status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,786
RetrievalQA.from_chain_type: callbacks are not called for all nested chains
### System Info langchain: 0.0.252 python: 3.10.12 @agola11 ### Who can help? @agola11 please take a look, ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them 2. Create a retrival chain and add this LogHandler 3. Add this LogHandler to llm as well 4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain ### Expected behavior All the nested chains should have callbacks defined.
https://github.com/langchain-ai/langchain/issues/8786
https://github.com/langchain-ai/langchain/pull/8787
5f1aab548731b53ebab00dd745a35ec7da52bf1c
797c9e92c82f8e843b321ec2167bb1678ced03cf
"2023-08-05T06:43:10Z"
python
"2023-08-06T22:11:45Z"
libs/langchain/langchain/chains/question_answering/__init__.py
map_chain = LLMChain( llm=llm, prompt=_question_prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) _reduce_llm = reduce_llm or llm reduce_chain = LLMChain( llm=_reduce_llm, prompt=_combine_prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_chain, document_variable_name=combine_document_variable_name, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) if collapse_prompt is None: collapse_chain = None if collapse_llm is not None: raise ValueError( "collapse_llm provided, but collapse_prompt was not: please " "provide one or stop providing collapse_llm." )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,786
RetrievalQA.from_chain_type: callbacks are not called for all nested chains
### System Info langchain: 0.0.252 python: 3.10.12 @agola11 ### Who can help? @agola11 please take a look, ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them 2. Create a retrival chain and add this LogHandler 3. Add this LogHandler to llm as well 4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain ### Expected behavior All the nested chains should have callbacks defined.
https://github.com/langchain-ai/langchain/issues/8786
https://github.com/langchain-ai/langchain/pull/8787
5f1aab548731b53ebab00dd745a35ec7da52bf1c
797c9e92c82f8e843b321ec2167bb1678ced03cf
"2023-08-05T06:43:10Z"
python
"2023-08-06T22:11:45Z"
libs/langchain/langchain/chains/question_answering/__init__.py
else: _collapse_llm = collapse_llm or llm collapse_chain = StuffDocumentsChain( llm_chain=LLMChain( llm=_collapse_llm, prompt=collapse_prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ), document_variable_name=combine_document_variable_name, verbose=verbose, callback_manager=callback_manager, ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=combine_documents_chain, collapse_documents_chain=collapse_chain, token_max=token_max, verbose=verbose, ) return MapReduceDocumentsChain( llm_chain=map_chain, document_variable_name=map_reduce_document_variable_name, reduce_documents_chain=reduce_documents_chain, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, **kwargs, ) def _load_refine_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,786
RetrievalQA.from_chain_type: callbacks are not called for all nested chains
### System Info langchain: 0.0.252 python: 3.10.12 @agola11 ### Who can help? @agola11 please take a look, ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them 2. Create a retrival chain and add this LogHandler 3. Add this LogHandler to llm as well 4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain ### Expected behavior All the nested chains should have callbacks defined.
https://github.com/langchain-ai/langchain/issues/8786
https://github.com/langchain-ai/langchain/pull/8787
5f1aab548731b53ebab00dd745a35ec7da52bf1c
797c9e92c82f8e843b321ec2167bb1678ced03cf
"2023-08-05T06:43:10Z"
python
"2023-08-06T22:11:45Z"
libs/langchain/langchain/chains/question_answering/__init__.py
llm: BaseLanguageModel, question_prompt: Optional[BasePromptTemplate] = None, refine_prompt: Optional[BasePromptTemplate] = None, document_variable_name: str = "context_str", initial_response_name: str = "existing_answer", refine_llm: Optional[BaseLanguageModel] = None, verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> RefineDocumentsChain: _question_prompt = ( question_prompt or refine_prompts.QUESTION_PROMPT_SELECTOR.get_prompt(llm) )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,786
RetrievalQA.from_chain_type: callbacks are not called for all nested chains
### System Info langchain: 0.0.252 python: 3.10.12 @agola11 ### Who can help? @agola11 please take a look, ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them 2. Create a retrival chain and add this LogHandler 3. Add this LogHandler to llm as well 4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain ### Expected behavior All the nested chains should have callbacks defined.
https://github.com/langchain-ai/langchain/issues/8786
https://github.com/langchain-ai/langchain/pull/8787
5f1aab548731b53ebab00dd745a35ec7da52bf1c
797c9e92c82f8e843b321ec2167bb1678ced03cf
"2023-08-05T06:43:10Z"
python
"2023-08-06T22:11:45Z"
libs/langchain/langchain/chains/question_answering/__init__.py
_refine_prompt = refine_prompt or refine_prompts.REFINE_PROMPT_SELECTOR.get_prompt( llm ) initial_chain = LLMChain( llm=llm, prompt=_question_prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) _refine_llm = refine_llm or llm refine_chain = LLMChain( llm=_refine_llm, prompt=_refine_prompt, verbose=verbose, callback_manager=callback_manager, callbacks=callbacks, ) return RefineDocumentsChain( initial_llm_chain=initial_chain, refine_llm_chain=refine_chain, document_variable_name=document_variable_name, initial_response_name=initial_response_name, verbose=verbose, callback_manager=callback_manager, **kwargs, ) def load_qa_chain( llm: BaseLanguageModel, chain_type: str = "stuff",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,786
RetrievalQA.from_chain_type: callbacks are not called for all nested chains
### System Info langchain: 0.0.252 python: 3.10.12 @agola11 ### Who can help? @agola11 please take a look, ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a callback handler LogHandler for on_chain_start, on_chain_start, on_chat_model_start and log run_id, parent_run_id in each of them 2. Create a retrival chain and add this LogHandler 3. Add this LogHandler to llm as well 4. When running the chain, one of nested chain is not logged in between, because callbacks are not passed to that chain ### Expected behavior All the nested chains should have callbacks defined.
https://github.com/langchain-ai/langchain/issues/8786
https://github.com/langchain-ai/langchain/pull/8787
5f1aab548731b53ebab00dd745a35ec7da52bf1c
797c9e92c82f8e843b321ec2167bb1678ced03cf
"2023-08-05T06:43:10Z"
python
"2023-08-06T22:11:45Z"
libs/langchain/langchain/chains/question_answering/__init__.py
verbose: Optional[bool] = None, callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseCombineDocumentsChain: """Load question answering chain. Args: llm: Language Model to use in the chain. chain_type: Type of document combining chain to use. Should be one of "stuff", "map_reduce", "map_rerank", and "refine". verbose: Whether chains should be run in verbose mode or not. Note that this applies to all chains that make up the final chain. callback_manager: Callback manager to use for the chain. Returns: A chain to use for question answering. """ loader_mapping: Mapping[str, LoadingCallable] = { "stuff": _load_stuff_chain, "map_reduce": _load_map_reduce_chain, "refine": _load_refine_chain, "map_rerank": _load_map_rerank_chain, } if chain_type not in loader_mapping: raise ValueError( f"Got unsupported chain type: {chain_type}. " f"Should be one of {loader_mapping.keys()}" ) return loader_mapping[chain_type]( llm, verbose=verbose, callback_manager=callback_manager, **kwargs )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
"""Methods for creating chains that use OpenAI function-calling APIs.""" import inspect import re from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Type, Union from pydantic import BaseModel from langchain.base_language import BaseLanguageModel from langchain.chains import LLMChain from langchain.output_parsers.openai_functions import ( JsonOutputFunctionsParser, PydanticAttrOutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain.prompts import BasePromptTemplate from langchain.schema import BaseLLMOutputParser PYTHON_TO_JSON_TYPES = { "str": "string", "int": "number", "float": "number", "bool": "boolean", } def _get_python_function_name(function: Callable) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
"""Get the name of a Python function.""" source = inspect.getsource(function) return re.search(r"^def (.*)\(", source).groups()[0] def _parse_python_function_docstring(function: Callable) -> Tuple[str, dict]: """Parse the function and argument descriptions from the docstring of a function. Assumes the function docstring follows Google Python style guide. """ docstring = inspect.getdoc(function) if docstring: docstring_blocks = docstring.split("\n\n") descriptors = [] args_block = None past_descriptors = False for block in docstring_blocks: if block.startswith("Args:"): args_block = block break elif block.startswith("Returns:") or block.startswith("Example:"): past_descriptors = True elif not past_descriptors: descriptors.append(block) else: continue description = " ".join(descriptors) else: description = "" args_block = None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
arg_descriptions = {} if args_block: arg = None for line in args_block.split("\n")[1:]: if ":" in line: arg, desc = line.split(":") arg_descriptions[arg.strip()] = desc.strip() elif arg: arg_descriptions[arg.strip()] += " " + line.strip() return description, arg_descriptions def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -> dict: """Get JsonSchema describing a Python functions arguments. Assumes all function arguments are of primitive types (int, float, str, bool) or are subclasses of pydantic.BaseModel. """ properties = {} annotations = inspect.getfullargspec(function).annotations for arg, arg_type in annotations.items(): if arg == "return": continue if isinstance(arg_type, type) and issubclass(arg_type, BaseModel): properties[arg] = arg_type.schema() elif arg_type.__name__ in PYTHON_TO_JSON_TYPES: properties[arg] = {"type": PYTHON_TO_JSON_TYPES[arg_type.__name__]} if arg in arg_descriptions: if arg not in properties: properties[arg] = {} properties[arg]["description"] = arg_descriptions[arg] return properties def _get_python_function_required_args(function: Callable) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
"""Get the required arguments for a Python function.""" spec = inspect.getfullargspec(function) required = spec.args[: -len(spec.defaults)] if spec.defaults else spec.args required += [k for k in spec.kwonlyargs if k not in (spec.kwonlydefaults or {})] return required def convert_python_function_to_openai_function(function: Callable) -> Dict[str, Any]: """Convert a Python function to an OpenAI function-calling API compatible dict. Assumes the Python function has type hints and a docstring with a description. If the docstring has Google Python style argument descriptions, these will be included as well. """ description, arg_descriptions = _parse_python_function_docstring(function) return { "name": _get_python_function_name(function), "description": description, "parameters": { "type": "object", "properties": _get_python_function_arguments(function, arg_descriptions), "required": _get_python_function_required_args(function), }, } def convert_to_openai_function(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
function: Union[Dict[str, Any], Type[BaseModel], Callable] ) -> Dict[str, Any]: """Convert a raw function/class to an OpenAI function. Args: function: Either a dictionary, a pydantic.BaseModel class, or a Python function. If a dictionary is passed in, it is assumed to already be a valid OpenAI function. Returns: A dict version of the passed in function which is compatible with the OpenAI function-calling API. """ if isinstance(function, dict): return function elif isinstance(function, type) and issubclass(function, BaseModel): schema = function.schema() return { "name": schema["title"], "description": schema["description"], "parameters": schema, } elif callable(function): return convert_python_function_to_openai_function(function) else: raise ValueError( f"Unsupported function type {type(function)}. Functions must be passed in" f" as Dict, pydantic.BaseModel, or Callable." ) def _get_openai_output_parser(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], function_names: Sequence[str], ) -> BaseLLMOutputParser: """Get the appropriate function output parser given the user functions.""" if isinstance(functions[0], type) and issubclass(functions[0], BaseModel): if len(functions) > 1: pydantic_schema: Union[Dict, Type[BaseModel]] = { name: fn for name, fn in zip(function_names, functions) } else: pydantic_schema = functions[0] output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=pydantic_schema ) else: output_parser = JsonOutputFunctionsParser(args_only=len(functions) <= 1) return output_parser def create_openai_fn_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], llm: BaseLanguageModel, prompt: BasePromptTemplate, *, output_parser: Optional[BaseLLMOutputParser] = None, **kwargs: Any, ) -> LLMChain: """Create an LLM chain that uses OpenAI functions. Args: functions: A sequence of either dictionaries, pydantic.BaseModels classes, or Python functions. If dictionaries are passed in, they are assumed to already be a valid OpenAI functions. If only a single function is passed in, then it will be enforced that the model use that function. pydantic.BaseModels and Python functions should have docstrings describing what the function does. For best results, pydantic.BaseModels should have descriptions of the parameters and Python functions should have Google Python style args descriptions in the docstring. Additionally, Python functions should only use primitive types (str, int, float, bool) or pydantic.BaseModels for arguments. llm: Language model to use, assumed to support the OpenAI function-calling API.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
prompt: BasePromptTemplate to pass to the model. output_parser: BaseLLMOutputParser to use for parsing model outputs. By default will be inferred from the function types. If pydantic.BaseModels are passed in, then the OutputParser will try to parse outputs using those. Otherwise model outputs will simply be parsed as JSON. If multiple functions are passed in and they are not pydantic.BaseModels, the chain output will include both the name of the function that was returned and the arguments to pass to the function. Returns: An LLMChain that will pass in the given functions to the model when run. Example: .. code-block:: python from langchain.chains.openai_functions import create_openai_fn_chain from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from pydantic import BaseModel, Field class RecordPerson(BaseModel): \"\"\"Record some identifying information about a person.\"\"\" name: str = Field(..., description="The person's name") age: int = Field(..., description="The person's age") fav_food: Optional[str] = Field(None, description="The person's favorite food") class RecordDog(BaseModel): \"\"\"Record some identifying information about a dog.\"\"\" name: str = Field(..., description="The dog's name") color: str = Field(..., description="The dog's color") fav_food: Optional[str] = Field(None, description="The dog's favorite food") llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0) prompt_msgs = [ SystemMessage( content="You are a world class algorithm for recording entities"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
), HumanMessage(content="Make calls to the relevant function to record the entities in the following input:"), HumanMessagePromptTemplate.from_template("{input}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = create_openai_fn_chain([RecordPerson, RecordDog]) chain.run("Harry was a chubby brown beagle who loved chicken") # -> RecordDog(name="Harry", color="brown", fav_food="chicken") """ if not functions: raise ValueError("Need to pass in at least one function. Received zero.") openai_functions = [convert_to_openai_function(f) for f in functions] fn_names = [oai_fn["name"] for oai_fn in openai_functions] output_parser = output_parser or _get_openai_output_parser(functions, fn_names) llm_kwargs: Dict[str, Any] = { "functions": openai_functions, } if len(openai_functions) == 1: llm_kwargs["function_call"] = {"name": openai_functions[0]["name"]} llm_chain = LLMChain( llm=llm, prompt=prompt, output_parser=output_parser, llm_kwargs=llm_kwargs, output_key="function", **kwargs, ) return llm_chain def create_structured_output_chain(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
output_schema: Union[Dict[str, Any], Type[BaseModel]], llm: BaseLanguageModel, prompt: BasePromptTemplate, *, output_parser: Optional[BaseLLMOutputParser] = None, **kwargs: Any, ) -> LLMChain: """Create an LLMChain that uses an OpenAI function to get a structured output. Args: output_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary is passed in, it's assumed to already be a valid JsonSchema. For best results, pydantic.BaseModels should have docstrings describing what the schema represents and descriptions for the parameters. llm: Language model to use, assumed to support the OpenAI function-calling API. prompt: BasePromptTemplate to pass to the model. output_parser: BaseLLMOutputParser to use for parsing model outputs. By default will be inferred from the function types. If pydantic.BaseModels are passed in, then the OutputParser will try to parse outputs using those. Otherwise model outputs will simply be parsed as JSON. Returns: An LLMChain that will pass the given function to the model. Example: .. code-block:: python from langchain.chains.openai_functions import create_structured_output_chain from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from pydantic import BaseModel, Field
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
class Dog(BaseModel): \"\"\"Identifying information about a dog.\"\"\" name: str = Field(..., description="The dog's name") color: str = Field(..., description="The dog's color") fav_food: Optional[str] = Field(None, description="The dog's favorite food") llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0) prompt_msgs = [ SystemMessage( content="You are a world class algorithm for extracting information in structured formats." ), HumanMessage(content="Use the given format to extract information from the following input:"), HumanMessagePromptTemplate.from_template("{input}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = create_structured_output_chain(Dog, llm, prompt) chain.run("Harry was a chubby brown beagle who loved chicken") # -> Dog(name="Harry", color="brown", fav_food="chicken") """ if isinstance(output_schema, dict): function: Any = { "name": "output_formatter", "description": ( "Output formatter. Should always be used to format your response to the" " user." ), "parameters": output_schema, } else: class _OutputFormatter(BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,616
_get_python_function_name does not work with classes
### System Info LangChain : v0.0.231 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction # Issue `convert_to_openai_function` does not work as intended: - Classes are not supported - Any function without its source is not supported # Reproduce ```python from dataclasses import dataclass from langchain.chains.openai_functions.base import ( convert_to_openai_function, ) @dataclass class System: name: str ram: int convert_to_openai_function(System) ``` ### Expected behavior When calling `langchain.chains.openai_functions.base.convert_to_openai_function`, the subsequent call to `_get_python_function_name` fails because it tries to read source code (and cannot find it). Something much simpler would be to access the `__name__` attribute of the callable.
https://github.com/langchain-ai/langchain/issues/7616
https://github.com/langchain-ai/langchain/pull/7617
797c9e92c82f8e843b321ec2167bb1678ced03cf
4a7ebb7184fa5dad4cdfef49d1eab2a3e9029a2b
"2023-07-12T21:03:09Z"
python
"2023-08-06T22:12:03Z"
libs/langchain/langchain/chains/openai_functions/base.py
"""Output formatter. Should always be used to format your response to the user.""" output: output_schema function = _OutputFormatter output_parser = output_parser or PydanticAttrOutputFunctionsParser( pydantic_schema=_OutputFormatter, attr_name="output" ) return create_openai_fn_chain( [function], llm, prompt, output_parser=output_parser, **kwargs )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
""" **LLM** classes provide access to the large language model (**LLM**) APIs and services. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseLLM --> LLM --> <name> # Examples: AI21, HuggingFaceHub, OpenAI **Main helpers:** .. code-block:: LLMResult, PromptValue, CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun, CallbackManager, AsyncCallbackManager, AIMessage, BaseMessage """ from typing import Dict, Type from langchain.llms.ai21 import AI21
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
from langchain.llms.aleph_alpha import AlephAlpha from langchain.llms.amazon_api_gateway import AmazonAPIGateway from langchain.llms.anthropic import Anthropic from langchain.llms.anyscale import Anyscale from langchain.llms.aviary import Aviary from langchain.llms.azureml_endpoint import AzureMLOnlineEndpoint from langchain.llms.bananadev import Banana from langchain.llms.base import BaseLLM from langchain.llms.baseten import Baseten from langchain.llms.beam import Beam from langchain.llms.bedrock import Bedrock from langchain.llms.cerebriumai import CerebriumAI from langchain.llms.chatglm import ChatGLM from langchain.llms.clarifai import Clarifai from langchain.llms.cohere import Cohere from langchain.llms.ctransformers import CTransformers from langchain.llms.databricks import Databricks from langchain.llms.deepinfra import DeepInfra from langchain.llms.edenai import EdenAI from langchain.llms.fake import FakeListLLM from langchain.llms.fireworks import Fireworks, FireworksChat from langchain.llms.forefrontai import ForefrontAI from langchain.llms.google_palm import GooglePalm from langchain.llms.gooseai import GooseAI from langchain.llms.gpt4all import GPT4All from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint from langchain.llms.huggingface_hub import HuggingFaceHub from langchain.llms.huggingface_pipeline import HuggingFacePipeline from langchain.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference from langchain.llms.human import HumanInputLLM
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
from langchain.llms.koboldai import KoboldApiLLM from langchain.llms.llamacpp import LlamaCpp from langchain.llms.manifest import ManifestWrapper from langchain.llms.minimax import Minimax from langchain.llms.mlflow_ai_gateway import MlflowAIGateway from langchain.llms.modal import Modal from langchain.llms.mosaicml import MosaicML from langchain.llms.nlpcloud import NLPCloud from langchain.llms.octoai_endpoint import OctoAIEndpoint from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat from langchain.llms.openllm import OpenLLM from langchain.llms.openlm import OpenLM from langchain.llms.petals import Petals from langchain.llms.pipelineai import PipelineAI from langchain.llms.predibase import Predibase from langchain.llms.predictionguard import PredictionGuard from langchain.llms.promptlayer_openai import PromptLayerOpenAI, PromptLayerOpenAIChat from langchain.llms.replicate import Replicate from langchain.llms.rwkv import RWKV from langchain.llms.sagemaker_endpoint import SagemakerEndpoint from langchain.llms.self_hosted import SelfHostedPipeline from langchain.llms.self_hosted_hugging_face import SelfHostedHuggingFaceLLM from langchain.llms.stochasticai import StochasticAI from langchain.llms.textgen import TextGen from langchain.llms.tongyi import Tongyi from langchain.llms.vertexai import VertexAI from langchain.llms.writer import Writer from langchain.llms.xinference import Xinference __all__ = [ "AI21",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
"AlephAlpha", "AmazonAPIGateway", "Anthropic", "Anyscale", "Aviary", "AzureMLOnlineEndpoint", "AzureOpenAI", "Banana", "Baseten", "Beam", "Bedrock", "CTransformers", "CerebriumAI", "ChatGLM", "Clarifai", "Cohere", "Databricks", "DeepInfra", "EdenAI", "FakeListLLM", "Fireworks", "FireworksChat", "ForefrontAI", "GPT4All", "GooglePalm", "GooseAI", "HuggingFaceEndpoint", "HuggingFaceHub", "HuggingFacePipeline", "HuggingFaceTextGenInference",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
"HumanInputLLM", "KoboldApiLLM", "LlamaCpp", "TextGen", "ManifestWrapper", "Minimax", "MlflowAIGateway", "Modal", "MosaicML", "NLPCloud", "OpenAI", "OpenAIChat", "OpenLLM", "OpenLM", "Petals", "PipelineAI", "Predibase", "PredictionGuard", "PromptLayerOpenAI", "PromptLayerOpenAIChat", "RWKV", "Replicate", "SagemakerEndpoint", "SelfHostedHuggingFaceLLM", "SelfHostedPipeline", "StochasticAI", "Tongyi", "VertexAI", "Writer", "OctoAIEndpoint",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
"Xinference", ] type_to_cls_dict: Dict[str, Type[BaseLLM]] = { "ai21": AI21, "aleph_alpha": AlephAlpha, "amazon_api_gateway": AmazonAPIGateway, "amazon_bedrock": Bedrock, "anthropic": Anthropic, "anyscale": Anyscale, "aviary": Aviary, "azure": AzureOpenAI, "azureml_endpoint": AzureMLOnlineEndpoint, "bananadev": Banana, "baseten": Baseten, "beam": Beam, "cerebriumai": CerebriumAI, "chat_glm": ChatGLM, "clarifai": Clarifai, "cohere": Cohere, "ctransformers": CTransformers, "databricks": Databricks, "deepinfra": DeepInfra, "edenai": EdenAI, "fake-list": FakeListLLM, "forefrontai": ForefrontAI, "google_palm": GooglePalm, "gooseai": GooseAI, "gpt4all": GPT4All, "huggingface_endpoint": HuggingFaceEndpoint, "huggingface_hub": HuggingFaceHub,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,729
VLLM
### Feature request can we please get vllm support for faster inference ### Motivation faster inference speed compared to using hugging face pipeline ### Your contribution n/a
https://github.com/langchain-ai/langchain/issues/8729
https://github.com/langchain-ai/langchain/pull/8806
100d9ce4c7b55db0c9df973a26bbc18d5ad5800c
a616e19975796ff6e3cde24597ba90eee714d57a
"2023-08-04T00:45:38Z"
python
"2023-08-07T14:32:02Z"
libs/langchain/langchain/llms/__init__.py
"huggingface_pipeline": HuggingFacePipeline, "huggingface_textgen_inference": HuggingFaceTextGenInference, "human-input": HumanInputLLM, "koboldai": KoboldApiLLM, "llamacpp": LlamaCpp, "textgen": TextGen, "minimax": Minimax, "mlflow-ai-gateway": MlflowAIGateway, "modal": Modal, "mosaic": MosaicML, "nlpcloud": NLPCloud, "openai": OpenAI, "openlm": OpenLM, "petals": Petals, "pipelineai": PipelineAI, "predibase": Predibase, "replicate": Replicate, "rwkv": RWKV, "sagemaker_endpoint": SagemakerEndpoint, "self_hosted": SelfHostedPipeline, "self_hosted_hugging_face": SelfHostedHuggingFaceLLM, "stochasticai": StochasticAI, "tongyi": Tongyi, "vertexai": VertexAI, "openllm": OpenLLM, "openllm_client": OpenLLM, "writer": Writer, "xinference": Xinference, }
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/fix.py
from __future__ import annotations from typing import TypeVar from langchain.chains.llm import LLMChain from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT from langchain.schema import BaseOutputParser, BasePromptTemplate, OutputParserException from langchain.schema.language_model import BaseLanguageModel T = TypeVar("T") class OutputFixingParser(BaseOutputParser[T]):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/fix.py
"""Wraps a parser and tries to fix parsing errors.""" @property def lc_serializable(self) -> bool: return True parser: BaseOutputParser[T] retry_chain: LLMChain @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_FIX_PROMPT, ) -> OutputFixingParser[T]: """Create an OutputFixingParser from a language model and a parser. Args: llm: llm to use for fixing parser: parser to use for parsing prompt: prompt to use for fixing Returns: OutputFixingParser """ chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) def parse(self, completion: str) -> T:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/fix.py
try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) parsed_completion = self.parser.parse(new_completion) return parsed_completion def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "output_fixing"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/retry.py
from __future__ import annotations from typing import TypeVar from langchain.chains.llm import LLMChain from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( BaseOutputParser, BasePromptTemplate, OutputParserException, PromptValue, ) from langchain.schema.language_model import BaseLanguageModel NAIVE_COMPLETION_RETRY = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Please try again:""" NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Details: {error} Please try again:""" NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY) NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template( NAIVE_COMPLETION_RETRY_WITH_ERROR ) T = TypeVar("T") class RetryOutputParser(BaseOutputParser[T]):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/retry.py
"""Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt and the completion to another LLM, and telling it the completion did not satisfy criteria in the prompt. """ parser: BaseOutputParser[T] """The parser to use to parse the output.""" retry_chain: LLMChain """The LLMChain to use to retry the completion.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT, ) -> RetryOutputParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/retry.py
"""Parse the output of an LLM call using a wrapped parser. Args: completion: The chain completion to parse. prompt_value: The prompt to use to parse the completion. Returns: The parsed completion. """ try: parsed_completion = self.parser.parse(completion) except OutputParserException: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion ) parsed_completion = self.parser.parse(new_completion) return parsed_completion def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "retry" class RetryWithErrorOutputParser(BaseOutputParser[T]):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/retry.py
"""Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt, the completion, AND the error that was raised to another language model and telling it that the completion did not work, and raised the given error. Differs from RetryOutputParser in that this implementation provides the error that was raised back to the LLM, which in theory should give it more information on how to fix it. """ parser: BaseOutputParser[T] retry_chain: LLMChain @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT, ) -> RetryWithErrorOutputParser[T]: """Create a RetryWithErrorOutputParser from an LLM. Args: llm: The LLM to use to retry the completion. parser: The parser to use to parse the output. prompt: The prompt to use to retry the completion. Returns: A RetryWithErrorOutputParser. """ chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,989
OutputFixingParser is not async
### System Info LangChain Python v0.0.237 Based on this code snippet it appears that OutputFixingParser doesn't support async flows. https://github.com/hwchase17/langchain/blob/df84e1bb64d96377f909651f696f310c43c2f2c5/langchain/output_parsers/fix.py#L46-L52 It's calling the run function and not arun ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction 1. Define async callback handler 2. Make LLM return output that is unparsable (invalid JSON or 2 code blocks) 3. OutputFixingParser will fail parsing the output and throw an exception, which will call the LLM via the run function which doesn't await on coroutines. Python will give the following error: ``` RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited ``` ### Expected behavior 1. Should work with coroutines as expected
https://github.com/langchain-ai/langchain/issues/7989
https://github.com/langchain-ai/langchain/pull/8776
cc908d49a3c23e128fab7c89fa45d7cc4114f028
33cdb06b5c9d4d3e7f54d5e1e7c980dfae33923b
"2023-07-20T08:29:12Z"
python
"2023-08-07T21:42:48Z"
libs/langchain/langchain/output_parsers/retry.py
try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion, error=repr(e) ) parsed_completion = self.parser.parse(new_completion) return parsed_completion def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "retry_with_error"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
"""Util that calls Arxiv.""" import logging import os from typing import Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class ArxivAPIWrapper(BaseModel):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
"""Wrapper around ArxivAPI. To use, you should have the ``arxiv`` python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don't want to limit the content size. Attributes: top_k_results: number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool. load_max_docs: a limit to the number of loaded documents load_all_available_meta: if True: the `metadata` of the loaded Documents contains all available meta info (see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the `metadata` contains only the published date, title, authors and summary. doc_content_chars_max: an optional cut limit for the length of a document's content Example: .. code-block:: python from langchain.utilities.arxiv import ArxivAPIWrapper arxiv = ArxivAPIWrapper( top_k_results = 3, ARXIV_MAX_QUERY_LENGTH = 300, load_max_docs = 3, load_all_available_meta = False,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
doc_content_chars_max = 40000 ) arxiv.run("tree of thought llm) """ arxiv_search: Any arxiv_exceptions: Any top_k_results: int = 3 ARXIV_MAX_QUERY_LENGTH = 300 load_max_docs: int = 100 load_all_available_meta: bool = False doc_content_chars_max: Optional[int] = 4000 @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import arxiv values["arxiv_search"] = arxiv.Search values["arxiv_exceptions"] = ( arxiv.ArxivError, arxiv.UnexpectedEmptyPageError, arxiv.HTTPError, ) values["arxiv_result"] = arxiv.Result except ImportError: raise ImportError( "Could not import arxiv python package. " "Please install it with `pip install arxiv`." ) return values def run(self, query: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
""" Performs an arxiv search and A single string with the publish date, title, authors, and summary for each article separated by two newlines. If an error occurs or no documents found, error text is returned instead. Wrapper for https://lukasschwab.me/arxiv.py/index.html#Search Args: query: a plaintext search query """ try: results = self.arxiv_search( query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results ).results() except self.arxiv_exceptions as ex: return f"Arxiv exception: {ex}" docs = [ f"Published: {result.updated.date()}\n" f"Title: {result.title}\n" f"Authors: {', '.join(a.name for a in result.authors)}\n" f"Summary: {result.summary}" for result in results ] if docs: return "\n\n".join(docs)[: self.doc_content_chars_max] else: return "No good Arxiv Result was found" def load(self, query: str) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
""" Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format Performs an arxiv search, downloads the top k results as PDFs, loads them as Documents, and returns them in a List. Args: query: a plaintext search query """ try: import fitz except ImportError: raise ImportError( "PyMuPDF package not found, please install it with " "`pip install pymupdf`" ) try: results = self.arxiv_search( query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs ).results() except self.arxiv_exceptions as ex: logger.debug("Error on arxiv: %s", ex) return [] docs: List[Document] = [] for result in results: try: doc_file_name: str = result.download_pdf() with fitz.open(doc_file_name) as doc_file: text: str = "".join(page.get_text() for page in doc_file)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/langchain/utilities/arxiv.py
except FileNotFoundError as f_ex: logger.debug(f_ex) continue if self.load_all_available_meta: extra_metadata = { "entry_id": result.entry_id, "published_first_time": str(result.published.date()), "comment": result.comment, "journal_ref": result.journal_ref, "doi": result.doi, "primary_category": result.primary_category, "categories": result.categories, "links": [link.href for link in result.links], } else: extra_metadata = {} metadata = { "Published": str(result.updated.date()), "Title": result.title, "Authors": ", ".join(a.name for a in result.authors), "Summary": result.summary, **extra_metadata, } doc = Document( page_content=text[: self.doc_content_chars_max], metadata=metadata ) docs.append(doc) os.remove(doc_file_name) return docs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/document_loaders/test_arxiv.py
from typing import List from langchain.document_loaders.arxiv import ArxivLoader from langchain.schema import Document def assert_docs(docs: List[Document]) -> None: for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"} def test_load_success() -> None: """Test that returns one document""" loader = ArxivLoader(query="1605.08386", load_max_docs=2) docs = loader.load() assert len(docs) == 1 print(docs[0].metadata) print(docs[0].page_content) assert_docs(docs) def test_load_returns_no_result() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/document_loaders/test_arxiv.py
"""Test that returns no docs""" loader = ArxivLoader(query="1605.08386WWW", load_max_docs=2) docs = loader.load() assert len(docs) == 0 def test_load_returns_limited_docs() -> None: """Test that returns several docs""" expected_docs = 2 loader = ArxivLoader(query="ChatGPT", load_max_docs=expected_docs) docs = loader.load() assert len(docs) == expected_docs assert_docs(docs) def test_load_returns_full_set_of_metadata() -> None: """Test that returns several docs""" loader = ArxivLoader(query="ChatGPT", load_max_docs=1, load_all_available_meta=True) docs = loader.load() assert len(docs) == 1 for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata).issuperset( {"Published", "Title", "Authors", "Summary"} ) print(doc.metadata) assert len(set(doc.metadata)) > 4
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/utilities/test_arxiv.py
"""Integration test for Arxiv API Wrapper.""" from typing import Any, List import pytest from langchain.agents.load_tools import load_tools from langchain.schema import Document from langchain.tools.base import BaseTool from langchain.utilities import ArxivAPIWrapper @pytest.fixture def api_client() -> ArxivAPIWrapper: return ArxivAPIWrapper() def test_run_success(api_client: ArxivAPIWrapper) -> None: """Test that returns the correct answer""" output = api_client.run("1605.08386") assert "Heat-bath random walks with Markov bases" in output def test_run_returns_several_docs(api_client: ArxivAPIWrapper) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/utilities/test_arxiv.py
"""Test that returns several docs""" output = api_client.run("Caprice Stanley") assert "On Mixing Behavior of a Family of Random Walks" in output def test_run_returns_no_result(api_client: ArxivAPIWrapper) -> None: """Test that gives no result.""" output = api_client.run("1605.08386WWW") assert "No good Arxiv Result was found" == output def assert_docs(docs: List[Document]) -> None: for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata) == {"Published", "Title", "Authors", "Summary"} def test_load_success(api_client: ArxivAPIWrapper) -> None: """Test that returns one document""" docs = api_client.load("1605.08386") assert len(docs) == 1 assert_docs(docs) def test_load_returns_no_result(api_client: ArxivAPIWrapper) -> None: """Test that returns no docs""" docs = api_client.load("1605.08386WWW") assert len(docs) == 0 def test_load_returns_limited_docs() -> None: """Test that returns several docs""" expected_docs = 2 api_client = ArxivAPIWrapper(load_max_docs=expected_docs) docs = api_client.load("ChatGPT") assert len(docs) == expected_docs assert_docs(docs) def test_load_returns_limited_doc_content_chars() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/utilities/test_arxiv.py
"""Test that returns limited doc_content_chars_max""" doc_content_chars_max = 100 api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max) docs = api_client.load("1605.08386") assert len(docs[0].page_content) == doc_content_chars_max def test_load_returns_unlimited_doc_content_chars() -> None: """Test that returns unlimited doc_content_chars_max""" doc_content_chars_max = None api_client = ArxivAPIWrapper(doc_content_chars_max=doc_content_chars_max) docs = api_client.load("1605.08386") assert len(docs[0].page_content) == 54337 def test_load_returns_full_set_of_metadata() -> None: """Test that returns several docs""" api_client = ArxivAPIWrapper(load_max_docs=1, load_all_available_meta=True) docs = api_client.load("ChatGPT") assert len(docs) == 1 for doc in docs: assert doc.page_content assert doc.metadata assert set(doc.metadata).issuperset( {"Published", "Title", "Authors", "Summary"} ) print(doc.metadata) assert len(set(doc.metadata)) > 4 def _load_arxiv_from_universal_entry(**kwargs: Any) -> BaseTool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
9,046
ArxivLoader incorrect results
### System Info Latest pip versions ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried searching by exact title in the following way: ```python docs = ArxivLoader(query="MetaGPT: Meta Programming for Multi-Agent Collaborative Framework", load_max_docs=1).load() ``` But the result is incorrect. The search works properly on the arxiv website. ### Expected behavior Correct paper returned
https://github.com/langchain-ai/langchain/issues/9046
https://github.com/langchain-ai/langchain/pull/9061
e94a5d753fe01aff1fa1592cd59d37fa64ef24a2
fcbbddedaed196b0aa0377ca8c78b3410f62420f
"2023-08-10T15:18:24Z"
python
"2023-08-10T18:59:39Z"
libs/langchain/tests/integration_tests/utilities/test_arxiv.py
tools = load_tools(["arxiv"], **kwargs) assert len(tools) == 1, "loaded more than 1 tool" return tools[0] def test_load_arxiv_from_universal_entry() -> None: arxiv_tool = _load_arxiv_from_universal_entry() output = arxiv_tool("Caprice Stanley") assert ( "On Mixing Behavior of a Family of Random Walks" in output ), "failed to fetch a valid result" def test_load_arxiv_from_universal_entry_with_params() -> None: params = { "top_k_results": 1, "load_max_docs": 10, "load_all_available_meta": True, } arxiv_tool = _load_arxiv_from_universal_entry(**params) assert isinstance(arxiv_tool, ArxivAPIWrapper) wp = arxiv_tool.api_wrapper assert wp.top_k_results == 1, "failed to assert top_k_results" assert wp.load_max_docs == 10, "failed to assert load_max_docs" assert ( wp.load_all_available_meta is True ), "failed to assert load_all_available_meta"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
"""Chain that just formats a prompt and calls an LLM.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional, Sequence, Tuple, Union from pydantic import Extra, Field from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainRun, CallbackManager, CallbackManagerForChainRun, Callbacks, ) from langchain.chains.base import Chain from langchain.load.dump import dumpd from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( BaseLLMOutputParser, BasePromptTemplate, LLMResult, PromptValue, StrOutputParser, ) from langchain.schema.language_model import BaseLanguageModel from langchain.utils.input import get_colored_text class LLMChain(Chain):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
"""Chain to run queries against LLMs. Example: .. code-block:: python from langchain import LLMChain, OpenAI, PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) """ @property def lc_serializable(self) -> bool: return True prompt: BasePromptTemplate """Prompt object to use.""" llm: BaseLanguageModel """Language model to call.""" output_key: str = "text" output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser) """Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise.""" return_final_only: bool = True """Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation.""" llm_kwargs: dict = Field(default_factory=dict) class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
"""Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ if self.return_final_only: return [self.output_key] else: return [self.output_key, "full_generation"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = self.generate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def generate(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) return self.llm.generate_prompt( prompts, stop, callbacks=run_manager.get_child() if run_manager else None, **self.llm_kwargs, ) async def agenerate( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) return await self.llm.agenerate_prompt( prompts, stop, callbacks=run_manager.get_child() if run_manager else None, **self.llm_kwargs, ) def prep_prompts(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop async def aprep_prompts(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: await run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop def apply(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = CallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = callback_manager.on_chain_start( dumpd(self), {"input_list": input_list}, ) try: response = self.generate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e: run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) run_manager.on_chain_end({"outputs": outputs}) return outputs async def aapply(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = await callback_manager.on_chain_start( dumpd(self), {"input_list": input_list}, ) try: response = await self.agenerate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e: await run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) await run_manager.on_chain_end({"outputs": outputs}) return outputs @property def _run_output_key(self) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
return self.output_key def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: """Create outputs from response.""" result = [ { self.output_key: self.output_parser.parse_result(generation), "full_generation": generation, } for generation in llm_result.generations ] if self.return_final_only: result = [{self.output_key: r[self.output_key]} for r in result] return result async def _acall(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = await self.agenerate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return self(kwargs, callbacks=callbacks)[self.output_key] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
"""Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] def predict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, Any]]: """Call predict and then parse the results.""" warnings.warn( "The predict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = self.predict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result async def apredict_and_parse(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, str]]: """Call apredict and then parse the results.""" warnings.warn( "The apredict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = await self.apredict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result def apply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" warnings.warn( "The apply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = self.apply(input_list, callbacks=callbacks) return self._parse_generation(result) def _parse_generation(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,733
list index out of range error if similarity search gives 0 docs
https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/vectorstores/milvus.py#L319 I'm using milvus where for my question I'm getting 0 documents and so index out of range error occurs Error line: https://github.com/hwchase17/langchain/blob/276940fd9babf8aec570dd869cc84fbca1c766bf/langchain/chains/llm.py#L95
https://github.com/langchain-ai/langchain/issues/1733
https://github.com/langchain-ai/langchain/pull/5769
c0acbdca1b5884ac90d17908fb2bb555a9ed9909
2184e3a4005f5c48126523cce92930fca6a31760
"2023-03-17T11:14:48Z"
python
"2023-08-11T05:50:39Z"
libs/langchain/langchain/chains/llm.py
self, generation: List[Dict[str, str]] ) -> Sequence[Union[str, List[str], Dict[str, str]]]: if self.prompt.output_parser is not None: return [ self.prompt.output_parser.parse(res[self.output_key]) for res in generation ] else: return generation async def aapply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" warnings.warn( "The aapply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = await self.aapply(input_list, callbacks=callbacks) return self._parse_generation(result) @property def _chain_type(self) -> str: return "llm_chain" @classmethod def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain: """Create LLMChain from LLM and template.""" prompt_template = PromptTemplate.from_template(template) return cls(llm=llm, prompt=prompt_template)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,001
Azure OpenAI Embeddings failed due to no deployment_id set.
### System Info Broken by #4915 Error: `Must provide an 'engine' or 'deployment_id' parameter to create a <class 'openai.api_resources.embedding.Embedding'>` I'm putting a PR out to fix this now. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run example notebook: https://github.com/hwchase17/langchain/blob/22d844dc0795e7e53a4cc499bf4974cb83df490d/docs/modules/models/text_embedding/examples/azureopenai.ipynb ### Expected behavior Embedding using Azure OpenAI should work.
https://github.com/langchain-ai/langchain/issues/5001
https://github.com/langchain-ai/langchain/pull/5002
45741bcc1b65e588e560b60e347ab391858d53f5
1d3735a84c64549d4ef338506ae0b68d53541b44
"2023-05-19T20:18:47Z"
python
"2023-08-11T22:43:01Z"
libs/langchain/tests/integration_tests/embeddings/test_openai.py
"""Test openai embeddings.""" import numpy as np import openai import pytest from langchain.embeddings.openai import OpenAIEmbeddings def test_openai_embedding_documents() -> None: """Test openai embeddings.""" documents = ["foo bar"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 1536 def test_openai_embedding_documents_multiple() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,001
Azure OpenAI Embeddings failed due to no deployment_id set.
### System Info Broken by #4915 Error: `Must provide an 'engine' or 'deployment_id' parameter to create a <class 'openai.api_resources.embedding.Embedding'>` I'm putting a PR out to fix this now. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run example notebook: https://github.com/hwchase17/langchain/blob/22d844dc0795e7e53a4cc499bf4974cb83df490d/docs/modules/models/text_embedding/examples/azureopenai.ipynb ### Expected behavior Embedding using Azure OpenAI should work.
https://github.com/langchain-ai/langchain/issues/5001
https://github.com/langchain-ai/langchain/pull/5002
45741bcc1b65e588e560b60e347ab391858d53f5
1d3735a84c64549d4ef338506ae0b68d53541b44
"2023-05-19T20:18:47Z"
python
"2023-08-11T22:43:01Z"
libs/langchain/tests/integration_tests/embeddings/test_openai.py
"""Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = embedding.embed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 @pytest.mark.asyncio async def test_openai_embedding_documents_async_multiple() -> None: """Test openai embeddings.""" documents = ["foo bar", "bar foo", "foo"] embedding = OpenAIEmbeddings(chunk_size=2) embedding.embedding_ctx_length = 8191 output = await embedding.aembed_documents(documents) assert len(output) == 3 assert len(output[0]) == 1536 assert len(output[1]) == 1536 assert len(output[2]) == 1536 def test_openai_embedding_query() -> None: """Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = embedding.embed_query(document) assert len(output) == 1536 @pytest.mark.asyncio async def test_openai_embedding_async_query() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
5,001
Azure OpenAI Embeddings failed due to no deployment_id set.
### System Info Broken by #4915 Error: `Must provide an 'engine' or 'deployment_id' parameter to create a <class 'openai.api_resources.embedding.Embedding'>` I'm putting a PR out to fix this now. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run example notebook: https://github.com/hwchase17/langchain/blob/22d844dc0795e7e53a4cc499bf4974cb83df490d/docs/modules/models/text_embedding/examples/azureopenai.ipynb ### Expected behavior Embedding using Azure OpenAI should work.
https://github.com/langchain-ai/langchain/issues/5001
https://github.com/langchain-ai/langchain/pull/5002
45741bcc1b65e588e560b60e347ab391858d53f5
1d3735a84c64549d4ef338506ae0b68d53541b44
"2023-05-19T20:18:47Z"
python
"2023-08-11T22:43:01Z"
libs/langchain/tests/integration_tests/embeddings/test_openai.py
"""Test openai embeddings.""" document = "foo bar" embedding = OpenAIEmbeddings() output = await embedding.aembed_query(document) assert len(output) == 1536 def test_openai_embedding_with_empty_string() -> None: """Test openai embeddings with empty string.""" document = ["", "abc"] embedding = OpenAIEmbeddings() output = embedding.embed_documents(document) assert len(output) == 2 assert len(output[0]) == 1536 expected_output = openai.Embedding.create(input="", model="text-embedding-ada-002")[ "data" ][0]["embedding"] assert np.allclose(output[0], expected_output) assert len(output[1]) == 1536 def test_embed_documents_normalized() -> None: output = OpenAIEmbeddings().embed_documents(["foo walked to the market"]) assert np.isclose(np.linalg.norm(output[0]), 1.0) def test_embed_query_normalized() -> None: output = OpenAIEmbeddings().embed_query("foo walked to the market") assert np.isclose(np.linalg.norm(output), 1.0)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Base callback handler that can be used to handle callbacks in langchain.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union from uuid import UUID if TYPE_CHECKING: from langchain.schema.agent import AgentAction, AgentFinish from langchain.schema.document import Document from langchain.schema.messages import BaseMessage from langchain.schema.output import LLMResult class RetrieverManagerMixin: """Mixin for Retriever callbacks.""" def on_retriever_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when Retriever errors.""" def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when Retriever ends running.""" class LLMManagerMixin:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Mixin for LLM callbacks.""" def on_llm_new_token( self, token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on new LLM token. Only available when streaming is enabled.""" def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when LLM ends running.""" def on_llm_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when LLM errors.""" class ChainManagerMixin:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Mixin for chain callbacks.""" def on_chain_end( self, outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when chain ends running.""" def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when chain errors.""" def on_agent_action( self, action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on agent action.""" def on_agent_finish(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on agent end.""" class ToolManagerMixin: """Mixin for tool callbacks.""" def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when tool ends running.""" def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run when tool errors.""" class CallbackManagerMixin:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Mixin for callback manager.""" def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when LLM starts running.""" def on_chat_model_start(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running.""" raise NotImplementedError( f"{self.__class__.__name__} does not implement `on_chat_model_start`" ) def on_retriever_start( self, serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when Retriever starts running.""" def on_chain_start(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when chain starts running.""" def on_tool_start( self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when tool starts running.""" class RunManagerMixin:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Mixin for run manager.""" def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> Any: """Run on arbitrary text.""" class BaseCallbackHandler( LLMManagerMixin, ChainManagerMixin, ToolManagerMixin, RetrieverManagerMixin, CallbackManagerMixin, RunManagerMixin, ): """Base callback handler that can be used to handle callbacks from langchain.""" raise_error: bool = False run_inline: bool = False @property def ignore_llm(self) -> bool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Whether to ignore LLM callbacks.""" return False @property def ignore_retry(self) -> bool: """Whether to ignore retry callbacks.""" return False @property def ignore_chain(self) -> bool: """Whether to ignore chain callbacks.""" return False @property def ignore_agent(self) -> bool: """Whether to ignore agent callbacks.""" return False @property def ignore_retriever(self) -> bool: """Whether to ignore retriever callbacks.""" return False @property def ignore_chat_model(self) -> bool: """Whether to ignore chat model callbacks.""" return False class AsyncCallbackHandler(BaseCallbackHandler):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Async callback handler that can be used to handle callbacks from langchain.""" async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when LLM starts running.""" async def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running.""" raise NotImplementedError( f"{self.__class__.__name__} does not implement `on_chat_model_start`" ) async def on_llm_new_token(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on new LLM token. Only available when streaming is enabled.""" async def on_llm_end( self, response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when LLM ends running.""" async def on_llm_error(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when LLM errors.""" async def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when chain starts running.""" async def on_chain_end(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when chain ends running.""" async def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when chain errors.""" async def on_tool_start(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when tool starts running.""" async def on_tool_end( self, output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when tool ends running.""" async def on_tool_error(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run when tool errors.""" async def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on arbitrary text.""" async def on_agent_action( self, action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on agent action.""" async def on_agent_finish(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on agent end.""" async def on_retriever_start( self, serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run on retriever start.""" async def on_retriever_end(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
self, documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on retriever end.""" async def on_retriever_error( self, error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: """Run on retriever error.""" class BaseCallbackManager(CallbackManagerMixin):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Base callback manager that handles callbacks from LangChain.""" def __init__( self, handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, ) -> None: """Initialize callback manager.""" self.handlers: List[BaseCallbackHandler] = handlers self.inheritable_handlers: List[BaseCallbackHandler] = ( inheritable_handlers or [] ) self.parent_run_id: Optional[UUID] = parent_run_id self.tags = tags or [] self.inheritable_tags = inheritable_tags or [] self.metadata = metadata or {} self.inheritable_metadata = inheritable_metadata or {} @property def is_async(self) -> bool:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Whether the callback manager is async.""" return False def add_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None: """Add a handler to the callback manager.""" if handler not in self.handlers: self.handlers.append(handler) if inherit and handler not in self.inheritable_handlers: self.inheritable_handlers.append(handler) def remove_handler(self, handler: BaseCallbackHandler) -> None: """Remove a handler from the callback manager.""" self.handlers.remove(handler) self.inheritable_handlers.remove(handler) def set_handlers( self, handlers: List[BaseCallbackHandler], inherit: bool = True ) -> None: """Set handlers as the only handlers on the callback manager.""" self.handlers = [] self.inheritable_handlers = [] for handler in handlers: self.add_handler(handler, inherit=inherit) def set_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/langchain/callbacks/base.py
"""Set handler as the only handler on the callback manager.""" self.set_handlers([handler], inherit=inherit) def add_tags(self, tags: List[str], inherit: bool = True) -> None: for tag in tags: if tag in self.tags: self.remove_tags([tag]) self.tags.extend(tags) if inherit: self.inheritable_tags.extend(tags) def remove_tags(self, tags: List[str]) -> None: for tag in tags: self.tags.remove(tag) self.inheritable_tags.remove(tag) def add_metadata(self, metadata: Dict[str, Any], inherit: bool = True) -> None: self.metadata.update(metadata) if inherit: self.inheritable_metadata.update(metadata) def remove_metadata(self, keys: List[str]) -> None: for key in keys: self.metadata.pop(key) self.inheritable_metadata.pop(key) Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/tests/unit_tests/callbacks/test_openai_info.py
import pytest from langchain.callbacks import OpenAICallbackHandler from langchain.llms.openai import BaseOpenAI from langchain.schema import LLMResult @pytest.fixture def handler() -> OpenAICallbackHandler: return OpenAICallbackHandler() def test_on_llm_end(handler: OpenAICallbackHandler) -> None: response = LLMResult( generations=[], llm_output={ "token_usage": { "prompt_tokens": 2, "completion_tokens": 1, "total_tokens": 3, }, "model_name": BaseOpenAI.__fields__["model_name"].default, }, ) handler.on_llm_end(response) assert handler.successful_requests == 1 assert handler.total_tokens == 3 assert handler.prompt_tokens == 2 assert handler.completion_tokens == 1 assert handler.total_cost > 0 def test_on_llm_end_custom_model(handler: OpenAICallbackHandler) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/tests/unit_tests/callbacks/test_openai_info.py
response = LLMResult( generations=[], llm_output={ "token_usage": { "prompt_tokens": 2, "completion_tokens": 1, "total_tokens": 3, }, "model_name": "foo-bar", }, ) handler.on_llm_end(response) assert handler.total_cost == 0 def test_on_llm_end_finetuned_model(handler: OpenAICallbackHandler) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/tests/unit_tests/callbacks/test_openai_info.py
response = LLMResult( generations=[], llm_output={ "token_usage": { "prompt_tokens": 2, "completion_tokens": 1, "total_tokens": 3, }, "model_name": "ada:ft-your-org:custom-model-name-2022-02-15-04-21-04", }, ) handler.on_llm_end(response) assert handler.total_cost > 0 @pytest.mark.parametrize( "model_name,expected_cost", [ ("gpt-35-turbo", 0.0035), ("gpt-35-turbo-0301", 0.0035), ( "gpt-35-turbo-0613", 0.0035, ), ( "gpt-35-turbo-16k-0613", 0.007, ), ( "gpt-35-turbo-16k",
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/tests/unit_tests/callbacks/test_openai_info.py
0.007, ), ("gpt-4", 0.09), ("gpt-4-0314", 0.09), ("gpt-4-0613", 0.09), ("gpt-4-32k", 0.18), ("gpt-4-32k-0314", 0.18), ("gpt-4-32k-0613", 0.18), ], ) def test_on_llm_end_azure_openai( handler: OpenAICallbackHandler, model_name: str, expected_cost: float ) -> None: response = LLMResult( generations=[], llm_output={ "token_usage": { "prompt_tokens": 1000, "completion_tokens": 1000, "total_tokens": 2000, }, "model_name": model_name, }, ) handler.on_llm_end(response) assert handler.total_cost == expected_cost @pytest.mark.parametrize( "model_name", ["gpt-35-turbo-16k-0301", "gpt-4-0301", "gpt-4-32k-0301"] ) def test_on_llm_end_no_cost_invalid_model(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,542
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
https://github.com/langchain-ai/langchain/issues/8542
https://github.com/langchain-ai/langchain/pull/9230
d0a0d560add6c5bc6ded60be506a87d98bf333c3
c478fc208ed4c29e979abeb7a532eb4d01431e1b
"2023-07-31T21:01:43Z"
python
"2023-08-14T23:45:17Z"
libs/langchain/tests/unit_tests/callbacks/test_openai_info.py
handler: OpenAICallbackHandler, model_name: str ) -> None: response = LLMResult( generations=[], llm_output={ "token_usage": { "prompt_tokens": 1000, "completion_tokens": 1000, "total_tokens": 2000, }, "model_name": model_name, }, ) handler.on_llm_end(response) assert handler.total_cost == 0
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
"""Question answering with sources over documents.""" from __future__ import annotations import inspect import re from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional from pydantic_v1 import Extra, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains import ReduceDocumentsChain from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain from langchain.chains.qa_with_sources.map_reduce_prompt import ( COMBINE_PROMPT, EXAMPLE_PROMPT, QUESTION_PROMPT, ) from langchain.docstore.document import Document from langchain.schema import BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel class BaseQAWithSourcesChain(Chain, ABC):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
"""Question answering chain with sources over documents.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" question_key: str = "question" input_docs_key: str = "docs" answer_key: str = "answer" sources_answer_key: str = "sources" return_source_documents: bool = False """Return the source documents.""" @classmethod def from_llm(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
cls, llm: BaseLanguageModel, document_prompt: BasePromptTemplate = EXAMPLE_PROMPT, question_prompt: BasePromptTemplate = QUESTION_PROMPT, combine_prompt: BasePromptTemplate = COMBINE_PROMPT, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Construct the chain from an LLM.""" llm_question_chain = LLMChain(llm=llm, prompt=question_prompt) llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt) combine_results_chain = StuffDocumentsChain( llm_chain=llm_combine_chain, document_prompt=document_prompt, document_variable_name="summaries", ) reduce_documents_chain = ReduceDocumentsChain( combine_documents_chain=combine_results_chain ) combine_documents_chain = MapReduceDocumentsChain( llm_chain=llm_question_chain, reduce_documents_chain=reduce_documents_chain, document_variable_name="context", ) return cls( combine_documents_chain=combine_documents_chain, **kwargs, ) @classmethod def from_chain_type(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> BaseQAWithSourcesChain: """Load chain from chain type.""" _chain_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_with_sources_chain( llm, chain_type=chain_type, **_chain_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
"""Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ _output_keys = [self.answer_key, self.sources_answer_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @root_validator(pre=True) def validate_naming(cls, values: Dict) -> Dict: """Fix backwards compatibility in naming.""" if "combine_document_chain" in values: values["combine_documents_chain"] = values.pop("combine_document_chain") return values @abstractmethod def _get_docs( self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> List[Document]: """Get docs to run questioning over.""" def _call(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() accepts_run_manager = ( "run_manager" in inspect.signature(self._get_docs).parameters ) if accepts_run_manager: docs = self._get_docs(inputs, run_manager=_run_manager) else: docs = self._get_docs(inputs) answer = self.combine_documents_chain.run( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result @abstractmethod async def _aget_docs(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> List[Document]: """Get docs to run questioning over.""" async def _acall(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() accepts_run_manager = ( "run_manager" in inspect.signature(self._aget_docs).parameters ) if accepts_run_manager: docs = await self._aget_docs(inputs, run_manager=_run_manager) else: docs = await self._aget_docs(inputs) answer = await self.combine_documents_chain.arun( input_documents=docs, callbacks=_run_manager.get_child(), **inputs ) if re.search(r"SOURCES:\s", answer): answer, sources = re.split(r"SOURCES:\s", answer) else: sources = "" result: Dict[str, Any] = { self.answer_key: answer, self.sources_answer_key: sources, } if self.return_source_documents: result["source_documents"] = docs return result class QAWithSourcesChain(BaseQAWithSourcesChain):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
7,184
Issue: RetrievalQAWithSourcesChain gives error 'too many values to unpack (expected 2)' after running.
Hello, I'm using _langchain_ for QA with court case documents. More specifically, the RetrievalQAWithSourcesChain to retrieve the answer and document source information. However, when running the chain with embedded documents, I get the following error: ``` ValueError: too many values to unpack (expected 2) Traceback: response = qa({"question": pregunta}, return_only_outputs=True) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__ raise e File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call answer, sources = re.split(r"SOURCES:\s", answer) ``` The passed documents are the sections from the court case. I added the following **metadata** fields: 1. Source: PDF file name. 2. Section: Name of the section 3. Section_chunk: Numeral value used for identification in case the section was divided into chunks. 4. Page: Page where the section chunk starts. The documents are passed as retriever to the chain with FAISS (FAISS.from_documents(documents, self.embeddings)). I tried out two approaches (both resulting in the same error): 1. providing the _load_qa_chain_ as chain 2. creating it using the class method **_.from_chain_type_** My question is why does this error ocurrs. And also, if the type of metadata used may cause the errors. Thank you in advance!
https://github.com/langchain-ai/langchain/issues/7184
https://github.com/langchain-ai/langchain/pull/8716
a3c79b1909fe1cbe85394c353b0535117ef0cdf0
8bebc9206fb77ee22a9b0592c1efb32f27bb45db
"2023-07-05T09:49:42Z"
python
"2023-08-16T20:30:15Z"
libs/langchain/langchain/chains/qa_with_sources/base.py
"""Question answering with sources over documents.""" input_docs_key: str = "docs" @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_docs_key, self.question_key] def _get_docs( self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> List[Document]: """Get docs to run questioning over.""" return inputs.pop(self.input_docs_key) async def _aget_docs( self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> List[Document]: """Get docs to run questioning over.""" return inputs.pop(self.input_docs_key) @property def _chain_type(self) -> str: return "qa_with_sources_chain"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,117
Missing new lines or empty spaces in refine default prompt.
I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n ` ``` REFINE_PROMPT_TMPL = ( "Your job is to produce a final summary\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary" "If the context isn't useful, return the original summary." ) ``` It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)` I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this.
https://github.com/langchain-ai/langchain/issues/3117
https://github.com/langchain-ai/langchain/pull/9957
4b1532876710e08aa70cdd0d52b18084f85eaed3
29270e0378661fe3d5a77cbe95311f9d4b5d33e8
"2023-04-18T22:32:58Z"
python
"2023-08-31T14:29:49Z"
libs/langchain/langchain/chains/question_answering/refine_prompts.py
from langchain.chains.prompt_selector import ConditionalPromptSelector, is_chat_model from langchain.prompts.chat import ( AIMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.prompts.prompt import PromptTemplate DEFAULT_REFINE_PROMPT_TMPL = ( "The original question is as follows: {question}\n" "We have provided an existing answer: {existing_answer}\n" "We have the opportunity to refine the existing answer" "(only if needed) with some more context below.\n"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,117
Missing new lines or empty spaces in refine default prompt.
I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n ` ``` REFINE_PROMPT_TMPL = ( "Your job is to produce a final summary\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary" "If the context isn't useful, return the original summary." ) ``` It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)` I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this.
https://github.com/langchain-ai/langchain/issues/3117
https://github.com/langchain-ai/langchain/pull/9957
4b1532876710e08aa70cdd0d52b18084f85eaed3
29270e0378661fe3d5a77cbe95311f9d4b5d33e8
"2023-04-18T22:32:58Z"
python
"2023-08-31T14:29:49Z"
libs/langchain/langchain/chains/question_answering/refine_prompts.py
"------------\n" "{context_str}\n" "------------\n" "Given the new context, refine the original answer to better " "answer the question. " "If the context isn't useful, return the original answer." ) DEFAULT_REFINE_PROMPT = PromptTemplate( input_variables=["question", "existing_answer", "context_str"], template=DEFAULT_REFINE_PROMPT_TMPL, ) refine_template = ( "We have the opportunity to refine the existing answer" "(only if needed) with some more context below.\n" "------------\n" "{context_str}\n" "------------\n" "Given the new context, refine the original answer to better " "answer the question. " "If the context isn't useful, return the original answer." ) messages = [ HumanMessagePromptTemplate.from_template("{question}"), AIMessagePromptTemplate.from_template("{existing_answer}"), HumanMessagePromptTemplate.from_template(refine_template), ] CHAT_REFINE_PROMPT = ChatPromptTemplate.from_messages(messages) REFINE_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=DEFAULT_REFINE_PROMPT, conditionals=[(is_chat_model, CHAT_REFINE_PROMPT)],
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,117
Missing new lines or empty spaces in refine default prompt.
I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n ` ``` REFINE_PROMPT_TMPL = ( "Your job is to produce a final summary\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary" "If the context isn't useful, return the original summary." ) ``` It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)` I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this.
https://github.com/langchain-ai/langchain/issues/3117
https://github.com/langchain-ai/langchain/pull/9957
4b1532876710e08aa70cdd0d52b18084f85eaed3
29270e0378661fe3d5a77cbe95311f9d4b5d33e8
"2023-04-18T22:32:58Z"
python
"2023-08-31T14:29:49Z"
libs/langchain/langchain/chains/question_answering/refine_prompts.py
) DEFAULT_TEXT_QA_PROMPT_TMPL = ( "Context information is below. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Given the context information and not prior knowledge, " "answer the question: {question}\n" ) DEFAULT_TEXT_QA_PROMPT = PromptTemplate( input_variables=["context_str", "question"], template=DEFAULT_TEXT_QA_PROMPT_TMPL ) chat_qa_prompt_template = ( "Context information is below. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Given the context information and not prior knowledge, " "answer any questions" ) messages = [ SystemMessagePromptTemplate.from_template(chat_qa_prompt_template), HumanMessagePromptTemplate.from_template("{question}"), ] CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages) QUESTION_PROMPT_SELECTOR = ConditionalPromptSelector( default_prompt=DEFAULT_TEXT_QA_PROMPT, conditionals=[(is_chat_model, CHAT_QUESTION_PROMPT)], )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,117
Missing new lines or empty spaces in refine default prompt.
I'm not sure if it's a typo or not but the default prompt in [langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[langchain](https://github.com/hwchase17/langchain/tree/master/langchain)/[chains](https://github.com/hwchase17/langchain/tree/master/langchain/chains)/[summarize](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize)/[refine_prompts.py](https://github.com/hwchase17/langchain/tree/master/langchain/chains/summarize/refine_prompts.py) seems to miss a empty string or a `\n ` ``` REFINE_PROMPT_TMPL = ( "Your job is to produce a final summary\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary" "If the context isn't useful, return the original summary." ) ``` It will produce `refine the original summaryIf the context isn't useful` and `existing summary(only if needed)` I could proabbly fix it with a PR ( if it's unintentionnal), but I prefer to let someone more competent to do it as i'm not used to create PR's in large projects like this.
https://github.com/langchain-ai/langchain/issues/3117
https://github.com/langchain-ai/langchain/pull/9957
4b1532876710e08aa70cdd0d52b18084f85eaed3
29270e0378661fe3d5a77cbe95311f9d4b5d33e8
"2023-04-18T22:32:58Z"
python
"2023-08-31T14:29:49Z"
libs/langchain/langchain/chains/summarize/refine_prompts.py
from langchain.prompts import PromptTemplate REFINE_PROMPT_TMPL = ( "Your job is to produce a final summary\n" "We have provided an existing summary up to a certain point: {existing_answer}\n" "We have the opportunity to refine the existing summary" "(only if needed) with some more context below.\n" "------------\n" "{text}\n" "------------\n" "Given the new context, refine the original summary\n" "If the context isn't useful, return the original summary." ) REFINE_PROMPT = PromptTemplate( input_variables=["existing_answer", "text"], template=REFINE_PROMPT_TMPL, ) prompt_template = """Write a concise summary of the following: "{text}" CONCISE SUMMARY:""" PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,307
ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'
### System Info Hi All, I tried to run Apify tutorial and I ran on the issue of ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'. I checked the Utilities library under utilities/__init__.py and I couldn't find anything under the Generic integrations with third-party systems and packages. Any thoughts or support? ### Who can help? @hwchase17, @agola ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction import os openai.api_key = os.environ["OPEN_API_KEY"] os.environ["APIFY_API_TOKEN"] = "apify_api_qNa00bcYGUYFwIZltWiOuhskmer7E61VE6GN" apify = ApifyWrapper() loader = apify.call_actor( actor_id="apify/website-content-crawler", run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]}, dataset_mapping_function=lambda item: Document( page_content=item["text"] or "", metadata={"source": item["url"]} ), ) index = VectorstoreIndexCreator().from_loaders([loader]) query = "What is LangChain?" result = index.query_with_sources(query) print(result["answer"]) print(result["sources"]) ### Expected behavior LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities. https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html
https://github.com/langchain-ai/langchain/issues/8307
https://github.com/langchain-ai/langchain/pull/10067
02e51f4217207eed4fc9ac89735cf1f660be3f10
86646ec555970e01130994dc75f3a0c5d4e52de9
"2023-07-26T18:18:22Z"
python
"2023-08-31T22:47:44Z"
libs/langchain/langchain/utilities/__init__.py
"""**Utilities** are the integrations with third-part systems and packages. Other LangChain classes use **Utilities** to interact with third-part systems and packages. """ from langchain.utilities.alpha_vantage import AlphaVantageAPIWrapper from langchain.utilities.arxiv import ArxivAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.bash import BashProcess from langchain.utilities.bibtex import BibtexparserWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.brave_search import BraveSearchWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.golden_query import GoldenQueryAPIWrapper from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
8,307
ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'
### System Info Hi All, I tried to run Apify tutorial and I ran on the issue of ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'. I checked the Utilities library under utilities/__init__.py and I couldn't find anything under the Generic integrations with third-party systems and packages. Any thoughts or support? ### Who can help? @hwchase17, @agola ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction import os openai.api_key = os.environ["OPEN_API_KEY"] os.environ["APIFY_API_TOKEN"] = "apify_api_qNa00bcYGUYFwIZltWiOuhskmer7E61VE6GN" apify = ApifyWrapper() loader = apify.call_actor( actor_id="apify/website-content-crawler", run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]}, dataset_mapping_function=lambda item: Document( page_content=item["text"] or "", metadata={"source": item["url"]} ), ) index = VectorstoreIndexCreator().from_loaders([loader]) query = "What is LangChain?" result = index.query_with_sources(query) print(result["answer"]) print(result["sources"]) ### Expected behavior LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities. https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html
https://github.com/langchain-ai/langchain/issues/8307
https://github.com/langchain-ai/langchain/pull/10067
02e51f4217207eed4fc9ac89735cf1f660be3f10
86646ec555970e01130994dc75f3a0c5d4e52de9
"2023-07-26T18:18:22Z"
python
"2023-08-31T22:47:44Z"
libs/langchain/langchain/utilities/__init__.py
from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.jira import JiraAPIWrapper from langchain.utilities.max_compute import MaxComputeAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper from langchain.utilities.portkey import Portkey from langchain.utilities.powerbi import PowerBIDataset from langchain.utilities.pubmed import PubMedAPIWrapper from langchain.utilities.python import PythonREPL from langchain.utilities.requests import Requests, RequestsWrapper, TextRequestsWrapper from langchain.utilities.scenexplain import SceneXplainAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.spark_sql import SparkSQL from langchain.utilities.sql_database import SQLDatabase from langchain.utilities.tensorflow_datasets import TensorflowDatasets from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.zapier import ZapierNLAWrapper __all__ = [ "AlphaVantageAPIWrapper", "ArxivAPIWrapper", "BashProcess", "BibtexparserWrapper", "BingSearchAPIWrapper", "BraveSearchWrapper", "DuckDuckGoSearchAPIWrapper",