduce(dist, start): indices = dist.argmin(axis=1) values = dist[np.arange(dist.shape[0]), indices] return indices, values def pairwise_distances_argmin_min(X, Y, *, axis=1, metric="euclidean", metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Array containing points. Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) Array containing points. axis : int, default=1 Axis along which the argmin and distances are to be computed. metric : str or callable, default='euclidean' Metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, default=None Keyword arguments to pass to specified metric function. Returns ------- argmin : ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See Also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X indices, values = zip(*pairwise_distances_chunked( X, Y, reduce_func=_argmin_min_reduce, metric=metric, **metric_kwargs)) indices = np.concatenate(indices) values = np.concatenate(values) return indices, values def pairwise_distances_argmin(X, Y, *, axis=1, metric="euclidean", metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Array containing points. Y : array-like of shape (n_samples_Y, n_features) Arrays containing points. axis : int, default=1 Axis along which the argmin and distances are to be computed. metric : str or callable, default="euclidean" Metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, default=None Keyword arguments to pass to specified metric function. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See Also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis=axis, metric=metric, metric_kwargs=metric_kwargs)[0] def haversine_distances(X, Y=None): """Compute the Haversine distance between samples in X and Y. The Haversine (or great circle) distance is the angular distance between two points on the surface of a sphere. The first coordinate of each point is assumed to be the latitude, the second is the longitude, given in radians. The dimension of the data must be 2. .. math:: D(x, y) = 2\\arcsin[\\sqrt{\\sin^2((x1 - y1) / 2) + \\cos(x1)\\cos(y1)\\sin^2((x2 - y2) / 2)}] Parameters ---------- X : array-like of shape (n_samples_X, 2) Y : array-like of shape (n_samples_Y, 2), default=None Returns ------- distance : ndarray of shape (n_samples_X, n_samples_Y) Notes ----- As the Earth is nearly spherical, the haversine formula provides a good approximation of the distance between two points of the Earth surface, with a less than 1% error on average. Examples -------- We want to calculate the distance between the Ezeiza Airport (Buenos Aires, Argentina) and the Charles de Gaulle Airport (Paris, France). >>> from sklearn.metrics.pairwise import haversine_distances >>> from math import radians >>> bsas = [-34.83333, -58.5166646] >>> paris = [49.0083899664, 2.53844117956] >>> bsas_in_radians = [radians(_) for _ in bsas] >>> paris_in_radians = [radians(_) for _ in paris] >>> result = haversine_distances([bsas_in_radians, paris_in_radians]) >>> result * 6371000/1000 # multiply by Earth radius to get kilometers array([[ 0. , 11099.54035582], [11099.54035582, 0. ]]) """ from ..neighbors import DistanceMetric return DistanceMetric.get_metric('haversine').pairwise(X, Y) def manhattan_distances(X, Y=None, *, sum_over_features=True): """Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array-like of shape (n_samples_Y, n_features), default=None sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. Returns ------- D : ndarray of shape (n_samples_X * n_samples_Y, n_features) or \ (n_samples_X, n_samples_Y) If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Notes -------- When X and/or Y are CSR sparse matrices and they are not already in canonical format, this function modifies them in-place to make them canonical. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances([[3]], [[3]]) array([[0.]]) >>> manhattan_distances([[3]], [[2]]) array([[1.]]) >>> manhattan_distances([[2]], [[3]]) array([[1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]]) array([[0., 2.], [4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = np.full((2, 2), 2.) >>> manhattan_distances(X, y, sum_over_features=False) array([[1., 1.], [1., 1.]]) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) X.sum_duplicates() # this also sorts indices in-place Y.sum_duplicates() D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Matrix `X`. Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \ default=None Matrix `Y`. Returns ------- distance matrix : ndarray of shape (n_samples_X, n_samples_Y) See Also -------- cosine_similarity scipy.spatial.distance.cosine : Dense matrices only. """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 np.clip(S, 0, 2, out=S) if X is Y or Y is None: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. S[np.diag_indices_from(S)] = 0.0 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Y : array-like of shape (n_samples, n_features) Returns ------- distances : ndarray of shape (n_samples,) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Y : array-like of shape (n_samples, n_features) Returns ------- distances : ndarray of shape (n_samples,) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Y : array-like of shape (n_samples, n_features) Returns ------- distances : ndarray of shape (n_samples,) Notes ----- The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm. """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, *, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray of shape (n_samples, n_features) Array 1 for distance computation. Y : ndarray of shape (n_samples, n_features) Array 2 for distance computation. metric : str or callable, default="euclidean" The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray of shape (n_samples,) See Also -------- pairwise_distances : Computes the distance between every pair of samples. Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([0., 1.]) """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None, dense_output=True): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None dense_output : bool, default=True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.20 Returns ------- Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=dense_output) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None degree : int, default=3 gamma : float, default=None If None, defaults to 1.0 / n_features. coef0 : float, default=1 Returns ------- Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None gamma : float, default=None If None, defaults to 1.0 / n_features. coef0 : float, default=1 Returns ------- Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None gamma : float, default=None If None, defaults to 1.0 / n_features. Returns ------- kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def laplacian_kernel(X, Y=None, gamma=None): """Compute the laplacian kernel between X and Y. The laplacian kernel is defined as:: K(x, y) = exp(-gamma ||x-y||_1) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <laplacian_kernel>`. .. versionadded:: 0.17 Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None gamma : float, default=None If None, defaults to 1.0 / n_features. Returns ------- kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = -gamma * manhattan_distances(X, Y) np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples_X, n_features) Input data. Y : {ndarray, sparse matrix} of shape (n_samples_Y, n_features), \ default=None Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : bool, default=True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.17 parameter ``dense_output`` for dense output. Returns ------- kernel matrix : ndarray of shape (n_samples_X, n_samples_Y) """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None Returns ------- kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) See Also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : ndarray of shape (n_samples_Y, n_features), default=None gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y) See Also -------- additive_chi2_kernel : The additive version of this kernel. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'haversine': haversine_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, 'precomputed': None, # HACK: precomputed is always allowed, never called 'nan_euclidean': nan_euclidean_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'haversine' metrics.pairwise.haversine_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances 'nan_euclidean' metrics.pairwise.nan_euclidean_distances =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _dist_wrapper(dist_func, dist_matrix, slice_, *args, **kwargs): """Write in-place to a slice of a distance matrix.""" dist_matrix[:, slice_] = dist_func(*args, **kwargs) def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel.""" if Y is None: Y = X X, Y, dtype = _return_float_dtype(X, Y) if effective_n_jobs(n_jobs) == 1: return func(X, Y, **kwds) # enforce a threading backend to prevent data communication overhead fd = delayed(_dist_wrapper) ret = np.empty((X.shape[0], Y.shape[0]), dtype=dtype, order='F') Parallel(backend="threading", n_jobs=n_jobs)( fd(func, ret, s, X, Y[s], **kwds) for s in gen_even_slices(_num_samples(Y), effective_n_jobs(n_jobs))) if (X is Y or Y is None) and func is euclidean_distances: # zeroing diagonal for euclidean norm. # TODO: do it also for other norms. np.fill_diagonal(ret, 0) return ret def _pairwise_callable(X, Y, metric, force_all_finite=True, **kwds): """Handle the callable case for pairwise_{distances,kernels}. """ X, Y = check_pairwise_arrays(X, Y, force_all_finite=force_all_finite) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski", 'nan_euclidean', 'haversine'] _NAN_METRICS = ['nan_euclidean'] def _check_chunk_size(reduced, chunk_size): """Checks chunk is a sequence of expected size or a tuple of same. """ if reduced is None: return is_tuple = isinstance(reduced, tuple) if not is_tuple: reduced = (reduced,) if any(isinstance(r, tuple) or not hasattr(r, '__iter__') for r in reduced): raise TypeError('reduce_func returned %r. ' 'Expected sequence(s) of length %d.' % (reduced if is_tuple else reduced[0], chunk_size)) if any(_num_samples(r) != chunk_size for r in reduced): actual_size = tuple(_num_samples(r) for r in reduced) raise ValueError('reduce_func returned object of length %s. ' 'Expected same length as input: %d.' % (actual_size if is_tuple else actual_size[0], chunk_size)) def _precompute_metric_params(X, Y, metric=None, **kwds): """Precompute data-derived metric parameters if not provided. """ if metric == "seuclidean" and 'V' not in kwds: # There is a bug in scipy < 1.5 that will cause a crash if # X.dtype != np.double (float64). See PR #15730 dtype = np.float64 if sp_version < parse_version('1.5') else None if X is Y: V = np.var(X, axis=0, ddof=1, dtype=dtype) else: raise ValueError( "The 'V' parameter is required for the seuclidean metric " "when Y is passed.") return {'V': V} if metric == "mahalanobis" and 'VI' not in kwds: if X is Y: VI = np.linalg.inv(np.cov(X.T)).T else: raise ValueError( "The 'VI' parameter is required for the mahalanobis metric " "when Y is passed.") return {'VI': VI} return {} def pairwise_distances_chunked(X, Y=None, *, reduce_func=None, metric='euclidean', n_jobs=None, working_memory=None, **kwds): """Generate a distance matrix chunk by chunk with optional reduction. In cases where not all of a pairwise distance matrix needs to be stored at once, this is used to calculate pairwise distances in ``working_memory``-sized chunks. If ``reduce_func`` is given, it is run on each chunk and its return values are concatenated into lists, arrays or sparse matrices. Parameters ---------- X : ndarray of shape (n_samples_X, n_samples_X) or \ (n_samples_X, n_features) Array of pairwise distances between samples, or a feature array. The shape the array should be (n_samples_X, n_samples_X) if metric='precomputed' and (n_samples_X, n_features) otherwise. Y : ndarray of shape (n_samples_Y, n_features), default=None An optional second feature array. Only allowed if metric != "precomputed". reduce_func : callable, default=None The function which is applied on each chunk of the distance matrix, reducing it to needed values. ``reduce_func(D_chunk, start)`` is called repeatedly, where ``D_chunk`` is a contiguous vertical slice of the pairwise distance matrix, starting at row ``start``. It should return one of: None; an array, a list, or a sparse matrix of length ``D_chunk.shape[0]``; or a tuple of such objects. Returning None is useful for in-place operations, rather than reductions. If None, pairwise_distances_chunked returns a generator of vertical chunks of the distance matrix. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int, default=None The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. working_memory : int, default=None The sought maximum memory for temporary distance matrix chunks. When None (default), the value of ``sklearn.get_config()['working_memory']`` is used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Yields ------ D_chunk : {ndarray, sparse matrix} A contiguous slice of distance matrix, optionally processed by ``reduce_func``. Examples -------- Without reduce_func: >>> import numpy as np >>> from sklearn.metrics import pairwise_distances_chunked >>> X = np.random.RandomState(0).rand(5, 3) >>> D_chunk = next(pairwise_distances_chunked(X)) >>> D_chunk array([[0. ..., 0.29..., 0.41..., 0.19..., 0.57...], [0.29..., 0. ..., 0.57..., 0.41..., 0.76...], [0.41..., 0.57..., 0. ..., 0.44..., 0.90...], [0.19..., 0.41..., 0.44..., 0. ..., 0.51...], [0.57..., 0.76..., 0.90..., 0.51..., 0. ...]]) Retrieve all neighbors and average distance within radius r: >>> r = .2 >>> def reduce_func(D_chunk, start): ... neigh = [np.flatnonzero(d < r) for d in D_chunk] ... avg_dist = (D_chunk * (D_chunk < r)).mean(axis=1) ... return neigh, avg_dist >>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func) >>> neigh, avg_dist = next(gen) >>> neigh [array([0, 3]), array([1]), array([2]), array([0, 3]), array([4])] >>> avg_dist array([0.039..., 0. , 0. , 0.039..., 0. ]) Where r is defined per sample, we need to make use of ``start``: >>> r = [.2, .4, .4, .3, .1] >>> def reduce_func(D_chunk, start): ... neigh = [np.flatnonzero(d < r[i]) ... for i, d in enumerate(D_chunk, start)] ... return neigh >>> neigh = next(pairwise_distances_chunked(X, reduce_func=reduce_func)) >>> neigh [array([0, 3]), array([0, 1]), array([2]), array([0, 3]), array([4])] Force row-by-row generation by reducing ``working_memory``: >>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func, ... working_memory=0) >>> next(gen) [array([0, 3])] >>> next(gen) [array([0, 1])] """ n_samples_X = _num_samples(X) if metric == 'precomputed': slices = (slice(0, n_samples_X),) else: if Y is None: Y = X # We get as many rows as possible within our working_memory budget to # store len(Y) distances in each row of output. # # Note: # - this will get at least 1 row, even if 1 row of distances will # exceed working_memory. # - this does not account for any temporary memory usage while # calculating distances (e.g. difference of vectors in manhattan # distance. chunk_n_rows = get_chunk_n_rows(row_bytes=8 * _num_samples(Y), max_n_rows=n_samples_X, working_memory=working_memory) slices = gen_batches(n_samples_X, chunk_n_rows) # precompute data-derived metric params params = _precompute_metric_params(X, Y, metric=metric, **kwds) kwds.update(**params) for sl in slices: if sl.start == 0 and sl.stop == n_samples_X: X_chunk = X # enable optimised paths for X is Y else: X_chunk = X[sl] D_chunk = pairwise_distances(X_chunk, Y, metric=metric, n_jobs=n_jobs, **kwds) if ((X is Y or Y is None) and PAIRWISE_DISTANCE_FUNCTIONS.get(metric, None) is euclidean_distances): # zeroing diagonal, taking care of aliases of "euclidean", # i.e. "l2" D_chunk.flat[sl.start::_num_samples(X) + 1] = 0 if reduce_func is not None: chunk_size = D_chunk.shape[0] D_chunk = reduce_func(D_chunk, sl.start) _check_chunk_size(D_chunk, chunk_size) yield D_chunk def pairwise_distances(X, Y=None, metric="euclidean", *, n_jobs=None, force_all_finite=True, **kwds): """Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. ['nan_euclidean'] but it does not yet support sparse matrices. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_samples_X) or \ (n_samples_X, n_features) Array of pairwise distances between samples, or a feature array. The shape of the array should be (n_samples_X, n_samples_X) if metric == "precomputed" and (n_samples_X, n_features) otherwise. Y : ndarray of shape (n_samples_Y, n_features), default=None An optional second feature array. Only allowed if metric != "precomputed". metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int, default=None The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. Ignored for a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.22 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : ndarray of shape (n_samples_X, n_samples_X) or \ (n_samples_X, n_samples_Y) A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. See Also -------- pairwise_distances_chunked : Performs the same calculation as this function, but returns a generator of chunks of the distance matrix, in order to limit memory usage. paired_distances : Computes the distances between corresponding elements of two arrays. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True, force_all_finite=force_all_finite) whom = ("`pairwise_distances`. Precomputed distance " " need to have non-negative values.") check_non_negative(X, whom=whom) return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, force_all_finite=force_all_finite, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else None if (dtype == bool and (X.dtype != bool or (Y is not None and Y.dtype != bool))): msg = "Data was converted to boolean for metric %s" % metric warnings.warn(msg, DataConversionWarning) X, Y = check_pairwise_arrays(X, Y, dtype=dtype, force_all_finite=force_all_finite) # precompute data-derived metric params params = _precompute_metric_params(X, Y, metric=metric, **kwds) kwds.update(**params) if effective_n_jobs(n_jobs) == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # These distances require boolean arrays, when using scipy.spatial.distance PAIRWISE_BOOLEAN_FUNCTIONS = [ 'dice', 'jaccard', 'kulsinski', 'matching', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'yule', ] # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'laplacian': laplacian_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """Valid metrics for pairwise_kernels. This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'laplacian' sklearn.pairwise.laplacian_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": frozenset(["gamma"]), "cosine": (), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "laplacian": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", *, filter_params=False, n_jobs=None, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are: ['additive_chi2', 'chi2', 'linear', 'poly', 'polynomial', 'rbf', 'laplacian', 'sigmoid', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_samples_X) or \ (n_samples_X, n_features) Array of pairwise kernels between samples, or a feature array. The shape of the array should be (n_samples_X, n_samples_X) if metric == "precomputed" and (n_samples_X, n_features) otherwise. Y : ndarray of shape (n_samples_Y, n_features), default=None A second feature array only if X has shape (n_samples_X, n_features). metric : str or callable, default="linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two rows from X as input and return the corresponding kernel value as a single number. This means that callables from :mod:`sklearn.metrics.pairwise` are not allowed, as they operate on matrices, not single samples. Use the string identifying the kernel instead. filter_params : bool, default=False Whether to filter invalid parameters or not. n_jobs : int, default=None The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. **kwds : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : ndarray of shape (n_samples_X, n_samples_X) or \ (n_samples_X, n_samples_Y) A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ # import GPKernel locally to prevent circular imports from ..gaussian_process.kernels import Kernel as GPKernel if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True) return X elif isinstance(metric, GPKernel): func = metric.__call__ elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = {k: kwds[k] for k in kwds if k in KERNEL_PARAMS[metric]} func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
eg-zhang/scikit-learn
sklearn/linear_model/passive_aggressive.py
97
10879
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None): BaseSGDClassifier.__init__(self, penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False): BaseSGDRegressor.__init__(self, penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
nmartensen/pandas
pandas/core/sparse/scipy_sparse.py
3
5678
""" Interaction with scipy.sparse matrices. Currently only includes SparseSeries.to_coo helpers. """ from pandas.core.index import MultiIndex, Index from pandas.core.series import Series from pandas.compat import OrderedDict, lmap def _check_is_partition(parts, whole): whole = set(whole) parts = [set(x) for x in parts] if set.intersection(*parts) != set(): raise ValueError( 'Is not a partition because intersection is not null.') if set.union(*parts) != whole: raise ValueError('Is not a partition because union is not the whole.') def _to_ijv(ss, row_levels=(0, ), column_levels=(1, ), sort_labels=False): """ For arbitrary (MultiIndexed) SparseSeries return (v, i, j, ilabels, jlabels) where (v, (i, j)) is suitable for passing to scipy.sparse.coo constructor. """ # index and column levels must be a partition of the index _check_is_partition([row_levels, column_levels], range(ss.index.nlevels)) # from the SparseSeries: get the labels and data for non-null entries values = ss._data.internal_values()._valid_sp_values nonnull_labels = ss.dropna() def get_indexers(levels): """ Return sparse coords and dense labels for subset levels """ # TODO: how to do this better? cleanly slice nonnull_labels given the # coord values_ilabels = [tuple(x[i] for i in levels) for x in nonnull_labels.index] if len(levels) == 1: values_ilabels = [x[0] for x in values_ilabels] # # performance issues with groupby ################################### # TODO: these two lines can rejplace the code below but # groupby is too slow (in some cases at least) # labels_to_i = ss.groupby(level=levels, sort=sort_labels).first() # labels_to_i[:] = np.arange(labels_to_i.shape[0]) def _get_label_to_i_dict(labels, sort_labels=False): """ Return OrderedDict of unique labels to number. Optionally sort by label. """ labels = Index(lmap(tuple, labels)).unique().tolist() # squish if sort_labels: labels = sorted(list(labels)) d = OrderedDict((k, i) for i, k in enumerate(labels)) return (d) def _get_index_subset_to_coord_dict(index, subset, sort_labels=False): def robust_get_level_values(i): # if index has labels (that are not None) use those, # else use the level location try: return index.get_level_values(index.names[i]) except KeyError: return index.get_level_values(i) ilabels = list(zip(*[robust_get_level_values(i) for i in subset])) labels_to_i = _get_label_to_i_dict(ilabels, sort_labels=sort_labels) labels_to_i = Series(labels_to_i) if len(subset) > 1: labels_to_i.index = MultiIndex.from_tuples(labels_to_i.index) labels_to_i.index.names = [index.names[i] for i in subset] else: labels_to_i.index = Index(x[0] for x in labels_to_i.index) labels_to_i.index.name = index.names[subset[0]] labels_to_i.name = 'value' return (labels_to_i) labels_to_i = _get_index_subset_to_coord_dict(ss.index, levels, sort_labels=sort_labels) # ##################################################################### # ##################################################################### i_coord = labels_to_i[values_ilabels].tolist() i_labels = labels_to_i.index.tolist() return i_coord, i_labels i_coord, i_labels = get_indexers(row_levels) j_coord, j_labels = get_indexers(column_levels) return values, i_coord, j_coord, i_labels, j_labels def _sparse_series_to_coo(ss, row_levels=(0, ), column_levels=(1, ), sort_labels=False): """ Convert a SparseSeries to a scipy.sparse.coo_matrix using index levels row_levels, column_levels as the row and column labels respectively. Returns the sparse_matrix, row and column labels. """ import scipy.sparse if ss.index.nlevels < 2: raise ValueError('to_coo requires MultiIndex with nlevels > 2') if not ss.index.is_unique: raise ValueError('Duplicate index entries are not allowed in to_coo ' 'transformation.') # to keep things simple, only rely on integer indexing (not labels) row_levels = [ss.index._get_level_number(x) for x in row_levels] column_levels = [ss.index._get_level_number(x) for x in column_levels] v, i, j, rows, columns = _to_ijv(ss, row_levels=row_levels, column_levels=column_levels, sort_labels=sort_labels) sparse_matrix = scipy.sparse.coo_matrix( (v, (i, j)), shape=(len(rows), len(columns))) return sparse_matrix, rows, columns def _coo_to_sparse_series(A, dense_index=False): """ Convert a scipy.sparse.coo_matrix to a SparseSeries. Use the defaults given in the SparseSeries constructor. """ s = Series(A.data, MultiIndex.from_arrays((A.row, A.col))) s = s.sort_index() s = s.to_sparse() # TODO: specify kind? if dense_index: # is there a better constructor method to use here? i = range(A.shape[0]) j = range(A.shape[1]) ind = MultiIndex.from_product([i, j]) s = s.reindex_axis(ind) return s
bsd-3-clause
rain1024/sklearn_tutorial
doc/skeletons/exercise_02.py
4
6244
""" Astronomy Tutorial: exercise 2 Photometric redshift determination usage: python exercise_02.py datadir - datadir is $TUTORIAL_DIR/data/sdss_photoz This directory should contain the files: - sdss_photoz.npy Here we will take a closer look at the photometric redshift problem discussed in section 5 of the tutorial. Using the decision tree classifier, we'll take a look at the 4-color observations of just over 400,000 points. The point of this exercise is to answer the question: how can we get the rms error down to below 0.1? Would it be a better use of telescope time to observe more objects, or to observe additional features of the objects in the data set? We'll use the techniques discussed in section 3 of the tutorial. """ import os, sys import numpy as np import pylab as pl from sklearn.tree import DecisionTreeRegressor from sklearn import metrics try: datadir = sys.argv[1] except: print __doc__ sys.exit() def compute_rms_error(y_pred, y_true): """Compute the rms error between the arrays y_pred and y_true""" return np.sqrt(metrics.mean_squared_error(y_pred, y_true)) def compute_outlier_fraction(y_pred, y_true, cutoff=0.2): """Compute the outlier rate between the arrays y_pred and y_true""" return np.sum((abs(y_pred - y_true) > cutoff)) * 1. / len(y_pred) #------------------------------------------------------------ # load data and compute colors data = np.load(os.path.join(datadir, 'sdss_photoz.npy')) # here we'll truncate the data to 50,000 points. This will allow the code # below to be run quickly while it's being written. When you're satisfied # that the code is ready to go, you can comment out this line. data = data[:50000] print '%i points' % data.shape[0] u, g, r, i, z = [data[f] for f in 'ugriz'] X = np.zeros((len(data), 4)) X[:, 0] = u - g X[:, 1] = g - r X[:, 2] = r - i X[:, 3] = i - z y = data['redshift'] #------------------------------------------------------------ # divide into training, cross-validation, and test samples Ntot = len(y) Ncv = Ntot / 5 Ntest = Ntot / 5 Ntrain = Ntot - Ncv - Ntest X_train = X[:Ntrain] y_train = y[:Ntrain] X_cv = X[Ntrain:Ntrain + Ncv] y_cv = y[Ntrain:Ntrain + Ncv] X_test = X[Ntrain + Ncv:] y_test = y[Ntrain + Ncv:] #------------------------------------------------------------ # plot the Decision Tree error as a function of max_depth parameter # # This is the first main part of the exercise. This is photometric # redshift determination using DecisionTreeRegressor. Here you'll plot # the training error and cross-validation error as a function of the # meta-parameter 'max_depth'. # # You will create three arrays: max_depth_array, train_error, and cv_error. # Use at least 10 different values of max_depth, and compute the training # and cross-validation error associated with each of them. # # note that the error can be computed with the function compute_rms_error() max_depth_array = [] train_error = [] cv_error = [] # TODO: compute the arrays max_depth_array, train_error, and cv_error pl.figure() pl.plot(max_depth_array, cv_error, label='cross-val error') pl.plot(max_depth_array, train_error, label='training error') pl.legend() pl.xlabel('max depth') pl.ylabel('error') # select the value of max_depth which led to the best results max_depth = max_depth_array[np.argmin(cv_error)] print "max_depth = %i" % max_depth #------------------------------------------------------------ # plot the Decision Tree error as a function of number of samples # # This is the second main part of the exercise. Here you'll plot the # training error and cross-validation error as a function of the # number of training samples. # # You will create three arrays: n_samples_array, train_error, and cv_error. # Use at least 40 different values of n_samples, and compute the training # and cross-validation error associated with each of them. # # Make sure that when computing the training error for each number of # samples, you use the same samples that the model was trained on. n_samples_array = [] train_error = [] cv_error = [] # TODO: compute the arrays n_samples_array, train_error, and cv_error pl.figure() pl.plot(n_samples_array, cv_error, label='cross-val error') pl.plot(n_samples_array, train_error, label='training error') pl.legend() pl.xlabel('number of samples') pl.ylabel('error') #---------------------------------------------------------------------- # Use the whole dataset: # If you have been running your code on only a part of the dataset, # now that you have it working, you can run it on the full dataset # (note: this will take a long time to execute!) You can do this by # commenting out the line # data = data[:50000] # above. How does this change the results? #------------------------------------------------------------ # Catastrophic Outliers # Though the rms error is one useful measure of the performance of an # algorithm, astronomers are often more interested in reducing the # 'catastrophic outlier' rate. Catastrophic outliers are points which # are given redshifts very far from the true value. For accuracy of # cosmological results, this is often more important than the overall # rms error. # # Here, you can re-implement te above tasks, plotting the catastrophic # outlier rate as a function of the max_depth parameter, and as a function # of the number of training points. This can be accomplished either by # copying and pasting the above code here, or by modifying the above code. # # To compute the catastrophic error rate, you can use the function # compute_outlier_fraction() # TODO: repeat the above two plots using catastrophic error rate #---------------------------------------------------------------------- # Analyze the results # # Compare your results to the discussion of bias and variance in section # 3. How do you think these results could be improved? Is it better to # spend telescope time increasing the size of the training set, or would # it be better to measure more features of the objects we already have? # Does this recommendation change if the astronomer is interested in # minimizing the number of catastrophic outliers rather than the rms error? pl.show()
bsd-3-clause
HolgerPeters/scikit-learn
sklearn/metrics/tests/test_pairwise.py
42
27323
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize from sklearn.exceptions import DataConversionWarning def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses scikit-learn metric, cityblock (function) is # scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # The string "cosine" uses sklearn.metric, # while the function cosine is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # test that we convert to boolean arrays for boolean distances rng = np.random.RandomState(0) X = rng.randn(5, 4) Y = X.copy() Y[0, 0] = 1 - Y[0, 0] for metric in PAIRWISE_BOOLEAN_FUNCTIONS: for Z in [Y, None]: res = pairwise_distances(X, Z, metric=metric) res[np.isnan(res)] = 0 assert_true(np.sum(res != 0) == 0) def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1.]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean scikit-learn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) def test_cosine_distances(): # Check the pairwise Cosine distances computation rng = np.random.RandomState(1337) x = np.abs(rng.rand(910)) XA = np.vstack([x, x]) D = cosine_distances(XA) assert_array_almost_equal(D, [[0., 0.], [0., 0.]]) # check that all elements are in [0, 2] assert_true(np.all(D >= 0.)) assert_true(np.all(D <= 2.)) # check that diagonal elements are equal to 0 assert_array_almost_equal(D[np.diag_indices_from(D)], [0., 0.]) XB = np.vstack([x, -x]) D2 = cosine_distances(XB) # check that all elements are in [0, 2] assert_true(np.all(D2 >= 0.)) assert_true(np.all(D2 <= 2.)) # check that diagonal elements are equal to 0 and non diagonal to 2 assert_array_almost_equal(D2, [[0., 2.], [2., 0.]]) # check large random matrix X = np.abs(rng.rand(1000, 5000)) D = cosine_distances(X) # check that diagonal elements are equal to 0 assert_array_almost_equal(D[np.diag_indices_from(D)], [0.] * D.shape[0]) assert_true(np.all(D >= 0.)) assert_true(np.all(D <= 2.)) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
sinhrks/scikit-learn
sklearn/datasets/__init__.py
72
3807
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_breast_cancer from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause