repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
gotomypc/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
MarianThull/BattleshipAI
battleship.py
1
8122
from __future__ import division __author__ = 'marian' import copy import random import numpy as np import matplotlib.pyplot as plt class Battleship: WATER = 0 HIT = 1 SUNKEN = 2 WON = 3 def __init__(self, size, ships=[], random=True): self.size = size self.positions = [] self.single_ships = [] self.ships = ships self.shoot_count = 0 if random: self.gen_random_positions() def gen_random_positions(self): forbidden = [(i, -1) for i in range(self.size)] + [(i, self.size) for i in range(self.size)] + \ [(-1, j) for j in range(self.size)] + [(self.size, j) for j in range(self.size)] for ship in self.ships: horizontal = random.randint(0, 1) legal = False while not legal: if horizontal: row = random.randint(0, 9) left = random.randint(0, self.size - ship) s = [(row, j) for j in range(left, left + ship)] else: column = random.randint(0, 9) top = random.randint(0, self.size - ship) s = [(i, column) for i in range(top, top + ship)] legal = True for pos in s: if pos in forbidden: legal = False break if horizontal: for i in range(row - 1, row + 2): for j in range(left - 1, left + ship + 1): forbidden.append((i, j)) else: for i in range(top - 1, top + ship + 1): for j in range(column -1, column + 2): forbidden.append((i, j)) self.positions += s self.single_ships.append(s) def print_field(self): f = np.zeros((self.size, self.size)) for i, j in self.positions: f[i][j] = 1 print f def shoot(self, i, j): self.shoot_count += 1 if (i, j) not in self.positions: return Battleship.WATER for ship in self.single_ships: if (i, j) in ship: ship.remove((i, j)) if len(ship) == 0: self.single_ships.remove(ship) if len(self.single_ships) == 0: return Battleship.WON return Battleship.SUNKEN return Battleship.HIT class BattleshipAI: def __init__(self, size, ships, game): self.size = size self.ships = ships self.game = game self.shots = [] self.sunken = [] self.hits = [] self.heat_matrix = np.zeros((size, size)) self.feel_the_heat() def feel_the_heat(self): # reset heat_matrix self.heat_matrix = np.zeros((self.size, self.size)) # place every ship in all positions for ship in self.ships: # iterate over rows for i in range(self.size): # check all horizontal positions for j_left in range(0, self.size - ship + 1): js = range(j_left, j_left + ship) # if there is a shot at one of the squares it is not a legal position legal = True for j in js: if (i, j) in self.shots: legal = False if legal: for j in js: self.heat_matrix[i][j] += 1 # iterate over columns for j in range(self.size): # check all vertical positions for i_top in range(0, self.size - ship + 1): i_s = range(i_top, i_top + ship) # if there is a shot at one of the squares it is not a legal position legal = True for i in i_s: if (i, j) in self.shots: legal = False if legal: for i in i_s: self.heat_matrix[i][j] += 1 def local_heat_check(self): rows = list(set([hit[0] for hit in self.hits])) columns = list(set([hit[1] for hit in self.hits])) # reset heat_matrix self.heat_matrix = np.zeros((self.size, self.size)) # place every ship in all positions for ship in self.ships: # if horizontal or unknown check row if len(rows) == 1: i = rows[0] # check all horizontal positions for j_left in range(0, self.size - ship + 1): js = range(j_left, j_left + ship) # if there is a shot at one of the squares it is not a legal position legal = True for j in js: if (i, j) in self.shots: legal = False if legal: for j in js: if min(columns) - j == 1 or j - max(columns) == 1: self.heat_matrix[i][j] += 1 # iterate over columns if len(columns) == 1: j = columns[0] # check all vertical positions for i_top in range(0, self.size - ship + 1): i_s = range(i_top, i_top + ship) # if there is a shot at one of the squares it is not a legal position legal = True for i in i_s: if (i, j) in self.shots: legal = False if legal: for i in i_s: if min(rows) - i == 1 or i - max(rows) == 1: self.heat_matrix[i][j] += 1 def hot_shot(self): a = np.argmax(self.heat_matrix) j = a % self.size i = int((a - j) / self.size) v = self.game.shoot(i, j) if v == Battleship.HIT: self.hits.append((i, j)) self.sunken.append((i, j)) elif v == Battleship.SUNKEN: self.hits.append((i, j)) rows = [h[0] for h in self.hits] columns = [h[1] for h in self.hits] for k in range(min(rows) - 1, max(rows) + 2): for l in range(min(columns) - 1, max(columns) + 2): self.shots.append((k, l)) self.hits = [] self.sunken.append((i, j)) elif v == Battleship.WON: self.shots += self.hits self.sunken.append((i, j)) else: self.shots.append((i, j)) if len(self.hits) > 0: self.local_heat_check() else: self.feel_the_heat() return self.heat_matrix, copy.deepcopy(self.sunken) def plot_heat(states, cmap, vmin, vmax): subplts = np.ceil(np.sqrt(len(states))) subx = int(1.7 * subplts) suby = np.ceil(len(states) / subx) for i in range(len(states)): heat_m, sunken = states[i] for k, l in sunken: heat_m[k][l] = -1 plt.subplot(suby, subx, i + 1, aspect=1) n = plt.pcolor(heat_m, cmap=cmap, vmin=vmin, vmax=vmax, edgecolor='k') n.axes.set_ylim(0, heat_m.shape[1]) n.axes.set_xlim(0, heat_m.shape[0]) if __name__ == '__main__': size = 12 ships = [5, 4, 3, 3, 2] game = Battleship(size, ships, True) ai = BattleshipAI(size, ships, game) vmin = 0 vmax = ai.heat_matrix.max() custom_cmap = plt.cm.hot custom_cmap.set_under('b') states = [] count = 0 while True: count += 1 state = ai.hot_shot() # print 'Shot {}. {} fields hit.'.format(count, len(state[1])) states.append(state) if len(state[1]) == sum(ships) or count == 100: break print 'Won with {} shots.'.format(count) plot_heat(states, custom_cmap, vmin, vmax) plt.show()
mit
wangdegang/RWD
code/degang.py
1
3718
# -*- coding: utf-8 -*- """ Created on Sun Nov 25 18:56:59 2018 @author: Wang_Degang Module contains handy functions to get the object size, running time, submit Impala queries, convert parquet data to pandas data frame, etc. Functions --------- hsize - get human readable size of an object rtime - get running time of a process impa - submit Impala query and run in Hadoop system todf - submit Impala query and get pandas data frame of the query result nullCheck - get numbers and %s of null values for each column in a data frame """ import sys import pyodbc import pandas as pd from datetime import datetime #======================================================================= # object size human readable #======================================================================= def hsize(obj): """ Get the human readble size of an object. Parameters ---------- obj : obj Any python objects Returns ------- result : str A string states how big the object is. """ num = sys.getsizeof(obj) for unit in ['bytes','KB','MB','GB','TB','PB','EB','ZB']: if num < 1024.0: print( '%.2f %s' % (num, unit)) break num /= 1024.0 #======================================================================= # processing time #======================================================================= ''' from datetime import datetime t0 = datetime.now() process() t1 = datetime.now() d = t1-t0 rtime(d) ''' def rtime(obj): m, s = divmod(obj.seconds, 60) #h, m = divmod(m, 60) return print(f'Used {m} mins {s} secs') #======================================================================= # pyodbc to pandas #======================================================================= ''' def as_pandas(cursor): names = [metadata[0] for metadata in cursor.description] return pd.DataFrame.from_records(cursor.fetchall(), columns=names) import pyodbc conn = pyodbc.connect(dsn='myrwe', autocommit=True) cursor = conn.cursor() cursor.execute("show databases") as_pandas(cursor) cursor.close() conn.close() ''' # impala operations in hadoop def impa(*args): t0 = datetime.now() conn = pyodbc.connect(dsn='myrwe', autocommit=True) cursor = conn.cursor() if len(args) == 1: cursor.execute(args[0]) else: q = f'''create table if not exists {args[0]}.{args[1]} stored as parquet as {args[2]} ''' cursor.execute(q) cursor.close() conn.close() t1 = datetime.now() return rtime(t1-t0) # save query to a pandas data frame def todf(obj): conn = pyodbc.connect(dsn='myrwe', autocommit=True) cursor = conn.cursor() cursor.execute(obj) names = [metadata[0] for metadata in cursor.description] df = pd.DataFrame.from_records(cursor.fetchall(), columns=names) for col in df: if df[col].dtype == 'datetime64[ns]': df[col] = df[col].apply(lambda x: x.date()) return df cursor.close() conn.close() #======================================================================= # count the number of missing records #======================================================================= def nullCheck(obj): dfnon = pd.DataFrame(obj.count(), columns=['nonNull']) dfnul = pd.DataFrame(obj.isnull().sum(), columns=['Null']) df = dfnon.join(dfnul) df['NullPct'] = df['Null']/obj.shape[0]*100 fmt = {'nonNull' : '{:,}', 'Null' : '{:,}', 'NullPct' : '{:.2f}%'} for key, value in fmt.items(): df[key] = df[key].apply(value.format) return print(df)
mit
amitkaps/machine-learning
check_env.py
1
2767
# Authors: Amit Kapoor and Bargava Subramanian # Copyright (c) 2016 Amit Kapoor # License: MIT License """ This script will check if the environment setup is correct for the workshop. To run, please execute the following command from the command prompt >>> python check_env.py The output will indicate if any of the libraries are missing or need to be updated. This script is inspired from https://github.com/fonnesbeck/scipy2015_tutorial/blob/master/check_env.py """ from __future__ import print_function try: import curses curses.setupterm() assert curses.tigetnum("colors") > 2 OK = "\x1b[1;%dm[ OK ]\x1b[0m" % (30 + curses.COLOR_GREEN) FAIL = "\x1b[1;%dm[FAIL]\x1b[0m" % (30 + curses.COLOR_RED) except: OK = '[ OK ]' FAIL = '[FAIL]' import sys try: import importlib except ImportError: print(FAIL, "Python version 2.7 is required, but %s is installed." % sys.version) from distutils.version import LooseVersion as Version def import_version(pkg, min_ver, fail_msg=""): mod = None try: mod = importlib.import_module(pkg) if((pkg=="spacy" or pkg=="wordcloud") and (mod > 0)): print(OK, '%s ' % (pkg)) else: #else: version = getattr(mod, "__version__", 0) or getattr(mod, "VERSION", 0) if Version(version) < min_ver: print(FAIL, "%s version %s or higher required, but %s installed." % (lib, min_ver, version)) else: print(OK, '%s version %s' % (pkg, version)) except ImportError: print(FAIL, '%s not installed. %s' % (pkg, fail_msg)) return mod # first check the python version print('Using python in', sys.prefix) print(sys.version) pyversion = Version(sys.version) if pyversion < "3": print(FAIL, "Python version 3 is required, but %s is installed." % sys.version) elif pyversion >= "2": if pyversion == "2.7": print(FAIL, "Python version 2.7 is installed. Please upgrade to version 3." ) else: print(FAIL, "Unknown Python version: %s" % sys.version) print() requirements = { 'gensim' :'0.12.4', 'IPython' : '4.0.3', 'jupyter' :'1.0.0', 'lda' : '1.0.3', 'networkx' : '1.11', 'nltk' : '3.1', 'matplotlib' :'1.5.0', 'nltk' : '3.1', 'numpy' : '1.10.4', 'pandas' : '0.17.1', 'PIL' : '1.1.7', 'scipy' : '0.17.0', 'sklearn' : '0.17', 'seaborn' :'0.6.0', 'spacy' :'0.100.6', 'statsmodels':'0.6.1', 'wordcloud' :'0.1', 'xgboost' :'0.4' } # now the dependencies for lib, required_version in list(requirements.items()): import_version(lib, required_version)
mit
nborggren/zipline
zipline/history/history.py
1
9719
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import pandas as pd import re from zipline.errors import IncompatibleHistoryFrequency def parse_freq_str(freq_str): # TODO: Wish we were more aligned with pandas here. num_str, unit_str = re.match('([0-9]+)([A-Za-z]+)', freq_str).groups() return int(num_str), unit_str class Frequency(object): """ Represents how the data is sampled, as specified by the algoscript via units like "1d", "1m", etc. Currently only two frequencies are supported, "1d" and "1m" - "1d" provides data at daily frequency, with the latest bar aggregating the elapsed minutes of the (incomplete) current day - "1m" provides data at minute frequency """ SUPPORTED_FREQUENCIES = frozenset({'1d', '1m'}) MAX_MINUTES = {'m': 1, 'd': 390} MAX_DAYS = {'d': 1} def __init__(self, freq_str, data_frequency, env): if freq_str not in self.SUPPORTED_FREQUENCIES: raise ValueError( "history frequency must be in {supported}".format( supported=self.SUPPORTED_FREQUENCIES, )) # The string the at the algoscript specifies. # Hold onto to use a key for caching. self.freq_str = freq_str # num - The number of units of the frequency. # unit_str - The unit type, e.g. 'd' self.num, self.unit_str = parse_freq_str(freq_str) self.data_frequency = data_frequency self.env = env def next_window_start(self, previous_window_close): """ Get the first minute of the window starting after a window that finished on @previous_window_close. """ if self.unit_str == 'd': return self.next_day_window_start(previous_window_close, self.env, self.data_frequency) elif self.unit_str == 'm': return self.env.next_market_minute(previous_window_close) @staticmethod def next_day_window_start(previous_window_close, env, data_frequency='minute'): """ Get the next day window start after @previous_window_close. This is defined as the first market open strictly greater than @previous_window_close. """ if data_frequency == 'daily': next_open = env.next_trading_day(previous_window_close) else: next_open = env.next_market_minute(previous_window_close) return next_open def window_open(self, window_close): """ For a period ending on `window_end`, calculate the date of the first minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_open(window_close, self.num) elif self.unit_str == 'm': return self.minute_window_open(window_close, self.num) def window_close(self, window_start): """ For a period starting on `window_start`, calculate the date of the last minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_close(window_start, self.num) elif self.unit_str == 'm': return self.minute_window_close(window_start, self.num) def day_window_open(self, window_close, num_days): """ Get the first minute for a daily window of length @num_days with last minute @window_close. This is calculated by searching backward until @num_days market_closes are encountered. """ open_ = self.env.open_close_window( window_close, 1, offset=-(num_days - 1) ).market_open.iloc[0] if self.data_frequency == 'daily': open_ = pd.tslib.normalize_date(open_) return open_ def minute_window_open(self, window_close, num_minutes): """ Get the first minute for a minutely window of length @num_minutes with last minute @window_close. This is defined as window_close if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_close return self.env.market_minute_window( window_close, count=-num_minutes )[-1] def day_window_close(self, window_start, num_days): """ Get the window close for a daily frequency. If the data_frequency is minute, then this will be the last minute of last day of the window. If the data_frequency is minute, this will be midnight utc of the last day of the window. """ if self.data_frequency != 'daily': return self.env.get_open_and_close( self.env.add_trading_days(num_days - 1, window_start), )[1] return pd.tslib.normalize_date( self.env.add_trading_days(num_days - 1, window_start), ) def minute_window_close(self, window_start, num_minutes): """ Get the last minute for a minutely window of length @num_minutes with first minute @window_start. This is defined as window_start if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_start return self.env.market_minute_window( window_start, count=num_minutes )[-1] def prev_bar(self, dt): """ Returns the previous bar for dt. """ if self.unit_str == 'd': if self.data_frequency == 'minute': def func(dt): return self.env.get_open_and_close( self.env.previous_trading_day(dt))[1] else: func = self.env.previous_trading_day else: func = self.env.previous_market_minute # Cache the function dispatch. self.prev_bar = func return func(dt) @property def max_bars(self): if self.data_frequency == 'daily': return self.max_days else: return self.max_minutes @property def max_days(self): if self.data_frequency != 'daily': raise ValueError('max_days requested in minute mode') return self.MAX_DAYS[self.unit_str] * self.num @property def max_minutes(self): """ The maximum number of minutes required to roll a bar at this frequency. """ if self.data_frequency != 'minute': raise ValueError('max_minutes requested in daily mode') return self.MAX_MINUTES[self.unit_str] * self.num def normalize(self, dt): if self.data_frequency != 'daily': return dt return pd.tslib.normalize_date(dt) def __eq__(self, other): return self.freq_str == other.freq_str def __hash__(self): return hash(self.freq_str) def __repr__(self): return ''.join([str(self.__class__.__name__), "('", self.freq_str, "')"]) class HistorySpec(object): """ Maps to the parameters of the history() call made by the algoscript An object is used here so that get_history calls are not constantly parsing the parameters and provides values for caching and indexing into result frames. """ FORWARD_FILLABLE = frozenset({'price'}) @classmethod def spec_key(cls, bar_count, freq_str, field, ffill): """ Used as a hash/key value for the HistorySpec. """ return "{0}:{1}:{2}:{3}".format( bar_count, freq_str, field, ffill) def __init__(self, bar_count, frequency, field, ffill, env, data_frequency='daily'): # Number of bars to look back. self.bar_count = bar_count if isinstance(frequency, str): frequency = Frequency(frequency, data_frequency, env) if frequency.unit_str == 'm' and data_frequency == 'daily': raise IncompatibleHistoryFrequency( frequency=frequency.unit_str, data_frequency=data_frequency, ) # The frequency at which the data is sampled. self.frequency = frequency # The field, e.g. 'price', 'volume', etc. self.field = field # Whether or not to forward fill nan data. Only has an effect if this # spec's field is in FORWARD_FILLABLE. self._ffill = ffill # Calculate the cache key string once. self.key_str = self.spec_key( bar_count, frequency.freq_str, field, ffill) @property def ffill(self): """ Wrapper around self._ffill that returns False for fields which are not forward-fillable. """ return self._ffill and self.field in self.FORWARD_FILLABLE def __repr__(self): return ''.join([self.__class__.__name__, "('", self.key_str, "')"])
apache-2.0
ishank08/scikit-learn
benchmarks/bench_glmnet.py
111
3890
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of matplotlib.pyplot import matplotlib.pyplot as plt scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) plt.clf() xx = range(0, n * step, step) plt.title('Lasso regression on sample dataset (%d features)' % n_features) plt.plot(xx, scikit_results, 'b-', label='scikit-learn') plt.plot(xx, glmnet_results, 'r-', label='glmnet') plt.legend() plt.xlabel('number of samples to classify') plt.ylabel('Time (s)') plt.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) plt.figure('scikit-learn vs. glmnet benchmark results') plt.title('Regression in high dimensional spaces (%d samples)' % n_samples) plt.plot(xx, scikit_results, 'b-', label='scikit-learn') plt.plot(xx, glmnet_results, 'r-', label='glmnet') plt.legend() plt.xlabel('number of features') plt.ylabel('Time (s)') plt.axis('tight') plt.show()
bsd-3-clause
yonglehou/scikit-learn
sklearn/metrics/cluster/supervised.py
207
27395
"""Utilities to evaluate the clustering performance of models Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # License: BSD 3 clause from math import log from scipy.misc import comb from scipy.sparse import coo_matrix import numpy as np from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None): """Build a contengency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps: None or float If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. Returns ------- contingency: array, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. """ classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int).toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://www.springerlink.com/content/x64124718341j1j0/ .. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 or classes.shape[0] == clusters.shape[0] == len(labels_true)): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) # Compute the ARI using the contingency data sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0)) sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten()) prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c) / 2. return ((sum_comb - prod_comb) / (mean_comb - prod_comb)) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure: float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) MI = mutual_info_score(labels_true, labels_pred) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency: None or array, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi: float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
CforED/Machine-Learning
sklearn/linear_model/tests/test_ridge.py
19
26553
import numpy as np import scipy.sparse as sp from scipy import linalg from itertools import product from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.datasets import make_regression from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold from sklearn.utils import check_random_state from sklearn.datasets import make_multilabel_classification diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr", "sag"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_regression_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) def test_ridge_sample_weights(): # TODO: loop over sparse data as well rng = np.random.RandomState(0) param_grid = product((1.0, 1e-2), (True, False), ('svd', 'cholesky', 'lsqr', 'sparse_cg')) for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) for (alpha, intercept, solver) in param_grid: # Ridge with explicit sample_weight est = Ridge(alpha=alpha, fit_intercept=intercept, solver=solver) est.fit(X, y, sample_weight=sample_weight) coefs = est.coef_ inter = est.intercept_ # Closed form of the weighted regularized least square # theta = (X^T W X + alpha I)^(-1) * X^T W y W = np.diag(sample_weight) if intercept is False: X_aug = X I = np.eye(n_features) else: dummy_column = np.ones(shape=(n_samples, 1)) X_aug = np.concatenate((dummy_column, X), axis=1) I = np.eye(n_features + 1) I[0, 0] = 0 cf_coefs = linalg.solve(X_aug.T.dot(W).dot(X_aug) + alpha * I, X_aug.T.dot(W).dot(y)) if intercept is False: assert_array_almost_equal(coefs, cf_coefs) else: assert_array_almost_equal(coefs, cf_coefs[1:]) assert_almost_equal(inter, cf_coefs[0]) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:-1]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) cv = KFold(5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5, fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3, fit_intercept=False) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) # ignore warning that solvers are changed to SAG for # temporary fix @ignore_warnings def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd', fit_intercept=False) assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) cv = KFold(5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1]) @ignore_warnings def test_n_iter(): # Test that self.n_iter_ is correct. n_targets = 2 X, y = X_diabetes, y_diabetes y_n = np.tile(y, (n_targets, 1)).T for max_iter in range(1, 4): for solver in ('sag', 'lsqr'): reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12) reg.fit(X, y_n) assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets)) for solver in ('sparse_cg', 'svd', 'cholesky'): reg = Ridge(solver=solver, max_iter=1, tol=1e-1) reg.fit(X, y_n) assert_equal(reg.n_iter_, None) def test_ridge_fit_intercept_sparse(): X, y = make_regression(n_samples=1000, n_features=2, n_informative=2, bias=10., random_state=42) X_csr = sp.csr_matrix(X) dense = Ridge(alpha=1., tol=1.e-15, solver='sag', fit_intercept=True) sparse = Ridge(alpha=1., tol=1.e-15, solver='sag', fit_intercept=True) dense.fit(X, y) sparse.fit(X_csr, y) assert_almost_equal(dense.intercept_, sparse.intercept_) assert_array_almost_equal(dense.coef_, sparse.coef_) # test the solver switch and the corresponding warning sparse = Ridge(alpha=1., tol=1.e-15, solver='lsqr', fit_intercept=True) assert_warns(UserWarning, sparse.fit, X_csr, y) assert_almost_equal(dense.intercept_, sparse.intercept_) assert_array_almost_equal(dense.coef_, sparse.coef_) def test_errors_and_values_helper(): ridgecv = _RidgeGCV() rng = check_random_state(42) alpha = 1. n = 5 y = rng.randn(n) v = rng.randn(n) Q = rng.randn(len(v), len(v)) QT_y = Q.T.dot(y) G_diag, c = ridgecv._errors_and_values_helper(alpha, y, v, Q, QT_y) # test that helper function behaves as expected out, c_ = ridgecv._errors(alpha, y, v, Q, QT_y) np.testing.assert_array_equal(out, (c / G_diag) ** 2) np.testing.assert_array_equal(c, c) out, c_ = ridgecv._values(alpha, y, v, Q, QT_y) np.testing.assert_array_equal(out, y - (c / G_diag)) np.testing.assert_array_equal(c_, c) def test_errors_and_values_svd_helper(): ridgecv = _RidgeGCV() rng = check_random_state(42) alpha = 1. for n, p in zip((5, 10), (12, 6)): y = rng.randn(n) v = rng.randn(p) U = rng.randn(n, p) UT_y = U.T.dot(y) G_diag, c = ridgecv._errors_and_values_svd_helper(alpha, y, v, U, UT_y) # test that helper function behaves as expected out, c_ = ridgecv._errors_svd(alpha, y, v, U, UT_y) np.testing.assert_array_equal(out, (c / G_diag) ** 2) np.testing.assert_array_equal(c, c) out, c_ = ridgecv._values_svd(alpha, y, v, U, UT_y) np.testing.assert_array_equal(out, y - (c / G_diag)) np.testing.assert_array_equal(c_, c) def test_ridge_classifier_no_support_multilabel(): X, y = make_multilabel_classification(n_samples=10, random_state=0) assert_raises(ValueError, RidgeClassifier().fit, X, y)
bsd-3-clause
leal26/AeroPy
examples/morphing/flight_conditions/nonmorphed/range_constant_velocity.py
2
6505
import aeropy.xfoil_module as xf from aeropy.geometry.airfoil import CST, create_x from aeropy.morphing.camber_2D import * from aeropy.aero_module import air_properties, Reynolds, LLT_calculator from scipy.interpolate import griddata, RegularGridInterpolator import numpy as np import matplotlib.pyplot as plt import pandas from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin_min import scipy def aircraft_range_varying_AOA(f_L, f_LD, velocity): def to_integrate(weight): # velocity = 0.514444*108 # m/s (113 KTAS) def calculate_AOA(velocity): def residual(AOA): CL = f_L([velocity, AOA[0]])[0] span = 11 AR = 7.32 chord_root = span/AR dynamic_pressure = .5*density*velocity**2*(span*chord_root) return abs(CL - weight/dynamic_pressure) if len(AOA_list) == 0: x0 = 0 else: x0 = AOA_list[-1] res = scipy.optimize.minimize(residual, x0, bounds = [[0, 12],])#, options={'ftol':1e-9}) return res.x[0] AOA = calculate_AOA(velocity) # print(AOA) AOA_list.append(AOA) lift_to_drag = f_LD([velocity, AOA]) span = 10.9728 RPM = 1800 a = 0.3089 # (lb/hr)/BTU b = 0.008*RPM+19.607 # lb/hr lbhr_to_kgs = 0.000125998 BHP_to_watt = 745.7 eta = 0.85 thrust = weight/lift_to_drag power_SI = thrust*velocity/eta power_BHP = power_SI/BHP_to_watt mass_flow = (a*power_BHP + b) mass_flow_SI = mass_flow*lbhr_to_kgs SFC = mass_flow_SI/thrust dR = velocity/g/SFC*lift_to_drag/weight return dR*0.001 # *0.0005399 AOA_list = [] g = 9.81 # kg/ms fuel = 56*6.01*0.4535*g initial_weight = 1111*g final_weight = initial_weight-fuel x = np.linspace(final_weight, initial_weight, 100) y = [] for x_i in x: y.append(to_integrate(x_i)[0]) range = scipy.integrate.simps(y, x) return range, AOA_list # ============================================================================== # Inputs # ============================================================================== altitude = 10000 # ft air_props = air_properties(altitude, unit='feet') density = air_props['Density'] # data = pandas.read_csv('performance_grid.csv') # psi_spars = [0.1, 0.3, 0.6, 0.8] # c_P = 1.0 # ranges = [] # for i in range(len(data.values)): # AC = data.values[i,0:4] # velocity = data.values[i,-4] # AOA = data.values[i,-5] # cl= data.values[i,-3] # cd = data.values[i,-2] # CL, CD = coefficient_LLT(AC, velocity, AOA) # data.values[i, -3] = CL # data.values[i, -2] = CD # data.values[i, -1] = CL/CD # print(i, CL, CD) # data = data.drop_duplicates() import pickle # f = open('wing.p', 'wb') # pickle.dump(data, f) # f.close() state = 'nonmorphed' concepts = ['NACA0012', 'NACA4415', 'NACA641212', 'glider'] # # plt.figure() # for concept in concepts: # mat = scipy.io.loadmat(state + '_' + concept) # aoa = mat['aoa'][0] # velocity = mat['V'][0] # cl = mat['CL'].T # LD_ratio = mat['lift_to_drag'] # # print(aoa) # # print(velocity) # # print(cl) # f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) # f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = [20] # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_L(data_i), label = concept) # # plt.scatter(aoas, f_L((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.ylabel('cl') # plt.show() # plt.figure() # for concept in concepts: # mat = scipy.io.loadmat(state + '_' + concept) # aoa = mat['aoa'][0] # velocity = mat['V'][0] # cl = mat['CL'].T # LD_ratio = mat['lift_to_drag'] # f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) # f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = [20] # aoas = np.linspace(0,12,100) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_LD(data_i), label = concept) # # plt.scatter(aoas, f_LD((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.ylabel('Lift-to-drag ratio') # plt.show() range_data = {} plt.figure() for concept in concepts: mat = scipy.io.loadmat(state + '_' + concept) aoa = mat['aoa'][0] velocity = mat['V'][0] cl = mat['CL'].T LD_ratio = mat['lift_to_drag'] f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = np.linspace(20, 65, 7) # plt.figure() # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_L(data_i), label = velocity[i]) # # plt.scatter(aoas, f_L((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.show() # plt.figure() # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_LD(data_i), label = velocity[i]) # # plt.scatter(aoas, f_LD((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.show() ranges = [] # velocity = np.linspace(20, 60, 5) for i in range(len(velocity)): range_i, AOA_i = aircraft_range_varying_AOA(f_L, f_LD, velocity[i]) # plt.plot(np.arange(len(AOA_i)), AOA_i, label=velocity[i]) # plt.scatter(np.arange(len(AOA_i)),AOA_i) print(i, velocity[i], range_i) ranges.append(range_i) # print(velocity[36]) range_data[concept] = ranges plt.plot(velocity, ranges, lw=2, label=concept) f = open('ranges_velocity.p', 'wb') pickle.dump(range_data, f) f.close() # plt.xlim(min(velocity), max(velocity)) # plt.ylim(min(ranges), max(ranges)) plt.xlabel('Velocity (m/s)') plt.ylabel('Range (km)') plt.legend() plt.show()
mit
lazywei/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
education_examples/_Chapter_Material_Behaviour_Examples/Multi_Yield_Surface_von_Mises_GGmax/plot_GGmax.py
1
2914
import numpy as np import matplotlib.pyplot as plt # target userInput1= [0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01]; userInput2= [1,0.99563892,0.96674888,0.87318337,0.78735192,0.46719464,0.32043423,0.10940113,0.06347752]; Gmax = 3E8; poisson = 0.0; # ################################# gamma = userInput1 GGmax = userInput2 G=[Gmax * item for item in GGmax] tau = np.zeros(len(gamma)) for it in xrange(1,len(gamma)): tau[it] = gamma[it] * G[it] print tau epsilon = [item/2. for item in gamma] # # ============================================ # # Figure 1 # # Plot the stress-strain # # ============================================ strain = np.loadtxt("strain.feioutput") stress = np.loadtxt("stress.feioutput") essiGamma = [2*item for item in strain] # plt.plot(gamma, tau, 'b-^', label='Input' ) # plt.plot(essiGamma, stress, 'r-*', label=' ESSI') # plt.legend(loc=2) # plt.xlabel('Strain / (unitless)') # plt.ylabel('Stress / (Pa)') # plt.title('Material Behavior: Stress-Strain') # plt.grid() # plt.box() # plt.savefig('backbone.pdf', transparent=True, bbox_inches='tight') # plt.show() # # ============================================ # # Figure 3 # # Plot the G/Gmax # # ============================================ # avoid the divide by zero fontSIZE = 21 import matplotlib as mpl label_size = fontSIZE mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size stress[0]=stress[1] strain[0]=strain[1] essiG = [a/b/2. for a,b in zip(stress, strain)] essiGGmax = [item/Gmax for item in essiG] # strain_plot = [100* x for x in strain] # stress_plot = [1./1000* x for x in stress] plt.semilogx(essiGamma, essiGGmax, 'b-', label='ESSI', linewidth = 5.0 ) plt.semilogx(gamma , GGmax , 'r--', label='Input', linewidth = 5.0 ) # plt.legend(loc=3) plt.legend(loc=3, prop={'size':fontSIZE}) plt.title('Multi-Yield-Surface vonMises G/Gmax',fontsize=fontSIZE) plt.xlabel('Strain / (unitless)',fontsize=fontSIZE) plt.ylabel('G/Gmax / (unitless)',fontsize=fontSIZE) plt.grid() plt.box() plt.savefig('GGmax.pdf', transparent=True, bbox_inches='tight') plt.show() # strain_stress = np.loadtxt('strain_stress.txt') # strain = strain_stress[:,0] # stress = strain_stress[:,1] # # vol_s = strain_stress[:,3] # strain_plot = [100* x for x in strain] # stress_plot = [1./1000* x for x in stress] # plt.plot(strain_plot,stress_plot,linewidth=3.0) # # plt.plot(vol_s, stress) # minY = min(stress_plot)*1.05 # maxY = max(stress_plot)*1.05 # minX = min(strain_plot)*1.05 # maxX = max(strain_plot)*1.05 # plt.ylim([minY, maxY]) # plt.xlim([minX, maxX]) # plt.xlabel('Shear Strain (%) ',fontsize=fontSIZE) # plt.ylabel('Shear Stress (kPa)',fontsize=fontSIZE) # plt.grid() # # plt.show() # plt.savefig('multiSurface.pdf', dpi=1200, transparent=True, bbox_inches='tight') # # plt.savefig('multiSurface', format='svg', dpi=1200, transparent=True, bbox_inches='tight')
cc0-1.0
kyleabeauchamp/PMTStuff
code/NSD1_gmm.py
1
1788
import mixtape.featurizer, mixtape.tica, mixtape.cluster, mixtape.markovstatemodel, mixtape.ghmm import numpy as np import mdtraj as md from parameters import load_trajectories, build_full_featurizer import sklearn.pipeline, sklearn.externals.joblib import mixtape.utils n_choose = 100 stride = 1 lag_time = 1 trj0, trajectories, filenames = load_trajectories(stride=stride) train = trajectories[0::2] test = trajectories[1::2] featurizer = sklearn.externals.joblib.load("./featurizer-%d.job" % n_choose) n_components = 3 n_states = 5 tica = mixtape.tica.tICA(n_components=n_components, lag_time=lag_time) subsampler = mixtape.utils.Subsampler(lag_time=lag_time) msm = mixtape.markovstatemodel.MarkovStateModel() cluster = mixtape.cluster.GMM(n_components=n_states, covariance_type='full') feature_pipeline = sklearn.pipeline.Pipeline([("features", featurizer), ('tica', tica)]) cluster_pipeline = sklearn.pipeline.Pipeline([("features", featurizer), ('tica', tica), ("cluster", cluster)]) pipeline = sklearn.pipeline.Pipeline([("features", featurizer), ('tica', tica), ("subsampler", subsampler), ("cluster", cluster), ("msm", msm)]) pipeline.fit(train) X_all = feature_pipeline.transform(trajectories) q = np.concatenate(X_all) covars_ = cluster.covars_ covars_ = cluster.covars_.diagonal(axis1=1, axis2=2) for i, j in [(0, 1)]: figure() hexbin(q[:,i], q[:, j], bins='log') errorbar(cluster.means_[:, i], cluster.means_[:, j], xerr=covars_[:,i] ** 0.5, yerr=covars_[:, j] ** 0.5, fmt='kx', linewidth=4) states = cluster_pipeline.transform(trajectories) ind = msm.draw_samples(states, 3) samples = mixtape.utils.map_drawn_samples(ind, trajectories) for i in range(n_states): for k, t in enumerate(samples[i]): t.save("pdbs/state%d-%d.pdb" % (i, k))
gpl-2.0
devanshdalal/scikit-learn
sklearn/ensemble/weight_boosting.py
29
41090
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin, is_regressor from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..utils.extmath import stable_cumsum from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype, y_numeric=is_regressor(self)) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float64) sample_weight[:] = 1. / X.shape[0] else: sample_weight = check_array(sample_weight, ensure_2d=False) # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64) random_state = check_random_state(self.random_state) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight, random_state) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost. Warning: This method needs to be overridden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. random_state : numpy.RandomState The current random number generator Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. random_state : numpy.RandomState The current random number generator Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight, random_state) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight, random_state) def _boost_real(self, iboost, X, y, sample_weight, random_state): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator(random_state=random_state) estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight, random_state): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator(random_state=random_state) estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if n_classes == 1: return np.ones((X.shape[0], 1)) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight, random_state): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. random_state : numpy.RandomState The current random number generator Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator(random_state=random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = stable_cumsum(sample_weight) cdf /= cdf[-1] uniform_samples = random_state.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
JPFrancoia/scikit-learn
examples/neighbors/plot_species_kde.py
39
4039
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.org/basemap>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = -9999 + np.zeros(land_mask.shape[0]) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
bsd-3-clause
apdjustino/DRCOG_Urbansim
src/opus_gui/results_manager/run/indicator_framework/reporter/indicator_results.py
1
15139
# Opus/UrbanSim urban simulation software. # Copyright (C) 2010-2011 University of California, Berkeley, 2005-2009 University of Washington # See opus_core/LICENSE import os from opus_gui.results_manager.run.indicator_framework.utilities.indicator_meta_data import IndicatorMetaData from opus_gui.results_manager.run.indicator_framework.utilities.indicator_data_manager import IndicatorDataManager from opus_gui.results_manager.run.indicator_framework.maker.source_data import SourceData class IndicatorResults(object): """ Takes the descriptions and locations of precomputed indicators and generates an html file to browse them. The purpose of IndicatorResults is to take in a description of the indicators that were requested through the GUI and output an html file that can be used to browse the indicator results. There is a single entry point and all the other functions are private. """ def __init__(self, show_error_dialog = False): self.show_error_dialog = show_error_dialog self.data_manager = IndicatorDataManager() def create_page(self, source_data, indicators, output_directory = None, page_name = 'indicator_results.html'): """ Generates the html page based on information about precomputed indicators. The file path to the generated html page is returned. Parameters: source_data -- information about where the indicators were computed from page_name -- the filename of the outputted html file indicators -- a list of the generated indicators """ #stores the html that is built up over the course of execution html = [] self.indicator_documentation_mapping = {} html.append( self._output_header() ) html.append( self._start_body() ) #generate html for configuration info html.append( self._output_configuration_info(source_data) ) html.append( self._start_table() ) #load previously computed indicators indicator_dirs = [] for i in indicators.values(): #if i.write_to_file: dir = i.storage_location if not dir in indicator_dirs: indicator_dirs.append(dir) indicators = [] for dir in indicator_dirs: try: indicators += self.data_manager.import_indicators( indicator_directory = dir) except: pass rows = [] self._output_body(source_data, indicators, rows) unique_rows = dict([(' '.join(x), x) for x in rows]) #rows_by_date_dict = dict([(x[4],x) for x in unique_rows.itervalues()]) sorted_rows = unique_rows.items() sorted_rows.sort(reverse = True) sorted_rows = [row[1] for row in sorted_rows] for row in sorted_rows: html.append(self._output_row(row)) html.append( self._end_table() ) html.append( self._end_page() ) if output_directory is None: output_directory = indicator_dirs[0] file = open(os.path.join( output_directory, page_name), 'w') file.write(''.join(html)) file.close() return file.name def _output_body(self, source_data, indicators, rows, test = False): """ Generates the html for the indicators. Finds the indicator file for every year each of the indicators were run and formats this into a table. test is only used for unit testing """ for indicator in indicators: years = indicator.years if years == []: continue if indicator.is_single_year_indicator_image_type(): links = [] for year in years: path = indicator.get_file_path(year) if os.path.exists(path) or test: link = self._get_link(indicator.get_file_name(year),str(year)) links.append(link) image_paths = ','.join(links) else: #aggregate multiyear run data so it is outputted nicely... path = indicator.get_file_path() if os.path.exists(path) or test: year_aggregation = self._get_year_aggregation(years) image_paths = self._get_link(indicator.get_file_name(),year_aggregation) doc_link = self._get_doc_link(indicator) row = [ doc_link, indicator.dataset_name, indicator.get_visualization_shorthand(), image_paths ] rows.append(row) def _get_year_aggregation(self, years): """Given a sequence of years, outputs a string that represents the years with dashes between consecutive years (e.g. "1983,1985-1987,1999") """ years = list(years) #traits funniness years.sort() if years == []: return '' year_aggregation = [] (first, last) = (years[0], years[0]) for i in range(1,len(years)): if years[i] == last + 1: last = years[i] else: if first == last: year_aggregation.append('%i' % first) else: year_aggregation.append('%i-%i' % (first, last)) (first, last) = (years[i], years[i]) if first == last: year_aggregation.append('%i' % first) else: year_aggregation.append('%i-%i' % (first, last)) return ','.join(year_aggregation) #private HTML output functions. None of the above functions directly outputs any HTML. def _output_configuration_info(self, source_data): html = [] config_fields = { 'Cache directory: ' : source_data.cache_directory, } for title,value in config_fields.iteritems(): html.append('<b>%s</b>%s<br><br>\n'%(title,value)) return ''.join(html) def _get_doc_link(self, indicator): urls = [] for attribute in indicator.attributes: try: attribute_alias = indicator.get_attribute_alias(attribute) url = self._get_documentation_url(attribute_alias) except: url = None if url is None: url = indicator.get_file_name(suppress_extension_addition=True) else: url = self._get_link(url, indicator.get_file_name(suppress_extension_addition=True)) urls.append(url) return '<br>'.join(urls) def _get_link(self,url,name): url = url.replace('\\\\','/////').replace('\\','/') return '<A HREF="%s">%s</A>' % (url, name) def _get_documentation_url(self, attribute): """ A mapping between attribute name and documentation""" if self.indicator_documentation_mapping == {}: indicator_info = IndicatorMetaData.get_indicator_info() self.indicator_documentation_mapping = {} for (name, path, variable, documentation) in indicator_info: self.indicator_documentation_mapping[variable] = documentation try: doc_file = self.indicator_documentation_mapping[attribute] prefix = IndicatorMetaData.get_indicator_documentation_URL() except: return None return os.path.join(prefix,doc_file) #HTML outputting methods def _output_header(self): return '<head><title>Indicator Results</title></head>\n' def _output_section(self, title): return '<h2>%s</h2>\n' % title def _start_body(self): return '<body>\n' + '<h2>Indicator Results</h2>\n' def _start_table(self): return ( '<table border=1 cellspacing="0" cellpadding="5" style="border-style: solid; border-color: black">\n' '\t<tr>\n' '\t\t<td><b>Indicator name</b></td>\n' '\t\t<td><b>Dataset</b></td>\n' '\t\t<td><b>Type</b></td>\n' '\t\t<td><b>Years</b></td>\n' '\t</tr>\n') def _end_table(self): return '</table>\n' def _output_row(self, row): html = ['\t<tr>\n'] for col in row: html.append( '\t\t<td>%s</td>\n' % col ) html.append( '\t</tr>\n' ) return ''.join(html) def _end_page(self): return '</body>' from opus_core.tests import opus_unittest import tempfile import shutil from opus_core.configurations.dataset_pool_configuration import DatasetPoolConfiguration from opus_gui.results_manager.run.indicator_framework.test_classes.test_with_attribute_data import TestWithAttributeData class IndicatorResultsTests(TestWithAttributeData): def setUp(self): TestWithAttributeData.setUp(self) self.i_results = IndicatorResults() self.i_results.indicator_documentation_mapping = {} self.source_data = SourceData( cache_directory = self.temp_cache_path, run_id = -1, name = 'test', run_description = '(opus_core)', dataset_pool_configuration = DatasetPoolConfiguration( package_order=['opus_core'], )) def test__year_aggregation(self): year_aggregation = self.i_results._get_year_aggregation([2001,2002,2004,2006,2007]) self.assertEqual(year_aggregation, "2001-2002,2004,2006-2007") year_aggregation = self.i_results._get_year_aggregation([2001,2002,2004,2006]) self.assertEqual(year_aggregation, "2001-2002,2004,2006") year_aggregation = self.i_results._get_year_aggregation([2000,2002]) self.assertEqual(year_aggregation, "2000,2002") def test__output_configuration_info(self): output = ( '<b>Cache directory: </b>%s<br><br>\n'%self.temp_cache_path ) html = self.i_results._output_configuration_info(self.source_data) self.assertEqual(output, html) def test___get_documentation_url(self): output = 'http://www.urbansim.org/docs/indicators/population.xml' result = self.i_results._get_documentation_url('population') self.assertEqual(result, output) def test__output_indicators(self): try: from opus_gui.results_manager.run.indicator_framework.image_types.mapnik_map import Map from opus_gui.results_manager.run.indicator_framework.image_types.matplotlib_chart import Chart from opus_gui.results_manager.run.indicator_framework.image_types.matplotlib_lorenzcurve import LorenzCurve except: pass else: self.source_data.years = [1980, 1982] requests = [ Map( source_data = self.source_data, attribute = 'opus_core.test.population', scale = [1,75000], dataset_name = 'test' ), Chart( source_data = self.source_data, attribute = 'opus_core.test.population', dataset_name = 'test', name = 'my_name', ), Chart( source_data = self.source_data, attribute = 'opus_core.test.population', dataset_name = 'test', years = [1981] ), LorenzCurve( source_data = self.source_data, attribute = 'opus_core.test.population', dataset_name = 'test' ), ] image_type = requests[0].get_visualization_shorthand() (dataset,name) = (requests[0].dataset_name, requests[0].name) image_type2 = requests[1].get_visualization_shorthand() (dataset2,name2) = (requests[1].dataset_name, requests[1].name) image_type3 = requests[2].get_visualization_shorthand() (dataset3,name3) = (requests[2].dataset_name, requests[2].name) image_type4 = requests[3].get_visualization_shorthand() (dataset4,name4) = (requests[3].dataset_name, requests[3].name) doc_link = '<A HREF="http://www.urbansim.org/docs/indicators/population.xml">%s__%s__population</A>' doc_link2 = '<A HREF="http://www.urbansim.org/docs/indicators/population.xml">%s__%s__my_name</A>' output = [ [ doc_link%('test',image_type), dataset, image_type, ('<A HREF="%s__%s__%s__1980.png">1980</A>,' '<A HREF="%s__%s__%s__1982.png">1982</A>')% (dataset, image_type, name, dataset, image_type, name) ], [ doc_link2%('test',image_type2), dataset2, image_type2, '<A HREF="%s__%s__%s.png">1980,1982</A>'%(dataset2,image_type2,name2) ], [ doc_link%('test',image_type3), dataset3, image_type3, '<A HREF="%s__%s__%s.png">1981</A>'%(dataset3,image_type3,name3) ], [ doc_link%('test',image_type4), dataset4, image_type4, ('<A HREF="%s__%s__%s__1980.png">1980</A>,' '<A HREF="%s__%s__%s__1982.png">1982</A>')% (dataset4,image_type4,name4,dataset4,image_type4,name4) ] ] for rqst in requests: rqst.source_data = self.source_data rows = [] self.i_results._output_body(self.source_data, requests, rows, test = True) for i in range(len(output)): if output[i] != rows[i]: print output[i] print rows[i] #print '' #for l in output: print l #for l in rows: print l self.assertEqual(output, rows) if __name__=='__main__': opus_unittest.main()
agpl-3.0
glneo/gnuradio
gr-digital/examples/example_costas.py
49
5316
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_costas(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.cst = digital.costas_loop_cc(bw, 2) self.vsnk_src = blocks.vector_sink_c() self.vsnk_cst = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst) self.connect(self.rrc, self.vsnk_src) self.connect((self.cst,1), self.vsnk_frq) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.707, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_costas(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data())) # Plot the Costas loop's LO frequency f1 = pylab.figure(1, figsize=(12,10), facecolor='w') s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("Costas LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the IQ symbols s3 = f1.add_subplot(2,2,2) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_cst.real, data_cst.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") s3.set_xlim([-2, 2]) s3.set_ylim([-2, 2]) # Plot the symbols in time s4 = f1.add_subplot(2,2,3) s4.set_position([0.125, 0.05, 0.775, 0.4]) s4.plot(data_src.real, "o-") s4.plot(data_cst.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
pradyu1993/scikit-learn
examples/applications/plot_species_distribution_modeling.py
7
7349
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhoer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD Style. from time import time import numpy as np import pylab as pl from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print __doc__ def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """ create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) points = dict(test=test, train=train) for label, pts in points.iteritems(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=["bradypus_variegatus_0", "microryzomys_minutus_0"]): """ Plot the species distribution. """ if len(species) > 2: print ("Note: when more than two species are provided, only " "the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print "_" * 80 print "Modeling distribution of species '%s'" % species.name # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print " - fit OneClassSVM ... ", clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print "done. " # Plot map of South America pl.subplot(1, 2, i + 1) if basemap: print " - plot coastlines using basemap" m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print " - plot coastlines from coverage" pl.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") pl.xticks([]) pl.yticks([]) print " - predict species distribution" # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction pl.contourf(X, Y, Z, levels=levels, cmap=pl.cm.Reds) pl.colorbar(format='%.2f') # scatter training/testing points pl.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') pl.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') pl.legend() pl.title(species.name) pl.axis('equal') # Compute AUC w.r.t. background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) pl.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print "\n Area under the ROC curve : %f" % roc_auc print "\ntime elapsed: %.2fs" % (time() - t0) plot_species_distribution() pl.show()
bsd-3-clause
MartinSavc/scikit-learn
sklearn/covariance/graph_lasso_.py
127
25626
"""GraphLasso: sparse inverse covariance estimation with an l1-penalized estimator. """ # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import warnings import operator import sys import time import numpy as np from scipy import linalg from .empirical_covariance_ import (empirical_covariance, EmpiricalCovariance, log_likelihood) from ..utils import ConvergenceWarning from ..utils.extmath import pinvh from ..utils.validation import check_random_state, check_array from ..linear_model import lars_path from ..linear_model import cd_fast from ..cross_validation import check_cv, cross_val_score from ..externals.joblib import Parallel, delayed import collections # Helper functions to compute the objective and dual objective functions # of the l1-penalized estimator def _objective(mle, precision_, alpha): """Evaluation of the graph-lasso objective function the objective function is made of a shifted scaled version of the normalized log-likelihood (i.e. its empirical mean over the samples) and a penalisation term to promote sparsity """ p = precision_.shape[0] cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi) cost += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return cost def _dual_gap(emp_cov, precision_, alpha): """Expression of the dual gap convergence criterion The specific definition is given in Duchi "Projected Subgradient Methods for Learning Sparse Gaussians". """ gap = np.sum(emp_cov * precision_) gap -= precision_.shape[0] gap += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return gap def alpha_max(emp_cov): """Find the maximum alpha for which there are some non-zeros off-diagonal. Parameters ---------- emp_cov : 2D array, (n_features, n_features) The sample covariance matrix Notes ----- This results from the bound for the all the Lasso that are solved in GraphLasso: each time, the row of cov corresponds to Xy. As the bound for alpha is given by `max(abs(Xy))`, the result follows. """ A = np.copy(emp_cov) A.flat[::A.shape[0] + 1] = 0 return np.max(np.abs(A)) # The g-lasso algorithm def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, return_costs=False, eps=np.finfo(np.float64).eps, return_n_iter=False): """l1-penalized covariance estimator Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- emp_cov : 2D ndarray, shape (n_features, n_features) Empirical covariance from which to compute the covariance estimate. alpha : positive float The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. cov_init : 2D array (n_features, n_features), optional The initial guess for the covariance. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : boolean, optional If verbose is True, the objective function and dual gap are printed at each iteration. return_costs : boolean, optional If return_costs is True, the objective function and dual gap at each iteration are returned. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) The estimated covariance matrix. precision : 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrix. costs : list of (objective, dual_gap) pairs The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is True. n_iter : int Number of iterations. Returned only if `return_n_iter` is set to True. See Also -------- GraphLasso, GraphLassoCV Notes ----- The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R `glasso` package. One possible difference with the `glasso` R package is that the diagonal coefficients are not penalized. """ _, n_features = emp_cov.shape if alpha == 0: if return_costs: precision_ = linalg.inv(emp_cov) cost = - 2. * log_likelihood(emp_cov, precision_) cost += n_features * np.log(2 * np.pi) d_gap = np.sum(emp_cov * precision_) - n_features if return_n_iter: return emp_cov, precision_, (cost, d_gap), 0 else: return emp_cov, precision_, (cost, d_gap) else: if return_n_iter: return emp_cov, linalg.inv(emp_cov), 0 else: return emp_cov, linalg.inv(emp_cov) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init.copy() # As a trivial regularization (Tikhonov like), we scale down the # off-diagonal coefficients of our starting point: This is needed, as # in the cross-validation the cov_init can easily be # ill-conditioned, and the CV loop blows. Beside, this takes # conservative stand-point on the initial conditions, and it tends to # make the convergence go faster. covariance_ *= 0.95 diagonal = emp_cov.flat[::n_features + 1] covariance_.flat[::n_features + 1] = diagonal precision_ = pinvh(covariance_) indices = np.arange(n_features) costs = list() # The different l1 regression solver have different numerical errors if mode == 'cd': errors = dict(over='raise', invalid='ignore') else: errors = dict(invalid='raise') try: # be robust to the max_iter=0 edge case, see: # https://github.com/scikit-learn/scikit-learn/issues/4134 d_gap = np.inf for i in range(max_iter): for idx in range(n_features): sub_covariance = covariance_[indices != idx].T[indices != idx] row = emp_cov[idx, indices != idx] with np.errstate(**errors): if mode == 'cd': # Use coordinate descent coefs = -(precision_[indices != idx, idx] / (precision_[idx, idx] + 1000 * eps)) coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram( coefs, alpha, 0, sub_covariance, row, row, max_iter, enet_tol, check_random_state(None), False) else: # Use LARS _, _, coefs = lars_path( sub_covariance, row, Xy=row, Gram=sub_covariance, alpha_min=alpha / (n_features - 1), copy_Gram=True, method='lars', return_path=False) # Update the precision matrix precision_[idx, idx] = ( 1. / (covariance_[idx, idx] - np.dot(covariance_[indices != idx, idx], coefs))) precision_[indices != idx, idx] = (- precision_[idx, idx] * coefs) precision_[idx, indices != idx] = (- precision_[idx, idx] * coefs) coefs = np.dot(sub_covariance, coefs) covariance_[idx, indices != idx] = coefs covariance_[indices != idx, idx] = coefs d_gap = _dual_gap(emp_cov, precision_, alpha) cost = _objective(emp_cov, precision_, alpha) if verbose: print( '[graph_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e' % (i, cost, d_gap)) if return_costs: costs.append((cost, d_gap)) if np.abs(d_gap) < tol: break if not np.isfinite(cost) and i > 0: raise FloatingPointError('Non SPD result: the system is ' 'too ill-conditioned for this solver') else: warnings.warn('graph_lasso: did not converge after %i iteration:' ' dual gap: %.3e' % (max_iter, d_gap), ConvergenceWarning) except FloatingPointError as e: e.args = (e.args[0] + '. The system is too ill-conditioned for this solver',) raise e if return_costs: if return_n_iter: return covariance_, precision_, costs, i + 1 else: return covariance_, precision_, costs else: if return_n_iter: return covariance_, precision_, i + 1 else: return covariance_, precision_ class GraphLasso(EmpiricalCovariance): """Sparse inverse covariance estimation with an l1-penalized estimator. Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alpha : positive float, default 0.01 The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. mode : {'cd', 'lars'}, default 'cd' The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, default 1e-4 The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, default 100 The maximum number of iterations. verbose : boolean, default False If verbose is True, the objective function and dual gap are plotted at each iteration. assume_centered : boolean, default False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : array-like, shape (n_features, n_features) Estimated covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. n_iter_ : int Number of iterations run. See Also -------- graph_lasso, GraphLassoCV """ def __init__(self, alpha=.01, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, assume_centered=False): self.alpha = alpha self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=self.verbose, return_n_iter=True) return self # Cross-validation with GraphLasso def graph_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False): """l1-penalized covariance estimator along a path of decreasing alphas Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- X : 2D ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate. alphas : list of positive floats The list of regularization parameters, decreasing order. X_test : 2D array, shape (n_test_samples, n_features), optional Optional test matrix to measure generalisation error. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : integer, optional The higher the verbosity flag, the more information is printed during the fitting. Returns ------- covariances_ : List of 2D ndarray, shape (n_features, n_features) The estimated covariance matrices. precisions_ : List of 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrices. scores_ : List of float The generalisation error (log-likelihood) on the test data. Returned only if test data is passed. """ inner_verbose = max(0, verbose - 1) emp_cov = empirical_covariance(X) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init covariances_ = list() precisions_ = list() scores_ = list() if X_test is not None: test_emp_cov = empirical_covariance(X_test) for alpha in alphas: try: # Capture the errors, and move on covariance_, precision_ = graph_lasso( emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol, enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose) covariances_.append(covariance_) precisions_.append(precision_) if X_test is not None: this_score = log_likelihood(test_emp_cov, precision_) except FloatingPointError: this_score = -np.inf covariances_.append(np.nan) precisions_.append(np.nan) if X_test is not None: if not np.isfinite(this_score): this_score = -np.inf scores_.append(this_score) if verbose == 1: sys.stderr.write('.') elif verbose > 1: if X_test is not None: print('[graph_lasso_path] alpha: %.2e, score: %.2e' % (alpha, this_score)) else: print('[graph_lasso_path] alpha: %.2e' % alpha) if X_test is not None: return covariances_, precisions_, scores_ return covariances_, precisions_ class GraphLassoCV(GraphLasso): """Sparse inverse covariance w/ cross-validated choice of the l1 penalty Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alphas : integer, or list positive float, optional If an integer is given, it fixes the number of points on the grids of alpha to be used. If a list is given, it gives the grid to be used. See the notes in the class docstring for more details. n_refinements: strictly positive integer The number of times the grid is refined. Not used if explicit values of alphas are passed. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, defaults to a 3-fold strategy tol: positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter: integer, optional Maximum number of iterations. mode: {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where number of features is greater than number of samples. Elsewhere prefer cd which is more numerically stable. n_jobs: int, optional number of jobs to run in parallel (default 1). verbose: boolean, optional If verbose is True, the objective function and duality gap are printed at each iteration. assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : numpy.ndarray, shape (n_features, n_features) Estimated covariance matrix. precision_ : numpy.ndarray, shape (n_features, n_features) Estimated precision matrix (inverse covariance). alpha_ : float Penalization parameter selected. cv_alphas_ : list of float All penalization parameters explored. `grid_scores`: 2D numpy.ndarray (n_alphas, n_folds) Log-likelihood score on left-out data across folds. n_iter_ : int Number of iterations run for the optimal alpha. See Also -------- graph_lasso, GraphLasso Notes ----- The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on. One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate. The corresponding values of alpha then come out as missing values, but the optimum may be close to these missing values. """ def __init__(self, alphas=4, n_refinements=4, cv=None, tol=1e-4, enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=1, verbose=False, assume_centered=False): self.alphas = alphas self.n_refinements = n_refinements self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.cv = cv self.n_jobs = n_jobs self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): """Fits the GraphLasso covariance model to X. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate """ X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) cv = check_cv(self.cv, X, y, classifier=False) # List of (alpha, scores, covs) path = list() n_alphas = self.alphas inner_verbose = max(0, self.verbose - 1) if isinstance(n_alphas, collections.Sequence): alphas = self.alphas n_refinements = 1 else: n_refinements = self.n_refinements alpha_1 = alpha_max(emp_cov) alpha_0 = 1e-2 * alpha_1 alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1), n_alphas)[::-1] t0 = time.time() for i in range(n_refinements): with warnings.catch_warnings(): # No need to see the convergence warnings on this grid: # they will always be points that will not converge # during the cross-validation warnings.simplefilter('ignore', ConvergenceWarning) # Compute the cross-validated loss on the current grid # NOTE: Warm-restarting graph_lasso_path has been tried, and # this did not allow to gain anything (same execution time with # or without). this_path = Parallel( n_jobs=self.n_jobs, verbose=self.verbose )( delayed(graph_lasso_path)( X[train], alphas=alphas, X_test=X[test], mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=int(.1 * self.max_iter), verbose=inner_verbose) for train, test in cv) # Little danse to transform the list in what we need covs, _, scores = zip(*this_path) covs = zip(*covs) scores = zip(*scores) path.extend(zip(alphas, scores, covs)) path = sorted(path, key=operator.itemgetter(0), reverse=True) # Find the maximum (avoid using built in 'max' function to # have a fully-reproducible selection of the smallest alpha # in case of equality) best_score = -np.inf last_finite_idx = 0 for index, (alpha, scores, _) in enumerate(path): this_score = np.mean(scores) if this_score >= .1 / np.finfo(np.float64).eps: this_score = np.nan if np.isfinite(this_score): last_finite_idx = index if this_score >= best_score: best_score = this_score best_index = index # Refine the grid if best_index == 0: # We do not need to go back: we have chosen # the highest value of alpha for which there are # non-zero coefficients alpha_1 = path[0][0] alpha_0 = path[1][0] elif (best_index == last_finite_idx and not best_index == len(path) - 1): # We have non-converged models on the upper bound of the # grid, we need to refine the grid there alpha_1 = path[best_index][0] alpha_0 = path[best_index + 1][0] elif best_index == len(path) - 1: alpha_1 = path[best_index][0] alpha_0 = 0.01 * path[best_index][0] else: alpha_1 = path[best_index - 1][0] alpha_0 = path[best_index + 1][0] if not isinstance(n_alphas, collections.Sequence): alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0), n_alphas + 2) alphas = alphas[1:-1] if self.verbose and n_refinements > 1: print('[GraphLassoCV] Done refinement % 2i out of %i: % 3is' % (i + 1, n_refinements, time.time() - t0)) path = list(zip(*path)) grid_scores = list(path[1]) alphas = list(path[0]) # Finally, compute the score with alpha = 0 alphas.append(0) grid_scores.append(cross_val_score(EmpiricalCovariance(), X, cv=cv, n_jobs=self.n_jobs, verbose=inner_verbose)) self.grid_scores = np.array(grid_scores) best_alpha = alphas[best_index] self.alpha_ = best_alpha self.cv_alphas_ = alphas # Finally fit the model with the selected alpha self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=inner_verbose, return_n_iter=True) return self
bsd-3-clause
petosegan/scikit-learn
sklearn/tree/tests/test_tree.py
72
47440
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import raises from sklearn.utils.validation import check_random_state from sklearn.utils.validation import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.preprocessing._weights import _balance_weights CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, splitter="presort-best"), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, splitter="presort-best"), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = [name for name, Tree in ALL_TREES.items() if Tree().splitter in SPARSE_SPLITTERS] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, return_indicator=True, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = clf.transform(X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [-2, -1, 1] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): # Check that tree estimator are pickable for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) serialized_object = pickle.dumps(clf) clf2 = pickle.loads(serialized_object) assert_equal(type(clf2), clf.__class__) score2 = clf2.score(iris.data, iris.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (classification) " "with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) serialized_object = pickle.dumps(reg) reg2 = pickle.loads(serialized_object) assert_equal(type(reg2), reg.__class__) score2 = reg2.score(boston.data, boston.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (regression) " "with {0}".format(name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = _balance_weights(unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 200) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0]], [0]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-2 <= value.flat[0] < 2, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._tree import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, X) def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if TreeEstimator().splitter in SPARSE_SPLITTERS: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name)
bsd-3-clause
YihaoLu/statsmodels
statsmodels/sandbox/tsa/diffusion2.py
38
13366
""" Diffusion 2: jump diffusion, stochastic volatility, stochastic time Created on Tue Dec 08 15:03:49 2009 Author: josef-pktd following Meucci License: BSD contains: CIRSubordinatedBrownian Heston IG JumpDiffusionKou JumpDiffusionMerton NIG VG References ---------- Attilio Meucci, Review of Discrete and Continuous Processes in Finance: Theory and Applications Bloomberg Portfolio Research Paper No. 2009-02-CLASSROOM July 1, 2009 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1373102 this is currently mostly a translation from matlab of http://www.mathworks.com/matlabcentral/fileexchange/23554-review-of-discrete-and-continuous-processes-in-finance license BSD: Copyright (c) 2008, Attilio Meucci All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. TODO: * vectorize where possible * which processes are exactly simulated by finite differences ? * include or exclude (now) the initial observation ? * convert to and merge with diffusion.py (part 1 of diffusions) * which processes can be easily estimated ? loglike or characteristic function ? * tests ? check for possible index errors (random indices), graphs look ok * adjust notation, variable names, more consistent, more pythonic * delete a few unused lines, cleanup * docstrings random bug (showed up only once, need fuzz-testing to replicate) File "...\diffusion2.py", line 375, in <module> x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) File "...\diffusion2.py", line 129, in simulate jumps_ts[n] = CumS[Events] IndexError: index out of bounds CumS is empty array, Events == -1 """ import numpy as np #from scipy import stats # currently only uses np.random import matplotlib.pyplot as plt class JumpDiffusionMerton(object): ''' Example ------- mu=.00 # deterministic drift sig=.20 # Gaussian component l=3.45 # Poisson process arrival rate a=0 # drift of log-jump D=.2 # st.dev of log-jump X = JumpDiffusionMerton().simulate(mu,sig,lambd,a,D,ts,nrepl) plt.figure() plt.plot(X.T) plt.title('Merton jump-diffusion') ''' def __init__(self): pass def simulate(self, m,s,lambd,a,D,ts,nrepl): T = ts[-1] # time points # simulate number of jumps n_jumps = np.random.poisson(lambd*T, size=(nrepl, 1)) jumps=[] nobs=len(ts) jumps=np.zeros((nrepl,nobs)) for j in range(nrepl): # simulate jump arrival time t = T*np.random.rand(n_jumps[j])#,1) #uniform t = np.sort(t,0) # simulate jump size S = a + D*np.random.randn(n_jumps[j],1) # put things together CumS = np.cumsum(S) jumps_ts = np.zeros(nobs) for n in range(nobs): Events = np.sum(t<=ts[n])-1 #print n, Events, CumS.shape, jumps_ts.shape jumps_ts[n]=0 if Events > 0: jumps_ts[n] = CumS[Events] #TODO: out of bounds see top #jumps = np.column_stack((jumps, jumps_ts)) #maybe wrong transl jumps[j,:] = jumps_ts D_Diff = np.zeros((nrepl,nobs)) for k in range(nobs): Dt=ts[k] if k>1: Dt=ts[k]-ts[k-1] D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.randn(nrepl) x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps)) return x class JumpDiffusionKou(object): def __init__(self): pass def simulate(self, m,s,lambd,p,e1,e2,ts,nrepl): T=ts[-1] # simulate number of jumps N = np.random.poisson(lambd*T,size =(nrepl,1)) jumps=[] nobs=len(ts) jumps=np.zeros((nrepl,nobs)) for j in range(nrepl): # simulate jump arrival time t=T*np.random.rand(N[j]) t=np.sort(t) # simulate jump size ww = np.random.binomial(1, p, size=(N[j])) S = ww * np.random.exponential(e1, size=(N[j])) - \ (1-ww) * np.random.exponential(e2, N[j]) # put things together CumS = np.cumsum(S) jumps_ts = np.zeros(nobs) for n in range(nobs): Events = sum(t<=ts[n])-1 jumps_ts[n]=0 if Events: jumps_ts[n]=CumS[Events] jumps[j,:] = jumps_ts D_Diff = np.zeros((nrepl,nobs)) for k in range(nobs): Dt=ts[k] if k>1: Dt=ts[k]-ts[k-1] D_Diff[:,k]=m*Dt + s*np.sqrt(Dt)*np.random.normal(size=nrepl) x = np.hstack((np.zeros((nrepl,1)),np.cumsum(D_Diff,1)+jumps)) return x class VG(object): '''variance gamma process ''' def __init__(self): pass def simulate(self, m,s,kappa,ts,nrepl): T=len(ts) dXs = np.zeros((nrepl,T)) for t in range(T): dt=ts[1]-0 if t>1: dt = ts[t]-ts[t-1] #print dt/kappa #TODO: check parameterization of gamrnd, checked looks same as np d_tau = kappa * np.random.gamma(dt/kappa,1.,size=(nrepl)) #print s*np.sqrt(d_tau) # this raises exception: #dX = stats.norm.rvs(m*d_tau,(s*np.sqrt(d_tau))) # np.random.normal requires scale >0 dX = np.random.normal(loc=m*d_tau, scale=1e-6+s*np.sqrt(d_tau)) dXs[:,t] = dX x = np.cumsum(dXs,1) return x class IG(object): '''inverse-Gaussian ??? used by NIG ''' def __init__(self): pass def simulate(self, l,m,nrepl): N = np.random.randn(nrepl,1) Y = N**2 X = m + (.5*m*m/l)*Y - (.5*m/l)*np.sqrt(4*m*l*Y+m*m*(Y**2)) U = np.random.rand(nrepl,1) ind = U>m/(X+m) X[ind] = m*m/X[ind] return X.ravel() class NIG(object): '''normal-inverse-Gaussian ''' def __init__(self): pass def simulate(self, th,k,s,ts,nrepl): T = len(ts) DXs = np.zeros((nrepl,T)) for t in range(T): Dt=ts[1]-0 if t>1: Dt=ts[t]-ts[t-1] l = 1/k*(Dt**2) m = Dt DS = IG().simulate(l,m,nrepl) N = np.random.randn(nrepl) DX = s*N*np.sqrt(DS) + th*DS #print DS.shape, DX.shape, DXs.shape DXs[:,t] = DX x = np.cumsum(DXs,1) return x class Heston(object): '''Heston Stochastic Volatility ''' def __init__(self): pass def simulate(self, m, kappa, eta,lambd,r, ts, nrepl,tratio=1.): T = ts[-1] nobs = len(ts) dt = np.zeros(nobs) #/tratio dt[0] = ts[0]-0 dt[1:] = np.diff(ts) DXs = np.zeros((nrepl,nobs)) dB_1 = np.sqrt(dt) * np.random.randn(nrepl,nobs) dB_2u = np.sqrt(dt) * np.random.randn(nrepl,nobs) dB_2 = r*dB_1 + np.sqrt(1-r**2)*dB_2u vt = eta*np.ones(nrepl) v=[] dXs = np.zeros((nrepl,nobs)) vts = np.zeros((nrepl,nobs)) for t in range(nobs): dv = kappa*(eta-vt)*dt[t]+ lambd*np.sqrt(vt)*dB_2[:,t] dX = m*dt[t] + np.sqrt(vt*dt[t]) * dB_1[:,t] vt = vt + dv vts[:,t] = vt dXs[:,t] = dX x = np.cumsum(dXs,1) return x, vts class CIRSubordinatedBrownian(object): '''CIR subordinated Brownian Motion ''' def __init__(self): pass def simulate(self, m, kappa, T_dot,lambd,sigma, ts, nrepl): T = ts[-1] nobs = len(ts) dtarr = np.zeros(nobs) #/tratio dtarr[0] = ts[0]-0 dtarr[1:] = np.diff(ts) DXs = np.zeros((nrepl,nobs)) dB = np.sqrt(dtarr) * np.random.randn(nrepl,nobs) yt = 1. dXs = np.zeros((nrepl,nobs)) dtaus = np.zeros((nrepl,nobs)) y = np.zeros((nrepl,nobs)) for t in range(nobs): dt = dtarr[t] dy = kappa*(T_dot-yt)*dt + lambd*np.sqrt(yt)*dB[:,t] yt = np.maximum(yt+dy,1e-10) # keep away from zero ? dtau = np.maximum(yt*dt, 1e-6) dX = np.random.normal(loc=m*dtau, scale=sigma*np.sqrt(dtau)) y[:,t] = yt dtaus[:,t] = dtau dXs[:,t] = dX tau = np.cumsum(dtaus,1) x = np.cumsum(dXs,1) return x, tau, y def schout2contank(a,b,d): th = d*b/np.sqrt(a**2-b**2) k = 1/(d*np.sqrt(a**2-b**2)) s = np.sqrt(d/np.sqrt(a**2-b**2)) return th,k,s if __name__ == '__main__': #Merton Jump Diffusion #^^^^^^^^^^^^^^^^^^^^^ # grid of time values at which the process is evaluated #("0" will be added, too) nobs = 252.#1000 #252. ts = np.linspace(1./nobs, 1., nobs) nrepl=5 # number of simulations mu=.010 # deterministic drift sigma = .020 # Gaussian component lambd = 3.45 *10 # Poisson process arrival rate a=0 # drift of log-jump D=.2 # st.dev of log-jump jd = JumpDiffusionMerton() x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('Merton jump-diffusion') sigma = 0.2 lambd = 3.45 x = jd.simulate(mu,sigma,lambd,a,D,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('Merton jump-diffusion') #Kou jump diffusion #^^^^^^^^^^^^^^^^^^ mu=.0 # deterministic drift lambd=4.25 # Poisson process arrival rate p=.5 # prob. of up-jump e1=.2 # parameter of up-jump e2=.3 # parameter of down-jump sig=.2 # Gaussian component x = JumpDiffusionKou().simulate(mu,sig,lambd,p,e1,e2,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('double exponential (Kou jump diffusion)') #variance-gamma #^^^^^^^^^^^^^^ mu = .1 # deterministic drift in subordinated Brownian motion kappa = 1. #10. #1 # inverse for gamma shape parameter sig = 0.5 #.2 # s.dev in subordinated Brownian motion x = VG().simulate(mu,sig,kappa,ts,nrepl) plt.figure() plt.plot(x.T) #Todo plt.title('variance gamma') #normal-inverse-Gaussian #^^^^^^^^^^^^^^^^^^^^^^^ # (Schoutens notation) al = 2.1 be = 0 de = 1 # convert parameters to Cont-Tankov notation th,k,s = schout2contank(al,be,de) x = NIG().simulate(th,k,s,ts,nrepl) plt.figure() plt.plot(x.T) #Todo x-axis plt.title('normal-inverse-Gaussian') #Heston Stochastic Volatility #^^^^^^^^^^^^^^^^^^^^^^^^^^^^ m=.0 kappa = .6 # 2*Kappa*Eta>Lambda^2 eta = .3**2 lambd =.25 r = -.7 T = 20. nobs = 252.*T#1000 #252. tsh = np.linspace(T/nobs, T, nobs) x, vts = Heston().simulate(m,kappa, eta,lambd,r, tsh, nrepl, tratio=20.) plt.figure() plt.plot(x.T) plt.title('Heston Stochastic Volatility') plt.figure() plt.plot(np.sqrt(vts).T) plt.title('Heston Stochastic Volatility - CIR Vol.') plt.figure() plt.subplot(2,1,1) plt.plot(x[0]) plt.title('Heston Stochastic Volatility process') plt.subplot(2,1,2) plt.plot(np.sqrt(vts[0])) plt.title('CIR Volatility') #CIR subordinated Brownian #^^^^^^^^^^^^^^^^^^^^^^^^^ m=.1 sigma=.4 kappa=.6 # 2*Kappa*T_dot>Lambda^2 T_dot=1 lambd=1 #T=252*10 #dt=1/252 #nrepl=2 T = 10. nobs = 252.*T#1000 #252. tsh = np.linspace(T/nobs, T, nobs) x, tau, y = CIRSubordinatedBrownian().simulate(m, kappa, T_dot,lambd,sigma, tsh, nrepl) plt.figure() plt.plot(tsh, x.T) plt.title('CIRSubordinatedBrownian process') plt.figure() plt.plot(tsh, y.T) plt.title('CIRSubordinatedBrownian - CIR') plt.figure() plt.plot(tsh, tau.T) plt.title('CIRSubordinatedBrownian - stochastic time ') plt.figure() plt.subplot(2,1,1) plt.plot(tsh, x[0]) plt.title('CIRSubordinatedBrownian process') plt.subplot(2,1,2) plt.plot(tsh, y[0], label='CIR') plt.plot(tsh, tau[0], label='stoch. time') plt.legend(loc='upper left') plt.title('CIRSubordinatedBrownian') #plt.show()
bsd-3-clause
ch3ll0v3k/scikit-learn
examples/neighbors/plot_regression.py
349
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause (C) INRIA ############################################################################### # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
zaxtax/scikit-learn
sklearn/model_selection/tests/test_search.py
23
30837
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneLabelOut from sklearn.model_selection import LeavePLabelOut from sklearn.model_selection import LabelKFold from sklearn.model_selection import LabelShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler # TODO Import from sklearn.exceptions once merged. from sklearn.base import ChangedBehaviorWarning from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_labels(): # Check if ValueError (when labels is None) propagates to GridSearchCV # And also check if labels is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) labels = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} label_cvs = [LeaveOneLabelOut(), LeavePLabelOut(2), LabelKFold(), LabelShuffleSplit()] for cv in label_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The labels parameter should not be None", gs.fit, X, y) gs.fit(X, y, labels) non_label_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_label_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv.split(X, y): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
metpy/MetPy
metpy/plots/station_plot.py
1
25830
# Copyright (c) 2016 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Create Station-model plots.""" try: from enum import Enum except ImportError: from enum34 import Enum import matplotlib import numpy as np from .wx_symbols import (current_weather, high_clouds, low_clouds, mid_clouds, pressure_tendency, sky_cover, wx_symbol_font) from ..cbook import is_string_like from ..package_tools import Exporter from ..units import atleast_1d exporter = Exporter(globals()) @exporter.export class StationPlot(object): """Make a standard meteorological station plot. Plots values, symbols, or text spaced around a central location. Can also plot wind barbs as the center of the location. """ location_names = {'C': (0, 0), 'N': (0, 1), 'NE': (1, 1), 'E': (1, 0), 'SE': (1, -1), 'S': (0, -1), 'SW': (-1, -1), 'W': (-1, 0), 'NW': (-1, 1)} def __init__(self, ax, x, y, fontsize=10, spacing=None, transform=None, **kwargs): """Initialize the StationPlot with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- ax : matplotlib.axes.Axes The :class:`~matplotlib.axes.Axes` for plotting x : array_like The x location of the stations in the plot y : array_like The y location of the stations in the plot fontsize : int The fontsize to use for drawing text spacing : int The spacing, in points, that corresponds to a single increment between station plot elements. transform : matplotlib.transforms.Transform (or compatible) The default transform to apply to the x and y positions when plotting. kwargs Additional keyword arguments to use for matplotlib's plotting functions. These will be passed to all the plotting methods, and thus need to be valid for all plot types, such as `clip_on`. """ self.ax = ax self.x = atleast_1d(x) self.y = atleast_1d(y) self.fontsize = fontsize self.spacing = fontsize if spacing is None else spacing self.transform = transform self.items = {} self.barbs = None self.default_kwargs = kwargs def plot_symbol(self, location, codes, symbol_mapper, **kwargs): """At the specified location in the station model plot a set of symbols. This specifies that at the offset `location`, the data in `codes` should be converted to unicode characters (for our :data:`wx_symbol_font`) using `symbol_mapper`, and plotted. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. If something has already been plotted at this location, it will be replaced. Parameters ---------- location : str or tuple[float, float] The offset (relative to center) to plot this parameter. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions; increments are multiplied by `spacing` to give offsets in x and y relative to the center. codes : array_like The numeric values that should be converted to unicode characters for plotting. symbol_mapper : callable Controls converting data values to unicode code points for the :data:`wx_symbol_font` font. This should take a value and return a single unicode character. See :mod:`metpy.plots.wx_symbols` for included mappers. kwargs Additional keyword arguments to use for matplotlib's plotting functions. .. plot:: import matplotlib.pyplot as plt import numpy as np from math import ceil from metpy.plots import StationPlot from metpy.plots.wx_symbols import current_weather, current_weather_auto from metpy.plots.wx_symbols import low_clouds, mid_clouds, high_clouds from metpy.plots.wx_symbols import sky_cover, pressure_tendency def plot_symbols(mapper, name, nwrap=12, figsize=(10, 1.4)): # Determine how many symbols there are and layout in rows of nwrap # if there are more than nwrap symbols num_symbols = len(mapper) codes = np.arange(len(mapper)) ncols = nwrap if num_symbols <= nwrap: nrows = 1 x = np.linspace(0, 1, len(mapper)) y = np.ones_like(x) ax_height = 0.8 else: nrows = int(ceil(num_symbols / ncols)) x = np.tile(np.linspace(0, 1, ncols), nrows)[:num_symbols] y = np.repeat(np.arange(nrows, 0, -1), ncols)[:num_symbols] figsize = (10, 1 * nrows + 0.4) ax_height = 0.8 + 0.018 * nrows fig = plt.figure(figsize=figsize, dpi=300) ax = fig.add_axes([0, 0, 1, ax_height]) ax.set_title(name, size=20) ax.xaxis.set_ticks([]) ax.yaxis.set_ticks([]) ax.set_frame_on(False) # Plot sp = StationPlot(ax, x, y, fontsize=36) sp.plot_symbol('C', codes, mapper) sp.plot_parameter((0, -1), codes, fontsize=18) ax.set_ylim(-0.05, nrows + 0.5) plt.show() plot_symbols(current_weather, "Current Weather Symbols") plot_symbols(current_weather_auto, "Current Weather Auto Reported Symbols") plot_symbols(low_clouds, "Low Cloud Symbols") plot_symbols(mid_clouds, "Mid Cloud Symbols") plot_symbols(high_clouds, "High Cloud Symbols") plot_symbols(sky_cover, "Sky Cover Symbols") plot_symbols(pressure_tendency, "Pressure Tendency Symbols") See Also -------- plot_barb, plot_parameter, plot_text """ # Make sure we use our font for symbols kwargs['fontproperties'] = wx_symbol_font.copy() return self.plot_parameter(location, codes, symbol_mapper, **kwargs) def plot_parameter(self, location, parameter, formatter='.0f', **kwargs): """At the specified location in the station model plot a set of values. This specifies that at the offset `location`, the data in `parameter` should be plotted. The conversion of the data values to a string is controlled by `formatter`. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. If something has already been plotted at this location, it will be replaced. Parameters ---------- location : str or tuple[float, float] The offset (relative to center) to plot this parameter. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions; increments are multiplied by `spacing` to give offsets in x and y relative to the center. parameter : array_like The numeric values that should be plotted formatter : str or callable, optional How to format the data as a string for plotting. If a string, it should be compatible with the :func:`format` builtin. If a callable, this should take a value and return a string. Defaults to '0.f'. kwargs Additional keyword arguments to use for matplotlib's plotting functions. See Also -------- plot_barb, plot_symbol, plot_text """ text = self._to_string_list(parameter, formatter) return self.plot_text(location, text, **kwargs) def plot_text(self, location, text, **kwargs): """At the specified location in the station model plot a collection of text. This specifies that at the offset `location`, the strings in `text` should be plotted. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. If something has already been plotted at this location, it will be replaced. Parameters ---------- location : str or tuple[float, float] The offset (relative to center) to plot this parameter. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions; increments are multiplied by `spacing` to give offsets in x and y relative to the center. text : list (or array) of strings The strings that should be plotted kwargs Additional keyword arguments to use for matplotlib's plotting functions. See Also -------- plot_barb, plot_parameter, plot_symbol """ location = self._handle_location(location) kwargs = self._make_kwargs(kwargs) text_collection = self.ax.scattertext(self.x, self.y, text, loc=location, size=kwargs.pop('fontsize', self.fontsize), **kwargs) if location in self.items: self.items[location].remove() self.items[location] = text_collection return text_collection def plot_barb(self, u, v, **kwargs): r"""At the center of the station model plot wind barbs. Additional keyword arguments given will be passed onto matplotlib's :meth:`~matplotlib.axes.Axes.barbs` function; this is useful for specifying things like color or line width. Parameters ---------- u : array-like The data to use for the u-component of the barbs. v : array-like The data to use for the v-component of the barbs. plot_units: `pint.unit` Units to plot in (performing conversion if necessary). Defaults to given units. kwargs Additional keyword arguments to pass to matplotlib's :meth:`~matplotlib.axes.Axes.barbs` function. See Also -------- plot_parameter, plot_symbol, plot_text """ kwargs = self._make_kwargs(kwargs) # If plot_units specified, convert the data to those units plotting_units = kwargs.pop('plot_units', None) if plotting_units: if hasattr(u, 'units') and hasattr(v, 'units'): u = u.to(plotting_units) v = v.to(plotting_units) else: raise ValueError('To convert to plotting units, units must be attached to ' 'u and v wind components.') # Strip units, CartoPy transform doesn't like u = np.array(u) v = np.array(v) # Empirically determined pivot = 0.51 * np.sqrt(self.fontsize) length = 1.95 * np.sqrt(self.fontsize) defaults = {'sizes': {'spacing': .15, 'height': 0.5, 'emptybarb': 0.35}, 'length': length, 'pivot': pivot} defaults.update(kwargs) # Remove old barbs if self.barbs: self.barbs.remove() # Handle transforming our center points. CartoPy doesn't like 1D barbs # TODO: This can be removed for cartopy > 0.14.3 if hasattr(self.ax, 'projection') and 'transform' in kwargs: trans = kwargs['transform'] try: kwargs['transform'] = trans._as_mpl_transform(self.ax) except AttributeError: pass u, v = self.ax.projection.transform_vectors(trans, self.x, self.y, u, v) # Since we've re-implemented CartoPy's barbs, we need to skip calling it here self.barbs = matplotlib.axes.Axes.barbs(self.ax, self.x, self.y, u, v, **defaults) else: self.barbs = self.ax.barbs(self.x, self.y, u, v, **defaults) def _make_kwargs(self, kwargs): """Assemble kwargs as necessary. Inserts our defaults as well as ensures transform is present when appropriate. """ # Use default kwargs and update with additional ones all_kw = self.default_kwargs.copy() all_kw.update(kwargs) # Pass transform if necessary if 'transform' not in all_kw and self.transform: all_kw['transform'] = self.transform return all_kw @staticmethod def _to_string_list(vals, fmt): """Convert a sequence of values to a list of strings.""" if not callable(fmt): def formatter(s): """Turn a format string into a callable.""" if hasattr(s, 'units'): s = s.item() return format(s, fmt) else: formatter = fmt return [formatter(v) if np.isfinite(v) else '' for v in vals] def _handle_location(self, location): """Process locations to get a consistent set of tuples for location.""" if is_string_like(location): location = self.location_names[location] xoff, yoff = location return xoff * self.spacing, yoff * self.spacing @exporter.export class StationPlotLayout(dict): r"""make a layout to encapsulate plotting using :class:`StationPlot`. This class keeps a collection of offsets, plot formats, etc. for a parameter based on its name. This then allows a dictionary of data (or any object that allows looking up of arrays based on a name) to be passed to :meth:`plot()` to plot the data all at once. See Also -------- StationPlot """ class PlotTypes(Enum): r"""Different plotting types for the layout. Controls how items are displayed (e.g. converting values to symbols). """ value = 1 symbol = 2 text = 3 barb = 4 def add_value(self, location, name, fmt='.0f', units=None, **kwargs): r"""Add a numeric value to the station layout. This specifies that at the offset `location`, data should be pulled from the data container using the key `name` and plotted. The conversion of the data values to a string is controlled by `fmt`. The units required for plotting can also be passed in using `units`, which will cause the data to be converted before plotting. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. Parameters ---------- location : str or tuple[float, float] The offset (relative to center) to plot this value. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions. name : str The name of the parameter, which is used as a key to pull data out of the data container passed to :meth:`plot`. fmt : str or callable, optional How to format the data as a string for plotting. If a string, it should be compatible with the :func:`format` builtin. If a callable, this should take a value and return a string. Defaults to '0.f'. units : pint-compatible unit, optional The units to use for plotting. Data will be converted to this unit before conversion to a string. If not specified, no conversion is done. kwargs Additional keyword arguments to use for matplotlib's plotting functions. See Also -------- add_barb, add_symbol, add_text """ self[location] = (self.PlotTypes.value, name, (fmt, units, kwargs)) def add_symbol(self, location, name, symbol_mapper, **kwargs): r"""Add a symbol to the station layout. This specifies that at the offset `location`, data should be pulled from the data container using the key `name` and plotted. Data values will converted to glyphs appropriate for MetPy's symbol font using the callable `symbol_mapper`. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. Parameters ---------- location : str or tuple[float, float] The offset (relative to center) to plot this value. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions. name : str The name of the parameter, which is used as a key to pull data out of the data container passed to :meth:`plot`. symbol_mapper : callable Controls converting data values to unicode code points for the :data:`wx_symbol_font` font. This should take a value and return a single unicode character. See :mod:`metpy.plots.wx_symbols` for included mappers. kwargs Additional keyword arguments to use for matplotlib's plotting functions. See Also -------- add_barb, add_text, add_value """ self[location] = (self.PlotTypes.symbol, name, (symbol_mapper, kwargs)) def add_text(self, location, name, **kwargs): r"""Add a text field to the station layout. This specifies that at the offset `location`, data should be pulled from the data container using the key `name` and plotted directly as text with no conversion applied. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or font properties. Parameters ---------- location : str or tuple(float, float) The offset (relative to center) to plot this value. If str, should be one of 'C', 'N', 'NE', 'E', 'SE', 'S', 'SW', 'W', or 'NW'. Otherwise, should be a tuple specifying the number of increments in the x and y directions. name : str The name of the parameter, which is used as a key to pull data out of the data container passed to :meth:`plot`. kwargs Additional keyword arguments to use for matplotlib's plotting functions. See Also -------- add_barb, add_symbol, add_value """ self[location] = (self.PlotTypes.text, name, kwargs) def add_barb(self, u_name, v_name, units=None, **kwargs): r"""Add a wind barb to the center of the station layout. This specifies that u- and v-component data should be pulled from the data container using the keys `u_name` and `v_name`, respectively, and plotted as a wind barb at the center of the station plot. If `units` are given, both components will be converted to these units. Additional keyword arguments given will be passed onto the actual plotting code; this is useful for specifying things like color or line width. Parameters ---------- u_name : str The name of the parameter for the u-component for `barbs`, which is used as a key to pull data out of the data container passed to :meth:`plot`. v_name : str The name of the parameter for the v-component for `barbs`, which is used as a key to pull data out of the data container passed to :meth:`plot`. units : pint-compatible unit, optional The units to use for plotting. Data will be converted to this unit before conversion to a string. If not specified, no conversion is done. kwargs Additional keyword arguments to use for matplotlib's :meth:`~matplotlib.axes.Axes.barbs` function. See Also -------- add_symbol, add_text, add_value """ # Not sure if putting the v_name as a plot-specific option is appropriate, # but it seems simpler than making name code in plot handle tuples self['barb'] = (self.PlotTypes.barb, (u_name, v_name), (units, kwargs)) def names(self): """Get the list of names used by the layout. Returns ------- list[str] the list of names of variables used by the layout """ ret = [] for item in self.values(): if item[0] == self.PlotTypes.barb: ret.extend(item[1]) else: ret.append(item[1]) return ret def plot(self, plotter, data_dict): """Plot a collection of data using this layout for a station plot. This function iterates through the entire specified layout, pulling the fields named in the layout from `data_dict` and plotting them using `plotter` as specified in the layout. Fields present in the layout, but not in `data_dict`, are ignored. Parameters ---------- plotter : StationPlot :class:`StationPlot` to use to plot the data. This controls the axes, spacing, station locations, etc. data_dict : dict[str, array-like] Data container that maps a name to an array of data. Data from this object will be used to fill out the station plot. """ def coerce_data(dat, u): try: return dat.to(u).magnitude except AttributeError: return dat for loc, info in self.items(): typ, name, args = info if typ == self.PlotTypes.barb: # Try getting the data u_name, v_name = name u_data = data_dict.get(u_name) v_data = data_dict.get(v_name) # Plot if we have the data if not (v_data is None or u_data is None): units, kwargs = args plotter.plot_barb(coerce_data(u_data, units), coerce_data(v_data, units), **kwargs) else: # Check that we have the data for this location data = data_dict.get(name) if data is not None: # If we have it, hand it to the appropriate method if typ == self.PlotTypes.value: fmt, units, kwargs = args plotter.plot_parameter(loc, coerce_data(data, units), fmt, **kwargs) elif typ == self.PlotTypes.symbol: mapper, kwargs = args plotter.plot_symbol(loc, data, mapper, **kwargs) elif typ == self.PlotTypes.text: plotter.plot_text(loc, data, **args) def __repr__(self): """Return string representation of layout.""" return ('{' + ', '.join('{0}: ({1[0].name}, {1[1]}, ...)'.format(loc, info) for loc, info in sorted(self.items())) + '}') with exporter: #: :desc: Simple station plot layout simple_layout = StationPlotLayout() simple_layout.add_barb('eastward_wind', 'northward_wind', 'knots') simple_layout.add_value('NW', 'air_temperature', units='degC') simple_layout.add_value('SW', 'dew_point_temperature', units='degC') simple_layout.add_value('NE', 'air_pressure_at_sea_level', units='mbar', fmt=lambda v: format(10 * v, '03.0f')[-3:]) simple_layout.add_symbol('C', 'cloud_coverage', sky_cover) simple_layout.add_symbol('W', 'present_weather', current_weather) #: Full NWS station plot `layout`__ #: #: __ http://oceanservice.noaa.gov/education/yos/resource/JetStream/synoptic/wxmaps.htm nws_layout = StationPlotLayout() nws_layout.add_value((-1, 1), 'air_temperature', units='degF') nws_layout.add_symbol((0, 2), 'high_cloud_type', high_clouds) nws_layout.add_symbol((0, 1), 'medium_cloud_type', mid_clouds) nws_layout.add_symbol((0, -1), 'low_cloud_type', low_clouds) nws_layout.add_value((1, 1), 'air_pressure_at_sea_level', units='mbar', fmt=lambda v: format(10 * v, '03.0f')[-3:]) nws_layout.add_value((-2, 0), 'visibility_in_air', fmt='.0f', units='miles') nws_layout.add_symbol((-1, 0), 'present_weather', current_weather) nws_layout.add_symbol((0, 0), 'cloud_coverage', sky_cover) nws_layout.add_value((1, 0), 'tendency_of_air_pressure', units='mbar', fmt=lambda v: ('-' if v < 0 else '') + format(10 * abs(v), '02.0f')) nws_layout.add_symbol((2, 0), 'tendency_of_air_pressure_symbol', pressure_tendency) nws_layout.add_barb('eastward_wind', 'northward_wind', units='knots') nws_layout.add_value((-1, -1), 'dew_point_temperature', units='degF') # TODO: Fix once we have the past weather symbols converted nws_layout.add_symbol((1, -1), 'past_weather', current_weather)
bsd-3-clause
tomlof/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
41
3668
from __future__ import unicode_literals import numpy as np from numpy.testing import assert_array_equal from sklearn.feature_extraction import FeatureHasher from sklearn.utils.testing import assert_raises, assert_true, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"foo": "bar", "dada": 42, "tzara": 37}, {"foo": "baz", "gaga": u"string1"}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_feature_hasher_pairs_with_string_values(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": "a"}, {"baz": u"abc", "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 1], x1_nz) assert_equal([1, 1, 4], x2_nz) raw_X = (iter(d.items()) for d in [{"bax": "abc"}, {"bax": "abc"}]) x1, x2 = h.transform(raw_X).toarray() x1_nz = np.abs(x1[x1 != 0]) x2_nz = np.abs(x2[x2 != 0]) assert_equal([1], x1_nz) assert_equal([1], x2_nz) assert_array_equal(x1, x2) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
dhermes/gcloud-python
bigquery_storage/google/cloud/bigquery_storage_v1beta1/reader.py
2
9025
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import itertools import json try: import fastavro except ImportError: # pragma: NO COVER fastavro = None import google.api_core.exceptions try: import pandas except ImportError: # pragma: NO COVER pandas = None import six from google.cloud.bigquery_storage_v1beta1 import types _STREAM_RESUMPTION_EXCEPTIONS = ( google.api_core.exceptions.DeadlineExceeded, google.api_core.exceptions.ServiceUnavailable, ) _FASTAVRO_REQUIRED = "fastavro is required to parse Avro blocks" class ReadRowsStream(object): """A stream of results from a read rows request. This stream is an iterable of :class:`~google.cloud.bigquery_storage_v1beta1.types.ReadRowsResponse`. Iterate over it to fetch all row blocks. If the fastavro library is installed, use the :func:`~google.cloud.bigquery_storage_v1beta1.reader.ReadRowsStream.rows()` method to parse all blocks into a stream of row dictionaries. If the pandas and fastavro libraries are installed, use the :func:`~google.cloud.bigquery_storage_v1beta1.reader.ReadRowsStream.to_dataframe()` method to parse all blocks into a :class:`pandas.DataFrame`. """ def __init__(self, wrapped, client, read_position, read_rows_kwargs): """Construct a ReadRowsStream. Args: wrapped (Iterable[ \ ~google.cloud.bigquery_storage_v1beta1.types.ReadRowsResponse \ ]): The ReadRows stream to read. client ( \ ~google.cloud.bigquery_storage_v1beta1.gapic. \ big_query_storage_client.BigQueryStorageClient \ ): A GAPIC client used to reconnect to a ReadRows stream. This must be the GAPIC client to avoid a circular dependency on this class. read_position (Union[ \ dict, \ ~google.cloud.bigquery_storage_v1beta1.types.StreamPosition \ ]): Required. Identifier of the position in the stream to start reading from. The offset requested must be less than the last row read from ReadRows. Requesting a larger offset is undefined. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigquery_storage_v1beta1.types.StreamPosition` read_rows_kwargs (dict): Keyword arguments to use when reconnecting to a ReadRows stream. Returns: Iterable[ \ ~google.cloud.bigquery_storage_v1beta1.types.ReadRowsResponse \ ]: A sequence of row blocks. """ # Make a copy of the read position so that we can update it without # mutating the original input. self._position = _copy_stream_position(read_position) self._client = client self._wrapped = wrapped self._read_rows_kwargs = read_rows_kwargs def __iter__(self): """An iterable of blocks. Returns: Iterable[ \ ~google.cloud.bigquery_storage_v1beta1.types.ReadRowsResponse \ ]: A sequence of row blocks. """ # Infinite loop to reconnect on reconnectable errors while processing # the row stream. while True: try: for block in self._wrapped: rowcount = block.avro_rows.row_count self._position.offset += rowcount yield block return # Made it through the whole stream. except _STREAM_RESUMPTION_EXCEPTIONS: # Transient error, so reconnect to the stream. pass self._reconnect() def _reconnect(self): """Reconnect to the ReadRows stream using the most recent offset.""" self._wrapped = self._client.read_rows( _copy_stream_position(self._position), **self._read_rows_kwargs ) def rows(self, read_session): """Iterate over all rows in the stream. This method requires the fastavro library in order to parse row blocks. .. warning:: DATETIME columns are not supported. They are currently parsed as strings in the fastavro library. Args: read_session ( \ ~google.cloud.bigquery_storage_v1beta1.types.ReadSession \ ): The read session associated with this read rows stream. This contains the schema, which is required to parse the data blocks. Returns: Iterable[Mapping]: A sequence of rows, represented as dictionaries. """ if fastavro is None: raise ImportError(_FASTAVRO_REQUIRED) avro_schema = _avro_schema(read_session) blocks = (_avro_rows(block, avro_schema) for block in self) return itertools.chain.from_iterable(blocks) def to_dataframe(self, read_session): """Create a :class:`pandas.DataFrame` of all rows in the stream. This method requires the pandas libary to create a data frame and the fastavro library to parse row blocks. .. warning:: DATETIME columns are not supported. They are currently parsed as strings in the fastavro library. Args: read_session ( \ ~google.cloud.bigquery_storage_v1beta1.types.ReadSession \ ): The read session associated with this read rows stream. This contains the schema, which is required to parse the data blocks. Returns: pandas.DataFrame: A data frame of all rows in the stream. """ if fastavro is None: raise ImportError(_FASTAVRO_REQUIRED) if pandas is None: raise ImportError("pandas is required to create a DataFrame") avro_schema = _avro_schema(read_session) frames = [] for block in self: dataframe = pandas.DataFrame(list(_avro_rows(block, avro_schema))) frames.append(dataframe) return pandas.concat(frames) def _avro_schema(read_session): """Extract and parse Avro schema from a read session. Args: read_session ( \ ~google.cloud.bigquery_storage_v1beta1.types.ReadSession \ ): The read session associated with this read rows stream. This contains the schema, which is required to parse the data blocks. Returns: A parsed Avro schema, using :func:`fastavro.schema.parse_schema`. """ json_schema = json.loads(read_session.avro_schema.schema) return fastavro.parse_schema(json_schema) def _avro_rows(block, avro_schema): """Parse all rows in a stream block. Args: read_session ( \ ~google.cloud.bigquery_storage_v1beta1.types.ReadSession \ ): The read session associated with this read rows stream. This contains the schema, which is required to parse the data blocks. Returns: Iterable[Mapping]: A sequence of rows, represented as dictionaries. """ blockio = six.BytesIO(block.avro_rows.serialized_binary_rows) while True: # Loop in a while loop because schemaless_reader can only read # a single record. try: # TODO: Parse DATETIME into datetime.datetime (no timezone), # instead of as a string. yield fastavro.schemaless_reader(blockio, avro_schema) except StopIteration: break # Finished with block def _copy_stream_position(position): """Copy a StreamPosition. Args: position (Union[ \ dict, \ ~google.cloud.bigquery_storage_v1beta1.types.StreamPosition \ ]): StreamPostion (or dictionary in StreamPosition format) to copy. Returns: ~google.cloud.bigquery_storage_v1beta1.types.StreamPosition: A copy of the input StreamPostion. """ if isinstance(position, types.StreamPosition): output = types.StreamPosition() output.CopyFrom(position) return output return types.StreamPosition(**position)
apache-2.0
StuartLittlefair/astropy
astropy/time/tests/test_basic.py
1
89645
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import copy import functools import datetime from copy import deepcopy from decimal import Decimal, localcontext import numpy as np import pytest from numpy.testing import assert_allclose import erfa from erfa import ErfaWarning from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.utils import isiterable, iers from astropy.time import (Time, TimeDelta, ScaleValueError, STANDARD_TIME_SCALES, TimeString, TimezoneInfo, TIME_FORMATS) from astropy.coordinates import EarthLocation from astropy import units as u from astropy.table import Column, Table try: import pytz HAS_PYTZ = True except ImportError: HAS_PYTZ = False allclose_jd = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=0) allclose_jd2 = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=np.finfo(float).eps) # 20 ps atol allclose_sec = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=np.finfo(float).eps * 24 * 3600) allclose_year = functools.partial(np.allclose, rtol=np.finfo(float).eps, atol=0.) # 14 microsec at current epoch def setup_function(func): func.FORMATS_ORIG = deepcopy(Time.FORMATS) def teardown_function(func): Time.FORMATS.clear() Time.FORMATS.update(func.FORMATS_ORIG) class TestBasic: """Basic tests stemming from initial example and API reference""" def test_simple(self): times = ['1999-01-01 00:00:00.123456789', '2010-01-01 00:00:00'] t = Time(times, format='iso', scale='utc') assert (repr(t) == "<Time object: scale='utc' format='iso' " "value=['1999-01-01 00:00:00.123' '2010-01-01 00:00:00.000']>") assert allclose_jd(t.jd1, np.array([2451180., 2455198.])) assert allclose_jd2(t.jd2, np.array([-0.5 + 1.4288980208333335e-06, -0.50000000e+00])) # Set scale to TAI t = t.tai assert (repr(t) == "<Time object: scale='tai' format='iso' " "value=['1999-01-01 00:00:32.123' '2010-01-01 00:00:34.000']>") assert allclose_jd(t.jd1, np.array([2451180., 2455198.])) assert allclose_jd2(t.jd2, np.array([-0.5 + 0.00037179926839122024, -0.5 + 0.00039351851851851852])) # Get a new ``Time`` object which is referenced to the TT scale # (internal JD1 and JD1 are now with respect to TT scale)""" assert (repr(t.tt) == "<Time object: scale='tt' format='iso' " "value=['1999-01-01 00:01:04.307' '2010-01-01 00:01:06.184']>") # Get the representation of the ``Time`` object in a particular format # (in this case seconds since 1998.0). This returns either a scalar or # array, depending on whether the input was a scalar or array""" assert allclose_sec(t.cxcsec, np.array([31536064.307456788, 378691266.18400002])) def test_different_dimensions(self): """Test scalars, vector, and higher-dimensions""" # scalar val, val1 = 2450000.0, 0.125 t1 = Time(val, val1, format='jd') assert t1.isscalar is True and t1.shape == () # vector val = np.arange(2450000., 2450010.) t2 = Time(val, format='jd') assert t2.isscalar is False and t2.shape == val.shape # explicitly check broadcasting for mixed vector, scalar. val2 = 0. t3 = Time(val, val2, format='jd') assert t3.isscalar is False and t3.shape == val.shape val2 = (np.arange(5.) / 10.).reshape(5, 1) # now see if broadcasting to two-dimensional works t4 = Time(val, val2, format='jd') assert t4.isscalar is False assert t4.shape == np.broadcast(val, val2).shape @pytest.mark.parametrize('format_', Time.FORMATS) def test_empty_value(self, format_): t = Time([], format=format_) assert t.size == 0 assert t.shape == (0,) assert t.format == format_ t_value = t.value assert t_value.size == 0 assert t_value.shape == (0,) t2 = Time(t_value, format=format_) assert t2.size == 0 assert t2.shape == (0,) assert t2.format == format_ t3 = t2.tai assert t3.size == 0 assert t3.shape == (0,) assert t3.format == format_ assert t3.scale == 'tai' @pytest.mark.parametrize('value', [2455197.5, [2455197.5]]) def test_copy_time(self, value): """Test copying the values of a Time object by passing it into the Time initializer. """ t = Time(value, format='jd', scale='utc') t2 = Time(t, copy=False) assert np.all(t.jd - t2.jd == 0) assert np.all((t - t2).jd == 0) assert t._time.jd1 is t2._time.jd1 assert t._time.jd2 is t2._time.jd2 t2 = Time(t, copy=True) assert np.all(t.jd - t2.jd == 0) assert np.all((t - t2).jd == 0) assert t._time.jd1 is not t2._time.jd1 assert t._time.jd2 is not t2._time.jd2 # Include initializers t2 = Time(t, format='iso', scale='tai', precision=1) assert t2.value == '2010-01-01 00:00:34.0' t2 = Time(t, format='iso', scale='tai', out_subfmt='date') assert t2.value == '2010-01-01' def test_getitem(self): """Test that Time objects holding arrays are properly subscriptable, set isscalar as appropriate, and also subscript delta_ut1_utc, etc.""" mjd = np.arange(50000, 50010) t = Time(mjd, format='mjd', scale='utc', location=('45d', '50d')) t1 = t[3] assert t1.isscalar is True assert t1._time.jd1 == t._time.jd1[3] assert t1.location is t.location t1a = Time(mjd[3], format='mjd', scale='utc') assert t1a.isscalar is True assert np.all(t1._time.jd1 == t1a._time.jd1) t1b = Time(t[3]) assert t1b.isscalar is True assert np.all(t1._time.jd1 == t1b._time.jd1) t2 = t[4:6] assert t2.isscalar is False assert np.all(t2._time.jd1 == t._time.jd1[4:6]) assert t2.location is t.location t2a = Time(t[4:6]) assert t2a.isscalar is False assert np.all(t2a._time.jd1 == t._time.jd1[4:6]) t2b = Time([t[4], t[5]]) assert t2b.isscalar is False assert np.all(t2b._time.jd1 == t._time.jd1[4:6]) t2c = Time((t[4], t[5])) assert t2c.isscalar is False assert np.all(t2c._time.jd1 == t._time.jd1[4:6]) t.delta_tdb_tt = np.arange(len(t)) # Explicitly set (not testing .tdb) t3 = t[4:6] assert np.all(t3._delta_tdb_tt == t._delta_tdb_tt[4:6]) t4 = Time(mjd, format='mjd', scale='utc', location=(np.arange(len(mjd)), np.arange(len(mjd)))) t5a = t4[3] assert t5a.location == t4.location[3] assert t5a.location.shape == () t5b = t4[3:4] assert t5b.location.shape == (1,) # Check that indexing a size-1 array returns a scalar location as well; # see gh-10113. t5c = t5b[0] assert t5c.location.shape == () t6 = t4[4:6] assert np.all(t6.location == t4.location[4:6]) # check it is a view # (via ndarray, since quantity setter problematic for structured array) allzeros = np.array((0., 0., 0.), dtype=t4.location.dtype) assert t6.location.view(np.ndarray)[-1] != allzeros assert t4.location.view(np.ndarray)[5] != allzeros t6.location.view(np.ndarray)[-1] = allzeros assert t4.location.view(np.ndarray)[5] == allzeros # Test subscription also works for two-dimensional arrays. frac = np.arange(0., 0.999, 0.2) t7 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc', location=('45d', '50d')) assert t7[0, 0]._time.jd1 == t7._time.jd1[0, 0] assert t7[0, 0].isscalar is True assert np.all(t7[5]._time.jd1 == t7._time.jd1[5]) assert np.all(t7[5]._time.jd2 == t7._time.jd2[5]) assert np.all(t7[:, 2]._time.jd1 == t7._time.jd1[:, 2]) assert np.all(t7[:, 2]._time.jd2 == t7._time.jd2[:, 2]) assert np.all(t7[:, 0]._time.jd1 == t._time.jd1) assert np.all(t7[:, 0]._time.jd2 == t._time.jd2) # Get tdb to check that delta_tdb_tt attribute is sliced properly. t7_tdb = t7.tdb assert t7_tdb[0, 0].delta_tdb_tt == t7_tdb.delta_tdb_tt[0, 0] assert np.all(t7_tdb[5].delta_tdb_tt == t7_tdb.delta_tdb_tt[5]) assert np.all(t7_tdb[:, 2].delta_tdb_tt == t7_tdb.delta_tdb_tt[:, 2]) # Explicitly set delta_tdb_tt attribute. Now it should not be sliced. t7.delta_tdb_tt = 0.1 t7_tdb2 = t7.tdb assert t7_tdb2[0, 0].delta_tdb_tt == 0.1 assert t7_tdb2[5].delta_tdb_tt == 0.1 assert t7_tdb2[:, 2].delta_tdb_tt == 0.1 # Check broadcasting of location. t8 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc', location=(np.arange(len(frac)), np.arange(len(frac)))) assert t8[0, 0].location == t8.location[0, 0] assert np.all(t8[5].location == t8.location[5]) assert np.all(t8[:, 2].location == t8.location[:, 2]) # Finally check empty array. t9 = t[:0] assert t9.isscalar is False assert t9.shape == (0,) assert t9.size == 0 def test_properties(self): """Use properties to convert scales and formats. Note that the UT1 to UTC transformation requires a supplementary value (``delta_ut1_utc``) that can be obtained by interpolating from a table supplied by IERS. This is tested separately.""" t = Time('2010-01-01 00:00:00', format='iso', scale='utc') t.delta_ut1_utc = 0.3341 # Explicitly set one part of the xform assert allclose_jd(t.jd, 2455197.5) assert t.iso == '2010-01-01 00:00:00.000' assert t.tt.iso == '2010-01-01 00:01:06.184' assert t.tai.fits == '2010-01-01T00:00:34.000' assert allclose_jd(t.utc.jd, 2455197.5) assert allclose_jd(t.ut1.jd, 2455197.500003867) assert t.tcg.isot == '2010-01-01T00:01:06.910' assert allclose_sec(t.unix, 1262304000.0) assert allclose_sec(t.cxcsec, 378691266.184) assert allclose_sec(t.gps, 946339215.0) assert t.datetime == datetime.datetime(2010, 1, 1) def test_precision(self): """Set the output precision which is used for some formats. This is also a test of the code that provides a dict for global and instance options.""" t = Time('2010-01-01 00:00:00', format='iso', scale='utc') # Uses initial class-defined precision=3 assert t.iso == '2010-01-01 00:00:00.000' # Set instance precision to 9 t.precision = 9 assert t.iso == '2010-01-01 00:00:00.000000000' assert t.tai.utc.iso == '2010-01-01 00:00:00.000000000' def test_transforms(self): """Transform from UTC to all supported time scales (TAI, TCB, TCG, TDB, TT, UT1, UTC). This requires auxiliary information (latitude and longitude).""" lat = 19.48125 lon = -155.933222 t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc', precision=7, location=(lon, lat)) t.delta_ut1_utc = 0.3341 # Explicitly set one part of the xform assert t.utc.iso == '2006-01-15 21:24:37.5000000' assert t.ut1.iso == '2006-01-15 21:24:37.8341000' assert t.tai.iso == '2006-01-15 21:25:10.5000000' assert t.tt.iso == '2006-01-15 21:25:42.6840000' assert t.tcg.iso == '2006-01-15 21:25:43.3226905' assert t.tdb.iso == '2006-01-15 21:25:42.6843728' assert t.tcb.iso == '2006-01-15 21:25:56.8939523' def test_transforms_no_location(self): """Location should default to geocenter (relevant for TDB, TCB).""" t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc', precision=7) t.delta_ut1_utc = 0.3341 # Explicitly set one part of the xform assert t.utc.iso == '2006-01-15 21:24:37.5000000' assert t.ut1.iso == '2006-01-15 21:24:37.8341000' assert t.tai.iso == '2006-01-15 21:25:10.5000000' assert t.tt.iso == '2006-01-15 21:25:42.6840000' assert t.tcg.iso == '2006-01-15 21:25:43.3226905' assert t.tdb.iso == '2006-01-15 21:25:42.6843725' assert t.tcb.iso == '2006-01-15 21:25:56.8939519' # Check we get the same result t2 = Time('2006-01-15 21:24:37.5', format='iso', scale='utc', location=(0*u.m, 0*u.m, 0*u.m)) assert t == t2 assert t.tdb == t2.tdb def test_location(self): """Check that location creates an EarthLocation object, and that such objects can be used as arguments. """ lat = 19.48125 lon = -155.933222 t = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=(lon, lat)) assert isinstance(t.location, EarthLocation) location = EarthLocation(lon, lat) t2 = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=location) assert isinstance(t2.location, EarthLocation) assert t2.location == t.location t3 = Time(['2006-01-15 21:24:37.5'], format='iso', scale='utc', precision=6, location=(location.x, location.y, location.z)) assert isinstance(t3.location, EarthLocation) assert t3.location == t.location def test_location_array(self): """Check that location arrays are checked for size and used for the corresponding times. Also checks that erfa can handle array-valued locations, and can broadcast these if needed. """ lat = 19.48125 lon = -155.933222 t = Time(['2006-01-15 21:24:37.5'] * 2, format='iso', scale='utc', precision=6, location=(lon, lat)) assert np.all(t.utc.iso == '2006-01-15 21:24:37.500000') assert np.all(t.tdb.iso[0] == '2006-01-15 21:25:42.684373') t2 = Time(['2006-01-15 21:24:37.5'] * 2, format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) assert np.all(t2.utc.iso == '2006-01-15 21:24:37.500000') assert t2.tdb.iso[0] == '2006-01-15 21:25:42.684373' assert t2.tdb.iso[1] != '2006-01-15 21:25:42.684373' with pytest.raises(ValueError): # 1 time, but two locations Time('2006-01-15 21:24:37.5', format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) with pytest.raises(ValueError): # 3 times, but two locations Time(['2006-01-15 21:24:37.5'] * 3, format='iso', scale='utc', precision=6, location=(np.array([lon, 0]), np.array([lat, 0]))) # multidimensional mjd = np.arange(50000., 50008.).reshape(4, 2) t3 = Time(mjd, format='mjd', scale='utc', location=(lon, lat)) assert t3.shape == (4, 2) assert t3.location.shape == () assert t3.tdb.shape == t3.shape t4 = Time(mjd, format='mjd', scale='utc', location=(np.array([lon, 0]), np.array([lat, 0]))) assert t4.shape == (4, 2) assert t4.location.shape == t4.shape assert t4.tdb.shape == t4.shape t5 = Time(mjd, format='mjd', scale='utc', location=(np.array([[lon], [0], [0], [0]]), np.array([[lat], [0], [0], [0]]))) assert t5.shape == (4, 2) assert t5.location.shape == t5.shape assert t5.tdb.shape == t5.shape def test_all_scale_transforms(self): """Test that standard scale transforms work. Does not test correctness, except reversibility [#2074]. Also tests that standard scales can't be converted to local scales""" lat = 19.48125 lon = -155.933222 with iers.conf.set_temp('auto_download', False): for scale1 in STANDARD_TIME_SCALES: t1 = Time('2006-01-15 21:24:37.5', format='iso', scale=scale1, location=(lon, lat)) for scale2 in STANDARD_TIME_SCALES: t2 = getattr(t1, scale2) t21 = getattr(t2, scale1) assert allclose_jd(t21.jd, t1.jd) # test for conversion to local scale scale3 = 'local' with pytest.raises(ScaleValueError): t2 = getattr(t1, scale3) def test_creating_all_formats(self): """Create a time object using each defined format""" Time(2000.5, format='decimalyear') Time(100.0, format='cxcsec') Time(100.0, format='unix') Time(100.0, format='gps') Time(1950.0, format='byear', scale='tai') Time(2000.0, format='jyear', scale='tai') Time('B1950.0', format='byear_str', scale='tai') Time('J2000.0', format='jyear_str', scale='tai') Time('2000-01-01 12:23:34.0', format='iso', scale='tai') Time('2000-01-01 12:23:34.0Z', format='iso', scale='utc') Time('2000-01-01T12:23:34.0', format='isot', scale='tai') Time('2000-01-01T12:23:34.0Z', format='isot', scale='utc') Time('2000-01-01T12:23:34.0', format='fits') Time('2000-01-01T12:23:34.0', format='fits', scale='tdb') Time(2400000.5, 51544.0333981, format='jd', scale='tai') Time(0.0, 51544.0333981, format='mjd', scale='tai') Time('2000:001:12:23:34.0', format='yday', scale='tai') Time('2000:001:12:23:34.0Z', format='yday', scale='utc') dt = datetime.datetime(2000, 1, 2, 3, 4, 5, 123456) Time(dt, format='datetime', scale='tai') Time([dt, dt], format='datetime', scale='tai') dt64 = np.datetime64('2012-06-18T02:00:05.453000000') Time(dt64, format='datetime64', scale='tai') Time([dt64, dt64], format='datetime64', scale='tai') def test_local_format_transforms(self): """ Test trasformation of local time to different formats Transformation to formats with reference time should give ScalevalueError """ t = Time('2006-01-15 21:24:37.5', scale='local') assert_allclose(t.jd, 2453751.3921006946, atol=0.001 / 3600. / 24., rtol=0.) assert_allclose(t.mjd, 53750.892100694444, atol=0.001 / 3600. / 24., rtol=0.) assert_allclose(t.decimalyear, 2006.0408002758752, atol=0.001 / 3600. / 24. / 365., rtol=0.) assert t.datetime == datetime.datetime(2006, 1, 15, 21, 24, 37, 500000) assert t.isot == '2006-01-15T21:24:37.500' assert t.yday == '2006:015:21:24:37.500' assert t.fits == '2006-01-15T21:24:37.500' assert_allclose(t.byear, 2006.04217888831, atol=0.001 / 3600. / 24. / 365., rtol=0.) assert_allclose(t.jyear, 2006.0407723496082, atol=0.001 / 3600. / 24. / 365., rtol=0.) assert t.byear_str == 'B2006.042' assert t.jyear_str == 'J2006.041' # epochTimeFormats with pytest.raises(ScaleValueError): t.gps with pytest.raises(ScaleValueError): t.unix with pytest.raises(ScaleValueError): t.cxcsec with pytest.raises(ScaleValueError): t.plot_date def test_datetime(self): """ Test datetime format, including guessing the format from the input type by not providing the format keyword to Time. """ dt = datetime.datetime(2000, 1, 2, 3, 4, 5, 123456) dt2 = datetime.datetime(2001, 1, 1) t = Time(dt, scale='utc', precision=9) assert t.iso == '2000-01-02 03:04:05.123456000' assert t.datetime == dt assert t.value == dt t2 = Time(t.iso, scale='utc') assert t2.datetime == dt t = Time([dt, dt2], scale='utc') assert np.all(t.value == [dt, dt2]) t = Time('2000-01-01 01:01:01.123456789', scale='tai') assert t.datetime == datetime.datetime(2000, 1, 1, 1, 1, 1, 123457) # broadcasting dt3 = (dt + (dt2-dt) * np.arange(12)).reshape(4, 3) t3 = Time(dt3, scale='utc') assert t3.shape == (4, 3) assert t3[2, 1].value == dt3[2, 1] assert t3[2, 1] == Time(dt3[2, 1]) assert np.all(t3.value == dt3) assert np.all(t3[1].value == dt3[1]) assert np.all(t3[:, 2] == Time(dt3[:, 2])) assert Time(t3[2, 0]) == t3[2, 0] def test_datetime64(self): dt64 = np.datetime64('2000-01-02T03:04:05.123456789') dt64_2 = np.datetime64('2000-01-02') t = Time(dt64, scale='utc', precision=9, format='datetime64') assert t.iso == '2000-01-02 03:04:05.123456789' assert t.datetime64 == dt64 assert t.value == dt64 t2 = Time(t.iso, scale='utc') assert t2.datetime64 == dt64 t = Time(dt64_2, scale='utc', precision=3, format='datetime64') assert t.iso == '2000-01-02 00:00:00.000' assert t.datetime64 == dt64_2 assert t.value == dt64_2 t2 = Time(t.iso, scale='utc') assert t2.datetime64 == dt64_2 t = Time([dt64, dt64_2], scale='utc', format='datetime64') assert np.all(t.value == [dt64, dt64_2]) t = Time('2000-01-01 01:01:01.123456789', scale='tai') assert t.datetime64 == np.datetime64('2000-01-01T01:01:01.123456789') # broadcasting dt3 = (dt64 + (dt64_2-dt64) * np.arange(12)).reshape(4, 3) t3 = Time(dt3, scale='utc', format='datetime64') assert t3.shape == (4, 3) assert t3[2, 1].value == dt3[2, 1] assert t3[2, 1] == Time(dt3[2, 1], format='datetime64') assert np.all(t3.value == dt3) assert np.all(t3[1].value == dt3[1]) assert np.all(t3[:, 2] == Time(dt3[:, 2], format='datetime64')) assert Time(t3[2, 0], format='datetime64') == t3[2, 0] def test_epoch_transform(self): """Besselian and julian epoch transforms""" jd = 2457073.05631 t = Time(jd, format='jd', scale='tai', precision=6) assert allclose_year(t.byear, 2015.1365941020817) assert allclose_year(t.jyear, 2015.1349933196439) assert t.byear_str == 'B2015.136594' assert t.jyear_str == 'J2015.134993' t2 = Time(t.byear, format='byear', scale='tai') assert allclose_jd(t2.jd, jd) t2 = Time(t.jyear, format='jyear', scale='tai') assert allclose_jd(t2.jd, jd) t = Time('J2015.134993', scale='tai', precision=6) assert np.allclose(t.jd, jd, rtol=1e-10, atol=0) # J2015.134993 has 10 digit precision assert t.byear_str == 'B2015.136594' def test_input_validation(self): """Wrong input type raises error""" times = [10, 20] with pytest.raises(ValueError): Time(times, format='iso', scale='utc') with pytest.raises(ValueError): Time('2000:001', format='jd', scale='utc') with pytest.raises(ValueError): # unguessable Time([]) with pytest.raises(ValueError): Time([50000.0], ['bad'], format='mjd', scale='tai') with pytest.raises(ValueError): Time(50000.0, 'bad', format='mjd', scale='tai') with pytest.raises(ValueError): Time('2005-08-04T00:01:02.000Z', scale='tai') # regression test against #3396 with pytest.raises(ValueError): Time(np.nan, format='jd', scale='utc') with pytest.raises(ValueError): with pytest.warns(AstropyDeprecationWarning): Time('2000-01-02T03:04:05(TAI)', scale='utc') with pytest.raises(ValueError): Time('2000-01-02T03:04:05(TAI') with pytest.raises(ValueError): Time('2000-01-02T03:04:05(UT(NIST)') def test_utc_leap_sec(self): """Time behaves properly near or in UTC leap second. This uses the 2012-06-30 leap second for testing.""" for year, month, day in ((2012, 6, 30), (2016, 12, 31)): # Start with a day without a leap second and note rollover yyyy_mm = f'{year:04d}-{month:02d}' yyyy_mm_dd = f'{year:04d}-{month:02d}-{day:02d}' with pytest.warns(ErfaWarning): t1 = Time(yyyy_mm + '-01 23:59:60.0', scale='utc') assert t1.iso == yyyy_mm + '-02 00:00:00.000' # Leap second is different t1 = Time(yyyy_mm_dd + ' 23:59:59.900', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:59.900' t1 = Time(yyyy_mm_dd + ' 23:59:60.000', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:60.000' t1 = Time(yyyy_mm_dd + ' 23:59:60.999', scale='utc') assert t1.iso == yyyy_mm_dd + ' 23:59:60.999' if month == 6: yyyy_mm_dd_plus1 = f'{year:04d}-07-01' else: yyyy_mm_dd_plus1 = f'{year + 1:04d}-01-01' with pytest.warns(ErfaWarning): t1 = Time(yyyy_mm_dd + ' 23:59:61.0', scale='utc') assert t1.iso == yyyy_mm_dd_plus1 + ' 00:00:00.000' # Delta time gives 2 seconds here as expected t0 = Time(yyyy_mm_dd + ' 23:59:59', scale='utc') t1 = Time(yyyy_mm_dd_plus1 + ' 00:00:00', scale='utc') assert allclose_sec((t1 - t0).sec, 2.0) def test_init_from_time_objects(self): """Initialize from one or more Time objects""" t1 = Time('2007:001', scale='tai') t2 = Time(['2007-01-02', '2007-01-03'], scale='utc') # Init from a list of Time objects without an explicit scale t3 = Time([t1, t2]) # Test that init appropriately combines a scalar (t1) and list (t2) # and that scale and format are same as first element. assert len(t3) == 3 assert t3.scale == t1.scale assert t3.format == t1.format # t1 format is yday assert np.all(t3.value == np.concatenate([[t1.yday], t2.tai.yday])) # Init from a single Time object without a scale t3 = Time(t1) assert t3.isscalar assert t3.scale == t1.scale assert t3.format == t1.format assert np.all(t3.value == t1.value) # Init from a single Time object with scale specified t3 = Time(t1, scale='utc') assert t3.scale == 'utc' assert np.all(t3.value == t1.utc.value) # Init from a list of Time object with scale specified t3 = Time([t1, t2], scale='tt') assert t3.scale == 'tt' assert t3.format == t1.format # yday assert np.all(t3.value == np.concatenate([[t1.tt.yday], t2.tt.yday])) # OK, how likely is this... but might as well test. mjd = np.arange(50000., 50006.) frac = np.arange(0., 0.999, 0.2) t4 = Time(mjd[:, np.newaxis] + frac, format='mjd', scale='utc') t5 = Time([t4[:2], t4[4:5]]) assert t5.shape == (3, 5) # throw error when deriving local scale time # from non local time scale with pytest.raises(ValueError): Time(t1, scale='local') class TestVal2: """Tests related to val2""" @pytest.mark.parametrize("d", [ dict(val="2001:001", val2="ignored", scale="utc"), dict(val={'year': 2015, 'month': 2, 'day': 3, 'hour': 12, 'minute': 13, 'second': 14.567}, val2="ignored", scale="utc"), dict(val=np.datetime64('2005-02-25'), val2="ignored", scale="utc"), dict(val=datetime.datetime(2000, 1, 2, 12, 0, 0), val2="ignored", scale="utc"), ]) def test_unused_val2_raises(self, d): """Test that providing val2 is for string input lets user know we won't use it""" with pytest.raises(ValueError): Time(**d) def test_val2(self): """Various tests of the val2 input""" t = Time([0.0, 50000.0], [50000.0, 0.0], format='mjd', scale='tai') assert t.mjd[0] == t.mjd[1] assert t.jd[0] == t.jd[1] def test_val_broadcasts_against_val2(self): mjd = np.arange(50000., 50007.) frac = np.arange(0., 0.999, 0.2) t = Time(mjd[:, np.newaxis], frac, format='mjd', scale='utc') assert t.shape == (7, 5) with pytest.raises(ValueError): Time([0.0, 50000.0], [0.0, 1.0, 2.0], format='mjd', scale='tai') def test_broadcast_not_writable(self): val = (2458000 + np.arange(3))[:, None] val2 = np.linspace(0, 1, 4, endpoint=False) t = Time(val=val, val2=val2, format="jd", scale="tai") t_b = Time(val=val + 0 * val2, val2=0 * val + val2, format="jd", scale="tai") t_i = Time(val=57990, val2=0.3, format="jd", scale="tai") t_b[1, 2] = t_i t[1, 2] = t_i assert t_b[1, 2] == t[1, 2], "writing worked" assert t_b[0, 2] == t[0, 2], "broadcasting didn't cause problems" assert t_b[1, 1] == t[1, 1], "broadcasting didn't cause problems" assert np.all(t_b == t), "behaved as expected" def test_broadcast_one_not_writable(self): val = (2458000 + np.arange(3)) val2 = np.arange(1) t = Time(val=val, val2=val2, format="jd", scale="tai") t_b = Time(val=val + 0 * val2, val2=0 * val + val2, format="jd", scale="tai") t_i = Time(val=57990, val2=0.3, format="jd", scale="tai") t_b[1] = t_i t[1] = t_i assert t_b[1] == t[1], "writing worked" assert t_b[0] == t[0], "broadcasting didn't cause problems" assert np.all(t_b == t), "behaved as expected" class TestSubFormat: """Test input and output subformat functionality""" def test_input_subformat(self): """Input subformat selection""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai') assert np.all(t.iso == np.array(['2000-01-01 00:00:00.000', '2000-01-01 01:01:00.000', '2000-01-01 01:01:01.000', '2000-01-01 01:01:01.123'])) # Heterogeneous input formats with in_subfmt='date_*' times = ['2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai', in_subfmt='date_*') assert np.all(t.iso == np.array(['2000-01-01 01:01:00.000', '2000-01-01 01:01:01.000', '2000-01-01 01:01:01.123'])) def test_input_subformat_fail(self): """Failed format matching""" with pytest.raises(ValueError): Time('2000-01-01 01:01', format='iso', scale='tai', in_subfmt='date') def test_bad_input_subformat(self): """Non-existent input subformat""" with pytest.raises(ValueError): Time('2000-01-01 01:01', format='iso', scale='tai', in_subfmt='doesnt exist') def test_output_subformat(self): """Input subformat selection""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01 01:01', '2000-01-01 01:01:01', '2000-01-01 01:01:01.123'] t = Time(times, format='iso', scale='tai', out_subfmt='date_hm') assert np.all(t.iso == np.array(['2000-01-01 00:00', '2000-01-01 01:01', '2000-01-01 01:01', '2000-01-01 01:01'])) def test_fits_format(self): """FITS format includes bigger years.""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-01-01', '2000-01-01T01:01:01', '2000-01-01T01:01:01.123'] t = Time(times, format='fits', scale='tai') assert np.all(t.fits == np.array(['2000-01-01T00:00:00.000', '2000-01-01T01:01:01.000', '2000-01-01T01:01:01.123'])) # Explicit long format for output, default scale is UTC. t2 = Time(times, format='fits', out_subfmt='long*') assert np.all(t2.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '+02000-01-01T01:01:01.123'])) # Implicit long format for output, because of negative year. times[2] = '-00594-01-01' t3 = Time(times, format='fits', scale='tai') assert np.all(t3.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '-00594-01-01T00:00:00.000'])) # Implicit long format for output, because of large positive year. times[2] = '+10594-01-01' t4 = Time(times, format='fits', scale='tai') assert np.all(t4.fits == np.array(['+02000-01-01T00:00:00.000', '+02000-01-01T01:01:01.000', '+10594-01-01T00:00:00.000'])) def test_yday_format(self): """Year:Day_of_year format""" # Heterogeneous input formats with in_subfmt='*' (default) times = ['2000-12-01', '2001-12-01 01:01:01.123'] t = Time(times, format='iso', scale='tai') t.out_subfmt = 'date_hm' assert np.all(t.yday == np.array(['2000:336:00:00', '2001:335:01:01'])) t.out_subfmt = '*' assert np.all(t.yday == np.array(['2000:336:00:00:00.000', '2001:335:01:01:01.123'])) def test_scale_input(self): """Test for issues related to scale input""" # Check case where required scale is defined by the TimeFormat. # All three should work. t = Time(100.0, format='cxcsec', scale='utc') assert t.scale == 'utc' t = Time(100.0, format='unix', scale='tai') assert t.scale == 'tai' t = Time(100.0, format='gps', scale='utc') assert t.scale == 'utc' # Check that bad scale is caught when format is specified with pytest.raises(ScaleValueError): Time(1950.0, format='byear', scale='bad scale') # Check that bad scale is caught when format is auto-determined with pytest.raises(ScaleValueError): Time('2000:001:00:00:00', scale='bad scale') def test_fits_scale(self): """Test that the previous FITS-string formatting can still be handled but with a DeprecationWarning.""" for inputs in (("2000-01-02(TAI)", "tai"), ("1999-01-01T00:00:00.123(ET(NIST))", "tt"), ("2014-12-12T01:00:44.1(UTC)", "utc")): with pytest.warns(AstropyDeprecationWarning): t = Time(inputs[0]) assert t.scale == inputs[1] # Create Time using normal ISOT syntax and compare with FITS t2 = Time(inputs[0][:inputs[0].index("(")], format="isot", scale=inputs[1]) assert t == t2 # Explicit check that conversions still work despite warning with pytest.warns(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:00.123456789(UTC)') t = t.tai assert t.isot == '1999-01-01T00:00:32.123' with pytest.warns(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(TAI)') t = t.utc assert t.isot == '1999-01-01T00:00:00.123' # Check scale consistency with pytest.warns(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(TAI)', scale="tai") assert t.scale == "tai" with pytest.warns(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(ET)', scale="tt") assert t.scale == "tt" with pytest.raises(ValueError), pytest.warns(AstropyDeprecationWarning): t = Time('1999-01-01T00:00:32.123456789(TAI)', scale="utc") def test_scale_default(self): """Test behavior when no scale is provided""" # These first three are TimeFromEpoch and have an intrinsic time scale t = Time(100.0, format='cxcsec') assert t.scale == 'tt' t = Time(100.0, format='unix') assert t.scale == 'utc' t = Time(100.0, format='gps') assert t.scale == 'tai' for date in ('2000:001', '2000-01-01T00:00:00'): t = Time(date) assert t.scale == 'utc' t = Time(2000.1, format='byear') assert t.scale == 'tt' t = Time('J2000') assert t.scale == 'tt' def test_epoch_times(self): """Test time formats derived from EpochFromTime""" t = Time(0.0, format='cxcsec', scale='tai') assert t.tt.iso == '1998-01-01 00:00:00.000' # Create new time object from this one and change scale, format t2 = Time(t, scale='tt', format='iso') assert t2.value == '1998-01-01 00:00:00.000' # Value take from Chandra.Time.DateTime('2010:001:00:00:00').secs t_cxcsec = 378691266.184 t = Time(t_cxcsec, format='cxcsec', scale='utc') assert allclose_sec(t.value, t_cxcsec) assert allclose_sec(t.cxcsec, t_cxcsec) assert allclose_sec(t.tt.value, t_cxcsec) assert allclose_sec(t.tt.cxcsec, t_cxcsec) assert t.yday == '2010:001:00:00:00.000' t = Time('2010:001:00:00:00.000', scale='utc') assert allclose_sec(t.cxcsec, t_cxcsec) assert allclose_sec(t.tt.cxcsec, t_cxcsec) # Round trip through epoch time for scale in ('utc', 'tt'): t = Time('2000:001', scale=scale) t2 = Time(t.unix, scale=scale, format='unix') assert getattr(t2, scale).iso == '2000-01-01 00:00:00.000' # Test unix time. Values taken from http://en.wikipedia.org/wiki/Unix_time t = Time('2013-05-20 21:18:46', scale='utc') assert allclose_sec(t.unix, 1369084726.0) assert allclose_sec(t.tt.unix, 1369084726.0) # Values from issue #1118 t = Time('2004-09-16T23:59:59', scale='utc') assert allclose_sec(t.unix, 1095379199.0) def test_plot_date(self): """Test the plot_date format. Depending on the situation with matplotlib, this can give different results because the plot date epoch time changed in matplotlib 3.3. This test tries to use the matplotlib date2num function to make the test independent of version, but if matplotlib isn't available then the code (and test) use the pre-3.3 epoch. """ try: from matplotlib.dates import date2num except ImportError: # No matplotlib, in which case this uses the epoch 0000-12-31 # as per matplotlib < 3.3. # Value from: # matplotlib.dates.set_epoch('0000-12-31') # val = matplotlib.dates.date2num('2000-01-01') val = 730120.0 else: val = date2num(datetime.datetime(2000, 1, 1)) t = Time('2000-01-01 00:00:00', scale='utc') assert np.allclose(t.plot_date, val, atol=1e-5, rtol=0) class TestNumericalSubFormat: def test_explicit_example(self): t = Time('54321.000000000001', format='mjd') assert t == Time(54321, 1e-12, format='mjd') assert t.mjd == 54321. # Lost precision! assert t.value == 54321. # Lost precision! assert t.to_value('mjd') == 54321. # Lost precision! assert t.to_value('mjd', subfmt='str') == '54321.000000000001' assert t.to_value('mjd', 'bytes') == b'54321.000000000001' expected_long = np.longdouble(54321.) + np.longdouble(1e-12) # Check we're the same to within the double holding jd2 # (which is less precise than longdouble on arm64). assert np.allclose(t.to_value('mjd', subfmt='long'), expected_long, rtol=0, atol=np.finfo(float).eps) t.out_subfmt = 'str' assert t.value == '54321.000000000001' assert t.to_value('mjd') == 54321. # Lost precision! assert t.mjd == '54321.000000000001' assert t.to_value('mjd', subfmt='bytes') == b'54321.000000000001' assert t.to_value('mjd', subfmt='float') == 54321. # Lost precision! t.out_subfmt = 'long' assert np.allclose(t.value, expected_long, rtol=0., atol=np.finfo(float).eps) assert np.allclose(t.to_value('mjd', subfmt=None), expected_long, rtol=0., atol=np.finfo(float).eps) assert np.allclose(t.mjd, expected_long, rtol=0., atol=np.finfo(float).eps) assert t.to_value('mjd', subfmt='str') == '54321.000000000001' assert t.to_value('mjd', subfmt='float') == 54321. # Lost precision! @pytest.mark.skipif(np.finfo(np.longdouble).eps >= np.finfo(float).eps, reason="long double is the same as float") def test_explicit_longdouble(self): i = 54321 # Create a different long double (which will give a different jd2 # even when long doubles are more precise than Time, as on arm64). f = max(2.**(-np.finfo(np.longdouble).nmant) * 65536, np.finfo(float).eps) mjd_long = np.longdouble(i) + np.longdouble(f) assert mjd_long != i, "longdouble failure!" t = Time(mjd_long, format='mjd') expected = Time(i, f, format='mjd') assert abs(t - expected) <= 20. * u.ps t_float = Time(i + f, format='mjd') assert t_float == Time(i, format='mjd') assert t_float != t assert t.value == 54321. # Lost precision! assert np.allclose(t.to_value('mjd', subfmt='long'), mjd_long, rtol=0., atol=np.finfo(float).eps) t2 = Time(mjd_long, format='mjd', out_subfmt='long') assert np.allclose(t2.value, mjd_long, rtol=0., atol=np.finfo(float).eps) @pytest.mark.skipif(np.finfo(np.longdouble).eps >= np.finfo(float).eps, reason="long double is the same as float") def test_explicit_longdouble_one_val(self): """Ensure either val1 or val2 being longdouble is possible. Regression test for issue gh-10033. """ i = 54321 f = max(2.**(-np.finfo(np.longdouble).nmant) * 65536, np.finfo(float).eps) t1 = Time(i, f, format='mjd') t2 = Time(np.longdouble(i), f, format='mjd') t3 = Time(i, np.longdouble(f), format='mjd') t4 = Time(np.longdouble(i), np.longdouble(f), format='mjd') assert t1 == t2 == t3 == t4 @pytest.mark.skipif(np.finfo(np.longdouble).eps >= np.finfo(float).eps, reason="long double is the same as float") @pytest.mark.parametrize("fmt", ["mjd", "unix", "cxcsec"]) def test_longdouble_for_other_types(self, fmt): t_fmt = getattr(Time(58000, format="mjd"), fmt) # Get regular float t_fmt_long = np.longdouble(t_fmt) # Create a different long double (ensuring it will give a different jd2 # even when long doubles are more precise than Time, as on arm64). atol = np.finfo(float).eps * (1. if fmt == 'mjd' else 24. * 3600.) t_fmt_long2 = t_fmt_long + max( t_fmt_long * np.finfo(np.longdouble).eps * 2, atol) assert t_fmt_long != t_fmt_long2, "longdouble weird!" tm = Time(t_fmt_long, format=fmt) tm2 = Time(t_fmt_long2, format=fmt) assert tm != tm2 tm_long2 = tm2.to_value(fmt, subfmt='long') assert np.allclose(tm_long2, t_fmt_long2, rtol=0., atol=atol) def test_subformat_input(self): s = '54321.01234567890123456789' i, f = s.split('.') # Note, OK only for fraction < 0.5 t = Time(float(i), float('.' + f), format='mjd') t_str = Time(s, format='mjd') t_bytes = Time(s.encode('ascii'), format='mjd') t_decimal = Time(Decimal(s), format='mjd') assert t_str == t assert t_bytes == t assert t_decimal == t @pytest.mark.parametrize('out_subfmt', ('str', 'bytes')) def test_subformat_output(self, out_subfmt): i = 54321 f = np.array([0., 1e-9, 1e-12]) t = Time(i, f, format='mjd', out_subfmt=out_subfmt) t_value = t.value expected = np.array(['54321.0', '54321.000000001', '54321.000000000001'], dtype=out_subfmt) assert np.all(t_value == expected) assert np.all(Time(expected, format='mjd') == t) # Explicit sub-format. t = Time(i, f, format='mjd') t_mjd_subfmt = t.to_value('mjd', subfmt=out_subfmt) assert np.all(t_mjd_subfmt == expected) @pytest.mark.parametrize('fmt,string,val1,val2', [ ('jd', '2451544.5333981', 2451544.5, .0333981), ('decimalyear', '2000.54321', 2000., .54321), ('cxcsec', '100.0123456', 100.0123456, None), ('unix', '100.0123456', 100.0123456, None), ('gps', '100.0123456', 100.0123456, None), ('byear', '1950.1', 1950.1, None), ('jyear', '2000.1', 2000.1, None)]) def test_explicit_string_other_formats(self, fmt, string, val1, val2): t = Time(string, format=fmt) assert t == Time(val1, val2, format=fmt) assert t.to_value(fmt, subfmt='str') == string def test_basic_subformat_setting(self): t = Time('2001', format='jyear', scale='tai') t.format = "mjd" t.out_subfmt = "str" assert t.value.startswith("5") def test_basic_subformat_cache_does_not_crash(self): t = Time('2001', format='jyear', scale='tai') t.to_value('mjd', subfmt='str') assert ('mjd', 'str') in t.cache['format'] t.to_value('mjd', 'str') @pytest.mark.parametrize("fmt", ["jd", "mjd", "cxcsec", "unix", "gps", "jyear"]) def test_decimal_context_does_not_affect_string(self, fmt): t = Time('2001', format='jyear', scale='tai') t.format = fmt with localcontext() as ctx: ctx.prec = 2 t_s_2 = t.to_value(fmt, "str") t2 = Time('2001', format='jyear', scale='tai') t2.format = fmt with localcontext() as ctx: ctx.prec = 40 t2_s_40 = t.to_value(fmt, "str") assert t_s_2 == t2_s_40, "String representation should not depend on Decimal context" def test_decimal_context_caching(self): t = Time(val=58000, val2=1e-14, format='mjd', scale='tai') with localcontext() as ctx: ctx.prec = 2 t_s_2 = t.to_value('mjd', subfmt='decimal') t2 = Time(val=58000, val2=1e-14, format='mjd', scale='tai') with localcontext() as ctx: ctx.prec = 40 t_s_40 = t.to_value('mjd', subfmt='decimal') t2_s_40 = t2.to_value('mjd', subfmt='decimal') assert t_s_2 == t_s_40, "Should be the same but cache might make this automatic" assert t_s_2 == t2_s_40, "Different precision should produce the same results" @pytest.mark.parametrize("f, s, t", [("sec", "long", np.longdouble), ("sec", "decimal", Decimal), ("sec", "str", str)]) def test_timedelta_basic(self, f, s, t): dt = (Time("58000", format="mjd", scale="tai") - Time("58001", format="mjd", scale="tai")) value = dt.to_value(f, s) assert isinstance(value, t) dt.format = f dt.out_subfmt = s assert isinstance(dt.value, t) assert isinstance(dt.to_value(f, None), t) def test_need_format_argument(self): t = Time('J2000') with pytest.raises(TypeError, match="missing.*required.*'format'"): t.to_value() with pytest.raises(ValueError, match='format must be one of'): t.to_value('julian') def test_wrong_in_subfmt(self): with pytest.raises(ValueError, match='not among selected'): Time("58000", format='mjd', in_subfmt='float') with pytest.raises(ValueError, match='not among selected'): Time(np.longdouble(58000), format='mjd', in_subfmt='float') with pytest.raises(ValueError, match='not among selected'): Time(58000., format='mjd', in_subfmt='str') with pytest.raises(ValueError, match='not among selected'): Time(58000., format='mjd', in_subfmt='long') def test_wrong_subfmt(self): t = Time(58000., format='mjd') with pytest.raises(ValueError, match='must match one'): t.to_value('mjd', subfmt='parrot') with pytest.raises(ValueError, match='must match one'): t.out_subfmt = 'parrot' with pytest.raises(ValueError, match='must match one'): t.in_subfmt = 'parrot' def test_not_allowed_subfmt(self): """Test case where format has no defined subfmts""" t = Time('J2000') match = 'subformat not allowed for format jyear_str' with pytest.raises(ValueError, match=match): t.to_value('jyear_str', subfmt='parrot') with pytest.raises(ValueError, match=match): t.out_subfmt = 'parrot' with pytest.raises(ValueError, match=match): Time('J2000', out_subfmt='parrot') with pytest.raises(ValueError, match=match): t.in_subfmt = 'parrot' with pytest.raises(ValueError, match=match): Time('J2000', format='jyear_str', in_subfmt='parrot') def test_switch_to_format_with_no_out_subfmt(self): t = Time('2001-01-01', out_subfmt='date_hm') assert t.out_subfmt == 'date_hm' # Now do an in-place switch to format 'jyear_str' that has no subfmts # where out_subfmt is changed to '*'. t.format = 'jyear_str' assert t.out_subfmt == '*' assert t.value == 'J2001.001' class TestSofaErrors: """Test that erfa status return values are handled correctly""" def test_bad_time(self): iy = np.array([2000], dtype=np.intc) im = np.array([2000], dtype=np.intc) # bad month id = np.array([2000], dtype=np.intc) # bad day with pytest.raises(ValueError): # bad month, fatal error djm0, djm = erfa.cal2jd(iy, im, id) iy[0] = -5000 im[0] = 2 with pytest.raises(ValueError): # bad year, fatal error djm0, djm = erfa.cal2jd(iy, im, id) iy[0] = 2000 with pytest.warns(ErfaWarning, match=r'bad day \(JD computed\)') as w: djm0, djm = erfa.cal2jd(iy, im, id) assert len(w) == 1 assert allclose_jd(djm0, [2400000.5]) assert allclose_jd(djm, [53574.]) class TestCopyReplicate: """Test issues related to copying and replicating data""" def test_immutable_input(self): """Internals are never mutable.""" jds = np.array([2450000.5], dtype=np.double) t = Time(jds, format='jd', scale='tai') assert allclose_jd(t.jd, jds) jds[0] = 2458654 assert not allclose_jd(t.jd, jds) mjds = np.array([50000.0], dtype=np.double) t = Time(mjds, format='mjd', scale='tai') assert allclose_jd(t.jd, [2450000.5]) mjds[0] = 0.0 assert allclose_jd(t.jd, [2450000.5]) def test_replicate(self): """Test replicate method""" t = Time(['2000:001'], format='yday', scale='tai', location=('45d', '45d')) t_yday = t.yday t_loc_x = t.location.x.copy() t2 = t.replicate() assert t.yday == t2.yday assert t.format == t2.format assert t.scale == t2.scale assert t.location == t2.location # This is not allowed publicly, but here we hack the internal time # and location values to show that t and t2 are sharing references. t2._time.jd1 += 100.0 # Need to delete the cached yday attributes (only an issue because # of the internal _time hack). del t.cache del t2.cache assert t.yday == t2.yday assert t.yday != t_yday # prove that it changed t2_loc_x_view = t2.location.x t2_loc_x_view[()] = 0 # use 0 to avoid having to give units assert t2.location.x == t2_loc_x_view assert t.location.x == t2.location.x assert t.location.x != t_loc_x # prove that it changed def test_copy(self): """Test copy method""" t = Time('2000:001', format='yday', scale='tai', location=('45d', '45d')) t_yday = t.yday t_loc_x = t.location.x.copy() t2 = t.copy() assert t.yday == t2.yday # This is not allowed publicly, but here we hack the internal time # and location values to show that t and t2 are not sharing references. t2._time.jd1 += 100.0 # Need to delete the cached yday attributes (only an issue because # of the internal _time hack). del t.cache del t2.cache assert t.yday != t2.yday assert t.yday == t_yday # prove that it did not change t2_loc_x_view = t2.location.x t2_loc_x_view[()] = 0 # use 0 to avoid having to give units assert t2.location.x == t2_loc_x_view assert t.location.x != t2.location.x assert t.location.x == t_loc_x # prove that it changed class TestStardate: """Sync chronometers with Starfleet Command""" def test_iso_to_stardate(self): assert str(Time('2320-01-01', scale='tai').stardate)[:7] == '1368.99' assert str(Time('2330-01-01', scale='tai').stardate)[:8] == '10552.76' assert str(Time('2340-01-01', scale='tai').stardate)[:8] == '19734.02' @pytest.mark.parametrize('dates', [(10000, '2329-05-26 03:02'), (20000, '2340-04-15 19:05'), (30000, '2351-03-07 11:08')]) def test_stardate_to_iso(self, dates): stardate, iso = dates t_star = Time(stardate, format='stardate') t_iso = Time(t_star, format='iso', out_subfmt='date_hm') assert t_iso.value == iso def test_python_builtin_copy(): t = Time('2000:001', format='yday', scale='tai') t2 = copy.copy(t) t3 = copy.deepcopy(t) assert t.jd == t2.jd assert t.jd == t3.jd def test_now(): """ Tests creating a Time object with the `now` class method. """ now = datetime.datetime.utcnow() t = Time.now() assert t.format == 'datetime' assert t.scale == 'utc' dt = t.datetime - now # a datetime.timedelta object # this gives a .1 second margin between the `utcnow` call and the `Time` # initializer, which is really way more generous than necessary - typical # times are more like microseconds. But it seems safer in case some # platforms have slow clock calls or something. assert dt.total_seconds() < 0.1 def test_decimalyear(): t = Time('2001:001', format='yday') assert t.decimalyear == 2001.0 t = Time(2000.0, [0.5, 0.75], format='decimalyear') assert np.all(t.value == [2000.5, 2000.75]) jd0 = Time('2000:001').jd jd1 = Time('2001:001').jd d_jd = jd1 - jd0 assert np.all(t.jd == [jd0 + 0.5 * d_jd, jd0 + 0.75 * d_jd]) def test_fits_year0(): t = Time(1721425.5, format='jd', scale='tai') assert t.fits == '0001-01-01T00:00:00.000' t = Time(1721425.5 - 366., format='jd', scale='tai') assert t.fits == '+00000-01-01T00:00:00.000' t = Time(1721425.5 - 366. - 365., format='jd', scale='tai') assert t.fits == '-00001-01-01T00:00:00.000' def test_fits_year10000(): t = Time(5373484.5, format='jd', scale='tai') assert t.fits == '+10000-01-01T00:00:00.000' t = Time(5373484.5 - 365., format='jd', scale='tai') assert t.fits == '9999-01-01T00:00:00.000' t = Time(5373484.5, -1. / 24. / 3600., format='jd', scale='tai') assert t.fits == '9999-12-31T23:59:59.000' def test_dir(): t = Time('2000:001', format='yday', scale='tai') assert 'utc' in dir(t) def test_time_from_epoch_jds(): """Test that jd1/jd2 in a TimeFromEpoch format is always well-formed: jd1 is an integral value and abs(jd2) <= 0.5. """ # From 1999:001 00:00 to 1999:002 12:00 by a non-round step. This will # catch jd2 == 0 and a case of abs(jd2) == 0.5. cxcsecs = np.linspace(0, 86400 * 1.5, 49) for cxcsec in cxcsecs: t = Time(cxcsec, format='cxcsec') assert np.round(t.jd1) == t.jd1 assert np.abs(t.jd2) <= 0.5 t = Time(cxcsecs, format='cxcsec') assert np.all(np.round(t.jd1) == t.jd1) assert np.all(np.abs(t.jd2) <= 0.5) assert np.any(np.abs(t.jd2) == 0.5) # At least one exactly 0.5 def test_bool(): """Any Time object should evaluate to True unless it is empty [#3520].""" t = Time(np.arange(50000, 50010), format='mjd', scale='utc') assert bool(t) is True assert bool(t[0]) is True assert bool(t[:0]) is False def test_len_size(): """Check length of Time objects and that scalar ones do not have one.""" t = Time(np.arange(50000, 50010), format='mjd', scale='utc') assert len(t) == 10 and t.size == 10 t1 = Time(np.arange(50000, 50010).reshape(2, 5), format='mjd', scale='utc') assert len(t1) == 2 and t1.size == 10 # Can have length 1 or length 0 arrays. t2 = t[:1] assert len(t2) == 1 and t2.size == 1 t3 = t[:0] assert len(t3) == 0 and t3.size == 0 # But cannot get length from scalar. t4 = t[0] with pytest.raises(TypeError) as err: len(t4) # Ensure we're not just getting the old error of # "object of type 'float' has no len()". assert 'Time' in str(err.value) def test_TimeFormat_scale(): """guard against recurrence of #1122, where TimeFormat class looses uses attributes (delta_ut1_utc here), preventing conversion to unix, cxc""" t = Time('1900-01-01', scale='ut1') t.delta_ut1_utc = 0.0 with pytest.warns(ErfaWarning): t.unix assert t.unix == t.utc.unix @pytest.mark.remote_data def test_scale_conversion(monkeypatch): # Check that if we have internet, and downloading is allowed, we # can get conversion to UT1 for the present, since we will download # IERS_A in IERS_Auto. monkeypatch.setattr('astropy.utils.iers.conf.auto_download', True) Time(Time.now().cxcsec, format='cxcsec', scale='ut1') def test_byteorder(): """Ensure that bigendian and little-endian both work (closes #2942)""" mjd = np.array([53000.00, 54000.00]) big_endian = mjd.astype('>f8') little_endian = mjd.astype('<f8') time_mjd = Time(mjd, format='mjd') time_big = Time(big_endian, format='mjd') time_little = Time(little_endian, format='mjd') assert np.all(time_big == time_mjd) assert np.all(time_little == time_mjd) def test_datetime_tzinfo(): """ Test #3160 that time zone info in datetime objects is respected. """ class TZm6(datetime.tzinfo): def utcoffset(self, dt): return datetime.timedelta(hours=-6) d = datetime.datetime(2002, 1, 2, 10, 3, 4, tzinfo=TZm6()) t = Time(d) assert t.value == datetime.datetime(2002, 1, 2, 16, 3, 4) def test_subfmts_regex(): """ Test having a custom subfmts with a regular expression """ class TimeLongYear(TimeString): name = 'longyear' subfmts = (('date', r'(?P<year>[+-]\d{5})-%m-%d', # hybrid '{year:+06d}-{mon:02d}-{day:02d}'),) t = Time('+02000-02-03', format='longyear') assert t.value == '+02000-02-03' assert t.jd == Time('2000-02-03').jd def test_set_format_basic(): """ Test basics of setting format attribute. """ for format, value in (('jd', 2451577.5), ('mjd', 51577.0), ('cxcsec', 65923264.184), # confirmed with Chandra.Time ('datetime', datetime.datetime(2000, 2, 3, 0, 0)), ('iso', '2000-02-03 00:00:00.000')): t = Time('+02000-02-03', format='fits') t0 = t.replicate() t.format = format assert t.value == value # Internal jd1 and jd2 are preserved assert t._time.jd1 is t0._time.jd1 assert t._time.jd2 is t0._time.jd2 def test_unix_tai_format(): t = Time('2020-01-01', scale='utc') assert allclose_sec(t.unix_tai - t.unix, 37.0) t = Time('1970-01-01', scale='utc') assert allclose_sec(t.unix_tai - t.unix, 8 + 8.2e-05) def test_set_format_shares_subfmt(): """ Set format and round trip through a format that shares out_subfmt """ t = Time('+02000-02-03', format='fits', out_subfmt='date_hms', precision=5) tc = t.copy() t.format = 'isot' assert t.precision == 5 assert t.out_subfmt == 'date_hms' assert t.value == '2000-02-03T00:00:00.00000' t.format = 'fits' assert t.value == tc.value assert t.precision == 5 def test_set_format_does_not_share_subfmt(): """ Set format and round trip through a format that does not share out_subfmt """ t = Time('+02000-02-03', format='fits', out_subfmt='longdate') t.format = 'isot' assert t.out_subfmt == '*' # longdate_hms not there, goes to default assert t.value == '2000-02-03T00:00:00.000' t.format = 'fits' assert t.out_subfmt == '*' assert t.value == '2000-02-03T00:00:00.000' # date_hms def test_replicate_value_error(): """ Passing a bad format to replicate should raise ValueError, not KeyError. PR #3857. """ t1 = Time('2007:001', scale='tai') with pytest.raises(ValueError) as err: t1.replicate(format='definitely_not_a_valid_format') assert 'format must be one of' in str(err.value) def test_remove_astropy_time(): """ Make sure that 'astropy_time' format is really gone after #3857. Kind of silly test but just to be sure. """ t1 = Time('2007:001', scale='tai') assert 'astropy_time' not in t1.FORMATS with pytest.raises(ValueError) as err: Time(t1, format='astropy_time') assert 'format must be one of' in str(err.value) def test_isiterable(): """ Ensure that scalar `Time` instances are not reported as iterable by the `isiterable` utility. Regression test for https://github.com/astropy/astropy/issues/4048 """ t1 = Time.now() assert not isiterable(t1) t2 = Time(['1999-01-01 00:00:00.123456789', '2010-01-01 00:00:00'], format='iso', scale='utc') assert isiterable(t2) def test_to_datetime(): tz = TimezoneInfo(utc_offset=-10 * u.hour, tzname='US/Hawaii') # The above lines produces a `datetime.tzinfo` object similar to: # tzinfo = pytz.timezone('US/Hawaii') time = Time('2010-09-03 00:00:00') tz_aware_datetime = time.to_datetime(tz) assert tz_aware_datetime.time() == datetime.time(14, 0) forced_to_astropy_time = Time(tz_aware_datetime) assert tz.tzname(time.datetime) == tz_aware_datetime.tzname() assert time == forced_to_astropy_time # Test non-scalar time inputs: time = Time(['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1990-09-03 06:00:00']) tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) for dt, tz_dt in zip(time.datetime, tz_aware_datetime): assert tz.tzname(dt) == tz_dt.tzname() assert np.all(time == forced_to_astropy_time) with pytest.raises(ValueError, match=r'does not support leap seconds'): Time('2015-06-30 23:59:60.000').to_datetime() @pytest.mark.skipif('not HAS_PYTZ') def test_to_datetime_pytz(): tz = pytz.timezone('US/Hawaii') time = Time('2010-09-03 00:00:00') tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) assert tz_aware_datetime.time() == datetime.time(14, 0) assert tz.tzname(time.datetime) == tz_aware_datetime.tzname() assert time == forced_to_astropy_time # Test non-scalar time inputs: time = Time(['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1990-09-03 06:00:00']) tz_aware_datetime = time.to_datetime(tz) forced_to_astropy_time = Time(tz_aware_datetime) for dt, tz_dt in zip(time.datetime, tz_aware_datetime): assert tz.tzname(dt) == tz_dt.tzname() assert np.all(time == forced_to_astropy_time) def test_cache(): t = Time('2010-09-03 00:00:00') t2 = Time('2010-09-03 00:00:00') # Time starts out without a cache assert 'cache' not in t._time.__dict__ # Access the iso format and confirm that the cached version is as expected t.iso assert t.cache['format']['iso'] == t2.iso # Access the TAI scale and confirm that the cached version is as expected t.tai assert t.cache['scale']['tai'] == t2.tai # New Time object after scale transform does not have a cache yet assert 'cache' not in t.tt._time.__dict__ # Clear the cache del t.cache assert 'cache' not in t._time.__dict__ # Check accessing the cache creates an empty dictionary assert not t.cache assert 'cache' in t._time.__dict__ def test_epoch_date_jd_is_day_fraction(): """ Ensure that jd1 and jd2 of an epoch Time are respect the (day, fraction) convention (see #6638) """ t0 = Time("J2000", scale="tdb") assert t0.jd1 == 2451545.0 assert t0.jd2 == 0.0 t1 = Time(datetime.datetime(2000, 1, 1, 12, 0, 0), scale="tdb") assert t1.jd1 == 2451545.0 assert t1.jd2 == 0.0 def test_sum_is_equivalent(): """ Ensure that two equal dates defined in different ways behave equally (#6638) """ t0 = Time("J2000", scale="tdb") t1 = Time("2000-01-01 12:00:00", scale="tdb") assert t0 == t1 assert (t0 + 1 * u.second) == (t1 + 1 * u.second) def test_string_valued_columns(): # Columns have a nice shim that translates bytes to string as needed. # Ensure Time can handle these. Use multi-d array just to be sure. times = [[[f'{y:04d}-{m:02d}-{d:02d}' for d in range(1, 3)] for m in range(5, 7)] for y in range(2012, 2014)] cutf32 = Column(times) cbytes = cutf32.astype('S') tutf32 = Time(cutf32) tbytes = Time(cbytes) assert np.all(tutf32 == tbytes) tutf32 = Time(Column(['B1950'])) tbytes = Time(Column([b'B1950'])) assert tutf32 == tbytes # Regression tests for arrays with entries with unequal length. gh-6903. times = Column([b'2012-01-01', b'2012-01-01T00:00:00']) assert np.all(Time(times) == Time(['2012-01-01', '2012-01-01T00:00:00'])) def test_bytes_input(): tstring = '2011-01-02T03:04:05' tbytes = b'2011-01-02T03:04:05' assert tbytes.decode('ascii') == tstring t0 = Time(tstring) t1 = Time(tbytes) assert t1 == t0 tarray = np.array(tbytes) assert tarray.dtype.kind == 'S' t2 = Time(tarray) assert t2 == t0 def test_writeable_flag(): t = Time([1, 2, 3], format='cxcsec') t[1] = 5.0 assert allclose_sec(t[1].value, 5.0) t.writeable = False with pytest.raises(ValueError) as err: t[1] = 5.0 assert 'Time object is read-only. Make a copy()' in str(err.value) with pytest.raises(ValueError) as err: t[:] = 5.0 assert 'Time object is read-only. Make a copy()' in str(err.value) t.writeable = True t[1] = 10.0 assert allclose_sec(t[1].value, 10.0) # Scalar is writeable because it gets boxed into a zero-d array t = Time('2000:001', scale='utc') t[()] = '2000:002' assert t.value.startswith('2000:002') # Transformed attribute is not writeable t = Time(['2000:001', '2000:002'], scale='utc') t2 = t.tt # t2 is read-only now because t.tt is cached with pytest.raises(ValueError) as err: t2[0] = '2005:001' assert 'Time object is read-only. Make a copy()' in str(err.value) def test_setitem_location(): loc = EarthLocation(x=[1, 2] * u.m, y=[3, 4] * u.m, z=[5, 6] * u.m) t = Time([[1, 2], [3, 4]], format='cxcsec', location=loc) # Succeeds because the right hand side makes no implication about # location and just inherits t.location t[0, 0] = 0 assert allclose_sec(t.value, [[0, 2], [3, 4]]) # Fails because the right hand side has location=None with pytest.raises(ValueError) as err: t[0, 0] = Time(-1, format='cxcsec') assert ('cannot set to Time with different location: ' 'expected location={} and ' 'got location=None'.format(loc[0])) in str(err.value) # Succeeds because the right hand side correctly sets location t[0, 0] = Time(-2, format='cxcsec', location=loc[0]) assert allclose_sec(t.value, [[-2, 2], [3, 4]]) # Fails because the right hand side has different location with pytest.raises(ValueError) as err: t[0, 0] = Time(-2, format='cxcsec', location=loc[1]) assert ('cannot set to Time with different location: ' 'expected location={} and ' 'got location={}'.format(loc[0], loc[1])) in str(err.value) # Fails because the Time has None location and RHS has defined location t = Time([[1, 2], [3, 4]], format='cxcsec') with pytest.raises(ValueError) as err: t[0, 0] = Time(-2, format='cxcsec', location=loc[1]) assert ('cannot set to Time with different location: ' 'expected location=None and ' 'got location={}'.format(loc[1])) in str(err.value) # Broadcasting works t = Time([[1, 2], [3, 4]], format='cxcsec', location=loc) t[0, :] = Time([-3, -4], format='cxcsec', location=loc) assert allclose_sec(t.value, [[-3, -4], [3, 4]]) def test_setitem_from_python_objects(): t = Time([[1, 2], [3, 4]], format='cxcsec') assert t.cache == {} t.iso assert 'iso' in t.cache['format'] assert np.all(t.iso == [['1998-01-01 00:00:01.000', '1998-01-01 00:00:02.000'], ['1998-01-01 00:00:03.000', '1998-01-01 00:00:04.000']]) # Setting item clears cache t[0, 1] = 100 assert t.cache == {} assert allclose_sec(t.value, [[1, 100], [3, 4]]) assert np.all(t.iso == [['1998-01-01 00:00:01.000', '1998-01-01 00:01:40.000'], ['1998-01-01 00:00:03.000', '1998-01-01 00:00:04.000']]) # Set with a float value t.iso t[1, :] = 200 assert t.cache == {} assert allclose_sec(t.value, [[1, 100], [200, 200]]) # Array of strings in yday format t[:, 1] = ['1998:002', '1998:003'] assert allclose_sec(t.value, [[1, 86400 * 1], [200, 86400 * 2]]) # Incompatible numeric value t = Time(['2000:001', '2000:002']) t[0] = '2001:001' with pytest.raises(ValueError) as err: t[0] = 100 assert 'cannot convert value to a compatible Time object' in str(err.value) def test_setitem_from_time_objects(): """Set from existing Time object. """ # Set from time object with different scale t = Time(['2000:001', '2000:002'], scale='utc') t2 = Time(['2000:010'], scale='tai') t[1] = t2[0] assert t.value[1] == t2.utc.value[0] # Time object with different scale and format t = Time(['2000:001', '2000:002'], scale='utc') t2.format = 'jyear' t[1] = t2[0] assert t.yday[1] == t2.utc.yday[0] def test_setitem_bad_item(): t = Time([1, 2], format='cxcsec') with pytest.raises(IndexError): t['asdf'] = 3 def test_setitem_deltas(): """Setting invalidates any transform deltas""" t = Time([1, 2], format='cxcsec') t.delta_tdb_tt = [1, 2] t.delta_ut1_utc = [3, 4] t[1] = 3 assert not hasattr(t, '_delta_tdb_tt') assert not hasattr(t, '_delta_ut1_utc') def test_subclass(): """Check that we can initialize subclasses with a Time instance.""" # Ref: Issue gh-#7449 and PR gh-#7453. class _Time(Time): pass t1 = Time('1999-01-01T01:01:01') t2 = _Time(t1) assert t2.__class__ == _Time assert t1 == t2 def test_strftime_scalar(): """Test of Time.strftime """ time_string = '2010-09-03 06:00:00' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S') == time_string def test_strftime_array(): tstrings = ['2010-09-03 00:00:00', '2005-09-03 06:00:00', '1995-12-31 23:59:60'] t = Time(tstrings) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S').tolist() == tstrings def test_strftime_array_2(): tstrings = [['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1995-12-31 23:59:60']] tstrings = np.array(tstrings) t = Time(tstrings) for format in t.FORMATS: t.format = format assert np.all(t.strftime('%Y-%m-%d %H:%M:%S') == tstrings) assert t.strftime('%Y-%m-%d %H:%M:%S').shape == tstrings.shape def test_strftime_leapsecond(): time_string = '1995-12-31 23:59:60' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S') == time_string def test_strptime_scalar(): """Test of Time.strptime """ time_string = '2007-May-04 21:08:12' time_object = Time('2007-05-04 21:08:12') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S') assert t == time_object def test_strptime_array(): """Test of Time.strptime """ tstrings = [['1998-Jan-01 00:00:01', '1998-Jan-01 00:00:02'], ['1998-Jan-01 00:00:03', '1998-Jan-01 00:00:04']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1998-01-01 00:00:04']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strptime_badinput(): tstrings = [1, 2, 3] with pytest.raises(TypeError): Time.strptime(tstrings, '%S') def test_strptime_input_bytes_scalar(): time_string = b'2007-May-04 21:08:12' time_object = Time('2007-05-04 21:08:12') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S') assert t == time_object def test_strptime_input_bytes_array(): tstrings = [[b'1998-Jan-01 00:00:01', b'1998-Jan-01 00:00:02'], [b'1998-Jan-01 00:00:03', b'1998-Jan-01 00:00:04']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01', '1998-01-01 00:00:02'], ['1998-01-01 00:00:03', '1998-01-01 00:00:04']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strptime_leapsecond(): time_obj1 = Time('1995-12-31T23:59:60', format='isot') time_obj2 = Time.strptime('1995-Dec-31 23:59:60', '%Y-%b-%d %H:%M:%S') assert time_obj1 == time_obj2 def test_strptime_3_digit_year(): time_obj1 = Time('0995-12-31T00:00:00', format='isot', scale='tai') time_obj2 = Time.strptime('0995-Dec-31 00:00:00', '%Y-%b-%d %H:%M:%S', scale='tai') assert time_obj1 == time_obj2 def test_strptime_fracsec_scalar(): time_string = '2007-May-04 21:08:12.123' time_object = Time('2007-05-04 21:08:12.123') t = Time.strptime(time_string, '%Y-%b-%d %H:%M:%S.%f') assert t == time_object def test_strptime_fracsec_array(): """Test of Time.strptime """ tstrings = [['1998-Jan-01 00:00:01.123', '1998-Jan-01 00:00:02.000001'], ['1998-Jan-01 00:00:03.000900', '1998-Jan-01 00:00:04.123456']] tstrings = np.array(tstrings) time_object = Time([['1998-01-01 00:00:01.123', '1998-01-01 00:00:02.000001'], ['1998-01-01 00:00:03.000900', '1998-01-01 00:00:04.123456']]) t = Time.strptime(tstrings, '%Y-%b-%d %H:%M:%S.%f') assert np.all(t == time_object) assert t.shape == tstrings.shape def test_strftime_scalar_fracsec(): """Test of Time.strftime """ time_string = '2010-09-03 06:00:00.123' t = Time(time_string) for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == time_string def test_strftime_scalar_fracsec_precision(): time_string = '2010-09-03 06:00:00.123123123' t = Time(time_string) assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == '2010-09-03 06:00:00.123' t.precision = 9 assert t.strftime('%Y-%m-%d %H:%M:%S.%f') == '2010-09-03 06:00:00.123123123' def test_strftime_array_fracsec(): tstrings = ['2010-09-03 00:00:00.123000', '2005-09-03 06:00:00.000001', '1995-12-31 23:59:60.000900'] t = Time(tstrings) t.precision = 6 for format in t.FORMATS: t.format = format assert t.strftime('%Y-%m-%d %H:%M:%S.%f').tolist() == tstrings def test_insert_time(): tm = Time([1, 2], format='unix') # Insert a scalar using an auto-parsed string tm2 = tm.insert(1, '1970-01-01 00:01:00') assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert scalar using a Time value tm2 = tm.insert(1, Time('1970-01-01 00:01:00')) assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert length=1 array with a Time value tm2 = tm.insert(1, [Time('1970-01-01 00:01:00')]) assert np.all(tm2 == Time([1, 60, 2], format='unix')) # Insert length=2 list with float values matching unix format. # Also actually provide axis=0 unlike all other tests. tm2 = tm.insert(1, [10, 20], axis=0) assert np.all(tm2 == Time([1, 10, 20, 2], format='unix')) # Insert length=2 np.array with float values matching unix format tm2 = tm.insert(1, np.array([10, 20])) assert np.all(tm2 == Time([1, 10, 20, 2], format='unix')) # Insert length=2 np.array with float values at the end tm2 = tm.insert(2, np.array([10, 20])) assert np.all(tm2 == Time([1, 2, 10, 20], format='unix')) # Insert length=2 np.array with float values at the beginning # with a negative index tm2 = tm.insert(-2, np.array([10, 20])) assert np.all(tm2 == Time([10, 20, 1, 2], format='unix')) def test_insert_exceptions(): tm = Time(1, format='unix') with pytest.raises(TypeError) as err: tm.insert(0, 50) assert 'cannot insert into scalar' in str(err.value) tm = Time([1, 2], format='unix') with pytest.raises(ValueError) as err: tm.insert(0, 50, axis=1) assert 'axis must be 0' in str(err.value) with pytest.raises(TypeError) as err: tm.insert(slice(None), 50) assert 'obj arg must be an integer' in str(err.value) with pytest.raises(IndexError) as err: tm.insert(-100, 50) assert 'index -100 is out of bounds for axis 0 with size 2' in str(err.value) def test_datetime64_no_format(): dt64 = np.datetime64('2000-01-02T03:04:05.123456789') t = Time(dt64, scale='utc', precision=9) assert t.iso == '2000-01-02 03:04:05.123456789' assert t.datetime64 == dt64 assert t.value == dt64 def test_hash_time(): loc1 = EarthLocation(1 * u.m, 2 * u.m, 3 * u.m) for loc in None, loc1: t = Time([1, 1, 2, 3], format='cxcsec', location=loc) t[3] = np.ma.masked h1 = hash(t[0]) h2 = hash(t[1]) h3 = hash(t[2]) assert h1 == h2 assert h1 != h3 with pytest.raises(TypeError) as exc: hash(t) assert exc.value.args[0] == "unhashable type: 'Time' (must be scalar)" with pytest.raises(TypeError) as exc: hash(t[3]) assert exc.value.args[0] == "unhashable type: 'Time' (value is masked)" t = Time(1, format='cxcsec', location=loc) t2 = Time(1, format='cxcsec') assert hash(t) != hash(t2) t = Time('2000:180', scale='utc') t2 = Time(t, scale='tai') assert t == t2 assert hash(t) != hash(t2) def test_hash_time_delta(): t = TimeDelta([1, 1, 2, 3], format='sec') t[3] = np.ma.masked h1 = hash(t[0]) h2 = hash(t[1]) h3 = hash(t[2]) assert h1 == h2 assert h1 != h3 with pytest.raises(TypeError) as exc: hash(t) assert exc.value.args[0] == "unhashable type: 'TimeDelta' (must be scalar)" with pytest.raises(TypeError) as exc: hash(t[3]) assert exc.value.args[0] == "unhashable type: 'TimeDelta' (value is masked)" def test_get_time_fmt_exception_messages(): with pytest.raises(ValueError) as err: Time(10) assert "No time format was given, and the input is" in str(err.value) with pytest.raises(ValueError) as err: Time('2000:001', format='not-a-format') assert "Format 'not-a-format' is not one of the allowed" in str(err.value) with pytest.raises(ValueError) as err: Time('200') assert 'Input values did not match any of the formats where' in str(err.value) with pytest.raises(ValueError) as err: Time('200', format='iso') assert ('Input values did not match the format class iso:' + os.linesep + 'ValueError: Time 200 does not match iso format') == str(err.value) with pytest.raises(ValueError) as err: Time(200, format='iso') assert ('Input values did not match the format class iso:' + os.linesep + 'TypeError: Input values for iso class must be strings') == str(err.value) def test_ymdhms_defaults(): t1 = Time({'year': 2001}, format='ymdhms') assert t1 == Time('2001-01-01') times_dict_ns = { 'year': [2001, 2002], 'month': [2, 3], 'day': [4, 5], 'hour': [6, 7], 'minute': [8, 9], 'second': [10, 11] } table_ns = Table(times_dict_ns) struct_array_ns = table_ns.as_array() rec_array_ns = struct_array_ns.view(np.recarray) ymdhms_names = ('year', 'month', 'day', 'hour', 'minute', 'second') @pytest.mark.parametrize('tm_input', [table_ns, struct_array_ns, rec_array_ns]) @pytest.mark.parametrize('kwargs', [{}, {'format': 'ymdhms'}]) @pytest.mark.parametrize('as_row', [False, True]) def test_ymdhms_init_from_table_like(tm_input, kwargs, as_row): time_ns = Time(['2001-02-04 06:08:10', '2002-03-05 07:09:11']) if as_row: tm_input = tm_input[0] time_ns = time_ns[0] tm = Time(tm_input, **kwargs) assert np.all(tm == time_ns) assert tm.value.dtype.names == ymdhms_names def test_ymdhms_init_from_dict_array(): times_dict_shape = { 'year': [[2001, 2002], [2003, 2004]], 'month': [2, 3], 'day': 4 } time_shape = Time( [['2001-02-04', '2002-03-04'], ['2003-02-04', '2004-03-04']] ) time = Time(times_dict_shape, format='ymdhms') assert np.all(time == time_shape) assert time.ymdhms.shape == time_shape.shape @pytest.mark.parametrize('kwargs', [{}, {'format': 'ymdhms'}]) def test_ymdhms_init_from_dict_scalar(kwargs): """ Test YMDHMS functionality for a dict input. This includes ensuring that key and attribute access work. For extra fun use a time within a leap second. """ time_dict = { 'year': 2016, 'month': 12, 'day': 31, 'hour': 23, 'minute': 59, 'second': 60.123456789} tm = Time(time_dict, **kwargs) assert tm == Time('2016-12-31T23:59:60.123456789') for attr in time_dict: for value in (tm.value[attr], getattr(tm.value, attr)): if attr == 'second': assert allclose_sec(time_dict[attr], value) else: assert time_dict[attr] == value # Now test initializing from a YMDHMS format time using the object tm_rt = Time(tm) assert tm_rt == tm assert tm_rt.format == 'ymdhms' # Test initializing from a YMDHMS value (np.void, i.e. recarray row) # without specified format. tm_rt = Time(tm.ymdhms) assert tm_rt == tm assert tm_rt.format == 'ymdhms' def test_ymdhms_exceptions(): with pytest.raises(ValueError, match='input must be dict or table-like'): Time(10, format='ymdhms') match = "'wrong' not allowed as YMDHMS key name(s)" # NB: for reasons unknown, using match=match in pytest.raises() fails, so we # fall back to old school ``match in str(err.value)``. with pytest.raises(ValueError) as err: Time({'year': 2019, 'wrong': 1}, format='ymdhms') assert match in str(err.value) match = "for 2 input key names you must supply 'year', 'month'" with pytest.raises(ValueError, match=match): Time({'year': 2019, 'minute': 1}, format='ymdhms') def test_ymdhms_masked(): tm = Time({'year': [2000, 2001]}, format='ymdhms') tm[0] = np.ma.masked assert isinstance(tm.value[0], np.ma.core.mvoid) for name in ymdhms_names: assert tm.value[0][name] is np.ma.masked # Converted from doctest in astropy/test/formats.py for debugging def test_ymdhms_output(): t = Time({'year': 2015, 'month': 2, 'day': 3, 'hour': 12, 'minute': 13, 'second': 14.567}, scale='utc') # NOTE: actually comes back as np.void for some reason # NOTE: not necessarily a python int; might be an int32 assert t.ymdhms.year == 2015 # There are two stages of validation now - one on input into a format, so that # the format conversion code has tidy matched arrays to work with, and the # other when object construction does not go through a format object. Or at # least, the format object is constructed with "from_jd=True". In this case the # normal input validation does not happen but the new input validation does, # and can ensure that strange broadcasting anomalies can't happen. # This form of construction uses from_jd=True. def test_broadcasting_writeable(): t = Time('J2015') + np.linspace(-1, 1, 10) * u.day t[2] = Time(58000, format="mjd") def test_format_subformat_compatibility(): """Test that changing format with out_subfmt defined is not a problem. See #9812, #9810.""" t = Time('2019-12-20', out_subfmt='date_??') assert t.mjd == 58837.0 assert t.yday == '2019:354:00:00' # Preserves out_subfmt t2 = t.replicate(format='mjd') assert t2.out_subfmt == '*' # Changes to default t2 = t.copy(format='mjd') assert t2.out_subfmt == '*' t2 = Time(t, format='mjd') assert t2.out_subfmt == '*' t2 = t.copy(format='yday') assert t2.out_subfmt == 'date_??' assert t2.value == '2019:354:00:00' t.format = 'yday' assert t.value == '2019:354:00:00' assert t.out_subfmt == 'date_??' t = Time('2019-12-20', out_subfmt='date') assert t.mjd == 58837.0 assert t.yday == '2019:354' @pytest.mark.parametrize('fmt_name,fmt_class', TIME_FORMATS.items()) def test_to_value_with_subfmt_for_every_format(fmt_name, fmt_class): """From a starting Time value, test that every valid combination of to_value(format, subfmt) works. See #9812, #9361. """ t = Time('2000-01-01') subfmts = list(subfmt[0] for subfmt in fmt_class.subfmts) + [None, '*'] for subfmt in subfmts: t.to_value(fmt_name, subfmt) @pytest.mark.parametrize('location', [None, (45, 45)]) def test_location_init(location): """Test fix in #9969 for issue #9962 where the location attribute is lost when initializing Time from an existing Time instance of list of Time instances. """ tm = Time('J2010', location=location) # Init from a scalar Time tm2 = Time(tm) assert np.all(tm.location == tm2.location) assert type(tm.location) is type(tm2.location) # noqa # From a list of Times tm2 = Time([tm, tm]) if location is None: assert tm2.location is None else: for loc in tm2.location: assert loc == tm.location assert type(tm.location) is type(tm2.location) # noqa # Effectively the same as a list of Times, but just to be sure that # Table mixin inititialization is working as expected. tm2 = Table([[tm, tm]])['col0'] if location is None: assert tm2.location is None else: for loc in tm2.location: assert loc == tm.location assert type(tm.location) is type(tm2.location) # noqa def test_location_init_fail(): """Test fix in #9969 for issue #9962 where the location attribute is lost when initializing Time from an existing Time instance of list of Time instances. Make sure exception is correct. """ tm = Time('J2010', location=(45, 45)) tm2 = Time('J2010') with pytest.raises(ValueError, match='cannot concatenate times unless all locations'): Time([tm, tm2])
bsd-3-clause
hainn8x/gnuradio
gr-filter/examples/chirp_channelize.py
58
7169
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 200000 # number of samples to use self._fs = 9000 # initial sampling rate self._M = 9 # Number of channels to channelize # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._fs, 500, 20, attenuation_dB=10, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc repeated = True if(repeated): self.vco_input = analog.sig_source_f(self._fs, analog.GR_SIN_WAVE, 0.25, 110) else: amp = 100 data = scipy.arange(0, amp, amp/float(self._N)) self.vco_input = blocks.vector_source_f(data, False) # Build a VCO controlled by either the sinusoid or single chirp tone # Then convert this to a complex signal self.vco = blocks.vco_f(self._fs, 225, 1) self.f2c = blocks.float_to_complex() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.vco_input, self.vco, self.f2c) self.connect(self.f2c, self.head, self.pfb) self.connect(self.f2c, self.snk_i) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") fig3 = pylab.figure(4, figsize=(16,9), facecolor="w") Ns = 650 Ne = 20000 fftlen = 8192 winfunc = scipy.blackman fs = tb._fs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs / tb._M Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = freq p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") sp3 = fig3.add_subplot(1,1,1) p3 = sp3.plot(t_o, x_o.real) sp3.set_xlim([min(t_o), max(t_o)+1]) sp3.set_ylim([-2, 2]) sp3.set_title("All Channels") sp3.set_xlabel("Time (s)") sp3.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
dsm054/pandas
pandas/tests/indexes/datetimes/test_astype.py
1
12095
from datetime import datetime import dateutil from dateutil.tz import tzlocal import numpy as np import pytest import pytz import pandas as pd from pandas import ( DatetimeIndex, Index, Int64Index, NaT, Period, Series, Timestamp, date_range) import pandas.util.testing as tm class TestDatetimeIndex(object): def test_astype(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timestamp('2016-05-16')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([1463356800000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') tm.assert_index_equal(result, Index(rng.asi8)) tm.assert_numpy_array_equal(result.values, rng.asi8) def test_astype_with_tz(self): # with tz rng = date_range('1/1/2000', periods=10, tz='US/Eastern') result = rng.astype('datetime64[ns]') expected = (date_range('1/1/2000', periods=10, tz='US/Eastern') .tz_convert('UTC').tz_localize(None)) tm.assert_index_equal(result, expected) # BUG#10442 : testing astype(str) is correct for Series/DatetimeIndex result = pd.Series(pd.date_range('2012-01-01', periods=3)).astype(str) expected = pd.Series( ['2012-01-01', '2012-01-02', '2012-01-03'], dtype=object) tm.assert_series_equal(result, expected) result = Series(pd.date_range('2012-01-01', periods=3, tz='US/Eastern')).astype(str) expected = Series(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], dtype=object) tm.assert_series_equal(result, expected) # GH 18951: tz-aware to tz-aware idx = date_range('20170101', periods=4, tz='US/Pacific') result = idx.astype('datetime64[ns, US/Eastern]') expected = date_range('20170101 03:00:00', periods=4, tz='US/Eastern') tm.assert_index_equal(result, expected) # GH 18951: tz-naive to tz-aware idx = date_range('20170101', periods=4) result = idx.astype('datetime64[ns, US/Eastern]') expected = date_range('20170101', periods=4, tz='US/Eastern') tm.assert_index_equal(result, expected) def test_astype_str_compat(self): # GH 13149, GH 13209 # verify that we are returning NaT as a string (and not unicode) idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype(str) expected = Index(['2016-05-16', 'NaT', 'NaT', 'NaT'], dtype=object) tm.assert_index_equal(result, expected) def test_astype_str(self): # test astype string - #10442 result = date_range('2012-01-01', periods=4, name='test_name').astype(str) expected = Index(['2012-01-01', '2012-01-02', '2012-01-03', '2012-01-04'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with tz and name result = date_range('2012-01-01', periods=3, name='test_name', tz='US/Eastern').astype(str) expected = Index(['2012-01-01 00:00:00-05:00', '2012-01-02 00:00:00-05:00', '2012-01-03 00:00:00-05:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and name result = date_range('1/1/2011', periods=3, freq='H', name='test_name').astype(str) expected = Index(['2011-01-01 00:00:00', '2011-01-01 01:00:00', '2011-01-01 02:00:00'], name='test_name', dtype=object) tm.assert_index_equal(result, expected) # test astype string with freqH and timezone result = date_range('3/6/2012 00:00', periods=2, freq='H', tz='Europe/London', name='test_name').astype(str) expected = Index(['2012-03-06 00:00:00+00:00', '2012-03-06 01:00:00+00:00'], dtype=object, name='test_name') tm.assert_index_equal(result, expected) def test_astype_datetime64(self): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) result = idx.astype('datetime64[ns]') tm.assert_index_equal(result, idx) assert result is not idx result = idx.astype('datetime64[ns]', copy=False) tm.assert_index_equal(result, idx) assert result is idx idx_tz = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN], tz='EST') result = idx_tz.astype('datetime64[ns]') expected = DatetimeIndex(['2016-05-16 05:00:00', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]') tm.assert_index_equal(result, expected) def test_astype_object(self): rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) tm.assert_index_equal(casted, Index(exp_values, dtype=np.object_)) assert casted.tolist() == exp_values @pytest.mark.parametrize('tz', [None, 'Asia/Tokyo']) def test_astype_object_tz(self, tz): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz=tz) expected_list = [Timestamp('2013-01-31', tz=tz), Timestamp('2013-02-28', tz=tz), Timestamp('2013-03-31', tz=tz), Timestamp('2013-04-30', tz=tz)] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.astype(object) tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype_object_with_nat(self): idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.astype(object) tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list @pytest.mark.parametrize('dtype', [ float, 'timedelta64', 'timedelta64[ns]', 'datetime64', 'datetime64[D]']) def test_astype_raises(self, dtype): # GH 13149, GH 13209 idx = DatetimeIndex(['2016-05-16', 'NaT', NaT, np.NaN]) msg = 'Cannot cast DatetimeIndex to dtype' with pytest.raises(TypeError, match=msg): idx.astype(dtype) def test_index_convert_to_datetime_array(self): def _check_rng(rng): converted = rng.to_pydatetime() assert isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): assert isinstance(x, datetime) assert x == stamp.to_pydatetime() assert x.tzinfo == stamp.tzinfo rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_index_convert_to_datetime_array_explicit_pytz(self): def _check_rng(rng): converted = rng.to_pydatetime() assert isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): assert isinstance(x, datetime) assert x == stamp.to_pydatetime() assert x.tzinfo == stamp.tzinfo rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz=pytz.timezone('US/Eastern')) rng_utc = date_range('20090415', '20090519', tz=pytz.utc) _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_index_convert_to_datetime_array_dateutil(self): def _check_rng(rng): converted = rng.to_pydatetime() assert isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): assert isinstance(x, datetime) assert x == stamp.to_pydatetime() assert x.tzinfo == stamp.tzinfo rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='dateutil/US/Eastern') rng_utc = date_range('20090415', '20090519', tz=dateutil.tz.tzutc()) _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) @pytest.mark.parametrize('tz, dtype', [ ['US/Pacific', 'datetime64[ns, US/Pacific]'], [None, 'datetime64[ns]']]) def test_integer_index_astype_datetime(self, tz, dtype): # GH 20997, 20964 val = [pd.Timestamp('2018-01-01', tz=tz).value] result = pd.Index(val).astype(dtype) expected = pd.DatetimeIndex(['2018-01-01'], tz=tz) tm.assert_index_equal(result, expected) class TestToPeriod(object): def setup_method(self, method): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] self.index = DatetimeIndex(data) def test_to_period_millisecond(self): index = self.index with tm.assert_produces_warning(UserWarning): # warning that timezone info will be lost period = index.to_period(freq='L') assert 2 == len(period) assert period[0] == Period('2007-01-01 10:11:12.123Z', 'L') assert period[1] == Period('2007-01-01 10:11:13.789Z', 'L') def test_to_period_microsecond(self): index = self.index with tm.assert_produces_warning(UserWarning): # warning that timezone info will be lost period = index.to_period(freq='U') assert 2 == len(period) assert period[0] == Period('2007-01-01 10:11:12.123456Z', 'U') assert period[1] == Period('2007-01-01 10:11:13.789123Z', 'U') @pytest.mark.parametrize('tz', [ 'US/Eastern', pytz.utc, tzlocal(), 'dateutil/US/Eastern', dateutil.tz.tzutc()]) def test_to_period_tz(self, tz): ts = date_range('1/1/2000', '2/1/2000', tz=tz) with tm.assert_produces_warning(UserWarning): # GH#21333 warning that timezone info will be lost result = ts.to_period()[0] expected = ts[0].to_period() assert result == expected expected = date_range('1/1/2000', '2/1/2000').to_period() with tm.assert_produces_warning(UserWarning): # GH#21333 warning that timezone info will be lost result = ts.to_period() tm.assert_index_equal(result, expected) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) pytest.raises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') assert idx.freqstr == 'D' expected = pd.PeriodIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='D') tm.assert_index_equal(idx.to_period(), expected) # GH 7606 idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03']) assert idx.freqstr is None tm.assert_index_equal(idx.to_period(), expected)
bsd-3-clause
jenfly/monsoon-onset
scripts/save-energy-budget.py
1
5248
import sys sys.path.append('/home/jwalker/dynamics/python/atmos-tools') sys.path.append('/home/jwalker/dynamics/python/atmos-read') sys.path.append('/home/jwalker/dynamics/python/monsoon-onset') import numpy as np import xarray as xray import pandas as pd import matplotlib.pyplot as plt import collections import atmos as atm import merra import indices import utils # ---------------------------------------------------------------------- version = 'merra2' yearstr = '1980-2015' datadir = atm.homedir() + 'datastore/%s/analysis/' % version savedir = atm.homedir() + 'datastore/%s/figure_data/' % version ndays = 5 # Rolling pentad lon1, lon2 = 60, 100 eqlat1, eqlat2 = -5, 5 varnms = ['UFLXCPT', 'UFLXQV', 'UFLXPHI', 'VFLXCPT', 'VFLXQV', 'VFLXPHI', 'LWTUP', 'SWGNT', 'LWGNT', 'SWTNT', 'HFLUX', 'EFLUX'] filestr = datadir + version + '_%s_dailyrel_CHP_MFC_' + yearstr + '.nc' datafiles = {nm : filestr % nm for nm in varnms} savestr = savedir + version + '_%s_' + yearstr + '.nc' savefiles = {} for nm in ['energy_budget', 'energy_budget_sector', 'energy_budget_eq']: savefiles[nm] = savestr % nm # ---------------------------------------------------------------------- data = xray.Dataset() for nm in varnms: filenm = datafiles[nm] print('Loading ' + filenm) with xray.open_dataset(filenm) as ds: var = atm.subset(ds[nm], {'lat' : (-60, 60)}) daydim = atm.get_coord(var, 'dayrel', 'dim') data[nm] = atm.rolling_mean(var, ndays, axis=daydim) data['NETRAD'] = data['SWTNT'] - data['LWTUP'] - data['SWGNT']- data['LWGNT'] data['FNET'] = data['NETRAD'] + data['EFLUX'] + data['HFLUX'] Lv = atm.constants.Lv.values for nm in ['UFLXQV', 'VFLXQV']: key = nm.replace('QV', 'LQV') data[key] = data[nm] * Lv data[key].attrs['units'] = 'J m-1 s-1' data['UH'] = data['UFLXCPT'] + data['UFLXPHI'] + data['UFLXLQV'] data['VH'] = data['VFLXCPT'] + data['VFLXPHI'] + data['VFLXLQV'] data.attrs['ndays'] = ndays print('Saving to ' + savefiles['energy_budget']) data.to_netcdf(savefiles['energy_budget']) # Sector mean data data_sector = atm.dim_mean(data, 'lon', lon1, lon2) data_sector.attrs['lon1'] = lon1 data_sector.attrs['lon2'] = lon2 # Equator mean data data_eq = atm.dim_mean(data, 'lat', eqlat1, eqlat2) data_eq.attrs['eqlat1'] = eqlat1 data_eq.attrs['eqlat2'] = eqlat2 a = atm.constants.radius_earth.values dx = a * np.radians(lon2-lon1) var = data_eq['UH'] data_eq['UH_DX'] = (var.sel(lon=lon2) - var.sel(lon=lon1))/dx data_eq_bar = atm.dim_mean(data_eq, 'lon', lon1, lon2) var = atm.subset(data_sector['VH'], {'lat' : (-30, 30)}) daydim = atm.get_coord(var, 'dayrel', 'dim') var = atm.rolling_mean(var, ndays, axis=daydim) days = atm.get_coord(var, 'dayrel') lat = atm.get_coord(var, 'lat') zerolat = np.nan * np.ones(len(days)) latmin = -15 latmax = 15 for i, day in enumerate(days[ndays:-ndays]): print(day) zerolat[i] = utils.find_zeros_1d(lat, var.sel(dayrel=day), latmin, latmax, interp=0.1, return_type='min') #cint = atm.cinterval(var, n_pref=50, symmetric=True) #clevs = atm.clevels(var, cint, symmetric=True) clevs = np.arange(-4e9, 4.1e9, 0.2e9) plt.figure() plt.contourf(days, lat, var.T, clevs, cmap='RdBu_r', extend='both') plt.colorbar() plt.grid() plt.plot(days, zerolat, 'k', linewidth=2) #plt.contour(days, lat, var.T, [0], colors='0.5', linewidths=2) # ---------------------------------------------------------------------- # Radiation terms - monthly data # # def concat_years_rad(years, datadir, nms_rad, subset_dict={'lon' : (40, 120)}): # # def monthly_rad(datafiles, year, nms_rad, concat_dim='time'): # ds = atm.load_concat(datafiles, var_ids=nms_rad, concat_dim=concat_dim) # ds = ds.rename({concat_dim : 'month'}) # ds['month'] = range(1, 13) # for nm in ds.data_vars: # ds[nm] = atm.expand_dims(ds[nm], 'year', year, axis=0) # return ds # # prod = {yr : 100 for yr in range(1980, 1992)} # for yr in range(1992, 2001): # prod[yr] = 200 # for yr in range(2001, 2011): # prod[yr] = 300 # for yr in range(2011, 2016): # prod[yr] = 400 # # filestr = datadir + 'MERRA2_%d.tavgM_2d_rad_Nx.%d%02d.nc4' # files = {} # months = range(1, 13) # for yr in years: # files[yr] = [filestr % (prod[yr], yr, mon) for mon in months] # # for i, year in enumerate(files): # dsyr = monthly_rad(files[year], year, nms_rad) # dsyr = atm.subset(dsyr, subset_dict) # if i == 0: # ds = dsyr # else: # ds = xray.concat([ds, dsyr], dim='year') # return ds # # # nms_rad = ['SWTNT', 'LWTUP', 'SWGNT', 'LWGNT'] # ds_rad = concat_years_rad(years, datadir2, nms_rad) # ds_rad['NETRAD'] = (ds_rad['SWTNT'] - ds_rad['LWTUP'] - ds_rad['SWGNT'] # - ds_rad['LWGNT']) # ds_rad['NETRAD'].attrs['long_name'] = 'Net radiation into atmospheric column' # ds_rad['NETRAD'].attrs['units'] = ds_rad['SWTNT'].attrs['units'] # # savefile = datadir2 + 'merra2_rad_1980-2015.nc4' # ds_rad.to_netcdf(savefile) # ---------------------------------------------------------------------- # Julian day climatologies of EFLUX, HFLUX, uh, vh
mit
ghorn/debian-casadi
experimental/joel/test_acado_integrator.py
1
2870
# # This file is part of CasADi. # # CasADi -- A symbolic framework for dynamic optimization. # Copyright (C) 2010-2014 Joel Andersson, Joris Gillis, Moritz Diehl, # K.U. Leuven. All rights reserved. # Copyright (C) 2011-2014 Greg Horn # # CasADi is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # # CasADi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with CasADi; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # # -*- coding: utf-8 -*- from numpy import * import matplotlib.pyplot as plt # CasADi from casadi import * # End time tf = 1.0 # Variables t = ssym("t") x = ssym("x") z = ssym("z") p = ssym("p") q = ssym("q") # Differential equation input argument ffcn_in = SXVector(DAE_NUM_IN) ffcn_in[DAE_T] = t ffcn_in[DAE_Y] = vertcat((x,z)) ffcn_in[DAE_P] = vertcat((p,q)) # Differential equation output argument ffcn_out = [vertcat((-p*x*x*z, \ q*q - z*z + 0.1*x))] # Differential equation ffcn = SXFunction(ffcn_in,ffcn_out) # Create integrator integrator = AcadoIntegrator(ffcn) integrator.setOption("time_dependence",False) integrator.setOption("num_algebraic",1) integrator.setOption("num_grid_points",100) integrator.setOption("tf",tf) integrator.init() # Initial conditions xz0 = array([1.0, 1.000000]) pq0 = array([1.0, 1.0]) integrator.setInput(xz0, "x0") integrator.setInput(pq0, "p") # Seeds integrator.setFwdSeed([0.,0.], "x0") integrator.setFwdSeed([1.,0.], "p") integrator.setAdjSeed([1.,0.], "xf") # Integrate with forward and adjoint sensitivities integrator.evaluate(1,0) #integrator.evaluate(1,1) # NOTE ACADO does not support adjoint mode AD using interfaced functions # Result print "final state = ", integrator.output("xf").data(), " (XF)" print "forward sensitivities = ", integrator.fwdSens("xf").data(), " (XF)" #print "adjoint sensitivities = ", integrator.adjSens("x0").data(), " (X0), ", integrator.adjSens("p").data(), " (P)" # Create a simulator tgrid = numpy.linspace(0,tf,100) simulator = Simulator(integrator,tgrid) simulator.init() simulator.setInput(xz0, "x0") simulator.setInput(pq0, "p") simulator.evaluate() plt.clf() plt.plot(tgrid,simulator.getOutput()) plt.legend(('differential state', 'algebraic state')) plt.grid(True) plt.show() print "Script finished"
lgpl-3.0
lukeiwanski/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
46
13101
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat([labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose(predictions['class'], np.argmax(predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose(classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
jwlawson/tensorflow
tensorflow/examples/get_started/regression/imports85.py
24
6638
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A dataset loader for imports85.data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import tensorflow as tf try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: pass URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data" # Order is important for the csv-readers, so we use an OrderedDict here. defaults = collections.OrderedDict([ ("symboling", [0]), ("normalized-losses", [0.0]), ("make", [""]), ("fuel-type", [""]), ("aspiration", [""]), ("num-of-doors", [""]), ("body-style", [""]), ("drive-wheels", [""]), ("engine-location", [""]), ("wheel-base", [0.0]), ("length", [0.0]), ("width", [0.0]), ("height", [0.0]), ("curb-weight", [0.0]), ("engine-type", [""]), ("num-of-cylinders", [""]), ("engine-size", [0.0]), ("fuel-system", [""]), ("bore", [0.0]), ("stroke", [0.0]), ("compression-ratio", [0.0]), ("horsepower", [0.0]), ("peak-rpm", [0.0]), ("city-mpg", [0.0]), ("highway-mpg", [0.0]), ("price", [0.0]) ]) # pyformat: disable types = collections.OrderedDict((key, type(value[0])) for key, value in defaults.items()) def _get_imports85(): path = tf.contrib.keras.utils.get_file(URL.split("/")[-1], URL) return path def dataset(y_name="price", train_fraction=0.7): """Load the imports85 data as a (train,test) pair of `Dataset`. Each dataset generates (features_dict, label) pairs. Args: y_name: The name of the column to use as the label. train_fraction: A float, the fraction of data to use for training. The remainder will be used for evaluation. Returns: A (train,test) pair of `Datasets` """ # Download and cache the data path = _get_imports85() # Define how the lines of the file should be parsed def decode_line(line): """Convert a csv line into a (features_dict,label) pair.""" # Decode the line to a tuple of items based on the types of # csv_header.values(). items = tf.decode_csv(line, list(defaults.values())) # Convert the keys and items to a dict. pairs = zip(defaults.keys(), items) features_dict = dict(pairs) # Remove the label from the features_dict label = features_dict.pop(y_name) return features_dict, label def has_no_question_marks(line): """Returns True if the line of text has no question marks.""" # split the line into an array of characters chars = tf.string_split(line[tf.newaxis], "").values # for each character check if it is a question mark is_question = tf.equal(chars, "?") any_question = tf.reduce_any(is_question) no_question = ~any_question return no_question def in_training_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # If you randomly split the dataset you won't get the same split in both # sessions if you stop and restart training later. Also a simple # random split won't work with a dataset that's too big to `.cache()` as # we are doing here. num_buckets = 1000000 bucket_id = tf.string_to_hash_bucket_fast(line, num_buckets) # Use the hash bucket id as a random number that's deterministic per example return bucket_id < int(train_fraction * num_buckets) def in_test_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # Items not in the training set are in the test set. # This line must use `~` instead of `not` because `not` only works on python # booleans but we are dealing with symbolic tensors. return ~in_training_set(line) base_dataset = (tf.contrib.data # Get the lines from the file. .TextLineDataset(path) # drop lines with question marks. .filter(has_no_question_marks)) train = (base_dataset # Take only the training-set lines. .filter(in_training_set) # Decode each line into a (features_dict, label) pair. .map(decode_line) # Cache data so you only decode the file once. .cache()) # Do the same for the test-set. test = (base_dataset.filter(in_test_set).cache().map(decode_line)) return train, test def raw_dataframe(): """Load the imports85 data as a pd.DataFrame.""" # Download and cache the data path = _get_imports85() # Load it into a pandas dataframe df = pd.read_csv(path, names=types.keys(), dtype=types, na_values="?") return df def load_data(y_name="price", train_fraction=0.7, seed=None): """Get the imports85 data set. A description of the data is available at: https://archive.ics.uci.edu/ml/datasets/automobile The data itself can be found at: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data Args: y_name: the column to return as the label. train_fraction: the fraction of the dataset to use for training. seed: The random seed to use when shuffling the data. `None` generates a unique shuffle every run. Returns: a pair of pairs where the first pair is the training data, and the second is the test data: `(x_train, y_train), (x_test, y_test) = get_imports85_dataset(...)` `x` contains a pandas DataFrame of features, while `y` contains the label array. """ # Load the raw data columns. data = raw_dataframe() # Delete rows with unknowns data = data.dropna() # Shuffle the data np.random.seed(seed) # Split the data into train/test subsets. x_train = data.sample(frac=train_fraction, random_state=seed) x_test = data.drop(x_train.index) # Extract the label from the features dataframe. y_train = x_train.pop(y_name) y_test = x_test.pop(y_name) return (x_train, y_train), (x_test, y_test)
apache-2.0
KaiYan0729/nyu_python
advanced_python/assignments/proj3/data_project.py
1
5994
import numpy as np import pandas as pd #import matplotlib import matplotlib.pyplot as plt import datetime import pandas_datareader.data as web import math import scipy.optimize as sco #download data from Yahoo Finance and stock growth visuslization def get_data(ticker): # set the staring time and ending time start = datetime.datetime(2010, 1, 1) end = datetime.datetime(2014, 12, 31) # user input equity tickers data = pd.DataFrame() data[ticker] = web.DataReader(ticker, 'yahoo', start, end)['Adj Close'] data.colums = ticker #plot stock price over time data.plot(figsize=(8, 5)) plt.title('Stock Price Over Time') plt.xlabel('Time') plt.ylabel('Stock Price') plt.show() #print('\n----------Price Series---------') #print(data) return data #Data Analysis to calculate the Return, Risk, and Correlation for each stock def data_analysis(weights, data): rets = np.log(data / data.shift(-1)) rf = 0.05 # risk free interest rate, constant weights = np.array(weights) annual_ret = np.sum(rets.mean() * weights) * 252 annual_vol = np.sqrt(np.dot(weights.T, np.dot(rets.cov() * 252, weights))) return np.array([annual_ret, annual_vol, (annual_ret - rf) / annual_vol]) #Define onjection function for portfolio optimization def objective_function(intial_weights, data, choice): if choice == 'Maximize Return': func = -data_analysis(intial_weights, data)[0] elif choice == 'Minimize Volatility': func = data_analysis(intial_weights, data)[1] elif choice == 'Maxmize Sharpe Ratio': func = -data_analysis(intial_weights, data)[2] return func #calculate optimal weight for each stock def optimal_weight(numTicker, data, choice): cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bnds = tuple((0, 1) for x in range(numTicker)) intial_weights = numTicker * [1 / numTicker] statistics = sco.minimize(objective_function, intial_weights, args=(data, choice,), method='SLSQP', bounds=bnds, constraints=cons) weights = statistics['x'].round(2) return weights #statistics for the portfolio def test(final_weight, data, choice): output = data_analysis(final_weight, data) print('If your goal is to {}'.format(choice), ', then your portfolio statistics is:\nannualized return = {}'.format(output[0].round(3)), '\nvolatilites = {}'.format(output[1].round(3)), '\nsharpe ratio = {}'.format(output[2].round(3))) #portfolio growth visualization def portfolio_growth_visualization(data, weights, choice): rets = np.log(data / data.shift(-1)) value = rets * weights portRet = np.sum(value, axis=1) portRet = np.flip(portRet, 0) portRet = portRet.cumsum() portVal = 10000 * np.exp(portRet) #portfolio value started with $10000 initial investment #graph, portfolio growth portVal.plot(figsize=(8, 5)) plt.title('Portfolio Growth Visualization, Type:{}'.format(choice)) plt.xlabel('Time') plt.ylabel('Portfolio Value') plt.show() return portVal #portfolio risk visualization(measured by 5% Value-at-Risk(VaR) def value_at_risk_visualization(data,weights,choice): rets = np.log(data / data.shift(-1)) value = rets * weights portRet = np.sum(value, axis=1) portRet = np.flip(portRet, 0) portRet = portRet.cumsum() portVal = 10000 * np.exp(portRet) portVal = pd.Series.to_frame(portVal) #graph, portfolio returns portVal.plot.hist() plt.title('Portfolio 5% Value-at-Risk Visualization, Type:{}'.format(choice)) plt.xlabel('Daily Return') plt.ylabel('Frequency') plt.grid(True) plt.show() #calculate portfolio risk, the 5th percentile(VaR) p5 = np.percentile(portVal, 5) return p5 def main(): ticker = ['BK', 'AAPL', 'LUV', 'MCO', 'DVA'] # user_ticker = input('Please enter the stock ticker you want to include in your portfolio--->') # ticker = user_ticker.split(',') numTicker = len(ticker) data = get_data(ticker) # max return choice = 'Maximize Return' final_weight = optimal_weight(numTicker, data, choice) dict_weights = dict(zip(ticker, final_weight)) print('----------Optimal weights if your goal is to {}'.format(choice), '---------') print(dict_weights) print('\nIn sample test results--->') test_result = test(final_weight, data, choice) portfolio_growth_visualization(data, final_weight, choice) var5 = value_at_risk_visualization(data,final_weight,choice) #calculate 5% Value at Risk(VaR) print('\nThe 5% VaR is --->') print(var5) # min volatility choice = 'Minimize Volatility' final_weight = optimal_weight(numTicker, data, choice) dict_weights = dict(zip(ticker, final_weight)) print('----------Optimal weights if your goal is to {}'.format(choice), '---------') print(dict_weights) print('\nIn sample test results--->') test_result = test(final_weight, data, choice) portfolio_growth_visualization(data, final_weight, choice) var5 = value_at_risk_visualization(data,final_weight,choice) #calculate 5% Value at Risk(VaR) print('\nThe 5% VaR is --->') print(var5) # max sharpe ratio choice = 'Maxmize Sharpe Ratio' final_weight = optimal_weight(numTicker, data, choice) dict_weights = dict(zip(ticker, final_weight)) print('----------Optimal weights if your goal is to {}'.format(choice), '---------') print(dict_weights) print('\nIn sample test results--->') test_result = test(final_weight, data, choice) portfolio_growth_visualization(data, final_weight, choice) var5 = value_at_risk_visualization(data,final_weight,choice) #calculate 5% Value at Risk(VaR) print('\nThe 5% VaR is --->') print(var5) if __name__ == '__main__': main()
mit
dvro/UnbalancedDataset
imblearn/under_sampling/tests/test_one_sided_selection.py
2
5317
"""Test the module one-sided selection.""" from __future__ import print_function import os import numpy as np from numpy.testing import assert_raises from numpy.testing import assert_equal from numpy.testing import assert_array_equal from numpy.testing import assert_warns from sklearn.datasets import make_classification from sklearn.utils.estimator_checks import check_estimator from collections import Counter from imblearn.under_sampling import OneSidedSelection # Generate a global dataset to use RND_SEED = 0 X = np.array([[-0.3879569, 0.6894251], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [0.91542919, -0.65453327], [-0.03852113, 0.40910479], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.18430329, 0.52328473], [-0.30126957, -0.66268378], [-0.65571327, 0.42412021], [-0.28305528, 0.30284991], [0.20246714, -0.34727125], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [-0.00717161, 0.00318087]]) Y = np.array([0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0]) def test_oss_sk_estimator(): """Test the sklearn estimator compatibility""" check_estimator(OneSidedSelection) def test_oss_init(): """Test the initialisation of the object""" # Define a ratio oss = OneSidedSelection(random_state=RND_SEED) assert_equal(oss.size_ngh, 1) assert_equal(oss.n_seeds_S, 1) assert_equal(oss.n_jobs, -1) assert_equal(oss.random_state, RND_SEED) def test_oss_fit_single_class(): """Test either if an error when there is a single class""" # Create the object oss = OneSidedSelection(random_state=RND_SEED) # Resample the data # Create a wrong y y_single_class = np.zeros((X.shape[0], )) assert_warns(RuntimeWarning, oss.fit, X, y_single_class) def test_oss_fit(): """Test the fitting method""" # Create the object oss = OneSidedSelection(random_state=RND_SEED) # Fit the data oss.fit(X, Y) # Check if the data information have been computed assert_equal(oss.min_c_, 0) assert_equal(oss.maj_c_, 1) assert_equal(oss.stats_c_[0], 6) assert_equal(oss.stats_c_[1], 9) def test_oss_sample_wt_fit(): """Test either if an error is raised when sample is called before fitting""" # Create the object oss = OneSidedSelection(random_state=RND_SEED) assert_raises(RuntimeError, oss.sample, X, Y) def test_oss_fit_sample(): """Test the fit sample routine""" # Resample the data oss = OneSidedSelection(random_state=RND_SEED) X_resampled, y_resampled = oss.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [-0.65571327, 0.42412021], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [-0.00717161, 0.00318087], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.30126957, -0.66268378], [0.20246714, -0.34727125]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_oss_fit_sample_with_indices(): """Test the fit sample routine with indices support""" # Resample the data oss = OneSidedSelection(return_indices=True, random_state=RND_SEED) X_resampled, y_resampled, idx_under = oss.fit_sample(X, Y) X_gt = np.array([[-0.3879569, 0.6894251], [0.91542919, -0.65453327], [-0.65571327, 0.42412021], [1.06446472, -1.09279772], [0.30543283, -0.02589502], [-0.00717161, 0.00318087], [-0.09322739, 1.28177189], [-0.77740357, 0.74097941], [-0.43877303, 1.07366684], [-0.85795321, 0.82980738], [-0.30126957, -0.66268378], [0.20246714, -0.34727125]]) y_gt = np.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) idx_gt = np.array([0, 3, 9, 12, 13, 14, 1, 2, 5, 6, 7, 10]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) assert_array_equal(idx_under, idx_gt) def test_oss_sample_wrong_X(): """Test either if an error is raised when X is different at fitting and sampling""" # Create the object oss = OneSidedSelection(random_state=RND_SEED) oss.fit(X, Y) assert_raises(RuntimeError, oss.sample, np.random.random((100, 40)), np.array([0] * 50 + [1] * 50)) def test_multiclass_error(): """ Test either if an error is raised when the target are not binary type. """ # continuous case y = np.linspace(0, 1, 15) oss = OneSidedSelection(random_state=RND_SEED) assert_warns(UserWarning, oss.fit, X, y) # multiclass case y = np.array([0] * 10 + [1] * 3 + [2] * 2) oss = OneSidedSelection(random_state=RND_SEED) assert_warns(UserWarning, oss.fit, X, y)
mit
p5a0u9l/clamm
clamm/streams/to_tracks.py
1
12884
""" streams module contains classes, programs, tools for creating and processing audio streams. """ import os import wave from glob import glob import sys import matplotlib.pyplot as plt from tqdm import trange import numpy as np import taglib from nltk import distance import itunespy from clamm import config from clamm import util # constants, globals plt.switch_backend("agg") DF = config["streams"]["downsample_factor"] DF = 4410 * 10 FS = 44100 FS_DEC = FS / DF SAMP2MIN = 1 / FS / 60 MS2SEC = 1 / 1000 MS2MIN = MS2SEC / 60 class StreamError(Exception): """ StreamError """ def __init__(self, expression, message): self.expression = expression self.message = message class Stream(): """ Stream """ def __init__(self, streampath): """ """ self.pcmpath = streampath self.wavpath = streampath.replace("pcm", "wav") self.query = [] self.artist = [] self.album = [] self.name = [] self.threshold = 8 def pcm2wav(self): """ pcm2wav """ if not os.path.exists(self.wavpath): util.pcm2wav(self.pcmpath, self.wavpath) def decode_path(self): """artist/album names from stream name """ tmp = self.pcmpath.replace(".pcm", "") [artist, album] = tmp.split(";") self.artist, self.album = os.path.split(artist)[-1], album.strip() util.printr("Found and Parsed {} --> {} as target...".format( self.artist, self.album)) self.name = "{}; {}".format(self.artist, self.album) return self def itunes_query(self): """seek an iTunes ``collection_id`` by iterating over albums of from a search artist and finding the minimum ``nltk.distance.edit_distance`` """ min_dist = 10000 for aquery in itunespy.search_album(self.artist): dist = distance.edit_distance(aquery.collection_name, self.album) if dist < min_dist: min_dist = dist min_query = aquery if min_dist < self.threshold: self.query = itunespy.lookup(id=min_query.collection_id)[0] if not self.query: sys.exit("ERROR: album search failed...") return self def prepare_target(self): artist_dir = os.path.join( config["path"]["library"], self.query.artist_name) self.target = os.path.join(artist_dir, self.query.collection_name) if not os.path.exists(artist_dir): os.mkdir(artist_dir) if not os.path.exists(self.target): os.mkdir(self.target) return self def flacify(self): """convert all wav files in target directory to flac files """ map( util.wav2flac, glob(os.path.join(self.target, "*wav"))) return self def tagify(self): """Use itunes_query to populate audio track tags. """ for i, track in enumerate(self.query.get_tracks()): tracknum = "%0.2d" % (i + 1) globber = glob(os.path.join(self.target, tracknum + "*flac")) flac = taglib.File(globber[0]) flac.tags["ALBUM"] = [self.query.collection_name] flac.tags["ALBUMARTIST"] = [self.query.artist_name] flac.tags["ARTIST"] = [track.name] flac.tags["TRACKNUMBER"] = [str(track.number)] flac.tags["DATE"] = [self.query.release_date] flac.tags["LABEL"] = [self.query.copyright] flac.tags["GENRE"] = [self.query.primary_genre_name] flac.tags["TITLE"] = [track.name] flac.tags["COMPILATION"] = ["0"] flac.save() flac.close() class Album(): """Process an audio stream into an Album Attributes ---------- wavstream: wave.Wave_read Read access to wave file framerate: int rate, in Hz, of channel samples track_list: list list of itunespy.track.Track objects containing track tags wavstream: wave.File """ def __init__(self, stream): self.wavstream = wave.open(stream.wavpath) # itunes self.track_list = stream.query.get_tracks() self.n_track = len(self.track_list) self.current = 0 self.track = [] # inherit from query self.target = stream.target self.name = stream.query.collection_name self.release_date = stream.query.release_date self.copyright = stream.query.copyright self.genre = stream.query.primary_genre_name self.artist = stream.query.artist_name # debug self.err = {"dur": [], "pos": []} self.cumtime = 0 def cur_track_start(self): """find audio signal activity that exceeds threshold and persists call this the start frame of a track """ track = self.track[self.current] threshold = 500 persistence = 1 found_count = 0 preactivity_offset = 1 * FS_DEC firstindex = 0 if self.current > 0: firstindex = self.track[self.current - 1].end_frame / DF index = firstindex while found_count <= persistence: if self.envelope[index] > threshold: found_count += 1 else: found_count = 0 index += 1 # subtract off persistence and a preactivity_offset activity = index - persistence - preactivity_offset if activity < firstindex: activity = firstindex track.start_frame = activity * DF def cur_track_stop(self): """find the min energy point around a reference """ track = self.track[self.current] n_samp_track = int(track.duration * MS2SEC * FS_DEC) reference = track.start_frame / DF + n_samp_track # +- 5 seconds around projected end frame excursion = 5 * FS_DEC curpos = reference - excursion go_till = np.min( [reference + excursion, self.wavstream.getnframes() / DF]) local_min = 1e9 local_idx = -1 while curpos < go_till: if self.envelope[curpos] < local_min: local_min = self.envelope[curpos] local_idx = curpos curpos += 1 track.end_frame = local_idx * DF track.n_frame = track.end_frame - track.start_frame def locate_track(self): """ find track starts/stops within stream """ # find start of track (find activity) self.cur_track_start() # find end of track (find local min) self.cur_track_stop() return self def status(self): """ status """ track = self.track[self.current] trackname = track.name.strip().replace("/", ";") # status prints print("{}".format(trackname)) self.err["dur"].append(track.n_frame / FS - track.duration / 1000) self.err["pos"].append(track.start_frame / FS - self.cumtime) print("\tESTIMATED duration: %.2f sec --> position: %.2f sec" % (track.n_frame / FS, track.start_frame / FS)) print("\tEXPECTED %.2f sec --> %.2f sec" % (track.duration / 1000, self.cumtime)) print("\tERROR\t (%.2f, %.2f) sec \t --> (%.2f, %.2f) sec" % (np.mean(self.err["dur"]), np.std(self.err["dur"]), np.mean(self.err["pos"]), np.std(self.err["pos"]))) self.cumtime += track.duration / 1000 return self def finalize(self): """ finalize """ with wave.open(self.track.path, 'w') as wavtrack: self.wavstream.setpos(self.track.start_frame) y = np.fromstring( self.wavstream.readframes(self.n_frame), dtype=np.int16) y = np.reshape(y, (int(y.shape[0] / 2), 2)) wavtrack.setnchannels(2) wavtrack.setsampwidth(2) wavtrack.setnframes(self.n_frame) wavtrack.setframerate(self.wavstream.getframerate()) wavtrack.writeframes(y) def process(self): """encapsulate the substance of Album processing """ # iterate and initialize tracks for i in range(self.n_track): self.track.append(Track(self.track_list[i])) self.track[i].set_path(i, self.target) # compute audio power envelope self.envelope = wave_envelope(self.wavstream) # truncate zeros in beginning first_nz = np.nonzero(self.envelope)[0][0] - FS_DEC * 3 self.envelope = self.envelope[first_nz:-1] self.imageit() # test envelope to expected n_sec_env = len(self.envelope) / FS_DEC n_sec_exp = sum([t.duration * MS2SEC for t in self.track]) if abs(1 - n_sec_env / n_sec_exp) > .05: raise StreamError("envelope does not match expected duration") # iterate and process tracks for i in range(self.n_track): self.locate_track().status() self.current += 1 self.imageit() # close the wav stream self.wavstream.close() return self def imageit(self): """ imageit """ x_data = self.envelope < 20**2 y = self.envelope / (np.max(self.envelope) * 0.008) n = np.shape(x_data)[0] n_min = int(n / FS_DEC / 60) plt.figure(figsize=(3 * n_min, 4)) plt.plot(x_data, marker=".", linestyle='') # plt.plot(y, marker=".", linestyle='', markersize=3) plt.plot(y, marker=".", linestyle='') plt.ylim(0, 1.1) marks = np.cumsum([t.duration * MS2SEC * FS_DEC for t in self.track]) [plt.axvline(x_data=mark, color="b", linestyle="--") for mark in marks] saveit('image') class Track(): def __init__(self, itrack): # copy from itunespy.Track self.duration = itrack.track_time self.name = itrack.track_name self.artist = itrack.artist_name self.number = itrack.track_number # streamy attrs self.start_frame = 0 self.end_frame = 0 self.n_frame = 0 def set_path(self, i, root): self.index = i self.path = os.path.join( root, "%0.2d %s.wav" % (self.index + 1, self.name)) def get_mean_stereo(wav, N): """grab samples from one channel (every other sample) of frame """ x_data = np.fromstring(wav.readframes(N), dtype=np.int16) return np.mean(np.reshape(x_data, (2, -1)), axis=0) def wave_envelope(wavstream): """wave_envelope """ util.printr("computing audio energy at {} downsample rate...".format(DF)) n_window = int(np.floor(wavstream.getnframes() / DF)) - 1 x_data = np.zeros(n_window) for i in trange(n_window): x_data[i] = np.var(get_mean_stereo(wavstream, DF)) return x_data def saveit(name): """ saveit """ savepath = os.path.join(config["path"]["envelopes"], name + ".png") util.printr("saving to {}".format(savepath)) plt.savefig(savepath, bbox_inches='tight') def image_audio_envelope_with_tracks_markers(markers, stream): """track-splitting validation image """ x_data = wave_envelope(stream.wavpath) downsamp = config["streams"]["downsample_factor"] efr = 44100 / downsamp starts = [mark[0] / downsamp for mark in markers] stops = [starts[i] + mark[1] / downsamp for i, mark in enumerate(markers)] n = np.shape(x_data)[0] n_min = int(n / efr / 60) # create image (one inch per minute of audio) plt.figure(figsize=(n_min, 10)) plt.plot(x_data, marker=".", linestyle='', markersize=0.2) [plt.axvline( x_data=start, color="b", linestyle="--", linewidth=0.3) for start in starts] [plt.axvline( x_data=stop, color="r", linestyle="--", linewidth=0.3) for stop in stops] saveit(stream.name) def stream2tracks(streampath): """process raw pcm stream to tagged album tracks. """ util.printr("Begin stream2tracks...") # initialize the stream stream = Stream(streampath) stream.decode_path().itunes_query().prepare_target().pcm2wav() # process the stream into an album album = Album(stream).process() # finalize the stream into flac files with tags stream.flacify().tagify() # create an image of the audio envelope indicating where track splits # have been located image_audio_envelope_with_tracks_markers(album.splits, stream) util.printr("Finish stream2tracks.") def main(args): """ main """ # iterate over streams found in config["path"]["pcm"] streams = glob(os.path.join(config["path"]["pcm"], "*pcm")) for streampath in streams: stream2tracks(streampath) if __name__ == "__main__": main()
mit
teonlamont/mne-python
mne/decoding/time_delaying_ridge.py
2
13108
# -*- coding: utf-8 -*- """TimeDelayingRidge class.""" # Authors: Eric Larson <[email protected]> # Ross Maddox <[email protected]> # # License: BSD (3-clause) import numpy as np from scipy import linalg from .base import BaseEstimator from ..filter import next_fast_len from ..utils import warn from ..externals.six import string_types def _compute_corrs(X, y, smin, smax): """Compute auto- and cross-correlations.""" if X.ndim == 2: assert y.ndim == 2 X = X[:, np.newaxis, :] y = y[:, np.newaxis, :] assert X.shape[:2] == y.shape[:2] len_trf = smax - smin len_x, n_epochs, n_ch_x = X.shape len_y, n_epcohs, n_ch_y = y.shape assert len_x == len_y n_fft = next_fast_len(X.shape[0] + max(smax, 0) - min(smin, 0) - 1) x_xt = np.zeros([n_ch_x * len_trf] * 2) x_y = np.zeros((len_trf, n_ch_x, n_ch_y), order='F') for ei in range(n_epochs): this_X = X[:, ei, :] X_fft = np.fft.rfft(this_X, n_fft, axis=0) y_fft = np.fft.rfft(y[:, ei, :], n_fft, axis=0) # compute the autocorrelations for ch0 in range(n_ch_x): other_sl = slice(ch0, n_ch_x) ac_temp = np.fft.irfft(X_fft[:, ch0][:, np.newaxis] * X_fft[:, other_sl].conj(), n_fft, axis=0) n_other = ac_temp.shape[1] row = ac_temp[:len_trf] # zero and positive lags col = ac_temp[-1:-len_trf:-1] # negative lags # Our autocorrelation structure is a Toeplitz matrix, but # it's faster to create the Toeplitz ourselves. x_xt_temp = np.zeros((len_trf, len_trf, n_other)) for ii in range(len_trf): x_xt_temp[ii, ii:] = row[:len_trf - ii] x_xt_temp[ii + 1:, ii] = col[:len_trf - ii - 1] row_adjust = np.zeros((len_trf, n_other)) col_adjust = np.zeros((len_trf, n_other)) # However, we need to adjust for coeffs that are cut off by # the mode="same"-like behavior of the algorithm, # i.e. the non-zero delays should not have the same AC value # as the zero-delay ones (because they actually have fewer # coefficients). # # These adjustments also follow a Toeplitz structure, but it's # computationally more efficient to manually accumulate and # subtract from each row and col, rather than accumulate a single # adjustment matrix using Toeplitz repetitions then subtract # Adjust positive lags where the tail gets cut off for idx in range(1, smax): ii = idx - smin end_sl = slice(X.shape[0] - idx, -smax - min(ii, 0), -1) c = (this_X[-idx, other_sl][np.newaxis] * this_X[end_sl, ch0][:, np.newaxis]) r = this_X[-idx, ch0] * this_X[end_sl, other_sl] if ii <= 0: col_adjust += c row_adjust += r if ii == 0: x_xt_temp[0, :] = row - row_adjust x_xt_temp[1:, 0] = col - col_adjust[1:] else: col_adjust[:-ii] += c row_adjust[:-ii] += r x_xt_temp[ii, ii:] = row[:-ii] - row_adjust[:-ii] x_xt_temp[ii + 1:, ii] = col[:-ii] - col_adjust[1:-ii] # Adjust negative lags where the head gets cut off x_xt_temp = x_xt_temp[::-1][:, ::-1] row_adjust.fill(0.) col_adjust.fill(0.) for idx in range(0, -smin): ii = idx + smax start_sl = slice(idx, -smin + min(ii, 0)) c = (this_X[idx, other_sl][np.newaxis] * this_X[start_sl, ch0][:, np.newaxis]) r = this_X[idx, ch0] * this_X[start_sl, other_sl] if ii <= 0: col_adjust += c row_adjust += r if ii == 0: x_xt_temp[0, :] -= row_adjust x_xt_temp[1:, 0] -= col_adjust[1:] else: col_adjust[:-ii] += c row_adjust[:-ii] += r x_xt_temp[ii, ii:] -= row_adjust[:-ii] x_xt_temp[ii + 1:, ii] -= col_adjust[1:-ii] x_xt_temp = x_xt_temp[::-1][:, ::-1] for oi in range(n_other): ch1 = oi + ch0 # Store the result this_result = x_xt_temp[:, :, oi] x_xt[ch0 * len_trf:(ch0 + 1) * len_trf, ch1 * len_trf:(ch1 + 1) * len_trf] += this_result if ch0 != ch1: x_xt[ch1 * len_trf:(ch1 + 1) * len_trf, ch0 * len_trf:(ch0 + 1) * len_trf] += this_result.T # compute the crosscorrelations cc_temp = np.fft.irfft( y_fft * X_fft[:, ch0][:, np.newaxis].conj(), n_fft, axis=0) if smin < 0 and smax >= 0: x_y[:-smin, ch0] += cc_temp[smin:] x_y[len_trf - smax:, ch0] += cc_temp[:smax] else: x_y[:, ch0] += cc_temp[smin:smax] x_y = np.reshape(x_y, (n_ch_x * len_trf, n_ch_y), order='F') return x_xt, x_y, n_ch_x def _compute_reg_neighbors(n_ch_x, n_delays, reg_type, method='direct', normed=False): """Compute regularization parameter from neighbors.""" from scipy.sparse.csgraph import laplacian known_types = ('ridge', 'laplacian') if isinstance(reg_type, string_types): reg_type = (reg_type,) * 2 if len(reg_type) != 2: raise ValueError('reg_type must have two elements, got %s' % (len(reg_type),)) for r in reg_type: if r not in known_types: raise ValueError('reg_type entries must be one of %s, got %s' % (known_types, r)) reg_time = (reg_type[0] == 'laplacian' and n_delays > 1) reg_chs = (reg_type[1] == 'laplacian' and n_ch_x > 1) if not reg_time and not reg_chs: return np.eye(n_ch_x * n_delays) # regularize time if reg_time: reg = np.eye(n_delays) stride = n_delays + 1 reg.flat[1::stride] += -1 reg.flat[n_delays::stride] += -1 reg.flat[n_delays + 1:-n_delays - 1:stride] += 1 args = [reg] * n_ch_x reg = linalg.block_diag(*args) else: reg = np.zeros((n_delays * n_ch_x,) * 2) # regularize features if reg_chs: block = n_delays * n_delays row_offset = block * n_ch_x stride = n_delays * n_ch_x + 1 reg.flat[n_delays:-row_offset:stride] += -1 reg.flat[n_delays + row_offset::stride] += 1 reg.flat[row_offset:-n_delays:stride] += -1 reg.flat[:-(n_delays + row_offset):stride] += 1 assert np.array_equal(reg[::-1, ::-1], reg) if method == 'direct': if normed: norm = np.sqrt(np.diag(reg)) reg /= norm reg /= norm[:, np.newaxis] return reg else: # Use csgraph. Note that our -1's above are really the neighbors! # If we ever want to allow arbitrary adjacency matrices, this is how # we'd want to do it. reg = laplacian(-reg, normed=normed) return reg def _fit_corrs(x_xt, x_y, n_ch_x, reg_type, alpha, n_ch_in): """Fit the model using correlation matrices.""" # do the regularized solving n_ch_out = x_y.shape[1] assert x_y.shape[0] % n_ch_x == 0 n_delays = x_y.shape[0] // n_ch_x reg = _compute_reg_neighbors(n_ch_x, n_delays, reg_type) mat = x_xt + alpha * reg # From sklearn try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised w = linalg.solve(mat, x_y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warn('Singular matrix in solving dual problem. Using ' 'least-squares solution instead.') w = linalg.lstsq(mat, x_y, lapack_driver='gelsy')[0] w = w.T.reshape([n_ch_out, n_ch_in, n_delays]) return w class TimeDelayingRidge(BaseEstimator): """Ridge regression of data with time delays. Parameters ---------- tmin : int | float The starting lag, in seconds (or samples if ``sfreq`` == 1). Negative values correspond to times in the past. tmax : int | float The ending lag, in seconds (or samples if ``sfreq`` == 1). Positive values correspond to times in the future. Must be >= tmin. sfreq : float The sampling frequency used to convert times into samples. alpha : float The ridge (or laplacian) regularization factor. reg_type : str | list Can be "ridge" (default) or "laplacian". Can also be a 2-element list specifying how to regularize in time and across adjacent features. fit_intercept : bool If True (default), the sample mean is removed before fitting. Notes ----- This class is meant to be used with :class:`mne.decoding.ReceptiveField` by only implicitly doing the time delaying. For reasonable receptive field and input signal sizes, it should be more CPU and memory efficient by using frequency-domain methods (FFTs) to compute the auto- and cross-correlations. See Also -------- mne.decoding.ReceptiveField """ _estimator_type = "regressor" def __init__(self, tmin, tmax, sfreq, alpha=0., reg_type='ridge', fit_intercept=True): # noqa: D102 if tmin > tmax: raise ValueError('tmin must be <= tmax, got %s and %s' % (tmin, tmax)) self.tmin = float(tmin) self.tmax = float(tmax) self.sfreq = float(sfreq) self.alpha = float(alpha) self.reg_type = reg_type self.fit_intercept = fit_intercept @property def _smin(self): return int(round(self.tmin * self.sfreq)) @property def _smax(self): return int(round(self.tmax * self.sfreq)) + 1 def fit(self, X, y): """Estimate the coefficients of the linear model. Parameters ---------- X : array, shape (n_samples[, n_epochs], n_features) The training input samples to estimate the linear coefficients. y : array, shape (n_samples[, n_epochs], n_outputs) The target values. Returns ------- self : instance of TimeDelayingRidge Returns the modified instance. """ if X.ndim == 3: assert y.ndim == 3 assert X.shape[:2] == y.shape[:2] else: assert X.ndim == 2 and y.ndim == 2 assert X.shape[0] == y.shape[0] # These are split into two functions because it's possible that we # might want to allow people to do them separately (e.g., to test # different regularization parameters). if self.fit_intercept: # We could do this in the Fourier domain, too, but it should # be a bit cleaner numerically to do it here. X_offset = np.mean(X, axis=0) y_offset = np.mean(y, axis=0) if X.ndim == 3: X_offset = X_offset.mean(axis=0) y_offset = np.mean(y_offset, axis=0) X = X - X_offset y = y - y_offset else: X_offset = y_offset = 0. self.cov_, x_y_, n_ch_x = _compute_corrs(X, y, self._smin, self._smax) self.coef_ = _fit_corrs(self.cov_, x_y_, n_ch_x, self.reg_type, self.alpha, n_ch_x) # This is the sklearn formula from LinearModel (will be 0. for no fit) if self.fit_intercept: self.intercept_ = y_offset - np.dot(X_offset, self.coef_.sum(-1).T) else: self.intercept_ = 0. return self def predict(self, X): """Predict the output. Parameters ---------- X : array, shape (n_samples[, n_epochs], n_features) The data. Returns ------- X : ndarray The predicted response. """ if X.ndim == 2: X = X[:, np.newaxis, :] singleton = True else: singleton = False out = np.zeros(X.shape[:2] + (self.coef_.shape[0],)) smin = self._smin offset = max(smin, 0) for ei in range(X.shape[1]): for oi in range(self.coef_.shape[0]): for fi in range(self.coef_.shape[1]): temp = np.convolve(X[:, ei, fi], self.coef_[oi, fi]) temp = temp[max(-smin, 0):][:len(out) - offset] out[offset:len(temp) + offset, ei, oi] += temp out += self.intercept_ if singleton: out = out[:, 0, :] return out
bsd-3-clause
villasv/mmd-enem2012
brasilplot.py
2
2590
from mpl_toolkits.basemap import Basemap import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np brasil = Basemap(projection='merc', resolution = 'h', area_thresh = 0.01, llcrnrlon=-75, llcrnrlat=-34, urcrnrlon=-32, urcrnrlat=8) brasil.readshapefile('./dataset/gis-dataset-brasil-master/municipio/shapefile/Munic','municipios',drawbounds=False) brasil.readshapefile('./dataset/gis-dataset-brasil-master/uf/shapefile/uf','estados',drawbounds=False) def plot_por_municipio(series,colors,ax=None,vmin=None,vmax=None): sorted_data = series.copy().sort() brasil.fillcontinents(ax=ax) vmin = series.min() if vmin is None else vmin vmax = series.max() if vmax is None else vmax for shapedict,shape in zip(brasil.municipios_info,brasil.municipios): from unidecode import unidecode nome = shapedict['NOME'].decode("latin1") nome = unidecode(nome).upper().replace("'",' ') try: valor = series[nome] except KeyError: valor = 0 xx,yy = zip(*shape) cmap = plt.cm.get_cmap(colors) color = cmap(1.-np.sqrt((1.0*valor-vmin)/(vmax-vmin)))[:3] color = mpl.colors.rgb2hex(color) if valor==0: color = '#cc9966' ax.fill(xx,yy,color,edgecolor='black',linewidth=0.0) pass if colors.count("_r"): rcmap = plt.cm.get_cmap(colors[:-2]) else: rcmap = plt.cm.get_cmap(colors+"_r") cax = plt.cm.ScalarMappable(cmap=rcmap) cax.set_array([vmin,vmax]) cbar = plt.colorbar(cax,ax=ax) return def plot_por_estado(series,colors,ax=None,vmin=None,vmax=None): sorted_data = series.copy().sort() brasil.fillcontinents(ax=ax) vmin = series.min() if vmin is None else vmin vmax = series.max() if vmax is None else vmax for shapedict,shape in zip(brasil.estados_info,brasil.estados): nome = shapedict['UF_05'] try: valor = series[nome] except KeyError: valor = 0 xx,yy = zip(*shape) cmap = plt.cm.get_cmap(colors) color = cmap(1.-np.sqrt((1.0*valor-vmin)/(vmax-vmin)))[:3] color = mpl.colors.rgb2hex(color) if valor==0: color = '#cc9966' ax.fill(xx,yy,color,edgecolor='black',linewidth=1.0) pass if colors.count("_r"): rcmap = plt.cm.get_cmap(colors[:-2]) else: rcmap = plt.cm.get_cmap(colors+"_r") cax = plt.cm.ScalarMappable(cmap=rcmap) cax.set_array([vmin,vmax]) cbar = plt.colorbar(cax,ax=ax) return
gpl-3.0
terkkila/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
matthewfranglen/spark
python/pyspark/sql/pandas/utils.py
12
2634
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def require_minimum_pandas_version(): """ Raise ImportError if minimum version of Pandas is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pandas_version = "0.23.2" from distutils.version import LooseVersion try: import pandas have_pandas = True except ImportError: have_pandas = False if not have_pandas: raise ImportError("Pandas >= %s must be installed; however, " "it was not found." % minimum_pandas_version) if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version): raise ImportError("Pandas >= %s must be installed; however, " "your version was %s." % (minimum_pandas_version, pandas.__version__)) def require_minimum_pyarrow_version(): """ Raise ImportError if minimum version of pyarrow is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pyarrow_version = "0.15.1" from distutils.version import LooseVersion import os try: import pyarrow have_arrow = True except ImportError: have_arrow = False if not have_arrow: raise ImportError("PyArrow >= %s must be installed; however, " "it was not found." % minimum_pyarrow_version) if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version): raise ImportError("PyArrow >= %s must be installed; however, " "your version was %s." % (minimum_pyarrow_version, pyarrow.__version__)) if os.environ.get("ARROW_PRE_0_15_IPC_FORMAT", "0") == "1": raise RuntimeError("Arrow legacy IPC format is not supported in PySpark, " "please unset ARROW_PRE_0_15_IPC_FORMAT")
mit
wjlei1990/spaceweight
src/spaceweight/spherevoronoi.py
1
18655
""" Spherical Voronoi Code .. versionadded:: 0.17.0 """ # # Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson, # Nikolai Nowaczyk, Joe Pitt-Francis, 2015. # # Distributed under the same BSD license as Scipy. # from __future__ import print_function, division, absolute_import import numpy as np import scipy import itertools from scipy._lib._version import NumpyVersion from scipy.spatial import distance import math # Whether Numpy has stacked matrix linear algebra HAS_NUMPY_VEC_DET = (NumpyVersion(np.__version__) >= '1.8.0') __all__ = ['SphericalVoronoi'] def convert_cartesian_to_sphere(coords, angle_measure='radians'): ''' Take shape (3, ) cartesian coord_array and return an array of the same shape in spherical polar form (r, theta, phi). Based on StackOverflow response: http://stackoverflow.com/a/4116899 use radians for the angles by default, degrees if angle_measure == 'degrees' ''' spherical_coord = np.zeros(coords.shape) spherical_coord[0] = np.sqrt(np.sum(np.power(coords, 2))) spherical_coord[1] = \ np.arctan2(coords[1], coords[0]) spherical_coord[2] = \ np.arccos(coords[2] / spherical_coord[0]) if angle_measure == 'degrees': spherical_coord[1] = np.degrees(spherical_coord[1]) spherical_coord[2] = np.degrees(spherical_coord[2]) return spherical_coord def calculate_haversine_distance(point_1, point_2, sphere_radius): ''' Calculate the haversine-based distance between two points on the surface of a sphere. Should be more accurate than the arc cosine strategy. See, for example: http://en.wikipedia.org/wiki/Haversine_formula ''' spherical_array_1 = convert_cartesian_to_sphere(point_1) spherical_array_2 = convert_cartesian_to_sphere(point_2) lambda_1 = spherical_array_1[1] lambda_2 = spherical_array_2[1] phi_1 = spherical_array_1[2] phi_2 = spherical_array_2[2] # we rewrite the standard Haversine slightly as # long/lat is not the same as spherical # coordinates - phi differs by pi/4 spherical_distance = \ 2.0 * sphere_radius * \ math.asin(math.sqrt(((1 - math.cos(phi_2-phi_1))/2.) + math.sin(phi_1) * math.sin(phi_2) * ((1 - math.cos(lambda_2-lambda_1))/2.))) return spherical_distance def determinant_fallback(m): """ Calculates the determinant of m using Laplace expansion in the first row. This function is used only as a fallback to ensure backwards compatibility with Python 2.6. :param m: an array of floats assumed to be of shape (4, 4) returns: determinant of m """ def det3(a): """ Calculates the determinant of a using Sarrus' rule. a : an array of floats assumed to be of shape (3, 3) returns : determinant of a """ return \ a[0][0] * a[1][1] * a[2][2] \ + a[0][1] * a[1][2] * a[2][0] \ + a[0][2] * a[1][0] * a[2][1] \ - a[0][2] * a[1][1] * a[2][0] \ - a[0][1] * a[1][0] * a[2][2] \ - a[0][0] * a[1][2] * a[2][1] minors = [det3(np.delete(np.delete(m, 0, axis=0), k, axis=1)) for k in range(0, 4)] return sum([(-1) ** k * m[0][k] * minors[k] for k in range(0, 4)]) def calc_circumcenters(tetrahedrons): """ Calculates the cirumcenters of the circumspheres of tetrahedrons. An implementation based on http://mathworld.wolfram.com/Circumsphere.html Parameters ---------- tetrahedrons : an array of shape (N, 4, 3) consisting of N tetrahedrons defined by 4 points in 3D Returns ---------- circumcenters : an array of shape (N, 3) consisting of the N circumcenters of the tetrahedrons in 3D """ num = tetrahedrons.shape[0] a = np.concatenate((tetrahedrons, np.ones((num, 4, 1))), axis=2) sums = np.sum(tetrahedrons ** 2, axis=2) d = np.concatenate((sums[:, :, np.newaxis], a), axis=2) dx = np.delete(d, 1, axis=2) dy = np.delete(d, 2, axis=2) dz = np.delete(d, 3, axis=2) if HAS_NUMPY_VEC_DET: dx = np.linalg.det(dx) dy = -np.linalg.det(dy) dz = np.linalg.det(dz) a = np.linalg.det(a) else: dx = np.array([determinant_fallback(m) for m in dx]) dy = -np.array([determinant_fallback(m) for m in dy]) dz = np.array([determinant_fallback(m) for m in dz]) a = np.array([determinant_fallback(m) for m in a]) nominator = np.vstack((dx, dy, dz)) denominator = 2*a return (nominator / denominator).T def project_to_sphere(points, center, radius): """ Projects the elements of points onto the sphere defined by center and radius. Parameters ---------- points : array of floats of shape (npoints, ndim) consisting of the points in a space of dimension ndim center : array of floats of shape (ndim,) the center of the sphere to project on radius : float the radius of the sphere to project on returns: array of floats of shape (npoints, ndim) the points projected onto the sphere """ lengths = scipy.spatial.distance.cdist(points, np.array([center])) return (points - center) / lengths * radius + center class SphericalVoronoi: """ Voronoi diagrams on the surface of a sphere. .. versionadded:: 0.17.0 Parameters ---------- points : ndarray of floats, shape (npoints, 3) Coordinates of points to construct a spherical Voronoi diagram from radius : float, optional Radius of the sphere (Default: 1) center : ndarray of floats, shape (3,) Center of sphere (Default: origin) Attributes ---------- points : double array of shape (npoints, 3) the points in 3D to generate the Voronoi diagram from radius : double radius of the sphere Default: None (forces estimation, which is less precise) center : double array of shape (3,) center of the sphere Default: None (assumes sphere is centered at origin) vertices : double array of shape (nvertices, 3) Voronoi vertices corresponding to points regions : list of list of integers of shape (npoints, _ ) the n-th entry is a list consisting of the indices of the vertices belonging to the n-th point in points Notes ---------- The spherical Voronoi diagram algorithm proceeds as follows. The Convex Hull of the input points (generators) is calculated, and is equivalent to their Delaunay triangulation on the surface of the sphere [Caroli]_. A 3D Delaunay tetrahedralization is obtained by including the origin of the coordinate system as the fourth vertex of each simplex of the Convex Hull. The circumcenters of all tetrahedra in the system are calculated and projected to the surface of the sphere, producing the Voronoi vertices. The Delaunay tetrahedralization neighbour information is then used to order the Voronoi region vertices around each generator. The latter approach is substantially less sensitive to floating point issues than angle-based methods of Voronoi region vertex sorting. The surface area of spherical polygons is calculated by decomposing them into triangles and using L'Huilier's Theorem to calculate the spherical excess of each triangle [Weisstein]_. The sum of the spherical excesses is multiplied by the square of the sphere radius to obtain the surface area of the spherical polygon. For nearly-degenerate spherical polygons an area of approximately 0 is returned by default, rather than attempting the unstable calculation. Empirical assessment of spherical Voronoi algorithm performance suggests quadratic time complexity (loglinear is optimal, but algorithms are more challenging to implement). The reconstitution of the surface area of the sphere, measured as the sum of the surface areas of all Voronoi regions, is closest to 100 % for larger (>> 10) numbers of generators. References ---------- .. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of points on or close to a sphere. Research Report RR-7004, 2009. .. [Weisstein] "L'Huilier's Theorem." From MathWorld -- A Wolfram Web Resource. http://mathworld.wolfram.com/LHuiliersTheorem.html See Also -------- Voronoi : Conventional Voronoi diagrams in N dimensions. Examples -------- >>> from matplotlib import colors >>> from mpl_toolkits.mplot3d.art3d import Poly3DCollection >>> import matplotlib.pyplot as plt >>> from scipy.spatial import SphericalVoronoi >>> from mpl_toolkits.mplot3d import proj3d >>> # set input data >>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0], ... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ]) >>> center = np.array([0, 0, 0]) >>> radius = 1 >>> # calculate spherical Voronoi diagram >>> sv = SphericalVoronoi(points, radius, center) >>> # sort vertices (optional, helpful for plotting) >>> sv.sort_vertices_of_regions() >>> # generate plot >>> fig = plt.figure() >>> ax = fig.add_subplot(111, projection='3d') >>> # plot the unit sphere for reference (optional) >>> u = np.linspace(0, 2 * np.pi, 100) >>> v = np.linspace(0, np.pi, 100) >>> x = np.outer(np.cos(u), np.sin(v)) >>> y = np.outer(np.sin(u), np.sin(v)) >>> z = np.outer(np.ones(np.size(u)), np.cos(v)) >>> ax.plot_surface(x, y, z, color='y', alpha=0.1) >>> # plot generator points >>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b') >>> # plot Voronoi vertices >>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2], ... c='g') >>> # indicate Voronoi regions (as Euclidean polygons) >>> for region in sv.regions: ... random_color = colors.rgb2hex(np.random.rand(3)) ... polygon = Poly3DCollection([sv.vertices[region]], alpha=1.0) ... polygon.set_color(random_color) ... ax.add_collection3d(polygon) >>> plt.show() """ def __init__(self, points, radius=None, center=None): """ Initializes the object and starts the computation of the Voronoi diagram. points : The generator points of the Voronoi diagram assumed to be all on the sphere with radius supplied by the radius parameter and center supplied by the center parameter. radius : The radius of the sphere. Will default to 1 if not supplied. center : The center of the sphere. Will default to the origin if not supplied. """ self.points = points if np.any(center): self.center = center else: self.center = np.zeros(3) if radius: self.radius = radius else: self.radius = 1 self.vertices = None self.regions = None self._tri = None self._calc_vertices_regions() def _calc_vertices_regions(self): """ Calculates the Voronoi vertices and regions of the generators stored in self.points. The vertices will be stored in self.vertices and the regions in self.regions. This algorithm was discussed at PyData London 2015 by Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk """ # perform 3D Delaunay triangulation on data set # (here ConvexHull can also be used, and is faster) self._tri = scipy.spatial.ConvexHull(self.points) # add the center to each of the simplices in tri to get the same # tetrahedrons we'd have gotten from Delaunay tetrahedralization tetrahedrons = self._tri.points[self._tri.simplices] tetrahedrons = np.insert( tetrahedrons, 3, np.array([self.center]), axis=1 ) # produce circumcenters of tetrahedrons from 3D Delaunay circumcenters = calc_circumcenters(tetrahedrons) # project tetrahedron circumcenters to the surface of the sphere self.vertices = project_to_sphere( circumcenters, self.center, self.radius ) # calculate regions from triangulation generator_indices = np.arange(self.points.shape[0]) filter_tuple = np.where((np.expand_dims(self._tri.simplices, -1) == generator_indices).any(axis=1)) list_tuples_associations = zip(filter_tuple[1], filter_tuple[0]) list_tuples_associations = sorted(list_tuples_associations, key=lambda t: t[0]) # group by generator indices to produce # unsorted regions in nested list groups = [] for k, g in itertools.groupby(list_tuples_associations, lambda t: t[0]): groups.append([element[1] for element in list(g)]) self.regions = groups def sort_vertices_of_regions(self): """ For each region in regions, it sorts the indices of the Voronoi vertices such that the resulting points are in a clockwise or counterclockwise order around the generator point. This is done as follows: Recall that the n-th region in regions surrounds the n-th generator in points and that the k-th Voronoi vertex in vertices is the projected circumcenter of the tetrahedron obtained by the k-th triangle in _tri.simplices (and the origin). For each region n, we choose the first triangle (=Voronoi vertex) in _tri.simplices and a vertex of that triangle not equal to the center n. These determine a unique neighbor of that triangle, which is then chosen as the second triangle. The second triangle will have a unique vertex not equal to the current vertex or the center. This determines a unique neighbor of the second triangle, which is then chosen as the third triangle and so forth. We proceed through all the triangles (=Voronoi vertices) belonging to the generator in points and obtain a sorted version of the vertices of its surrounding region. """ for n in range(0, len(self.regions)): remaining = self.regions[n][:] sorted_vertices = [] current_simplex = remaining[0] current_vertex = [k for k in self._tri.simplices[current_simplex] if k != n][0] remaining.remove(current_simplex) sorted_vertices.append(current_simplex) while remaining: current_simplex = [ s for s in remaining if current_vertex in self._tri.simplices[s]][0] current_vertex = [ s for s in self._tri.simplices[current_simplex] if s != n and s != current_vertex][0] remaining.remove(current_simplex) sorted_vertices.append(current_simplex) self.regions[n] = sorted_vertices def compute_surface_area(self): ''' Returns a dictionary with the estimated surface areas of the Voronoi region polygons corresponding to each generator (original data point) index. An example dictionary entry: `{generator_index : surface_area, ...}`. ''' surface_area_list = [] for _idx, vertex_idx in enumerate(self.regions): # create the array of vertices vertex_array = [] for _i in vertex_idx: vertex_array.append(self.vertices[_i]) vertex_array = np.array(vertex_array) # calculate surface area of one patch _surface_area = self._calculate_patch_surface_area(vertex_array) assert _surface_area > 0, \ "Obtained a surface area of zero for a Voronoi region." surface_area_list.append(_surface_area) surface_area_list = np.array(surface_area_list) coverage = self._surface_area_coverage(surface_area_list) return surface_area_list, coverage def _surface_area_coverage(self, surface_area_list): sphere_surface = 4 * np.pi * self.radius ** 2 return np.sum(surface_area_list) / sphere_surface @staticmethod def _calculate_patch_surface_area(polygon_vertices): ''' Calculate the surface area of a polygon on the surface of a sphere. Based on equation provided here: http://mathworld.wolfram.com/LHuiliersTheorem.html Decompose into triangles, calculate excess for each ''' # handle nearly-degenerate vertices on the unit sphere by # returning an area close to 0 -- may be better options, # but this is my current solution to prevent crashes, etc. # seems to be relatively rare in my own work, but # sufficiently common to cause crashes when iterating # over large amounts of messy data if distance.pdist(polygon_vertices).min() < (10 ** -7): return 10 ** -8 else: n = polygon_vertices.shape[0] # point we start from root_point = polygon_vertices[0] totalexcess = 0 # loop from 1 to n-2, with point 2 to n-1 as other # vertex of triangle this could definitely be # written more nicely b_point = polygon_vertices[1] root_b_dist = \ calculate_haversine_distance(root_point, b_point, 1.0) for i in 1 + np.arange(n - 2): a_point = b_point b_point = polygon_vertices[i+1] root_a_dist = root_b_dist root_b_dist = \ calculate_haversine_distance(root_point, b_point, 1.0) a_b_dist = \ calculate_haversine_distance(a_point, b_point, 1.0) s = (root_a_dist + root_b_dist + a_b_dist) / 2 totalexcess += \ 4 * math.atan(math.sqrt(math.tan(0.5 * s) * math.tan(0.5 * (s-root_a_dist)) * math.tan(0.5 * (s-root_b_dist)) * math.tan(0.5 * (s-a_b_dist)))) return totalexcess
gpl-3.0
Scan-o-Matic/scanomatic
scanomatic/io/meta_data.py
1
14261
from __future__ import absolute_import import csv from itertools import izip from types import StringTypes import numpy as np # # OPTIONAL IMPORT # try: import pandas as pd _PANDAS = True except ImportError: _PANDAS = False pd = None # # INTERNAL DEPENDENCIES # import scanomatic.io.logger as logger # # METHODS # class DataLoader(object): _SUFFIXES = [] def __init__(self, path): self._logger = logger.Logger("MetaDataLoader") self._path = path self._sheet = -1 self._entries = [] self._row_iterators = [] self._columns = [] self._sheet_names = [] self._headers = [] """:type : [str]""" def _reset(self): self._sheet = -1 self._columns = [] self._entries = [] self._row_iterators = [] self._sheet_names = [] self._headers = [] @property def rows(self): return self._entries[self._sheet] def get_sheet_name(self, sheet_index): return self._sheet_names[sheet_index] def get_next(self): for row in self._row_iterators[self._sheet]: yield self._get_next_row(row) @staticmethod def _get_next_row(row): raise NotImplemented def _get_empty_headers(self): return [None for _ in range(self._columns[self._sheet])] def get_headers(self, plate_size): if self._headers[self._sheet] is None: if self.sheet_is_valid_with_headers(plate_size): self._headers[self._sheet] = self._get_next_row( self._row_iterators[self._sheet].next()) elif self.sheet_is_valid_without_headers(plate_size): self._headers[self._sheet] = self._get_empty_headers() return self._headers[self._sheet] @classmethod def can_load(cls, path): """ Args: path: :type path : str Returns: """ suffix = path[::-1].split(".", 1)[0][::-1].lower() return suffix in cls._SUFFIXES @property def sheets(self): return len(self._entries) def next_sheet(self, plate_size): self._sheet += 1 while not self.sheet_is_valid(plate_size): if self._sheet >= len(self._entries): return None self._logger.warning( "Sheet {0} ({1} zero-indexed) has {2} and {3} entry rows. This doesn't match plate size {4}".format( self._sheet_names[self._sheet], self._sheet, " header row" if self.sheet_is_valid_without_headers(plate_size) else "no headers", self._entries[self._sheet], plate_size)) self._sheet += 1 return self._sheet @property def has_more_data(self): return self._sheet < len(self._entries) def sheet_is_valid_with_headers(self, plate_size): return plate_size % (self._entries[self._sheet] - 1) == 0 and \ (plate_size / (self._entries[self._sheet] - 1)) % 4 == 1 def sheet_is_valid_without_headers(self, plate_size): return plate_size % self._entries[self._sheet] == 0 and \ plate_size / self._entries[self._sheet] % 4 == 1 def sheet_is_valid(self, plate_size): if 0 <= self._sheet < len(self._entries): return ( self.sheet_is_valid_with_headers(plate_size) or self.sheet_is_valid_without_headers(plate_size)) return False class ExcelLoader(DataLoader): _SUFFIXES = ['xls', 'xlsx'] def __init__(self, path): super(ExcelLoader, self).__init__(path) self._data = None self._load() def _load(self): self._data = [] self._reset() doc = pd.ExcelFile(self._path) for n in doc.sheet_names: self._sheet_names.append(n) self._load_sheet(doc.parse(n, header=None).fillna(value=u'')) def _load_sheet(self, df): """ Args: df: DataFrame / sheet :type df : pandas.DataFrame Returns: """ self._data.append(df) self._entries.append(df.shape[0]) self._columns.append(df.shape[1]) self._headers.append(None) self._row_iterators.append(df.iterrows()) @staticmethod def _get_next_row(row): return row[1].tolist() class CSVLoader(DataLoader): _SUFFIXES = ("csv", "tsv", "tab", "txt") def __init__(self, path): super(CSVLoader, self).__init__(path) self._load() def _load(self): self._reset() with open(self._path) as fh: raw_data = fh.readlines() dialect = csv.Sniffer().sniff(raw_data[0]) data = csv.reader(raw_data, dialect=dialect) self._columns.append(max(len(row) for row in data)) self._entries.append(len(data)) self._headers.append(None) self._row_iterators.append((row for row in data)) @staticmethod def _get_next_row(row): return row class MetaData2(object): _LOADERS = (ExcelLoader, CSVLoader) def __init__(self, plate_shapes, *paths): self._logger = logger.Logger("MetaData") self._plate_shapes = plate_shapes self._data = tuple( None if shape is None else np.empty(shape, dtype=np.object) for shape in plate_shapes) self._headers = list(None for _ in plate_shapes) """:type self._headers: list[(int, int) | None]""" self._loading_plate = 0 self._loading_offset = [] self._paths = paths self._load(*paths) if not self.loaded: self._logger.warning("Not enough meta-data to fill all plates") def __call__(self, plate, outer, inner): return self._data[plate][outer, inner] def __getitem__(self, plate): return self._data[plate].tolist() def __eq__(self, other): if hasattr(other, "shapes") and self.shapes != other.shapes: return False for plate, outer, inner in self.generate_coordinates(): if self(plate, outer, inner) != other(plate, outer, inner): return False return True def __getstate__(self): return {k: v for k, v in self.__dict__.iteritems() if k != "_logger"} def __setstate__(self, state): self.__dict__.update(state) def get_column_index_from_all_plates(self, index): plates = [] for id_plate, (outers, inners) in enumerate(self._plate_shapes): plate = [] plates.append(plate) for id_outer in range(outers): data = [] plate.append(data) for id_inner in range(inners): data.append(self(id_plate, id_outer, id_inner)[index]) return plates def get_header_row(self, plate): """ Args: plate: Plate index :type plate : int Returns: Header row :rtype : list[str] """ return self._headers[plate] @property def shapes(self): return self._plate_shapes @property def loaded(self): return self._loading_plate >= len(self._plate_shapes) @property def _plate_completed(self): return len(self._loading_offset) == 0 @staticmethod def _get_loader(path): for loader in MetaData2._LOADERS: if loader.can_load(path): return loader(path) return None def _load(self, *paths): for path in paths: if self.loaded: return loader = MetaData2._get_loader(path) """:type : DataLoader""" if loader is None: self._logger.warning( "Unknown file format, can't load {0}".format(path)) continue size = self._get_sought_size() while loader.has_more_data: sheet_id = loader.next_sheet(size) if sheet_id is None: break headers = loader.get_headers(size) if not self._has_matching_headers(headers): self._logger.warning( "Sheet {0} ({1}) of {2} headers don't match {3} != {4}".format( loader.get_sheet_name(sheet_id), sheet_id, path, headers, self._headers[self._loading_plate])) continue self._logger.info("Using {0}:{1} for plate {2}".format( path, loader.get_sheet_name(sheet_id), self._loading_plate)) self._update_headers_if_needed(headers) self._update_meta_data(loader) self._update_loading_offsets() if self._plate_completed: self._loading_plate += 1 if self.loaded: return size = self._get_sought_size() def _get_sought_size(self): size = np.prod(self._plate_shapes[self._loading_plate]) return size / 4 ** len(self._loading_offset) def _update_loading_offsets(self): if not self._loading_offset: return outer, inner = self._loading_offset[-1] inner += 1 if inner > 1: inner %= 2 outer += 1 if outer > 1: self._loading_offset = self._loading_offset[:-1] self._update_loading_offsets() return self._loading_offset[-1] = (outer, inner) def _has_matching_headers(self, headers): if self._headers[self._loading_plate] is None: return True elif len(self._headers[self._loading_plate]) != len(headers): return False elif all(h is None for h in self._headers[self._loading_plate]): return True else: return all(a == b for a, b in zip(self._headers[self._loading_plate], headers)) def _update_headers_if_needed(self, headers): if (self._headers[self._loading_plate] is None or all(h is None for h in self._headers[self._loading_plate])): self._headers[self._loading_plate] = headers def _update_meta_data(self, loader): slotter = self._get_slotting_iter(loader) for meta_data in loader.get_next(): self._data[self._loading_plate][slotter.next()] = meta_data def _get_slotting_iter(self, loader): """ Args: loader: :type loader: DataLoader Returns: Coordinate iterator :rtype : iter """ def coord_lister(outer, inner, max_outer, max_inner): yield outer, inner inner += factor if inner >= max_inner: inner %= max_inner outer += factor if outer >= max_outer: outer %= max_outer factor = np.log2( self._data[self._loading_plate].size / (loader.rows - loader.sheet_is_valid_with_headers( np.prod(self._plate_shapes[self._loading_plate])))) if factor != int(factor): return None elif factor == 0: # Full plate return izip(*np.unravel_index( np.arange(self._data[self._loading_plate].size), self._plate_shapes[self._loading_plate])) else: # Partial plate factor = int(factor) if factor > len(self._loading_offset): self._loading_offset += [ (0, 0) for _ in range(factor - len(self._loading_offset))] outer, inner = map( sum, zip(*((o*2**l, i*2**l) for l, (o, i) in enumerate(self._loading_offset)))) factor = 2 ** len(self._loading_offset) max_outer, max_inner = self._plate_shapes[self._loading_plate] return coord_lister(outer, inner, max_outer, max_inner) def get_data_from_numpy_where(self, plate, selection): selection = zip(*selection) for outer, inner in selection: yield self(plate, outer, inner) def find(self, value, column=None): """Generate coordinate tuples for where key matches meta-data :param value : Search criteria :type value : str :param column : Optional column name to limit search to, default (None) searches all columns :type column: str | None Returns ------- generator Each item being a (plate, row, column)-tuple. """ for id_plate, _ in enumerate(self._plate_shapes): yield self.find_on_plate(id_plate, value, column=column) def find_on_plate(self, plate, value, column=None): if isinstance(column, StringTypes): column = self.get_header_index(plate, column) if column < 0: yield tuple() for id_plate, id_row, id_col in self.generate_coordinates(plate=plate): data = self(id_plate, id_row, id_col) if column is None: if value in data: yield (id_row, id_col) else: if value == data[column]: yield (id_row, id_col) def get_header_index(self, plate, header): for i, column_header in enumerate(self.get_header_row(plate)): if column_header.lower() == header.lower(): return i return -1 def generate_coordinates(self, plate=None): plates = ((i, p) for i, p in enumerate(self._plate_shapes) if plate is None or i is plate) for id_plate, shape in plates: if shape is not None: for id_row in xrange(shape[0]): for id_col in xrange(shape[1]): yield id_plate, id_row, id_col
gpl-3.0
nelson-liu/scikit-learn
sklearn/datasets/base.py
5
26099
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import csv import sys import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os.path import splitext from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): super(Bunch, self).__init__(kwargs) def __setattr__(self, key, value): self[key] = value def __dir__(self): return self.keys() def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __setstate__(self, state): # Bunch pickles generated with scikit-learn 0.16.* have an non # empty __dict__. This causes a surprising behaviour when # loading these pickles scikit-learn 0.17: reading bunch.key # uses __dict__ but assigning to bunch.key use __setattr__ and # only changes bunch['key']. More details can be found at: # https://github.com/scikit-learn/scikit-learn/issues/6196. # Overriding __setstate__ to be a noop has the effect of # ignoring the pickled __dict__ pass def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description : string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error : {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(return_X_y=False): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float64) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() if return_X_y: return data, target return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_breast_cancer(return_X_y=False): """Load and return the breast cancer wisconsin dataset (classification). The breast cancer dataset is a classic and very easy binary classification dataset. ================= ============== Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive ================= ============== Parameters ---------- return_X_y : boolean, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is downloaded from: https://goo.gl/U2Uwz2 Examples -------- Let's say you are interested in the samples 10, 50, and 85, and want to know their class name. >>> from sklearn.datasets import load_breast_cancer >>> data = load_breast_cancer() >>> data.target[[10, 50, 85]] array([0, 1, 0]) >>> list(data.target_names) ['malignant', 'benign'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'breast_cancer.csv')) as csv_file: data_file = csv.reader(csv_file) first_line = next(data_file) n_samples = int(first_line[0]) n_features = int(first_line[1]) target_names = np.array(first_line[2:4]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for count, value in enumerate(data_file): data[count] = np.asarray(value[:-1], dtype=np.float64) target[count] = np.asarray(value[-1], dtype=np.int) with open(join(module_path, 'descr', 'breast_cancer.rst')) as rst_file: fdescr = rst_file.read() feature_names = np.array(['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension']) if return_X_y: return data, target return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=feature_names) def load_digits(n_class=10, return_X_y=False): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import matplotlib.pyplot as plt #doctest: +SKIP >>> plt.gray() #doctest: +SKIP >>> plt.matshow(digits.images[0]) #doctest: +SKIP >>> plt.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1].astype(np.int) flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] if return_X_y: return flat_data, target return Bunch(data=flat_data, target=target, target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(return_X_y=False): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) if return_X_y: return data, target return Bunch(data=data, target=target, feature_names=['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']) def load_linnerud(return_X_y=False): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() if return_X_y: return data_exercise, data_physiological return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(return_X_y=False): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Parameters ---------- return_X_y : boolean, default=False. If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. (data, target) : tuple if ``return_X_y`` is True .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float64) target[i] = np.asarray(d[-1], dtype=np.float64) if return_X_y: return data, target return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name : {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img : 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index] def _pkl_filepath(*args, **kwargs): """Ensure different filenames for Python 2 and Python 3 pickles An object pickled under Python 3 cannot be loaded under Python 2. An object pickled under Python 2 can sometimes not be loaded correctly under Python 3 because some Python 2 strings are decoded as Python 3 strings which can be problematic for objects that use Python 2 strings as byte buffers for numerical data instead of "real" strings. Therefore, dataset loaders in scikit-learn use different files for pickles manages by Python 2 and Python 3 in the same SCIKIT_LEARN_DATA folder so as to avoid conflicts. args[-1] is expected to be the ".pkl" filename. Under Python 3, a suffix is inserted before the extension to s _pkl_filepath('/path/to/folder', 'filename.pkl') returns: - /path/to/folder/filename.pkl under Python 2 - /path/to/folder/filename_py3.pkl under Python 3+ """ py3_suffix = kwargs.get("py3_suffix", "_py3") basename, ext = splitext(args[-1]) if sys.version_info[0] >= 3: basename += py3_suffix new_args = args[:-1] + (basename + ext,) return join(*new_args)
bsd-3-clause
siddharthteotia/arrow
python/benchmarks/convert_pandas.py
6
2376
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pandas as pd import pyarrow as pa class PandasConversionsBase(object): def setup(self, n, dtype): if dtype == 'float64_nans': arr = np.arange(n).astype('float64') arr[arr % 10 == 0] = np.nan else: arr = np.arange(n).astype(dtype) self.data = pd.DataFrame({'column': arr}) class PandasConversionsToArrow(PandasConversionsBase): param_names = ('size', 'dtype') params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) def time_from_series(self, n, dtype): pa.Table.from_pandas(self.data) class PandasConversionsFromArrow(PandasConversionsBase): param_names = ('size', 'dtype') params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) def setup(self, n, dtype): super(PandasConversionsFromArrow, self).setup(n, dtype) self.arrow_data = pa.Table.from_pandas(self.data) def time_to_series(self, n, dtype): self.arrow_data.to_pandas() class ZeroCopyPandasRead(object): def setup(self): # Transpose to make column-major values = np.random.randn(10, 100000) df = pd.DataFrame(values.T) ctx = pa.default_serialization_context() self.serialized = ctx.serialize(df) self.as_buffer = self.serialized.to_buffer() self.as_components = self.serialized.to_components() def time_deserialize_from_buffer(self): pa.deserialize(self.as_buffer) def time_deserialize_from_components(self): pa.deserialize_components(self.as_components)
apache-2.0
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/cross_decomposition/cca_.py
7
3037
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- `x_weights_` : array, [p, n_components] X block weights vectors. `y_weights_` : array, [q, n_components] Y block weights vectors. `x_loadings_` : array, [p, n_components] X block loadings vectors. `y_loadings_` : array, [q, n_components] Y block loadings vectors. `x_scores_` : array, [n_samples, n_components] X scores. `y_scores_` : array, [n_samples, n_components] Y scores. `x_rotations_` : array, [p, n_components] X block to latents rotations. `y_rotations_` : array, [q, n_components] Y block to latents rotations. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
apache-2.0
SMTorg/smt
smt/examples/multi_modal/run_genn_demo.py
3
8597
""" G R A D I E N T - E N H A N C E D N E U R A L N E T W O R K S (G E N N) Description: This program uses the two dimensional Rastrigin function to demonstrate GENN, which is an egg-crate-looking function that can be challenging to fit because of its multi-modality. Author: Steven H. Berguin <[email protected]> This package is distributed under New BSD license. """ from smt.surrogate_models.genn import GENN, load_smt_data import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from pyDOE2 import fullfact SEED = 101 def get_practice_data(random=False): """ Return practice data for two-dimensional Rastrigin function :param: random -- boolean, True = random sampling, False = full-factorial sampling :return: (X, Y, J) -- np arrays of shapes (n_x, m), (n_y, m), (n_y, n_x, m) where n_x = 2 and n_y = 1 and m = 15^2 """ # Response (N-dimensional Rastrigin) f = lambda x: np.sum(x ** 2 - 10 * np.cos(2 * np.pi * x) + 10, axis=1) df = lambda x, j: 2 * x[:, j] + 20 * np.pi * np.sin(2 * np.pi * x[:, j]) # Domain lb = -1.0 # minimum bound (same for all dimensions) ub = 1.5 # maximum bound (same for all dimensions) # Design of experiment (full factorial) n_x = 2 # number of dimensions n_y = 1 # number of responses L = 12 # number of levels per dimension m = L ** n_x # number of training examples that will be generated if random: doe = np.random.rand(m, n_x) else: levels = [L] * n_x doe = fullfact(levels) doe = (doe - 0.0) / (L - 1.0) # values normalized such that 0 < doe < 1 assert doe.shape == (m, n_x) # Apply bounds X = lb + (ub - lb) * doe # Evaluate response Y = f(X).reshape((m, 1)) # Evaluate partials J = np.zeros((m, n_x, n_y)) for j in range(0, n_x): J[:, j, :] = df(X, j).reshape((m, 1)) return X.T, Y.T, J.T def contour_plot(genn, title="GENN"): """Make contour plots of 2D Rastrigin function and compare to Neural Net prediction""" model = genn.model X_train, _, _ = model.training_data # Domain lb = -1.0 ub = 1.5 m = 100 x1 = np.linspace(lb, ub, m) x2 = np.linspace(lb, ub, m) X1, X2 = np.meshgrid(x1, x2) # True response pi = np.pi Y_true = ( np.power(X1, 2) - 10 * np.cos(2 * pi * X1) + 10 + np.power(X2, 2) - 10 * np.cos(2 * pi * X2) + 10 ) # Predicted response Y_pred = np.zeros((m, m)) for i in range(0, m): for j in range(0, m): Y_pred[i, j] = model.evaluate(np.array([X1[i, j], X2[i, j]]).reshape(2, 1)) # Prepare to plot fig = plt.figure(figsize=(6, 3)) spec = gridspec.GridSpec(ncols=2, nrows=1, wspace=0) # Plot Truth model ax1 = fig.add_subplot(spec[0, 0]) ax1.contour(X1, X2, Y_true, 20, cmap="RdGy") anno_opts = dict( xy=(0.5, 1.075), xycoords="axes fraction", va="center", ha="center" ) ax1.annotate("True", **anno_opts) anno_opts = dict( xy=(-0.075, 0.5), xycoords="axes fraction", va="center", ha="center" ) ax1.annotate("X2", **anno_opts) anno_opts = dict( xy=(0.5, -0.05), xycoords="axes fraction", va="center", ha="center" ) ax1.annotate("X1", **anno_opts) ax1.set_xticks([]) ax1.set_yticks([]) ax1.scatter(X_train[0, :], X_train[1, :], s=5) ax1.set_xlim(lb, ub) ax1.set_ylim(lb, ub) # Plot prediction with gradient enhancement ax2 = fig.add_subplot(spec[0, 1]) ax2.contour(X1, X2, Y_pred, 20, cmap="RdGy") anno_opts = dict( xy=(0.5, 1.075), xycoords="axes fraction", va="center", ha="center" ) ax2.annotate(title, **anno_opts) anno_opts = dict( xy=(0.5, -0.05), xycoords="axes fraction", va="center", ha="center" ) ax2.annotate("X1", **anno_opts) ax2.set_xticks([]) ax2.set_yticks([]) plt.show() def run_demo_2d( alpha=0.1, beta1=0.9, beta2=0.99, lambd=0.1, gamma=1.0, deep=3, wide=6, mini_batch_size=None, iterations=30, epochs=100, ): """ Predict Rastrigin function using neural net and compare against truth model. Provided with proper training data, the only hyperparameters the user needs to tune are: :param alpha = learning rate :param beta1 = adam optimizer parameter :param beta2 = adam optimizer parameter :param lambd = regularization coefficient :param gamma = gradient enhancement coefficient :param deep = neural net depth :param wide = neural net width This restricted list is intentional. The goal was to provide a simple interface for common regression tasks with the bare necessary tuning parameters. More advanced prediction tasks should consider tensorflow or other deep learning frameworks. Hopefully, the simplicity of this interface will address a common use case in aerospace engineering, namely: predicting smooth functions using computational design of experiments. """ if gamma > 0.0: title = "GENN" else: title = "NN" # Practice data X_train, Y_train, J_train = get_practice_data(random=False) X_test, Y_test, J_test = get_practice_data(random=True) # Convert training data to SMT format xt = X_train.T yt = Y_train.T dyt_dxt = J_train[ 0 ].T # SMT format doesn't handle more than one output at a time, hence J[0] # Convert test data to SMT format xv = X_test.T yv = Y_test.T dyv_dxv = J_test[ 0 ].T # SMT format doesn't handle more than one output at a time, hence J[0] # Initialize GENN object genn = GENN() genn.options["alpha"] = alpha genn.options["beta1"] = beta1 genn.options["beta2"] = beta2 genn.options["lambd"] = lambd genn.options["gamma"] = gamma genn.options["deep"] = deep genn.options["wide"] = wide genn.options["mini_batch_size"] = mini_batch_size genn.options["num_epochs"] = epochs genn.options["num_iterations"] = iterations genn.options["seed"] = SEED genn.options["is_print"] = True # Load data load_smt_data( genn, xt, yt, dyt_dxt ) # convenience function that uses SurrogateModel.set_training_values(), etc. # Train genn.train() genn.plot_training_history() genn.goodness_of_fit(xv, yv, dyv_dxv) # Contour plot contour_plot(genn, title=title) def run_demo_1D(is_gradient_enhancement=True): # pragma: no cover """Test and demonstrate GENN using a 1D example""" # Test function f = lambda x: x * np.sin(x) df_dx = lambda x: np.sin(x) + x * np.cos(x) # Domain lb = -np.pi ub = np.pi # Training data m = 4 xt = np.linspace(lb, ub, m) yt = f(xt) dyt_dxt = df_dx(xt) # Validation data xv = lb + np.random.rand(30, 1) * (ub - lb) yv = f(xv) dyv_dxv = df_dx(xv) # Initialize GENN object genn = GENN() genn.options["alpha"] = 0.05 genn.options["beta1"] = 0.9 genn.options["beta2"] = 0.99 genn.options["lambd"] = 0.05 genn.options["gamma"] = int(is_gradient_enhancement) genn.options["deep"] = 2 genn.options["wide"] = 6 genn.options["mini_batch_size"] = 64 genn.options["num_epochs"] = 25 genn.options["num_iterations"] = 100 genn.options["seed"] = SEED genn.options["is_print"] = True # Load data load_smt_data(genn, xt, yt, dyt_dxt) # Train genn.train() genn.plot_training_history() genn.goodness_of_fit(xv, yv, dyv_dxv) # Plot comparison if genn.options["gamma"] == 1.0: title = "with gradient enhancement" else: title = "without gradient enhancement" x = np.arange(lb, ub, 0.01) y = f(x) y_pred = genn.predict_values(x) fig, ax = plt.subplots() ax.plot(x, y_pred) ax.plot(x, y, "k--") ax.plot(xv, yv, "ro") ax.plot(xt, yt, "k+", mew=3, ms=10) ax.set(xlabel="x", ylabel="y", title=title) ax.legend(["Predicted", "True", "Test", "Train"]) plt.show() if __name__ == "__main__": # 1D example: compare with and without gradient enhancement run_demo_1D(is_gradient_enhancement=False) run_demo_1D(is_gradient_enhancement=True) # 2D example: Rastrigin function run_demo_2d( alpha=0.1, beta1=0.9, beta2=0.99, lambd=0.1, gamma=1.0, deep=3, # 3, wide=12, # 6, mini_batch_size=32, iterations=30, epochs=25, )
bsd-3-clause
larsmans/scikit-learn
sklearn/ensemble/__init__.py
44
1228
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/indexes/test_base.py
3
78516
# -*- coding: utf-8 -*- import pytest from datetime import datetime, timedelta import pandas.util.testing as tm from pandas.core.indexes.api import Index, MultiIndex from pandas.tests.indexes.common import Base from pandas.compat import (range, lrange, lzip, u, text_type, zip, PY3, PY36) import operator import numpy as np from pandas import (period_range, date_range, Series, DataFrame, Float64Index, Int64Index, CategoricalIndex, DatetimeIndex, TimedeltaIndex, PeriodIndex, isnull) from pandas.core.index import _get_combined_index from pandas.util.testing import assert_almost_equal from pandas.compat.numpy import np_datetime64_compat import pandas.core.config as cf from pandas.core.indexes.datetimes import _to_m8 import pandas as pd from pandas._libs.lib import Timestamp class TestIndex(Base): _holder = Index def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeIntIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3]))) self.setup_indices() def create_index(self): return Index(list('abcde')) def test_new_axis(self): new_index = self.dateIndex[None, :] assert new_index.ndim == 2 assert isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): super(TestIndex, self).test_copy_and_deepcopy() new_copy2 = self.intIndex.copy(dtype=int) assert new_copy2.dtype.kind == 'i' def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') assert isinstance(index, Index) assert index.name == 'name' tm.assert_numpy_array_equal(arr, index.values) arr[0] = "SOMEBIGLONGSTRING" assert index[0] != "SOMEBIGLONGSTRING" # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case pytest.raises(TypeError, Index, 0) def test_construction_list_mixed_tuples(self): # see gh-10697: if we are constructing from a mixed list of tuples, # make sure that we are independent of the sorting order. idx1 = Index([('A', 1), 'B']) assert isinstance(idx1, Index) assert not isinstance(idx1, MultiIndex) idx2 = Index(['B', ('A', 1)]) assert isinstance(idx2, Index) assert not isinstance(idx2, MultiIndex) def test_constructor_from_index_datetimetz(self): idx = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') result = pd.Index(idx) tm.assert_index_equal(result, idx) assert result.tz == idx.tz result = pd.Index(idx.asobject) tm.assert_index_equal(result, idx) assert result.tz == idx.tz def test_constructor_from_index_timedelta(self): idx = pd.timedelta_range('1 days', freq='D', periods=3) result = pd.Index(idx) tm.assert_index_equal(result, idx) result = pd.Index(idx.asobject) tm.assert_index_equal(result, idx) def test_constructor_from_index_period(self): idx = pd.period_range('2015-01-01', freq='D', periods=3) result = pd.Index(idx) tm.assert_index_equal(result, idx) result = pd.Index(idx.asobject) tm.assert_index_equal(result, idx) def test_constructor_from_series_datetimetz(self): idx = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') result = pd.Index(pd.Series(idx)) tm.assert_index_equal(result, idx) assert result.tz == idx.tz def test_constructor_from_series_timedelta(self): idx = pd.timedelta_range('1 days', freq='D', periods=3) result = pd.Index(pd.Series(idx)) tm.assert_index_equal(result, idx) def test_constructor_from_series_period(self): idx = pd.period_range('2015-01-01', freq='D', periods=3) result = pd.Index(pd.Series(idx)) tm.assert_index_equal(result, idx) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) s = Series([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) result = Index(s) tm.assert_index_equal(result, expected) result = DatetimeIndex(s) tm.assert_index_equal(result, expected) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'], freq='MS') tm.assert_index_equal(result, expected) df = pd.DataFrame(np.random.rand(5, 3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') expected.name = 'date' tm.assert_index_equal(result, expected) assert df['date'].dtype == object exp = pd.Series(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'], name='date') tm.assert_series_equal(df['date'], exp) # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) assert result == 'MS' def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) tm.assert_index_equal(result, expected) def test_constructor_int_dtype_nan(self): # see gh-15187 data = [np.nan] msg = "cannot convert" with tm.assert_raises_regex(ValueError, msg): Index(data, dtype='int64') with tm.assert_raises_regex(ValueError, msg): Index(data, dtype='uint64') # This, however, should not break # because NaN is float. expected = Float64Index(data) result = Index(data, dtype='float') tm.assert_index_equal(result, expected) def test_index_ctor_infer_nan_nat(self): # GH 13467 exp = pd.Float64Index([np.nan, np.nan]) assert exp.dtype == np.float64 tm.assert_index_equal(Index([np.nan, np.nan]), exp) tm.assert_index_equal(Index(np.array([np.nan, np.nan])), exp) exp = pd.DatetimeIndex([pd.NaT, pd.NaT]) assert exp.dtype == 'datetime64[ns]' tm.assert_index_equal(Index([pd.NaT, pd.NaT]), exp) tm.assert_index_equal(Index(np.array([pd.NaT, pd.NaT])), exp) exp = pd.DatetimeIndex([pd.NaT, pd.NaT]) assert exp.dtype == 'datetime64[ns]' for data in [[pd.NaT, np.nan], [np.nan, pd.NaT], [np.nan, np.datetime64('nat')], [np.datetime64('nat'), np.nan]]: tm.assert_index_equal(Index(data), exp) tm.assert_index_equal(Index(np.array(data, dtype=object)), exp) exp = pd.TimedeltaIndex([pd.NaT, pd.NaT]) assert exp.dtype == 'timedelta64[ns]' for data in [[np.nan, np.timedelta64('nat')], [np.timedelta64('nat'), np.nan], [pd.NaT, np.timedelta64('nat')], [np.timedelta64('nat'), pd.NaT]]: tm.assert_index_equal(Index(data), exp) tm.assert_index_equal(Index(np.array(data, dtype=object)), exp) # mixed np.datetime64/timedelta64 nat results in object data = [np.datetime64('nat'), np.timedelta64('nat')] exp = pd.Index(data, dtype=object) tm.assert_index_equal(Index(data), exp) tm.assert_index_equal(Index(np.array(data, dtype=object)), exp) data = [np.timedelta64('nat'), np.datetime64('nat')] exp = pd.Index(data, dtype=object) tm.assert_index_equal(Index(data), exp) tm.assert_index_equal(Index(np.array(data, dtype=object)), exp) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) tm.assert_index_equal(rs, xp) assert isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') tm.assert_index_equal(result, idx) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') tm.assert_index_equal(result, idx) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') tm.assert_index_equal(result, idx) def test_constructor_dtypes(self): for idx in [Index(np.array([1, 2, 3], dtype=int)), Index(np.array([1, 2, 3], dtype=int), dtype=int), Index([1, 2, 3], dtype=int)]: assert isinstance(idx, Int64Index) # These should coerce for idx in [Index(np.array([1., 2., 3.], dtype=float), dtype=int), Index([1., 2., 3.], dtype=int)]: assert isinstance(idx, Int64Index) for idx in [Index(np.array([1., 2., 3.], dtype=float)), Index(np.array([1, 2, 3], dtype=int), dtype=float), Index(np.array([1., 2., 3.], dtype=float), dtype=float), Index([1, 2, 3], dtype=float), Index([1., 2., 3.], dtype=float)]: assert isinstance(idx, Float64Index) for idx in [Index(np.array([True, False, True], dtype=bool)), Index([True, False, True]), Index(np.array([True, False, True], dtype=bool), dtype=bool), Index([True, False, True], dtype=bool)]: assert isinstance(idx, Index) assert idx.dtype == object for idx in [Index(np.array([1, 2, 3], dtype=int), dtype='category'), Index([1, 2, 3], dtype='category'), Index(np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')]), dtype='category'), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)], dtype='category')]: assert isinstance(idx, CategoricalIndex) for idx in [Index(np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')])), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)])]: assert isinstance(idx, DatetimeIndex) for idx in [Index(np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')]), dtype=object), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)], dtype=object)]: assert not isinstance(idx, DatetimeIndex) assert isinstance(idx, Index) assert idx.dtype == object for idx in [Index(np.array([np.timedelta64(1, 'D'), np.timedelta64( 1, 'D')])), Index([timedelta(1), timedelta(1)])]: assert isinstance(idx, TimedeltaIndex) for idx in [Index(np.array([np.timedelta64(1, 'D'), np.timedelta64(1, 'D')]), dtype=object), Index([timedelta(1), timedelta(1)], dtype=object)]: assert not isinstance(idx, TimedeltaIndex) assert isinstance(idx, Index) assert idx.dtype == object def test_constructor_dtypes_datetime(self): for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.date_range('2011-01-01', periods=5, tz=tz) dtype = idx.dtype # pass values without timezone, as DatetimeIndex localizes it for values in [pd.date_range('2011-01-01', periods=5).values, pd.date_range('2011-01-01', periods=5).asi8]: for res in [pd.Index(values, tz=tz), pd.Index(values, dtype=dtype), pd.Index(list(values), tz=tz), pd.Index(list(values), dtype=dtype)]: tm.assert_index_equal(res, idx) # check compat with DatetimeIndex for res in [pd.DatetimeIndex(values, tz=tz), pd.DatetimeIndex(values, dtype=dtype), pd.DatetimeIndex(list(values), tz=tz), pd.DatetimeIndex(list(values), dtype=dtype)]: tm.assert_index_equal(res, idx) def test_constructor_dtypes_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) dtype = idx.dtype for values in [idx.values, idx.asi8]: for res in [pd.Index(values, dtype=dtype), pd.Index(list(values), dtype=dtype)]: tm.assert_index_equal(res, idx) # check compat with TimedeltaIndex for res in [pd.TimedeltaIndex(values, dtype=dtype), pd.TimedeltaIndex(list(values), dtype=dtype)]: tm.assert_index_equal(res, idx) def test_view_with_args(self): restricted = ['unicodeIndex', 'strIndex', 'catIndex', 'boolIndex', 'empty'] for i in restricted: ind = self.indices[i] # with arguments pytest.raises(TypeError, lambda: ind.view('i8')) # these are ok for i in list(set(self.indices.keys()) - set(restricted)): ind = self.indices[i] # with arguments ind.view('i8') def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') assert casted.name == 'foobar' def test_equals_object(self): # same assert Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c'])) # different length assert not Index(['a', 'b', 'c']).equals(Index(['a', 'b'])) # same length, different values assert not Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd'])) # Must also be an Index assert not Index(['a', 'b', 'c']).equals(['a', 'b', 'c']) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) # test 0th element tm.assert_index_equal(Index(['a', 'b', 'c', 'd']), result.insert(0, 'a')) # test Nth element that follows Python list behavior tm.assert_index_equal(Index(['b', 'c', 'e', 'd']), result.insert(-1, 'e')) # test loc +/- neq (0, -1) tm.assert_index_equal(result.insert(1, 'z'), result.insert(-2, 'z')) # test empty null_index = Index([]) tm.assert_index_equal(Index(['a']), null_index.insert(0, 'a')) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) tm.assert_index_equal(result, expected) assert result.name == expected.name expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) tm.assert_index_equal(result, expected) assert result.name == expected.name with pytest.raises((IndexError, ValueError)): # either depending on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) assert i1.identical(i2) i1 = i1.rename('foo') assert i1.equals(i2) assert not i1.identical(i2) i2 = i2.rename('foo') assert i1.identical(i2) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) assert not i3.identical(i4) def test_is_(self): ind = Index(range(10)) assert ind.is_(ind) assert ind.is_(ind.view().view().view().view()) assert not ind.is_(Index(range(10))) assert not ind.is_(ind.copy()) assert not ind.is_(ind.copy(deep=False)) assert not ind.is_(ind[:]) assert not ind.is_(ind.view(np.ndarray).view(Index)) assert not ind.is_(np.array(range(10))) # quasi-implementation dependent assert ind.is_(ind.view()) ind2 = ind.view() ind2.name = 'bob' assert ind.is_(ind2) assert ind2.is_(ind) # doesn't matter if Indices are *actually* views of underlying data, assert not ind.is_(Index(ind.values)) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) assert not ind1.is_(ind2) def test_asof(self): d = self.dateIndex[0] assert self.dateIndex.asof(d) == d assert isnull(self.dateIndex.asof(d - timedelta(1))) d = self.dateIndex[-1] assert self.dateIndex.asof(d + timedelta(1)) == d d = self.dateIndex[0].to_pydatetime() assert isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-02-28') result = idx.asof('2010-02') assert result == expected assert not isinstance(result, Index) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil # assert first_value == x['2013-01-01 00:00:00.000000050+0000'] exp_ts = np_datetime64_compat('2013-01-01 00:00:00.000000050+0000', 'ns') assert first_value == x[Timestamp(exp_ts)] def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: assert i == sl[sl.get_loc(i)] def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) assert idx[[]].identical(empty_idx) assert idx[empty_iarr].identical(empty_idx) assert idx[empty_barr].identical(empty_idx) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. pytest.raises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) assert exp == arr[5] def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) assert tm.equalContents(intersect, second) # Corner cases inter = first.intersection(first) assert inter is first idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) tm.assert_index_equal(result2, expected2) assert result2.name == expected2.name # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) tm.assert_index_equal(result3, expected3) assert result3.name == expected3.name # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') expected = Index([5, 3, 4], name='idx') result = idx1.intersection(idx2) tm.assert_index_equal(result, expected) idx2 = Index([4, 7, 6, 5, 3], name='other') expected = Index([5, 3, 4], name=None) result = idx1.intersection(idx2) tm.assert_index_equal(result, expected) # non-monotonic non-unique idx1 = Index(['A', 'B', 'A', 'C']) idx2 = Index(['B', 'D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) tm.assert_index_equal(result, expected) idx2 = Index(['B', 'D', 'A']) expected = Index(['A', 'B', 'A'], dtype='object') result = idx1.intersection(idx2) tm.assert_index_equal(result, expected) # preserve names first = self.strIndex[5:20] second = self.strIndex[:10] first.name = 'A' second.name = 'A' intersect = first.intersection(second) assert intersect.name == 'A' second.name = 'B' intersect = first.intersection(second) assert intersect.name is None first.name = None second.name = 'B' intersect = first.intersection(second) assert intersect.name is None def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.union(case) assert tm.equalContents(result, everything) # Corner cases union = first.union(first) assert union is first union = first.union([]) assert union is first union = Index([]).union(first) assert union is first # preserve names first = Index(list('ab'), name='A') second = Index(list('ab'), name='B') union = first.union(second) expected = Index(list('ab'), name=None) tm.assert_index_equal(union, expected) first = Index(list('ab'), name='A') second = Index([], name='B') union = first.union(second) expected = Index(list('ab'), name=None) tm.assert_index_equal(union, expected) first = Index([], name='A') second = Index(list('ab'), name='B') union = first.union(second) expected = Index(list('ab'), name=None) tm.assert_index_equal(union, expected) first = Index(list('ab')) second = Index(list('ab'), name='B') union = first.union(second) expected = Index(list('ab'), name='B') tm.assert_index_equal(union, expected) first = Index([]) second = Index(list('ab'), name='B') union = first.union(second) expected = Index(list('ab'), name='B') tm.assert_index_equal(union, expected) first = Index(list('ab')) second = Index([], name='B') union = first.union(second) expected = Index(list('ab'), name='B') tm.assert_index_equal(union, expected) first = Index(list('ab'), name='A') second = Index(list('ab')) union = first.union(second) expected = Index(list('ab'), name='A') tm.assert_index_equal(union, expected) first = Index(list('ab'), name='A') second = Index([]) union = first.union(second) expected = Index(list('ab'), name='A') tm.assert_index_equal(union, expected) first = Index([], name='A') second = Index(list('ab')) union = first.union(second) expected = Index(list('ab'), name='A') tm.assert_index_equal(union, expected) with tm.assert_produces_warning(RuntimeWarning): firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) def test_add(self): idx = self.strIndex expected = Index(self.strIndex.values * 2) tm.assert_index_equal(idx + idx, expected) tm.assert_index_equal(idx + idx.tolist(), expected) tm.assert_index_equal(idx.tolist() + idx, expected) # test add and radd idx = Index(list('abc')) expected = Index(['a1', 'b1', 'c1']) tm.assert_index_equal(idx + '1', expected) expected = Index(['1a', '1b', '1c']) tm.assert_index_equal('1' + idx, expected) def test_sub(self): idx = self.strIndex pytest.raises(TypeError, lambda: idx - 'a') pytest.raises(TypeError, lambda: idx - idx) pytest.raises(TypeError, lambda: idx - idx.tolist()) pytest.raises(TypeError, lambda: idx.tolist() - idx) def test_map_identity_mapping(self): # GH 12766 for name, cur_index in self.indices.items(): tm.assert_index_equal(cur_index, cur_index.map(lambda x: x)) def test_map_with_tuples(self): # GH 12766 # Test that returning a single tuple from an Index # returns an Index. boolean_index = tm.makeIntIndex(3).map(lambda x: (x,)) expected = Index([(0,), (1,), (2,)]) tm.assert_index_equal(boolean_index, expected) # Test that returning a tuple from a map of a single index # returns a MultiIndex object. boolean_index = tm.makeIntIndex(3).map(lambda x: (x, x == 1)) expected = MultiIndex.from_tuples([(0, False), (1, True), (2, False)]) tm.assert_index_equal(boolean_index, expected) # Test that returning a single object from a MultiIndex # returns an Index. first_level = ['foo', 'bar', 'baz'] multi_index = MultiIndex.from_tuples(lzip(first_level, [1, 2, 3])) reduced_index = multi_index.map(lambda x: x[0]) tm.assert_index_equal(reduced_index, Index(first_level)) def test_map_tseries_indices_return_index(self): date_index = tm.makeDateIndex(10) exp = Index([1] * 10) tm.assert_index_equal(exp, date_index.map(lambda x: 1)) period_index = tm.makePeriodIndex(10) tm.assert_index_equal(exp, period_index.map(lambda x: 1)) tdelta_index = tm.makeTimedeltaIndex(10) tm.assert_index_equal(exp, tdelta_index.map(lambda x: 1)) date_index = tm.makeDateIndex(24, freq='h', name='hourly') exp = Index(range(24), name='hourly') tm.assert_index_equal(exp, date_index.map(lambda x: x.hour)) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) tm.assert_index_equal(result, index) # empty result = index.append([]) tm.assert_index_equal(result, index) def test_append_empty_preserve_name(self): left = Index([], name='foo') right = Index([1, 2, 3], name='foo') result = left.append(right) assert result.name == 'foo' left = Index([], name='foo') right = Index([1, 2, 3], name='bar') result = left.append(right) assert result.name is None def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' assert 'a' not in index2 assert 'afoo' in index2 def test_iadd_string(self): index = pd.Index(['a', 'b', 'c']) # doesn't fail test unless there is a check before `+=` assert 'a' in index index += '_x' assert 'a_x' in index def test_difference(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' # different names result = first.difference(second) assert tm.equalContents(result, answer) assert result.name is None # same names second.name = 'name' result = first.difference(second) assert result.name == 'name' # with empty result = first.difference([]) assert tm.equalContents(result, first) assert result.name == first.name # with everything result = first.difference(first) assert len(result) == 0 assert result.name == first.name def test_symmetric_difference(self): # smoke idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = Index([2, 3, 4, 5]) result = idx1.symmetric_difference(idx2) expected = Index([1, 5]) assert tm.equalContents(result, expected) assert result.name is None # __xor__ syntax expected = idx1 ^ idx2 assert tm.equalContents(result, expected) assert result.name is None # multiIndex idx1 = MultiIndex.from_tuples(self.tuples) idx2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = idx1.symmetric_difference(idx2) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) assert tm.equalContents(result, expected) # nans: # GH 13514 change: {nan} - {nan} == {} # (GH 6444, sorting of nans, is no longer an issue) idx1 = Index([1, np.nan, 2, 3]) idx2 = Index([0, 1, np.nan]) idx3 = Index([0, 1]) result = idx1.symmetric_difference(idx2) expected = Index([0.0, 2.0, 3.0]) tm.assert_index_equal(result, expected) result = idx1.symmetric_difference(idx3) expected = Index([0.0, 2.0, 3.0, np.nan]) tm.assert_index_equal(result, expected) # other not an Index: idx1 = Index([1, 2, 3, 4], name='idx1') idx2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = idx1.symmetric_difference(idx2) assert tm.equalContents(result, expected) assert result.name == 'idx1' result = idx1.symmetric_difference(idx2, result_name='new_name') assert tm.equalContents(result, expected) assert result.name == 'new_name' def test_is_numeric(self): assert not self.dateIndex.is_numeric() assert not self.strIndex.is_numeric() assert self.intIndex.is_numeric() assert self.floatIndex.is_numeric() assert not self.catIndex.is_numeric() def test_is_object(self): assert self.strIndex.is_object() assert self.boolIndex.is_object() assert not self.catIndex.is_object() assert not self.intIndex.is_object() assert not self.dateIndex.is_object() assert not self.floatIndex.is_object() def test_is_all_dates(self): assert self.dateIndex.is_all_dates assert not self.strIndex.is_all_dates assert not self.intIndex.is_all_dates def test_summary(self): self._check_method_works(Index.summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind.summary() # shouldn't be formatted accidentally. assert '~:{range}:0' in result assert '{other}%s' in result def test_format(self): self._check_method_works(Index.format) # GH 14626 # windows has different precision on datetime.datetime.now (it doesn't # include us since the default for Timestamp shows these but Index # formating does not we are skipping) now = datetime.now() if not str(now).endswith("000"): index = Index([now]) formatted = index.format() expected = [str(index[0])] assert formatted == expected # 2845 index = Index([1, 2.0 + 3.0j, np.nan]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] assert formatted == expected # is this really allowed? index = Index([1, 2.0 + 3.0j, None]) formatted = index.format() expected = [str(index[0]), str(index[1]), u('NaN')] assert formatted == expected self.strIndex[:0].format() def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) assert formatted[0] == 'something' def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] assert len(result) == 2 assert result == expected def test_format_none(self): values = ['a', 'b', 'c', None] idx = Index(values) idx.format() assert idx[3] is None def test_logical_compat(self): idx = self.create_index() assert idx.all() == idx.values.all() assert idx.any() == idx.values.any() def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) method(self.catIndex) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) def test_get_indexer_invalid(self): # GH10411 idx = Index(np.arange(10)) with tm.assert_raises_regex(ValueError, 'tolerance argument'): idx.get_indexer([1, 0], tolerance=1) with tm.assert_raises_regex(ValueError, 'limit argument'): idx.get_indexer([1, 0], limit=1) def test_get_indexer_nearest(self): idx = Index(np.arange(10)) all_methods = ['pad', 'backfill', 'nearest'] for method in all_methods: actual = idx.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([0, 5, 9], dtype=np.intp)) actual = idx.get_indexer([0, 5, 9], method=method, tolerance=0) tm.assert_numpy_array_equal(actual, np.array([0, 5, 9], dtype=np.intp)) for method, expected in zip(all_methods, [[0, 1, 8], [1, 2, 9], [0, 2, 9]]): actual = idx.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) actual = idx.get_indexer([0.2, 1.8, 8.5], method=method, tolerance=1) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) for method, expected in zip(all_methods, [[0, -1, -1], [-1, 2, -1], [0, 2, -1]]): actual = idx.get_indexer([0.2, 1.8, 8.5], method=method, tolerance=0.2) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) with tm.assert_raises_regex(ValueError, 'limit argument'): idx.get_indexer([1, 0], method='nearest', limit=1) def test_get_indexer_nearest_decreasing(self): idx = Index(np.arange(10))[::-1] all_methods = ['pad', 'backfill', 'nearest'] for method in all_methods: actual = idx.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp)) for method, expected in zip(all_methods, [[8, 7, 0], [9, 8, 1], [9, 7, 0]]): actual = idx.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) def test_get_indexer_strings(self): idx = pd.Index(['b', 'c']) actual = idx.get_indexer(['a', 'b', 'c', 'd'], method='pad') expected = np.array([-1, 0, 1, 1], dtype=np.intp) tm.assert_numpy_array_equal(actual, expected) actual = idx.get_indexer(['a', 'b', 'c', 'd'], method='backfill') expected = np.array([0, 0, 1, -1], dtype=np.intp) tm.assert_numpy_array_equal(actual, expected) with pytest.raises(TypeError): idx.get_indexer(['a', 'b', 'c', 'd'], method='nearest') with pytest.raises(TypeError): idx.get_indexer(['a', 'b', 'c', 'd'], method='pad', tolerance=2) def test_get_loc(self): idx = pd.Index([0, 1, 2]) all_methods = [None, 'pad', 'backfill', 'nearest'] for method in all_methods: assert idx.get_loc(1, method=method) == 1 if method is not None: assert idx.get_loc(1, method=method, tolerance=0) == 1 with pytest.raises(TypeError): idx.get_loc([1, 2], method=method) for method, loc in [('pad', 1), ('backfill', 2), ('nearest', 1)]: assert idx.get_loc(1.1, method) == loc for method, loc in [('pad', 1), ('backfill', 2), ('nearest', 1)]: assert idx.get_loc(1.1, method, tolerance=1) == loc for method in ['pad', 'backfill', 'nearest']: with pytest.raises(KeyError): idx.get_loc(1.1, method, tolerance=0.05) with tm.assert_raises_regex(ValueError, 'must be numeric'): idx.get_loc(1.1, 'nearest', tolerance='invalid') with tm.assert_raises_regex(ValueError, 'tolerance .* valid if'): idx.get_loc(1.1, tolerance=1) idx = pd.Index(['a', 'c']) with pytest.raises(TypeError): idx.get_loc('a', method='nearest') with pytest.raises(TypeError): idx.get_loc('a', method='pad', tolerance='invalid') def test_slice_locs(self): for dtype in [int, float]: idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(idx) assert idx.slice_locs(start=2) == (2, n) assert idx.slice_locs(start=3) == (3, n) assert idx.slice_locs(3, 8) == (3, 6) assert idx.slice_locs(5, 10) == (3, n) assert idx.slice_locs(end=8) == (0, 6) assert idx.slice_locs(end=9) == (0, 7) # reversed idx2 = idx[::-1] assert idx2.slice_locs(8, 2) == (2, 6) assert idx2.slice_locs(7, 3) == (2, 5) # float slicing idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=float)) n = len(idx) assert idx.slice_locs(5.0, 10.0) == (3, n) assert idx.slice_locs(4.5, 10.5) == (3, 8) idx2 = idx[::-1] assert idx2.slice_locs(8.5, 1.5) == (2, 6) assert idx2.slice_locs(10.5, -1) == (0, n) # int slicing with floats # GH 4892, these are all TypeErrors idx = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=int)) pytest.raises(TypeError, lambda: idx.slice_locs(5.0, 10.0), (3, n)) pytest.raises(TypeError, lambda: idx.slice_locs(4.5, 10.5), (3, 8)) idx2 = idx[::-1] pytest.raises(TypeError, lambda: idx2.slice_locs(8.5, 1.5), (2, 6)) pytest.raises(TypeError, lambda: idx2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): idx = Index(['a', 'a', 'b', 'c', 'd', 'd']) assert idx.slice_locs('a', 'd') == (0, 6) assert idx.slice_locs(end='d') == (0, 6) assert idx.slice_locs('a', 'c') == (0, 4) assert idx.slice_locs('b', 'd') == (2, 6) idx2 = idx[::-1] assert idx2.slice_locs('d', 'a') == (0, 6) assert idx2.slice_locs(end='a') == (0, 6) assert idx2.slice_locs('d', 'b') == (0, 4) assert idx2.slice_locs('c', 'a') == (2, 6) for dtype in [int, float]: idx = Index(np.array([10, 12, 12, 14], dtype=dtype)) assert idx.slice_locs(12, 12) == (1, 3) assert idx.slice_locs(11, 13) == (1, 3) idx2 = idx[::-1] assert idx2.slice_locs(12, 12) == (1, 3) assert idx2.slice_locs(13, 11) == (1, 3) def test_slice_locs_na(self): idx = Index([np.nan, 1, 2]) pytest.raises(KeyError, idx.slice_locs, start=1.5) pytest.raises(KeyError, idx.slice_locs, end=1.5) assert idx.slice_locs(1) == (1, 3) assert idx.slice_locs(np.nan) == (0, 3) idx = Index([0, np.nan, np.nan, 1, 2]) assert idx.slice_locs(np.nan) == (1, 5) def test_slice_locs_negative_step(self): idx = Index(list('bcdxy')) SLC = pd.IndexSlice def check_slice(in_slice, expected): s_start, s_stop = idx.slice_locs(in_slice.start, in_slice.stop, in_slice.step) result = idx[s_start:s_stop:in_slice.step] expected = pd.Index(list(expected)) tm.assert_index_equal(result, expected) for in_slice, expected in [ (SLC[::-1], 'yxdcb'), (SLC['b':'y':-1], ''), (SLC['b'::-1], 'b'), (SLC[:'b':-1], 'yxdcb'), (SLC[:'y':-1], 'y'), (SLC['y'::-1], 'yxdcb'), (SLC['y'::-4], 'yb'), # absent labels (SLC[:'a':-1], 'yxdcb'), (SLC[:'a':-2], 'ydb'), (SLC['z'::-1], 'yxdcb'), (SLC['z'::-3], 'yc'), (SLC['m'::-1], 'dcb'), (SLC[:'m':-1], 'yx'), (SLC['a':'a':-1], ''), (SLC['z':'z':-1], ''), (SLC['m':'m':-1], '') ]: check_slice(in_slice, expected) def test_drop(self): n = len(self.strIndex) drop = self.strIndex[lrange(5, 10)] dropped = self.strIndex.drop(drop) expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) pytest.raises(ValueError, self.strIndex.drop, ['foo', 'bar']) pytest.raises(ValueError, self.strIndex.drop, ['1', 'bar']) # errors='ignore' mixed = drop.tolist() + ['foo'] dropped = self.strIndex.drop(mixed, errors='ignore') expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(['foo', 'bar'], errors='ignore') expected = self.strIndex[lrange(n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] tm.assert_index_equal(dropped, expected) ser = Index([1, 2, 3]) dropped = ser.drop(1) expected = Index([2, 3]) tm.assert_index_equal(dropped, expected) # errors='ignore' pytest.raises(ValueError, ser.drop, [3, 4]) dropped = ser.drop(4, errors='ignore') expected = Index([1, 2, 3]) tm.assert_index_equal(dropped, expected) dropped = ser.drop([3, 4, 5], errors='ignore') expected = Index([1, 2]) tm.assert_index_equal(dropped, expected) def test_tuple_union_bug(self): import pandas import numpy as np aidx1 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]) aidx2 = np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]) idx1 = pandas.Index(aidx1) idx2 = pandas.Index(aidx2) # intersection broken? int_idx = idx1.intersection(idx2) # needs to be 1d like idx1 and idx2 expected = idx1[:4] # pandas.Index(sorted(set(idx1) & set(idx2))) assert int_idx.ndim == 1 tm.assert_index_equal(int_idx, expected) # union broken union_idx = idx1.union(idx2) expected = idx2 assert union_idx.ndim == 1 tm.assert_index_equal(union_idx, expected) def test_is_monotonic_incomparable(self): index = Index([5, datetime.now(), 7]) assert not index.is_monotonic assert not index.is_monotonic_decreasing def test_get_set_value(self): values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) assert values[67] == 10 def test_isin(self): values = ['foo', 'bar', 'quux'] idx = Index(['qux', 'baz', 'foo', 'bar']) result = idx.isin(values) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) # set result = idx.isin(set(values)) tm.assert_numpy_array_equal(result, expected) # empty, return dtype bool idx = Index([]) result = idx.isin(values) assert len(result) == 0 assert result.dtype == np.bool_ def test_isin_nan(self): tm.assert_numpy_array_equal(Index(['a', np.nan]).isin([np.nan]), np.array([False, True])) tm.assert_numpy_array_equal(Index(['a', pd.NaT]).isin([pd.NaT]), np.array([False, True])) tm.assert_numpy_array_equal(Index(['a', np.nan]).isin([float('nan')]), np.array([False, False])) tm.assert_numpy_array_equal(Index(['a', np.nan]).isin([pd.NaT]), np.array([False, False])) # Float64Index overrides isin, so must be checked separately tm.assert_numpy_array_equal(Float64Index([1.0, np.nan]).isin([np.nan]), np.array([False, True])) tm.assert_numpy_array_equal( Float64Index([1.0, np.nan]).isin([float('nan')]), np.array([False, True])) # we cannot compare NaT with NaN tm.assert_numpy_array_equal(Float64Index([1.0, np.nan]).isin([pd.NaT]), np.array([False, False])) def test_isin_level_kwarg(self): def check_idx(idx): values = idx.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, idx.isin(values, level=0)) tm.assert_numpy_array_equal(expected, idx.isin(values, level=-1)) pytest.raises(IndexError, idx.isin, values, level=1) pytest.raises(IndexError, idx.isin, values, level=10) pytest.raises(IndexError, idx.isin, values, level=-2) pytest.raises(KeyError, idx.isin, values, level=1.0) pytest.raises(KeyError, idx.isin, values, level='foobar') idx.name = 'foobar' tm.assert_numpy_array_equal(expected, idx.isin(values, level='foobar')) pytest.raises(KeyError, idx.isin, values, level='xyzzy') pytest.raises(KeyError, idx.isin, values, level=np.nan) check_idx(Index(['qux', 'baz', 'foo', 'bar'])) # Float64Index overrides isin, so must be checked separately check_idx(Float64Index([1.0, 2.0, 3.0, 4.0])) def test_boolean_cmp(self): values = [1, 2, 3, 4] idx = Index(values) res = (idx == values) tm.assert_numpy_array_equal(res, np.array( [True, True, True, True], dtype=bool)) def test_get_level_values(self): result = self.strIndex.get_level_values(0) tm.assert_index_equal(result, self.strIndex) def test_slice_keep_name(self): idx = Index(['a', 'b'], name='asdf') assert idx.name == idx[1:].name def test_join_self(self): # instance attributes of the form self.<name>Index indices = 'unicode', 'str', 'date', 'int', 'float' kinds = 'outer', 'inner', 'left', 'right' for index_kind in indices: res = getattr(self, '{0}Index'.format(index_kind)) for kind in kinds: joined = res.join(res, how=kind) assert res is joined def test_str_attribute(self): # GH9068 methods = ['strip', 'rstrip', 'lstrip'] idx = Index([' jack', 'jill ', ' jesse ', 'frank']) for method in methods: expected = Index([getattr(str, method)(x) for x in idx.values]) tm.assert_index_equal( getattr(Index.str, method)(idx.str), expected) # create a few instances that are not able to use .str accessor indices = [Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([('foo', '1'), ('bar', '3')]), PeriodIndex(start='2000', end='2010', freq='A')] for idx in indices: with tm.assert_raises_regex(AttributeError, 'only use .str accessor'): idx.str.repeat(2) idx = Index(['a b c', 'd e', 'f']) expected = Index([['a', 'b', 'c'], ['d', 'e'], ['f']]) tm.assert_index_equal(idx.str.split(), expected) tm.assert_index_equal(idx.str.split(expand=False), expected) expected = MultiIndex.from_tuples([('a', 'b', 'c'), ('d', 'e', np.nan), ('f', np.nan, np.nan)]) tm.assert_index_equal(idx.str.split(expand=True), expected) # test boolean case, should return np.array instead of boolean Index idx = Index(['a1', 'a2', 'b1', 'b2']) expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(idx.str.startswith('a'), expected) assert isinstance(idx.str.startswith('a'), np.ndarray) s = Series(range(4), index=idx) expected = Series(range(2), index=['a1', 'a2']) tm.assert_series_equal(s[s.index.str.startswith('a')], expected) def test_tab_completion(self): # GH 9910 idx = Index(list('abcd')) assert 'str' in dir(idx) idx = Index(range(4)) assert 'str' not in dir(idx) def test_indexing_doesnt_change_class(self): idx = Index([1, 2, 3, 'a', 'b', 'c']) assert idx[1:3].identical(pd.Index([2, 3], dtype=np.object_)) assert idx[[0, 1]].identical(pd.Index([1, 2], dtype=np.object_)) def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected) def test_nan_first_take_datetime(self): idx = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) res = idx.take([-1, 0, 1]) exp = Index([idx[-1], idx[0], idx[1]]) tm.assert_index_equal(res, exp) def test_take_fill_value(self): # GH 12631 idx = pd.Index(list('ABC'), name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.Index(list('BAC'), name='xxx') tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.Index(['B', 'A', np.nan], name='xxx') tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.Index(['B', 'A', 'C'], name='xxx') tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def test_reshape_raise(self): msg = "reshaping is not supported" idx = pd.Index([0, 1, 2]) tm.assert_raises_regex(NotImplementedError, msg, idx.reshape, idx.shape) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self): # GH6552 idx = pd.Index([0, 1, 2]) dt_idx = pd.date_range('20130101', periods=3) idx.name = None assert idx.reindex([])[0].name is None assert idx.reindex(np.array([]))[0].name is None assert idx.reindex(idx.tolist())[0].name is None assert idx.reindex(idx.tolist()[:-1])[0].name is None assert idx.reindex(idx.values)[0].name is None assert idx.reindex(idx.values[:-1])[0].name is None # Must preserve name even if dtype changes. assert idx.reindex(dt_idx.values)[0].name is None assert idx.reindex(dt_idx.tolist())[0].name is None idx.name = 'foobar' assert idx.reindex([])[0].name == 'foobar' assert idx.reindex(np.array([]))[0].name == 'foobar' assert idx.reindex(idx.tolist())[0].name == 'foobar' assert idx.reindex(idx.tolist()[:-1])[0].name == 'foobar' assert idx.reindex(idx.values)[0].name == 'foobar' assert idx.reindex(idx.values[:-1])[0].name == 'foobar' # Must preserve name even if dtype changes. assert idx.reindex(dt_idx.values)[0].name == 'foobar' assert idx.reindex(dt_idx.tolist())[0].name == 'foobar' def test_reindex_preserves_type_if_target_is_empty_list_or_array(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type assert get_reindex_type([]) == np.object_ assert get_reindex_type(np.array([])) == np.object_ assert get_reindex_type(np.array([], dtype=np.int64)) == np.object_ def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self): # GH7774 idx = pd.Index(list('abc')) def get_reindex_type(target): return idx.reindex(target)[0].dtype.type assert get_reindex_type(pd.Int64Index([])) == np.int64 assert get_reindex_type(pd.Float64Index([])) == np.float64 assert get_reindex_type(pd.DatetimeIndex([])) == np.datetime64 reindexed = idx.reindex(pd.MultiIndex( [pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] assert reindexed.levels[0].dtype.type == np.int64 assert reindexed.levels[1].dtype.type == np.float64 def test_groupby(self): idx = Index(range(5)) groups = idx.groupby(np.array([1, 1, 2, 2, 2])) exp = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])} tm.assert_dict_equal(groups, exp) def test_equals_op_multiindex(self): # GH9785 # test comparisons of multiindex from pandas.compat import StringIO df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) tm.assert_numpy_array_equal(df.index == df.index, np.array([True, True])) mi1 = MultiIndex.from_tuples([(1, 2), (4, 5)]) tm.assert_numpy_array_equal(df.index == mi1, np.array([True, True])) mi2 = MultiIndex.from_tuples([(1, 2), (4, 6)]) tm.assert_numpy_array_equal(df.index == mi2, np.array([True, False])) mi3 = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) with tm.assert_raises_regex(ValueError, "Lengths must match"): df.index == mi3 index_a = Index(['foo', 'bar', 'baz']) with tm.assert_raises_regex(ValueError, "Lengths must match"): df.index == index_a tm.assert_numpy_array_equal(index_a == mi3, np.array([False, False, False])) def test_conversion_preserves_name(self): # GH 10875 i = pd.Index(['01:02:03', '01:02:04'], name='label') assert i.name == pd.to_datetime(i).name assert i.name == pd.to_timedelta(i).name def test_string_index_repr(self): # py3/py2 repr can differ because of "u" prefix # which also affects to displayed element size if PY3: coerce = lambda x: x else: coerce = unicode # noqa # short idx = pd.Index(['a', 'bb', 'ccc']) if PY3: expected = u"""Index(['a', 'bb', 'ccc'], dtype='object')""" assert repr(idx) == expected else: expected = u"""Index([u'a', u'bb', u'ccc'], dtype='object')""" assert coerce(idx) == expected # multiple lines idx = pd.Index(['a', 'bb', 'ccc'] * 10) if PY3: expected = u"""\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object')""" assert repr(idx) == expected else: expected = u"""\ Index([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], dtype='object')""" assert coerce(idx) == expected # truncated idx = pd.Index(['a', 'bb', 'ccc'] * 100) if PY3: expected = u"""\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', ... 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object', length=300)""" assert repr(idx) == expected else: expected = u"""\ Index([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', ... u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], dtype='object', length=300)""" assert coerce(idx) == expected # short idx = pd.Index([u'あ', u'いい', u'ううう']) if PY3: expected = u"""Index(['あ', 'いい', 'ううう'], dtype='object')""" assert repr(idx) == expected else: expected = u"""Index([u'あ', u'いい', u'ううう'], dtype='object')""" assert coerce(idx) == expected # multiple lines idx = pd.Index([u'あ', u'いい', u'ううう'] * 10) if PY3: expected = (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう'],\n" u" dtype='object')") assert repr(idx) == expected else: expected = (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', u'あ', " u"u'いい', u'ううう', u'あ', u'いい', u'ううう'],\n" u" dtype='object')") assert coerce(idx) == expected # truncated idx = pd.Index([u'あ', u'いい', u'ううう'] * 100) if PY3: expected = (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ',\n" u" ...\n" u" 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう'],\n" u" dtype='object', length=300)") assert repr(idx) == expected else: expected = (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい', u'ううう', u'あ',\n" u" ...\n" u" u'ううう', u'あ', u'いい', u'ううう', u'あ', " u"u'いい', u'ううう', u'あ', u'いい', u'ううう'],\n" u" dtype='object', length=300)") assert coerce(idx) == expected # Emable Unicode option ----------------------------------------- with cf.option_context('display.unicode.east_asian_width', True): # short idx = pd.Index([u'あ', u'いい', u'ううう']) if PY3: expected = (u"Index(['あ', 'いい', 'ううう'], " u"dtype='object')") assert repr(idx) == expected else: expected = (u"Index([u'あ', u'いい', u'ううう'], " u"dtype='object')") assert coerce(idx) == expected # multiple lines idx = pd.Index([u'あ', u'いい', u'ううう'] * 10) if PY3: expected = (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう'],\n" u" dtype='object')""") assert repr(idx) == expected else: expected = (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう'],\n" u" dtype='object')") assert coerce(idx) == expected # truncated idx = pd.Index([u'あ', u'いい', u'ううう'] * 100) if PY3: expected = (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ',\n" u" ...\n" u" 'ううう', 'あ', 'いい', 'ううう', 'あ', " u"'いい', 'ううう', 'あ', 'いい',\n" u" 'ううう'],\n" u" dtype='object', length=300)") assert repr(idx) == expected else: expected = (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ',\n" u" ...\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう'],\n" u" dtype='object', length=300)") assert coerce(idx) == expected class TestMixedIntIndex(Base): # Mostly the tests from common.py for which the results differ # in py2 and py3 because ints and strings are uncomparable in py3 # (GH 13514) _holder = Index def setup_method(self, method): self.indices = dict(mixedIndex=Index([0, 'a', 1, 'b', 2, 'c'])) self.setup_indices() def create_index(self): return self.mixedIndex def test_argsort(self): idx = self.create_index() if PY36: with tm.assert_raises_regex(TypeError, "'>' not supported"): result = idx.argsort() elif PY3: with tm.assert_raises_regex(TypeError, "unorderable types"): result = idx.argsort() else: result = idx.argsort() expected = np.array(idx).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self): idx = self.create_index() if PY36: with tm.assert_raises_regex(TypeError, "'>' not supported"): result = np.argsort(idx) elif PY3: with tm.assert_raises_regex(TypeError, "unorderable types"): result = np.argsort(idx) else: result = np.argsort(idx) expected = idx.argsort() tm.assert_numpy_array_equal(result, expected) def test_copy_name(self): # Check that "name" argument passed at initialization is honoured # GH12309 idx = self.create_index() first = idx.__class__(idx, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ: assert idx.equals(first) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) warning_type = RuntimeWarning if PY3 else None with tm.assert_produces_warning(warning_type): # Python 3: Unorderable types s3 = s1 * s2 assert s3.index.name == 'mario' def test_copy_name2(self): # Check that adding a "name" parameter to the copy is honored # GH14302 idx = pd.Index([1, 2], name='MyName') idx1 = idx.copy() assert idx.equals(idx1) assert idx.name == 'MyName' assert idx1.name == 'MyName' idx2 = idx.copy(name='NewName') assert idx.equals(idx2) assert idx.name == 'MyName' assert idx2.name == 'NewName' idx3 = idx.copy(names=['NewName']) assert idx.equals(idx3) assert idx.name == 'MyName' assert idx.names == ['MyName'] assert idx3.name == 'NewName' assert idx3.names == ['NewName'] def test_union_base(self): idx = self.create_index() first = idx[3:] second = idx[:5] if PY3: with tm.assert_produces_warning(RuntimeWarning): # unorderable types result = first.union(second) expected = Index(['b', 2, 'c', 0, 'a', 1]) tm.assert_index_equal(result, expected) else: result = first.union(second) expected = Index(['b', 2, 'c', 0, 'a', 1]) tm.assert_index_equal(result, expected) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if PY3: with tm.assert_produces_warning(RuntimeWarning): # unorderable types result = first.union(case) assert tm.equalContents(result, idx) else: result = first.union(case) assert tm.equalContents(result, idx) def test_intersection_base(self): # (same results for py2 and py3 but sortedness not tested elsewhere) idx = self.create_index() first = idx[:5] second = idx[:3] result = first.intersection(second) expected = Index([0, 'a', 1]) tm.assert_index_equal(result, expected) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) assert tm.equalContents(result, second) def test_difference_base(self): # (same results for py2 and py3 but sortedness not tested elsewhere) idx = self.create_index() first = idx[:4] second = idx[3:] result = first.difference(second) expected = Index([0, 1, 'a']) tm.assert_index_equal(result, expected) def test_symmetric_difference(self): # (same results for py2 and py3 but sortedness not tested elsewhere) idx = self.create_index() first = idx[:4] second = idx[3:] result = first.symmetric_difference(second) expected = Index([0, 1, 2, 'a', 'c']) tm.assert_index_equal(result, expected) def test_logical_compat(self): idx = self.create_index() assert idx.all() == idx.values.all() assert idx.any() == idx.values.any() def test_dropna(self): # GH 6194 for dtype in [None, object, 'category']: idx = pd.Index([1, 2, 3], dtype=dtype) tm.assert_index_equal(idx.dropna(), idx) idx = pd.Index([1., 2., 3.], dtype=dtype) tm.assert_index_equal(idx.dropna(), idx) nanidx = pd.Index([1., 2., np.nan, 3.], dtype=dtype) tm.assert_index_equal(nanidx.dropna(), idx) idx = pd.Index(['A', 'B', 'C'], dtype=dtype) tm.assert_index_equal(idx.dropna(), idx) nanidx = pd.Index(['A', np.nan, 'B', 'C'], dtype=dtype) tm.assert_index_equal(nanidx.dropna(), idx) tm.assert_index_equal(nanidx.dropna(how='any'), idx) tm.assert_index_equal(nanidx.dropna(how='all'), idx) idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03']) tm.assert_index_equal(idx.dropna(), idx) nanidx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', pd.NaT]) tm.assert_index_equal(nanidx.dropna(), idx) idx = pd.TimedeltaIndex(['1 days', '2 days', '3 days']) tm.assert_index_equal(idx.dropna(), idx) nanidx = pd.TimedeltaIndex([pd.NaT, '1 days', '2 days', '3 days', pd.NaT]) tm.assert_index_equal(nanidx.dropna(), idx) idx = pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M') tm.assert_index_equal(idx.dropna(), idx) nanidx = pd.PeriodIndex(['2012-02', '2012-04', 'NaT', '2012-05'], freq='M') tm.assert_index_equal(nanidx.dropna(), idx) msg = "invalid how option: xxx" with tm.assert_raises_regex(ValueError, msg): pd.Index([1, 2, 3]).dropna(how='xxx') def test_get_combined_index(self): result = _get_combined_index([]) tm.assert_index_equal(result, Index([])) def test_repeat(self): repeats = 2 idx = pd.Index([1, 2, 3]) expected = pd.Index([1, 1, 2, 2, 3, 3]) result = idx.repeat(repeats) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = idx.repeat(n=repeats) tm.assert_index_equal(result, expected) def test_is_monotonic_na(self): examples = [pd.Index([np.nan]), pd.Index([np.nan, 1]), pd.Index([1, 2, np.nan]), pd.Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT']), ] for index in examples: assert not index.is_monotonic_increasing assert not index.is_monotonic_decreasing def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): r = repr(pd.Index(np.arange(1000))) assert len(r) < 200 assert "..." in r def test_int_name_format(self): index = Index(['a', 'b', 'c'], name=0) s = Series(lrange(3), index) df = DataFrame(lrange(3), index=index) repr(s) repr(df) def test_print_unicode_columns(self): df = pd.DataFrame({u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError def test_unicode_string_with_unicode(self): idx = Index(lrange(1000)) if PY3: str(idx) else: text_type(idx) def test_bytestring_with_unicode(self): idx = Index(lrange(1000)) if PY3: bytes(idx) else: str(idx) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) res = i2.intersection(i1) assert len(res) == 0
mit
YihaoLu/statsmodels
examples/python/robust_models_1.py
25
8588
## M-Estimators for Robust Linear Modeling from __future__ import print_function import numpy as np from scipy import stats import matplotlib.pyplot as plt import statsmodels.api as sm # * An M-estimator minimizes the function # # $$Q(e_i, \rho) = \sum_i~\rho \left (\frac{e_i}{s}\right )$$ # # where $\rho$ is a symmetric function of the residuals # # * The effect of $\rho$ is to reduce the influence of outliers # * $s$ is an estimate of scale. # * The robust estimates $\hat{\beta}$ are computed by the iteratively re-weighted least squares algorithm # * We have several choices available for the weighting functions to be used norms = sm.robust.norms def plot_weights(support, weights_func, xlabels, xticks): fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.plot(support, weights_func(support)) ax.set_xticks(xticks) ax.set_xticklabels(xlabels, fontsize=16) ax.set_ylim(-.1, 1.1) return ax #### Andrew's Wave help(norms.AndrewWave.weights) a = 1.339 support = np.linspace(-np.pi*a, np.pi*a, 100) andrew = norms.AndrewWave(a=a) plot_weights(support, andrew.weights, ['$-\pi*a$', '0', '$\pi*a$'], [-np.pi*a, 0, np.pi*a]); #### Hampel's 17A help(norms.Hampel.weights) c = 8 support = np.linspace(-3*c, 3*c, 1000) hampel = norms.Hampel(a=2., b=4., c=c) plot_weights(support, hampel.weights, ['3*c', '0', '3*c'], [-3*c, 0, 3*c]); #### Huber's t help(norms.HuberT.weights) t = 1.345 support = np.linspace(-3*t, 3*t, 1000) huber = norms.HuberT(t=t) plot_weights(support, huber.weights, ['-3*t', '0', '3*t'], [-3*t, 0, 3*t]); #### Least Squares help(norms.LeastSquares.weights) support = np.linspace(-3, 3, 1000) lst_sq = norms.LeastSquares() plot_weights(support, lst_sq.weights, ['-3', '0', '3'], [-3, 0, 3]); #### Ramsay's Ea help(norms.RamsayE.weights) a = .3 support = np.linspace(-3*a, 3*a, 1000) ramsay = norms.RamsayE(a=a) plot_weights(support, ramsay.weights, ['-3*a', '0', '3*a'], [-3*a, 0, 3*a]); #### Trimmed Mean help(norms.TrimmedMean.weights) c = 2 support = np.linspace(-3*c, 3*c, 1000) trimmed = norms.TrimmedMean(c=c) plot_weights(support, trimmed.weights, ['-3*c', '0', '3*c'], [-3*c, 0, 3*c]); #### Tukey's Biweight help(norms.TukeyBiweight.weights) c = 4.685 support = np.linspace(-3*c, 3*c, 1000) tukey = norms.TukeyBiweight(c=c) plot_weights(support, tukey.weights, ['-3*c', '0', '3*c'], [-3*c, 0, 3*c]); #### Scale Estimators # * Robust estimates of the location x = np.array([1, 2, 3, 4, 500]) # * The mean is not a robust estimator of location x.mean() # * The median, on the other hand, is a robust estimator with a breakdown point of 50% np.median(x) # * Analagously for the scale # * The standard deviation is not robust x.std() # Median Absolute Deviation # # $$ median_i |X_i - median_j(X_j)|) $$ # Standardized Median Absolute Deviation is a consistent estimator for $\hat{\sigma}$ # # $$\hat{\sigma}=K \cdot MAD$$ # # where $K$ depends on the distribution. For the normal distribution for example, # # $$K = \Phi^{-1}(.75)$$ stats.norm.ppf(.75) print(x) sm.robust.scale.stand_mad(x) np.array([1,2,3,4,5.]).std() # * The default for Robust Linear Models is MAD # * another popular choice is Huber's proposal 2 np.random.seed(12345) fat_tails = stats.t(6).rvs(40) kde = sm.nonparametric.KDE(fat_tails) kde.fit() fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.plot(kde.support, kde.density); print(fat_tails.mean(), fat_tails.std()) print(stats.norm.fit(fat_tails)) print(stats.t.fit(fat_tails, f0=6)) huber = sm.robust.scale.Huber() loc, scale = huber(fat_tails) print(loc, scale) sm.robust.stand_mad(fat_tails) sm.robust.stand_mad(fat_tails, c=stats.t(6).ppf(.75)) sm.robust.scale.mad(fat_tails) #### Duncan's Occupational Prestige data - M-estimation for outliers from statsmodels.graphics.api import abline_plot from statsmodels.formula.api import ols, rlm prestige = sm.datasets.get_rdataset("Duncan", "car", cache=True).data print(prestige.head(10)) fig = plt.figure(figsize=(12,12)) ax1 = fig.add_subplot(211, xlabel='Income', ylabel='Prestige') ax1.scatter(prestige.income, prestige.prestige) xy_outlier = prestige.ix['minister'][['income','prestige']] ax1.annotate('Minister', xy_outlier, xy_outlier+1, fontsize=16) ax2 = fig.add_subplot(212, xlabel='Education', ylabel='Prestige') ax2.scatter(prestige.education, prestige.prestige); ols_model = ols('prestige ~ income + education', prestige).fit() print(ols_model.summary()) infl = ols_model.get_influence() student = infl.summary_frame()['student_resid'] print(student) print(student.ix[np.abs(student) > 2]) print(infl.summary_frame().ix['minister']) sidak = ols_model.outlier_test('sidak') sidak.sort('unadj_p', inplace=True) print(sidak) fdr = ols_model.outlier_test('fdr_bh') fdr.sort('unadj_p', inplace=True) print(fdr) rlm_model = rlm('prestige ~ income + education', prestige).fit() print(rlm_model.summary()) print(rlm_model.weights) #### Hertzprung Russell data for Star Cluster CYG 0B1 - Leverage Points # * Data is on the luminosity and temperature of 47 stars in the direction of Cygnus. dta = sm.datasets.get_rdataset("starsCYG", "robustbase", cache=True).data from matplotlib.patches import Ellipse fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111, xlabel='log(Temp)', ylabel='log(Light)', title='Hertzsprung-Russell Diagram of Star Cluster CYG OB1') ax.scatter(*dta.values.T) # highlight outliers e = Ellipse((3.5, 6), .2, 1, alpha=.25, color='r') ax.add_patch(e); ax.annotate('Red giants', xy=(3.6, 6), xytext=(3.8, 6), arrowprops=dict(facecolor='black', shrink=0.05, width=2), horizontalalignment='left', verticalalignment='bottom', clip_on=True, # clip to the axes bounding box fontsize=16, ) # annotate these with their index for i,row in dta.ix[dta['log.Te'] < 3.8].iterrows(): ax.annotate(i, row, row + .01, fontsize=14) xlim, ylim = ax.get_xlim(), ax.get_ylim() from IPython.display import Image Image(filename='star_diagram.png') y = dta['log.light'] X = sm.add_constant(dta['log.Te'], prepend=True) ols_model = sm.OLS(y, X).fit() abline_plot(model_results=ols_model, ax=ax) rlm_mod = sm.RLM(y, X, sm.robust.norms.TrimmedMean(.5)).fit() abline_plot(model_results=rlm_mod, ax=ax, color='red') # * Why? Because M-estimators are not robust to leverage points. infl = ols_model.get_influence() h_bar = 2*(ols_model.df_model + 1 )/ols_model.nobs hat_diag = infl.summary_frame()['hat_diag'] hat_diag.ix[hat_diag > h_bar] sidak2 = ols_model.outlier_test('sidak') sidak2.sort('unadj_p', inplace=True) print(sidak2) fdr2 = ols_model.outlier_test('fdr_bh') fdr2.sort('unadj_p', inplace=True) print(fdr2) # * Let's delete that line del ax.lines[-1] weights = np.ones(len(X)) weights[X[X['log.Te'] < 3.8].index.values - 1] = 0 wls_model = sm.WLS(y, X, weights=weights).fit() abline_plot(model_results=wls_model, ax=ax, color='green') # * MM estimators are good for this type of problem, unfortunately, we don't yet have these yet. # * It's being worked on, but it gives a good excuse to look at the R cell magics in the notebook. yy = y.values[:,None] xx = X['log.Te'].values[:,None] get_ipython().magic(u'load_ext rmagic') get_ipython().magic(u'R library(robustbase)') get_ipython().magic(u'Rpush yy xx') get_ipython().magic(u'R mod <- lmrob(yy ~ xx);') get_ipython().magic(u'R params <- mod$coefficients;') get_ipython().magic(u'Rpull params') get_ipython().magic(u'R print(mod)') print(params) abline_plot(intercept=params[0], slope=params[1], ax=ax, color='green') #### Exercise: Breakdown points of M-estimator np.random.seed(12345) nobs = 200 beta_true = np.array([3, 1, 2.5, 3, -4]) X = np.random.uniform(-20,20, size=(nobs, len(beta_true)-1)) # stack a constant in front X = sm.add_constant(X, prepend=True) # np.c_[np.ones(nobs), X] mc_iter = 500 contaminate = .25 # percentage of response variables to contaminate all_betas = [] for i in range(mc_iter): y = np.dot(X, beta_true) + np.random.normal(size=200) random_idx = np.random.randint(0, nobs, size=int(contaminate * nobs)) y[random_idx] = np.random.uniform(-750, 750) beta_hat = sm.RLM(y, X).fit().params all_betas.append(beta_hat) all_betas = np.asarray(all_betas) se_loss = lambda x : np.linalg.norm(x, ord=2)**2 se_beta = map(se_loss, all_betas - beta_true) ##### Squared error loss np.array(se_beta).mean() all_betas.mean(0) beta_true se_loss(all_betas.mean(0) - beta_true)
bsd-3-clause
jorahn/keras-wide-n-deep
wide_deep_keras.py
1
2717
import pandas as pd from keras.models import Sequential from keras.layers import Dense, Merge from sklearn.preprocessing import MinMaxScaler COLUMNS = [ "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket" ] LABEL_COLUMN = "label" CATEGORICAL_COLUMNS = [ "workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country" ] CONTINUOUS_COLUMNS = [ "age", "education_num", "capital_gain", "capital_loss", "hours_per_week" ] def load(filename): with open(filename, 'r') as f: skiprows = 1 if 'test' in filename else 0 df = pd.read_csv( f, names=COLUMNS, skipinitialspace=True, skiprows=skiprows, engine='python' ) df = df.dropna(how='any', axis=0) return df def preprocess(df): df[LABEL_COLUMN] = df['income_bracket'].apply(lambda x: ">50K" in x).astype(int) df.pop("income_bracket") y = df[LABEL_COLUMN].values df.pop(LABEL_COLUMN) df = pd.get_dummies(df, columns=[x for x in CATEGORICAL_COLUMNS]) # TODO: select features for wide & deep parts # TODO: transformations (cross-products) # from sklearn.preprocessing import PolynomialFeatures # X = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False).fit_transform(X) df = pd.DataFrame(MinMaxScaler().fit_transform(df), columns=df.columns) X = df.values return X, y def main(): df_train = load('adult.data') df_test = load('adult.test') df = pd.concat([df_train, df_test]) train_len = len(df_train) X, y = preprocess(df) X_train = X[:train_len] y_train = y[:train_len] X_test = X[train_len:] y_test = y[train_len:] wide = Sequential() wide.add(Dense(1, input_dim=X_train.shape[1])) deep = Sequential() # TODO: add embedding deep.add(Dense(input_dim=X_train.shape[1], output_dim=100, activation='relu')) deep.add(Dense(100, activation='relu')) deep.add(Dense(50, activation='relu')) deep.add(Dense(1, activation='sigmoid')) model = Sequential() model.add(Merge([wide, deep], mode='concat', concat_axis=1)) model.add(Dense(1, activation='sigmoid')) model.compile( optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'] ) model.fit([X_train, X_train], y_train, nb_epoch=10, batch_size=32) loss, accuracy = model.evaluate([X_test, X_test], y_test) print('\n', 'test accuracy:', accuracy) if __name__ == '__main__': main()
mit
francesco-mannella/dmp-esn
DMP/stulp/src/dmp/demos/demoDmpContextualGoal.py
2
2934
## \file demoDmpContextual.py ## \author Freek Stulp ## \brief Visualizes results of demoDmpContextual.cpp ## ## \ingroup Demos ## \ingroup Dmps import numpy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import os, sys, subprocess lib_path = os.path.abspath('../plotting') sys.path.append(lib_path) from plotTrajectory import plotTrajectoryFromFile from plotDmp import plotDmp executable = "../../../bin/demoDmpContextualGoal" if (not os.path.isfile(executable)): print "" print "ERROR: Executable '"+executable+"' does not exist." print "Please call 'make install' in the build directory first." print "" sys.exit(-1); # Call the executable with the directory to which results should be written main_directory = "/tmp/demoDmpContextualGoal" # Test both 1-step and 2-step Dmps for n_dmp_contextual_step in [1, 2]: print "_______________________________________________________________" print "Demo for "+str(n_dmp_contextual_step)+"-step contextual Dmp" directory = main_directory + "/Step"+str(n_dmp_contextual_step) command = executable+" "+directory+" "+str(n_dmp_contextual_step) print command subprocess.call(command, shell=True) print "Plotting" task_parameters_demos = numpy.loadtxt(directory+"/task_parameters_demos.txt") task_parameters_repros = numpy.loadtxt(directory+"/task_parameters_repros.txt") n_demos = len(task_parameters_demos) n_repros = len(task_parameters_repros) fig = plt.figure(n_dmp_contextual_step) fig.suptitle(str(n_dmp_contextual_step)+"-step Contextual Dmp") axs = [ fig.add_subplot(131), fig.add_subplot(132), fig.add_subplot(133) ] for i_demo in range(n_demos): filename = "demonstration0"+str(i_demo); lines = plotTrajectoryFromFile(directory+"/"+filename+".txt",axs) plt.setp(lines, linestyle='-', linewidth=4, color=(0.7,0.7,1.0), label=filename) for i_repro in range(n_repros): filename = "reproduced0"+str(i_repro); lines = plotTrajectoryFromFile(directory+"/"+filename+".txt",axs) plt.setp(lines, linestyle='-', linewidth=1, color=(0.5,0.0,0.0), label=filename) #ax = fig.add_subplot(144) #inputs = numpy.loadtxt(directory+'/inputs.txt') #targets = numpy.loadtxt(directory+'/targets.txt') #lines = ax.plot(inputs[:,0],targets,linestyle='-',color='red') #ax.set_xlabel('input') #ax.set_ylabel('targets') #ax = fig.add_subplot(155) #for i_repro in range(n_repros): # filename = directory+"/"+"reproduced_forcingterm0"+str(i_repro)+".txt"; # forcingterm = numpy.loadtxt(filename); # lines = ax.plot(numpy.linspace(0,1,len(forcingterm)),forcingterm) # plt.setp(lines, linestyle='-', linewidth=2, color=(0.0,0.0,0.5), label=filename) #ax.set_xlabel('phase') #ax.set_ylabel('forcing term') #plt.legend() plt.show()
gpl-2.0
vdrhtc/Measurement-automation
scripts/photon_wave_mixing/helpers.py
1
3114
from scipy.ndimage import gaussian_filter1d from scipy.optimize import curve_fit import scipy.fft as fp import numpy as np import pickle import matplotlib.pyplot as plt import lib.plotting as plt2 def parse_probe_qubit_sts(freqs, S21): amps = np.abs(S21) frequencies = freqs[gaussian_filter1d(amps, sigma=1).argmin(axis=-1)] return frequencies def parse_sps_sts(freqs, S21): amps = np.abs(S21) frequencies = freqs[gaussian_filter1d(amps, sigma=10).argmax(axis=-1)] return frequencies def qubit_fit_func(x, a, b, c): return a * (x - b)**2 + c def fit_probe_qubit_sts(filename, plot=True): with open(filename, 'rb') as f: data = pickle.load(f) currents = data['bias, [A]'] freqs = data['Frequency [Hz]'] S21 = data['data'] frequencies = parse_probe_qubit_sts(freqs, S21) popt, conv = curve_fit(qubit_fit_func, currents, frequencies, p0=(-1e16, -2.5e-3, 5.15e9)) if plot: xx, yy = np.meshgrid(currents, freqs) plt2.plot_2D(xx, yy, np.transpose(gaussian_filter1d(np.abs(S21), sigma=20))) plt.figure() plt.plot(currents, frequencies, 'o') plt.plot(currents, qubit_fit_func(currents, *popt)) plt.margins(x=0) plt.xlabel("Current, A") plt.ylabel("Qubit if_freq, Hz") plt.show() return popt def fit_sps_sts(filename, plot=True): with open(filename, 'rb') as f: data = pickle.load(f) currents = data['bias, [A]'] freqs = data['Frequency [Hz]'] S21 = data['data'] frequencies = parse_sps_sts(freqs, S21) popt, conv = curve_fit(qubit_fit_func, currents, frequencies, p0=(-1e15, -5e-4, 5.15e9)) if plot: xx, yy = np.meshgrid(currents, freqs) plt2.plot_2D(xx, yy, np.transpose(gaussian_filter1d(np.abs(S21), sigma=10))) plt.figure() plt.plot(currents, frequencies, 'o') plt.plot(currents, qubit_fit_func(currents, *popt)) plt.margins(x=0) plt.xlabel("Current, A") plt.ylabel("Qubit if_freq, Hz") plt.show() return popt def get_current(frequency, a, b, c): current = b + np.sqrt((frequency - c) / a) return current def remove_outliers(): pass def get_signal_amplitude(downconverted_trace): N = len(downconverted_trace) return np.abs(fp.fft(downconverted_trace)[0] / N) def get_noise(downconverted_trace): return np.std(downconverted_trace) def measure_snr(devices_dict): # turn off microwave devices_dict['mw'].set_output_state("ON") # turn off AWG devices_dict['awg'].reset() devices_dict['awg'].synchronize_channels(channelI, channelQ) devices_dict['awg'].trigger_output_config(channel=channelI, trig_length=100) devices_dict['awg'].stop_AWG(channel=channelI) devices_dict['iqawg'].set_parameters({"calibration": devices_dict['upconv_cal']}) devices_dict['iqawg'].output_IQ_waves_from_calibration( amp_coeffs=(0.5, 0.5))
gpl-3.0
arahuja/scikit-learn
examples/linear_model/plot_ridge_path.py
254
1655
""" =========================================================== Plot Ridge coefficients as a function of the regularization =========================================================== Shows the effect of collinearity in the coefficients of an estimator. .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients exhibit big oscillations. """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = plt.gca() ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm']) ax.plot(alphas, coefs) ax.set_xscale('log') ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
moutai/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
28
3652
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"foo": "bar", "dada": 42, "tzara": 37}, {"foo": "baz", "gaga": u"string1"}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_feature_hasher_pairs_with_string_values(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": "a"}, {"baz": u"abc", "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 1], x1_nz) assert_equal([1, 1, 4], x2_nz) raw_X = (iter(d.items()) for d in [{"bax": "abc"}, {"bax": "abc"}]) x1, x2 = h.transform(raw_X).toarray() x1_nz = np.abs(x1[x1 != 0]) x2_nz = np.abs(x2[x2 != 0]) assert_equal([1], x1_nz) assert_equal([1], x2_nz) assert_equal(x1, x2) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
ashhher3/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
48
4949
import itertools import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) assert_array_almost_equal(D1, D2) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
Adai0808/scikit-learn
sklearn/tree/tests/test_export.py
130
9950
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
WangWenjun559/Weiss
summary/sumy/sklearn/cluster/tests/test_dbscan.py
114
11393
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.ones((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
apache-2.0
paladin74/neural-network-animation
matplotlib/testing/decorators.py
11
11990
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import functools import gc import os import sys import shutil import warnings import unittest import nose import numpy as np import matplotlib.tests import matplotlib.units from matplotlib import cbook from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib import ft2font from matplotlib.testing.noseclasses import KnownFailureTest, \ KnownFailureDidNotFailTest, ImageComparisonFailure from matplotlib.testing.compare import comparable_formats, compare_images, \ make_test_filename def knownfailureif(fail_condition, msg=None, known_exception_class=None ): """ Assume a will fail if *fail_condition* is True. *fail_condition* may also be False or the string 'indeterminate'. *msg* is the error message displayed for the test. If *known_exception_class* is not None, the failure is only known if the exception is an instance of this class. (Default = None) """ # based on numpy.testing.dec.knownfailureif if msg is None: msg = 'Test known to fail' def known_fail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def failer(*args, **kwargs): try: # Always run the test (to generate images). result = f(*args, **kwargs) except Exception as err: if fail_condition: if known_exception_class is not None: if not isinstance(err,known_exception_class): # This is not the expected exception raise # (Keep the next ultra-long comment so in shows in console.) raise KnownFailureTest(msg) # An error here when running nose means that you don't have the matplotlib.testing.noseclasses:KnownFailure plugin in use. else: raise if fail_condition and fail_condition != 'indeterminate': raise KnownFailureDidNotFailTest(msg) return result return nose.tools.make_decorator(f)(failer) return known_fail_decorator def _do_cleanup(original_units_registry): plt.close('all') gc.collect() matplotlib.tests.setup() matplotlib.units.registry.clear() matplotlib.units.registry.update(original_units_registry) warnings.resetwarnings() # reset any warning filters set in tests class CleanupTest(object): @classmethod def setup_class(cls): cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def teardown_class(cls): _do_cleanup(cls.original_units_registry) def test(self): self._func() class CleanupTestCase(unittest.TestCase): '''A wrapper for unittest.TestCase that includes cleanup operations''' @classmethod def setUpClass(cls): import matplotlib.units cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def tearDownClass(cls): _do_cleanup(cls.original_units_registry) def cleanup(func): @functools.wraps(func) def wrapped_function(*args, **kwargs): original_units_registry = matplotlib.units.registry.copy() try: func(*args, **kwargs) finally: _do_cleanup(original_units_registry) return wrapped_function def check_freetype_version(ver): if ver is None: return True from distutils import version if isinstance(ver, six.string_types): ver = (ver, ver) ver = [version.StrictVersion(x) for x in ver] found = version.StrictVersion(ft2font.__freetype_version__) return found >= ver[0] and found <= ver[1] class ImageComparisonTest(CleanupTest): @classmethod def setup_class(cls): CleanupTest.setup_class() cls._func() @staticmethod def remove_text(figure): figure.suptitle("") for ax in figure.get_axes(): ax.set_title("") ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_major_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) try: ax.zaxis.set_major_formatter(ticker.NullFormatter()) ax.zaxis.set_minor_formatter(ticker.NullFormatter()) except AttributeError: pass def test(self): baseline_dir, result_dir = _image_directories(self._func) for fignum, baseline in zip(plt.get_fignums(), self._baseline_images): for extension in self._extensions: will_fail = not extension in comparable_formats() if will_fail: fail_msg = 'Cannot compare %s files on this system' % extension else: fail_msg = 'No failure expected' orig_expected_fname = os.path.join(baseline_dir, baseline) + '.' + extension if extension == 'eps' and not os.path.exists(orig_expected_fname): orig_expected_fname = os.path.join(baseline_dir, baseline) + '.pdf' expected_fname = make_test_filename(os.path.join( result_dir, os.path.basename(orig_expected_fname)), 'expected') actual_fname = os.path.join(result_dir, baseline) + '.' + extension if os.path.exists(orig_expected_fname): shutil.copyfile(orig_expected_fname, expected_fname) else: will_fail = True fail_msg = 'Do not have baseline image %s' % expected_fname @knownfailureif( will_fail, fail_msg, known_exception_class=ImageComparisonFailure) def do_test(): figure = plt.figure(fignum) if self._remove_text: self.remove_text(figure) figure.savefig(actual_fname, **self._savefig_kwarg) err = compare_images(expected_fname, actual_fname, self._tol, in_decorator=True) try: if not os.path.exists(expected_fname): raise ImageComparisonFailure( 'image does not exist: %s' % expected_fname) if err: raise ImageComparisonFailure( 'images not close: %(actual)s vs. %(expected)s ' '(RMS %(rms).3f)'%err) except ImageComparisonFailure: if not check_freetype_version(self._freetype_version): raise KnownFailureTest( "Mismatched version of freetype. Test requires '%s', you have '%s'" % (self._freetype_version, ft2font.__freetype_version__)) raise yield (do_test,) def image_comparison(baseline_images=None, extensions=None, tol=13, freetype_version=None, remove_text=False, savefig_kwarg=None): """ call signature:: image_comparison(baseline_images=['my_figure'], extensions=None) Compare images generated by the test with those specified in *baseline_images*, which must correspond else an ImageComparisonFailure exception will be raised. Keyword arguments: *baseline_images*: list A list of strings specifying the names of the images generated by calls to :meth:`matplotlib.figure.savefig`. *extensions*: [ None | list ] If *None*, default to all supported extensions. Otherwise, a list of extensions to test. For example ['png','pdf']. *tol*: (default 13) The RMS threshold above which the test is considered failed. *freetype_version*: str or tuple The expected freetype version or range of versions for this test to pass. *remove_text*: bool Remove the title and tick text from the figure before comparison. This does not remove other, more deliberate, text, such as legends and annotations. *savefig_kwarg*: dict Optional arguments that are passed to the savefig method. """ if baseline_images is None: raise ValueError('baseline_images must be specified') if extensions is None: # default extensions to test extensions = ['png', 'pdf', 'svg'] if savefig_kwarg is None: #default no kwargs to savefig savefig_kwarg = dict() def compare_images_decorator(func): # We want to run the setup function (the actual test function # that generates the figure objects) only once for each type # of output file. The only way to achieve this with nose # appears to be to create a test class with "setup_class" and # "teardown_class" methods. Creating a class instance doesn't # work, so we use type() to actually create a class and fill # it with the appropriate methods. name = func.__name__ # For nose 1.0, we need to rename the test function to # something without the word "test", or it will be run as # well, outside of the context of our image comparison test # generator. func = staticmethod(func) func.__get__(1).__name__ = str('_private') new_class = type( name, (ImageComparisonTest,), {'_func': func, '_baseline_images': baseline_images, '_extensions': extensions, '_tol': tol, '_freetype_version': freetype_version, '_remove_text': remove_text, '_savefig_kwarg': savefig_kwarg}) return new_class return compare_images_decorator def _image_directories(func): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ module_name = func.__module__ if module_name == '__main__': # FIXME: this won't work for nested packages in matplotlib.tests warnings.warn('test module run as script. guessing baseline image locations') script_name = sys.argv[0] basedir = os.path.abspath(os.path.dirname(script_name)) subdir = os.path.splitext(os.path.split(script_name)[1])[0] else: mods = module_name.split('.') mods.pop(0) # <- will be the name of the package being tested (in # most cases "matplotlib") assert mods.pop(0) == 'tests' subdir = os.path.join(*mods) import imp def find_dotted_module(module_name, path=None): """A version of imp which can handle dots in the module name""" res = None for sub_mod in module_name.split('.'): try: res = file, path, _ = imp.find_module(sub_mod, path) path = [path] if file is not None: file.close() except ImportError: # assume namespace package path = sys.modules[sub_mod].__path__ res = None, path, None return res mod_file = find_dotted_module(func.__module__)[1] basedir = os.path.dirname(mod_file) baseline_dir = os.path.join(basedir, 'baseline_images', subdir) result_dir = os.path.abspath(os.path.join('result_images', subdir)) if not os.path.exists(result_dir): cbook.mkdirs(result_dir) return baseline_dir, result_dir
mit
daichi-yoshikawa/dnn
dnnet/neuralnet.py
1
15563
# Authors: Daichi Yoshikawa <[email protected]> # License: BSD 3 clause import os, sys import matplotlib.pyplot as plt import pickle import time import logging logger = logging.getLogger('dnnet.log') import dnnet from dnnet.exception import DNNetIOError, DNNetRuntimeError from dnnet.ext_mathlibs import cp, np from dnnet.utils.nn_utils import prod, shuffle_data, split_data, w2im from dnnet.utils.nn_utils import is_multi_channels_image, flatten, unflatten from dnnet.training.back_propagation import BackPropagation from dnnet.layers.layer import Layer, InputLayer, OutputLayer class NeuralNetwork: """Interface of neural network. Training of model and prediction with resulting model is done through this class. Parameters ---------- layers : np.array of derived class of Layer Layers to build neural network. The first layer must be InputLayer and last layer must be OutputLayer. dtype : type Data type selected through constructor. """ @classmethod def load(self, name, path=None): """Load model from storage. Arguments --------- name : str or None, default None Name of the desired file. Doesn't include path. path : str or None, default None Full path to the directory where the desired file is contained. If None, file is loaded from a directory where script runs. Returns ------- NeuralNetwork Returns model. """ if path is None: path = '.' if path[0] == '~': path = os.getenv("HOME") + path[1:] try: with open(path + '/' + name, 'rb') as f: return pickle.load(f) except IOError as e: msg = str(e) + '\nNeuralNetwork.load failed.' raise DNNetIOError(msg) def __init__(self, input_shape, dtype=np.float32): """ Arguments --------- dtype : type, default np.float32 Data type to use. """ self.layers = np.array([], dtype=Layer) self.dtype = dtype self.add(InputLayer(input_shape=input_shape)) def add(self, layer): """Add instance of derived class of layer. Build neural network by adding layers one by one with this method. Arguments --------- layer : Derived class of Layer Instance of derived class of Layer. """ layer.set_dtype(self.dtype) self.layers = np.append(self.layers, layer) def compile(self): """Finalize configuration of neural network model. Warning ------- This method must be called after adding all required layers and before starting training. """ logger.info('Define network with dnnet of version : %s'\ % dnnet.__version__) if self.layers.size == 0: msg = 'NeuralNetwork has no layer.\n Add layers before compiling.' raise DNNetRuntimeError(msg) parent = self.layers[0] self.add(OutputLayer()) for i, layer in enumerate(self.layers, 1): logger.debug('Add %s layer.' % layer.get_type()) layer.set_parent(parent) parent = layer logger.debug('Defined network.') def fit(self, x, y, optimizer, loss_function, **kwargs): """Train model. Arguments --------- x : np.array Descriptive features in 2d array, whose shape is (num of data, num of feature) y : np.array Target features in 2d array, whose shape is (num of data, num of feature) optimizer : Derived class of Optimizer Instance of derived class of Optimizer. loss_function : Derived class of LossFunction Used to calculate loss. epochs : int, default 10 Number of iterations of training. 1 iteration scans all batches one time. batch_size : int, default 100 Dataset is splitted into multiple mini batches whose size is this. learning_curve : bool, default True Prints out evaluation results of ongoing training. Also, returns learning curve after completion of training. shuffle : bool, default True Shuffle dataset one time before training. shuffle_per_epoch : bool, default False Shuffle training data every epoch. test_data_ratio : float, default 0 Ratio of test data. If 0, all data is used for training. train_data_ratio_for_eval : float, default 1.0 Ratio of training data to calculate accuracy w.r.t training data. Returns ------- LearningCurve Instance of LearningCurve, which contains losses and accuracies for train and test data. Warning ------- This method assumes that x and y include all data you use. If your data set is so large that all data cannot be stored in memory, you cannot use this method. Use fit_genenerator instead. """ start = time.time() epochs = kwargs.pop('epochs', 10) batch_size = kwargs.pop('batch_size', 100) learning_curve = kwargs.pop('learning_curve', True) shuffle = kwargs.pop('shuffle', True) shuffle_per_epoch = kwargs.pop('shuffle_per_epoch', False) test_data_ratio = kwargs.pop('test_data_ratio', self.dtype(0.)) train_data_ratio_for_eval = kwargs.pop( 'train_data_ratio_for_eval', 1.0) logger.info('\n--- Parameters ---\nepochs: %d\nbatch_size: %d\n' 'learning_curve: %r\nshuffle: %r\nshuffle_per_epoch: %r\n' 'test_data_ratio: %f\ntest_data_ratio_for_eval: %f\n' 'optimizer: %s\nloss_function: %s' % (epochs, batch_size, learning_curve, shuffle, shuffle_per_epoch, test_data_ratio, train_data_ratio_for_eval, optimizer.get_type(), loss_function.get_type())) if shuffle: logger.debug('shuffle data.') x, y = shuffle_data(x, y) x, y = self.__convert_dtype(x, y) x_train, y_train, x_test, y_test = split_data(x, y, test_data_ratio) logger.info('Train data input, output : %s, %s' % (x_train.shape, y_train.shape)) logger.info('Test data input, output : %s, %s' % (x_test.shape, y_test.shape)) back_prop = BackPropagation( epochs, batch_size, optimizer, loss_function, learning_curve, self.dtype) np_err_config = np.seterr('raise') try: logger.info('Fitting model starts.') lc = back_prop.fit( self.layers, x_train, y_train, x_test, y_test, shuffle_per_epoch, batch_size, train_data_ratio_for_eval) except FloatingPointError as e: msg = str(e) + '\nOverflow or underflow occurred. '\ + 'Retry with smaller learning_rate or '\ + 'larger weight_decay for Optimizer.' raise DNNetRuntimeError(msg) except Exception as e: raise DNNetRuntimeError(e) finally: np.seterr( divide=np_err_config['divide'], over=np_err_config['over'], under=np_err_config['under'], invalid=np_err_config['invalid'] ) end = time.time() logger.info('Fitting model is done. ' 'Processing time : %.2f[s]\n' % (end - start)) return lc def fit_generator(self, x, y, optimizer, loss_function, **kwargs): """Train model for large size data set by using generator. TODO( """ raise NotImplementError('NeuralNetwork.fit_one_batch') def predict(self, x): """Returns predicted result. Arguments --------- x : np.array Discriptive features in 2d array, whose shape is (num of data, num of features) Returns ------- np.array Predicted target features in 2d array, whose shape is (num of data, num of features) """ return self.layers[0].predict(x.astype(self.dtype)) def get_config_str(self): config_str = '' for i, layer in enumerate(self.layers): config_str += layer.get_config_str() + '\n' config_str = config_str.rstrip('\n') return config_str def save(self, name, path=None): """Save model to storage. Arguments --------- name : str or None, default None Name of the resulting file. Doesn't include path. path : str or None, default None Full path to the directory where the resulting file is generated. If None, file is saved in a directory where script runs. Returns ------- bool Returns true when succeeded. """ if path is None: path = '.' if path[0] == '~': path = os.getenv("HOME") + path[1:] try: with open(os.path.join(path, name), 'wb') as f: pickle.dump(self, f) except IOError as e: msg = str(e) + '\nNeuralNetwork.save failed.' raise DNNetIOError(msg) def visualize_filters( self, index, n_rows, n_cols, filter_shape, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise DNNetRuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. filter_shape : tuple (rows, cols) layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ # Get index of layer which is index-th layer with weight matrix. n_layers_w_filter = 0 tgt_layer_idx = None tgt_layer_type = None for i, layer in enumerate(self.layers, 0): if layer.has_weight(): if n_layers_w_filter == index: tgt_layer_idx = i tgt_layer_type = layer.get_type() break n_layers_w_filter += 1 if tgt_layer_idx is None: msg = str(index) + '-th layer with weight matrix doesn\'t exist.' raise DNNetRuntimeError(msg) if tgt_layer_type == 'convolution': self.visualize_filter_of_convolution_layer( self.layers[tgt_layer_idx], n_rows, n_cols, filter_shape, figsize) elif tgt_layer_type == 'affine': self.visualize_filter_of_affine_layer( self.layers[tgt_layer_idx], n_rows, n_cols, filter_shape, figsize) else: msg = 'NeuralNetwork.visualize_filters does not support '\ + '%s' % tgt_layer_type raise DNNetRuntimeError(msg) print(tgt_layer_idx, tgt_layer_type) def visualize_filter_of_convolution_layer( self, layer, n_rows, n_cols, filter_shape, figsize=(8, 8)): n_filters = layer.w.shape[1] if n_filters < n_rows * n_cols: msg = 'n_rows and n_cols is too big.\n'\ + 'n_filters : %d\n' % n_filters\ + 'n_rows : %d\n' % n_rows\ + 'n_cols : %d\n' % n_cols raise DNNetRuntimeError(msg) w = layer.w[1:, :n_rows*n_cols] img = w.T.reshape(-1, filter_shape[0], filter_shape[1]) plt.figure(figsize=figsize) plt.imshow(img) plt.show() def visualize_filter_of_affine_layer( self, layer, n_rows, n_cols, filter_shape, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise DNNetRuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ w = layer.w if (w.shape[0] - 1) != prod(shape): msg = '(w.shape[0] - 1) != prod(shape)\n'\ + 'w.shape[0] : %d\n' % w.shape[0]\ + 'prod(shape) : %d' % prod(shape) raise DNNetRuntimeError(msg) #if w.shape[1] < prod(layout): #img = w2im(self.layers[tgt_index].w, shape, layout) #plt.figure(figsize=figsize) #plt.imshow(img) #plt.show() def show_filters(self, index, shape, layout, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise RuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ # Get index of layer which is index-th layer with weight matrix. num_of_layer_with_filter = 0 tgt_index = None for i, layer in enumerate(self.layers, 0): if layer.has_weight(): if num_of_layer_with_filter == index: tgt_index = i break num_of_layer_with_filter += 1 if tgt_index is None: msg = str(index) + '-th layer with weight matrix doesn\'t exist.' raise DNNetRuntimeError(msg) img = w2im(self.layers[tgt_index].w, shape, layout) plt.figure(figsize=figsize) plt.imshow(img) plt.show() def __convert_dtype(self, x, y): """Convert data type of features into selected one in constructor.""" return x.astype(self.dtype), y.astype(self.dtype)
bsd-3-clause
AlexanderFabisch/scikit-learn
sklearn/linear_model/__init__.py
270
3096
""" The :mod:`sklearn.linear_model` module implements generalized linear models. It includes Ridge regression, Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate descent. It also implements Stochastic Gradient Descent related algorithms. """ # See http://scikit-learn.sourceforge.net/modules/sgd.html and # http://scikit-learn.sourceforge.net/modules/linear_model.html for # complete documentation. from .base import LinearRegression from .bayes import BayesianRidge, ARDRegression from .least_angle import (Lars, LassoLars, lars_path, LarsCV, LassoLarsCV, LassoLarsIC) from .coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV, lasso_path, enet_path, MultiTaskLasso, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLassoCV) from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber from .stochastic_gradient import SGDClassifier, SGDRegressor from .ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV, ridge_regression) from .logistic import (LogisticRegression, LogisticRegressionCV, logistic_regression_path) from .omp import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV) from .passive_aggressive import PassiveAggressiveClassifier from .passive_aggressive import PassiveAggressiveRegressor from .perceptron import Perceptron from .randomized_l1 import (RandomizedLasso, RandomizedLogisticRegression, lasso_stability_path) from .ransac import RANSACRegressor from .theil_sen import TheilSenRegressor __all__ = ['ARDRegression', 'BayesianRidge', 'ElasticNet', 'ElasticNetCV', 'Hinge', 'Huber', 'Lars', 'LarsCV', 'Lasso', 'LassoCV', 'LassoLars', 'LassoLarsCV', 'LassoLarsIC', 'LinearRegression', 'Log', 'LogisticRegression', 'LogisticRegressionCV', 'ModifiedHuber', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'OrthogonalMatchingPursuitCV', 'PassiveAggressiveClassifier', 'PassiveAggressiveRegressor', 'Perceptron', 'RandomizedLasso', 'RandomizedLogisticRegression', 'Ridge', 'RidgeCV', 'RidgeClassifier', 'RidgeClassifierCV', 'SGDClassifier', 'SGDRegressor', 'SquaredLoss', 'TheilSenRegressor', 'enet_path', 'lars_path', 'lasso_path', 'lasso_stability_path', 'logistic_regression_path', 'orthogonal_mp', 'orthogonal_mp_gram', 'ridge_regression', 'RANSACRegressor']
bsd-3-clause
parkus/arc
test_script_roberts.py
1
2526
import arc.arc_functions as arc # so that reload(arc) works, but note that you can also just do "import arc" import numpy as np import numpy.random as r from math import pi # for repeatability, seed the random number generator r.seed(42) ## GENERATE DATA # create data that are sines of random period, amplitude, and phase N = 1000 # number of data points M = 200 # number of data series t = np.arange(N) # generate random amplitudes, periods, and phases amps = r.normal(1.0, 0.3, M) phases = r.uniform(0.0, 2*pi, M) periods = r.uniform(4.0, 4.0 * N, M) # compute sine curves and make NxM data array make_curve = lambda a, P, ph: a * np.sin(2*pi * t / P + ph) data_list = map(make_curve, amps, periods, phases) data = np.transpose(data_list) # add noise rel_amps = r.uniform(high=0.05, size=M) rel_noise = r.normal(size=[N, M]) * rel_amps[np.newaxis, :] abs_noise = rel_noise * amps[np.newaxis, :] data = data + abs_noise ## CREATE TRENDS # function to mean subtract and std dev normalize norm = lambda y: (y - np.mean(y)) / np.std(y) # exponential decay exp = norm(np.exp( t / (N * 1.0))) # quadratic quad = norm((t - N/2.0)**2) ## INJECT TRENDS def trend_array(rel_amps, trend): abs_amps = rel_amps * amps trend_list = [trend * a for a in abs_amps] return np.transpose(trend_list) i = np.arange(M) decaying_amps = 5.0 * np.exp(-i / (M / 4)) quad_arr = trend_array(decaying_amps, quad) exp_arr = trend_array(2 * decaying_amps[::-1], exp) trended = data + quad_arr + exp_arr # injection function #def inject(data, trend, amp_mean, amp_std): # shape = (amp_mean/amp_std)**2 # scale = amp_mean/shape # rel_amps = r.gamma(shape, scale, M) # trends = trend_array(rel_amps, trend) # return data + trends ## rel_amps = r.normal(amp_mean, amp_std, M) # # ## inject! #trended = np.copy(data) #trended = inject(trended, exp, 2.0, 1.0) #trended = inject(trended, quad, 1.0, 0.5) ## FIND TRENDS IN SUBSET OF DATA subset = trended[:, r.choice(M, size=50)] trends = arc.arc(t, subset, rho_min=0.6, denoise=arc.arc_emd, refine=False) ## PLOT TRENDS import matplotlib.pyplot as plt plt.figure() plt.plot(t, trends) plt.plot(exp, '--', quad, '--') plt.title('injected (solid) and retrieved (dashed) trends') ## FIT TRENDS TO A SERIES i = r.choice(range(M)) y0 = data[:, i] y1 = trended[:, i] detrended, trendfit = arc.trend_remove(y1, trends) plt.figure() plt.plot(t, np.transpose(y0, y1, trendfit, detrended)) plt.legend(['original data', 'data with trend', 'best-fit trend', 'detrended data'])
mit
vrieni/orange
Orange/clustering/mixture.py
6
14548
""" ******************************* Gaussian Mixtures (``mixture``) ******************************* This module implements a Gaussian mixture model. Example :: >>> mixture = GaussianMixture(data, n=3) >>> print mixture.means >>> print mixture.weights >>> print mixture.covariances >>> plot_model(data, mixture, samples=40) """ import sys, os import numpy import random import Orange class GMModel(object): """ Gaussian mixture model """ def __init__(self, weights, means, covariances, inv_covariances=None, cov_determinants=None): self.weights = weights self.means = means self.covariances = covariances if inv_covariances is None: self.inv_covariances = [numpy.linalg.pinv(cov) for cov in covariances] else: self.inv_covariances = inv_covariances if cov_determinants is None: self.cov_determinants = [numpy.linalg.det(cov) for cov in covariances] else: self.cov_determinants = cov_determinants def __call__(self, instance): """ Return the probability of instance. """ return numpy.sum(prob_est([instance], self.weights, self.means, self.covariances, self.inv_covariances, self.cov_determinants)) def __getitem__(self, index): """ Return the index-th gaussian. """ return GMModel([1.0], self.means[index: index + 1], self.covariances[index: index + 1], self.inv_covariances[index: index + 1], self.cov_determinants[index: index + 1]) def __len__(self): return len(self.weights) def init_random(data, n, *args, **kwargs): """ Init random means and correlations from a data table. :param data: data table :type data: :class:`Orange.data.Table` :param n: Number of centers and correlations to return. :type n: int """ if isinstance(data, Orange.data.Table): array, w, c = data.toNumpyMA() else: array = numpy.asarray(data) min, max = array.max(0), array.min(0) dim = array.shape[1] means = numpy.zeros((n, dim)) for i in range(n): means[i] = [numpy.random.uniform(low, high) for low, high in zip(min, max)] correlations = [numpy.asmatrix(numpy.eye(dim)) for i in range(n)] return means, correlations def init_kmeans(data, n, *args, **kwargs): """ Init with k-means algorithm. :param data: data table :type data: :class:`Orange.data.Table` :param n: Number of centers and correlations to return. :type n: int """ if not isinstance(data, Orange.data.Table): raise TypeError("Orange.data.Table instance expected!") from Orange.clustering.kmeans import Clustering km = Clustering(data, centroids=n, maxiters=20, nstart=3) centers = Orange.data.Table(km.centroids) centers, w, c = centers.toNumpyMA() dim = len(data.domain.attributes) correlations = [numpy.asmatrix(numpy.eye(dim)) for i in range(n)] return centers, correlations def prob_est1(data, mean, covariance, inv_covariance=None, det=None): """ Return the probability of data given mean and covariance matrix """ data = numpy.asmatrix(data) mean = numpy.asmatrix(mean) if inv_covariance is None: inv_covariance = numpy.linalg.pinv(covariance) inv_covariance = numpy.asmatrix(inv_covariance) diff = data - mean p = numpy.zeros(data.shape[0]) for i in range(data.shape[0]): d = diff[i] p[i] = d * inv_covariance * d.T p *= -0.5 p = numpy.exp(p) p /= numpy.power(2 * numpy.pi, numpy.rank(covariance) / 2.0) if det is None: det = numpy.linalg.det(covariance) assert(det != 0.0) p /= det return p def prob_est(data, weights, means, covariances, inv_covariances=None, cov_determinants=None): """ Return the probability estimation of data for each gausian given weights, means and covariances. """ if inv_covariances is None: inv_covariances = [numpy.linalg.pinv(cov) for cov in covariances] if cov_determinants is None: cov_determinants = [numpy.linalg.det(cov) for cov in covariances] data = numpy.asmatrix(data) probs = numpy.zeros((data.shape[0], len(weights))) for i, (w, mean, cov, inv_cov, det) in enumerate(zip(weights, means, covariances, inv_covariances, cov_determinants)): probs[:, i] = w * prob_est1(data, mean, cov, inv_cov, det) return probs class EMSolver(object): """ An EM solver for gaussian mixture model """ _TRACE_MEAN = False def __init__(self, data, weights, means, covariances): self.data = data self.weights = weights self.means = means self.covariances = covariances self.inv_covariances = [numpy.matrix(numpy.linalg.pinv(cov)) for cov in covariances] self.cov_determinants = [numpy.linalg.det(cov) for cov in self.covariances] self.n_clusters = len(self.weights) self.data_dim = self.data.shape[1] self.probs = prob_est(data, weights, means, covariances, self.inv_covariances, self.cov_determinants) self.log_likelihood = self._log_likelihood() # print "W", self.weights # print "P", self.probs # print "L", self.log_likelihood # print "C", self.covariances # print "Det", self.cov_determinants def _log_likelihood(self): """ Compute the log likelihood of the current solution. """ log_p = numpy.log(numpy.sum(self.weights * self.probs, axis=0)) return 1.0 / len(self.data) * numpy.sum(log_p) def E_step(self): """ E Step """ self.probs = prob_est(self.data, self.weights, self.means, self.covariances, self.inv_covariances) # print "PPP", self.probs # print "P sum", numpy.sum(self.probs, axis=1).reshape((-1, 1)) self.probs /= numpy.sum(self.probs, axis=1).reshape((-1, 1)) # Update the Q # self.Q = 0.0 # prob_sum = numpy.sum(self.probs, axis=0) # self.Q = sum([p*(numpy.log(w) - 0.5 * numpy.linalg.det(cov)) \ # for p, w, cov in zip(prob_sum, self.weights, # self.covariances)]) * \ # len(self.data) # # for i in range(len(data)): # for j in range(self.n_clusters): # diff = numpy.asmatrix(self.data[i] - self.means[j]) # self.Q += - 0.5 * self.probs[i, j] * diff.T * self.inv_covariances[j] * diff # print self.Q self.log_likelihood = self._log_likelihood() # print "Prob:", self.probs # print "Log like.:", self.log_likelihood def M_step(self): """ M step """ # Compute the new weights prob_sum = numpy.sum(self.probs, axis=0) weights = prob_sum / numpy.sum(prob_sum) # Compute the new means means = [] for j in range(self.n_clusters): means.append(numpy.sum(self.probs[:, j].reshape((-1, 1)) * self.data, axis=0) / prob_sum[j]) # Compute the new covariances covariances = [] cov_determinants = [] for j in range(self.n_clusters): cov = numpy.zeros(self.covariances[j].shape) diff = self.data - means[j] diff = numpy.asmatrix(diff) for i in range(len(self.data)): # TODO: speed up cov += self.probs[i, j] * diff[i].T * diff[i] cov *= 1.0 / prob_sum[j] det = numpy.linalg.det(cov) covariances.append(numpy.asmatrix(cov)) cov_determinants.append(det) # self.inv_covariances[j] = numpy.linalg.pinv(cov) # self.cov_determinants[j] = det self.weights = weights self.means = numpy.asmatrix(means) self.covariances = covariances self.cov_determinants = cov_determinants def one_step(self): """ One iteration of both M and E step. """ self.E_step() self.M_step() def run(self, max_iter=sys.maxint, eps=1e-5): """ Run the EM algorithm. """ if self._TRACE_MEAN: from pylab import plot, show, draw, ion ion() plot(self.data[:, 0], self.data[:, 1], "ro") vec_plot = plot(self.means[:, 0], self.means[:, 1], "bo")[0] curr_iter = 0 while True: old_objective = self.log_likelihood self.one_step() if self._TRACE_MEAN: vec_plot.set_xdata(self.means[:, 0]) vec_plot.set_ydata(self.means[:, 1]) draw() curr_iter += 1 # print curr_iter # print abs(old_objective - self.log_likelihood) if abs(old_objective - self.log_likelihood) < eps or curr_iter > max_iter: break class GaussianMixture(object): """ Computes the gaussian mixture model from an Orange data-set. """ def __new__(cls, data=None, weight_id=None, **kwargs): self = object.__new__(cls) if data is not None: self.__init__(**kwargs) return self.__call__(data, weight_id) else: return self def __init__(self, n=3, init_function=init_kmeans): self.n = n self.init_function = init_function def __call__(self, data, weight_id=None): from Orange.data import preprocess #import Preprocessor_impute, DomainContinuizer # data = Preprocessor_impute(data) dc = preprocess.DomainContinuizer() dc.multinomial_treatment = preprocess.DomainContinuizer.AsOrdinal dc.continuous_treatment = preprocess.DomainContinuizer.NormalizeByVariance dc.class_treatment = preprocess.DomainContinuizer.Ignore domain = dc(data) data = data.translate(domain) means, correlations = self.init_function(data, self.n) means = numpy.asmatrix(means) array, _, _ = data.to_numpy_MA() # avg = numpy.mean(array, axis=0) # array -= avg.reshape((1, -1)) # means -= avg.reshape((1, -1)) # std = numpy.std(array, axis=0) # array /= std.reshape((1, -1)) # means /= std.reshape((1, -1)) solver = EMSolver(array, numpy.ones(self.n) / self.n, means, correlations) solver.run() norm_model = GMModel(solver.weights, solver.means, solver.covariances) return GMClusterModel(domain, norm_model) class GMClusterModel(object): """ """ def __init__(self, domain, norm_model): self.domain = domain self.norm_model = norm_model self.cluster_vars = [Orange.feature.Continuous("cluster %i" % i)\ for i in range(len(norm_model))] self.weights = self.norm_model.weights self.means = self.norm_model.means self.covariances = self.norm_model.covariances self.inv_covariances = self.norm_model.inv_covariances self.cov_determinants = self.norm_model.cov_determinants def __call__(self, instance, *args): data = Orange.data.Table(self.domain, [instance]) data,_,_ = data.to_numpy_MA() # print data p = prob_est(data, self.norm_model.weights, self.norm_model.means, self.norm_model.covariances, self.norm_model.inv_covariances, self.norm_model.cov_determinants) # print p p /= numpy.sum(p) vals = [] for p, var in zip(p[0], self.cluster_vars): vals.append(var(p)) return vals def plot_model(data_array, mixture, axis=(0, 1), samples=20, contour_lines=20): """ Plot the scaterplot of data_array and the contour lines of the probability for the mixture. """ import matplotlib import matplotlib.pylab as plt import matplotlib.cm as cm axis = list(axis) if isinstance(mixture, GMClusterModel): mixture = mixture.norm_model if isinstance(data_array, Orange.data.Table): data_array, _, _ = data_array.to_numpy_MA() array = data_array[:, axis] weights = mixture.weights means = mixture.means[:, axis] covariances = [cov[axis,:][:, axis] for cov in mixture.covariances] # TODO: Need the whole marginal distribution. gmm = GMModel(weights, means, covariances) min = numpy.min(array, 0) max = numpy.max(array, 0) extent = (min[0], max[0], min[1], max[1]) X = numpy.linspace(min[0], max[0], samples) Y = numpy.linspace(min[1], max[1], samples) Z = numpy.zeros((X.shape[0], Y.shape[0])) for i, x in enumerate(X): for j, y in enumerate(Y): Z[i, j] = gmm([x, y]) plt.plot(array[:,0], array[:,1], "ro") plt.contour(X, Y, Z.T, contour_lines, extent=extent) im = plt.imshow(Z.T, interpolation='bilinear', origin='lower', cmap=cm.gray, extent=extent) plt.plot(means[:, 0], means[:, 1], "b+") plt.show() def test(seed=0): # data = Orange.data.Table(os.path.expanduser("brown-selected.tab")) # data = Orange.data.Table(os.path.expanduser("~/Documents/brown-selected-fss.tab")) # data = Orange.data.Table(os.path.expanduser("~/Documents/brown-selected-fss-1.tab")) # data = Orange.data.Table(os.path.expanduser("~/ozone1")) data = Orange.data.Table("iris.tab") # data = Orange.data.Table(Orange.data.Domain(data.domain[:2], None), data) numpy.random.seed(seed) random.seed(seed) gmm = GaussianMixture(data, n=3, init_function=init_kmeans) data = data.translate(gmm.domain) plot_model(data, gmm, axis=(0, 2), samples=40, contour_lines=100) if __name__ == "__main__": test()
gpl-3.0
michalmonselise/sparklingpandas
sparklingpandas/pstatcounter.py
4
5444
""" This module provides statistics for L{PRDD}s. Look at the stats() method on PRDD for more info. """ # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sparklingpandas.utils import add_pyspark_path add_pyspark_path() from pyspark.statcounter import StatCounter import scipy.stats as scistats import numpy as np class PStatCounter(object): """ A wrapper around StatCounter which collects stats for multiple columns """ def __init__(self, dataframes, columns): """ Creates a stats counter for the provided DataFrames computing the stats for all of the columns in columns. Parameters ---------- dataframes: list of dataframes, containing the values to compute stats on. columns: list of strs, list of columns to compute the stats on. """ assert (not isinstance(columns, basestring)), "columns should be a " \ "list of strs, " \ "not a str!" assert isinstance(columns, list), "columns should be a list!" self._columns = columns self._counters = dict((column, StatCounter()) for column in columns) for df in dataframes: self.merge(df) def merge(self, frame): """ Add another DataFrame to the PStatCounter. """ for column, values in frame.iteritems(): # Temporary hack, fix later counter = self._counters.get(column) for value in values: if counter is not None: counter.merge(value) def merge_pstats(self, other): """ Merge all of the stats counters of the other PStatCounter with our counters. """ if not isinstance(other, PStatCounter): raise Exception("Can only merge PStatcounters!") for column, counter in self._counters.items(): other_counter = other._counters.get(column) self._counters[column] = counter.mergeStats(other_counter) return self def __str__(self): formatted_str = "" for column, counter in self._counters.items(): formatted_str += "(field: %s, counters: %s)" % (column, counter) return formatted_str def __repr__(self): return self.__str__() class ColumnStatCounters(object): """ A wrapper around StatCounter which collects stats for multiple columns """ def __init__(self, dataframes=None, columns=None): """ Creates a stats counter for the provided data frames computing the stats for all of the columns in columns. Parameters ---------- dataframes: list of dataframes, containing the values to compute stats on columns: list of strs, list of columns to compute the stats on """ self._column_stats = dict((column_name, StatCounter()) for column_name in columns) for single_df in dataframes: self.merge(single_df) def merge(self, frame): """ Add another DataFrame to the accumulated stats for each column. Parameters ---------- frame: pandas DataFrame we will update our stats counter with. """ for column_name, _ in self._column_stats.items(): data_arr = frame[[column_name]].values count, min_max_tup, mean, _, _, _ = \ scistats.describe(data_arr) stats_counter = StatCounter() stats_counter.n = count stats_counter.mu = mean stats_counter.m2 = np.sum((data_arr - mean) ** 2) stats_counter.minValue, stats_counter.maxValue = min_max_tup self._column_stats[column_name] = self._column_stats[ column_name].mergeStats(stats_counter) return self def merge_stats(self, other_col_counters): """ Merge statistics from a different column stats counter in to this one. Parameters ---------- other_column_counters: Other col_stat_counter to marge in to this one. """ for column_name, _ in self._column_stats.items(): self._column_stats[column_name] = self._column_stats[column_name] \ .mergeStats(other_col_counters._column_stats[column_name]) return self def __str__(self): formatted_str = "" for column, counter in self._column_stats.items(): formatted_str += "(field: %s, counters: %s)" % (column, counter) return formatted_str def __repr__(self): return self.__str__()
apache-2.0
imaculate/scikit-learn
sklearn/cluster/dbscan_.py
7
12319
# -*- coding: utf-8 -*- """ DBSCAN: Density-Based Spatial Clustering of Applications with Noise """ # Author: Robert Layton <[email protected]> # Joel Nothman <[email protected]> # Lars Buitinck # # License: BSD 3 clause import numpy as np from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..metrics import pairwise_distances from ..utils import check_array, check_consistent_length from ..utils.fixes import astype from ..neighbors import NearestNeighbors from ._dbscan_inner import dbscan_inner def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', algorithm='auto', leaf_size=30, p=2, sample_weight=None, n_jobs=1): """Perform DBSCAN clustering from vector array or distance matrix. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, optional The power of the Minkowski metric to be used to calculate distance between points. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- core_samples : array [n_core_samples] Indices of core samples. labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ if not eps > 0.0: raise ValueError("eps must be positive.") X = check_array(X, accept_sparse='csr') if sample_weight is not None: sample_weight = np.asarray(sample_weight) check_consistent_length(X, sample_weight) # Calculate neighborhood for all samples. This leaves the original point # in, which needs to be considered later (i.e. point i is in the # neighborhood of point i. While True, its useless information) if metric == 'precomputed' and sparse.issparse(X): neighborhoods = np.empty(X.shape[0], dtype=object) X.sum_duplicates() # XXX: modifies X's internals in-place X_mask = X.data <= eps masked_indices = astype(X.indices, np.intp, copy=False)[X_mask] masked_indptr = np.cumsum(X_mask)[X.indptr[1:] - 1] # insert the diagonal: a point is its own neighbor, but 0 distance # means absence from sparse matrix data masked_indices = np.insert(masked_indices, masked_indptr, np.arange(X.shape[0])) masked_indptr = masked_indptr[:-1] + np.arange(1, X.shape[0]) # split into rows neighborhoods[:] = np.split(masked_indices, masked_indptr) else: neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, n_jobs=n_jobs) neighbors_model.fit(X) # This has worst case O(n^2) memory complexity neighborhoods = neighbors_model.radius_neighbors(X, eps, return_distance=False) if sample_weight is None: n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods]) else: n_neighbors = np.array([np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]) # Initially, all samples are noise. labels = -np.ones(X.shape[0], dtype=np.intp) # A list of all core samples found. core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8) dbscan_inner(core_samples, neighborhoods, labels) return np.where(core_samples)[0], labels class DBSCAN(BaseEstimator, ClusterMixin): """Perform DBSCAN clustering from vector array or distance matrix. DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. .. versionadded:: 0.17 metric *precomputed* to accept precomputed sparse matrix. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, optional The power of the Minkowski metric to be used to calculate distance between points. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- core_sample_indices_ : array, shape = [n_core_samples] Indices of core samples. components_ : array, shape = [n_core_samples, n_features] Copy of each core sample found by training. labels_ : array, shape = [n_samples] Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ def __init__(self, eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, n_jobs=1): self.eps = eps self.min_samples = min_samples self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size self.p = p self.n_jobs = n_jobs def fit(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features or distance matrix. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. """ X = check_array(X, accept_sparse='csr') clust = dbscan(X, sample_weight=sample_weight, **self.get_params()) self.core_sample_indices_, self.labels_ = clust if len(self.core_sample_indices_): # fix for scipy sparse indexing issue self.components_ = X[self.core_sample_indices_].copy() else: # no core samples self.components_ = np.empty((0, X.shape[1])) return self def fit_predict(self, X, y=None, sample_weight=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ self.fit(X, sample_weight=sample_weight) return self.labels_
bsd-3-clause
ivanamihalek/tcga
tcga/02_expression/206_store_distros.py
1
17316
#!/usr/bin/python -u # # This source code is part of tcga, a TCGA processing pipeline, written by Ivana Mihalek. # Copyright (C) 2014-2016 Ivana Mihalek. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see<http://www.gnu.org/licenses/>. # # Contact: [email protected] # #/usr/local/bin/python -u # this version of python has scipy 0.15.1 - earlier versions had some bug in lognorm; but it dosn't have mysqlDB # to speed up things make index: (int 01_maf_somatic_mutations_table.sql) # create index mutation_idx on somatic_mutations (tumor_sample_barcode, chromosome, strand, start_position) # note: I am assuming then that no tumot will have the exact same mutation in both alleles, for the simple reason that I do nto see # how would the thwo entried in the database then be distinguished from one another # (rather if tumor_seq_allele1 == tumor_seq_allele2 != match_norm_seq_allele1 and tumor_seq_allele2 != match_norm_seq_allele2 # then I have somehting like that) # the lognormal is more right skewed (CV3+3CV) than the gamma (2CV). import MySQLdb from tcga_utils.mysql import * from math import sqrt, floor, ceil, exp import os from scipy import stats from time import time import matplotlib.pyplot as plt import numpy as np from random import sample output = True to_file = False use_normal_tissue = False store_in_db = False if store_in_db: use_normal_tissue = False # at least until we create a separate table # tumor: ['01', '03', '08', '09'] # normal: ['10', '11', '12', '14'] ######################################### def bad (cursor, symbol): if symbol[:3] == 'LOC': return True if symbol[0] == 'C' and 'ORF' in symbol: return True if symbol[:4]== 'KIAA': return True switch_to_db(cursor, 'baseline') qry = "select locus_type from hgnc_id_translation where approved_symbol = '%s'" % symbol rows = search_db(cursor, qry) if not rows: return True if not rows[0][0] == 'gene with protein product': return True return False ######################################### def blurb (symbol, description, comment, outf, cursor): [nobs, [min,max], mean, variance, skewness, kurtosis, normaltest, left, right] = description if output: if False: print >> outf,"====================================" print >> outf,"%s " % symbol print >> outf,"pts: %4d min = %6.2f max = %10.2f " % ( nobs, min, max) print >> outf,"mean = %10.2f stdev = %6.2f skew = %5.2f kurt = %8.2f" % (mean, sqrt(variance), skewness, kurtosis) print >> outf,"fract left = %5.3f fract right = %5.3f " % (left, right) print >> outf, comment else: print >> outf,"%15s " % symbol, print >> outf,"%4d %6.2f %10.2f " % ( nobs, min, max), print >> outf,"%10.2f %6.2f %5.2f %8.2f" % (mean, sqrt(variance), skewness, kurtosis), print >> outf," %5.3f %5.3f " % (left, right) #print >> outf, comment # if we are storing, do that here too if store_in_db: fixed_fields = {'symbol':symbol} update_fields = {'number_of_points':nobs, 'min':min, 'max':max, 'mean':mean, 'stdev':sqrt(variance), 'skewness':skewness, 'kurtosis':kurtosis, 'normaltest':normaltest} ok = store_or_update (cursor, 'rnaseq_distro_description', fixed_fields, update_fields) if not ok: print 'store failure:' print fixed_fields print update_fields exit(1) ######################################### def is_bimodal(histogram): for i in range (1, len(histogram)): val = histogram[i] left_max = max(10,val) left_max_found = False for j in range(0,i): if histogram[j] > left_max: left_max = histogram[j] left_max_found = True break right_max = max(10,val) right_max_found = False for j in range(i+1, len(histogram)): if histogram[j] > left_max: right_max = histogram[j] right_max_found = True break if left_max_found and right_max_found: return True return False ################################################# def optimize_distro_domain (symbol,val_array, init_width, mean, stdev, distro, verbose=True): if distro=='gamma': model_distro = stats.gamma elif distro== 'lognorm': model_distro = stats.lognorm done = False round_ct = 0 right_side = False pval_max = -1.0 prev_pval = -1.0 pval = -1.0 opt_bound = [0,len(val_array)] opt_params = [0, 0, 0] left_cut = 0 right_cut = len(val_array) # take the core of the data and then work outwards from there while (val_array[left_cut] < mean - stdev*init_width) and left_cut < len(val_array): left_cut += 1 while (val_array[right_cut-1] > mean + stdev*init_width) and right_cut >1: right_cut -= 1 left_bound = [0,left_cut] right_bound = [right_cut,len(val_array)] init_left_cut = left_cut init_right_cut = right_cut while not done or round_ct==len(val_array): round_ct += 1 prev_pval = pval [shape, location, scale] = model_distro.fit(val_array[left_cut:right_cut]) [D, pval] = stats.kstest(val_array[left_cut:right_cut], distro, (shape, location, scale)) test1 = (pval < prev_pval) #test2 = (location < 0.0) test2 = False if distro=='gamma': test3 = (shape < 1.0) else: test3 = False if pval >= 0.9 and not test2 and not test3 and right_side==True and round_ct>1: if verbose: print "passed the basic citerion - out of the optimization loop with cut values", left_cut, right_cut done = True break # let's break here not to go crazy with the indentation if right_side: if round_ct>1 and (test1 or test3 ): #getting worse, backpedal right_bound[1] = right_cut right_cut = int (floor ( (right_bound[1] + right_bound[0])/2.0 )) if verbose: print "backpedal: right_cut =", right_cut if right_bound[1] <= right_bound[0]+1: done=True if verbose: print "the interval closed, were done on the right", right_bound if right_cut == init_right_cut: if verbose: print "we're back ot the iniitival value of the right cut (done)", right_cut if verbose: done=True else: #this is an improvement, keep moving in the same direction if (pval > pval_max and not test2 and not test3): pval_max = pval opt_bound = [left_cut, right_cut] opt_params = [shape, location, scale] # but first check if there is room to move if right_bound[1] <= right_bound[0]+1: done = True if verbose: print "we're done on the right - bounds:", right_bound else: right_bound[0] = right_cut right_cut = int (ceil ( (right_bound[1] + right_bound[0])/2.0 )) if verbose: print "move forward: right_cut =", right_cut else: # left_side if round_ct>1 and (test1 or test3 ): #getting worse, backpedal left_bound[0] = left_cut left_cut = int (ceil ((left_bound[1] + left_bound[0])/2.0)) if verbose: print "backpedal: left_cut =", left_cut if left_bound[1] <= left_bound[0]+1: right_side = True if verbose: print "the interval closed, were done on the left", left_bound if left_cut == init_left_cut: if verbose: print "we're back to the initial value of the left cut (done)", left_cut right_side =True else: #this is an improvement, keep moving in the same direction if (pval > pval_max and not test2 and not test3): pval_max = pval opt_bound = [left_cut, right_cut] opt_params = [shape, location, scale] if left_bound[1] <= left_bound[0]+1: right_side = True round_ct = 0 if verbose: print "we're done on the left - bounds:", left_bound else: left_bound[1] = left_cut left_cut = int (floor ( (left_bound[1] + left_bound[0])/2.0 )) if verbose: print "move forward: left_cut =", left_cut return [pval_max] + opt_bound + opt_params ######################################### def optimization_loop (symbol, val_array, mean, stdev, use_gamma, verbose=False): opt_results = [] pval_max = -1 for init_width in [10, 5, 2, 1, 0.5]: retvals = optimize_distro_domain (symbol, val_array, init_width, mean, stdev, use_gamma, verbose) pval = retvals[0] if (pval > pval_max): pval_max = pval opt_results = retvals if pval > 0.9: break return opt_results ######################################### def store (cursor, symbol, distro, description, distro_params): fixed_fields = {'symbol':symbol} update_fields = {} [nobs, [min,max], mean, variance, skew, kurtosis] = description update_fields['number_of_points'] = nobs update_fields['min'] = min update_fields['max'] = max update_fields['mean'] = mean update_fields['stdev'] = sqrt(variance) update_fields['skewness'] = skew update_fields['kurtosis'] = kurtosis update_fields['distro'] = distro if distro_params: update_fields['KL_pval'] = distro_params[0] update_fields['left_cut'] = distro_params[1] update_fields['right_cut'] = distro_params[2] update_fields['shape'] = distro_params[3] update_fields['location'] = distro_params[4] update_fields['scale'] = distro_params[5] update_fields['interval_endpoints'] = distro_params[6] ok = store_or_update(cursor, 'rnaseq_distro_description', fixed_fields, update_fields) if not ok: print 'store failure:' print fixed_fields print update_fields exit(1) ######################################### def store_fitted (cursor, symbol, distro, description, opt_result_lognorm): if distro=="lognorm": interval = stats.lognorm.interval elif distro=="gamma": interval = stats.gamma.interval else: print "unrecognized distro:", distro exit(1) [left_cut, right_cut] = opt_result_lognorm[1:3] [shape, location, scale] = opt_result_lognorm[3:] intervals_blob = "" for alpha in [99, 95, 90]: if intervals_blob: intervals_blob += ";" intervals_blob += "%.2f;%.2f" % tuple(interval(alpha/100.0, shape, location, scale)) distro_params = opt_result_lognorm + [intervals_blob] store (cursor, symbol, distro, description, distro_params) ######################################### def process_data_set (cursor, db_name, gene_list): switch_to_db(cursor, db_name) if use_normal_tissue: qry = "select count(1) from rnaseq_rpkm where source_code in (10,11,12,14)" rows = search_db(cursor, qry) if not rows or not rows[0][0] > 0: print "no normal tissue samples in ", db_name return values = {} no_match = [] start = time() ct = 0 # get the scaling factors qry = "select * from rnaseq_scaling" rows = search_db(cursor, qry) if not rows: print "no scaling info" exit(1) scaling = {} for row in rows: [sample_id, scaling_factor] = row scaling[sample_id] = scaling_factor #toyset = sample(gene_list, 100) toyset = ['TP53', 'RPL5', 'RPL11', "RPL22", 'WNT11', 'WLS', "PORCN", 'MDM2', 'CDKN2A', 'ACTN', 'ACTB', 'LEP', 'GPR161', 'CDK2', 'HIF1A', 'ERBB2', 'PTEN','CDKN2A', 'LTN1','NEMF', 'NMD3','EIF6'] # melanoma for symbol in toyset: ct += 1 if not ct%1000: print "%d done in %5.2fs" % (ct, time() - start) if use_normal_tissue: qry = "select rpkm, experiment_id from rnaseq_rpkm where symbol='%s' and source_code in (10,11,12,14)" % symbol else: qry = "select rpkm, experiment_id from rnaseq_rpkm where symbol='%s' and source_code in (1,3,8,9)" % symbol rows = search_db(cursor, qry) if not rows: #print "no match for ", symbol no_match.append(symbol) continue values[symbol] = [] for row in rows: [rpkm, sample_id] = row values[symbol].append(rpkm*scaling[sample_id]) #print "search done in %5.2fs" % (time() - start) # TODO looks like some name esolution is in order here in general tot = 0 if not values.has_key(symbol): continue val_array = values[symbol] if bad (cursor, symbol): continue if not val_array: continue switch_to_db(cursor, db_name) tot += 1 description = stats.describe(val_array) [nobs, [min,max], mean, variance, skewness, kurtosis] = description stdev = sqrt(variance) if mean < 2: #print symbol, "weak" store (cursor, symbol, "weak", description, []) continue if nobs < 20: #print "too few samples for a fit - bailing out" store (cursor, symbol, "small", description, []) continue val_array = sorted(val_array) distro = 'lognorm' opt_result_lognorm = optimization_loop (symbol, val_array, mean, stdev, distro, verbose=False) lognorm_ok = (len(opt_result_lognorm)==6) # if we are happy with the lognorm fit, we won't do gamma fitting at all if lognorm_ok and opt_result_lognorm[0] > 0.9: #print symbol, "lognorm p: %5.2f" % opt_result_lognorm[0] store_fitted (cursor, symbol, "lognorm", description, opt_result_lognorm) continue distro = 'gamma' opt_result_gamma = optimization_loop (symbol, val_array, mean, stdev, distro, verbose=False) gamma_ok = (len(opt_result_gamma)==6) # use gamma if it worked and lognorm failed if gamma_ok and not lognorm_ok: store_fitted (cursor, symbol, "gamma", description, opt_result_gamma) #print "use gamma bcs lognorm failed" continue # one more chance for gamma if it is better fit, and covers larger interval than lognorm use_gamma = False if gamma_ok and lognorm_ok: [left_cut_g, right_cut_g] = opt_result_gamma[1:3] [left_cut_l, right_cut_l] = opt_result_lognorm[1:3] use_gamma = (opt_result_gamma[0] - opt_result_lognorm[0]) > 0.1 use_gamma = use_gamma and left_cut_g < left_cut_l and right_cut_l < right_cut_g if use_gamma: store_fitted (cursor, symbol, "gamma", description, opt_result_gamma) #print "use gamma bcs it is a batter fit" continue elif lognorm_ok: # lognorm did return something though we were hoping for something better store_fitted (cursor, symbol, "lognorm", description, opt_result_lognorm) #print "use lognorm after all %5.2f" % opt_result_lognorm[0] continue else: #print "no lognorm, no gamma" store (cursor, symbol, "fail", description, []) ######################################### def main(): db = connect_to_mysql() cursor = db.cursor() db_names = ["BLCA", "BRCA", "COAD", "HNSC", "KIRC", "KIRP", "LIHC", "LUAD", "LUSC", "REA", "UCEC"] db_names = ["BRCA", "COAD", "KIRC", "KIRP", "LIHC", "LUAD", "LUSC", "REA", "UCEC"] # gene names gene_list = [] if False: switch_to_db(cursor, 'baseline') qry = "select distinct approved_symbol from hgnc_id_translation where locus_type = 'gene with protein product' " rows = search_db(cursor, qry) gene_list = [row[0] for row in rows] print "\t number of genes", len(gene_list) for db_name in db_names: print " ** ", db_name process_data_set (cursor, db_name, gene_list) cursor.close() db.close() ######################################### if __name__ == '__main__': main()
gpl-3.0
alexsavio/scikit-learn
sklearn/manifold/locally_linear.py
6
25912
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.extmath import stable_cumsum from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=1): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1, n_jobs=n_jobs).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state : numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None, n_jobs=1): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float64) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) # build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] # find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) # choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] # find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] # calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) # find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = stable_cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues # Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float64) for i in range(N): s_i = s_range[i] # select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) # compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h # Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) # Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] # We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) # Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) # We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None, n_jobs=1): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs) random_state = check_random_state(self.random_state) X = check_array(X, dtype=float) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg, n_jobs=self.n_jobs) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
PythonCharmers/bokeh
bokeh/sampledata/gapminder.py
41
2655
from __future__ import absolute_import import pandas as pd from os.path import join import sys from . import _data_dir ''' This module provides a pandas DataFrame instance of four of the datasets from gapminder.org. These are read in from csvs that have been downloaded from Bokeh's sample data on S3. But the original code that generated the csvs from the raw gapminder data is available at the bottom of this file. ''' data_dir = _data_dir() datasets = [ 'fertility', 'life_expectancy', 'population', 'regions', ] for dataset in datasets: filename = join(data_dir, 'gapminder_%s.csv' % dataset) try: setattr( sys.modules[__name__], dataset, pd.read_csv(filename, index_col='Country') ) except (IOError, OSError): raise RuntimeError('Could not load gapminder data file "%s". Please execute bokeh.sampledata.download()' % filename) __all__ = datasets # ==================================================== # Original data is from Gapminder - www.gapminder.org. # The google docs links are maintained by gapminder # The following script was used to get the data from gapminder # and process it into the csvs stored in bokeh's sampledata. """ population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls" fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls" life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls" regions_url = "https://docs.google.com/spreadsheets/d/1OxmGUNWeADbPJkQxVPupSOK5MbAECdqThnvyPrwG5Os/pub?gid=1&output=xls" def _get_data(url): # Get the data from the url and return only 1962 - 2013 df = pd.read_excel(url, index_col=0) df = df.unstack().unstack() df = df[(df.index >= 1964) & (df.index <= 2013)] df = df.unstack().unstack() return df fertility_df = _get_data(fertility_url) life_expectancy_df = _get_data(life_expectancy_url) population_df = _get_data(population_url) regions_df = pd.read_excel(regions_url, index_col=0) # have common countries across all data fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index)) population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index)) regions_df = regions_df.drop(regions_df.index.difference(life_expectancy_df.index)) fertility_df.to_csv('gapminder_fertility.csv') population_df.to_csv('gapminder_population.csv') life_expectancy_df.to_csv('gapminder_life_expectancy.csv') regions_df.to_csv('gapminder_regions.csv') """ # ======================================================
bsd-3-clause
jplourenco/bokeh
examples/app/stock_applet/stock_app_simple.py
43
12408
""" This file demonstrates a bokeh applet, which can either be viewed directly on a bokeh-server, or embedded into a flask application. See the README.md file in this directory for instructions on running. """ import logging logging.basicConfig(level=logging.DEBUG) from os import listdir from os.path import dirname, join, splitext import numpy as np import pandas as pd from bokeh.models import ColumnDataSource, Plot from bokeh.plotting import figure, curdoc from bokeh.properties import String, Instance from bokeh.server.app import bokeh_app from bokeh.server.utils.plugins import object_page from bokeh.models.widgets import (HBox, VBox, VBoxForm, PreText, Select, AppHBox, AppVBox, AppVBoxForm) from bokeh.simpleapp import simpleapp select1 = Select(name='ticker1', value='AAPL', options=['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO']) select2 = Select(name='ticker2', value='GOOG', options=['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO']) @simpleapp(select1, select2) def stock(ticker1, ticker2): pretext = PreText(text="", width=500) df = get_data(ticker1, ticker2) source = ColumnDataSource(data=df) source.tags = ['main_source'] p = figure( title="%s vs %s" % (ticker1, ticker2), plot_width=400, plot_height=400, tools="pan,wheel_zoom,box_select,reset", title_text_font_size="10pt", ) p.circle(ticker1 + "_returns", ticker2 + "_returns", size=2, nonselection_alpha=0.02, source=source ) stats = df.describe() pretext.text = str(stats) row1 = HBox(children=[p, pretext]) hist1 = hist_plot(df, ticker1) hist2 = hist_plot(df, ticker2) row2 = HBox(children=[hist1, hist2]) line1 = line_plot(ticker1, source) line2 = line_plot(ticker2, source, line1.x_range) output = VBox(children=[row1, row2, line1, line2]) return output stock.route("/bokeh/stocks/") @simpleapp(select1, select2) def stock2(ticker1, ticker2): pretext = PreText(text="", width=500) df = get_data(ticker1, ticker2) source = ColumnDataSource(data=df) source.tags = ['main_source'] p = figure( title="%s vs %s" % (ticker1, ticker2), plot_width=400, plot_height=400, tools="pan,wheel_zoom,box_select,reset", title_text_font_size="10pt", ) p.circle(ticker1 + "_returns", ticker2 + "_returns", size=2, nonselection_alpha=0.02, source=source ) stats = df.describe() pretext.text = str(stats) hist1 = hist_plot(df, ticker1) hist2 = hist_plot(df, ticker2) line1 = line_plot(ticker1, source) line2 = line_plot(ticker2, source, line1.x_range) return dict(scatterplot=p, statstext=pretext, hist1=hist1, hist2=hist2, line1=line1, line2=line2) @stock2.layout def stock2_layout(app): widgets = AppVBoxForm(app=app, children=['ticker1', 'ticker2']) row1 = AppHBox(app=app, children=['scatterplot', 'statstext']) row2 = AppHBox(app=app, children=['hist1', 'hist2']) all_plots = AppVBox(app=app, children=[row1, row2, 'line1', 'line2']) app = AppHBox(app=app, children=[widgets, all_plots]) return app @stock2.update(['ticker1', 'ticker2']) def stock2_update_input(ticker1, ticker2, app): return stock2(ticker1, ticker2) @stock2.update([({'tags' : 'main_source'}, ['selected'])]) def stock2_update_selection(ticker1, ticker2, app): source = app.select_one({'tags' : 'main_source'}) df = get_data(ticker1, ticker2) if source.selected: selected_df = df.iloc[source.selected['1d']['indices'], :] else: selected_df = df stats_text = app.objects['statstext'] stats_text.text = str(selected_df.describe()) return { 'hist1': hist_plot(df, ticker1, selected_df=selected_df), 'hist2': hist_plot(df, ticker2, selected_df=selected_df), 'statstext': stats_text, } stock2.route("/bokeh/stocks2/") def hist_plot(df, ticker, selected_df=None): if selected_df is None: selected_df = df global_hist, global_bins = np.histogram(df[ticker + "_returns"], bins=50) hist, bins = np.histogram(selected_df[ticker + "_returns"], bins=50) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 start = global_bins.min() end = global_bins.max() top = hist.max() p = figure( title="%s hist" % ticker, plot_width=500, plot_height=200, tools="", title_text_font_size="10pt", x_range=[start, end], y_range=[0, top], ) p.rect(center, hist / 2.0, width, hist) return p def line_plot(ticker, source, x_range=None): p = figure( title=ticker, x_range=x_range, x_axis_type='datetime', plot_width=1000, plot_height=200, title_text_font_size="10pt", tools="pan,wheel_zoom,box_select,reset" ) p.circle( 'date', ticker, size=2, source=source, nonselection_alpha=0.02 ) return p # build up list of stock data in the daily folder data_dir = join(dirname(__file__), "daily") try: tickers = listdir(data_dir) except OSError as e: print('Stock data not available, see README for download instructions.') raise e tickers = [splitext(x)[0].split("table_")[-1] for x in tickers] # cache stock data as dict of pandas DataFrames pd_cache = {} def get_ticker_data(ticker): fname = join(data_dir, "table_%s.csv" % ticker.lower()) data = pd.read_csv( fname, names=['date', 'foo', 'o', 'h', 'l', 'c', 'v'], header=False, parse_dates=['date'] ) data = data.set_index('date') data = pd.DataFrame({ticker: data.c, ticker + "_returns": data.c.diff()}) return data def get_data(ticker1, ticker2): if pd_cache.get((ticker1, ticker2)) is not None: return pd_cache.get((ticker1, ticker2)) # only append columns if it is the same ticker if ticker1 != ticker2: data1 = get_ticker_data(ticker1) data2 = get_ticker_data(ticker2) data = pd.concat([data1, data2], axis=1) else: data = get_ticker_data(ticker1) data = data.dropna() pd_cache[(ticker1, ticker2)] = data return data # class StockApp(VBox): # extra_generated_classes = [["StockApp", "StockApp", "VBox"]] # jsmodel = "VBox" # # text statistics # pretext = Instance(PreText) # # plots # plot = Instance(Plot) # line_plot1 = Instance(Plot) # line_plot2 = Instance(Plot) # hist1 = Instance(Plot) # hist2 = Instance(Plot) # # data source # source = Instance(ColumnDataSource) # # layout boxes # mainrow = Instance(HBox) # histrow = Instance(HBox) # statsbox = Instance(VBox) # # inputs # ticker1 = String(default="AAPL") # ticker2 = String(default="GOOG") # ticker1_select = Instance(Select) # ticker2_select = Instance(Select) # input_box = Instance(VBoxForm) # def __init__(self, *args, **kwargs): # super(StockApp, self).__init__(*args, **kwargs) # self._dfs = {} # @classmethod # def create(cls): # """ # This function is called once, and is responsible for # creating all objects (plots, datasources, etc) # """ # # create layout widgets # obj = cls() # # create input widgets # obj.make_inputs() # # outputs # obj.pretext = PreText(text="", width=500) # obj.make_source() # obj.make_plots() # obj.make_stats() # # layout # obj.set_children() # return obj # def make_inputs(self): # self.ticker1_select = Select( # name='ticker1', # value='AAPL', # options=['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO'] # ) # self.ticker2_select = Select( # name='ticker2', # value='GOOG', # options=['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO'] # ) # @property # def selected_df(self): # pandas_df = self.df # selected = self.source.selected # if selected: # pandas_df = pandas_df.iloc[selected, :] # return pandas_df # def make_source(self): # self.source = ColumnDataSource(data=self.df) # def line_plot(self, ticker, x_range=None): # p = figure( # title=ticker, # x_range=x_range, # x_axis_type='datetime', # plot_width=1000, plot_height=200, # title_text_font_size="10pt", # tools="pan,wheel_zoom,box_select,reset" # ) # p.circle( # 'date', ticker, # size=2, # source=self.source, # nonselection_alpha=0.02 # ) # return p # def hist_plot(self, ticker): # global_hist, global_bins = np.histogram(self.df[ticker + "_returns"], bins=50) # hist, bins = np.histogram(self.selected_df[ticker + "_returns"], bins=50) # width = 0.7 * (bins[1] - bins[0]) # center = (bins[:-1] + bins[1:]) / 2 # start = global_bins.min() # end = global_bins.max() # top = hist.max() # p = figure( # title="%s hist" % ticker, # plot_width=500, plot_height=200, # tools="", # title_text_font_size="10pt", # x_range=[start, end], # y_range=[0, top], # ) # p.rect(center, hist / 2.0, width, hist) # return p # def make_plots(self): # ticker1 = self.ticker1 # ticker2 = self.ticker2 # p = figure( # title="%s vs %s" % (ticker1, ticker2), # plot_width=400, plot_height=400, # tools="pan,wheel_zoom,box_select,reset", # title_text_font_size="10pt", # ) # p.circle(ticker1 + "_returns", ticker2 + "_returns", # size=2, # nonselection_alpha=0.02, # source=self.source # ) # self.plot = p # self.line_plot1 = self.line_plot(ticker1) # self.line_plot2 = self.line_plot(ticker2, self.line_plot1.x_range) # self.hist_plots() # def hist_plots(self): # ticker1 = self.ticker1 # ticker2 = self.ticker2 # self.hist1 = self.hist_plot(ticker1) # self.hist2 = self.hist_plot(ticker2) # def set_children(self): # self.children = [self.mainrow, self.histrow, self.line_plot1, self.line_plot2] # self.mainrow.children = [self.input_box, self.plot, self.statsbox] # self.input_box.children = [self.ticker1_select, self.ticker2_select] # self.histrow.children = [self.hist1, self.hist2] # self.statsbox.children = [self.pretext] # def input_change(self, obj, attrname, old, new): # if obj == self.ticker2_select: # self.ticker2 = new # if obj == self.ticker1_select: # self.ticker1 = new # self.make_source() # self.make_plots() # self.set_children() # curdoc().add(self) # def setup_events(self): # super(StockApp, self).setup_events() # if self.source: # self.source.on_change('selected', self, 'selection_change') # if self.ticker1_select: # self.ticker1_select.on_change('value', self, 'input_change') # if self.ticker2_select: # self.ticker2_select.on_change('value', self, 'input_change') # def make_stats(self): # stats = self.selected_df.describe() # self.pretext.text = str(stats) # def selection_change(self, obj, attrname, old, new): # self.make_stats() # self.hist_plots() # self.set_children() # curdoc().add(self) # @property # def df(self): # return get_data(self.ticker1, self.ticker2) # # The following code adds a "/bokeh/stocks/" url to the bokeh-server. This URL # # will render this StockApp. If you don't want serve this applet from a Bokeh # # server (for instance if you are embedding in a separate Flask application), # # then just remove this block of code. # @bokeh_app.route("/bokeh/stocks/") # @object_page("stocks") # def make_object(): # app = StockApp.create() # return app
bsd-3-clause
buchbend/astrolyze
build/lib/astrolyze/functions/astro_functions.py
1
46095
# Copyright (C) 2012, Christof Buchbender # BSD Licencse import math import sys import scipy from scipy.optimize import leastsq as least from numpy import asarray, mean, std, where, exp, log, sqrt, arange, float64, floor from copy import deepcopy as copy import random as rnd import astrolyze.functions.constants as const import astrolyze.functions.units as units def black_body(x, T, nu_or_lambda='nu'): r""" Calculation of the flux density of a black body at a temperature T and a wavelenght/frequency x. Parameters ---------- x : float or numpy array wavelength [GHz] or frequency [micron]; specify type in nu_or_lambda T : float [Kelvin] Temperature of the black_body nu_or_lambda : string Specify whether x is a frequency :math:`\nu` ``'nu'`` or a wavelenght :math:`\lambda` ``'lambda'``; default is ``'nu'``. Returns ------- Flux density in Jansky : float [Jy] Notes ----- This functions resembles the following formulas for input in frequency: .. math:: B_{\nu} = \frac{2 h \nu^3}{c^2} (e^{\frac{h \nu}{k T}} - 1)^{-1} and for input in wavelenght: .. math:: B_{\lambda} = \frac{2 h c^2}{\lambda^5} (e^{\frac{h \lambda}{k T}} - 1)^{-1} Both formulas are scaled by 1e26, thus returning the flux in Jansky. Examples -------- The function works with linear numpy arrays. Thus the black_body can be evaluated at many points at the same time. Using matplotlib it can also be plotted: .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astrolyze.functions.astro_functions as astFunc frequency_range = np.arange(1e4, 1e7, 1e4) temperature_1 = 6000 temperature_2 = 12000 # Kelvin blackbody_1 = astFunc.black_body(frequency_range, temperature_1) blackbody_2 = astFunc.black_body(frequency_range, temperature_2) figure = plt.figure() axis = figure.add_subplot(111) pl = axis.loglog(frequency_range, blackbody_1, label='T = 6000 K') pl = axis.loglog(frequency_range, blackbody_2, label='T = 12000 K') pl = axis.legend() plt.savefig('black_body.eps') """ x = float64(x) if nu_or_lambda == 'nu': return float64((2 * const.h * ((x * 1e9) ** 3) / (const.c ** 2)) * (1 / (math.e ** ((const.h * x * 1e9) / (const.k * float(T))) - 1)) / 1e-26) if nu_or_lambda == 'lambda': return ((2 * const.h * const.c ** 2 / ((x * 1e-6) ** 5)) * (1 / (math.e ** ((const.h * const.c) / (x * 1e-6 * const.k * float(T))) - 1)) / 1e-26) def grey_body(p, x, nu_or_lambda='nu', kappa='Kruegel', distance=840e3): r""" Calculation of the flux density in Jansky of a grey_body under assumption of optically thin emission. Please see Notes below for an detailed description assumptions and equations used. Parameters ---------- p : list List of the parameters defining a grey_body, being Temperature [K], column density or mass (dependent on the kappa used) and the grey_body slope index beta, respectively (refer to notes for more information): p = [T, N, beta] x : float or numpy array Wavelength [GHz] or frequency [micron]; specify type in nu_or_lambda kappa : string Chooses the dust extinction coefficient to use: * ``"easy"`` -> kappa = nu^beta; tau = N * kappa * ``"Kruegel"`` -> kappa = 0.04*(nu/250Ghz)^beta; tau = M/D^2 * kappa Please refer to Notes below, for further explanation. distance : float The distance to the source that is to be modeled if kappa ``"Kruegel"`` is used. Other Parameters ---------------- nu_or_lambda : string Specify whether x is a frequency :math:`\nu` ``'nu'`` or a wavelength :math:`\lambda` ``'lambda'``; default is ``'nu'``. if lambda the input converted to a frequency in [GHz]. Notes ----- The general equation for a grey_body is: .. math:: S(x, \tau) = (black_body(x, T)) * [1 - e^\tau] \Omega describing the flux coming from an solid angle :math:`\Omega` while :math:`\tau` is: .. math:: \tau_{\nu} = \frac{ \kappa_d(\nu) * M_{dust}}{D^2 \Omega} . Here we assume optically thin emission and a source filling factor of unity. This simplifies the equation of the grey_body to: .. math:: S(x, \tau) = \tau * (black_body(x, T)) This script supports two versions of the dust extinction coefficient.:: A simple version without a lot of physics put into, kappa = ``'easy'`` which defaults to the following grey_body equation: .. math:: S(x, \tau) = N * x^{\beta} * black_body(x,T) , with N being a column density scaling factor. The second version, kappa = ``'Kruegel'`` uses the dust extinction coefficient reported in [KS] which renders the used equation to: .. math:: \kappa = 0.04 * (\frac{x\,[GHz]}{250\,GHz})^{\beta} S_{\nu} = M[kg] / D^2[m^2] * \kappa * black_body(x,T) . Examples -------- The same examples as for :func:`black_body` apply. References ---------- .. [KS] Kruegel, E. & Siebenmorgen, R. 1994, A&A, 288, 929 """ x = float64(x) T, N, beta = p # Switch to choose kappa if kappa == 'easy': # Here N is an arbitrary fitParameter with no direct physical meaning. kappa = (x * 1e9) ** beta tau = kappa * N if kappa == 'Kruegel': # Be careful, for kappa='Kruegel' the start Parameter N is actually # the Mass of the specific component in sun masses. kappa = 0.04 * ((x * 1e9 / 250e9) ** beta) # [KS] distance_in_m = distance * const.parsec_in_m # M33.distance is 840e3 in # parsec. pcInM from # constants D2 = distance_in_m ** 2 # calculate the Distance squared [m^2] M = N * const.m_sun # Convert the Mass which is given as a start # Parameter in Msun to kg tau = kappa * (M / D2) if nu_or_lambda == 'lambda': # Conversion of x in wavelenght [micron] to frequency [GHz]. x = const.c / (x * 1e-6) / 1e9 nu_or_lambda == 'nu' if nu_or_lambda == 'nu': return tau * black_body(x, T, nu_or_lambda) # if nu_or_lambda == 'lambda': # # Not used anymore # print 'Warning: This part of the script is not up to date' # return N * ((c/(x * 1e-6))**beta) * black_body(x,T,nu_or_lambda) def multi_component_grey_body(pMulti, x, nu_or_lambda='nu', kappa='Kruegel'): r""" Combines multiple grey_body functions and returns the flux density in Jansky for the input frequency/wavelenght. Parameters ---------- pMulti : nested lists Similar to p from :py:func:`grey_body` but the three entries are lists, i.e.:: pMulti = [[T1, T2, T3, ...Tn], [N1, N2, N3,...Nn], [beta]] x : float or numpy array frequency [micron] (or wavelenght **Not maintained**, specify type in nu_or_lambda) Returns ------- sum(snu) : float All dust components summed. snu : A list with the fluxes of the individual components. See Also -------- black_body, grey_body Notes ----- Only one common beta for all components can be used. May be expanded to mutliple betas if needed. Examples -------- Same as for black_body, but all returned grey_bodies may be plotted. """ T, N, beta = pMulti if type(beta) == list: beta = beta[0] snu = [] for i in range(len(T)): pOne = [T[i], N[i], beta] snu += [grey_body(pOne, x, nu_or_lambda, kappa=kappa)] snu = asarray(snu) return snu.sum(axis=0), snu def grey_body_fit(data, start_parameter, nu_or_lambda='nu', fit_beta=False, fix_temperature=False, rawChiSq=None, kappa='Kruegel', residuals=False, iterations=1e9): r""" This function fits a multi component grey body model to an observed SED for the optical thin case. Parameters ---------- data : array The obseved data. Array of shape(3, x) first row has to be the X values (Frequency in [GHz]) of the measurements, second row the Y values (Flux [Jy]), and the third row the Z values the errors on the fluxes i.e.: data = array([[X1, X2, X3, ...], [Y1, Y2, Y3,...], [Z1, Z2, Z3, ...]]) start_parameter : array Array of a first guess of the parameters of the grey_body components. The number of components is arbitrary. start_parameter = [[T1, T2, T3,...], [N1, N2, N3, ...], beta] fit_beta : True or False If True Beta is allowed to vary. Default is False. fix_temperature : True or False If True the Temperature is fixed allowed to vary. rawChiSq : if None the function gives the reduced chisq Value. If True the function gives chisq without dividing it by the dof Returns ------- p2 : list The final grey_body parameters that reduce the least squares for the given dataset. chisq/rawChiSq : chisq is reduced chisq with degrees of freedom: dof= #dataPoints-#freeFitParameters-1 Other Parameters ---------------- nu_or_lambda : string Specify whether x is a frequency :math:`\nu` ``'nu'`` or a wavelenght :math:`\lambda` ``'lambda'``; default is ``'nu'``.:: **Don't** use ``'lambda'`` as this part of the :py:func:`grey_body` is not up-to-date. See Also -------- scipy.optimize.leastsq: This function is used to perform the least squares fit. multi_component_grey_body, grey_body, black_body: Defining the function to be fittet to the data. Notes ----- A one component fit has four free parameters if beta is allowed to vary or three if beta is fixed (one more than parameters to fit). Each additional component adds two more free paramters to fit. Assure that: number of data points > number of free parameters. """ # Distinguish between the different options and build the parameter list # needed by optimize.leastsq() if not fit_beta: if not fix_temperature: p = start_parameter[0] + start_parameter[1] beta = start_parameter[2] if fix_temperature: p = start_parameter[1] Temps = start_parameter[0] beta = start_parameter[2] if fit_beta: if not fix_temperature: p = start_parameter[0] + start_parameter[1] + start_parameter[2] if fix_temperature: p = start_parameter[1] + start_parameter[2] Temps = start_parameter[0] def _err(p, x, y, y_error, nu_or_lambda): """ The function to be minimized by scipy.optimize.leastsq. It returns the difference between the measured fluxes, y, and the calculated fluxes for the parameters p of the SED at the given frequency x. Parameters ---------- p : list same start start_parameter as in grey_body_fit x and y : The two rows, data[0] and data[1] of the data variable from grey_body_fit. y_error : The absolute error on the flux measurement. Other Parameters ---------------- nu_or_lambda : string Specify whether x is a frequency :math:`\nu` ``'nu'`` or a wavelenght :math:`\lambda` ``'lambda'``; default is ``'nu'``.:: **Don't** use ``'lambda'`` as this part of the :py:func:`grey_body` is not up-to-date. Notes ----- This function caluclates the residuals that are minimized by :func:`leastsq`, thus it calculates: .. math:: (model-measurement)/\sigma Note the :math:`\chi^2` is defined as: .. math:: \chi^2 = \frac{1}{N} \sum{(model-measurement)/\sigma} :warning:`Formula has to be checked.` """ if not fit_beta: if not fix_temperature: numberOfComponents = (len(p)) / 2 pMulti = [list(p[0:numberOfComponents]), list(p[numberOfComponents:numberOfComponents * 2])] pMulti += [beta] if fix_temperature: pMulti = [Temps, p, beta] if fit_beta: if not fix_temperature: numberOfComponents = (len(p) - 1) / 2 pMulti = [list(p[0:numberOfComponents]), list(p[numberOfComponents:numberOfComponents * 2]), p[len(p) - 1]] if fix_temperature: numberOfComponents = len(p) - 1 pMulti = [Temps, list(p[0:numberOfComponents]), p[len(p) - 1]] return (((multi_component_grey_body(pMulti, x, nu_or_lambda, kappa=kappa)[0]) - y) / y_error) # The actual fit # maxfev : Number of integrations # full_output: Additional informations # args: X and Y data p2, cov, info, mesg, success = least(_err, p, args=(data[0], data[1], data[2], nu_or_lambda), maxfev=int(iterations), full_output=1) # return of the optimized parameters dof = len(data[0]) - len(p) - 1 # degrees of Freedom chisq = sum(info['fvec'] * info['fvec']) / dof # see above rawchisq = sum(info['fvec'] * info['fvec']) if not fit_beta: if not fix_temperature: numberOfComponents = (len(p)) / 2 p2 = [list(p2[0:numberOfComponents]), list(p2[numberOfComponents:numberOfComponents * 2]), beta] if fix_temperature: numberOfComponents = len(p) p2 = [Temps, p2, beta] if fit_beta: if not fix_temperature: numberOfComponents = (len(p) - 1) / 2 p2 = [list(p2[0:numberOfComponents]), list(p2[numberOfComponents:numberOfComponents * 2]), [p2[len(p) - 1]]] if fix_temperature: numberOfComponents = (len(p) - 1) p2 = [Temps, list(p2[0:numberOfComponents]), [p2[len(p) - 1]]] if residuals: return p2, chisq, info['fvec'] if rawChiSq == None: return p2, chisq if rawChiSq: return p2, rawchisq def _grid_fit(data, beta, nu_or_lambda='nu', fit_beta=False, rawChiSq=False, kappa='Kruegel'): r""" Different approach to find the best fitting SED using certain ranges of temperatures and masses to avoid unreasonably high values. Not sure about the functionality and the code is badly written with the temperature and mass ranges hard coded. Thats why its not public. Once approved it may be made public again. Parameters ---------- data : array Same format as in grey_body_fit. beta : The beta value. If fit_beta=True this is varied in the fits. kappa : As in :func:`greybody`. Other Parameters ---------------- fit_beta: True or False Steers if beta is fittet or not. rawChisq: True or False Returns chi square without normalisation, or not. """ def _err(p, x, y, y_error, nu_or_lambda): """ The function to be minimized by scipy.optimize.leastsq. It returns the difference between the measured fluxes, y, and the calculated fluxes for the parameters p of the SED at the given frequency x. Parameters ---------- p : list same start start_parameter as in grey_body_fit x and y : The two rows, data[0] and data[1] of the data variable from grey_body_fit. y_error : The absolute error on the flux measurement. Other Parameters ---------------- nu_or_lambda : string Specify whether x is a frequency :math:`\nu` ``'nu'`` or a wavelenght :math:`\lambda` ``'lambda'``; default is ``'nu'``.:: **Don't** use ``'lambda'`` as this part of the :py:func:`grey_body` is not up-to-date. Notes ----- This function caluclates the residuals that are minimized by :func:`leastsq`, thus it calculates: .. math:: (model-measurement)/\sigma Note the :math:`\chi^2` is defined as: .. math:: \chi^2 = \frac{1}{N} \sum{(model-measurement)/\sigma} :warning:`Formula has to be checked.` This functions is different from the _err functions in grey_body_fit because the start parameters are handles differently. """ if not fit_beta: pMulti = [T, p, beta] print pMulti if fit_beta: pMulti = [Temps, p] print pMulti return (((multi_component_grey_body(pMulti, x, nu_or_lambda, kappa)[0]) - y) / y_error) beta = [beta] T1 = arange(5, 70, 1) T2 = arange(20, 100, 1) chisqList = {} chisqList1 = [] for i in T1: for j in T2: T = [i, j] N = [1e2, 1] if not fit_beta: p = N if fit_beta: p = N + beta p2, cov, info, mesg, success = least(_err, p, args=(data[0], data[1], data[2], nu_or_lambda), maxfev=int(1e9), full_output=1) dof = len(data[0]) - len(p) - 1 # Degrees of Freedom chisq = sum(info['fvec'] * info['fvec']) / dof # see above rawchisq = sum(info['fvec'] * info['fvec']) chisqList[chisq] = [[i, j], p2] chisqList1 += [chisq] chisq = sorted(chisqList)[0] T, p2 = chisqList[sorted(chisqList)[0]] if not fit_beta: numberOfComponents = len(p) p2 = [T, p2, beta] if fit_beta: numberOfComponents = (len(p) - 1) p2 = [Temps, list(p2[0:numberOfComponents]), [p2[len(p) - 1]]] if not rawChiSq: return p2, chisq if rawChiSq: return p2, rawchisq return sorted(chisq)[0] def LTIR(p2, kappa='Kruegel', xmin=3., xmax=1100., distance=False, unit='JyB'): r""" Integration of a multi-component greybody model. Parameters ---------- p2 : list The parameters defining the multi-component greybody model. Same format as p in :py:func:`astrolyze.functions.astroFunctions.multi_component_grey_body` kappa : string The dust extinction coefficient used to describe the greybodies. See: py:func:`grey_body` xmin, xmax : float The integration range in units of micron. Defaults to 3 -- 1100 micron. The definition of LTIR from [DA] unit : string If ``'Lsun'`` the returned integrated flux is in units of solar luminosities (erg s^-1). For this a distance is needed. If ``'JyB'`` the units are Jy/beam; distance is not used. If distance is not given JyB is used. Notes ----- Needs some work to be generally usable. For units in Jy/beam the code seems to be safe. References ---------- .. [DA] Dale et al. 2001; ApJ; 549:215-227 """ #Convert the input xmin/xmax from micron to m and to frequency in #GHz xmin = const.c / (xmin * 1e-6) / 1e9 # GHz xmax = const.c / (xmax * 1e-6) / 1e9 step = 0.1 x = arange(floor(xmax), floor(xmin), step) # multi_component_grey_body needs input (x) in GHz model, grey = multi_component_grey_body(p2, x, 'nu', kappa) # integrate the SED LTIR1 = sum(model) * (step * 1e9) # Jy/Beam*Hz if unit == 'Lsun' and distance: # convert to erg s-1 /beam in terms of 1e6*Lsun conv = 1 / units.ErgsToJansky_m * units.Int2Lum(distance, cm_or_m='m') LTIR1 = LTIR1 * conv / const.Lsunergs / 1e6 if unit == 'JyB' or not distance: pass return LTIR1 def generate_monte_carlo_data_sed(data): """ MonteCarlo Simulation of a set of flux measurements, assuming that the measurement data follows a gauss distribution. This function makes use of the :func:`random.gauss` function to generate a data point from a gauss distribution, that has a mean equal to the Flux measurement and a standard deviation correponding to the error of the measurement. Parameters ---------- data : array Same format as in grey_body_fit function: data= [[x1, x2, x3, ...][y1, y2, y3, ...][z1, z2, z3, ...]] with x = wavelenght/frequency, y = flux, z = error on flux. Returns ------- newData : array in same format as data. The Monte-Carlo simulated measurement. See Also -------- random.gauss """ newData = copy(data) for i in range(len(data[1])): newData[1][i] = rnd.gauss(data[1][i], data[2][i]) return newData def grey_body_monte_carlo(p, data, iterations): """ Function to evaluate the errors in the parameters fitted with the grey_body_fit function. It uses Monte Carlo Simulated data (from :func:`generate_monte_carlo_data_sed`) and performs a fit to this new data giving back the results of the fit parameters. Parameters ---------- p : list The parameters defining the multi component grey_body model to be fitted. Same format as p in :py:func:`multi_component_grey_body` data : array The actual measured data of the SED, same format as for :py:func:`grey_body_fitFunction` iterations : int Number of times new data is generated and fitted. Returns ------- string : Containing the mean, standard deviation of the fit parameters, ready to print out. betaTlist : List of all fit results. Name misleading since it may not include the beta. """ # Define the variables that store the MOnte Carlo T and N values TList = [] NList = [] chisqList = [] betaList = [] for i in range(len(p[0])): TList += [[]] NList += [[]] if len(p[0]) == 1: betaTList = [[], [], [], [], []] if len(p[0]) == 2: betaTList = [[], [], [], [], [], []] string = '' for i in range(0, iterations): print i + 1, '\\', iterations sys.stdout.flush() MCData = generate_monte_carlo_data_sed(data) if len(p[0]) == 1: p2, chisq = grey_body_fit(MCData, p, fit_beta=True, fix_temperature=False) else: p2, chisq = grey_body_fit(MCData, p, fit_beta=False, fix_temperature=False) chisqList += [chisq] x = 0 if len(p[0]) == 1: betaTList[3] += [MCData] betaTList[4] += [p2] if len(p[0]) == 2: betaTList[4] += [MCData] betaTList[5] += [p2] for i in range(len(p[0])): if len(p[0]) == 1: betaTList[0] += [p2[0][i]] betaTList[1] += [p2[2][i]] betaTList[2] += [p2[1][i]] if len(p[0]) == 2: betaTList[i] += [p2[0][i]] betaTList[i + 2] += [p2[1][i]] #if float(p2[0][0]) < 100: #if float(p2[0][1]) < 100: TList[i] += [p2[0][i]] NList[i] += [p2[1][i]] if x == 0: betaList += p2[2] else: #if float(p2[0][i]) < 100: TList[i] += [p2[0][i]] NList[i] += [p2[1][i]] if x == 0: betaList += p2[2] x = x + 1 betaList = asarray(betaList) for i in range(len(p[0])): string += ('T' + str(i + 1) + ': ' + str("%1.2f" % mean(asarray(TList[i]))) + ' +/- ' + str("%1.2f" % std(asarray(TList[i]))) + '\n') string += ('N' + str(i + 1) + ': ' + str("%1.2e" % mean(asarray(NList[i]))) + ' +/- ' + str("%1.2e" % std(asarray(NList[i]))) + '\n') string += ('Beta: ' + str("%1.2f" % mean(betaList)) + ' +/- ' + str("%1.2f" % std(betaList)) + '\n') string += 'Number of Fits ' + str(len(TList[0])) + '\n' if len(p[0]) == 1: return string, betaTList else: return string, betaTList def line(p, x): r""" Line `y = m*x + b` equation. Returns y value at point x. Parameters ---------- p : list Contains the slope and the y-axis intersection of the line [m, b]. Returns ------- y : value of y corresponding to x. """ return p[0] * x + p[1] def anti_line(p, y): r""" Inverse of a line returning the x value corresponding to a y value, i.e. `x = y/m - b`. Parameters ---------- p : list Contains the slope and the y-axis intersection of the line [m, b]. Returns ------- y : value of x corresponding to y. """ return y / p[0] - p[1] def linear_error_function(p, x, y, y_error, x_error): """ Error function, i.e. residual from the measured value, which has to be minimised in the least square fit taking X and Y Error into account. Parameters ---------- p : list Same as in :func:`line` and :func:`anti_line`. x : float or list x measurements. Data. y : float or list y measurements. Data. x_error : float or list The x measurment errors. y_error : float or list The y measurment errors. """ if x_error.all(): return sqrt(((line(p, x) - y) / y_error) ** 2 + ((anti_line(p, y) - x) / x_error) ** 2) if not x_error.all(): return sqrt(((line(p, x) - y) / y_error) ** 2) def line_fit(p, x, y, y_error, x_error=False, iterations=10000): """ Linear Fit to data, taking either errors in y or both in x and y into account. Parameters ---------- p : list Containg slope (m) and y-axis intersection (b) p=[m, b]. Same as in :func:`line` and :func:`antiline`. x : float or list x measurements. Data. y : float or list y measurements. Data. y_error : float or list The y measurment errors. x_error : float or list The x measurment errors. If unset only errors in y are taken into account. """ p1, cov, info, mesg, success = least(linear_error_function, p, args=(x, y, y_error, x_error), maxfev=int(iterations), full_output=1) dof = len(x) - len(p) - 1 # degrees of Freedom chisq = sum(info['fvec'] * info['fvec']) / dof Error = std(info['fvec']) return p1, chisq, Error def analytic_linear_fit(x, y, x_error, y_error): r""" This function resembles the analytical solution following chaper 8 from [TA]. Parameters ---------- x : float or list x measurements. Data. y : float or list y measurements. Data. y_error : float or list The y measurment errors. x_error : float or list The x measurment errors. If unset only errors in y are taken into account. Notes ----- Without errors the following holds: .. math:: y = A + B x A = \frac{\Sigma(x^2) \cdot \Sigma(y) - \Sigma(x) \cdot \Sigma(x \cdot y)}{\Delta} B = N \frac{\Sigma(x \cdot y) - \Sigma (x) \cdot \Sigma(y)}{\Delta} \Delta = N \cdot \Sigma(x^2) - (\Sigma(x))^2 .. warning:: This has to be checked. References ---------- .. [TA] "An introduction to the study of uncertainties in physical measurement" by John R. Taylor. """ # first calculate a least squares fit ignoring the errors since B is # needed for the more complex issue including errors sumX = sum(x) sumY = sum(y) sumXY = sum(x * y) sumXSq = sum(x ** 2) N = len(x) Delta = N * sumXSq - (sumX) ** 2 A = (sumXSq * sumY - sumX * sumXY) / Delta B = (N * sumXY - sumX * sumY) / Delta print 'm = ' + '%1.2f' % A + ' b = ' + '%1.2f' % B # now make use of the idea of a equivalent error only in y defined by # equivalentError = sqrt(y_error**2+(B*x_error)**2) equivalentError = y_error # sqrt(y_error**2+(B*x_error)**2) # and use wheighted least square fit see definition for A and B and # their errors below weight = 1. / (equivalentError) ** 2 sumWeightX = sum(weight * x) sumWeightY = sum(weight * y) sumWeightXY = sum(weight * x * y) sumWeightXSq = sum(weight * x ** 2) sumWeight = sum(weight) WeightDelta = (sumWeight * sumWeightXSq) - ((sumWeightX) ** 2) A = (((sumWeightXSq * sumWeightY) - (sumWeightX * sumWeightXY)) / WeightDelta) B = ((sumWeight * sumWeightXY) - (sumWeightX * sumWeightY)) / WeightDelta SigmaA = sqrt(sumWeightXSq / WeightDelta) SigmaB = sqrt(sumWeight / WeightDelta) Chisq = sum((y - A - B * x) ** 2 / equivalentError ** 2) / (N - 2) print ('m = ' + '%1.2f' % A + '+/-' + '%1.2f' % SigmaA + ' b = ' + '%1.2f' % B + '+/-' + '%1.2f' % SigmaB + ' chisq:' + '%1.2f' % Chisq) return A, SigmaA, B, SigmaB, Chisq def generate_monte_carlo_data_line(data, errors): """ This function makes a Monte Carlo Simulation of a data Set of measurements it uses the random.gauss() function to generate a data point from a gauss distribution, that has a mean equal to the measurement and its standard deviation corresonding to the error of the measurement. Parameters ---------- data : list A list of original measurements. errors : list A list of the corresponding errors. Returns ------- newData : array in same format as data. The monte carlo simulated measurement. See Also -------- random.gauss """ newData = copy(data) for i in range(len(data)): newData[i] = rnd.gauss(data[i], errors[i]) return newData def line_monte_carlo(p, x, y, x_error, y_error, iterations, fitIterations=1e9): """ Gererate an estimate of the errors of the fitted parameters determined by the :py:func:`line_fit` function. Parameters ---------- p : list Containg slope (m) and y-axis intersection (b) p=[m, b]. Same as in :func:`line` and :func:`antiline`. x : float or list x measurements. Data. y : float or list y measurements. Data. y_error : float or list The y measurment errors. x_error : float or list The x measurment errors. If unset only errors in y are taken into account. Returns ------- string : A string containing the results. BList : A list containing the fittet y-Axis intersections. MList : A list containing the fitted slopes. chisqList : A list with the chisq values. resultArray : Array with the mean and the standard deviations of slopes and y-axis intersections, i.e. [mean(M), std(M), mean(B), std(B)] See Also -------- grey_body_fit, generate_monte_carlo_data_line """ # Define the variables that store the MOnte Carlo B and M values y= mx+b BList = [] MList = [] chisqList = [] FitList = [] string = '' for i in range(0, iterations): sys.stdout.write(str(i + 1) + '\\' + str(iterations) + '\r') sys.stdout.flush() xMCData = generate_monte_carlo_data_line(x, x_error) yMCData = generate_monte_carlo_data_line(y, y_error) p2, chisq, Error = line_fit(p, xMCData, yMCData, x_error, y_error, XY_or_Y='XY', iterations=10000) chisqList += [chisq] BList += [p2[1]] MList += [p2[0]] string += ('B: ' + str("%1.2f" % mean(asarray(BList))) + ' +/- ' + str("%1.2f" % std(asarray(BList))) + '\n') string += ('M: ' + str("%1.2f" % mean(asarray(MList))) + ' +/- ' + str("%1.2f" % std(asarray(MList))) + '\n') string += ('Chi: ' + str("%1.2f" % mean(asarray(chisqList))) + ' +/- ' + str("%1.2f" % std(asarray(chisqList))) + '\n') string += 'Number of Fits ' + str(len(BList)) + '\n' resultArray = [mean(asarray(MList)), std(asarray(MList)), mean(asarray(BList)), std(asarray(BList))] return string, BList, MList, chisqList, resultArray def gauss1D(x, fwhm, area, offset=0): r""" Calulcates 1D Gaussian. Parameters ---------- x : float or numpy.ndarray the x-axis value/values where the Gaussian is to be caluclated. fwhm : float The width of the Gaussian. offset : The offset in x direction from 0. Default is 0. Returns ------- gauss : float or np.ndarray The y value for the specified Gaussian distribution evaluated at x. Notes ----- The function used to describe the Gaussian is: .. math:: f = \frac{1}{fwhm * sqrt(2 * \pi)} * e^{-1/2 (\frac{x-x0}{fwhm})^2} """ gauss_factor_1 = 1.665109 gauss_factor_2 = 1.064467 gauss = ((x - offset) / fwhm * gauss_factor_1) ** 2 gauss = exp(-1 * gauss) height = area / (fwhm * gauss_factor_2) gauss = height * gauss return gauss def fwzi(noise, fwhm, area, offset=0): r""" Calulcates 1D Gaussian. Parameters ---------- x : float or numpy.ndarray the x-axis value/values where the Gaussian is to be caluclated. fwhm : float The width of the Gaussian. offset : The offset in x direction from 0. Default is 0. Returns ------- gauss : float or np.ndarray The y value for the specified Gaussian distribution evaluated at x. Notes ----- The function used to describe the Gaussian is: .. math:: f = \frac{1}{fwhm * sqrt(2 * \pi)} * e^{-1/2 (\frac{x-x0}{fwhm})^2} """ gauss_factor_1 = 1.665109 gauss_factor_2 = 1.064467 height = area / (fwhm * gauss_factor_2) ratio = height / noise print ratio if ratio < 1: fwzi = 0 return 0 # see wikipedia c = (fwhm) / math.sqrt(2) / gauss_factor_1 fwzi = 2. * math.sqrt(2. * math.log(ratio)) * c return fwzi def gauss2D(x, y, major, minor, pa=0, xOffset=0, yOffset=0, amplitude=1): r""" Calculates a 2D Gaussian at position x y. Parameters ---------- x : float or numpy.ndarray the x-axis value/values where the Gaussian is to be caluclated. y : float or numpy.ndarray the y-axis value/values where the Gaussian is to be calculated. major, minor : float The fwhm of the Gaussian in x and y direction. pa : float The position angle of the Gaussian in degrees. Default is 0. xOffset, yOffset: The offset in x and y direction from 0. Default is 0. amplitude : The height of the Gaussian. Default is 1. Returns ------- gauss : float or np.ndarray The y value for the specified Gaussian distribution evaluated at x. Notes ----- The function used to describe the Gaussian is : .. math:: f = (amplitude * exp (-1 (a*(x-xOffset)^2 + 2*b*(x-xOffset)*(y-yOffset) + c*(y-yOffset)^2))) where: .. math:: a = cos(pa)**2/(2*major**2) + sin(pa)**2/(2*minor**2) \\ b = (-1*sin(2*pa)/(4*major**2))+(sin(2*pa)/(4*minor**2)) \\ c = sin(pa)**2/(2*major**2) + cos(pa)**2/(2*minor**2) \\ """ pa = pa * math.pi / 180 a = cos(pa) ** 2 / (2 * major ** 2) + sin(pa) ** 2 / (2 * minor ** 2) b = ((-1 * sin(2 * pa) / (4 * major ** 2)) + (sin(2 * pa) / (4 * minor ** 2))) c = sin(pa) ** 2 / (2 * major ** 2) + cos(pa) ** 2 / (2 * minor ** 2) gauss = a * (x - xOffset) ** 2 gauss += 2 * b * (x - xOffset) * (y - yOffset) gauss += c * (y - yOffset) ** 2 gauss = exp(-1 * gauss) gauss = amplitude * gauss def degrees_to_equatorial(degrees): r""" Converts RA, DEC coordinates in degrees to equatorial notation. Parameters ---------- degrees : list The coordinates in degrees in the format of: [23.4825, 30.717222] Returns ------- equatorial : list The coordinates in equatorial notation, e.g. corresponding ['1:33:55.80', '+30:43:2.00']. """ coordinate = [] coordinate += [str(int(degrees[0] / 15)) + ':' + str(int(((degrees[0] / 15) - int(degrees[0] / 15)) * 60)) + ':' + "%1.2f" % (float(str((((degrees[0] / 15 - int(degrees[0] / 15)) * 60) - int((degrees[0] / 15 - int(degrees[0] / 15)) * 60)) * 60)))] coordinate += [(str(int(degrees[1])) + ':' + str(int(math.fabs(int((float(degrees[1]) - int(degrees[1])) * 60)))) + ':' + "%1.2f" % (math.fabs(float(str(float(((float(degrees[1]) - int(degrees[1])) * 60) - int((float(degrees[1]) - int(degrees[1])) * 60)) * 60)))))] return coordinate def equatorial_to_degrees(equatorial): r""" Converts RA, DEC coordinates in equatorial notation to degrees. Parameters ---------- equatorial : list The coordinates in degress in equatorial notation, e.g. ['1:33:55.80', '+30:43:2.00'] Returns ------- degrees : list The coordinates in degreees, e.g. [23.4825, 30.717222]. Raises ------ SystemExit If ``equatorial`` is not a list of strings in the above format. """ try: CoordsplitRA = equatorial[0].split(':') CoordsplitDec = equatorial[1].split(':') except AttributeError, e: print e raise SystemExit('Input has to be equatorial coordinates.') if float(CoordsplitDec[0]) > 0: degrees = [(float(CoordsplitRA[0]) * (360. / 24) + float(CoordsplitRA[1]) * (360. / 24 / 60) + float(CoordsplitRA[2]) * (360. / 24 / 60 / 60)), (float(CoordsplitDec[0]) + float(CoordsplitDec[1]) * (1. / 60) + float(CoordsplitDec[2]) * 1. / 60 / 60)] if float(CoordsplitDec[0]) < 0: degrees = [(float(CoordsplitRA[0]) * (360. / 24) + float(CoordsplitRA[1]) * (360. / 24 / 60) + float(CoordsplitRA[2]) * (360. / 24 / 60 / 60)), (float(CoordsplitDec[0]) - float(CoordsplitDec[1]) * (1. / 60) - float(CoordsplitDec[2]) * 1. / 60 / 60)] return degrees def calc_offset(central_coordinate, offset_coordinate, angle = 0, output_unit='arcsec'): r""" Calculates the offset between two coordinates. Parameters ---------- central_coordinate : list The reference coordinate in degrees or equatorial. offset_coordinate : list The second coordinate, the offset will be with rescpect to central_coordinate. angle : float The angle in degrees, allowing rotated systems. Returns ------- rotated_offset : list The offsets, rotated only if angle given. Notes ----- This functions includes a correction of the RA offset with declination: .. math: ra_corrected = ra cos(dec) """ possible_units = ['DEGREE', 'DEGREES', 'ARCMINUTE', 'ARCMINUTES', 'ARCSEC', 'ARCSECS'] if output_unit.upper() not in possible_units: raise ValueError('Unit has to be one of the following. "' + '" "'.join(possible_units).lower() + '"') angle = math.radians(angle) central_in_degrees = equatorial_to_degrees(central_coordinate) offset_in_degrees = equatorial_to_degrees(offset_coordinate) offset = [offset_in_degrees[0] - central_in_degrees[0] , offset_in_degrees[1] - central_in_degrees[1]] # correction for declination offset = [offset[0] * math.cos(math.radians(offset_in_degrees[1])), offset[1]] # Rotate the offsets. rotated_offset = rotation_2d(offset, angle) rotated_offset = asarray(rotated_offset) if output_unit.upper() in ['DEGREE', 'DEGREES']: pass if output_unit.upper() in ['ARCMINUTE', 'ARCMINUTES']: rotated_offset = rotated_offset * 60 if output_unit.upper() in ['ARCSEC', 'ARCSECS']: rotated_offset = rotated_offset * 60 * 60 print rotated_offset return rotated_offset def rotation_2d(coordinate, angle): r""" Implementation of the rotation matrix in two dimensions. Parameters ---------- coordinates : list of floats Coordinates in the unrotated system [x, y]. angle : float The rotation angle Returns ------- [x_rotated, y_rotated]: list of floats Coordinates in the rotated system. """ x, y = coordinate x_rotated = math.cos(angle) * x - math.sin(angle) * y y_rotated = math.sin(angle) * x + math.cos(angle) * y return [x_rotated, y_rotated] def vel_to_freq_resolution(center_frequency, velocity_resolution): r""" Converts a velocity resolution to frequency resolution for a given center frequency. Parameters ---------- center_frequency : float Center frequency in GHz. velocity_resolution : Velocity resolution in km/s. Returns ------- frequency_resolution : float The corresponding frequency resolution in Mhz Notes ----- Approved! """ # Conversion from km/s to m/s velocity_resolution = velocity_resolution * 1e3 # Conversion from GHz to Hz center_frequency = center_frequency * 1e9 # Calculation of the frequency_resolution in Hz frequency_resolution = (-1 * velocity_resolution * center_frequency / const.c) # Conversion to MHz frequency_resolution = frequency_resolution / 1e6 return frequency_resolution def freq_to_vel_resolution(center_frequency, frequency_resolution): r""" Function to convert a frequency resolution to a velocity resolution for a given center frequency. Parameters ---------- center_frequency : float Center frequency in GHz. frequency_resolution : float The frequency resolution in MHz. Returns ------- velocity_resolution in km/s. Notes ----- Uses the formula TODO v_LSR = c((nu0-nuObs)/nu0) Approved! """ center_frequency = center_frequency * 1e9 frequency_resolution = frequency_resolution * 1e6 observation_frequency = center_frequency + frequency_resolution velocity_resolution = v_lsr(center_frequency, observation_frequency) # Difference between nu0 and nuObs is the velocity resolution return velocity_resolution def v_lsr(center_frequency, observation_frequency): r""" Calculates the velocity that corresponds to a certain frequency shift between two frequencies. Parameters ---------- center_frequency : float center_frequency in GHz observation_frequency : float The observation frequency in GHz. Returns ------- v_lsr : float The velocity corresponding to the frequency shift in km/s Notes ----- Approved! """ center_frequency = center_frequency * 1e9 observation_frequency = observation_frequency * 1e9 v_lsr = (const.c * ((center_frequency - observation_frequency) / center_frequency) / 1e3) return v_lsr def redshifted_frequency(rest_frequency, v_lsr): r""" Calculates the sky frequency corresponding to a rest frequency for a source with a velocity v_lsr. Parameters ---------- rest_frequency : float The frequency of the line at rest in Ghz (More often state the obvious :)). v_lsr : float The velocity of the source in km/s. Returns ------- redshifted_frequency : float The sky frequency in GHz. Notes ----- The formula used is: .. math:: \nu_{sky} = \nu_{rest} * \frac{-1 v_{lsr}}{c + 1} Approved! """ # Convert frequency to Hz, rest_frequency = rest_frequency * 1e9 # Convert velocity to m/s, v_lsr = v_lsr * 1e3 # Calculate the sky frequency, redshifted_frequency = (-1. * v_lsr / const.c + 1) * rest_frequency # Convert to GHz. redshifted_frequency = redshifted_frequency / 1e9 return redshifted_frequency def frequency_to_wavelength(frequency): r""" Converting frequency to wavelength. Parameters ---------- frequency : float [GHZ] Returns ------- wavelength : float [micron] """ # Conversion from GHz to Hz frequency = frequency * 1e9 wavelength = const.c / frequency # Conversion from m to micron (mum). wavelength = wavelength / 1e-6 return wavelength def _equatorial2DegFile(inputFile): ''' Old Functions if needed can be made public... converts equatorial coordinates to degrees format of input File must be: sourcName Ra Dec with Space/tab between the entries ''' filein = open('positions.txt').readlines() coords = [] for i in filein: i = i.split() coords+=[[i[1], i[2]]] print coords for i in coords: print (filein[x].split()[0], equatorial2Deg(i)[0], ',', equatorial2Deg(i)[1]) x+=1 if __name__ == "__main__": import doctest doctest.testmod()
bsd-3-clause
untom/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
enricopal/snowball_decision
decision_algorithm.py
1
25944
import numpy as np import random import networkx as nx from operator import itemgetter import pandas as pd import sys import json import optparse ############################################################### #### CONCORDANCE, DISCORDANCE AND CREDIBILITY FUNCTIONS ###### ############################################################### def conc_func(i,j,k): #computes the concordance given a pair of alternatives i and j and a given criterion k x = float(alternatives[i,k] - alternatives[j,k]) q = float(indiff_thresh[k]) p = float(pref_thresh[k]) if (p != q): #check that the angular coeff. exists if (x < q): return 1 elif (x < p): return (-x)/(p-q) + (p)/(p-q) elif (x >= p): return 0 else: #otherwise it is a step function if (x <= p): return 1 else: return 0 def disc_func(i,j,k): #computes the concordance given a pair of alternatives i and j and a given criterion k x = float(alternatives[i,k] - alternatives[j,k]) v = float(vetos[k]) p = float(pref_thresh[k]) if (p!=v):#check that the angular coeff. exists if (x <= p): return 0 elif (x <= v): return (x)/(v-p) - (p)/(v-p) elif (x > v): return 1 else: #otherwise it is a step function if (x <= p): return 0 else: return 1 #define the concordance and discordance functions def conc_func_tri(i,j,k): #computes the concordance given a pair alternative-profile i and j and a given criterion k x = float(alternatives[i,k] - profiles[j,k]) q = float(indiff_thresh[k]) p = float(pref_thresh[k]) if (p != q): #check that the angular coeff. exists if (x < q): return 1 elif (x < p): return (-x)/(p-q) + (p)/(p-q) elif (x >= p): return 0 else: #otherwise it is a step function if (x <= p): return 1 else: return 0 def disc_func_tri(i,j,k): #computes the concordance given a pair of alternatives i and j and a given criterion k x = float(alternatives[i,k] - profiles[j,k]) v = float(vetos[k]) p = float(pref_thresh[k]) if (p!=v):#check that the angular coeff. exists if (x <= p): return 0 elif (x <= v): return (x)/(v-p) - (p)/(v-p) elif (x > v): return 1 else: #otherwise it is a step function if (x <= p): return 0 else: return 1 def concordance_tri(i,j): c = [] for k in range(m): #for each criterion c.append(weights[k]*conc_func_tri(i,j,k)) return sum(c) #define the credibility of the outranking as a function of concordance and discordance def credibility_tri(i,j): c = concordance_tri(i,j) fact = c for k in range(m):#for each criterion d = disc_func_tri(i,j,k) #just for simplicity of notation if (d > c): #if the discordance of the criterion is greater than the overall concordance fact = fact * (1-d) / (1-c) return fact #define the concordance and discordance for a pair of alternatives def concordance(i,j): c = [] for k in range(m): #for each criterion c.append(weights[k]*conc_func(i,j,k)) return sum(c) #define the credibility of the outranking as a function of concordance and discordance def credibility(i,j): c = concordance(i,j) fact = c for k in range(m):#for each criterion d = disc_func(i,j,k) #just for simplicity of notation if (d > c): #if the discordance of the criterion is greater than the overall concordance fact = fact * (1-d) / (1-c) return fact def discrimination_thresh(x):#non constant threshold return a - b*x ######################################### ############ ALGORITHMS ################# ######################################### #distillation algorithm def compute_scores_2(cred_matrix,altern_list): n = len(altern_list) scores = {} #vector holding the score of each alternative keys = altern_list for i in keys: #initialize to 0 the scores scores[i] = 0 #compute the max credibility l = max(cred_matrix.values()) alpha = discrimination_thresh(l) #compute the discrimination threshold for i in altern_list: #for each alternative for j in altern_list: if i!=j: #excluding the diagonal elements if(cred_matrix[(i,j)] >= l - alpha): scores[i] += 1 if(cred_matrix[(j,i)] >= l - alpha): scores[i] -= 1 return scores #what happens when there are more than two alternatives def runoff(cred_matrix,maxima_matrix, maxima): scores = {} scores = compute_scores_2(maxima_matrix,maxima) #first step of the algorithm #check if there is a unique max maxima_run = [] maximum = max(scores.values()) for i in scores.keys():#create a list with the alternatives that have maximum score if scores[i] == maximum: maxima_run.append(i) if len(maxima_run) == 1: #if there is a unique max ranking.append(maxima_run[0]) #select the winner of the competition #eliminate the winning alternative from the matrix for i,j in cred_matrix.keys(): if i == maxima_run[0] or j == maxima_run[0]: del cred_matrix[(i,j)] altern_list.remove(maxima_run[0]) distillation_2(cred_matrix) elif len(maxima_run) > 1:#otherwise put them all together with the same ranking ranking.append(maxima_run) #eliminate the winning alternatives from the matrix if len(cred_matrix) > len(maxima_run):#se ho altre alternative di cui fare il ranking, rimuovo quelle ottenute #print cred_matrix for j in maxima_run: altern_list.remove(j) for i,k in cred_matrix.keys(): if i == j or k == j: del cred_matrix[(i,k)] #print cred_matrix.values(), maxima_run distillation_2(cred_matrix) else: #altrimenti l'algoritmo si ferma return ranking #initializing the variables def distillation_2(cred_matrix): #print cred_matrix if len(cred_matrix) == 1: #there is just one alternative left, the algorithm has to stop ranking.append(altern_list[0]) #add the last element if len(cred_matrix) > 1: #are there any more alternatives to rank? scores = {} scores = compute_scores_2(cred_matrix,altern_list) #first step of the algorithm #check if there is a unique max maxima = [] #index_maxima = [] nonmaxima = [] #nonmaxima_all = [] #index_nonmaxima = [] maxima_matrix = [] maximum = max(scores.values()) for i in scores.keys():#create a list with the alternatives that have maximum score if scores[i] == maximum: maxima.append(i) else: nonmaxima.append(i) if len(maxima) == 1: #if there is a unique max ranking.append(maxima[0]) #select the winner of the competition #eliminate the winning alternative from the matrix for i,j in cred_matrix.keys(): if i == maxima[0] or j == maxima[0]: del cred_matrix[(i,j)] altern_list.remove(maxima[0]) distillation_2(cred_matrix) if len(maxima) > 1: #devo costruire la sottomatrice dei massimi #rimuovo quelli che non sono massimi dalla matrice di credibilit maxima_matrix = {} for i in cred_matrix.keys(): maxima_matrix[i] = cred_matrix[i] for k in nonmaxima: #elimino tutti i non_massimi for i,j in maxima_matrix.keys(): if i == k or j == k: del maxima_matrix[(i,j)] #print cred_matrix #then I apply the runoff to the submatrix of maxima runoff(cred_matrix,maxima_matrix, maxima) return ranking #what happens when there are more than two alternatives def runoff_asc(cred_matrix,minima_matrix, minima): scores = {} scores = compute_scores_2(minima_matrix,minima) #first step of the algorithm #find the minima minima_run = [] minimum = min(scores.values()) for i in scores.keys():#create a list with the alternatives that have minimum score if scores[i] == minimum: minima_run.append(i) #check if there is a unique min if len(minima_run) == 1: #if there is a unique max ranking.append(minima_run[0]) #select the winner of the competition #eliminate the winning alternative from the matrix for i,j in cred_matrix.keys(): if i == minima_run[0] or j == minima_run[0]: del cred_matrix[(i,j)] altern_list.remove(minima_run[0]) distillation_2_asc(cred_matrix) elif len(minima_run) > 1:#otherwise put them all together with the same ranking ranking.append(minima_run) #eliminate the winning alternatives from the matrix if len(cred_matrix) > len(minima_run):#se ho altre alternative di cui fare il ranking, rimuovo quelle ottenute for j in minima_run: altern_list.remove(j) for i,k in cred_matrix.keys(): if i == j or k == j: del cred_matrix[(i,k)] distillation_2_asc(cred_matrix) else: #altrimenti l'algoritmo si ferma return ranking def distillation_2_asc(cred_matrix): #there is just one alternative left, the algorithm has to stop if len(cred_matrix) == 1: #print cred_matrix ranking.append(altern_list[0]) #add the last element #are there any more alternatives to rank? if len(cred_matrix) > 1: scores = {} scores = compute_scores_2(cred_matrix,altern_list) #first step of the algorithm #find the minima minima = [] nonminima = [] minima_matrix = [] minimum = min(scores.values()) for i in scores.keys():#create a list with the alternatives that have minimum score if scores[i] == minimum: minima.append(i) else: nonminima.append(i) if len(minima) == 1: #if there is a unique max ranking.append(minima[0]) #select the winner of the competition #eliminate the winning alternative from the matrix for i,j in cred_matrix.keys(): if i == minima[0] or j == minima[0]: del cred_matrix[(i,j)] altern_list.remove(minima[0]) distillation_2_asc(cred_matrix) #if there's more than a minimum if len(minima) > 1: #devo costruire la sottomatrice dei minimi #rimuovo quelli che non sono minimi dalla matrice di credibilit minima_matrix = {} for i in cred_matrix.keys(): minima_matrix[i] = cred_matrix[i] for k in nonminima: #elimino tutti i non minimi for i,j in minima_matrix.keys(): if i == k or j == k: del minima_matrix[(i,j)] #then I apply the runoff to the submatrix of maxima runoff_asc(cred_matrix,minima_matrix, minima) return ranking def ELECTREIII(x): global alternatives alternatives = x ################################# ### credibility matrix ########## ################################# cred_matrix = {} #described by a dictionary taking a tuple (i,j) as key for i in range(n): #assigning the values to the cred_matrix for j in range(n): cred_matrix[(i,j)] = credibility(i,j) ################################ ## computing the threshold ##### ################################ #compute the max element l of the cred_matrix l = max(cred_matrix.values()) #calcolo alpha alpha = a - b*l ############################# ####### distillation ######## ############################# #calculating discending ranking global ranking ranking = [] global altern_list altern_list = range(n) disc_order = distillation_2(cred_matrix) #calculating ascending ranking ranking = [] altern_list = range(n) #reinitializing the credibility matrix cred_matrix = {} #described by a dictionary taking a tuple (i,j) as key for i in range(n): #assigning the values to the cred_matrix for j in range(n): cred_matrix[(i,j)] = credibility(i,j) ''' asc_order = distillation_2_asc(cred_matrix) #the asc_order must be reversed asc_order = asc_order[::-1] #print disc_order, asc_order #turning lists into dictionaries rank_asc = {} ''' rank_disc = {} ''' for i in range(len(asc_order)): if type(asc_order[i]) == list:#means I can iter through it for j in asc_order[i]: rank_asc[j] = i else: #if it is a single number I can make directly the association rank_asc[asc_order[i]] = i ''' for i in range(len(disc_order)): if type(disc_order[i]) == list: for j in disc_order[i]: rank_disc[j] = i else: rank_disc[disc_order[i]] = i ####################################### ##### combining the rankings ########## ####################################### adjacency = np.zeros((n,n)) ''' #compare all pair of alternatives #if i outranks j in one of the two orders and j does not outrank i in the other, i outranks j in the final order #otherwise, they are incomparable #N.B. the lower the ranking, the better for i in range(n): for j in range(n): if i != j: if rank_asc[i] < rank_asc[j] and rank_disc[i] <= rank_disc[j]: adjacency[i,j] = 1 if rank_disc[i] < rank_disc[j] and rank_asc[i] <= rank_asc[j]: adjacency[i,j] = 1 #creating the outranking graph G = nx.DiGraph() G.add_nodes_from(range(n)) for i in range(n): for j in range(n): if adjacency[i,j] == 1: G.add_edge(i,j) indegree = nx.in_degree_centrality(G) rank = {} for i in G.nodes(): rank[i] = (n-1)*indegree[i] #print asc_order #rescaling to an ordinal sequence #let us count the number of distinct elements in the indegree count = 1 for i in range(len(rank.values())-1): if rank.values()[i] != rank.values()[i+1]: count += 1 ''' #sorted_rank = sorted(rank.iteritems(), key=itemgetter(1)) #list representing the pair of values sorted_rank = sorted(rank_disc.iteritems(), key=itemgetter(1)) #list representing the pair of values #transformation to the data sorted_rank = np.array(sorted_rank) for i in range(len(sorted_rank) - 1): if sorted_rank[i + 1][1] - sorted_rank[i][1] > 1: sorted_rank[i + 1][1] = sorted_rank[i][1] + 1 final_rank = {} for i,j in sorted_rank: final_rank[i] = j return sorted_rank #################################### ##### RUN THE ALGORITHM ############ #################################### def decision_ranking(inputs, crit_weights, mitigation_strategies, indiff, pref, veto): dati = pd.read_json(inputs) global m m = len(dati) #number of criteria #normalizing the weights global weights weights = np.array(crit_weights) total_weight = sum(weights) if total_weight == 0: weights = [1./m for i in range(m)] else: weights = weights/total_weight #parameters of the model (vectors) #vetos threshold #concordance threshold #discordance threshold global vetos, pref_thresh, indiff_thresh,a,b vetos = veto pref_thresh = pref indiff_thresh = indiff #threshold parameters a = 0.3 b = 0.15 length = len(dati.keys()) -1 alternatives = np.array([dati[mitigation_strategies[i]] for i in range(length)]) global n n = len(alternatives) #number of strategies N = 101 #number of runs results = [] #saving the ranking for each run for i in range(N): #ripeto N volte #original matrix alternatives = np.array([dati[mitigation_strategies[i]] for i in range(length)]) #random sampled alternat = np.zeros((n,m)) #alternat[i,j] is the random sampling of a poissonian distribution of average alternatives[i,j] for i in range(n): for j in range(m): alternat[i,j] = np.random.poisson(alternatives[i,j]) results.append(ELECTREIII(alternat)) #dictionary assigning to each alternative a list of its rankings ranking_montecarlo = {} #initializing for i in range(n): ranking_montecarlo[i] = [] for i in results: for j in i: #coppia alternative-rank k = int(j[0]) l = int(j[1]) ranking_montecarlo[k].append(l) #now we can compute the median final_ranking_montecarlo = {} for i in ranking_montecarlo.keys(): final_ranking_montecarlo[i] = np.median(ranking_montecarlo[i]) #compute the ranking distribution #occurrences tells us the frequency of ranking r for alternative i occurrences = np.zeros((n,n)) for i in results: for j in i: #coppia alternative-rank k = int(j[0]) #alternative l = int(j[1]) #rank occurrences[k,l] += 1 #everytime I encounter the couple, I increment the frequency #assign their names to the alternatives named_final_ranking = {} for i in final_ranking_montecarlo.keys(): named_final_ranking[dati.keys()[i+1]] = final_ranking_montecarlo[i] + 1 #assegno i nomi e faccio partire il ranking da 1 #assign the names to the ranking distributions ranking_distributions = {} var = 1 for i in occurrences: ranking_distributions[dati.keys()[var]] = i var += 1 #################### ### OUTPUTS DATA ### #################### #print "The medians of the ranking distributions are\n" #print named_final_ranking #print "\n" #print "The ranking distributions are: \n" #print ranking_distributions return (named_final_ranking, ranking_distributions) def ELECTRETri(x): global alternatives alternatives = x ################################# ###### credibility matrix ####### ################################# cred_matrix = np.zeros((n,M)) #initializing the credibility matrix for i in range(n): #assigning the values to the cred_matrix for j in range(M): cred_matrix[i,j] = credibility_tri(i,j) ################################# ### turn the fuzzy into crisp ### ################################# for i in range(n): for j in range(M): if cred_matrix[i,j] > lambd: #if cred is greater than a threshold cred_matrix[i,j] = 1 else: cred_matrix[i,j] = 0 ################################### ########## exploration ############ ################################### pessimistic = {} #per ogni alternativa calcolo quali reference profiles surclassa for i in range(n): pessimistic[i] = [] for j in range(M): if cred_matrix[i,j] == 1: pessimistic[i].append(j) #dopodich individuo il migliore fra questi for i in pessimistic.keys(): pessimistic[i] = min(pessimistic.values()[i]) #trasformo il dizionario in una lista ordinata pessimistic = sorted(pessimistic.iteritems(), key = itemgetter(1)) return pessimistic def decision_sorting(inputs, crit_weights,mitigation_strategies, indiff, pref, veto, prof): dati = pd.read_json(inputs) global m m = len(dati) #number of criteria #normalizing the weights global weights weights = np.array(crit_weights) total_weight = sum(weights) if total_weight == 0: weights = [1./m for i in range(m)] else: weights = weights/total_weight #parameters of the model (vectors) #vetos threshold #concordance threshold #discordance threshold global vetos, pref_thresh, indiff_thresh,lambd vetos = veto pref_thresh = pref indiff_thresh = indiff length = len(dati.keys())-1 alternatives = np.array([dati[mitigation_strategies[i]] for i in range(length)]) global n n = len(alternatives) #number of strategies lambd = 0.75 #alternatives = np.array((dati['Basic building retrofitting'], dati['Enhanced building retrofitting'],dati['Evacuation'],dati['No mitigation'])) #n = len(alternatives) global profiles profiles = prof #profiles = np.array(([5, 5,0,2,1,3,6], [25, 3500000,2500000,7000,180000,80,200],[1000, 2000000000,180000000,2000008,15020000,3000,6000])) global M M = len(profiles) #number of classes N = 101 #number of runs results = [] #saving the ranking for each run for i in range(N): #ripeto N volte #original matrix alternatives = np.array([dati[mitigation_strategies[i]] for i in range(length)]) #random sampled alternat = np.zeros((n,m)) #alternat[i,j] is the random sampling of a poissonian distribution of average alternatives[i,j] for i in range(n): for j in range(m): alternat[i,j] = np.random.poisson(alternatives[i,j]) results.append(ELECTRETri(alternat)) #dictionary assigning to each alternative a list of its categoriess sorting_montecarlo = {} #initializing for i in range(n): sorting_montecarlo[i] = [] for i in results: for j in i: #coppia alternative-rank k = int(j[0]) l = int(j[1]) sorting_montecarlo[k].append(l) #now we can compute the median final_sorting_montecarlo = {} for i in sorting_montecarlo.keys(): final_sorting_montecarlo[i] = np.median(sorting_montecarlo[i]) #we can assign letters instead of numbers for i in final_sorting_montecarlo.keys(): if final_sorting_montecarlo[i] == 0: final_sorting_montecarlo[i] = 'A' elif final_sorting_montecarlo[i] == 1: final_sorting_montecarlo[i] = 'B' elif final_sorting_montecarlo[i] == 2: final_sorting_montecarlo[i] = 'C' #building the probability distribution #occurrences tells us the frequency of ranking r for alternative i occurrences = np.zeros((n,M)) for i in results: for j in i: #coppia alternative-rank k = int(j[0]) #alternative l = int(j[1]) #rank occurrences[k,l] += 1 #everytime I encounter the couple, I increment the frequency #assign their names to the alternatives named_final_sorting = {} for i in final_sorting_montecarlo.keys(): named_final_sorting[dati.keys()[i+1]] = final_sorting_montecarlo[i] #assegno i nomi e faccio partire il ranking da 1 #assign the names to the ranking distributions sorting_distributions = {} var = 1 for i in occurrences: sorting_distributions[dati.keys()[var]] = i var += 1 #################### ### OUTPUTS DATA ### #################### return (named_final_sorting, sorting_distributions) #a = decision_sorting('santorini/scenario1_input.json',[0.2,0.1,0.3,0.0,0.2,0.1,0.1],['EVC_anteEQ1','EVC_anteEQ1_anteEQ2','No Mitigation'], #print a[0],a[1] b = decision_ranking('santorini/scenario1_input.json',[5,3,2,1,2,0,0],['EVC_anteEQ1','EVC_anteEQ1_anteEQ2','No Mitigation'], np.array([0, 50, 50, 2, 50, 2, 20]), np.array([2, 100, 100, 20, 100, 20, 200]), np.array([5, 5000, 5000, 100, 5000, 100, 2000])) print b[0],b[1] #final_sorting, sorting_distribution = decision_sorting('santorini/fhg.json',[0.2 for i in range(8)],['UPS (uninterrupted power supply)','Redundancy within grids','Reinforcement of vulnerable nodes','No Mitigation'], # np.array([5, 5, 5, 5, 5, 5, 5,5]), np.array([50, 50, 50, 50, 50, 50, 50, 50]), np.array([500, 500, 500, 500, 500, 500, 500, 500]), # np.array(([30, 25,20,34,30,20,30,20],[50,50,50,50,50,50,50,50],[1000, 20000,18000,2000,5000,5000,6000,5000]))) #print final_sorting #final_ranking, ranking_distribution = decision_ranking('santorini/fhg.json',[0.2 for i in range(8)],['UPS (uninterrupted power supply)','Redundancy within grids','Reinforcement of vulnerable nodes','No Mitigation'], # np.array([5, 5, 5, 5, 5, 5, 5,5]), np.array([50, 50, 50, 50, 50, 50, 50, 50]), np.array([500, 500, 500, 500, 500, 500, 500, 500])) #print final_ranking
apache-2.0
huongttlan/statsmodels
statsmodels/graphics/tsaplots.py
16
10392
"""Correlation plot functions.""" import numpy as np from statsmodels.graphics import utils from statsmodels.tsa.stattools import acf, pacf def plot_acf(x, ax=None, lags=None, alpha=.05, use_vlines=True, unbiased=False, fft=False, **kwargs): """Plot the autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : array_like, optional Array of lag values, used on horizontal axis. If not given, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett's formula. If None, no confidence intervals are plotted. use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n fft : bool, optional If True, computes the ACF via FFT. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) if lags is None: lags = np.arange(len(x)) nlags = len(lags) - 1 else: nlags = lags lags = np.arange(lags + 1) # +1 for zero lag confint = None # acf has different return type based on alpha if alpha is None: acf_x = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) else: acf_x, confint = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) if use_vlines: ax.vlines(lags, [0], acf_x, **kwargs) ax.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('markersize', 5) kwargs.setdefault('linestyle', 'None') ax.margins(.05) ax.plot(lags, acf_x, **kwargs) ax.set_title("Autocorrelation") if confint is not None: # center the confidence interval TODO: do in acf? ax.fill_between(lags, confint[:,0] - acf_x, confint[:,1] - acf_x, alpha=.25) return fig def plot_pacf(x, ax=None, lags=None, alpha=.05, method='ywm', use_vlines=True, **kwargs): """Plot the partial autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : array_like, optional Array of lag values, used on horizontal axis. If not given, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) method : 'ywunbiased' (default) or 'ywmle' or 'ols' specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) if lags is None: lags = np.arange(len(x)) nlags = len(lags) - 1 else: nlags = lags lags = np.arange(lags + 1) # +1 for zero lag confint = None if alpha is None: acf_x = pacf(x, nlags=nlags, alpha=alpha, method=method) else: acf_x, confint = pacf(x, nlags=nlags, alpha=alpha, method=method) if use_vlines: ax.vlines(lags, [0], acf_x, **kwargs) ax.axhline(**kwargs) # center the confidence interval TODO: do in acf? kwargs.setdefault('marker', 'o') kwargs.setdefault('markersize', 5) kwargs.setdefault('linestyle', 'None') ax.margins(.05) ax.plot(lags, acf_x, **kwargs) ax.set_title("Partial Autocorrelation") if confint is not None: # center the confidence interval TODO: do in acf? ax.fill_between(lags, confint[:,0] - acf_x, confint[:,1] - acf_x, alpha=.25) return fig def seasonal_plot(grouped_x, xticklabels, ylabel=None, ax=None): """ Consider using one of month_plot or quarter_plot unless you need irregular plotting. Parameters ---------- grouped_x : iterable of DataFrames Should be a GroupBy object (or similar pair of group_names and groups as DataFrames) with a DatetimeIndex or PeriodIndex """ fig, ax = utils.create_mpl_ax(ax) start = 0 ticks = [] for season, df in grouped_x: df = df.copy() # or sort balks for series. may be better way df.sort() nobs = len(df) x_plot = np.arange(start, start + nobs) ticks.append(x_plot.mean()) ax.plot(x_plot, df.values, 'k') ax.hlines(df.values.mean(), x_plot[0], x_plot[-1], colors='k') start += nobs ax.set_xticks(ticks) ax.set_xticklabels(xticklabels) ax.set_ylabel(ylabel) ax.margins(.1, .05) return fig def month_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of monthly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.elnino.load_pandas().data >>> dta['YEAR'] = dta.YEAR.astype(int).astype(str) >>> dta = dta.set_index('YEAR').T.unstack() >>> dates = map(lambda x : pd.datetools.parse('1 '+' '.join(x)), ... dta.index.values) >>> dta.index = pd.DatetimeIndex(dates, freq='M') >>> fig = sm.graphics.tsa.month_plot(dta) .. plot:: plots/graphics_month_plot.py """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="M") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="M")) xticklabels = ['j','f','m','a','m','j','j','a','s','o','n','d'] return seasonal_plot(x.groupby(lambda y : y.month), xticklabels, ylabel=ylabel, ax=ax) def quarter_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of quarterly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="Q") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="Q")) xticklabels = ['q1', 'q2', 'q3', 'q4'] return seasonal_plot(x.groupby(lambda y : y.quarter), xticklabels, ylabel=ylabel, ax=ax) if __name__ == "__main__": import pandas as pd #R code to run to load that dataset in this directory #data(co2) #library(zoo) #write.csv(as.data.frame(list(date=as.Date(co2), co2=coredata(co2))), "co2.csv", row.names=FALSE) co2 = pd.read_csv("co2.csv", index_col=0, parse_dates=True) month_plot(co2.co2) #will work when dates are sorted #co2 = sm.datasets.get_rdataset("co2", cache=True) x = pd.Series(np.arange(20), index=pd.PeriodIndex(start='1/1/1990', periods=20, freq='Q')) quarter_plot(x)
bsd-3-clause
gallir/influxdb-python
examples/tutorial_pandas.py
10
1381
import argparse import pandas as pd from influxdb import DataFrameClient def main(host='localhost', port=8086): user = 'root' password = 'root' dbname = 'example' client = DataFrameClient(host, port, user, password, dbname) print("Create pandas DataFrame") df = pd.DataFrame(data=list(range(30)), index=pd.date_range(start='2014-11-16', periods=30, freq='H')) print("Create database: " + dbname) client.create_database(dbname) print("Write DataFrame") client.write_points(df, 'demo') print("Write DataFrame with Tags") client.write_points(df, 'demo', {'k1': 'v1', 'k2': 'v2'}) print("Read DataFrame") client.query("select * from demo") print("Delete database: " + dbname) client.delete_database(dbname) def parse_args(): parser = argparse.ArgumentParser( description='example code to play with InfluxDB') parser.add_argument('--host', type=str, required=False, default='localhost', help='hostname of InfluxDB http API') parser.add_argument('--port', type=int, required=False, default=8086, help='port of InfluxDB http API') return parser.parse_args() if __name__ == '__main__': args = parse_args() main(host=args.host, port=args.port)
mit
idbedead/RNA-sequence-tools
Count_Parsing/count_matrix_stats.py
2
3657
import fnmatch import os import pandas as pd import cPickle as pickle import csv from collections import OrderedDict #list of file paths with mapped hits pats = ['/netapp/home/idriver/count-picard_combined_ips17_BU3'] #output path path = '/netapp/home/idriver/count-picard_combined_ips17_BU3' #base name for final output count matrix and picard metrics base_name = 'combined_spc' #initialize dictonaries for collected output fpkm_matrix_dict_g = OrderedDict() count_dict = OrderedDict() norm_read_dict = OrderedDict() picard_stats_dict = OrderedDict() #collect gene_list once since it the same between all samples st = 1 gene_list = [] for p in pats: for root, dirnames, filenames in os.walk(os.path.join(path,p)): for filename in fnmatch.filter(filenames, '*_sorted.bam'): #sorted file path cname = root.split('/')[-1] out = path sort_out = os.path.join(out, cname, cname+'_sorted') #fixmate file path picard_fixmate_out = sort_out.strip('.bam')+'_FM.bam' #format htseq-count command to generate raw counts from sorted accepted hits hts_out = os.path.join(out,cname,cname+'_htseqcount.txt') #run picard CollectRnaSeqMetrics (http://broadinstitute.github.io/picard/command-line-overview.html) and generate matrix of 3' to 5' bias (norm_read_dict) picard_rnaseqmetric_out = sort_out.strip('sorted.bam')+'RNA_metric.txt' picard_rnaseqchart_out = sort_out.strip('sorted.bam')+'RNA_metric.pdf' g_counts = [] with open(hts_out, mode='r') as infile: hts_tab = csv.reader(infile, delimiter = '\t') print st for l in hts_tab: if st == 1: gene_list.append(l[0]) g_counts.append(l[1]) st = 2 print len(g_counts) print len(gene_list) count_dict[cname] = g_counts norm_read_dict[cname] = [] index3 = [] with open(picard_rnaseqmetric_out, mode='r') as infile: pic_tab = csv.reader(infile, delimiter = '\t') for i, l in enumerate(pic_tab): if i == 6: index1 = l if i == 7: num_stats = [] for n in l: if n == '' or n == '?': num_stats.append(0.0) else: num_stats.append(float(n)) picard_stats_dict[cname] = num_stats if i == 10: index2 = l if i > 10 and i <= 111: index3.append(int(l[0])) norm_read_dict[cname].append(float(l[1])) for k, v in norm_read_dict.items(): if len(v) == 0: norm_read_dict[k] = [0 for x in range(101)] print norm_read_dict[k], len(norm_read_dict[k]) #form pandas dataframe of each and save as tab delimited file count_df = pd.DataFrame(count_dict, index = gene_list) count_df.to_csv(os.path.join(path,base_name+'_count_table.txt'), sep = '\t') with open(os.path.join(path,'htseq_count_'+base_name+'.p'), 'wb') as fp1: pickle.dump(count_df, fp1) pic_stats_df = pd.DataFrame(picard_stats_dict, index = index1) pic_stats_df.to_csv(os.path.join(path,base_name+'_picard_stats.txt'), sep = '\t') norm_read_df = pd.DataFrame(norm_read_dict, index = index3) norm_read_df.to_csv(os.path.join(path,base_name+'_read_bias.txt'), sep = '\t')
mit
willo12/spacegrids
setup.py
1
1211
import os #from distutils.core import setup from setuptools import setup, find_packages def read(fname): return open(os.path.join(os.path.dirname(__file__), fname )).read() #with open('README.rst') as file: # long_description = file.read() setup(name='spacegrids', version='1.9', author='Willem Sijp', author_email='[email protected]', description='numpy array with grids and associated operations', download_url="https://github.com/willo12/spacegrids/tarball/1.8", keywords=('climate data','grid data','data on grids','spatial grids', 'Netcdf data analysis', 'climate analysis scripts',"interpreting meta data Netcdf","geophysics tools"), packages = find_packages(exclude="tests"), classifiers = [], # package_data = { # "spacegrids": ['README.rst'] # }, long_description=read('README.rst'), url='https://github.com/willo12/spacegrids', license = "BSD", # install_requires = ["numpy>=1.6","scipy>=0.10","matplotlib>=1.1"] install_requires = [] # extras_require = { # "ncio": ["netCDF4>=1.0.6"], # "pandas": ["pandas>=0.8.0"], # "plotting": ["pandas>=0.8.0","matplotlib>=1.2.1"], # "interp2d": ["basemap>=1.06"], # } )
bsd-3-clause
daortizh/incubator-spot
spot-oa/oa/proxy/proxy_oa.py
4
16504
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import os import json import shutil import sys import datetime import csv, math from collections import OrderedDict from utils import Util from components.data.data import Data from components.iana.iana_transform import IanaTransform from components.nc.network_context import NetworkContext from multiprocessing import Process import pandas as pd import time import md5 class OA(object): def __init__(self,date,limit=500,logger=None): self._initialize_members(date,limit,logger) def _initialize_members(self,date,limit,logger): # get logger if exists. if not, create new instance. self._logger = logging.getLogger('OA.PROXY') if logger else Util.get_logger('OA.PROXY',create_file=False) # initialize required parameters. self._scrtip_path = os.path.dirname(os.path.abspath(__file__)) self._date = date self._table_name = "proxy" self._proxy_results = [] self._limit = limit self._data_path = None self._ipynb_path = None self._ingest_summary_path = None self._proxy_scores = [] self._proxy_scores_headers = [] self._proxy_extra_columns = [] self._results_delimiter = '\t' # get app configuration. self._spot_conf = Util.get_spot_conf() # get scores fields conf conf_file = "{0}/proxy_conf.json".format(self._scrtip_path) self._conf = json.loads(open (conf_file).read(),object_pairs_hook=OrderedDict) # initialize data engine self._db = self._spot_conf.get('conf', 'DBNAME').replace("'", "").replace('"', '') self._engine = Data(self._db, self._table_name,self._logger) def start(self): #################### start = time.time() #################### self._create_folder_structure() self._add_ipynb() self._get_proxy_results() self._add_reputation() self._add_severity() self._add_iana() self._add_network_context() self._add_hash() self._create_proxy_scores_csv() self._get_oa_details() self._ingest_summary() ################## end = time.time() print(end - start) ################## def _create_folder_structure(self): # create date folder structure if it does not exist. self._logger.info("Creating folder structure for OA (data and ipynb)") self._data_path,self._ingest_summary_path,self._ipynb_path = Util.create_oa_folders("proxy",self._date) def _add_ipynb(self): if os.path.isdir(self._ipynb_path): self._logger.info("Adding edge investigation IPython Notebook") shutil.copy("{0}/ipynb_templates/Edge_Investigation_master.ipynb".format(self._scrtip_path),"{0}/Edge_Investigation.ipynb".format(self._ipynb_path)) self._logger.info("Adding threat investigation IPython Notebook") shutil.copy("{0}/ipynb_templates/Threat_Investigation_master.ipynb".format(self._scrtip_path),"{0}/Threat_Investigation.ipynb".format(self._ipynb_path)) else: self._logger.error("There was a problem adding the IPython Notebooks, please check the directory exists.") def _get_proxy_results(self): self._logger.info("Getting {0} Machine Learning Results from HDFS".format(self._date)) proxy_results = "{0}/proxy_results.csv".format(self._data_path) # get hdfs path from conf file. HUSER = self._spot_conf.get('conf', 'HUSER').replace("'", "").replace('"', '') hdfs_path = "{0}/proxy/scored_results/{1}/scores/proxy_results.csv".format(HUSER,self._date) # get results file from hdfs. get_command = Util.get_ml_results_form_hdfs(hdfs_path,self._data_path) self._logger.info("{0}".format(get_command)) # valdiate files exists if os.path.isfile(proxy_results): # read number of results based in the limit specified. self._logger.info("Reading {0} proxy results file: {1}".format(self._date,proxy_results)) self._proxy_results = Util.read_results(proxy_results,self._limit,self._results_delimiter)[:] if len(self._proxy_results) == 0: self._logger.error("There are not proxy results.");sys.exit(1) else: self._logger.error("There was an error getting ML results from HDFS") sys.exit(1) # add headers. self._logger.info("Adding headers") self._proxy_scores_headers = [ str(key) for (key,value) in self._conf['proxy_score_fields'].items() ] self._proxy_scores = self._proxy_results[:] def _create_proxy_scores_csv(self): proxy_scores_csv = "{0}/proxy_scores.tsv".format(self._data_path) proxy_scores_final = self._proxy_scores[:]; proxy_scores_final.insert(0,self._proxy_scores_headers) Util.create_csv_file(proxy_scores_csv,proxy_scores_final, self._results_delimiter) # create bk file proxy_scores_bu_csv = "{0}/proxy_scores_bu.tsv".format(self._data_path) Util.create_csv_file(proxy_scores_bu_csv,proxy_scores_final, self._results_delimiter) def _add_reputation(self): # read configuration. reputation_conf_file = "{0}/components/reputation/reputation_config.json".format(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) self._logger.info("Reading reputation configuration file: {0}".format(reputation_conf_file)) rep_conf = json.loads(open(reputation_conf_file).read()) # initialize reputation services. self._rep_services = [] self._logger.info("Initializing reputation services.") for service in rep_conf: config = rep_conf[service] module = __import__("components.reputation.{0}.{0}".format(service), fromlist=['Reputation']) self._rep_services.append(module.Reputation(config,self._logger)) # get columns for reputation. rep_cols = {} indexes = [ int(value) for key, value in self._conf["add_reputation"].items()] self._logger.info("Getting columns to add reputation based on config file: proxy_conf.json".format()) for index in indexes: col_list = [] for conn in self._proxy_scores: col_list.append(conn[index]) rep_cols[index] = list(set(col_list)) # get reputation per column. self._logger.info("Getting reputation for each service in config") rep_services_results = [] if self._rep_services : for key,value in rep_cols.items(): rep_services_results = [ rep_service.check(None,value,True) for rep_service in self._rep_services] rep_results = {} for result in rep_services_results: rep_results = {k: "{0}::{1}".format(rep_results.get(k, ""), result.get(k, "")).strip('::') for k in set(rep_results) | set(result)} self._proxy_scores = [ conn + [ rep_results[conn[key]] ] for conn in self._proxy_scores ] else: self._proxy_scores = [ conn + [""] for conn in self._proxy_scores ] def _add_severity(self): # Add severity column self._proxy_scores = [conn + [0] for conn in self._proxy_scores] def _add_iana(self): iana_conf_file = "{0}/components/iana/iana_config.json".format(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) if os.path.isfile(iana_conf_file): iana_config = json.loads(open(iana_conf_file).read()) proxy_iana = IanaTransform(iana_config["IANA"]) proxy_rcode_index = self._conf["proxy_score_fields"]["respcode"] self._proxy_scores = [ conn + [ proxy_iana.get_name(conn[proxy_rcode_index],"proxy_http_rcode")] for conn in self._proxy_scores ] else: self._proxy_scores = [ conn + [""] for conn in self._proxy_scores ] def _add_network_context(self): nc_conf_file = "{0}/components/nc/nc_config.json".format(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) if os.path.isfile(nc_conf_file): nc_conf = json.loads(open(nc_conf_file).read())["NC"] proxy_nc = NetworkContext(nc_conf,self._logger) ip_dst_index = self._conf["proxy_score_fields"]["clientip"] self._proxy_scores = [ conn + [proxy_nc.get_nc(conn[ip_dst_index])] for conn in self._proxy_scores ] else: self._proxy_scores = [ conn + [""] for conn in self._proxy_scores ] def _add_hash(self): #A hash string is generated to be used as the file name for the edge files. #These fields are used for the hash creation, so this combination of values is treated as #a 'unique' connection cip_index = self._conf["proxy_score_fields"]["clientip"] uri_index = self._conf["proxy_score_fields"]["fulluri"] tme_index = self._conf["proxy_score_fields"]["p_time"] self._proxy_scores = [conn + [str( md5.new(str(conn[cip_index]) + str(conn[uri_index])).hexdigest() + str((conn[tme_index].split(":"))[0]) )] for conn in self._proxy_scores] def _get_oa_details(self): self._logger.info("Getting OA Proxy suspicious details") # start suspicious connects details process. p_sp = Process(target=self._get_suspicious_details) p_sp.start() # p_sp.join() def _get_suspicious_details(self): hash_list = [] iana_conf_file = "{0}/components/iana/iana_config.json".format(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) if os.path.isfile(iana_conf_file): iana_config = json.loads(open(iana_conf_file).read()) proxy_iana = IanaTransform(iana_config["IANA"]) for conn in self._proxy_scores: conn_hash = conn[self._conf["proxy_score_fields"]["hash"]] if conn_hash not in hash_list: hash_list.append(conn_hash) clientip = conn[self._conf["proxy_score_fields"]["clientip"]] fulluri = conn[self._conf["proxy_score_fields"]["fulluri"]] date=conn[self._conf["proxy_score_fields"]["p_date"]].split('-') if len(date) == 3: year=date[0] month=date[1].zfill(2) day=date[2].zfill(2) hh=(conn[self._conf["proxy_score_fields"]["p_time"]].split(":"))[0] self._get_proxy_details(fulluri,clientip,conn_hash,year,month,day,hh,proxy_iana) def _get_proxy_details(self,fulluri,clientip,conn_hash,year,month,day,hh,proxy_iana): limit = 250 output_delimiter = '\t' edge_file ="{0}/edge-{1}-{2}.tsv".format(self._data_path,clientip,conn_hash) edge_tmp ="{0}/edge-{1}-{2}.tmp".format(self._data_path,clientip,conn_hash) if not os.path.isfile(edge_file): proxy_qry = ("SELECT p_date, p_time, clientip, host, webcat, respcode, reqmethod, useragent, resconttype, \ referer, uriport, serverip, scbytes, csbytes, fulluri FROM {0}.{1} WHERE y=\'{2}\' AND m=\'{3}\' AND d=\'{4}\' AND \ h=\'{5}\' AND fulluri =\'{6}\' AND clientip = \'{7}\' LIMIT {8};").format(self._db,self._table_name, year,month,day,hh,fulluri,clientip,limit) # execute query self._engine.query(proxy_qry,edge_tmp,output_delimiter) # add IANA to results. self._logger.info("Adding IANA translation to details results") with open(edge_tmp) as proxy_details_csv: rows = csv.reader(proxy_details_csv, delimiter=output_delimiter,quotechar='"') next(proxy_details_csv) update_rows = [[conn[0]] + [conn[1]] + [conn[2]] + [conn[3]] + [conn[4]] + [proxy_iana.get_name(conn[5],"proxy_http_rcode") if proxy_iana else conn[5]] + [conn[6]] + [conn[7]] + [conn[8]] + [conn[9]] + [conn[10]] + [conn[11]] + [conn[12]] + [conn[13]] + [conn[14]] if len(conn) > 0 else [] for conn in rows] update_rows = filter(None, update_rows) header = ["p_date","p_time","clientip","host","webcat","respcode","reqmethod","useragent","resconttype","referer","uriport","serverip","scbytes","csbytes","fulluri"] update_rows.insert(0,header) # due an issue with the output of the query. update_rows = [ [ w.replace('"','') for w in l ] for l in update_rows ] # create edge file. self._logger.info("Creating edge file:{0}".format(edge_file)) with open(edge_file,'wb') as proxy_details_edge: writer = csv.writer(proxy_details_edge, quoting=csv.QUOTE_NONE, delimiter=output_delimiter) if update_rows: writer.writerows(update_rows) else: shutil.copy(edge_tmp,edge_file) try: os.remove(edge_tmp) except OSError: pass def _ingest_summary(self): # get date parameters. yr = self._date[:4] mn = self._date[4:6] dy = self._date[6:] self._logger.info("Getting ingest summary data for the day") ingest_summary_cols = ["date","total"] result_rows = [] df_filtered = pd.DataFrame() ingest_summary_file = "{0}/is_{1}{2}.csv".format(self._ingest_summary_path,yr,mn) ingest_summary_tmp = "{0}.tmp".format(ingest_summary_file) if os.path.isfile(ingest_summary_file): df = pd.read_csv(ingest_summary_file, delimiter=',') #discards previous rows from the same date df_filtered = df[df['date'].str.contains("{0}-{1}-{2}".format(yr, mn, dy)) == False] else: df = pd.DataFrame() # get ingest summary. ingest_summary_qry = ("SELECT p_date, p_time, COUNT(*) as total " " FROM {0}.{1}" " WHERE y='{2}' AND m='{3}' AND d='{4}' " " AND p_date IS NOT NULL AND p_time IS NOT NULL " " AND clientip IS NOT NULL AND p_time != '' " " AND host IS NOT NULL AND fulluri IS NOT NULL " " GROUP BY p_date, p_time;") ingest_summary_qry = ingest_summary_qry.format(self._db,self._table_name, yr, mn, dy) results_file = "{0}/results_{1}.csv".format(self._ingest_summary_path,self._date) self._engine.query(ingest_summary_qry,output_file=results_file,delimiter=",") if os.path.isfile(results_file): df_results = pd.read_csv(results_file, delimiter=',') #Forms a new dataframe splitting the minutes from the time column/ df_new = pd.DataFrame([["{0} {1}:{2}".format(val['p_date'], val['p_time'].split(":")[0].zfill(2), val['p_time'].split(":")[1].zfill(2)), int(val['total']) if not math.isnan(val['total']) else 0 ] for key,val in df_results.iterrows()],columns = ingest_summary_cols) #Groups the data by minute sf = df_new.groupby(by=['date'])['total'].sum() df_per_min = pd.DataFrame({'date':sf.index, 'total':sf.values}) df_final = df_filtered.append(df_per_min, ignore_index=True) df_final.to_csv(ingest_summary_tmp,sep=',', index=False) os.remove(results_file) os.rename(ingest_summary_tmp,ingest_summary_file) else: self._logger.info("No data found for the ingest summary")
apache-2.0
paultopia/auto-sklearn
autosklearn/models/nested_cv_evaluator.py
5
8570
from collections import defaultdict import numpy as np import sklearn.utils from autosklearn.data.split_data import get_CV_fold from autosklearn.models.evaluator import Evaluator, calculate_score class NestedCVEvaluator(Evaluator): def __init__(self, Datamanager, configuration, with_predictions=False, all_scoring_functions=False, seed=1, output_dir=None, output_y_test=False, inner_cv_folds=5, outer_cv_folds=5, num_run=None): super(NestedCVEvaluator, self).__init__( Datamanager, configuration, with_predictions=with_predictions, all_scoring_functions=all_scoring_functions, seed=seed, output_dir=output_dir, output_y_test=output_y_test, num_run=num_run) self.inner_cv_folds = inner_cv_folds self.outer_cv_folds = outer_cv_folds self.Y_optimization = None self.outer_models = [None] * outer_cv_folds self.inner_models = [None] * outer_cv_folds self.X_train = Datamanager.data["X_train"] self.Y_train = Datamanager.data["Y_train"] for i in range(outer_cv_folds): self.inner_models[i] = [None] * inner_cv_folds self.outer_indices = [None] * outer_cv_folds self.inner_indices = [None] * outer_cv_folds for i in range(outer_cv_folds): self.inner_indices[i] = [None] * inner_cv_folds self.random_state = sklearn.utils.check_random_state(seed) def fit(self): seed = self.random_state.randint(1000000) for outer_fold in range(self.outer_cv_folds): # First perform the fit for the outer cross validation outer_train_indices, outer_test_indices = \ get_CV_fold(self.X_train, self.Y_train, fold=outer_fold, folds=self.outer_cv_folds, shuffle=True, random_state=seed) self.outer_indices[outer_fold] = ((outer_train_indices, outer_test_indices)) model = self.model_class(self.configuration, self.random_state) self.outer_models[outer_fold] = model self.outer_models[outer_fold].fit(self.X_train[outer_train_indices], self.Y_train[outer_train_indices]) # Then perform the fit for the inner cross validation for inner_fold in range(self.inner_cv_folds): X_train = self.X_train[outer_train_indices] Y_train = self.Y_train[outer_train_indices] inner_train_indices, inner_test_indices = \ get_CV_fold(X_train, Y_train, fold=inner_fold, folds=self.inner_cv_folds, shuffle=True, random_state=seed) inner_train_indices = outer_train_indices[inner_train_indices] inner_test_indices = outer_train_indices[inner_test_indices] X_train = self.X_train[inner_train_indices] Y_train = self.Y_train[inner_train_indices] self.inner_indices[outer_fold][inner_fold] = \ ((inner_train_indices, inner_test_indices)) model = self.model_class(self.configuration, self.random_state) model = model.fit(X_train, Y_train) self.inner_models[outer_fold][inner_fold] = model def predict(self): # First, obtain the predictions for the ensembles, the validation and # the test set! outer_scores = defaultdict(list) inner_scores = defaultdict(list) Y_optimization_pred = [None] * self.outer_cv_folds Y_targets = [None] * self.outer_cv_folds Y_valid_pred = [None] * self.outer_cv_folds Y_test_pred = [None] * self.outer_cv_folds for i in range(self.outer_cv_folds): train_indices, test_indices = self.outer_indices[i] opt_pred = self.predict_function(self.X_train[test_indices], self.outer_models[i], self.task_type, Y_train=self.Y_train[train_indices]) Y_optimization_pred[i] = opt_pred Y_targets[i] = self.Y_train[test_indices] if self.X_valid is not None: X_valid = self.X_valid.copy() valid_pred = self.predict_function(X_valid, self.outer_models[i], self.task_type, Y_train=self.Y_train[train_indices]) Y_valid_pred[i] = valid_pred if self.X_test is not None: X_test = self.X_test.copy() test_pred = self.predict_function(X_test, self.outer_models[i], self.task_type, Y_train=self.Y_train[train_indices]) Y_test_pred[i] = test_pred # Calculate the outer scores for i in range(self.outer_cv_folds): scores = calculate_score(Y_targets[i], Y_optimization_pred[i], self.task_type, self.metric, self.D.info['target_num'], all_scoring_functions=self.all_scoring_functions) if self.all_scoring_functions: for score_name in scores: outer_scores[score_name].append(scores[score_name]) else: outer_scores[self.metric].append(scores) Y_optimization_pred = np.concatenate([Y_optimization_pred[i] for i in range(self.outer_cv_folds) if Y_optimization_pred[ i] is not None]) Y_targets = np.concatenate([Y_targets[i] for i in range(self.outer_cv_folds) if Y_targets[i] is not None]) if self.X_valid is not None: Y_valid_pred = np.array([Y_valid_pred[i] for i in range( self.outer_cv_folds) if Y_valid_pred[i] is not None]) # Average the predictions of several models if len(Y_valid_pred.shape) == 3: Y_valid_pred = np.nanmean(Y_valid_pred, axis=0) if self.X_test is not None: Y_test_pred = np.array([Y_test_pred[i] for i in range( self.outer_cv_folds) if Y_test_pred[i] is not None]) # Average the predictions of several models if len(Y_test_pred.shape) == 3: Y_test_pred = np.nanmean(Y_test_pred, axis=0) self.Y_optimization = Y_targets # Second, calculate the inner score for outer_fold in range(self.outer_cv_folds): for inner_fold in range(self.inner_cv_folds): inner_train_indices, inner_test_indices = self.inner_indices[ outer_fold][inner_fold] Y_test = self.Y_train[inner_test_indices] X_test = self.X_train[inner_test_indices] model = self.inner_models[outer_fold][inner_fold] Y_hat = self.predict_function(X_test, model, self.task_type, Y_train=self.Y_train[inner_train_indices]) scores = calculate_score(Y_test, Y_hat, self.task_type, self.metric, self.D.info['target_num'], all_scoring_functions=self.all_scoring_functions) if self.all_scoring_functions: for score_name in scores: inner_scores[score_name].append(scores[score_name]) else: inner_scores[self.metric].append(scores) # Average the scores! if self.all_scoring_functions: inner_err = {key: 1 - np.mean(inner_scores[key]) for key in inner_scores} outer_err = {"outer:%s" % key: 1 - np.mean(outer_scores[key]) for key in outer_scores} inner_err.update(outer_err) else: inner_err = 1 - np.mean(inner_scores[self.metric]) if self.with_predictions: return inner_err, Y_optimization_pred, Y_valid_pred, Y_test_pred return inner_err
bsd-3-clause
hrjn/scikit-learn
sklearn/model_selection/_validation.py
6
38471
""" The :mod:`sklearn.model_selection._validation` module includes classes and functions to validate the model. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings import numbers import time import numpy as np import scipy.sparse as sp from ..base import is_classifier, clone from ..utils import indexable, check_random_state, safe_indexing from ..utils.fixes import astype from ..utils.validation import _is_arraylike, _num_samples from ..utils.metaestimators import _safe_split from ..externals.joblib import Parallel, delayed, logger from ..metrics.scorer import check_scoring from ..exceptions import FitFailedWarning from ._split import check_cv from ..preprocessing import LabelEncoder __all__ = ['cross_val_score', 'cross_val_predict', 'permutation_test_score', 'learning_curve', 'validation_curve'] def cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. Examples -------- >>> from sklearn import datasets, linear_model >>> from sklearn.model_selection import cross_val_score >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> print(cross_val_score(lasso, X, y)) # doctest: +ELLIPSIS [ 0.33150734 0.08022311 0.03531764] See Also --------- :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv.split(X, y, groups)) return np.array(scores)[:, 0] def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. fit_time : float Time spent for fitting in seconds. score_time : float Time spent for scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = '' else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: # Note fit time as time until error fit_time = time.time() - start_time score_time = 0.0 if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)") else: fit_time = time.time() - start_time test_score = _score(estimator, X_test, y_test, scorer) score_time = time.time() - start_time - fit_time if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: total_time = score_time + fit_time end_msg = "%s, total=%s" % (msg, logger.short_format_time(total_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score, test_score] if return_train_score else [test_score] if return_n_test_samples: ret.append(_num_samples(X_test)) if return_times: ret.extend([fit_time, score_time]) if return_parameters: ret.append(parameters) return ret def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, 'item'): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def cross_val_predict(estimator, X, y=None, groups=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', method='predict'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' method : string, optional, default: 'predict' Invokes the passed method name of the passed estimator. For method='predict_proba', the columns correspond to the classes in sorted order. Returns ------- predictions : ndarray This is the result of calling ``method`` Examples -------- >>> from sklearn import datasets, linear_model >>> from sklearn.model_selection import cross_val_predict >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> y_pred = cross_val_predict(lasso, X, y) """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) # Ensure the estimator has implemented the passed decision function if not callable(getattr(estimator, method)): raise AttributeError('{} not implemented in estimator' .format(method)) if method in ['decision_function', 'predict_proba', 'predict_log_proba']: le = LabelEncoder() y = le.fit_transform(y) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) prediction_blocks = parallel(delayed(_fit_and_predict)( clone(estimator), X, y, train, test, verbose, fit_params, method) for train, test in cv.split(X, y, groups)) # Concatenate the predictions predictions = [pred_block_i for pred_block_i, _ in prediction_blocks] test_indices = np.concatenate([indices_i for _, indices_i in prediction_blocks]) if not _check_is_permutation(test_indices, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') inv_test_indices = np.empty(len(test_indices), dtype=int) inv_test_indices[test_indices] = np.arange(len(test_indices)) # Check for sparse predictions if sp.issparse(predictions[0]): predictions = sp.vstack(predictions, format=predictions[0].format) else: predictions = np.concatenate(predictions) return predictions[inv_test_indices] def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params, method): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. method : string Invokes the passed method name of the passed estimator. Returns ------- predictions : sequence Result of calling 'estimator.method' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) func = getattr(estimator, method) predictions = func(X_test) if method in ['decision_function', 'predict_proba', 'predict_log_proba']: n_classes = len(set(y)) predictions_ = np.zeros((X_test.shape[0], n_classes)) if method == 'decision_function' and len(estimator.classes_) == 2: predictions_[:, estimator.classes_[-1]] = predictions else: predictions_[:, estimator.classes_] = predictions predictions = predictions_ return predictions, test def _check_is_permutation(indices, n_samples): """Check whether indices is a reordering of the array np.arange(n_samples) Parameters ---------- indices : ndarray integer array to test n_samples : int number of expected elements Returns ------- is_partition : bool True iff sorted(indices) is np.arange(n) """ if len(indices) != n_samples: return False hit = np.zeros(n_samples, dtype=bool) hit[indices] = True if not np.all(hit): return False return True def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def permutation_test_score(estimator, X, y, groups=None, cv=None, n_permutations=100, n_jobs=1, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. groups : array-like, with shape (n_samples,), optional Labels to constrain permutation within groups, i.e. ``y`` values are permuted among samples with the same group identifier. When not specified, ``y`` values are permuted among all samples. When a grouped cross-validator is used, the group labels are also passed on to the ``split`` method of the cross-validator. The cross-validator uses them for grouping the samples while splitting the dataset into train/test set. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The p-value, which approximates the probability that the score would be obtained by chance. This is calculated as: `(C + 1) / (n_permutations + 1)` Where C is the number of permutations whose score >= the true score. The best possible p-value is 1/(n_permutations + 1), the worst is 1.0. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, groups, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, groups, random_state), groups, cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def _permutation_test_score(estimator, X, y, groups, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv.split(X, y, groups): X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) estimator.fit(X_train, y_train) avg_score.append(scorer(estimator, X_test, y_test)) return np.mean(avg_score) def _shuffle(y, groups, random_state): """Return a shuffled copy of y eventually shuffle among same groups.""" if groups is None: indices = random_state.permutation(len(y)) else: indices = np.arange(len(groups)) for group in np.unique(groups): this_mask = (groups == group) indices[this_mask] = random_state.permutation(indices[this_mask]) return safe_indexing(y, indices) def learning_curve(estimator, X, y, groups=None, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0, shuffle=False, random_state=None): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. shuffle : boolean, optional Whether to shuffle training data before taking prefixes of it based on``train_sizes``. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <sphx_glr_auto_examples_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) # Store it as list as we will be iterating over the list multiple times cv_iter = list(cv.split(X, y, groups)) scorer = check_scoring(estimator, scoring=scoring) n_max_training_samples = len(cv_iter[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if shuffle: rng = check_random_state(random_state) cv_iter = ((rng.permutation(train), test) for train, test in cv_iter) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv_iter) else: train_test_proportions = [] for train, test in cv_iter: for n_train_samples in train_sizes_abs: train_test_proportions.append((train[:n_train_samples], test)) out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train, test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in train_test_proportions) out = np.array(out) n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, groups=None, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <learning_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py` """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) # NOTE do not change order of iteration to allow one time cv splitters for train, test in cv.split(X, y, groups) for v in param_range) out = np.asarray(out) n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
tomlof/scikit-learn
sklearn/metrics/setup.py
69
1061
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.pyx"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
morrislab/rnascan
setup.py
1
2337
import os.path import sys from setuptools import find_packages from distutils.core import setup, Extension if sys.version_info < (2, 7): sys.stderr.write("rnascan requires Python 2.7, or Python 3.5 or later. " "Python %d.%d detected.\n" % sys.version_info[:2]) sys.exit(1) elif sys.version_info[0] == 3 and sys.version_info[:2] < (3, 5): sys.stderr.write("rnascan requires Python 2.7, or Python 3.5 or later. " "Python %d.%d detected.\n" % sys.version_info[:2]) sys.exit(1) # Borrowing setup.py code from Biopython def is_pypy(): import platform try: if platform.python_implementation() == 'PyPy': return True except AttributeError: # New in Python 2.6, not in Jython yet either pass return False def can_import(module_name): """can_import(module_name) -> module or None""" try: return __import__(module_name) except ImportError: return None def is_Numpy_installed(): if is_pypy(): return False return bool(can_import("numpy")) EXTENSIONS = [] if is_Numpy_installed(): import numpy numpy_include_dir = numpy.get_include() EXTENSIONS.append( Extension('rnascan.BioAddons.motifs._pwm', ["rnascan/BioAddons/motifs/_pwm.c"], include_dirs=[numpy_include_dir], )) here = os.path.abspath(os.path.dirname(__file__)) exec(open(os.path.join(here, 'rnascan/version.py')).read()) setup(name='rnascan', version=__version__, description='Scan RBP motifs and secondary structure from SSMs', url='http://github.com/morrislab/rnascan', author='Kevin Ha, Kate Cook, Kaitlin Laverty', author_email='[email protected], [email protected], [email protected]', license='AGPLv3', packages=find_packages(), scripts=['scripts/run_folding'], install_requires=['setuptools', 'pandas >= 0.24', 'numpy >= 1.10.0', 'biopython >= 1.66'], entry_points={ 'console_scripts': [ 'rnascan = rnascan.rnascan:main' ] }, ext_modules=EXTENSIONS, zip_safe=False, test_suite='nose.collector', tests_require=['nose'] )
agpl-3.0
wgmueller1/pyhsmm
pyhsmm/internals/hmm_states.py
1
23209
from __future__ import division import numpy as np from numpy import newaxis as na import abc import copy from scipy.misc import logsumexp from pyhsmm.util.stats import sample_discrete try: from pyhsmm.util.cstats import sample_markov, count_transitions except ImportError: from pyhsmm.util.stats import sample_markov, count_transitions from pyhsmm.util.general import rle ###################### # Mixins and bases # ###################### class _StatesBase(object): __metaclass__ = abc.ABCMeta def __init__(self,model,T=None,data=None,stateseq=None, generate=True,initialize_from_prior=True): self.model = model self.T = T if T is not None else data.shape[0] self.data = data self.clear_caches() if stateseq is not None: self.stateseq = np.array(stateseq,dtype=np.int32) elif generate: if data is not None and not initialize_from_prior: self.resample() else: self.generate_states() def copy_sample(self,newmodel): new = copy.copy(self) new.clear_caches() # saves space, though may recompute later for likelihoods new.model = newmodel new.stateseq = self.stateseq.copy() return new _kwargs = {} # used in subclasses for joblib stuff ### model properties @property def obs_distns(self): return self.model.obs_distns @property def trans_matrix(self): return self.model.trans_distn.trans_matrix @property def pi_0(self): return self.model.init_state_distn.pi_0 @property def num_states(self): return self.model.num_states ### convenience properties @property def stateseq_norep(self): return rle(self.stateseq)[0] @property def durations(self): return rle(self.stateseq)[1] ### generation @abc.abstractmethod def generate_states(self): pass ### messages and likelihoods # some cached things depends on model parameters, so caches should be # cleared when the model changes (e.g. when parameters are updated) def clear_caches(self): self._aBl = self._mf_aBl = None self._normalizer = None @property def aBl(self): if self._aBl is None: data = self.data aBl = self._aBl = np.empty((data.shape[0],self.num_states)) for idx, obs_distn in enumerate(self.obs_distns): aBl[:,idx] = obs_distn.log_likelihood(data).ravel() aBl[np.isnan(aBl).any(1)] = 0. return self._aBl @abc.abstractmethod def log_likelihood(self): pass class _SeparateTransMixin(object): def __init__(self,group_id,**kwargs): assert not isinstance(group_id,np.ndarray) self.group_id = group_id self._kwargs = dict(self._kwargs,group_id=group_id) super(_SeparateTransMixin,self).__init__(**kwargs) # access these to be sure they're instantiated self.trans_matrix self.pi_0 @property def trans_matrix(self): return self.model.trans_distns[self.group_id].trans_matrix @property def pi_0(self): return self.model.init_state_distns[self.group_id].pi_0 @property def mf_trans_matrix(self): return np.maximum( self.model.trans_distns[self.group_id].exp_expected_log_trans_matrix, 1e-3) @property def mf_pi_0(self): return self.model.init_state_distns[self.group_id].exp_expected_log_init_state_distn class _PossibleChangepointsMixin(object): def __init__(self,model,data,changepoints=None,**kwargs): changepoints = changepoints if changepoints is not None \ else [(t,t+1) for t in xrange(data.shape[0])] self.changepoints = changepoints self.segmentstarts = np.array([start for start,stop in changepoints],dtype=np.int32) self.segmentlens = np.array([stop-start for start,stop in changepoints],dtype=np.int32) assert all(l > 0 for l in self.segmentlens) assert sum(self.segmentlens) == data.shape[0] assert self.changepoints[0][0] == 0 and self.changepoints[-1][-1] == data.shape[0] self._kwargs = dict(self._kwargs,changepoints=changepoints) super(_PossibleChangepointsMixin,self).__init__( model,T=len(changepoints),data=data,**kwargs) def clear_caches(self): self._aBBl = self._mf_aBBl = None self._stateseq = None super(_PossibleChangepointsMixin,self).clear_caches() @property def Tblock(self): return len(self.changepoints) @property def Tfull(self): return self.data.shape[0] @property def stateseq(self): if self._stateseq is None: self._stateseq = self.blockstateseq.repeat(self.segmentlens) return self._stateseq @stateseq.setter def stateseq(self,stateseq): assert len(stateseq) == self.Tblock or len(stateseq) == self.Tfull if len(stateseq) == self.Tblock: self.blockstateseq = stateseq else: self.blockstateseq = stateseq[self.segmentstarts] self._stateseq = None def _expected_states(self,*args,**kwargs): expected_states = \ super(_PossibleChangepointsMixin,self)._expected_states(*args,**kwargs) return expected_states.repeat(self.segmentlens,axis=0) @property def aBl(self): if self._aBBl is None: aBl = super(_PossibleChangepointsMixin,self).aBl aBBl = self._aBBl = np.empty((self.Tblock,self.num_states)) for idx, (start,stop) in enumerate(self.changepoints): aBBl[idx] = aBl[start:stop].sum(0) return self._aBBl @property def mf_aBl(self): if self._mf_aBBl is None: aBl = super(_PossibleChangepointsMixin,self).mf_aBl aBBl = self._mf_aBBl = np.empty((self.Tblock,self.num_states)) for idx, (start,stop) in enumerate(self.changepoints): aBBl[idx] = aBl[start:stop].sum(0) return self._mf_aBBl def plot(self,*args,**kwargs): from matplotlib import pyplot as plt super(_PossibleChangepointsMixin,self).plot(*args,**kwargs) plt.xlim((0,self.Tfull)) # TODO do generate() and generate_states() actually work? #################### # States classes # #################### class HMMStatesPython(_StatesBase): ### generation def generate_states(self): T = self.T nextstate_distn = self.pi_0 A = self.trans_matrix stateseq = np.zeros(T,dtype=np.int32) for idx in xrange(T): stateseq[idx] = sample_discrete(nextstate_distn) nextstate_distn = A[stateseq[idx]] self.stateseq = stateseq return stateseq ### message passing def log_likelihood(self): if self._normalizer is None: self.messages_forwards_normalized() # NOTE: sets self._normalizer return self._normalizer def _messages_log(self,trans_matrix,init_state_distn,log_likelihoods): alphal = self._messages_forwards_log(trans_matrix,init_state_distn,log_likelihoods) betal = self._messages_backwards_log(trans_matrix,log_likelihoods) return alphal, betal def messages_log(self): return self._messages_log(self.trans_matrix,self.pi_0,self.aBl) @staticmethod def _messages_backwards_log(trans_matrix,log_likelihoods): errs = np.seterr(over='ignore') Al = np.log(trans_matrix) aBl = log_likelihoods betal = np.zeros_like(aBl) for t in xrange(betal.shape[0]-2,-1,-1): betal[t] = logsumexp(Al + betal[t+1] + aBl[t+1],axis=1) np.seterr(**errs) return betal def messages_backwards_log(self): betal = self._messages_backwards_log(self.trans_matrix,self.aBl) assert not np.isnan(betal).any() self._normalizer = logsumexp(np.log(self.pi_0) + betal[0] + self.aBl[0]) return betal @staticmethod def _messages_forwards_log(trans_matrix,init_state_distn,log_likelihoods): errs = np.seterr(over='ignore') Al = np.log(trans_matrix) aBl = log_likelihoods alphal = np.zeros_like(aBl) alphal[0] = np.log(init_state_distn) + aBl[0] for t in xrange(alphal.shape[0]-1): alphal[t+1] = logsumexp(alphal[t] + Al.T,axis=1) + aBl[t+1] np.seterr(**errs) return alphal def messages_forwards_log(self): alphal = self._messages_forwards_log(self.trans_matrix,self.pi_0,self.aBl) assert not np.any(np.isnan(alphal)) self._normalizer = logsumexp(alphal[-1]) return alphal @staticmethod def _messages_backwards_normalized(trans_matrix,init_state_distn,log_likelihoods): aBl = log_likelihoods A = trans_matrix T = aBl.shape[0] betan = np.empty_like(aBl) logtot = 0. betan[-1] = 1. for t in xrange(T-2,-1,-1): cmax = aBl[t+1].max() betan[t] = A.dot(betan[t+1] * np.exp(aBl[t+1] - cmax)) norm = betan[t].sum() logtot += cmax + np.log(norm) betan[t] /= norm cmax = aBl[0].max() logtot += cmax + np.log((np.exp(aBl[0] - cmax) * init_state_distn * betan[0]).sum()) return betan, logtot def messages_backwards_normalized(self): betan, self._normalizer = \ self._messages_backwards_normalized(self.trans_matrix,self.pi_0,self.aBl) return betan @staticmethod def _messages_forwards_normalized(trans_matrix,init_state_distn,log_likelihoods): aBl = log_likelihoods A = trans_matrix T = aBl.shape[0] alphan = np.empty_like(aBl) logtot = 0. in_potential = init_state_distn for t in xrange(T): cmax = aBl[t].max() alphan[t] = in_potential * np.exp(aBl[t] - cmax) norm = alphan[t].sum() if norm != 0: alphan[t] /= norm logtot += np.log(norm) + cmax else: alphan[t:] = 0. return alphan, -np.inf in_potential = alphan[t].dot(A) return alphan, logtot def messages_forwards_normalized(self): alphan, self._normalizer = \ self._messages_forwards_normalized(self.trans_matrix,self.pi_0,self.aBl) return alphan ### Gibbs sampling def resample_log(self): betal = self.messages_backwards_log() self.sample_forwards_log(betal) def resample_normalized(self): alphan = self.messages_forwards_normalized() self.sample_backwards_normalized(alphan) def resample(self): return self.resample_normalized() @staticmethod def _sample_forwards_log(betal,trans_matrix,init_state_distn,log_likelihoods): A = trans_matrix aBl = log_likelihoods T = aBl.shape[0] stateseq = np.empty(T,dtype=np.int32) nextstate_unsmoothed = init_state_distn for idx in xrange(T): logdomain = betal[idx] + aBl[idx] logdomain[nextstate_unsmoothed == 0] = -np.inf if np.any(np.isfinite(logdomain)): stateseq[idx] = sample_discrete(nextstate_unsmoothed * np.exp(logdomain - np.amax(logdomain))) else: stateseq[idx] = sample_discrete(nextstate_unsmoothed) nextstate_unsmoothed = A[stateseq[idx]] return stateseq def sample_forwards_log(self,betal): self.stateseq = self._sample_forwards_log(betal,self.trans_matrix,self.pi_0,self.aBl) @staticmethod def _sample_forwards_normalized(betan,trans_matrix,init_state_distn,log_likelihoods): A = trans_matrix aBl = log_likelihoods T = aBl.shape[0] stateseq = np.empty(T,dtype=np.int32) nextstate_unsmoothed = init_state_distn for idx in xrange(T): logdomain = aBl[idx] logdomain[nextstate_unsmoothed == 0] = -np.inf stateseq[idx] = sample_discrete(nextstate_unsmoothed * betan * np.exp(logdomain - np.amax(logdomain))) nextstate_unsmoothed = A[stateseq[idx]] return stateseq def sample_forwards_normalized(self,betan): self.stateseq = self._sample_forwards_normalized( betan,self.trans_matrix,self.pi_0,self.aBl) @staticmethod def _sample_backwards_normalized(alphan,trans_matrix_transpose): AT = trans_matrix_transpose T = alphan.shape[0] stateseq = np.empty(T,dtype=np.int32) next_potential = np.ones(AT.shape[0]) for t in xrange(T-1,-1,-1): stateseq[t] = sample_discrete(next_potential * alphan[t]) next_potential = AT[stateseq[t]] return stateseq def sample_backwards_normalized(self,alphan): self.stateseq = self._sample_backwards_normalized(alphan,self.trans_matrix.T.copy()) ### Mean Field @property def mf_aBl(self): if self._mf_aBl is None: T = self.data.shape[0] self._mf_aBl = aBl = np.empty((T,self.num_states)) for idx, o in enumerate(self.obs_distns): aBl[:,idx] = o.expected_log_likelihood(self.data).ravel() aBl[np.isnan(aBl).any(1)] = 0. return self._mf_aBl @property def mf_trans_matrix(self): return self.model.trans_distn.exp_expected_log_trans_matrix @property def mf_pi_0(self): return self.model.init_state_distn.exp_expected_log_init_state_distn @property def all_expected_stats(self): return self.expected_states, self.expected_transcounts, self._normalizer @all_expected_stats.setter def all_expected_stats(self,vals): self.expected_states, self.expected_transcounts, self._normalizer = vals self.stateseq = self.expected_states.argmax(1).astype('int32') # for plotting def meanfieldupdate(self): self.clear_caches() self.all_expected_stats = self._expected_statistics( self.mf_trans_matrix,self.mf_pi_0,self.mf_aBl) self._mf_param_snapshot = ( np.log(self.mf_trans_matrix), np.log(self.mf_pi_0), self.mf_aBl, self._normalizer) def _init_mf_from_gibbs(self): expected_states = np.eye(self.num_states)[self.stateseq] expected_transcounts = count_transitions(self.stateseq, self.num_states) self.all_expected_stats = \ expected_states, expected_transcounts, -np.inf def get_vlb(self, most_recently_updated=False): if (self._normalizer is None) or (self._mf_param_snapshot is None) \ or not hasattr(self, 'expected_states') \ or not hasattr(self, 'expected_transcounts'): self.meanfieldupdate() # see https://github.com/mattjj/pyhsmm/issues/45#issuecomment-102721960 if most_recently_updated: return self._normalizer else: # TODO TODO something wrong in here _, _, new_normalizer = self._expected_statistics( self.mf_trans_matrix, self.mf_pi_0, self.mf_aBl) new_params = np.log(self.mf_trans_matrix), np.log(self.mf_pi_0), \ self.mf_aBl old_params, old_normalizer = self._mf_param_snapshot[:3], \ self._mf_param_snapshot[-1] E_stats = self.expected_transcounts, \ self.expected_states[0], self.expected_states linear_term = \ sum(np.dot(np.ravel(a-b), np.ravel(c)) for a, b, c in zip(new_params, old_params, E_stats)) return linear_term - (new_normalizer - old_normalizer) def _expected_statistics(self,trans_potential,init_potential,likelihood_log_potential): alphal = self._messages_forwards_log(trans_potential,init_potential, likelihood_log_potential) betal = self._messages_backwards_log(trans_potential,likelihood_log_potential) expected_states, expected_transcounts, normalizer = \ self._expected_statistics_from_messages(trans_potential,likelihood_log_potential,alphal,betal) assert not np.isinf(expected_states).any() return expected_states, expected_transcounts, normalizer @staticmethod def _expected_statistics_from_messages(trans_potential,likelihood_log_potential,alphal,betal): expected_states = alphal + betal expected_states -= expected_states.max(1)[:,na] np.exp(expected_states,out=expected_states) expected_states /= expected_states.sum(1)[:,na] Al = np.log(trans_potential) log_joints = alphal[:-1,:,na] + (betal[1:,na,:] + likelihood_log_potential[1:,na,:]) + Al[na,...] log_joints -= log_joints.max((1,2))[:,na,na] joints = np.exp(log_joints) joints /= joints.sum((1,2))[:,na,na] # NOTE: renormalizing each isnt really necessary expected_transcounts = joints.sum(0) normalizer = logsumexp(alphal[0] + betal[0]) return expected_states, expected_transcounts, normalizer ### EM def E_step(self): self.clear_caches() self.all_expected_stats = self._expected_statistics( self.trans_matrix,self.pi_0,self.aBl) ### Viterbi def Viterbi(self): scores, args = self.maxsum_messages_backwards() self.maximize_forwards(scores,args) def maxsum_messages_backwards(self): return self._maxsum_messages_backwards(self.trans_matrix,self.aBl) def maximize_forwards(self,scores,args): self.stateseq = self._maximize_forwards(scores,args,self.pi_0,self.aBl) def mf_Viterbi(self): scores, args = self.mf_maxsum_messages_backwards() self.mf_maximize_forwards(scores,args) def mf_maxsum_messages_backwards(self): return self._maxsum_messages_backwards(self.mf_trans_matrix,self.mf_aBl) def mf_maximize_forwards(self,scores,args): self.stateseq = self._maximize_forwards(scores,args,self.mf_pi_0,self.mf_aBl) @staticmethod def _maxsum_messages_backwards(trans_matrix, log_likelihoods): errs = np.seterr(divide='ignore') Al = np.log(trans_matrix) np.seterr(**errs) aBl = log_likelihoods scores = np.zeros_like(aBl) args = np.zeros(aBl.shape,dtype=np.int32) for t in xrange(scores.shape[0]-2,-1,-1): vals = Al + scores[t+1] + aBl[t+1] vals.argmax(axis=1,out=args[t+1]) vals.max(axis=1,out=scores[t]) return scores, args @staticmethod def _maximize_forwards(scores,args,init_state_distn,log_likelihoods): aBl = log_likelihoods T = aBl.shape[0] stateseq = np.empty(T,dtype=np.int32) stateseq[0] = (scores[0] + np.log(init_state_distn) + aBl[0]).argmax() for idx in xrange(1,T): stateseq[idx] = args[idx,stateseq[idx-1]] return stateseq class HMMStatesEigen(HMMStatesPython): def generate_states(self): self.stateseq = sample_markov( T=self.T, trans_matrix=self.trans_matrix, init_state_distn=self.pi_0) ### common messages (Gibbs, EM, likelihood calculation) @staticmethod def _messages_backwards_log(trans_matrix,log_likelihoods): from hmm_messages_interface import messages_backwards_log return messages_backwards_log( trans_matrix,log_likelihoods, np.empty_like(log_likelihoods)) @staticmethod def _messages_forwards_log(trans_matrix,init_state_distn,log_likelihoods): from hmm_messages_interface import messages_forwards_log return messages_forwards_log(trans_matrix,log_likelihoods, init_state_distn,np.empty_like(log_likelihoods)) @staticmethod def _messages_forwards_normalized(trans_matrix,init_state_distn,log_likelihoods): from hmm_messages_interface import messages_forwards_normalized return messages_forwards_normalized(trans_matrix,log_likelihoods, init_state_distn,np.empty_like(log_likelihoods)) # next three methods are just for convenient testing def messages_backwards_log_python(self): return super(HMMStatesEigen,self)._messages_backwards_log( self.trans_matrix,self.aBl) def messages_forwards_log_python(self): return super(HMMStatesEigen,self)._messages_forwards_log( self.trans_matrix,self.pi_0,self.aBl) def messages_forwards_normalized_python(self): return super(HMMStatesEigen,self)._messages_forwards_normalized( self.trans_matrix,self.pi_0,self.aBl) ### sampling @staticmethod def _sample_forwards_log(betal,trans_matrix,init_state_distn,log_likelihoods): from hmm_messages_interface import sample_forwards_log return sample_forwards_log(trans_matrix,log_likelihoods, init_state_distn,betal,np.empty(log_likelihoods.shape[0],dtype='int32')) @staticmethod def _sample_backwards_normalized(alphan,trans_matrix_transpose): from hmm_messages_interface import sample_backwards_normalized return sample_backwards_normalized(trans_matrix_transpose,alphan, np.empty(alphan.shape[0],dtype='int32')) @staticmethod def _resample_multiple(states_list): from hmm_messages_interface import resample_normalized_multiple if len(states_list) > 0: loglikes = resample_normalized_multiple( states_list[0].trans_matrix,states_list[0].pi_0, [s.aBl for s in states_list],[s.stateseq for s in states_list]) for s, loglike in zip(states_list,loglikes): s._normalizer = loglike ### EM @staticmethod def _expected_statistics_from_messages( trans_potential,likelihood_log_potential,alphal,betal, expected_states=None,expected_transcounts=None): from hmm_messages_interface import expected_statistics_log expected_states = np.zeros_like(alphal) \ if expected_states is None else expected_states expected_transcounts = np.zeros_like(trans_potential) \ if expected_transcounts is None else expected_transcounts return expected_statistics_log( np.log(trans_potential),likelihood_log_potential,alphal,betal, expected_states,expected_transcounts) ### Vitberbi def Viterbi(self): from hmm_messages_interface import viterbi self.stateseq = viterbi(self.trans_matrix,self.aBl,self.pi_0, np.empty(self.aBl.shape[0],dtype='int32')) class HMMStatesEigenSeparateTrans(_SeparateTransMixin,HMMStatesEigen): pass class HMMStatesPossibleChangepoints(_PossibleChangepointsMixin,HMMStatesEigen): pass class HMMStatesPossibleChangepointsSeparateTrans( _SeparateTransMixin, HMMStatesPossibleChangepoints): pass
mit
megbedell/wobble
scripts/script_HD189733.py
1
6247
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import wobble from time import time import h5py import os if __name__ == "__main__": starname = 'HD189733' K_star = 0 K_t = 0 niter = 100 # for optimization plots = True epochs = [0, 20] # to plot movies = False plot_dir = '../results/plots_{0}_Kstar{1}_Kt{2}/'.format(starname, K_star, K_t) print("running wobble on star {0} with K_star = {1}, K_t = {2}".format(starname, K_star, K_t)) start_time = time() orders = np.arange(72) ''' e = [ 0, 1, 6, 7, 9, 17, 18, 19, 21, 23, 24, 26, 30, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 55, 56, 61, 66, 69, 70, 72, 73, 75] # night of August 28, 2007 data = wobble.Data(starname+'_e2ds.hdf5', filepath='../data/', orders=orders, epochs=e) ''' data = wobble.Data(filename='../data/'+starname+'_e2ds.hdf5', orders=orders) orders = np.copy(data.orders) results = wobble.Results(data=data) results_51peg = wobble.Results(filename='/Users/mbedell/python/wobble/results/results_51peg_Kstar0_Kt0.hdf5') print("data loaded") print("time elapsed: {0:.2f} min".format((time() - start_time)/60.0)) elapsed_time = time() - start_time if plots: print("plots will be saved under directory: {0}".format(plot_dir)) if not os.path.exists(plot_dir): os.makedirs(plot_dir) star_learning_rate = 0.1 telluric_learning_rate = 0.01 for r,o in enumerate(orders): model = wobble.Model(data, results, r) model.add_star('star', variable_bases=K_star, regularization_par_file=None, learning_rate_template=star_learning_rate) model.add_telluric('tellurics', rvs_fixed=True, variable_bases=K_t, learning_rate_template=telluric_learning_rate, template_fixed=True, template_xs=results_51peg.tellurics_template_xs[o], template_ys=results_51peg.tellurics_template_ys[o]) # assumes all orders are there for 51 Peg print("--- ORDER {0} ---".format(o)) if plots: wobble.optimize_order(model, niter=niter, save_history=True, basename=plot_dir+'history', epochs_to_plot=epochs, movies=movies) fig, ax = plt.subplots(1, 1, figsize=(8,5)) ax.plot(data.dates, results.star_rvs[r] + data.bervs - data.drifts - np.mean(results.star_rvs[r] + data.bervs), 'k.', alpha=0.8, ms=4) ax.plot(data.dates, data.pipeline_rvs + data.bervs - np.mean(data.pipeline_rvs + data.bervs), 'r.', alpha=0.5, ms=4) ax.set_ylabel('RV (m/s)', fontsize=14) ax.set_xlabel('BJD', fontsize=14) plt.savefig(plot_dir+'results_rvs_o{0}.png'.format(o)) plt.close(fig) for e in epochs: results.plot_spectrum(r, e, data, plot_dir+'results_synth_o{0}_e{1}.png'.format(o, e)) else: wobble.optimize_order(model, niter=niter) del model # not sure if this does anything print("order {1} optimization finished. time elapsed: {0:.2f} min".format((time() - start_time)/60.0, o)) print("this order took {0:.2f} min".format((time() - start_time - elapsed_time)/60.0)) elapsed_time = time() - start_time print("all orders optimized.") print("time elapsed: {0:.2f} minutes".format((time() - start_time)/60.0)) results.combine_orders('star') print("final RVs calculated.") print("time elapsed: {0:.2f} minutes".format((time() - start_time)/60.0)) results_file = '../results/results_{0}_Kstar{1}_Kt{2}.hdf5'.format(starname, K_star, K_t) results.write(results_file) print("results saved as: {0}".format(results_file)) print("time elapsed: {0:.2f} minutes".format((time() - start_time)/60.0)) # do post-processing: results.combine_orders('star') results.apply_drifts('star') results.apply_bervs('star') if plots: fig, (ax, ax2) = plt.subplots(2, 1, gridspec_kw = {'height_ratios':[3, 1]}) ax.scatter(data.dates, data.pipeline_rvs - np.mean(data.pipeline_rvs), c='r', label='DRS', alpha=0.7, s=12) ax.scatter(data.dates, results.star_time_rvs - np.mean(results.star_time_rvs), c='k', label='wobble', alpha=0.7, s=12) ax.legend() ax.set_xticklabels([]) ax2.scatter(data.dates, results.star_time_rvs - data.pipeline_rvs, c='k', s=12) ax2.set_ylabel('JD') fig.tight_layout() fig.subplots_adjust(hspace=0.05) plt.savefig(plot_dir+'results_rvs.png') plt.close(fig) fig, (ax, ax2) = plt.subplots(2, 1, gridspec_kw = {'height_ratios':[3, 1]}) ax.scatter(data.dates % 2.21857312, data.pipeline_rvs - np.mean(data.pipeline_rvs), c='r', label='DRS', alpha=0.7, s=12) ax.scatter(data.dates % 2.21857312, results.star_time_rvs - np.mean(results.star_time_rvs), c='k', label='wobble', alpha=0.7, s=12) ax.legend() ax.set_xticklabels([]) ax2.scatter(data.dates, results.star_time_rvs - data.pipeline_rvs, c='k', s=12) ax2.set_ylabel('JD') fig.tight_layout() fig.subplots_adjust(hspace=0.05) plt.savefig(plot_dir+'results_rvs_phased.png') plt.close(fig) print("final RVs calculated.") print("time elapsed: {0:.2f} minutes".format((time() - start_time)/60.0)) # save output: results_file = 'results/results_{0}_Kstar{1}_Kt{2}.hdf5'.format(starname, K_star, K_t) results.write(results_file) star_rvs_file = 'results/rvs_{0}_Kstar{1}_Kt{2}.hdf5'.format(starname, K_star, K_t) results.write_rvs('star', star_rvs_file, all_orders=True) print("results saved as: {0} & {1}".format(results_file, star_rvs_file)) print("-----------------------------") print("total runtime:{0:.2f} minutes".format((time() - start_time)/60.0))
mit
craigcitro/pydatalab
tests/_util/generic_feature_statistics_generator_test.py
4
6972
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from google.datalab.utils.facets.generic_feature_statistics_generator \ import GenericFeatureStatisticsGenerator import numpy as np import pandas as pd from tensorflow.python.platform import googletest class GenericFeatureStatisticsGeneratorTest(googletest.TestCase): def setUp(self): self.gfsg = GenericFeatureStatisticsGenerator() def testProtoFromDataFrames(self): data = [[1, 'hi'], [2, 'hello'], [3, 'hi']] df = pd.DataFrame(data, columns=['testFeatureInt', 'testFeatureString']) dataframes = [{'table': df, 'name': 'testDataset'}] p = self.gfsg.ProtoFromDataFrames(dataframes) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(2, len(test_data.features)) if test_data.features[0].name == 'testFeatureInt': numfeat = test_data.features[0] stringfeat = test_data.features[1] else: numfeat = test_data.features[1] stringfeat = test_data.features[0] self.assertEqual('testFeatureInt', numfeat.name) self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type) self.assertEqual(1, numfeat.num_stats.min) self.assertEqual(3, numfeat.num_stats.max) self.assertEqual('testFeatureString', stringfeat.name) self.assertEqual(self.gfsg.fs_proto.STRING, stringfeat.type) self.assertEqual(2, stringfeat.string_stats.unique) def testNdarrayToEntry(self): arr = np.array([1.0, 2.0, None, float('nan'), 3.0], dtype=float) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual(2, entry['missing']) arr = np.array(['a', 'b', float('nan'), 'c'], dtype=str) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual(1, entry['missing']) def testNdarrayToEntryTimeTypes(self): arr = np.array( [np.datetime64('2005-02-25'), np.datetime64('2006-02-25')], dtype=np.datetime64) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual([1109289600000000000, 1140825600000000000], entry['vals']) arr = np.array( [np.datetime64('2009-01-01') - np.datetime64('2008-01-01')], dtype=np.timedelta64) entry = self.gfsg.NdarrayToEntry(arr) self.assertEqual([31622400000000000], entry['vals']) def testDTypeToType(self): self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.int32))) # Boolean and time types treated as int self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.bool))) self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.datetime64))) self.assertEqual(self.gfsg.fs_proto.INT, self.gfsg.DtypeToType(np.dtype(np.timedelta64))) self.assertEqual(self.gfsg.fs_proto.FLOAT, self.gfsg.DtypeToType(np.dtype(np.float32))) self.assertEqual(self.gfsg.fs_proto.STRING, self.gfsg.DtypeToType(np.dtype(np.str))) # Unsupported types treated as string for now self.assertEqual(self.gfsg.fs_proto.STRING, self.gfsg.DtypeToType(np.dtype(np.void))) def testGetDatasetsProtoFromEntriesLists(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 3], 'counts': [1, 1, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeature', numfeat.name) self.assertEqual(self.gfsg.fs_proto.INT, numfeat.type) self.assertEqual(1, numfeat.num_stats.min) self.assertEqual(3, numfeat.num_stats.max) hist = numfeat.num_stats.common_stats.num_values_histogram buckets = hist.buckets self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(.3, buckets[0].sample_count) self.assertEqual(1, buckets[9].low_value) self.assertEqual(1, buckets[9].high_value) self.assertEqual(.3, buckets[9].sample_count) def testGetDatasetsProtoSequenceExampleHistogram(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 2, 3], 'counts': [1, 2, 1], 'feat_lens': [1, 2, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets) hist = p.datasets[0].features[ 0].num_stats.common_stats.feature_list_length_histogram buckets = hist.buckets self.assertEqual(self.gfsg.histogram_proto.QUANTILES, hist.type) self.assertEqual(10, len(buckets)) self.assertEqual(1, buckets[0].low_value) self.assertEqual(1, buckets[0].high_value) self.assertEqual(.3, buckets[0].sample_count) self.assertEqual(1.8, buckets[9].low_value) self.assertEqual(2, buckets[9].high_value) self.assertEqual(.3, buckets[9].sample_count) def testGetDatasetsProtoWithWhitelist(self): entries = {} entries['testFeature'] = { 'vals': [1, 2, 3], 'counts': [1, 1, 1], 'missing': 0, 'type': self.gfsg.fs_proto.INT } entries['ignoreFeature'] = { 'vals': [5, 6], 'counts': [1, 1], 'missing': 1, 'type': self.gfsg.fs_proto.INT } datasets = [{'entries': entries, 'size': 3, 'name': 'testDataset'}] p = self.gfsg.GetDatasetsProto(datasets, features=['testFeature']) self.assertEqual(1, len(p.datasets)) test_data = p.datasets[0] self.assertEqual('testDataset', test_data.name) self.assertEqual(3, test_data.num_examples) self.assertEqual(1, len(test_data.features)) numfeat = test_data.features[0] self.assertEqual('testFeature', numfeat.name) self.assertEqual(1, numfeat.num_stats.min) if __name__ == '__main__': googletest.main()
apache-2.0
surligas/cs436-gnuradio
gr-digital/examples/example_timing.py
49
9180
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) from scipy import fftpack class example_timing(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset, mode=0): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) gain = bw nfilts = 32 rrc_taps_rx = filter.firdes.root_raised_cosine( nfilts, sps*nfilts, 1.0, rolloff, ntaps*nfilts) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.off = filter.fractional_resampler_cc(0.20, 1.0) if mode == 0: self.clk = digital.pfb_clock_sync_ccf(sps, gain, rrc_taps_rx, nfilts, nfilts//2, 1) self.taps = self.clk.taps() self.dtaps = self.clk.diff_taps() self.delay = int(scipy.ceil(((len(rrc_taps)-1)/2 + (len(self.taps[0])-1)/2)/float(sps))) + 1 self.vsnk_err = blocks.vector_sink_f() self.vsnk_rat = blocks.vector_sink_f() self.vsnk_phs = blocks.vector_sink_f() self.connect((self.clk,1), self.vsnk_err) self.connect((self.clk,2), self.vsnk_rat) self.connect((self.clk,3), self.vsnk_phs) else: # mode == 1 mu = 0.5 gain_mu = bw gain_omega = 0.25*gain_mu*gain_mu omega_rel_lim = 0.02 self.clk = digital.clock_recovery_mm_cc(sps, gain_omega, mu, gain_mu, omega_rel_lim) self.vsnk_err = blocks.vector_sink_f() self.connect((self.clk,1), self.vsnk_err) self.vsnk_src = blocks.vector_sink_c() self.vsnk_clk = blocks.vector_sink_c() self.connect(self.src, self.rrc, self.chn, self.off, self.clk, self.vsnk_clk) self.connect(self.src, self.vsnk_src) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth (PFB) or gain (M&M) [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.0, help="Set the simulation's phase offset [default=%default]") parser.add_option("-M", "--mode", type="int", default=0, help="Set the recovery mode (0: polyphase, 1: M&M) [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_timing(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset, options.mode) put.run() if options.mode == 0: data_src = scipy.array(put.vsnk_src.data()[20:]) data_clk = scipy.array(put.vsnk_clk.data()[20:]) data_err = scipy.array(put.vsnk_err.data()[20:]) data_rat = scipy.array(put.vsnk_rat.data()[20:]) data_phs = scipy.array(put.vsnk_phs.data()[20:]) f1 = pylab.figure(1, figsize=(12,10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2,2,1) s1.plot(data_src.real, data_src.imag, "bo") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time delay = put.delay m = len(data_clk.real) s2 = f1.add_subplot(2,2,2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real[delay:], "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2,2,3) s3.plot(data_err, label="Error") s3.plot(data_rat, 'r', label="Update rate") s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") s3.set_ylim([-0.5, 0.5]) s3.legend() # Plot the clock recovery loop's error s4 = f1.add_subplot(2,2,4) s4.plot(data_phs) s4.set_title("Clock Recovery Loop Filter Phase") s4.set_xlabel("Samples") s4.set_ylabel("Filter Phase") diff_taps = put.dtaps ntaps = len(diff_taps[0]) nfilts = len(diff_taps) t = scipy.arange(0, ntaps*nfilts) f3 = pylab.figure(3, figsize=(12,10), facecolor='w') s31 = f3.add_subplot(2,1,1) s32 = f3.add_subplot(2,1,2) s31.set_title("Differential Filters") s32.set_title("FFT of Differential Filters") for i,d in enumerate(diff_taps): D = 20.0*scipy.log10(1e-20+abs(fftpack.fftshift(fftpack.fft(d, 10000)))) s31.plot(t[i::nfilts].real, d, "-o") s32.plot(D) s32.set_ylim([-120, 10]) # If testing the M&M clock recovery loop else: data_src = scipy.array(put.vsnk_src.data()[20:]) data_clk = scipy.array(put.vsnk_clk.data()[20:]) data_err = scipy.array(put.vsnk_err.data()[20:]) f1 = pylab.figure(1, figsize=(12,10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2,2,1) s1.plot(data_src.real, data_src.imag, "o") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time s2 = f1.add_subplot(2,2,2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real, "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2,2,3) s3.plot(data_err) s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
esatel/ADCPy
adcpy/transect_average.py
1
12135
# -*- coding: utf-8 -*- """Production example script that averages repeated tranects, resolving and visualizing secondary circulation Driver script that is designed to average repeated ADCP transect observations in an effort of reduce measurement error and better resolve non-steamwise and velocities and secondary circulation features. A summary of script functions: 1) Assess an input directory for ADCP observations (raw files) that match in space and time. 2) Group matchcing ADCP observations into groups of a maxium number for averaging. 3) Pre-process raw ADCP observations before averaging as appropriate. 4) Bin-average pre-processed ADCP observation velcotities 5) Generate netcdf and/or CSV output files of bin-average velocities 6) Generate various plots of streamwise, depth averaged, 3D velocities and secondary circulation features. The script options are listed and described immediatly below this comment block. This code is open source, and defined by the included MIT Copyright License Designed for Python 2.7; NumPy 1.7; SciPy 0.11.0; Matplotlib 1.2.0 2014-09 - First Release; blsaenz, esatel """ ## START script options ####################################################### # bin-averaging paramterters avg_dxy = 2.0 # Horizontal resolution of averaging bins {m} avg_dz = 0.25 # Vertical resolution of averaging bins {m} avg_max_gap_m = 30.0 # Maximum distance allowed between ADCP observations when averaging {m} avg_max_gap_minutes = 20.0 # Maximum time allowed between ADCP observations when averaging {m} avg_max_group_size = 6 # Maximum number of ADCP observations to average {m} avg_bin_sd_drop = 3 # Maximum number of ADCP observations to average {m} avg_normal_to_flow = False # post-average options avg_rotation = 'Rozovski' # One of ['Rozovski','no transverse flow','principal flow','normal',None] avg_std_drop = 3.0 # Standard deviation of velocity, above which samples are dropped from analysis {0.0=no dropping, 2.0-3.0 typically [number of standard deviations]} avg_std_interp = True # Perform interpolation of holes in velocity profiles left by high standard deviation removal {typically True with std_drop > 0.0} avg_smooth_kernel = 3 # Smooth velocity data using a square kernel box-filter, with side dimension = avg_smooth_kernel. 0 = no kernel smoothing avg_save_netcdf = True # Save bin-averaged velocities as an ADCPData netcdf file avg_save_csv = True # Save bin-averaged velocities as a CSV text file avg_plot_xy = True # Generate a composite plot of survey location(s) of original ADCP ensembles avg_plot_avg_n_sd = True # Generate image plots of bin-averaged U,V,W velocities, and the number and standard deviation of bin averages avg_plot_mean_vectors = True # Generate an arrow plot of bin-averaged U-V mean velocities in the x-y plane avg_plot_secondary_circulation = True # Generate an image plot of 2D bin-averaged steamwise (u) velocities, overlain by an arrow plot showing secondary circulation in the V-W plane avg_plot_uvw_velocity_array = True # Generate a 3-panel image plot showing bin-averaged U,V,W velocities in the V-W plane avg_plot_flow_summmary = True # Generate a summary plot showing image plots of U,V bin-averaged velocities, an arrow plot of bin-averaged U-V mean velocities, and flow/discharge calculations avg_save_plots = True # Save the plots to disk avg_show_plots = False # Print plots to screen (pauses execution until plots are manually closed) ## END script options ######################################################### import os import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import transect_preprocessor reload(transect_preprocessor) import adcpy reload(adcpy) from adcpy_recipes import * def transect_average(pre_process_input_file=None): """ Received a list of ADCPTransectData objects from transect_preprocessor.py, and then groups and bin-averages the transects. Group average ADCPData objects, velocties, and plots are optionally output to the outpath supplied by transect_preprocessor(). Inputs: pre_process_input_file = path to a transect_preprocessor input file, or None to use the default file. """ (transects,outpath) = transect_preprocessor.transect_preprocessor(pre_process_input_file) print 'total transects loaded:',len(transects) grps_to_average = group_adcp_obs_by_spacetime(transects, max_gap_m=avg_max_gap_m, max_gap_minutes=avg_max_gap_minutes, max_group_size=avg_max_group_size) print 'total groups to average',len(grps_to_average) #write_csv_velocity(transects[0],os.path.join(outpath,'temp.csv'),no_header=True) #grps_to_average = grps_to_average[1:] grp_num = 0 track_fig=101 for grp in grps_to_average: if avg_plot_xy: adcpy.plot.plot_obs_group_xy_lines(grp,fig=track_fig,title='Group%03i Source Observations'%grp_num) avg = average_transects(grp, dxy=avg_dxy, dz=avg_dz, return_adcpy=True, plotline_from_flow=avg_normal_to_flow, sd_drop=avg_bin_sd_drop) if avg_plot_xy: adcpy.plot.get_fig(fig=track_fig) plt.plot(avg.xy[:,0],avg.xy[:,1],label='average projection') plt.legend(prop={'size':10}) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_xy_lines.png"%grp_num)) if avg_rotation is not None: avg = transect_rotate(avg,avg_rotation) if avg_std_drop > 0: avg.sd_drop(sd=3.0, sd_axis='elevation', interp_holes=avg_std_interp) avg.sd_drop(sd=3.0, sd_axis='ensemble', interp_holes=avg_std_interp) if avg_smooth_kernel > 2: avg.kernel_smooth(kernel_size = 3) if avg_save_csv: write_csv_velocity_array(avg,os.path.join(outpath,'group%03i_velocity.csv'%grp_num),no_header=True) write_csv_velocity_db(avg,os.path.join(outpath,'group%03i_velocity_db.csv'%grp_num),no_header=False) write_ensemble_mean_velocity_db(avg,os.path.join(outpath,'group%03i_velocity_depth_means.csv'%grp_num), no_header=False,range_from_velocities=True) if avg_save_netcdf: fname = os.path.join(outpath,'group%03i.nc'%grp_num) avg.write_nc(fname,zlib=True) if avg_plot_avg_n_sd: uvw = 'uvw' for i in range(3): plot_avg_n_sd(avg,i,0.05) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_%s_avg_n_sd.png"%(grp_num,uvw[i]))) if avg_plot_mean_vectors: fig3 = adcpy.plot.plot_ensemble_mean_vectors(avg,title='Group%03i Mean Velocity [m/s]'%grp_num) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_mean_velocity.png"%grp_num)) if avg_plot_secondary_circulation: fig4 = adcpy.plot.plot_secondary_circulation(avg,u_vecs=30,v_vecs=30, title='Group%03i Cross-Stream Velocity [m/s] and Secondary Circulation Vectors'%grp_num) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_secondary_circulation.png"%grp_num)) if avg_plot_uvw_velocity_array: fig5 = adcpy.plot.plot_uvw_velocity_array(avg.velocity, title='Group%03i Velocity [m/s]'%grp_num, ures=0.1,vres=0.1,wres=0.05) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_uvw_velocity.png"%grp_num)) if avg_plot_flow_summmary: fig6 = adcpy.plot.plot_flow_summmary(avg,title='Group%03i Streamwise Summary'%grp_num, ures=0.1,vres=0.1,use_grid_flows=True) if avg_save_plots: plt.savefig(os.path.join(outpath,"group%03i_flow_summary.png"%grp_num)) if avg_show_plots: plt.show() plt.close('all') grp_num += 1 print 'ADCP processing complete!' def plot_avg_n_sd(avg,uvw,resolution=0.1): """ Generates a vertical three-panel plot, showing images of a bin-averaged velocity, the number of velociy measurements in each bin, and the bin standard deviation velocity. Desinged to be used in conjuction with transect_average() output. Inputs: avg = ADCPData object, with extra velocity_n and velocity_sd data fields produced by transect_average() uvw = python string, either 'U','V', or 'W' to select which velocity compontent to plot. resolution = optional value to round the plot velocity scales up toward """ if uvw == 0: v_str = 'U' elif uvw == 1: v_str = 'V' else: v_str = 'W' inv = 1/resolution xx,yy,dd,pline = adcpy.util.find_projection_distances(avg.xy) mtest = np.floor(avg.velocity[...,uvw]*inv) minv = np.nanmin(np.nanmin(mtest))*resolution mtest = np.ceil(avg.velocity[...,uvw]*inv) maxv = np.nanmax(np.nanmax(mtest))*resolution avg_panel = adcpy.plot.IPanel(velocity = avg.velocity[:,:,uvw], x = dd, y = avg.bin_center_elevation, minv = minv, maxv = maxv, xlabel = 'm', ylabel = 'm', units = 'm/s', use_pcolormesh = True, title='%s Averaged Velocity [m/s]'%v_str) maxv = np.nanmax(np.nanmax(avg.velocity_n[...,uvw])) n_panel = adcpy.plot.IPanel(velocity = avg.velocity_n[:,:,uvw], x = dd, y = avg.bin_center_elevation, minv = 0, maxv = maxv, xlabel = 'm', ylabel = 'm', units = 'number', use_pcolormesh = True, title='n Samples') mtest = np.floor(avg.velocity_sd[...,uvw]*inv) minv = np.nanmin(np.nanmin(mtest))*resolution mtest = np.ceil(avg.velocity_sd[...,uvw]*inv) maxv = np.nanmax(np.nanmax(mtest))*resolution sd_panel = adcpy.plot.IPanel(velocity = avg.velocity_sd[:,:,uvw], x = dd, y = avg.bin_center_elevation, minv = 0, maxv = maxv, xlabel = 'm', ylabel = 'm', units = 'm/s', use_pcolormesh = True, title='Standard Deviation [m/s]') fig = adcpy.plot.plot_vertical_panels((avg_panel,n_panel,sd_panel)) return fig def main(): import sys prepro_input = sys.argv[1] transect_average(prepro_input) # run myself if __name__ == "__main__": #transect_average('trn_pre_input_GEO20090106.py') main()
mit
xiaoxiamii/scikit-learn
sklearn/utils/extmath.py
70
21951
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) or (M, ) Argument to the logistic function out: array-like, shape: (M, N) or (M, ), optional: Preallocated output array. Returns ------- out: array, shape (M, N) or (M, ) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function copy: bool, optional Copy X or not. Returns ------- out: array, shape (M, N) Softmax function evaluated at every point in x """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
fspaolo/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
huzq/scikit-learn
sklearn/cluster/_bicluster.py
3
21109
"""Spectral biclustering algorithms.""" # Authors : Kemal Eren # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.linalg import norm from scipy.sparse import dia_matrix, issparse from scipy.sparse.linalg import eigsh, svds from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..utils import check_random_state from ..utils.extmath import (make_nonnegative, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, _deprecate_positional_args __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs='deprecated', random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X, y=None): """Creates a biclustering for X. Parameters ---------- X : array-like of shape (n_samples, n_features) y : Ignored """ if self.n_jobs != 'deprecated': warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" " removed in 0.25.", FutureWarning) X = self._validate_data(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) return self def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. A = safe_sparse_dot(array.T, array) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0) vt = v.T if np.any(np.isnan(u)): A = safe_sparse_dot(array, array.T) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : int, default=3 The number of biclusters to find. svd_method : {'randomized', 'arpack'}, default='randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, default=None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, default=False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random', or ndarray of shape \ (n_clusters, n_features), default='k-means++' Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, default=10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, default=None The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. deprecated:: 0.23 ``n_jobs`` was deprecated in version 0.23 and will be removed in 0.25. random_state : int, RandomState instance, default=None Used for randomizing the singular value decomposition and the k-means initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Attributes ---------- rows_ : array-like of shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like of shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like of shape (n_rows,) The bicluster label of each row. column_labels_ : array-like of shape (n_cols,) The bicluster label of each column. Examples -------- >>> from sklearn.cluster import SpectralCoclustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X) >>> clustering.row_labels_ #doctest: +SKIP array([0, 1, 1, 0, 0, 0], dtype=int32) >>> clustering.column_labels_ #doctest: +SKIP array([0, 0], dtype=int32) >>> clustering SpectralCoclustering(n_clusters=2, random_state=0) References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ @_deprecate_positional_args def __init__(self, n_clusters=3, *, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs='deprecated', random_state=None): super().__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack([self.row_labels_ == c for c in range(self.n_clusters)]) self.columns_ = np.vstack([self.column_labels_ == c for c in range(self.n_clusters)]) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : int or tuple (n_row_clusters, n_column_clusters), default=3 The number of row and column clusters in the checkerboard structure. method : {'bistochastic', 'scale', 'log'}, default='bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. .. warning:: if `method='log'`, the data must be sparse. n_components : int, default=6 Number of singular vectors to check. n_best : int, default=3 Number of best singular vectors to which to project the data for clustering. svd_method : {'randomized', 'arpack'}, default='randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses :func:`~sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, default=None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, default=False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random'} or ndarray of (n_clusters, n_features), \ default='k-means++' Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, default=10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, default=None The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. deprecated:: 0.23 ``n_jobs`` was deprecated in version 0.23 and will be removed in 0.25. random_state : int, RandomState instance, default=None Used for randomizing the singular value decomposition and the k-means initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Attributes ---------- rows_ : array-like of shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like of shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like of shape (n_rows,) Row partition labels. column_labels_ : array-like of shape (n_cols,) Column partition labels. Examples -------- >>> from sklearn.cluster import SpectralBiclustering >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X) >>> clustering.row_labels_ array([1, 1, 1, 0, 0, 0], dtype=int32) >>> clustering.column_labels_ array([0, 1], dtype=int32) >>> clustering SpectralBiclustering(n_clusters=2, random_state=0) References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ @_deprecate_positional_args def __init__(self, n_clusters=3, *, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs='deprecated', random_state=None): super().__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super()._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack([self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)]) self.columns_ = np.vstack([self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)]) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
morrisonwudi/zipline
zipline/utils/cli.py
10
8575
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import argparse from copy import copy from six import print_ from six.moves import configparser import pandas as pd try: from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter PYGMENTS = True except: PYGMENTS = False import zipline from zipline.errors import NoSourceError, PipelineDateError DEFAULTS = { 'data_frequency': 'daily', 'capital_base': '10e6', 'source': 'yahoo', 'symbols': 'AAPL', 'metadata_index': 'symbol', 'source_time_column': 'Date', } def parse_args(argv, ipython_mode=False): """Parse list of arguments. If a config file is provided (via -c), it will read in the supplied options and overwrite any global defaults. All other directly supplied arguments will overwrite the config file settings. Arguments: * argv : list of strings List of arguments, e.g. ['-c', 'my.conf'] * ipython_mode : bool <default=True> Whether to parse IPython specific arguments like --local_namespace Notes: Default settings can be found in zipline.utils.cli.DEFAULTS. """ # Parse any conf_file specification # We make this parser with add_help=False so that # it doesn't parse -h and print help. conf_parser = argparse.ArgumentParser( # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, # Turn off help, so we print all options in response to -h add_help=False ) conf_parser.add_argument("-c", "--conf_file", help="Specify config file", metavar="FILE") args, remaining_argv = conf_parser.parse_known_args(argv) defaults = copy(DEFAULTS) if args.conf_file: config = configparser.SafeConfigParser() config.read([args.conf_file]) defaults.update(dict(config.items("Defaults"))) # Parse rest of arguments # Don't suppress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser description="Zipline version %s." % zipline.__version__, parents=[conf_parser] ) parser.set_defaults(**defaults) parser.add_argument('--algofile', '-f') parser.add_argument('--data-frequency', choices=('minute', 'daily')) parser.add_argument('--start', '-s') parser.add_argument('--end', '-e') parser.add_argument('--capital_base') parser.add_argument('--source', '-d', choices=('yahoo',)) parser.add_argument('--source_time_column', '-t') parser.add_argument('--symbols') parser.add_argument('--output', '-o') parser.add_argument('--metadata_path', '-m') parser.add_argument('--metadata_index', '-x') parser.add_argument('--print-algo', '-p', dest='print_algo', action='store_true') parser.add_argument('--no-print-algo', '-q', dest='print_algo', action='store_false') if ipython_mode: parser.add_argument('--local_namespace', action='store_true') args = parser.parse_args(remaining_argv) return(vars(args)) def parse_cell_magic(line, cell): """Parse IPython magic """ args_list = line.split(' ') args = parse_args(args_list, ipython_mode=True) # Remove print_algo kwarg to overwrite below. args.pop('print_algo') local_namespace = args.pop('local_namespace', False) # By default, execute inside IPython namespace if not local_namespace: args['namespace'] = get_ipython().user_ns # flake8: noqa # If we are running inside NB, do not output to file but create a # variable instead output_var_name = args.pop('output', None) perf = run_pipeline(print_algo=False, algo_text=cell, **args) if output_var_name is not None: get_ipython().user_ns[output_var_name] = perf # flake8: noqa def run_pipeline(print_algo=True, **kwargs): """Runs a full zipline pipeline given configuration keyword arguments. 1. Load data (start and end dates can be provided a strings as well as the source and symobls). 2. Instantiate algorithm (supply either algo_text or algofile kwargs containing initialize() and handle_data() functions). If algofile is supplied, will try to look for algofile_analyze.py and append it. 3. Run algorithm (supply capital_base as float). 4. Return performance dataframe. :Arguments: * print_algo : bool <default=True> Whether to print the algorithm to command line. Will use pygments syntax coloring if pygments is found. """ start = kwargs['start'] end = kwargs['end'] # Compare against None because strings/timestamps may have been given if start is not None: start = pd.Timestamp(start, tz='UTC') if end is not None: end = pd.Timestamp(end, tz='UTC') # Fail out if only one bound is provided if ((start is None) or (end is None)) and (start != end): raise PipelineDateError(start=start, end=end) # Check if start and end are provided, and if the sim_params need to read # a start and end from the DataSource if start is None: overwrite_sim_params = True else: overwrite_sim_params = False symbols = kwargs['symbols'].split(',') asset_identifier = kwargs['metadata_index'] # Pull asset metadata asset_metadata = kwargs.get('asset_metadata', None) asset_metadata_path = kwargs['metadata_path'] # Read in a CSV file, if applicable if asset_metadata_path is not None: if os.path.isfile(asset_metadata_path): asset_metadata = pd.read_csv(asset_metadata_path, index_col=asset_identifier) source_arg = kwargs['source'] source_time_column = kwargs['source_time_column'] if source_arg is None: raise NoSourceError() elif source_arg == 'yahoo': source = zipline.data.load_bars_from_yahoo( stocks=symbols, start=start, end=end) elif os.path.isfile(source_arg): source = zipline.data.load_prices_from_csv( filepath=source_arg, identifier_col=source_time_column ) elif os.path.isdir(source_arg): source = zipline.data.load_prices_from_csv_folder( folderpath=source_arg, identifier_col=source_time_column ) else: raise NotImplementedError( 'Source %s not implemented.' % kwargs['source']) algo_text = kwargs.get('algo_text', None) if algo_text is None: # Expect algofile to be set algo_fname = kwargs['algofile'] with open(algo_fname, 'r') as fd: algo_text = fd.read() analyze_fname = os.path.splitext(algo_fname)[0] + '_analyze.py' if os.path.exists(analyze_fname): with open(analyze_fname, 'r') as fd: # Simply append algo_text += fd.read() if print_algo: if PYGMENTS: highlight(algo_text, PythonLexer(), TerminalFormatter(), outfile=sys.stdout) else: print_(algo_text) algo = zipline.TradingAlgorithm(script=algo_text, namespace=kwargs.get('namespace', {}), capital_base=float(kwargs['capital_base']), algo_filename=kwargs.get('algofile'), asset_metadata=asset_metadata, identifiers=symbols, start=start, end=end) perf = algo.run(source, overwrite_sim_params=overwrite_sim_params) output_fname = kwargs.get('output', None) if output_fname is not None: perf.to_pickle(output_fname) return perf
apache-2.0
returnandrisk/meucci-python
dynamic_allocation_performance_analysis.py
1
7540
""" Python code for blog post "mini-Meucci : Applying The Checklist - Steps 10+" http://www.returnandrisk.com/2016/07/mini-meucci-applying-checklist-steps-10.html Copyright (c) 2016 Peter Chan (peter-at-return-and-risk-dot-com) """ ############################################################################### # Dynamic Allocation ############################################################################### #%matplotlib inline import rnr_meucci_functions as rnr import numpy as np from zipline.api import (set_slippage, slippage, set_commission, commission, order_target_percent, record, schedule_function, date_rules, time_rules, get_datetime, symbol) # Set tickers for data loading i.e. DJIA constituents and DIA ETF for benchmark tickers = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DD','XOM','GE','GS', 'HD','INTC','IBM','JNJ','JPM','MCD','MRK','MSFT','NKE','PFE','PG', 'TRV','UNH','UTX','VZ','V','WMT','DIS', 'DIA'] # Set investable asset tickers asset_tickers = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DD','XOM','GE','GS', 'HD','INTC','IBM','JNJ','JPM','MCD','MRK','MSFT','NKE','PFE','PG', 'TRV','UNH','UTX','VZ','V','WMT','DIS'] def initialize(context): # Turn off the slippage model set_slippage(slippage.FixedSlippage(spread=0.0)) # Set the commission model set_commission(commission.PerShare(cost=0.01, min_trade_cost=1.0)) context.day = -1 # using zero-based counter for days context.set_benchmark(symbol('DIA')) context.assets = [] print('Setup investable assets...') for ticker in asset_tickers: #print(ticker) context.assets.append(symbol(ticker)) context.n_asset = len(context.assets) context.n_portfolio = 40 # num mean-variance efficient portfolios to compute context.today = None context.tau = None context.min_data_window = 756 # min of 3 yrs data for calculations context.first_rebal_date = None context.first_rebal_idx = None context.weights = None # Schedule dynamic allocation calcs to occur 1 day before month end - note that # actual trading will occur on the close on the last trading day of the month schedule_function(rebalance, date_rule=date_rules.month_end(days_offset=1), time_rule=time_rules.market_close()) # Record some stuff every day schedule_function(record_vars, date_rule=date_rules.every_day(), time_rule=time_rules.market_close()) def handle_data(context, data): context.day += 1 #print(context.day) def rebalance(context, data): # Wait for 756 trading days (3 yrs) of historical prices before trading if context.day < context.min_data_window - 1: return # Get expanding window of past prices and compute returns context.today = get_datetime().date() prices = data.history(context.assets, "price", context.day, "1d") if context.first_rebal_date is None: context.first_rebal_date = context.today context.first_rebal_idx = context.day print('Starting dynamic allocation simulation...') # Get investment horizon in days ie number of trading days next month context.tau = rnr.get_num_days_nxt_month(context.today.month, context.today.year) # Calculate HFP distribution asset_rets = np.array(prices.pct_change(context.tau).iloc[context.tau:, :]) num_scenarios = len(asset_rets) # Set Flexible Probabilities Using Exponential Smoothing half_life_prjn = 252 * 2 # in days lambda_prjn = np.log(2) / half_life_prjn probs_prjn = np.exp(-lambda_prjn * (np.arange(0, num_scenarios)[::-1])) probs_prjn = probs_prjn / sum(probs_prjn) mu_pc, sigma2_pc = rnr.fp_mean_cov(asset_rets.T, probs_prjn) # Perform shrinkage to mitigate estimation risk mu_shrk, sigma2_shrk = rnr.simple_shrinkage(mu_pc, sigma2_pc) weights, _, _ = rnr.efficient_frontier_qp_rets(context.n_portfolio, sigma2_shrk, mu_shrk) print('Optimal weights calculated 1 day before month end on %s (day=%s)' \ % (context.today, context.day)) #print(weights) min_var_weights = weights[0,:] # Rebalance portfolio accordingly for stock, weight in zip(prices.columns, min_var_weights): order_target_percent(stock, np.asscalar(weight)) context.weights = min_var_weights def record_vars(context, data): record(weights=context.weights, tau=context.tau) def analyze(perf, bm_value, start_idx): pd.DataFrame({'portfolio':results.portfolio_value,'benchmark':bm_value})\ .iloc[start_idx:,:].plot(title='Portfolio Performance vs Benchmark') if __name__ == '__main__': from datetime import datetime import pytz from zipline.algorithm import TradingAlgorithm from zipline.utils.factory import load_bars_from_yahoo import pandas as pd import matplotlib.pyplot as plt # Create and run the algorithm. algo = TradingAlgorithm(initialize=initialize, handle_data=handle_data) start = datetime(2010, 5, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2016, 5, 31, 0, 0, 0, 0, pytz.utc) print('Getting Yahoo data for 30 DJIA stocks and DIA ETF as benchmark...') data = load_bars_from_yahoo(stocks=tickers, start=start, end=end) # Check price data data.loc[:, :, 'price'].plot(figsize=(8,7), title='Input Price Data') plt.ylabel('price in $'); plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) plt.show() # Run algorithm results = algo.run(data) # Fix possible issue with timezone results.index = results.index.normalize() if results.index.tzinfo is None: results.index = results.index.tz_localize('UTC') # Adjust benchmark returns for delayed trading due to 3 year min data window bm_rets = algo.perf_tracker.all_benchmark_returns bm_rets[0:algo.first_rebal_idx + 2] = 0 bm_rets.name = 'DIA' bm_rets.index.freq = None bm_value = algo.capital_base * np.cumprod(1+bm_rets) # Plot portfolio and benchmark values analyze(results, bm_value, algo.first_rebal_idx + 1) print('End value portfolio = {:.0f}'.format(results.portfolio_value.ix[-1])) print('End value benchmark = {:.0f}'.format(bm_value[-1])) # Plot end weights pd.DataFrame(results.weights.ix[-1], index=asset_tickers, columns=['w'])\ .sort_values('w', ascending=False).plot(kind='bar', \ title='End Simulation Weights', legend=None); ############################################################################### # Sequel Step - Ex-post performance analysis ############################################################################### import pyfolio as pf returns, positions, transactions, gross_lev = pf.utils.\ extract_rets_pos_txn_from_zipline(results) trade_start = results.index[algo.first_rebal_idx + 1] trade_end = datetime(2016, 5, 31, 0, 0, 0, 0, pytz.utc) print('Annualised volatility of the portfolio = {:.4}'.\ format(pf.timeseries.annual_volatility(returns[trade_start:trade_end]))) print('Annualised volatility of the benchmark = {:.4}'.\ format(pf.timeseries.annual_volatility(bm_rets[trade_start:trade_end]))) print('') pf.create_returns_tear_sheet(returns[trade_start:trade_end], benchmark_rets=bm_rets[trade_start:trade_end], return_fig=False)
mit
mne-tools/mne-tools.github.io
0.12/_downloads/plot_eog_artifact_histogram.py
22
1474
""" ======================== Show EOG artifact timing ======================== Compute the distribution of timing for EOG artifacts. """ # Authors: Eric Larson <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' # Setup for reading the raw data raw = io.read_raw_fif(raw_fname, preload=True) events = mne.find_events(raw, 'STI 014') eog_event_id = 512 eog_events = mne.preprocessing.find_eog_events(raw, eog_event_id) raw.add_events(eog_events, 'STI 014') # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=True, eog=False) tmin, tmax = -0.2, 0.5 event_ids = {'AudL': 1, 'AudR': 2, 'VisL': 3, 'VisR': 4} epochs = mne.Epochs(raw, events, event_ids, tmin, tmax, picks=picks) # Get the stim channel data pick_ch = mne.pick_channels(epochs.ch_names, ['STI 014'])[0] data = epochs.get_data()[:, pick_ch, :].astype(int) data = np.sum((data.astype(int) & 512) == 512, axis=0) ############################################################################### # Plot EOG artifact distribution plt.stem(1e3 * epochs.times, data) plt.xlabel('Times (ms)') plt.ylabel('Blink counts (from %s trials)' % len(epochs)) plt.show()
bsd-3-clause
frongk/tilde_stuff
verboseUsers.py
1
1853
from bs4 import BeautifulSoup import urllib import re #import pickle import seaborn as sns import pandas as pd import matplotlib.pyplot as plt #FOR TESTING #htmlIn = urllib.urlopen("http://tilde.town/~fr4nk") #soup=BeautifulSoup(htmlIn,'html.parser') #text=soup.prettify() #text = soup.get_text() #print text def getUsers(): htmlIn = urllib.urlopen("http://tilde.town/") soup=BeautifulSoup(htmlIn,'html.parser') userL = '/~' tildeList = [] for link in soup.find_all('a'): if re.search(userL,link.get('href')): tildeList.append( link.get('href')) return tildeList userPageSet = [] userPageSplit = [] userList = [] for idx, user in enumerate(getUsers()): if re.search('http',user) is None: userList.append(user) userUrl = "http://tilde.town" + user htmlIn = urllib.urlopen(userUrl) soup = BeautifulSoup(htmlIn,'html.parser') #clean user pages here for special characters such as \n or \t userPageSet.append( soup.get_text() ) userPageSplit.append(userPageSet[-1].split()) print idx, user #get basic word counts wordcounts = [] for page in userPageSplit: wordcounts.append(len(page)) wcountdf = pd.DataFrame({'users': userList, 'words': wordcounts}) wcountdf = wcountdf.drop_duplicates() wcountdf = wcountdf.sort(['words'],ascending=[0]) wcountTop = wcountdf[:10] sns.barplot(x = "words", y = "users", data = wcountTop) plt.title('Most Verbose Users') plt.xlabel('# of words scraped from page') #for page in userPageSet: # # #print userPageSet # Saving the objects: #with open('userPageSet.pickle', 'w') as f: # pickle.dump([userPageSet], f) # Getting back the objects: #with open('userPageSet.pickle') as f: # userPageSet = pickle.load(f)
gpl-2.0
hainm/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
RayMick/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
56
37976
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.validation import DataConversionWarning from sklearn.utils.validation import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset. for loss in ('deviance', 'exponential'): clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert np.any(deviance_decrease >= 0.0), \ "Train deviance does not monotonically decrease." leaves = clf.apply(X) assert_equal(leaves.shape, (6, 10, 1)) def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def test_classification_synthetic(): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] for loss in ('deviance', 'exponential'): gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.09, \ "GB(loss={}) failed with error {}".format(loss, error_rate) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.08, ("Stochastic GradientBoostingClassifier(loss={}) " "failed with error {}".format(loss, error_rate)) def test_boston(): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. for loss in ("ls", "lad", "huber"): for subsample in (1.0, 0.5): last_y_pred = None for i, sample_weight in enumerate( (None, np.ones(len(boston.target)), 2 * np.ones(len(boston.target)))): clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) leaves = clf.apply(boston.data) assert_equal(leaves.shape, (506, 100)) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert mse < 6.0, "Failed with loss %s and " \ "mse = %.4f" % (loss, mse) if last_y_pred is not None: np.testing.assert_array_almost_equal( last_y_pred, y_pred, err_msg='pred_%d doesnt match last pred_%d for loss %r and subsample %r. ' % (i, i - 1, loss, subsample)) last_y_pred = y_pred def test_iris(): # Check consistency on dataset iris. for subsample in (1.0, 0.5): for sample_weight in (None, np.ones(len(iris.target))): clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (subsample, score) leaves = clf.apply(iris.data) assert_equal(leaves.shape, (150, 100, 3)) def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor() clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1) clf.fit(X, y) #feature_importances = clf.feature_importances_ assert_true(hasattr(clf, 'feature_importances_')) X_new = clf.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = clf.feature_importances_ > clf.feature_importances_.mean() assert_array_almost_equal(X_new, X[:, feature_mask]) # true feature importance ranking # true_ranking = np.array([3, 1, 8, 2, 10, 9, 4, 11, 0, 6, 7, 5, 12]) # assert_array_equal(true_ranking, feature_importances.argsort()) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) from scipy import sparse X_sparse = sparse.csr_matrix(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(TypeError, clf.fit, X_sparse, y) clf = GradientBoostingClassifier().fit(X, y) assert_raises(TypeError, clf.predict, X_sparse) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert clf.oob_improvement_.shape[0] == 100 # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (0.5, score) assert clf.oob_improvement_.shape[0] == clf.n_estimators # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert est.estimators_[0, 0].max_depth == 1 for i in range(1, 11): assert est.estimators_[-i, 0].max_depth == 2 def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_min_weight_leaf(): # Regression test for issue #4447 X = [[1, 0], [1, 0], [1, 0], [0, 1], ] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = GradientBoostingRegressor(n_estimators=5, min_weight_fraction_leaf=0.1) gb.fit(X, y, sample_weight=sample_weight) assert_true(gb.predict([[1, 0]])[0] > 0.5) assert_almost_equal(gb.estimators_[0, 0].splitter.min_weight_leaf, 0.2) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1])
bsd-3-clause
andim/scipy
scipy/special/basic.py
2
63696
# # Author: Travis Oliphant, 2002 # from __future__ import division, print_function, absolute_import import warnings import numpy as np from scipy._lib.six import xrange from numpy import (pi, asarray, floor, isscalar, iscomplex, real, imag, sqrt, where, mgrid, sin, place, issubdtype, extract, less, inexact, nan, zeros, atleast_1d, sinc) from ._ufuncs import (ellipkm1, mathieu_a, mathieu_b, iv, jv, gamma, psi, zeta, hankel1, hankel2, yv, kv, gammaln, ndtri, errprint, poch, binom) from . import specfun from . import orthogonal __all__ = ['agm', 'ai_zeros', 'assoc_laguerre', 'bei_zeros', 'beip_zeros', 'ber_zeros', 'bernoulli', 'berp_zeros', 'bessel_diff_formula', 'bi_zeros', 'clpmn', 'comb', 'digamma', 'diric', 'ellipk', 'erf_zeros', 'erfcinv', 'erfinv', 'errprint', 'euler', 'factorial', 'factorialk', 'factorial2', 'fresnel_zeros', 'fresnelc_zeros', 'fresnels_zeros', 'gamma', 'gammaln', 'h1vp', 'h2vp', 'hankel1', 'hankel2', 'hyp0f1', 'iv', 'ivp', 'jn_zeros', 'jnjnp_zeros', 'jnp_zeros', 'jnyn_zeros', 'jv', 'jvp', 'kei_zeros', 'keip_zeros', 'kelvin_zeros', 'ker_zeros', 'kerp_zeros', 'kv', 'kvp', 'lmbda', 'lpmn', 'lpn', 'lqmn', 'lqn', 'mathieu_a', 'mathieu_b', 'mathieu_even_coef', 'mathieu_odd_coef', 'ndtri', 'obl_cv_seq', 'pbdn_seq', 'pbdv_seq', 'pbvv_seq', 'perm', 'polygamma', 'pro_cv_seq', 'psi', 'riccati_jn', 'riccati_yn', 'sinc', 'sph_in', 'sph_inkn', 'sph_jn', 'sph_jnyn', 'sph_kn', 'sph_yn', 'y0_zeros', 'y1_zeros', 'y1p_zeros', 'yn_zeros', 'ynp_zeros', 'yv', 'yvp', 'zeta', 'SpecialFunctionWarning'] class SpecialFunctionWarning(Warning): """Warning that can be issued with ``errprint(True)``""" pass warnings.simplefilter("always", category=SpecialFunctionWarning) def diric(x, n): """Periodic sinc function, also called the Dirichlet function. The Dirichlet function is defined as:: diric(x) = sin(x * n/2) / (n * sin(x / 2)), where n is a positive integer. Parameters ---------- x : array_like Input data n : int Integer defining the periodicity. Returns ------- diric : ndarray Examples -------- >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201) >>> plt.figure(figsize=(8,8)) >>> for idx, n in enumerate([2,3,4,9]): ... plt.subplot(2, 2, idx+1) ... plt.plot(x, special.diric(x, n)) ... plt.title('diric, n={}'.format(n)) >>> plt.show() The following example demonstrates that `diric` gives the magnitudes (modulo the sign and scaling) of the Fourier coefficients of a rectangular pulse. Suppress output of values that are effectively 0: >>> np.set_printoptions(suppress=True) Create a signal `x` of length `m` with `k` ones: >>> m = 8 >>> k = 3 >>> x = np.zeros(m) >>> x[:k] = 1 Use the FFT to compute the Fourier transform of `x`, and inspect the magnitudes of the coefficients: >>> np.abs(np.fft.fft(x)) array([ 3. , 2.41421356, 1. , 0.41421356, 1. , 0.41421356, 1. , 2.41421356]) Now find the same values (up to sign) using `diric`. We multiply by `k` to account for the different scaling conventions of `numpy.fft.fft` and `diric`: >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False) >>> k * special.diric(theta, k) array([ 3. , 2.41421356, 1. , -0.41421356, -1. , -0.41421356, 1. , 2.41421356]) """ x, n = asarray(x), asarray(n) n = asarray(n + (x-x)) x = asarray(x + (n-n)) if issubdtype(x.dtype, inexact): ytype = x.dtype else: ytype = float y = zeros(x.shape, ytype) # empirical minval for 32, 64 or 128 bit float computations # where sin(x/2) < minval, result is fixed at +1 or -1 if np.finfo(ytype).eps < 1e-18: minval = 1e-11 elif np.finfo(ytype).eps < 1e-15: minval = 1e-7 else: minval = 1e-3 mask1 = (n <= 0) | (n != floor(n)) place(y, mask1, nan) x = x / 2 denom = sin(x) mask2 = (1-mask1) & (abs(denom) < minval) xsub = extract(mask2, x) nsub = extract(mask2, n) zsub = xsub / pi place(y, mask2, pow(-1, np.round(zsub)*(nsub-1))) mask = (1-mask1) & (1-mask2) xsub = extract(mask, x) nsub = extract(mask, n) dsub = extract(mask, denom) place(y, mask, sin(nsub*xsub)/(nsub*dsub)) return y def jnjnp_zeros(nt): """Compute nt zeros of Bessel functions Jn and Jn'. Results are arranged in order of the magnitudes of the zeros. Parameters ---------- nt : int Number (<=1200) of zeros to compute Returns ------- zo[l-1] : ndarray Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`. n[l-1] : ndarray Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. m[l-1] : ndarray Serial number of the zeros of Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. t[l-1] : ndarray 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of length `nt`. See Also -------- jn_zeros, jnp_zeros : to get separated arrays of zeros. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200): raise ValueError("Number must be integer <= 1200.") nt = int(nt) n, m, t, zo = specfun.jdzo(nt) return zo[1:nt+1], n[:nt], m[:nt], t[:nt] def jnyn_zeros(n, nt): """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x). Returns 4 arrays of length nt, corresponding to the first nt zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. Parameters ---------- n : int Order of the Bessel functions nt : int Number (<=1200) of zeros to compute See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(nt) and isscalar(n)): raise ValueError("Arguments must be scalars.") if (floor(n) != n) or (floor(nt) != nt): raise ValueError("Arguments must be integers.") if (nt <= 0): raise ValueError("nt > 0") return specfun.jyzo(abs(n), nt) def jn_zeros(n, nt): """Compute nt zeros of Bessel function Jn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[0] def jnp_zeros(n, nt): """Compute nt zeros of Bessel function derivative Jn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[1] def yn_zeros(n, nt): """Compute nt zeros of Bessel function Yn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[2] def ynp_zeros(n, nt): """Compute nt zeros of Bessel function derivative Yn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[3] def y0_zeros(nt, complex=False): """Compute nt zeros of Bessel function Y0(z), and derivative at each zero. The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z0n : ndarray Location of nth zero of Y0(z) y0pz0n : ndarray Value of derivative Y0'(z0) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 0 kc = not complex return specfun.cyzo(nt, kf, kc) def y1_zeros(nt, complex=False): """Compute nt zeros of Bessel function Y1(z), and derivative at each zero. The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1n : ndarray Location of nth zero of Y1(z) y1pz1n : ndarray Value of derivative Y1'(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 1 kc = not complex return specfun.cyzo(nt, kf, kc) def y1p_zeros(nt, complex=False): """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero. The values are given by Y1(z1) at each z1 where Y1'(z1)=0. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1pn : ndarray Location of nth zero of Y1'(z) y1z1pn : ndarray Value of derivative Y1(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 2 kc = not complex return specfun.cyzo(nt, kf, kc) def _bessel_diff_formula(v, z, n, L, phase): # from AMS55. # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1 # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1 # For K, you can pull out the exp((v-k)*pi*i) into the caller p = 1.0 s = L(v-n, z) for i in xrange(1, n+1): p = phase * (p * (n-i+1)) / i # = choose(k, i) s += p*L(v-n + i*2, z) return s / (2.**n) bessel_diff_formula = np.deprecate(_bessel_diff_formula, message="bessel_diff_formula is a private function, do not use it!") def jvp(v, z, n=1): """Compute nth derivative of Bessel function Jv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return jv(v, z) else: return _bessel_diff_formula(v, z, n, jv, -1) def yvp(v, z, n=1): """Compute nth derivative of Bessel function Yv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return yv(v, z) else: return _bessel_diff_formula(v, z, n, yv, -1) def kvp(v, z, n=1): """Compute nth derivative of modified Bessel function Kv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return kv(v, z) else: return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1) def ivp(v, z, n=1): """Compute nth derivative of modified Bessel function Iv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return iv(v, z) else: return _bessel_diff_formula(v, z, n, iv, 1) def h1vp(v, z, n=1): """Compute nth derivative of Hankel function H1v(z) with respect to z. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel1(v, z) else: return _bessel_diff_formula(v, z, n, hankel1, -1) def h2vp(v, z, n=1): """Compute nth derivative of Hankel function H2v(z) with respect to z. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel2(v, z) else: return _bessel_diff_formula(v, z, n, hankel2, -1) def sph_jn(n, z): """Compute spherical Bessel function jn(z) and derivative. This function computes the value and first derivative of jn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)] def sph_yn(n, z): """Compute spherical Bessel function yn(z) and derivative. This function computes the value and first derivative of yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of yn to compute z : complex Argument at which to evaluate Returns ------- yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) return yn[:(n+1)], ynp[:(n+1)] def sph_jnyn(n, z): """Compute spherical Bessel functions jn(z) and yn(z) and derivatives. This function computes the value and first derivative of jn(z) and yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn and yn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)], yn[:(n+1)], ynp[:(n+1)] def sph_in(n, z): """Compute spherical Bessel function in(z) and derivative. This function computes the value and first derivative of in(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) return In[:(n+1)], Inp[:(n+1)] def sph_kn(n, z): """Compute spherical Bessel function kn(z) and derivative. This function computes the value and first derivative of kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of kn to compute z : complex Argument at which to evaluate Returns ------- kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, kn, knp = specfun.sphk(n1, z) return kn[:(n+1)], knp[:(n+1)] def sph_inkn(n, z): """Compute spherical Bessel functions in(z), kn(z), and derivatives. This function computes the value and first derivative of in(z) and kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in and kn to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) nm, kn, knp = specfun.sphk(n1, z) return In[:(n+1)], Inp[:(n+1)], kn[:(n+1)], knp[:(n+1)] def riccati_jn(n, x): """Compute Ricatti-Bessel function of the first kind and derivative. This function computes the value and first derivative of the function for all orders up to and including n. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- jn : ndarray Value of j0(x), ..., jn(x) jnp : ndarray First derivative j0'(x), ..., jn'(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rctj(n1, x) return jn[:(n+1)], jnp[:(n+1)] def riccati_yn(n, x): """Compute Ricatti-Bessel function of the second kind and derivative. This function computes the value and first derivative of the function for all orders up to and including n. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- yn : ndarray Value of y0(x), ..., yn(x) ynp : ndarray First derivative y0'(x), ..., yn'(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rcty(n1, x) return jn[:(n+1)], jnp[:(n+1)] def erfinv(y): """Inverse function for erf. """ return ndtri((y+1)/2.0)/sqrt(2) def erfcinv(y): """Inverse function for erfc. """ return -ndtri(0.5*y)/sqrt(2) def erf_zeros(nt): """Compute nt complex zeros of error function erf(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.cerzo(nt) def fresnelc_zeros(nt): """Compute nt complex zeros of cosine Fresnel integral C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(1, nt) def fresnels_zeros(nt): """Compute nt complex zeros of sine Fresnel integral S(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt) def fresnel_zeros(nt): """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt), specfun.fcszo(1, nt) def hyp0f1(v, z): r"""Confluent hypergeometric limit function 0F1. Parameters ---------- v, z : array_like Input values. Returns ------- hyp0f1 : ndarray The confluent hypergeometric limit function. Notes ----- This function is defined as: .. math:: _0F_1(v,z) = \sum_{k=0}^{\inf}\frac{z^k}{(v)_k k!}. It's also the limit as q -> infinity of ``1F1(q;v;z/q)``, and satisfies the differential equation :math:`f''(z) + vf'(z) = f(z)`. """ v = atleast_1d(v) z = atleast_1d(z) v, z = np.broadcast_arrays(v, z) arg = 2 * sqrt(abs(z)) old_err = np.seterr(all='ignore') # for z=0, a<1 and num=inf, next lines num = where(z.real >= 0, iv(v - 1, arg), jv(v - 1, arg)) den = abs(z)**((v - 1.0) / 2) num *= gamma(v) np.seterr(**old_err) num[z == 0] = 1 den[z == 0] = 1 return num / den def assoc_laguerre(x, n, k=0.0): """Compute nth-order generalized (associated) Laguerre polynomial. The polynomial :math:`L^(alpha)_n(x)` is orthogonal over ``[0, inf)``, with weighting function ``exp(-x) * x**alpha`` with ``alpha > -1``. Notes ----- `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with reversed argument order ``(x, n, k=0.0) --> (n, k, x)``. """ return orthogonal.eval_genlaguerre(n, k, x) digamma = psi def polygamma(n, x): """Polygamma function n. This is the nth derivative of the digamma (psi) function. Parameters ---------- n : array_like of int The order of the derivative of `psi`. x : array_like Where to evaluate the polygamma function. Returns ------- polygamma : ndarray The result. Examples -------- >>> from scipy import special >>> x = [2, 3, 25.5] >>> special.polygamma(1, x) array([ 0.64493407, 0.39493407, 0.03999467]) >>> special.polygamma(0, x) == special.psi(x) array([ True, True, True], dtype=bool) """ n, x = asarray(n), asarray(x) fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x) return where(n == 0, psi(x), fac2) def mathieu_even_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the even solutions of the Mathieu differential equation are of the form .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Ak : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/28.4#i """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m < 0): raise ValueError("m must be an integer >=0.") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 1 m = int(floor(m)) if m % 2: kd = 2 a = mathieu_a(m, q) fc = specfun.fcoef(kd, m, q, a) return fc[:km] def mathieu_odd_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the odd solutions of the Mathieu differential equation are of the form .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Bk : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m <= 0): raise ValueError("m must be an integer > 0") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 4 m = int(floor(m)) if m % 2: kd = 3 b = mathieu_b(m, q) fc = specfun.fcoef(kd, m, q, b) return fc[:km] def lpmn(m, n, z): """Associated Legendre function of the first kind, Pmn(z). Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. This function takes a real argument ``z``. For complex arguments ``z`` use clpmn instead. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float Input value. Returns ------- Pmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Pmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n See Also -------- clpmn: associated Legendre functions of the first kind for complex z Notes ----- In the interval (-1, 1), Ferrer's function of the first kind is returned. The phase convention used for the intervals (1, inf) and (-inf, -1) is such that the result is always real. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.3 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if iscomplex(z): raise ValueError("Argument must be real. Use clpmn instead.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if abs(z) < 1: # Ferrer function; DLMF 14.9.3 fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: # Match to clpmn; DLMF 14.9.13 fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.lpmn(mp, n, z) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def clpmn(m, n, z, type=3): """Associated Legendre function of the first kind, Pmn(z). Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float or complex Input value. type : int, optional takes values 2 or 3 2: cut on the real axis ``|x| > 1`` 3: cut on the real axis ``-1 < x < 1`` (default) Returns ------- Pmn_z : (m+1, n+1) array Values for all orders ``0..m`` and degrees ``0..n`` Pmn_d_z : (m+1, n+1) array Derivatives for all orders ``0..m`` and degrees ``0..n`` See Also -------- lpmn: associated Legendre functions of the first kind for real z Notes ----- By default, i.e. for ``type=3``, phase conventions are chosen according to [1]_ such that the function is analytic. The cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor with respect to Ferrer's function of the first kind (cf. `lpmn`). For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values on the interval (-1, 1) in the complex plane yields Ferrer's function of the first kind. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.21 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if not(type == 2 or type == 3): raise ValueError("type must be either 2 or 3.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if type == 2: fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.clpmn(mp, n, real(z), imag(z), type) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def lqmn(m, n, z): """Associated Legendre function of the second kind, Qmn(z). Computes the associated Legendre function of the second kind of order m and degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : complex Input value. Returns ------- Qmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Qmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(m) or (m < 0): raise ValueError("m must be a non-negative integer.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") m = int(m) n = int(n) # Ensure neither m nor n == 0 mm = max(1, m) nn = max(1, n) if iscomplex(z): q, qd = specfun.clqmn(mm, nn, z) else: q, qd = specfun.lqmn(mm, nn, z) return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)] def bernoulli(n): """Bernoulli numbers B0..Bn (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.bernob(int(n1))[:(n+1)] def euler(n): """Euler numbers E0..En (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.eulerb(n1)[:(n+1)] def lpn(n, z): """Legendre functions of the first kind, Pn(z). Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive). See also special.legendre for polynomial class. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): pn, pd = specfun.clpn(n1, z) else: pn, pd = specfun.lpn(n1, z) return pn[:(n+1)], pd[:(n+1)] def lqn(n, z): """Legendre functions of the second kind, Qn(z). Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): qn, qd = specfun.clqn(n1, z) else: qn, qd = specfun.lqnb(n1, z) return qn[:(n+1)], qd[:(n+1)] def ai_zeros(nt): """ Compute `nt` zeros and values of the Airy function Ai and its derivative. Computes the first nt zeros, a, of the Airy function Ai(x); first nt zeros, a', of the derivative of the Airy function Ai'(x); the corresponding values Ai(a'); and the corresponding values Ai'(a). Parameters ---------- nt : int Number of zeros to compute Returns ------- a : ndarray First nt zeros of Ai(x) ap : ndarray First nt zeros of Ai'(x) ai : ndarray Values of Ai(x) evaluated at first nt zeros of Ai'(x) aip : ndarray Values of Ai'(x) evaluated at first nt zeros of Ai(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 1 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def bi_zeros(nt): """ Compute `nt` zeros and values of the Airy function Bi and its derivative. Computes the first nt zeros, b, of the Airy function Bi(x); first nt zeros, b', of the derivative of the Airy function Bi'(x); the corresponding values Bi(b'); and the corresponding values Bi'(b). Parameters ---------- nt : int Number of zeros to compute Returns ------- b : ndarray First nt zeros of Bi(x) bp : ndarray First nt zeros of Bi'(x) bi : ndarray Values of Bi(x) evaluated at first nt zeros of Bi'(x) bip : ndarray Values of Bi'(x) evaluated at first nt zeros of Bi(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 2 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def lmbda(v, x): """Jahnke-Emden Lambda function, Lambdav(x). Parameters ---------- v : float Order of the Lambda function x : float Value at which to evaluate the function and derivatives Returns ------- vl : ndarray Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dl : ndarray Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") if (v < 0): raise ValueError("argument must be > 0.") n = int(v) v0 = v - n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 if (v != floor(v)): vm, vl, dl = specfun.lamv(v1, x) else: vm, vl, dl = specfun.lamn(v1, x) return vl[:(n+1)], dl[:(n+1)] def pbdv_seq(v, x): """Parabolic cylinder functions Dv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbdv(v1, x) return dv[:n1+1], dp[:n1+1] def pbvv_seq(v, x): """Parabolic cylinder functions Vv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n <= 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbvv(v1, x) return dv[:n1+1], dp[:n1+1] def pbdn_seq(n, z): """Parabolic cylinder functions Dn(z) and derivatives. Parameters ---------- n : int Order of the parabolic cylinder function z : complex Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_i(z), for i=0, ..., i=n. dp : ndarray Derivatives D_i'(z), for i=0, ..., i=n. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (floor(n) != n): raise ValueError("n must be an integer.") if (abs(n) <= 1): n1 = 1 else: n1 = n cpb, cpd = specfun.cpbdn(n1, z) return cpb[:n1+1], cpd[:n1+1] def ber_zeros(nt): """Compute nt zeros of the Kelvin function ber(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 1) def bei_zeros(nt): """Compute nt zeros of the Kelvin function bei(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 2) def ker_zeros(nt): """Compute nt zeros of the Kelvin function ker(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 3) def kei_zeros(nt): """Compute nt zeros of the Kelvin function kei(x). """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 4) def berp_zeros(nt): """Compute nt zeros of the Kelvin function ber'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 5) def beip_zeros(nt): """Compute nt zeros of the Kelvin function bei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 6) def kerp_zeros(nt): """Compute nt zeros of the Kelvin function ker'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 7) def keip_zeros(nt): """Compute nt zeros of the Kelvin function kei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 8) def kelvin_zeros(nt): """Compute nt zeros of all Kelvin functions. Returned in a length-8 tuple of arrays of length nt. The tuple contains the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei'). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return (specfun.klvnzo(nt, 1), specfun.klvnzo(nt, 2), specfun.klvnzo(nt, 3), specfun.klvnzo(nt, 4), specfun.klvnzo(nt, 5), specfun.klvnzo(nt, 6), specfun.klvnzo(nt, 7), specfun.klvnzo(nt, 8)) def pro_cv_seq(m, n, c): """Characteristic values for prolate spheroidal wave functions. Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, 1)[1][:maxL] def obl_cv_seq(m, n, c): """Characteristic values for oblate spheroidal wave functions. Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, -1)[1][:maxL] def ellipk(m): """Complete elliptic integral of the first kind. This function is defined as .. math:: K(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt Parameters ---------- m : array_like The parameter of the elliptic integral. Returns ------- K : array_like Value of the elliptic integral. Notes ----- For more precision around point m = 1, use `ellipkm1`. See Also -------- ellipkm1 : Complete elliptic integral of the first kind around m = 1 ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind """ return ellipkm1(1 - asarray(m)) def agm(a, b): """Arithmetic, Geometric Mean. Start with a_0=a and b_0=b and iteratively compute a_{n+1} = (a_n+b_n)/2 b_{n+1} = sqrt(a_n*b_n) until a_n=b_n. The result is agm(a,b) agm(a,b)=agm(b,a) agm(a,a) = a min(a,b) < agm(a,b) < max(a,b) """ s = a + b + 0.0 return (pi / 4) * s / ellipkm1(4 * a * b / s ** 2) def comb(N, k, exact=False, repetition=False): """The number of combinations of N things taken k at a time. This is often expressed as "N choose k". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. repetition : bool, optional If `repetition` is True, then the number of combinations with repetition is computed. Returns ------- val : int, ndarray The total number of combinations. Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import comb >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> comb(n, k, exact=False) array([ 120., 210.]) >>> comb(10, 3, exact=True) 120L >>> comb(10, 3, exact=True, repetition=True) 220L """ if repetition: return comb(N + k - 1, k, exact) if exact: N = int(N) k = int(k) if (k > N) or (N < 0) or (k < 0): return 0 val = 1 for j in xrange(min(k, N-k)): val = (val*(N-j))//(j+1) return val else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = binom(N, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals def perm(N, k, exact=False): """Permutations of N things taken k at a time, i.e., k-permutations of N. It's also known as "partial permutations". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. Returns ------- val : int, ndarray The number of k-permutations of N. Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import perm >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> perm(n, k) array([ 720., 5040.]) >>> perm(10, 3, exact=True) 720 """ if exact: if (k > N) or (N < 0) or (k < 0): return 0 val = 1 for i in xrange(N - k + 1, N + 1): val *= i return val else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = poch(N - k + 1, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals def factorial(n, exact=False): """The factorial function, n! = special.gamma(n+1). If exact is 0, then floating point precision is used, otherwise exact long integer is computed. - Array argument accepted only for exact=False case. - If n<0, the return value is 0. Parameters ---------- n : int or array_like of ints Calculate ``n!``. Arrays are only supported with `exact` set to False. If ``n < 0``, the return value is 0. exact : bool, optional The result can be approximated rapidly using the gamma-formula above. If `exact` is set to True, calculate the answer exactly using integer arithmetic. Default is False. Returns ------- nf : float or int Factorial of `n`, as an integer or a float depending on `exact`. Examples -------- >>> from scipy.special import factorial >>> arr = np.array([3,4,5]) >>> factorial(arr, exact=False) array([ 6., 24., 120.]) >>> factorial(5, exact=True) 120L """ if exact: if n < 0: return 0 val = 1 for k in xrange(1, n+1): val *= k return val else: n = asarray(n) vals = gamma(n+1) return where(n >= 0, vals, 0) def factorial2(n, exact=False): """Double factorial. This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5 * 3 * 1``. It can be approximated numerically as:: n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd = 2**(n/2) * (n/2)! n even Parameters ---------- n : int or array_like Calculate ``n!!``. Arrays are only supported with `exact` set to False. If ``n < 0``, the return value is 0. exact : bool, optional The result can be approximated rapidly using the gamma-formula above (default). If `exact` is set to True, calculate the answer exactly using integer arithmetic. Returns ------- nff : float or int Double factorial of `n`, as an int or a float depending on `exact`. Examples -------- >>> from scipy.special import factorial2 >>> factorial2(7, exact=False) array(105.00000000000001) >>> factorial2(7, exact=True) 105L """ if exact: if n < -1: return 0 if n <= 0: return 1 val = 1 for k in xrange(n, 0, -2): val *= k return val else: n = asarray(n) vals = zeros(n.shape, 'd') cond1 = (n % 2) & (n >= -1) cond2 = (1-(n % 2)) & (n >= -1) oddn = extract(cond1, n) evenn = extract(cond2, n) nd2o = oddn / 2.0 nd2e = evenn / 2.0 place(vals, cond1, gamma(nd2o + 1) / sqrt(pi) * pow(2.0, nd2o + 0.5)) place(vals, cond2, gamma(nd2e + 1) * pow(2.0, nd2e)) return vals def factorialk(n, k, exact=True): """Multifactorial of n of order k, n(!!...!). This is the multifactorial of n skipping k values. For example, factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1 In particular, for any integer ``n``, we have factorialk(n, 1) = factorial(n) factorialk(n, 2) = factorial2(n) Parameters ---------- n : int Calculate multifactorial. If `n` < 0, the return value is 0. k : int Order of multifactorial. exact : bool, optional If exact is set to True, calculate the answer exactly using integer arithmetic. Returns ------- val : int Multifactorial of `n`. Raises ------ NotImplementedError Raises when exact is False Examples -------- >>> from scipy.special import factorialk >>> factorialk(5, 1, exact=True) 120L >>> factorialk(5, 3, exact=True) 10L """ if exact: if n < 1-k: return 0 if n <= 0: return 1 val = 1 for j in xrange(n, 0, -k): val = val*j return val else: raise NotImplementedError
bsd-3-clause
jerli/sympy
sympy/external/importtools.py
85
7294
"""Tools to assist importing optional external modules.""" from __future__ import print_function, division import sys # Override these in the module to change the default warning behavior. # For example, you might set both to False before running the tests so that # warnings are not printed to the console, or set both to True for debugging. WARN_NOT_INSTALLED = None # Default is False WARN_OLD_VERSION = None # Default is True def __sympy_debug(): # helper function from sympy/__init__.py # We don't just import SYMPY_DEBUG from that file because we don't want to # import all of sympy just to use this module. import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) if __sympy_debug(): WARN_OLD_VERSION = True WARN_NOT_INSTALLED = True def import_module(module, min_module_version=None, min_python_version=None, warn_not_installed=None, warn_old_version=None, module_version_attr='__version__', module_version_attr_call_args=None, __import__kwargs={}, catch=()): """ Import and return a module if it is installed. If the module is not installed, it returns None. A minimum version for the module can be given as the keyword argument min_module_version. This should be comparable against the module version. By default, module.__version__ is used to get the module version. To override this, set the module_version_attr keyword argument. If the attribute of the module to get the version should be called (e.g., module.version()), then set module_version_attr_call_args to the args such that module.module_version_attr(*module_version_attr_call_args) returns the module's version. If the module version is less than min_module_version using the Python < comparison, None will be returned, even if the module is installed. You can use this to keep from importing an incompatible older version of a module. You can also specify a minimum Python version by using the min_python_version keyword argument. This should be comparable against sys.version_info. If the keyword argument warn_not_installed is set to True, the function will emit a UserWarning when the module is not installed. If the keyword argument warn_old_version is set to True, the function will emit a UserWarning when the library is installed, but cannot be imported because of the min_module_version or min_python_version options. Note that because of the way warnings are handled, a warning will be emitted for each module only once. You can change the default warning behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and WARN_OLD_VERSION is True. This function uses __import__() to import the module. To pass additional options to __import__(), use the __import__kwargs keyword argument. For example, to import a submodule A.B, you must pass a nonempty fromlist option to __import__. See the docstring of __import__(). This catches ImportError to determine if the module is not installed. To catch additional errors, pass them as a tuple to the catch keyword argument. Examples ======== >>> from sympy.external import import_module >>> numpy = import_module('numpy') >>> numpy = import_module('numpy', min_python_version=(2, 7), ... warn_old_version=False) >>> numpy = import_module('numpy', min_module_version='1.5', ... warn_old_version=False) # numpy.__version__ is a string >>> # gmpy does not have __version__, but it does have gmpy.version() >>> gmpy = import_module('gmpy', min_module_version='1.14', ... module_version_attr='version', module_version_attr_call_args=(), ... warn_old_version=False) >>> # To import a submodule, you must pass a nonempty fromlist to >>> # __import__(). The values do not matter. >>> p3 = import_module('mpl_toolkits.mplot3d', ... __import__kwargs={'fromlist':['something']}) >>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened >>> matplotlib = import_module('matplotlib', ... __import__kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,)) """ # keyword argument overrides default, and global variable overrides # keyword argument. warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None else warn_old_version or True) warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None else warn_not_installed or False) import warnings # Check Python first so we don't waste time importing a module we can't use if min_python_version: if sys.version_info < min_python_version: if warn_old_version: warnings.warn("Python version is too old to use %s " "(%s or newer required)" % ( module, '.'.join(map(str, min_python_version))), UserWarning) return # PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it if module == 'numpy' and '__pypy__' in sys.builtin_module_names: return try: mod = __import__(module, **__import__kwargs) ## there's something funny about imports with matplotlib and py3k. doing ## from matplotlib import collections ## gives python's stdlib collections module. explicitly re-importing ## the module fixes this. from_list = __import__kwargs.get('fromlist', tuple()) for submod in from_list: if submod == 'collections' and mod.__name__ == 'matplotlib': __import__(module + '.' + submod) except ImportError: if warn_not_installed: warnings.warn("%s module is not installed" % module, UserWarning) return except catch as e: if warn_not_installed: warnings.warn( "%s module could not be used (%s)" % (module, repr(e))) return if min_module_version: modversion = getattr(mod, module_version_attr) if module_version_attr_call_args is not None: modversion = modversion(*module_version_attr_call_args) if modversion < min_module_version: if warn_old_version: # Attempt to create a pretty string version of the version if isinstance(min_module_version, basestring): verstr = min_module_version elif isinstance(min_module_version, (tuple, list)): verstr = '.'.join(map(str, min_module_version)) else: # Either don't know what this is. Hopefully # it's something that has a nice str version, like an int. verstr = str(min_module_version) warnings.warn("%s version is too old to use " "(%s or newer required)" % (module, verstr), UserWarning) return return mod
bsd-3-clause
jungla/ICOM-fluidity-toolbox
2D/U/plot_Wn_v_snap.py
1
3823
import os, sys import fio, myfun import vtktools import numpy as np import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt import matplotlib.tri as tri from scipy import interpolate import gc gc.enable() ## READ archive (too many points... somehow) # args: name, dayi, dayf, days label = 'r_3k_B_1F0' basename = 'ring' dayi = 50 dayf = 51 days = 1 label = sys.argv[1] basename = sys.argv[2] dayi = int(sys.argv[3]) dayf = int(sys.argv[4]) days = int(sys.argv[5]) path = '/tamay2/mensa/fluidity/'+label+'/' try: os.stat('./plot/'+label) except OSError: os.mkdir('./plot/'+label) # dimensions archives xn = 300 zn = 100 Xlist = np.linspace(-150000,150000,xn)# x co-ordinates of the desired array shape Zlist = np.linspace(0,-900,zn)# x co-ordinates of the desired array shape [X,Z] = np.meshgrid(Xlist,Zlist) X = np.reshape(X,(np.size(X),)) Z = np.reshape(Z,(np.size(Z),)) latitude = 0 for time in range(dayi,dayf,days): tlabel = str(time) while len(tlabel) < 3: tlabel = '0'+tlabel # file0 = basename + '_' + str(time) + '.pvtu' filepath = path+file0 file1 = label+'_' + tlabel fileout = path + file1 # print 'opening: ', filepath # # data = vtktools.vtu(filepath) print 'extract V, R' data.Crop(np.min(Xlist),np.max(Xlist),latitude-3000,latitude+3000,np.min(Zlist),np.max(Zlist)) coords = data.GetLocations() V = data.GetVectorField('Velocity_CG') Rho = data.GetScalarField('Density_CG') del data # W = V[np.around(coords[:,1])==latitude,2] R = Rho[np.around(coords[:,1])==latitude] del V del Rho Cw = coords[np.around(coords[:,1])==latitude,:] Wr = interpolate.griddata((Cw[:,0],Cw[:,2]),W,(X,Z),method='linear') Wr = np.reshape(Wr,[len(Zlist),len(Xlist)]) Rr = interpolate.griddata((Cw[:,0],Cw[:,2]),R,(X,Z),method='linear') Rr = np.reshape(Rr,[len(Zlist),len(Xlist)]) gc.collect() N = np.zeros(Wr.shape) for i in range(len(Xlist)): N[:,i] = -9.81/Rr[:,i]*np.gradient(Wr[:,i])/np.gradient(Zlist) Nm = np.mean(N,0) Nm = np.mean(Nm,0) Wn = np.zeros(Wr.shape) for i in range(len(Xlist)): Wn[:,i] = Wr[:,i]*N[:,i]/Nm # # mld = np.zeros([len(Xlist),len(Ylist)]) # # for x in range(len(Xlist)): # for y in range(len(Ylist)): # ml = rho[:,x,y] # mls = np.cumsum(ml)/range(1,len(ml)+1) # mlst, = np.where(mls>=ml) # mld[x,y] = ((Zlist[mlst[len(mlst)-1]])) #plt.plot(np.mean(mld,1)) #plt.savefig('./plot/'+label+'/'+file1+'_MLD.eps',bbox_inches='tight') #plt.close() # Density fig = plt.figure(figsize=(8, 10)) # for d in depths: # plt.axhline(y=d, xmin=-180000, xmax=180000,color='k',linestyle='--') v = np.linspace(-1e-6, 1e-6, 50, endpoint=True) vl = np.linspace(-1e-6, 1e-6, 5, endpoint=True) plt.contourf(Xlist/1000,Zlist,N,50,extend='both',cmap=plt.cm.PiYG) plt.colorbar() plt.contour(Xlist/1000,Zlist,Rr,10,colors='k') # plt.colorbar() # plt.plot(Zlist) # plt.plot(Xlist,np.mean(mld,1),'r-') plt.xlabel('X (m)') plt.ylabel('Z (m)') # plt.xticks(range(lati,lonf,1000),(range(0,15,1))) # plt.yticks(range(depthi,depthf,10),(range(0,15,1))) plt.title('N^2') plt.savefig('./plot/'+label+'/N2_'+file1+'_v_snap.eps',bbox_inches='tight') plt.close() print 'saved '+'./plot/'+label+'/N2_'+file1+'_v_snap.eps\n' # W normalized fig = plt.figure(figsize=(8, 10)) # v = np.linspace(np.percentile(Wn,1), np.percentile(Wn,99), 50, endpoint=True) v = np.linspace(-1e-5, 1e-5, 50, endpoint=True) vl = np.linspace(-1e-6, 1e-6, 5, endpoint=True) plt.contourf(Xlist/1000,Zlist,Wn,v,extend='both',cmap=plt.cm.PiYG) plt.colorbar() plt.contour(Xlist/1000,Zlist,Rr,10,colors='k') plt.xlabel('X (m)') plt.ylabel('Z (m)') plt.title('W normalized') plt.savefig('./plot/'+label+'/Wn_'+file1+'_v_snap.eps',bbox_inches='tight') plt.close() print 'saved '+'./plot/'+label+'/Wn_'+file1+'_v_snap.eps\n'
gpl-2.0
dhruv13J/scikit-learn
sklearn/cluster/tests/test_spectral.py
262
7954
"""Testing for Spectral Clustering methods""" from sklearn.externals.six.moves import cPickle dumps, loads = cPickle.dumps, cPickle.loads import numpy as np from scipy import sparse from sklearn.utils import check_random_state from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_warns_message from sklearn.cluster import SpectralClustering, spectral_clustering from sklearn.cluster.spectral import spectral_embedding from sklearn.cluster.spectral import discretize from sklearn.metrics import pairwise_distances from sklearn.metrics import adjusted_rand_score from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel from sklearn.datasets.samples_generator import make_blobs def test_spectral_clustering(): S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]]) for eigen_solver in ('arpack', 'lobpcg'): for assign_labels in ('kmeans', 'discretize'): for mat in (S, sparse.csr_matrix(S)): model = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed', eigen_solver=eigen_solver, assign_labels=assign_labels ).fit(mat) labels = model.labels_ if labels[0] == 0: labels = 1 - labels assert_array_equal(labels, [1, 1, 1, 0, 0, 0, 0]) model_copy = loads(dumps(model)) assert_equal(model_copy.n_clusters, model.n_clusters) assert_equal(model_copy.eigen_solver, model.eigen_solver) assert_array_equal(model_copy.labels_, model.labels_) def test_spectral_amg_mode(): # Test the amg mode of SpectralClustering centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) try: from pyamg import smoothed_aggregation_solver amg_loaded = True except ImportError: amg_loaded = False if amg_loaded: labels = spectral_clustering(S, n_clusters=len(centers), random_state=0, eigen_solver="amg") # We don't care too much that it's good, just that it *worked*. # There does have to be some lower limit on the performance though. assert_greater(np.mean(labels == true_labels), .3) else: assert_raises(ValueError, spectral_embedding, S, n_components=len(centers), random_state=0, eigen_solver="amg") def test_spectral_unknown_mode(): # Test that SpectralClustering fails with an unknown mode set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, eigen_solver="<unknown>") def test_spectral_unknown_assign_labels(): # Test that SpectralClustering fails with an unknown assign_labels set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, assign_labels="<unknown>") def test_spectral_clustering_sparse(): X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) S = rbf_kernel(X, gamma=1) S = np.maximum(S - 1e-4, 0) S = sparse.coo_matrix(S) labels = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed').fit(S).labels_ assert_equal(adjusted_rand_score(y, labels), 1) def test_affinities(): # Note: in the following, random_state has been selected to have # a dataset that yields a stable eigen decomposition both when built # on OSX and Linux X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01 ) # nearest neighbors affinity sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', random_state=0) assert_warns_message(UserWarning, 'not fully connected', sp.fit, X) assert_equal(adjusted_rand_score(y, sp.labels_), 1) sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0) labels = sp.fit(X).labels_ assert_equal(adjusted_rand_score(y, labels), 1) X = check_random_state(10).rand(10, 5) * 10 kernels_available = kernel_metrics() for kern in kernels_available: # Additive chi^2 gives a negative similarity matrix which # doesn't make sense for spectral clustering if kern != 'additive_chi2': sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) # raise error on unknown affinity sp = SpectralClustering(n_clusters=2, affinity='<unknown>') assert_raises(ValueError, sp.fit, X) def test_discretize(seed=8): # Test the discretize using a noise assignment matrix random_state = np.random.RandomState(seed) for n_samples in [50, 100, 150, 500]: for n_class in range(2, 10): # random class labels y_true = random_state.random_integers(0, n_class, n_samples) y_true = np.array(y_true, np.float) # noise class assignment matrix y_indicator = sparse.coo_matrix((np.ones(n_samples), (np.arange(n_samples), y_true)), shape=(n_samples, n_class + 1)) y_true_noisy = (y_indicator.toarray() + 0.1 * random_state.randn(n_samples, n_class + 1)) y_pred = discretize(y_true_noisy, random_state) assert_greater(adjusted_rand_score(y_true, y_pred), 0.8)
bsd-3-clause
jaakkojulin/potku
Widgets/MatplotlibTofeHistogramWidget.py
1
31269
# coding=utf-8 ''' Created on 18.4.2013 Updated on 30.8.2013 Potku is a graphical user interface for analyzation and visualization of measurement data collected from a ToF-ERD telescope. For physics calculations Potku uses external analyzation components. Copyright (C) Jarkko Aalto, Timo Konu, Samuli Kärkkäinen, Samuli Rahkonen and Miika Raunio This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program (file named 'LICENCE'). ''' __author__ = "Jarkko Aalto \n Timo Konu \n Samuli Kärkkäinen \n Samuli Rahkonen \n Miika Raunio" __versio__ = "1.0" from matplotlib import cm from matplotlib.colors import LogNorm from PyQt4 import QtCore, QtGui from Dialogs.SelectionDialog import SelectionSettingsDialog from Dialogs.GraphSettingsDialog import TofeGraphSettingsWidget from Modules.Functions import open_file_dialog from Widgets.MatplotlibWidget import MatplotlibWidget class MatplotlibHistogramWidget(MatplotlibWidget): '''Matplotlib histogram widget, used to graph "bananas" (ToF-E). ''' color_scheme = {"Default color":"jet", "Greyscale":"Greys", "Greyscale (inverted)":"gray"} tool_modes = { 0 : "", 1 : "pan/zoom", # Matplotlib's drag 2 : "zoom rect", # Matplotlib's zoom 3 : "selection tool", 4 : "selection select tool" } def __init__(self, parent, measurement_data, masses, icon_manager): '''Inits histogram widget Args: parent: A TofeHistogramWidget class object. measurement_data: A list of data points. icon_manager: IconManager class object. masses: A masses class object. icon_manager: An iconmanager class object. ''' super().__init__(parent) self.canvas.manager.set_title("ToF-E Histogram") self.axes.fmt_xdata = lambda x: "{0:1.0f}".format(x) self.axes.fmt_ydata = lambda y: "{0:1.0f}".format(y) self.__masses = masses self.__icon_manager = icon_manager # Connections and setup self.canvas.mpl_connect('button_press_event', self.on_click) self.canvas.mpl_connect('motion_notify_event', self.__on_motion) self.__fork_toolbar_buttons() self.measurement = measurement_data self.__x_data = [x[0] for x in self.measurement.data] self.__y_data = [x[1] for x in self.measurement.data] # Variables self.__inverted_Y = False self.__inverted_X = False self.__transposed = False self.__inited__ = False self.__range_mode_automated = False # Get settings from global settings self.__global_settings = self.main_frame.measurement.project.global_settings self.invert_Y = self.__global_settings.get_tofe_invert_y() self.invert_X = self.__global_settings.get_tofe_invert_x() self.transpose_axes = self.__global_settings.get_tofe_transposed() self.measurement.color_scheme = self.__global_settings.get_tofe_color() self.compression_x = self.__global_settings.get_tofe_compression_x() self.compression_y = self.__global_settings.get_tofe_compression_y() self.axes_range_mode = self.__global_settings.get_tofe_bin_range_mode() x_range = self.__global_settings.get_tofe_bin_range_x() y_range = self.__global_settings.get_tofe_bin_range_y() self.axes_range = [x_range, y_range] self.__x_data_min, self.__x_data_max = self.__fix_axes_range( (min(self.__x_data), max(self.__x_data)), self.compression_x) self.__y_data_min, self.__y_data_max = self.__fix_axes_range( (min(self.__y_data), max(self.__y_data)), self.compression_y) self.name_y_axis = "Energy (Ch)" self.name_x_axis = "time of flight (Ch)" self.on_draw() def on_draw(self): '''Draw method for matplotlib. ''' # Values for zoom x_min, x_max = self.axes.get_xlim() y_min, y_max = self.axes.get_ylim() x_data = self.__x_data y_data = self.__y_data # Transpose if self.transpose_axes: x_data, y_data = y_data, x_data # Always transpose data if checked. if not self.__transposed: self.__transposed = True self.measurement.selector.transpose(True) # Switch axes names self.name_x_axis, self.name_y_axis = (self.name_y_axis, self.name_x_axis) # Switch min & max values x_min, x_max, y_min, y_max = y_min, y_max, x_min, x_max # Switch inverts self.invert_X, self.invert_Y = self.invert_Y, self.invert_X if not self.transpose_axes and self.__transposed: self.__transposed = False self.measurement.selector.transpose(False) # Switch axes names self.name_x_axis, self.name_y_axis = self.name_y_axis, self.name_x_axis # Switch min & max values x_min, x_max, y_min, y_max = y_min, y_max, x_min, x_max # Switch inverts self.invert_X, self.invert_Y = self.invert_Y, self.invert_X self.axes.clear() # Clear old stuff # Check values for graph axes_range = None bin_counts = ((self.__x_data_max - self.__x_data_min) / self.compression_x, (self.__y_data_max - self.__y_data_min) / self.compression_y) if self.axes_range_mode == 1: axes_range = list(self.axes_range) axes_range[0] = self.__fix_axes_range(axes_range[0], self.compression_x) axes_range[1] = self.__fix_axes_range(axes_range[1], self.compression_y) x_length = axes_range[0][1] - axes_range[0][0] y_length = axes_range[1][1] - axes_range[1][0] bin_counts = (x_length / self.compression_x, y_length / self.compression_y) # If bin count too high -> it will crash the program if bin_counts[0] > 3500: old_count = bin_counts[0] bin_counts = (3500, bin_counts[1]) # TODO: Better location for message? print("[WARNING] {0}: X axis bin count ({2}) above 3500. {1}".format( self.measurement.measurement_name, "Limiting to prevent crash.", old_count)) if bin_counts[1] > 3500: old_count = bin_counts[1] bin_counts = (bin_counts[0], 3500) print("[WARNING] {0}: Y axis bin count ({2}) above 3500. {1}".format( self.measurement.measurement_name, "Limiting to prevent crash.", old_count)) use_color_scheme = self.measurement.color_scheme color_scheme = MatplotlibHistogramWidget.color_scheme[use_color_scheme] colormap = cm.get_cmap(color_scheme) self.axes.hist2d(x_data, y_data, bins=bin_counts, norm=LogNorm(), range=axes_range, cmap=colormap) self.__on_draw_legend() if (x_max > 0.09 and x_max < 1.01): # This works.. x_min, x_max = self.axes.get_xlim() if (y_max > 0.09 and y_max < 1.01): # or self.axes_range_mode y_min, y_max = self.axes.get_ylim() # Change zoom limits if compression factor was changed (or new graph). if (not self.__range_mode_automated and self.axes_range_mode == 0) \ or self.axes_range_mode == 1: # self.__range_mode_automated and self.axes_range_mode == 1 tx_min, tx_max = self.axes.get_xlim() ty_min, ty_max = self.axes.get_ylim() # If user has zoomed the graph, change the home position to new max. # Else reset the graph to new ranges and clear zoom levels. if self.mpl_toolbar._views: self.mpl_toolbar._views[0][0] = (tx_min, tx_max, ty_min, ty_max) else: x_min, x_max = tx_min, tx_max y_min, y_max = ty_min, ty_max self.mpl_toolbar.update() self.__range_mode_automated = self.axes_range_mode == 0 # print(self.axes.get_xlim()) # Set limits accordingly self.axes.set_ylim([y_min, y_max]) self.axes.set_xlim([x_min, x_max]) self.measurement.draw_selection() # Invert axis if self.invert_Y and not self.__inverted_Y: self.axes.set_ylim(self.axes.get_ylim()[::-1]) self.__inverted_Y = True elif not self.invert_Y and self.__inverted_Y: self.axes.set_ylim(self.axes.get_ylim()[::-1]) self.__inverted_Y = False if self.invert_X and not self.__inverted_X: self.axes.set_xlim(self.axes.get_xlim()[::-1]) self.__inverted_X = True elif not self.invert_X and self.__inverted_X: self.axes.set_xlim(self.axes.get_xlim()[::-1]) self.__inverted_X = False # [::-1] is elegant reverse. Slice sequence with step of -1. # http://stackoverflow.com/questions/3705670/ # best-way-to-create-a-reversed-list-in-python # self.axes.set_title('ToF Histogram\n\n') self.axes.set_ylabel(self.name_y_axis.title()) self.axes.set_xlabel(self.name_x_axis.title()) # Remove axis ticks and draw self.remove_axes_ticks() self.canvas.draw() def __fix_axes_range(self, axes_range, compression): """Fixes axes' range to be divisible by compression. """ rmin, rmax = axes_range mod = (rmax - rmin) % compression if mod == 0: # Everything is fine, return. return axes_range # More data > less data rmax += compression - mod return rmin, rmax def __set_y_axis_on_right(self, yes): if yes: # self.axes.spines['left'].set_color('none') self.axes.spines['right'].set_color('black') self.axes.yaxis.tick_right() self.axes.yaxis.set_label_position("right") else: self.axes.spines['left'].set_color('black') # self.axes.spines['right'].set_color('none') self.axes.yaxis.tick_left() self.axes.yaxis.set_label_position("left") def __set_x_axis_on_top(self, yes): if yes: # self.axes.spines['bottom'].set_color('none') self.axes.spines['top'].set_color('black') self.axes.xaxis.tick_top() self.axes.xaxis.set_label_position("top") else: self.axes.spines['bottom'].set_color('black') # self.axes.spines['top'].set_color('none') self.axes.xaxis.tick_bottom() self.axes.xaxis.set_label_position("bottom") def __on_draw_legend(self): self.axes.legend_ = None if not self.measurement.selector.selections: return if not self.__inited__: # Do this only once. self.fig.tight_layout(pad=0.5) box = self.axes.get_position() self.axes.set_position([box.x0, box.y0, box.width * 0.9, box.height]) self.__inited__ = True selection_legend = {} # Get selections for legend for sel in self.measurement.selector.selections: rbs_string = "" if sel.type == "ERD": element_object = sel.element elif sel.type == "RBS": element_object = sel.element_scatter rbs_string = "*" sel.points.set_marker(None) # Remove markers for legend. dirtyinteger = 0 key_string = "{0}{1}".format(element_object, dirtyinteger) while key_string in selection_legend.keys(): dirtyinteger += 1 key_string = "{0}{1}".format(element_object, dirtyinteger) element, isotope = element_object.get_element_and_isotope() label = r"$^{" + str(isotope) + "}$" + element + rbs_string mass = str(isotope) if not mass: mass = self.__masses.get_standard_isotope(element) else: mass = float(mass) selection_legend[key_string] = (label, mass, sel.points) # Sort legend text sel_text = [] sel_points = [] # keys = sorted(selection_legend.keys()) items = sorted(selection_legend.items(), key=lambda x: x[1][1]) for item in items: # [0] is the key of the item. sel_text.append(item[1][0]) sel_points.append(item[1][2]) leg = self.axes.legend(sel_points, sel_text, loc=3, bbox_to_anchor=(1, 0), borderaxespad=0, prop={'size':12}) for handle in leg.legendHandles: handle.set_linewidth(3.0) # Set the markers back to original. for sel in self.measurement.selector.selections: sel.points.set_marker(sel.LINE_MARKER) def __toggle_tool_drag(self): if self.__button_drag.isChecked(): self.mpl_toolbar.mode_tool = 1 else: self.mpl_toolbar.mode_tool = 0 # self.elementSelectionButton.setChecked(False) # self.elementSelectUndoButton.setEnabled(False) self.elementSelectionSelectButton.setChecked(False) # self.measurement.purge_selection() # self.measurement.reset_select() self.canvas.draw_idle() def __toggle_tool_zoom(self): if self.__button_zoom.isChecked(): self.mpl_toolbar.mode_tool = 2 else: self.mpl_toolbar.mode_tool = 0 # self.elementSelectionButton.setChecked(False) # self.elementSelectUndoButton.setEnabled(False) self.elementSelectionSelectButton.setChecked(False) # self.measurement.purge_selection() # self.measurement.reset_select() self.canvas.draw_idle() def __toggle_drag_zoom(self): self.__tool_label.setText("") if self.__button_drag.isChecked(): self.mpl_toolbar.pan() if self.__button_zoom.isChecked(): self.mpl_toolbar.zoom() self.__button_drag.setChecked(False) self.__button_zoom.setChecked(False) def __fork_toolbar_buttons(self): super().fork_toolbar_buttons() self.mpl_toolbar.mode_tool = 0 self.__tool_label = self.mpl_toolbar.children()[24] self.__button_drag = self.mpl_toolbar.children()[12] self.__button_zoom = self.mpl_toolbar.children()[14] self.__button_drag.clicked.connect(self.__toggle_tool_drag) self.__button_zoom.clicked.connect(self.__toggle_tool_zoom) # Make own buttons self.mpl_toolbar.addSeparator() self.elementSelectionButton = QtGui.QToolButton(self) self.elementSelectionButton.clicked.connect(self.enable_element_selection) self.elementSelectionButton.setCheckable(True) self.__icon_manager.set_icon(self.elementSelectionButton, "select.png") self.elementSelectionButton.setToolTip("Select element area") self.mpl_toolbar.addWidget(self.elementSelectionButton) # Selection undo button self.elementSelectUndoButton = QtGui.QToolButton(self) self.elementSelectUndoButton.clicked.connect(self.undo_point) self.__icon_manager.set_icon(self.elementSelectUndoButton, "undo.png") self.elementSelectUndoButton.setToolTip("Undo last point in open selection") self.elementSelectUndoButton.setEnabled(False) self.mpl_toolbar.addWidget(self.elementSelectUndoButton) self.mpl_toolbar.addSeparator() # Element Selection selecting tool self.elementSelectionSelectButton = QtGui.QToolButton(self) self.elementSelectionSelectButton.clicked.connect( self.enable_selection_select) self.elementSelectionSelectButton.setCheckable(True) self.elementSelectionSelectButton.setEnabled(False) self.__icon_manager.set_icon(self.elementSelectionSelectButton, "selectcursor.png") self.elementSelectionSelectButton.setToolTip("Select element selection") self.mpl_toolbar.addWidget(self.elementSelectionSelectButton) # Selection delete button self.elementSelectDeleteButton = QtGui.QToolButton(self) self.elementSelectDeleteButton.setEnabled(False) self.elementSelectDeleteButton.clicked.connect(self.remove_selected) self.__icon_manager.set_icon(self.elementSelectDeleteButton, "del.png") self.elementSelectDeleteButton.setToolTip("Delete selected selection") self.mpl_toolbar.addWidget(self.elementSelectDeleteButton) self.mpl_toolbar.addSeparator() # Selection delete all -button self.elementSelectionDeleteButton = QtGui.QToolButton(self) self.elementSelectionDeleteButton.clicked.connect( self.remove_all_selections) self.__icon_manager.set_icon(self.elementSelectionDeleteButton, "delall.png") self.elementSelectionDeleteButton.setToolTip("Delete all selections") self.mpl_toolbar.addWidget(self.elementSelectionDeleteButton) def on_click(self, event): '''On click event above graph. Args: event: A MPL MouseEvent ''' # Only inside the actual graph axes, else do nothing. if event.inaxes != self.axes: return # Allow dragging and zooming while selection is on but ignore clicks. if self.__button_drag.isChecked() or self.__button_zoom.isChecked(): return cursorlocation = [int(event.xdata), int(event.ydata)] # TODO: Possible switch to QtCore's mouseclicks # buttond = {QtCore.Qt.LeftButton : 1, # QtCore.Qt.MidButton : 2, # QtCore.Qt.RightButton : 3, # # QtCore.Qt.XButton1 : None, # # QtCore.Qt.XButton2 : None, # } # However, QtCore.Qt.RightButton is actually middle button (wheel) on # windows. So we'll use the numbers instead since they actually work # cross-platform just fine. # [DEBUG] Middle mouse button to debug current zoom levels or position. # if event.button == 2: # print() # print("VIEWS:") # for item in self.mpl_toolbar._views: # print("\t{0}".format(item)) # print("POSITIONS:") # for item in self.mpl_toolbar._positions: # print("\t{0}".format(item)) if event.button == 1: # Left click if self.elementSelectionSelectButton.isChecked(): if self.measurement.selection_select(cursorlocation) == 1: # self.elementSelectDeleteButton.setChecked(True) self.elementSelectDeleteButton.setEnabled(True) self.canvas.draw_idle() self.__on_draw_legend() if self.elementSelectionButton.isChecked(): # If selection is enabled if self.measurement.add_point(cursorlocation, self.canvas) == 1: self.__on_draw_legend() self.__emit_selections_changed() self.canvas.draw_idle() # Draw selection points if event.button == 3: # Right click # Return if matplotlib tools are in use. if self.__button_drag.isChecked(): return if self.__button_zoom.isChecked(): return # If selection is enabled if self.elementSelectionButton.isChecked(): if self.measurement.end_open_selection(self.canvas): self.elementSelectionSelectButton.setEnabled(True) self.canvas.draw_idle() self.__on_draw_legend() self.__emit_selections_changed() return # We don't want menu to be shown also self.__context_menu(event, cursorlocation) self.canvas.draw_idle() self.__on_draw_legend() def __emit_selections_changed(self): """Emits a 'selectionsChanged' signal with the selections list as a parameter. """ self.emit(QtCore.SIGNAL("selectionsChanged(PyQt_PyObject)"), self.measurement.selector.selections) def __emit_save_cuts(self): """Emits a 'selectionsChanged' signal with the selections list as a parameter. """ self.emit(QtCore.SIGNAL("saveCuts(PyQt_PyObject)"), self.measurement) def __context_menu(self, event, cursorlocation): menu = QtGui.QMenu(self) Action = QtGui.QAction(self.tr("Graph Settings..."), self) Action.triggered.connect(self.graph_settings_dialog) menu.addAction(Action) if self.measurement.selection_select(cursorlocation, highlight=False) == 1: Action = QtGui.QAction(self.tr("Selection settings..."), self) Action.triggered.connect(self.selection_settings_dialog) menu.addAction(Action) menu.addSeparator() Action = QtGui.QAction(self.tr("Load selections..."), self) Action.triggered.connect(self.load_selections) menu.addAction(Action) Action = QtGui.QAction(self.tr("Save cuts"), self) Action.triggered.connect(self.save_cuts) menu.addAction(Action) if len(self.measurement.selector.selections) == 0: Action.setEnabled(False) coords = self.canvas.geometry().getCoords() point = QtCore.QPoint(event.x, coords[3] - event.y - coords[1]) # coords[1] from spacing menu.exec_(self.canvas.mapToGlobal(point)) def graph_settings_dialog(self): '''Show graph settings dialog. ''' TofeGraphSettingsWidget(self) def selection_settings_dialog(self): '''Show selection settings dialog. ''' selection = self.measurement.selector.get_selected() SelectionSettingsDialog(selection) self.measurement.selector.auto_save() self.on_draw() self.__emit_selections_changed() def load_selections(self): '''Show dialog to load selections. ''' filename = open_file_dialog(self, self.measurement.directory, "Load Element Selection", "Selection file (*.sel)") if filename: self.measurement.load_selection(filename) self.on_draw() self.elementSelectionSelectButton.setEnabled(True) self.__emit_selections_changed() def save_cuts(self): '''Save measurement cuts. ''' self.measurement.save_cuts() self.__emit_save_cuts() def enable_element_selection(self): '''Enable element selection. ''' self.elementSelectUndoButton.setEnabled( self.elementSelectionButton.isChecked()) if self.elementSelectionButton.isChecked(): # if button is enabled # One cannot choose selection while selecting self.elementSelectionSelectButton.setChecked(False) self.__toggle_drag_zoom() self.mpl_toolbar.mode_tool = 3 str_tool = self.tool_modes[self.mpl_toolbar.mode_tool] self.__tool_label.setText(str_tool) self.mpl_toolbar.mode = str_tool else: self.__tool_label.setText("") self.mpl_toolbar.mode_tool = 0 self.mpl_toolbar.mode = "" self.measurement.purge_selection() # Remove hanging selection points self.measurement.reset_select() self.canvas.draw_idle() self.__on_draw_legend() def enable_selection_select(self): '''Enable selection selecting tool. ''' if self.elementSelectionSelectButton.isChecked(): self.measurement.purge_selection() self.canvas.draw_idle() # One cannot make new selection while choosing selection self.elementSelectionButton.setChecked(False) self.elementSelectUndoButton.setEnabled(False) self.__toggle_drag_zoom() self.mpl_toolbar.mode_tool = 4 str_tool = self.tool_modes[self.mpl_toolbar.mode_tool] self.__tool_label.setText(str_tool) self.mpl_toolbar.mode = str_tool else: self.elementSelectDeleteButton.setEnabled(False) self.__tool_label.setText("") self.mpl_toolbar.mode_tool = 0 self.mpl_toolbar.mode = "" self.measurement.reset_select() self.__on_draw_legend() self.canvas.draw_idle() def remove_selected(self): '''Remove selected selection. ''' self.measurement.remove_selected() self.measurement.reset_select() # Nothing is now selected, reset colors self.measurement.selector.auto_save() self.elementSelectDeleteButton.setEnabled(False) self.__on_draw_legend() self.canvas.draw_idle() self.__emit_selections_changed() def remove_all_selections(self): '''Remove all selections. ''' reply = QtGui.QMessageBox.question(self, "Delete all selections", "Do you want to delete all selections?\nThis cannot be reversed.", QtGui.QMessageBox.Yes, QtGui.QMessageBox.No) if reply == QtGui.QMessageBox.Yes: self.measurement.remove_all() self.__on_draw_legend() self.canvas.draw_idle() self.__emit_selections_changed() def undo_point(self): '''Undo last point in open selection. ''' self.measurement.undo_point() self.canvas.draw_idle() def show_yourself(self, ui): '''Show ToF-E histogram settings in ui. Args: ui: A TofeGraphSettingsWidget's .ui file variable. ''' # Populate colorbox dirtyinteger = 0 colors = sorted(MatplotlibHistogramWidget.color_scheme.items()) for k, unused_v in colors: # Get keys from color scheme ui.colorbox.addItem(k) if k == self.measurement.color_scheme: ui.colorbox.setCurrentIndex(dirtyinteger) dirtyinteger += 1 # Get values ui.bin_x.setValue(self.compression_x) ui.bin_y.setValue(self.compression_y) ui.invert_x.setChecked(self.invert_X) ui.invert_y.setChecked(self.invert_Y) ui.axes_ticks.setChecked(self.show_axis_ticks) ui.transposeAxesCheckBox.setChecked(self.transpose_axes) ui.radio_range_auto.setChecked(self.axes_range_mode == 0) ui.radio_range_manual.setChecked(self.axes_range_mode == 1) ui.spin_range_x_min.setValue(self.axes_range[0][0]) ui.spin_range_x_max.setValue(self.axes_range[0][1]) ui.spin_range_y_min.setValue(self.axes_range[1][0]) ui.spin_range_y_max.setValue(self.axes_range[1][1]) def __on_motion(self, event): '''Function to handle hovering over matplotlib's graph. Args: event: A MPL MouseEvent ''' event.button = -1 # Fix for printing. if event.inaxes != self.axes: return if event.xdata == None and event.ydata == None: return in_selection = False points = 0 point = [int(event.xdata), int(event.ydata)] if self.measurement.selector.axes_limits.is_inside(point): for selection in self.measurement.selector.selections: if selection.point_inside(point): points = selection.get_event_count() in_selection = True break if in_selection: if self.mpl_toolbar.mode_tool: str_tool = self.tool_modes[self.mpl_toolbar.mode_tool] str_text = str_tool + "; points in selection: {0}".format(points) else: str_text = "points in selection: {0}".format(points) self.mpl_toolbar.mode = str_text else: if self.mpl_toolbar.mode_tool: self.mpl_toolbar.mode = self.tool_modes[self.mpl_toolbar.mode_tool] else: self.mpl_toolbar.mode = "" def sc_comp_inc(self, mode): """Shortcut to increase compression factor. Args: mode: An integer representing axis or axes to change. """ if (mode == 0 or mode == 2) and self.compression_x < 3000: self.compression_x += 1 if (mode == 1 or mode == 2) and self.compression_y < 3000: self.compression_y += 1 self.on_draw() def sc_comp_dec(self, mode): """Shortcut to decrease compression factor. Args: mode: An integer representing axis or axes to change. """ if (mode == 0 or mode == 2) and self.compression_x > 1: self.compression_x -= 1 if (mode == 1 or mode == 2) and self.compression_y > 1: self.compression_y -= 1 self.on_draw()
gpl-2.0
Srisai85/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
278
3402
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause